{
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.5"
  },
  "orig_nbformat": 2,
  "kernelspec": {
   "name": "python395jvsc74a57bd0241a3087cce17afe2d3bd9b072a200bdbe084ac2f3f20c4fa80011e0c0777b07",
   "display_name": "Python 3.9.5 64-bit (windows store)"
  },
  "metadata": {
   "interpreter": {
    "hash": "241a3087cce17afe2d3bd9b072a200bdbe084ac2f3f20c4fa80011e0c0777b07"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2,
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": [
      "INFO:tensorflow:Enabling eager execution\n",
      "INFO:tensorflow:Enabling v2 tensorshape\n",
      "INFO:tensorflow:Enabling resource variables\n",
      "INFO:tensorflow:Enabling tensor equality\n",
      "INFO:tensorflow:Enabling control flow v2\n",
      "Model used: exp903\n"
     ]
    }
   ],
   "source": [
    "#@title Imports\n",
    "#%load_ext autoreload  #Need to uncomment for import sometime, dont understand\n",
    "\n",
    "#Tensorflow :\n",
    "from sklearn.metrics import confusion_matrix\n",
    "import tensorflow as tf\n",
    "from tensorflow import keras\n",
    "from tensorflow.keras import datasets, layers, models, losses\n",
    "import tensorflow_datasets as tfds\n",
    "#from google.colab import files\n",
    "\n",
    "#Others :\n",
    "from matplotlib import image\n",
    "import os\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "import matplotlib\n",
    "import random as rd\n",
    "import cv2\n",
    "import csv\n",
    "\n",
    "#Data loaders :\n",
    "from loadFer2013DS import *\n",
    "from loadRavdessDS import *\n",
    "from loadExpWDS import *\n",
    "from loadAffwildDS import *\n",
    "\n",
    "#Others\n",
    "from utils import *\n",
    "from config import *"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": [
      "Array loading...\n",
      "Concatenation...\n",
      "Done\n"
     ]
    }
   ],
   "source": [
    "#Chargement des données\n",
    "\n",
    "# print(\"Array loading...\")\n",
    "# Xf = np.load(\"data/array/Xf.npy\")\n",
    "# Xe = np.load(\"data/array/Xe.npy\")\n",
    "# Xa = np.load(\"data/array/Xa.npy\")\n",
    "# Xr = np.load(\"data/array/Xr.npy\")\n",
    "\n",
    "# Yf = np.load(\"data/array/Yf.npy\")\n",
    "# Ye = np.load(\"data/array/Ye.npy\")\n",
    "# Ya = np.load(\"data/array/Ya.npy\")\n",
    "# Yr = np.load(\"data/array/Yr.npy\")\n",
    "\n",
    "# print(\"Concatenation...\")\n",
    "# X = np.concatenate([Xf, Xa, Xe, Xr])\n",
    "# Y = np.concatenate([Yf, Xa, Xe, Yr])\n",
    "\n",
    "\n",
    "\n",
    "print(\"Array loading...\")\n",
    "Xf = np.load(\"data/array/Xf.npy\")\n",
    "Xe = np.load(\"data/array/Xe.npy\")\n",
    "\n",
    "Yf = np.load(\"data/array/Yf.npy\")\n",
    "Ye = np.load(\"data/array/Ye.npy\")\n",
    "\n",
    "print(\"Concatenation...\")\n",
    "X = np.concatenate([Xf, Xe])\n",
    "Y = np.concatenate([Yf, Ye])\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "#Enregistre X et Y directement, à faire si assez de ram\n",
    "# np.save(\"data/array/X\", X)\n",
    "# np.save(\"data/array/Y\", Y)\n",
    "\n",
    "\n",
    "#Chargment des données\n",
    "# X = np.load(\"data/array/X.npy\")\n",
    "# Y = np.load(\"data/array/Y.npy\")\n",
    "# print(\"X et Y chargés\")\n",
    "\n",
    "print(\"Done\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": [
      "X et Y chargés\n"
     ]
    }
   ],
   "source": [
    "\n",
    "#Chargment des données\n",
    "X = np.load(\"data/array/X.npy\")\n",
    "Y = np.load(\"data/array/Y.npy\")\n",
    "print(\"X et Y chargés\")"
   ]
  },
  {
   "source": [
    "def loadData():\n",
    "    return np.load(\"data/array/X.npy\"), np.load(\"data/array/Y.npy\")\n",
    "X, Y = loadData()"
   ],
   "cell_type": "markdown",
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "output_type": "error",
     "ename": "NameError",
     "evalue": "name 'Xf' is not defined",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mNameError\u001b[0m                                 Traceback (most recent call last)",
      "\u001b[1;32m<ipython-input-2-27f8e461a14b>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m      1\u001b[0m \u001b[1;31m#@title Visualisation de chaque dataset\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[1;32mfor\u001b[0m \u001b[0mX_\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mY_\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mname\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mXf\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mXr\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mXe\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mXa\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m[\u001b[0m\u001b[0mYf\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mYr\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mYe\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mYa\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;34m\"fer2013\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"ravdess\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"expW\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"affwild\"\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m      3\u001b[0m     \u001b[0mN\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m5\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m      4\u001b[0m     \u001b[0mM\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m5\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m      5\u001b[0m     \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"Dataset:\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mname\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;31mNameError\u001b[0m: name 'Xf' is not defined"
     ]
    }
   ],
   "source": [
    "#@title Visualisation de chaque dataset\n",
    "for X_, Y_, name in zip([Xf, Xr, Xe, Xa], [Yf, Yr, Ye, Ya], [\"fer2013\", \"ravdess\", \"expW\", \"affwild\"]):\n",
    "    N=5\n",
    "    M=5\n",
    "    print(\"Dataset:\", name)\n",
    "    print(\"Images:\", X_.shape, \"Labels:\", Y_.shape)\n",
    "    plt.figure()\n",
    "    for i in range(N*M):\n",
    "        if X_.shape[0] == 0: continue\n",
    "        k = rd.randrange(X_.shape[0])\n",
    "        plt.subplot(N, M, i+1)\n",
    "        plt.xticks([])\n",
    "        plt.yticks([])\n",
    "        plt.grid(False)\n",
    "\n",
    "        afficher(X_[k])\n",
    "        plt.title(emotions[int(Y_[k])])\n",
    "    plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": [
      "X: (152252, 48, 48, 1)\nY: (152252,)\n"
     ]
    },
    {
     "output_type": "display_data",
     "data": {
      "text/plain": "<Figure size 432x288 with 25 Axes>",
      "image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\r\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\r\n  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\r\n<svg height=\"250.458125pt\" version=\"1.1\" viewBox=\"0 0 336.123362 250.458125\" width=\"336.123362pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\r\n <metadata>\r\n  <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\r\n   <cc:Work>\r\n    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\r\n    <dc:date>2021-06-09T14:11:05.725999</dc:date>\r\n    <dc:format>image/svg+xml</dc:format>\r\n    <dc:creator>\r\n     <cc:Agent>\r\n      <dc:title>Matplotlib v3.4.1, https://matplotlib.org/</dc:title>\r\n     </cc:Agent>\r\n    </dc:creator>\r\n   </cc:Work>\r\n  </rdf:RDF>\r\n </metadata>\r\n <defs>\r\n  <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\r\n </defs>\r\n <g id=\"figure_1\">\r\n  <g id=\"patch_1\">\r\n   <path d=\"M 0 250.458125 \r\nL 336.123362 250.458125 \r\nL 336.123362 0 \r\nL 0 0 \r\nz\r\n\" style=\"fill:none;\"/>\r\n  </g>\r\n  <g id=\"axes_1\">\r\n   <g id=\"patch_2\">\r\n    <path d=\"M 10.957047 59.80778 \r\nL 48.446703 59.80778 \r\nL 48.446703 22.318125 \r\nL 10.957047 22.318125 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p0c76f4c37e)\">\r\n    <image height=\"38\" id=\"image26ab5498d9\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.957047\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAOBUlEQVR4nD2Y2a9k11XGf2vvfYY6Nd353u7bk6fEbmKbOImcEAQIEwHilQcUkJAi8R8g8YKQUP4CHpF4AoFQpCgRRJFQoliCWHYIiYMdbKfdtttu952Hms+wz96Lh3Pth9KuUp2qs85a3/etby35+OGeTqIhIgBUavFqabBENQA8atf554MXee9ki2f2jvmTvf8mN563yn3+6dsvsfcTT8iENjfUY8FVoAZ8IaiD8fst/VfeJa5WmF6OhohYA1mGGINWNdo0yO19Tr66yWpPcHMVPIaoQoOh0oQqJgB4LF4dp+0QI0ozy7j3yyf4m97jrD1/hm8txaFifEStwdURZgZbKxKVfAISoHdcQggQtQuibVFAqhoGfWQ8JG6NOHtuSDpXtl6f4+YxIZeAFaVRg1cLgJVIVEOlhlXIeDhZY/RWwvo7HgzUb25iDKTLAAq2jBgvGK/EpDtNq6SnJfZ0QlQFINY14hIkcWgIiBiaGxusrues3StJPzwj7K7hAAxKKhGvhkQCFiWRFotSScLH9TqL98fsHEVWOw4/EPpHgWzSEjJDTA3SRlQgOqHNDEmISBUxywpdLLqMAWK7B9emQUNA53PSR5cgG8zv5Ey+dov2qRVuaDwAAaEwLbOQkYsnl5YKJRdPUME2QjMCgOI0YlpFrZBd1MSku5m0EdM6TKuE1GCagDSeWNXExiOJw4zW0f1t2nFGcjBFHx1B46k3E06+1rC5uUBEMRsGdq0hQbluLbl4CuMZG0+lCd+5eIGX33+qy0YiJEtFguLKSHpeEp2hLSyoIiEisSuZqBJTizoL1naZiorkGX495/LJnPrWOoigVUU6bWGScnY45mIywFkEe8XI09Dy2UQ5aJXvzJ/jH975Ddp7Q9r9GuOUkAn12NBmim2UdpgRMtP9uTNEQEWQVjGxC44sRRJHLKsOV9MZ6VGPYuxIph0RqCC7f8LW6zc5fVFI0hY3iZGDkHMatghqeG3xBN//4C7+3ogbL3sW1+FsH8KGpwwp6aWQqlCPDOAwTcRWAbf0ECOm7RiqAqIQhhluYx3zCRubBmkDxiviA6QpkibEi0s2Xx/SDNdZ3O7jvjN/jjM/IDGBn5zf4d7DXXb/I2W1Kxy9mBIyRUuHtEIyF7KJYmtoc6EZWUxrSedKOrUk8w6v6jp8GX9FiCJH+gU6W6CqiDGgIE1LbBrEObTxmA8ecX1ZUd3ZwB37EVvJnF035cfxCVgkmBb6B5GjryqaRaQX0JWj7SuLAtphRPstYhUtLXZuSScJvVNHNu3KbGuLLSO2DuACUhTIVdZkVZFOPbKqUN925YTuPD6j51vcn66/xlBa5ur4YX/C4dENhu9NkTpw/OU1dm5eApC77sdRhVFWsV9MuGwK7l9sMe0XlIOEmDhsDcki0gwtYdORrCL5uSEtG5gY1LfE0zMSZ9HlCjRCjJ+ekibEswvchmmZRsueDXx9+ycc/s6Y2bv7rP3gHoMHGxyvjUkLT5E3TCcF7jDjpIF3Tdd2YgJxEDBDj55ZbKNUG5ZqQ5AAbc/gexl9O6ZXN93NiwLKCl0sEdd1GcmyLmO+hRBw/zj5Al8s3ieXS76ST/jmY9/lG3/856SzJ2gLsBcJTW1pNGfwgaN/EAmpEBNYXRP8RosddthyKyGksNoVELAl3bUOTJvgyg2cs1SPb1KvOca/OEU/eIg2Hv1EgNO0Cyw3nqeSrlwATyYV33zu3/irl75OdJH8xGBODMvHWhaPtbQ9h0QIqaJWSS4s6QNH/0ApTjzVugUR3IorIkAUaIZCuZtR+AF+YFntGAZrBSZxmPEIXa4IiyUiggLuQbXJfODYMC3HIbJm4NezA/pPTJkdDXGVYednFRfTjHpDcEtwZcdMpCtnPglkl556PcEPhOxCMS20vS6DmKtWlQuhn9A7rLB1iqk8Zjyi+cw1iOB++jaxriEq7nuvvsDdlw74s9F7nHlhKJ6AMO5VzP0IP4SzZ3PaPoQM1ELbF1BoxkoYRtQq4ECV/FAYPVDqNaEtIORABNNcBdez9E5X5FWL+IC2ASKsrmWsbW8Rzy/Q0OCKjy1vra6zGt5jwypzFeYxYVLmINDmim5DvdeydX3KZFYgD3q4Umg3W7JxxdO7JxSu4dV3niDkysVdaEctSJdV8V1nkCBIsCTLHu68RGpPrCrSB6eo3UFHfQwQzy9wxsPb0z0ebiZ8NokchEBAqMoURp42tTBx0Aq9xHPeGtY/hNGHnvCmUK0NeOOFguzaClla/J7nzs1TmmCpvGNVZVTzDO8FCUJMDK5OGZ0uoW6QPEebhuzD8w6TvQxJE0zb77xXLh0rNgw89JvI/QIR5fNPP6D3mQmkkYcfbZG9l5MslHpsUdNJQn5sad8fYLZqHr91gjORVZ3SBktoDXhBFPwoUm8qy11Lu9brxNbZTvnPL6GqIXHIeISrNyPTOmceU35cFXzz/h9xczhh+BGcbyVENXxu+4h2y/CzD24RnqmRLy9xJpLYwG62YtWm/OrRLrG2PDjcJNYWqWyHvTww2l2wGma0lSM0BjWWbNJj87CHzubgW2JdY3a3OhMAODZr5mXO1//rL2CW0P/Q8rMXRuxMlcF7jnc2d7A2Ym0kLxpGRcUfXH+b54uP+OHk1zgoR3w8HWM/yrFA6CliAKOdlmWBImsY5jUXi4JymtMOhGbYzRPxSiKIiqwqpKzRqsLFRcJqknLn3wOz24bpU0r/tYLxm6f4YguTtiwWORqF/rDifDLgXxdfYHx3xVdG93mVJ3n98hbrH0GzJlRXnUB6gbTn8ZVj8toufqDELFIcWmwDxVmAsuqcrXNdkLN5J7IiuMe+HWjWHOl5idt2tIPI/DHDwde22fy/mtkba/Q+N+POxgXHiyGLy4LsnZS/m/4ef/ub32Uvm2KmCf3jSMgsrgTbWEJm8D1H8dCy/6M5GGH2WEF+6XELj5tUaFUhzkGSICYgafJpoK53/5S8lyGLkuZLI5L1mr2NGQ+Hm2z+EiQKTWOZ1Tnn5wPseYIa2Hol4e9v/BZf2HpIemnIT1fEJGf9fiA/LkEVvbLcoZ/gFp5sEpCopAcT9OKyM4+2Az95jjiLeg/W4vz+BiG3XDy9zewrJRLNpxoWU4N/qkQ+7DN9bcD+R4H8vKLcTikOay6/tcv3n9ll+92IXXpUcoh0BlAEP044ezYj9GDrTcvF0wmmgf13FRkMMEkKdY3kWSe0qkiWdX338KsFamB1PXD3xhE+WHaLGffSHYwfk77Tu3IJcPJ5Q37eY/1djx8mbP18Su9iwHLHsrrVRxQW+45mNMY2ii86y+6WsNhzVJvK+D6ds1gfdaXL0k672gAxolUNZYUrt5V0JvQ/trx3bYvff/xtdpI5J+WQi5vbANQbkezc4Dci5ukVkzBk+42S8lqf2S3H7LOB9r5j+xcV6dSQnZVXbejKxiSOZqfP+q8iyfEMkgS1FmzodKysQaQLbL4gVjUunQq9U0VaWB70+fnoJplrOZyOyDLY/aknmTU06ykHQ0e7HDCcKYv9jNWuwQ/ArAz1GpzfzSlOAtkZmEWJrKpOzZdL0pMUYgBju2xVNeJbCLGbO6N21sda7MYaTmI3lsUcNAkUScMgqVkVCYtiTO9/3oe2xV3bQX97i61nT2iesQSgLjN87YjLhJgJprGMH0RM1XbgHw+gDUgI6LBPHPQ6/DmDmSw+tVokKfgGyQpYG6K9FNc7VpY3BTWKRCG1ASNKagOLWxEZDaHx6KNjbvxojYPbfb5x91Ue1WtcNH1WbcK759ssDgcUJ0p+tOrKBxA6u6zDPqhiak8sUgjd7KmJQ9oaGfYh9gjrQ2KRoAIun0aWNy31DY9JA+dlQVTBiGJ2K5rra6T3D5GNNYr/fcjwB4/xL9kXeXbnkKjCZV3QthY3t/TOu9EtbPQxiwY5PocYkEEfXVXIoMCE2C1TQoQiR013fXSGdpBg69Dp3FN/+RbTbz/Lje9Zmn7C8R8q1zenVK3D2MjlM312jgqkaiDPWH+n5GBnnZ8+n2BtxDeO0FjSSlADGMFeLJHGQ5aCagfs9RFqDVL7bkAucmIvIfQKsNIZgjaSXFbIosS98vLnuPPKkuRwgk5mzG89w8fXMjSJkEZWe0Jzc53kdAVWsKVn9EHkeK+HblfEIKg3SLzCS9QO1HX3IJq4TxmHb7uVgUvR1BHTT74D00ZsiJ157Oe429+vOPlin603LGni2P/PkunjOfW6pRmDCjQjR3IhqDHEzOFqpf/QstQeopBUQjLvdmHqDLHfQzeHSBuRRYksVpClhJ21DvxtJOYOTQ0qgvERU7dI03af5yWu/usJtlnyaGOLrTcSJCjNuNvsmAbSGay2LWpGJMuACrSZkF0qbmUwrWI82DqiBsq9HLuWYqtIer6CxNHe2iEUCdJGLFyV0KEGTNutCj55ERVUcV/a+pC9bEp9O+Fb89/F+M6ni0J5LVDuw/C+RY0hS4X83JMuIqa9UvWq2/6olW7dmXUTiq0j5f6AmHRm0pUB0yh+lBLybkVgmoipA+JjR4K1Ane+QJ3FPdU75m7+iJfnd2l7oH2on6hIPsrILizVXsvidsSWQrky9NZSsqmSzgISFFtHRBVfOGJhrqYhCFmC8d26ytaR6AS/nRGdIBHcKuBWLba82neIYKqW1ZMb1GOLu5Oe0ZeGDbek9+IZF6cjnr/ziKPtIcs65fHhgp7zHMxGrKqUSeOIK0d25CgOoX8UGbw3xU0EE/o0I0u1brB1V6a2MKgVfN8gQZGr9VT3XjtSRIjDjOmTBatrQrkT+X81c6c7kxswOAAAAABJRU5ErkJggg==\" y=\"-21.80778\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_1\"/>\r\n   <g id=\"matplotlib.axis_2\"/>\r\n   <g id=\"patch_3\">\r\n    <path d=\"M 10.957047 59.80778 \r\nL 10.957047 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_4\">\r\n    <path d=\"M 48.446703 59.80778 \r\nL 48.446703 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_5\">\r\n    <path d=\"M 10.957047 59.80778 \r\nL 48.446703 59.80778 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_6\">\r\n    <path d=\"M 10.957047 22.318125 \r\nL 48.446703 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_1\">\r\n    <!-- Disgust -->\r\n    <g transform=\"translate(7.2 16.318125)scale(0.12 -0.12)\">\r\n     <defs>\r\n      <path d=\"M 1259 4147 \r\nL 1259 519 \r\nL 2022 519 \r\nQ 2988 519 3436 956 \r\nQ 3884 1394 3884 2338 \r\nQ 3884 3275 3436 3711 \r\nQ 2988 4147 2022 4147 \r\nL 1259 4147 \r\nz\r\nM 628 4666 \r\nL 1925 4666 \r\nQ 3281 4666 3915 4102 \r\nQ 4550 3538 4550 2338 \r\nQ 4550 1131 3912 565 \r\nQ 3275 0 1925 0 \r\nL 628 0 \r\nL 628 4666 \r\nz\r\n\" id=\"DejaVuSans-44\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 603 3500 \r\nL 1178 3500 \r\nL 1178 0 \r\nL 603 0 \r\nL 603 3500 \r\nz\r\nM 603 4863 \r\nL 1178 4863 \r\nL 1178 4134 \r\nL 603 4134 \r\nL 603 4863 \r\nz\r\n\" id=\"DejaVuSans-69\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 2834 3397 \r\nL 2834 2853 \r\nQ 2591 2978 2328 3040 \r\nQ 2066 3103 1784 3103 \r\nQ 1356 3103 1142 2972 \r\nQ 928 2841 928 2578 \r\nQ 928 2378 1081 2264 \r\nQ 1234 2150 1697 2047 \r\nL 1894 2003 \r\nQ 2506 1872 2764 1633 \r\nQ 3022 1394 3022 966 \r\nQ 3022 478 2636 193 \r\nQ 2250 -91 1575 -91 \r\nQ 1294 -91 989 -36 \r\nQ 684 19 347 128 \r\nL 347 722 \r\nQ 666 556 975 473 \r\nQ 1284 391 1588 391 \r\nQ 1994 391 2212 530 \r\nQ 2431 669 2431 922 \r\nQ 2431 1156 2273 1281 \r\nQ 2116 1406 1581 1522 \r\nL 1381 1569 \r\nQ 847 1681 609 1914 \r\nQ 372 2147 372 2553 \r\nQ 372 3047 722 3315 \r\nQ 1072 3584 1716 3584 \r\nQ 2034 3584 2315 3537 \r\nQ 2597 3491 2834 3397 \r\nz\r\n\" id=\"DejaVuSans-73\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 2906 1791 \r\nQ 2906 2416 2648 2759 \r\nQ 2391 3103 1925 3103 \r\nQ 1463 3103 1205 2759 \r\nQ 947 2416 947 1791 \r\nQ 947 1169 1205 825 \r\nQ 1463 481 1925 481 \r\nQ 2391 481 2648 825 \r\nQ 2906 1169 2906 1791 \r\nz\r\nM 3481 434 \r\nQ 3481 -459 3084 -895 \r\nQ 2688 -1331 1869 -1331 \r\nQ 1566 -1331 1297 -1286 \r\nQ 1028 -1241 775 -1147 \r\nL 775 -588 \r\nQ 1028 -725 1275 -790 \r\nQ 1522 -856 1778 -856 \r\nQ 2344 -856 2625 -561 \r\nQ 2906 -266 2906 331 \r\nL 2906 616 \r\nQ 2728 306 2450 153 \r\nQ 2172 0 1784 0 \r\nQ 1141 0 747 490 \r\nQ 353 981 353 1791 \r\nQ 353 2603 747 3093 \r\nQ 1141 3584 1784 3584 \r\nQ 2172 3584 2450 3431 \r\nQ 2728 3278 2906 2969 \r\nL 2906 3500 \r\nL 3481 3500 \r\nL 3481 434 \r\nz\r\n\" id=\"DejaVuSans-67\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 544 1381 \r\nL 544 3500 \r\nL 1119 3500 \r\nL 1119 1403 \r\nQ 1119 906 1312 657 \r\nQ 1506 409 1894 409 \r\nQ 2359 409 2629 706 \r\nQ 2900 1003 2900 1516 \r\nL 2900 3500 \r\nL 3475 3500 \r\nL 3475 0 \r\nL 2900 0 \r\nL 2900 538 \r\nQ 2691 219 2414 64 \r\nQ 2138 -91 1772 -91 \r\nQ 1169 -91 856 284 \r\nQ 544 659 544 1381 \r\nz\r\nM 1991 3584 \r\nL 1991 3584 \r\nz\r\n\" id=\"DejaVuSans-75\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 1172 4494 \r\nL 1172 3500 \r\nL 2356 3500 \r\nL 2356 3053 \r\nL 1172 3053 \r\nL 1172 1153 \r\nQ 1172 725 1289 603 \r\nQ 1406 481 1766 481 \r\nL 2356 481 \r\nL 2356 0 \r\nL 1766 0 \r\nQ 1100 0 847 248 \r\nQ 594 497 594 1153 \r\nL 594 3053 \r\nL 172 3053 \r\nL 172 3500 \r\nL 594 3500 \r\nL 594 4494 \r\nL 1172 4494 \r\nz\r\n\" id=\"DejaVuSans-74\" transform=\"scale(0.015625)\"/>\r\n     </defs>\r\n     <use xlink:href=\"#DejaVuSans-44\"/>\r\n     <use x=\"77.001953\" xlink:href=\"#DejaVuSans-69\"/>\r\n     <use x=\"104.785156\" xlink:href=\"#DejaVuSans-73\"/>\r\n     <use x=\"156.884766\" xlink:href=\"#DejaVuSans-67\"/>\r\n     <use x=\"220.361328\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"283.740234\" xlink:href=\"#DejaVuSans-73\"/>\r\n     <use x=\"335.839844\" xlink:href=\"#DejaVuSans-74\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_2\">\r\n   <g id=\"patch_7\">\r\n    <path d=\"M 80.226013 59.80778 \r\nL 117.715668 59.80778 \r\nL 117.715668 22.318125 \r\nL 80.226013 22.318125 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p340eaad5ec)\">\r\n    <image height=\"38\" id=\"imageb5836a9fc8\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"80.226013\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAOWUlEQVR4nFWYSaxl11WGv92d7nbv3tdX53KV7SonLmOMm3SCKBEKCRJTBiBBZghmCDFlhgRighAzgiIxCIoCCEUZACGKQkgcx3Ec945d5XpVr17/3u1Pt8/em8F5roQrXeme0Vn3///1r38tcfVv/yasvibo363483/4J56NJxw7wV8ffIHd5QqFNeyfDCDAxY0JK0lBV1dczsb0VIkRjrlL8EEAYIOi8pqDss9x0WVRxRS1IV/EiLOI4VuCaBaYXpesf3aPnZ11Oh8YXAIIEA6CAjm4NubsqUC+FeGRlCFw7DPGVYZ1igf3VvGVot8vuNCdshovudE95FI0Zu4SSm+Y2Iyuqohlgw2KZRPjg2AQlcS6QUlPt1/AasVyWyCbQHIa2Plgg8/deofljRrhQNaAB1mBvLl6hL6yZPK45E+++WXmXvK9xU3ujEfs3F9DLhSmUzPq5KTKEsmGRFqMaNg0MxJp6euCKmhsUPggkCLgg+Ck6DAtEsrKYK2m2yspH62oexKdQ++25vWTC/zZJ/6D6maBtC1qQYK8mE64uXmEfTInmkj+7vhz/ONrn0KJgDk2sF4x6JYM45xlE3E5GTNQOXOfIIV/SF3uImxQXE1OuZSMGUYFLgickzgniUxDFtesjJacPhPQVcDMA4tX1nhQDfn9Wy+zuNagSgCQa2bBU4M9rmycUW04/ufrz6K0J39jiEsCq6MFsW7omYpn+rtsmBk9VeKDxAbFie3y/mKD9+ab3M+H3KtGjJuMwhkapyhmCW4aEZuGzFie2XyA7zbIJiAbMHP42ssv8snOB/zeJ39IfskjPGgpPJmsudY7ZX+zDx/2SV7NsD3waasPKQKV03hagSfCksmaqUuJZcON3iEDXfBCdpvrZszcG96tt/jX8Cynt0ekB5L5WkIvrkiVhVoyv6SIJwHRQLpr+KsPf4u/uPZN7r6wyivffhLtg0QJT6pqumnF0kA8CVSroHoWAKMcUgTcOUp7tkXmX374ApceO+JPr/0X62rGG+Vlvnr4GTq6ftilycUFVdMlVJr9SR8ANbBUI013z2M7El8Jdt7e5rULV/idtZ9y+/lVpA2K3EdUXmMbhWwgO/YQQEqPkZ6OaV80bjIWLuGs6XBY9XjkiQMudKf889EL/P3+59m3Kzw32OGZ3j2uZ8fUTmO0Q19esrU2JYksPgiGgyVeBfTSoyoQDSTHkq/8/FOsqgV/8MhL6NxFHNc93p+uMznuspIDAYKGOHKUjUYSWIkKMlljhAMJLw4+5OPdfaZNig2KWDYY4bhgxix9zN0mY2cyJDYNW705wyRnYApqr9mVK5xsW6qhRhcB2xWoGpa7Pb537SYDVSD3qwGvHl1k584Gnfcj4omnSQXeBKxVGOVItEULRywbYmnpnov/qfQ+Q7Mklg0Tm3FU99ip1/jW8S2+8aPnsU4BMExyHsnOWI8WpMoiCeisoeoLOgc1qgzIGtJ9xbf3bzB3CfLd8Qbju0OiYcnVL35I58t7nHypxKeeplYM4pJRlNPXJYm0JMKyqhZMXYoNmlvJLk+me1xLj6m85jtHN5jbBGIPPxpwfH+IJLAdTVobILCeLhDyvPvmNbpsWRIOjl7f5LDuo4/HPcxEsn1jxhfW32a/HnDvaIRoBDpydE2FCwIfBLG0rKicdT2jDIZvnf0Kvz36Gd86eZpRlLMeLag7muf6d6k2DV/beA67TNDStaIXnhWTA7A6WFKaLggBAXzcjiK9FNyeraHdwuA2GzJTc68a8f58A3ZTQtfRzUoSZTHCP7QJdf77xeQuibB8d3aTjWROV1VUXrMRz7loxsxcwqMrp7xjNxlFOQ+qIcDDbs2rCBkgnDs9/hy1Bu78+DKaAMJKttMZsWy4fbaKrIAuJKah8YpYWtbMAodk6WOWPuZADNjSUz7bf5eXF9das627DEzB3XqNRFjyJmJx2OXdwSbb2YxUWY7KLgfLPpF2WA1BS4JqR9G5TZIdCDRASBxr8YLHkkO8fxpVCjCBXlTR0TWxbBionN16xLTJyFTFtMk41EtGesGV+JRf/hjhmPuEojHIriXTNamy7OUD7k1XcF4SAOXBxwoXtWjJBryi1R5BQCNQeOqgyWJLaQEZWrEKT6Zqch9TeQ0StvSUy+aMO/U6ry4eofKmNWhVcVz3yE2ED5I799dJexV5E/HjwyvUjWJ23AXXQrM58diubuNOABxID9IGJCKADMSy4V61SlEbsv2AyBWLOiZVlmmTMnUpb84uMGsS3iu3+aDaxAeJlq3mXj27DMBWPGWklrggoZFcXT0j0zVVo5hPMvAQnSqyHc3KW3PKYWspQZ5/NQQlWsRMv8IIx/eOHyNfxKyOHcGAFOHco1IyVXNaZJwWV8mriF5ScX1wwnHZpWsqfBD88PRRPrN2m46ssEFhTjTummSvGNA0CpYaWQtkJdAFCO8Jos1hsgZvWvEHARoZQAR+cHYNIx3x7YT0wRQ963Mw7nE7W6NnKvbKFaxTnL6/iu82LE+GpM9b7p0NWe8v8EFwNOuytjUnkxW75ZCVd+HDR0eEu51WN6J96cNQ+ME9VoHxrQG2KxD+vEMFSBE77Dzm7bsX+Plbl+jsBWTd0L8NzWnK2//5BD/476f4/r1rbQDsNyS7EXi485PLJJHlcNLjeNolH6d85c6n6ciKJzoHTB8H7yWu6+nsCvp3wCeBeuTp328Q2xssr/aQttWYCCAdyDqgo9RiTyP6dwwbL89Rtx+AD2x+bZ+tf08JowE+Nrz3xxlCBG5d3+Vgs8fpuEuS1jReImVASs+Tj99n2USsyPO5+rEZ61nBOE6Zjwy9Tok/7tJ5P2K5KejciZhfbBvK63O0AKkFupdVTGyXjVcWqJ1DRJriz8bYF2+y96mE4nKDzCUXLh9x+OYGy5UZX7z0Nu+tbHKY93hwOsBOElZe17zwR6/wXHaHZYhYVQv+8ta/8dLiMb7x3jP4cczsIIHUUz5dkI8j+ne7rNyuWVw0BCnwprUNPOhuXHEWBWTZIDoZYdmODG8k5RMl1y6e4IPgS9tv8tXlJzic9ehulaTKcrV3xq3hHlvRjPwTEb/RfYeOsEgRwIyZ+4SPZw9Ye2pB7iNObJdlE/MgH3D33auosqJaiwgCXNJ6mGxAhIDW0hN0IAhBODnDP3EF3piS3Dkle2cbeSnQMTVvzC/yhzdeYqAKrkeH/GbnbaQI9ESDEuACKAFlENggWZUFiWiDpsJjhGNHrvGWvcAHh2vEFVRrES6SBH3embSUCge68R8RCyJLUftnhDhGlDW9HU9hDYOoIG8ichdjhOOBHWK1ZqQWJMLhQ8CcFzXxEWUw7VwlYHCUwXDQDPig2OD1kws0tSatIQiBqj2gQPwCMW/EOWImUK+mJO8X+CeuIFb75Bd71D3B2d01Vm4WXOmMsUGRu5jKG8rQFjA/R8YIR+5jymBwCOYkGBx5iJm4jPvliDfPtlkUcasjQFW+df2mRUraFi1VB3RH14jEMbsSkb7VpVpNULWnWNPMH21zf9EYUlmTyfrhtn1ieySibh3+PNLUQREJh8ST+xiAmU85sT0elCvMyxgpPTpyeA0ukQgXUPYXFM5uNly9fojOdI2OG4r1GLwne++I6a9tYzttPvJOMCkSzrodtPSM9BKCpAqaw2bAup4j8SSypQ6gDAaAg2ZA7mImNmNSpe0fUJ58GpN4KIaSeB4oVwX1rZzf/dhPuBKfMm46aC0d2ji8geA9onEIDy4RuNRh4gajPMsmQsXtXOypkgzR5n8gkZZIOIxocEGikPhzZKugkcKTqIbYNMyLGFGLh1Hn+FcFz/76uzzde8DtfJ3vH11nWiRoIzxGO8ooQK9DeWVEk7SeIqygk1YkukGKQO4juqECYF3PHwZHiX8YIAEcAockEQ1e1uy5FSLVEClHsYiRti3MxQK9hJ9+5wavqhuoWqDPlyGtpSONLLkBUVnqgQags+8pNiGNLP24xAfB1KYoPB7BSC/aIoKkDAYpPJFw57un5tAOyH1EJms6uuK47LKoIkLRJq3kOLTzM4cmOzdX8Ytcpo3wdKKaw57DXlmj/+Ndlk9fgADRxFA3mqppi02UxQbF2GZkcvD/ilOiPdOU3pD7+CHNH52oSqdZFjGIQHIi6e3WiACL7VaPwrUjqVwLPP/5d5BaOoZxjl6p2f1shltfwXYV2Z0x6z9rOD3psbARtVMsbMy8SSh8ROkNc5ey9DFTl1EHTe5jzlwXGzRTlzJt0vM7RkRuI+p5RHyoufC/Bban8LpF6iO9yQbiWxN+ffhztMIzjAourk3YuRxx+OkByWmrl+5re5gXLjPtp3RNTe01ldNo4dkpR6xHCxJpWzq9IZGW0rcITJuUw6qHD5LDosfhpIeaaNZ/6tHTCpNqqoHC63Nhhhaxutb0ZYF2SGLZcL1/Qn7ZcFqu4rUkeXRIem/K1suO+8MuuwE2+i11tVf0TMWsSZiErNWcWZL7iMIZKm9YuojaaxY25nSZYQ9TRu8IOnfn0LQB0UXi4fCW9Tlqb/T4+tZzLWJGOVJV89jKCbMLCdWsy3JTY6Yp2c6M1Z8MOX2mx96WopuVjLICLT2RbPDnBjtrEpqgOCq7nJYdZmVMZQ3WKuxBxugNQX+nprjUIRrX1H3VDu5fKiqIthnufOPxdkuSIqDwrEQFV9fOeO9STHUaMX4yY/SmZ+O7e8SzLfY/nTHZUFTWUFiD7AUOix7zKqayLSdlZbAnKcm+ggDZpD3SJKc18c4ZfpBRXOhgM4EzbWr96O4qAoTzXVNLEWi8pEGihWM7m3G42mOxPaR/35NfyuhNCwYv3Sc92eTkVkq5mnLQ77EXrdO5p9BLIAYXQVJDfxJIJg6zdOhlgzcSWTtQimo9o1xR+IiHFhEk59Hi/FnB/wHKaHi8GTzDeQAAAABJRU5ErkJggg==\" y=\"-21.80778\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_3\"/>\r\n   <g id=\"matplotlib.axis_4\"/>\r\n   <g id=\"patch_8\">\r\n    <path d=\"M 80.226013 59.80778 \r\nL 80.226013 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_9\">\r\n    <path d=\"M 117.715668 59.80778 \r\nL 117.715668 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_10\">\r\n    <path d=\"M 80.226013 59.80778 \r\nL 117.715668 59.80778 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_11\">\r\n    <path d=\"M 80.226013 22.318125 \r\nL 117.715668 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_2\">\r\n    <!-- Happy -->\r\n    <g transform=\"translate(79.612403 16.318125)scale(0.12 -0.12)\">\r\n     <defs>\r\n      <path d=\"M 628 4666 \r\nL 1259 4666 \r\nL 1259 2753 \r\nL 3553 2753 \r\nL 3553 4666 \r\nL 4184 4666 \r\nL 4184 0 \r\nL 3553 0 \r\nL 3553 2222 \r\nL 1259 2222 \r\nL 1259 0 \r\nL 628 0 \r\nL 628 4666 \r\nz\r\n\" id=\"DejaVuSans-48\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 2194 1759 \r\nQ 1497 1759 1228 1600 \r\nQ 959 1441 959 1056 \r\nQ 959 750 1161 570 \r\nQ 1363 391 1709 391 \r\nQ 2188 391 2477 730 \r\nQ 2766 1069 2766 1631 \r\nL 2766 1759 \r\nL 2194 1759 \r\nz\r\nM 3341 1997 \r\nL 3341 0 \r\nL 2766 0 \r\nL 2766 531 \r\nQ 2569 213 2275 61 \r\nQ 1981 -91 1556 -91 \r\nQ 1019 -91 701 211 \r\nQ 384 513 384 1019 \r\nQ 384 1609 779 1909 \r\nQ 1175 2209 1959 2209 \r\nL 2766 2209 \r\nL 2766 2266 \r\nQ 2766 2663 2505 2880 \r\nQ 2244 3097 1772 3097 \r\nQ 1472 3097 1187 3025 \r\nQ 903 2953 641 2809 \r\nL 641 3341 \r\nQ 956 3463 1253 3523 \r\nQ 1550 3584 1831 3584 \r\nQ 2591 3584 2966 3190 \r\nQ 3341 2797 3341 1997 \r\nz\r\n\" id=\"DejaVuSans-61\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 1159 525 \r\nL 1159 -1331 \r\nL 581 -1331 \r\nL 581 3500 \r\nL 1159 3500 \r\nL 1159 2969 \r\nQ 1341 3281 1617 3432 \r\nQ 1894 3584 2278 3584 \r\nQ 2916 3584 3314 3078 \r\nQ 3713 2572 3713 1747 \r\nQ 3713 922 3314 415 \r\nQ 2916 -91 2278 -91 \r\nQ 1894 -91 1617 61 \r\nQ 1341 213 1159 525 \r\nz\r\nM 3116 1747 \r\nQ 3116 2381 2855 2742 \r\nQ 2594 3103 2138 3103 \r\nQ 1681 3103 1420 2742 \r\nQ 1159 2381 1159 1747 \r\nQ 1159 1113 1420 752 \r\nQ 1681 391 2138 391 \r\nQ 2594 391 2855 752 \r\nQ 3116 1113 3116 1747 \r\nz\r\n\" id=\"DejaVuSans-70\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 2059 -325 \r\nQ 1816 -950 1584 -1140 \r\nQ 1353 -1331 966 -1331 \r\nL 506 -1331 \r\nL 506 -850 \r\nL 844 -850 \r\nQ 1081 -850 1212 -737 \r\nQ 1344 -625 1503 -206 \r\nL 1606 56 \r\nL 191 3500 \r\nL 800 3500 \r\nL 1894 763 \r\nL 2988 3500 \r\nL 3597 3500 \r\nL 2059 -325 \r\nz\r\n\" id=\"DejaVuSans-79\" transform=\"scale(0.015625)\"/>\r\n     </defs>\r\n     <use xlink:href=\"#DejaVuSans-48\"/>\r\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_3\">\r\n   <g id=\"patch_12\">\r\n    <path d=\"M 149.494978 59.80778 \r\nL 186.984634 59.80778 \r\nL 186.984634 22.318125 \r\nL 149.494978 22.318125 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p9b3a2bfd7b)\">\r\n    <image height=\"38\" id=\"imagee6f8738e38\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.494978\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANLUlEQVR4nE2YWatlSVbHfysiduzhDHfMm3lvZmVlDV3dVtsl3WC3OAsiggr6LIifwQeffBEf/AR+DBFEtNEHkYYGUbSbHiuzKrOqcrw389575rOHiFg+xMksD+yHA3tHrFjDfwj53e/8tUpM2PMZut4g0zHh9IDtrYqhMaiA6xQ/C/hZh5lvkBAB0MKhtSeOPLFyxMqgVlidWuZfgTiKlMdbuquaya0l7dYTg+Ebd5/x1ek5n66O+dk/f8D088SL34q4yQCPa8prwWlhsddrdLGEwpEmI2LtQAHADmA7xW0jZrFFQkSdBV+QGk8sLWH0ZVDJgiikKuFWFnszYdeGGPPjfCSo4el2nzYWFGtQyXvF3jK6FIql4uy8hes5WIvUNamwSFBsm77cKChmM+Sg6pJUFsRRQRg5UmGIlZBcfhfI3wyCGSBGQyqU7bJi72DN7GrEq82Iyg500dEdAmrABjTmbySBk+cX4ByEgG63yDBBQsIMBreOJG8oNgHTB9K4IlUFqXaE2r0JKPrdU0Iq8vHrc2FzlvCAv7XBuYSzidFey93pNRPXceC3PNG3GMYgTlEFErSHgiMp9ANptUa8R4aA6S0SE7EpeP1L3hGnnmQNsTQMY4MaIRUQKkENhGb3v4b2bo9YJSXBGGV9VVPfGug7hxGltgPff36Pt/51zeVHDVtANg6Afk9xGgLa94hziC9AFUQwXcD0ETPyyBBJ1f/LkhXUCOx6Qw3EUogekgfbgrQWrSIpGcbNFu8DIkroLY+X+/SNZbFsOOl7bAvFY48JgokQxwnDMOTVjQExpGnN4v0xl9/cpzuucbMtGKE/8KRCiN4Qy5yZWAihEmIlhBGo/bKRpx9b/Ljn5uGCe/tXhGDxNoIKz18csAme2FnMqqPYKm4jJKeYQSmuDU5jAiNojOh7t/n8D6e0ZwPiE1cvPW//yxh1QqgNqRBCKSS3q6/sMlVBrEBiDi5WcHA/sugc277AjJRx3dEFh0YBo+yXW/yoJxyOKFYRMxiKlaCiYMBJVUKMyNu3+fRPJgz7EaxS1APhNLG5VVKsE6kQhib3Uq5fDiIV5BI6RcwuY7uAiy9K5qJclD3WJFQFcYlq1HNSLpmOWs6/fcz+pwG3yeuZASRILqWc3eTFbx/jVgIKN09n9GtP9dMaieSJKwS1X2YqFTCMhGEEw1hJLvcakpt/ddvQPBNSZ9kOBSFaLmdjNBqG3lFIpB1y6v1yoJol/EIRBTWKkVHD9r0jTA+2h/d+4RlXiwZ7WZBc3jzUJjd6ep0hIdZCaCA2ijrdZQlipaQysTlNiOayzFcVs0VDWHiKpuf0aM5vTO9T/eMeB/cHJCihzAfXHUA7vXOTq695Fh/1lJOOTx6cMv7Esb2V6A8UfS4khVALmJwVNZAcO2hQtFBkAC0V9QlcIqrQzj2ysgx9BVbBJb599wv+8uy7/Onf/QW3Hm4hah4waswABHAbwT37nQNWbyekSHSrkvqxwwQwt7ekJw3RCxS8OU0sd/BQQRinHKzbBVcHynqgLgeSCgsFeoM0Ae0NBEOfLA+HY/xcWZ+WzN43mNCgAn6Z1x7Giuv3IZWJ6tMKieC2edNh5Rm/zFiVHGDYIfvryVOS18ypAhQJWySmo5bjZk3jep5XHcu2pLCR6+sxGoVHsyMuj8Zc/2JCm8iN0zl7VcujF8f0jytsD/1xxI0/V7p3A2Fluf0fgWFk2dwwjB8UlJdKNUsMI0N7lLlwGOWA3pTNKFIkNBhibwnRcFytGLueSdHxw4szrq/HsCywBx23J3NaLShPN/zync/5xuQpN92c71bf4MHeDeY/OgKrmFRAUQbk7ppnv+Ywg2KC0rxQ9j/tmP74kuYiZFoqNZfUK2oV8ZF6r+XkeMHZ2RXv3HnJB0cvsaJ8PD/BoLx7cEkz7mA88NGdp/zm0QP+7eWHNFXHr+9/wlfKc5ap5s9ufp9x2TEcRMq9FmcG0IcjJo9g/5Oe+TsegHIRKa42GfWnln4KYaSkSlGXQEBsBs5J2VGYyLyr+PH5KZtFBUa52mtoyp5x1dH3lvPNhJ/4M16sJ3zn1hdMzZZZbPje9Vf4uLzFLx0+5dVqxNl0gdv7rKOaFbhNVhII1JcJPwtgDFqARM2TWORMvQbY1Four8e8ihPk0pOqhF1bXAAJsGw880JhfwCF5/dv8OJgj1s35tzwS1ot+Nsf/j7Dy5qvff0xlR1YXTas6xb36I885ZUhVoYbP0gcfNyCKiYkZIioM9he8ygDEiXjVqGIS6SNo/msYPRMqWawPoHNaR6aYBQzCP5+Rb+fSGVmh9vjOaUE/nv5Dv28hDKxDVnJlE89Fxc3cW4rbO/13Px3x/RnMwiR1JTgDFpYZIiYPmUIGYToE/iUYWDmMTtq6vaEVFgOHnTsfyp0+47lWxY/V/wqEirD6o6hPQAjyiZ5Hq6OGD8oQCH+001+/ntC4RS3Fdy7f/O/qCriPTQ1UhTYxQqdjFBfQIgUq4CfFwxjyUIwuswCTQKFnsyNGw/XH3qKhWH0VDn+UZcP1QVMO2DCPpu3CpIKhUSe//09Tn7aYbvI8m6FOWiJm5rkFCejBhkCWAsxol0HziGbFhkCWjjsvKW5KOkOLGCIlYIKySTUJeIoERswW0OqEt040t1RwHP0ow1mM4AzjJ907P285gcHdwi3DUc/bjFdZHW3pvjzc24kw8V5hekEh3OI9+gw7ESiyTK7bRGpM9+lRH3esT2q2ZzuZI+QJUqhuGrA2ISIMvQOvSzxM4NaZXmvpp80mCG7rWEEvgw8uj6i/9UKM8DmLGGvJ3gfs3QScGIMVCVibQ4uBLQNEBOIQXyBAG7WMrrwtMcORhBLBZ8Qlyh84GS6orSBG/WKJyf7fPH8kO7MglX8qGdUd5R+YBQtv3P2gH/4+CO+9Qc/p4+W9VByUG34z/vv4IJkEs+jJlA4xBroBJK+0fraD4hkWSohy2ZS1k0xZN/ZtQVXrsaZRBcdpQ18+/3PGNkeZyKFJGrbc95NmLoOgMPphm9OH3Pslkzslp9s7/A/z7/6Rla5rNkFiVnrYy3YLLPR9MYDYOWNDlMLcS9iqkBqHRoM62VFPepZ90pZB9pQcN02JASDclStuV3PuFe94tUw4VdufsbYtmxSydfLp/zVT/8YMwhq9MvApO2hcBlQ6xLZZQoxiDNoWZBKlwOqQQvNU9lZZGuyXG6Uvrd4l01HQghqqN3AYbnm0G8oTeB5v895NyWp8MpNAPiv7bvEFzVWgSRZTGBtzkqIkBKS0s6vRXAOnY6J+w3tzZpQGiTmUhIFVDCDQC+YvUhZBlSF8+WEsgg4kyht5tnlUPFksw/ApOh4tDjie5+9SxwsqbfY3baiO8MLZIiIKZfOOdifZisH9KdTtjc8Q2Mo1onyEsyQvWWo9c1ihc9BbVqPiLJpPdYm1p1nGwoOyg3roWTRl1wtRgwXNc0TSyxh8oVy/bV8YElgArg3/WQUksk9VnriXoPZ9CRn6CaZlspZwG0T61uOYqNsTgz9Xl6waz1nxzOiCsu2ZLMpd+1pWXUl26Fg1Zasr2qqJ57JNUwfRy4/tIyfDczfLxDNHCwRnJY+95dIBtRtm535XkWYlKBQbJTmoqe4bulOGuqrSCyE6ReBoTEs3jb4cuDe9JKL7YTFtiIFgy0T3kVElJeXE+RFxeiVUF9knQew9zDt7koE2+dD2g4cIsTDMclb7HpA9kaYqyXFiznheEIYeyaP1qgzSB/wl1ts5wm1Y/ZewfhZxC8husjFdsLFasx6WaHB0Pee/rLCLS3VTChnyuRJwG6zOCgWPbFybG8UOUub1+VU3HAy2d3YGNQZTB9Rt4dZbHHnM0w3xlwt0emINCpRAbsJqAh+kYWl7ZQ+Gp7M9lm/bLALh9vmZi4WQnWllPNIeR0orltwhlQYwrgg1IZuT6guv1QwAG4YO0xUhrFFjeC2Qqwd8aShfryEqBAC9ANmCITjMckIbtkxei6kIk/q5uUIuzLU14ZyvuuVpOw97CmWA7FylOcrZLVhuH3Iy2+NGD+LbA+ywzeDUmxf+1PBDROL7RNDI4Ch2zP4VcIMyvq9KbZNFJMyH8MIps+wYtqACUoq8yRN7juqK6W5GLJrHxmmDzdsb1Us7jVU10qspizePqQ9FMpruPzQsr0TMBvD9KEBFLdVQg1uqPNFiZps9c0A3Z7FL1M2n9Ew7HkkJLoDh2uV8rIjjn1WvArlIlFdK34R3sicYVqyvNfg2sTkcSA0hu1RLvHBg8TqLO85euQYP0n4dSAWQiwz/bn2SKhfkSfNG7qpYAIMjVBsMj2ohWHkUCP0E0Gi391dCLZPuOsB00XMkCAkhoOKWBkmD9fEUYHpE34OqNIfeEJt3jj/+qXiOiU5ydS3o2kniV0WBiQkhg8aRucBMyTaw5357RJWhPbAYDvYnLg8RW32BpIUu+rAGBYfTKlf9ox++JTt18/o9iztYbZ/r118rDNgTR5BOU9vQBo0CwaB/wNsITVDHwOASwAAAABJRU5ErkJggg==\" y=\"-21.80778\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_5\"/>\r\n   <g id=\"matplotlib.axis_6\"/>\r\n   <g id=\"patch_13\">\r\n    <path d=\"M 149.494978 59.80778 \r\nL 149.494978 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_14\">\r\n    <path d=\"M 186.984634 59.80778 \r\nL 186.984634 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_15\">\r\n    <path d=\"M 149.494978 59.80778 \r\nL 186.984634 59.80778 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_16\">\r\n    <path d=\"M 149.494978 22.318125 \r\nL 186.984634 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_3\">\r\n    <!-- Sad -->\r\n    <g transform=\"translate(156.944806 16.318125)scale(0.12 -0.12)\">\r\n     <defs>\r\n      <path d=\"M 3425 4513 \r\nL 3425 3897 \r\nQ 3066 4069 2747 4153 \r\nQ 2428 4238 2131 4238 \r\nQ 1616 4238 1336 4038 \r\nQ 1056 3838 1056 3469 \r\nQ 1056 3159 1242 3001 \r\nQ 1428 2844 1947 2747 \r\nL 2328 2669 \r\nQ 3034 2534 3370 2195 \r\nQ 3706 1856 3706 1288 \r\nQ 3706 609 3251 259 \r\nQ 2797 -91 1919 -91 \r\nQ 1588 -91 1214 -16 \r\nQ 841 59 441 206 \r\nL 441 856 \r\nQ 825 641 1194 531 \r\nQ 1563 422 1919 422 \r\nQ 2459 422 2753 634 \r\nQ 3047 847 3047 1241 \r\nQ 3047 1584 2836 1778 \r\nQ 2625 1972 2144 2069 \r\nL 1759 2144 \r\nQ 1053 2284 737 2584 \r\nQ 422 2884 422 3419 \r\nQ 422 4038 858 4394 \r\nQ 1294 4750 2059 4750 \r\nQ 2388 4750 2728 4690 \r\nQ 3069 4631 3425 4513 \r\nz\r\n\" id=\"DejaVuSans-53\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 2906 2969 \r\nL 2906 4863 \r\nL 3481 4863 \r\nL 3481 0 \r\nL 2906 0 \r\nL 2906 525 \r\nQ 2725 213 2448 61 \r\nQ 2172 -91 1784 -91 \r\nQ 1150 -91 751 415 \r\nQ 353 922 353 1747 \r\nQ 353 2572 751 3078 \r\nQ 1150 3584 1784 3584 \r\nQ 2172 3584 2448 3432 \r\nQ 2725 3281 2906 2969 \r\nz\r\nM 947 1747 \r\nQ 947 1113 1208 752 \r\nQ 1469 391 1925 391 \r\nQ 2381 391 2643 752 \r\nQ 2906 1113 2906 1747 \r\nQ 2906 2381 2643 2742 \r\nQ 2381 3103 1925 3103 \r\nQ 1469 3103 1208 2742 \r\nQ 947 2381 947 1747 \r\nz\r\n\" id=\"DejaVuSans-64\" transform=\"scale(0.015625)\"/>\r\n     </defs>\r\n     <use xlink:href=\"#DejaVuSans-53\"/>\r\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"124.755859\" xlink:href=\"#DejaVuSans-64\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_4\">\r\n   <g id=\"patch_17\">\r\n    <path d=\"M 218.763944 59.80778 \r\nL 256.253599 59.80778 \r\nL 256.253599 22.318125 \r\nL 218.763944 22.318125 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pae867167ef)\">\r\n    <image height=\"38\" id=\"image31ed0de36b\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.763944\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALQ0lEQVR4nGWYS4gtWVaGv7X2jseJk3ky876q6la3WpbtC3pkT5woCAoiIoiCjtoe2KJOfCCIQx3quHEmopN20AMFaZyI0L4RsSlRxOruor3eqr6PzJuZ55yI2I/lYMU5914rIIjz3LH2v/71r3+FjP/7jrEc/5P3fO5Xfp3xPNDsjdIIWozuMhN2mebDK2zVMX5iQzoJlFYYz4W8FixA7gGB2hphJ1iE5hZW3zKaXWX1dCZejcz3BqbziAUBQIrx/PsD3TP47K/+Jb928Q0irxwPY8fP/v6X+cKf/CTn71fEQLMR9pl4tcOGnnSxYj4NmMJ4LtRGqA2YQG0MCyDF19PZr1KN0glpHZHUIsVotpXSCzUIz78v8IVf+EN+sJ9QlGSgrwamKJ8/+wa/+7k/5cU7iiYj3hZ0nwFI9wZKHwizYUHQDKUDydBew/oRnHwT+udCSBBmD3I6V2oQaiuUPhJvZ8JYwEAqfOYn3jsGdTheQ6xSUZQfH57y2xeGmNHcJnScqX3LdN5QWkEqpEEovdDeGHEH7bYStwUpRlkFdvcDeRBqgDAZUp0xpVOiCs3VyHRxCgKfPn1EJFCxjwemCAcAgwgI6GzEj15Q1yvKpmW8CMvikHshTB5USEbuhNz7cnE02ptK3AvzRiidoAl2dwPNzhDraZ+PhKlSW1lAMRQ5Xo+BvRrt4WhuMnUzUNYt+3stpQMMR81AM5jCdPaSa2lwwsfRaG4NyaAY6cQ364ErTRPono6kTUs1/di9Y6Ue+XVIJ0B7JcTLPeWsZz5rmE/UAyrOCylGmL044ghSvVjSoEshQF552ikenC1JSYPQtUpIhXQauYjb18CpmCNWzFmoKMWMnSXCDEQlnTaUTqnRiRyS0WyN/llm9fVLZJohBKxrsBCQUkAV2Y1YE0kPTtk97CmtozieKaUT8iog1bj+9sDbzfNXCtDTGRVF5ZX0SeCn3vs57v3bxPRgwBRq42mQatQIcW8014m67pneuWD3oGE+FdYfFbQY+zuB4Ulh/ffv0273xNtzdp88YdooFqA0QumVMCpv/t0Nf/vZ7+bHVv/6GmpRkdc+2NnMh0/P+M5UqUGpg5I7/40FAYPxQknDyiUjGWE2Vs+NMPka3XWldMKLH/mUpw/nZek48qy0sohx4Iv//gP8zv1/opPmSKf4/0n/xZt3eeMvOmpMlNb1R4vBJOSVkz0FobQsgUGzNTRDmCs1CLlTcu/KL2UJQoGKf1YX1DqltMrDLynjD5djYLDIxYHwAI/nc4aPZkqnjpD44ooh5uSvwdPbvTBWTzNxVzAVdC5IGxieGDUI491AGoR0CmHygEyXa3BNa24yzS4zmnFxgBP1wF6tyGQBBExdqaeNum6tPMi4M6wTqNBfFvrHO//vKlJWEROI24zOhTC1XH1XixjU1jd4DEygRqitElJlZ/JxgT0gVsz4r9sHmDg557WSToR5A6UzwixIWVCLMJ8q8nAgr5TtgwDqgQ9PCs1tdtQVSgNx72msYdG/yLGJp5PIaOFYkcfADqjd2Mh//Pn3cLdL1EZIJ5DWUHpvzkUNELpnHsDuvrJ7Q6kBxgdGWVfCVhnvRNrr4BtoxHumwbz2Rl8bgeobDLMSpspNbV9DTCuVYsZX58KXbj/FW1/ZgsC8FtLa1bysjLyu1ADzeSVtnPAolNZToxOwzuRNwSJMd4S0cUQ0w3zqqNflLCtvazVAjcJNXR3pVKnED/LMb3z9Z/jvv3mHzdeMk5PEvAmUztW79EZtDEwoQwWB6cKIO6W79FZTo5N5dToyXp6iM2gCTYapsH/DSJsKAWTy35ce4g5y7x2gkfyaOsSf/pfP0/7VhlVc9KdV0uDmL6+N2oAUoXbOQ8mCRWO6I5TWDaIFyGujFYi7xfyZc2j30IOyxo7/tcoRKfBCe5I3VL51LEQtXz1juhDSGsLo5i33/r62fgdr7EBEbDGDpbWjYGoGojHP4WWfHGD/wFONAcGwtmKtYboUQrN8D/zeH/883/vlX+av972n0gS0wPpRxYIwnyi185tJBusgbPWV5u3OQrL/RhPkFXCasKqIeLA1LLDh70kC0dw2rA0I1OgcrlFYPzKktvzWe7/Ib/7SnxE1ea77y0LpvcIkL9Zl7/IQRiNM3oS1VDQZUmC8E5hPhPkMRA0RR0MyqEH/DPIgpHUgr408GNZViBWLRhmMPAp5CyePE9uHLWmAP/jPHyV2l176YazkQZEK7bXR3bgjjbtC2CdMBUkVFCQVLATaq4bt2z3bb5MFKd/AyaPK6kki7jL5pCGvlPEiMN5R5+ZKkez8Kq0XQm2EMLkJLf94Qewvqw8P4v0rJKN7UWmvE83ja3hxA+cbJGXs8gXEiMTgVqe5Q3tdCGNDumkoTWDzXDj55p4wFWTOxGdbrIusHjeMb6xIa2W8cCmy6B2gtEIaFE2QTpwycToThicVzLkmsxG3hRqV6ZPn2HdcEG8Tzdc+xKYJXQ9Y32J9RxkaxruBGp1Lsg0+GQUhPLuhPnkGIlAK8fyM9WUPMZDPB6Z7HbcPA/OpO5TSyaIA0Owglt6tTNhnpEafgNR7mBSjtoppC+++hY73yE0gDw1pE5g2gd2bQm3N1xiVPMDVuz3D5gHr91vkxS1k1ygbOjDzSk5uvU2d/N1VIa0Fzd5x4upJpbvKziPpyStlOnMtO+yitmDSoGWZFQ+S0EM+MfKmIH2hVGH3UBjvCdu3IzefuMv6wwuamwwqjBe+8biv1Ci020qNgdoa7YtEuBuWqQpiaQWdKxYVUxfM6UyZzyCvXGDBp2t4aVkQ16e6qoTNTIyF0hbKHMhjAA2kNezeUrAOnf2/zS2ESVk9ry4/1Tcbr0fmzWppVRDDbDSPr0hvnrkTWJyliYvgweC5dLhm1ZMMYkg0YlsIsVCr+LUIclLJsSJjQG4VyUY6O/gxQYtQ20CYzFtXNq909ccJ07mgzz4tcHWNlGVCCQdxBJ19yrFo5LUx3SuUs4y0Be0K7TDTdglVo20LIVQ0GKJGt5mQs5l8Wo922oAyGDW4LBymNlcFF24MuksjPvxKAbNFq1bHVmEKFnwRL4aKDAVtCwLUKnRtRsWIodLGzJgiIv5djIU0R6wr5LWg88u50hqwmeM8oAVkPxG3xnhXaG6NePLPH0DbkocGC/6QozZLX1zcmkWDYEis9H1CtWImDN1MEGPKkVJ92uqahJmQSiDEggxGqe6Gw169NdWlvy4uNu4qmHmr+6FLbsaGaLs9sjklnTYOrRy44BKAGFLFXwqUokxjQ9slrnc9tSq1CrUoTZsxE0KozHMgzxGRZR3cJEpyhT+4CilGe5Owm1v294V/+Mwf0UlDpIlY31J6PXZ6U4dZCtA4+SlC2UVqEUJ0C2QmlCKsVzOpBHLWY/B5jtg+LL1TIR/ytvh9d+LEyQjbBOLtsCy7UESwoSOtdbHCfkoVNC3ncVFDgxFiIaVAmqMjZkLQigioVmIsXgRdPaIldhhGzKVHXpLfVMAqOsOuFrc9EiOmPj+Ca1RtDSlO1rIy6qpAW4mdS0PXZgxIyUlYqiJi9G3icMQmkyxiRbBqyPRygxZeBlWDYI0/RWpvjA/yijuhLsOI+bMwzT4tu4geKtKJH9qKhkrb5gUdo1alCYVUfOF1548Q9ynSNIVaFDqvUmsMWyYsC076I2pmSIyUDt4Ie6BDaRokFcLMsf049hyLgeBe68Crw6laUa0Edc7djB3FBBVoQqFpM6qGNHVxvocqWObMyksJyZl0KtwPceFYSpAyml62H0wW++t2GEC0+k2WAIMaQ5togn8/TZGUA7djRwyFvLhZEXPXGOwYhIBPS8Gbue4zyOL1F8//fxB6YNtUstHPAAAAAElFTkSuQmCC\" y=\"-21.80778\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_7\"/>\r\n   <g id=\"matplotlib.axis_8\"/>\r\n   <g id=\"patch_18\">\r\n    <path d=\"M 218.763944 59.80778 \r\nL 218.763944 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_19\">\r\n    <path d=\"M 256.253599 59.80778 \r\nL 256.253599 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_20\">\r\n    <path d=\"M 218.763944 59.80778 \r\nL 256.253599 59.80778 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_21\">\r\n    <path d=\"M 218.763944 22.318125 \r\nL 256.253599 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_4\">\r\n    <!-- Sad -->\r\n    <g transform=\"translate(226.213772 16.318125)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-53\"/>\r\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"124.755859\" xlink:href=\"#DejaVuSans-64\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_5\">\r\n   <g id=\"patch_22\">\r\n    <path d=\"M 288.032909 59.80778 \r\nL 325.522565 59.80778 \r\nL 325.522565 22.318125 \r\nL 288.032909 22.318125 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p7eccc8a145)\">\r\n    <image height=\"38\" id=\"image278168333a\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"288.032909\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAK8ElEQVR4nGWYy48lR1bGf+dEZOZ91KOrq+22PWNbHnvGMIhBaGYF7GADs0BiARs2sOCvQAiJPSz5E2aHEBqxYIEEEkiAwEIjxobxSx7sbveruu6te/MVEYfFiXurPaSUyrqVmRFffOc73zmR8q0//XPTGc4+LQBs31AWj43h+xvKf5zTfz2BGs3ZSNNkxqGlXLV0TwKLR1BaGO4ZOguxBwxKAwA6+9nsjDCAFKM0ggl020KzzQyXkc2bikUojQFgAjEMsHhqYDDcVST7wCd/dcqTXy7oyYyqvzCODXnT0GyV0AMC89qfz50R94LO/jstDTvB/5cEE0Oy1GeFtAqsDbrrzPKx0L8kiAri/BDDCOOFcPO6kDvjtX/KTCfK0+8I5d6IACUL5EDZNcikhEEIE6Q1lM7QxJExycZ84gBKa0iBtBSiCSqGRSEvoBgMd5TVE2P1JJNWkRlfrCnEMBjtBi5/nEgLZfu1wM0bMF9kKIKNAcxfkEmIO6HdQIkwnRoWIO6EZu8rTUvBFKSAJqG0vgBTaHYOGIEcnbncCs1Nob02TPz53EF8+d82bL9xwpffbSiNUTrIi8rnAZSBZEGSECahBEhLkOKhkwLTadWI+PMAkl0v89rABAugyZ8XgdJBiQICTW+kFSAOPj7+3hn7+0JpjbQ2LBro7eBIpRcj9IqOgEIcfOLlIyMvXA42CWll5BbC5CyV7sCkoQ2E3tk1gbRwhpteaG4y00mkNA48Lq6MEoX9az6QZMG0rlwO6CrCUkM0g44QRmO8U/UU/PHFE0GyZ2JawPCSg5Xs4dcAkoAWLMB8IjQ7pUkFnSEMRu6EePUtZf25sXwo8AqktUESCBVU9N+SPGx56RibraEZ2o2DE4PxwhgunUkxWH4pxD00NxV8dHsBiD30p0YePZSajHZXAGU+Afn3T1+3P/rx71P++h7TmTBeuKBNIJ8UTA2ZPRN18lUCtBsh9LC4MjQZ04mgyUNTGmf/oKnuyjCF/mVnL+6F9tro7zvwxWPPzNwK06ky3hEU4A/f+mc2b0HcG92V0GyFxVOhfaaEXgm9s2WN24OHwBgvjeFSSAuhRCGtBE1uHxaqyJMnynBPyF3VXayixyWQO8itoNkXaQrxXGd+ZfURf/drH/LgL9/GqsmFwWivIa3VxbuA8a5RGkPENSfZXX9eu4XodOvsw6V7WJgEiieXJgdj0SVxCDkCFgQr1QEK6Esh8lrI/MnrP+ThryfCaCwfF2IP3cY4/zhx+V+Ts9B41lpj5IWRl8Z0N9O/PtPfN8a7wngOeVGzMnpFSCujtDCdFXLntpKr+CV5uE1AzDCtttJJw6m2fD0m/vhXf8jzdyH2xupRQpORW2FeB9KqvpxcrERnREclXkd0FDCfxFftzOelkc4z6SxTFoXSGiV4VdDJF0CpSR9rkjSgihAJnGrLb60/5J3vfsZ45uGLu0LsjbSUI8WY2wbFrUVH8fR/wVXyAtLCSEujtAXUPMujYV1x5tWHwkAzVW91cRNoqU4aCSxE+Z1X32P87ef0l5E4ZMJUSJ1g0b3IOwa3Dwt2q5Ho4cotHrqFYU1xswbIrjX3yZrd4uGWUkFSEyaDFgoHcCtt+L3Tj3jn7hOfYBnIrVJapzfuhWajNBsl7gWZfZLSOKjS1qohYKGyZCBJjyWNfJutmDMfB2PxLNHeZIZ7wv5VO67nyNqJdPzZG3/D6ncf8tlvKk++E2l2RvvcbSTuod1A90wIo2dgaar+cl3tJIS9Em4COqqHvjJ7KHeaa4tTETTbme7xAOa6iwDOGiiKIrzTRP72F37A/tuZ7//nH1A+v+Ts00J/qdy8YZz/hBo2b2GovVYYvPUpEcLgRTYvXaMWax0uh/7sq4W+dIE4JpqdW06czZWneK+iBCKBgcTDHLj64C6np26O6y8z81lAk3HyMPH5m9HboVRB7dyX4uy+d+xkE4StekVR1+WxDJubbvtoh4nUThfiYJmAN3FjMVQSDYEnOfPB9DXuvQdhLuxfUq7fDpx/lDn9ZIekwvLxHW7ezFBdvrt2f9IZ+pdhPjMu3xPS0lm1IMzrynLtEeyFKqDXN5z+dM182hFnM2aMBjmuYCSxEviLj36Ds497NBXOfzQg44x1DdY1jPeWjBd2bCCbrRdiKYJkY/25ED4W7vxkT39/wbwScgulqT5YwwgQR0N2PaRE93DL+UKJQ6V0rpmpGAXIBlf/ep/2XiIthO6qJa0Dw0VgXgnDyzCf5aOXNTsjDkZzk7EAYVLSUnn6iyty68Yp2bOwvXaHL5XduC+QMjbPyHbP+v2R+Ky0hAMoMRoKoQrg4r8LN68G+pcEC4HSeikqbXEhC5gYJsr1N4X+OnDvR8bqsy1LwFRJdzpKo5ToTFoQxvPAdOYhXDwrLB/sICU/5xnb74nbsqigiqcqhcEaAsbpJz2Pvrcm1670UCctmhtsNIjugqmFdNf46WtK9+iCi/8ptJvs4g4evtII/d1AWsvRv9YPJsLDK2wYsFwgJWyaiQ/TOSrlyNpgDdmEf3j+cy7Wk9rZVjMkye3mJPnu6XBYdvDj/cyjM6HZNDQ37vIlenZqqhYRvFn0WlRur9OMtA3xcTrzilEVOZYGlcLfv/8u7+6GY0Lczs5xc2LxhRvJ26DDZqQ0MN0pzGdewnQSGKvopbq/gU4OyuYEOUMIMCfiv1y/xYvHOo5MJdJ+3gIOzOItKMneOeRVud0NFam5L8daZ9XlTcASx/umtxnZ3hTi8x7MIGesXsmZeDN3tCGxCDOdZlIJnDc9cSegcOfDzPN3AmlldFc+qiloVqZz3/2A10lrDUv+noVqJdl/Sz54BMfNSneVkP2ApeRMTTM2zVjOxDYkWs00UlApLEMiUJgufMLTT3ZYOGH7deW1f9ww3ek8BGPm+TeX7F9xYaeVy09m35hkBYIhE8eWScztYfnYWD2a6b7YYDd7bJyctReO2Gqm0YyKEcTQerZvb0inHTpllo9moEE3PW02xAxS4fwTJQ4t05kw1DAdhV0EE9+5L55WlpNx+r+Z1WdbpJ+QXe9s/exhhahSiFIcXBVNMeGXXvmCh/EbhH0hjJn1gwJNBIUSAhKVuB05MWOfWkoImPpm9rBLWj4yls8ScV+Q7GM3mwnZDUgxbF+BlYLljDf9lbEDkGxC1EzAb3779AFftO+g+5l8quhYsCYgqUABnRJMM7odOOlXNLsF+12kvSnMa/WvOA96UKF0AR2zg0sFKQZmDirXupSzgzsASyX4lp/bfy7DzGyB7euR5WegQ0JyRvYjcrOHrsWG8ThoMGORC92zgPkWirB3ZuhaSlxiIuic0M3e/UrkFhRg5Wc09v4Pfr4W1/qda2HHLzKrlSCloNcDFoNrYhhgnqEY1vcQAhICqorsq70sO2Sc/Jkmoqmg+wl9uvH7KSF68I2vAkTqfuPiA3c9C55NklzcpTlYgyLjhMyKTZMzpQohYLm4n15v/DrNEBRJCZtntwCWUAy93mH7HoLCNFNSom5QfRwV7AV8UVOl8HAV/yQZ+lxX38DWPeYwEKX4acUHU8GeX/vrIUBbfSln5KYn5ALjBEGxccKmCREB1a/o6sCWqBAPQI6xPjRLAGaUNqBdC8PoL9YJ/1+a1wkMYCjOKkAuMIzYPHnZqX51dPlix2wUPZiwelYeBHvbKwqi3p9jBjEgqtg0Im2LjSNWzAeyAkUddB34MKmIYH2PmfnfZrdARG/toTJ1tAwx/g9uCJyR9hNM0AAAAABJRU5ErkJggg==\" y=\"-21.80778\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_9\"/>\r\n   <g id=\"matplotlib.axis_10\"/>\r\n   <g id=\"patch_23\">\r\n    <path d=\"M 288.032909 59.80778 \r\nL 288.032909 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_24\">\r\n    <path d=\"M 325.522565 59.80778 \r\nL 325.522565 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_25\">\r\n    <path d=\"M 288.032909 59.80778 \r\nL 325.522565 59.80778 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_26\">\r\n    <path d=\"M 288.032909 22.318125 \r\nL 325.522565 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_5\">\r\n    <!-- Happy -->\r\n    <g transform=\"translate(287.4193 16.318125)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-48\"/>\r\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_6\">\r\n   <g id=\"patch_27\">\r\n    <path d=\"M 10.957047 104.795366 \r\nL 48.446703 104.795366 \r\nL 48.446703 67.305711 \r\nL 10.957047 67.305711 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pdfbb326ad4)\">\r\n    <image height=\"38\" id=\"image7d29dce54b\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.957047\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALCElEQVR4nGWYS48kWVKFP7N73T08IzKy3pX9qKFnBtSjbg0IVrBAYoEYJP4BS/gx/A7YIFYIlkgsQGIAse9BoOmhZ6q7aqo6H5EZEf68ZizMs7IGQgpFRqS733OPnXPM3OVHD//cMcdLQR89xB5vOX684eLzjFUwPjDqneIKOIjBdOqkAeqdAFDtnWrvdM8US1BWYLVTGhAHDPJRSD2UNq7TXIMLlAZOXxrrrweqV9dIP+Jdh3oxACQl/PYWGWfGrVLtIfVQ7RWdoNqDZ6e0jhhUe6HaO/XOcYU0OgBpAJ1BB0EMdITmSjh57egMzSXkI1iGaRPHD1uhf1IjxfCuAxEygJeCVBlEkWMfF5wc1kLqIHcwt6CT4AVkBtdYNI3OpIJlIR8cT3EcDvV1MJqPgBCbSMG6VUIag1GdoLqd8bZBuh7ve7KI4KqQM7iDKvVtYdxkShWgpk3QLjOkAqVe3itwFUojDBpMAdQ3Dg7DgwA2t4AIyZ1SC1ZDPjpShLmF5spZ/WIHpeDHLjbD8pKmATPstCX1RnthjNuE+LJjD3bSAIePhGof55WV4AlKFlavDMswt0JZCciygdaRK8ElgHoKxiwHe+1FYX68RidDbw8wDGSfZ6Su8HFC1i0yFXQ0ShNitTpOLnXsGnekxI6bG8fVsRwLjusFTCNIcVIvy4aE+saROUDrtFQhQX0N3ZNEtYN0cQuquCiq58+Qsy3S1Pi6hTcX5JuevLCGgJQQKQKehebSyR3UN0Z1dKaTAHY8Fw4fBhNlJaQx3JqPocl5HWUsTegKD5fm3ilthnHCpylKufvt54hDczlRXR7RpoF+InXG8XFi3EJ1G6w1V06zM1zhcJ5IkyIF0NDT6iKcV5pgbtpIGCUF2zo50yZYDCfDvAqjpaFgD06RX46AkRHQMcphJzXIGV4lhgeZaSukIS5QahjOhGmdWL8urK6M43MldU7qnbIVxjOhNHF8dRuM1DdO7p1pLVi1ME8AKk3kmZSohPQDkhQ3IVsSaGDcVBzPK5qdsfskc/zIscpYvVGmDUwbp7kUTGBaKzo71W0wpFO4LXfO3MZmqr2/c+nwIOJk2oTLdQJpwAlwh/NEdZiRYpASuJNdoSTBUujkze9k+udxxdRF4muJ5EYgDc7cgiUlDU7unNKEMy0vjA0wrYXq6FgFLgHKGsiXYR5Pwnh6z+DhvEbsEfXPL5Eqk60KQGLOzXeV/jsjCDAq9aWSxtBDc+mUVZTLlpA5eR0JPm5C6FMl5GPESvdUmBdTWLVkkkH/SKhvIwPLKlidTyQyTxoe7NbozZGMh9sOHyjdiwnJBi54ctq3zvBQKC2UemkxJcrqCZproX8iuIAWQUqA6B/Hb2gA1ymA5C5CeHVpHGoljULqnXkV513/unJ8+oDm+gwFmNZweFGQ2kiVoXWBIozbKF+0HmjfOtiiEY9F8yFcN55GD61vPf5vMJ8E256i76YeUudYEporR0fonguyuNRqZ9rC8FDIloNeXxdEHVHDTUkHRSzor69jUSmwugyKp9MISSnxrm8iBsZTeRfK9W6ZLHpnPBVy76Q+ZOMpTGI14eqnsVHLcf1cGhieGqijyVF1VAvsFZ0h7ZcRZ29LBxDmlVAdQh/TJkqoU4DHl0CeWEokiyvDnetXRprCjWL3jAJ4FZPKBGhpBVsZSxvDijLPKfJrcE6/nmlujNwZYk777cTqytApSnwXoJ6i1ZRGSFOAGM8iu0oL01mwVR09JNA5q0tDlkjRSdAhWC+nRj4+92Crsrt+zoKR9sLQwSKZu8LVD1Y0dWjv+lMnjUK+hWqZr4YHQvfcKW0scNekXZ1qF6XEoToYpVHmHOX0JNExACmC42g5NUgO4mgqQakL/VNj2CpWKzoa44OKk7eFuVVcoH2jTM8mhsfG4WNb2AoBV7fRI+eN0z0NB1fHGJ36B8rxScJyxEpz7TRXFuw7WGt48nAl6sGSB1eqRjrvuPxN59sfVpRVCi2ovBNuPsDqqxo97ymbgitUBzj5JrS5+9Sx73bMD+cYGD1KXprQn86gs6MlJl/x0KdnXyBlQ1K4UdRJ2dAUf1sdTOTDTHVbKNUi9Nkp7TLXT7G3zZ+8XrQCV585+SDoT1tWr6rFbfdZKMXJnS3zmrB/EW1vXkepARQF0QWlOiIeY5cJ1Eb71rFKmdeJ9TcDCFQHJ+9hOjP++LMvkEn5cLND5gBmKyMdBS1C/2Kk+6iQO2iuY1yqjk51O6NzhOt84owPDWssgBkoHvPfnSuBAKcOyUmT0z2roglvM5tfDGy/7Gh2hoxCqyNeGy/aK6yOUK2/TYhB/3zm9z/7LzzHBKLFOXk7M2yV/Ud1bKTEXZetDCoHDfdlKkPEef8lsuRZZRzOlcdfjHGrtVKO5zXTWumeCeuv4e/+87doH3X8w1//LlXvtN86lpXu4wKrQhKn/TqzeTVhlXB8lkNbM4g7x3PBTqclyGRxgJB1ARZgDDPFLOhLyTi8MDZfJ6pjBGw0/OgG45lw+q8t86pl3sTU2p0LzQXwMuEp8U83n9MkOJwvnd8hT1AdjXmlDI8NbQo265IXArqUkjtduSDi74ABlLUxnGk4cnZcBUuxseMHxrSB/acT49bonxqlcbrnzvDYSD2c/o+SDzBu5d2UkSZHinN8qvjDES8aUrpbVh11vwfhLrz/XdRpnxzZvxBKLaTRSFNMpBg0l8rwKP62k3CwlDCFVbD/jYnjc6d/Emmf+mhtOi23dw8FN8FLvN9/Zc22gOIdqDv23MFM0M9vuLAtH/3zRLUvWEpUR9i8DCbKmwoU+sfR65qLRN7DvFF0gPomRuyqs9DX6Nx8kuk/62BMcFeh97Se74LV7D5g7w4wU8q8gP30yFdty6MvQh/iYXux5cbW4eTVklOLsJurCNO7xwd3zf72O5mrHxZkV4PeOdFBJbqQQ7YipPyeK8XvAd6VeFbMQT4YePM4Ub3NbH+29NIpbjw8EU27ZumTQr0Dq0KX1THYvPi8YnjkaK949R6o/8dYuv9S1TOlKO7Epy0aWA7xMYHDvDWuPxV2RaluhJM397M/cj8CVYfYff9I2X0ftOgCdBG6CTKCVyH4KFNERrZJ0WZG1SklokLVSckohFtcPPQnhg8ad98roERbmk8FmZbReyJW9Ri3XWJsFg/2rIpzYvS+Y4r3Pj0C1k1ixve7lsSvxIU7+MKiCJCDficmEjfB2vdKb4DG+PLu+xIFLncNW+J3f/9YwS1AURn58Y9rbv9woswJE6eqZ9yFaczYLJExyaDEuBMluNvhr2oRYqG4014WSSBzMEgCskWfFpA+IduR9WnP/udbzv9F48FNr+Rnf/9TdPo+b39vRlYFswqbFDlkMJCzCVxIq8LJusdd6LoaG1Nkz6IJ/i9GX9h14MTQbKxPBjargdu+Yf6Ph7z4xz359XVscLrBdjdIU0NKyI/O/sxJCZJSvvch82kNQPPNDVzuYJ7xfkCqzKs//ZzyR1dkNXIyVnkmqdHmiVoLuvQsc8UQzIX92HAYa/ops1kNvLnY8vHfVKz/7WdgBczj2ZyVeOJUV1DK8nysFCiF9N8vSW4gCnefKvEYtBgf/u2XfLX9Hu0fvKYbK3oyZ6v+voriqDjmzmyJoWQOY01So0qFX74945O/EtqfvIxy2p0TA6DkHL+Jol4KXgoeGfEOzL2Y42QfR2x3w6/95Zdc/Ps5TTUzTJnboWGyxGiJ0TKzKbMlduOK17enAGQ1rq/X/OAvbml+/BO8v9/MuzXc4r28/hfaiZvFS4tHvgAAAABJRU5ErkJggg==\" y=\"-66.795366\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_11\"/>\r\n   <g id=\"matplotlib.axis_12\"/>\r\n   <g id=\"patch_28\">\r\n    <path d=\"M 10.957047 104.795366 \r\nL 10.957047 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_29\">\r\n    <path d=\"M 48.446703 104.795366 \r\nL 48.446703 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_30\">\r\n    <path d=\"M 10.957047 104.795366 \r\nL 48.446703 104.795366 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_31\">\r\n    <path d=\"M 10.957047 67.305711 \r\nL 48.446703 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_6\">\r\n    <!-- Neutral -->\r\n    <g transform=\"translate(7.55625 61.305711)scale(0.12 -0.12)\">\r\n     <defs>\r\n      <path d=\"M 628 4666 \r\nL 1478 4666 \r\nL 3547 763 \r\nL 3547 4666 \r\nL 4159 4666 \r\nL 4159 0 \r\nL 3309 0 \r\nL 1241 3903 \r\nL 1241 0 \r\nL 628 0 \r\nL 628 4666 \r\nz\r\n\" id=\"DejaVuSans-4e\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 3597 1894 \r\nL 3597 1613 \r\nL 953 1613 \r\nQ 991 1019 1311 708 \r\nQ 1631 397 2203 397 \r\nQ 2534 397 2845 478 \r\nQ 3156 559 3463 722 \r\nL 3463 178 \r\nQ 3153 47 2828 -22 \r\nQ 2503 -91 2169 -91 \r\nQ 1331 -91 842 396 \r\nQ 353 884 353 1716 \r\nQ 353 2575 817 3079 \r\nQ 1281 3584 2069 3584 \r\nQ 2775 3584 3186 3129 \r\nQ 3597 2675 3597 1894 \r\nz\r\nM 3022 2063 \r\nQ 3016 2534 2758 2815 \r\nQ 2500 3097 2075 3097 \r\nQ 1594 3097 1305 2825 \r\nQ 1016 2553 972 2059 \r\nL 3022 2063 \r\nz\r\n\" id=\"DejaVuSans-65\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 2631 2963 \r\nQ 2534 3019 2420 3045 \r\nQ 2306 3072 2169 3072 \r\nQ 1681 3072 1420 2755 \r\nQ 1159 2438 1159 1844 \r\nL 1159 0 \r\nL 581 0 \r\nL 581 3500 \r\nL 1159 3500 \r\nL 1159 2956 \r\nQ 1341 3275 1631 3429 \r\nQ 1922 3584 2338 3584 \r\nQ 2397 3584 2469 3576 \r\nQ 2541 3569 2628 3553 \r\nL 2631 2963 \r\nz\r\n\" id=\"DejaVuSans-72\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 603 4863 \r\nL 1178 4863 \r\nL 1178 0 \r\nL 603 0 \r\nL 603 4863 \r\nz\r\n\" id=\"DejaVuSans-6c\" transform=\"scale(0.015625)\"/>\r\n     </defs>\r\n     <use xlink:href=\"#DejaVuSans-4e\"/>\r\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_7\">\r\n   <g id=\"patch_32\">\r\n    <path d=\"M 80.226013 104.795366 \r\nL 117.715668 104.795366 \r\nL 117.715668 67.305711 \r\nL 80.226013 67.305711 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pdcf0f86971)\">\r\n    <image height=\"38\" id=\"image579daf7e6a\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"80.226013\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMFElEQVR4nF2Y2W5kWVaGv7WnM0SEw1NONXS1mkKFEEgMT8AFAnEFb8AV78CDwDPwDNyCEIhuLmiqEZ3V3ZVUVXaWK50Ox3DGvffiYh87qwnJCh+Hfbz2v/71//868me/+7dKTBA8aoXx+ZqbPwq8+NOv+LtP/4HXccM/7n+PY6r439MlGeE0B4bo6MbA/pfnXP+HsP2iw8yJ7C0IoHD8pGFuhfNfDIQv36LDiDiHTjOMI1iLrFrmj6/pX9Sg4LoEIjhSRlImWwFjqH/1jo/fBN598xF/9Zd/w19/9q98N224mxrOQs9uaulmz92hJb5ac/1TOPtyQFSROWHnhMQM48RGlVQ73G0PKQOgMUJOAGAErEFSxo4ZiYobEqmyOIkJUrlZXnmoAjLMXP3kFjde8vd//id88tFbnq/2VCbx9f2Wu9db2leOs9eKG5ThOiBZUdtg+0zYTbjvJuxdh6kc5thBjJC1FJVSQct7NHjUGuyQsV1EUibWFgeACMwRsy+nwlnUGM5//Ibx7AVv/2LFOoy8fHfN/uUFV/8tNLeJVAl3nxnGi4yZDAJU7yzrry3nhxFz7JBxQvvhPUIZ8AEJvtCnCagzmJixpxGMQZ3g6HqoKzAGcmmrJkGMgXFi9SZx+2bF53cN4Y1n/a1Q7xLdU0P3Qhg+mji7PlH5yO7QcNzWpOCo321ovhiRB7TcgkEI6GZFDh5RLYVYwcwZ6Se0CqiRBbGYECbUWdRZUEVigirQfn3k+sdbumeOaqegyv2PLN0HmbydsFVijpZxcsz3FRKFuFb6K0v1bYsdJogRESmoVYF0uSJ7iz1OSEqFnykj0wzGIFmXwlRhjqWYpTCyonXA7I5c/szhhpZpIwyXwvAskzcR4zI5GvpDg+ks7XcGFZAMqYLhg5b2NMCpQ3VGmgZdNUjMuH5Gpohai0wZe9+jwwhtjSRweF9OEmMpSPXxZBizQG2YG6F/KoyXGXUKUcizRybBDQZJRSLsDGYqt+ivHLY/px4nmGa0Dqi3mG5CTsuktjW2E+Ruj6ZUPp/zgtg8o6qFV8tLvXt8759VdM+F6TyTm4wkwfQWOwjuJEgEUTAz+KPierCTMq2E4coRbteYQw8iSDci3YCeOjBShmCY0a5HzjbMZzVmyjgdxoJW8AWhVASuTJCSzxqOH1jGJxldaKJWIUNslbgCmQU7CWYCtUIKYCLMa0GtYbUKmEOPHDs0Z3QcS9u8R+ZY/pcR9GxFXHvCbsQ9ipxzRfymGVm1qLfInMjBMm0gVxnTGzQDBrRJ1NuRq80JBfZ9TXesmHYB25fWxjYzrw2rmwq3C7A/oONUDv/Qqb5HAOqatKqQrNj9gBMRVIpUECNYw/zxNaePG+rbmewEBMxoMFHIVpEm0axGzlc9AMPsyFnInSPsDbYTcqXoOjK2wm7vCfdrqnf3pTARNGXQZRJXLfn6grj22D4hp/5BLiK6tE7WLfefttz+gdK8qajulFSVdqVKqS4GLjYdT9oTh6niq5tL0r4MUHhraW6EsFeGa2H+UaJpJ04fbji9DlSvGmQY0AceZy0tXDWMz1fkYKi/G2CaMXhfSGgMUgXSs3N2vwP+Byf6p8p4KUguxNYmcb7uedYeOQ8dzmTSYDF9GZrpKjFeQQ6QHTif8DahVxPHDw3pcg0+FCG3BjGFtGldMZ85zJSxtwfy/oDTrkPqGlJCNytuf3/DdJngbUNzL6CF7DkodhV5ujry25sbtq608dXqgjkKZhVZrwcOeobfW9RAnCyTs4Rmpn8R6F+0rL8pdvcoUc6Rg8WOGX+coR8gJcpveIfOM/F6w/5T8DvL2c8d1Y6lMMi10rQjV9WJtR1Jali7iSfnR/zZhLWZykdUFHWAQB4cKRlUhbTKDOcWrC18VkWzIlWFOoPtM/bdCe3LgR3GPkaS/kXNdB3Zfu7Z/jIyXFrmdeGWtglnMq9PW16ftozJ4W1CgFBF5tmiKpjJlMMI2L1l6lvMJFSd4Ia8SJEprUxLDjSC62bk1JOXWopc5Iy0Lf2VQaqI65X67UBsGrK1ZA8kYffrM/b9+aLyQtokzGrGV5FVM7IKE++WgGIStK8NYadU+4w/JZqvD+jxhE4TCoi16GLmpp/RaUZEUGNwD2qvbU3ygg4WSWD6GZMaMCAJ7J1j/aWw+SZiopIqw7C1jJeO08eZ+MNIVsEsQotAe5PZvjxh7jvk1KNdX7QSigK0VXEYBZkXbbMWUsI9qH1eV1T3mWf/ZDj/nwPmdo/9YI0kix0FfxBW3yba1z2okr3FHz1ucKTKcLxscCZjErhB0Qd3U0UOJ/TUoTGiKSEhIG0DZ2viRYMkRYYJrAEb0GnC4SzaVEjMXHy+x+w76Ho0ZXwXcb0n1UUC+muDiQ3ZCdkJqRJiU/iknePgGrRWsjWEo5KCMG8r7BvL/39JCKR1Q6oMfj/BOBW/DgFpapzWFXldkWuPe3tE3909hjrbRfxBibWQK4iN0F8VzkkuBaVKSLWCy/gQ6c8j03nAnyjc2g1F7Y0U4j+8vCPXDslgTxO6LCcYQbzHYU3J+8EwP98QugE9HAqBTyPVfsV0JmQPsQEQUlXyVq6UeZ2Ry5Hzs56n6yPHdaC7Dnz3zRnP/9lg707kYYCcH/klzpVACvjDVNLGQ8ExofOMy21Ahki2Qlo7/LpBd/dF5O6PNDdrxrOK2JZkOm0hbhPt0xMfbA88aY4EEznOFTfdhou65w+vvuFf5IdkdwlzKUaXZUSCR9qGHDxmiJjTUBK0c6hqWe1SxjwEQxMV1yWkGxBbmJt394RvdqzeJPwB1EDaZNx24mrdcVF1bH3Pue+pbSzkF+Xfvv2E/idXbL/oSnqQ4sNoLpl/1ZT0ktL72GPtg4FC8DiJGckZd1qi7t09qvqo0HI4Ud2d4TvLkJcsBhyGisbNBJPoTWJIjsoWdG5fXfCDf5/xb+7hYcE1AtjHXRJnkHGGuMhESqV4MYtciKCuICRzKuST5QYpoSljjyPVrmK8t6RgSa1hTpaMENXQTYFTDBiUlzdPWP3KUt+cShu/FzpLYg1ka5EpFomYZ7C2xCBAnEXnjFNbYHxIp1RV4UIViocGjzpDOGSaGwMq9FScZsONyXSzZ4qOYXaMg8f/dMX1f82Y+654ojElJPRDaeP5pqB1Gh75R36wi2JX2IeFN4PkTG485nKL7MpUavDkTU2uHJIVf8pka0CEMXr2ac2xrdEkaO/YvHRc/mym/vpQlhoR8A6iwTQ1cnFO3DaY41S45RZDl2KLZC1DEiOOTFk8cyY1FfO2JlQe+fVb5D6W+CENxhtcb8hOUQvuKMw7T6o9doRwr1z/Z4d7d1pWv2pBoWzosj0jXa5RI8g4lXThLLLIBvNC/ATMEYeBbC32MON2PfnpmritsP7Zo39lZ8hOUFeEtdor1S6SnTCvDOGYqN90mMNQkAoe9RaoSnQWQdctGIPt5scVUcb5fQuhEH+5dhiz3ATk/khQJa9rjj9oSZXgBsXMRf1TJWQr+F7x+4lpG4iNINlQeUs6bzFTQkVKpLFF7bUqPJVxRoYZyUubH5765O951SIdrjyvEDQ4aOvy2XEg3Af6J55pZRBVYiPEWjBRad8mbDdz+qzl9o8zEoXVV2s2X2Wam7Lt+nddmfYmlELnhExzQfCBf87Cci0iKPq4QTkAiRl1Bj1flYB3HAm7EcmQvRBbS2yEeQ1uEOyQ0cX3zOXIs8s9r88uURNAPeGQcZUn+2J3ZkoFwSW5FulgeTfvf24EsgFy0bGHE2RX0FFnMN2ET0puHG5I2Mkh0ZEDDJeOeb0qEVqF39q+Ze0nXnYf4o8GEyEsbSwPS2KxnfS9ni26hsr7J02wxCW7FJYU0YydU5kWa5FhxoiQG4fpI839iOtq+ieBcWvKHmCF/LbiF1fXtH7GjCUk2iFjD2NpUTfweHgo39uHlX5p6cOXKpIzmjMuVRY3J4h5SasKZvmDacZ2FrWCTBF/Vx7A2dGRnWAnpb4zdD9/zjHA+UHZfjnhDlN5LgaFQ8H/ZgGPqOVSpOr7AVjkxaXa4g6KqJKrgMb83prGiNyf0KZ6HO/wZqZ6NZPbGpyhcYatCMRc2n57KqSG4re1+Q101L6/Fsx7JK08LkUYw/8BkKvxx5MSbWUAAAAASUVORK5CYII=\" y=\"-66.795366\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_13\"/>\r\n   <g id=\"matplotlib.axis_14\"/>\r\n   <g id=\"patch_33\">\r\n    <path d=\"M 80.226013 104.795366 \r\nL 80.226013 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_34\">\r\n    <path d=\"M 117.715668 104.795366 \r\nL 117.715668 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_35\">\r\n    <path d=\"M 80.226013 104.795366 \r\nL 117.715668 104.795366 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_36\">\r\n    <path d=\"M 80.226013 67.305711 \r\nL 117.715668 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_7\">\r\n    <!-- Neutral -->\r\n    <g transform=\"translate(76.825216 61.305711)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-4e\"/>\r\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_8\">\r\n   <g id=\"patch_37\">\r\n    <path d=\"M 149.494978 104.795366 \r\nL 186.984634 104.795366 \r\nL 186.984634 67.305711 \r\nL 149.494978 67.305711 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pc85956cf40)\">\r\n    <image height=\"38\" id=\"imageb73b93f3da\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.494978\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANuElEQVR4nE2YSa9s11XHf7s7bbW3eff1fnZsJyaxnQaRBIKQCIrER2AIE4Z8AiQ+CBNGSAwZMYoEIiiJUKzISYy7vM7v3ftuU3WrOf3eezE414YtlY5KqjpaZ63/+q3/Ouon3/572XxjztmPBHFCcmm48zOPDkLy7x8CoGczuHVA+OgzzFuv89lfHzMcetJTi+4VYqB8KWTrSLINmC5gtj1YTSgs3cKhAuRnNXrXIs9fEusaM5shfU9sW748ejrl6d+9i0UEV0VMbQhlpDhVKIHsV48JXYeeTlFZioigtCLOcpSH7AtHe8djt4aYCP0S8jODioZ0JST7lOxyQAmYNtIcW2yTkm5qJASUS+DBHdTZBfQDOkvRJ8dsvnub9iRgVd3hKo+KBgTS60j+9Jq42QEQ93sIAdU0YAybN0t8IcSpx5QDai5M8h4BmlspMSqa0wzTK+w+ZflJIL325JeB5thh6in6GYgfUHUL8xlqu4c3H1LfnXL5vsbuwXK5Yvuj2wzLMAZiNarpQKsxtyLEpkH1Peb4iLO/8KTTDufG35dpj9WRIApnAuvVBDnu4dIRMmHbG/ILTX7pEQWhsBhjEBHi+SV6uUC/9Yjdm3MAjn4dmX14ie2/8zVCAioo7Fbjc1j/4C6zj6eo330GIYzlLHIe/80jDm5dkthA7w0AuRtoBkeZ9ISoWR7sabqExivwmvZYERJFe+hI10JINBgD2hCbFlX08KphttoQ7h2xf33C1Q9uYa/eyegOgdLjJ4L5NCXZBGJuccdHxPU1SKR6/x7mu9c4E/HBME17lBKGYMjdgFWRZdawHxJi1LBoaTYZ0RjqN3smHyU0R4ry7EbkiUMfHtB+/Q66D6zfyVm9H1HznthY7Ob7LcoIsnfYWc/mLcivFLrxDA+OsMOAKgte/qnlVj52T9UlpNZ/9QlRs+kyMuuJokidx0eNTgNhpjArR0ghJiAGCIHYD+g0QYnQHSYcfbDj4LdjFWIS0P/w/X/lnftnkAaC1/h7HeffM4jTuNM1AC//8i7hQUszWKouwZnA2WqGVoJVEaMjR0UFgA+GundoJUwmLVhB369p7wbyc6hOLPpgCRKJL89wv/yY7LJn/1rJFz8uOf3jkotvZ6hfPnkogxh+uv8D/vnz7+G9ob3IQYObdzz4R8uLv+0J3uArx/JkS2ID613BcJkjWihuVRgT2V2VmGtLWHpcPpBmA94bbi+2fHGxpPx5gemEww9rzK8+RkIErRh+9C0u30tpToT8THH4mw7bigXgzyYf8fjuEf999oAuFCRHNX3rOP1hSp5WdFpQOrLZFsgqgfnA9FNDyEDfiXSdo/gsIbsSfJkQTUJ7JPgDT1M2pNlAeyTkrxTrrxccfejANyhlyR5fsUyOsZVl/qQnWbfYXczRRIyK/Oz568TfTbEO3NMp3dsDkx9eMM9azncTUufZbnOmvzfsHyrsjy9JtZBZzzXQf2fHuk5IniWYZpwIdmU5T2ekxYAY0F4QCwwDEgXe+RoxRkKuEQ3bB47NnzvsmZ/jVGAQQ3OVY3JIV4rmTsRNe7rBsiEbO0lHksxT3RPyc41+e+ywdZ1TbXLYWbJXBtGj0EMZII0jNnYpqVf4HHQPKksxk5JP/2rG0QdCtvLc/o81sUiYvMyxj7tjjuyelS+ZnezZ6gm+syiv8BcZ+wONz3uKdEAp4XBacfkamC+mbHY51gXaVyVEmH1iSK+FkEJ7qMhPLUMp+EVADQrTghq5TP0nb1OdWN76pxViNapqUT5Qv7UgJAp91s1Y+ZIPt3cRQGeekAnZhUL3Cq2FxAaMjmQ3eFhOa7bf7pCnBSFoiGCPWjbf9NR3FNGC6WDxaSSmAmlArBAyiG5ExuaRozlWrN9fjoH5AF1P+XhL+UWLXfcFF+2ETy5vkScDMumoVik6jDexOnJQ1izTmtonhKiZpy3Z/UuedCe8fbTC3IpkZuDpZMlKzdGNIb1SXB0rzO0agiYOmpgIKHUz2AUxiu0jTfEqQz87R1kDStHczrDPtktevViSzDryZKBMe3i4pe7miIs4FzjO92gErwNeCQCFrQmvXxBRPCrXXHUlVZNCUIgT+m80zKb1zbhVbGJBTMxYph5QUN0XQhFZvZNysrqFfnmBXu2Yna+xuyYFLRRZT9M7FkVDYj374x66GxKLog2OVVtQuJ7WO4x25HYgonhRLzivJnTbFN3q0aMtwJpIYkZRVUmCTx1iIKRgG8jOFc1txfaNSLRzTn5h0T6i6x7bNgmu7MmSgVvJntJ1rNqSdtZSX5QoBRfNhNL1RFG82k2p24QiG/8DsIkZgzegwfSKYRFwJhCioseQmIC1kSELhFxjeoUKoAfIX2mqRwEx0NzJyC56EEHHxnK82BOipvGOakhJjWdWtGAErSMvLhc8v15wlFccTSrmkwZnAz6MGXUmkDoPXhEyARuxNrJeT7h4umRd5UzyDhSETIh2bADbCr4AsRFbjRLZPUyJqcVmi/ardBsdqYaERdaglaAzj4hCaWF7NuXDJ3PECtmpoXmjJ512vHa4po8G0REzGQgK0OC9xrrAwaMtuyalGyzlsqHyBXGraY/G7m3veHRtWPx+4OK9hOJcMPsO65znus5xNpBZj9x4b6MEl3q0GvXHZUnIhckTw+RFYPrccfFHhs+94WBe4YMmVI701GIrhS8dbqdYHRQMy0B2auneaFGdRgXoF8JwNJAvWswvZkSr8AX0U0V/WGCtjlRNiggc5DVBa6yKTJKOK1NgdCRPBtLvXnD++JD6trB/TWH3oFtF9BqjI9e7HFMOTJ5abBtZfFKxe71EPRai1bRLIdoU9AhZP43oNNDWCQdr4fJdh9gRJ82xw1oTEYH5pKUeEoIodkOKVoL3hiIdOM5HS9M/MPiouTHd+KDpOwdAGAzFpGP1fkq6MrSHU3w+YmEoBRSka8VQgi8EJgPGRvxlxuq9iNtqbKVI1xFXR+z1tiDPe3I3YHRk32QUbsCoiDGj14ooCtvzxvKKKIrM+DEw0bTBEUUxv9cioqjebnm1mtFeJ6DBbsclJ+SRaDWmh2EekaAJQTCHHWGVogdFcSbkVwHRYKMo8mRglras25xusFzuS6ZZhzGREPUYRNREUXgxRAJRFIker7VPmCUtfbAoJbjjNeFQs+8SqmWKRIVsE+zKIAoki2gXkKAIVylup5g8u+nKB5aQKGye99yfXmN15Pn1gvq8ZFh0HJQ1ifXkbmSV1ZEoCi0yBhg1fbB40WPZbx5giIY+GDZ1TrXJICiUi+jGYJpxzOnaEF1EGcHtFelKUd++GYE1FK8Ey38tuPpJxbvLlzzPFsTbiq6znO8maCXM0h0T2xEZg/Fixu9KUXvLdZvT9I62cwRvSNJhRMyvp0xrvvL6phuBOl411UyRfpbi9tAeC+lagRoDS6qI7Q6FF1dzWm85vvHtKodtm5In4/bzZUaiaM6rCReq5Lio2PUpvTdEUUyKdlzbrscspe7/MpCeCiqOKDCdoL3i6D8d7QF0h4LbKaIBW0GyE0wXsfmpgm+M5fr88pBF2TBJutFVZBWHac2XRyth16Tcnu+4k2/ovCVEjdGjPuZlQ99bQmPxheAnQnqp8YVC+zF7ple4naACqAi6V/hcsLXC9ILphWTdo20jTLIOrYSuc2zqnHvFZjSFac3MNkQZAdF6R5n1rKqCdV8wTxu6wWJNoEz6cTy5ADcW50t7LRraIwEZGRadoro7AlX3YOvx/rYZrbc726CbY8W3Dk45KXYURYfRkYf5isOs4nm14OPdCTufsnANAN88PMPZwNR2rLuC1I175RA1611Bu0/ARmQ2evx+EREHybUivxDK08hQghJAwO1HsU+fR0IKYhSyq9B3ft4RRfN6ecUib6nqlH97+Q5RFOf7yaipZkJEsUxr1l0BQBctRkU2Vc71Luf0bEm3yiEqTB5QlcV0ChUUciNq08Pu4cgy00J6zTiGZoqhGB3H9NMdUlVYFUd97EPKrWLH1b5gtS3pBkvVpISg6QpLcuB5Wc95sZtjTeDJ9mAsf+1QWjBnCX4eICrCxqF7RXRCTIX8fHSt9YkipOC24CfQLUH7sYSmA9cI+otzYghY3Qa0imyGnML2KAXBG9bnU5S9GekF/M/mhNPtjKZ1DJsU1WmYD7B1xDJQXiiqRMOtDnJIznN8Jph23IzCQvBTITvX+AkMJfSHgfyFwe2E4txjugjDqFU7zBOiaD5fH33lrarW4CY98qwkpEKTJpzrCdt1QfIyIZFRsPZzQ3NH8Bp2Xx+4+/CKV6sZ+mnO5Jlw+YeByRNLPxs71DQK00GyEXx+83ZpMi4pAOnpFukHiIJNVi1dNKTWc7GZjF2lhWGfwOGAWVv0JyW7vIBZIFrw88DkAzN2VAu+MOTniu3d29z/7YAvItdvGvIXFp/BsIi4jcbuFXoYQVu+FGwt+Gwsc/nRK+LZOSICEtHm8xf84qffxOrIrGxpqgS8RjUGs7YgCtGCHlGHrRTJlWH9bqSfqRGgqxGgKOhnhn6i6RaCq6E7HndKUdy8H4OhHBcS0wvleeDgN3tksxuDutG8DVcr3viXaz6+f8Ddk2vKaUssx7lXXeckLx2mU0QHbm0YZpHpY83mnqc50dT3RhT4Anw5OoiQQnYFybUw/9jQHkE/jwxTDQKmE/JVQAUhXXXYZ+dE7/n/538BGV6SEa+9nkEAAAAASUVORK5CYII=\" y=\"-66.795366\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_15\"/>\r\n   <g id=\"matplotlib.axis_16\"/>\r\n   <g id=\"patch_38\">\r\n    <path d=\"M 149.494978 104.795366 \r\nL 149.494978 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_39\">\r\n    <path d=\"M 186.984634 104.795366 \r\nL 186.984634 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_40\">\r\n    <path d=\"M 149.494978 104.795366 \r\nL 186.984634 104.795366 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_41\">\r\n    <path d=\"M 149.494978 67.305711 \r\nL 186.984634 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_8\">\r\n    <!-- Sad -->\r\n    <g transform=\"translate(156.944806 61.305711)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-53\"/>\r\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"124.755859\" xlink:href=\"#DejaVuSans-64\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_9\">\r\n   <g id=\"patch_42\">\r\n    <path d=\"M 218.763944 104.795366 \r\nL 256.253599 104.795366 \r\nL 256.253599 67.305711 \r\nL 218.763944 67.305711 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pb1c64d4622)\">\r\n    <image height=\"38\" id=\"image57f9115747\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.763944\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANUklEQVR4nEWYS49k2VWFv30e9954ZeQ7s6q6qrpd4OrG7UcjI6s9woYBEybmF1gyA2b8CcQcJCaMLYEEAyQkPDIWMggZ1MYvcJe72+V6ZWXlKyIj4j7POZvBya5O6SpCKWXGirXXXnvtLX/4/T/XnaqmMIE6FKyHkg8f32L2i4KdR4HJhxfgLHGrYnV/zPlXhHS/4dOfdFWiVjGtQQKMTg3bH0Wqyx67GbAnl2jbQowghutvfp7yz074xuEjAKIauuQA6JKjNIGx7XGvP0ANSYXKBgB2PgyUFx3hYMYwdQxTy+q+Qe/XvLG/YKtsWfUljzeHSGdQo7jGALB4YBlPK8ZnjsLtY89XsFzD0LP1g1/x4s7bmO98yMy2DGrx4rGSGNRiUCozYESUpAJAUEufLMWJxzWR+nZFv+3ZHHuWb1k277bsba8JydBHizOJ6f4GdYqtDX4txBIQSB6GqaHbKwkHW0hZZAZi5M4/PubvPvldZrbBS2TXrSnNwNj0VGbAS8QZ0ddlKUzg8dUBh/+d6HYcq7uW6tzQ7QrdvnL7cMHx5JqrbsxlM+bs5ZzJo4Lbv06Ulz2uDvTbBcPEYAK4OiIKWhi0KmCTGU0Xl/h/uU//0DE2HZUZiNGARCwJI4r5jC3DzHc0v9wmFsL1PZu/YJkfNfBw+xVvz06ZFw2btkBaS3uQOP+y8PL9kmffnHB93yEJqsue6mRNcdWRrIHCgzVgBJlOOPrBGd87+wLHfkElAzPTUElma1CLG7seACeJIVlmj6HbFoYtqM5AEqD5+fh6n59d3OL8k11sY/B9LpvpBRKoy38r0TB+qZirNTodofOCNC4w1kKMiPfo4pr/eXwXfztiTQdAq0q8IcoZUZwkjCQW/RjXwOa20G8l3MaQnKAGXCOc/ett/BqOzhPJgagiCcyQsIOCgu0UvxqQmNBRCSHi1wMAIoJa+1o6/knJ8HWLRbGS8AQqUaDPwIwoW67jyWqX5KHbVdI40e0JfimoAxL0O0rzdseyt4yeePxKSB5ckwGVS8WEyDDzxFLgqMI1CdMnipNrVBURAeeQlJg8g+fDLnt2jZeAJWvQSsrAShMozUAbHGpBreIvLSZkkADFtRBHiWI0UM4b7FGibguGzpE6i7vwFEuDRMPkRKmuIijE0hBLQ/FCEedAJGvNGsZniY/bQ7bGDREhaQY2qMUZ8gdHDKumZNKCKKRCSV6I0whVpNk22MlACJa+9WidLdDUBgP4lSARYgXFKqEWJMAwNvg6oaMCGQKECKpgDOOTlu/95h3eefsFu2ZNYSIAm1RiPi1lSJYQLKIgg5AqJR12+O2OrZ2a3eMln7/1infvnLC/t0JGAcqIeqW8t6Z7u6F+J4u4WAbcOtLuWvqZ0E8NYbsiTUZo6cFkZvzTC/b/asxf/NOfUKcSQ8q/l4Azkmii56TZYjgdYYKCEfxBw3zaULnAblVT2MDd0RWDWsaup3KBFxdzTBWI0fDm8QVX9Qj9rxK/bIkjT7LZaNsdg4kl46i4tcla6wOyWFGernnwDwV/+fCP+JsvfZdVGpEwuKSGX1/vcme6RJ1ighDHicP5mlnRMfUdb00uuFdecre4YJNKHvlj1qHk6Wqfcr+mKgZ+c7pH8b8j9p8HMAa7GaiWJYt9yzAls6Ql1YXFr3okJDAGaTpMiIz/fp8Pfvstvlg9pVeLebLa4eXZnInrsRtLcqBVxJvE2PXsFA1vVud8sXrKQ/+KLxQvGJueRTuiPHWkn8yp25K3js8J7264+q2sPfWG8nLAthArpd2D+shSH3n6eYF6mxuhbpCuZ+eDc/72V1//rCufvdxBg+GHnzxg+xH0M0GKRFKhsJHb1YJjt+TIrjm2sNLszgCT9y4YouVLhyd85+jf+ODoTf66/Qbdz0r8OocBMyhqoJ8n1BhIBtc5iqUFZ9FhQEJE6Ol+dsCr35lRyYDRxkFnCIuCyUmknwtyMz93i5o7xRV33BXHFrZMRSXC/eKcqMLyekIIlsfXu3z3/H2+f/4Qd1rgNgG3aDB9RJ2AZF8Mk0QYQ/RCcgb1LluId+hkxOwJfNQeZ2CUkWKvZf/egmbf5nQADMlQmEAhAS+RVhNXqWGTlD275r295+irkuGjGaeXW/xqecDjy11GrwS3aJG6JVbu9ZyVkM04jmAYC6m6KaUItB3SdMw/7vlgeTeLn9YyrBxXw5hdhTBSxIAVxZLYtjVjCQzAWbS0mkfKQbGiureiPptA7bisRzR1wf65IkNAq4IwsfRbZNN2Ck5Ra5AEKgLOgjW5nDFSPlvw02d36I8trnzlUKtMnuVvpg6MSTiTiBg2qaRTCwkWqeIsbAEwsy2zUUczKtFoGAZHai2+TqCKWke9b4mlZscm+yMKvk64ekCdQW5mKDc6i6cjBnW46hy6XcFEzUlhyGGiHjwvmjk/NXfZpJJKelotWMeKk35OlxyHkzVnFzPERA621jzvHJBLlMaeWIHtIRWCqw1uLVTnSrFKmLrnxk+zr8WYGfzUYIcZxFKpD4XZE4UEMRi6wfF4uct1X/G82sZI/i9t9Fx1Y9Z9Qd0VWJcYas/Lqxm6KLJBW0MaOVwD5ZVgW8H0MH6lzD9ucFc1iORypsymhpDZGyQzZjvo5+DXYIJie0PfW2Iy1F3B5WLKo0UBk8Bo1tJ3nvSqwrRCOOoRAQZDaH1Op05gCJDAtcrQCWFPqWrB1wnTDshyDd5lhlKCriM9eINUOvRWS0RwozPF1bD1eCBM8qbDYGjqAr0o2f4/AYH1vYLurMAEKDdCsYTrscPsd8TBUE07OptIroTCEyYOMyjdHsw/gr0fX0FUJCW0bZHos1UAGhOn78/55rf/k2+NTrEo7uxrCfWJ8ZnBtplWf2VJK8v4lXD0w0v6owlowdEPrwB4+fu7+LUyeWpZzyx2HPjKrec8W2/TjI5Jo8yeWsFtwG8ScVzgf/0SrEWNzboKIb+WBQc/rpn+acexXxLVYP7gqz/n/ptnuDohqtgOioVQXgqS4PqdObEw7P6yo35zC60cO496qkV2f1rL1qzm4fSU3apmmAlhmjeiYSS4Wmn2DJs3Krp37hDu7sPBDmIMGkLWmLX4F1f8x/nniGpo1eOSCi8u5rx13tLvlNgeJMLoImEGuH7LEsaWZB3FSpjOphSrRCwMEsG0OcKc9TMSwvp+YvyqYPK8Y/44UB8WNPuG1T1Lu2OorjzTp+CuriEEcLmTtW74zatbLG6Pc1B0JpKSQVJmwPSKljn0TZ80jM4cF++WtPvg1nn5kKT4VaS6EFafT7x3+JyDYsXI9vTvWR4Vb7Dz84qDH10z/8UT5iEgo1HelACtW7TrwAhYm1lLkXg6YpUquuRxXhLGRmLlCJOboKgwTIRur6Q6bzn60YCK4E+XqBG0Klk9nHP+e4k//uqP+frsIyozcBGm3CsvuT+95CcP7vDxgwNu/fuE6UdLWK7RtsssxZhBicnvAZJSnhnOhxlJBZcQjFEkKjebEwBhJLQ7lm4+xgQIldB9bcL6XiLNA+987infPv6Au/6CVj11KqlM3obuVlf0u46fvG15GXbZ2t9lfDGnPO/xlzVyuURjyuDgNTg78PqO4aJmYBjBNQkJBnFKKoRuJ5tgKqG+ndh+cMH7e684Kq+5W13iJfB02KNVz1WYUJqBZRjzvN3mtJkhoqiDYSa00eJqh7s2SFkg/ZBHV0yZuZsx0CWHEcX1yTGpemJVYruEaxU1AiixFMIIUpk3p7b3nDVTJq7jfJjxvNshqbCOJc/r7ZvdwXBeT7haToi9xSXwG2V8GvDXnyVXVHNXQgamCRXYhDID66JjUvSEkWV02lCWBhMtocrgwkhITpFBqJcjngtc9yWljXgbSSp0wdEFR+ECQ7RcXE7RyxLbCv5aKFYJX99Yg0jekqy90VvKbCUlFbCJRdYYwHbZcLJrGT8N+FVArSBJiD4fR/j07hKF+rpiGCxFEShcoO09qjlctoOjaz1p47G94BrBr/KoG8YOD5g+5o08hAwwxgzSWsJE6aOljR43sgNGNN8cmh5TOopr6Lc8rlNaI6jPmUrKiHUpa+emU6piIERLUiElISUDCUx8LRv6qUEFRB22Dqg1n3XZTQNIWTBsR9ro6aLLjI3sQHOoSD8gQ0JswnYJEwzFtRIrIVaKAr4IOJfLWPlAOziSCjGa/LQWt7I3IwnCBCQJts83EAAJEY3xdbIA0NkEu9XTBJ9vb85ErCjDve7GYAMYMIPF9ortBFdDGAthMAy9oyoGDiYb2uC56gpiNITBosEgrUUiN8eW/CpRsb3iVyHnsK7P2rrxM+17wtEWk3HHpi8Ygs1dWZjA7cMFaXuKrBvEGUwXcbXFlYJf54GszhGCsOgtdVtgbSIMltBbtHG5hH1mx23A1TfXn1opFgG36pB1jYYImj7rSODsvTH700sWTUU3ONxqKCmM443Zgk++/JD9f36JlAWmj9g2UqwENbkJbGdo93IMirYgkm8cAtggSAAzCOUllAvFNQnbK24TKRYd5rrObIWQ/Stl1sxsyvIrPZPgGGKWwf8DnuVMIBg6NbkAAAAASUVORK5CYII=\" y=\"-66.795366\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_17\"/>\r\n   <g id=\"matplotlib.axis_18\"/>\r\n   <g id=\"patch_43\">\r\n    <path d=\"M 218.763944 104.795366 \r\nL 218.763944 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_44\">\r\n    <path d=\"M 256.253599 104.795366 \r\nL 256.253599 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_45\">\r\n    <path d=\"M 218.763944 104.795366 \r\nL 256.253599 104.795366 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_46\">\r\n    <path d=\"M 218.763944 67.305711 \r\nL 256.253599 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_9\">\r\n    <!-- Neutral -->\r\n    <g transform=\"translate(215.363147 61.305711)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-4e\"/>\r\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_10\">\r\n   <g id=\"patch_47\">\r\n    <path d=\"M 288.032909 104.795366 \r\nL 325.522565 104.795366 \r\nL 325.522565 67.305711 \r\nL 288.032909 67.305711 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p332cf9d3c1)\">\r\n    <image height=\"38\" id=\"image87ccddde60\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"288.032909\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMJUlEQVR4nGWY2Y9l11XGf2vtfYZ7b02u9OR22m233cHgJCQMIeEhCRIhCEQkBqGIF/4BpERMD4D4BxKJJ4TgCYSIQoTCYAkhhRChACIKlmISKwTH8tBud7uH6hrucIa91+Jhn65yyJVKVaV7zz1rf9+3vvWtI/nW0w4wesYwFOXFIfHJv/w01z77Ij4MoApmuDsAInL6d/rQs9z+YMvsrek9g35PsAqsgjxzXMEi5G3D28yHnnmZ33/sH6nEOLGK23mHfz95F1/48k9y/Q//m1d/+30ob3tFAs/38Kuf/zTX/voAd0cWcwjhtBBgKtQhZ5pX7rJ1w/AAyyvC/fc7J09llk8luvOGayk2DBCWiqwD//mNd/Gn9z5MwGkls6drHq2PqK6usPc+zbU/exnNbvQ+AnBsHb/+ud/gypcG0k6L7mzDmJCgSF0jIgWtMYEbhIDtLuh3lQfPOt2lhO0kwrkemSdsLzE8NtBfTFgNOkJcKiThuf96P88t3w1ARtkNKz7x9De5+74F7l4QU5TRMz/+hd/k8ldHZELHd7e+hz6p6/L/VBTvuc6Nn9vn6AcMD46MilaZph1Z7HS02z2hyUibGfcyCIReqA+VeBz44xc+yvPdFcyVzmsuVscsHweZtWiiaOtj3/okj33FqJYJGa1Qlg0RgRihinhKBS1Arj/JjY/t0O87XhteO+Jgm8g4BnJW3EHV0OgQnHHXsOCIQVwL8uqMz3z7Z3h93AdgbTWXf+wW6cJuQewz99/D+PmL1EcjHqXc2B1ZbfCcISV8GLGuR0JAn3qCN352n+ERx+pJe9GwRQZ1xi6SkhKjUVUZEUcqg63EuG+MW46rE3qh/59dPn/rA9wbt3kwzvnIxZdYXp2jLwzwF//0U+z97xqxiTYHXQ/4ZnOKkm82iArh4nlu/fQFVleMtJvwypFRYFRQR9tM1SbadiSooeqEmJFg1PMB3RuwxrAaXCGuhJe+dpU74zaH45w3No9w6xdG9F9Xz/DOL494UFzAVbBKkb6ghDm2XuM5I3XN8QfeyeGziXC+I2wlyBDXiiQBdTwpYx9Zr1r6IZJSwLIiSkGwTvjMsMrx6EiG+lj4+6//CFEzR2NLrBP6uT/5OLHLiDleKS4TlcOId32hEpAQkMcuce+9AdlKzOc9loW4VkInxKUSDio8CxqNWCXMhKGLmCkiTs6KqoE41ji59akhoHoQeGuzw/PfeYLrv3dMPPfCunRgFHBQM8JygE2HBAU3vNTG8tlz9PsZHDZdhd6pqY6keFUAapAukAclC0guh7TgoE7Yy+SsSHS8MiwHXIqN6AjfvX+Oq18U8o03iYiAAtmRABaVmB3vBzzbKVq6teDwWsSrBElJEpEAaeGkuWMzg9qQ4FRNIvUR7wLSK3GlpP0REXCfRBymbo4KXrQ2e26H+b+9SB4HogdBsoMIFhQPgosgORe/EiVcOEd//RLdeYfGCE0mbwI+M5IrCFAZEo3YJOq6QJzU8VpJ2xDaRE7ToBHA5QzRGh7/h7v4KzfIwzhNodMxM3X9yUi4d4QNA4jiOTM8eYE7P9qSZ0Zsi750y1mtG8ZQI71C0kKpwDgGzIVYZZKDqCNAGgOijo8Ko4CBZAgb8Nduno09EaJkL/iaIOLomPFhotGNsLtDrhSL4JWjwQhq1DGTWiX1EdaBuFTSLgxSobFQ2rQj7WzAXYhq9GOk7ypwEBN0EOIGZvcNzMAcCQHPoDLpCC2mSi7DGShj59HzHD7VkFvweULVyaaYC3VM+KSPdG6k3u+Q4wruNeRVxawemdcj71isObe1QsTBgaQFrSR4gOYwIbs7SPX/CJQJwVOriBFUkBCwRcPqsjBuOaHJuEPKSjdGVIA+IFY0E4Lh81wmQJKCbMhcWhyT7G1BJhSbiJ0QV3DzoxXf+exjHPzKD5fi3FCmYlyE3IZTjiUEpGno9xuqJXh0VBwzQQRyVo6WLTjkplzWdxVkQXol7A7s1D377Zr73YKjTVusIpTx5NGRBDoWVKwPLB8T9OL5onUXYOrMuBxBwdNkqk3N/XfXRZy1Yy4ELcWlpOQxoJsJCfVyRnXYzuxsbTgeGg42c7IJm77GXVBxPBouBWmZVBPniWG3Ip3fgVcnKh+OIavDRGWAEDj54FW2bhq5heqBko/rKTE4qo51ER3KKDodsia4w9HRnON1y7qv6MdIXSXaZiREe0jSaYAc9xO8PiNdHOguzpBYEQmCBSkf2iR0M+LjCOPI4bXI4rZRLR2rhOoksn58RkpCdWmNNJm8VQxSKiPGTA4OXu6s6rhP6GY9s5JUrAKHNANMyAsjHFSIZVBBXYQwGjpkxB2vI7KYI3XN7F5Bol46aVEG7uLVwBPPjdirC+RejbeFi1hlzM7QC9FwF8zOftIYcBM8K5ILGLkph2gurbHa6XcDUtdEfRgKH6bWKuBNDXWFjo4H0FS6bnU1I1l47XKFLRKyCegyYtuJxbxnuWrByswdjxrSPODrWNCZZXBBqzJry83AA4RlQM47Xjknjwf2d7aJkouxodNoSgZBGX/wcbpHlGrlpAaaA3BVNAsyQl4K447j+wPzRc+8GRhSIK0qdBVoDpTugnD5q8Ld9wvhTiTNnDwPUDlhpWiC+R1j2FU2Jw00mdUT4LOG6CLIdAQX8DaSFxWbizXV2qk2zvKycvJ0xtURF7zJVFsD57Y3+KSnboyEYEidkRwYF878ZmB9rhzKKggKcRPIjRNXgmSoVsbsLaG7IjAoYXfE5w0RAQ8KKnjzcH4ZqS0acCk+JYPAuZGqSSxmPTEUCQQtIyqbUgUj7DmH68j89Uh3zlj/0IAnRU4i7V0lDJROnujMtZTEfBKxeSavIzJmoqucGrKkCbmgSC7R10P5LVmwQdHZ2X6pUryNydXbmGhjYv7kwL39LfJBC+tYYs2m5DYLnBblCv2OsridObquSBfY/5bArTtTHoNirLlsOmLOsC2EHiwKmovnkJRxiIg4YUJMxAlyVmw2JaixmPU0j46sVy35pMKiE718l02H7fdLeq2PEte+mOn3G7a+cRMb09tijwEiOCWbuU4UekmX4qCdkkOk92IPVZVPL3VgPVSTbwXcIadA7sIpQpKnD8fyfcOe0RwouVGqBxu2bh6Q3rxd7EeSleAmgku5QIZE+8AZduShVxbo40R1FkyVPHmWl7OU9GSCm5KT4rlsT7ope0GRSfmuNHfqQ0Uccqvgjh8vSzgF9PipWVnb7KwzJRthcHQ8K0oyaDcZqBQK35bryPmhkSp5nIpKZXsSKwVZLGk1t051IlQnEDpHB0eSYScnIEWv+onf/QrjVoXXipgj5lgdmd/a0D7I1MtSoGSwxmE823hs2rbNBLwgdQqxC4yCjIKYEPqyW+Taae4LcV0kUq0cj4Krnm5kiKIf3/4mr/18VQLiaSMI4bijvTew9XpHe2A0D8qKhjg2lNFipkVHWTFTLAuWysghnWV6SUWEVpXt28O0j/RnzeYvvXKKFm7o01Xmlz7yNY6fnJUVTgTXIpjqzQfUbxyw/VrH1huZrddg/lpFOKjgpCL3AcsP0QLPiqeS52UoNGovp0FUktAcQLV0JBekxoXQ3l6fPUGaEItb0vAHF/6DD//yM+z8UYurIObk3Rnx8ATvemJd0cwC9YliN4VuL9DvBbrzyrAXsNZKKs2CjAUtHYo16GSokmF215nfLU99XIVcC2Fwwpv3SXzvS4Y3r/nGBwDe+7ef4qm/GU7frG4ewuFxyf7v2KO7vI1VSuwyuQmkudLtKatHhTx30qw0ho4ypVMhdJNXnTjbNxLt7VW5cT9ibY0OCfvuq+XJ5YRWaba3PepcWs8H//y3uPIvfeFdhOblO2WDUYUqki7soOsBm9ekeYVVwrgVSK2wfKeSFo7VIGNx+/oYwsaZPTBmb/XEe0tktcEOHiAxYn1/VhRluf6ewrIbicy3BufX/upTXPnnntwG4nIkLgdkuSnImSEnK/yRHYaL26RFmMwZdDDG7chmX0lzoTl0tt4cqA46JGekG5F1h927j02L7amuTivT7y8sSHmy+O1x5Bf/7tNc+VKmWiZ0k9BuJD0yQ/tchv7kCJtLDaFz2jsbdMhYG+n3G3KrVMtMfdChN+5A3+PDiOf8fQh5zmcdCdz8nZ/g/wCT/xDu9arzSwAAAABJRU5ErkJggg==\" y=\"-66.795366\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_19\"/>\r\n   <g id=\"matplotlib.axis_20\"/>\r\n   <g id=\"patch_48\">\r\n    <path d=\"M 288.032909 104.795366 \r\nL 288.032909 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_49\">\r\n    <path d=\"M 325.522565 104.795366 \r\nL 325.522565 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_50\">\r\n    <path d=\"M 288.032909 104.795366 \r\nL 325.522565 104.795366 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_51\">\r\n    <path d=\"M 288.032909 67.305711 \r\nL 325.522565 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_10\">\r\n    <!-- Neutral -->\r\n    <g transform=\"translate(284.632112 61.305711)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-4e\"/>\r\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_11\">\r\n   <g id=\"patch_52\">\r\n    <path d=\"M 10.957047 149.782953 \r\nL 48.446703 149.782953 \r\nL 48.446703 112.293297 \r\nL 10.957047 112.293297 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pf1d5f2c7ee)\">\r\n    <image height=\"38\" id=\"image2f40f59fbc\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.957047\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANFklEQVR4nE2YSY9k+VXFf/c/vRcvIjKzMrOyuuZuu93dyIy2MWywkCWEMGKyxIYtG/gGrEB8ABb+APAVGLxAYu2NMSwswMajqspdrqzKKcY3/YfL4mVXE9JbhPQi3n3nnHvuuX/5nS/9jcqQMW2PrjdwcgfpBtrP36c7scwuE9VVD1mJxzVxYUkzQ3dqaO8p42kGAdMb3E6QAmqgOEh3EjjFrB3zl4ZH//yK8vwlEjzm3l3ivUPahzUXv2b409//Fo/CNUvb89DdYCQrEhMMIzgHpYAquRaqTcHtE6aLiComFdQIxUKqAQEZDW5jCSuDHQQTp8sOgt1aGA3qlLiEi996B3N8hKYEgBkTritIEqwUjCi1RLwkDKkgY0RTQoyZivSO7IWwirjtADEhY6I4Q/FCnAu5AgC3F1wrmAEkTZcdwHVgRkGSgIAKtPeF9ktPEecgZ2TImKiIQiWJogKARTGSM6QMOYMxYC35ZIlvC5ILMiYkZUrlKU5IlVCCYNKnRVGgBMg1qAPJUyGlUtQqtjWYBKlRrj/0mLsnAMgYcfuEJBjU0ZYKK2VCk5hAFfEegkcrTwkW2xVQIKaJXmcowTAuheKgvlLCZiokzZUS9K2+cg15ptPDo5kQHad7+1Nl9ev34ZYdiRkToc2Bhe3piycjOLktDECDR4MDBdsnzJiQIU7FOkNsDCVA2ChhWxgXBr8V3F5AwaQJORT8TjCjoO5TanMlFK/cfGQ5+k+ZAJkeTVEhyKQ9LxlD0QmR4Cc6ARMzZsyYLkKME72NI82E5k1hfp6IjWG4IxQPUsD1E4W2BzMCZfqeZspwrKiB+hJcK6SZ0r97AqWgMqF8HecYCl4yFsVp5RFVtKkhF9Rb1BkkZhgjiJDvNPQnHhTqq0SaW3IF/ZlSnnTkTSBcWswomAgmw7hU1EKeFWxv8DsFATsK2gk3HwTuf2+cEBO4GuZsy4y5GScqCR6KotaiTUCNQFEkZmTfoQcL+rs1sREWP49QbrVTwK+FdudxG4u/9TC3B8kKOmkRPhG+EOeT/opXtu/BfZGp0wMchZZdrpmHN1O3qzFQebSyU1caQVK5/XMl32lItTC7yrh9Ii4c+zPDeCjYEdy1w++F6lqRPBWc5lNRJoPfTiiqhfFIyU1B66mx4rv30GBQoxz5jr54GjNMVEopaOXJTcD2k/jIioogVSDNPSZD2ERKMAxHjv1jSE1h9tpQXwluP9ERD6YmGI8gV0rxihShvhDGJaSTSHUwUIVEP3jahzP8dvKWogYvmVrihJj0I2XmUSeTTWx7tPKTMOczijf4TZqKdYb1ZwzlvZbgM/tFzfwnnv4uxA87nMsM24rjsw396Lkz73h9fcCQZ8SzyDsPbjgIAwWBJdwczfHbjCh02QNwZEZ6tZP4AXIwqBHs3lCcwRSDejtZiRGwQlxauo96Hp2sOa5bxlPL/1bvwNrzuXuXvNktOFp0fPnsOZfDguuh4efRwP2Ru3c3HFY9R1UHwC5WxLmQGkuulathzlfvfJ+2OLwUXJlXlMqRa0MWsK1H8uS+xVskK3lmMbHQnlqePnjN+weXHIc9qRjc08L3Xr7DD1/cQwSePLjCiHIcWvrsuHO8I2bLshpY+IGlG0hq2Iz1245UA/sUeNdfYEQxKA4R1AlmVNozR1hb3CqBFUzMgJvSghW6M+HLR6/51cULahm5zgsqkwgm8Xx9jLOZPjm2sebItxM1s57KJk7rHTMb8VIo2WNEmV0U7FAoQdiNgSMzYFAKgivOQJnE3R9b+mPPwZs9pQmQCnlmp7dyhvFAeVpfcWJ3/Cwes04Nu1zxqFlxVu/4zusn7PvA/jBw5FsuuwWVS1x3DT96dcbBsuWgHqhsYsiO5Yue8cCjXjkInxaVEZw6gxSFoszPI7sHYZoEpYAV0sxgolI8hLXwr68+z037JXbbmjJaxBcOD1seH61YVANjspyGPUPxXG7nxJ8umX8shDlcv++4BogGdzDyuddr4uIEtcrd2Y6C4G8HrpNcQKa44bYjvnPEkzkmFShK9uBaRYpy/IPM9fAAdVBb8PvJt4qr+e/3jjh8d0Vwmcf1Nf+1fUj64ZLlC0gNxAPFXXnCSmjOletfrOHmBWpPkSQ8nK2IaqglYyXj0El8NmbUCPVVJB54XDslUwCTFDMW6jcdrp1x/aGne6QMp0q4MVQrWD4z9DfHHP3Ga07dltfdktPvKs2bEbeLlGB584WGxatM2GR2TwISwhQejOIlk29pnJzfGTCThkw7YvpIerikOKF4Q3G3KaAoZt3SXG6YPa/oHx/y4ncdzbkyu5pEvHvouFNPdhCzZf6yx4wZe7XFqnJSW9x25PVvLgkrwDmkgDQZK4WoFrg12DR3mFiQ9En+ANdncjD0x3b6YVZMnCxEux66nrooR9+7y+I8oSKYpAxHQiyW7+4fM2TL7qMZi5eJEiwA46Hj/MsV8Vd2zL+1mGZuKqjCxbhkZLrPo7g4NyCG+kox1mLaFreylJOaNBN8O2UmyQWMoTw+I9cOdYbZTWE4sJNzV5buTLnczfmxuct+CHTvgxpH2Fm6E0N7X0mPek6XHXmcTy9qBdlZdinQF09vLF4STq2QA8S5wwwZyRVm12HnnlwJ9apQ3DTYS1PR3W+4+GVHXCphI8wudEqg7wj5eGRMlov9hIY+7tmYmsULgx0VvxXydeAiHfLosky7xcwgUViNDavS8JANXsDZsUwJe2FwrZv4zYrbDhTXTF0XzG32n4o0GWYXgt9OAXD9PsQnPYtlz6IeWIQRgLYe6JYtw2cd3b7ChcRhMxBcRsoxxESqDFLg4/Uh8R1HVIPltiulKK5T4oHFjJm8rDBdZPlxJtWCL4oMU/KoL0eObGA4MGzfhfx+xy88PKdLHm8yjRup7bTxtC7QB8dB6KltJBVLnx03Q0NWwNm3cXt1vcBS8FKwIjgzKrExuLYwLiyutth1plSO+jqyeVLhFbRySDtg2xHXOW4+sOT3W377sz/iXrVhlyu8ZLxkolqiWooKXQ4YmR7YZU+fHWO2+HjbbLcfsYWMefvdSVGKF3JtcL0SDxyuy5g+MqF5a6JNwG1aTBdx+8zsjaMbLUkNj8I1jRnoNbDL9ZRWEIbi6Ysnqn0ba4oarjZzHm8iWgeKBa0K792/4q7dsDQZg2A+cf0cBNcVUiUMx4HcBMyYCbuCGcttgCzItsXtI81Fpvl+xbc/fspP+jMAgiQaM1CZSC3pLXLbVNPlwDrW9NmRny3AClr5qSlWlvvNhsdu/RYzZ8aCSUqx03rlBp3MNRjMyDT9/ZTRcBbdtZhNR1U7Fi8NN4sl/+Y+gidwFjYUNRgpFDX0xbNPFV32xGIZi+P1dpqddh+nYLAUJMO9asPclLdUGtslTNRpCQHCKlGtImlmKcHc0iyYMaPBgxZkvcUMiWpVaF4Lu2eHfOfyKT/rj2lLoKhhm2tSMXTZ02VPUsOQHOtVQ/FQwrSNmQRxORVUi9xeFmdiplpnxqXBjIrJBdtObp6rKdWmWjB9JN9psKsNZd9ir3e4ZWB2YSje8Lw+Y8iW9w6uedzcTMIvgYJgUHap4mI/x1wGcoBcO/xNT3Ewe7jjxO8xgJeJTIcqfjPi9440N/itQiqEyz39gyVpJqSZ0D9YMvvJFRwdIMMAN2v8YUOuDPwcinec6wnbezWb45r7s81bWsYyjZr1uqF5ZZi/Ktgh099v2L4LX3n4nC80z7AIRXWyi/6sYfZqT32T6E4dubaYVJA2U131FD8je0t3aqnPa2SIyOEBerPGvl4RggMNNK8ENY42LvhpEfaHgWUYKCoUFV6uDzGvavxeaS4SKtDfscjTll9afsxjt5q09UkEe/F7hg//Adwu4meG4Y7DxoLkaVMKNyNqA/2hpX9nzuz5Cq0r5PgIvV7hLgJwgMmKGxx+a9n1S56d1vhZZN4MeJfZXM5pbgTJim0TiLD+rOFrH/wPX5g949BkwGARMor7q9/5Jn//nT/i5N8vCNUUrcelpxrLdHaVFdsrwRX6Y4sZD6he7yj1HJnPkKsVPibs4Ry3qwhrj+s87b1ArgPb+Qx1MLswzC6U+mYKptsnFfUXr/n6nf+glki5RSszGa/72vyH/MufP2P/5iHV9UAlQn/qMSkQVsPkykWnE5y20J84il9Sn9/uBeEUe7lGXl/j1xWuqbHjkrD10+mjBzXC/HzExEIOhpsPalZf7fnG5/+Jz7gdAHMx+NvYAyDbl0/0eUr88bf/gqffENQIcTktwGEVkVTIzbTexeZ2OswNJilhk3HbiNv0yHr36eFfFdBZNe2kMgVNVClNoLs/58UfKn/7lX/k64uPqcQTNVMomP83kmT78olaEX4cE3/5gz/D/d0JkpXUWNRAdTWC3KZZ/4nxFrpTx3gghK3SnEeq8z0yjEg3QM5oKcisRt10JlIOG3ZPG87/ZOSvv/hN/mD+gju2Iep09FUoZP10fv4flJcyKpi4gFAAAAAASUVORK5CYII=\" y=\"-111.782953\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_21\"/>\r\n   <g id=\"matplotlib.axis_22\"/>\r\n   <g id=\"patch_53\">\r\n    <path d=\"M 10.957047 149.782953 \r\nL 10.957047 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_54\">\r\n    <path d=\"M 48.446703 149.782953 \r\nL 48.446703 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_55\">\r\n    <path d=\"M 10.957047 149.782953 \r\nL 48.446703 149.782953 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_56\">\r\n    <path d=\"M 10.957047 112.293297 \r\nL 48.446703 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_11\">\r\n    <!-- Happy -->\r\n    <g transform=\"translate(10.343438 106.293297)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-48\"/>\r\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_12\">\r\n   <g id=\"patch_57\">\r\n    <path d=\"M 80.226013 149.782953 \r\nL 117.715668 149.782953 \r\nL 117.715668 112.293297 \r\nL 80.226013 112.293297 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p73d9c18efc)\">\r\n    <image height=\"38\" id=\"image9f53591675\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"80.226013\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMkUlEQVR4nHWY2ZMlx1XGfyeXqrpb7/ssLY00EtaCJTlkLNnYEQ4CzAOOwC/+O3jgjwKeiAD8BC8GFDaWwRiHpBGjkTTqGfX0cvvutWUeHvL2bStsKiKjbndVVH55vu98eU7Kn9gfK4AYwR4ecPmd24RMMK0iCm6hmFZpeobLV4TqqIEomJlF9iru7F2S25ay9Rz0xpSt54Of3uPoX1tsFTBlwD+5hLohbm9Q7/dQK7hZi7taAFAd9DFVQL0hekO0gkMjYi12Z5urd27T9AVbgUQwrWIaJWZCtSaYWuh9nOEnADCfFnx2cYBmCj7yRbFJt1dSvHbFE93g1k8VU8f0srVoblErAKgRYjdDFg0SlZjb9H8BDDjEIFnG4g/vUG4IEtJD0QQuZkKbC2rAllBcKmrg8nXl+JWnDLIKJ4FJU7BoPOMyp5M19N8+5cTsc/cnLYSIFhmx8EQrmCYiUQm5xdUtKITMYJrlIiI4sRazv8v0yCMKLEGhEL0QMqHtQDMQ2i7MM2F+v2Jnd8LlrMvVvEORNZyeblD0K944PGEnn1JFx+N3S07OnuP2w4AWOSG3acGaIqZWCN0MaSNqHcFZUDj7usMBlM/v0HQFiYppWK4gAarXhaYP9UZEBy2uaOnmDcNxF+8DL+8943b3imeDK3753ku8N3yRH731Prc6V6y5ki+/P6D61RESFXWyBCErSkPXIVGRoDR9w+kfCcdvfIExa31mhz6FML2LGmg70PaEZqA0axHtBohgP+7SfLwGTwvKcc75osd53SMzAT8Vtn/m+MeHr2IkcpiN+O6th3z+ZznBmzRFTFJRI4TcpJEZJnccT/48cPzGE0I0OFkb0PSWgpQUtegSjdFD09ckbqsYH5Y8J/AAz676jMucXl4jr48Jb7X84Pb/8nL+lKvQxUvgD955xMUvnyMbB4SU7aEwSFBCbjh709B784JXBxMWbQqSCxt9oluGarmi6CFm0BYQOxHpBIyNbG9NWfQrqtLjjNItao43hkSENhr+9OhD1u2CfT+ikIZSM+Yx4xsbn/M3L9/j8N+aBCimiA3ve8p3p7x88IyqdQDktqURiwv9DHVJV6bVBMoL0YE6BaN010pElDYY2tbSTDPs2DKre/xqc418a8GLe+fs+TFV9JTRc8YaH80PyE1LwNC+OiW8nxNyw/SWZfR2yRvPP0q202ZYkzLSiBJVcJgbWjQKIUsRU3NtKuBtYKc/Y1LlDL/o4MaW3hOhuIyEzFLuDHjwlnCvf8CaK8lNwz+ff41WDd/aeMQ8Zrx29JRff+9F4lHJy7dPue8rypBoy2wgqmBEaaNJwKRNviQKapfD3CQCUWiCpQkWZyL5uSW/ENxcaXpCvS5M77V8++7n/GjzfR7UBzws9/j1s0P++PYn7PsRs5hzu3uFefdjnInUwVIHh0GJy4mcRCKyAujspAS6KTgWomXlwGqS6GUp+Ny1hCwtYvI81NsBaYRie8GGX3DkJnzZrgNQ+Jaj/IoDd0WpnmlRMGkLZm2GM5E2QlxSFVVuAJqYgJnRDD/dpN4QlARMrg04B3yk8C173QlOIpPXzxmFnaTJ0iCN0NQOZwKT6KnV8ni+ybcPP+G7/Q/ZNgsmMeM4O+dpts4ibGJQMNBGaKNbRcmIpmcChhAZnLQr77rWV8wh9CIuDzgbKGzDwJe8uHHO2tcvMLVQnBrcAlRhz08ICBHDYTHiLzb+k10zp5DAvl1wx19wN78kMy1GlMI2ZDbgJEUISKCWl9FugR81+GnSVfQpM0OhaCfQ75V0fYOXiBVl4Eu2uzPKg7QYiQIK3rRMYsGGnfO9tQ/pSc1EPTN1lGrYNRXH2Rm5SUL3EjEo5poeSBpbDnf11i7VmlAPlpoyCVwolKxXsz+YcNgds5XNAKiiQ1Uwaw1VbfAjQ1w4Rm2XUhOVUT0PY4f/mt0lqnC/c8rbnUds2yk9VzFp8xsQalYRWwFUwX3zr3/BT/7pbfwUQrZ8YiH2W462Rux1JiyC5z/Oj5k3nhCFwrfcP3rGg7iPTnOkMpzVfQDK6Dlt13l/dMyTaUoEs6sEDN/qPGTTzTmXPkGTKV9TeC3+qCkzXRstmGQTSBpqFFMEer7m0/E2jz/fQSoDg4ZOv8LbyLTOef7onMdPbmGq9NFbdsRJs8X7o2M+HW1xPhyw8S8F//CDPrtrUz7aPmAvS8WcFSUz4be8y97oSxT33pfH2FJQu/Sy6408Cldlh5Onm/gLR7PZQmvgF+ucHrf096fU/7OOq4XohM+mW/x9/iZ/9/BNZqc9JApmbnCVEj/q8yTvE18X3tl7tAKQ2xaCo8V8BRSAGz7apD9LFlGvL7kW0Lnjy8s1/JcZbioojtBRDn5eUT1wjO5tsP04MjsUJs9FPn6yxyfPtmmuCux6zfP7F1iJPL2/hpaeF3Yv2S5mPJptJ6/SSBstkaVV6A2dAC6/sORDJWY3W5OpBTszyLhDcS5kYyVewPSusNjxFBcNxbnh4lUh3Fvw0uEzjvuXRDV8MNxnrzvhh3u/4l72DICMQKme31S3+OnwPmXrMU5XTh/1Rl8rKk2d9NW5iMymZhU1W6YaP2RQDwRbw+AzZbFtuHwlp7m34M7+kNy23Old8Wb/c7qm4rhzQW4a3sgf4yWyayPbpsMwTijkUz4u9vlwtE/fVyvx/77LuUWqUlGDqQVTXycAxExRI+lvB+U26J05+1tjXtt6yrDuMm1y9vMxrxQn7Jo5d/0lAFu2wQAewzAumGtasJfA2azHre6IMrjfsYobKq+UxY6w2BfcHPxMKHc0bU2awIUC2kGgdzDj7uaQe/0LvphvcLbo8a3dT3mpeEohDQ2GQhq6pmEWDdtW8WKYxJZySdNeNubyyTr/LXB/84wyOKKar+gLwJhGyYeKqSEfLn9XsmpIJIJahSLSzWuciXww2uds0eN4MGTbz+iZerUhewlYlEotuRgavXH2gLBlZ5BFzk/WcSb8XlAAZvSCIXpwJfiFgpL6yvZmu0EFgrCoPZ8NN7laFKznJQNf0rUVhampsUQVwnKSHdusJhmIoSuKlwDAnaNLsmeOx9PNr2xJ1xs5gPnhX/47V+9UjF+4ecHPwDTCb9MvtWE2LiirVNwVtsGKYlFmMWcec35TH/FhdchJu8ZpyBjFgBGhazw39gkHvTFuLpycb/z/Gvtm7xO+/e4D/upnP8bWGcGnIjDzqW3DLZvfRogLh+YtHd+uPjAJBaNwyIPZHg+Ge8xrT9M4tgYzXlg/5+21z/h65zMKgUksaJYOLwrhtEN99NWCcQUsIFy0G8SpR4LiykhjDHahRCuplXcKEYig0eBt2koWwfNwvsvJfJ2PHtyi98iRjRUfYNod8IvBAe/1X6XdbDm6e8F39j+ha2o+PN9LHb9TFq2n45qvgEo1P9CoxY0spmmJLh2omCCYBkwNxgEIag0xCOMypw6WL4HhrMP8tMf6B47BScA0SsiEOBbiGUQnhMJx+eSAv72zxcbOlLL0NF+rEReZ1hkd16yKxWutOYBR2yUbCRJSz5fNIq4STG1Qd901K2qFeJUxHGeoKHZu6Jwads6VfBxws4BpFTUWW6VJQi400dA5VfwkY7q7Sbvb4LsN8aTDqa6zdrvCmpuCsY0G16gjIqvu2E8D0iqiip8YJHrKbcG06RSIsU0Zq5BdKd3zgC11dTKkhnS3grSKrQGJ2EaoYoqgrT1tz1GcGRY2o71lsNwkXxMtLqiw6WaUe5GYC7JIxWLTSw1o96zFNpZyQ4g+VSGQTn3yUcDUiq0ipg7EzBJ96rCvdwwAWypWFDUGW0K1IdhS8DOYrbX0fP07+6UDGJgFslWB+lXGmFqJudB2Da6MFENDyMAERQJ0zpvV2ZeEiHqDCZFAov+mtgMJICFF1LQQXbIjtbC2Pfsdq7ASEzAryvbWlLazjVtEUHBlwD8tkaqhOlrDzWP6eBtThhowVQtGICpqTepKSHRJSHckgVIrIEnHnWGi/OoFy3pRraJ0LXwjirFLwT23fkm1noo+EyJuUiN18qvsdIYf19gyIE1E2ojUEbUGFSFmFnXpjqRomyZiy4gtdXnmprh5xE9T5qrA7LhlPS+/AqxqHU20mGvRfWP9c+b7KQNVkn/RtCCCeos0AVMHpI2YssXOayRERFMUpdV0vlZHXJmycxWFVpFWcYuAm6fkKrcMO3evVg3u9SXL3tIBBBUO/ZDydoP5OZgqYGd1enEyx0gPdQZZlOAs1E0CVWRgTKKp8MSOQzQdZUmrgCG65YRBlyNimsjkOXhtbUi9bHh/+4oI/wcn9rzNEHop7QAAAABJRU5ErkJggg==\" y=\"-111.782953\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_23\"/>\r\n   <g id=\"matplotlib.axis_24\"/>\r\n   <g id=\"patch_58\">\r\n    <path d=\"M 80.226013 149.782953 \r\nL 80.226013 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_59\">\r\n    <path d=\"M 117.715668 149.782953 \r\nL 117.715668 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_60\">\r\n    <path d=\"M 80.226013 149.782953 \r\nL 117.715668 149.782953 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_61\">\r\n    <path d=\"M 80.226013 112.293297 \r\nL 117.715668 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_12\">\r\n    <!-- Angry -->\r\n    <g transform=\"translate(81.237091 106.293297)scale(0.12 -0.12)\">\r\n     <defs>\r\n      <path d=\"M 2188 4044 \r\nL 1331 1722 \r\nL 3047 1722 \r\nL 2188 4044 \r\nz\r\nM 1831 4666 \r\nL 2547 4666 \r\nL 4325 0 \r\nL 3669 0 \r\nL 3244 1197 \r\nL 1141 1197 \r\nL 716 0 \r\nL 50 0 \r\nL 1831 4666 \r\nz\r\n\" id=\"DejaVuSans-41\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 3513 2113 \r\nL 3513 0 \r\nL 2938 0 \r\nL 2938 2094 \r\nQ 2938 2591 2744 2837 \r\nQ 2550 3084 2163 3084 \r\nQ 1697 3084 1428 2787 \r\nQ 1159 2491 1159 1978 \r\nL 1159 0 \r\nL 581 0 \r\nL 581 3500 \r\nL 1159 3500 \r\nL 1159 2956 \r\nQ 1366 3272 1645 3428 \r\nQ 1925 3584 2291 3584 \r\nQ 2894 3584 3203 3211 \r\nQ 3513 2838 3513 2113 \r\nz\r\n\" id=\"DejaVuSans-6e\" transform=\"scale(0.015625)\"/>\r\n     </defs>\r\n     <use xlink:href=\"#DejaVuSans-41\"/>\r\n     <use x=\"68.408203\" xlink:href=\"#DejaVuSans-6e\"/>\r\n     <use x=\"131.787109\" xlink:href=\"#DejaVuSans-67\"/>\r\n     <use x=\"195.263672\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"236.376953\" xlink:href=\"#DejaVuSans-79\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_13\">\r\n   <g id=\"patch_62\">\r\n    <path d=\"M 149.494978 149.782953 \r\nL 186.984634 149.782953 \r\nL 186.984634 112.293297 \r\nL 149.494978 112.293297 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pb073ac5100)\">\r\n    <image height=\"38\" id=\"imageebf7a251df\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.494978\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAN9UlEQVR4nEWYSaxl11WGv7Wb093+vvfq1XtV5apyVYVEtmMbSyGxEFEQRCEChBBDxIgZA8Yg5kxhxIwJTHGQUFBGCSiJTUhIo4gYl3G5Glfz6rW3Pc3uGJyKOZN7Blf37r3X2v///Uu++tpfpTDKQcBXhvx4i7gApxdQN8S6IYWAvnOTky/tsXpJaG50iI4AvHRwxoP7e9gTQ3ksACQBN4TirTPe2H+MIlEHC8CD1YzjH+/z8j8tkbsPkaJAhhWpzJGzBWlYkQYFRmJEdR7xEYkJcYFkFCrLCBcLRCvUoGTzmTndWGj3AqbwALy8f8Ldh/vs/MCQbRISIqZOZCtHvZdxnM94ONhyUC1Z+xwjgaHteDpIqMUW2ZlBiCRr4OkxSQnkGQAmGQUixNKiGk/KDH6YIcMcs92SNls43Ge7q6n3EmnoGY+2bOqc++9eY/ceVMcBXwqSQGLCLFrGT5ck2eXezmXUnUSuPV0y5MYzur4AraFuIQRYrUidQ6qSWGWo8zUKEZISkvRlwEfMsiHmmnjzELW7w+bWlG4idLsBZSJ1m5G/N+LqdzryVWR9RbPd02z2Nb5StLsl0jmm733C7X/s+PgnVzhvSgrtMBI4GC8JswpEwFq4chnJLFIUuFFGnA4w/WkZ9NYTC4O0AdU67HlDfTigqh3bXY0vARuJXuHvjrAJTl/NWX4mcHj7iD+8+lMmesut7Dl/ff/rfPBsj9t/47FHS4YPKyZvNSy6koHpSEk4fW3Apf95gJQlHJ2AzUhVQfZ8Q8o1Bh+JWiFGEUpDVjtwHukcZltQXx3RjYVuklBFQARiltgeQBhEko08frTD3539BruzFTvllhujUz4/e8y3/vJzbO9fIlaOsim5NTll6QrWLmPxlZpL/5yRRgMQIUxKVOshJCQkTBjnAKjOEwtNUgoxmpRbzKJl/coINwS/56jKDqUS67lG2UCWe0TAmMDheElpHGdNxRvTNQBfOHjIYregi4azuiImQZHIdKCqWrpXrpF/8IQ0G6NXDSiFLNbEnTFGr1uSVaAU+YMzktGkKkctNrjDGd1I6KaJYtwyrhoq6ygzx2Jd4p0hOkXTaO4eDfseVYm7gyW7+Yab1QlNtCx9QaEdI9tQagdA4w3PvjjjpZ/WUNeQ5+A9WIs6WWDCMCdqhQb87ggJEWkDNC3tLMMNhTDyDKxnmHVMsppVmyOS0PcLxp+ABNhchZ0vHOGC5sPTPZqppVQdO3bDWnKUJLQkctOiJFF7y/NLEZlNwQdSVcDpOfHSDJTCqNaTrCLkmphpdO2xJ0vSaEA3UrhRQg0cufVYFeiiISWh22ZIlbj4NQeSmEy3vL7zhMP8gkfNjAfrOWduQK48z5sRpXaMTAOAlcDhQHH/ypz6zh7FvVOk7aAsSUoRSotRtSOUFkmQH61JRoEPUKm+jJPEYNgyytsXaqKYl1vOs4o4T6SgEJ24Nr3glcFjNJGVLbi2+xFNtDysZwAc5AtmdkMbLU5plCRu7J5xsX+N8n1HalrYnZKM6oWaENFNr/y0HRINyXvCpCRmQho5lCSsCmQqAJDZltuXj/nfZ3vEi4xUBlpvuFfvkSvPhStZ+YL9bMlnB0dMzJZCHFoiq1DSJAPArNjybFdIRYYAYViQtNDsFRhxHuk8SWsocsR5mE9QjSdqEBMZFi1D25KpQBf73c7zLfPJhuPagEr4pFCSaKNBSyJTnkq3zPWGka7JJFCIo1Itx36Mi4Z5tqWd0v+nEqR2hGlBtnSYOCwgghCIw4ykC5ISzKqFF2bw4gOfFIXufXLrLVYHdOlJUci150p+zol70U+6Yc+sGKkGK56Iwoonk4CVwC+fbhohJfz+FNUFzKolKYVJWoMGCQG17vCzEr3uSFZjV4nUap6djTlZDhiULXuDDZfKFZnuf1ypSEIxtC1WAiPd0ESLSxqAi1ABUCj36WI08dP3NPCkPENvOuRsAUDcmWIkBJLVEAW/05+W2ra94wP21JDODN1BS4yCVondYsPItAgwKDtWmwIjkZgU25gRkiIifNLNAXBJM9QNc73Biv90USEJ6EQqLFJ3kFkQQY5OMep8jT+YoWqH+ITECDEinUN3kF0I+VmiWRTUlwPH64zXd59wvTylDpbv/+wzyMCjJNEkwzZkDHXL3Gz48eol2tBv8Fp1zsJXVKpjpHvZ6KKB+ILhXuCO+IAMK1TablFbBz6gGod9dNJ/scqpnjsmHwXyReLN3/0FZqOY/9ByszzhR+fXefcnv4I91ySv2M3XFOLJXzT9+9sD3j/bZ+1znmwm/PzikPdObvKgmdMkg0uaOlik1khISEpgNOn8ApoWJVnWi5sIarHt+choiJH8tGF0b834ozXf/8VtVCdky8T3Tm/xsw+vwciRDJjCU6mOgNBGwy/Wh3z74zv85sFdfn73GstvHDC0LffuX+I79+7wrJ0QEdYuxywVscogpV4/93agLFBpNABrkPWWNCiI+3OS1ogLqNrR7pa0uyW3/yFw8G7HxR3Fw2/dwFR9r8i1LbcuH2NV6MUzaUrt+NUrn/DOh6+THRmWtxKnzYDbN48YfG/IN/77DRa+5LwpyZaCuICstqQyI8wGpDLHyGrT42yMiI/4SYG5qJGmI5U50SrOPmvYXFeg4NLN54zylgfP55jMc2VnwfXhGSEplER27ZpHzYw7w+f80F8n2wjKCw9+dsjhdyPxBpDgWTPmYlMyfJJQJwsQIWndtxWgUozQtJBnxML0NGs1OA8+EK0QcpjdOOftNz9gsSl5+O5V1N0BInBlsGBsGqwENAmXNOddxbsnL/Nnr/8bn/v6XdydmiTw6Pcj8csX3Ln6nPOmYnteUj33+MM5aIVebFCrDd3eAJP253B0hqRE0gpJ0O1U5I1Dmpb83DF4qoj/ssO95ZypgnYCF19s+PL1j9nN1gx1+6loKhID0/Gjj67zt/d+m7/49W/ypwffZRkLfrC6RakdT5sJ731yA7U0KOcwJytoWtJ4CFqhuoB87dqfJ7TqscMHSH3aCdMhKFDbDj+tCKXh9JWcxSue1z73kFfHT3BJc5AtPtWlSrUUytFEyw+WL/P9b7+KXQmHv/WIr+zdpVCOe/Ue3/zJ5zFDh7lbceOdM9RiA20HVUmsClJhMBj9/zfCGmS1BWsI4wx7vGF7cwoJjt+wtK9tubF3zo3BKVYFZnqDkvhCzRNWAopIoRxfmnzEpd9Z8c77b3D0r9f4+4MrqE6IWUL2Ovwyo9gCSkHbkYYVaI1arAnFFJMuFhATMqigyCHGnvldJFYZEsFsPNFaUhQGtuu9MmTk4lmnglx67WqSJaDQRDLx3Cqe88ev/Cf/deUlfv7hVUISdg8WbFvL1inGHwfwkeQ9aE3KDckOERcw5DmEQBqUSPvCz7zHLBrcrER8xI0Mdg3N2rLucp7UE2ZZTaU7rAQK5fqm9wOsBHLl0KRPT/Ot6UNefrMX7vvrHT6oL2FPLMMHa6RpYWdGe3WCvWjQ5xu6KzMMO9O+fK0j1TUyHvUh1wfMskH5DGkDMz2gnWsWBwWV7djJN4SkyF94X0wKK4GhbtAkAJpkaKPhwlfUwRKSoCTinSa/6K1INjXJOfTuEAmJ9qU5odAYPy2RcYE5WvS91nakvTkoCIMcXTuk85RPtwwej1jfyjmzFdOsptQ9/MUoWAm4pDlxI7TE3siTcNSOub+e03iDVZE2aHyrmT9OxNz0l63so5tsGtQg67FLtZ5Q2l6zlmt0lsGDx8jlPbRSfXlfpPXqeWT5uOTYK7SKPFzNKK3jzviYTHnqYNn4vHeBYPBJ8WQ94cnRFJP1cuKWGcMPLabpK4LWpCIjFAaoICXMusMkrXoodA41nZB8QA0qUuoHLNI6UpGRtKI8ajn8bsbTtwuerC1kEV0E7h/tMB1vuTY+56wZUBiHixoXNOebEmUjbpWhKo9eaUIJxamHlEjjAbHICJUBLag2gBJMzA2q9cTLO/2U5+MnJCDsjnq/dL4nypNVn87XI662A5q5ppka6n1IJnE6yTkxU9TAkZKQFf1Fcq0hLTLsUmG2/Shq/HHEbB1+XPRiGhPZeYsfWvSiBucxuvG4WQkCeuPAGIgJ/dFTiAHmU9S2IQ4LZLUhWU1+UmPWhtEDcCPLds/QjTQxh6gNKIAe2bWFbNXPzIZPeovLLwJJBOUjKEGtGmKVYdaOZDVpkPegmC0U3eEEfbaGyYhUZj1J3n+M1C1p1E9m4v4ctW76hT+rSeMBqstxg4qQK/JlQndg1wHlE+1E4yqF3UayZUC5hG48vurhMSnpkbp1uMMxeuuxpw2r1y5hsAZ3aYjeOuKk6oNJjEjnkcm4j3QXK6QsSLlF6ra/vUb3cHmxYRgjg0cKXoyz9KbFz0qylVCceexFAxFSriEmTB1QPpJ0Dwzu8gTV9QNEd3nCo6+BCZMSc9EgdYe0HX5/SrQWCRFlFPJwCaJ6k23bXudChMkQ2dSQZ+izdQ8AMfUNnVlU7dEiiI99FCz6U0IJqusV348L7LIjKSGUGnvqePB7E/7k7X9HtfN+2vPL8ulVAymhaodabpHppA8JSpCqJI2HiFZ9FgRwvsfh0wvSYtnjEiAJzKLFnm5IRhEzQzQKte6QzuOnOXbZgY99bNt4nr+9w/yLz3izeoB5/GXD1W8PqD48IQ4rJEZipkm6wHa+7zWlSEYTR0U/OGbYlzPP4HzZe22V4W/sIyGBj+jTFXS9BsbdCSlTqDa8KCfY8wZpHWFS0uwVPPyDyB+9+R+8NbiPFc//AT4MZCjtvhy0AAAAAElFTkSuQmCC\" y=\"-111.782953\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_25\"/>\r\n   <g id=\"matplotlib.axis_26\"/>\r\n   <g id=\"patch_63\">\r\n    <path d=\"M 149.494978 149.782953 \r\nL 149.494978 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_64\">\r\n    <path d=\"M 186.984634 149.782953 \r\nL 186.984634 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_65\">\r\n    <path d=\"M 149.494978 149.782953 \r\nL 186.984634 149.782953 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_66\">\r\n    <path d=\"M 149.494978 112.293297 \r\nL 186.984634 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_13\">\r\n    <!-- Surprise -->\r\n    <g transform=\"translate(143.401681 106.293297)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-53\"/>\r\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"126.855469\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"167.96875\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"231.445312\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"272.558594\" xlink:href=\"#DejaVuSans-69\"/>\r\n     <use x=\"300.341797\" xlink:href=\"#DejaVuSans-73\"/>\r\n     <use x=\"352.441406\" xlink:href=\"#DejaVuSans-65\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_14\">\r\n   <g id=\"patch_67\">\r\n    <path d=\"M 218.763944 149.782953 \r\nL 256.253599 149.782953 \r\nL 256.253599 112.293297 \r\nL 218.763944 112.293297 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p9938081fc7)\">\r\n    <image height=\"38\" id=\"image98ee8d755f\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.763944\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAM7ElEQVR4nE2YWY9kWXWFv32GO8WQkVmZVVnVXXRDMzRGBmEk8CBsy5bFP/AP8H/xr/GDkR8s+cnCMgYh5AeEGxpjuqtryqwcIjKme+OeYfvhZBeEFAqF4sa5+66z9trrLPmbv/xH9ddbuF4hdQXWoN6BMbBcw9kxaVoTpxWpMagVqlVgf17hdxm3TwBI0vKZFbMPmBdvADj88ReornfEeUNqLPXVntx6JCnLD6csPt5ilzu0rti/P6e92HM4bXESMzKMUHlw9v4mGRVBph25cqi3pNqAlhu79UDjDSZlUm0hK34fMPuAHEZksyMPAzqO+OUAIkhWsjeEkxZzSMTOc/KLFeZmjbY12jgQkJCQmHEAqEJdoZ8XFiISIlp5UucZFx5J99epYN4sad4sSe+ckrzBRMVdrdHVuiA+BggBDRF3tSKfzDB9hOOKw8JjoqO+HZGQChi+lGHGjAwBkxSXWodXRa0BIM9b7M0GdZY8bxkXFePU0twE7CGXa+7W6DhiraVZVXC3Je92aEqYuubzlxgh3y4xzqLeIalDLYyNAa1wl3eQyo7pvMHtE+m447DwuDC31HVFnjXIIZEri57Nsas9MkZSYzBJyVVBpnq5Ig0H0Ey6uETcPejpvujDARFBtXBOxxHdbJG2xR4SYWKo14n+gWOaFXKGnAlTD0aIE4ffRMxhbokPpsRZjbYeiZnDaUOeNKRZQ/JCtoJkMGOC2xVoKUKzoimXojSjKUFKaIyQ0ttrCBFUkayMU0PoDKGD9GAGKZFO56gzkBWVgrbz+0x/3hTixYxf9rjOAzCcVsRGsEFxfQQFnEOsLUh5j5nPyMdzJGfSvMGsB3hzQ95sISXECFgLOSMhIxnUCIdjoT9vmV54UuNQAwJgoD/zOLfLqBOGhaURQb3FDpHhvCM2hlSDSUBS1Ar66AQ76Vh+95zlVw1hpqSjCFHwJwPx6pjm8pTJK2X22Ujz898i8ymMoSAuEBvBBNifWrqTGVh5KzvDqWU4MbjduaO7TnRXEcmKitA/Kgiqgf5MsC/AxExqHS9+cML800RzHTjJ/h56ixsy2bW4IaNGkfsH2f7119g+tjz+l2egSnaweywMD/Nb+bB9JNcWuwu4wSFZcKmBMDFUm0SYOprdSHaCGhhOCiImKrHzpNqw/WJk955w9KsaOxSC2xFEDX77e7G1Q2ZcOF7+LfgVaNeQphWxFfqnkfn5hnUzhZ+AimB3gVw77KBMLjJOrRBrMKEsnFqPGzKbdx2Hk7edT/ZCroXpp47DiTLOwXSC3yp2hFgLUHQw1oKoEmth8kyYPs/Eh3OSN8QJnLyz4nvnn/FRd07szsgLx+S3a6gsfj1igsOtP8i0l4awtUxfgolKqg2pFlQgHiViYxGF0BrqW8XtBASqO6VeJ/w24W8H7PUdGCEfz+jfmbA/dbRvlPoukasyzmIDXz++4evdaz5annNYWLIV6kUDIpiQsEPC6XHgECpMEFIlmJgJnZAqCF/rMQrZW1JVik2NYIJiAtSbhBTlwBwCOIuuN5gx0AJhMic2QmwNdsjkyiAZjqs9T/ySz149oPnAMHlROOnu9qi3kBSjCnGeUAuhE0wfiY0Qvrvhrz74XybTgTAXhmOLZEh12VbXK9VdJDvhcOyIi5bbP30MD47REJBDwIRC9uyF2FnGqcH1cDVM+cBfoYNl/LAn1WD7gOwHZDdg7raYZjoibSxiaEC95XAsfP+93/EPD/+DLyxWxBb25/fKpxDbcu145Lj5hmV/ZkitQy1c//lD0pffIU8bsgO1IBmGE8s4K2v84vm7/Lj/MmZvqJsRtfL7MRYTOo447yND31KtConX7zfECZxVG77iez5bLYidkmqQLNihFHb5F5m//7Of8cPffJP9xxPGoxpJsP1q4Op7DQ//yxYLFOBwJIzzcvPsIN9U/NOL7+C3Qr+rWVzd8yEUgKRrcbtNQ3e2Y39+RL2Cw0LIXlnFjl+HCZuLGU4LQsMDpV4KZoT2teOHv/kmziX27wZGl7EXNc0LT3UHiJJqIbbCeFT+X/wamFF4fnlMHQTdO5rrgOyG4jRSmZ0uR0NTBfZAc5vJzhBV+M+XX2Th9iCKei0LCwwG3F5we9CPpuyfjhAMGkvB9RKmrxLJC4cjw3Cm5ArMWNAyEUwU4l1VxDmD2xd+4R1IQda4OrG8mdFdKu11YvY8kb2yuZjx0foxEgzZK7nNqFVyo8Rp2Vq1imkSEgW7sZggSIRqnUi1MJxCrgpSn/NSouDXglsbqg34tS3uV6S4Zu/IswkuHooour6402qdMMGCyzyod9RX5ffUKqlW1BX0cl1uloMBW8ZPdkpqhe0T/5ZTEsH2gt+D7RVQwqxMFhSaN4L0AbwrRtVZcAbHaKDK+F3G9on9eXnE6tLzo/YreKBagbkWclX4Ejsl+/IweudRq0gqzaEW+lMhe7AD2FHuPxWJECfydoxlB82tIsPhbVG59eTGY6o3Dll7XJ9x6wE3KNUKupdC/cuW8ThjEkVUD+C2UK0EtxPMKLitILFMCUng9oXgkkEUsi+SYQ/gDgoZ5p8mbC/ECTTLXM4YXU3uKuKsJjUWN3sGqw+LR9LK4beRVDtSC90rpdoYsoOjTyJ+HVl9pSF2QnObCa2QK9g9EcJJxkTo3mTcPuP6xP6Rpz81nPx6pLrpGR52VOtM93zD9bcWmCjUywCqRT9PW1It+G3CNcuMX1vsGMmVpT/1jMfK+GSkvql59NM1l9+dv1VvyVCvMt1FIMwth7mlXklxoArt1Uh1uYUQcbsp2U5ItSE3HlHo/m8JMdG9lqL4+1DOF94ynFj8PuN2AZe9MH2uDCeO2gjbJ5ZUKQTztqMe/veWcVGDCLPnI/52KCccJtx90bF7mqluDSZBf1bhNhWmF+zNlgd3PRiDOoPdjRATeTFh9jISOoNag04aUuc4HAmpsnTPEi55obtOXHzPMvvUYUfFHiBFobkpbWyXe9rbHbLZoX0PzsHZCWFuSVXhVphnmmvDYSaYpxNcn2lebZBPX6ExIpMJMpuUTh0j5qBM7kZsH0CEVBt2T6C5ESQlXHsdybWQv9SznDZMPzFUK5h+ZmlvY2nl1Rq9W6OAtC35vXO2708ZFuatomcP4xFUG6F/YMjesHt0zEntMZ+8QjcbdLNB2hZzGOliJhy3yG4gnB+hRqhXQnuVkZBw1d3I3QcdIkpuE6k1+C2MC2G8s7jTDjOrSe1TxiPHsDCMcyHdC2aYKblStM707yp6YZF036XHcDieUf/RV5lcRvwm4F/coLs9aXYKVpCYSLUhtoIk8L1CVhwKfp958uCOVzLHbzzVRqnWpc2vvt2gUhQ8VZAaRU0R2lyXcVWkXdA6Mc4N6oqumSikBsa5sH/skeSpb1vqdaa9Cri7A3nW0j/0oLy1UqhiMMUghmx472xJrooYuj6z+J87qlUR01Tfq3+npC6Tz0bcWY+ZBvAZnEIWECXPImmeiF0mNRCnSpiUMbZ7V9g/tLi7A/Z2XcR8nbFB8TvF9sVhmOwNNiivLxd8c/GS7dNcpr1CmtY8/PeXPP5pT3eh2EEwB0GbjKvLAjkYCKYU5hTbCwSD2VkkC+QyqLMvI2jyUnn0s83bNCget9Q3B/wmUa8ydh/KiESKqrP2fGvyGf988m1Sa2kvR8aFR80D7D7y8CdLVt9YEDqhf+QZ547UKkbBbQR7cKiD9lJpbhzVurhXPp8IfTkfTH51RX72EtqG9fe/hBqoVpFxbmmvArLtS6KkUjx8c+n40epDfBu4/VrN4x8fyslbFXuxBCMc/dpi9gfiyYTxuEKtYA8Ze0i4ZY8kRXY9xFTstTHFMaRE3mzRw4EUY4ml5mfYQ6ZaBbI3VOtEdbVDYgLVEkOpKSfjn1885e++9DH/9smfMDyqmf7qtsRR2x08WGBv16SXr7GvWrqmuSf9vS0fRzQl1FrEWjRG8r0jBdCUSrTgK0zbgDWYQ2bzXoMaWHy8Q27vikZ+vpWSFb+Bza7BmUSulVQZ4ukU99Ez8naHbeoSP6UEfV9yibougd8fhCmmqUvIYi2SM3kMiBFM5cGY+8zDkV5d0saESeesv1CXXVEtbygH3lwJGMjXNf/6m2/A2YHN0xZoOPrYINa8LUqqqqQy9wWKZhAD3hdbbC2669EYEOcxlUemE7CWvLpD2gaZTrCzKXneUb3ZcfrL56jmUrSWaeOgkFMFuleGcd+hk8xwqlRrQeazMkacg6Ym3yxL/jWOhT/OQYyICDKfIlWFef9duF6SNxs0leiUsxPsH+ZmlSecdFSv1+gwIJVHVZGcwTmcJMUeMmp/30HVyjD7BMJMWH3nEZMXR/cnCfDGkK9uyvfP46jZlN2HD6lWI+53r6HyyGKOgRJ9Hkbk6haFgm5WZLOjfhbJry/vYyotdMgKMfH/W3hC8DTvMsQAAAAASUVORK5CYII=\" y=\"-111.782953\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_27\"/>\r\n   <g id=\"matplotlib.axis_28\"/>\r\n   <g id=\"patch_68\">\r\n    <path d=\"M 218.763944 149.782953 \r\nL 218.763944 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_69\">\r\n    <path d=\"M 256.253599 149.782953 \r\nL 256.253599 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_70\">\r\n    <path d=\"M 218.763944 149.782953 \r\nL 256.253599 149.782953 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_71\">\r\n    <path d=\"M 218.763944 112.293297 \r\nL 256.253599 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_14\">\r\n    <!-- Surprise -->\r\n    <g transform=\"translate(212.670647 106.293297)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-53\"/>\r\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"126.855469\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"167.96875\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"231.445312\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"272.558594\" xlink:href=\"#DejaVuSans-69\"/>\r\n     <use x=\"300.341797\" xlink:href=\"#DejaVuSans-73\"/>\r\n     <use x=\"352.441406\" xlink:href=\"#DejaVuSans-65\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_15\">\r\n   <g id=\"patch_72\">\r\n    <path d=\"M 288.032909 149.782953 \r\nL 325.522565 149.782953 \r\nL 325.522565 112.293297 \r\nL 288.032909 112.293297 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p8c07e0b45a)\">\r\n    <image height=\"38\" id=\"image7c90c982ec\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"288.032909\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANW0lEQVR4nEWYSa8k2VmGnzPEHJl551u3Jne37bbbbcvYyMY0LLDYWYBYgWQESCD+AxsWSCzhf7BBSCwQEsIykpHVliVjuwfT1UPVre5bdeccYzgji5NVTimkjMw4J95ver/3O+Lb3//HKF3ETCSbEwEC+vuOP/vOj/nu5D2e2n3+/kd/BFaye2+BC5JXdm9xQVJrQ6kcAHNTcbFpcV5y2GzYLze8f3XM/GKC6CVRR8pzTdARX0WEE+QLwb3/3qCWI0//YI/Xv/eIPz76GY006KtvCNzMs3NnwYN2zWG15qRc8NXqU+6oNX/zP3+JXGr2v3SNFJFX2hukiNQ60ChDoRw+CgCsV1ysW276GhMUO3XP5OHIoi/ZdAXGSMpzSb4Q2GkCeP5bDdmqZvOa5Z2zEy66CfMf3kGHuwNNbRAivtzQRckYNO8Pdyk+LHFf7lAycNIsOSzXhCjJpKdRI4V09D5DiUilLMf1kkpZAHaynloaLs2Es35KuCd557MTxNMKIkQF0sLqtYBqHFVpufrJMa/81wq994MSX5RIBzHAxsGHObxfCzb3IyqL7O+smeYj+0XHVA8A1MowUz2FtIwhY+VLupAztxW9z6iUZaIGJBEtPVd9y7PrGeG6QBSRkAfkIDFTiFkkRnBv7/Lav10TH3+KLucBnwuEjygTER4QECUUc8XV748c1Bv2ig1T3VMrgyRykK0ohaWUlkFkZMKjfGDjCnqgVSM+Sm5dSYiCz8+uGJzm+rykvJC4VmCngVhE8mtFvFHU55Fn391Hb/bQ0kZEiBB5CUqaAIAeJTs7G6xXtNrw4lOr8SWoieyZyJ4uFBTSsvIlp90uS1PxlekzWj0yhIxXymu+OTnlP9s3eO+nrzD5RNIh8a/2+L4kW0u6YxABCAKdQKVqlDYQlUDE9H31UPLqbEGpLDYoKgmSSCkcmXAoAqWw5MJTCksmPGOecVM23JqKk3zBoV4C8CC75qnd543pc949OoGPKsyeZ7ft6R56wqMWvREID74EqYYAArK1w1cS3XmCEthWs3noyaWjVBYpAh5JJjy1HNlRHYd6iRIBjyAXnkw4JqrnjeYZb06f8czMeGr38EjmocZExcYViPMCswPtnTWHzYZpM+Dz5K1sE1O0XKXQncdVinzh8IVEjQmE3DNc9S11ZnjQ3JIJTyYdpbQ0ckQR8QhWoWLua0zUNHLkOFuwp9fc1beU0nJmdxlCThcK3j7/HNIIuoeOr+3dcFItEGKPyz2LW+YIJ7At6HxuQAikCwgbMFPN7Zc0wz4oNVIoR5uNKBEppKOW5iUogCFmXLuWU7PPwlVkwnOSL/hSeUYjR1ahYk+tCUjmouZm3qAANTVc9/U2GhGhA65JaSUC6JArpPHI3uPanLM/Nfz5mz9i6Up+ePYFlAyUypJvQU1kTylSaIeQ8dzu8KnZ49q0/N/yiOtNzbQceeuw5fcm7yMJKBHI8axCSQyCbC3o5jln/R5Xbcu0GShqy1jl6LVA96Dz6w4ANyl4/FeBv/vmv6fKq0aqB5ZnwwwbJa0amemORhoy4bBRvazSgMBGifWK9abk9mzG2c2U3a9u+Hp5ymd2lyO94umwB/OMbA3CC2IEe1Wx+KjB1xGyiNkJuEagQ6EZjiqe/onjb3/zPwDIhGfuG25swxg002yglKnqlAj4KLEoLt2UczvjtN8DoFCOsjLYQWM3OT9fPkARuZ9fswkFc1uT3yqkicTGI3QgSvBWoDfbNrXjiKVHh0pz+oeRv/j624wh4zO3y0ebQyplyaRHioAWHklEETBRYWLNE3PAJ/0hj5aHnK9avnXnKZ9c7pH/rEXvR3wZeLzcwwTFq82UTHie9VPsNFC+B3KhefDmc04/OIYIahC4WqAbS1449OXXK/76t3/AJ90Bz+WUVo387s4jFr7mX05/g4N6w3GxopSJUEOUXLopn/SHXAwtnc0Yx4wf/OIN2kcZxz8dWN0vWH1O8dlkl/mswuxr6i1B67sd89db2iew+cUJX/7JDYs3d5HOc/NlxXgkESKiv/H9XzKEjMuxJZeO3zl8xEfjMe+v7nD56Q71q5YQBZnwbEJBF3JClNwvbnmz+Qy7p+juFvxqc8zN6w3vfuUu+hxCESgag/eSq77h4cQwzQcOZmsW3/Csn0yYPpLMv7aLHgKulIgAflTkU4f+5uSU03GP3mUYobBRs3AVPzt9QH6lWd3N6UPOwlcciKS9bFSMUfNxvw258LTa8MHtEThJfNhzsrekyiwn9YJWG2xQrFzBJB/JlWf5Bcv6bsl8XjB9L6O8iZTXka5TOK/QhbTMdM9bBx/z9vUr/PPZt3h8vk/2fo3qYbFs6A8z5Ja3XgCTRMaQVMSlmZBLx7ePnrB/7z0Cgpnq6ULOypf0PkPKyG2o2Cl6lqZkI3OaaqQsLEvd4D/IyReR+lNFt1egL+wUHyVvlGe8ce+Mf3j3e+Tv1JRXSWmYxyUfHRwAIDnkYXVDF3Iy4XmtuqRVA6+Xz8iFx0TFjW/5+eoBC1Nyp1rRqJGVK7kdawav8VEyOo3zksFkOCcTudYgrSBfRDarDD2EjIfFNU/MATYqhk8m7JxH9JAu9SvJhTvh6b19RK+IeUBNLMd7S75z+Jh7xZxSGzahwCMBGL3mvJtw3k2SgNSWxViy7EqcVSgd0NrjnMT2GWKZYaeB6kKiBph8kKGXrqTLcmxUPOn3Ka4k0keiFPgClInMPoJ+mRM0VBeS7k7GVVPxrw92+Pz9S946+JhdvSETnj215ovtBYPXbGzBxbrl0rSYQRNGBUbigmCcWFQWECoiYioW16QCKK8j+pe3d7kxDR/OD1j++Ij2bPtgBiCQcdvtt11f2Uhxm9wesoIP3THzvuLeZMHD5oYvVhfMVE+uPOddTjfkmEWB3CikSJpPDQLrc9zUIrNAyAPCSswkonqBHgKafzri0dFd6gtHPIpECUEmCeJz8IVA2nQfMoGZgHTp0p0grDSLuqLQDikCN6bhpFww0SOLrsIsCrIbjTQgjSBkaS/dg80UwQuQELNAyFKbkzais4WhzEQC4CJBpwddRWLkMQ0NIqR7227FXAEhj0QdqSrDtBi4GRpWyvOsmzLLe4rMsnEC1QvyOUgPQW/XasiWCjsFJFB5WCdgIRNo4bf9KhfYWuDzpGajAuHAFxFEAoVMs4AvYdwNxH2D1BGtPFoGXJA8u52itedG1yzmNcJKdAd62EajFgxHAdWJ5MVREvPtOwKICMOuQMvREbTANhJfJldvx0TyLmIbQdQJmC/Tf76IhCpQ1pa7uwu0CFxsWtZDgR00/rKm23Ho62ybAmm9tOBKUPc79P+2RA3SgFcRXVrcRONKhWsFGh8JmcBVaYOgfx06n2+BqmRJ0DDuB2IRyHcH7uwsmWQjN0PN7arGXlRkc4nuBCM65VK3HYYnKQVcG5lUI9a2hG0xSCtQKmJLT8gUZhbQkF7oKrHNmzQpqQF8BVFDUODLSCggVh7dWorCkm/VR4gCc1tSnSvyBfTHEd8E2EiIqXh8AbaNuANLN+RkIhmvhhQRZxWMklBAmDl0zBRBC3yZPGZmgaiguJXYSSQqCDoSqkgsPKry7O+s0TJgguLidp/FbYPsJLpPKeDqiGwtrMt0X21/nwSy2jCuC/Q2X5UBqxIVyUFiZgGZebSbFbiKpLeBUAUoPUOhkIMklAFRO2azjqYwGK+oMkuMgs+udrCLAr1U5POk1e1kO1mPCiUiUQlcE4kywsyiVMTJSHfPo3pJthIQBH6Zo43AHVpwEm12NGYq8HkkFAERBHSa7KDHe8mkHgGYVQNH9YrT5W4C1GeoG019LUFAvgTbpCTPlhKTp7HQzMK2miNCRoZ1jlCR6t6a4ckEXyavydutVN8WnhY+JbYawDcR8gAq4p2iaQZCFOTacblqeHqxm9aeF1RzCTG1D1eLVMkC8kXa3c4kwglCE8gWErMfiEbBIIkCOisRKq0RPhkkQlK2MY9ovUmspzuBryQ+i5TtyKQeGK1m/bxFBEFUkfK5JsrUNqTd0oAANaQ2psYtEQuBXkuihPJc8WJuESuNGhN/Ra3weVIwckzc6cvt2YkRaGkDIUscozuBbwVKBboxZ3NTIRpH/riguE0+Fk7gq+TlfLHtDoaXBzHjjsDVMRGo3RLmLCCMIJ8n9aAH6E4i5aVMp0xbeopKJFYgprOLF9a7CoQRdOsCISPV4xwimJ1IcbMd3wOEPL1U+rQ2dYNktZ1se+GQaMbVkWwl0/MG8lUi7XwuUhpUAmUivhCIrYOIAqlvO7JNZDwIhDzCjiUaiXhW4prI5DSmE8A2tSg9RPLFNgQ2ecpX4iUlQAIaBVswKXS6g2wdkSZ5OFslQ7MuGZetUjpIsz3gIUbqy4C0AlSkmQwcniyIWQLkc6ifR5RJXhUxgQl5IuUXievLLS8N27DIbV75pCTUkOgoqhfiICI9VNchSSGTFIsvI2bfI2OmyFYeAjC1rG9repOx94Wbl16QDvJFal0+FwTNSzZH/PqExueQbVKuipDUhPQJRNal7y9yEWDYEQSVNF5U2+5w4KgOOv4fgW1EKLs8YzYAAAAASUVORK5CYII=\" y=\"-111.782953\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_29\"/>\r\n   <g id=\"matplotlib.axis_30\"/>\r\n   <g id=\"patch_73\">\r\n    <path d=\"M 288.032909 149.782953 \r\nL 288.032909 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_74\">\r\n    <path d=\"M 325.522565 149.782953 \r\nL 325.522565 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_75\">\r\n    <path d=\"M 288.032909 149.782953 \r\nL 325.522565 149.782953 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_76\">\r\n    <path d=\"M 288.032909 112.293297 \r\nL 325.522565 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_15\">\r\n    <!-- Neutral -->\r\n    <g transform=\"translate(284.632112 106.293297)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-4e\"/>\r\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_16\">\r\n   <g id=\"patch_77\">\r\n    <path d=\"M 10.957047 194.770539 \r\nL 48.446703 194.770539 \r\nL 48.446703 157.280884 \r\nL 10.957047 157.280884 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p7864ebd23e)\">\r\n    <image height=\"38\" id=\"imagecbc7cecde9\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.957047\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANQUlEQVR4nE2YWYtk2XWFv32GO8WcY3V2VXd1S1Y3GizJyFgGY4QNxi8G/yn/HoPRgxHYLzbGxkhqDW5VVdNSdg2ZWTnGeKcz+eFmZSsgIAgi7lln7b3WXufI3/zkn9L5j0ua7zZU445R3jPKer45veJv558zVS03Ycyv6yfc9iOsChxmG2a6wUpASWSiGgDmumaua0bS45Lmv5tv8JvNY54vj7hejwBwnWH6PyXzL3oQoZtp7C4yenGDdD2ECFph7NWOfFmw21k6G5iWLdfbER9Pbrj1Y66Y8qZbcN2NMSrwYXHDTNdMdMtENWiJuGRYhoqIoo45t2nMOhS86RbcdCNy41lManIdAPjq+4ZsZck3gWgBgTir0OcthADeY1JmsNuEdAqtE+umoKlzmmC59hPqkHHezQDYtzsOzGZgRXVM1MDabRhTqY6QFOtUcOWHzdz2I/bzHdOsYdlXHBcb5rYmJuHqo/c4+iVMvurQdY+4QCoyJCaIERMzTb6OSFJk1rNZlSAAsPIlAIpErj2V7rHiASjEMRJHmwwBYaQ6CnFMVMu+3qKJjHUHwLPdMY23fGt0wbeLN5y3M14fHrE71rRzTXltqE6XoDXE4flGXER8IgkoSaROI3lg7Yqhb2xDrj1GAooEQEAoxDFTjqUvCUmhJdImiwuGl26fz+sTXqyPeLOa0feGbxxd80l+zlNzx3G+Ru13hLyiuAuYJiBNB0oNpQwRAxBzAZMwOkIc6Nq5jLHp7tEHrAS0RACmqqVSDisDyCs/5TaM+Ko54OfXj7k4XyBbTfFWk99B7hIvfqLJngTapJmallHVEW1FddZi367AedKoBKMRHzAoSEpIOiEyMPLuVWqHUQEfNQ4ISRFRFOLQ9+zN7xX5rxff4fdfHjP9neX4KhIywXQR0yYkJG42ljdugRXPRLfMyparGSSjSNaQJiXS9PfMCSZmBrsNqNbgg0KKQTkuaJQkYhJcUuQSscpjJdAnTUDQwEQ5flC85OlHV/zz7Ef8bPYJ27OKpBOpCqitRrxi/t4dq1BxE8YEhNI4/CjR7VncZEFx2SC7SJpUSNNhdN3jJxbVCttdQVb1BK/RKpKroRFjUgBYGUBnEhiJp1KaOgQKCRTi+OvZM374/a/YfG/oT03idb/gs9vHiCRyNTDdRUsXDH4c8KVifNkgrR+aHyBGlNo0KBexG8HYwNODW4wN5HoApSThkyImhUsalzTrWHATcwBmSnjjp9yEMcswYhMLCnE8sbccmjVNsKy6gverFZ/mZ4zubSUmAQWuFLqDnFRapHdDKWPCEIeG7heRg6rlcjvGO01Iii4alESMRErdPzDWJksdc1zqKUTj0Dzv3qMOOS+bPZQkjvM1t27E75bHrOuC+XHNE7PmWX9IHTP6MLATcvCFkLRAStD1JB9QAN3CUny84Tt7FyyqoZnfKdAnTal7DuyWiWpRDN8vY8XboAgkJqrlopvxul1w3kx5tZtzWu8zMS1/tveKvXHNq2aBS4pXbp83zZymtwBIhOq8Q9/VQxmNIbXtYBe3n2rmVcNVNwYgJXmgOyShVIHZ/Rx8Z7CbWPLKz4ElAEfZhj/s9jlfTykyxzxvmOgWpwZmVl3J/7Yf8ov1h1y3I8rMsSk9ITdISJASqSrABxQzTFhMqD/u+fH8kohw01SEXrHtM1ZZQWV6rESsBCaqoVCOjMBIdbhkOPULXDK8Z+/4y73IdTPmaj3GqkjrLTufcbkcczjf8u93n3LbjRjboc8uBWIGMdeI8+CGTae+R/lZTjbpeVze8enogt4b6DTruqD2GX00lLqnUA4tkZEMvXaodxTiuPJTTvsDbsOYJ/aWvzr6knHZsestPikaZ3F1xtVyzO9XB4xtR+0zNl0OUQgZhFyRigx6R6obCAFz890Crdf82/knPBqt6bzGLDVNUVBPMvbymrHuHkoIsEsZOkUKcTy115xywIvmEef9nC4ajscbGm8ptKPzE2SnoRR+dPgSgLf1hF2XYUtHMjkxU7ijMcZq1N2WVGQY+bsbPhhv2fQ5b7YzNldj8k7wTuGiYmQ6ZqZ+GNIALmkK5TjRHcca5uoVr/s9XuyO2LqcTHmiHkZb01uSTXzz0RULU/PF7ohVU9A2GUpHJIDuIkRABJQgmx3m0/1LznYzzl7tY24M4xsZMlIQQlTYe3VaAnuqxaHYxZw2WTax4Pc+8KvmY55tH+GTog0WoyJGRZQkQlBI5YlJ+Nn5p1xczVDnBX4aUGNHuQGz86jaIU1PyjPILOblZsFBuePsynD4WUL3gd2Rpj1QNL1lFzK6OEi7kIhLijO34D+Xf8JVM6bxljeXc1ISvvvhGZXpyVTAqICWYf6KSrx4fYx6m5OvBVPDzipSyMg2iZgpxKnBx0RIZYZ5c7ZHd2SYv4Dp50tSrpEwojk0bI8KNi7n2o15rk7QEglJUamO2ltOr/ewNpDWGfZW8Xo+488fvWSsOx7lK1a+wprHpFxQKlLPNd4bmvcD1eGO9tUE3SWiFtI4Q7UO6e7z2OOfaprFPgefrVCbHWxAHVa8CxptsDQh47TdZxMKJrolV46/P/w//vHol6zCiF+cfMDOZ3xrfMlEtyiJHJrhXLA3qrnajKnynuwo8ORbSzLleb2Z07dT8pXH1PfCUmrosZAw08/eMm1akg8k75GqJL9uyFaW2im2fc6ZmnJSrrlxI+58xXvZihN7x4m946k55ZP8jJ8uf8CzzTEfVrcs7ODidcw4LLdcLKfcPN/H1MJvH4/44OSGEBWmHkAkJZhlO3hZjEhww6xMPoDrSSFC3aCv1+w9y4lZzutsAYdQaM/75ZLnm2P+Y/cNPp7dMLEtK1dyutrj7ZsF1V7N9755xp2rqFSPksjI9LTLgr3nwuhtIP3ccPvRCe1hothBzBT62iH9oHjpHXQ9Jm13Q9wQhRQZkmcggl22zL/Q9LOS18DVZkR7aIZUADy/PaRuc4JXPNpb8w8//Iz38yULs+Oqf8K/nP0pf3F4yl1XkV0amgMh5Ia9zzvsThEKIeRg6oC+XJEmFUkp5L5yRuygOPIMtB4cWIbF7dYz/VKztAX1geELdUjbZGgT+PajCz44ueOinXKUb3ha3LAJBZ/XJ/zX+VPubsYclFt+9eUTJjfC7klEBUU/N+xOBCQxOYXs7Q5ihBCRlOCeOYMxD+EMawb2lDyAK289/Zmlfy8xLVu6ztDdlDzXRw95rQkZb90UHxW/uTtheTtGdOLzt48o/5Bhd4nFb4ViGVAhoRxkK2Hxux3qZggBUrcDjhAQa+/z2D0I0v2UtwbpPdmVw6wMuinwVc5Zd4BZaYxAU+Vcj8ecjFds/HAOLbXjYjVB2YhSkfZiRGZg8spjd57mIKMfKaankcmrDvv6ZlgvREQpyCwoIbUdJnmPiJBSQmJERMBoYpWRQiLlmvztlumpIWSG+ZeRu08UYWu5uJtgdeC43HCQb4eOsJ4YFe0mB5Xw44juIuauQU8tyidGf1ijNg1xMYYI6m7NOxx4T6obDN6DtYhSpBiRrkeUQjJDshrxEVJi+sUG044xdaCdZ4Rc4aSgmxu2Pme9KYhJWK0rsi9KTJnwRw59M+SxWGWQoLjsIEKYj5GUkBBAqa9BpYQYg+EdW8YgWpOcGy43fAF68BkYjlm6i6g+Mj4P9HODJM2mzVnWJVYHVq9mZLeKbA1mJ+xKQ34n6MYPOb4JKBeI44xQGMymQxxf93RKQ0mrEiN5PjhuSuCHByTvkbYDXRBGGXFegIDqI9EqTBPRDfQzqOscv7Xk55bRFnwJ62879FpTXCqmLwNm1ZJEyPpAsgODuvXDuu96XOthfYaUoR7UmNLAXHafxUNEeo9qPJIGd5aUSEZISshXCdUL8bJA1ZrFs4hpwM0imEj24ZZ+MSSTWFrQAj4iLqDXLfquRlyAmB7A/LEIDVqTjEaChraFLBvoBKRzKOeREAijHOUjqgtEoyjuBFcZQOFHEUlQXkXqR4J6m9GuLYe/FkYvd0jvSVqTSo1et8iuAZFhBPXuIVVgzMNnE+cTUmFQO4X0jtT3yB/9QGKCpkff70pSQvuI3jnyZcZNKmj3FO0iMXkd2P+tIgkkDZNXLXrXD5F5XEJMyHpHahqkqoZLOu8HQFqBUvckRQxaiPlgsgrg4poUB+t4Z77SeKRuSdMRschQ2xZdt+iV4qCf4UeGbmFQLjH+qiEWGl9qQq6xvUN8AKPQmxa8R6YT4rQa7iqsId2DIgSk7cEajNo0iI/EzDxk+tS2kNnhmkypB4ql7Qfwzb1LFzn2/A4L5OMKd1gNscUPCjTLbph9RYaqe6RzpMmIVOWIC4P676vAfVJOuUV2DYaUkG2NTEbDH42BrgPs16MqhGGWwnCEhyGRrDegNGKGt9kMG1DrZkgJYVCc1O3D3SpFNmyybsGHe0UONz7k2cN1lImzEepug9o1AwjviW2HzvNh8TgoRwCsHXoi3Xtb7xDxpGjAB7Tzw0L3x3zR6msr0Gp4Tt0OZr7dDYnmPs2I8+ADqcxxRxP+H9ayXzEa5TvfAAAAAElFTkSuQmCC\" y=\"-156.770539\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_31\"/>\r\n   <g id=\"matplotlib.axis_32\"/>\r\n   <g id=\"patch_78\">\r\n    <path d=\"M 10.957047 194.770539 \r\nL 10.957047 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_79\">\r\n    <path d=\"M 48.446703 194.770539 \r\nL 48.446703 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_80\">\r\n    <path d=\"M 10.957047 194.770539 \r\nL 48.446703 194.770539 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_81\">\r\n    <path d=\"M 10.957047 157.280884 \r\nL 48.446703 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_16\">\r\n    <!-- Neutral -->\r\n    <g transform=\"translate(7.55625 151.280884)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-4e\"/>\r\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_17\">\r\n   <g id=\"patch_82\">\r\n    <path d=\"M 80.226013 194.770539 \r\nL 117.715668 194.770539 \r\nL 117.715668 157.280884 \r\nL 80.226013 157.280884 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pbe320588e7)\">\r\n    <image height=\"38\" id=\"image4b207e1802\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"80.226013\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALfUlEQVR4nJWYy6ttV1bGf2M+1mO/zrk3t67m3iTGqiSlRVGlUkShoAQFsVEgiGDDjg1tKmJDbPkHCAUFNsSuCoWCoohSYM+S8o1IDIFoEpOb5D7Pveex99przTXnGDbm9pwbYlWR1dm7sdac3xyP7/vGlHL3JeM7PFsdefUff4XwDxvyAuaVUXrFegVnUASZHGHrCIOAgXnQaMxrg2DYIuOComOALIQLTzwXwgDbFwt/9NXf58ud+9je4TuBArjQjL22IfeQFxUUgOwdLgkuC34QpFx942aQIrhZ0GDkFNFlAQG8UVpDVvWdeO749vAyX+7e+mTAZsCPMK8N84DUBaWAmwU/CRaMeWNoZ5g3JDncDH4viApuAvMOawzEsKgUdcgKwlZ4c/f9cP0TAvvm7hVKBxpqenAVrRTBBMzVlOnxTLtMmAlaHFqE+bzBXzhcBlWBwuXhLBgaBIC7+83/u/d3Bfa1P/85tDe0MSzU01IcSo1YOtZDaB3TWYckh6S6oVMoa8VGwbxhYuANtAI0b2grBNFPBuxR2WG+loYYaDA4tIlLQnMmNO96Nncy21uBs5cgXghlYfhBWN0xzAu754Tpml6CwlHBBSitMZbAoImFaz6y/8fb4fD8+ntfRXJdBOMSFP7wM4GfjLRylEbw09UBwgh+tsMhwGUg1C4FkFyjagJvvv4c/5o+Cuq7Ruyf3nmRJgvqn2ITV+uqLJSLl4x45vGjQzI0Z3IA69AA5y868sLIm4I1CipIW7CppkFyXbJ96Plwvgbdk+8N7K+HDh61yFzfsAA0ijSKdIZZ7bi8zGTA9qFGQWuatbcKxhsuFpw3MMH0EHijdmwBUUjmv3fEiim/9ve/xM1/gfNPgx2ihEBoMiFo7TKoAMWwLhNjIfrCmCJ59jivmArOH7hPoBTBVGB2FaFWYF4+zvEfqzEvjmaRKM2BEv6Pv7zhvdG3ib6d6duZtp0vv1t1E8ErIRTEKTEWmjbTNpm+nemamRAUcVapw9WaBPjG3VeZrXwEx0eAzVb4uxF+6gf/iyefr7xloaYldDPeK06gjRnnlFIcaR/JyTOkSMqe4BRVx37X4JyyaBPrbjoAq2m1XtFWMalp/fB8wy++9bO8kQbeSAPv5S3ytFb+xt0v8bd/9ipurh9M1418pLCeCU2m72bamPFOOd0u4LU1YU+VrJURdnJZ1H6C3QuFmy+dEJyS1TGkyLhvKMWh20g49cQLYfWBMT4jjM8Y/QNBf/L0oxH7q299iXlj5B60oRJro7igeG94V+vFieGcIocauf2tkev/Wf+v3zNufXtEI/jxavmiDi+GD4oPBYJi0bBQv9u+oMzPZHa3ja9/4U+uiv8vdqvqDlzlnbyotCCx1k3XzOynhr5NODFKcZS1kY7g4Y90TNeMeaNoFHa3OqYbigZofME7xYAmgIixnxpyMMqq4CZhuCm42Sg9aKfcmZ+5AvZb//bzuLkWPNSI4UC84pyhJrWwxZiLY9lPnIUl2hnnrxjdjT3PLEbOtj27IUJy+PVMMaE9RHo/R/qmNoyqkEqDtobGw6ZWyfd3//gXcJPNvJ+3NE3BBFZ3KrjSWuUub4gYbcws20T0indGLp6yVPxFbX3nlBePHuO9wuSRybFYTKgJ+zmSiidlT1FX69TXbGhjaKy4Fv8Ta9YChHdz4g8efYXoC/ZYMAflQJC+LTin5OzZp0hwSjHBi7EfI9IV8lFddJoir929xbit8mJt7U4nxn4O9DHTxkxRh6nDeyXEwtx6Su9oTqsT6R450pHhbnnPZxf3OL/oEYO4s0Maq3/S4smzJ2dPMSFnj5qACS4qbj1DW8lUVXBBoS3QVCIe50AulU7MhGkO7MaGlEJdh8qVq/eN9onhx5rSsHIdX2jvoKNHfRXdyi9C2UVk8OCMsQ2MUelWiSmFA+i6cOxn+j5dbpRy7cacHXsqPcxjwGYH+WCNHLC+Imj14BPkZXXBAeAnuqpV7Rm4YogdvPwgLO4KzbkxHdV3xpsN85HCKteNxFBvNKHQhszDtKqSA9DD/klPezeweSgg4FJ1H9vbwr7Vw5xggCDFiFuhyfKUVs6O1YdVFqQIYRD6e8Lxf89oFOJOEIX21LG75fHJU1rYf59SHPRx5no38Oh8idt59Him++cVsYWjt5X+YeLs0w3dE2Vxb0K0Jx0HtKvOo3+s+EkPqX0KmKjgJyVuM5I7/Cj4ZLSPp8rkFxNycgohcP3Z65y9vGT3rKO/5xg6oQ2ZRUhoccQLgfOWMBjrO8rmzXNkN3LjyQKXMrKf8M91xK0jq8NP0D2cCKcjflyyvd1cATt+/hRsgyQlDDU6aSPcf3VF/1BZv+fgqCOvIiefa4gXhkuHQ42eR9slwxwpxeFLHc/mtZCOPWIbmtMF7cOB8x865uJ5T+mqJ3Op2vT4eIAHJ7RzxsLxFbDf+/w3+J3pV/H7mbCvA0hewnjD2P4AnHyxp9wesTPP5k3IC0EMSlOpIWVPsbYWfW/EC2FeAwIffgVsJcR7x1gAk9p9fhT8KMQdyDBiRbEP79M9enwF7ItNQqNDUiYMhhjMGyjrAr56LvGG7B2lrWOdehg/pbjVjHOGQOWmtTLvPS6BVqz4LmMvZsrssNEDgfa0Hqw5M5gStt9DjFiaK7BiytdOfoywz5BmulPj/AVHfx8kB0pnQCBeCOs7VQP3N4Xd84VwY6TvU9VDExZd4uLYk1JL+9ixfN+IF55h6snrKt6YELdCGKocdaeK5QLOYeOENJFQTHl9Tvzhaz/OZ2ZF5oxPdZzZ3TYW9+TSBpmDJ58V0u2ZdjWxjIUuZoIvRKeoCcUEt1HycmR3syNtOhZ34dobEEZHbj1pI+QFDM9CPIf2dMaGASsFd3wEORO+uV/wM70R3+4Ijx7AlHDJkMOodfa5XCelVuk2E13MfKqbLj1WGzLrOKEIDmOXG2JXmNWTlwPchNNXek6eLHEnETdRI2cQzx1hD839LZoq2dpuVyP2cjwhypLcgzWxXjFM1WthQFDCIhObTH8Q8VUz0fhCVsciJBYhkTTgMK61Q5Uu9WRzPJkWxFBYHQ/My0DJDhsi7jyAQXNuyPmOpx+bM+GVuARg+b7gdnvoWtxUrmZJlTr6HwYQNWEqgeCUzs+Eg6VZ+sodToyztMCJcZE6Tvc9alCKq3ZcpI5yBeJWWN5P2DwjMWBzBu+RRX/lYPMSLAbsYoufCi5XZ4kKmuUgwJGiwlw829Qy5IasVy7VSfVt15p99f4IwRfMrqYqTC6nEJ+geTJBzqAKTqBU9XFQh5BbP30HXXZI0yAp46d6wyOzYNlRsq9iXDypeETsEogXI7iCkwpm0sCYI1kdRSu7mwl59pTs6r1aFsLOcEOCUpC+R7wHEfTkMa6YcqYjv/3i3zA+u6ihTJnmwi4dJclRxrqoPFULFZi7qik9WCNzJPXMxWMmhAOVlOzQMSCTwyfoHysyjFU9NiskVFqVtiV4caxdw4X2B30RrI3EnRIvKodJEawIpTj2Y7y8xijquNFvSRrAZfQAaMgNUwlkdeRDlFUFHQPuwhMGYf0OrN7ZQpqR1QqKIosepoQOQyXYgOcvT36U7sEeWy+QlOke7FncXyHqmK7VKyMFZAmlFCYC0Rd2c0u2zEj1x/scyebYpYYhReY5MM+ectYgyRF2wuZtuPHvZ/DWHTg63I+Vgo0jiMPfeGoYeX93jEQPiwbJikuF4zf3iPZIEUonjN4owTNJpIRapCkH+jgTfaGoY5gjuTjGFElTpCQHoyeeeeKZsLxrXP+Pc+SDh8hmDd6hD0/AV78nXbXmAeq1wNc/86f88g//Jst7GVHo3z3Fi7B4EBENzAuQ4pluCOUINDryHJhiZh/ioQqMlEJtlCEgydUrz8Nd7dHbytHrp8gH95FFjw17bJqwOdd7uBAQ76Bt+F/zeqFUb3mG0wAAAABJRU5ErkJggg==\" y=\"-156.770539\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_33\"/>\r\n   <g id=\"matplotlib.axis_34\"/>\r\n   <g id=\"patch_83\">\r\n    <path d=\"M 80.226013 194.770539 \r\nL 80.226013 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_84\">\r\n    <path d=\"M 117.715668 194.770539 \r\nL 117.715668 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_85\">\r\n    <path d=\"M 80.226013 194.770539 \r\nL 117.715668 194.770539 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_86\">\r\n    <path d=\"M 80.226013 157.280884 \r\nL 117.715668 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_17\">\r\n    <!-- Angry -->\r\n    <g transform=\"translate(81.237091 151.280884)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-41\"/>\r\n     <use x=\"68.408203\" xlink:href=\"#DejaVuSans-6e\"/>\r\n     <use x=\"131.787109\" xlink:href=\"#DejaVuSans-67\"/>\r\n     <use x=\"195.263672\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"236.376953\" xlink:href=\"#DejaVuSans-79\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_18\">\r\n   <g id=\"patch_87\">\r\n    <path d=\"M 149.494978 194.770539 \r\nL 186.984634 194.770539 \r\nL 186.984634 157.280884 \r\nL 149.494978 157.280884 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pbdb62b832c)\">\r\n    <image height=\"38\" id=\"image30416f504b\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.494978\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANU0lEQVR4nD2YWZMl11WFv32mzLx5p7pd1V3dpZbUErKMsJHDYAQOHnjigVf+jf8Of8HAiyMIIMDYAWEIE5IdagkN3a1SzffeyvFMPORV51OeiBz22XvttdbZ8uO//1l+NN+TstAFy11bsf1izekv4ehX35BLx/WfHtM+FkgQS0CABCqAZNA9mDYjEZIFidCfCO1ZRG1GrAtUxUjlPN1ouW8LfOsov3Cc/mqkPG/IViMhMW4qEDBaJUJS+KTpg6HpHBKBDORM+/aafiPTWkHWkGye1r2g4hRsfwx+kUlFAgHxQnYJAGMiAD5qchYA6nVH8yb4jzXlOQBkq1ExMS4sRiRz11e0owUg9BYdBHcf8Gcb9k8NYXbIEoeAAUlTUJIglJAMqEFIs4wUCXPk0TqjVGJeDtOrWRDJpKTIOVKte3ZvLlk8F7JRZDVVRXLG7NoSPxrCYDBFIPcaNUzl2L9VMq6EWEI2mSxgWsE0QnmTWX4ZcDc9sbZEp/BzzfYdS3QwHFv8IlBvOgZvWFU9Y9SMoQAgRkXhArv3Pd0nNe5uJDlNLBTJCqa9qJEoIOAHhd5ryishVIp+owgzSC6TXJ6eyzB/kdn85hY5v4T1Er/cMC419cue8nr6uAoZ3Uf2by349i8y+c0tPmrGUVMUnsIGtMqUm57LHy04+xdPMkJyiugUxt5pskwZkWQwjeB2mXGhGBeQdT6A/TvwZ7oTYffBmtlRhZ8b7s8Mw5EQXcW4mEp8/N/36FfXbF5ZyI/5Vq0wm56yGilMxJlAOuCtfebZfV1S3kaSEaIFozwoLyQLahRMB9pnhrUiG6YsMXWcAKmA5mmiPYPiuqK6yBTbxOwyEyrF/DwSrbB7pya9X9M9UPTHmWwiZTViVEKrRMqClowxEVUFbt83bD7W2C4hSTASBN1PwSkPbpfJSvD1oQNNJmlQccJ9rNOURZNoN5n2mYIoSBWolz3NvkSbxMPNjiezPSvX00XLF9sNu7ZkTAZT9wyjRauE1RHjIuMTz/jCYlsobwJGjxMfMYIeM7bJjHMhuYkWkoVs89TmGbJLqDKAQOo1BAGTWaw6jI68/+wrfrL+kiPT4LPmyi+4HBecmyU3QRG9JlZCTIp+sJSFx9pInnlC5TBNRPcRoztQHiRlTAfKTyWJLhMdpCpNHWkFs1fgBZlBioK6N+hWUAH6b9dkA7/7nuXd+RXPigtqNVCrAS2JL9wG3ziKxUDtPD5qYrT4oNE64YqAr8F0EVLG6CGj/MRNps9kLYdOPFCEymATzBIBi9lpgs5IGXG3Ct2DvZ8gMK6Eu5OKqydzLoslz8MMnzWvhhWfvDhFdGZWjq/pgiwMncWVgZQEyoy+nzhPqQDagxkyZkj4Sgj1RA+pSEgW8Io3T2+YPb4nbKYy5iQMDyLJTpvQPmOajLSaf/7sPa78gm2suPY1n9yeAvDe0295e31DZTxvrLcs5h2uDBgTOVndT3I2BqQdMGRQIaP8ROl+LiSXyXZaf4epmR1xpqCbBVJrULeW7DJ+memeBrqHBt0LajPiPqn4Oz7ibz/4DZ9sT7nczXn68JajssWpwMx4rIo03qFUoukKluuel+vIxV8eU10lTKgF22b0mCcOKSbuymWELKgyTLtSiTdWW/rR0o2aNEvILFC90XEybzj6oOXl/Ypnyxv+tz7FAp/dH/PiZk1VjHxwdI6RiJLM1TAnZmFTtexUyb4pSVkwy5Hrn2rcS4cZ1uB2QrHLBzmAWCVs7QmjxpWBzaJhaXsq7Rk3mm1dcnG1pKg83z++4LTccep2/PXxxzw0O/5sfcy/377LZ7cPeLBo+OjkC94ur/nWLwEoqsDLbj3d64AxiSEaqtlAKhXqqMWkIuNrIV8L5EwqQGaRqhrZHLc4FXlQNtRmQEvmbLZliIYcFUpljouGH9Qv+aPiBWs1sFGRE73jP+7e4Wy5429OfssTe4vPhkf2Dk3mlT8iZSFkxRg1j1Z7Oj+ZiPa+QK4cxi8T8VrjZwrtJ6EWnXAmUujA2WyLUZGQNAHo4vQB7SJ9b7no52yrioUaOdGJfYJ9qvjD+TnPigtOzZbvroV49qmaMqUCCzPQB4uSTDM6urYg3xvMIBj1YCC+mjGshOpmoo7kNd1oaa3jZbsCYOl6Su0pdKDQAW0iwRu+2h1xWu7pa00hmfMsjFnz4ewrrAT6bPHZ4LNmT0WTCmZq4LG7Q0tCSWLrK4ZouKFGsmB3gilLTygh1ILvFKYFtTW0piAEhR8NqTOgMrYeeXZyQ2EC1kZi0LSD485XpKzYp8hlXNEefg6gJdEmTZ8tYzY4CZTiqRlY65a57nnePuRuqDAmMoZJ2E3XOHQxdWSYTRa5vFCMY0HKBQrQCcI84X3Jp8ND6mVP5SZWVpI5Lu7Z6B6foUkFViK1Gnjpj/jF7Qe8bNYs7MCb9Q3vVJdoMk/dNTOZgh9Ky/VQMytHYjdHRTC2CDAczOD95N+rq0x5A7EQhqOJ2bnS3L8dUYtM1014QDJHy5az4paNgpsk+Gzos+Uf7j7k589/gL+skFFIdeTzRxvuHlV8tPo/AJxEFqpjpTtmZmRejDQeVp9H1Dsn10iefFaoBEmgB6iuE8lMJnH5ZeTJv+5ZfqqJe0u6KYidJl+UhKjY6AYrirvk+H3/mH+8/iE/f/4DwqiR1UhaB/TCE6Piq/2GK7+YZAnBSaRQnrXt0CrhdkL9osM8rW95Xr4FmUkj9yABqsuR7kHJ+Of3vHpqUUbzB6dfsn3+hPnnhu6hwrQCz+DE7CjF8PFwxq9v3yZkhdaJsSkpLjSbjzOhtFz+1HIJfFKfkhAe2h1r3aJJzPVAHwzldUZCwoSkCVXGtEKYZ8Zu8mfD2nL0+4FQLRg+HHj37IrtUDJ/biluM24P7SOwJuIkchkH/m37Hv/z+RtIYyguNfIg4ucHCoqvWYP//OX3+LX9Ht//46/48dHXLHRPoQL9aKm3CfERcz3U5CJBq0kaxiWoGfTHBndnKG4zj35h2aU3QGBmMrGA6IRYZZRkXvojxqz57fVjZp8WFLcZPWT8QnjrR6+o/2TkUbnn0+0Jl//0hEefJV791eRi7/yMUnmGZLhvSo624ZCxrJAyAnrCWpVJB2+fPmhpoyJeFVTnGrcF3WckAMV0uE1Z+Kx/yDd6zeX1glmArCc7fvJfcP3VG5zX8GUH81eJB0Pg259oNk/vyFlQkohZMSRDuHPofiQbhSm1x5SeZC0qCGGRUL1g9sJYFZAF2yjUOJlJFPQbYXiQiY8GShP4Zlix9wWpNROFjJkwE/pjmRrIwujg/E0o32r46MnXpKy4GWZ00XGZFRfDnPLCIHkkVRZjVMK5SDNP6CtNlkxcJFKhwGZsNRJrRfdWpo2CNmnyUYBWGa0S10PNEAyz45YmzJGoqS4ySQvtacKctfzwySt+vPqalWm5jyW/a04n3U2ab7olF82c8hLUEFDNgBmjxplAW0ay1ohXMPPgEkonTo72vLu6otKeJhSvhRfAHE47TsVJro4D6viK82cL9l1Bty/RLnK0aCl14NrXXPgFK9Pxw/lLvhlXfLp/iI+ay/MVj+4SxMkHmsYXiGS0i4RZRhJkySiTiZ3mZl+zcAOPZzuWtkcdZgS1GZipkTY5QlJEFCkLlfZ8uH7BmbvFSWChek7MjuWB5SNCnw2fjQ/5vDuhNJ4mOMy1xTURjCIczTA33WwCoU6EOqDuDCkJ1nmSV/T7gu285GG1Z2H6Q2t7rERmamRIFp+nDM51T60GFqrjgb5nrQZWKlKKoBGUCNsU+ToY2jSNCkJSnO8WuFtB+UwyilRoTIgKORw8vU2kMkMUnA24dWD3akEzONrgXp+cZ2pEk9AkCuUp8Kx1w6nZspQBK4mFisxE0CgimSYnfIL2sIlJZxN9tAy9xSUgMU2KQkYZPY2KnIlomyZOCwqtEsfzBhTc7you2gV3fvY6Oz5PHahJ1GpgqXqWMrBS/nWWErDPiZsE+6TYJstdKuizpVSeQoXJGVfj62CzVsRKT2MorUAk4QpPikJqLFpljCTMciTsHPu+YOtLTpymTQ4rkVJ5SvFoSZTi6bNhgScBY84koEmKm1QCYCXSZ0uTCtRBho6Le2bFyNZO/BeLw1DleNZwvl/gTKJ0nhA046DRKnFUthytGi4bi1IJpyJzPbBQ/WtrYyUcfhpQkmiyweaElvw6C7V4LuIcj0aTcRLRknlkt/isOSo7ruuMrxV+rvAzQZ3NJusbk8LqxKwcETfRwLFrOCo7dO1RAkvbH1xnZq1b7HemT0ZKCTgmWCQETcZndcBk4KG+Z6F61OGZtW7YmPtJjqIha2hOFc1jRXcimEIFRDJj0CzKgClGutISomJtWxauZznvpgaROJVQRuqDQy3Fo8lYSdQSsAIW0CIUOZIAn2GhPDYn9kzlLMXTJ8c2VJxvF9M0KYN46DcZMyRDZQM3gyMDczvSFA6RzEyNPCgarso5Q9R00VEoT61GFIml6lGS0GRqCRSHcagVwYpiJkIkk3JmnxORRHk4BwD02fJ1d0R3X1A2QhZonmbSk57/B+atWOCtVZo6AAAAAElFTkSuQmCC\" y=\"-156.770539\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_35\"/>\r\n   <g id=\"matplotlib.axis_36\"/>\r\n   <g id=\"patch_88\">\r\n    <path d=\"M 149.494978 194.770539 \r\nL 149.494978 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_89\">\r\n    <path d=\"M 186.984634 194.770539 \r\nL 186.984634 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_90\">\r\n    <path d=\"M 149.494978 194.770539 \r\nL 186.984634 194.770539 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_91\">\r\n    <path d=\"M 149.494978 157.280884 \r\nL 186.984634 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_18\">\r\n    <!-- Surprise -->\r\n    <g transform=\"translate(143.401681 151.280884)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-53\"/>\r\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"126.855469\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"167.96875\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"231.445312\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"272.558594\" xlink:href=\"#DejaVuSans-69\"/>\r\n     <use x=\"300.341797\" xlink:href=\"#DejaVuSans-73\"/>\r\n     <use x=\"352.441406\" xlink:href=\"#DejaVuSans-65\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_19\">\r\n   <g id=\"patch_92\">\r\n    <path d=\"M 218.763944 194.770539 \r\nL 256.253599 194.770539 \r\nL 256.253599 157.280884 \r\nL 218.763944 157.280884 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pb63a646845)\">\r\n    <image height=\"38\" id=\"imagee512825040\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.763944\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMjElEQVR4nGWYya9kyVXGfyci7piZb6r3uqu6ytV2t21st2kzGHaAzNALtniHhMQG8W8gsUbiL0BiwZYFEgsLscEIg7CNbCOw2y73VMOremO+zDvEdFhEvirb3E1e3byK+OI73/nOOVdOP7mnGUiqAPzt9a/yD3/xu7htpnuy4dHXD0DAvxbp7wwsWs9hO/LG4pp7zTWVSTQSyQhnYYnPjk2s8dkB8MOz17h6ukf7xNGfKv3zTH0dSY2hvvLYHzzCHB2AtZASuuwZHu7hLAIoCbAi/OnBf/HHf/Vd3vuPP+fNvxTCnqLLSLOaOViMVCazqGZqE0kY5ug4z0sufM86tMRs2KsnAGI2NFWEJjG9ARiHZIMJFjslRBVxDmIirxbEg5bx9YbHf6CUY+2upAVgUPizL36Tv/naH6JdoOoDfetZ1TOqgjOZrIar0HHpewCebffYzDU+OqzJ9E1htraJqgsEYD4WyBYTLItnClnh5IhwsmI+qgEQBXdlXwGrRMqNKgH45sVnWb87Y+tM23maKuJM5qAeqUwiquHGdwBczj2dC1Q2cTl0zMGxnWt8tHRVpGsDIhCMEmZhPDZYb4ldT3XQkJ2AgjpQA/2p4AL6Ul8ACfg4LfnR+QkArooA3OkG9qoSIoMS1PDh9RHnF0teO17z1v45R/XAD/I9Prnpyec15o6nOrzB2UTfKrSeq9ER9oRpMCx8egkKARUhWyE1/HworQhJlf8c3iIlQ9UFrM30dWBZzRhRNqFhkIrvvv8mB9+pWfRw+rZj81oDwPB0SffYMt5P8LRhWEwc9ePLPdaLjtgb/IHgRoNkMF5RC2oh1YLKzwBLO41l4NF4wjTUVE2kdolVM2NQrnzHT14cM21qSMJwT1EDNAk/O1I0VBeG9kxxW8vdf9/w8e8fIr8zAFCbRNMFpqoh7ClxLcRJqLKSbWFLDbhpB+yWKYD3wz7/9uxNrMuIgLMZK5kpOc6GBdNFi10FVkdb3BuZ+6trTtoNCzdjyaw/3/Ht0wfcXC0Y7i+or+DD/7nLg196zqzCovVMQKqV1AixFWwQ1BRQAHbcZeUtqFnhG+tf5vqmx9qMc4mUhY1vuPENIRkO761J2TD5irYOPNns8f7ZMdNHK3KXef3hBbVLtL1nPDak3qJN5mLbI6KoCiZArsDvgRsgRIObMqKCKJgI7hZUBv5x8w5//8N3qaqESHkuoozBkbNhs21ZLUdW7Yy2MwJcDR3D6YLVx4buTAjfOeHyKxmWAZKgi0i3monRIAKqBZQ2GXVCrgS/D81aia281KK71RfA3330VZomEqPF2owRpasiCiwrz8FOxPs7A/3eB/dpHrW4hXLzhcB07rj7rUT9r4azX2nQByPGZFIyGKP07cz1TV9Y2ZS4pXrnUkYIvWAiSAJ3qy8D9FXgZmwxJuNMpnKJZT3T2kjvPEaUypRjzMlxeLRh2wXePr7gfn/N+9cnPDV32X8f7nxPWb8VcS7RVpHDdmTtG6oqMXWJ5tSBFmuQDOORIewJ4+uKHQTnd6H867Pf4nLoyFmKmdpMbRPOZHrnOahHTuoblnbiLKz4cDjiZLHlqB/5tcOPud9cclRv+acvNFzc7dHR0QF77cyD1RUxG6IaYjcTV5Y5CfWFBSOQwSTwKwjHgfe+8n3Mrb7O/JKuDnjvyiLJUNlEbeJLU+2Npzeee/UVKzdzPiyI2XAeFiUjY0tWwVYZXKapIg9WV7zW3LBfTSwqz6L2dP0MbUYd7Go9fiXkSrF95KS+wWXgSezYxpqbqaGuIyKKjxZVIathSo6ghou44CIuyCqMqSIrbH3NTWg5iyse3RyzPl8gg0X2Aqt25nxacFxv6WygtYGtqcnZgCixz1TRkGthfE3xdxJHq4GM4Azw7enT+OTYa2cutx3eO6oqsfU1WYVlPXPpey59jxGlNpFNaOiqyBwdm9gwpJqbuYHZgAFbZToX2G9GrkJHVMMQa+boiNFANGi9K4UC7bng7yoXZyvCA4sLCkEtN6GhqwIv4hJrMwBTcKQsXA4dIkpKJZP6JtC4yBgcRmCOjiHXDL5CoqBtRkzm+WbJs5sVTRVJuViBj44YHERBUqmTEim/TUKDYch1sYugltP1iqNFKR3GaPGvoWEC4rou/QhAEsZlxNWRZT+TUXy2XPge70umkYUwVlzPDp0tMlqqtRCXSm4ytBkJUg7hQAP0zzPrwUGdsWRcQPhwPGaeKqbGkZLB2oyIYGwmvOiorwpTuYbUZXTrCLPlJhuaNjC5xCY0+KlCtJiobF3ZXECtYoJh+aGAGKZjJTVKbhUmwQ0lnO7akpaFWWdR3M6b1tuWHA1aCcO2IW8d/WPL4oly8WVQp6hVqDK2K9Vh2DTULrINDShUa8HvG7TJkKG+MtTXBjWweJoxUYmtJeyX/7XkAVefN9RXEL1hHbtiF8fVhpyFvvVoMKQk6HmDu3RYD25S3Ahv/Iuy/KlDRku6rgiXDZqEtPMonSzNpZSdjKK18uCfZ46/79k+TCw/HqlvEt1zZfVjS/vCIhnqa2U+Sux9mOlPd4wlhN9e/i/Tlyte+CXfOHsHVNC9QP2sYT5U3CB0z4Trz1jcAKsfW+ICYqek3tDf9VQmUe3PuK1j+YHF71uqLTQfPAMRlh/cZ3u/JdWCDVA/zVwtDJJK7eyfWJ5/NWNnZc4WY1Hu2w1/cvgt3l1+AqkgFqvkupSL4R74fTAB5oOih+654kYhHUbuLdZ8dnXGycGG+Ug4eBSp12A8fPT1B3z0R/exM/iVITuhuU5sHhgQsLOQakEi2DcGPvUbj3m9ucF5NVhRJrVcxgUohMlhqsz8mRn3pMZthf1HmeYqggipEYZjixqoek9WQ2c9tU1MJ5nx1HLwk4jxihsTsbMgEHpD6A1+ZUi7Q5sAGJiPlPfe/iELN9OagMsINZmKzBfbJ2AUgkGt4poIbwXGdUPqHKufVqWMWGG+A9PdxEE/U9vIVejL9HTsuf58Q3jiOPhJwEwJXTpiK6zftMxHiqjgNqWLsFORZG70ZbMZssUZClsAKzOCgHgDbQJRFp1H+hl9XZjfMSzbMsIdVIH9euJOU8rNnXpDZRLmgfJ4tc/13Zabz1SY2BP3EnYrZJfBKHZbwmhCYS2sIB1EfvZymVfN2bO4X3qjKiO5eFBWobaZvXZkUXmWbsaZxJ6b2XMjvfUALO2EQVkczryxuOaT/QOGexXDXDP5irmr0GSQ7W7EtgUUAnYEcZmsxecsuWQlQEVmYTwyWtQoYjPGKD68GqSySunJJNOYwCY1zNmRMFyGnsNqYEx1Aeg8c3QYk0vTWWXS6JBUpiC1kFpghPZSGeuEEX0JzmUtwLIIB3ZbysQik6MhRYPdnWTrS6tZm8gkBawRZbsDaySzSQ3b2LAOLXMs7+RsSMmQg0FC6b3UlUFSpTAWW16VvNtQmt2DoIagDrWK1Kl4mQqqoCrMwb1izCSmVAHw1vKMzgbm7LBkPt4eErJl40sIh6kmTA4NBpyWYj0b1ChmZ00m8P8uc3vjMSQEtzVlEaNlQL4dIHag5ugwouxVEyfthsZE3uk+4Uv9E+Zc8anFJXfaLVA+qkRvy3qhCB7zM+zkMinZoPzmw49+nrHbm1YSC/HEVX6F2uRSkF/lB42LtDawcJ6ohm1qOIt7u32E83nBEGusKM5kxIBUGYUCTimJleVlZo53DEZ24r/d21IEl1WoJPK1X//vVyh2L4oo1pQZ4FZblUmsXMnEIdc8ng9Yh/algBtX0t+6VJiSAoi8+4CyS4BqAzefS5zUm58D5oIa/C6irUQedhe4iwp9MIIoORkCUNlEyIZeMj45LnzPUT0UoWfH6bTCSSKqJakphT2Xse3llYup/sK56e5tML8o/rRzfoB9E/hi95j2c9dsrjpoymFzMvhdlr2IC2qXuLdYM6dd5qlwp9nyYlqynlum6JiDe5k8RXCFLclFYpILW7GHt4/PX4VQlEoSppJMbyJGlNPUcd9d8nsPfwRZSIN7OZHHWMDFZInJ8nxY8ejmDqfjivN5wdNhjzk5pugI0RKTIQRLjLZ8ZrqVxS6Udi7sDQ8SD/vLl6AsudTKoIZbnfUmYFE+3Z4hVUbOa0IW7CIipvT8qmWBlCtEHG0VGUKFAEmFEC1zKANH2oHSZMrs6AtjdhQkwfg6vP2lJzQ7v8gqtDbRG1862EktW62xmqkk8aXmMfv7A1cbB0bJSdBsMVaxDsZkUBWapixY2cy8qxAhlbFPs0GToN4ig8WOO8/yYD3EDvynJ949ePwq402kN55KEv8HfQHwbEvgkdUAAAAASUVORK5CYII=\" y=\"-156.770539\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_37\"/>\r\n   <g id=\"matplotlib.axis_38\"/>\r\n   <g id=\"patch_93\">\r\n    <path d=\"M 218.763944 194.770539 \r\nL 218.763944 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_94\">\r\n    <path d=\"M 256.253599 194.770539 \r\nL 256.253599 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_95\">\r\n    <path d=\"M 218.763944 194.770539 \r\nL 256.253599 194.770539 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_96\">\r\n    <path d=\"M 218.763944 157.280884 \r\nL 256.253599 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_19\">\r\n    <!-- Happy -->\r\n    <g transform=\"translate(218.150334 151.280884)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-48\"/>\r\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_20\">\r\n   <g id=\"patch_97\">\r\n    <path d=\"M 288.032909 194.770539 \r\nL 325.522565 194.770539 \r\nL 325.522565 157.280884 \r\nL 288.032909 157.280884 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pd7d91dc497)\">\r\n    <image height=\"38\" id=\"image83be68f79a\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"288.032909\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALvElEQVR4nFWYS49kSVKFPzN3v494ZWZV5kwXXVMNo6FZjAYJWKAWG/4lewR/AIYVC8Qa8dBAIzT0ADPd1VWVr8pHRNyHP4yF38zuSSmUdxHhcez4sWPHQu7fvrb/mAMzjmLKbI6v40t+v33PTibOXeRDbnAYl3nDX119wb++f03OiveZnJV5CpgJeXIAIEboI3EIuJuAOcAAgfXv3bPrJtZh5hAb3mw/svYzb48n7JqRVJRGM/4qJzoRxhIAuCsr1jrhKGSEx6J0kvly/oS/uf4j/u39pwyHhpIUJle/0EAnxc+CKZg3YlTcJlJajwVDB8VNwv7rHfttwjWZl6d7HmLHV3fnqBjFhMZlUnH4R/O0kgE4WMNj7vnd5oponq3OFISfP/4h/3D1OXdjzzg0lZRHj7UFt03INx0AYS/oDGkNOXpSKMg2IWKU4nGDQ6KwOhnYf9hwGXd0rxLDHBiOLflEWTczxQQfKDgxOonPbEXznLpHHMZfXP05//1wwZACtw8r8uhwHz3rd8p4rsilx00CAmEPkqB5gOGHQj549GzG+UxSgwdHc68cHjtWFweGQ8u3NycgRh4dN7dnXLeF9fkR30nhaI6MsNUBgFM98u/Ta/767Z8yxMCL/siQAiU7/E1g9VbQVEGUAKU1NAImrN4bUqC5g+kl+JBY9xMHaZl2GZ08/m3L+NoQNdJNR3OrvPgGTn81M594Ht6c4P/++Dkv3Z6tDlzlHZ1E/vLmz/inD2/wLtP5xO2w4n7oyAfP5loQq9flRqG5h+bBQCC3IBlcNNwIOgnOFYIrrLqZqWvJrdHeCf7bnrSC7W8KfirkINz9pGHeCij4f378DCfGT9dvieb4u/c/4939jm0/smlmUlGm5PFa0L3DH8CNhs4gK2E+NaZz8I+CHyFuhHBlNI+Gm4RSlGLCqons+0juPMUJaQViMJ4puatFmYfia1f7L29f8Xp7xz9On/Mvv36D85ndekTFUIxtM3F7WBGTo7lTutuCKTz+QBleZWyT0XtPuK8dmXsYzuv7/EEYjoHtamTTTMw7x9VDQ1oL/ZUAMF5A8YZmoTgDheLAX91vuHlcE3+9Jr9I7LZH5uTIRbjoD6gUptkzD4H1CLkVplOhBPB7xQZF41KtVOvILQwvFT9A+E3L4ypyvjqwbSeu+0xpHKa1kBKMEsBy1aZptUJN71Zsf77BjUJYzfRNJBdFxFApHFNDyYpeV5vIDeQOpIBGQSNIrtUDaIT21uhvCs294UYhzp7bYUXMjtAmzNdzfvuMWpRJ9UF/9qXQPhZyJwRnz6Aan0nmyKY0bWJKQvvRCAdj3gki0D3UTgwHw49GboTiYPs2Eu4mrv5kQ14Zee957FrO1gMhZOauYF5hqp3tSi0srQzzRmkN3zwsBwYoRThMlRknxpwdU/Ks2pnxRwP39Lz8BZz+KlM8vP9CcLOQPpnxXeR0O3Dz9hQkMP+sYbwwDCDXQgxQLdAUcmuEx4XpAmljlKa+EPD9VWS4CCCGiJGz0rczXkv9jAlT9LXST0c+nDuadwE3CuVkpmSh30wMlytuvl2xulb2P4LcLkIOBn0muEwxwUwQrbpyk5FbIW4rGHMgqVbg5xOPmw2dhTh5QptQARGjc4kclNv9ihQdlhRtMumzzDw55OiwtjA8tvVAheObhI6KRMGcUfpCs4psu+lZh4jV+RrrIwI6Ux9K1ZtPndA+ZPwhMB0CxRdyqZUVhKCZvp3JWcmqlMmBUl+7SGgypSj2YqbtInH2JA3I4LCmoJvIyWZg145M2WMmWKmTw031Gil1zprUhvAH8O1dBqnzLa0csQnMbUJkpJiwa0b8rvB1UWLIxOhIs6PMDsuK8xFHwQxO1lWHiVBbX6DrZ7bthIqxnxvmyUOsSUNzwY+CH4X+uqDRnkn1uVfCPuMGcCOUg2NeOcbkWYcZL4VdGHmxPvLx2KNaiKMHA3FGKcKqm3k8dHy4OsEmB0XQKJTTzLafOMbA5eOGefakySOjLrMVuptq2LkRcqhhAMADSDbcZLhZKEclHhsem4yKkYqya0bWYWZqPMc5ELpE3PcYmfh+xXC/Jl9kcEb3TQCB6QcZcZWBm7sNcd9AEnRSdKwuIAbNQ2Z84ZBsNRgYYIbXWIXo5io6KTVrDaGhFGHvW27DisZl+hBpfaLxmcsPPZjQ3ir+APknM/1q4lE26MHhDoq8yFzdbLH7Br9fLF3AgpEbcLMRHiIlyPLdtTsp4P0xk1ut3jHAvFus5RAYTZjEeDRBneF8ZtXNdE1EzyfCL1eMryMSCn0budgc2D/0NG8DxRnxpiPc1bNTb1hTGZQohH21BU3VlsxXv8NA1PDNzcDwO+vaEbkyl9cGatjosCJIEopBUbhzHbqOrLcj+/OW9VeBuDOOF8r/7lvkY4MbQBohfOOYXhhpWxtMj1X0fi/4Y9WVxExznypT32kfj9XhCdXg/FFIayE3gDPwhgWgCDIp/sGh145RO9gV5pOqzXDrKc7jjzWv+QNML40SjObWsf0f6D8WcgAx4+PnSn9T9a1TJq09mr/XlWnb1hEUjeJrS4QHxRyUbUJ8Rd2vJ0TgcNsjR0d36Wg/OtK6xhYK+Emeh3HcwYs/vuT9Ny/Y/cJz8be/rBL57BPu/2ALi2fVwZ8xF7BSQWNPXVkMNxv+CMdXhj8K3aVi1w2mVXuSO3ILK4HxojD+MNNdOvwR5hPIXR2+bhRKFHJjfPjqHNlFNHnKjz4hrwPHVy33P66FSzZMBMwQW0BR//u4DZivomvvCvNOmc4LGoXT/4LuLrP5zxtkmCgvd+x/vOXdmYLBdFYIeyH1RjlJkAVTB4U63Itgo+Pyi8ztT3dorDuChUJ4UNxcgehxxrceSQWJBYkZb64GNikQBqO5h/lMSJvC3efK9v8c8BKA4cxx+FTI24TbRsp1S+6g9AVtM6pGEojqFpaX4OcK6aJAVCQJOlbx+0MGr8g44x4c1jrEDCkFr8koVHAYtPeFYVDyCuJ54vZMuBsV84b1Eb9KbPqZUoRjCKQAsk40bcIMSi+UAkmqb8lU2X0KkzoL/iC0t0buHHl0qFPixep5W5dieClWbaIYaVXpbe8gbgXrDe0TelI9zPs6E6fJgwmySVgWQptoQiJlJQlIl2uhSSogW0xzqNajc/WtuFbCXpGU0blQQi2CbIv4lzW/uGVxfTS6a2XEU04ByVhyTIemAnIF0boXqjNUrS4vajUIBqEA5hRLUpcBAZsEnGEq1QFkcQJVTL5jCxG8ZINiNepSNxSoW7WpMudAWTlKm2tcAMwUfMG3CSvK0kw0vua3UoSYnzIMWFIMJfeGW3zOlGUZUcqmq4BiQVNBUsG7MZNbh8SCZqX4ZQ1bFg4/QBKhUPOVNHU4t12sGpKMLIkgZkdZshzU0YIthm61GTQtz9/biFAlvL2FslSogneHmRK6CkjA9Lscnts6DZ6iyNOf8xkRewbktJCKkrPWgJnrfLS0sJkFiYvWrDIm5cmzwERIr87q1dcbRiXmZ5RPTgyg+SnuUjWSlmssghUlJYdIPTwtgFJ0NemmmnRtXn6qSrLoZ6nEKgFSFoAKufeVlKVaT0zonDEnuNlInSGljhbNYLFuyGJUIWu9KjOI0T2zVoqQs35XWa7FPIMpgqSa8zXxPLQlGaXxCxsLbgMvMaFDIve++sdYuya3v60Li4JIpToXITuH69JzQ5SFFYv6zLDk2pFS6vYjhe9tQ7b8+JIqpjEjuVQGzRbGHo/41mGuQZo60P0A5oSoIF6W8SEUlSpmMfLwVKlBWsqNC0tZcMPSgVLZl2UDklTjlT8WNBb0MEHKSMpQqp58/uQM9+4Wf2mUcEYJgqnipip+NwvmIPunQxdfyoKpPWvmydkl1yuTLM9A3LIrSq5X6SYIB6P5OCNThFywJlDWXb1OEfzhzZrNmJCrW9xxTWkUk2oZbhSKB/VLtzaGLOPLIvVenrRSKlBJUtnJC7jlGZ5YMsIB+uuIO0zkdYud9N9d49Kt/w+jOu6nMzi5IgAAAABJRU5ErkJggg==\" y=\"-156.770539\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_39\"/>\r\n   <g id=\"matplotlib.axis_40\"/>\r\n   <g id=\"patch_98\">\r\n    <path d=\"M 288.032909 194.770539 \r\nL 288.032909 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_99\">\r\n    <path d=\"M 325.522565 194.770539 \r\nL 325.522565 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_100\">\r\n    <path d=\"M 288.032909 194.770539 \r\nL 325.522565 194.770539 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_101\">\r\n    <path d=\"M 288.032909 157.280884 \r\nL 325.522565 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_20\">\r\n    <!-- Happy -->\r\n    <g transform=\"translate(287.4193 151.280884)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-48\"/>\r\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_21\">\r\n   <g id=\"patch_102\">\r\n    <path d=\"M 10.957047 239.758125 \r\nL 48.446703 239.758125 \r\nL 48.446703 202.26847 \r\nL 10.957047 202.26847 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pfffbbf4ae5)\">\r\n    <image height=\"38\" id=\"image255f14a783\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.957047\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAOrUlEQVR4nE2YyY9daXnGf99w5jvXrclVHtp22waaDnSTbqBJaBBSxJAdIoqUTbbZkE3+guwiZZMskkWSHYusEgSJECQIMgAhjeim27g8tV0uuwZX1Z3PPdM3ZHEtlN2no3OOXr3v8z7DJ/7j0VX/zPT5m/232b+zxa2PH/CF9btULuC7f/E2g+/dRyQJrt9CWI8PFKKoEXUDzuHTGJxHlBU4j69rhNYgBFiL3Vqj2M3INxTFpqDccLiWIemVeC+Q0rE8zbj8bU/27gG+aUAp9F51gZ5a8gc77/D31Vvs7W9zMRuTqIb+BzP87iZOS1ykcYHEJAoXtQinBpU32DTAK4FaGryWCOPwWgIQHE1QZ1Oy+ZLkuMX0eoaNJFUsKZchQnh0aNFTRbAs8f0OHJ7gJlP0mWnzdvqAY53y57e+zd8d/Q7/dvcWQsKVvkCWFpNpFrshqvY0qUAaWA4VsomIJxYbCtxmgC49svEI4xHOw1YXPSmR8xz19JTB8ZjW03XGN2OKDU01cNRrDelUoPIGhMCXFUJr9N/+9G1e+eIBV/WIiUt5rXvAL8xl1CigaTnMekiTCqYvQ29PUGwIqr5HFxBOBKqRCAvLTQkegtwTzj1egGopEiFQsUZOckRRET44YuN5i/M31qk7Aryg6XjksgbrEK0MjEEHI803/+mPWX/lOa+uHXJ7tE2U1ah7EcVAEC4cJhbUfcvkayVpXNMsI5qThGAm8AKQoJee8auO6FRR5YJo4vFLqNYCTBzRfiyBNvpojKhqgsKtPqwlTnu8lIjn5+A9ot9Dt/ah88QwebLJydcXJEFDv73kdC1jsOdpPZyiqg5ea9KvLfjqhdu8O9vlfrrOouyz9bOSphtQrAeoXNJkHhuDSQSqFqhS4jQ4nRIuHK1pDMZiYoGqBH6ukA2Uu23S6QK/yKEx6GJD0DoUDD8oee+jl9l56YzzSQvbsQgv8IEiOq9oKzh4PGS8kfLp3iNqq3l0PEBPShaXYuoOqEJgWg4Tgo08qhSoSAAwviVIjzWy6RGOaqQBaSB7JojGnmKoSJII4T0AurzQcOoD2vuK5FBw0u2wvTblyHfJHtfMr7cZ3VLggajiWdFDCs/d5xusPzb4WJNvScoNCwJ86MAJvPK4SGAjCRJkJag7MLoZ0D6Q2EAga1ClR3iIRxYxW+CtQ7RStEwN6YmmyQSDO5axSTl9zaK0RVQNrcc506sdTALZXsTPz27x3ljQ3Xekz3KKrZT5DUO8VlAtA3ACoTxJVrEcpbjYgBXgFV4KXAjLTUXdAeFg/GbNN9/4d350dpPbP7vKxR/UxM9m6LRVsbgU07vrWQ4l4QzyBy385QIXh6inp1z8bg3eU2+2ybdDoqkhHNeIxjK+qdm5cgzAqWuhlENKTyuu0OuOoghpFuGqg6EnO4Rw4ZldB9YqXr9ywNSkvD28y2e+8iH/cOUz9L+zhpY/6jH88jGzyRbCQdOGYC6onybYDFSa4LKIciMm39BMb0B8FhDMNempw7015WbvOXMTYb2gNopOXGGdxGqJykrqyFDst5G1QDhPMLeAIk5rjvIOpQ1wXvB02qUexYw+JtCdA8uiCik+uaT/gwRVCKKpgydgU019oUfTDhhfD5i90vDxGwfMqpgnxwNGRvKNl27zUnTK1KZsxTNGdUYkDbkNOVx0KY2masBFDlVKgtwRzhrik4BmS9FYxf3/uoILQC8FW/cd8XmDVoVjcbdPemOCCxMu/MsBfpHjrmzz7ItddBHiJcxfL/nSzbu81b1P7TU/zG7RDQquxc/Z0hMGesFuOKJ0AbFsKF3AvXSLh4shH9o1ynZDkCvikUEuG7Ijz+gVxbIKAbj0/RoApwXJwQwdP19y+V8jine6dD84x40myF6XxUst8ksWPOilxC81P312BYAb2TGhNFxNzuipnExWdCgJhKHxGikczkssktxEnMUt8iJCWFCFAaD7oGB6PaFMIpQAG0rShyPQCk7HaDkriJ6dEe0BUQhhQLO7RtmXqLWCfjfn9EkfgFc3D8l0xU9HV9lNJ0jhCIUlEJZM1MTCUnqDRVASEIpVEY2TNJUGAcI4ZG2Qi4JL3wMXKsLzJWJZIYoKny/xRYFGCFAKX5ZgDCIMsYmmbgu+fOM2n20/QL7siEVD4zUfFLtMw4RENVwNT0lFRSZqAuGwCHqypvSK0gcEwnIhmvAuO+inEcKAXDaIZYmfLwjnOX6th1iW4D1+NgdAZCmaF0yL8/iqhJ0uy82AuguTJuHl8ASA3Iecmg7DYI5DMNQLLAL1oiDlBZGwK7sjHGuyoNETchexkc6ZnW+RnRhcK0S8cBC+qhHLEtdJEWUDSQxVha8btLBuVZhcScfio0POXxWYjuXxbI3j9Q5X9QiFp1E5wYvxKBylC8hFhMKjZIlDUHoF8KJ7BTvBCCk8TQtMuvJpdtBCNwZaKV6plYB7D73OqpRl+f86BsjNdSbXNE3XIDLD8bjND6av8CfDH9MWDbBE4VnXM5yX1F5xajoc+j6prNjQc2qvWLqIWDZc0ecAfHC0TXWx5kwHSJOQHJWrCWUxLglWDrhuoDH4JMK3U7RXEqEVSEVzoc/8hqF/Ycp0mmKPUr5rP85X3nyPK8EEKTxSODJZcdz0+PHkBr883sV7QTspeWVwzG48JlUVCk8sGt7Jr/KHN3/Bt+58CmlDVOEITqb4VgJ+5cPEssKHAWZnsHpWmBX4fRojgNFHE8AyGWf4UqEc6Icxf7n1e/z19X/E+dW4G6/55eIy//mrmwRjTbNZs95eMG1i5maL8zIjkJblWkjjFQ/ydZplSDqC5CiHqkYANCtYuG6KnBXUnYDRRwI2f1Gg0StM+FZK1RPIUuKUAgk2caTPNIffu8S3/ugNvtF9h9IGHDdd7s42SB8HdB85yl7ISbvN/t4WeAi3llzfOOPX820WJuL9h7u0PwjpPWyQZ1NwK1wL68A5XKQxuz2m1wJahw4vBBrABwqvVgW62NFeX2CtZDlO8Ap2fjjl2+Xn+cKf3uF+vcV3jl/lwaNNLjywdG+PqbbaPL3YJrieE4aGVlxxtsw4NB1m85T+zwP69ypkbVe+Pl8i4mh1jiNMqlnsrBRGNp6qH6BF1SCqhvpiH5OASAxaOtpxRRbXnNZ9Tl/vEI8cf3bn6xR1QPG4TTKWFEPP9PeH5NcasuGM/DjD9mrqWhNHDdcGZ7w7yejsG6LjOT7UYAyEAX6+QLQyfBISzGqijiaerhbx+A216hiNoUlXR19oijRESY9WluRQE+SO6TWJfX+N6FywcehQ1Yt0pAXtvQDhu0Q9qFPLxZ0xbwz3SWXNXrqJbKLVv5XAt9LVBtYNPi8QaYxQYtWprqTqSUzXomkMPgrwWhDOwEWKMgrxHpKoYfsnFfOLIdX1El8qotEqpiVHJcI6sqMAkynmO5rZTctbNx7yqe5j1vWcR9U6nbSk2GgRTqMXATmCMIDGrBTAOmwaMt9VtA8sy02J6ldoAg1KkT0YI2yPqQnwMqTqKxjA7HLI+Scdn79xn8fzAafDFk9vJeizFOFW3t5rjxwWfPXlO/xud4+RabFfDdkv1jjZH3Bp7rCxRi3rFcN7v5KgTsbycpfxjYBy6Gk/hfnLhn6rQP9mQ8qa9H8fkzwbcvZaj+W2pmhSzl93JNsLbmXH7MQTRr2M8LLBOEXjJcYpChvwZN7nw8UaUtxgI5zzk/Or3P+fy2z9yhOOS1yoEJFGzkuYzhFSMn/zEpOrGhvD5jsWLyE8VyxGgxci7hzUDVQV3H3ExnyL2Sc2mdSK5a6jXIbcyzcZRgsSufJNuYuQwlHYgL3zDWaLhGkSs2xCGicZ//cWg31POHdI45C1Rc3L1Z1GUeJe2qEYKISDziNH6845PglZS7rkW/IF81uHr5sVQL3HHR7TVpJgMeDchBRFzLu9C3xseMyT+YBWWDEpE2qrWBQRxVkKoWNRKRaThOAoZOt9Q51JovMKdb5YBVnr8LM5otPGRprZVQgnkJ40LK8NyPae034cEE0iNFKCaVYi/oLLVsninKQxbJ+3mV9tMSqGnH1hwXme8uTeJu2Hq3ebLU86FaRHHl16vIRoZolGNfFzT/DkbMVbaYKvG0Qcr/zWk+e89M+e2fUW0ZMRomqww+4Lv+bQojEg5W+ujlSaYLcHeO8RjUU+PaU7K1D1kP3f6qOVw+tVAYO9hv49CCcN+mSKTyN8FGCyALlsUMfnoBSi28autUFKcA5RWVwSUK3FdB7m+CyG6QL1fIzZWcMFAk3dQKDxnQyXRZhWyORaRJh7wpklmxdQVLTfO2b8s13Mp6fomWL9lxV6UeMijR7lVJcHNG2FXliatkZ4jzrT4D3ltXWWGwHCQdUVrN0uGN9MCHKPMCE2Tki0xAeKahCRHOasDFJZYXop9SBGVnZFA6HAS4FPIrAWv8jZ/f6Y6nGb5ESgKks9iDGZxvRT8KAKhwskNhTk2xGjz+3is4RgWhFNLK2DgtahZXQr4exzDSYRhNOa+Kzk+W93mF9O8VJw+noX7Y0Ba6l7IeVA0X++JJ66FasHYqVnxq5G/fSEm3+1wIcB1cU+etFgWgHCeaJfPca8vMtyJ+bo8474WGNantZhm7odkH04odpug4DlBYE+C+jv5dhUIxpH58Cw2NIUQ41XvBiltbhIUHVXDdS5xcQaEwt+YySDAKHUakG0YnwjZPh+gc4N+mQK7RY21cwuK4KZp/XUE+QepyU2Epy+uUbryKAKy+DXgtPXJEefbVEOPdFEEE49i4uQnEA8cmhfVYgwwAYC04J6kBBOa+quxkQCryUyDEBJ0ArXSfFCkJ6tuElUDX4yg7UeeIjPPO0njtb+EpXXeCGwcXvFfZt6hbOewEYO+9YMc9wiO1SMPmlBeLr3NfOLEu3rerXKUuAUVANNeJaj6hgTKXygVrHOexAC043Aetr3pvhQI89nOGPg6DmRlERPVnooTycQhbh+GxyMPqJYf88w31FUA+jeE8hfd1gbWZ69/SJ3aM/5Jzzg+T/G2KruscLnLAAAAABJRU5ErkJggg==\" y=\"-201.758125\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_41\"/>\r\n   <g id=\"matplotlib.axis_42\"/>\r\n   <g id=\"patch_103\">\r\n    <path d=\"M 10.957047 239.758125 \r\nL 10.957047 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_104\">\r\n    <path d=\"M 48.446703 239.758125 \r\nL 48.446703 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_105\">\r\n    <path d=\"M 10.957047 239.758125 \r\nL 48.446703 239.758125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_106\">\r\n    <path d=\"M 10.957047 202.26847 \r\nL 48.446703 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_21\">\r\n    <!-- Neutral -->\r\n    <g transform=\"translate(7.55625 196.26847)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-4e\"/>\r\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_22\">\r\n   <g id=\"patch_107\">\r\n    <path d=\"M 80.226013 239.758125 \r\nL 117.715668 239.758125 \r\nL 117.715668 202.26847 \r\nL 80.226013 202.26847 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p946616853d)\">\r\n    <image height=\"38\" id=\"imagec352b9f7e1\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"80.226013\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAL8klEQVR4nF2YW49kV1KFv4i9zy1PVlWWq8rdbsvG7RnjGWRZWAIEbyMkJBBCvPE/EE888Bf4H0ggIcELV2lezUWIkQfbY3tsj/tid9clKzPPde8dPOzT1QMl5UvWybNXRKyItWLLD//8Ly05QPg/fxrAd+A7Q2fwo6Gz5X/+v2cBTPOXEg1JL76D5AUx0NlwU0LHBCqMG8+0FlIBoRGSBzfm81aXEe8P+QUo3AE0cBP43nAjFF3CTYY5SE4wIR8WMlATATPclMH7PiBTwrwSKyUVivklGhV0ShS7iKkj1IKpIUnQYPjRkAi+2hqxXKIrMnIANxq+N4qD4buIOSF5JXm5AzivYV4LsYJUgMQl04eC1XeJ9eOR8mbEVEiNJ1buLsO+j6RSMFFASLOhIZ+rU8KXu0SshFgIMRrqQdKS1t4oDhEJRij0Dvi8FvpXheE8YU0AtZzpJBAFHZThQhg3Ncdfe8rrCbef0NGRKoeJoHPCDQlzudQmmS6+S/hDwJfbQGzyobHUu4z9MvpUKubzj+dWODwQxouAO5kpqxnv4x3txskz7itm7ziYkoqC+spRX0bK7YSOEXOaSz9mMrpB7igkyZhPCnxxO6JzQawULYxUviAx6JyQkKBUTIXQCP2FMG0S1AnnI6oLz4AYFTNBfObXfGygMLfKtBZWz5RyG/B9BAMdIxKN4bzk5nuO6tpwM9w+FPz2V9fUl4FiN4NIJqoTJBkyJ8QglsqwUYZzYT42rI6IT0z7krl3yCRIzCVJhUFpIIZViVkWblaCeUdohHLnqC4nQut59kHJ4d0RCIQvK8wZ4/0Z/+wDodyWnHzuOf55h5sjskwFUmK8WHF4zdGfC6E14jpBYdjo0J3DTYIpmDNsKYvsc4PMr0SsMKIZ5g3IHTqvhFDXiEH3g5GjTUf3+QkPf/Qlt2PN89sWLxHGs0R/q0xHLeOpsPk8sno0kOqC7UPPeCrM6zwuzBnMgh5yh9mbPet2wLtENxb0+wq5LvE7QTvFXG6m5GFuDZJgkoNprozyq4r93nP+E+F/jl/HtXPu2vUvhPR7N8S3hO13Leevb3nyXsvZv6yIJYybnKlUGhJyx5kaVhq2ipRFZI6OcfaEoLwgnHnwvaCzECvLJRYjFRArQYMwraG6Ap0c9XWg+bKg+q0d+09O8e3TyJMvTnjjvaccqobtvqZeTfQXDQCxztFKEHwvlN++mNZQ3jjCqmRe59pLgqYT2seGaR7C/Xl+1lwGnApIJcQZtIKiMzQK5gQ3wu7TU46+EvzN9x1v/PPMd5cP4LVI9VFFdZOH7nS8lG5pZQDXG/XzfJDvDUlGf67MraAxj5TpWHCTEWphPDPCSYSFAogSyIFqENxoYLB73TGdGr6TPNTPPgpMR472iXHx30Z/ZoQmR2U+f5I37G6UKEPI2Ym1YH5RDpdwY55Hxa0QojCcG3ET0CYgAmnW/C6naFDcnJvk+KvA7Zs+V0aM4Uzw1dWI7zzto8jh9Zpxk6NIHmJlxNpIdYIqYlEYKwcRXKfozMIflrIbOglhZcybhL4yUrqEc3mQpkIIhSeaJ3nNMuhy9pvLRKyVVCyqgwhujITWs31bCWujvJY7LqQ6oe1MUQVSElKTuzEcKbLz6KggCSsMGRQk86i+f6AqAtEEJ4ZqBncAonMguezmM7+KLtE+YVEg8FgmT1rUf94kqiuXhbowKBLOJ4oiomKoTHiXOAwl/eBgBJ0Ei4LfC7ExdBbCZ0cMD0Y2mwOljzTFzBQd/VjeNYqkbB5CJVR9wo9G81XPdFrisWx1TIX6ytDg0Pkl2X/Ze3kXUYEQlf7ZivXPPeXWmE6UWGR9XX+zaOqREMuSeNwDkX4u2A8V01hAUCRyN8hjmbkp0UCE8nrCvzjUFqNW3eSnQyNIyG4hJSVGJUgu4zAWSBKmY2M6hunefBdI3zmKrWZ52gRiUm67mnnyxKD5uV/6mCyUKQTfJ9xuIJw0GZg5xQ1GtU24MdGfe3TOQNOoRHWMBrN6RPKg1NORSUskCtoEmtXEPDvCYZX17l7A1YG+K0m9RzoH3jBnaK931RDLDRBLobxNmHN090v89ErJ9mGBG4yLD69Jq5LDPY9EcKMQRyHhSGN2DuYMfAJnyCoglyXypOawLpBJ8X02jkQh7gsIgt9lskc1dM7PFAfJlFkAhkYJjWNuW8pdwh/u+Tv/pbseVO8ikQgyCwpIUDTk1MdaMZ/tMJKHsEQBNVK1+KoomEGxdVSXGURYucXnZa8nCWKRu3JaQ2g8+keXXH36Cv7om5nQKLs3PIdfe5X6u4G0mEJJ4AchLZHpLPghd/C0MWKd0ElIpWFFylkpsgWyOuKuPb4TTj8LNE8Htt9fMa2F008nwipboOlICSu509ir6xYrDR8apbtwbN9JpKLgbHGVYsuWdMjR+8Eo95mDoVG2D5X+AaQmg1qddUuTCPNtBZOyepydr+vzOzcf75k2FRoT5h2pyICqm0Qshfo6Uf19RWgEf/M9T7kz9HzE/7RmOCswBZ2Mcmc0lxE3RG5/pWLz4WOIifmNM3ZvtrS/cAyvGLGFcSixBGl0+GtPfZnHz+rbQHk9InMitgWxcXT3CqZjQRLonCsQamH7tmPcGG4S/Pw7O/y/rik+aRbPlPmW/Xf24P4ws/ksgSppswaDzc8iw6mCCQNK8AWoIfMyo5Z3TMeOsFohCfqzXLZ5nStXXWUX4sa8IflrWD01Lt8HP1zXNAa+h/kIjr+OTGslNDmK/YOCqnUUu0B8eIYbIrF2SMoamQoWd5obhJS1L7QwLSJtTpiOhOkE5uOEKaweayZ/lfcIc9A8M9wE8d6Ef/uvEtjE09+uiBX0Z47qNv84NMJ4LHT3Hb5z+C4vwGLG3MpLZ7uMaRMDn4EmL8R6yf7i60KbkAjVc8VNEFa53PV1ft/+DXC9UrUTXqfEfOTp3p5ovirBYG7kTs/cBPMxDBcJiYLrhepGkGV06CykaNlvLc2VguVxk7jb6ttHRnUlpFKYW5iOoNyCmyyXcjZi4dBoVH/d5smvU4Ko1L95ybOHR5TthHzSUt4I5dZYPYbpJMtJtc13GaHJAziV2eFSJMQtq5waUxJiLaT75IU4LcGaIQHK28VMVsLUCt2DvEBf/Hve0DyA7wL+esV47nn3rSeoGJ9+3VI/h+lEcFMmal7loD8X5hODZMTGsOMZX8UXfgApA7MaqXY5k7aAA+TgqTrF9Tmjw5nQv2ps3nvO+6fP+dlH73L85YRHQfeBN/9xIv54RVe1dBeO+9cJE+hedcxH0N2D2BipWlYxb5BAqkS1mnAuEYJDNXuvlJT44vYlSe7y0eEPQrHLnTi3wtkfPOJP3/on/uKjP+anf/MD7n3S428HPNGwylF9u6d785jVox6daopdyDdAvkKD5GumhUPRWR4NhSE+kaISgyO9KNeSHS1ilqwo2OTQXih2gj8Yvs/gvvmPB/zZsz+h/MmKi49n/HWPFS6XUqIh2z3VdUXySnE7071WUV8G6quAxtx2g728Dco1MywJITosKETJ2VmEXpbLFosKc24cP2StLHqj2Ec2XwRkMjTsICyqEw1/t3WHgH96w+7X72Mi3LzjaFvl5LMe80JyjuRzV6VaSYXle7EkMGsW8bi8S7OjNV34lQTXK24Q3JDvwNyYb3tkSrhuAssmUaIxvPrCj71o8++eU9xeIGbc+zBQPeuQbgQ5wUReAvPCLA6rJPNsVnRarpNc3thJwAJcIrhesoMJ+XaxvA1IMnTJkjnHfFpz8065LCOW1yk7XiPjhBsjJMP/58dIUyN1TVEWmG8zqEIxySBCmw2fzFn3xBY+aY5WFscgIW/lvstlLHcpjyhA5ggixLbg0Y9Kfv8P/42/+/FvvPT84WyNHtW47YB8e0kCUj+gVYVcbSm8kpyQnM+BuMXeLLNLYu68zL2cMYncCbUfoNgbzfNAsZ2wUnH7aVEM4eadhvd/91P+4Ysfcv5fgr9bNgRS5RGnOEuQDCxhuz00NfLNt1RyP2fO53tYDUIslwzxcvPJQDMgDXkgF51RX0Wq5z2pcLgua5V5JRWOyw8S5f6Ek79tWT8e+V+L5t7+FjDPsQAAAABJRU5ErkJggg==\" y=\"-201.758125\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_43\"/>\r\n   <g id=\"matplotlib.axis_44\"/>\r\n   <g id=\"patch_108\">\r\n    <path d=\"M 80.226013 239.758125 \r\nL 80.226013 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_109\">\r\n    <path d=\"M 117.715668 239.758125 \r\nL 117.715668 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_110\">\r\n    <path d=\"M 80.226013 239.758125 \r\nL 117.715668 239.758125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_111\">\r\n    <path d=\"M 80.226013 202.26847 \r\nL 117.715668 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_22\">\r\n    <!-- Neutral -->\r\n    <g transform=\"translate(76.825216 196.26847)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-4e\"/>\r\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_23\">\r\n   <g id=\"patch_112\">\r\n    <path d=\"M 149.494978 239.758125 \r\nL 186.984634 239.758125 \r\nL 186.984634 202.26847 \r\nL 149.494978 202.26847 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p3bac3b3020)\">\r\n    <image height=\"38\" id=\"image7b314fd03b\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.494978\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAL0ElEQVR4nJWYSawt11WGv7WbqjrNPffe18d+MXbsYJR44iCEATGAARkgJjAikwwQE0ZkwhwQzJgyQWKGkGgkhGAAKBFIIBQaWQm2aWInz857fu1tT1NVu1mLQV1fxzGxTUklnSPt2vvfa//rX//aUu+/YHzMc6Y9L//5V5g9dKSVUQ4q8WDAe6NkT9Nm2lgIXnFiiBileqoKTaik4tlsO/JJSzj3zB4LtZnmvvFqpru/4e4XD/mPX//9yzXDx4EC+N3HP0Hohbxn1LlCo5QxUE8a3CBkZuT3BhtoczGuVUJX6GYJ5xWZV2p2DFehPRY0wpOXIj/5W3f4q6f/CHCfHNhf7zr+7B9eIWTIh4oFAwP3pMH3gjnQCBYNE3AZTMDvHFqE2nsGIMRKaAt57ijO4ZMnbKB/uec3bv4dXpYfWNf933Cmp5rytbPP0R45age2KBAUksNlwfeCVNCZorOKzSp1oWinSBb8zkGF0gdUBcRwXcGCkReGNmCPW+7V5YfW/khg75Qdf/vHr1BmRl1UfFuRYEgWwkaonaHx+2YKBq1S50rYCmHroMg0xBniDZyhM6V2RlgLO23/f8C+cueXKEuoneFWGecUGzxh53AZXBb27oAbBRkdMjoQIzyJLO56amdIAbf15OEiahfgLSq1hbATzrX70NofybE3/vkz0Bo6V/aWA5vzGeHc0z0S/AjbzybGq4HnPv8uX7jyXfraoAh///YLbPbnExcHx+yhY+cb9LoSQsVaQTWgjWFOyPZhGD8wYl/t/WWGyaxQq8M9bjj4T7j9l/fpjhUJRry1Yy+O7Iee0zzjStzy6cNTnnr2CX6V0UVl/9vK7IGjnjaYCT5UcIY1hkXw6CeP2K/+45eJBQiCJU99fcXqPuzfGdm9eI3himP5zRZoeTMueePwM8Qz4Z+ezcSjgE9CO0KZGy4rt7+65t7P7LFtG3xX4eJYa2e8na4BJ58MmAuGqwKj4Z4Elt8FDfDgxzvSvlEWFYsX2uwNaZT6tMLoKSul5gvCj8LRS57zZ/aQCuEoUg4FquAGwYCvnzxLvvJfRPEfDez11FM3gTaBiWDe2N0QwgD9DUUXFWkVFxQRpqMBzCA0ldJNC8SmkIZI2QaGaxPX4rlgzmMeUEGA1+49hT6vwMcA++17P8/87UhtQaNRZ0ZZKmHrcEVQAcsO23l87ygCYSv4LNS5IdEwB/Wm4YNSZxUZHFIhHVxIjBhSAQR5a87w04VW4kcD25WG2kLeV3RZkGYiZ547ZDN9Ir1j7zueuDFqFMoCMGjWAirUGWxnDX4vY4OnO3L0txTdK+ANRo9VgQKuCB75AIYPANtp4me/+SUePtzHzw1dFuIy4b0RQiWlQDKQ3hPPHBog7V2QuAUL0JxCd2LsouB6R42eeOwZblXcYaKNBa2OGhWrDZblInL8YGCvpsDJq9eJAmWl+FnFe2PWJoJXoq/EWNkezRFzbG8rrkxJIVdGfKysj2ZsRsFaxfWCWwfylUpYJfaWPWZCUYeq0BeHjhFMeDMLX/7GL/MLz77Gb17/BvK9tue5v/kV/FFEqlCuFNr9Ae+V1XyY7AyQquf0fE69P8Oa6VM5SNy4es6ySbx7umLYTXrlHrboXJnd2jBvM8t2xEzY5UifIuMQySct3YPA8q7x5JUCBr/2U1/7YMRkF7AArgBuWrSNBS/GLE7GZhYz85j5bnXIoxYciDO2Y0OpHlWHZg/JUQ8K15865bDrib6iJqgJY/U4MdQEvKHRWP+QQFR8W/nDP/ni+8q/0QFZJcL6goQXwMYcqBcTelHUhKEEFssBu5rQ/XxJ2/WuxXtFghJWiZtPn3DY9bSh0PnMPCQAvExzN01BWkUbqO2UEAKkK/p+xH7v6AvoNhI3wnBjysJaPLV4TtXBckepU7EdcqAUjzgjNBXEpoiEaZ+hKbiLjRVzeHWMpSOpJ7hp7iZUqk5F3xw054J2jjp3EG0CdlJ3/OlbL7P3rUDYGf0tIDnK4JEiaBEezGbIvOD8tGBNDqqg2dMsEk5g3iaGHABPKZ7N0LIZWqKf0k5NLo/QiVHrxYGJ0Z4IaR940hB6mYB9fTxkezpj6QCbXtd72seO2WOjLARwmAS0gbw06rU6jQ02+Swxqgr9rqXsAhKM7WmDS440CCjgJsHWADar+EXBLsCZQNg6mnPYPHNxlC/GI8QZouAquCTEjXDwljJ7lBkPA+1JwWWlv9Gwvu1Z3PWc/GjBbTx16bg233IyzCZQo8edCS4L3eOJgc254QeozfT/5POeGhWygE0WfX7fqJ3g8oWOPReXSFBmjw2fjNA7/ABxo3T/8wD3/A3CSY97dILUW5jr0CAs3prKVrrmUBPMBOk93UOPy7B6Wxn3Ye+dwnjoWd4bqdER+kpeztm4iDY6cXQD3amyvj3V0UvyWxVW3xnQxnH2XIt5OP5cwJWniOcJ2Y3orau4VPHJGPcdYTeJqybP3dODiTM2yY3LEyWW9yqL/35MfPqQeLyDK/Mp6TOEtaCtRyq050ptp86pe+S+T8eq4neKTy0aYTww3vk5T/d4gcsL8h4s7xppJYhC6SAdKr6rlOLQ6rBo5D3DjcLpDzv86BgPbjF/VBhePOD0eT9tpgVRQarhMizeHZFcwRbkubwPTLzhNyMW/QURIa2mDmj3QgEBdxZIK4cfp2/G24peTywXA7U6YqyUhafuHG6ceNNfN7bPGBYc6BROt3OEnVy2f74X/HpAhszeHUd/q3sf2O/82F/wB9d+kXg24Ar40bj6mpEXntoEfJr6ybSC9bNKXVXag4F5l2hCpU+RNhZkZayr4IeG5kRoT4TNpx12a8B5Q1VQIu40EHqwKLQnhvQJTs6I5xvS4TOEasr9uuPfty/jhwIiuAT9TeHss9CeCOahzCDfyOxd23IYKlWF4JUuFNSEa8stYwl4p3Q3CvmKZ72ZEb81Y/mOEN/oGK7J5PGaiezjVcP3wuzYkCGh/YAB83/5NuH1nBis5fWzT+GyIkPBjwYmaKv0P5IJsdLNEgexsGgSwekliFnIjDXQ+kLrC32ZzF47K3xqdc54M/DuyT7rewvCFsxB2VPyUgi7SRra44z1/XR0tUIphFu+cugibz64zgunawgen99PCAzcheXxTml9ofOF6KaiPA+JzufLUjMPCSfGXhjpa+R4nHN1b8v2uUwqnnFosG1A8mSju2Oje3eN9cPE9abBciHc8ItpwL8ukN1jbH85KTpcOgcRyNUTvTKUOLVgTul8mcTTV4o69uNkj5wofY087PemeqkOEcNsKm8IU2OyFRb3C3K2QUvBzToQh3g/uYtqU1eMCLIbcMUuwVl11CqoumnH1ZN02q0yuY7GlctIta5Q1JM0EN1UqNUmtfdep6KvUw1qzqF71GPbLRfFFEJA2mYCpu+hKAWqEntFDKQIlhw1e3L25OpJxWMmVHUEqcxDJoqyCuMl2OCmCGb1FJ1qYVVHKZNfQ0AU2jPFrwdQQ7xHxxHb7aBrJ2AOQQxsfw+8I64rUkGyQBF0COhFsY1e8U4RMTpfcDJxy4lOL0bSQNKAmlBNyMVPv6ug9aLfTNAdVWTM0LZI+z0XK7lMcjFaIS8MVCe5GCt+YLo2Sg71Fa2CqjDmSfq6UKCFKNMtIkwGcNTAOreoyWVCVBNSCpQhYoPHDY7uWGjOEqSMtA2mFQkBiYH65Ai3sZF/Sw3NS2fkmyvMO8Im0R0bce1wabrJ0eQZ+oZcJ361vlDMkc1RzDFqoK+Rs9yxTh3nY8d6bBlSpBRPSX7qQ9ee7qFj9XYlnOymLhmQGJGuxVJGQiDsuxl30jU2jxfUuREBd75jdaelzDuGq0KZO/IFN0vj2KU43bOa47Dd0bjKWAPnuWObG/r3mo0UMBPSpkEGT9g6ukfC1TcyizcewjBC10JVrCqoYbkgTZxK0sIl9l+LtI9OoYlYLvhNYnbUINWRVoJLnnQgjN7Q6sg5MDSZoQRkkjv6FMl1cq85BeougIIkR/fQ40e4+npm8dr9SVAP95Fc0KNjJATwHokBauV/AazHmyFWjZyoAAAAAElFTkSuQmCC\" y=\"-201.758125\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_45\"/>\r\n   <g id=\"matplotlib.axis_46\"/>\r\n   <g id=\"patch_113\">\r\n    <path d=\"M 149.494978 239.758125 \r\nL 149.494978 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_114\">\r\n    <path d=\"M 186.984634 239.758125 \r\nL 186.984634 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_115\">\r\n    <path d=\"M 149.494978 239.758125 \r\nL 186.984634 239.758125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_116\">\r\n    <path d=\"M 149.494978 202.26847 \r\nL 186.984634 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_23\">\r\n    <!-- Happy -->\r\n    <g transform=\"translate(148.881369 196.26847)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-48\"/>\r\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_24\">\r\n   <g id=\"patch_117\">\r\n    <path d=\"M 218.763944 239.758125 \r\nL 256.253599 239.758125 \r\nL 256.253599 202.26847 \r\nL 218.763944 202.26847 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p7cbc72bbc7)\">\r\n    <image height=\"38\" id=\"image95b458903a\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.763944\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANzElEQVR4nFWYya9tWV3HP6vb3eluf19br15VwQMFqiAgDNQCE4gOdKTM9N9x4sSJY2wGGhNiIhpD1ESQaASLTori1avi9ffd9txz9jlnN6v5OdiXR9jJyk7Oyc7+7d/v262lFs9uyd8sX+dfTj/Bs6+9Rl4nLj5uuP6djvz7HyIhoPIM6Xrk3h3M6QJpO5iMePRH12luRcQm7MSzu7XixnjBjXKJ1ZHaF9Qh50m9xTTruGgqzp7NUL3GLTXTB5CtEovXDCmDmMtwrxL2P9sZf3H/t/HvbDNGuLhnyC+gePcpAqjDPWRUEEcZ4jR+ekC751jd0KQMiICDFBUXywqAtc8ZuY7MRPpo6YPhqJswKTry7ZbuoiQWwvJ1xeippnohtLsKFRTZCyjPFOrOX/6pqEuHPmjJck/XZrzxZz2psKzulDS7muYA/CQhVpA8QZbQNmGziAgoBQDORZQSZmXLK5M5uQlohKNmyqOLbWLUpKSIwSBRwdKRnxuyBagIphWqs0T5osVKr/njL32bp802Hyz3aL8+YfGxnNPPQhxHkKEQk0eyLCAC1iaUEpyJxKTRStA6kdlIYQPb+QaAkenRKjF2HZOy4/RiggSNBIXKEuKEZIVuG3SnsE6hj4YvtV/93Hf577O73P/ZDXbfMViE8z9ouL13ydlqBIBSgrl6eeECSa5aBPTB4KMhxuEOsNY5+8UKqyMAe/maNFHM64q+duQnlskjYfZhR/7eI+ov3OHskxa7EaonK+Iow37z8cfIXQAgq4X5Pc141FJaz729E1Y+p4sWEUXleqZZS0iaTcjY+IyYND5CjJquc7Sto6ssuQ1cLxeUxhNFoZVQ5J7e5IgRVAR32QJQfeMdDvynaXYsm1tj/Ehji7/bQiX46MMNohVnb1VkNrJXrDBKSKKYZi1aCVYlgmgmrkMredlNrYQ+GKxJNE3Gps24yCqsimxnDVoJm5BhdAKXiOUwrjjKUNtTDFA+W0MaoX3C9An74u3Iq18X7MNjZHcLV4+4XJVcVCO2soZrZY1VkSQarRJBhnFFURTGc7SZYXUiao01gRA1vrfUbU7pPD96epPy+xW6h+Wve8wokHIhlAo/cShfoKqMWDpQoBJ0M4N1s46HX814Vb1C9d4x+z/wPHojhwPI9cCqXbemS5bLUOGTIYgGICRDaT1GJcZZR93nZDaSkqb3lkVbkLym/OIpZ+cTxj8uyJaWdlehvaB9IkwyVBJME3B1IOYa0WDdD8fsv/2CR7+/z6thn+QUROii5bwbcW96jFEJpyOZHrC47jM2IUOrRGV7CqNY+ZzCDv9rnfDRsFNu+Mqb77Hnat7ZeYWTWxPuPzlk/MMCtxb8xGBXER0EU3fIrCA5y/T9Gt3PhOdH28xuLTj+jXwoTODZfEYTHE5FvBiciuQ6YFWkNB6t0lAEA8Yq2zPLGvbLNdcnNTtVQxTNUTvjh/VtSuPZyhs+evuY0ZePWb6qcXUk5Zp+5khVhhiNjgIpoYszhTnLmBQd6dM1oVDolaHIPK+M5xiVaJNj7iua6AhisHoA9X6xIjeDfGglWJ3ITBgKdT0T1/L+Yp9vvf8GTiXujY95c/sZTicOfucZF/dyAPJ5jyjQPqL7xPruFLv+RMet6xd85fpPOdmd8M+/9wnS0nEwXjHvy5edMUrooqU0HqsjRglLX+B0xKpEn8xLphbGs5EMgM/vP+TZeIvvPL/Lna05hfUcVDUrn3P5uY6DdzyiFbr1hGmB9gnbJPSdm2d86dp9PlU+5tXinFv7c1QZB8NtxjxZb1P7AuBXRhhF4a4ENDEIbhJFSJo2OrpoOWvGvF8foK9k58ePb5BEUZiATwa9cKguYjaefm+EEobO9Qmd6cgq5Dz324xNS24C2eOMVZPz+P1Dll3B43qby74k1x6nImPTMTYdB3nNXrZiJ9tQmIDV6YqtmrrLiaJ4dLnN09UW21WDfl5wspkQRPPoZIeUJ1LlSIXFLVrEKkwXsWuPfXC0z6PzbWL4FEoJ41GL9gp+MOXWbx1RuZ5FV3DZl1wvFnTJkevAzfySsWnpkuMsjHm+mTHNGsKVd87ylp+f7MLDisutyPR6jXu95tGHBzz2h4xvL3H/UeLHFrsO6CQon0hWYxqPnfxPSbKwej1ias0iK0l3ej7/8Q+ZuYbTdozViZ18jRfDOmaMbEe8Gt/MrIdObkfmvuJYppxsJjx5usv4pxnZUrCNIbktigDN2x49DVR/PyNbRZRAygfRVklIuSHlBrt4s8fMLVIF1E4gXeZU2w0j01P7gsIE9osVU9uyjjnn3eglnshgRUGlO8amRTOAf2Q7np/P8FOH6RTFZUI8ILD/LYfbGPJFgCSYNg5pYtkStkvEKMQo7L27R5wejBBRdN7iM/cS6F2y7GRrXitPWcWCb794neOHO4yurXnr2jN+vt5l5lq23GYYn22Y2sFX89wjvkIMIIIOQ97SUeFWiVBp8nOPaTzmxZy0v4VuAu5yg5QZ9s74Aq2E1ZWdbM4rsn+f8U+f+SR/8tn/4pXsHC+GB90hZz/Zx0ZoJhk/OrnOalGiXeLXbr7gtfEZbXJ0ybKOOV2bsfNECAXYVmi3DXYTMB2okNC9ptt1uEyD2hmK33jSpEBFQV/Ll+zkG5yJzOsKgqI6TXzsz1f89bd/k4gmovGiSYcd5rUVyRvqFxNYOJLXhDR4Z6E9AO/Or6GeFviRwq2hm2miAxUFFQS7CRSnLflZT7IK0YpYZUjpQOshj41Ny2G+JIliPck4XuboIKgnx9z5xzF/9cYXuDFe8L0Hr1I8yPHTHJ0JqYrYg5bP3n7CXr5ibDrqWPDdszs8vn9IsVT0UwCF6cF04CeGfB5ImcFeNihvUQJhkpGdbX6Z0TODnZkG7ywAm5Bxkk3RXqHyDCWw/sY13rlzyP6PITrh4noiP9hwd++cz2w/4Xp2ySoOAvy/i1d49MEBdqMRC2YDxTyRrEIHoXreIkaDhjgtMHWHWbSIKojjHFO3KB/RRmEL1VNoz7bbcFguUeYGodRQ5NjaE/OMuOM5+SLYIvCRwzPe2nnK3fyUSndkalD/RaiwKrF1Y8nliwl25UgWQqFQEWwjqCRAIlmDuVizeX2HfN7hTlfE7QpdN+ADZtVgjRIiik3MqH2B0kJ0kGYjVq+UrN9q+OiNU26MFsxcw4GrcToQ0RglFNpzU8/pkuMj4xMu+5Kmc/jakJ9rRIFrBdsk+llGtugxa0+allSPFqTSgdGYRQOAdD3KGmwdC1ax4LibctqOSb2hmEfUusWtJ8xmG0rryXRgbDqcDhiELjla5SiUZ6Ib7hXP8WLJVaAwnne5RseI0XOF6Qe9UlGG1QwkUesGrRRqvkT6HkmChIAA9mm/w4Uf0UTHST3GnGSUzy5RnWd0/5xn9/dpPr1m3lcYJTTRsevWFNrjxQwLw0j1OL3hXqGpdjtqX/BB6/DjAtcolAimDZASaZwhevhNLddgLbJYgjHgPWo2RR+1M55vZlgdyV3ALRV6uQERVO+5+w8t939+bUisCKuYs4o5bXJ4sbTiWKchV7XicCqwb2ve3n+fvd2abmsgmmhFchq5Gpt7dgE+IHWNbDZgDNL3qCxDaY3+YLlHExwPl7tcXI7RHkgJYoSYyB4ccfdvhZ88uMlFXzG1LRFNJ5Y6FrTJYRDWknEZR7Ti8GLYszVv7j2nea1ndVPjR5YwdqAVhIhUxfAeOyiC9P3wBWVBuL2PPa1HaC2s5hXj9zJu/tsCQgStXz5YPjhl+3s3+dnhPpPDltJ4DAn00KXzOCZLgSgapwLrlHPmJ5x3w1mGipCcIltESILkGar3sFhBTMNuPwl6OkaNKj78wzFWRNE8mLL7Huz9YIE5W/IrlwzGfP2bR7z7uT2OpjP28xXJKnIJbGLGtt1grgJkmxzPuxmn7ZgfPblFduTIFoIOgvZxYF9KyPNjlDFXp0k5emsG+9uEacHtf/XY9O6E6RHsvLtBN34AoctQ1gxg/EVxKfHG1yI/+927/N9sOGDJdxrK3DPKe/poMDpxuapo5wXu3FKdKexGsO3V5jgMEFHrBnWwh2QOJYIUV1ZUDQEim3fYfK6YPvLY8xXKBygKJCYkXCUua4dd8+6E9c2c6QNwjSIUGtuMaPY08ym4FcQCLDANUJwJMReyWijmAbsOqDYgVT6s3OEnGaaLiFXoLpJyg1l7EMEefK/Bna9RPiBGo5xDqQAiQ3FaDwyNQraMuJWin2rcRpjeX+LWYwD6icZXivGLQLNjsZ1QnkcQiJnGdIqwVRALg+kSMdckp4cofd4gucFtevxuhV122OzDY3B2ALtSSO6gzId2W4u0LaosQYTRe6fEnTFiKnQvhHGGbSLJaUZHPaEyiFb40WDeOmiK055u16HCEGtMN1iYnXvUFfMBVNeDCPmqpXljDyuj4aUvT+D0EGGkKlBNh8pzpO1QzxoYj1BtoHq8BqA7rAilRokQC4tphX6qqU7TsD/tBTTk54PSp9KCgL3cgA9XjE2DsV8lCzGa4uEci70CeExDcVpdFaiQUYnqepRSSNdD16NDRIoMtCY/htwokjOgAKVIVmE3kTImotMkozE+oJKgVz36skbKfDD0q2aoJIgenkcEFSJWrIYEaI1K6ZedUwo0CBmKHpWNkHo9xKHVcGJouh7JM7RSgyArhVlkoAcGqlmJ7gMkUFeyg7MDya4m84tLJUHMUCRK8f+IbnajBvtLZgAAAABJRU5ErkJggg==\" y=\"-201.758125\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_47\"/>\r\n   <g id=\"matplotlib.axis_48\"/>\r\n   <g id=\"patch_118\">\r\n    <path d=\"M 218.763944 239.758125 \r\nL 218.763944 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_119\">\r\n    <path d=\"M 256.253599 239.758125 \r\nL 256.253599 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_120\">\r\n    <path d=\"M 218.763944 239.758125 \r\nL 256.253599 239.758125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_121\">\r\n    <path d=\"M 218.763944 202.26847 \r\nL 256.253599 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_24\">\r\n    <!-- Neutral -->\r\n    <g transform=\"translate(215.363147 196.26847)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-4e\"/>\r\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_25\">\r\n   <g id=\"patch_122\">\r\n    <path d=\"M 288.032909 239.758125 \r\nL 325.522565 239.758125 \r\nL 325.522565 202.26847 \r\nL 288.032909 202.26847 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p65a85b0dd7)\">\r\n    <image height=\"38\" id=\"image7383800146\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"288.032909\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALgUlEQVR4nE2Yy6tlWVLGfxFr7cc595E382ZWZnV1YVUXdreJDaI4EFFEsEFRaFEUeiLOFMGB/4ETnelUHOnAQfkPSNPiwNaqQWGjVgsl2ppVldYrM+/7nLMfa0U4iH3vzQObvc9r7VjxffHFF1uGT950w7h+zV75sDjf+ts/4s5/wbwWPIMnqA3MB45nx1rHGwcBkiNdJWXDXbAieFUogowKJnhjtC8SeSuIQxrg4Gnlzj89ARHs4T3Ov37I8O1Tfu1HfoACaJy4vv6zz36J9adCbQVrwPJydBGUJ0BBiiBVwAGHssvUScEFjJvPdQZxwRtAlq8b2D5Q6pcf4MOInl3RXlbm7x3zN9/9OTIvvWavVJz3PnudvHPm/QgMAWuhrFjeOxh49gjOFSaNILPjyXlppyAgs1BbJ2VBLOK2Rti8vsfh0xa/2rB+579ZvwO8ckw2jOqxUCOJvz7/Cum7d6lLENYsMK4cW1tkQYBKBKJx03wl5K3EBvacuo6766hY6yCOt07ZE9IgKIHC7r5ymBJ2eoauekgJmUtkLIlQ3Zm98u7ZW0h1ahfcQgLCurbIhDi6TeSNUPYWvq2Mae3MRXGJTUqV2IA6OkPdc0hOuVOBhHhsonbC9huvsf6BgAg+TXR/tSEryuwVgDMr/Mt3HtN2YGmBYqEQVUAdRNBJOHgC06EiFcZ7AWtzIYz3oiDSTtAZ2nOY7sDQgPcVsmGN4oPgCrWDq1cz63+r2PERKPzMvfcCyiQCBO77HzvjUVSOG3hzXX1xQzGhHBVOfkJpT5TV58L6U0cr6Oy0F+Aa6/lSU9YseyyK54q3kWkGufl+/NqX+OibHW+9fcb7l6+RBy/8wUe/zDvvfZ1Xv/YFlmNBiYzHe1l45UARSFH+4yNjOlbypZIv5ZbvFWoP84FRVxYbKhIwO7gucPtS7Y3w/Bs986sjer7h+e88IL99+Rbf/7vHdALT2w+xVWQLB9Nl1y8d3hlSJLRpv0I/Y0eONQVVx13YDRmvis+LltnCt3wdkFBbyAo6xT1Wz41X/3zD9OV7iDn5T//5V1g5tJexgyAut5mD212KI53hk0b2quCu5H5k3U8AFFNEnGlsqHP8zpNDE5nDYi1PjjUSgSUY7whPvnWPuoqs5v0P2pAEjWDEHTG5yZSlJWvJITvaVmgrdZejIEyYx8xOoG9nulwpJWFlEdnWQCF1FauCV4FpWbtx0KgurdBcRTYxyPNBKHN/4riAKNBck9YX8kfLkmSoxnU1IZ9kdAadGxCYZjh/VAPuSaFxpKnkriACiFJLDikxotVpBCUV8i6yCJBr5+SdIBW8Acuh9p6htlGV9IZkIzcVEZCFxHd+COtnFUuCZWE6EJqrhOWEGMz7sPuK0bYVVWMcGywZ3uhSDLcV6wLNBqZDSCOotU7eBoS+tA9PUPvrRh0Z0uSkbDRLcCRnvLPsbmfsjpXpjpC3zivfH7j7nzNSA8KkFlqrjiSHbHjrNwFdtz2pTnvhWIbs2UlDqLPvRVC2BOaNIa0hyUCctimoOKrG1GXmAzj9aqa2MLxawaA5U1w7yloYj4380n/mkvCiSGu4ScAm8lJCQpRrD1mKUDvBsgeMeemLL0GYciVnI6eKmZLEkaVKxyOYjwvr+1tEYDhuOO9XNJvlZi6YC406qk63N1GrMM/KS6YGLGzVdBhU0u5UyUOoujXRIq65JdlI6ZojoVFdUzAXbFbmfUfn8DF7/cQb907ouvkWoj6CSWqoONMUfa5tK9pVrLdAZskYBGKrZ5AP/9fozozpQAPGbiF8a2gOCIehQYA5JbyfeMnURLXOwm5q+IJ9dlcd7VbwFFRwh6TObmpomujJIk5KhjVG7fXG9zUb2PvEWD0v5P6ksv7wgvpjRze9zSVaj1fB0DibUKfExZRITUUbw2XxZLOwuewZ24zvcjiODDIoZsJmaEN8i+KLAJtHN3ANr+dJSKPRnVfyUMmbR5n1eyes7q05f2OFpYBVdwm5yKTxNsWWwdbG3BrSVmgcT2H8NBu1JGTU+F27+K8pUwbBHRjTbZrVwQQtSydQIQ/G+oPPqccH5Af/+Bm+3dJ+9Bz9qdfjP1O0irwTuhNHCwz3BUtgO6V2SjkQSCHKAGaCqOMS1jt443DakreCpxByHWMjZd+pXQR3venVpzvssy9IImT7+BOoFT89Jw1fJg1CmmJYaC+c/U8qrjDvZw6+CE07f1PROTEfhXl0jX6q4th1pSVHJqW5EtI2/H4aoDv18HBHQu3DbIqHqKYPP6dOM/bhUzK14uZ4KbSXYX09gVgclgP7+++PtM+3yG5id/8h3Udw+jiM4nzgdH2haQqXbYteZPzhyPHf93iC/f+b2N3PeBKardFcVrQ0jHejorVGEvzyClHBzcmkhGbB50J7ZYxDVGdZw3AsWFK0BG9W9zJpdrpTZ/tQyNvYadlzmqaw101cmtBcCvOmwRrY+7yyenrJ6inUg47hQc94N2YgV8i7WOPwowGvFWlbxIwseRmU3OmfT2weJSjgIgz3nXk/9K09E84eg/fO+kn01vZ80TyFWpXt2N4MK+sPM7sHMB5lzt84RkvMEdaGB6sdaInGnQZonzzHckbaFmolS0o3keZnl+i0ovaRWnFhWtxH2XeaC0XOwmOlKWRlPnS8j44wlBQDx9ppz6PVzIfO5k4oX9qFRuooNFeCLtlqrwy/uEL6DjRFYDQZ3BERZLNDKxQRyh6k0elMkOp05057aZRe8CQMR8JwLIwPKulgxkzIuTIlDwOwWaCehLyRZYIH5pi+0gj9ieEidKcF2VvjwxDg1UpGEyIFUkS6el6YDhssw+ZL0FyC1iWYe4rOThpDEOvaae4O7K0mcoqKLfuJchn0WL0w8s4DxlYY7oYDcQ1E5j2hO3f6T6/weUaaJs5tS5akty0mZ6Q6Uh1SiN/ukd1O111FkuNFSV2l6ye6prBqZ9pUyWqIOM8OWnYpMR0peRuVK3bLK0+wfSisP3PysJjQvsOHEUrB5xJVSZNhLmFBchD7elQTcyw5si7064kmV3KqtLnSpfBajdYbQb/TD7SvVS6GjlqVnIxSlXFsqFcNMippp3QncZ+0M5hmfH8NV5sIctWTyWlJYQEzaqe3/kg99KwKPivzlMm50iSjUaNLJRK9uIeT3RoVJ6tx0I9sx5bqgpmGebgeAS0KKs0B87UqSNtCzkxvPCD7ul8moZiy86bimiJrxDxIAWalSGbQeNQ0pcpQMk2qrJkpi+TPy3mcM1NJlJKYx4zvoo9KiZaEh89vX+ywwxV6scP311w9vs/P//G75PmVfdonA5Iz1EpzOZPGhrmJRwG1jxbC9YTjwjyngClXqglTCbJXE6op1ZRpzJQ5xX/GhMyyUGMZ6pfD+owUw/d6rE08/Y3C7917F/3hb7XYwR6YQUrk0y3NbhlMLcQwrJCDOrWElZFlCN3sOqaSqCa4C6Uq05QCvsVByCQRWAkEdLluLyouQl01UIzzr+7xq4/f52Faod/+2Xc4//EjyBlyQsaZZmPxsK0Si1SJeU9AkiPXltmUlCxmX1PGObPbdJgpuSmRLRbPZrFWGkPf8uC0ZxNpM9J+/AI9veDiTeVPHn0PRdBvHr7Ps5+UqMxSYS50LybSFHZHpyAqNcyjzUqtcZSimCnznDGPjLX9TErGPC2tblZkVsTkxk5Jgf2nhfzFBXqxBXfK6/f53d/+DitpSaLoj+YrfvEX/pXTn36EH6yhFJpnV6xeRNbSBGmMRWVSfErUIVOmIPW4a5jnIHmtQi3BPy9xXJNcSmiYFujOnPWTM3hxFkWXEv/z63v8/tF/YMRzOu1F+cNX/oGTxwoiIbKbHQcfnLB6Zjdckyph8kaFQbFdxuaED4k6JqYhR1BL4G4Ck6Kjkia5CS7v4PjfL5GLDXLnAMYg8V/85l/SSAoYEf4f5iziKtNq6JcAAAAASUVORK5CYII=\" y=\"-201.758125\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_49\"/>\r\n   <g id=\"matplotlib.axis_50\"/>\r\n   <g id=\"patch_123\">\r\n    <path d=\"M 288.032909 239.758125 \r\nL 288.032909 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_124\">\r\n    <path d=\"M 325.522565 239.758125 \r\nL 325.522565 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_125\">\r\n    <path d=\"M 288.032909 239.758125 \r\nL 325.522565 239.758125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_126\">\r\n    <path d=\"M 288.032909 202.26847 \r\nL 325.522565 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_25\">\r\n    <!-- Neutral -->\r\n    <g transform=\"translate(284.632112 196.26847)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-4e\"/>\r\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n </g>\r\n <defs>\r\n  <clipPath id=\"p0c76f4c37e\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.957047\" y=\"22.318125\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p340eaad5ec\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"80.226013\" y=\"22.318125\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p9b3a2bfd7b\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.494978\" y=\"22.318125\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pae867167ef\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.763944\" y=\"22.318125\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p7eccc8a145\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"288.032909\" y=\"22.318125\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pdfbb326ad4\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.957047\" y=\"67.305711\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pdcf0f86971\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"80.226013\" y=\"67.305711\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pc85956cf40\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.494978\" y=\"67.305711\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pb1c64d4622\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.763944\" y=\"67.305711\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p332cf9d3c1\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"288.032909\" y=\"67.305711\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pf1d5f2c7ee\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.957047\" y=\"112.293297\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p73d9c18efc\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"80.226013\" y=\"112.293297\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pb073ac5100\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.494978\" y=\"112.293297\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p9938081fc7\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.763944\" y=\"112.293297\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p8c07e0b45a\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"288.032909\" y=\"112.293297\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p7864ebd23e\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.957047\" y=\"157.280884\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pbe320588e7\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"80.226013\" y=\"157.280884\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pbdb62b832c\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.494978\" y=\"157.280884\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pb63a646845\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.763944\" y=\"157.280884\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pd7d91dc497\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"288.032909\" y=\"157.280884\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pfffbbf4ae5\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.957047\" y=\"202.26847\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p946616853d\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"80.226013\" y=\"202.26847\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p3bac3b3020\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.494978\" y=\"202.26847\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p7cbc72bbc7\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.763944\" y=\"202.26847\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p65a85b0dd7\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"288.032909\" y=\"202.26847\"/>\r\n  </clipPath>\r\n </defs>\r\n</svg>\r\n",
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAAD7CAYAAAA8RMxAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d5ivWVbXDX/W3vtOv1TxVJ3YOU73hJ7MMDADMsRxkPwqBkQFQcRXkOcRvNBHRUER1PcVHxHkAckwwgyCpAGHCTA59XT3dO4++VSuX7zDDs8f+646p5sR+rTdXWe01nXVVVW/uO997732Ct/1XRJC4FAO5VAO5VCuXtRBD+BQDuVQDuUzVQ4V6KEcyqEcyrOUQwV6KIdyKIfyLOVQgR7KoRzKoTxLOVSgh3Ioh3Ioz1IOFeihHMqhHMqzlP9pBSoi/0FEvve5GMyhHMqzERH5SRH5voMex7Ukh3PywsifqkBF5AkRmYnISER2ROQPReRviogCCCH8zRDCP33+h/ppx/ZGETl7EN/9tHE8ISJf8LTHvkFE3nNQY/pMEBF5fbuedkVkS0TeKyKvOuhxHaT87zgnn8n7xzzD1/3ZEMI7RGQOeAPwb4HXAH/1eRvZofwvLSIyAH4d+Bbgl4AU+BygOshxHaQczslnnlyVCx9C2A0h/BrwdcBfEZG7r3QVRGRZRH69tVS3ROTde5aqiLxcRD7aWrK/LCK/eMX7/thpIyJBRG5p//5SEbm/fe85Efl7ItIFfhM4LiLj9uf4//yUPPciIn9fRB5tx3+/iHzFFc99Q2tl/LvW6viUiPyZK55/p4h8v4h8QESGIvJ2EVlsn/sNEfnbT/uuT1z5+dew3AYQQvj5EIILIcxCCL8TQviEiNwsIr8vIpsisiEiPysi83tvFJF7ROQj7Xz+IpAf1EU8x3I4J59GruX986xioCGEDwBniafjlfKd7eNHgFXge4AgIinwq8BPAovAzwNXs8n/E/DNIYQ+cDfw+yGECfAlwPkQQq/9Of9srucFkEeJczUH/GPgZ0Tk2BXPv6Z9zTLwj4Bf2bvJrfxl4BuBY4AF/n/t4z8F/MW9F4nIS4ETwG88P5fxnMpDgBORnxKRLxGRhSueE+D7gePAncAp4P8CaNfS24CfJq6lXwa+6oUb9vMqh3Py6eXa3T8hhD/xB3gC+IJP8/j7gH9AVIrf1z72T4C3A7c87bWfC5wD5IrH3nPF+74BeM/T3hP2Pgc4DXwzMHjaa94InP3TruH5/mnnaAzsXPEzffo1XfH6jwFffsW1n3/a3HwA+Evt3+8EfuCK514E1IAmWhnbwK3tc/8K+PcHPR9XMW93tuvnLHFh/xqw+mle9+eAj16xlp4+X3+4t5Y+03/+d5yTz+T98z+ThT8BbD3tsR8EHgF+R0QeE5G/3z5+HDgX2lG2cuYqvuurgC8FnhSRPxCRz3q2g34e5c+FEOb3foBv3XtCRP6yiHysDW3sEK3o5Sve+/S5eZI4Z3ty5mnPJcByCKEEfhH4i22o5M8TrZDPCAkhPBBC+IYQwkninBwH/o2IrIrIL7ThmiHwM1yer0+3lp58YUf+/Mn/xnPyGbl/npUClZgVPEG0IvclhDAKIXxnCOEm4C3Ad7TxiAvACRGRK15+6oq/J0Dnis8/+rTP/WAI4cuBFaKr8kt7Tz2b8b+QIiLXAz8GfBuw1C6OTxJdsj15+txcRzxV9+TU055rgI32/58Cvh74M8A0hPBHz+kFvEASQvgU0fK6G/jnxHv74hDCgOhm7c3Pp1tL172AQ33B5HBOrv39c1UKVEQGIvJm4BeAnwkh3Pu0598sIre0F7MLOMADf9T+/W0iYkTky4FXX/HWjwN3icjLRCSnje20n5mKyNeLyFwIoQGG7WcCXAKWJKIDrlXpEhf+OoCI/FXihrhSVoBvF5FERL6G6Mb9tyue/4si8iIR6RDDJG8NITiA9oZ74If4DLI+ReQOEflOETnZ/n+KaAG8D+gTXbpdETkBfNcVb/0jomu7N19fyVPX0mesHM7Jp5Vrev88UwX6X0VkRDSF/wHww3x6CNOtwDuIN/qPiPGE/x5CqIGvBP4aMb7xF4lwjaq9iIfaC3sH8DBPs2yBvwQ80bouf5N4Yuyd0D8PPNaa99dcFj6EcD/x5vwRUeG/GHjv0172fuLcbQD/DPjqEMLmFc//NNESuUiM23z7097/n9vP/ZnnePjPp4yIwf/3i8iEqCQ+SUxE/mPg5cRD+DeAX9l70xVr6RuIIaSvu/L5z3A5nJOnybW+f+SpoYMXTkTk/cB/CCH8PwcygGtEROQbgL8eQnj9/+D5dxKt/R//Ez7jLwPf9D/6jEM5lP9V5aD3zwtWCy8ibxCRo60L/1eAlwC/9UJ9//+q0rol3wr8x4Mey6Ecymea/M/unxeSTOR2Yqxzh+iSfHUI4cIL+P3/y4mIfBExNnQJ+LkDHs6hHMpnlDwX++fAXPhDOZRDOZTPdDmkszuUQzmUQ3mWcqhAD+VQDuVQnqU8UzYmAHoLSThxSjNyOVvbfQBCFpA6YliDCRAE8YAHZUE5EBcggAQgBIISghaCIj5O+9uHiMgS4nMi+4+LC/F5ILSQ2ZAovBamW2c3QghHnosJuVop5rMwd6KLELBBUTlDVSeoqaA86JlHGofrJjRdIPEoFdDKk2pH4zXeC769qBCEYBXSxM9XNv6IDajaErSK123a+RMiSm5vTtr/y7WDmxMAU3RD1l2M914Er/fuP4gHaUNHQcn+uFW7TvauSQLg28cIBK1AxblACeyFnwIEIwQleANBt3PmLo8nCFSTLWw5uRJw/YJKqotQpPO4wuA1+LR9QtpLVICOFy4C0v6GQAiCSPy9J0rFuYnbSvBe4oV6wO99aJzHvfnQpUeqmno5546VS5w549jYcgc3J2k35Nn85Qfkivu691DjwbU30/uoQ/ZraPaGfvl/2fucvd97n7m35v5Y2PLp/wujsPWM9s9VKdDusT7f+AuvpvIJv/RTn49qwOXgMiiPOFDQf0RjpoFsN5BvNrhCY/N4MaaMijBowWWCSwUzC6RDi8sUPhHEgZk59MziCoPLFQRQtcdMLKq0cR5zg9kcQwj89ta/PLCytcHxLl//s5HK8Nxsno+cOwmf6jF4FOYfmqInFRuvWGDzZYHk6JRep2SxM2MpnzCXzPAhOgGFrrFBs1b22Cy7DMuMqkloGk1zscPivcLgiRpXaNLtmsmJnHogNJ32wGr3TjCgGrj3337HgZbyZd1F7vrS/y8uFXQd4lrJhHTkCRp0GVA2INZTLRhMGcg2K0KicJnGG8HlCnFxfajaoypLM8iYrSSY0qPqgO0omkIRNCTTwPi4oh6ArqB31pNOPC4RfCJ88jf/zUFOCYXu89o7/gbbL57Da2FyQnB5IKio9G3XEzoOXTi0cWRZg1EekUDVJCTa0TiNSGCuKAGYNYbaGqoywTmFnxmkVKhSxQNEQbIrpCNIdwPzD09JHrvIha+4ibf+/R/ka9789GrsF1byfIFXvvJvXX5ArjCkAF1a9NoO1A2haQjjyf5Lg7UgKh6me2/XGkkT0BpEkKIgFBkyHBOsJVQ1oa4REVCK4Fx7SHtCa6CJEn63+YVntH+uSoFObMovPP4Kph9eZvlxh7jA8HqDzaG4oEmHoKtAselJJo6ghbqnaLpRYSobN5KuAqaMP7ryEKA4N0Zqi+vnuE5CUEIyrNFThSsMQYHPNOLiRjI70zhBjb2aS3heZOZSZi7hkZ1lmvNdeltC91KD2Z0xuXmezVd4imNjVgZjuklNrhsK3ZApiw8KjzAwcUMUquZoPmLSfua4yThfDNiSeQgpyx8ZIo0j7Se41OAScAWoOp7FTQfueNPD3PtvD3RKEA/p2FPOa3QNLoFs16GagE8E1XiSYTSzzcyhagfeo3Yt4UgXn2iqgaJcFPItTWfN4pOUpqsYPDZldjRndMqQbweKTcvwesP4hCLbjt89udEyW1UMHjMUGx5dXSPJUhGCREtZV2A7IE5QFlwhBCe4WiESqGuDpJYAOKdwTqF11CyTKt3/yKbRUXlWGpwgjUTrXUWrU1n2LX9ECNaiK7jkioOYgadIgOhN6Tjm6F2Az6JhYbZnYB0YA3Ud36RUVJDOIzq+TuYGUDegFZIkhKYBrQm9AtfPMVUNVY1kKdLOASKIMYS6dfeCB1H7ivSZyFUpUHVB4353mROfKEnP79KsDkjnNUEJ9RyUS3Dk447uEyOCUvjCYLua8UnF5KRHAuhSyNcUc487ikslelgRchPN7MZiTq9hshS3Mo80Dj1rkBDwmSaIEBIdLzDEU+paUKCVNzw6XGb9zALzjyjyTU/x+DYyLbn46iU6x4ecmNsl0Y5BUtI1NUo8A1OSqwYXFIk4ctVQqgSAbdvhUtVnPvVUXcNkNWPnzg7FVo/e46M4l3VAPKhmz38H/+IRX7v6Id5+gPMBMWxjpp4kVZipJ59FF8yliu6jQwDU5g6h1wER7HKPoDQQNxQ+hnFGt1mmY8V4OyHbBQJU93SZe6xh6d4KlxuyS2O6901pTiyy/vIuS/c7Zhc0LhdUEzeDLeSp1dMHISHEQ8IFHNHbUrUQNBBAzwRVG2zPYb0QWs/NeyF4RQDSJK73sk5QKoaDbGMIVkXl6SQqINOujbr1UIghEmnifaj7wvVmdgCT8FRxhbDxkgyfgE/A5QGfAAKdC8KJsx6ylGA0Ym105bWOVqOOSlJ6XZgfINNohIQiQ6oafOvoK8HPdVE2XnvQGqUUfncYlahW+Nr9D8f4J8lVKdB6TrHyoQnJhR3CzpBzX7NKecwREg+pp3gsIx1acAEhWoo2EyanHOZIibOKpjToWULQINajJjPYrCDPCIkhzPXjItsex5PGaFRpCSJgVIxzZQYxCj2q8P2DP0W364JzG/MUZwyr791ldGuMD49fdpzmVM1yZ4ZIIFWWTFsS5TiZbdPXJUo8lU/o6ZJULDuugybg293eBE2hGyprODNKWb8nId/KaHqKdOSo+ybG0iRaG2lqGfqDnxPxAbGBZOww02hhqsqSDWdI3eDne9GqSBN8J41rIYDtZ0yOpeTbjqChc2SCrMBkvUM9NOzt+aabkm8lZLse6JGkBtV4jnxkgu0liAtMVqNCboqD1pyXRaYVycRT9zSqieEWmwSCBp9Edx4AL3gnONGkWUMIHmsVSgKN060uVngP3gmhUvsp4SCABmUFVctl65PWPRaFT6Gj9IGfKfliycu+5pP7HlkijkI3aPH8+r//3GiIzXUR58AXMXaepYSy2rc+GfTwvYyw0Il6AtDTGpmUoBTeKEI3AzWPGk6RpDXYdomHmroilx78Hx/knyBXl0Tqz7jw2V3mH82pu8ep75pycmmX0hp2xwWdiynpmW2krCEx1CcWGN6oSFbHaO1jgiTxlxeJEkJi4qQ0FqkbSAwhTcBopGqiWW4TlBacTkAL3ii8jopVxgd7igaE7aqD3Um58Z1T9PoOybEO05sWWH+pYWl5h15Sk2pHL6nom3Lf2uzrOPZc4oLpqAqFZ+oz5trnXFD4IHSSmrRfU60K5z+7YOXDdUwONFFxBgXeQHXvPO9auQ141wHOSjwczbhG1Ro9aRDvUVsjSAx2dR7bSzGZIRiF2ZnhiwTXS3G5ph4I6TiGfbT2HB8MWTOWnaJLZRV4qJYV5RFNuqPJdhT9sxo9cwSjSIY1Yg1Zrti9SZGO2LdoD1RCQMoaXXp0rfHJXkIt3jtgP5GkO5YktdgmHgIiAa0D0zLFO0WSWkKI82NSi21f431UDmIFfHSLVWtc2Uxw3QQV4h48ePUJQiCRpyqtmUtYSKb0z1zOd0iIVmPo5gSlULWNukEEN9+hWs6ZHjGkY0/TVWS7GcUFE+OjWhDrCYnGzXXRu5OoOLXeT06JEsKzMEKvSoGWlwpsF86+2aHSmqOLQxqvSLTDO8XCAzNkPIU8g7Ji+44C8+pt7lm5gA/ChemAizsDbJ62mfqAW+yixjVyaRO8Q0wXtodIr0NIE6SskGmJMho1KnGL3XiiZAnNQo5J9NVf9XMoAZjUKWakSU5vMHzVSWwe3bJ63rNgLJmx5LpBSyARx0IyZTXZJW9T7U3QKPGk4tAqoCVwqYkEU31dsm075NrSLSrq7Zxy2TM6mXDlugsaEMg3hft+7kUv/EQ8XQLorTG6jVOHWUkY9LBH+vg03rPRjV06azUhNdRLBbajcInQP2dpOoq6D8FqVooRAI3TTEY5SWbp5DWJcWxu9agu5tQDQ7GmyXc8tsixhdC52LBza4btsI/uOFBRCpwjGTXIahIz6ArES9SiQQgq3tS4vz1JEhVlL6/QEqisQSuP8yrmPtrsPESLdO8aVRPjqntJe/HRyq37CWm/R7Ee+OwP/VUeHv+ng5iJp4iSuOZ9UDgJaDz3j46hao/vJNEF3/M4c0PQCq8TyA2ulzJdSZke0VQLkEzjwTQ5biiWehRbDjP1eBNPz2RYE1QMa4gx0cX3PoYC2vEE98w16VUpUN/qquxsQr2oWTo1JdcN67Me/lJOev4iGEPY2mH2utsZvWnCN978Ic5V82zVXRayKRumS9l3zJY03Sc9aqeMF7A4B85FE7y1Qn0nhU6G3h5B3SCzCmNjskEv9PGdBJcdsAINwqxOUA2ELCHdtdg8YXJMEZRnVicMVU6nWzOXzFhKJvR1uf9+LZ5ELLrVhgqFQ1hNdtmyPaY+ZWIzUm3pZTU7hUUmKeURIRlBtQAui5tD14KZxljSgUvwsDsG72LMOk0gTWICcHtKdXxA0xHGx1O6SvBGmC1qkmlgeExTzwEe6irhieESrlUUynhCgNpqjPYcWRox7tZMFgpckVIPNIMzjt2bFMVGzHIjbUz1gBWo76SEukZPG8QFlIuKzicgFtAgViIkyyrKMkGIMVAlASUBoz1aeRqnqJoE7wVjHM5qfKlRU73vtiO08dCIjlIWbEe1iSwI71pADQ/aLBdsiF5F0prKSgIfv3icYzYQTERlzFYS5i8MITUo58B6muUOk2Mp9SDmYGw34PLWmFBxb4wnhnwzHlTKBvpnNZ3awqxGOgVMZwRrEa2vSB49Two0GMg3wGuhWg7UTpMqS+00vdOKMByBtXBilbOfb1gebPFLT9wDwGSW0VQGP0kQK0xXhPJoh05poapBq+jiDMeEfhefJUhpoT05pIlZszCaQFOjJjPUfJ9QpH/SkJ93CUBj20U7mpA/VFPPnYwKNQlMZhmpcdENV/W+oly3fRJxdFVFR1WkOBKJLkuMgXrKYJj6lELXrJc9aqcpehWz3SRi+qqA7cLLP/dBXtI/x6PTIzw6XGZ3lsO/PMBJgRac6PchIjgHVY0eTwFQtkc28jQdRTVvmKxqmgGMM8EWLZwkQJbXbE06NI1u3ViP1p7UOHpZxUI2ZZJlDIuSrX6X0VqByzVBwfh4gjctQkE4cAu07gnUgiui9yC2DcH4NhPvAl5A1QoPMRufOUQFqtqgtadqDDOVxEOkSmIWu8V8SqUxk6iQ9zGgzeUwAUQjKBQZtivkm2H/8YMSH6DxGqUCLkQ8tEeoHx1gRjHJM76uYHRSMXikoJ7PYliicuzemDE9GpODthNwnbCPQHBZABMIRrBdIRkLqhG2O4Zyfp7OWkNxWrUhwqclouWZHypXp0AFVBPQM5BGMW1SXFDsTguyaWD2yptIhjX1QopY2Lh3hYX7QDcBu6pQPagHATMVsh1oOgqfG1TdILvj+B1lCc6jtnZAaVgYxAzcXra9abNr0ymUJZIdtAIVbKNJGpA26RVUxDnqmaKpDE1H0TU1ro3yj1xOFQw9XdJVFaVPQMV4pxaPa3d6Io5MItSpdIaqiZsopCFi/AIc+WjggbU7+PCrruPrXvRhXjP3GNu2yycOcE72RLIsuq3ex5/JjFDXYAzJhSFq1qFcLaISXYJqweNzDwr0RBECNLUhyxs6eYSwZInFKM8gK1nOxyTiURLopyV3LKzx+MIS548McI1m/XqN3olxsKAO3gI1M2BpQNBxIMq18ckAPo0JJLGCrkCGGluAm4cggdopdBrxodYqlAp4F5VHNcyQUmPG6rLiBPRUUC7CpfbCPTHjH+JcyGWv8qAkINQ+hrBUCExsRj8pSbfjHI1u7LJ7o8J2Auc/dxDfo+K81XPsH7Y+DYQkXleEa0WUTtCXcwRBonc2OyK4LEHZAXlZRwzorPwfDfFPlKtToBpmK/EGZ8fHvHz5DCvJiHfJLWxVAy69KqGe02SbCjvnyFam1Gf6HPlESbZt2Lk1oTzqyc5rlu4vcWlUKL5XoNIEGgvzfeqVLtJ4kktDZFbh53r7mE/ptX97j9/ewW3tPKsLf67EB8FWhsF6zOZNb18h32poOlmEqejAfFGymEyY07OYFELIxLJqdumqqBi0eOqgY6craZiGjKNml6EqmPqU+WzGpVEf5xTJXEVQhmLbIy6Qbwr23g6/9qHPYXSb5YabLxE7Ph+ktK6z0SAmxp1mVTwUffQ0tPfkQDhe7FcZoQPoiBUNacA3sYQp6VSs9Mak2jFpUlRrOvWTkmP5LgCXqgE3Dzb4vNWHAFg0E/7N73xJHM1Bxz8BFDTH5iM0z0cYWhP28I+Xx7hvgXtQY71fmWULTRjU+y57cIpQasxQx8q/GghCshvfm4xbXPaWRzzU3Vi5FxKN+LiXwwErUC2BVDl8UMycomsqdpsC240KcOcWTb0Q52N6fA9KAK7jLx8Wvq2+su1celprjxZoCkG3MY0Q9VjTFaoFQ9bJkVkZ454q4kLFKXiGuemrw4G2LsfkpONFRzZ4YOcoW50OO2VB/0zN+FRGttUGa7cU6cN95h9rsIWhuDDBZz10qelessyOpFQDoZo3cSF1hNmyQjyYaWB4M8w9UrDy3x5DnEOcB+sixsu6mGHs99DGRDjCAYkPQig1g9MNYTQm2yyR2lLkGvu4YWshoTjRMPMpU9/QUXVMJJkJA13SVzNyaUjEMfUZZUhwCH09IyFm66c+ZZYnnM/nWB/2sLWmsLEsD4kgdWXjwpm7zzD68LVBzB/yNN4375HKEqoqukfBExqHVA2qsjEcMQPpCnRBZTHkIUmswknTmFwLQVAEjHgqZ7g0HWC9JikcN+QbJOLYth2WkxE+KF5VPIY+OiMMuwS1VzN8gOLBpwoz8hHmFYRs16OaiDjwSSzvDBItR1UTrcQEbA62ESwpPncwMUgl6FpIJkK+Eehe9CQjC0ooF+K+MjMfgeqmRWqkYAc56TDQOOFpCfAXXLq64jVzj+97XZVPUOJ554nb9l8jNoYP90q8gw6oSsXS8b3QTIiJuKBatEWIONv98EWQtsopWqQI1D2FnS9ItnZjEsk5ROuYnX8+FGgy9qx+sGLrjowHFo8iAhe6fUabXW5IhPqOGXI2p3NBWHzQk2/WzI6kdC5UbLx8ju07o8vZOT1heFuf3jlLcX4MItSLBbPlDNuF+ccs9XxbO17kyGhKqGqoKsQ5gnWIVogx0O8dqAINxMqPdHOGdAr0hS3CaEx3q081f4oTN2yQ64a1ssdqOqSjKxb1mBUzYlGPmVc1mkAiUKqaHZ9ShiRCmwjgYF5PIYfZYsoHm+uoZjFL5DKFhBDLN21MFijApQetKaLscRcQQoyBupYkwZh20Qdo69/34Fh6V+OcQOIR4+n2SozydNNoqeemYSmbYJQjEU+hay5VfWYupWsq3nfpBo6d2mXZjDhtF/nzL/oQP//457YDOpBp2BefEA2GadIWlXiyLYdPY8mqTxWqCSSjBlU2hERjOwnNQFMNNNOjQonGBjATRb4m5FuBzrql++gOshvLFcUYsuU5CAHXy2gGKbM5je1E5VzPJTHZYg5+Tow4VpOduNYhGhBB+Pw7H+R095b4oivH2CrMYJ4WvDWhtTLbePIMkqEiGUeL05sreCVcW/Ys8UADkMRcrohPnrlavCoFKrUjOz/k+EMzxJ1i/IYp80XJKHRRtSd5uMDdMWbuZSPOXlxAreXkm0LVL0i/9hJfunyG3x2/it7pZL/ULCQaQsBMG46+v8EVBjNuWPQtuYQIYTzGz8p4OpRVuwElWjT6YH0Q2Zt2D2E6w992HWxsovIlRtcrjiUNtTfMp1M6uqKjak4k2yypKUoCCQEtUY/kEphXNU2I8d5JMDRocmk4lWzhC0W1bHj3+CZ8ChLCfhiEcFmJmuk1UrbY4ntDEwP1oa5BxYNPWqwvxI3scmLGOAGMRxJPljcsdmZk2nKkGHN2PM8HHrmBUGvQgbRb0y0qOmlD7TSfd/xhtoYdPjo8Re00kyZjIZ/SHKsxlw42Vg57sTna0mTBpWAmxHJmQILHjBuSxy7ihyP04gI6T0nzjHS5g/iYcUbA5R4z1cw/WpKe2cavb8Y94RwyP4dMqzi/AXwiND2h6QrpMFDNx/JqW/DHeTReYElwrOgRqjWFNZ4yJPylI3/IP3c3k4zB9uK6DioqzmBCi1YIYDzYNvarA1IpsjXNwkOedNi0LrvsW6+zRY3tRst7n8xlD0ivFKRJNNaeoVwdjCkzDO9apPf4mHQUaLYzzl1cZe5xBVIRVHS3BlnJ0tKYDaeQ9ZSNz274xze8i9P1MvWCpzySMT6mqJaEoPu4LOCLQOeM5sTvjwhaqOY1+bajPj6P6eSosxcIZRVrWKsKivwyQ8sBSiCCliUEZHkRdWaNoDXlTUtM7yzxQRjVGZ+z9DA/+eBrEYG/ctv7uH8c3ey+KTmaDpn6lC8ZfJyuNCgJ7Pickc/ZcV0uNXNMfcpG00NJ4JbVDZ7IemQbNdVyiliNT2NCQFkOPK4FxAVdVlF5hhDjnokBY5A8A60IRmPncyYrEbuHj6W+NlEEFRNIF7YHiAQeqY8QNjPSHUXnYiDbCdT9BNV0cVVgcr3iN16V0i1q7v2NO1BNjJnpY1O6cyXlZnLQugJxEcGyl7wJqaBrTTpsSC4MYXcE8wPoFEhVE6o6upVlje4k5JsaZaP3Ebou4mldwC31kX4BZQOZweZJTM51FeVCVJzB7CVRBF35iBLpHXxxgZLAvJrt/53g0RL/H91YoKsQk2FVVHgub8McJnouWIVUCl0K6a6wfK+lc3obgKAUdj7Dt+xlqg50LwWquVisYXNhcizFDBfQ51xMShvD09mg/iS5ulLOBTj/BrhhWGA7ghlrumeF47+7zsZrlslessN4nHP/+BjdfklSNNhXVfydF70bLYGL1Rx+rmGymuIKYpax55DCkRQN057hdNan6QV85ikuJOg6YfBkxtzGNn48iZ6f87EOFhDfXM0lPOfifSyX87lBLkwjkQGgGk/+UM5js6OoqeJtTlM93uf6l51n7HJmLuHStM+5zTmanZz5Txg6f7PmlZ3HyFXD+WaBjqq4b3qCtz74MuxmgVSCLzx60OBXHS7XkS4vaHQJ0sJX9srZDlYCYTKNHoJWEFyrPPOIVGixvrPVjHJZYhnjHh1iEEIj2DqNlvVM4QsPHUfVs3TPJfSfmKFHFRiF7WfMlgumleG2E2sM/7CDqhzj6wrMN45ovGKm+wftrcbkRUcoQkSmVLlitqjxiWDzBcx0gJ41MeE2141kII0jaI1PNfVA4/KA7jco7agWE8ancor1BjNV2NUutlCUC5pyUagWA64IES5lwYwjM1Yy9fgklpIeNIzJ4JlTDXqvAICYD3IBtm9XrH7Ikm8L2bbFdjXlgqbpKMoVqBYd4gVVCnOPQL4TyWpmJ3s0HYUtVNQxaYu1be0tXUdKTRSUi4r0WJfepZ3o2SYJUuSXu8b/qeO/GtGBzokxT3x9BkNP90nN5LVTdi8uMVsWmtqQFzVae5xTLM2P+eLjD3BDusE7du7i/GxAf2HK+LoUaE3xWoEV6lKjBzXzr72ElsDWuMO0myNTjZko5or8Ke66GvSjy1I+O/jBcyXOK3wSWHtljxW/in70HJJlpB9+hBsfKAiLc/gs4cFvXaK4IbIx/ebZF7G53SMvarLMopdm1H/G84HtG/jv67fxAzf9FzZdj++770uZ78xIEodfqOh3S3bWe+SfKMg3A/mFMRfesLQPlt6DplwTNNnO46sKSVMkLaLidI7QyWOFWWNxcznTlQhRaQYeNBGipgN4QU8VeibR1SoVyVDRPReYf7QmGIXvJKiyYXwyY/cOy6tOneWu/gXedvetLN5f0TtbMvrJVdb/bBldvgOeEm/Adluavra0tOkJ9ZwmaN3ydeboKlI/KhdQTYSslYuauhctMdcmRVwG4xOKyfGMZJxiO0LTjYBy2/GEzMdwyFSjRgpdgy4jFNFlrfXZPVgvTgG5QLJXw94ecyWehVdfIvutHoX1qHGJVA29LCFkCdVywbk3pjRzHp9B01WYUmg6BnGBphfRQkv3Tpmt5jSdSJ9Zzwv1XPyOPYVqOxF+KElC6HeY3jAHjz2z8V+dArWKflHy4y/7z+z4Dv/0kS/jrv4Oj8zdzvhmy0tX1+iYGhsUH378OppG81vcye+p20m0YyGbcnJulwevy/GNilUllUbKGKtxlWZapUynGbY00CjMWJGO4tJXvW6MqVVV3IhZihqp2BbqgCR4wfcdu69s2L29w+InbmflD7e49PpFtl/iyS9GqyGfHzPolNz76Eny0yk6DdQmp3f7NrU3eK/5+MOnWD46ZMdH6FJz/4CLNyX4rYy5+zW6KVB3BcoVz9L9Hqqa/jmLzRXTVbXvuos9aFUB1fEOD/6TF7P63w2LH9smWIfvZGBUZAQKmqZnqOcEV0RsK5mDWqEmGgmQ7iiSYeT5nH8kluBV84aNF2eku4F07LG5YnxSUIMqEm0EzbGveoIzxQ0QYOFhi9/OSGoOPOMcAd9QLuiYfXcx/msLWq8rxvZi9lgQp/YhTnvEI6qOa26vHDEY8OoyJtLnPh5AJoAKkaHJCnoqmEnAVIHxsZiDMFM4mg8PdkpEyEWhRPAhoERI0Gz5mr978zv44Zv+PLqB6ZE+tguDxx39xydkGzOy7YxmACENNH3IdmNcWTXC5AQ0gwChE2O9EmOhLo38xRDxsdjIERC6BeI81dE+uzc981K+q0siWZjLSvqq5u604e13/TR/MDvG91x3O6rXoMTzyfWjjDa6EIT0kYLwSAdrITSBM13F6DpBDQJyasb1K1soCWyMu/ggzGYpw0s99DjiIXUpdM4Lg8enhOkMSVPIcxTEmvv0GqhZDJD0K247uo71iic3rsenhuHNYJZmvOgl5+knFUY8H984jhoaypM1yUbCTa84w+mtBVbnR/ggbJuCv3bTe5n4jIcmR5l7GHZu8chYMTkZIRuqFJKRMDyl6Pz+Gt1uzvaL5/azikGBXANZ+CBQPJGyfWfAVPMUl2oIAWU9ahpJP3yq8CayEIkTQq0gCYTlGl9qZFNFYu4dx/atGdNjMX5Yz0VcY7qtqec9PvMoYb/a66beJg/cegIElr9ojTtMw2PvuuGasMy9hvFJRb7lIvFFR+P7bUY8gOv6CLlqMYyqUq3yi9euG2CUIEuzttoruudurxVBAJLL8UE1VehK9iGIygYmJxTTm2t+9A0/xfe842BDYAIkolAotBIM0QpY1o470kts3AP9JxSqDsw96tm5VdN0+nQ2LLMjAV0qvInwpWou4kB9Cskw0gMOb470eHoWMa9BhRYrGstZY3ijBePP9RidSqPCfYZydQrUx2qZMmjAs+XhVLJJuGVKaDQf/dQNmB0DPcepm9c5my3QXMwYPGlxLcFGuerIjk2pLnR4rFzhhlPrdLKasjFo42naaoJ0V5GMoHvJYXZml4lPlUeWFuKAGkvYPdgTlNadet3iY/ze2u1UN5fMTnSxA8ephRE39zbYaQqOZkPu16scvWONaZXSP1VxvBs5QntJxaVpn1MLO2zYPvN6ysl8mz+4A248ssXuYMpwmlNe6iK1EKatW3vLdWy+bH6fyWc/IXDwBijZbmDpvkhlhwjbt+fkO558o4ldBbzfj00B+xAUmsh9qTqW2e2OcjnF56AntAz2cR36JFDeVsZr3U0IHs6N57izf5FX9h/nd+dup1kvKExDrhuqEzWmc8DKonBk27G80OUK3ZKKJ5N4P10mSAMhiyDyPWtU19Ed3YPjYIU0dTQt/EvXMZs/PQ4+Z9/qxPOUklHdJpe/96/8PF/RW0OhDjwuLAiJRKWp2hPO4tAIR7Vj4Y4t5N4lTBnpCav5QL4Ow+sM6a5Qz8dQoMsD1gpmFi1Mf4Vm8wbcgo8xdi+YWQyFtAOIRQYrXcywivCuqzhor86FF7hz7iKnTMOWj8h+TSAvasabA8w4xlnsfGDWJGjjGV0Ps5WE2XUN2dyYl7Ru/h8Nbya5mHB27Th24PbxXdLEutVsC/ItT7FeE5RCspQwHKHm56iuXyJdnyDDCb4+2E2BQDNKaYLms5Yf59KwT7mQIY3HB6HyhkFLYbdUTLm1t7ZPpAywknWZ2Iz1WY/PWnocgInPSMTRLFu08hzv7TKtE+jaSOU3FWwhcV7aE3cPkhE0yMGGhYEYuL/0akX/ccX8IzUEmC0plDUkW75Njsg+IbTX7AOjVe5YWhgzl5ck1zl2q5zdacF0mIMKzM1N6WQ1ziu2hh2O3LbDHfNr3Ld1lPW6z535eb77pb/Fb23ezUo2Qkng4aUjbB9wxuTmzgbH/z9P8Mgf3EgyUvQuNCRTFd3KVAgqYLOANCpmdyQq0WyLCHzvRSZ7MxFCiPXf2Wa0pJQNdM4J06D248lRAQuqZbyHiM09YoYoFB5/LZy1qKep8kcay7c8+Bc4+9AKxQVN33mGN8S4cb4h0W1XXFZ2IRpnLo/tgrxp/zaRZCfoKwD3EiK5Shm/L7S9ulTlCLqFd3Wfpyy8T+BFnfN0RHPeCqs6Bmbmi5JxGGBKIdsEM00YXVgm2WvsFcBsGuq6w8e3ro8fFuJFDJ4IVPMG22mxgB7SYbRg8m2H2ZxFFvosQfKc+oYjzFZSskfX8JtbEVt4kBIAHxXlDfkGRdowPSaEjqOXVsxcwnI+Zk7PuHtwnkxZbs8vkIjjsfoI1sfj7uWLZwC4WM2RqcgPivE8sbnIdYvbZMYh81OG6z3qJUe9BDt39cm3HU1XX47vBWIjtwOWICA3TRjdCKMbuqx+0DNdUVQDTbrYIb0wJB060qEiaMF6wRctzs8J41kWac6UJzeWU6sXKI43nB4vcENvi90m51Prq9jKsNoZcVfvPJtVl/dfvI6X9U6zYoZ8zsLD3Jyu8S8e/2LGl3rU9urshedaUhF+6Za388D18OHyBt76195EaoSmMNFCLAWfRUSCnipCEsi2hXzTM1tRbXwv7qnZKCcUPoZBUtCVIDbSGapaYzuxNlzZmDgSC6aM5Y9NMMAB75tPIxZHGSzfe/otTH/pKNddsAQVGJ/Q1POxHZDYFgaWhv1GhXtogqCJ/DVpwHU8IfWxYtG3yrkt64wwsoAo2e+91PQTgmkxtlcBGb6qFTXXm/K6zqPseEtHCVoEHQK7s5yQBJIRLN9bsnVHRlCCmYCZBXQF3QsRl5XveLLthmohYbYUsDkk4xgDEwuoGChXNmBmDtfPqBdTijMOZTQo6Fyo8OsbsbveVTCnPC8igPE4FKlYplVCSID2pvmgmLqUY8nOPuP2RTvHru2waCa8vPckI5cD8Hh1hK6JYPupT7np1DpPXFyiY2puWt3k/HSO0y0XZACq+QV652oIOmbgVYyx+eSgHbO4oJvKoC9mnHivpenGRnHTo+CSjHxpiaYb752qBEnb7q4CodbMbE45TWOHUhXYXiy4+8gFbp9bY+YSHtteYjrOYJzwibMn8EHxpiP38+/W3sh7dm7hxf1zrJpd/vOl1zGuMpJtTTi45pNxTgAtwktSxfXmYf7/r/9zLN3bkE4iDZtPpG3rES1zPYlJtKYbN7qu2/ubARODmSjERutUHNhOtL7SUUyYeB/nVs/2svotpdse7vKacOHZH8XUN/zy+BYe2VqmqGOvLJ8oVB0hV7bTBn33Yv2t9yJO2oNF9uPC4mJ/KRQEc5nLMD5+RRWWApsLXpvWwo2JvGcqV6VAM2Xpi6UJsKoVTfB8rDrO5NE5xMR63YuvyZncaCFAftHQDASXhv0M8Wyo6Z5XdNYsSSaMrleYyHAWs5K+VZ5lQE8apic7jI9rsvUEdoekD0GYTHF1g+51D94CBaTUbFQ9HpFVlArUeYAmAugnWcrAGHZdrNGe1/FijyfbrOgRO77DfdMTOBRrVZ+5ZEYTNH1VUpgGP06Y2thg7nhnF6McFycDKmtoVHQ9dA2NXIYyHTQ4GmIcKowNZiKs3ZNEntIUJjc3QIIr9D4TkHKQTIRQRio71yHmQ1IFiUenDqM9G2WPqam5MBlgvWJhYcw2Pdwo4dxojnylobrQ4d27t/GpY6vM5SWPX1xGzuQx+XLwhjkAHk9HEu58y4NsfugGXK5IxjEeHDvWhljjPmpr1ztC77wn23XYQmGmGlTsfttZtyRji801w+sN9SDGTZNJBO2bMqIYkmnY507oqxpFeo048FGi9en5lQv3kL19nmIzXlPQgqkCYhVBty1P2vCGmql99iWxsm+Jit9j31Kx3ZAmktS0uTXlZd8zFtsq472qY3V1hShX58IH4eFmgZuTiPR/pMn53k+8hZO/51h/aUK17HHd6Cb0Hjd0z19OFEyPCeVRi7++oXwxjO8r6J6PV2Q7LZmEBeUhHQWKSxV6a0wyn9FZE/TOFN9Y3MbWPmP0H+/vfDASUs+F2YDFdMLNi5vcl80BUDYGoxyVT9hoelyXbdJVsRb+iJry8eoE7xvfDEBPVyynY5QEbkg3GLqcjqnprY65Y+4SSQtau74Tu3a++9xNbb94v78Y9kh0p0cPfl7ExgxydXNJsIri0ZRkAkmvZnbE0H8iLvgQqzLZY2fX0hIK6/b+NgpnFMNJTmM1PgjDzS7UCunamLkPwo3zmyyZMQufVGRDYeeWI0wtZNJaZC1V3EHLXqIE8dzWW+N94Xp06UmFaG01lxvg6SpgO5FYJB158vPx8O2cN7EcVC53NA3SWq1NtK7ERRSTuHgv9sI6ydiSi7vmlOfI1/y3yS088uHrODqMfrXtqvYaL1ud0WenhSVFw0zVV9zXEEMWwcT+8C4ofOb33XdpVOQM3SMZEa44yGPpuH++XPglPeGEGdJXwh+V8/zQk1/I/Ft7dN7/EObWO5guNqSdyN242+lQLWYRt6YifECPNC6A6jfYTkDXge4FKBdln97LTKFYb0jObeHXN8l3xxRa4XciY4ikCUISSzr9QQP7ABVILxmmN6Rcl22RiOO+k8eQrYzxNKd0CUVbNRWJEuIGen95A+/dvZUvW/w4v7T2KmyqmU+mnCvnOZctUPmEx3eWqGvDVt3h5YPTbNsuLigqn0TkgnCZvmtvURm46VVnnikO+HmTdOToPaEYDhRZv2J2SqEfMfhzBcEEdB03ti0uU5BF1nAARdP3MQnSCMElVLWmMikEoXgipTziCNOWat14UuW4KdmgnhMWHyzpng0k2zPWX70YP1OuARwo0frck0RctIJ8QNWBbOgj3ZwOlIsxNryHOigXNOI6mKkjKEFVsZTTdg1+kFAutbwCcpn/c8/NlRbqpOr43R0J14DzHsUTGPmas9bwfe99M0sPxjVR901sfT7z8WeqqRcuQ95w0rY69/gioBqDsm27aB/1TVBtp9NSs9+p1O0xXbXIh7TlaQ3st11XV5GXvioFahE64rjoDD+3/hrOvfMU1z28Szi2wvgGz+pqVHK5scwVJf6oMMhKTnR22K47PLK1zO6wgx8niIug1mLDoWuFS4Vk6sk3G9LzQ/zmNn5WopxDjq0i1uI3t5A0IVRVJKS4kkHlgMQYTzPvubA94LfTFzGzsZQzmICtNeMmYzmboCRQ+YQd16EJmrP1Il+2+HFyafiy5U9wqZnjwekq5ydzvG3yMh55cpXugyn1jRZ7Mm4OFxQ7TYedpmBzt0u/CbFuV0BVcfPY+cDNgw3ecbDTAk3D4qdqknFCPZ9y6kvP8OT8Apzpkm7LfkuLdBxwezRuKlpeqgEzE5y/IpY1k8hWVEfqttmNjqRTE7zCDlM+cPo6vm305/mn3/Sf+Wcbf4nuRXuZhT1pEwzXQGhj3wIFjqU7TFdTio0mYj/bbLLXchnT62PlUN0XbG5IJhplId8WvBbKRR17cLVWZzLicj1ku7tj9wKPTxTNwJCL7FugB71/bAicd5p/cubNHP09Q7koNH1BlwGXCpNj8SK8iQgdUdK669ENN1ONngnpEFQdIWJBYot1sRECRptYMtOIGVVW0DW41uDwpk1CiUSawauIlV+VAt1yPd46eimrZpdzk3nKo47Rzf14s3Xg0pkFpIiWQbITq4vO9j33dY8jOhBmGj3SFDuKYj3GOX0qpCOHnnl05dCTGpmWBO+RxKCOLNMcXyA562FrJzKmiAKlCM6jlhdhfFX37DmVQjcs3LDN1rl5nvjIjfTOepYF1l8BZiFCcLbSDkYciTjKkFC6hDk9IxHLveVJdm2HnaZDpiyfv/Ig79++ASoFr9nlSFbjES7U8yTi8Ajrs17sE67A9lNsTuvSwMpLLrGaHjA2FsB5ikc32b3pKC6FRx84zspNm1xaSsm2U5JJQHzA5pFIWTWAhJZqLFYF7LlWuoJ4gULnYtwgeJjrRbzWDtBMUy74Od69fBvlW3ap3znPyscspgq4ayCptieKy8rr6/qP8i/+bMVNPwYE8JnQaIXL2OetNGVAV62r2oTLjE4tC5epYnVRUO28EBWPyyA48EbQTYgEIpXjzNcLuVwLbDNRHMIfTm/mk++5hd58ROJEHKfQ9AO265G2QZ5yQCOX450esm0h3Q3tISKoJpJx55stRK5NSDd92QfIi40hQ9uBYNlHrkiILvzzhgNNxLHddBm7PDaA6jV4kzJdVeTrkZ+yXo4XaFqSV10pgqT4NLoR6SiQ7jYko2gnB6Niz/DGxwVgPWE6bUHzQujk1HMJZitHEtN20osWKCtLzG5YhCeu5iqeW0mU4+Ur53g4q3nSLJOMU7oXHapRJImjcZrSJthUU3lD5ROaoOnpkk/OTrFrC5oQ3fdcNVyfbrB8ZMTNr9ngHWduB2C77AAwl8xi2SeCnRqyYWByNMXl0R2ZHXN89bEHn9K07sBEhHD+EkffaXj0Ly6DwKUL86S9mvJFjsETGaaMde8+aRdtC0mJylVAYlM4aZOoZga9c57NuwWVOYqkofGRc2FtfUCSWpqgyRNLTexAWc7HEtdrheLvythjR1KOLu/ikgVQkS3IVCEC6l30LPJtT3GxRJWWaqVgupJQ96OiUC5QDRSddUf3jx5Bsgx/ZJ7pqR7VIGIaIYbGCKBqx9fd9XEyuVzBdy0cLT/x+OsYPA71QKgWWuymgOvFqiwxCkqJyrBFtyTjiC7ItwPKhn2+T1tEN15c63UYMKMYT95j4Ff71UeXW57oOh483lwdyfRVKdB5NeXL5j7GuhvwkuIM75u/mf/WexHNQwNO/veG8fGEjVOW4IWmrxArpLuQ7XqyNY+qPbrymEkDPvZpDiG6bj7ViPOoaYmfTCF4REyMcwqE1MRSTiXRjb/xBBc+d4Hx9R5+l9tF5K+HEH78aq7nuRBF4Hi+gxLP7izHdhZbADTUtWaxa/EIO3VBquIGL33CfeNjnBkvsNoZ7X/Orb01zjcLZKphwUy5fn6bx7cXeXKywHiQ8lB9hLmiZFxlpBcSsm3L5JiJwOEUuidHfG7vUzxcHQUObk4gJoCCc4THTnPjr2Y8+eYB5XFPM0tQ6ymdizXBxAWbTGM9sr/C5dyrnAkmumreRItDV57mupr5uSkrnRGnhws8/kO/ji2Wmf/qL2St6jOc5Fz/gQn1QhqtDL1n4R7ETFyWADTBoUVQKJrgePtdP83nv/S7OPF7O5RHu6imdeVVtBxtITSDhGJzTOdTQzoPR0x0aBnUe0pFj21xnnqlz/R4HuN6ZbTKjI3Zd+U8F1/X57P7D+2PZy8OKiLvBH7mINbKYxur3PXWZWwvskfZbqxEDFkbvG2Jkp0oVK1iVVYZ4UZ7bZunRxSuICpfFb0YCVBcigqzWmgRDipm6M0kQsZ8y/6VzMK+5brXP4lnuH+ekQIVkSeAzt13G16a1qy7i/ziz095/9s+yVt/4b385u138+O3vg77UDzZ9FZCcSleqK5icDwZWVymcHl0H8R6fKp55+99N698w3fR1wukazPC1ja+bqK1maZgIt1XSDTUNXiPWlxg/Z55dl9kyZefIff+cyx7c3Lsjj4dVZMpy+47Psza2x7itjd/a8zueUXjFZMmZZCULJgpPV3SUTXjLOM9H7kTd4viO276XY7oIfeWp3jX9m384ut+jK9861eSHrM0VmPPdLm4GpurLXRmbO92SZxgu9HdCwbKI55vv+0P2XQ9furJ1wJ/cCDzsj8/e7+1Rh49x/W/DsNbetjc0Dtbk10asxku8uC532U6XgMlFINVTr3qLXSPXA/EqpK9Fg3SJkdGpzRJNqNIG3yIgHutAjYarOxUBfUkxWztMDlVxHYYnUC2w4EF/PbWykvuTvaV50/87Iif/5URv/1fYogD60lGDUElKKtiYQmCWxCqQcJ0dSWWsjradiCxKeOHfuo7edHXfjfZ3PJ+4ijo2AFUOdDTiKdWM8vgSce5ZhGKCcCBZuL35qQzfxzbEWZHA1ufeB+TD32Yo9/xLZdf2CIngok17ck4HqwuFQgRpbBnsWbbsa33vf/2O7jrq74bvbJMeUSwnbB/CJtp/DxbxMIFXRHDJ0aou5H+7vmCMemNDY9rJ72vNFMvNCi+ov8JXn7PE/z8da/hvz92K8FmsfHcrm+B9B4zqhCbYLsGsT5CL5K2qVwqBC9Q1YQm9mjGB2RuwGylw3RJk4wy0paMt7plhY174unU1AdaXaInWzUuKGYupWxMXNjd6G40owQWoHERfhN7wDuWTEy2fePn/AEjl/Pe0a3MmRmv7jzKm04+yC8Cnz33MH/IEcpzPYoNhb/Ocmx+yO1zazz6wBF6W3ED7cW7rn/RBV6Wn+bHL30u2x9cOcg5ibLHSeo9BI8azhg8QmRiEqHsCR/74M9y+01/lsXXvpwm9exuPY4JBt1EBbFXpmc7sBe2G97uCOOUS27ArE4wbctoJHDs6DYdU6Mzh+9lNEXcPMq2FsjBFiLpjQ3/lCTS3jFTzwfsQoEZlqQhYAuFyyPLusskYkNtIIjg+hHu5BNoYmQnhihmbRxQR2WAAE3AjO1+9j0ZWbZtF3hqLPYARdf1mHKJGIe8cjgtx8RTvIb2MPVJ/HGFUKzFIoTKxMO2XI4fMj4FyZG2vTFxOe618/DKAZE+MBkHTBV7VPmEfc6OZypXs6R+cH3df//DW5bBnGLHezzC1Cc8+qjlB/7RaT71yUfRc13y1385g8HLaLrCp37r37Ny4h5Orr6KZFiz/tgHOX/xQ7zy7r/ORz7yHwH42O//ayQIdy+9iaSuuLd+L6fM7Zw++6ssjW7hlubLue9jP8fO5BxhAv37bqTzli9n9VjsFf74VVzEcyw/ONqovn9rBx6rl2iG8WQvXz7Fvn/I2s/8KufOnyGZL9Df8lLufktcvP/w6x/mzi+9ntd8zQk2mh5/8MvrnPn1+/nCH30z7/5bbwPg//izDxD4FAvf8NXMigHb3/xz2K94Ke/7lQ+jbruPY0f+HJ/62C8w2TiNF8/g3Zpf+e7X80cP3EE+uwYiWyKoTgc/GkXMpkSLwWcG10kYlucBON5/Ea706EaRDG6l6Slmww0e+9AvM925AAK9G+7g6Bd9FW6hIOSO5uw5Lv7EW3ni4ibFi+8gKyyqHzjV32E5nfBEf4pPc1wOzakaJoZ0R8PBUl/+4KV19/07u47Fuaduu3rtEh+5/1eYbJ0lMR1uvOULyV/zKgAe/rUfYe6uV3Dk1tegKxh+9AOsPfZ+XvSF38YDv/MjADz4S/8KRDj1xq9F9wac+Z2f5chdr2f93nexsHgLdx77Iu498zaGO2d4/+sq3v3qhB/5gSMcP37gyaQftNPR9w8+Pmb40h6qii42Dpr1NbZ/4e3UT55F9brMv/mL6b34ZfhMOP3jP0L/Za9g8KrX0nSF4Yc/wM5vvp+T3/xtnP3xOCenf+SHQODIV38tatBn42d/joVXvp6tD7yL3g23sfKFX8HFt/0cs/NPgvP0jtzAsTd9NVotXFUS6WqAHR8qusJ/+tEJmkDdfsv2RPMtf2mdz3vLHD/x/rv5gn/+etbf/l9wZy6gyxhrCDoGxavFDJe17RoGCXe/8VsBuOcNf5fP+bx/zNHFu5E0pabE+orPUW/mzvGdqPffx9HpKp+bfwVvvP6bMM4w+Ve/zujDy2ztdq/iEp5z+VDaTfj1/3iR02uLJEPF3JERzdhy4Wf+b/oveTknf+R7uOH/+Are9y/fx7s+3mWtGeCCQiSQiGM5GbOaDSl0zanONn/3Z+4B4Mt/5i288m3fwfKbIlVgsz1mtttwy4/9HZa/6mtxGhbveDU3fsf38nd+9wsYmwE/8V1n6JxV1wRcBwHSBNXrIkVOSAw+NdheissU2fwKiHDfY7/C9pP3EnZ2SaaWdOTRtefk7Z/PPV/xD7nrK/5P7O4Om+/8LfJN6DygWPvXP83gDS/h5v/n77PwxtvZfu+DaB3JW2Yu4RWrZznzhV3Kxdb960QmDXWwCvRDva7wr//DLp5AaPGgw4njwo/9KMvX3cPnvPr/5KUnvpyHHnw7/snzJBOPbiJaJZhoiXsdY8H5puXlL/smAO74yr/H3d/yA/TvfjmqCTSzEbIz4dVv+PvcdeLLkNpy5MZX8Yov+R6++x1voMgVf+cfPEPK9edXPqTSjLOPv4vVDzf0z4RI+LzVsPZvfozO617CiR/+Xpa/6S+w9Uu/QrV+EZfuJcQi1tPlLYzPQeeScPNXfRsAp779O7nxn30/vXvuwZSCHY9gd8rtf+17OfolX0OQwOLtr+KeL/seXvX53w1pwtn3/Op+rPSZylVttSOrmp/7qQnnN2J8JiC85/dmrJ5IeeNXL4PWvOylwtzr7+DS1r101myEKmlhcjTBpxLJfsMeuLc1r31cIL6bQxHZT2/SL4lJAzFkWZ+j2U2YwQL+1CpHX/4mxhcf5eYfP80tP2yv5hKec8mWuzz61k8iH/LYTuBEusNrd36NZGWe4kvvQbY6NKs3sPT6W1n7g4c4Uy5gQ2wU54MikdhdUrUK9YlyCYDdJkdLQGuPUgGUYuFrP5/haI4j96fIoEf3pS9l8LohNy2O2XnjV1B96jHasvqDlySJPatEIUURE4ZGxfYVXQ39gpe+7lsISnH/6V/nXR/+F3zioz+F39qmpxdZmruVxGkKuhy77XOZnn4UsYGd2eNgPfNf9lk0G33M3S+nc+txmspwerjAbpPzxDgm8pIxBCuRl0Cxz0B+UHL8qOb//okh65sOabfeD/yGIe0vsnLDq3H9nN7Cdaz2b2fnsY+SbceS6MgkH7Gg9VxkVt+9MWHn1lgyUy+0JMESDRYR4bo730RiFQaDLC+yfOzFaJ3ykL+e7/r2Ae9+3zWA1ABMb461B97D2bsqhjcIugqo37mfZG6R/htege4H8jtW6bzqLqaf+HhMMrWHSDqK8Cafhv0EpJm1+NYWOK9aFn4R4djLvwgTDMqkpEmXxZMvIfUJqpuz/NlvYnL+0X16xWc8/qt5cScXPufzc37s34+57pYUIbB2ruFTH5/xtS97oK2W+gSNFYpXv4K1VyZUDwjhtWOqL9ih+Y0FeBBQgu2oiAEkxmxsR+FOdvHTPulGjhaNZLHiyFZTHgofY2PjIs16HXFwvmbrs44z99j06q74OZZG5xR33Mjk19/B1/+VR/jAk4GFjSeZPbTNub/9j/At7EKCo/iSW/ZhSA7FpWZAR9XMfIIiKlDVBoKUBJbbYP80sZhBh2nVI388Ix05JnOWJ9/3NsLPfJK/s2MR/4f4uorY2GuAOThogYU5uLRBmM2Qpr/Pg2nzuPCL+aO86EVfg1kfMZlc4hPrv8kjn/o1brvpy3jozG+xM3oS5ypCCJi0QDmwsyFmbg5jAq4Rsn6JLCyiE8dyZ0KuLaW2+3SIu06QzF/1xng+pMgVX/IFGf/q3+1w2y2GCzbnZ99+N+X53+T9//V7gbaCyDuOqxejS9dWULUUbNXlJNHkxOVkh2tRGLqOrcdN1sU4gy5rbC+lThyPfOztbK89yPt+fcavpg3TscddA6xdKk2YO3Uns7e/g+zYUaYdYeq2qU6f5sw3/ZOYQASC8/Q+52WE1LfKMXKguuQyUbItIrkItFjPUiLDVQUm76JJ8DZEKrtZzbnf+1V2Lz5IY2fx8KkrvHjkKgiKrkqBagJ/+zv6fM2XrfOX/0bkAr3uROClry74lz99CoBzdoGfPf8aHl1b5rajj1L8wQYvnyu58UbFTx/7M9R2HCtmMkU1iBdbzWnsURM7B663R6mS2L3RJZyuP87ETfmsxa8hbQy7s4u8b/Zfqftw+ksG8MGruYrnVlxluOmlX8yn3vbDbF3qoxBuOeE4+vKj3PkDX8esSbiwMQcBjq3ssFnNqJMO6+OMF+nIExq2h22JptmveVcS2K1zKmvwQRGCwGZG90LAG+H8w3+AHp6j911/l+vWF5lsn+P0j/4QqHBNKAsC+EGBnvUJkylqNEH3Umjjfy6J8S5baNSgoBtWONG7izPDT/DoY7+FEs9rX/q3UP0Bl3Ye4NH73h6xoMUcdrSDtYLr+th/a3MHv7KIEc+JYofSGZouFK2XqlNHuRSuKjnwfMk//HsLvPaLzvFX/0aX9UdXWLpzjnr5Ju74/G9GuUC2bdFTS3Jxh7A1xZAQmoZ8J1DOgxuOWryswBXOl28VaFASSYonFj2pcUWH02ffzXSyzt1f8O1kaZ/zixd58j/+ED+yfRPChQObC4h5ooUv/GKe+LEf5ljyBhBIi3k6L76ek2/5NmYnLahAMqhIEkdVNkgnwRE5ZpMJ+J1RrB4S9te+KWNWXjXgmoj5NGXAu2jlrr//96l21rjzS76d8o55ZhvnePI//hDeeDDPPIcgz4SQo4Uc/HXg54EngeuBBWAGPAzcBZwDttu3FMRishI4AfTa1yXArUBDtEUBXgo8DuyVz/SBG4FPXDGEk+1nPkIMO9wAzAMfbp9/CfCtLySO7XBO/mQRkXXivPyPJAfmgC3itSfAzcT508SUz5NXPJ4Sr1+Au4FLxG5Yc8BNwEXg/J8yrOtDCEee3RU9e7nG18r1wH28wDjQa3xO4JnunxDCn/pDrPX5giv+P9VeyDvb/28HfoO4oDeB3wde1j63DPwOMALeC/xfwHuu+Ky/CVwgVuR9LfBG4OzTvv848E5i0eZDwDcTgQ6mff6dwF9/JtfyXP0czsn/9PydAH6JuEkm7e8fBQbEzfPh9to+BnznldcPvBL4aDt/v9j+fN9BX9PhWvnfb06ekQV6KIdyKIdyKH9cDj7bcCiHciiH8hkqhwr0UA7lUA7lWcqhAj2UQzmUQ3mWcqhAD+VQDuVQnqUcKtBDOZRDOZRnKVcFpE9VHgrVa//7NGBTIbaYCIBW1EsZuh9pxwTQysfe9hLad0eAayA2rHM+lh2EAM5p0g1QZdN+ZrjiO576tUO3sREOAN8HkCbdUCRzlx8IkdV6f8xqr3Ngy3ZtVGRab9sHxB44LWWbi/R/4gPS2Kd+3t58Xznt4Wl/XPH/sFk/sDmBuFbU8SMknXj/rVOxpNLL/jj32NWDDkgTyy2DBlVeUbcergCJS+z8Gsv3Ln/GXt8t8Vf+BMQGpKwJbe+sMoypQ3VgTCv5fB76x7vMbII+qyJTlVKRTV5HbtSgaRmViP2eBEQFRAIhtKxle4S/IfJXRoo72v5KkbleWR9Laf3e3ol7jRBolgv0fIPzQnVpFzecHticLC/qcMOphEAgALMAj2+ukI7C/r4RF1pe4HZfeQ9ax/JgdfnS8LTzyH7prqoD4nxkevLte63lT0Mfjdh+RvvnqhRooXp81txXgla4m45j+3EVZ+eHsLUbB1ZWSGK48Bfuwn3hNkZ5jPbkxqKVpzANqXKolvbZB4VHIrdjnTGpIy1cL69Y2xxw8hcTuu97HHy7GIwB7wh1g6Sx3vq3t//TnwTYfl4lT+d5zR1/I7YDaH+C1qhJCYnBzuX79H3NQs7sSEo1uNz7Zvd2z7Hb1+gkDY9/7ATz9wu985bO6SGEgEzLywvn6RJCnJO9v9vFFbznty/++wObE4C8s8Rb/ssX8tjuMuu7PZLEMdnNYyMaAb0d+5q7ImAHDrOrsXOOxY9qVH25nW+x5pkcVyzd12A7ip1bYjvkoKFacSS7CjMWkgmkuwGfRvZ5m8dmdSu/fw5/cY0QAu+r/ttBTgn9412+6qe/lN964EXc+Q83CN0CnxvsIKNaiOz55ZJQLgfscoMpLP3ejJXemNImrA17OKewjSZYFXvD76rIGVHGPj/JMNDZ8BSXapKtKbK1SyirqEyVEBqLvf1W1v5eRZZY7v/2nzzQObnhVMIHfvsUTXCMfcVrf/I7ed3vV5EfQ4Ts0bX9g4bEYFcGqGmN76TYToJPhKYX+0KNTypsN64BaftqpUPQs0Cx7SkuVZiNMTKZ4be2EWPwVfWU1uiiY7na7za/8Iz2z9UxJIpi48vvYP2zLJI7RHt8o5DJIvhFmGsgCCrxdLrbhCAMxwW+1rEx2N7p+fTzLsJX4wmaepSJ5BpHl3fZ/msZ6y+5lVO/N8Zc3InKpLGx5YcIZNlVXcJzLyFaTqLwiUZCQE3rSASdtg2xCkN1JGeyYvBprNHWdWC6olHLFTfPbXBpOsBnsUeUyxWunxG0QhUJatZAYxHr4mLaU5pKnqI4uQwSPnAJWsiUo7KGQbfct0CTXk043cVlAX/bhH63ZHuzh7KadENTLkXG8NmxgO07hnd6jl+3xtl7BqgnC+YeDmy80tF7wuB3FLYXYvfFOnJ+To5HflQJ0D0LkztX6RQZPHmOg6akD0FovCY5HdesTyNDlU8u87raDvgsIIknSS3WK9YnXfLEUmQ1tTWxfNUpaieEcewp5ZNomQcdyUaavkGXKXqSQtO2mQweSVOSS0Mm0wGLR6b7hsxBSSAw9pHY5BVv+7vc/I7LJCfp2W3CbAZaw9I85fE+PlGYwuAyje0oynnF5JjgOgFbxO4VqhHQkWCl7oNOBZTCTBP0JCUUKdLv4PMUVVv8I0/sK9Hgr27/XJUCbeYzdr9kgraRhzNJLSETmtTjrRCcQrTHlZpR1dLMNU9zPcNlF66dwae+rtR4YDhMGZr2M26qefh4gQw03X7J+PSA1fcJug7oMsB/vaprfu6ltRCVjX2dxHp8J6UZZJF9qKOZLStmy4IpIX/EkmyVzBYHIIFHd5c5f36R3pOaYsNhZh5xIbZm1Sq2M9mrfNhr5azksnt2pfL0AcLB9+8VF1DiuXlhg1RZPnLhFDp3NOMUWYmLtShqVnpjnFfMioZmN6OpVDyIhwmhcPTvS7k4XoGVCneqZFwVmKGmWgyYcVxLth/7CFWLkVTXDjzFOR3XBlAdG5BdWIOD5Z0BYOYSijUhpAkhUYRU4TKFN7EnkCtC2xwOmtrgveDN5VSFkgDaIxJwucP2FckwkgObSewntd98DghGRwUUwj4fqowmuOEyxbFmn/f6IMUR+NwPfSM3v7WOvdt963ZPZgTnYTEqz2AUwQijkxnVvFAeCdTznpD7GO5wgjQKp0CJgAptiEhwmUAwuKwXH1PxoNF1YLC1gL20/qz2zVUpUNcLBC9o41Aq4JyKYT4dacuCDtG1UCHqFCeX01QSogV6pbT9zPfbiO5Zp208g1ohobVaA4TdlPEwBQ0XPyeeNiT+wBVoMAo1a5DpDEx0Aer5jNmRJDapaq3CZBwp/FyuSNvH/FbGxbUV+mcU/TOeYj1aC1I1KK+jIhUBHXtGRWptLv+2/rJ7v6c8rwUrVAk+KOaSGZtVlxBAG8dgZcpkluFcXBh3zF0i15ZzoznM3AQtASWBsyygVGB2JOALDzMDjVAPPGYm2G4gXxfSoWDHgssh3dn7ck0w0PSFqTcks0CWpAc1E/viEcZNRrYTCEWKzwz1IMFlgs1iMzNpQFLwlcZ5QbXKEqCsE0IQRAJKBZTyOBU5QnW7z9Kxx0w8ZmaRxiHuCt55H0BDqGqSHU2uG9QBs9J7At+39jry/zIPlNF1V4LZmkGeIVlKc6RPtWCYLSmqxdh4znccoXCoxKFUu+xd1EFYwWtFaCLlZtABVQvjU4JLDcqGNtYciUW6x5fg0vqzGv/VNzmQvYD2Xo4kBrehzXXotoWil9jPxEnLMi1tUzCJi8TL5Qb2ISYNQsumEky8QJ9Err8gxNMkxOf2mk0dfEcCACFohdQ2NvcadPG9nHrORGaZiUc1AV0JJou9vJuuJu0ksXf5hwzJxNM7MwYfYqsT2aPk8kjZIEoIqSHkSft468pbF2NDQLBt0klrsAfLkQqXb01PVzwwPUpVJRxZGHGsO+QJFjHa001ram9YyKJpeH484OaFdTbKLlmnwTnBHq2h1KACes7ifYoaKlQF9QCyLehcCkyPCq6ICaViAk0vJpZc1jYQO7mCbBy8ubVTFeRbjpAamr7BFpHez6dt4mhviDrQGZT0i5JMOxLt8EVJZQ2VNaTG0qQNm1bhK4X1oPqCXxeSqUW1CpQQYidb5+LaAHAOMxFS7Q7chS+D8Ct/8BpuenwWEz1hr3Wz0BxfIAiMr8uZripmK4FmsQETQxxat7oIENVaXSIEUYS2QZQHpO3QEEygWhTMNMaLxQaSSaA82iFPDGE/cfvM5+QqY6ABguA9JIkDIs2ac4rgY4Yw7FmTVrVchoIqBXFCMhQ6awEzC1Rz0sYr4oQlk6gQy0XF9Oger19Mr/kkEJD2+7mciQ+fJiX/gkuICxUIcz3qlR4SAr3T0/3HXZGguwbb09h9Rv6UoAUzCyRTjzQONSrjAkoTfGoub4DKglL4ThoV5ngWM5Ot8kTJZaXpQ0wYHLA0PUGJ5/HJEjuznG6n4ouPP8C9w+Os9MYY5emYGkVgu+qwkE05Px6QKYsLirnuDB+EZH7M5rBLNUlxMw1dixtFS0PafklmBv3TnuH1qu1JBekwrildB5quMLq1D584WNSeIjCpUwYzRzNIqeY0TScqT5fFfaOsEBJPZ27GibldbuhvciQdU3kTE60u49x0HiUB69uuEDrgak0TUuq+kO4asspdRnDsrQetQKK5pmro6hotB7t/hq7g1t9oQAs0reLyATfIKZdTmq6iXFRUCwHbi8aZSm3UHcqjtN9HJ4S2p7vHE1AEGxArsRdWHXWKywLJSKKxlglBosUrt95IuO/BOD/PFx/oldLUZl+hKgn4ve/0Eu9b6gi1xgwVg8eh2PTYTLB5/HF5SwgbIuzAJRHWk0wCy/fGGMjuzTHWRQBUICSt9bkn6tqwQmODPI3rZQQlJFslcmEDESHM9VGJjh0VLYQC6r4wW0xo+uBy0JUivW7A8icSzNYErENEkLKKSjIEZDyFPPYTMpMYaA9ZchnuBJdPzqsMhD8fohr45NYxAKbTjDxvOD1bZLPscstgg4GZsdN02GkKAO7bPEpjNSObsZBN2Rh3ydOGRHkW+lN2BMrNApkoxEE6iU3X6vm4AZp+zMQ3XUCiBdr0Yjyoe6GFwuiDVaAigUmZslA66rlk3/J0afTOzDSCTep5IU8bjhRjerpiORmxqMc0wVCGhFP5Nplq2LUdzhXzXOr0uTTuMVxboukK01WDcjGZKS38J1qh7fqQeNB0TYU+YAt052KfZK6Jyk/HQ0TPGibX9ajmFC5tvVINqhJcxxGCYIxrwxtxXl2Iv4NXsGdsJYHgA8FFT0TPBO2EailgJhEC1nSFfCvmFkTrmER63izQp0vbDXH/b0BMbEEhpwsW74dk6vFt/2+fxIVOYL/3t1hi5roG3cQG90HF55buaxidNGy91McwgCdaW63i5oBPzz3Zi1GqymK2p8jOCJIkwlT6OT7V+FTFHt8doZ6PcZxmyaI6luCEycxgOx0W708ozoyQskLKGhID1hFGI7RShNU5QpYijY0xUevYzwSIivOTHPy8BAXjMqOT1WRZw1xnxrnpHCEIm1VsJ7nHvp+bhkmZcnRuxEI65YnREllisU5jncZoR9NoSDxqpHFF3AAA+UbMXgcNahronodySWj6saWDmQq2iJCWYA6eUdn7mPyzhYoE4joqz2wn4n+Vjf3MqyeW+aPrFvFzljtvOs9XHf0Ip5JNypCwpMc4FIt6Qt7GwS6O+oiFZBTIdxx6ahHrY6db5+O6UPIU7yRT9oBxCaArT1Cyv4YlQNARlXAlMXjQ4POwjyOOseD2uQBahzb075EEnFUEPMFJtDDd5a6c4oSmHxAnEb2RRny26vdxOztXNf5nFQONcc+nPqyUR5n2uXsHnHhXiU8U1ZyOAOiOxCxjCigol2KvZl0LZizYVVAVpEMhHQaUjY3u+6ctQRl2X1cSan05ESUx63ZNiIo3XY8r2Nol+BD7odcNagSEjNBPaLoxCD47EnCLDYOlCb28oraGsjGUcwnrWZeV0Kd4tI4ro27AOfysRNwWOk8JWUJITFSwrlWgPkQWf2OuBaOckMCsTOhkNTcvb7I56zCuM4ZlRtmy7PeSitpramfoFxXTJuHCbI5xk1JbTeM0qbHsTgrc1ICL8SszFXQJ2W4M/9T9mAyILWnjAezTy0rWpXHdhatgGn8+RIgKNGh5ytlvZoF825FvtJ6FCMml3QiwzzOGt5/in33eKd782o/wuv4j5Kph0/aY+owz5QIPbK0y+tQix97v6D2yi+yOCU0Tcdl7ClPUUyxwl7QK9KCNEIl7Z08CgZAZyoU2qXbF8MQKIQPRAaVjNwJpk457LwtBsFajjcNZjfWCL8B5hZlGRRp07A8/W/VkWwpdtlb6oAe7Q65GrlKBXk4W7U28cxKbnhF/+/sGLH/SRbeqp/EmWl3TY0IzCNg5C0HQY4VqhGrJUS0IIXeYbUM9D/m6UKwrkqmHAIMnLNV8wfS26uqG+wKIBGKsci8eWVURkeAdjB0kKZIvU/cVs5WoPP1qRbdXsdIfs5BNqZ1hYlPUIHD6Hs9G3efERgdd1m1xQgk+EOoatTMiLM0TOlm0QJum/W53udLiGoiBioUTS7u8eOE8H944xXCWU1WGLLPM6gTbUfg2/KPEs9Id0zNRofbTCucVzivG0xxnNcV8Ga2OMwmqiXjJel7QVUwc+SRaojsvb8ifSMk2I8wl2xZsF+pG9pNzByUB8E6jywYzMYTlWKWWTALZZoXtJGzenVEuB4qLXfIdT7bjMFPP8gcN/9Xcw+RlGdcVW4xdxr07x3novpMsfFJx8weGqDMXYyy8KGI7HDLCtIxrUnnQSXvQBqojnuVkhOZgXfh9UYALT0kk6Srur2qhTTDnHt2xpFmD1nHcewoUIEsszit0VlNbjfWKaRBc0yZadfs9IXpI6Y5CVwFdeVw3ZXrqGD3n8ds7kWb5GchVKtDLx8Hlk6vNcHlhtt1h6UwM3LtU4ZIY70RBtegp1hR2AdRIReBvA8muwuWB4kyCcjETqWyMDQalyEYxi51tB2Ytrgu4nKy6BkSsJ2QQEh1hGGEvoeNReY7tZVTzinou4PoOYzyJdigCRjx5OkOJZ9Jk3Lqyzidv7FDeX9DdGkcF2VqXAKGuEefwRU7I0/0YqGhFcJ5gD155AtBzLOUT1qo+4zJjfLFHMh8PjZ1ZzrDKURLomBqjPCoEbIhKNdeW5c4EOpAqiw+KURMt192Xe0ZtRZMkHtlOKS7E9VQtR5OluqXEn8nI16NS9SYq3IPuiRSCoFTrskJ0Hdvy1fF1BaPrVRyngO0B2xGvaDuxQknNFB9dO0FxrOH0dIFHPnqKox+E7rkSN0gZfd4tzJYVtiPRld/29M7MME+uRUD6XiZeGfTqjL4qDzwGCuxjVPejgUpIR9EDVbYtd1aAicUFedpgdCy22TuEAXIT90LjFZNZh3or3084K9smjto1ID4iOFQD9Zzh/Oek+AQWj13Hyi8/Q+3Js3HhgxBCdNW9V631GUVPFNmu329TLD6gnGAT6FxQmBn0HkywvWihBAPZZgz2uxwmRzzZtqJ3+vJnukTQWuise3a3U1iq8FZd1uVPx5a+wBIkKnrbTQiDlHxnDnaH+5VSod+lWkhpOkJQYR/z2s8r+mlJPynJlMV6zVbZJTOWpeu3ufSqZU7tzGEeGsUv2gtu+wDOg/UEoxCj92uDWxKBy3CVAxTvhbOjeZY7MUxhVxSpcTROU1uDEpjPZ1gflaYNel+ZpqqhdIapTTHKUztFohxeC4vdKamxTGYZwQtN4XBFtOR8x6GMj4/3YoJx8GgcTzBcVb/v50uOL+1SLR8BYT9BMjql0DUMHnexq+bM0fQMxcUp9WLexkoVPo/K7kg64ux0nt6Tis7FEts1TFYNtgAC9E87io0GPbPoYVvZY8x+dlk6BdevbDGvp/vK58Ak0CJKJIZYPBG7uqfo2jr/oAOS+v0ut8C+8tTK47yitIaqMeycH9A5bXBLHr9SE6zCFrHkd89I2+MNyIaeyVEdQz+5Y/PVsPKelcudmP4UuToFGiRCBoLgvdoH9HqvcE7RO6PIduvW3G4tJhVdLXEw+qwZadZg3jcgGQfScWB0SjE76QgdyxvvfIj3/8aL6V60+ERi/FRB01GkY0e2mTDr6f2xtH2UrwnxRnCFJnRywtYOAGp+jurEPJOjmqYfb5geKaxK2cw6JNq1CsNSOrOvTF6z+iR/+Aph9/FFls8U+KpuK49UdOMnMyRNIplCYpBZddltFxXjpgcsIjCrE4Y6J9WOLLEsdado8Wy4LjqLN84oj/UKQ7TIlYQYF/UGJYFhnROCMGlSLm0NsDspKDBDHTdB4bF5iLi+UuGNRqUOdaSk0Rnj6zS904H+GYuuD1ZZjKYFTz5xhBMdhS4DLoNmEFsWF2vC4IFd6tUuW3dkrL4n7uDt21KScTvu3DEcdXhwvMpW2SEZBcy4xuUFySxQLin6ZxzdsyXJ4xcj4UbdxCSKMbFSzTma4wu8bvmDaPEHDqSHqDAJgjRt5Z2OHTTrXowV6wpCGghjQzNK2M5Skl7NfH+2H+rxARqnGe8W6En09vINRfJYju3Gg8rl0bBz2eX4uK4jztz3LdQK3WsIyTM3QK5SgbIPmt9/KEgsN2sU3YuectHEuELtybYaxHlUU7D+Cvhzd3ycX/nwK/jKP/8+3vHTr2XSF2wnUJzVTK8LuCDMTljG5w2mCnTWLJPVeFwEEToXA9WiiZUpei8Tf1VX8JyL+ABaUC6ghw0ynsVgvVaEuR6zlZR6EF0QMxbMDNy2wV2Y42w24PFeQBYrBoNIGrFdFpzbvZGdcwOO2hCz8BA3gLXxZzpDugWun4HpoBu7XzMsaUK4Bko5tfLMyoTUOIqkoUgjKxPEw9Z5hSJQ2oTTu/NYr/ZvpXWKukpYXhixtjGg06uYnOmTbWm6W0RLS6DpBlSjyLaFphvDQc1cjI/ZjRwC+CSC7HV98Fa5mcDCRw1mYrHdaA02Cw7Va5ikGZdevwAC4+tgePMCysb3BBEmpxw6c7hJwscunKCaJazOQuRJoEBcwHah6Sr0tMYvL0QI06UNRCdgYjmwn85Yv6fD2GZcbOYOdkKeJhJASosqaxBhslJAiMiC/sOacjl6tNJoXJ6wMejAQk3RrZjvzmKlVq0JGtJdYXrCcewxYf2UoKsYznEdR0gCQTTJWGi6itmqRH1SONwoQaY7z3jMV+3CX8ksF/9vKbac4BKhd67GdjXJ0DI+lREUVANFSB0znyK14sxsAVXH+MP4Joc+a8gvGd59/22IFVwuKAvTI4Zs6Mm2G+p5g9eQjIRGFD49eCWxJ8EoVO0xG2PCaBTdJcB3M6pBvHGoCPhOh7Fvu7QFWy5XzIY5O8c0VWOY7eZ0Hk05ci5gSo9b6KJGE2hasoNWiao21tn0U9Q0h1EbtzEauQYawweiFbo7zllamVDahH6bdTfG4bywPuvivGLnzDx6pPBZrG93RcC39fI6ccxmKYsfV5jSM//QhNGN3UgFaIRyQZgcD3F+x0IzTnCDAHMNi+/KKJdi2We1oPZjjwcl3sDoBnBpQmfNR4B34ik6NXRqhsspfieFrqXol9RVQrWW0/SE0Lf4WoMTynEG41iSSN1gJpZqPiPbhN1boJpfoH/W0Xt8jM5zSAzBaGRWIVqx+ke73PuRF/O2b30pwgcPdE6QmDvYUyqCAudJHjhNfvLWmDGvYHyd0Mz7GAIL4LsOmWlkK2XaxPBQXcV177uOWeGRjuX85xvw0BSx1FElEZ/uuoI3mumKoukFin7FbKND94nWo3uGcvUKtI1BeC97GG9EBagVsyPC4AmPmcDkeAYhAlVtL1oHv3X/iwiJ5/x4bj8mpUqF6wTwkJ9JUVW0MLyJVTriBWVN/L+khSII9XzMyh20BYr3qN0pYnNCkaIWF2AaSRBcx9D0o0IQH6+n2HT7uFiXRSyrLgWsoqkNeseQ7rTZx4Einc/JL6WEqnrqydVYVGmxXYPrppgsi+WcPkQIywFLCEInr0mMo/GaxitsUIzrWAfvtGJapUzvXUAVgc5FoXfOYwth/dUBZWJcq9ep2L40YHw9mIli5/YeyUioFgPNgiO/YGiuK2E3Qc80ZqRospi1rxZylu9tuPTKJLr79uAhO+IiyN9vCS4NqNShlSdLLCfnd1i+cbJfXlm6hO3VDuM6ZVqlzGYpjRNM3mD3FGhiQBFB+VncH97EsJfPE9Rcry1vFKRqIMtQT15EG4NcuOnAt0/kyJWYRPKxqk+qmlA3+0mkoAAJdJ/UIHDkoxVn3pTik4AfWGSqmUwzRPl9ApGkqEkzi+/UWNtm4b2KMdS9i27vh+tFcL40Qv+0xw9Hz3j4Vx8DdRLR/hJwVwR0VR0zobZrcJmgmxDL1IygZ6AKQSceW2rGv3EU2rr3hfuF7bsCaqWkHiX0HklQ9jKgPmjBFgpxMbvfOxOYHlX4RKiLqxr98yMBZDzFz3XYuaMPDJh/cIy+uE3TiYF9n0AygmLD0zk/gxDwicb2E2ZLhnJJkE7kfpyUBcoFmm7EOSa71aeFJYW6Ro1n6F4kpSBLEeegaQiz8o+P8wWWEIT5zoza6X1CbQAXhKYyJImjrBLqZYcqFaNbHE1XM7upJutXXL+0Te11pETsNlTHoNKBpFNTBWFxbsJolmGOerRXTEpN0Jp0RzDjlNlJhTruOfLxgJlCOmpJhg9Q9rggOmvRC0GBNlF53jC3xY3dTW7O18ilpgwpY5dzoZ6j8oYnJkvcNzqGSh1HF0acsxpvUnAeNbPYglic0QvoOnpxTadg7omE/PzochEKMRxElhKScPAx0BBwiUJ0TCZJbQmTKaGumS0L3YsxFmomkUN3ep1jcjIhOTrBVQYZRqvTNpo0b2JSWQecVUgeUIr9RLe0BRmifYy1qkhgDlBd7KBqIdt1T+EH/dPk6rPwXlr3bK8uXhHWMhbvFboXG3Tp8Eks8wwqKr6mL5TX16iLeSTZ9pEIolzxJGNh7kFhMikwOpbm5RuyX6nkWp5DkUjEEYlWiaeHlUgucqASYhXSuKKam2PnJRaX9Vlu2uywBpdFcpTJqkbZIjIyZYpyLgLryxVPbzCjl9WMdLQmosYJ+5l8UQqms4gLrWtCWaHqBpOlNMsdQp7CaHJNEIlAhJnVLoLhtQS6SU3TKlNfGqRfErwwODrixoUtJjZl98acHlH5DusMJSEmCcYJaqrxPYsxnnKacumJRTqrE7LEsn5xDj3WqAbyjT2mHUN5vGHnpoT5xxxNcblU8KDEmxiT9Rq0jQerAJ2k4Xixy0s6Z7grPU8mjnXfYd0OuD7d4Ml6mQ+sXd9yTSjWhz18uZdMDahpgy5piwUCTcdju0LQmmJTkXbSyFFL3EdXojTCwdugqJZxzBUGVSfoJCEkCfOPWWyuaHqxcqhediTzJWnqsFYRKo0ZK0IScI3CmhjiwLRk7a2Bp3Ukdd+TJgiurfg0MyJRzURjV2uC0ldVCn11CtQRBxgE7zRKxUqAbF2RDR2q9vhUke40bN+Rk+14bKGYrXiStQQzEpJpXDgRAH25tNOMY9uGei7QdCL1W74TIVEuU9hMqOYFCbF+OAiomcJ3DjgW2s61TEt0E5DcEbTGF0nEnPmI87N9y85AGN4aa7kJgus7VLchyWzEQkrAp5FUOWiYHFM0RY9s2CGZeIqzI+TMpXhCKiFUVcSBtnEkgWitXhN0doH1nR5LcxMK09BNKrbKLsNpxHB6rzixvEM3qdmYdZlUKdMypZPX5GkMQTRO01gNJoY5fK6wVrGwMEYvBVLt2Bp34hlWyn6pXtMVzBTEKmy3hY2drg6cIyCYQDPwDG8VFj8hiAXvFdYrNJ6uqsjE0VWehpI8aZj6jE+6k4xmGWFmIhYysdS5oekksYLGOTobjtENBldE4GPkjYiuvO0kZC2cKYSAGE3IUvTqDA7aAqV13fdbjxCxzM7Rf9+TnPn6m9EzaBY8elDHojsfE9cqt/hUX6bDDLJPpTk3N90vB3ZemFVprAJruToghhBdCsmWIVw/w5wuyC+NCfaZh8CuSoEqC7QZd5VExbU3/bMlhZkpXKrwRuisOZKxw5uEhfsjdV09iHg8ZWPbBdUI2W6gmm9dCwfihWYuYIfSZloj5lNCJM1NJjF5ABEbdk2IUoTplGLTE6pY814u59hCofYsaR2YXxmx0ovJnsoZEu2YNQk704LJLEOrsM+f6jWURzzj6yOXoZkalu6dY357jFiLaIWflag6EjH4IsGkCb4sIy70gEWpQDNJKYua0SxnvjNj1himwxyIe+VIMaZ2Ea602h9RFglaeYx4PEKmLWuTHnhwacDsaHxfo1VUngDWKqTU6JnsH1Y+gdmqR6royRQXSpT9f9n773DNsqu+E//scNKb3xurbuWurs5Z3YoNCAFCZINtEQwYhoxtsMfGAYMDYDQzGGxmANsD6IfHgAi2YABhIVCmFTuoc6jurnxzePN70t7798c+91ZJIKsL033bnl7Pc5+qN5+zzz5rr73Wd32/fjHeV5MQLE5p1VN4dBY9FWTWpzUMkp6pMdGaDjlLyjC0JedsxEbeJD3fRGcCjubM1KZYK5nOJbhAI8dT9NgQDjRFk8s0ksY7CeGc50ww1u9klCI73OG2w+d49OXgQEvnWfljjRoX3sEDLsuZfSxn6+YQkXvM5y6FpmeDgyKxqJHaIzHCChhqBmHCycVNEl0wLkO2gEkaYpz0nMVVN9Iu3rScaGp9gd4YcDV7uKtyoML6oo+N/MFLZX0HVuTpuIaHNCqDcOTfO50LSLvSX0Dhnadv5ndVFOp8T27PUca+HU9NQRQeWF/UPG9f3hC+ElkdrQ0cNvLfqYb7jY52ez3GyUpKuFljctDhlN4jS1GZwE4UZVeyVO9zPNkCYC1v8fDWEnlWQZWE8+iCii3HtAxR27cwZjsxZVxVK63FGeP5C/MCYR1lLUDVE8R4jNv/GpLPO1nBJA29pIeV5KVGb4SUjWr+VJ1IxFA6SSPMCGXJ5rRBpEsO1XrEqmAwjslyiYuE55A2ktJ4KsUy18jKUaqqeJouOGzsaD+lWLyvj1zeQITh/re4Wsi3Yja3Yo5uGqYL/roH0pJbTe40hVPEQtKSMZYpW6bBQ1uHEAsZQVQw05hwqr1BI8x4eqFF2YkJnEOlJSqLENaTqKjU30vBxCFTcxk+E0e4JKJ/MuSL2hd4bH9H5PIOzjlUWl0f53wPf5YRbWcUjRBRet00rWxFHmKpRQWbvRiV+c1xFBdMpxonHaYfMuhGTMuApUaf0kqyQlNkGlfIPZo7G/iIXUaGxiWHvUpi5at2oNGGZNoUWONzktZKaFhsX2I6gmDgt9yyAIRvoSuaPgIV1fjI0j+2Gi8AVfW9UrHS5E0fmTohMEFVTNpVXdzFixe+MBGM9z+HQ1EiggC9OaT1bI3NVxuKDiSX/IIiDMhUMJ1EbGV15sIRbT1lVIZs9BoUgxBZL8kKjXB+a4cCGZd7+jdqLIl7phIH84qOYncbX1rKdoCZqaOHYy8its8WypI7rz/LM5sLAIyzkPH5Fs0VwfC4pCgUG9OG5wKwClM1ZoyLGhfOzHPdqWUujLvEqqCeZGQqRkwl4VMJ4zjGXTPxPLSpQuYVQa4DHNQveh6GmScz5MV1hFbYmSZmsM/6WRKILDopGR9MCPuOcYWr3s5rXMq7zKoRbbkKpKTOcS6fQwlHuzWmMIrjrW3+xtxHeXB6nMcXlyjrGuESbCA9ysAJ5ESixxI9AVUpdIrCw9+EEIjxlOFRuDZexb4McqC70HKxt4Wv0CQY5DijvtxgfEiQZoogMGhlq753AZHxeUvhFTLERPlFpGEw1i+yq+MWgbpi8aygUGXsKOuCQx8oSD51CTcc+aDkxeQDjbcd6aKC1i73Hpi6xUlf1cpmvHOMdvzWPG87bATRjo8S8jbkNUe87ftdi4ZnysnbPloziX9fGQuscgQVb9+uUJiJPRMPwrO8By8ccfDimJS4NEWEIWI4ZvbRIYNrm8jrRuSjBsmGh13JHIqxZn3cQOJohVNWJm2KcYgcK6wVDAYB8YYiHDrSQKBDQ6gN/VFEfUWSrIx8fuhKwpCyROYGE0UUjQCdxDB4GYDGpeX29iWkcDyzNc9kFPlFU/mUhrOS7XGNcR4SVozrkzxgdbWD7inObs5QrCfouZSiH9F4XvvFOYbOacdaLcF2CjACmVcUZ8LPjzKB1llL0EsR9QQyz2wli/1NbQRBiQwN917zHB++dAvzDzlcLn33lVEspx0WggGzagSMyFxAUe0xxw/NIkrBA7dq1qZfwbn1GRqPR0TbQ++AAo9MEdYRjCTxFsQ7lmBQMdNXHLNU+c/o1h4LaliJiu+j7frvSpIYdUWRyxhY2aDzXIN0NkZMNLZWoKp6wbQMEALKukNvBuSFhFaB0J6tfpoHflHOfEuw22280RZKhdO+tTrraOL+4DJf6lXYVTvQYAz1C4rRKYvZ5eVUjnDgyLqXCzzT+arvNKhyu6XHvwkD4dB35uRNsYcH1RMfkQrjiUQAnBZEA8t0XmJDaJz3TtlrgQuCgY9Y99UqITdnLeQFaq1H56kmW3GdZF0Q7TiKI57bUEwVvVHit+oIXzyIDSb3C1G4pYi2PLuQLD00owgUYiukccmitke4IvdOOy/2FATVKCMYhNhQYmabqGn6gtlkXiwLhGFGj7m1tczprXlsqglTz5BkQ4+LzUuFVpbU+e3ZzrBG61MR09eOUcpSSCg3Y9rPKKKeb33MI+idksjMYTOFKP2CurvDaZ8rGC9qug/vVCJkCkHI+EQLe35/0z2RMhyY7zMuQ0zdIKv8bWElkzJECsfZdA7rJL1wi7GNmNiQTjzlwmJJbW5CHBacWZ0jfCKh+2xFJFNYspnAk3OngngLamuGeKskGOZ7ygbUfM505645vuvUfwVeBlV4T+3mKSGlwAYKFYYVOQ6Y/gBRWF8gLAS26mLLCkGWBn47rhxlx0JoCWs+f2WMJEsDylwhpEPuQpt2heaklz8uE1+/aVegdleUvOiEyvUVi4kDpscrdiQjmM57oLsY+9YrU7HOB6MKSpB6RqWsLSuco6+aBn3HdN4XADwtmY9Ey8TfFOmMJ541oY8+hPPPt85ZOk8MkIOXgdSi1gjpO13cdEr72Qk6S4i3MqwWTBdCiraPmLOdmLU0YFCP6dSnHJjtM21p0jxgImsgNXlLeInjTDGe1mhektRX0z2A/m6RSFTKnGI8JVqVFPM1n4gP978TKRQlM3pEU00ZrDVQA40eC7I5i55PSZKcKPBpC60MW5M65bkGOoF2c4oQDrVkGfcTBtdBvKYqQDWkiyVUvfQuBBMr9NQ70Np9z1DTmtP/8DrmHnLE23WSCwNqlyaetGJfzXGitU0vT3xOT4OaSDb7DYqGYlKElFZxbjLDkWSWwik2swa9NEE1C4pcU5aKY4tb7DQThr1Zahcsph6QtiXByPd41zYttZUMPcr3cuZYi0sibC1k8vV97krOMLQvByB1ZRZQUDYD5Fwb2R/gJhOEUoRn1lnQBzg/F1GkmrETXt6llMiJlw5ylcy6cxCGBmcFZaG80JwBoUp0VXhyQdU9aT3axSQgjh2CMxd8PH4VKJar7oXfpZdqnnU4GfrJDOQzFrHpq87ZjOdpDCvCW6tE9VkIR14PSTifH5WlIOz5ZLcNPPtS3gakTxf4SqJABX7C6Ykj2XA0ljNkf7z/kB2HX7Gk7zcmLwgubNIaNxGFoZypgwuxkQUrwQjcRDPJJdZKZptj4qD0DEW1kqIlfT7LgBhpwp6k81xJuDa6LBznHEJJQELoOR7l5g46Cci7Ea6+/zdGIAzzaoASlmR2il1rUrQcyYpk1AzptCa045T1ooG1kjzVNC4JRkctkacXoFvzjjSvadJmSHg+9LIMY4UYKMzBjKhWYHXgHagFl2bYfMTJdwwQ1jI62WL182c9CmR5v/N9gkQVdOpTTi/OY3XdtxluJGymGh0a+kmMVoZRERFKw/KoxeZmE2cFdqSJD445uzqLKyXRHBTt2Hf0GXAFBGNLbS1D91KvarC7LdWabLHB+S8N+fEbf4Ox3ed88K45t8cFKo3FiqrorBS7+k1mbZ1wPCa+62aKjvTyHaFFDLVXHKg5KDwjV+n8lrfMNC5ViEyiMkE5A0E78+4i9znTXRSPzOH8V8+TrM8x/18exwxeOKny1RWRnO8QotIoWXjQ0D+umRxy2MA7SyehrPkqoIm83ogsLUVNUCbCi8iZqkWrIrgNxj66lDkI7XyTP1Tv945W2ErXJIP6ak54fhvy4rJT2U8z1ifotWZXxEsUZk9lMxxCmsnLhK747Xw2qbG8WkMUXlogyH3ErqZ+oSoakrDviNd35T0CP7GyzBeKggCRJLgogOEQOc5wszGmFe/rcAAo4XGNAG84cob7gyP0z7eRJyeINGD00XmKe7YpSuVb7QQMrzHQLijfO0cWQ/raHbIsQH+qQXfLJ/yt8pFmOVOyOD9glEY4U7X+Tpwfk7JEPPkccukAatpAWEnrQkG0s79VeIenYNPSoLXxhGKBQ6YCphFFw1CkGkpJv+5lT2wpPf4Tv4XNzjeItn2R1sSey1I4R7xtKOqehFz3UuR4Wqm2CpCS4sgsmz8w4Z/e8PvUZIatJuK+b+EBjF8xnRDI0uKUQEYhYjrFlR5xYkdjOs+XjI4LqFl0WGJNiB4L1NR3XpmaxMaOYqqqNk0B2lFG9jLMCapkuUDk0hdsqzzq9KsGTNauJ/7jh+EFNiNd9RZeZY6wVxKMCuS0IFlRDE42GC9JTFRpn+eXNUiCscVEHjCvpg6p/dZ+l0HchgD+/1HuiHq+jdGTKl/OqSJ2nafx3UhK+tbF/XagUiCi0FOF7fJywh5oWw6mNJZrZG1FPmN9Mcz4wpJKfYua14WqCKZHDj31C5XMPV+hGldEIo2aB05PAi7rH2n/m9YhBmP0qIa9CjquF8sEoHC8b3QTH1s+Rll6zsVsOyFoZxz8aMal2wIvuzAO6C4OCGeG7AxrDE8ZnHTUjCSKCobX5mRzGtMtCJKCOC4oS0USFGz1GtQ3/YLcfXriCaiFxDlHemKWnRsCpouOshbiPrLfkDdvCkszySjiqoSQ+XQWKBgpwoEgXZCEixOiWobqWCZpSFHX2ExRFAFh3+d+86YkrhaGYFKldqa5pzQUooriHJODMW859jCxKEhdwKSKQPc7qVEmEpRAlA4XCqyUuGaESmLc1s5enh+g8fgm0R0HyDoFSVwwXMgpygiVXoY4utigkhKtDdYKTKGQ0kMEhfDSQ64UiEL6vKrzaUMbwLWzmzz8dUe46akleO6FHf9VO1AbeLZrOcmRWwNco0bUi8kbAflhX20W1vdxR32Lk5B2JbU1izAwnZcI67f3sqzkXCsHmbcEWddDUmThiwa7xKeyhKwD7qIH3ro4gv5o37tLgL2o58p0gihKz9VZlCRrGbVuAlKSSR912MRgY0FZE6jUb9mDgcC1BGUM4dCL7MVbJbI38jdEPcHVY8+4pDxrjdMKFwfIWoJLU/QgJZ+v7+NgeEttwE+c/0oeP7OEqLZK0abi2B+M0Ot93DQl+eC1DF43ZeZA32/jS4UxkpM3LCPxDPWJLhjVpowXQ7JS7cVL6SDiUtkhe27C2V/4MW7/5n9FcH6TMsuQUQRKoVJD87yppGX8jmY/zTnIrCazAbEuvR6gERQzhqCniLaroqoANZXk04CsH5OcD4i8TqFfXDN/bwVjUyFU/HnpqUXmXt9nku1w3+Y7+OLD349wMJmXnIzXCYQhECVFdevvdy/8zMKAMlboiUEUFoIqMg4DL0uSZntRqLu0ytwj81xc0Ex0hFSOsmYBSVm3uEbpO5VKSekEOihRcYkpfbpsFxKIE8jMBzA4v7MtuobFZMCrrj/LIz+5BF/P9UKI73TO/dJ/6/ivaklWk4IHf/fHGT72SYRxuCzDxQHL6w9y+nf/L8IBe7jHrCsYHVJM5n1yOxxYVOH2sJ7prGC8JPa8fzBylT6Jd5428CussFUnTwg63Y1cFbI3vKpq2Ytmu5GnlKA1H998J3+y/B+webqXvBfGEkwdybojXvcgXrRD1gvoFJTtEhP7gpwJfcoCINkqiS72cIORl/JIfUXV1kJsp4Fr1nBhgKmFuG7L84EWBhu8tJGWEOJeIcRHhBB9IcS2EOK+i9s1nrx4ADKF0hZ9KWLhAX+TFAe7ACz912XUhZgkKKlHvlf+wMygYqj31dbNiV8MtDLUKk7R0SiGUmAv1mikc5z80f+NxobFbu+AkMilAxSvvp50LqRxbszh9445+JExwfSldRafOS7Dcz02Ht9kUEa0otTD/bY9bjPa2m0/xae2dwSt+2MOvE/RPOtINi2NS5bamqG2YVCZD0iCYUGyltJ4cov4zDYqLbHNmJpu8cWL3+3Z3cuS8WE4FGxTr7bvZleKZ5+28EKIs0KI9TpTLn5RgDCW5ZX7eeiBX0QWFhdpRBiAFMhazUsO5zmtT1yk87jGbMSYkfaFp5r1nBhWILTl3Lf8MGqwTBSWe/LHzvqutSLXiKnXYxOlLyLlLcfX3PMgpVW0g5Qyf+Fx5dVFoEWJz3qXiPEUtzBL2YqxmZcsxvncqAkrApDSkc0I2HbkLY8TDSZ+EtdWK4cRC4RxXjkxAgREPdBjR5l4yNIuga6aenxobVpCGCCMwZn9B41T4esmbsROegktI9bzcxwIr8d2GmzfVGeyKIh6HokgjWSypLFth4oM4WyO7QomtRiRexC0Ou+IlyeISerTFVp7IpHRGNecwSQBauT1kVwoMe0EPUm9DvZLuIMXQrSAPwC+D/gtIAQ+T6Xij6KnE9KTGaaQzJ4GmTtsognOb2JHY8gylj48z9YNMbUwI1IFWlqsExRGEShDO/I93IWVTPIAYyQ2U6iBpmynJGvJ3qKNUsgw8FK+QhBt5Wze2fSy2O2c7J/u77hEc/UJgVckbQUpFxNfKLWRB73rqatwrI5Dr19hUgSsPtdFTQSqyhPLKm/ntK8ZxFua2ceniGmGayQeC7wzQe7Ku1Rih8XRjADjnaeTlca8wOyvzokablm+9y3v5/ee+EJY9096eZYQnSS+EBZokBI7nmDWNjj4JwllskC6IDx3RGQh8HnOXZKVPNMEVnqVm9JX4/NJCGONmLi9nXJZd5x6zTkWKoG9hs44+PsB517gCVydAxV4uIFWfpK269hQIsdubxu+fv972X7sY5jJiLDeYebNX0b3yG0gYOvpT7L9xMeIFw7Rf+IBgqTJ4c/7OmrXXI+J4cxv/DzR8WNkz5wm21qnfvhalr78G4hGdZ7/g1+kceIGrotf6x3vbJOPPvh2ro3uvKpTeFGsAidf2nicTnyQdnyQS6MnOBCcYHJ4gacf/3XE8wF2uU/6/PPUmgsc+dJvxtwwT3o4J336CVZ/8d0U22Nq99yFObuGbN3JTHYNFwePcnH8OO1wkeXp0xyp38L5849zz8lvpRXN4wJFVoz56Md/ii84/j0EQf2lJg6+DsA5947q8RR4T6t1mN673s1IbnDgr34zJoSh6vOp+36SL4q+EWkdn0zfQ/dDD7P88CbZ+kVu/ff/Cw/+zLup33CI6aNnGJ/fpnvnEQ7/4Fch6prRpSHPf9/PMvMtf43B7/0JQWuG5M3fxDO//BPc+5afBOBi+gxnLj5OfiknFDGnHn0N1z34BkYnGixvThBCPAkcAD4BfLdz7oXeK//d49K6fpH2tbM8/IufZLrcQ3zhjcw/5BiXOzzySz/BHd/xf4DQLP/7X6Dx+XW2PnWRlSf6HP8338+Ff/su4iPHSZ85TbG+Tu34tRy79xtIBjGTosdHz/9bbjrx1Tz3oQ9SUy1ujT+PD23/Ol8y913IuVlmnvhjvu2Hn6W/bWh0Ar7m7x7jNV+1gEUghPhfgB96icblSvup9Q3ztu/SD/Nfv+EmygcuEyuPppuc3vo9+tNlQplwqnY3i/EhbJrxiad/mYPDVxP+zS8i78LggfsZ3/cJDv7A32bl534egAv/8BcAwcL3fg2i2WLj53+b5uffy/C9H6Z2zXUsfPnXsvI7v0a2co4VMi7d2ebNP3InH+ROGudeODTyL7b8FIXnoxxOMbEkb1TqggLU4ixHv+1vc+of/CtmP//NrPzOrzN1HhYgC8dk9TxxfZZbv/XHWLznS3n+Pf8R1xtXhCEwevB+jrzpG7jlb/xzhJCsvvd3kIVj5vp76D31ANNZhd4aM1p9nsyMmVeH/0Kn8Jdmu3LG1rI8eJyD7Vs4OHMbm+MzZKpgfEChk5LsgU9x6Ltfw9Gf/DGC7hzrH/5Duk9Zgidzzr/tv9B501dx/Ed/nHqwSHrhLMFOiigNBAH9cp1EtXjjwrdzTXQ7B6OTrK48gJj4NMH66sN0u9cQNDug5UtNmvEMYIQQ/1EI8WVCiC6AmGQeWiN8fklPofXQGoBP/VTM+svDJ3hV9joO//y/ZJIcwDnB9vse4+jf/Qru/o3vxwrF+X/3x+xsN8jGvvCRP3mGU3/zH3Hj53837ec9cFrmlrJMedo9yF21L+FLDn8/r7n225H33M74WIPtS49RjAcAXwfMAx8G3vFnzuZFHJfdZU0KR2kVyQ09z3G77ItAKrvcz//Uu85ww//6xdz7B3+HzpEEpGP8ifu5/ua38vp7f5hky7H+7nf67r+Ox/1uZRd47av/Lq86+Fe98CDgRmOW39Diyf/zQ/yt/3Ar//dD9/CDv/4qFq7vUDjFdFAA/PBLOC5X2v2NuuBn//2AP77lN+jd4PWQSlny0BO/wsHOzbyx8Y3cXnsjT4z+lLEY+mgUcGubHPnjAdG22GOpdwIO/vPvBODkv/0eTv3aP6X22ttxRmD6I9iZcuLv/SgLX/PXKWNL48vu4Oc/dDO/+acnCGPJH73tEZbvP4he77/gE7g6B+pRpjzU/yPeu/Ur/MmZ/4uP/NE/58J974SqmjV75A7CpA2BpH7XnYQzc+TnzqNSXxTRSYNDxz4PtKJz/Z1Es/Ns7Ty5t+3sXnc39cYBtIxYuustDJ55mDJ01G+8mWJ7g/F0k/RIm5XxUxxITiHVX6gX4C/XnGMnXyEtByzO3EI7WKAWdni+e4mt1xdEuuTwFxzj8z7P0b5hgP6yOxhOVigjAR96gnp9kWuHN3PgAcGp8LWEQcMXoaIQl4REqsHxxu1IJ1BCs6SvYWXylNdGmuasrj7E4tJdmHrk6b1eQuZ159wAuBc/O34R2BBC/J5VEPVKj8gofJWcOLz8QSEQUrJUu4HaUHLw/RHlagtTKOr33kHaPc6EJjPf8CZ2PvwUCIPY9o5i4Z630FnWtNY8dA5ATUvPNoRg3DAYDcHZTRbWE/TEcmHj46hOC+fck87rTv8kcIcQ4thLNS7jSz3SbR/dGCc43O6zfrck7HsHmmyXRNsOWUDyhrsZzF9D4UJmmxlJXNB+8y30vm6R5S9t0Pzar2Rj9RH6RwVZ29/GR67/ErTR6Nzt1Qfk7Azlm/sICWeeKdgaB9Tma8yc7DCxEaOdAuBtL9W4fKYtHVD8u7cP6G3DP737PWQdyebW08RRl8PyJEoqWnqORX2M1fQ5346K8Of36GmO/OE2yUrlQAOLLbwjmYwi0mGEyRQulyAEM2/6UlxdUc5r3MGYf/TdG7y+u0yjCV/zfQd59pM9Gue5KkLyv4D3EdxZ/yJmw8OwtMjOHTMsr97P1lMfxyTQe+yT7Hz8g+TDbQBsnmPGI+x8xb1Xb6MMTOsevqM7M+STPnnH5+7UTAcc5G2BDmZw1lBmY5hr0j51B1tnHqB97ItZ6T3OHY0v2tMf2j/zvbuXdh5ltnkNkdG4JKB94z2s9j7Ov3x1xi/95xTVbZNZxeF2n+xIyg4p27dA/siAmmyRrKWVQBjEqgmA6dYwhMRR25+nK0BqOhxEjTVbk/PEcpZpuk338M0UTqNTs6ev/VKZc+5J4NsAhBA3AL+amhEmlHupnawjEYda8Kz/jGw0INPE7UXYNLSfHbN9cwOZCWRtFnehxihMsFkMxhB93KI3/WcPPZOgROk1kZr+htGbIxCaW/UbOD9+jMc2/oi2m+WGZ8Y0h9fiNrYpRz2EEL0rDl0Ah+AFp7z+u8bFlfbJR372I7SPtZA4QmnIDxaY2DvAoF8grURPHbXpHFu9BofmeoTK+FplPO81w2oWtdQBazCTMZUcOq1Jgt4e4LLLIMblrzvGN930AS7+9K287/93nnf86JMcu6PLl/yDm1m8pk5ZOICfFUL89Es1LldaLVZ8xRfH/Ouf63HjtSE3Llzi3MyAweMX+JPhv2dX191hOahOeLjgrhM1BtkfE9S86kC8qslnqsh7qpA9D7Q3OwpVq0Mt8FV7CW+5+ZN84ifu419/MKfftxgnycaGuYeGlZN+YXaVOdDK0xuLaDaxoSYc2D3RtEm+yep//S0Of+v3ER8+jkRy5pf+NSbypCFlIijGfcqq09BEUAx2qN180x7jUlrseBXFFCayB1IRBHUYQeu2e1j5vV9jWhxGSU23ddyrUe6nCSiFYa33JA7L+87+gid1EDnlKGPm7FPE0hEFGYNKgyTSJVJamtftsHxDk+mFIU4IXKAwWpKaIaYZMzxeY6o1bll5yrwCr85pHUvBtaykzxC5NguzN+NqEXuB51VMgL9sc849JYT4FWvLV5FEGJvjtGNy0CEe8MwvIoo8KbR1CCFw1qEGU5xueJrCS32CU55BXj3eRwjFgWcCir7/fDjIcXVPnhIOqhBUSoRSzGZzLOhrKKMJp9MHeHz6p9x9JqAmNUW7S7Gz1dmvcYkXmvSf32buhhlM5qWsAbYWfVSqN0aEvQyZW+JtEOcSLlafzwpNuDnAaYdMJVm6A1IxuxLDsh8XfXHLE6cYs8coNPNVl7AIll53mG987VFGE8GHf/5x3vnPH+NbfuXzUVpSZvZ7nHO/9pIPSmX/4odmuPvNF/iB72nRkPD33/JRfuKZk3z+5udV5OGefcxV+VGFwgrjeU1PzDNyz4CDxgWHOCc4C9TPK/SCxCS7ChYC07C42PC6G54j+M/v5vnnDb/8OwcoZ7u885ML/Mo3vA/xyLM8/0N3wb98Yccu3FW0QgohNoAWcBa4kgdpFpjDr1g3AY8DWfX88er5zSseXwA2gE71+BE8pd/1QITPH+XVaw44c8Vv3YIvZe0AK9Vzx5xz8y/4RP4SrRqTIXAUeIJPV6o/CYzxC1UOLFfPN4ET+PPWwK34c+zh81BHgPNcHrM54OnP+OkAuBk/bmf4s/QhL8mYVBHnVwC/6Zy7KIQ4AvwGcBf+Op8AnqyO8zj+mj9Qffx6YAt/nlzx3GebAyF+rB644v1XPqeBBjDAX4cl/Fg/zeW5drtz7nEhRBt4s3Put/8ShuHP2GcZl+fx13iHl8+4nMJfp69/KcZl14QQZ4HvxOdbzwHHgC6+CHkaP7cv4ccKIKmOPcVHx43qfUF1DgWX75Hb8eOy25N55f22a4er73wWn8o8zqdfg9uA7/9cOFCcc1f1h3eeX/wZz30b8KfV//8VsI2/+D8DfBD4zivedx/wc0AfPxnefMX3fAB4G74SOAB+H5j7jN/6EfzEueZqj/3F+gPeDfz0n/P8W4FV4FeBn7ji+TcCF694/JZqLPrALwAfBb7lM8f2z/n+P6muh9jHcz+Eh+lcwi8Wl4D/ALSq138e7zSeBb6runb6iuv9nZ/xfZ91DnDZaegr3r/3HHCwmm/96jc/ANx0xXu/BXi0+t4LwNtfGZeXdlyu+M2zXOFH8EFDCnygenw98C58oLUFvA+4o3ptDngPPnC5D/gXXHGPAN+LD656+HvwjVxxv1XvWarGYYS/977nc12DP+/vqiLQ/14TQnxbdVD3fpbXPwD8qvtveH0hxLfiYRZ/7nf8j25CCAlcBP6Gc+79n+O9bweWnXM/8pIc3EtgL2QO/H/RXhmXl6ftdwXmqkwIUQO+Hx+l/U9jQogvBT6O3778ED51/rHP8ZnjeOjJywAI+4q9Yv/ftJcHu8ILsMrJbABrwK/v8+H8Zdvr8PQFm8BXAX/FOfdZq2NCiB8HHgN+yjl35rO97xV7xV6xF9de0i38K/aKvWKv2P9M9j9MBPqKvWKv2Cv2crNXHOgr9oq9Yq/YX9Cuqog0N6Pc4mHFc+N5wjUqcSZRsT87D7KXlwWiPPGxB98L46o/W/XpOv8FUvy5wG8nBS6Q5B1YavToqBxZaQg6HOIKGq6HHsk33T7hQJsz2s0diimsYnOnRTCp2gut873sQlxB7lFxnzqH2B0rLr+EELuj4rtmP3NYHAjncNKz/Yt2SaDMHiWZwGErjdjhM+v7NiYAQVh3Nd32D4wFKTyrlHV7fdpe26lKISkN1uw1a3itrep9Ag8MVxInJeD89+yO7e78A5yWnuGcqmNFQBlLZLdAbm4y2C73rcsgCOsurnUxUcUdodiT65aZp6bzIPiKCLksKwKf6lyk2GunvizGJqE0OGsA3x5LoP33OKr7S+JCT3VIXvjnqrk4NUNyM923MQl1zYWtWcqaHw8ZGM8VkGkvFLirYqP9/3dVL5zy/999bHUla3KFBPrePLJc7s674gaTlkoN1L9kK6UNpxz5+Usv6P65Kge6dFhy+Oe+l7m3HSKayyiaIelcQDgwhL0MJwRlMyBvKqRxmEAQDgzx6hgXaigtarPvuS3jCFeLyQ80mc4FlSKfdyr11QJZWEwoGR4O6L0p5cde8w5uDz2uuC4kkbh86M1D518K5pg/1+YOxfzYO2/h/924g+f+03U0L5QE4xI1LpATL+rllMI2Qpzy7OCfyWHrlF8snBC+rc9xmRBEiD0xNScEsrDYUFLGguUvdNx4o+9VkcIhhSMrNRbB+970b/ZtTACSsMNrT30HYpojspxysYMLFMJY5CRHnF/Z65ZxWYZsNb1gXruBmGYQhdXYVU7XOc992k4wtQBRWoKdKTbWuIqBXxgHpaWYiQkGOSZSmJomvjjgzFvnGP7mC2wveZEsTrrc/qYfZHhY0z9l0QtTjJHUH0poXrC033caNxp71VVjPBTeOgiE13OPI+8MyxKXZshWAzsY4VyBCAKEkohGHZTC9vrIRt0/FgLbqvnxWd8GZz09olJ8ZO039nVMkqDNiW/8ewyudVgNdHNcLlE7AbKE7hMwPOb9e/2SQ+We5tJEAl3xu5Y1T0KuU5jOewcYDMWewq8wFRF16vmGy7rACYi3LWWtWpQcTBcrfuLQ8ewP//0XdP9clQPt25jol48ze3aDfKlF1tXoiSXo54jS4gK1FxEUNUlttSBaG+G09DfNVg+iELc4Q9mIKJoBo0MBk0Uv81HWPTHqcCOktuaIdyzdZ1J0GvEjjb/Cz976G8Si4IDKkGJ/9W32rPJzZ/szRH1Xie5JXDMkKC0iK8gX6zjleU9laX0/hQQ5Lb0kSG6xQiCcxUQSG3qGGafwQXrmo86yJr0cSMVcVT+n6V8T040vF+wjXVLa/c/MCGMpOzEy0ggTe2nazGuUi/EU4thHUEkMUQDTzIuJlcaL4jmHbSV+0ZFeL0eNM2yiMbFCFgIb68t9X9ZhQ4UE9LjwUb51qKnBJgFH3jPmw6PGfg6Jj3py5xVo5zK+/LrH+f0P3U3zgqV+KfUKA8aiuh1sf4CdThFKIVSIiCIvIGgMTAtPpmEMIo4QRFAU2LxA9PoIrRFKQeH5Y+1ghCrmyK47wODuGebfd6GSPtlfhn7wO4aiLog2BdmMw/YCRKfAHUzRTyUMj0LedtQvebb+UgryttdKs4HnRFVT56mYqtMRVcS56wyFEZTC62YJ5zChd6wq8+3lKnd+VyD8+6+GpP+qHOjqoMMNj/YpZ+vkLY2TEA4L7xSc366bWJDXJfW1kmhl4IXVxlPcds8TMM+3KJsBWUczmZeMjjnKuZwgKWjWMgJt2Gi0ETbESUmy5miez+g/MMM7D9/N13XvR5JhnSMQErPvqi6eWWdru8GhqfXXUUAZKfLjjb1URhlJTCiQxiuNJpsFRJVYmLFVNtrPAFl6hylLh9W+J3wvClOCtFmtwBMYpRGzyWRv624rjfV9N+cIVgbkS23Cizs+qkpCvxNZHiAau4z6V0zBSqKZWoytR4yO1ki7Ep06VA7BKESWjrwpKWqaYEYTDgyycKi0pEwU2jq/6BSGYHtEemIWUWqC1T7BCxdbfNHMSUHRhHo9pbTKS0vkBr05QnTbSMDVE2QY4C6tIJIEEVcigbknm0F5aRNXlJ6pvSw9P0Wlx2Xzwj9flEhi1NIi01MLTBcCvzM80EVd3NhLcey32cCrTugpZE1HveE5/cbHFSK0hGcjH5Q1PAGRU37dFKWAwFWfdZ6wfSjIO1DG1XdOBOmcxYaOcEdhAy+/nne805UlmIq43elqGy9fuE+5Kgca9h3MQdkIKOqSZL1AZgaRFbgoIO+GpG2/fY9XxwCINMPt9BGtJsV8i7wTMp3TjA8JJkuGeGnM4faQZpjt3fzZnGayHRD1wNQ0alLSfs7yh8/czPHbNpmtP0ldOQwO9TKYAUOb4LYjdrnV/ErmtwZ6Ysk6irTjWfud8sdropCob5C5Q2UWmRtsWG1FS4erGP536dqc8p83gfDELHUIB9DfqkN359OOZ59ZxgFwSpEvtT1pzkwDdW4NsbOb71S4JPLzJlDI9R3MkQVwDjPfQDgomgFFzS86RdOrcV7mXvUTPRwqxgcUjWWDDQKint+VCOuwSYDIS4Je6tnMGzFyZf8lYIT18t2vOXCBP37+euJNQbyWMTnZJRgUhEUJRYmZaSHjiHKmTt4NPbFKZlGZQe9MfT1hV3mzKJBS+vExBjsc7XGumrJAt5rYSNI8l2IDSTYTkUza/vP7bD4t5a9nWXOgHMZImrUUNWcZrDTJZy3ZgiNe1TjpUFOBtJC3Id72pESi2oZHPYcNBUXLUVYONRhJ0gMlecf6qLNio0/nLcHI6yOhwQYOJ91VKTpcnaxxabGxJu1qVO5QqUFkftJmszF5U2JDqF8wiLGfuK4/gEBjFjvk3ZC8qZgcFIyPldQXxxyf2eZg4kOD0kmGRcSx7g6PH4wp1hMm85rW2ZJ4x+DO1Xj0xGFuiFZYUjtY51D7vQ0RsFPWidelX0wqpxcOSkwomSwEpLOVEqn27xcljJcERU1R26xkXEOJzO1ejvNyJalSJ9WCvCnIOoKy7ijrDmEkcqAZFyGRKvfyoC8LkxDsTH0OV1cFEakwJw8iCoMcptha7BUkoxBRGNIDddIZRdqRTBfBaUfRNp6BqF7gnCCMfRRWZJppP0QPJHnbz/jWGQh7DqulX5DqEQhB2QgIR+lljfR9MoHX9EoXDV/QeYr3P3U9B54u/fjsMgYd6CKygv4NTYpai+miIG85TOIQTqKHASpLcBqSNb/1DAfu8twyPhqLBpb6kxvYc5dwgyEmkkwORoS9krylUPN1wizf/2289H9lzWFqfu+djkKKXFOvpzQOjAh1SZoHpA3PJ1uuRYQ9uZe7NInPd5Z1/C7DQdmwqLEkXTQE/SrX3iwpg2qsQ4sYaR/NRm6v8OQUuPBFikABilZIURfUVwwoAVqSd2OcuBxGx8tDzGwDdWbVby3mZig6MXlTMV6SjK4pOXBsixOtbY7UdrBOMDYRpZGeI9Fq2u0Jg4MRNpDUVxTxyoTm2RYfu3SMk7UN7o62CcT+R1oCh8RVjtNRNJSPMrRPZaRzgjIBEznvRGO/XXfCkc5JiqYi3vQTPnBVDjXwE8Ip4SOwRFI0fLI86zrK+YKgVpC6BDeTo8WnO4ZAvgzyw9UclKtbvjgkvZKo2hx6h1ka0IpyrolTgmw2ZOX1irJlICxRsUEIx2xrwpHWDttpnVgXFFZRGMXWqEamHEUYYGolYjVicI2kvhIQbo69uF4cks/HqMxg2glO77/csw0EtAoeHh9FbAeoacF0MaS2khFc2iY/Nsv2XQ0mBwRlzVF2C4JWhgaKaUAeKwj99bYqIJ8rkWmll5ReRnsEQ8148QBzDzfg7CqtB5bJj88hcr9gFw1N0KjExvbRnPB/Jq625FX4p2pTxpOIWi2jMIr55piFxVXOD7psK8u0G6C2NcL4cw8rx5m3oWw4XGBxWiByH3CIXCAaBiscQjmSekbab7Kr47Zb2bftkqsh1L1qPtCsrXzIHQpsJnGNgLKm0FODDX1+wcYBamfiCU/rNcqZBmWimM5LRscsx65Z57aZS3SDCTWZMzSx37obX0Gu6Zz5+pjeXB21HKPSEhcpZAnTSw22jtexQOEsSuz/TdHWE/K2z086AUVdUtYERU34hHXkLie0Ozmdzpg4KBHAzomEzbU67Sc1zUuVIqkW2MRvW6320et0UZAeyenMjRhPQ4pJiFjIWZzvE+ny0/KeWu7/VhXnKJsR4XaA3VpHzc1gR2NEs+6r5taTwgpjmSzVWH2dwC2mLM33EUASFJxqbRDKkqkJqOmCQBoyoymdxDrB8igiaHry4KJpUKuSdFYTbgnEYIwsDaoeeKXKcP/nCc4jUw4u9nikd4jGBUk6FyCMQ40y1r/wENMFf71N7LCRQ6SSMtLoqEQGFmsFVEgskzgILFb591HB4mQGCBgfEpioyWJpUdsD9M6UydGWF66LBVHF8L+fJg2EA0fRApVL8hkDsSHfiZGpZBiHiFqJEo7S+ut+aK6Hc4LlpM2kEaEHvtqqp16AsmhZUL4YFA4kZd0HdtYK4kZONg6ZXmqgCi9tnLcdpmnQPXUZ5vQC7aocqIcaiT2ITd7R1UGW1fbT65vbUKHzAickrt3ERpqsI5ksOhrH+9wzd46FcIB1EiksTZVSOEWiCiyCwioiXdLuTHBFjMx9RGU1BEMfdabOVV0A+x9tBcJQto3PcUrv9KzarQJerga6wKKUoxVnzMZjmkGG7Dgudds8LQ9R1jThwBeZypovNhQNR9ktWTq6xb2Lz1OTOf/lzO1EDzQYHzM0DnkHcuXW/WVRRBLCFxe1QrYaPj937BBO4hVFAZGXCOuYLEjkoQkz7THHmjssxEPaelppmBsmNsSEEiU8c7h1gqbOiHRJWmoC6fPMq2GH2lpI2YoJ17YRaY5KS2R/gl1ovdRie3/WHKjcoaXl3EaXeg4m9JjM3s1t8o7PB/r0jdjDVbs8pIwCXFBdY4uPQp1ADjXCgCyFV5osBSr3W/lo2+9synYEtBDGkLf81reoC0zyMuASMhY9BT32ECI5lbhcEu1In5NMFXYk6Q8DepFBJQbZHaKl5dBcj14toR/XSXVA/ZIkGEI6JxAdAy7wKY2RH+MsCjBhibOC+iW1hyVFOlQrx05i5EDD3AtX+r1qVU6rfdlfZY60KwlHFpl77XMTSfTE+Bun9BAL00rIZgJGhyTqxgFvPvoUt9YuYJGkNsAgsU4ykaFP5CLQwpIazWJzyHOHu5h6gO5nhEPHSAnWshZjK2m+DCItARzQPWSjwKmQMpZe2jkRmMQnpnfzPEgQ0lIYhXWCRBUcjnY4UdtkIRnyzNEFJnlAUWhmmmNOtje5p3WO25NzxKJgaGNOZwe4YW6dJ1QXUQoSXSBx2CuWzZdDHlQYi760XT0Qftu+sQ2dFgovWyuEYHqwxvgQ1GsZM8mEZpDSUBmRKIllQeEUgTB09RhV5QVS56dtpHx0apxgVERsRk3GhwSdp0ufe51OsdEcoh5jd3Nf+2xFTbK+1aYYhBRNfI62Bs1zjvmHUmRmMIkmb2vSjiRvCUziF+ai6SgbFhdZRKYIBxXcTfhdp55AtOOor5UEw4Lg4hZuPMFcewjTCgnPb5Os18m6mjKR5G2972MinEedqNQvGGHfXyeV+gKQDcAqgZl6+eeyI9gSDZJaxsHmkBPdLdajnEvpHGUiCXNfec9HAUr4cFJPfRCjh5KiHhI1MoQNfYEzxIvSASa2xOuatP3Cdyt/oSXIg1klOnNE2zkyLSibEXlDevEw8F0jtZiyHjCZV0xuzPiCw+c4GXvx59xpJtarLBoEgTAYIWnqlKkJsIGgtAp1fARGIbLC5wM7hpVJiwtlmxvCnc92iC+ZjW3E3/3INyC2Q0zocyllTZA32WuUdQJc4BBJiRAwLa5oAlApi0GPu2tn2JppYJzggO4zq8bMq5y2VMRCs20yLuCj3d3vVItTQlmS25dBJPGZVhovt9Jp+Xs0yxFS4rSibMWYWGFnInZOafK5koNJSk3nWOcjzd0FQQpLYUNGJiaSBQpHIAyRLFkMB+yUNQAGeYIOjIen4KFAqIbHjKaC6Pz2S61W+mfMKUE0NDgnkFOFmnq4TdhzhCNDsDlBbGyj+gNCoJkk2GuWGB1vkHa87K0NBdYqklVJOPTgcBt45znzxAh5ZtmD8QGXJIhaghpmWO1zwCqzvlahoEheBisKIEtfPxFOYMvLXUZq6ue5dKCGgrIAEylKK8iUJa8rEieRwhF2U9Ii8UHc2DekyMLDtGzg1U71ROB0QG1uSOH8vWpi54H3gaGMLDID2X/h99NV33kec2fJ2opko0DmxoOdxeU2KjnJcVphk4CyrpguCFRo0MJyMZ9hZKK97VnhFIXzEdnUhEhhCaqiiBSW2daYojVLeClHGhCZ5OzKLBtHWhyyA2K1v1Fob6fODR+NcLrqGQOKuo88hb08QV1oabTSvegwrSIng6AuM2oy44AakCOpi5K2NDSlwjrHxBWflqhYHbcoa45Dc72Xx3b9zzPnIC8q0HwEuQWtKds+p102AoJhSdEIkI2CRpixlPSJZEkkSjKnSW1ATWUsBAMCYVBYlLDkTtOnxgO9ozx6+jA4wdzBPlJa0rmC0bEarUmBWN0gAlykfcXf7K8D3S0OyucT2mf9HEnnYXSNQU818XqA6LQQ7SZiOMZNp8hzq7QmM8jru6Rz/naVBYR9UJkj2bboqSVeHiLOLuPKEtFsIpp1/5vNhOlSA50aXD1GDzOKpibruKoAs//zRxYOPRV78CFXTXaV+4Kqq6rtsoR4XWISQe5iVqVDdh2JLug2J4wCw6QVYTZCTKdEbAWUNd+VFAx9i7UeCcbTCL3XtumvgzECkapqbF94cfoqc6CgCl8sCaYWlRoPwZkWjI/UUIUHMYusBKUwtZAykdRWHSZO+ACnuPHQKtMyIJCGms6JlS+ATMqQ1GhaYUqsCkrrRzNUBhN8+kV2RqLY/+07+JVNFpA1/IounMelOQ2UroKneHxbEhYcaAwZFyH9LKYTxkxMRGpDZuUYKRyqohfcNMFeimLoLKkTFNUMu7A8AwslRxo7e0J1cDn3+XLYwqMUotvGhQEEutK417hAIntTnEwoGlW/s3SMCw9RqamcQJbUhM9DKRyxKAhEiUWSO81z6QLvfPIOkgdqqIMWmQt2+jPY+RxKyeCEonVaegE+YxAZiEnKfq81wsFkTjH7mCPqGbavDzCRA+1IZ4UvMnVr5J0ImEEWlmA7RRSGYGBQuYfdhNuSsgG1TUf9wtirueYFHFqsonzfFizGKS7U2Egw7oY0U4Oa5KjMUl+uUDP7nRauGkaCscVqCdZHjU75/LDKnFeAcqByQVEHMoGcSrJJwLl8lnZrzKHWAC0tRaHQJzJCbegHNeiFRNuXI1GdwvRiDWoeOWNDBwrKNEANJTqFYPwiwpicFBR1QbJe+Fa5YYbTkuFhReuC8fCbSCNKSzoX0rvWe/X6RQeXEp4+coLiaEa9mdKIMxqhL4JMioBpHnCh6DAdR+iwpFHzAxEKoDSozHcdtGZGGCSFkxi3z0UkAVlXYEP/r3AVrqzqSHKyyrGkkkkWUtYkN7bXuDjpcG7Y5WDcZxz6yBuocn6WSBgy56gJxa7Gt8KxbeqQS+YO9X0nS8WmYPc7mfWZtsszq6uWwihAGIsa5NgkoHamR9mpceDjlq1RjbM3hzRvzGi0MtZNi4NhH6BCWyiUsKQ24OODa7jvfbcQDgWLX36BL5x/hlgWPD+d510P3YZu5ZQ17YlKohAxmkAtwbYbny7Rth/mYHREcPBjBXpc0liWpAsSE1hkpUS8fleD5nKJmlqGR0LkwYD6ckHRUsRbDicl6ZxDFoJkI/d8C0WJmW3QO1Un7hmi7ZyiGZCcK5C9McNXNzERtJ61iHGKqoVE/YBgYl8WEaiwPtoMJr7jzElfTcf5AGV3d2sqrKYegygl5TSiaFvKekppJVpajs55WGQ7nHJOWrbHHcqaROYCaXzrZ7wuKRrOF3ijqgvQUcELIdl5sRyo8LCcqGdRaYkaZZAXlN0Wsqy277nFhRqndvvCIet4wG+y4Wg/C5NRzOiUxHYEpVFkpWIyjhGXYhrnBXHhSGdi+os1bKvksBQQaHRmcVJyuN0nECWBsPteg7fKRxbJmmNy0EMidlliECBzgcog3tKkwxbPHAnoz8TcMrNCqEqeHBwgUQXHw02aoiB1AakJuCYYkDsIsNTEZVT9et5iZqnPbXPL9IsYLS2l5eXnRLXCpRkC9ohETKSILvURaUZ2Yp7+NRFWQ23DknxIcvHhEzz22iW+4PrTADRUtpfzXSvanJ3O8sGnT+HmS/7B176Lo8EWAxvz8eFJOsGEN932JB+9eJysZcnn68SjFACnFeJlABq3ykNsTCgJdwzJZkG4E6PSCJU51l7b8qxChUNPDE4GZB2JsAFFUi3SHUfZsgRDxXQ+pKh30FPDZDEg6wrqaxaZFrhWwPhkl9qFIZODDlkKTC1ArxtkYYi3TcUKtc84UCVIu4raeknWrliqhG/rtNUWWxaXm1CCkUOWUFifDxalYDoNGcQxC7UhNV1wMO7TK2o8UyyA9k0ImfL3og0qwHwARct4NEMpYar2eBVk8SJGoDp1BOMSOS0RkwzbrGFihcocJhREpcNpiRpOSFYEh3Y0TkuymYAy8hFabQXS2YBwbsR8fcTFfhtxIab1PIQjy3RWUjQdbiZnfnbIZG6OVuFXZRcIOuGEjpxgEFzFub44Jn2La9y3jI5JbOhbzYT1F0zmfhVVObT6YM/V2Fqs8SfXtDmyuEOkStayFk+kh6jJjPP5HJEs6MgnCIQlVJZZmYD1bXeFU8zXx2RWvzy26p/NihJRUa4JY7GhItyaIMZTXC0m6waMDwqS125yzew6D1w6gn2qQXg25iPxCe45cp6DcZ+Gyojx8LZxGXLy8AZfceBR3rN5E586fwS3FmE7JY3uhKXWgCPdHs/0fNW9nGui161PHxizh5PcL9uFtAnrEHlJ0Uiq4gZMFwTpoqX1rGR4SGOPBZQ1KqdZAfbiqgMtE1gNkwWJCSU2uFxN374hJOoFyNKRdiRl0vIQoRCybkB0TiAKQ7Q5paw6e/bVDpSc+t4nebY3x/CjCzTOO6T1DlPl7DWW+J2cIxw58oY//7LmsM2SmeaUuWTM4VqPU8k6hVNcmHZp16YUbUUOyLGPdIQBlQrKxEFiPLZ2IBGF9BAyqmaHF2hX18ppHNFOWcGWDC6OKDsRTnlqKVsByZ2SYC3ywrovRHda9E7O01gtcUIQb1umCyFzd425trnBTpoQPguNSx5+0TgP6aWI7WFM7/aSeij2ft81Sho6J5YF8cuAkclV7XPTWb8t2D0kE/vqaDIShEMfiQ+PwdzDlu4zBcOzMSvXHMRckyIOOqQ4inWSJ3cWWagNmddDrgnX2bIQYkhdk8ezQ6ymrb28sRTu5VtEEvjiUZYj0xIbac9HGWiPDS08tdjO2S4fOd9l4cQWzdf3OLc+Aw4ujdvUdUYkyz2URjeccGNzlZ9/+I2Ej9YIIiialiO/J+kf73D6zphXX3uWWnfKZKFF7bFtv2vqNj0L1Or+zhcXOFyroEw0ZSumjD3xhYkd5nhK+Ezie/4D7/DKhncSwvgorGz4irHMfcGlrOH5LKuaxy7+00Qe+oOEwXGFSRzBQJB2JU0lEZMMEWi0l+XdxxGBRBXc3T7LDY1Vzn3lLB/53dupr/hUnTRujwuirHunqTKfKivrDnMg49rDG7x+7nm6ekwgDE055blskdwoGkHOJM6R0pEnGpspyCU2EtAs0IHFlBKZS2xoCYcaWTrK+MVyoNbTse31FEsoY4UsLPG2YbKgK9ILf0VFEuOSiPRIm95NDoQm2bIIK4h6jkAabq9f4JHtQzSemiJzg94ceiqzaI7D752wNm6yi9JxWiKEZT4cElab92K/W9F0lfu07MFkXOAwdYtq5aQmoYwFRdNvJZLNgqyjSecEs49bxtsJzxw/wunZBZQ2FL2Y1VaLYRGjhGVl0GKaBpyY32Y2HlNaSawLtDS+0CaoHOnLpHi0a1LhajGi8L3ealJ4MuQ49CD7wjL3WMGBT5aUsWL1NQuMMnC3TzCF4tJmh0iVHJj1DRebRQMlHKdHfpzKusPEjmO3LyPvcMjfOQICDsQDLtQ79JfazMy1kVsDhDHY2v533exO1aIuCRNFODCAIl8seNPJ03zkmdu8Q00cJnKeAyATVcQEtl3AVPmON+lp2uItR94SpLNQ1v3uJ5gI1NQhSo+DNCFEJWQdgYsjz44mBHLKviMTlLDUZE5mA44lW7x/zpKsC3ThseZFTdI/KcgO5YipYnyNRTULFmcGvHb+LIeiHnN6QOE0Bsm2aXB6tMDapAlAM85YaIzoZzGDSUxZKJS2aG3IMo0z1T2USfTY40/T2RfJgeIA4ypSkQBTD/yPlw5pDLJU7LKE23aNbC5h+/qA8WGPQ5gcEB7/FyjyNuykvoIcKMP4UExtPUe4JjZUbN0U0VjRzDyVs/L6EMrS50cmCuPkXm5sv01FJaVHjCDLKocjHaJWcmBmwKVMwVpI2S1BO1ZfHTE5VtJY7LH1WBuVQ9iTHL91ndfNnuG3n7uT8Vqd53aWkBPJ3MOO9AbBcxfqjG9d43ULZ1hJ2yjhUKr07a9OvLzyn+DZ5YsS16ghxqnfuneanjM21ESbnmjk6e+NiS6FdJ+ydL/7PE8+t4QILe5CjefcPHd1LxDpgkAY+ibhwUuH+bpTD/OO/mvoPqiZfe2YTz51guDeEV976jEaOqMbT9loOf9bzRpimqOm+eXC1n6ZcJ7qMPHF2Lzpu20oJVtZnWze+IgydIjCg+SF9WxBmqq/e3S580hNobFcMMIT1jgNZdORdypSkYmna9vNx6cLDpcE0Bv69Eq5//eQxLGSd7g+XgEgPjFkutUm3oQyFgyvgcW7VzjZ3kTiOJpsM7EhgTDM6DEN5fPcdZmRO8UET6yzWBtyIBlSVxmbeYNEF3TiKcZJslIzykKMlpAUlNIRnI09q5OF4XXFCz7+q86BeqJSzyyezgYkq1lFEuyA0PNXSkneqdM/rnAaom1BMPZRmtUwPG5pH+9RGsVm2WQxGfKJ2wWN8xFlLSad91uVoqmorUrylsXlvkwprIfzKNxeZ8p+WiPIMbFDj8WnQUKEdHTiKXLJcaGcQ2QS4gLu7rOYZGhpiV434sL9h7Dacayxzde0HuLgjT3et3gDZ/szbO40KZ+KkdePWGyNuGP2Im09ZYU2wF5f+JX2stnSO4eLQkReYNs1VJr7GzYKPHNXy5Nvv+Gmp/jExo3kLcG9s88RSsMjjx1HlFCkmokNUTgiWXJTY5nkRMH7Vq7j1usuMDgWMyoirjm+zrWtDQ5EfSYmohFklC3PfI8QHgmwsl5JiOznmAi6s0Mmi3MEY+VbWAtoHhhyU2uFh4OjqJHCGbFHDqInvgjptMCmyhdFIouaCpwWnlkpc8SbgnTe50z11N9nTjuKmmcmylNF0TKVxI7zY2E8KfN+mhYGJSxPpkt8fOs4B9sDzt4S4J6soaZgjk852d7kVG2dGT0idQHK+Jbe56fzdIIJvaKGlgbrBLPBmKPJNu3GlIkNGZqYpk6pq5zVtImWlkEek5aaOCwwWjIYh+gJ6Ikj7wh088VyoFfcm2UzpEgkra0xtua3ZarwCVhZwvb1ivkvXGZnkjAZxkxyhQgs7faEWzo9hnnE9rjGhXSGTjBFXzdkqJvUL0IwEEyuzSlnYXJUols5dNs+B6odl6Ydgq6tikj7y8gk8AzjwrBHryWswKSKcRFyvLXF0k19VsctJkWAsQIlLY0w45mLiwQl2LpfCC6ZNrHIeVX7HOAxsLwVvnD+LMfjTV6bPMcfDO4APIlzbtUeXvZKe1k4USmxtQBl/W7FHplDbw4Rk4zJQpvxIUG07XjoD26iPGDYvsdwZjrH3d1zNO7MuO/h6xDaspk1OBTtkFnNxETcWFthOhOQGU1DZxyp7RAIQ03mxKKkEJpEFbikchYWRGkQ3Q6M95m9SzjS3KcS0hnPsGUjxxsPneEt7Ud4h3utjzzxkVC044uQRQvsTSNq2jDpJwhtsaEm64KTinjbEYx940be3kXD+O8oaxbRzhFrSUUbF6BqMSIv9j8iBxyCfpnwqZ3DKGH5hqVP8mjnMO/iFsyZhHZrvMeRsWu7DThRVfWZD4es5S0e3DjM2qUuql5wYGZAEhQcrPVp6JzCKrS09LKEzGiM9YD6vBfReiIg3vZsaZPDhmbtxeqFr8gNBDA+UOHIdolcS98R4WEHjrzt+LKDj3NttMaFYoZ+WWOrqCOFI7eaTw6PUpSKzbzOobjHXHNM9Ko+w1sixr0GM80JrTgjqrap5WLX/7YRbEwbSJzHge7z1nW8VmfpAqSzPonvFF6yYaRZ3m4TqZKDtQH3zHmnmFnN0/1FTi8vILZD38scWebDEQCxLDgSbLM01+NTyVGsE5yM17knOUPqNDtljdJJEmkqCJN62fXBAx5IbyqZl2pXgpS4QGNCzwiedcEcTNFhSac5ZWoCzk1nOTuYobM0YDj2LF2xKKmpnMIpNssGJ2sbgEckNFTKjBoTiJLCaYYmJpSl7/8DRJZ7ZyHEvkegUjomG3VmVh16CvGWo39K0tETbgjGNA8MmfY7CAPxlkClfrs/PVjy1use4XefuY3oYoCe+I6m0XUF6QFB/BEfhXo8JeQtPx+s9kDxo4s7rJ6JEbWSdC4k3I4Rk7Q6qv29fyYmJJIliS4IZUkgStp6yp1HL/DJ4TU0o5xE5rTV1M9t5x1oJEoWkgGFU0xMxKgMmauNWdNtxPmElbWY4NCYi9sdZptjjjZ92/cwj+hPEqbnmrROS2a3LTotKWPJ+JDE1QxavfCo/OpzoBLyRoDVgng7x4bar2RKoKaGsq4QpSUcCM6ls3T1mBnlnUNmNc+MFjjXn0ErQ6vmQ2uAuWREP0+YSSZc110nUQWBsExNwFraZOtoTDQwiEIwyCMsAvky2MKrccnME1M276iRRgInPMhZpZCPQ9biJoVVyIYjUiXGCYRw2EFAsiFxAcikpK0nxKKgEBopChbUkFPdVWJhCLDEwvJo3mFcRsiKg1TikMJSVlW2Xef5cnCibrez1Tn01pSym2BrEWgfBRazJapeEGpDPfFEIlJYhmWEA8bT0GNIK8aumsxJbYASlsPh9h7rfiwL6tJHDFul1zxSwoERiLTwOkKjiT+oYH85A5wTiKQk72iEccw8lTJeqrGRNzldJBzt9Hhu0kVPINlwTOf8Vn7xPslH3/Nq1C2aeMvRfSZjfDAg2dB0nxojjGN4vEZZE0T9SjgthqIpkLM5f/3wA/xM4ytI6hmT+ZjWM1eMxT4vKpPthFgWzEcjtDQ8PD7KqWSNWjvn7OEZakGOFI7CKWbkiJacslG2eDZb4MH+EVbGLTb7DfJ+RON0wMn7U4aHYXhMMu2E1Nspc4nnBhjkMZv9BuqxBo2h78TqPLpD/+YuKveUdyoy5OWL1gvvK3s2FMR9g0wNLpAVzq/S97EefpCsO57sLVJYxUzoq8enRws8cekAJlMIAUeXtmgGKVnFDdmbxhRGkRlNN5rQDadYvMzHdN6Tl8hc0AhzejaiKXOC/W7ptJaiHVA08P26RUVJlgrKqWI0jonDgsJJtBMMi5itSZ14VfucsPTtnoXVNGXKhWKWR8eH+fLOwyzJIaGwSGDDRpzL58msqiaUrMbm8rb05bCg7JpweNiSBNsIEdZhGmHViy0QkeHAzIAD9YEng5AG6yS5qXR9rMRZz7JUOMXQeF2guNq2ddRkr72zKacMbYLh8liIsfZqoJ0aMpjxOdneSz4Mn2bOCtz08n0iCkO04/jwuWuwTnC+10FPoba62wLs85nCQtgvmX3cw5fUtESYgLlPrMN2D+ZnkGXNdwFKiLeN141qCm47cpE3JM/yr2uWLA2Jrqi6O632HRurJ5Zf/ujn8a2v/QhzesRm2eBPe6c8vGnhAqMyJLOeFyG1AU01ZTHokVZUfP08IYoK7r3teT7cuoZV2SCbdZjYcOjgDkuNPifqWwTC8GB+hHK5xuwzlrXXwpGbV3nqVYuIAqJtRTZjUdLiriIFdvUwprRApR4vpaYFJvEterIwOBWgMouwjtqm4dzyLMZKZuIJuVU8deEA9AOuu+kS66MGaekryNt5jUkZsrPdACeIg5Kg2qKCj6hc1YwjLNR1ztlinpvDZex+t6IJGB7yznC3e2JX51uNJWVNURpFagJKq3i2N8fg4VkIHflMVW0VsF40UTgklpW0ze/37uTruvczK6cMbcilssv5bIbcaiSO3AaUVu6RC0vhXjZROeAjGwlOKeQoRxRegdRFwR5b/e6R7tIXammJVUlhFGaqQToyo7mUdf0iakNGJkIKi1GSppoSCkPhNHlFSrNrYc8TZei1HrZZp+zE++4sAPRAIQwEE4dNtG9M+USTDxancA7aA0e8Y5jOqYpnwcv45m1/z+mBQfemzKz0cIMhIgyxUbBXe9jtYkJAP5HMxyOeK+YRsSF8KvENL0mAyGNPbK32mWjawdHfF/yn5DX843vezYlog+viVcY24lMjj40unU9TGSShMNRERj2+xLwecjja4XR9AYvgxPw2K68rKHdqYAXHW9vc1TrP4XALhWMlbfP8QJJ2HbZdcH51BlcziIH2rEzaUYwDjHmRyER2k84q9xygWOtxoaX10cZcUlX2HMHQkDwVsxK02QgapL2Y+nMBJoLn1ubQ2tDbbHCfkaR5QLc+RQUWcS5hw7RRS34l2M3vBWM/MVSqmI3GnMvmuCc+T3o1ClAvhim1pxYoHHvtYE5WzOCFJC0065MmSlp2Hp2jviaYLjpsbBFKEIUlpVU0ZUEoDEdqO7zv0nXMBSNeVz9N6gLO5XNs5o09yJJn55Z/hkh5N2LfdxMCF3pOBJFmfsu43ceeOIA04ErJKI0YhRGxKgG/UPbyhO1+3evVJJ7ByzpBJEtGJiKvikmF1aQuIBYFSliGJiF1msxptvMaUQ9coBFpjksCZGn3BP32zYwg2hZVZ5rXbtrt/w6eTkgPlsjC318qk1gNJvLth1mhiAYVsXgUoIYTRKOO7TaZHqp7ajoBemoRzvmWagk7eY3losvRpS2y9xzwzS5KUMzWq6Bnf8dEWEftwpCT/3fE/y6/lB+9+10UTtFRY2aCMZnRjMqQNAgonIcwKmlRWJb0joclJZrVrEVmNOk0hEwRdFJub13glvgCq2WbBT2kE0zIu4Z4SyHGCpeAyBRq4oH5SFA9jSxeOGb4qnvhhfHbeJkbT4qbGY8NHU+RRZO8rVGFj0Lbz1u2Ggl5zVFf82z18QbUVhOfr3Ew6cxhIsdq0PQA+22Bmoasui47rYwoLEmzgPneZcXLRPltXK+CuOyn7U5A4XwlXlIRiFTVeIzY2xJkpfaFJgHNM+DOK/K2YBQk9A4lLJdNBtZjY9NCs5x1WI06jG3E2XSWYRGhpSU36tO37sLtkSrnRlH8OZX5/TATa0/0WxiclkitUf0pMq8jhhrb9eoDu4vAtAx4bm0OW0hcs0QoS6RLrkk2UFgMkqZKSW3Ac5M5Sqs4XtuiG4zJbFAVFEJ20hrxpvPOM82QoxRbjypg+f6ZyqC24ghH1gcDkxIVS1QmEU6g+wqd+t1WMLWMjmiyGUfQ9/rlRUMRjBQshejMA8V9e7QXlctmBSpThP0Cq7y8znM7s8xFPgcY9SrZnV6KaUWe7X6/+QG0pGxGyNxw/O0hPyG/nG+5+RMMypgPLF/LYmPEXDxiZCL6ZY2mnO7RP+7mwSWOQFgCZWjUU1qzfV4//zy3x+cBOBTsoHAcibehU1A0FE75NEkwN6V1LGU0jciW64Q9ib4KsdKrd6BZgVLissSsEojcQZajxwXpjCZvBUTbOVGvpH4hIG9Lr2c07whiQbIGwcBXDWXp1SalqaRrHYRDKLcC8qkiiy04qF1KcaH3TFJYCqdIXUBd5Fd1Ci+G7babCQOi9Fi8vZGVjkAZAmVIS002ZzChor7sW1p9Sk/zic5RZsJX0dIpR6Mtbl1YYTOrs1a0mdiQi5MOj370WuxSyvWH12gEGam5vFKWVTT6cmnvdFKAEjjjyBYbqGmJ1AqMJRw6wr5gMooYhgVRrURLy8a4gc0VYieArl8kL/Q6PF47xFLUo1ckPLxziIO1AYfjHmcns6xk7b3cZ2kl20Wds5szHFrzUttCSRhNEdHLoBPJgc4cOq3YtaYFZRwTb1usVp6qDb8Nd9IxOl4irKB+QaHSy85fZ45g5KPRYAQqteQdzfZdkLcl3fsHuKU2egzblzrcZxSDtQYnJwa5Y3CxBiEomsH+R6DOgRDYRKPSkqXfjPidY28knQV3w4i52oTUBH7nYUOGNqHlUmLnd2sHgh7glSxu7hiCruFg2Of6eJm6zBjaxEuYIGnKFCEdRcOhOjmLMwMONfqMioitrQZ66seiTP4bB/wZdtVbeJEVCKVwESCkX8WUQAiB2pmg52OmswqV+Upjfd0iS8l0XlDOlCA1shBX0FJ5phirvWSBLCHeFIQ9j6W0gZfICM5eoDi+iLCCXpFwKOoxsRGxeuGg1xfLhKXKz7pK08Zvu3bV/QqjWB00CZQhnp+SBjGjwMs7F11DNDPluoVNrq+tklm/Lf2KuUd4cHSMzaKBQfLY8kEOfbDERCErh47TvyfljhMXAJiU4adV4F8OVXiEwCpJMMmRufGFxmYdudUjHM4SDDXZOCBragqrqOkcIRxhLcddCqk/EyIMjA9HPBzl3G+OUJSKI50eM8GYhspYiIespi2GZYwWhqkJWR63KS/VSE6veFb8WgxbO2Ab+85ILywEY+tzoCPPCyErzth425J1/LZdTwqE0zTOxLTOGqKdjGwm2GvUUJn1ihCpxUnPvq7HhsN/LBkd9NynapSgpzHJBc0wa1NblSAMwjlMPUCNC8x8uKvtt2/mlMCG0jPJTw0qtcw+lmEiycVT0m/hi4huOPFYYBsythFNOd3jip3VI0+0Heo9RMZG2SLQhprMWC66e9jRmc6Y/vkYMwiZPTShG04Y5DGu9Ez2wdAre75Qu/ocaF4gogAxLLCtxJO3BgpXTxCDEfFGjTKpMToYUF/1zs1JKNoO1SgorUDmylNLKZBGkDe9xEDZsKhUoiceJ5e3BGVNEG84cL4PX+bQy2s0VMrYRrsQqeuFEN/pnPulqzqfvwyzDlFWwyPEXvQgS0+1hRVMBjFCWWZnRmhtCBo5ouWoxTnHOjt7Oc31okVbTT2sQw24vrbKTlkntQH68QYq9ZOj86yldVbz3MlTpK8fcf2BdbJSI5XZKyjttwnrkBVngt4c4rTC1SKII6KdnGCkUENFPqsZ5eFe1OycwBxP6R2SuNSnIpbPzoF03HPT88xFY7rBhIn1nxmtjPidb/4tvum938RO2WCQRyTrErfT8weS+xZOub6z762LuzRpk3lNa1winCNZS8m6ESLy0CVpfG5UFJbDf7SNHKXsvPoAO9d5hjLTLqEUBDNTyo2EeE1RX3Y0z+c0PvA0zXbLF/CELyo1LjpUJom3HMH2lLIT44SgbHj9rn03C2VNEYxK8rYm7JWUiccO2+2IuSMjarpSXnXK575twNhGe86yKad05ISBjdk2DbbLBn2T8Mz0AN1gzFLQoymn1GTGaxbP8e5whtp5zZnFGbKWZidNUNuB70ZK3VVF5S/IgQohzgK1ZjAPxiAmKRcmT7B88SnuvunbPUi5wtupnQlxPaA4EpLOaqKe8RdwXWB7NZ8kzyqcoIBHf/Z/5dS3/RP00vyeNEjR8B0YJoQycXSfySEK9yrxs9GYpvSJiv3OgYrSesot7Qf96Xf/AtPtZW78jn+JDrRXGbQCmxi2thsEZ2IIoYwcvVbIeBoSxwX1KOe3T99JFJR8weFneVPrCWKRU5MB922fpPu0xYYSlVZ61xZmnsopzyc8c+cJ6nducbA5rLosXtobQwhxL/B/ADfjZVKfrMVzWCVR1pIdm0H3MmSaY9t15KQgHMaEPcl0EDGQlpGMGO3UkIEhiEpECLptWGoNSHTBdlrjuobX0zozmaNfxORW02vU+Kvv/XZ2ypB+HjPJQg58LEUkCa7b8ou+lNAf+ZbOfbTxaJXt7dN0guv8bq4wXJw+zuojn+DmL/k7lLHyuxklELlFrG1jtrZpL6/SDgJkq4ntthDWYloxarAD61vY4QiMwQJSSEQceRnnKmVgA0Ft0yC3h9CMKFsamVvCoWHfKSUkfPKP38apO/4aM+FJyppClo61M59g/YEHyd/xFUjjiKSXdCmcYmIjeqbGpAqgQmEqFIZmaBKeHB9kJ0/4gpnTzOsBAB05YSgS6jrDLWaEzyf0VhtsKMMkDfeInIv61aU0riYCVbmd+MmYF3s5UBt4NhNcgAoCMD45rqcB44OSMhaEQ0+EnM14so0y9vomdpeOsKLw11MPQBcW0jmvVaLGlvjsFkhZFWZgJhhjkb4qt98kGtYQjB1ZW1D0txitPY8KYkanH6Nx2x0EI0EhwFViYLurwG7edKEz4nCzhxaWBz52E+qS491vvpFDN/nE9/lshqc+eoLD2zlIgbUGhEalFhsIVGY5eJ9hcHGWx1/b4pqj6y/p6QshWsAfAN8H/BYQAp8nHH8EYEPt5SVspdRalBSHuyQbJdPZkGIjII18H6zclEgXkNctLvAwqOenIXPdIbPJhI28QUunfGLlKJOzLUyUc/BEfw/ClRvFZBIRPn7BO09jMe0EmZW4TnP/GemBaLsgCgpUZjD1EDutGgI2c8rYY13LRBMUuSfQMQZnDOQFLs1gfRPnPPeE/QxYlrOu4j2VuED6YqZ1RDuOZHUKRbGnRwX4jrl9J9TF3/+CPeVUZzw1psocF/tt5uvjvUKYRZA6Tc1plHCegNwFTGzEwCZczLuspc2KpKTNZtkgtQHLgd/GPzk4gFiPPI/vtmLQTmA5Jih8GlFICIYv/NCvxoH+VGYmbytcToCGsvSru4CB2ea507/HYHiJUCWctF9Me+4eZC556o9+gdkTd9G9/XUUTdh5/OMMP/5xjn77D3Dh7T8HwLO/+tMgYPab3krsWqy+89do3Xsv/Q9/iO7sKY7wOh7Z+K/0zq9iHnak93VY+PGjHFvi07B/+2HOWOorBVk7Yvvp+6nPH6Mxe5SdJz9J5+TtWC1Y/S+/gWsElIMtsmfOEB2ZZ+5vvZVaq8NcMmb64LN84H9/gPFGRv21d9B+4Dk+/tWLnPiaG/nd/zii/ys/S948zMrapzh46NWsXPw4d975XTQaBzwkJR3yyC/+FHeu/DDnvmCJY3csv5RDcB2Ac+4d1eMp8J52bYmzz/4x6WiTW677a16Kwo340Olf4N5rf5L6hSFnP/UbRNecYLh+muLcJY78wA+x/pu/Rf3AMfobpzEba1z/mjbf+LZruG1hh3/2sTdw3zf9Njed+GpWL7wfuTDPiZ/+fN7xll/hK973fTSCnOV//ygf2vxD8o2UUMRc23g1SwfvxoUBuZkghHgSOAB8Avhu59y5l2ykHKjBFF3LEJnBtiL0qABrUcOUlcfuY+3MxynTEVHU5rr2G5gTETjLCme4VJ6hKbqsmDOEJNwg72FOH8Q5x/3Ze2iLObbHm4wHfbrpSY63voHAxjx539vJs4Mci29BbQ4QnYj7P/qzHDv1JS/ZqX/WIRGicp4+iBIGbCh97UNCr1dn+vvv42PveoxsZ0r7QMyb/s6N3PuWBlj48Ds3eN9vbnDwxjaf/L1Vktkar/oHr+fWN7SIZMkvf/tHWbx1jnOf2GDnzIDo5CqHv+QbmByscenXfpH4puuZvfPzMaGjcR6e+N1/zdLtX/qCj/9q9nr3axlyZvggrij8Smctbjrl4U+9ncX52/jC63+QOxa/kqfO/gHT7RXCoRduKhqCvOUr1DLzeUEn4ei3/W0ATnzH3+f4//aT1F5zm2fdHg2xownXfcePcidvwFnDUuc23nDPP+DkD/4ocSz4tR97nriSud1vi89sEkwcO0/fT/fUXcycvIvB8tPItQG1NYeeOKb3f4r5V7+F6/7ev0LOzjF+57sJg5Lnzkf84T/8U5K/8pWc+n9+iFO3C1Ye3mSjaPB4/yD2yQbD/gXqpsnr7/1hjl73xSwcuI21lYcAUJOS9eVP0Z6/loQ6hz5gWXn/4Zfy9J8BjBDiPwohvkwI0d19QZS2YhUqERWUCSDamCL6I2ThGDx6PzPf9Fc5+kv/jPjVVXfJo/dz4/Vv5aZv/BdcPHeAf/mtBT/yj76L8hfmAeitPcNrXv33mP+B72KQe2lsKSw2zbn0p7/Lqxa+li858rd4zalvp0UbMUlZFufIihHA1wHzwIeBd/BSW1EgB1NE7hVt5XDqOSZCTS2c4aYv/lu84Qv/OSeOvolH1t5FERqEUoh2m77dpJbM8cba13MyuJVHig9RaOep6YAVd5ZbF7+MN578flCKs5/6XbKW4sCBu1gePrnHW5GuXSBL+xwIT+x7Fd5pv3XO65LJnGI6qxgfUEznJGUNgnMRZm6RO//N1/PN7/smXvPdt/DOf/Igzy2H9E2NiQ0588iI2qE23//+r+bO776dD/3j97K57blGA2F4+l1nOfKDX8nRX/jHCCVY/tDvkHcNjVfdzeRjD5HPGszRlG2WMb0e13y8fMHHf1XJsihocn74KXKRe/o6B1sXHyZqzHBw6W5EFNKsL7HYup6t5UfQmdtjzC7rjrJWqXY6T1y6W3wRzjtWYQQ2ciAFC69/C3PPOcTWgFAlLM7egmvVEPWYL/zua3j+/p09HNi+mnPYtQ3M46fJRzt0T9xObe4IUWOWrecfJBxZVAHt47fQ7B6jvi450L6H4VObzNQnBE88QvtEl1u/doHZdkb2hV+E6jZYHrd57iPHaJ3NiVSdY43bCAqQOmBx6S7WNh6Bwqssrm48zOLSnaipQRaWhQdfOmSCc24A3ItvLPpFYEMI8XvWmU9nO9eSslE5uzMr2M0t1LRk9uQ9NMJDOBdQqxtcy1B79atQh5dor2uOn/pS+qcfRo1Lwm1PgLHwxr/Cmb/Z4OSr12lH/rnSKVaHTYSDUb6JyadE62PqpoFLU1bOfZRI1XHOPemcK4GfBO4QQhx7yQYLeGj993nvsz/Le0//W97/wNt4YvO9vsg1mHIouYGGaUCgmT1+J0l9jkE8Qc3P4do1grDBwbu/An1gkaXmTdR0h83SIzGcg6XGTdTnjiJbbY7e8Ga2LjxCMCw5GF3LuNhhbPu4OGR17SHmD95O0M+R+0yoXDYtxJYz73s7j7zjh/nUb/8wj/36P2HtQ7/NfHeALATu1rvJWrNsF3UOftEpWkdaPPVQykreplfWSLoRx996B33XZOmLTtE51uLCfZcYmhiH4LovP8GxmxJuPblF95vfxPhTD6N6gtqNt1BsbFBe2kQIGG7dR+1VdyJuPvWCj/+qqvBKBsw3r+XM5FPUZRukYJr1GA3O88GP/LhH7TiHw3IguRNZ+KqirBxlWXfY0Dftuyt+uYxBhr6VCkDV6jQ2NLX7n8OWJUZYnlj5QzaffZ7iA1POakM+LrHGYfTLAPOY52w+ej+dxevQtQYig9njd7Jx/n6OHPs8hHUESQsTw3RewFaIGOcsf2yJzUefII8XefbsIio21OoperbF8GyLm54sWHcQ6yYizZFpgaxrWt1jKBkw2HyO2MRMp1vMd26gIqu5ymXxL+H8nXsS+DYAIcQNwK+m+cBDu4zFxho1SNEVisCOxiipIM9puBbJhqDoaAZRDedg8U7YvCtn9k9Dwn4X5wx5OUE1fdJ8+LoZrrl2lcVkyGqFOMiMZrw2z+0Hvoqz25/gsZ0/oVM7zPX6VTRcTJr2SMshQojeFYcugEPAS7aNv3Pxa5jTS3tkHhdHj3Nx+BiiKFm7cD9nP/Vxppk/RGNyssOS9LpD2IsrRHEbF0jK+RaynpDkM2SiABEgUkHUWdjDVMaRHzexugOtDge6N7E8eJyTyRyr249x/Wu+FTcK9n//VkislRz74b/OyXsXmE9GHIz7jP7ofj75ny+xfW3K+PcfY+Vj7+OBtT5COMy0YGvLsZ3XGZuIZL7OsEzYmDZYHzUouvOcvyBxm8fYyWvk0VF6Fw/h1mPqa9XuuTcmbDRpX3cH9g8eojz0JnoffJwb/9lXc3G96RM8L8CuThdewMkDb+Sjp3+J48mtgL+52zMnOPVl30uyWRJtpWAcxUxMYR1Kh4hpXm1TLHkxwCkvWbBbSLEhuKYB7cCAcIL5D69it3uIMOD53v2MzTa3fPHfof+6Dp9/8g94+9e/n6kNKNzVIbFeDCtNwWpxGpfCY//Pv/C0oLbE5FOG45U92VYbOqbHC9KyxL4fzDUpCwPH2vMbHDuyyYH6gGmheXp1RCewyAVbtc8Kj37IjOdEVYKDC3eyuvoQUVBnbuEWglLihEM4sauCvC/mnHtKCPEr1pWvkmFMmRmKRoCcFuR9n52XUYRLc1xpiNYmhANHtKFI6xrnBCvPGW7/qi3OvWYe90QfIRXjm9rkIwcfh9otPY42dpA46hXEZVyE6LFgZulmZkdNbFPzbP4gjxcf5bW1ryFWDWxQMsl3Ovs3OkCocWnht92qooIUMOmv8fj2H/CqG/8m9QMnsYnmwQ//W2ysSWc1ZkOSpX1EYbGRxkaa6ZkxczM3IqYxTDVjOfEBjBTkwy2EkEQqQQ5zGq9+A+fe92t0JsdRwi/CLpvsN5sdegKkoD7S5EJ+lAsCpodLbs2fI3erfP+h/8w/+q2HWfi7382BezsYobnw9/8d00LTL2KmJmC8MWUni9lJE890trXDwsED9CYJWRrA8xnBnSHxjiTNd3z/f6eOGgpOult4/LH/zNz7ryGuS/7+lz9HXT7JW9/2wo5fuBdAqlrBmL4TnzM6BxwDuviCwWk8fOUSsFN9JMF3haf4Fb5RvS8ATgEF8HT13tuBM8CgetwETgCPXHEIh6vvfBYfXx0HOsAD1eu3Ad+/HzhQIcQGMASOAk/Ap9FDnQTG+IUqB3arO1eeowZuxY9BD5+fOwKcx9eNZ4E5Lo/XrgVchg2dAUaf8fox59z8f+/5fS6rIs6vAH7TOXdRCHEE+A3gLuAC/jyfrI7zOJ9+3a4Htvj0+vj1QITPrebVZxz+HEP8WD1wxfuvfE7j59oAfx2W8GP9dPW7x4HbnXOPCyHawJudc7/9lzAML8iEEAY/h6+s8+5e33PATcDjQFY9f7x6fvOKxxeADS6fzyP4sf1vjduu3YIflx1gpXruJZknn82q+6cFnOV/xHFxzn3Ov+rkvviKx0fwzvED1ePrgXdVJ7AFvA+4o3ptDnhPNTj3Af8C+NMrvut7q4PuAW8F3ghc/IzfXwI+gHcSzwDfUw2Crl7/APCdL+RcXow/4N3AT/85z78VWAV+FfiJK57/tHME3lKdVx/4BeCjwLdUr33bleP1Gd//J9W1Eft47ofw8KVL+MXiEvAfgFb1+s9X1/ZZ4Ls+13WrnnsbfhM1AH4fmKteO37l5z/zOeAg8MFqHHvVd910xXu/BXi0+t4LwNtf4rH6tPvoM68v8K+Abbxj+JnqXL7zivfdB/xcdX7P4BeAzzluV7znR6qxuma/5sv/bOPygiLQV+ylMyGEBC4Cf8M59/7P8d63A8vOuR95SQ7uJTAhxAeAX3X70VX2MjYhxLfhnca9n+X1D/A5xk0I8a146Naf+x3/I9p+j8v+JxBfMYQQXwp8HJ8S+SF8Zupjn+Mzx/GQnDtf7ON7xf7HNyFEDfh+/A7nFavsv3dcXgY4oFcMeB3wHH6L8lXAX3HOfVZSLSHEjwOPAT/lnDvz2d73ir1isLdAbwBrwK/v8+G8bOwvY1xe2cK/Yq/YK/aK/QXtlQj0FXvFXrFX7C9orzjQV+wVe8Vesb+gXVURKVSJS3TLA1Gt9fpH1nqxriulAUTFVQfgbNUeUwHCBZ4tRnnfLUwFFneXP7L3f+mFwdh9D9Xzovq96nsH2dqm2ycs29yMcseOaE6nHbjkJZ536TidEpjIk+TudV8pB8JVp+DJj0X1GOd1jRzVv3aXpgaE8VrgsgA1NYi8rMaBT+e5rMZsUKzv25gAJJ3YifkuzglUJQ5YGoWUlnaYkpqAzCgEUA9yIlmiMeiKX01VXRYSh8KxN6OE2IWe7HXReMExL50ihKNwmrGJ6OcxLlUV6z9ko23MeLxv0PHOjHKHDl9mbxDAwMasT1pQCq9lL93erbQ3L6pPXMnz6qrztQ5wYu/22J0vWLGn0SWsJ+oIGzmJKvZuMyks/eUJ451838Yk1DWXyKYXHAwUTolKasQfs5P+D/kZXXZXjAsAV6owOP8nrvj/rolqPGQJMvfSQzjn59UVXzGcrLyg++eqHGgStHndqe/EhhqZ5rC6iStLRBggwnCPrADnINC4OET0KmxsHO05QduoUczXKuErgdMC3ctQvREu9t8jphlOSVwtQhQGMZ5edpzVDHNSIMZT3r38cy8do85n2PEjAR999yG+88IXsPK3jyEnvjPGNCK2b2kwnRdkXYeNHLZuUPWSKM7RytKIMxpBTqTLPTXNaRlQOsk4D5nkAUWhKQqF6YeIXBIMBK3nYe6hPjx3Adlu+QMxBjedgpCIWsK7L/6f+zYmAPWDDQ7/1HegpENJS1Zo+v0ac7NDXr1wntODeZ5bm6PbmnDP4nmOxVt09ZhZNSKWuReLw9GUqVcrFa5iIDekTnnHKhwTqxm4iNQGWCQGwdhGPJMe5P3r13H+wUPULgmQ8Oyv/8x+DglLhxX/5V1zpE4xsQEGwW/vvJr/91N3gIOg7j29VBatvcRuqA2RLgmUV6mt65zUaIyT9NOYolTkpaIsFcZIryc11YhMojK/6IZ9QTCA/o2GL3/tp0hUXo2n5T9903v3dUwS2eR1x/8mZq5J0Qop6goTCYqaoGgIijqYGJx2mBBsbHGBA20vB1zSQVl51kLsaZGpqV9EnABpPNOTSj1lZtRz1FdL4o0UOc481WLpCZIA3n3mZ17Q/XN1MCYpKTueX3HXRBwjtAJdfVVZ+ggzDrFxiEriPYbs4kCHsq7JuppwaL2ufCgpE4UN/v/s/Xm0Z1la1wl/9nSm33TnG3NEzlmZWZVFzQVUMRQUyAwKim0jNmjj2EJhvy1iv76+2mgr6lJRXuVtbRRBFESRBqGgqJKh5qqsKbNyjIyM+Y6/8Ux76D/2uTcCFrYZrEp+uVz5rBUrIm7cuL9z9jn72c/wfb7fnGxWIqoGtzFEeo84mCCsww8LSBOEdTFylbIbbWwhz+7oFl4Kszi+fv1j/L2tB+l98hC/PqTayllsC6pNT0gCIfHIwiKVQylPaixKBHqmJlGORFp8kCTKsrDJ8c+uRUApT6s8zSTFOsXkHgGMWFcCrh/EA0UpRJYR6ga3u7e8xejsSNhOSU/rJIsqITRRt2m36XFQ5bi5wQ9g0mYxUg+CQ1ewfjTjC5hgMcKR4ZAEHAIjPC4IFl5z0/VpUcesXIeux9RlVN6QKotw0LvesUK9eJKdl8QC8ZoBtlXJh+rT/PKl+0EGVOqOI2itPYm28c/KsVVMWU1Kaq9JpcUj2Kn6ZDrekA/iOKNprDyWkgkyILzApZFLurisuLRY5YHBjagAIOSx6u3STAj8oMD2ojRzkOBMFNGzecfWpDrnmYToPFWICpqZPY48vYwhZ5CRwJxW4GRkfhMego1qqEHFn+kSsEWkzfOjKIIk3G0R6YvEttwxDlTWFjmvEYdTQmIQWkdihI5gOWQJIU+iAJ1z0ZGmBjdM2Hsoo1oTZPsBXQVm5/PjUH3wQg1JR25gPW6QoacLwmSKPEpR2zZ+XudEQ5bEEsASLRCY+uaYIZ8QdaPaXpRgiGTR8aEr5cmzltRYeklDzzTRacoa0+UWUvhjYbhaapzykUDBSWRm8UCrJdO7JOm0z2h/Rjg4RIyGhElJcC6u0ZLNeomS8T6qxmAbBVbivOSgKjgY98AJvJc0XjFzKUZ2ztK3ZEKihKcNGkWgJ2tMDCTxwDwI5sF0X3dMfcbcp7gguNGOmNg4G63nAjN3qMotnTxYEGi6HHTfJzxenqZ6aoQ6UyKlhyCQKjrP1FhGaUWmLIlypMpSe40UgZ2qTyItK1lJaQ2tUezNi1tVNB1LAcepsIS2HwXontld54HBDeCoXPQycKB5fF+DFNgsOvygOCZa9xqCiUEIxqMyh1QOeVu5w2uBbRUidQQvCCEeqeK2UoBsRUdwA0ELnBG4TKNKi88U4kjJ4Q4Yqu5sp1kXuQzrhtA0iKKIEedtKXXIE1wvPdbh9lpSrydMT2vKbbA9z8oz0BaSvUcEQUfZjiAzVkqLPOInlIIw7EVVRSFulQZC6GqvAdHe+uxlmUAwkhl/4+JXkV1bxFQ60TSDWJ8MOkASH7rS/rew3/ggkNKjREDLTvPbC7TwJDIqeTZOYb1CiIDSHjKL9xqXSMo1ybDI4ADCZEbonkWo6+Usxm8z5wUhSJra4Ct9/DUbJHaSIArLIKsZmQojHYWMB0rlDRWGTLZkomVFlnRlMJKj5y09SpS4IKiDIhMtSNh3fWYuZbfus6gTZAvCBVR9VItfngkg6agS5sFwqVzDrrUIK5EmIJXHmE5tU3pcl5GsJQu0cKyYkhPpmKEuuVEPaXwncS1FlLv2t21n2Tmhrv57VD4tr/XxF+Iavhy0sxDgk1j7dElX/+yu3auoShGOhBz0UY04Ok5jYtQeQmzLBC9u9Q5UF4UfCT6G6DS9Ad9GOs24PwWyiQ70iMXiTpblDkOVEOsE1sWU3XuCj0lASA0+S3DDBK8lwXpcqghSUK0qym1oR7e03asNics9bq0lH9TstX3MoqB/cR5rnrPoiCAH5wl5ZHUSdRMdqO3ysSN55SWaEYqrv3yW8/MbhKYhJBqXisicZAJCe5SOqbtRjkS5rgEQBeBcENhOH10SSKXFasncJijp0dLjhER3m8urQNAB25P4IkEqRZgv4myuUsj1tTiBv0Q7imwaq3CtRNSSkDmcl+zOeuChPyzZKqasmAWmax6ZjiTWIZn7FCMshazBgxGegXQUQjAQkkIEquDJgscEz6GHyhtqr5m0GWWZcKwac5SeLdECt5xW6zXv+cjDkHbZ1VHaHQTOSxqnSLXFB0HrFWUw5KqlkA1F2lD6hJtVHykCte0OJ6uOmyZBBoQkZoJd1NX2YfCUYuf1fbbTO9CteCntOIQM3E7v69Vtkj8yROcJCBkQ0qN13EMAWnl8EGjjcE4iiCl9sDK2XayEVhDkrUa26D4vyNh0U6WNPZc7jMfu0IEK6KI+IQShaWOkqCQh0fj8SP8mxN9tAA31SOCTgNyqsDPDwYMGMwMzlrihpHm+T3IgAYcsW4IQ0Kl9+ixeonABUR919m91zpYdgR6ZnhMj4kEfl6rjzjsyIHU8NVPTojqd+J5pSGTUQz+yI4e6VxfHztS6GH1CrHEdV8WJdZxmNSXTXQmltZAsV+LkyEQX7lmrCK1EVQLXCzStpp4nkHl6aUOhm2OnsvAJRrjoFLyhDYqZyzh0PXqyZiBL1tWMFVkzko5MCHpCIqVAecfhET1ikGSqJc1a/FHoepTPvQysCop5SNBTSZseZR4SpRy3z7XUVlMpw9zGFL6najb0hCokSALr6RwtPQdVjvUyAl5aCa3kCLYQZOeYQoy+8j2PD/K4TLRsO+q6H73a8ZCLtRpVg+vQKbebswqtfecCAs5LjHKRys7HMoh3CqE94gjZYgK0AkT0TUHGHxwEiBBQ1w4iSTxEVNGLtDuUNfYxdTcmRqAh1iR9lhK0RC1a9GGJLxKatQxVOuqBweUROpAXNS5rMduO8Qsjkn3J8DMGr2B+1jMpFcXVDGE9dpBgxjUQ6xR6Wt9K491tsJ0lT1JVHfnm/EzA93Lk7gE+Vccv8FHKIeUtKEqqLFIEKmeQIpBImLu4KVJl6Zsa6xWjtMQjGFdZbCS1umspxrSm7Qfm24bcGHzbReTOEWbz5SzGbaZkrN16JxFzHfVuZKBtNMEKslHNKK1QIjC1GXMb2ep7uqaQDQufYL3EEZtLuWrJZMvp5IBEWAayYlNPGIpYrnDEg6PopG619JwYTrm4OsIbgbT+1gZZsiV4FAHb8wjjY6ODWzHBkXM7ikAnbQYtDHTFp8szXTOp5dnJieNmnZYenTha3x1drYwp6ZGTlJBMYoPmg5fO8Y0PHC7n5n+bRWcGQUt8V74TPqbYbgg2B58HQuoiXKtRBBmonECnluAlSsdyl1EOK9VRIz2m8kd2Wz1VdXXh416l97Sn1wgyvifC+sgP9SLsjrsNQoi4Sb1HSAlpArpr6oiAaEBYj0slwgVmJxXNMNCuODazmrV8gQ+Ck8MJn72yjXgqjzXQgaVeNbhco+ctNleohUJNowDXsTzEUZcMCN5Dtdx6Xx0UbXDoEkQTC04ujYJYEaMpsYcJNtWEoSAxMerU0mO9pHYa6xUegSQ2CIx0tF5hu6J2axWzwwK5Z6L0ycDHxpQQNMNYK+bGzvE1CbP8JpIUIaajjUIvRJRzCQLfCmTqWBvM2cqnJNIyaTNsiGkrRGfggyCRDhtkPGgIXJ8PmJYp5TRDJY71lRn3ruyynU5wSEa6ZKRKctVQ2ZUYwa+3ND1NYf3SG44QoyEjPEbYKGHTKND+uK4XM5XYZByYCikCo+73uU0pXYLsdv5aumDSZkgCpstkKhmoFwZKheiwpcJLvOoacGaJN/87meBYKwsi3AhiuaFe8/gVi0xiw8jVsRgqlEfIgLPqtyShjdXYVh3XQYOTEV/rBaLtYE2xV3cLD9p65KzCDjOC6Zy4efFZ3J2n8PBbnGfIkrgA1hNSFUHc9w04uF+x8oyk3BbYkcOsVaTa0tc1W1msv1yfDigfsdhpCpXEFV2UtmhAZFRbKb15xIf6QX4sjxtCQBiDsBZvl4tNGUrP421Le3eF3ehj6gafxFMVD6PP6Nj9DYogExYnA5PTLWm/xhhHZiyL1mA6p+GCiLg+p5jPM7iaUVwTrB9G5IJNoRkqbAEuD9gcmu0+5nkTMbm93q368BJNikBjNaFSsetpPDQS0Uh84dg5GHB9Z4RQgeAESnsG/YhkUDJEB5LU1FZz+XBEeb1P/1lF/2ZArwlm5z0HylMNNOtmzkgvmLmMT85Oo4VnmJTYINk8MaZe2Yxhx8vAjkozh64XG4ytQGY+Ngi7f+8lDbluKXRLKi0rZkEbFEY4HBKFZ9UsuF6PSKVljx6lNbEhqTzSeJwJcfiiK3uJrjaqK7jjQt9LbKHL1qSLKXU7kFQbHj+ySBOdp9KOLGsJAdo2OlLbKrwTKB37Cd5HVIe3MVLFRp01PAgbnadwogPSx+EdaQP4mOqHECNicQeSDnfmQIUArWM0qBUhMQQtEY1FuIAH6u0+kwuK8oylHaj45PotJ1anbOYzPILduk+uWupW0zYak7fYRYaeSVwqsas5LomQhuY1KwxeyEme3YG2JTiPSEyETikZr2XyX73yl8wEgodNwre9+gP8mnkzwcQOOUDviqBaj0BgiHrTq58N+GcM5VbC/Kyj3qjI8wYl/XFRfDrLCTdT0n1JcS3QjODgVeAGPgKIrSS7pimuQTOCesWQFAXM5/jDcVyfJVsIgqZRqJkkaBBBIKcStRA0xtM2KeZAke4JzDzqZtUrPer1gD1Zk504YD2dM5Upi92T9J9XmGmgGQl8CtmuxI/7fPoz9/Ox0b1k56e8/tQL+CC5UQ84XYy50Nun0A2f3NzEp/p4+m1ZJgBF1LCf+4SQO7AxUvJekKUtiY4h2FEa3wZJ7Q1DXVKoOKTRVxVjW5CrhrlLmNsEF6LzOALTk3hCKxBBdADyGN1VqwLbqON6u1g2NIFYB/UmXqctBPUKhCREmNvMxOBKB+rcoQtLljd4L2gPYtmnVbFEdtQaCZVC1N2zPsoEO2FL2YDwAmHBzGO6HrTCJ/LWBOQdHLZ36EDpgFW3GjiidfheSttPsD3F+IJh9qqGU6f22Tns0x5kFP2ajXyG9ZLVpGQtmWO95MRoynPTTbwUZCfmcGPI9KxGWE126Enmnt1HNNVqzlazjrl4I4L2pYxIAGtjJLxkU0LyrvWP8qv5F2ASQ7UiSMeB2VmotxyoEDGcKlCv5eQ3BaqEwdOKWZsz25IUvTrWRWuDP0xIDyXCwvyMoF5zyI0aDbhWEpyg7QfMLOL8qhXJUKuYGWTpspcDiOOVtjLoVhAUqLlEeLCDQLJS453ENilmqgilAB/IdgO6FMxkSrWhOZmOuado+FhxFjD4RKAXgWwvUG5K2h7oEtYeB/XeHh9448P0H91jo1iQq4Z1MyeVLR/asl3atnxncWQn9BgA0UrIY/NIioDzgv15wU3fp5/VhCDITcsoqVhP5+SqZT1R7DQDnplscGU8Yj7OkAcGaQV26FDzOD6MDNEnuK6hGcDlEKw8nkRaunW1yaM/1yOJy+NzMruawUXo3YyHSrlqmJ9OmJ1JUIMW0cZpKyugkdGJ+lIjKoUuBS4J+IHrGkdAKwk6NpDqNcnweYeqHcJ5zM6CkKrYrG5efAZ3h02kENPDo3qkVuDF8d/LNc3iVExLJmVG8JJ0veSBzZuc6x1wvRqSq4ZtM2HqMl69epWDRc7BXp+Htq/zkbsy9DxhftaT31CsPO3wBqrNwMGrCjamK8iDCaHIQArEdEGoqju6hZfKHmsSZOsJicYWAq+70bGpip34PY07XRFyj6rjGyMdZDuSRWHweYNQAdsq1FRiptAObv18V2nMdYPq+kiqimqmAM1IxEmtPD8erV22CQKhivcZBOiFQFpQpSB5rk96GJA2IHycEvI6AqgJcd5fisA92U029YTN9UeY6hzRAZx3Xg/nX3uZnmnYzqY8Nd5k5z2n2PiE5+raCpsPzvEhAvFTadErDS5TS284AmTC0QTJ1OccCS3GmW3BvExoJynJTc3gOWg0eCWYrMPzJxwrZw+5d22X2msuztZ45vIm+mrK6Kpg5ZmW5KCh3kixWWByXlGvhePU3Zu4rmYG6nD5NfJjC7EW6TUx4xzFwRM9k6w8Cdmho/+ZPURZ01sfko0HXBspwiLClVQFXkt8EtN5OVfomUA6gc1DbKQ5iZ5ETgRvIijfFmB7imTPE7IEN0xj88j7O4JG3rEDDd5D08ZUXohjeda2r5ncI3AXSoqs4b71HRqv2V30eH68yuM3TuCs5MTaBNbhdHrIQ8VV7EnFp7KT3NPfxd6jePza3aS7Er2A5NDSuyqp1gWLE9Bs98jGM1CSIGV0FC8TB/pnP/WtDFOJyw02v9VJTA8E+U5gcKmEELB9x95DMR21hUA1IGpJoh1F2jCfZegyRm16EU/nU++D5DCQ7hwyvXfI9KzCZREr57IQoWRFBrM5Ymub6vwK/KflrocW/jiNki52gFUFg8uWZGzZeW3G5NGG+8/dYNKkLN6zTbYT591VGWtap80BjyR7vHr9Gu++b0Q516Q7Cp94Ln7iFFsfghtacPNtluINY26sDxBtjK6OsKWptPR7Fc1o9LKAMTkELZLHq1Mx+DCxIWJrjb6akM8FK0970sMIF3SpiAduUMzWU5qRZqVYYP0Gcjdh9CTkB91IZxYjKLMIDJ+HdkciXWB6Nr5PLutINGrB3Kb0dL30FF74OOTgUkW9IrG9QLoX35vZGZie0xzct41wxANWQNCeoAPZTXU8nmnRiBBn3fVCxClAGRCZY/PdKaufmuB6hsXJlIMHVDfO2Y2BFgm2b5CtP76mF2t3OAuvui64j5GftYjRgHYl4/A+TXtfyZnNA071xpzOD/nsdBuAB9Z2GJiKcZtzcbzGz37stRRrC77l3o+RypavO/UJpPDcTAc0W5a1D2t6NxztQNP24mJkuwJbKNzWCDmtELg4D/8yGFsEOHxhhaHwcba/CKgqjqxufixCitS0RuwdYrTm5MEa4/t6NCsCl0DIHBv9OZvZjJ2DAUEF2r6guBbI9zyDpyaIeYUfFAyfOGT0sZqDN57g4EGJTyKOrV0r0FLSbPWYb78MIlAR03EAPRMkk4CwkB627D+YUX/+FFEZnrmxwb0ndrh+b4uwhnIroBcRedAExaZK+YLRU+zc3ccGybO764TdguQw1r/DbQ3TN7z1SR7o32DLTFhRCypveKbaIkta6tGdg6Q/13bELJUJx6qegwCTWWyrSJ9LCSqSzozvlph5QjMAMwczixLg7SJ24EuX0DhFtiPJDyyH92iEA6/jc9cV6EWIRCJTj2okNo8OSDaQ7gt+8ZkHOLtxiA/LL4EFGaeQbAFmFjORZtXjBxZhPDWQ92qEgPl+jlgoshvRedoe0DlO2XaMZRZUI1i/d5frl9fwGuQL15HAoDyBNwPG90iCEvEdEvHdiA2kiBN9sXbHNVChFYEEISyiyHEbQ/YfTJm8pub85gFr2Zy1JEKVHhjc4IvXn+SUOeCUOeCCnvHE9ir/ceu1XC3jvPKqWbCmZxy6grlNyFYqDh/oMTuraM80nDt1g3mTMPvgBrLxuNxEWFNr4yy+enkAx4MMuFTi0iSOp/YDbiao11K8EbizOcKv0PQl81Mx8nQplNseTJwmWdgEqTztIOBXGpJxyuGqIsgR+U7B+O6E7MBTXK8jY00/RHYaKak2U9TQUK2qWyw1S7TGaVQl8CY6RNnEfmK5mdD2BOGpPqc+5uk/v+D6W87Dw5bZ3Y6QOfxMkwE7dkgV9ngovcLV1VU+MzsZOQF6Le1dLdfOKFRmKdKWzcGcV/Wv82hxiYEsaYPmkl9n5lIybdldX/7QRUBwxfX5xcmr2Wn6t8YNnUA20Rn0rsSSh8shPYypbbkV01F1oLk2H7KwCTuHfQb7gcO7Nc0wOtpzP3kZhOCFbzpNccPjEkE9UvQvew7vlbgskO2BywXuasELz/Vol+xAj8oyzsQSj1PQDj0+d7HEYWNzZ7FfIGqJXsi4VkWgOuHRE4lqBC4L2CKgF3HSyExg/6NbyCIwuRfC199PfuCPPydOa8Vr8Karfd5Omfki7Y4cqMsNN77qLjY/MkYeRChSvZHTjEAaTz+pOZVPSGXLupkzUBWpbJn4nKZRPFae56PTc8xtwoODGwxUdYxpK2TDTtlHKc/6A3u0VnF25ZBEWiq7gi1CPDF8wA1T1EIi6pbwMqj3AWA8s1MJ6aGP6VIaKE+ACIZkEqhH8alUW4F25KBv49SIiEw8ZWvYDb044tlz0EqqN81opyku12Q7KQhYaEkzyJmdFriVNtZ4GkG5JtGVoNyKzadlW211V6sV6DJOw3gNNpcdF6Ngcl4xOTdgdsGhBu2tKavCopVn3/Vog2dFNjyQXeN8GjGf//HpR2h3cmQjcD2BKmrODfbZMPGdVATmQVF7w2Gbx9HIYYid1iWaIPC+2YP8+KfewGi46Lq+ATExNKNAviPI9j37D8Pmxz2H9yjm51zE/ALkjkWdUJiWdpxie4LZBUfIPLUX1Bc28IlkdsFx4jcrbN8wOWuo1uTxbLxsYXHKsf1+QbUmOFzmgnR25MhiFz7gk0jCgxcRimRFNwcLduiQvZbeoGJ2eUgyFrTDQLtmEamjPUjQC4nrgZnG6atmzbG3DnIRm056JkjGXXNNCXyqkC78rrgS7siBtisB8Y177Ll11j8ccZ/e3CIizVRLrhrOpfs8lF3GBcl1O+Jnbn4en752EmMci2t9zL7k6Uc3eOOJS/RVBMKPbcH+vMA5ybxKWOwXzD+zSrvqKDbn+CxQjxSy0bG+OKvj/KxZfrj1/ip2CetRfGhBQEg9bRGYFLGJFNLIJJP1G5IQSUOsjMsvpaexiqrtHoe51R3NV0vcUDI5r6PDtRLRxFE3kThCrSLWjfgytH1wyfKbJSGATyNSQPgYbdergmYlnvSB+DXbj3R/3gp6w5o8aSkbQ2MVV+pV9j0YwvGM/FetPMajj17i3QcPcWW+wsDUnOvtc3e+c5yONkEx9Tljl7OwCbM6wZuuhrZk2237SBlYVAnCeJQKuPUaO9e4scFmkcbt6tsEPrWRiCZ3SOljg1H6WF/OHPVq11H0AtEILn9pSjIW9C7B7GyOtIFyS1CednHeeyFpRoJ0XzE5H53Vss1reYvsQ8XxZHx3T0Wk9AtBIFXEghZZQ5a07BwMSHcV83tbhPEUgyqiesQG7jDDq0C17TGHkmRfxWGdJGCTgMsE0kpUEwhG0Yx0zK4d3bW8RDVQYyynB2M+c/86ZrGCajzzLUW97un3KwamZsPMeCC9yt16zDRonm22KHTLhY19SmsohwntQHBmNGav7jGVGTtNHyVCrHvVmuAF6lCjF4JsVzMvB4QkpsjSBdS8RZTN0lMyAIfnE/VZZOaQjq4mSYwsey0UlhAgTS3GWKxVJMZRlglSRexaWxqci2QhtrlVktDak6cN1il6eU2iHWVjaDvyXOdknM4gNmpcEmfy296SFuM2kzIg65gu6QWUm4JqyxPWG5KspW00vtQgA6bXcNfmPqm2PLe/RlUmpFnLbt1n32Wc0SU9WbNjU+Y+ZV3P+IObH2S6llMFQxM0ibBkoqXyhjkpV9sVXqhWmbUpiyo5hsYs0wKRNAZg2KvYt5HnoOjVNMZRnpbYnkTV3fy2FoRW4oJA9FqKfh2nlEwdaSmGkeJNdIDxdhhoVj3pjmJ+Ms7D235AVgKfheMpnJUnPbuPClzfHzP/L80kx0xZNr/FhCR7LWneYrQjNZHSLzctPgjmTYLfTalOt2SXDXoO1escO7MeoVY0Kx7ZCPR6hR1JwjhBzSQ0txjS2n7o0B+dMobtmkcC7gTddYeSHo7DOqfdtNx8nSbb05EeqnDkSUtPNaSdfkLVRQOnzAHfuvV+MtFihOOxM+f5wPgubJBMmoymG0HLVBupqbzg/jM3mG6lXN8Z0V7L8LlH9luaQR5p+Ft/7DxF2dzJLXzOrQ3w2cUJhoOSRuS0PYFsQgfvEkjluvkDhxIBdCTLQISOPTxuKJHZiGOzEuo4gCBlIDOWCsiNxQURXybtqFpNXRkc8eScnYmEsd7wsqiBeh+Zv/U8YErPtFD4kaXXr1nrLShMfG7DpCJTLUoEri2GtK0iBEGRNqyYEik8A6nYVHPmPsV3kzguyNsYnFzHBSqpguFmO+R6PWTc5nEk1qpjNp9lmiBwPt8lzVoybePUUMeV4J1ErdU0OrnlRZxA9Cw6sfSLGiECmY5cCUnW0ogkOoSejVlOrRClwpvA7HzApx4yj5ipmLUIsAXRWY0cJMvHgYZOlsYl3JLwGFiKXsOoKBkkNcNOAma/LFg0hnmZggJEoF6LtJl2nDCdGbLLJuJJtxy0iq2NCfu6R5smYAWylshKxLppImiHhmYgu6mko4mtlygCrawm0y2nzu7hzwiuX14jvWoiWbD0xwXpFsW+z8iE7Vh0Kk6pmm2VMxRPMnY5T863yFTnbJ3BS4FSnrCIpLHvPPkETw23+Mxom+ks75orYHsaJeNIpzycQb1cB5oIwXdvvo//9PyrqNcC5oVu5rbposMskKYtedIesw75IMizlslhhh4r7NCRpi0Pb1/nU9dPUtaxYC678c7cWAJQt5pEO4T0uCqJBLK1RJWCZsWT7sURuGSy/M4qNkZS6ThGPt6ANPGgLUzD6WKMlu44IiudoXY6UrKJwLnhAefzXTLhqIOnJwKJcHxgfoG70puc0OMYcQZDJloykXO1XeVGO+RGPWSn6tN4xbROI1GH+K0d+2WZEY7t4fTWu+Ajs1mWNxjlaPPmmEAboEhbUm0pW40UkEjHWrIgSSyNiFAdk7f08iYSkBiL60g0GqspFymujjVQMY/llMWWRBRNLAm9DCxqh0Xguys8pmgY5BWrWclKEsd796oei8ZgvaStNCF1CB0wJxbkFxrsPMNbSXUWcAI9UdgirsP6yoxZltI0OmZ7E016qAgC6lGkAAxK4I6mlu4gArmzLvxEc2l/lbX+gtP9MfPNhHJvBWE8RnrmNmVsC+Ym7V7qyDDeBsVlm/N0a7jYnmThEk5mE+pE8/R0k9ppCt2QJy2LVvD09U3uH95kI50xyke0TtE0umvOSFTtuiJbIAx6cO2O7uJzahLBGd2naRQiwOxsID0QcUIilQQTxb/qVkeCjE6GQas4MeIGHZDcSy6O1+LGSR1BSBaLlEFWk5s2MhNpiZKesokpf2hjB/JING1xoUUu1MuiiSR8pCMzC4/NOm0aJ2msonaay/MV1rM5AxMZmY7MNYpiWLGVzRipkqlPUNSsScdAljw+O8FHDs/xVZuf5JQ5oA2aKphjSY/aa6Y2pXKa2sXDOC9qZnb5MCZBdKADU7Nb9tA68lcqBZmx5Kaln9T0TewLRKYuy6TJ2aVHbTWptpETNGmZ6oBoJcFLtvozRml5TMAya1MOqzzqaWl9PG8edPd7HUlMlk2qLHyIQxR5p33UcySJO5YrsUGysAn784LWKdpWIWScLApeIGWgagxaO1ZXp4znOeV+jjcBasW0TDkxmrJZzNlZ9NjzfdpM4k1Eq1Rr8RDJd/3vSrHgjhyoLuPJ+I6Tn6WQDc+P15iuOIpBRWGa+OBcShtu/dieaDDCs+8KLrYbHLqCrWTCCT3mE4uz3JgN8AFyHU/a0IujVx/eOceZwSG5bumlDfNxju6U9MzNGWIyjwzsZXnHN/1S2P/++p/mXdf+SJQNIMJ28BzPOUsRuTCNciTacTjLEVYgF4LeVUG902dv2MNMBL15rBf6SqHWx9iOYPfIeZZ1QluaLiW55UCP6jv/8x/5t3zH/3dpSxHNg5mHrq4kkTWEhaJME54f56RFy2yQcNdwn1y1XFmMqKxGKI/3gt26x6fEaXbbARtmypaecLHZwAfBlcmQf1m+mTdvXuRCtseNNgrrtUFxrRqxsAkhCG6MB2yPpiwaQ9GvkUfkxUu012cXea+6n0mVEoIgSSzOSXpJw0oaSxaryYIVE99rHwQ+SF6YjFAy0Nc1hWoYpDU3Ug+LSFhdWoNH8MDw5vH/K7VBa0+tPaLs9mSAaj1OC66dmHJjyUB6r2MK3wzBDRwmb0m0jY0jEZg0GTdmfRZVQltrQiOP59uF8jgr8T4SJ4/nOW1zJA/S3WuZMM1Sct3STxqmqaWtNC4NeCWwGTSjgC3kMUuTvgM2yDuLQJ2nmSZcLlfxdNFU6hgWFYWOBMGlS6i8wQXJPCQkOA59Ths0mzoCnCcu44V2jV+7eQ+zMmVzOEMLT25aTNGwuTLj7tEu+3WPQje0qeKmDKgmFpxF1UBiEIkhLF4eDvQbejPeJW6NpemFwGUSZwLWKioBeRrVONURa85UoEvY/HjF9GzK9LxkcDEwuFxx7S0ZzWqgcQodRKTqcpKqMTgnokjWTKFqQXEzMD9LrONUkrNm+aJy0oGqY3QhXOjkmCVtYiAIGhnYp8d6HinZLu2vUk4yaCRVEDyxu8Vev8fVdMSV2Yi7hvt8aucEArhvfYdPXz/Je5r7eMvJBN2RMO/W/WNYXO001kpSZSkXKbZWx/XmZdopXdLTDYOs5sb+EKWi8maUuPZkymKEZ03P6auKNigO2wIpOKa429BT7h7scnO9zyJPsQvNtEo5tTFGipgJVs7gvDzWWtILiejwpul+pDUZrxTLXo6I0EgktueRvRapPOqIQ5cQ2fjrBO8keHF8CPpawdzQpipOc001tU/xmUdWEtF2JC3CMDb5cUQrREDIgNcdKqMj3G77ITLg++jMX6zdkQMV1lM8m/DEmS3W80UshCeeftIwMhVaOlLZ0nYwkipEjObU56yrGRf0AXs+57PVST5wcIFplbLSX3CqP+aRwVXaoCjbB+iZhi9dfYL/fHg/VxYjpnUanUMDsnYEo+McvnVRTvllYl/7tg/zSz/1phgRhoh19I3EpxInPc7LY/kB7ztsnoQrb8uw/YCew/ScYHoui2zc2a0iv5Ke2iqcjd13bHxJhI0/o38pjrzmNwV//hN/EPirS1sHIHYyRRyXU21A1R2VWBUJcT2ahig+d306oK66iHohCdZQXk95dtTH7EdA/gfvH5I8ntO8quSe87uM13Iu76/wmYMTnOhNSDrJTSUC+2URa4YyyiHbScL6RxR7i6WuCBD360Yy47HmFEnSccMqH8tUXpOpqLq58HHqaLcdMLUp68UcFyTrZo5DMtSRI9R10La61VyergBxTedtwrxJKBeRKlLYW6qkyTRESNlCY5dcGBYu4JKoWJGkXSM1RDavymnK1mA6+Q7vBb5WJNcMqhKUdzXgBPmgpiwVohIUlzQujThsEQSUkiY1TLOULOlStRCjXm86Kr0Q0TMu67CgdxCU3/Ec5NoTjoM35Dy4cpN5uxbFzjolSSUCbVCMXYERDiMsmWzpyZqz+pAzGvYauNkMWE8XVEMTtUyEZ+qyYwLhUVryxux55sOU2t/DtcmQUGpUHcH0CIFYVOA8/nB8p7fwktnfOvEBfvM7P8xP7L2FX3zfazFTia8ETitILM7LTgRLUGQ11aOe+SxFyEBvUEXWLRGYzjOCE/QHVReZhGNZjxBEZJzpap/Cg/2mfe5d2eevn/v3APSk564lrsOReR15UVUbMLNIJeaNIKQh8oI6w6JNaKzGL+Kr6FdbxFRjJoLimqF3zdPmsLeR0Lyq5L9/5AMsfMKrRtepreaFm6ukJyO0Z95GoOe8TqgagzGOSZ2hDxVbv7bLM2X7/3S5L7mJDjnyP238Zz66f5YbVtPYDoUhIoH2kaT1pM0wHbuwJLAz7zEvU5Tw3CiGPDXeZPbEKmtPga4Ck2+ASZXyrFtnNStZtIZZmWKnhnS3U2U7kjxRkEzB7RpuHC43Cg1dCk+3Cu4RkQAAVxJJREFUL5RyMdsy0dvLjmB6vkiRVzI2PxEwC4/XUK9pVCOokhSzVrEyKNnpr7D+QU0zElSbEUrnS0XrFIWIDbrg495xaST9UaXA9uPo6zGI/0XaHTvQ9KClenbAp7MTxw/fdd13LRylS9ht+6SyZUXFI39FLthWHoVi6rNOWbA65iTcTifstz0eP9xmf1bw5s2LGOE5a/a4lK/zdLLBhBhpLU6m9K1HX2/iLH6WLZUP9HYzQvH2DP7Ec/ex+inB7GxH5NpIbGVQKp6utgPMK+VJ8gjfKpIW5yVVq5HSk2QO72VUluycp7WRcUaUElnLDm8Kp4YT/vU9v4ARy0/Jjk2AM/EPspWYMqDnsmNElxFiYzyXrq/B1KCnErtqETKQ7kXmHNl0GuE9QSgcX3TPU2yYKWNbUMiGV61e58rOCk+9sM3K2ox+2rA3K6irJKoxZrAz7iNbokDhsqkPO3iMBxat6brtCusDvhXMVMqUlL4xNB06YZREspyD/T7psxnP9Pp8dsVi9jQn3+9oe5Ld1wpCE0sWdW2YLjKKrKZtFbJUkZuhBjWNniHf9wgvyXbh2nJBLHgFqgnINjaEemnDvI78polyuGDZnxeIF3JGT0eY0eE9Cm9gcBEIYJ5M0JXBJT3WFQxfaDGHNTuv7zM/A3R4a0Fs1tLEiaTjKVYZS26W+PN8+lKRiXSeOTmQTBYZ59YOKOvkmDZMioANktIltF1qkImWQtYYIamCw+B4IL3GdbvCSC/IRMumntIGFR1we57DtuAFOyQRUeo2UfEkVnU8bYXr+EizNKqEvozMBU+zSFBNOCazJcR5Z+dErOd0MJMQxHFkOavSqOliFcFL2rbrMqqOIUYQa59egOIYFA3wrSc/iBHLr+/dbkHEE174gM0EZuHRi4hDDFIgTASJU6korjZ0qL7FO0Gz6lELge3B4mRsjPVWSzbSGZt6woVkhx07RAnPq85c59PPnGZRJfTTBqU8iECaR5xlCCJmAf20ExJbrimiA/3D5z7MP/jkF8VJJCdBecruYF3UCbN5xqBf0rqILzi1fcjhIKe63mPwhCHfDcy3FQePeug3hLnBaU8+qPFesKhStHY0Anw/Uiiqhk7KIjI2uVQsHZngcqgHMmogOXFMLN7Y6A+U6IZrdKBe7Ug/dMSMVuuR+q5yAmk7IpEGpt6gN3Q8NBYC1bcM8si327Yq1kgtx6gEb2LqLmzMEu7kmL1DNiaJN5J2EBCt4uLuGq6DpQDH6bgUvkvhHUNZsS5rQDH2gdN6wqFPO+iJZ+pjQ0kRyFXLKK24shjxRH2KE3p8XB7AgykD6W6NKLsZeCUR85dHE+nIlJD8gy/8Mf7c4beT7hy9sFG72jYa18bRNLw4BkyHUtPamGLJRuDzgE18JGI2DqHijHjwEX4iuvriUQ3VLXsX/E4mwacc36dq40y8akSkGQsyKrU23SY2geCJBf6+xacSdGC4OUMrx10r+6zpOYeux44dstsO2GkGzJoU02toa828MZ26pcfoKKHc1Jp8DjZ/GZCsdCm8BL6q/2kuP7DKTz3+WpTyx86+SNo49t05kmmV0rSaLGkp0oawDfN6wPR+z/a5fbaAySKjdBlirimtpLe+OB6BtC14ZER8tAEz62jclr0WnQnjmX7NDPd8D7dIKAtz7ER9kFG1VXnsRgM3sthI7gTnjjTjJSFqHxHrmvWaoG1EpKzLAiaxrOULaqdpa92xNcW9403AmziMIny3Je1LhAM9OsF9Fhj1Kg73+9DJitZek6vmuAt6FIE2QTEPmsJbHIIqKKpgeN/4QX7xmQdwV4s4gVA45CwKYQ3uP6DeMjgEqWxJlUXPFLp0NKsJWesQVQ1KHqVlDwghvjOE8CN3cj8vlX11UfHnNmrCYX58stF09U8bBa6CDpixQlWxERQRBhELFyWRY+plh5H/Ei8QedcFEJH9ySuBlJCI3zEKX+qaBNHdh4p1LmkjzZpsImiZjjZM+I5To6uJouPBEdVXBdNxTm9Y8dHnzvGYPsPW2oTtYsooqSidobIareNEj5JxoCPp1qmqDe3CMCgDtqdeHhGoELgQSAW8c/hJ3j24n+ksx1pFZiz9pKbQDVdnI268sIoatAx6FVp5TvUnbG7M6F2oUXgmNucjN85QLRL0riE5FJQnYK23iCJ0TcKicw5HfKym9ATZ8TV02FAhxK8C/3IZ74pWjkdPXcGfFHz0+XPMy5RhryLRltIaUm1Jk9hcslmGqgP5TsDmknrDE/oOOdboeceyJOI+yvY9kwuS9lzNRhHLhdM6JZQK2YjbROXiuyidwKtu3DW6rhe1f16UAxVCXASKfr5N21f4zHP4Sx/l+i98lhPf/50Y5Y7rmebIgXpNGxSJcCgCjhhaf7w6x7+68iaefWab4eOGT/3d7+GhP/AX6afrXXrueWEwZHT/gnU14zLrlNag54J0v8XcnBIyA1Iipos70nD+XNrRmrz2kVsogB/5sTH/6qem/MpPn+HNd13kIxcfvFVngShu5QVqIclvCpJxLIiXG5JyO6BqQTPyPPeu7+XVX/+/UGxtUm4p6nWBG7hI7dV1DYOOjrnedJwyB7/Hd/9ft/rmNSZXnyR/4D5kE3fq4jc+wI1f/CBn//ifRYZ4iHRl3ChDYaKCZLonyW8G0rFHNRqbD1mtIhVZkFtcNVs8sy6pNgLNlmWwPUPLmKkUaYMSgXGZYRtFcjWyYR2x3i/Djt6VRx7RuK4O+uM/vuDf/fQeb/2Hz/PzTzwUoywncUGSKctGMWe8llPNEg5nA5KbmrFcpz3ZYDKLsxJ9MePp738X9337X+T8Zy0vfFmf86+6DsSJpZtVH4jcmEflL2kDXt1qaC2Lze5oTdYfWGUtWfBw7wryl9/HL/3UFPNXvgOtHB7BtElJuvHnyYqnWpOoKpAeBFStaFYiJ+6RTLFs4BP/4Ht49df/L9jeJmkRG4ezJuVwUiBLhZ5HHl4RINsBl0UOUqG7ppJ7aWqgqrELhI9qf+G35QClM+SqPU7flfBIPFWIkSTAoc8B+MoTn+b50Q0+cu4M/F04fChCfNKD2LFVg4rT5oAVWTKuE8ZlFumnrEe0FjFbEHo5IV96DVTd3P2dP//vn/uPfL5+MP6lO+kB6L49Qi0EvZuOZiiOyW5llz44I9BEeIXXxLSio/TywqIwiAD3P3yZNyQN8PKBcx2Z7TgaRdbRhqmovChs1PqG7rR3IGvIr0sGlz3FtZK2r5md1tSrgt5Vz+yEQjrY+PgMdXUPEsP+W05yY01SlQlZ3qB8INGRM8BahS81q58NpBN3LPS3RFO7uzG4UIAmasHfne+QFQ1tq2hsHD1dz+asJCUPbN1Ebns+9tR5imuRcLhdUySjClJYrMVnPr/geebVBcW9B8fChLXT1KVBVA4zMeh5QNdx7SXxQBF+6am8sgdz3jH6DANZ8nFZcSo95G1nn+FDN84xaxIybUm1pWozfN9he5EI2WWxSWkmojsgY03XzOJ71fYELg3HB+uiMbSlQVdRx02XUdk2O/DoOuCMoF4RNANxR0HZnTjQv9W0sx/wswXY/vG8LUC4eoNf/fvv4fCzu2QrKW/+k69h/WtWAPjeb32er/vGjD/+32kUgU/++4u8+yf3+Zs/eTfv+5P/DoCb//vf5gaSE3/m6wgbQ/b+3E/yE39swP/1z2+y+UbB4hsf5eCnf4Qnrj0P3rFqTvKweieZKGC5Wt9/68aO+4HDsWNl9FubOLvPGq7+0x+mvnIZ2e+z8rVfQfHWVwNw5Z/8EIPXvp7eF7+J8YOC6Ufez/yHP8SJ7/nTXP/b/wiAx//D3wYh2PiWb0Gu9tn90R9n8I7PZ/JL/5nswfvZ+NpvYOdf/AQv/MCznKXh89+Y8Y//5hZnTr08GPoBfO7xeSBoRxA6jnS6CKG5+oFf4fBj78fNZ+jRCptv/32sFK9m+JlDrl78NS63T1JsnuPG9Y+T6j733f91DE7eTztM+NAT/4H8zN3s/fpPYv/dDYpH7mLju74Rt5ry1P/7XzN6/d0UX/6FFM8Zhs8teP/H/yFnX/XOY46OJdnf2tnxPzAee0Yjie/Ahm8onuX/d+0ervyjX6K5eAU9ymn/+Jt44CvO0jc1v/Knf5YLX3Ev7e/7Isb7fdTHfo2dH/oI3/x/fBk/9r++F4Br/9vfASG467t/H1eHfS794H9g/WveyM1/90F6dz3A2Td8I8/+/I8x27sE3jNYP8/dn/f70Wp1mesB8Ldme80PnCqv4Qc5I7VAEPi29V/n7M1P8YN/aZ/JZ2+SrWac+ba3oR5+C9WG5vrf+0es3v968ne8mXYAO89/kOkHPsD5b/tzPPuvfwiAz/7kD8K/he0/9fW0WwnP/+2fpf/2L2D67l8jv+9+Vr/r97H7j/8N9dOXwXr6Wxd46NzXU2yvMzn34huyd3Isf1irlMsX39dpKMdmgK8bPvSun+HRrz7Fn/zlr+Xtf+2Led/f+DDXn5kB8YBrUYx9JH2Q3YuTiZYf+TebAPyln3k9f+VD7+S7/mjFQ1vXafYXXNrL+CfvfZBX/4Uvwe8ZNu57I6/+A9/PG7/0+5A65TN7vwJKRUD98uzDg57kB//x4W/54nzh+Yo/dJU/8McE93zvX2X7W/8I+//6p2kv7URYUxclJIdxOgQVEMpjNkpO//XvAODk930Pd/3VH2D04OeBBzeZ4qYlp//697H+h/4AwsLokTfyxT/57Vz88AXyTPBnv2/n9/r+/8smQA1b6FnMsMENXGw++lifynrrnP0f/gx3/+W/xto7vpxr//5fcbgy5eYXrNJc2GRcXadI13jrl/xlTr/mK/jk4/+Kqw+3XPwaQ3lSsHP9Q1z4C1/JW3/yu0iSwP7/+XPUtaH3ttex9yufptrP2Px4y3R6lboas7F6/x2x7LwE9uF+T/BP/8kCIwSqC/3W6wlX/j8/SvGWRzn3w3+RM3/hm/jU330vV546Qv0LpIDzo31ed9clEuVoveLx8TZ3/W9/FIB7/v6f4NGf+l62v+QBnJe0B3MWu5Zz3//9nP6SbyYdO7bPvYG3vP3/xRvf8ReR0vDcYz/zuyYR/hzah4ue4F/80ymKQOUTPJLrs4y//x2f5Lv/0ITvfPc38vD3fxXP/IN3Y69dw663+CwQTCxjyTaSdgsvMHO4+1v+DADn/9S7OPd3/zr5m15LWSfYwxkcVNz15/8yq3/m68iymt7bX8/5H/oezv/w99BuaR6b/CyXv9Lj3v7iseV3lNekus/Vi7+Bnc06EgRP9YnH6Z3s8wW//wSpCaw+sMHZLznPx3/h5vFMvA2KeTBI4RGdLvah63Gx3QDgWrPCM4tNnllsdlclOP/HvpBfrx/martJUQ45XTzM6mVPf99x18kvZH9x6U4u/SWzUycU//D/GLNzWyr/H39pzoUzmr/6bRN0q8i3z9B75DUsPvJYN8cb1RKFF5ipQM4UoZU0+xluJ0pt6nHEqkV5WkAIVr7+yxBao2SCSXsMH3yUM6slg77k+/6nNd73/pcPIkEQuPGDP8YLf+qv8Nx3/DVe+O7/lZ2f/WkABs9XbJx8lDQZYUrF6t2vI1nbYLb3PPNTguk5her3EX/4HVz7kgz3Ta9Dn9rgYPoJ1MkFUgWGX/QaVu5dozU5p/77tzP9jU8TvGf45vupr+6TvP+Q/Nqc6zc/zvbGq0kqsewIlO0Tiv//P5tzfdfhOs/1nnfXnDhjODX6AnyVIk6eZ/jWB7n6nqfZKfu4IJB41tM5UgT6psYHwcEip7FxfxVJy3Z/FvkWGh3flS//SpJ5Qm9sGMwzznIvvRfmFHPJ2fvfwXj32eOx42Xaxrbix/75nOu7AiUcLgg+8p5Dtk4nfO239PnTJ9/HN3zBAdtvvwf3sY+jMkcwgWrd065Z3N0VLgt4FWj7HV0fnXxzz+JbiWsUCMHqO74Cuy4ZrDvqapPeGx7hzKmSfEWx+k1vp3nmGc5f2GGt9+JH1u5o+ZTQDM+/ivF7fpns7rU4zz3ZZefTO/yNz/95IKopOhdQX3U3u3ZAGxQzn7Ln+ijhaRnjOsnZnogF3ruzm9xMRjw13WKn6qNHBc9VJ3iughcubbD+VM1Tn/gZDnY+i6vLGJH5mrBYdJWk5VmeSb76y1L+5j884MH74ujqpcuWD3ys4tGHbzCrvw+AEDy9N72OcMQk0ylqqkVUEZSNIL+sbxHK2q7TnkbSXDXoIRKDKKNjlQctV3/1Z/jpf/Zx/s00svdMZyGuvVp+txngtX/taxh+3l0sWsPeuMfhz3ya+pc+gLmyz2JymUtXf41mug+Abxr8Yh7XR4LujzC1oDWBdhBQa6u4nRn2Zo63EjFaO8bO6q0RwXrCbIbayine8CjV+z9EMG/hxu4nec29f/AOQ4WXxvJM8OXvSPmhH5px/30GgeD6Vcdzn1igH/uLxyqReI/+soeonT7GCq+Ykr6q2TcVqbKcGk6wXvI4cLI3IVOKfVdga40a9MjGGb1rgXzX4euKx5/7WfZ2n6B9sgYhcL7B4491mZZlvQwe+NKcH//hA87dGzHlz76geOKxkrc9cqVDfl2lsYKzX3E/Ju+Q/1kEQruJiSOYIs6zHzXF7NCSpQ6/lxJqher3kKnBGs98nCPTGfMf/w986KPP0Ezi/vFlw0Av7mj/3BmMSUvW3vGVPPt//h2yjbdAgLUzKep1W/zgj51mKCv2XJ9PLM6y3/R4vnKELGNvnvB8s4kUnhs3xx2E0VPIeOF3mV1MusF+0+MZpwhBcv1wQFtrVh4z7H/w56kmOzz8ZX+Onu/jPvEZfvP5f05Q6mWhyvlX/sIab3jnC3zPd8Wa0plTmre/Neenf3ydN73/O9G/OYwNgH7A4RF5gtMV7ZrF9iRNOzluNB1FBM1KIKx5QmERN138dyeONV32f/1XqQ9u8hP/fouvO5vw8U/VvP7LX3g5SJ8fmxKeVFl8EPTyhsPu5S7tlKc++VPc/87vQr7mLgSSZ370byOO0jEHdjZGloH+fpyhv3l5zGjwCMVVBR7s3hhrFUY5wt4hQkvUsGB+mLF6z5vZ+dCPsX9yGykNq9kpGiXviGn8pbLvfdeAd/6+Xf7En5Bct33+7S9/JSujD/Kms9/Ks39gJTITbVmK9QWLtoE0oS4DCk+mW/ThAYVquHcQZcOho71TjrrV0MayUHEtkO969MLx3Au/xrza5c3FV5NvnGJi9/iNyz/K4IlDkkNY5jCSFoI/9ufX+GNfe4Vv/o41tPD0t3s8+qacf/JjG2yolhsuQRG46QT/cucFXugptFgwODHFOcmsOQATsJu3RnVNv8HVkWxH1HFzuTTQPzthmNXc+In/TH1lj3f+yNexsa15/LGG3/zjPx7Hz++AfFuEF7HjOsjBdwI/DjwPnAdWgRJ4CngYuAIc4Wly4utaAaeBfvd9BrgPaIHPdt/7KPActwYyB8BdwCduu4Qz3c98mhhLXABWgI90//4a4E/9XuLYXlmT/2cTQrju2qa3fXkd2CCu10PAp4G6+/qF7uu7t/39BWCHeF8XiPfvgAeAFHiSuP8vEKt5z932WY8Q1/uAW4yx50MIm5+zm3yR9jJ/V84Tn8PvKQ70Zb4m8GL3Twjhv/oLuAh82W1/P9vdyK92f38A+Dniy74H/Arw2u7fNoBfJG6kXwf+CvBrt/2s7yK+4IfAtwBfDFz+bZ9/CvhVYEbcNP8jccPo7t9/FfjOF3Mvn6tfr6zJna1P97VvP7pP4K8D+0SH+XeA9x5db/d9vw78Q2Dc3d87b/s5vwr8APBB4ib5WWDjt33W93frcfey1uCVd+W//TV5URHoK/aK/V6aEOLbiS/vF/4X/v1X+a9ETEKIbwP+xH/pZ7xir9jnwl4GpfVX7BX73JoQogD+FPBPln0tr9h/2/aKA33F/psyIcRXENO+G8C/WvLlvGL/jdsrKfwr9oq9Yq/Y79JeiUBfsVfsFXvFfpf2igN9xV6xV+wV+13aHaHQE5GFXA1wwwyXgu5ka30i4/TIwoF1x8SxqMgg7VOFrD0iBGha0AqfaHwiOgoqj3AehOh+1i26/aDAJSBTh29VJFPtJg/0TOANVNcv74Yl4PsAEtMLWbrSXWwc0aS1BBdHO4XqiHy1xmtJ0JGVKKiOSuxo6OH2Soq49XcR4p9FiLyO0gaEPdIniJ8XBLhckWxUlG2CGksWe8tbE4CNNRUGp3KuzlZIDkDWkaMzGIXN5fH9B0UkWFadEmMnBKeFP2brd0F28r5RWOyIcSg4caz1I9uOrq20dMzMRH2GyC0avKcKc5pQLW1MK9FFyM0o/uWIx+92666V0D1fjpiBRORQhVt7S3S8qh5ECITu68KHW79bd4tZ6Hf6PKBsxzSuXNqarK3JoE6sUl4vUKUF50ApXKYjTZ24/T2h2whway43bpajZTmuSAZxSyDOd2O8HWGytKBnFlobOYWFoNowPLR+A9kt0kc/0byo/XNHDjRXA97a/zpmX/wg01OaE79xSLVdUK1rCLD62D7sHCCyFLyHNCGkhutftMHGJ0uCFCSX4+hedfcGO69NqTYDoyejhni+21KvaOqhpH/NIqynGWl2XidJ9wTVRiA9jDyas7OQ3xBkB54P/Yvvff5O7uNzaVm6wpse/ZPovRns7GMfOg8+ID/6BDLPEFlGWF+h2epRrxqqFRlps1YCtte97K04ZsMO8pamtYBjQmZdCswU0nGguGkx0zh1oeZxjsT2E154Z85XfvWH+Nn3voGL3728NQE4e1bxd//9Sf70Y3+YEz+YYK6PCf2c/VePmNwtsL2Ayzyh55CpIy8a+lnNKK0YpSWZalEikEhL4zVzmzCuc0praJyibnX8VRr81KDminRfsPZZx+DxfcRkHp2NtYS2JZQV7y9/bplLQq5HvPXct8VdLuUtZ+g9oqyjo29aCB7R7+H7BcFEspx6u8DmMgYhgKoC9YpCtlEyJR17kmnbcc4eOWLQh4voKADhPKFzGNFJC37z+R9dyloc2eaZBPttf4k3/PC1GFwJQXN+g4MHc5pR5O1sBwHb94TMI1KHNJHBX4hbjlPrTg6nIzqyrSI4QSg1oo7jz6qMss66hLXHW4qndiMdZgjYk6t82Y/8Ot+z+hRKSNTJp1/U/rlDTSQBiUHWkewWwPaixISqw60Xom0JbYvQCqxk9cmGIMD2NHJ7hHr6CmqxwvB5zfSewOyMxvbhws95VB3Y/MAe9ckBtlDsP6TwJnDyN2b4VCFaT7OaIKzGZVCtLbkKIeKLKSYzfF3jUoUIAfu2R0h3FrCoadcK2p6m6UmakaBeDbTDQEh9fOG1jCzZIWq8xOjsKMrsdJVEHGnUFTQDiaolwgeCUYjGouYtp39V8Z+vvJH1OqKUl2kSwRuShuZTI8yNGwjnafsJ1ZqgHfioa5N6ZOLI8gbT6V7VTqOFx3RSLqm0qC4i9UFglKN2OgqyBYFLJG0hcRIqI5lUivx6gZlGQojQtoSqRiSGsFhyw9RHPlukJIgQgwwpo8KsEIS6RuQ5fm2AmJaETLM4XSCbgJm2yFbhjURVDlsozMwzPaMwc/BJjEbrdUO208RIXEt8P0OULcI5guxmWTsnLJzHp8vV0pq4nPMfDdHJawVSUq8nUepYd3y4ho5ENRw7T6WiCkEIUZxRAEIE6jJBao9JLE1pwPgohdNG4mUQhBZmZzTJeIia1cjJAv3CLv/sX38Ff/J//DT5HXDr3rEDFVqTHDZIZ3C5oRpJpAMz8zGF1Sq+tGe2efLbRhRXJSfev6AdRKKNIAX1ay7gjUDPPSffGxXSggBzfYqaZyzOj0jGDTZXFFcDe1/QcvBgj7VPzwhKMDmryQ4C5oZjvr18MbVjApCtDdqhIgjB/qsUvasJo6dL2qGmGUiaoaAZgh0EQuGifIWP5QqvxTHZMjIKqSFjFBG8iAQsZfdSGUEz1JipizPgDQjnSPYWbN+YUZ3sL20tjkwgSIXGzEWMtoLFpwqXAUHgEwcSpIppe2osvaQ5lvJtg8R0w+suCFJpGZiaxutj+WslAkliCQGsDHipqNYEzSjBJIYwnYMPBNtFYEvmTQipJhTZcbQp6hasjZGn84g0PY4M5w9uEqSg7UlkCvm1OYuV+FyrkwltIehft5g56DqgKk/b1wgbJVRcz+Ayhao9bpTgjSSZtKhxRUgVonU06wXi2nIJAvZnfV7zqcNuHRRhkNL2onprUEe6RyEeOCGWbYKkK/d4mkajlUdJjzQB0YvCcbbVCBUIFoQVx/pHQYAIMRptVhKSAHaUow9Khs95vu/62/jBk+9/0dd/529UlqIPF8g2xfaTqPtdxlqoKGtQCpEmvPDOVdILY0o3xKWKZL/Cpxp9sMCdGuJyiZ45VCPJ9huSZ3cgBNozI+oVRTPMqUeC9U+XiJCjy0AzSnCZYutDE4JR1Gspmx958dx9L6lpjT2xQnajJijBik7J9iy2p2l76pbzzEPUOFIBIUNkw9E+ynU4EUXYuq+JLgoNVuJCJz2QCWwF0kpkG5BO4kiQ1oONPzfdfXnQ2nm6F3Y8BWNoBypG1ybEaCKzx6qjrZM4L9HCUzlNEfn+8EHGX106n0iLFAlKBIx2+FZEuWgVZWN8AtW6okgN7NbHzhO4lSEtydqeZHFhRPH0foxE25bQEYKLLvpCRcb1Zqhoc4EpA20hGD8wpNyQNEOiMFwG9ZpBWsh2oR5qkmkgO7AIG1DjCt0lZyo1tIMYVdn1HFk77DBFzdv/0qX+nlm675FyHu/dOexqQZvfkhvxXTAoQlSkVfoo8ozf08vr4zKv86CVRwho6pjGIwPhSOvdxXqpN/GQaYaKdD8gyxa0ZPTknP/4mVfzP2+950Vf/52n8FIiJnPUwQSlFBuztXiato6wKGHYZ/bQBv4tY7TyLIaOnc9LWXsiPk3he6TP75MUKSE1SBtQk6jxjlJkz+xgDgdxQb1H1I71Tzrq9Yxk3CB2LOLqLiIx4NeptpevhR6UIIz61Ksp2W5FtZpRXG9AwmI7pRkKqnWBLUKMLKErcAvEkSKj8cdyx0LG7wmuk1xQnmAELo/1LpVC6wVNT3P4gIZzJcknB2w+1pJfnt5qOCzZjgryaA1K0uZHsrQBkXiUcRjjMMqRaIcQURTOBsXCgjSe1qak0iEJ1F6jpcdIh5OSximU9GjtcN0hEyTUI4kbZCgpCM4h0xTSFOrlRltBweS8Jjnoo8clHByCSaLzVOq4gaT2pvSKhEtfmdGOAkF70rWSPG1ZTZvj+z6cFVQHGeWeJtuNDVXQmFSS1xZ5OI+qtVmKnJgY6XZ6YkEKgr69i7kcEzY+k2AtwhjagYly2AF80kWdKpa2ULGbevTOaOUxylGYFuslrVPHCrW1jjVyaxWtCoRSQS3hNkG9IEBWlqAEYl6h5nDmpzb44de8Ffh3L+r679yBeh9P9abFLxaIvX1EliJWRrgzm0zv7rP/KsVdawe8cLgSGdg9HNxvWJwIJGNDcS1HV4EgIZ14ZOvxd21jLu0SxlNUawlNG+tWVYU0hjRsMrm3z8qHbyCyFLcxQviAbJc/CCBqR70d06vF6ZzFpiI7iM6iWpO0gxh5uizyex7VNkOnfySTqGFurYpdaOmpa4NvVawPdNLAPu+4MZt4ktpCcOb1V/juC7/EXy6+nv16le15jj6slrcYt5kSElUTN26RxTLFURNZeZSK95poR6ocSZe+S2In/ihdN6bqnKcjCZbWRwcij7r0TmIbddylbYaCaiunf6UHZRU70dbGLvcyLXdM7gbZFGx83KJGw9gph1vt4y5IefrbFa++9zk20xk9XZPKGEmv6gWqE26svOFqPWKn6vOJF86gnsvQC4FZROpJlCL0C8LVGwilopNKU9AavbmKG2aEJQntHZv3UDfxOWnd9VSi4ix0pSwdwHh0ZsmyliJpSZQj1zGCNsqR68B+WWC690J2ss5HtVKrPVYaKOPhQcfJ26znpJcOwGjEwYTBR6/ygT/7Bl4aB0rXPfQhwg2ObHOd8q419h5KKLcDg0d22chmLHoJ5x854PDenMYp2jJlsVuwuPdIgBnMtYQTH0xoepIhG+idaWQ5SQxhMkXkOfbUGhe/rk9yKMhvruFSSe+Jm9jtEX75YmH4XHPpnQnJfRPOrh7SF4EnP3ye/guxZmlmUf1PBIFLBPWqoB2FSAydB+oAOo0c5d6BkAJXK2hkJ/FLTEVSh+1FzWthBWYe2Pv507xr64+y8sge9/z+J3hq9gBrjy97RaDF0wZH9cY54Wez26A5gI913RDiyy9EINMtmbI0XlE5TV86GqfQ0jO16bHq60DXbOdT9usCLT11iA0lqQOujpvC9gLzk4res33E4ZjQ2ggnW/LUnQDye8fsrRfU6yNO/zKo6we3fUNcoGvvPMna1h4n8zG5ailkrA2v6jmFbEiExQWJEZYNM2U3HQDwseo8zc2EdCLwRsEoRy5axOkTcDDp1sDjD8dI79DVkGa4ZAcaYqMPAClRtUd4GdEnXkSCbRUQJjaGBLHcI0RAOo2S/hi61U9qXJCUrWFapTgn0cojpSegbkG5ZGxMOSNuKbUKQWgaKEvM4y++BHZnDjRAUDI6t7pGCIE8dYLJqzc5vFuxOONhvea1m1fZSGdsJlEXaZLnSOGZthlPJFtMZjl53rDeW9CelOyWJxg8H6jX07gYPqCmFSRrhGs3ketDhs9CM4TFtmH1Izv4YcH0QsH8hISfv6O7+JybLTR21TIwls9ePEnSa9BlJEdOxrGrXq9FXFo6DvSuBewh2FzQDgS1NNghiI4dPLQaOdWoKmJGkV0USjx3XBJwuUA1kO0FkjHM5xt8cGONzRIWJ5av0NkG+FjjuffEDn5lHVG2OHPbNwjwLqZdSgZqp3FBUlt9HF3WTpOqGHmVNv7nicqQItB6xd60R3OlFzXBJfiBP8bPVmuC6tSA7GZGKKu4OZZcA9XSc2o4oSxKrqYrXBYjzv/EpMNGa2hbygdPcPCGlreu7TDUVZQKl45UWDLRsq5mZLKh8gkOgUeijGc9jWTeQYFsAy5XyNYh6iZ2t0d9OJx0eavAz+ZIrUmny2aZ7jrw3QEnbNwvBI7VCYQThIWmdIJKBYKVqNSRZg2pseRdRKqlZ1xl7FwfIRYKtZD4RUSxpD4q4UrbNad0hzHPJSQmKv1qDc4Ryhefwd15E0nGDyRN4a7T3HzdCouTgvJkZE3Pi4b7ezeYuoypz0ikJZWWNkhy1fLg+k0uJasM04p7BztsJVN+40srnvrAeTY+IUkOJD5RBC3RuzPIM+TNA/L9AfWKZnKXxCzWAdh7tYjduSWbT2KkWH1onc1LAWk1EHAp2EJQbUA78AgXHWZ6GLGdLo01O2nBtZLQ9TtEKUkOJWYahxVU07G05xGu0vbicIFLIg5WTQLpBBabClscpfjLtVwITqmah0fXeMxsIoPGpTF1krUkfSIjKKjygulWS7UxJ9UO5wVaRZlrf1TPsjpClrzk0OZMZznmqZx0D/qzQLXRyUK3kuRQUK/HRkG9ZsjzPG6Io4GGJVqqLLlu2S4mVFYzM3nXOFKgJM35kzz3hwQP33uFtWTBxGasmzmpsAxURSZbHIKeaMhUy9yntEJz2a7x2O4p8mcT+lc8Zm6RtYuZolaIRUVIk+M+g0iSLtqqEM2SG0m3b18b65FBiWN1hvx6RPnoBYBGtgFVQ9tLWJzKaO+ZE4Kg6ZqRk3mGnGqyG5LBCx5deqQNuERQrUYYYZCQ7UdHbbOYwYaqRkhJ0BohXnxWe4c10O6es4TFq7YY322Ynw60q5Z0rWTw8332Pq/PE6dPcHG6xs60z/wgR+8ahAeXxiaK3Kh57X1X+MLhk+zbPl+4/gynv2TMu0cPc+7/SkgO2zi5IgSMBoQQ6D95iKxHHNxvuPEGxYkPOpp1x+qp5XbhgxCoylM8m+LSuEamDLR5fFAuAVVBui/Ri4CqAyIE2p7ABtHBNIgdwiM4VCuOJzAQ0dHWq4J6zQOB5ECSTLt/S+LntD1BeSKgSsHiy2bwE0tbEiDCmM7oPq/vXeSj2euQtcUnkN8IjJ4J3SEgKBrgWUMzXOXglMcNHelKhc0aEu2YznqkxlK1mulBQXI1IT+I0ffsXCCcqJAq4L3AzwzCatI9QTuEck0wyhJEniG0xqt0qWtipONUMeawyalbTTsM+GGB3J8SEsNz35Bx/12XKXSDR9BXNX1Vk8k2Sk2Ill4ng5OJlsPQY8cOeO/OfezuDRgdxs+JvQEP3uNGOWG1QI8rxCCm+qHcv+VElx5/dMTE3QRSuaHjZJmFwfMx1RYukI4DydRjs+hgbQZqISgPMqY+Clxq7WhmCV3SQrkuoduD7SBE7DEhwuesoLjhcUZQneyTj2eEqgIhCc1LFYGGWPuc37/J4T2aajPQnmhIew152jJ8vkH4hPeu3EeoFP2nDGeeceTXFgjncYXB9hTT0zk/N3mUw9fkvGF0kfPpLh7B9vl9msEG+fVu7C8zsUvXWsRkTvGsx8wG7D2SQYDBU5rpML+jW/hcW7MGB/cnyBaEh3zP0fRl7CS6eNKlY4+ZWkQAVTlcpmj7ClAEKWK3MY01UlzErUkbHa/q6nqqAj2XtENPteWRVyXpQaAZCJqhICjoXQmYuefmA8tP4Y/sL33oG7h/d04wCq/BpYK9C9CuOkh8jEjHmt5lweCiBCTTuxSHm4b+sMQ5iQ+G+TRD7RtkLbA9KLcDPveEucF74qZYSHwSsLnAq0C9Kgh5ghArtOt9wmeWG4ImwrKZTKmdZmsw45mtgvJ0n2JeMb9/neH9B+S6ZTVZsGbmjPQC1Xk4I1z8hWMeElpf8NnqJB8+PMcLeyvImwlmFpuqQQhcplGVRc7ipJqYLQjDHmJ/jMiziI+FpSMTCHGgIEgJvRyv4miqmkM7EDSDCDmanwFCN7RTxoESMwO/o6ilwaxVWKuiblgV94/LYj28GXXTW6UgmICsY8ZSrUnMLFCvarL5IjYbRTd+/SLtzoH0dYuwgWYIzboj6zf08xqtHNc+P2X4nCd9OsPlsflhM8HiVIZLBOVGBMiKAOkNzW88eQ9XTo9408bzFLJhssg4cbNFzmt8bhCLOqYYTUuwDoY91KJhcNlQr8QOrztYblQhVGyO2ByyvZhGH41imjKQ71mSgxqfKMy1Q/ywAG9ohhrZxhluYY86jh4RJMKBnkMyCXG+2wby3Xii2kLS9jmeJVd1YHApRrTSxs9VN14+DjQ4geunHM3z2x7RaZaS7FJcg3YQ77UZRsRGuiupSViogDaWtpGEeawJQ3dQ7Qh6VwXFTUfbVxzeEx20TyN2MOjYoHODDJEZphdy/JPLXQspAn1VsZ1OKJ3huWSdatWQ9zLanmQ8Lih7cxqvmbmUQjYgLYVsyGSLEp5FSHm23mLscj60f55nd9axl3qkexKvY6rqslhPlK0jFCZOrPkcn2nk6jDWGqsGZgsol9yEPUL1NQ1uc4BP4vNthnF0GxGj0OQwlglD5ikuGlwSRzLNRNCMVERzGE/jIhLhSJzRTATZjohpfCrwSRzndGnXSEqhCRIx7ON3Y2R+J3bnNVCjMQsLGERuydOGRFtapyhPWfKbitEzHvet+5SN4ebFAemBItsN2ALm97T0NhbU13uoxHF1f8QvzF/FPWu7VIs4MQExbBezxXGHTvR7+EQTlMQbQTLzJDPP/NRyJ5HEXCIttA+UFO/LMPNAtXoLCBykwPYMk/Mpm1f2kXsT3Nl1Du+L112tBVzPo4YtwYOvFWEuCRoQkEwc6V6FaD3ZjqFZTaiHcaqpw5rju25iO4B6Bcxs+TXQ2y0oiU8krtsc6YFg4xMWMynRNyeEfk7QksXpgsWmik0DJSlXFFne4ATYVmCm8eWPdT5P/zM3aU6vkl2Zku0UCB/YebRgcTKWRTwwP5XijWB2qlvTpS4EKAKFahiYKgLDW5DjOf1LCbOP93iyOcGT4gQ6s9y9vctr1y5zV7qDC4LKG/Zcn8obnpptcW0ypD7IyCbdnukCFtVIimuRe8LnmuTKmMU9a6QHNcxq3GqBrhpEmiy9sRa6rBYfqDYSvBZdcwfMXJAcBqQFrwMrT4NqBfUgsNgWNKOYoQkfxzmLtGESEX4szlvWP6zo3XD0no1lPjdIqTbjYWWzDpvdldqaCxuo6zePI+IXa3ccgfp+hpo06DKnKjV2JDmc5ywOcvrPaTY/Mub654/4e6/6t3y6Ps3PrryGzz57ktUnFCfee0B9YsDldwxJ7p2TJJZ+VhOC4OLhGlIFJuc1qh4gG0eyp2G+QKyvxui3bGg3RtSDWAzuX3Fsf8jzzB3dxOfWVB0jbb+bYgvB6JmGepTgugdUrUmEM+gqcPimU6jaY3OJV1CeiuOMwXjSrMF7iTOO1gtmQ4GwmnLLsPFYIBk3qMqiSsVg0lKvGtoivgjSBnQF/Wselwjscqsav8WECkzuylBNwCcxsl57wlJ86irNPVuEIkVe36O9+wQuidCsaiNuIpk4zqwccljl3BRFjCo6KMrstEK4TepVRV+CMxJdOryJo7I+8aiFpB5KskOPbLuZ6iWaJzrBg7bgRjkkOIEuPVQ1dmBQNah9w/onwRnDU687zaWtVe7a2ON1qy9wMjlk5jKU8NggObw6RE9jc0zayEbl9ZFTiIeQ8AG31qO4NCEIQbvZj9DiQR6HX/aWPQod8E2LzNJY+sqOkAQxK8l3PaqOv5LdBaJsmHzlNsWNwMFDtxqxbauZA8iIlZa9yB2w2FTIZkC5oQlKYBae9MBiT8a+TFvEjGVyLmPtQ4rQNIQ7wAvf8ZksWodw8QNkJZnudHPXbaz5XfnSEd/0R97LpppzX3Kdbzjh+akguXrvWYJao1oRqAemVNd6tAHaE4p7t3YZmorZKOWTbzqDLVLWPtuShIDoFcfsMaKq0QvL8FJg7+EMb0Sc+FmiCQ/FjsM9pRk915KMGyDpKOZiHcZ38CTZSnQl8TrqvhNAlgLvJIvd4jbyEEHIHItTnmQsI9RiDIcP9mn6gtUnG4SNcBUyQb0SNc8Xm5LDt1WEcQL/bKnLAsBz7YxgJeWmIJnEYQLhBG1fUt1/gnpVkyqJHOWUWwmzUwpVB+b3tMiZimN7ItLchdxRnQRZCZrVmJbtP2RIJoHJuQzXZV6z8x4/aiOGNgjavohZTReZLNMckr22x7VqxPX5gNAovBGEOpLt9L7mOvf1x3x48wLZ0ylqLmmu9Hj8IOPp4QZvOPsCG+mMoa64q7fHzXsGXHpyGzOO5YtqVaKaeMIsTmWkBxbhAmpSERKN6yX4VJHsLuI0Uipv0d0tzQRCRo6NZhCbQ8hY848IlYA3goP7U4qb8QRsBlBugR14ZBX9TlNpnJWIJtbBwzhh9w0eM5HMTyYE0zVzD+QxI9pRjfSoZCAGffzO3h1d/Z03kYgF6fRwjdk9HpE4QqVQpaRZCZz/ghf471Y+yMJrMtlywox5YHiTpy+coB1p2u2GC6MpmyeuIUVgr+rhg+ChwTUqbygeaPgAdyNtQn5lhNw5jB+t4pywrC16Z8ooW2f/VYbeteXuCp8Ipmc1ZhbofeYmftRD2lvUdDYLBBNinVMG6izymQYdIlBYdTVQGcHDsondeI/C9Ty2FRzcqxmf72OLGGnsPZLGbr6PYOBjE7C2Omd/Z7l14SP7bLseAfMSvIqjefVG4DBI6mGC7Qmm51Sk9Eyg7QeaDQdW4PuORHt2F70IbSosFvC9gFsoXCZRlaBapwNGh4jtyx0q8XGkT8Q1XpyMDnzZMCYfBDfqITfKAQfTAtpYeglnt3n+axX/y/n30wbF6kMLfkm+iiRrsbMUGom9mfP++i4ePHed+4c32TAz3rgRGdeuzE/SvyRIJhHhYVNBMXW4RJKMG3wvxaUK29MkBzV2mKEq+1+52t8bE4lBmBSxOuq4HmKm4pJYmgpCHTeExndJfBpwacAOXMdQFhsOQcT15Sj77oKQti+O+US9icgP4cH2488RViDbGMm689vI8QR5chuefXHXf+cR6KIiLCrWPlOy9/qEldU543FBWCjsPRXvOv+fgFgwJ4ARls/rP8/kNSkfu36GJAgqqxmZijPZAcWoRhF4KLvCB+b38Kr+dT5anKFeSyhP9uhNFoTUHPMiynE8PZNJy4n3d7RdS7SjUVKvY1rks8iNGrpRsWDi+GbIfSRE6IhCUJFtSewlCCfwyiMaiaxFx0TjYzoycgQZ0zSXRyypnsd6oKqJJMttwMwh37WEH16hb93S6ewA3pwe0FspET6JzkuAzx3lGU91Ik5T+dwjCovsonSajlRFckyerGQgL2oq6fFekg0jzOSIAu9oSuno96oxeHtr8MD2PO0gZgvLtDYo9uuC1ilWBwtujFMWm5KrX9Hn297wayg8HhGp/G6kOJciT1f01ubMxjnSeLS8NcYJ8NDqdS6fWcU8ntH2YHDFE1bVMZ7SFhqfSHwiInuXD6hFg6hdZGVyyw1A7MAgZEFzbuO48eOTgE+7LnpHdRFUPCB94QlJDNyYGsTRoJ6MUDZCzOCE6ghHVhvsKE69Ud9WruiGU9RcIlxswJYncwY3t3Br/ZfIgQbi7K53mKsHDJ48zYEfIXoWfXLBV933GS6YQxShYxCXzH1KT9Z82epn+KKVJ2mDopA1W3pKExQLn8ZIVU14Q+9Z3vXRb6adJQgVcLmk3R5hLu8R1gb43EBm0DfHmIs3CXkaQf1LNGEDG4+V2J5mds8IVXuk66Yc0iPnGUmDpYzpKCLEeuc4gSTASk2vaCIN19UCPRe4lYDqtQQvsCYgFqqLtHykc/Nx1E25+Fx06dGlQx/WTO9dPp0dwKoq+OZ7PsY/v/mF9J7Tccos8eg0Oj5tHCv9BdZ1DbVWYxNFU2mU9rGeH6BubnVGtXb0s5pe0pAqi/OSxseRz7I1cZJJHfFeCurV2JEPa03E2y7Raqe5MesTgqBuNahA86Vjvvrc0zwz3+SgLbg73+FEOmbj4R1uXFyj12t4zdY1qvUYdKyYBVKEDhsa1zHNGmZnc8w0NpHMwhOkwKUC2Ubnme61qEWDun6A31zBFwZ1uFjugtAFIGfXKLfjIStdLNf5wiHXLU6FSGF35ByVRxuH95LQlQ1DAt5KdGJpU4+cKehY/PWKReuOuziXBB/HQH0QuErja4n2XVSaSRYPbqPvICj7XQHpAfyNHVae2abaVNggOHHigC8ffQoXBIug2fMFc5+yY4coPIWs2dQThrJiICsycWuW3iFoOw2PR05e49Ofvp+1xz3F1TLuINmxpVQtvkgJiYE0bioxXf5LIJzHZYJ6JI9RBEcQiZB6VOZI0haj4z1XtcEfpCQH8XubVDNfxEchO+Lk7IqhOhforZT4rKXtdTWeAD5omKvjSFc6YpPGSIRzS68L327vWv8oP9p7M21fIVuBA5R2KOUZFhWFaTFp1RGEJCyEoV4Y2kqjU0frFNZKtPbYJjpWAC1iNFboeK+zNpYtGqtuRSIe2l7AZz5uoiXXQOvaMP7sGm69xWQ2RttA6Qw+CHbrPrXXDHXF6zYvc7k3Yz2ds5HM2EomsYMva6pgWLiUA5sxcyl1bdAm1pcRcfzX90QEnQtIxw6XSggGd/c2elzi8xQ7WMFfWy6MySvB/K4RzojjDEEEQEeZFyk9Hhl5Y5WnyBpcEMzGeUShWEEwnt6gIk9admuNsBoZAnY1Eon0sobGqk4iJgYydWVwHYpFNhH141JBua7Id1/CJlK86254/zO7rBdbHDyouPC6PU6oCYugmYeEQ9fjuh1xsx2yoWdkckZP1hQypuySQCI8jjhys+NzrrRrkXV8BnoRV1PtzyJby2SGWBkiMhObSocTqGu8W/Ysb7Sj0cxmGFPryDkYKbikjJR1WjmkiOWNQ5mRTKI8STMxOBPrm+lhJI9tBwJ5qFFrnn7WQgGzKqUqk0hr2P0SIb4Asg3YXKIHWdSXeplYX2aESYIdhIjj7Gb6UxOZ5qUIuCBjVKUtO/uDWNaQELbigTMoamZlSrASu9DcmK/iTx2ympV4JY5HPo+ozJpGE2oZN4YX2I6oRSy57KdKQXFVMss14UaCTAKLg5z5iYSRKdmp+kzaFcp0zoopWU/nbKVTNsyUkSrJREMVEmY2i538esil6Squ1OQTgapj/dN379LO21tUbtn4uYxk5mMg4gJ2mCFajxDilrTQksylMD+p0GWI5agaRCagicGINIEsi1DGRFsS7Sib35p1BhPIk5at3ox5lVAXKXohEK1ECHBekCct+5MCpQJCeJyT0MY6umpi198ZqLcl9WoCv/Dirv8OHWgXgkqBKHLEbEFxo2V+MmXFlDzVbCOFJxPxhnfbAZfKNarUcMocRFb1jqqsRZLgaYNkz+dctyvstgNuLgZU64H5tqK42EQdF2sRaUIoMuRkEenRuoF/seQU/siED1RrgvKMo//sbXPXt72g1qkomKY8+eaCGQVq1jHyqyiSV20GZBs9Y9hoUF3NKzctSkbO0LJUBBWbLxCjz0j0EtOfZvXlA6QHCIVF7pl4vZ0DrVtNaiyL1iCAxikOJwXcTCMBLvF7e2lDP2lY1AZpHEHH+uBus8b8xIwibemnEQp3ND8vRcA5gWwF/cuB+qTENZKNtcnS1gDA9TzNW6YoqxBrgVGvovrQOp+4+CAbb7tGYRrGdYYPgs1kRk81KPzxNNLY9di1fR47PMMwKamcZphW3H/hOs8V69QXC9oVx/DklNYq2C3wi5TFN49pf36F4UWPqh2ycQQtkbU75uNclsV5dIFeBGQbNd5UA64VkUhcBppGoXXUQKpbHenqjO9EJWNJbF4lXKzXqOvoD0SIiA3vj94LT5I4nJM0jcLXCllFByrihHT8fw7KO5BivHM6O+cQJqbQYTZHlZZkmvDzTz7M+0cX2Lm0CgLe+uqn2MqmjJuMga54ttnkvvQGWWjp0ZAJx2HHKAOxwH61Xoll1jM14fkUX5gooqUVzfYQnyiSPRknlIYDwnxBmC85hReAiFhMAHMYeUBjc0fgW4mzkraNqaXv6n2ukYg23rtPYqfeIuMcvARzz5Sesdiu1tO6rjTgbwfpxxRE14GgBTYVjO8tjiE9Lxf7l1/0T/kffvxPx3WpZZRbEJa6jXIM1kkaq2lnCeksAqSlBb+XcjMM2TMOu5cjagFp3DCiFSx2ejTDBtePzSbrJd4LbK2RlUR4+Kd/+e/xRx/7dr72wqf4T2q5PKmpsXz1PZ/mvvwGUgR+6urreN6sIR+acvnpLU7ds4MSgZUk0qmlMgYiV+oVtIyaUHOX0u+kTY6USsd1xubqlEVRM8rjPV752EnOf941TvQmfPj5c7jXOtY/ZaN+l/P4XKMW9ljNc2kmIpZa2ghZCqoTf+sJXCUJMuACeC8x2nUZy62aaHoIemEobR983H/9F2Lzqe0Tae9EwPnoTOt5EhtI7raOPUToVB2xp7Z48WtyRw40KEn94GnKrYTRp/YJ+4eYy3tkpzP291J2d1PMQtKuOD5x4xRvPX2Rt649yyenpzmdSpqgaINiGjIqYWmDRnayDU03JmKkx6QWQkrQEp9o3GrOpa/McXlAVSuc/DVL8cw+DHuInQNYpoJFAJcq1MIyelYzPylRdaAVcWpGVhKPoe4kO0StwIFeyJg25LGQKY4YlEJMJ6rrPZq1+lhAC6LztK0+Jh6JNaCAcIG2kMxPxlFZM1/ievwO9nmJZfXzdrhxY4TajbIsUjnKOokEEI2mmSaIKh4+vctxnBXA7uQEDflh5BVYbEkWpz1+YDE3DNamTIJAG4t3MqZmc420ca75XhN47E0/DsAvLhnHFBD0dc0pc8DT9Qlqp2nONWzkNVv3zShMw0pSspKU1N4ghad1itprmjbuj9KZY00oiBR5g7SmtprzKwf0Tc0nb57En6rYKqZo4Tm/tc/Fm6ciN2gINGs5qna4VMGy1QtClKrxi5jCC9fV9CsRZcCbGBwo6Wja2CB0TuJrhZnC6tMW2QTGFwwuj/SRK0/X2Fxhc0N9UuMTi3eKEARCe3ylEG0MVujqoIRYB/VGcCfn7J05UC15/qtS8vsPqX5+nRO/UBJmc/rPzejdNUKXMSqanLK89fRFvmD0FE3QNF7zbLnBqp6TiZYqGNqgqbwhky2VNzxTbXG9GjCpUmyjunEujSwt43tz3F0VWd7QfmaIajz12RW8FuQAN+/okX1OLWhBuWloewnFjiM9jJNA0oKqRRwfPOoYtoJkLBE2PjSX0TG2R5iGquOm1wuBmSqqMqdZscjcRjGAVhIaiajj+Kjw8WUTLs7Jl9tdHckuGxz9W62QCe9/7b/l6576Sp68dDfBaFrAJp4aQ2glYq4JuaMdQbavMLOAMxEnSwUIqFbjevo8NubaNUl+WVO3KfVARWhYraLCqWfpXfffbk2jec/1+zEnHTebAZd3VgmlYi1f0Dc16+mtk690hly1SOFRHf+p6aRNgGPWdU2MTAem4p7+LlfKFaQIvPrc1QjpchojHX7UElKFl4Jkdx7roF0TcqkWYrQYDsRtjiw6UJcQnah2eCdwNmYYQsQIMh3HtbC5JN/zEYhfCG6+Ljt+/q5WuFzGZpQXUSbHyuOARXQBy1EJ7KiH8WLtzhyoFPQfOGA6z1ht4OpXn43yxgI2H2tQC0s7MASR8e76IW7cP2BSZ1y6vkawkpXPK/GpYOwKrtQr7P/f7Z1JjF3pdd9/33CnN1S9Gsgqks1mieyJ7G7ElmS525HhxI4sKDGCDMgigGFkkwDZ2QmShQEvAmQVBDC8MRIYTuIgAyLDiaHAsJxeSFEiq2XZUhSpO2IPZJNsslms+Y13+IYszn3FttKWWY1OigHef1NFgizcd+u9c79zzn+ou2TaMfEp98bLlE5yTMIooekqylWLKRMm5xTaeDpZzRFw+6dT7FQxeDMAS/DaSV7FRwtXKNKR5/CphL2PK7q3lCyCallaKAdaK6gVdqYotoWzGQ0yOA+R2bqW9EXfbtUbmWuaUjFzlmZFSXFoFLoSrug841p5ydmZ+4oqp8j3Tt2j7APRsbW8OY80YZrgO+I2nky0iA4KiEVg+HTEzCT6105kluk7Uaz/NNil1mEo91RrmuK+pmoS/Ly9b0+vwUb8aa/e3wc9U9z7n5v8F2Bn2GP9dzN2Pg4Pxj0ubhyymQ0pg5wwrfK4aGiCxQVD17aJpO3CbY6y3eADfH1ni7sPBnzuuddZS8eUIeFrDz6G0YHBNzKqNU162BDyBO0CPpf3zWlCxYfmxsS2jW8UysksNCaKqLSMqCLYzAm/U8HRFRg9adqdgXxuZpuemAmnOiYRZQJ1bVDK4L0m+nZ0Ft9XPNvraLryvT+BDuVEBdSn0Mlq3H9fpVoVF516IAqk/hcc6b1DzFqfFQ3p0PK93Y+R7ypWRpHOTuB3Bs/zo+dvMXIZd0YDamdYyit8EBt+H5REwlSiiW26mnopodwI5G2Q1NOffocQFe8eLXN/s09ymDzyxuz/BkwFd/6C4eIL97h9b43qEzNC4tGvLktBa3ltx/ewEK9KV4jDjOuIKqKVH2GnUgCjhqySliJqcxywpdtCbCqZHUWhvNG/Ky3ZbEOcmR5H/NKF3+FnLl2hcysBFMzAjjW2hMkFoRmpNKCKAMvC+QSEbqIgNnKkNNZTl4kEhbUqk2SoiIPYLtLaOfGVKbk6bQeRhwgW/HrNqMzQ3+pjS0/oBco64fZ4hY1sKPxO4xn5nJmHymcc1GJukBuHVlFmvS3POkTFtElpguHp5R2uLO/SRM318QaHVUETNHtfPsfm9Qqfy4a52J7hE0NIJULjNDFv28tVUVK9v2vQjUI1oJScQqPXhPn4QkfcqpPCmTvS3JGmDR0TmJQp5SSF0hAbTeNTTCanWFQbEeLVcScYTLvMKpSkgJ7glpzs3dX37P7RBoPtSNORY/bkiQhPzCQidTpD5ymdGyV20seWKdmRIz2oMbOGo68OuP6ZswDsD7sYE6iahF5eUTvDbJYek+hDKkWk6bck62nKubPbvLh0j2U7pVpP+BfVy6x8tXOqZiLBQu/yEXuTDrHSLK+X7B90WduJbQsibafPIq6AeiUSdQQN5SVP3q9IjLQXzmlmlaU8mx5vB+c+o/NTlW6EtmRqKd51X9H0oH9HHPD7zxwwjiuneEf+ZDyfFpieI6SJKLKAzgNRmBQPxCDGdYNsVgFvrBRUEwiVQZUG1SgaMkylSCaKZCiUsfJsxC978YOcaKJXvHjhHprTz8yaQ3s4f+6A994+w9YfVLiusDUurBxR2IYmGnItX6tgcdG0HFEtuwJkaTR1KZW3lM5SNpbGG84vDTmXH7GejPjm8EkOq4I37mzQ+3bO0nuBpm8kRrwK6GlNSDTBnP7DJeRSNFVrojw3CFcBMVb2EIPYIhIhaEOsdSs/AnQkycQVDqByrWLRRrxGuLZaHsLiNfHwq27U8Z+DkaXT3IbzUXGiOxiConcb6p6i+8Bz8LTBPDUmRtBljX/iDHd/cglXiHC/XI9kBwn9W4bBG4GV647bT6+Tr81oSksd5pIrmO53pE1FTm26VmIY0FHkD0DdL/gjd4lPf+otvrz7LK+9epmLr9Tkd08m/v+o4VMY31ymf1OzWkZmN9Y597anc3dKyA37JgOljqWdIZdAPT0xqNrickeeNtg0MK0SXGWF3+nE6CD2RPMetZw+dSOnT11H0nFkdElRr3nKu4bZVkM9yeGJxyMX/oMQnJgd+wz8wDFuLJ33YPPrJa5jZBnQtlAhkQdOcqSYbjXYocbUCl2B60TWviv3+e6f7+PWGkzu8VNLyCO2Ufzoyjsk6vEZhMZO4N7dVbb+c6B4a4fJtQ0wkcw41rIJEyceoE0w1MHSBENmHFZ7XDCMXUY9V205y7RKKVtO5P6sw7/79o+wvj5id69P9zs5K8NIuSZpBZ0H8gSOVuH7GdFodBPEO/QUsdk7AiV5Z6m4zklBbZc7EeTzENrPUGnEOyJA7HmUDbjGMoXjvPi6tMSWtUIrTMEZYiryaNUa9hy3716yyjZ+/0BmwyE+8qHsZI+goJhuKPq3IvtXDc3VKeeWxry3t0zMEsZbXfF8dDB5ruLlZ25wsXPAF956kfTfFnTendJ/Y4nxVus8lAZiUExLA06hR9KSzZcAuobOtic90kzOK1a+nvLvv/Q5il3HM9+8QfQB1TvlXHgF2Z6m2Aks3ZxCiMfkZD10LN80jJyFqMT5xStiEQh9jx4Z1O2CsS6OT2S2ltYiGtH9EoFalkbJRJG2OUnzAXp9qaI3mLJfLXP1qbsMq5zdYfeUbsafjl/79G/wdz//d+SNnHrM81OG3T6mzDjz3+5TLW2w/dmGpGi4urnNJ1du8b3xJludPb6xd4lxk7K9t4yfWEJiePen+kwvOtJeLYEJum3zS8WldPeUX+0fR/SKrc9D59u3iWsDdn4oIeuNAKiCBOjtNV1ClBkoGhI8Y5ditWfmkmO5qlKR2hm80xRFzXJesp90mX35DP0ahs83mK4jHKRkB0JKT/dLUc0VCU3fYsrTF1ysmoqrn3ud3//Gc6z+2APCf9zAtQcOFR6eROcnRdVoYtam+joFswQ90uhRuxQCCi8L2qYf8EUg6tbMxylIRahiao4XTSrAbF1z/xe6XPtHO6J0fEScqICqWnHm24506Nh5yXJhdcj9/SXcOGGyldK7OaZz11Kezbhz0XChOGQjGfLs2Qfc3LpC9y1H937AdYz4NvbEOVoFecPPHcdDEkmHiD3cfs34UkFIFT5X2FmkXDV0lnqoaSmJfqcIO4WNb9Qko0aMg3NNNAoVIqoJJKOG7nsK5Q3lulirORtQhSfoSJwZVN0aIMTWqan9JQOoRu6LnSnyXcgOA+kokO3VuK6l872M0bPAasPNL28RTaTafDycdj4IP1WIi46uFX5mMcszwpmaw6sZ1co5iTBxiuZ+h9FaxpErGCQz9psudw4GzHY7MgsuNUeXNbPNgBnUKBWF4hWEEqYasY97nGBHimrFkm5tELWi6UdWezNWswlGRe7P+tg2kdS2np+FaSh9wrjJcEHjgsYHhQ+GprZoE+jnFf2k5Ccuv4W+EnlvtsS94RIHez1MpcS5fdRgRiXqYIjaXJNlr+bUzUQUil+/9ApceoVtX/HXP/8PZC6ZtgtVJ8LHOG/B7ZwHrEn3NcW2qKu0FyK+K2TZnYzkYAOach3qQRB1W3uaBfneNKLiW3mjYnouIyx3OfPP7sJLj3b9Jyqgc7Lr7gs5f+ba20xcytpgzM7dM0QVUY2nOtdldNFyfus+K3bKq4cf49bhCtPNiBvkZEeedKhldhrkl2umIqcypcwUu/cj6djTuXEIzhOuFAQLkwuR2Vm48BWPmlXEyVT8Qk8RpvTYqRfXm0SMG2BOpA/YicPUgfxQoYLGJxK5EJNI2qtJVjy6VRt5r3HO0FQWphZVaZKxwo4V2YEs4tIjh52Jg3cybDj3VU95PeXwiiE7iJgGhv7xUGf9Sbj28g2uf+kKfqqZjHMxgViylMGQHijy2ynFg8gtd56b2TmhmBQeu5fQ21NUA9m0z84GGNRoHXBO1CWEhx1Mctraze9DXPWEn9vljXdWOfdfNWamqJ1ht+zRsfXxbDNGRSepWUpLRk3G1KVMm5Rpk1A2Fu81VZWgtWjDV4spZ/IxhWmY+YSOrfGhlSrOZHZoJjXqYIjf3aP8xJPMVi35gZel2ylCAb5dsmpgfFGRHrZ7QC3FTjVIpYqyP7CHluU3RTYdLFRnFdFGkqGiWpUCa2bSoqdHDzftsfVDULU4gR0LKxvIrt/jyu4ANLzYv/vI13+yGWgK7/45y5kXttkohry2f46DUYdsT1MtReLTy2Lqe80xPerxm9UPM5lm+O2Czq5idEn4WaaSGItsx2Anov+200g6Cbhc039H1EVqWoJS2FK8+3zfw1iTvzsizmbivJGc7iA8Gk2zZAmJwqf62JJLOzmdRtvGLYSInUWKHYlBrhItBHwT0K3fr21JwtFplFMkQ0Wxo8j3A/meJz2qJd/GyH8IqcFnskld+1/hmAZS7ClOOf7nB+KXt36Lvzz+h/hU0QwT1CCico/rKOzYEJLIaAtxssraMUZUuPWGSWHIdg2+iISuJ82duOsEwIn+2bQz0iV9usqj78dSWrKclWwjy7/ltwP7V3NmRcmdwwEgyhmjIqMq5SjJjylKIJpuaOMrOhXdrGYprThXHFEYqRKmdRoqq0SEG14sFJtBTnYfpj/zcXZftOS7kdXvjCW98xQRAaMUPkYG2vKJz77O6//6Kr5QhDZbTEFr/wgoWTCPtmThGK2o+FCRZqCPOzdftL4IK/IAiW2AIU4I9PMZq6mg957EPeujMbGu+dr+5Ue+/hMS6SO/8lf/JZftPjfcKpfyfX7tvU9j1gPr35WoCltCemAYfK3L+GKPsBJJZu08o71o11H03zQkk0g6EjNUU0eyvYbOrEEfTlCzStL6lno0RduKpQHtDCoEWFuBvQPiweFJXsJHjmgUdd/IybINM5v/YpSXfBrlolAmUkgmke490M5SNppZYUVaNteJe4UuNXas6N6DpdsN6UGNrpwkW2aGqJQsADKN6xrZXCqRdKppIDk65azvPwVP2g4//Tdf5Xd/+yVCYvCFpCmSRFwvYkcKiHh4uDV1Qk8yU43rRnwRpJ2DhwTpoNCz1mj5rDiAPU44mHR4af0mT3QPefupdcrf2GTtCwV3Plngey0JOA2YzJOkjsksO9aAJ8bjgxYDFh1IrSe3jm5SMWpy8RBVgd2qy7ujAa4xqMJTXQjUHwvsfsqS7l6W3UIln8HpxR68edp35eEJNFGGlwdv85q5JqMcBTFBeM9a47sBoiKmkaYNc5wHFNqxkjC5VJavvhPa2amk3qpGPEHtyAjDxbVslirS+c5d/O4eusjBGKq/tfTI136iAnqmO+K5xHPfdzBEvnl0EW0DbFYkY0W263FdC6RoHykeQPeetOVi+iuZPZ3tIGmTTZTiEiJ24rCHJXo0gboBa6kvb3DwbM7srJLjt5Jjeuik6FlDHJ++ZjEaYSVEPQ93a/9+vu0LBjv1bVa3RM6mo4idQr6raHrJcUKgqIgkN6jzINC7V2EmjXg79lKR3gG6DoRE43ONy8T3cR4ZHAycfnraD4ZRmp9cfp3fXvsUdqQIEyvOVWn7uoqWdTDTRKeOxQVRi/NOSOU0YguH1lEUKqWVU/ukFRicqbhgxsDj4Y0KgIJ/86UfR58tSbOG6i9WPPVPa/rvWMaXClGTnZXlR2VTYhao0oC2AZt6YsuHBUgSz1hFGm94sn/AxKdoIuMmYzTLSFJHsArvDNGLCk47RXo0V/oIx/i0dQYKKZyBQBM9P7v0Bv/8MwfYLw4I8/GCQ8zIlcR1zLe00cTWzi7SrESaJQU2Hi9kAYIO6Eq8QVUpZuRzWqB2UOwG8B7d74EPEvd8gq72RJ80qwL/ozrPjuvz6zf+LHu7fT5z7XUK03D94BkAdOMZzLwsSwpDyBTpkcNMGnwnEbOAqSNajXLhuMVN7h+hqoaYJYSzA46e6nLwnKbacKiOtGlp6qmXU3w3QU9rVJ4RTrmIRiM0EdrYinn2jm/9KKOS4mpqiVvQTnhtpo5ko/aN8L5/o5uInTlULfemHmSERJQY8yIMtFpfyZ93hRRv3US0U4T08VqefBD+UqfkKz/xKv/p917GjrS0YymE9Zp4kKJLhfbIyRSEA5i2J4ssYHMn0t7G4CqLmhrsRGHH8jAqvlXwT57+DL964asY9Xjcjyd7e2RbRzTfXKFzJxLPK7Z/rOD8b73N4Hs1g7UBsZvjuykx0QSjKdcTxuc19TJUaxLrqwtHjLC6NKWb1JTeSmCdS9ge9zAmMOjO2Bt2acYJZiKz0OJ+xM6gXFM0a4qQGkL2eNwbkEKqY+RHNu/wh8UKdgYO+YzpGqxuGxEjRVN5BQZiElCZJzot7A4li0jaroQoD1470sfR37rNFOvemRCrGrXcZ/L8BnvXEmYbAf7+o13ziQporms8iv9w95Ps3VjhuRfv8FTnAVVIePWFJVa/+Ca6KFArPayPJIlBzWrJdg8B08mF5lNWUunrGmWtPFa9x2+uMXuiy+SsYbahaJYD2EDeqYlRoXVguuxpOpb0YEi0Fr22CvdP/sv6qBC1EHC/36dCDoGqHXxrbPWw+M1pTsGq9/0cSVNUacQV6fHPDla1krMotnUhElJN0zc0HdUaN7cn36hwGaSPD/XxB+IXz3yN3yxeotjWRKVxacQOasyFBtcYkqwhSxzWPAyXc97ggyK1ntoZqjIhTo2wFPbUsRPV+ncbbr+yxQ999of5zs//6um+0BY97fnbz3yFL668wN1/dZnV6579q4by2hNk37pB3N5FZSmmqonPXiLdOSJ7rWK53+XW3zgHc7mjiawuTTnfO+J8McRqz6iReWlqPeudKfuzDtVBfsziWHob0nHg6LKRzKEsUq+0791TRnif9CcQ+Hubr/BXzr3I8putEKXdwsdKoVKAeByXM2/jUdKRxKgkzkW/jySf0C65+WMSzs5OwLy7A3lGGPSo+4bkx/f4a5e+yz9+xGtXMT76GV4ptQPceuT/8P8Ol2KMJ3Dx++iwuCcfjMf0vizuyf+JxT35YDzSfTlRAV1ggQUWWOAhHp8ByAILLLDA/2dYFNAFFlhggQ+JRQFdYIEFFviQWBTQBRZYYIEPiUUBXWCBBRb4kFgU0AUWWGCBD4lFAV1ggQUW+JBYFNAFFlhggQ+JRQFdYIEFFviQ+N9Y+5sxCanf0wAAAABJRU5ErkJggg==\n"
     },
     "metadata": {}
    }
   ],
   "source": [
    "#Visualisation du dataset global\n",
    "print(\"X:\", X.shape)\n",
    "print(\"Y:\", Y.shape)\n",
    "\n",
    "N=5\n",
    "M=5\n",
    "plt.figure()\n",
    "for i in range(N*M):\n",
    "    k = rd.randrange(X.shape[0])\n",
    "    plt.subplot(N, M, i+1)\n",
    "    plt.xticks([])\n",
    "    plt.yticks([])\n",
    "    plt.grid(False)\n",
    "\n",
    "    afficher(X[k])\n",
    "    plt.title(emotions[int(Y[k])])\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "#@title Hyperparamètres\n",
    "epochs = 2\n",
    "batch_size = 128\n",
    "validation_size = 0.1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": [
      "X (152252, 48, 48, 1)\nY (152252, 7)\n"
     ]
    }
   ],
   "source": [
    "#Labels catégoriques\n",
    "Ycat = keras.utils.to_categorical(Y)\n",
    "\n",
    "print(\"X\", X.shape)\n",
    "print(\"Y\", Ycat.shape)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": [
      "Model: \"my_model\"\n_________________________________________________________________\nLayer (type)                 Output Shape              Param #   \n=================================================================\nconv2d (Conv2D)              (None, 46, 46, 32)        320       \n_________________________________________________________________\nmax_pooling2d (MaxPooling2D) (None, 23, 23, 32)        0         \n_________________________________________________________________\nbatch_normalization (BatchNo (None, 23, 23, 32)        128       \n_________________________________________________________________\nconv2d_1 (Conv2D)            (None, 21, 21, 64)        18496     \n_________________________________________________________________\nmax_pooling2d_1 (MaxPooling2 (None, 10, 10, 64)        0         \n_________________________________________________________________\nbatch_normalization_1 (Batch (None, 10, 10, 64)        256       \n_________________________________________________________________\nconv2d_2 (Conv2D)            (None, 8, 8, 128)         73856     \n_________________________________________________________________\nmax_pooling2d_2 (MaxPooling2 (None, 4, 4, 128)         0         \n_________________________________________________________________\nbatch_normalization_2 (Batch (None, 4, 4, 128)         512       \n_________________________________________________________________\nconv2d_3 (Conv2D)            (None, 2, 2, 256)         295168    \n_________________________________________________________________\nmax_pooling2d_3 (MaxPooling2 (None, 1, 1, 256)         0         \n_________________________________________________________________\nbatch_normalization_3 (Batch (None, 1, 1, 256)         1024      \n_________________________________________________________________\nflatten (Flatten)            (None, 256)               0         \n_________________________________________________________________\ndense (Dense)                (None, 128)               32896     \n_________________________________________________________________\ndropout (Dropout)            (None, 128)               0         \n_________________________________________________________________\ndense_1 (Dense)              (None, 64)                8256      \n_________________________________________________________________\ndropout_1 (Dropout)          (None, 64)                0         \n_________________________________________________________________\ndense_2 (Dense)              (None, 7)                 455       \n=================================================================\nTotal params: 431,367\nTrainable params: 430,407\nNon-trainable params: 960\n_________________________________________________________________\n"
     ]
    }
   ],
   "source": [
    "#MODELE\n",
    "class MyModel(keras.Sequential):\n",
    "\n",
    "    def __init__(self, input_shape):\n",
    "        super(MyModel, self).__init__()\n",
    "        #Pre processing\n",
    "        # self.add(keras.layers.experimental.preprocessing.RandomContrast(factor=(0.5,0.5)))\n",
    "        # self.add(keras.layers.experimental.preprocessing.RandomFlip(mode=\"horizontal\"))\n",
    "        \n",
    "        #48*48 *1\n",
    "        self.add(keras.layers.Conv2D(32, kernel_size = (3, 3), activation = 'relu', input_shape = input_shape))        \n",
    "        self.add(keras.layers.MaxPooling2D(pool_size = 2))\n",
    "        self.add(keras.layers.BatchNormalization())\n",
    "\n",
    "        #23*23 *32\n",
    "        self.add(keras.layers.Conv2D(64, kernel_size = (3, 3), activation = 'relu'))\n",
    "        self.add(keras.layers.MaxPooling2D(pool_size = 2))\n",
    "        self.add(keras.layers.BatchNormalization())\n",
    "\n",
    "        #10*10 *64\n",
    "        self.add(keras.layers.Conv2D(128, kernel_size = (3, 3), activation = 'relu'))\n",
    "        self.add(keras.layers.MaxPooling2D(pool_size = 2))\n",
    "        self.add(keras.layers.BatchNormalization())\n",
    "\n",
    "        #4*4 *128\n",
    "        self.add(keras.layers.Conv2D(256, kernel_size = (3, 3), activation = 'relu'))\n",
    "        self.add(keras.layers.MaxPooling2D(pool_size = 2))\n",
    "        self.add(keras.layers.BatchNormalization())\n",
    "\n",
    "        #1*1 *256\n",
    "        self.add(keras.layers.Flatten())\n",
    "        self.add(keras.layers.Dense(128, activation = 'relu'))\n",
    "        self.add(keras.layers.Dropout(0.3))\n",
    "        self.add(keras.layers.Dense(64,  activation = 'relu'))\n",
    "        self.add(keras.layers.Dropout(0.3))\n",
    "        #self.add(keras.layers.BatchNormalization())\n",
    "        self.add(keras.layers.Dense(7, activation = 'softmax'))\n",
    "        #7\n",
    "    \n",
    "    def predir(self, monImage):\n",
    "        return self.predict(np.array([monImage]))[0,:]\n",
    "\n",
    "    def compile_o(self):\n",
    "        self.compile(optimizer = 'adam', loss=losses.categorical_crossentropy, metrics = ['accuracy'])\n",
    "\n",
    "myModel = MyModel(input_shape)\n",
    "myModel.compile_o()\n",
    "myModel.summary()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": [
      "[0.14478482 0.13992985 0.1444098  0.14547563 0.14638613 0.14012544\n 0.1388883 ]\n"
     ]
    },
    {
     "output_type": "display_data",
     "data": {
      "text/plain": "<Figure size 432x288 with 1 Axes>",
      "image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\r\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\r\n  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\r\n<svg height=\"250.052344pt\" version=\"1.1\" viewBox=\"0 0 251.565 250.052344\" width=\"251.565pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\r\n <metadata>\r\n  <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\r\n   <cc:Work>\r\n    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\r\n    <dc:date>2021-06-09T14:11:17.946663</dc:date>\r\n    <dc:format>image/svg+xml</dc:format>\r\n    <dc:creator>\r\n     <cc:Agent>\r\n      <dc:title>Matplotlib v3.4.1, https://matplotlib.org/</dc:title>\r\n     </cc:Agent>\r\n    </dc:creator>\r\n   </cc:Work>\r\n  </rdf:RDF>\r\n </metadata>\r\n <defs>\r\n  <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\r\n </defs>\r\n <g id=\"figure_1\">\r\n  <g id=\"patch_1\">\r\n   <path d=\"M 0 250.052344 \r\nL 251.565 250.052344 \r\nL 251.565 0 \r\nL 0 0 \r\nz\r\n\" style=\"fill:none;\"/>\r\n  </g>\r\n  <g id=\"axes_1\">\r\n   <g id=\"patch_2\">\r\n    <path d=\"M 26.925 226.174219 \r\nL 244.365 226.174219 \r\nL 244.365 8.734219 \r\nL 26.925 8.734219 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p8cdbfa3d76)\">\r\n    <image height=\"218\" id=\"image8cee45176c\" transform=\"scale(1 -1)translate(0 -218)\" width=\"218\" x=\"26.925\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAANoAAADaCAYAAADAHVzbAAAhzklEQVR4nO2dya9k91XHf3XnmuvNr2fPc5zYiROctBNBRBYRYZKQQCzYRQgF/gUUYIVgjZAISAQkhCBRFhmIogRk2UriTHJix2N32+3ufnO/92quOxSLrM73e6AqVvLrzfnsflen6o6nbp259sSn/3bugGAm17NuDUVcFdEmIpzKdWOvJJnOT0/EuvbOLZKpra6Iddlt8vE0YrEenstI5vRiQNvGW/L05yFdDjdfzcX67vP7JLOWDcV6VCQkc6Z+KtZxwNfjeFYX66DGx3Oa87ldP+7Jz31lhWS2/v0VsS5v3yaZ0e98SKyLTx+QzOWtK2K9Eo1I5ken58X6lYNNPp72QO6r4vtz47BL2z548W2x/sTqT0gmqclr+5c/+STJzN7oyP23+X7Ub8oHPW8rz0ckt7Wv8nnwFsMwfuGYohmGB0zRDMMDpmiG4QHVpZG3pfMjmLEBmB3JbdkhG5LNn0jHxrzfJ5laXRr/83PbJDPdlM6PyWpMMrN2AGt24BTsQyFDturlJNPpSWN/JWXjPwvl5xLF0bGRyPPP5yHJRKn83HQZr5NzbrUpj+nqY+xEWP+hdFBEN+oks/f7Y7H+7D3fJJkL8aFY/2B8N8kM8lSs53O+H9d218S6nPH1aPf4Wj/Sks/V4+kNknm7kM6gIOBnGJ1+rSt8rWdd+TnFN+XWfijXnat8zPZGMwwPmKIZhgdM0QzDA9Fklf87d69WYt2+MiCZ2qSQ6x0O4jq0v+46RyJlJv8XT9dSkpl25X/3IuNjzptyW97iw6ki/oNd1eW5xllBMmkst109XiWZ0UQedxBUJPNSJO3PSrFbZrm8Htr3RCFvwzOrn+V7tvNhabed+9cdksn35D37WP06yfThuD/ZeolkGoHMVthdY5vx8//5cbG+/z8OSebGJ9Zo2z+Nnhbrb209QDI7p22xzl/skUz7HXnV+hf5+ahV8ly7P1X8FeCfqOVsn9sbzTA8YIpmGB4wRTMMD5iiGYYHosYuG3fdl2RWd9lmB0U4moh1tb1BMpOz0iNRKxRnRCJ1fdrhoCU6P5Q4r6vi/3/tnHMlJ73zvqYctDzuSwdBPuDM/OhQ7rCxw46O2kSefxCyTHMMMmxXq8H4wd3SQVLbmpLM+Al5z4oX2Dn10GffEOuPrn2GZP7svd8S6481XyWZ92TSifLj0XmSaV+T5zrdZg/W6ssz2pbelvfj+j383eFYXqPWHj97g4tSBqtNnHNu5TV5XbX8gTKTz/DwQoNk7I1mGB4wRTMMD5iiGYYHopWXObCZr8r/mOGA/ydXHSkz2eaM3aIu9ThQbLTJijS4Zh22P0owiebKzwPaZGWD91UqFbQuAdsmUoLBWPmrVGFXidymnUdQx2RtPpzsEJK1b/MxzzpsgKJNdnb9mGRCCH5f+9RZkrkUXBTr1vOcePzPHVmF/YP1iyRTDzk5G8F71j/Ptu90ha/jdFVeo/iUZer7Uma8xTIZxMdXXuUbEo3k9S8a7CAYnpEncnoPidgbzTB8YIpmGB4wRTMMD5iiGYYHoqLFBmg4hsz8kg1yDC5ihr1zXI2KGfbOOTdZk9sKJag8hyBhmSktv+Crq1gphWU/h4sgWz9JFxvxgZI9H3VkMDi8W3GqwEGWJf/O7U2kYa1VBq90j2nbB3uyLdx6yk6uAiL95RO8/929M2Ldvcb3fvIFmVH/35c7JPPMw6+J9cU6t7YboA9FqWYo63z+bdntzsUjxckGz1V6yDKtHXnv41O+93NIqJh1OWK9f1l+LmpwBYi90QzDA6ZohuEBUzTD8MBSLZZmGxyMHq9Dq+S6EqCFv/daom8Fph3aYz/7HLTtVn4eiibYRNpPiGK3RbE8yJXmmGTSSP7nnhZ8kCijVU9j96x7W9xuez2WttVKNCQZrXvWjSm3AEe6kTy3cZdvyHNPSXvrzPNKRfGevLhFg5Nob12SFdVbKXdACx+VLdLz19jW63K+sksG8pi0LgGNHfk8JH22meNTec9yJRFgsibv9eCs8mDBvQ6ucpDf3miG4QFTNMPwgCmaYXjAFM0wPBBhhbNzzpV1GcTWgtHk/GB7lJwfheIwKcFuzFtKZjw6MZR9zaFtXNTk4GO9wSW0GDTWHB29TDoRzjROSeZoyg4BBAPGz+9xK+2DE5kIEEUcMF5rccvp861jsZ6hl8mxg+ZgzBXNH4DZY68/8hDJNHelE6H9Dgdo33hrS6z/8Nx3SGb9Aen4+fvBMyQzPeIMhgB2lx7zM5OeyuuW7k9IZrYqvxsrSZxzLm+Ao0MpALnwZSmT7VpLcMO4I5iiGYYHTNEMwwO1y5/6a/qDWzSk/uH/VOecy1uwTcnhrZUQWFxXvqcjZcq6koyrVDQTmfxco8uB54aSMDyaSkMyz5UWW2Db1K6wPdaDwGp2xH/mk77cv1a5HvShu1hbsVEmbBPl6/KYpiscfN17Qtqf4WMnJPPJu18W6y/8z4dI5tJX5f5nbcW2acpnaPy7xyTzV49+Sax/JeO28jcVm/kzr/6BWJ9+nUd9oX+gscPPUAH+Ae35LKBSv3mTZVo35L2erNgMa8O4I5iiGYYHTNEMwwOmaIbhgWjaZV0rGlj1zAYgJpCjYekcz5bSqmWxTZvq+Fji5yCALPxECfRGIW9rQLfzkxkb3+WuPLl0rFSKw8i0MlYCxgkEP9tK27hN6dSYR7yv2/fzMWJFg9beOr9HOojainMIZ2bf9Z6bJDN7VlZhz5XW5slAOqeyz7VJ5i+2/0isj97DjrDP/8bf0bbtpkwYGBTsDPnzP/4Xsb4/2SOZGEru//HoIyTzjc/JWWzpCR/jeFVe/GjCz7C90QzDA6ZohuEBUzTD8ECE9phzevIvUoJto41EmkMHJ63Cmli8a+eUtt0JdLNqpBwMziIO9GL6Z6h8d7kmDZ4pj1V2M/jJqmELMOfcEOzI6ZA7kGHrsCjlY75viyuzA/hcgW3MnXMbYMiFNaUtGHB5403a9sW75Jikldf5GLEdvJLj7OoHcv8Xvs7X7E+u8tio00flvW3/GnfY+s2m3FY5PoDfe+O3xXr3c5zkvXpD3vtSScLHW60U19sbzTB8YIpmGB4wRTMMD5iiGYYHIs3xgcFndR4ZziyLFrfpLjMlMx8C1trsMVdCoDfjwHMcQxtz/hYXK+WxcSCN5FadI71FIgO7p32Ozs/h1OY1pVIBg+GKwyRrSkM/jdnRcO1wlbbhd690uU1dAgF7bJHnHDtVGsoQt8lT8rura4uHg2uVyTgvb9bmB639tpJksCvPdbzGrfaefO5PxbrzFj977SuywrvV5XPNlcoEZB7AjHVzhhjGncEUzTA8YIpmGB4wRTMMD0SY4eEcOzqKpuLowEwIJckAZebazDKc/6U5QyBbA/vlO+dcvIShHwV8kI1YGsClYsmuQZs6LetkMJEXEp0K2ncPB+xEmEC2yLjiGxQmfB5VLi/2cMJZJ3PI1n98jTPzsff/Qc4t6X7rwRfF+r/ueppkVl7Ddgf8m45J/9FUuffaJvhc74rSWvAGOGwyrniYrkunlubEqMGjViYshLdaufX2RjMMH5iiGYYHTNEMwwPqfDQoslUzr9Em02ZGU6B7icz8mjKzOYUgbpYo/8khsJuGbKNpoN22knGbuiyU+1vPOBhcX5EyU+Wi3RrJmWE3lRnWU7CtQsXW1CjHcn9FwftvdaT99WjzBslcm6wv3NdmIiucJx/kedmVMiOMZKB6XLNtsGXhsuBs9nm8+J2iVYrT8WgFD9gdv7IKa8O4I5iiGYYHTNEMwwOmaIbhgahQxnpVqTTmtMzrZQa4U0a/ZuxC8FUr3U/ixW0KMGCtBYw10NGhfQ7nimlVAL1YNkXAtm3OOXcUNsU6CtmyHoFTo1ICz9GAL3brUB6j1ns/Wpfl/e2AHT8HMxmgvlg/Ipkczu1jd3O7g2/f916x7lxTHiJAfc4WJ887pzoowNGiOCi0ADXJwP6x4sA556p48RfZG80wPGCKZhgeMEUzDA9ElVYZjcnA2nxqrIzW/qa+i1ij1u4Nq4yxUtg5tq3QrnJOTypOwDCIFEOhAEPhZMbJwJgwjJ9xzrnXdjbEOv0eJ+xuHCy+aPGQzyM7ktdovM422q2TC2L9N0/z/t+3JYPYWoV1CQ/I2eyYZIaPykTszjW2WSlgrdhRGpTEq9lfS3w3bqvSxbYW2mzLYm80w/CAKZpheMAUzTA8YIpmGB6IlAJepzlIEK29HFIrlsiGxuppZa6Z1jMfQWeIFnhOAv4ezPKPlPTsOgS1Z1WTZDAzX+t9767JzzV3eF+dN2UQOX6bB6i7ij83u1fOCCvqHOiu78trUn6tRzLPXZaOnqeeeItkGoF0dOzmXZL5wH3XxPpK7wGSSU7heDRnxBL+ES2ITI6OkO8HtYkLlohgv0vsjWYYHjBFMwwPmKIZhgc0k4TnPWlBOuhWVZsoc6NghvW8zvZXAknEiWKPLZMwjLaWZo9lStU12l91JUCLVMqMrFEhbaJ3jnokU7Tkxd77da4U370sjebo5BLJhBOljTt8d/eBQ5J5cFXae/sTDljfFU/EejLnQPNWeCzW/YoD+E/1ron1D+9jG23ruzDTTUnOXWKEmx6MBrtNq9zH18xSScbKqwkfNeycpezKMIxfBqZohuEBUzTD8IApmmF4IFKrU9GJobSgDkbgIdFagkOG/zJzzRIlYD0ppEHeTSckg5XSmuOjE/PnmqEMvnYjrjpGUsXRUoCVfCPmIO60JT93fpuHnG82+mLdjnlem+bBwqrv97eukcy5mPeHXIqkzMuzbZLJwGHUC0ckgxn+2QMnJDP/fmfh8WhQdYkSaEbHRqW0mytTuU1rN0ft7pS5dxRVt5bghnFnMEUzDA+YohmGB6LlgmtalG5xticmJ6dKh6sMbLRSScaNIYiN9tjPtkmZ9ZTbVGv2F1YQaxXFaSD3l0ccwW+E8nP7PQ4GvzKUgV20PZ1jmyxXKrW7KZ8HnttGdEoyaH/dE3MV9skSVc7tQNq6/Rq3/z6dy23PnL9CMt9rPCHWoTa2SQFuhwtmymx0sMm0TlVY4b0U8yWS6RUZe6MZhgdM0QzDA6ZohuEBUzTD8ECEGfbO/R+zplEGbPS54hypQYAaW3trdDMOKrch0LxMMFpzaizj6OiGPPssAY/RTClnwArec41jkrnVaYv1yYCdCG9Gcj4Zzth2Tg+8Y4A4V7Lum9BuL62xM+Q6ZL03Aw6Yh5CdgBXXzjkX1xYH0J9df1KsO28ps7kVh0U0lXJquzn3LqqnFSeGlq2PUIW3krxhbzTD8IApmmF4wBTNMDygzrCmHMllumJhi3DnXJxJ+0dLGMYOV2iPOcc2mda2+zSXwWAt0KuNW0IbLcNoqHMuq8E2pXUY2ilrMdt65zoyiMwTpJ076MtOWSstti12xm3ahhyXPI/rGMYtdSsOfO+XPbEOFIOjX0nbkq6Pc247OoH1MckU0ExMydV2WoZuOIGRYYodh3ab1iUAE4+1sVFoo2kV3/jdmoy90QzDA6ZohuEBUzTD8IApmmF4IFJsf1dBN+l5qATyIKgdNPmL4hgC1koruVYinQhaK7lmtLgFXD2Uhv12wtnr7ZAdLRigrpQI5WgunR9DxRkSggV8JuGK4kFTfk6b4RZ0oAWbUs0wU+ZjD6Dd3UHBDpMJWO0nFQeaEXR8OMeOlrjG9xUD3W0lWQCrO7Ssd6VQY8m2cD9/Zr7aSg4cJNpM7RqcWpBb9r5h3BFM0QzDA6ZohuGBKFTMnwKKg9Uk41jaJIFixzUz+eUrmVLhDPbXSsIdlbZTaW9pycFnoMMTJgI7pycDow0yKLm9dbBEX+oM7BStlfZmIjtcTRssg/aXFnifKdtSMCZaij26DR2/lvmV1dp938p7Yt0N+b4eV9KO21BkAhjrpdk2RaaMW8rk52Iupqcg9lzpXoVBbbU9PiYsR1rre0hyVsZI2RvNMDxgimYYHjBFMwwPmKIZhgciJfbpyhSMOaWVd5TKbXHCQUuslu4lbBA3I2mgX8iUNtmxdIb0lCpoZL9Yrt00BqixUtk550YQwdecMVDQq8pg1bGW4T8oZVC7X7AzAq+Zc+xE0TLqu4F0ovQrvq8YjL463SCZ9Uh6HzRn0Q44TLZDTiCggLWWPa+06Q5K2J8S6MYW4Fq7OWz3Hc4Upx92BFecfvzFvMneaIbhAVM0w/CAKZpheMAUzTA8EHXfZEM2b0PEPmUrtQaty7pNdnTgAHcczO6ccxuJNKzPxMckg/O3cD6Xc8s5P9oBH6PWlo2AbBF0jmjb0GGggf36nXPuuOAWBEgrZGfIGKoetJllWU2e602lTduV6aZYv3DEw+p3BzxXAHl845ZY35/ukAxdesWpUXJHPEeXTcn60FoXIFgoon0Gs1W0qgB04mjt7+yNZhgeMEUzDA+YohmGB6L2W/xf/vaD8j94qVQ946yzOGBbD1tX92Le1xYEo7FS2TnncvjzfJivkszb0zWxniqReAwYO8cB4ndGPZKZgKGgVkbDNYqU67GVyez9umajzWQ1AbbRc865acnndq5+LNaaHZvP5fm/nq+TzNduPSLW2P7OObbHtar4XWiJ9+PJBZIp2vIaaW3jylSxibh4naBsfa3dN4qoM6xhvbiQQ52XbW80w/CAKZpheMAUzTA8YIpmGB6IBhe4nVjRhCCd0vIMjf1QMf7RSNacEVjyXyo946eVdEbcmPZI5mgmjfaJ4jC4NeSg9s23pROlNlNK55vS8RNEfK4hbKsp8+JuNOT+mwkH8Mc5Ol5IxJ0m7CDB5IBD7EfhnOtXB2L9Dzc/SjLvvCYD1tkeR3Fvx9LR8eTHX+GDBL669xhtmzfk81AmvC+tBZzWlo5kSpRRgtpL9NXHrH/VGTJfHNS2N5pheMAUzTA8YIpmGB6Iph3FJoFNoTLXLACbTAtaYmBXS8Z1YKZogWYMKh9OOYiK+9obcUvsnVc2aZvLYK7zFgfVZxN5TKsrXBldlPKiHe/x/o+OpG110mEbrTqS12ieslFw0uRqdjz/h5qcxPt6IW201795D8nc9w15/tF+n2SQ7zYfpG1nH9sV6/3nz5BM2JHnphSTqzPT0NTXAt3vBnWuGSQVq5XamJyszHSzN5pheMAUzTA8YIpmGB4wRTMMD0RYTe2ccxW0l4uV4GsFQey85GDjoJBOjGC62GGiZavfnsigurYvbG13c7dHMvOmUikOMwR6X2RHS/uqzFa/dZmz3t2Hj8Wy/haXBneuyX3lTT5XHDU2OqP03l/hbXuBdL48m91HMuiM0mbjRa/JEfbzPjtDahfOinX7Kv9e969K58fqHnsabl2Wz0Pe4u9RiskpQKz1uke0QfCIOp9thhUGfIwVZP3jZ5yzN5pheMEUzTA8YIpmGB6IKqXL0DxbXEaKtpVWdTwDW+qo4oRhnP91NFJmJh+D3XTAM6QHR/I3Y3WH/2/nTT7G+oE815UX9kimBi2oz3+VDYfrgaz6XrnK17C+L6ueNdti1pM3JFDs0dmJYhOF8rpdTbgKPYHo7+wxDs4PPnK3WGf7XKkd9qU9vPUclzzPocp47ykO4M9hpvlkle9PQ7mPwRI2mVYtvQitJTl9r9ZxC3MslI7x9kYzDA+YohmGB0zRDMMDpmiG4QF1PprDamElMx+z9UvFGYJt0bQWbAcD6eg4uc0BY9eX3xMPeF/ZgTye9tscjVXbOUMJc9VhZwwS9HkQ+/mvS4eAFvysTeUx5ZtcBY1tqZM+X7N5oLQzm8lzm064UuJgLPd3Zo2dGNc/IeehBVMOqsd9eY1a10mE5opphRvhUJ7seJvPtbGrVCsXi9vULdPpnYfFKy3p4JnRKr6RMrF2c4ZxRzBFMwwPmKIZhgcirYIVeyWnMQtl0MFJq7DG5N9S6aY1K6TMvOD/29FYfq5WscxENrNy0x4bBVpiKSbxBjl/LhpDN68hB18be/J6hBPeWbkmbZtpjw2JIpPnNllVrlmPNrmiAy3aQ94/dio712Qb7XBLJhUESkJ5He795HE+jwyemXMNrkpvREpkF3jn+5wc7dCU0zplYRW2Nlc6//mTk7Uq7GiE3bzMRjOMO4IpmmF4wBTNMDxgimYYHogiTuB2biL1T8vML5SsciSF7OxccYYgQcZGfAEt8SrF2Ewgez9WRkhrQVOsXtACknkLgsFKljk6X7TgOAajh+fY+C7WpKMhbrHDYK3LjoUVcEZp9wydUc2IqxDWWvKBeHiF29Zdyo7E+mxym2TuimVru+GcL347kIH/L91+kmR2h4sdFNo8smqJFnSYiV9T2sRp95GF5DKgduT2RjMML5iiGYYHTNEMwwMRVhg759zwWBoTkzUuw0YbIIk4qI0V1qUSaEa09uNhVx5jvMH7mqxJG2Ay5GMOxkogMYekUeUQS7Sb6pywXO9I22a7xd2jWmATbWYsc2+2L9btcEwy+wUHzE8KGWi+NlojmRvDrjzG9JRkZl0ZfH64eYtkLsTSRtuOjkkmg0wAnAPunHMVGMSnBSd0x0MlywBuoxYgfjcjmQIlWeLdEOTWBcsw7gimaIbhAVM0w/CAKZpheCBq3uBq4cmKNEpv97jKtupB67SGFlhc3L8rCqXhiFUBzjkXQga5lpl+bksGVtdTDupqYAu2zZgdFCFY0qnSS7sRLM5Ex5bcvZCzBc5GMvhbKb+FN2crtO3uVDpRukomQgDncW+6SzIfab4m1nfFxySzX8rnY1hx+7+8Jp0qWY2v2WQuHSSX6ock89aQHV/Y/q/Y5GA4BprjETso0BmCCQU/E8KdswhWeNdyC1gbxh3BFM0wPGCKZhgeMEUzDA9E8S5nB3Sb0pDNO2xsDi9Cyb3SSm6egpGotDsIYVuiZYYon0MwUyVSGqmnSt+GdUjz1xwdSK5Yza+PtxZ+LoZjuh1waz3M+hiUSrs35dweSm+KNWZmOOfcpURm1L8PPuOcc1uh/O3tKy3Y8LubIV+zGfyGJ+RVcG44l9/zeP1tkvlG7xnaVr8uHVZ5g69jPF7cSg49G1pf/VqwREs6+JgmY280w/CAKZpheMAUzTA8ENVGHLBO92TGeO91tkmqUG4bNTk7O4LW4pFif2HAehlaCVcGjwppRx5Mud32espl1wc5yyFT6JveL9huqoOdcj7lquMKbILbOc+LQ/sL54A759wjDbatNpQsfwSrnkOlovhqLn97S8f3vg12bKbY0BMwXLSW8Uge8LOYN3n/jVxeo1AJEEdjaBu+RKW01sYdg9raDDWcWR1MWcjeaIbhAVM0w/CAKZpheMAUzTA8EM2HnOUejKSRnu2zoyPdkhnck2OWKaDkP1acIRjE1nr48yw27fcBHC9Ko/1WyE6URiiz7rVgNAbDL9aPSGY9UvrbAZi9rzk1YggGn1fK9O9PuAXcBI57R2l30Azk+ZdaKvoS4L60Ko0G3DMt6WAXWl3MlGtfKi0C56l81jQ/yzLt5qhNnOJUWcaJEsCchZo5QwzjzmCKZhgeMEUzDA9ELuLZVrXZ4sTa9FT+n41G/F92NpJ/sONY+S+fStsqUaqncfZ1GnLCLM7a2kjYZkJ7zDnnArfY/sM2cZo9hsnImq33cHZDrDtKgPa0ksFwrTK5rVRzo92UKcnRmAx8U7HjELQZnXOuUZvAmm2bBBJ0teTkpWxEJRe4aMsgfpny92RH8jmqFBm0ybQ2cWW6+F1U1qUOBTO+ZvZGMwwPmKIZhgdM0QzDA6ZohuGBqJZydrjDStNQMSTB3otPFWfIGsw1U+ajUTBakalH0rDvJZyprs36QjQHBTo/tLlibXCiYNs27bu1KmhsW6fNDMvn0rDGzzjn3FHJWf/Yuk11NMCl3QrZqdMGx9N0cXG7Ujvt3GEp958rVQANcLS8VHRJJj3hb59swCw6pU1cmcmT1TLz8RbpVdgSHAzvnNK2LuYDsjeaYXjAFM0wPGCKZhgeiOYFB9dcR3YVqiLWxxrM6c0O+P/trCf/q+ZtDo7nkFiapWxroU2G1czOcdJqueRvCLbyxiroXyZahTMm/jYCvh5qENvJILL23Q0wrDUZtMlmSgAfr/Vsibl3sWLJoT347f59JBON2SY6PidttLzJ+8cEivRkcfcqLYE4gOrp5JD9A1Umn+taYfPRDOOOYIpmGB4wRTMMD5iiGYYH2DvhnKuNpQGeXeW5VeGWDC7WKm7BFrwCw8Bzlhk+Kp0R3Ywz2jGorQaMKxhMrwSetQrrCoLzWlAbg8845FwjVBwWiFZRjAHqScWV66HSfh33prUEH0HbPK2aHZ0WiXKtIT6rfg9+aqgkIiDPvnMPbVut8zUabcOQd2U0XXYs75mWhR8P5FHWlOz99FQ+M1rb8KIh71E00KpEDMP4pWOKZhgeMEUzDA9E841V3lpCkDBQ/t/uHEuRGbfWzuryv2v9iJNoDybS1jt6mm2brboc0zOrVNNS7kvpgqWxTDIwVk9rNiJ+TqtM7sPsZ432Eq29f1H0lDFWiNIYirahzebccr/gN0uZ0D661iGZxip/ed6SB7D+o8UJw1qldq2ATl0Tvh5zGGM13WQ/AyUja4Fv3r1hGL9oTNEMwwOmaIbhAVM0w/BApKla2ZJG+/AcG/HxUDoE4j47MapUOhowE9o55zZ/ID93u79OMi9+XH7PQ+t7JBOBg6IdceAb55w551w3ks4HLWA9AqO9oQS+0RkyUaun4ZopDpMJtA3XorHDSqmKR5T7uqq0t0PQ0TGc8zXL0PGjeBpGS8xD+85IZuvXd/igx/w4uATGrqcnStUztAQPiiVKxRWCEcyCK5WWdHVsUW7OEMO4I5iiGYYHTNEMwwNRvsYdlcIhjFsa8H/gWQeqp5tsN+RNqcfa/2Rsy7z2Mts/4z0Z1H7hV7mV9fsfvSLW2pzpQqnMPgU5bbxQHeyk2wVfsxSCv+1QS45GG42va7/CwDfLdAIOamOgG7tpOefcFO1PpX0Vnr9WGY0clZz4fDqXz4OWiP1v198v960kB09XlMTngbSBioaSUDGERHBljBN2r8o7/AzH0D2rbCm2d0Nea81fYW80w/CAKZpheMAUzTA8YIpmGB6Ixhts3AU9adxqs33jERjJis1cZGBs1pW2YKDqkzU2rJNTadje9UU+nheP7xfrzfftksxqfUTbZqXSTxrA2WsafagenxaLKwy0Sull2p9r286mx2LdVaoAuqGcV94L+XpgK7tK+S1GGWxH7pxzN/IVsX55dJZkbl6R0eh6k0ScVqiBfq5pV8nwh5llaV95QGuLnSpVLJM1tJZ0ISRiBNZuzjDuDKZohuEBUzTD8EBUsonmxjBuaa6MbYr70k6qHyqVyTByJxmSiKvgu7XgeBXDaCVlHvGlL8sA8c7hNsncvMTfPYcZ2q7k764VclttxjLJiTxGJV7toiWKpw/A/rii2C15m22A+Zq0I9fX+ySz2ZRjmjoxH+T9LZmwjd3FnONZ4CPlIRpAIvZXXn2MZIKJvGaTTWXU1YTfBVjgrhyiSyaLk4gx71kb7VQ05Jcnp5wIHvXl9agpicf2RjMMD5iiGYYHTNEMwwOmaIbhgf8F4VtG+IP/hroAAAAASUVORK5CYII=\" y=\"-8.174219\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_1\">\r\n    <g id=\"xtick_1\">\r\n     <g id=\"line2d_1\">\r\n      <defs>\r\n       <path d=\"M 0 0 \r\nL 0 3.5 \r\n\" id=\"ma43117e8d4\" style=\"stroke:#000000;stroke-width:0.8;\"/>\r\n      </defs>\r\n      <g>\r\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"29.19\" xlink:href=\"#ma43117e8d4\" y=\"226.174219\"/>\r\n      </g>\r\n     </g>\r\n     <g id=\"text_1\">\r\n      <!-- 0 -->\r\n      <g transform=\"translate(26.00875 240.772656)scale(0.1 -0.1)\">\r\n       <defs>\r\n        <path d=\"M 2034 4250 \r\nQ 1547 4250 1301 3770 \r\nQ 1056 3291 1056 2328 \r\nQ 1056 1369 1301 889 \r\nQ 1547 409 2034 409 \r\nQ 2525 409 2770 889 \r\nQ 3016 1369 3016 2328 \r\nQ 3016 3291 2770 3770 \r\nQ 2525 4250 2034 4250 \r\nz\r\nM 2034 4750 \r\nQ 2819 4750 3233 4129 \r\nQ 3647 3509 3647 2328 \r\nQ 3647 1150 3233 529 \r\nQ 2819 -91 2034 -91 \r\nQ 1250 -91 836 529 \r\nQ 422 1150 422 2328 \r\nQ 422 3509 836 4129 \r\nQ 1250 4750 2034 4750 \r\nz\r\n\" id=\"DejaVuSans-30\" transform=\"scale(0.015625)\"/>\r\n       </defs>\r\n       <use xlink:href=\"#DejaVuSans-30\"/>\r\n      </g>\r\n     </g>\r\n    </g>\r\n    <g id=\"xtick_2\">\r\n     <g id=\"line2d_2\">\r\n      <g>\r\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"74.49\" xlink:href=\"#ma43117e8d4\" y=\"226.174219\"/>\r\n      </g>\r\n     </g>\r\n     <g id=\"text_2\">\r\n      <!-- 10 -->\r\n      <g transform=\"translate(68.1275 240.772656)scale(0.1 -0.1)\">\r\n       <defs>\r\n        <path d=\"M 794 531 \r\nL 1825 531 \r\nL 1825 4091 \r\nL 703 3866 \r\nL 703 4441 \r\nL 1819 4666 \r\nL 2450 4666 \r\nL 2450 531 \r\nL 3481 531 \r\nL 3481 0 \r\nL 794 0 \r\nL 794 531 \r\nz\r\n\" id=\"DejaVuSans-31\" transform=\"scale(0.015625)\"/>\r\n       </defs>\r\n       <use xlink:href=\"#DejaVuSans-31\"/>\r\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n      </g>\r\n     </g>\r\n    </g>\r\n    <g id=\"xtick_3\">\r\n     <g id=\"line2d_3\">\r\n      <g>\r\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"119.79\" xlink:href=\"#ma43117e8d4\" y=\"226.174219\"/>\r\n      </g>\r\n     </g>\r\n     <g id=\"text_3\">\r\n      <!-- 20 -->\r\n      <g transform=\"translate(113.4275 240.772656)scale(0.1 -0.1)\">\r\n       <defs>\r\n        <path d=\"M 1228 531 \r\nL 3431 531 \r\nL 3431 0 \r\nL 469 0 \r\nL 469 531 \r\nQ 828 903 1448 1529 \r\nQ 2069 2156 2228 2338 \r\nQ 2531 2678 2651 2914 \r\nQ 2772 3150 2772 3378 \r\nQ 2772 3750 2511 3984 \r\nQ 2250 4219 1831 4219 \r\nQ 1534 4219 1204 4116 \r\nQ 875 4013 500 3803 \r\nL 500 4441 \r\nQ 881 4594 1212 4672 \r\nQ 1544 4750 1819 4750 \r\nQ 2544 4750 2975 4387 \r\nQ 3406 4025 3406 3419 \r\nQ 3406 3131 3298 2873 \r\nQ 3191 2616 2906 2266 \r\nQ 2828 2175 2409 1742 \r\nQ 1991 1309 1228 531 \r\nz\r\n\" id=\"DejaVuSans-32\" transform=\"scale(0.015625)\"/>\r\n       </defs>\r\n       <use xlink:href=\"#DejaVuSans-32\"/>\r\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n      </g>\r\n     </g>\r\n    </g>\r\n    <g id=\"xtick_4\">\r\n     <g id=\"line2d_4\">\r\n      <g>\r\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"165.09\" xlink:href=\"#ma43117e8d4\" y=\"226.174219\"/>\r\n      </g>\r\n     </g>\r\n     <g id=\"text_4\">\r\n      <!-- 30 -->\r\n      <g transform=\"translate(158.7275 240.772656)scale(0.1 -0.1)\">\r\n       <defs>\r\n        <path d=\"M 2597 2516 \r\nQ 3050 2419 3304 2112 \r\nQ 3559 1806 3559 1356 \r\nQ 3559 666 3084 287 \r\nQ 2609 -91 1734 -91 \r\nQ 1441 -91 1130 -33 \r\nQ 819 25 488 141 \r\nL 488 750 \r\nQ 750 597 1062 519 \r\nQ 1375 441 1716 441 \r\nQ 2309 441 2620 675 \r\nQ 2931 909 2931 1356 \r\nQ 2931 1769 2642 2001 \r\nQ 2353 2234 1838 2234 \r\nL 1294 2234 \r\nL 1294 2753 \r\nL 1863 2753 \r\nQ 2328 2753 2575 2939 \r\nQ 2822 3125 2822 3475 \r\nQ 2822 3834 2567 4026 \r\nQ 2313 4219 1838 4219 \r\nQ 1578 4219 1281 4162 \r\nQ 984 4106 628 3988 \r\nL 628 4550 \r\nQ 988 4650 1302 4700 \r\nQ 1616 4750 1894 4750 \r\nQ 2613 4750 3031 4423 \r\nQ 3450 4097 3450 3541 \r\nQ 3450 3153 3228 2886 \r\nQ 3006 2619 2597 2516 \r\nz\r\n\" id=\"DejaVuSans-33\" transform=\"scale(0.015625)\"/>\r\n       </defs>\r\n       <use xlink:href=\"#DejaVuSans-33\"/>\r\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n      </g>\r\n     </g>\r\n    </g>\r\n    <g id=\"xtick_5\">\r\n     <g id=\"line2d_5\">\r\n      <g>\r\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"210.39\" xlink:href=\"#ma43117e8d4\" y=\"226.174219\"/>\r\n      </g>\r\n     </g>\r\n     <g id=\"text_5\">\r\n      <!-- 40 -->\r\n      <g transform=\"translate(204.0275 240.772656)scale(0.1 -0.1)\">\r\n       <defs>\r\n        <path d=\"M 2419 4116 \r\nL 825 1625 \r\nL 2419 1625 \r\nL 2419 4116 \r\nz\r\nM 2253 4666 \r\nL 3047 4666 \r\nL 3047 1625 \r\nL 3713 1625 \r\nL 3713 1100 \r\nL 3047 1100 \r\nL 3047 0 \r\nL 2419 0 \r\nL 2419 1100 \r\nL 313 1100 \r\nL 313 1709 \r\nL 2253 4666 \r\nz\r\n\" id=\"DejaVuSans-34\" transform=\"scale(0.015625)\"/>\r\n       </defs>\r\n       <use xlink:href=\"#DejaVuSans-34\"/>\r\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n      </g>\r\n     </g>\r\n    </g>\r\n   </g>\r\n   <g id=\"matplotlib.axis_2\">\r\n    <g id=\"ytick_1\">\r\n     <g id=\"line2d_6\">\r\n      <defs>\r\n       <path d=\"M 0 0 \r\nL -3.5 0 \r\n\" id=\"ma374941881\" style=\"stroke:#000000;stroke-width:0.8;\"/>\r\n      </defs>\r\n      <g>\r\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#ma374941881\" y=\"10.999219\"/>\r\n      </g>\r\n     </g>\r\n     <g id=\"text_6\">\r\n      <!-- 0 -->\r\n      <g transform=\"translate(13.5625 14.798437)scale(0.1 -0.1)\">\r\n       <use xlink:href=\"#DejaVuSans-30\"/>\r\n      </g>\r\n     </g>\r\n    </g>\r\n    <g id=\"ytick_2\">\r\n     <g id=\"line2d_7\">\r\n      <g>\r\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#ma374941881\" y=\"56.299219\"/>\r\n      </g>\r\n     </g>\r\n     <g id=\"text_7\">\r\n      <!-- 10 -->\r\n      <g transform=\"translate(7.2 60.098437)scale(0.1 -0.1)\">\r\n       <use xlink:href=\"#DejaVuSans-31\"/>\r\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n      </g>\r\n     </g>\r\n    </g>\r\n    <g id=\"ytick_3\">\r\n     <g id=\"line2d_8\">\r\n      <g>\r\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#ma374941881\" y=\"101.599219\"/>\r\n      </g>\r\n     </g>\r\n     <g id=\"text_8\">\r\n      <!-- 20 -->\r\n      <g transform=\"translate(7.2 105.398437)scale(0.1 -0.1)\">\r\n       <use xlink:href=\"#DejaVuSans-32\"/>\r\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n      </g>\r\n     </g>\r\n    </g>\r\n    <g id=\"ytick_4\">\r\n     <g id=\"line2d_9\">\r\n      <g>\r\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#ma374941881\" y=\"146.899219\"/>\r\n      </g>\r\n     </g>\r\n     <g id=\"text_9\">\r\n      <!-- 30 -->\r\n      <g transform=\"translate(7.2 150.698437)scale(0.1 -0.1)\">\r\n       <use xlink:href=\"#DejaVuSans-33\"/>\r\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n      </g>\r\n     </g>\r\n    </g>\r\n    <g id=\"ytick_5\">\r\n     <g id=\"line2d_10\">\r\n      <g>\r\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#ma374941881\" y=\"192.199219\"/>\r\n      </g>\r\n     </g>\r\n     <g id=\"text_10\">\r\n      <!-- 40 -->\r\n      <g transform=\"translate(7.2 195.998437)scale(0.1 -0.1)\">\r\n       <use xlink:href=\"#DejaVuSans-34\"/>\r\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n      </g>\r\n     </g>\r\n    </g>\r\n   </g>\r\n   <g id=\"patch_3\">\r\n    <path d=\"M 26.925 226.174219 \r\nL 26.925 8.734219 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_4\">\r\n    <path d=\"M 244.365 226.174219 \r\nL 244.365 8.734219 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_5\">\r\n    <path d=\"M 26.925 226.174219 \r\nL 244.365 226.174219 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_6\">\r\n    <path d=\"M 26.925 8.734219 \r\nL 244.365 8.734219 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n  </g>\r\n </g>\r\n <defs>\r\n  <clipPath id=\"p8cdbfa3d76\">\r\n   <rect height=\"217.44\" width=\"217.44\" x=\"26.925\" y=\"8.734219\"/>\r\n  </clipPath>\r\n </defs>\r\n</svg>\r\n",
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD6CAYAAABnLjEDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAsaUlEQVR4nO2dfYxld3nfv885577MvXNn7rx4Z9/s3bW9xtgQoDXGBqOAKcTFNNCKVpA0citXSFWrgpI2mEYqjZRKILWBSInSWjWK26YxkCCZItLWcZ0QIBgvtsHv9nr9srve3Zl9mZk7c+e+nfPrH3MX/LzM3ru73ruznOcjWd7fmeec8zsvv3vn+c7zQiEEOI7z8090sSfgOM5o8MXuODnBF7vj5ARf7I6TE3yxO05O8MXuODnhvBY7Ed1GRM8R0X4iuuuNmpTjOG88dK5/ZyeiGMDzAD4I4BCARwB8MoTw9Eb7JOVqKFWn2bYQywMb50r5OOoNnnMwjgPiGyk1jiP2s44jz9+t6s/MrGSdX5zPvAxxwsywEPdDHhYAyNhPEqIzjzfahoSfMElSbRLzCcTGhMpRl5/LePiRuEmZYZOKSS61ysoGXXEh1vth3Uf17mkbtc18HmKjcf4wxPupjiPWb6u9iE6vaV0dEmvjkNwIYH8I4QAAENF9AD4KYMPFXqpO4/rbP8O2dWp8XiHW8yw0+AWNndAvlyQYV5aJYxdW9HGyAn8prOOUTvCX9OhNY8pmdZc+diiJFz7V10o98cA72qa4xOcYt/QckzW9TZKKNdGtaptuTS/SMNNh49nZhrLZUl1h44mCnuTe8Xl+rkx+8gOVmJ+rmRaVzUrKP1m//dxblE04xm1CohdS3NKfbIVlfv/Lx/V+5VN8W9w1jr0m7qPxIZoW+cbisv5kSRr8flDKj/uDp+/WB974lEOzA8DB140P9bc5jrMJueACHRF9ioj2EdG+Xnv1Qp/OcZwNOJ/FfhjA5a8b7+xvY4QQ7g4h3BBCuCEpGb8nOo4zEs7HZ38EwF4i2oP1Rf4JAL9yph0oAMIFQ/Uo9zkiw98hKSIa4lNrmvt7vbL2dZM2P06I9eUXGtzXtubzyu3c2d3y9qPKZs9YU23rpNonlVSSzkCbRpefv90b/BjjSN+0sYRrD/WidvStbdtLi2w8GWubyZj/FleP9f0oEz9/Znz3SJtWKCibw90pNi5cq/WSbyzdwMZjr+l71qvoZy0FysiQi+S7ZvnsUkTNyHg/m/zg0ocHANS4ZpGs8vsjRWhmu+FPBhBC6BHRvwTwfwDEAL4SQnjqXI/nOM6F5Xy+2RFC+DaAb79Bc3Ec5wLiEXSOkxPO65v9bIl6AWML3CeNhc/RmdLRKJ0J7utaASPy7/OFNe03Sf+7fFL/HXNtlvuER96vT/a3r3+BjWuFtrIZi7tqWyoidGIjGmYs4vcnMmxKIoqjZvyhPRI3qSCjQ4xtls1EpP3xmvDRq6R1hrrYr2QcW16/vD+WTTPTr2wl4vf/quK8svnBlbvZeOWFrcom03/CRyJubWlJP4/CKr+2rGBFzIhApKZ+rwpL/GTpuJ5Qt8KvP2oPESx02nbjHzmO8/OEL3bHyQm+2B0nJ/hid5ycMFKBjnoZCid4cEVW4SJEd1wHnhQbQmxqGOJXme+XJVb6HN924jotBmYfOMXG75zVYk8ixK+aVHGgRTQAmBTZKV2V8geUiO9XibX4V4kGB97EkAKdnk9VHKdsHLeAwUlH1rGlIFc1gnpk7EkL+n7E4vzThvBZCfz8ltD3ict/xMb/pXi7siku6v16IujTEtZ0tpoyUeJwYVk/V2rzHWMYz1lkwqnMuDMkhPo3u+PkBF/sjpMTfLE7Tk4Yqc8OQCWxxEvcj51oGL5MUwQbTI8rG+mm9So6IOH4W/nllm8+rmzeMsN99IKV+SDoGb73RKT9eOmjW0Es0ke3bCRlI6ilOMx+wke3/PNqpJ+HPr/22dviWqtG9pKMPanCKAMzBBUReNMwfPZ3Vfaz8Ze36vnMPqb3O7GNj9uT+vtRFlPpjZ3bd2hW4QFd7RldcUdWqikuDdZvTuPf7I6TE3yxO05O8MXuODnBF7vj5ITRCnTdHmjhJNtEY0KEiPTnT3drnY3Xtmrhoj3B91u+Sp8+vn6Jjacrg0uwFo3gmEyUL7GCOCyk2GYF1bQzLtLEkY6SaIvzW1VoZhJe3VWWWx41i0a2WkGIdkUjnVGKeNZVDFE1G9uF8FnZvaxsyg9q4bewwufduEI/6/KirO2tzx9EkFda1vcjXuMBQ+WjurpPd0q8+7K09Bnwb3bHyQm+2B0nJ/hid5ycMPqgGkEY48ko7e0TyqZd59Ns1fVn1PLVfJxdoYNaJso8ACEzfG25TfrngA60sfx6q92RbGU0TMCMrDhjkQ7xmT1ckI1OMrHmGIvrkGMAqIh7YtlIOsa9TjG4ms258N6dB9S259auV9sqR7mu0q3q87fq3Ka0pJ+Z7EYUFfS1tqu8s1D5mPbZkyZ/RoPaQbFzbvgTx3F+rvDF7jg5wRe74+QEX+yOkxNGK9ARgRJxyjYXHKKeUQlEiButWS2SdKe4IFQuatGsEIugFqMd02KHiyRWKWcpmsmqMBvRFLWKLYFQVrN5o0iNSI+WmI9lk5H+PpAtmKz9aoELpJdFWmyqqWCgwfexbAQZrWZ8jl3jO0wUO8JNtf3K5qmxX1DbKgt8x7XMEGyboq2YsaqkhquENQCZaPfUmdGtwGUFJpX1dob2T/7N7jg5wRe74+QEX+yOkxNG67OHDKHNExKoKFrwymqZAGQORXfCCBwoitbPRnKI9JGLsQ4Y6Wbcj5c+PAB0hM34mK7mYgWjyMqx0oe3tlmVZEsi+MVKqJGJL1blnFT441almmmj1XJLnM9qoyxbQh1LdZLJMXE6q0rttJh3yQgymolFpZpMH2dR3NetyZKysarQ1F7lz7ZV10lYcYvPKStpv1k+ohANDg7qVfRzTUSrKeqKm+hBNY7j+GJ3nJzgi91xcoIvdsfJCSMW6AD0uHgSpEBn0J7gYkavYvTIrnBBKIm1kJOKgIiOEVQjbSx6wmYh1uKT1f6pEove9IbYtNLTLakks6IKjcUzrR1in4aykYJYZnz2W6Wka0I0XEwrykZWz9lunF/2WreCc2SATNMUoPi2iqF9NYbIurMqzCSitHnc1s8nLQ9+Z9KiyHqTva+GJF4T79Vw8Vzr5zynMzqOc8nhi91xcsLAxU5EXyGieSJ68nXbponoASJ6of//qQs7TcdxzpdhfPY/AvD7AP7b67bdBeDBEMIXiOiu/vizA48URaAq74GbVrgP1LpM+0TtKVE9pm4EmiTceTE9O1WFRjtpcotZcUYkx/Qy7fuvpPo6rOCXQTavrk0rm4W4xsY7S6eUTSau5OnmdmUzVeABM6e62ve2qtK+t/IiG+8uLCobGcQyTKUai7IITiobiUlN8RyHqWZjVe6JjU5KJBK1jNMj6g2+tkyUyZVjQAfeWMWFMtGanKSGcT6JMCGE7wA4KTZ/FMC9/X/fC+Bjg47jOM7F5Vx99rkQwpH+v48CmHuD5uM4zgXivAW6EEKA/VszAICIPkVE+4hoXye7MLnajuMM5lwX+zEi2gYA/f/Pb2QYQrg7hHBDCOGGYqSTShzHGQ3nGlTzTQB3APhC///3D7VXRAgVnjXU3sI/ABb3ahFrbQdXKgpjuuRxbATRSHop/2xLjKw3yUpHC21bq7x10GxJB7lYQTWzhRVho69DYol68x1ebvtUTwtrMutuPNHBMfL8ls2Rbl1tW0hFyWMjW+3l7iwb10uvKZs9Bf7MGpl+HsdSLvQ1jV8iO+I7q2hEmqyKzLzlTGevFVb1+UOB3//UENZkP3brOFL6DYaQJgNtLBEvFdVsSIrDZ9Amh/nT258A+BsAbyKiQ0R0J9YX+QeJ6AUAf6c/dhxnEzPwmz2E8MkNfvSBN3gujuNcQDyCznFywkgTYUIhRneO+5tLe7gvtbJb+3+JCKIpl402RUP43z2R+NLpaX9Ytki2jquCagy/Wp4L0P73loJODpFBPJZfv3fsmNomkRVv6kbFme0JD8axEmEebe5W255t8wCdk2lV2TzR4Ik4rSmd8CSrxVjBOS1RqnU10xqKDJDRV6qr6fxk7Qp9nEV9r7MKv4+FplH9WFSdGaYKjQqGAVRSi3UcGdSjbLy6rOM4vtgdJyf4YnecnOCL3XFywkgFuqwQYXUHD2ZYETpJcUaXPC6KVk6WaCaFtTQzgh9EUM1ay6iSIzKmCkYbqaMLk2ycrerjRGv6czTqysAKffp0hotEVgBRfYJLUFvHtdAnA2S2lLVNo8yDY2qxDmcuGMFBL7UvY+OXmzPK5vAqv0cvVnT6xEOLb2bjt9UOKpvLCzwHa2uyqGxkUM9CWjNs+H18ZU3PuVfVyyFu83ctWdPCmkxwlC2aAKiAciujTb0PhoZHQ2TYbYR/sztOTvDF7jg5wRe74+QEX+yOkxNGK9AlwNqs6KVd5+LKREkLUsVkcHSc7NuWGtFHrY7oK25E0GUrwqal03KLJ0WW1bIygdHGTQkwZtmhk3zHKNUH6jV4ltvB6DJlI4P6HtmhhZ2eFAPHdV2mmclVtU1GEFrlvQqilPTR9oSyeXGJZ8YVDTGwWebqV6Oos9V2F46zsVWSOhKRiROJFiO7VSOico0/pLhj9BAsDC43pkpHWxF0Z4h+24iswN/FM1Xk8m92x8kJvtgdJyf4YnecnDDarLcIUEVVyqKvulGrV1aUsWwk0me0yFpG/+tlvi1eMzKPxKF7RrWtyPDHZQKbVaimtCiy7lb1tVbm+Y5xS58sFSWHxw/rR90r822taa0PLNV1a6u1HSLIqa4DoXbM8Iy2VaOt1YkV/jJ8v7lH2TxW3Mnn2NXXUS7w+cxWtM5QSYw60YJuVT/rMpcDEHWN0uI9/p1pBdWYWW7SJjv7FlVZPLyf79/sjpMTfLE7Tk7wxe44OcEXu+PkhNH2Z6f1wBq+jYsSbUOAkZSLWtkqJ1ykSQyBTgbnrCVGBtOYEAzb+vOwfIKPJw/o+ZglhYQAUzo+uGlG1NDiV1blgSWW+JOc5HOKelpoa4tSUUlLH6e9qq+/W+PiX1bTQqfsc/9qQ/f+bB7j5ayse91t8Ps4rhPjIHWtwzUdZLS6nRsF49nPWNlqQ3wdqqpkxmFkWWjrsDLIymizh15F9Ho7iyw4/2Z3nJzgi91xcoIvdsfJCaP12QOgch1EQILsoQ7oRIvYCKopxfzAVuDN7DgPtogMv34x5n5kzwgGaYlknqinK9VYARpjx/n5xg5on51SbpNVdOLHoQ/xKjCTL+nrGFvgQSSWbyd9xE7d8JmN68iK/Hzlsg5YmR3jra6eOLRD2Vz+f/m4vKD1iVhoFiHW+kAQySDz79SVatIqv9jqK8arb2gfWSKetZEII7tfBSsJSpWb1jYyYEcGb1moxJwzuPD+ze44OcEXu+PkBF/sjpMTfLE7Tk4YvUAn4k+oNfjzRoptlvgmK9VMFIxgFCH0SVEP0BlU3WktCE2W+bFfPGRUiuno/RoFKcBsUTa1l7hod+QW3UeNblpk41OFurJJi1wlsoQ2KSw1t2mbzpRWieI5Psc9MyeVzVsneT/25/73XmUz/r0X2Dg0dLlrupz3lTv6S1uVjaQyr+e81OPXVj5pCJZW+zURaBMZyXOUyh0HZ6IZ7QGN+Rhz9FLSjuMMwhe74+QEX+yOkxNG6rNTBhQawv8WPntmtG2SwS9W+yfZ7mi2tKJsKsLhaqusHGClwoNoTrS1zyx9/+1zi8rmyLPaH8/KfL/Fv68rqsy3+Jymp44rG9nGamWXTsRZ2yECkSaM3uOikm0oGf55VesaW6a4b/3emf3K5uYq98e/VvhFZdO7hgfaJAvaZ5c09ug5bn8L71e/8P1tykYGrBRWrDZOhq8tKr4GK1lGkA3hj0dG8FhalJVijbUgg67kfLy6rOM4vtgdJyf4YnecnDBwsRPR5UT0EBE9TURPEdGn+9uniegBInqh/39dncBxnE3DMAJdD8BvhBAeJaIagB8R0QMA/gmAB0MIXyCiuwDcBeCzZzpQlAKlZRlYwj9vzJZMwsZqNyQDbaQYBwBTBS6IFYz+S+2MZ7CVjJZEJztctNta1f2fwrVqE157lfcEbx+TdbWBIASxk6e0QBgn/B4WJ9rKZrzCA3+qRnWftUl+rVYlY2u/qya5aLitcErZ7E24QLr31gPK5snZXWxcntf3IyvwSd1407N6koKJ9+uAqqcOCDHQKCNuBR7J4JfzCWphxzW+ZrOiOL9xKvXqn0XLqIHf7CGEIyGER/v/bgB4BsAOAB8FcG/f7F4AHxv6rI7jjJyz8tmJaDeAdwB4GMBcCOFI/0dHAcxtsM+niGgfEe3rtvWfwxzHGQ1DL3YiGgfwZwA+E0Jgv7eGEAI2SJsPIdwdQrghhHBDoaSLHjqOMxqGCqohogLWF/ofhxC+0d98jIi2hRCOENE2APODjhN1Mowf5EkUJ9/MPwBSo3pMT/r1mf6Mkn5818g0KIvMj1qsK8WUE+6jTiU68OXVRPjeRnDONeP6dqzM8tKoh5p1ZdNKpR89WJ+wKunOlXmAylisNYzjbX7vl7u6Ko6VUDRb5L+hzST6N7ZaxO/JP9v+HWXzH1u/xOezTesTU1X+jF4xqtROlvgcb597Qtk8/eQVbGy1Xpb6EWAHtiibIVowDVN1RrZ1TqUPDygffaiWUaePP8iAiAjAPQCeCSH87ut+9E0Ad/T/fQeA+4c+q+M4I2eYb/b3APg1AE8Q0eP9bf8WwBcAfI2I7gTwCoB/dEFm6DjOG8LAxR5C+C42jrj9wBs7HcdxLhQeQec4OWGkWW9ZMUJjFw+cSMdEWx5DkGq3+TS7Zf0ZJcWlaqIDNGSATCXSwSgF0Vh9R0FXYSkKoW810+Wma5EW/7qBX8feMS3iNVJ+He0w+BHNGgJZKn4ZW0m1+NYTIqZVuWe6oAXK1ZRfbyvTtZMLxI+9t6Cz927b9jQbf7d4lbI5tjL4LzjX1LkY+day7hGVNPg7Qz0dUBW3tdg1xO3XFWVIv5/SxhLW5DarhZhElZ/2UtKO4/hid5yc4IvdcXLCSH32tAQsXSUCZMqi8kZbB8MkwiVeWh1TNuNFHjSyluqWTAsd7v+VZalbAKn4/KtD+6zS17d89kam55iJ7AfpnwPaR7cSeuS2yIjYSIU/3ky1X52oRCB9z1ZSfW0dEUS0mGp9pBV49ZiaEfhzZYlrFu1p/TrObuF6hHWtZeLPsUr6nslKulYCSaxfB41V8VW7/3o3cbrI2EcG8FiBODJWTLWVOsMc/JvdcXKCL3bHyQm+2B0nJ/hid5ycMNr2T9D92eM2Fxgyo4JILx0cXLDU4mKXFSDSGaLGr8yWOxXpTCxZmWUm1kEtHSPrTop2saHAjEc6y2wQTSOoRVbcOdHV1yGFtq5xf1Z7+tiTIhOuFbSwt5RxBcr6VqnHTTbeU1pQNoc60/zcRqbi1uIiG9cM4TUS7Z+s9ku6jZOR9WaVdxaBLVHXyMoUK83KaIvE+YfJpjujIiePP7yp4ziXMr7YHScn+GJ3nJzgi91xcsJIBbpAgArkkglDXaOcr/hMygzBbrXFD3wqNiLYRC8vq+STjHKzOBzX2XhrUZeSrsVaaJuMeTSeJexJrOg8Jeyl+loPCmHrsFECS5a3kuW/LBsAKItQMyuj7qiIvNsa6wxDSc0QJ7cVFtm4oELhgHrEhb6Wob5lCb+OrDBYIAOASGbCGa+HzFaz+qqHSO5o2Mj30TzOgN5z3uvNcRxf7I6TE3yxO05OGG1QDQGZjr/gJoY/TqJne0b6IN0CD+Lo9Ize68T9SOl7AjqIJDHSk9bSqhjrwJPt5UW1TVaP2W60TZIZXBbSjz/SmVQ2L6/yctdHGjVls9bm854abyqbuYrumT6e8Kyy2UTblEUq2GQ0OKDJqu5TFRmGEXQgkmzj1TCCjFRQjREcY1QER9waHLVyNuWcf7aP3iZjmobJelPag/vsjuP4YnecnOCL3XFygi92x8kJI896U0h9oWcE1Yge3dTRNr0WF+06ZS10kQgQaRi9zQAe2GFZ1ItcSKonWtiyykmpMxlqZSbKEFvZc00h0FkZbYeXJ9h4pamvZE6UYK4U9Jy3jmnxTZaXltlrAFAX6Y2TkS4JfVnMj72QahFRinYnUn2cg10uRlplsmTLPkuMy2SACoC0zLcVGlqMy4qiTLVRckrGJg0Ru2XaqIpbUsTzUtKO4/hid5yc4IvdcXLCyH32EAmnQvocZgUROTZ8K1HhptPVl1YqcD9SVrcBgLYIxpkd08kqstVUUZbfAVDIBtcXXoL2tUuiyorVZ35JJL5YSS5Ly/zY03V9HVdN8pZMVqUa69pkIo6VnLIqkmraQWsolyd828tdnfQjy3ZLvQIAlkUFoMdXrlA2Y8dFIozhn1v0Svw6hmnJNFSQjRHUIyvlWD67nHcsz+VBNY7j+GJ3nJzgi91xcoIvdsfJCSPPetNZO2Jc1qk+SpAzsoFkME6nrS+tVeDbqiUdRJKKaiEto2ecrN5yvK0DPWSZZgCoimotk4nO8pJVZ6webUfaPMvt4GJd2WSinHE50SJaQwhitYKuJrPaG9zrbaE4oWyKQlV9RZ8euxKd9afmmHEx1CpbHYsX4q8PXalsJpr8mRm31c5Ek+9n0ajm0xZls41S0lHvHARCQ8STUTNW9t5G+De74+QEX+yOkxMGLnYiKhPRD4nox0T0FBH9dn/7HiJ6mIj2E9FXicj4xchxnM3CMD57G8CtIYQVIioA+C4R/TmAXwfwpRDCfUT0nwHcCeAPBx5NfryIIBsrYCarcJ+IWvozSvrsVhupbolfbifWgS/1MZ4IYwWaSD/eqlI7DMPst9zTlWOPrfGEESuACCt826GjU8rk4NplbJws6WuNW0bS0Th3bh++RgexvGmat3JaaGldoybaSN08fUDZ7CrywB8ryUUGHrWe15V7JlPpkA/3zKQfbwXMyCQX2Q4K0G3OAg2TCTNMcM5gk9MMPGNY53T4VaH/XwBwK4A/7W+/F8DHhj+t4zijZiifnYhiInocwDyABwC8CGAxhHBaYz0EYMcFmaHjOG8IQy32EEIaQng7gJ0AbgRw7bAnIKJPEdE+ItqXrq4O3sFxnAvCWanxIYRFAA8BuBlAnYhOO4Y7ARzeYJ+7Qwg3hBBuiKs68cNxnNEwUKAjossAdEMIi0Q0BuCDAL6I9UX/cQD3AbgDwP2DjhVIZ/IojcoIbIAQ7WTlGgCADNowAhtkoE2SaIGum3KxJ46sCQ3WNa1WQoWIC3uW+BcJRehURwt0cr+tdd1+6vCLXBCb/oH+Y8nEizyop/Cq7o+OTF9/56qtbLx09YyyeSHi26wglgO3cIHu/TPPK5uGCjLSQT6PL+9k48n9+lwyiMUKoDGrvMiOTEbWm2zBZAa6SKFvGO3NSpyU8xGv0Jk032HU+G0A7iWiGOu/CXwthPAtInoawH1E9DsAHgNwzxDHchznIjFwsYcQfgLgHcb2A1j33x3HuQTwCDrHyQkjTYShDIhUroX0d4z9ZMXZc4thQejxz7ZezwiYEZVqqkWdLCODYazgGCsRpp1yJyw1Wkv1ROsi69jbKktiH30dh3fzwJLV4zqoJUtEgMqbdimbwqp2bssnuUCSrGkHdHk3v9fRzTrp5T1zXNNtGm2bGqIddDvo+7pv/2423rao56wqvMhWzNigMoxor2QlsMj2ZJEK4AGyTGoGZ98yChiuUs5G+De74+QEX+yOkxN8sTtOTvDF7jg5YbSVaoLRJ1u2drL2E+2eLCElJGcveKQ9faC2yCArGJlxRbFNVq4BNhLtuJDWMy5E7jdZbCmb2SIvC902xMBrtvIAmYO36FLOC8d5RCMZmYLJip5j6QQPbGlP6evf9a6DbPxrO/5G2Ty0+GY2tgS6kihT/VqrrmyqT8lAG/3MZKUYK6jFeoPkY7QEMurJtDfjOGI/o/o2pPZoBdUM0zZqI/yb3XFygi92x8kJvtgdJyeMPKhGdjeWvkyvYlQCkUE1ln8+QAsAgNARQTXG5XcSHhDRNJw7ElVprUALy4+3KtVKyrFo/2QEzCx2eTBM27Bpp/zaeqn+XI/HuFMY14w205fpTSuz3LcuGvv1RPunRqYTeqT2YFXSHReaxV+9dJWymdvPr6NXtgJf+DizgreM5CWF9fUoKsqEyKikJFs2G4eRPvqwLaqGxb/ZHScn+GJ3nJzgi91xcoIvdsfJCSPvzy6R7b+NRDAVSBB1jWohwibTrdf1PoZK01oRWWcVQ3wT1WtKib6NY4kOYlGiVUdXXamJ9kJHVnVrpZUW388SA1UbqzUtfgVRASjtGK2VikY7LiGQWhV/Vtp8jk+t6nqk20uLbLxklM2e7/DrL/9QZ+9FXfESGQLdMEE1pmo2BMmKEGzL+n1IS1xEtcRAVfHG+CpWQp8K8tlY1PNvdsfJCb7YHScn+GJ3nJww2qCaAIiuxcovKcgAGgAyPyIrGs6VrN5p+fVyk1W9UwSf9AraZ5UVaNs9fRsLhvjQ7PIL6Rj7HWtzm+WG9mOVb2kFiMgEDqOtVrnKfc1SQWdnyMQgAOiSqOZT1kE1MlnouaUt2maKn29bcUnZ3PPku9l47mWjuk+FP7PEqEITdfm2zrgRZNQZ3Npp8Uqta5y4rs7GE6/od6Z2gAcQdSe1XtMVfr1VoVj66OqdPkMcjn+zO05O8MXuODnBF7vj5ARf7I6TE0YbVJNZZYcHZ/b0hN5hltMVfd5jo4d7Jsr3ZiWjB5A49DB93kNZ1cc2s9W6IqhmZU2LNJ3W4EciW3uTESGSFLiQ1e7qoJrWKt/WK+l7dvXccbVNBvHIYCEASIXyGhv9lmRVHqtSTfkRXk1HBdBAZ4cZt14pWcWGns/iXn3vl6/n4mNtVjcnffSd/4Of3+hh9g/3/z02PnXPHmUzfpifKy1a2XMiw05WWT9D5p5/sztOTvDF7jg5wRe74+QEX+yOkxMuQlmqM6cWWSWFBkXdrR+b79eN9HmU/jNEP24Y5aaliNYsamHJKiXdE5F3VilriDLNpePaprAixg19IWOnuEgUWdFhQswJRvbeob271TZ5/+XzAYDGjbz3+/SUFrYgEvq+u6BLTk2KiLnemL4fMqNNRssBwOpWfu9PvlWLaP/9I7+vtn3p8IfYeP/Xr1E237xuio33FueVzRd3fYONv/KZ9yibv7jnZjYuLek59kr8vUpaQnQ+Qykr/2Z3nJzgi91xcoIvdsfJCSP12aM0KD8k7oo+3rrAC7rjIiBiWdtI/1P21V7fxschNjLjhihXknW5/9cx+rwnsfa3mm0xASMYJp7jvm66WlE2tVf5uHzSaFHV4DcyXtGZaVGDl2nOarq8T/WADmLpzopS1lM6E6w1y7P1mm/R5y+JMkUvP7Fd2exa4Tadmr7XMoNt7R8sKpvfuf5+Nr6pvKBsXjOyEI+KSkFGpy18/p5/zMaVo/q5yiI8rVlD09kh9pPRUwDGD/Nn3ZqSZZz0/Ib4keM4P0/4YnecnDD0YieimIgeI6Jv9cd7iOhhItpPRF8lIv33J8dxNg1n883+aQDPvG78RQBfCiFcDeAUgDvfyIk5jvPGMpRAR0Q7AdwO4D8A+HUiIgC3AviVvsm9AP49gD8844GCDoAorHLBIUu0AJOtiQ1W3IDYZol4ulaTkRkne8QZ55I2HSm8AYgNgU4yOa57r8+NN9i4vktePHDy3Vq0kySi3PWJNb3P8SVeltkqCT0zroW1neM8aET2nQeAWRFUdHxNl4A+vFZn4+knLFGVb7NKNc2/j4uRn7/2QWXzTIuXsv7M9z+hbKpPaoFybJ6fr9rRz7W0zO9baUE/1840P3ZpyciKrIrAsJoyUVlvU8/w5onx2sbv3bDf7F8G8Jv4WaW3GQCLIYTTUukhALowuOM4m4aBi52IPgJgPoTwo3M5ARF9ioj2EdG+bscImXQcZyQM82v8ewD8MhF9GEAZ6xHNvwegTkRJ/9t9J4DD1s4hhLsB3A0Atcmd59hzw3Gc82XgYg8hfA7A5wCAiN4H4F+HEH6ViL4O4OMA7gNwB4D7NzrGzw4GRMLnidd40ERsVGppznGfuDtmtffh48QIjkmLg+vuysAbOQaAEPNfiNK2rjjTWNU7luvclyslOmBlrcf3W2zpUtJyPyvpZqrEfbl3b3lJ2czu4Bk1U4n+zasbtG95uD2ltkkmE641PFvcqmy+99KVbLznaX3+LOH3+vjbtfZw9a6DbPxUU3uU337pOjZOXtPPrHTSqPgjEk1a05ZgxO9RIP3MiktcVygH43tPlOhu1/W5Dt7O9yvO8/vReWXjX9bP5+/sn8W6WLcf6z78PedxLMdxLjBnFS4bQvhLAH/Z//cBADe+8VNyHOdC4BF0jpMTfLE7Tk646P3ZJcUFLdKEmAdk0JSetkwgS43gXZk9l2l9DJEQ7UJsiDYr/DMyKxlioFHuuiey5U6tGn3c5D5WRp0IfrECeI6v8BLMz87PKZt2i4uBkVHdZ2pSP4+r67y89GxpRdks9rhw9OLSrLKRZaKb23VQT6vO7/Xi39JBPm+t8B5xMpsOANKnePZaZIiaS2/S1187wO0Kxl+Pm1v5HLsVfWwZDFM8qa8jafHrj3paRFy5VmR37uFCaCief1CN4ziXOL7YHScn+GJ3nJww4uqyAYmomJLJVkqx9lFL8zxAJERVZSOrjuo2U7ptVGdC+1bS14/XBgfedI2PzFRPET0RMJRlRnCQ8Jt7bX0/eovcHy4uGhVXRcWfWLuI2HKY+3flU9pnPnXNZWrbD9/FNZTts4vKJhaJOEcf00E1ux7h/ubxt2kNI7mN6wPvmz2ibMZifrEnu/rmj4vqPlYF2vaUfh7N7SJxa1nbjC1wm7U5Q6+p8pdmqmdoQU1+/4tLWnu47Lv8OMuiXzy1L0xQjeM4lxC+2B0nJ/hid5yc4IvdcXLCSAW6tBzh1HVc3Jl95CS3qelAgniel50py4btANrbReCNIYBUhCgTdQ3xa0wG1SgTdGoiOKdpiHiG0JiKyiPBCGKhslDWUv2Ios7g0tqxyNayymbL4I+0ZLwORnJWOMaf0WuoK5usx4999f/SFXeS53i22so/v1zZ/Ks9D7PxL1afUzYt8ZD+58mblY0ULGuHtGJZParv0eo2KYgZbcVENR1Z3QYAVq7gNsfeqaO+pp7n77VVtlqWYp/9Mf/5a/o2/xT/ZnecnOCL3XFygi92x8kJI/XZswLQFAEHS9fzqie1AzqpIqvwypx0VLfuGVvi+2UzE8omK8sAHq0PgLj/Z7WQlv6f1bIq1gVGlc+elHTQRL0m2j9V9YGak3zevau1hhGJZBmrmk2ry+9HFOnjWG2sZMhKmurvjOSvJ/n4+ReUzbOfv5qNv3fLf1I2DTHv2BARHlnbzcZbCg1l09jNjzO7T79nhz80o7Y138kDunbPnVA2R5f5g135SV3ZjB/i825coUxw4np+HycO6GsticCn0gn+fshKUOxnG/7EcZyfK3yxO05O8MXuODnBF7vj5ITRZr31gLIo19vcInprT+ueN8UVvk/5hLapPsmzoehlXcY+GeNZVXFjUtts4fJTa1qXhKZMfkYaQTWqbDUQrYmKJkYQS3uMb9s7o8XISiIyB402VleM8WAlqyR0W0RtyDEArBrVUo40ufj50jPblM3e73ORjIr6Pha2cDHyr9Z0UM3lBS6IPbq2R9n8+fz1bHxwsa5sem/iQtuz/0a3o6rVT6lt//TKR9n4w7WfKJtXe1xk/i18TNk0Iv6uFZf0+9GZ5O/54puVCaKUP8fisniuVqXr0/tu/CPHcX6e8MXuODnBF7vj5ISLXl220BDtjyeNaiFbSIz1Z9TSlTxKoTKvq65MPMOrkNIhXfWktMb9r2RRVz3JKtz/XN2hW/2mJT1HWd02OqX92AbxKjSnxnW7o0iU0m32dFLFWMx1jUKk78dih2sY8rgAsNzV13Zylc9p6kl9rfELh9i4d0r7w1vu4z76703cqmxumTvAz5U0lc14oc3GZFyHDIbpKd0FOHxCazhPr3A9YmdRB9UUSQQwGRWIMvGIVq7UAVVjr/Hl2C3q6zj+Dj5u1/mz6D3vlWocJ/f4YnecnOCL3XFygi92x8kJFKw+0RfqZEQLAF4BMAvg+ADzzcalOGfg0py3z/nc2RVC0PW/MeLF/tOTEu0LIdww8hOfB5finIFLc94+5wuD/xrvODnBF7vj5ISLtdjvvkjnPR8uxTkDl+a8fc4XgIviszuOM3r813jHyQkjX+xEdBsRPUdE+4norlGffxiI6CtENE9ET75u2zQRPUBEL/T/P3WmY4waIrqciB4ioqeJ6Cki+nR/+6adNxGVieiHRPTj/px/u799DxE93H9HvkpEOvj/IkNEMRE9RkTf6o83/ZxHutiJKAbwBwD+LoDrAHySiK4b5RyG5I8A3Ca23QXgwRDCXgAP9sebiR6A3wghXAfgJgD/on9vN/O82wBuDSG8DcDbAdxGRDcB+CKAL4UQrgZwCsCdF2+KG/JpAM+8brzp5zzqb/YbAewPIRwIIXQA3AfgoyOew0BCCN8BcFJs/iiAe/v/vhcwypFcREIIR0IIj/b/3cD6i7gDm3jeYZ3TNZ0L/f8CgFsB/Gl/+6aaMwAQ0U4AtwP4r/0xYZPPGRj9Yt8B4PUNvg71t10KzIUQTufEHgUwdzEncyaIaDeAdwB4GJt83v1fhx8HMA/gAQAvAlgMIZzOAd2M78iXAfwmgNNF2mew+efsAt25ENb/hLEp/4xBROMA/gzAZ0IIrOXjZpx3CCENIbwdwE6s/+Z37cWd0Zkhoo8AmA8h/Ohiz+VsGXXxisMAXl+xYGd/26XAMSLaFkI4QkTbsP5NtKkgogLWF/ofhxC+0d+86ecNACGERSJ6CMDNAOpElPS/KTfbO/IeAL9MRB8GUAYwAeD3sLnnDGD03+yPANjbVy6LAD4B4JsjnsO58k0Ad/T/fQeA+y/iXBR9v/EeAM+EEH73dT/atPMmosuIqN7/9xiAD2Jda3gIwMf7ZptqziGEz4UQdoYQdmP9/f1/IYRfxSae808JIYz0PwAfBvA81n2z3xr1+Yec458AOAKgi3X/606s+2UPAngBwF8AmL7Y8xRzvgXrv6L/BMDj/f8+vJnnDeAXADzWn/OTAP5df/uVAH4IYD+ArwMoXey5bjD/9wH41qUyZ4+gc5yc4AKd4+QEX+yOkxN8sTtOTvDF7jg5wRe74+QEX+yOkxN8sTtOTvDF7jg54f8D1fj6aGof/fYAAAAASUVORK5CYII=\n"
     },
     "metadata": {
      "needs_background": "light"
     }
    }
   ],
   "source": [
    "theImage = X[0]\n",
    "afficher(theImage)\n",
    "print(predir(myModel, theImage))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": [
      "Epoch 1/5\n",
      "1130/1130 [==============================] - 148s 129ms/step - loss: 1.3903 - accuracy: 0.4971 - val_loss: 1.4602 - val_accuracy: 0.4642\n",
      "Epoch 2/5\n",
      "1130/1130 [==============================] - 142s 126ms/step - loss: 1.1473 - accuracy: 0.5998 - val_loss: 1.6280 - val_accuracy: 0.4651\n",
      "Epoch 3/5\n",
      " 175/1130 [===>..........................] - ETA: 2:00 - loss: 1.0493 - accuracy: 0.6291"
     ]
    },
    {
     "output_type": "error",
     "ename": "KeyboardInterrupt",
     "evalue": "",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
      "\u001b[1;32m<ipython-input-9-528c4d211510>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mhistory\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmyModel\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mYcat\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mepochs\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m5\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m128\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mvalidation_split\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m0.05\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m      2\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m      3\u001b[0m \u001b[1;31m#Affichage de l'historique de l'apprentissage\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m      4\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mhistory\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mhistory\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'accuracy'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'accuracy'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m      5\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mhistory\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mhistory\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'val_accuracy'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'val_accuracy'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\tensorflow\\python\\keras\\engine\\training.py\u001b[0m in \u001b[0;36mfit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[0m\n\u001b[0;32m   1181\u001b[0m                 _r=1):\n\u001b[0;32m   1182\u001b[0m               \u001b[0mcallbacks\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mon_train_batch_begin\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mstep\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1183\u001b[1;33m               \u001b[0mtmp_logs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtrain_function\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0miterator\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m   1184\u001b[0m               \u001b[1;32mif\u001b[0m \u001b[0mdata_handler\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshould_sync\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1185\u001b[0m                 \u001b[0mcontext\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0masync_wait\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\tensorflow\\python\\eager\\def_function.py\u001b[0m in \u001b[0;36m__call__\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m    887\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    888\u001b[0m       \u001b[1;32mwith\u001b[0m \u001b[0mOptionalXlaContext\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_jit_compile\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 889\u001b[1;33m         \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_call\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    890\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    891\u001b[0m       \u001b[0mnew_tracing_count\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mexperimental_get_tracing_count\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\tensorflow\\python\\eager\\def_function.py\u001b[0m in \u001b[0;36m_call\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m    915\u001b[0m       \u001b[1;31m# In this case we have created variables on the first call, so we run the\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    916\u001b[0m       \u001b[1;31m# defunned version which is guaranteed to never create variables.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 917\u001b[1;33m       \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_stateless_fn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[1;33m)\u001b[0m  \u001b[1;31m# pylint: disable=not-callable\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    918\u001b[0m     \u001b[1;32melif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_stateful_fn\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    919\u001b[0m       \u001b[1;31m# Release the lock early so that multiple threads can perform the call\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\tensorflow\\python\\eager\\function.py\u001b[0m in \u001b[0;36m__call__\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m   3021\u001b[0m       (graph_function,\n\u001b[0;32m   3022\u001b[0m        filtered_flat_args) = self._maybe_define_function(args, kwargs)\n\u001b[1;32m-> 3023\u001b[1;33m     return graph_function._call_flat(\n\u001b[0m\u001b[0;32m   3024\u001b[0m         filtered_flat_args, captured_inputs=graph_function.captured_inputs)  # pylint: disable=protected-access\n\u001b[0;32m   3025\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\tensorflow\\python\\eager\\function.py\u001b[0m in \u001b[0;36m_call_flat\u001b[1;34m(self, args, captured_inputs, cancellation_manager)\u001b[0m\n\u001b[0;32m   1958\u001b[0m         and executing_eagerly):\n\u001b[0;32m   1959\u001b[0m       \u001b[1;31m# No tape is watching; skip to running the function.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1960\u001b[1;33m       return self._build_call_outputs(self._inference_function.call(\n\u001b[0m\u001b[0;32m   1961\u001b[0m           ctx, args, cancellation_manager=cancellation_manager))\n\u001b[0;32m   1962\u001b[0m     forward_backward = self._select_forward_and_backward_functions(\n",
      "\u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\tensorflow\\python\\eager\\function.py\u001b[0m in \u001b[0;36mcall\u001b[1;34m(self, ctx, args, cancellation_manager)\u001b[0m\n\u001b[0;32m    589\u001b[0m       \u001b[1;32mwith\u001b[0m \u001b[0m_InterpolateFunctionError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    590\u001b[0m         \u001b[1;32mif\u001b[0m \u001b[0mcancellation_manager\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 591\u001b[1;33m           outputs = execute.execute(\n\u001b[0m\u001b[0;32m    592\u001b[0m               \u001b[0mstr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msignature\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    593\u001b[0m               \u001b[0mnum_outputs\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_num_outputs\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\tensorflow\\python\\eager\\execute.py\u001b[0m in \u001b[0;36mquick_execute\u001b[1;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[0;32m     57\u001b[0m   \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     58\u001b[0m     \u001b[0mctx\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mensure_initialized\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 59\u001b[1;33m     tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,\n\u001b[0m\u001b[0;32m     60\u001b[0m                                         inputs, attrs, num_outputs)\n\u001b[0;32m     61\u001b[0m   \u001b[1;32mexcept\u001b[0m \u001b[0mcore\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_NotOkStatusException\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;31mKeyboardInterrupt\u001b[0m: "
     ]
    }
   ],
   "source": [
    "history = myModel.fit(X, Ycat, epochs=5, batch_size=128, validation_split=0.05)\n",
    "\n",
    "#Affichage de l'historique de l'apprentissage\n",
    "plt.plot(history.history['accuracy'], label='accuracy')\n",
    "plt.plot(history.history['val_accuracy'], label='val_accuracy')\n",
    "plt.legend()\n",
    "plt.ylim([min(history.history['val_accuracy']+history.history['accuracy']), 1])\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": [
      "INFO:tensorflow:Assets written to: exp906\\assets\n"
     ]
    }
   ],
   "source": [
    "myModel.save('exp906')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "output_type": "error",
     "ename": "ValueError",
     "evalue": "Training data contains 1000 samples, which is not sufficient to split it into a validation and training set as specified by `validation_split=1`. Either provide more data, or a different value for the `validation_split` argument.",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mValueError\u001b[0m                                Traceback (most recent call last)",
      "\u001b[1;32m<ipython-input-10-b659350fff8c>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m      1\u001b[0m \u001b[0mmonModele\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mkeras\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmodels\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mload_model\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"models/exp906\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mmonModele\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;36m1000\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mYcat\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;36m1000\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mvalidation_split\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
      "\u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\tensorflow\\python\\keras\\engine\\training.py\u001b[0m in \u001b[0;36mfit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[0m\n\u001b[0;32m   1117\u001b[0m       \u001b[1;31m# `Tensor` and `NumPy` input.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1118\u001b[0m       (x, y, sample_weight), validation_data = (\n\u001b[1;32m-> 1119\u001b[1;33m           data_adapter.train_validation_split(\n\u001b[0m\u001b[0;32m   1120\u001b[0m               (x, y, sample_weight), validation_split=validation_split))\n\u001b[0;32m   1121\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\tensorflow\\python\\keras\\engine\\data_adapter.py\u001b[0m in \u001b[0;36mtrain_validation_split\u001b[1;34m(arrays, validation_split)\u001b[0m\n\u001b[0;32m   1474\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1475\u001b[0m   \u001b[1;32mif\u001b[0m \u001b[0msplit_at\u001b[0m \u001b[1;33m==\u001b[0m \u001b[1;36m0\u001b[0m \u001b[1;32mor\u001b[0m \u001b[0msplit_at\u001b[0m \u001b[1;33m==\u001b[0m \u001b[0mbatch_dim\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1476\u001b[1;33m     raise ValueError(\n\u001b[0m\u001b[0;32m   1477\u001b[0m         \u001b[1;34m\"Training data contains {batch_dim} samples, which is not sufficient \"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1478\u001b[0m         \u001b[1;34m\"to split it into a validation and training set as specified by \"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;31mValueError\u001b[0m: Training data contains 1000 samples, which is not sufficient to split it into a validation and training set as specified by `validation_split=1`. Either provide more data, or a different value for the `validation_split` argument."
     ]
    }
   ],
   "source": [
    "monModele = keras.models.load_model(\"models/exp906\")\n",
    "monModele.fit(X[:1000], Ycat[:1000], validation_split = 0.9)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": [
      "Chargement du modèle...\n",
      "Predictions...\n",
      "Calcul de la CM...\n",
      "(6, 6)\n",
      "Affichage...\n"
     ]
    },
    {
     "output_type": "error",
     "ename": "IndexError",
     "evalue": "index 6 is out of bounds for axis 1 with size 6",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mIndexError\u001b[0m                                Traceback (most recent call last)",
      "\u001b[1;32m<ipython-input-19-5e456c6b1639>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m     39\u001b[0m     \u001b[0mfig\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtight_layout\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     40\u001b[0m     \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 41\u001b[1;33m \u001b[0mshow_confusion_matrix\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcm\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0memotions\u001b[0m\u001b[1;33m+\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m\"A\"\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
      "\u001b[1;32m<ipython-input-19-5e456c6b1639>\u001b[0m in \u001b[0;36mshow_confusion_matrix\u001b[1;34m(matrix, labels)\u001b[0m\n\u001b[0;32m     33\u001b[0m     \u001b[1;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mN\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     34\u001b[0m         \u001b[1;32mfor\u001b[0m \u001b[0mj\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mN\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 35\u001b[1;33m             text = ax.text(j, i, cm[i, j],\n\u001b[0m\u001b[0;32m     36\u001b[0m                            ha=\"center\", va=\"center\", color=\"w\")\n\u001b[0;32m     37\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;31mIndexError\u001b[0m: index 6 is out of bounds for axis 1 with size 6"
     ]
    }
   ],
   "source": [
    "print(\"Chargement du modèle...\")\n",
    "modelCM = keras.models.load_model('models/exp906')\n",
    "\n",
    "print(\"Predictions...\")\n",
    "Nmax = 10\n",
    "y_pred = modelCM(Xf[:Nmax])\n",
    "y_true = np.array([int(nbr) for nbr in Yf[:Nmax]])\n",
    "\n",
    "y_pred = np.argmax(y_pred, axis=-1)\n",
    "\n",
    "print(\"Calcul de la CM...\")\n",
    "cm = confusion_matrix(y_true, y_pred)\n",
    "\n",
    "print(\"Affichage...\")\n",
    "def show_confusion_matrix(matrix, labels):\n",
    "    fig, ax = plt.subplots(figsize=(10,10))\n",
    "    im = ax.imshow(matrix)\n",
    "    \n",
    "    N = len(labels)\n",
    "\n",
    "    # We want to show all ticks...\n",
    "    ax.set_xticks(np.arange(N))\n",
    "    ax.set_yticks(np.arange(N))\n",
    "    # ... and label them with the respective list entries\n",
    "    ax.set_xticklabels(labels)\n",
    "    ax.set_yticklabels(labels)\n",
    "\n",
    "    # Rotate the tick labels and set their alignment.\n",
    "    plt.setp(ax.get_xticklabels(), rotation=45, ha=\"right\",\n",
    "             rotation_mode=\"anchor\")\n",
    "\n",
    "    # Loop over data dimensions and create text annotations.\n",
    "    for i in range(N):\n",
    "        for j in range(N):\n",
    "            text = ax.text(j, i, cm[i, j],\n",
    "                           ha=\"center\", va=\"center\", color=\"w\")\n",
    "\n",
    "    ax.set_title(\"Matrice de confusion\")\n",
    "    fig.tight_layout()\n",
    "    plt.show()\n",
    "show_confusion_matrix(cm, emotions+[\"A\"])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ]
}