Skip to content
Snippets Groups Projects
Select Git revision
  • 93483bf3f63c3c02f2f3c365fc7125d3b42021a7
  • master default
  • add-mongoose
  • add-website
  • add-bot
5 results

telegram.js

Blame
  • main.py 1013 B
    import snscrape.modules.twitter as sntwitter
    import pandas as pd
    
    from src.functions import construct_query, convert_date_str, calc_frequency
    
    table = pd.DataFrame(columns=['date', 'tweet'])
    
    terms = ["Metaverse"]
    negativeTerms = ["#metaverse"]
    
    filters = []
    negativeFilters = ["replies", "links", "retweets", "nativeretweets"]
    
    languages = ["en"]
    
    tweetNumber = 100
    
    for i, tweet in enumerate(sntwitter.TwitterSearchScraper(query=construct_query(terms, negativeTerms, filters, negativeFilters)).get_items()):
        if i > tweetNumber:
            break
    
        if (tweet.lang in languages):
            dict = {'date': convert_date_str(
                tweet.date), 'tweet': tweet.rawContent}
    
            if ("metaverse" in tweet.rawContent.lower()):
                table = pd.concat([table, pd.DataFrame.from_records([dict])])
    
        print(i/tweetNumber*100, " %")
    
    print(calc_frequency(table["date"]))
    table = table.drop_duplicates(subset=["tweet"]).sort_values(by=["tweet"])
    
    table.to_json("output/twitter_data.json", orient="split")