diff --git a/backend/video_capture.py b/backend/video_capture.py index 6de64c677002651378f6f13298137373ba765fca..a0d537ce4cc5fd2bd029e64f19d57d8a8bdc298b 100644 --- a/backend/video_capture.py +++ b/backend/video_capture.py @@ -10,7 +10,7 @@ from cameras import restaurants from db import models from db.database import SessionLocal from routers.websocket import manager - + async def handle_cameras(): model = keras.models.load_model('assets', compile=False) @@ -54,12 +54,12 @@ async def handle_cameras(): np.array( [treated_img]))), axis=0) - pre_pred=time.time() + pre_pred = time.time() pred_map = np.squeeze(model.predict(input_image, verbose=0)) - print(time.time()-pre_pred) + print(time.time() - pre_pred) count_prediction += np.sum(pred_map) for caisse in camera["caisses"]: - if np.sum(pred_map[caisse["x1"]//2:caisse["x2"]//2, caisse["y1"]//2:caisse["y2"]//2]) > 0.5: + if np.sum(pred_map[caisse["x1"] // 2:caisse["x2"] // 2, caisse["y1"] // 2:caisse["y2"] // 2]) > 0.5: open_checkouts += 1 else: cams_working = False @@ -69,7 +69,7 @@ async def handle_cameras(): waiting_time = timedelta( seconds=restaurant['b_factor'] + int(count_prediction * - restaurant['a_factor'] / max(open_checkouts, 1))) + restaurant['a_factor'] / max(open_checkouts, 1))) db_record = models.Records( place=restaurant['restaurant'], date=current_date,