Skip to content
Snippets Groups Projects

Search algo

2 files
+ 187
0
Compare changes
  • Side-by-side
  • Inline

Files

+ 95
0
 
from pymongo import MongoClient
 
import pandas as pd
 
import ast
 
from sklearn.feature_extraction.text import CountVectorizer
 
from sklearn.feature_extraction.text import TfidfVectorizer
 
from sklearn.metrics.pairwise import cosine_similarity
 
import seaborn as sns
 
import numpy as np
 
import matplotlib.pyplot as plt
 
 
 
def dbToDf():
 
'''
 
This function convert a DataBase from mongoDB into a pandas DataFrame
 
'''
 
client = MongoClient("mongodb://group3:GJF6cQqM4RLxBfNb@cs2022.lmichelin.fr:27017/group3?ssl=true")
 
db = client.group3
 
collection = db.movies_populated
 
cursor = collection.find({},{"_id":1, "original_title": 1, "genre": 1, "id":1, "overview":1, "popularity":1, "vote_count":1, "release_date":1, "cast": {"name":1, "order":1}})
 
df=pd.DataFrame(list(cursor))
 
return df
 
 
def preFiltering(df,percent=15):
 
'''
 
This function removes movies who do not have enough votes to be evaluated
 
'''
 
df = df[df['vote_count'].notna()]
 
min_votes = np.percentile(df['vote_count'].values, 100-percent)
 
newdf = df.copy(deep=True).loc[df['vote_count'] > min_votes]
 
 
return newdf
 
 
def process_text(text):
 
'''
 
This function transform a text before calculating the tf-idf
 
'''
 
# replace multiple spaces with one
 
text = ' '.join(text.split())
 
 
# lowercase
 
text = text.lower()
 
 
return text
 
 
def similarity(df):
 
'''
 
This function calculates the similarity between movies
 
'''
 
tf_idf = TfidfVectorizer(stop_words='english')
 
tf_idf_matrix = tf_idf.fit_transform(df['overview']);
 
print(tf_idf_matrix)
 
# calculating cosine similarity between movies
 
cosine_similarity_matrix = cosine_similarity(tf_idf_matrix, tf_idf_matrix)
 
 
return cosine_similarity_matrix
 
 
def index_from_title(df,title):
 
'''
 
return the index of a movie from its title
 
'''
 
return df[df['original_title']==title].index.values[0]
 
 
def title_from_index(df,index):
 
'''
 
return the title of a movie from its index
 
'''
 
return df[df.index==index].original_title.values[0]
 
 
def recommendations_on_overview( original_title, df, number_of_recommendations):
 
 
#prefilter the dataframe
 
df=preFiltering(df)
 
 
# removing rows with missing overview
 
df = df[df['overview'].notna()]
 
df.reset_index(inplace=True)
 
 
#process text of all overviews
 
df['overview'] = df.apply(lambda x: process_text(x.overview),axis=1)
 
 
index= index_from_title(df,original_title)
 
 
#calculates similarity scores of all movies
 
calculated_sim = similarity(df)
 
similarity_scores = list(enumerate(calculated_sim[index]))
 
 
similarity_scores_sorted = sorted(similarity_scores, key=lambda x: x[1], reverse=True)
 
 
recommendations_indices = [t[0] for t in similarity_scores_sorted[1:(number_of_recommendations+1)]]
 
 
return df['original_title'].iloc[recommendations_indices]
 
 
df = dbToDf()
 
 
print(recommendations_on_overview('Avatar', df, 9))
Loading