Skip to content
Snippets Groups Projects
Commit 79ee928d authored by Tom Bray's avatar Tom Bray
Browse files

clean code adreco

parent 36465458
No related branches found
No related tags found
No related merge requests found
...@@ -36,6 +36,29 @@ def movieDbToDf(): ...@@ -36,6 +36,29 @@ def movieDbToDf():
return df return df
def userDbToDf():
'''
This function convert a movie DataBase from mongoDB into a pandas DataFrame
'''
#load DB
client = MongoClient("mongodb://group3:GJF6cQqM4RLxBfNb@cs2022.lmichelin.fr:27017/group3?ssl=true")
db = client.group3
collection = db.users
#projection on useful data
cursor = collection.find({},{"_id":1, "liked_movies": 1, "update":1})
df=pd.DataFrame(list(cursor))
return df
def loadRecDB():
#load DB
client = MongoClient("mongodb://group3:GJF6cQqM4RLxBfNb@cs2022.lmichelin.fr:27017/group3?ssl=true")
db = client.group3
collection = db['recommendations']
return collection
def preFiltering(df,percent=90): def preFiltering(df,percent=90):
''' '''
This function removes movies who do not have enough votes to be evaluated This function removes movies who do not have enough votes to be evaluated
...@@ -103,7 +126,6 @@ def index_from_id(df,id): ...@@ -103,7 +126,6 @@ def index_from_id(df,id):
''' '''
return df[df['_id']==id].index.values[0] return df[df['_id']==id].index.values[0]
def recommendations(original_title, df, number_of_recommendations): def recommendations(original_title, df, number_of_recommendations):
#prefilter the dataframe #prefilter the dataframe
...@@ -130,6 +152,10 @@ def recommendations(original_title, df, number_of_recommendations): ...@@ -130,6 +152,10 @@ def recommendations(original_title, df, number_of_recommendations):
return df['original_title'].iloc[recommendations_indices] return df['original_title'].iloc[recommendations_indices]
def formatingFeatures(df_row): def formatingFeatures(df_row):
"""
This function creates a new column "features" in the df
used to calculate similarities between users_profiles et movies
"""
g = [] g = []
genres = [] genres = []
k=[] k=[]
...@@ -150,21 +176,6 @@ def formatingFeatures(df_row): ...@@ -150,21 +176,6 @@ def formatingFeatures(df_row):
return ' '.join([genres]*w_genres)+' '+' '.join([keywords]*w_keywords)+' '+' '.join([str(df_row['main_actor'])]*w_actor)+' '+' '.join([str(df_row['director'])]*w_director)+' '+' '.join([str(df_row['release_date'])]*w_release_date) return ' '.join([genres]*w_genres)+' '+' '.join([keywords]*w_keywords)+' '+' '.join([str(df_row['main_actor'])]*w_actor)+' '+' '.join([str(df_row['director'])]*w_director)+' '+' '.join([str(df_row['release_date'])]*w_release_date)
def userDbToDf():
'''
This function convert a movie DataBase from mongoDB into a pandas DataFrame
'''
#load DB
client = MongoClient("mongodb://group3:GJF6cQqM4RLxBfNb@cs2022.lmichelin.fr:27017/group3?ssl=true")
db = client.group3
collection = db.users
#projection on useful data
cursor = collection.find({},{"_id":1, "liked_movies": 1, "update":1})
df=pd.DataFrame(list(cursor))
return df
def user_profile( user_index, moviesdf, usersdf, vectMatrix ): def user_profile( user_index, moviesdf, usersdf, vectMatrix ):
""" """
This function creates a user profile based on the likef movies of the user This function creates a user profile based on the likef movies of the user
...@@ -200,15 +211,11 @@ def user_profile( user_index, moviesdf, usersdf, vectMatrix ): ...@@ -200,15 +211,11 @@ def user_profile( user_index, moviesdf, usersdf, vectMatrix ):
else: else:
return [i for i in range(100)] return [i for i in range(100)]
def loadRecDB():
#load DB
client = MongoClient("mongodb://group3:GJF6cQqM4RLxBfNb@cs2022.lmichelin.fr:27017/group3?ssl=true")
db = client.group3
collection = db['recommendations']
return collection
def updateDB(): def updateDB():
"""
This function update the recommandation DB based on the likes of thes users
"""
#loadDB #loadDB
moviesdf = movieDbToDf() moviesdf = movieDbToDf()
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment