#%load_ext autoreload #Need to uncomment for import sometime, dont understand
#Tensorflow :
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets, layers, models, losses
import tensorflow_datasets as tfds
#from google.colab import files
#Others :
from matplotlib import image
import os
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import random as rd
import cv2
import csv
#Data loaders :
from loadFer2013DS import *
from loadRavdessDS import *
from loadExpWDS import *
from loadAffwildDS import *
#Others
from utils import *
from config import *
```
%% Output
INFO:tensorflow:Enabling eager execution
INFO:tensorflow:Enabling v2 tensorshape
INFO:tensorflow:Enabling resource variables
INFO:tensorflow:Enabling tensor equality
INFO:tensorflow:Enabling control flow v2
WARNING:tensorflow:SavedModel saved prior to TF 2.5 detected when loading Keras model. Please ensure that you are saving the model with model.save() or tf.keras.models.save_model(), *NOT* tf.saved_model.save(). To confirm, there should be a file named "keras_metadata.pb" in the SavedModel directory.
Model used: firstModel
%% Cell type:code id: tags:
```
#Chargement des données
print("Array loading...")
Xf = np.load("data/array/Xf")
Xe = np.load("data/array/Xe")
Xa = np.load("data/array/Xa")
Xr = np.load("data/array/Xr")
Yf = np.load("data/array/Yf")
Ye = np.load("data/array/Ye")
Ya = np.load("data/array/Ya")
Yr = np.load("data/array/Yr")
print("Concatenation...")
X = np.concatenate([Xf, Xa, Xe, Xr])
Y = np.concatenate([Yf, Ya, Ye, Yr])
```
%% Cell type:code id: tags:
```
#Enregistre X et Y directement, à faire si assez de ram