diff --git a/buildEmotionModel.ipynb b/buildEmotionModel.ipynb
index 0cd664ae6fe4da9c7480ebc815213454fb519cf9..4d85c29e5471998163244ec72bba7910b3fd9f46 100644
--- a/buildEmotionModel.ipynb
+++ b/buildEmotionModel.ipynb
@@ -86,26 +86,44 @@
      "output_type": "stream",
      "name": "stdout",
      "text": [
-      "Array loading...\n"
+      "Array loading...\n",
+      "Concatenation...\n",
+      "Done\n"
      ]
     }
    ],
    "source": [
     "#Chargement des données\n",
+    "\n",
+    "# print(\"Array loading...\")\n",
+    "# Xf = np.load(\"data/array/Xf.npy\")\n",
+    "# Xe = np.load(\"data/array/Xe.npy\")\n",
+    "# Xa = np.load(\"data/array/Xa.npy\")\n",
+    "# Xr = np.load(\"data/array/Xr.npy\")\n",
+    "\n",
+    "# Yf = np.load(\"data/array/Yf.npy\")\n",
+    "# Ye = np.load(\"data/array/Ye.npy\")\n",
+    "# Ya = np.load(\"data/array/Ya.npy\")\n",
+    "# Yr = np.load(\"data/array/Yr.npy\")\n",
+    "\n",
+    "# print(\"Concatenation...\")\n",
+    "# X = np.concatenate([Xf, Xa, Xe, Xr])\n",
+    "# Y = np.concatenate([Yf, Xa, Xe, Yr])\n",
+    "\n",
+    "\n",
+    "\n",
     "print(\"Array loading...\")\n",
     "Xf = np.load(\"data/array/Xf.npy\")\n",
     "Xe = np.load(\"data/array/Xe.npy\")\n",
-    "Xa = np.load(\"data/array/Xa.npy\")\n",
-    "Xr = np.load(\"data/array/Xr.npy\")\n",
     "\n",
     "Yf = np.load(\"data/array/Yf.npy\")\n",
     "Ye = np.load(\"data/array/Ye.npy\")\n",
-    "Ya = np.load(\"data/array/Ya.npy\")\n",
-    "Yr = np.load(\"data/array/Yr.npy\")\n",
     "\n",
     "print(\"Concatenation...\")\n",
-    "X = np.concatenate([Xf, Xa, Xe, Xr])\n",
-    "Y = np.concatenate([Yf, Xa, Xe, Yr])\n",
+    "X = np.concatenate([Xf, Xe])\n",
+    "Y = np.concatenate([Yf, Ye])\n",
+    "\n",
+    "\n",
     "\n",
     "\n",
     "\n",
@@ -114,29 +132,61 @@
     "# np.save(\"data/array/Y\", Y)\n",
     "\n",
     "\n",
-    "\n",
     "#Chargment des données\n",
     "# X = np.load(\"data/array/X.npy\")\n",
     "# Y = np.load(\"data/array/Y.npy\")\n",
-    "# print(\"X et Y chargés\")\n"
+    "# print(\"X et Y chargés\")\n",
+    "\n",
+    "print(\"Done\")"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 2,
+   "execution_count": 3,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "output_type": "stream",
+     "name": "stdout",
+     "text": [
+      "X et Y chargés\n"
+     ]
+    }
+   ],
+   "source": [
+    "\n",
+    "#Chargment des données\n",
+    "X = np.load(\"data/array/X.npy\")\n",
+    "Y = np.load(\"data/array/Y.npy\")\n",
+    "print(\"X et Y chargés\")"
+   ]
+  },
+  {
    "source": [
     "def loadData():\n",
     "    return np.load(\"data/array/X.npy\"), np.load(\"data/array/Y.npy\")\n",
     "X, Y = loadData()"
-   ]
+   ],
+   "cell_type": "markdown",
+   "metadata": {}
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 2,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "output_type": "error",
+     "ename": "NameError",
+     "evalue": "name 'Xf' is not defined",
+     "traceback": [
+      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[1;31mNameError\u001b[0m                                 Traceback (most recent call last)",
+      "\u001b[1;32m<ipython-input-2-27f8e461a14b>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m      1\u001b[0m \u001b[1;31m#@title Visualisation de chaque dataset\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[1;32mfor\u001b[0m \u001b[0mX_\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mY_\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mname\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mXf\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mXr\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mXe\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mXa\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m[\u001b[0m\u001b[0mYf\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mYr\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mYe\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mYa\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;34m\"fer2013\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"ravdess\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"expW\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"affwild\"\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m      3\u001b[0m     \u001b[0mN\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m5\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m      4\u001b[0m     \u001b[0mM\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m5\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m      5\u001b[0m     \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"Dataset:\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mname\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
+      "\u001b[1;31mNameError\u001b[0m: name 'Xf' is not defined"
+     ]
+    }
+   ],
    "source": [
     "#@title Visualisation de chaque dataset\n",
     "for X_, Y_, name in zip([Xf, Xr, Xe, Xa], [Yf, Yr, Ye, Ya], [\"fer2013\", \"ravdess\", \"expW\", \"affwild\"]):\n",
@@ -160,7 +210,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 6,
+   "execution_count": 4,
    "metadata": {},
    "outputs": [
     {
@@ -174,8 +224,8 @@
      "output_type": "display_data",
      "data": {
       "text/plain": "<Figure size 432x288 with 25 Axes>",
-      "image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\r\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\r\n  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\r\n<svg height=\"250.458125pt\" version=\"1.1\" viewBox=\"0 0 336.123362 250.458125\" width=\"336.123362pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\r\n <metadata>\r\n  <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\r\n   <cc:Work>\r\n    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\r\n    <dc:date>2021-05-14T15:45:57.988242</dc:date>\r\n    <dc:format>image/svg+xml</dc:format>\r\n    <dc:creator>\r\n     <cc:Agent>\r\n      <dc:title>Matplotlib v3.4.1, https://matplotlib.org/</dc:title>\r\n     </cc:Agent>\r\n    </dc:creator>\r\n   </cc:Work>\r\n  </rdf:RDF>\r\n </metadata>\r\n <defs>\r\n  <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\r\n </defs>\r\n <g id=\"figure_1\">\r\n  <g id=\"patch_1\">\r\n   <path d=\"M 0 250.458125 \r\nL 336.123362 250.458125 \r\nL 336.123362 0 \r\nL 0 0 \r\nz\r\n\" style=\"fill:none;\"/>\r\n  </g>\r\n  <g id=\"axes_1\">\r\n   <g id=\"patch_2\">\r\n    <path d=\"M 10.957047 59.80778 \r\nL 48.446703 59.80778 \r\nL 48.446703 22.318125 \r\nL 10.957047 22.318125 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p3fb8d858eb)\">\r\n    <image height=\"38\" id=\"imageaf54eb39cd\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.957047\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAM4ElEQVR4nE2Y2Y5kV1aGv7WHM8SJjMjIobIGl9t2dWO6hZBAQlwieAKeikfhhmseAK5A4oa2kNVd6sZ2lasqK52RMZ9hD4uLna4mpZBSCkXsFXut/1v/f+Tv/+GftHq7gc0ejBB+9ZzjZw0mKO3tiF+fkGECVdRZtGuIZzX9k4r+0jBcCv3zhM4js8VA7SOqQu0jIRm8zYgodw9nyJuW5ifBTOBPiiToPkS6374DZ9n91TNO1wY7gjNDQtsK2YCeetQbsoVqnwHoXy5QJwDE1jB1hthCnAlxBsN1RlYTXTfS1ROVTQC0LrCse1bVCYD7eccf55c8vF/gNo7mXqg2ih0yGgLhyyekSpAMNiguLCtybanXe4iRVNvy5pCZzivu/8KhBqoNIJAd5AqmhRIuMpwFnE8YUVI2WB/o/ERWobGBuR0JavlstmFV9Xxb3XB7tuBUN5ANoooYQ1g4EDAB1IDbvPJUe4fbnmOWc8LcYKKiAsPKMl4ouVJSI0gqN5edEs4z7rLH+0QIlpgMCly0ibkfuR86puxIGGoTeVZtuep2fNn+xG/PXvBN/YywW6BG0PkMMkhS7ASSwR1fKvFe6N412DETG8EEGC49w4VAVtQp4QwkAqKoA50ljFFitITeE0eHccqxGen8SEiWIXpitqyqE3M7MGjFjd/y67lls2p5PT8jtpaqa5CsiALlCFx8NmKHhlwbTFJMhNgI01KYlqAWSIJEQb2SmwxWmZ33OJvZPcyQvQMLyWc+yILdUGNFOU4VQ3LkMyEjLG2Pl8TMjlw1R363ChyfVdT3ntQashWyF2IL7tVnd/zx4QVhZnDHhIkKjTCew3SRIT/ekgW1Cj4jLpOSwdkMk6H5aEmtItGSasd+5ZE2IaI87GZshpYvlmueNjtW7oSVzLnvmZ/3nG5qZnc1KJioZA+SBfd31685fF2xfX/D7ONEtYlM84rsFfWK1glTJ/LegwHxGRSm3iMCGHAnqLaCG5TYCtPBE+eOVClmFH5613C7Oufm2YZfX9zyotngTGLejHy8ypyuLfUmo1YIXVGm+8v2B8wL5Z//tuF+u2D1+wk7aUGEgqkTi0XPDsijRYNBBouMwgjYLnB6YeneGtxJC4NOkBohO8FEyE4IDxW34QIRhRWcuYFV0/OhyYTOUW8FSQoqZAemMyNfN+/5x69+y8PfBMaVQxKkWlGfyaMlq1C3AQQIBns0VDsDe1+Y9dWO/avE5mth/1KIrWAHpdqWaQ4dTOeKzCJjcHy3v+DDsADAzAPTosx19oIaSJXgjrnm2u248nvOrw5M8xU2aCkCwCpTcBiTIQvmZDATmAmqtWHsLM0i0nzxwPFpRb9uSbeO+dsinOESxuuEvRjp2glrlCnZT5xrZxNT0zCdCYgwXJRjXcZwFxd8N1yx/X7J82OmvzCoy6ACwTBsaxCwW0u9fiwsghrBPHh2s4b5bHjUegFw9oIKjBcZdzlQNwFnMrtjgyo0LnLT7jmf9bxbzBl7iwmFYSaC8xL5bnrKNw/PWf2Pobkf2bxq0DqDUaS31Hf20+wU5UjBCGBHIdy27I8dficsTmAnBVXCUsBoUbUKw+SJ0+MHAWcSCriDob1V6p0iSan2GWdRDqnhx/WSJ7cJCRm1IMFAFKqN4ex7xcTCOH/MhLnhdG0IZwW+1YPl4ttM934gNpb+yrH/vLwvQUjBkl0mTA4xYEzGSSar4TDUtLfCxbc9blduXY4DLiEYlPFQY4KCLdu//mjxe6j2SrtOpFqQVFoUWkFdIXRsM2Z8XPKN5fTEs/2lMF5H7NEiSchZUBWsS8RgiZPlYWjJCPvNjCd3GX9/hBBBBLzDBXVsU4vZOWwfMGOi2imuF2Z3GX9IqCkHj0tDfy1Mi9IeOwjZWtRBf2lI3rN7JeSvD8x84rSegctcXR5ofWB9nDHtK4iG01gRk8Hce/xRUW/BWyQkcleXGXu9v2b2o6H+YQ0iuL4j2NI+f4yM557h3HB8LoSz0lJ3EOwEdigrJFcQZxA6pWsCzibGWcS6RFdNiCjD4Mt6m4TjtuFklWZtsEMg1w51BjMlsjcFF9/ePuXqDwk+3qNfPCfMYVoKdjBUW0N2hU0mQHMvNHdK+5AYlobhSrDjo10RwBS8/PwXJ8v9cUbOQhocVBmiQU4OElQ7MKncWPYGRFAjuNtwznDXMnvXk/sBKkdqhDAvrYozi52U5iEzu4P6IVL/1KPWcHwyZ7hSqq1QP2RMguMgTIMjJSEdHeZkOew9eAWX8U0kCuhkMME+2ighVwYe3UX2Bvd2WuH2FokZ0zZkAC2GcFrC8Yml2WTanxLtmx38+AGcQ59ef4KwP0D3PpC9YPuKKBAnR/uDp71ThkvH8CSTayEAxmWkzehoCve8oKMgWYmdI1vBvR8WmABxXuE/f85w3RJnkM4yaQaSLfBoHr1F6hoWc+JlC0BzJzT3GXcKhEUFBeDko2P+Vpm/nZBUEVtBT7bYm2VEXNkkaguosxNEhVQVV+um7JBcrjOeNwwXluE6M3+x43SqGWOD3xl6tag5o/tZOdbQ3WayE+yYmc5rTteO0Cmpt9iDLTa8NkUspzKjsROGxqBa2Jt9sdKIoCgm5CLA0lNQW/oynQl6OfKb61veHZa82VTkqqShaWGJTUfzkLBDor0dia3ldOMZfmEYrpR4nsAWyxTODNO+zGj98HiGgBkMuc5IBHcAOyoSM5gy+CrgTrF4rzC32CkjJRyx9D2npuKNKTMnWpBw+MxwujHY0WFicQL9ExifRMxZoJtNqEJvldNYQzY0D4o/wXABqaIU5TLuJFSHgiUonj9bKR5v3c+wvSCqpb+5FNLawE2z5/VlT/g4x+8eIbtSUvtoIl2pWNpE0wbaeqJyiZAM1mbGOrK7qDluLXYUsleyU2SWcFVEUoOJubTSChJKgSqC2w819YPgd5FcG2IriFVitixcz/PVlu8WHbaXAtFFRruI8Zm6jogoIop7DLbjo0WaVYHzdiAsjhyuasbRIUA+VohR6joyVeWGfh4j4qPdEjDm0c+nxpb+GhCj7GINQG1jMXtLZbxKmNXE2epE3QSm0RGDRQRiMpyGGhGlcomzemRejTQu0tUTy/mAZoOpEufnR1TLLJUsWVxFfgzWKLizZuTDSpnODPU2YVIpej12vDms+LBZYEZBAfWK85GUzJ8KChZVQUzG+8SsCnibsJJxprxaH1AVjlXFcKg59jU5GYw+KvIxsklS9FGp7rP5hjcX10xnlnpbwOp84hgq3tytSLsKa5VcK2YeWHQD6dEtqObyRVkQgdpHahepbcSIMkbHYapIuZyesyA2lzwaBENZYyqUXJkVFLQ2uJezB/77+sjp2RLXO/LjmkvZkDYVZjKks4Rfjpyf9Vy0JxobmbJlTI4xOqZksSYzryYMihElpGJtdsemeHujpGgRqxiTyZPFTFKybPpT2P3Uyn/55q/Rk8OcZ/afl18Wg6UPHtsbyIK9jry43HLdHqhM4lV3x9wO/G9/zbvTkowwdyNnfmAbWu6HjlPwHIeKFC3OJ2ofyVkIo+O0abFrT7Utbreko8eaDIX8T/+1or8yHF4qw00qiTsYxlgWrGSo24mb2Z6X7QO1ibyqb3nqtmQ1/HBcUZlIawNecvnfBfZjTYwW6xJNFfAukVSYThV246jXgj8qJpTnJCb/P4UquNV//Ej95zeMq4r82YS1GURJyTxCD1IyGJTP6zXXbsevqltu7MSgnj/OrniYZuxjTUaI2RKz4ThWxMnSzCaW7YC3iUO/RHuL3xqqfUlan55XZEWMIFFJRjCI4A8RfyyY+MWTNS+vNtQ+Iknwe2FYN7w/Ldinhqduy1cucm1rOjPS2sB2bNmOLUmFU6y4PczpTzWqgrOZxoVi3wdPtbY0a7C9ftoyZagVEzOSyr5045dXpMrgd0raVNx8sedVd8fvDjf853xJvXa4jePN3Yr/qj/nxm+5tkd8nvgxPGM9zTiEorzdVHO/7QgPDRhldnXi2WLHmBx3+zn6UFGvSxjG8ClpSeaTIgXFBHCpMsSZxfdK+6Pjh1crfjN/zy9ma37/2ZbdaYWJQnqo+YYXrIeOfzv7M76c3QOwm1qG4NgfG+Lg0d6WRwtd5Olyz3nd83p9xfFDR/fW0tyX3sWmtLLs4UdUfHKKipNU1oCdlPlb5c0frvl3/0tedhu+Wt3z389b4k81ZhB40/LmQ8P351e8fvbAvJq43c85HhryaMEodhFYLo7czA88a3e87xesPy6YvXXMbhXXlyc6JjxSXspuLIosg48VnElFGakWfK903zt+Z17w9sk582ZERNE6k6WQ+uclryrsx5qUDGIU301cnx941u142uwBeL275vc/3DD7Q0X3TvEnLThIYKeChp9f2VvUCdkKovB/oZw1xprP350AAAAASUVORK5CYII=\" y=\"-21.80778\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_1\"/>\r\n   <g id=\"matplotlib.axis_2\"/>\r\n   <g id=\"patch_3\">\r\n    <path d=\"M 10.957047 59.80778 \r\nL 10.957047 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_4\">\r\n    <path d=\"M 48.446703 59.80778 \r\nL 48.446703 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_5\">\r\n    <path d=\"M 10.957047 59.80778 \r\nL 48.446703 59.80778 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_6\">\r\n    <path d=\"M 10.957047 22.318125 \r\nL 48.446703 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_1\">\r\n    <!-- Disgust -->\r\n    <g transform=\"translate(7.2 16.318125)scale(0.12 -0.12)\">\r\n     <defs>\r\n      <path d=\"M 1259 4147 \r\nL 1259 519 \r\nL 2022 519 \r\nQ 2988 519 3436 956 \r\nQ 3884 1394 3884 2338 \r\nQ 3884 3275 3436 3711 \r\nQ 2988 4147 2022 4147 \r\nL 1259 4147 \r\nz\r\nM 628 4666 \r\nL 1925 4666 \r\nQ 3281 4666 3915 4102 \r\nQ 4550 3538 4550 2338 \r\nQ 4550 1131 3912 565 \r\nQ 3275 0 1925 0 \r\nL 628 0 \r\nL 628 4666 \r\nz\r\n\" id=\"DejaVuSans-44\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 603 3500 \r\nL 1178 3500 \r\nL 1178 0 \r\nL 603 0 \r\nL 603 3500 \r\nz\r\nM 603 4863 \r\nL 1178 4863 \r\nL 1178 4134 \r\nL 603 4134 \r\nL 603 4863 \r\nz\r\n\" id=\"DejaVuSans-69\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 2834 3397 \r\nL 2834 2853 \r\nQ 2591 2978 2328 3040 \r\nQ 2066 3103 1784 3103 \r\nQ 1356 3103 1142 2972 \r\nQ 928 2841 928 2578 \r\nQ 928 2378 1081 2264 \r\nQ 1234 2150 1697 2047 \r\nL 1894 2003 \r\nQ 2506 1872 2764 1633 \r\nQ 3022 1394 3022 966 \r\nQ 3022 478 2636 193 \r\nQ 2250 -91 1575 -91 \r\nQ 1294 -91 989 -36 \r\nQ 684 19 347 128 \r\nL 347 722 \r\nQ 666 556 975 473 \r\nQ 1284 391 1588 391 \r\nQ 1994 391 2212 530 \r\nQ 2431 669 2431 922 \r\nQ 2431 1156 2273 1281 \r\nQ 2116 1406 1581 1522 \r\nL 1381 1569 \r\nQ 847 1681 609 1914 \r\nQ 372 2147 372 2553 \r\nQ 372 3047 722 3315 \r\nQ 1072 3584 1716 3584 \r\nQ 2034 3584 2315 3537 \r\nQ 2597 3491 2834 3397 \r\nz\r\n\" id=\"DejaVuSans-73\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 2906 1791 \r\nQ 2906 2416 2648 2759 \r\nQ 2391 3103 1925 3103 \r\nQ 1463 3103 1205 2759 \r\nQ 947 2416 947 1791 \r\nQ 947 1169 1205 825 \r\nQ 1463 481 1925 481 \r\nQ 2391 481 2648 825 \r\nQ 2906 1169 2906 1791 \r\nz\r\nM 3481 434 \r\nQ 3481 -459 3084 -895 \r\nQ 2688 -1331 1869 -1331 \r\nQ 1566 -1331 1297 -1286 \r\nQ 1028 -1241 775 -1147 \r\nL 775 -588 \r\nQ 1028 -725 1275 -790 \r\nQ 1522 -856 1778 -856 \r\nQ 2344 -856 2625 -561 \r\nQ 2906 -266 2906 331 \r\nL 2906 616 \r\nQ 2728 306 2450 153 \r\nQ 2172 0 1784 0 \r\nQ 1141 0 747 490 \r\nQ 353 981 353 1791 \r\nQ 353 2603 747 3093 \r\nQ 1141 3584 1784 3584 \r\nQ 2172 3584 2450 3431 \r\nQ 2728 3278 2906 2969 \r\nL 2906 3500 \r\nL 3481 3500 \r\nL 3481 434 \r\nz\r\n\" id=\"DejaVuSans-67\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 544 1381 \r\nL 544 3500 \r\nL 1119 3500 \r\nL 1119 1403 \r\nQ 1119 906 1312 657 \r\nQ 1506 409 1894 409 \r\nQ 2359 409 2629 706 \r\nQ 2900 1003 2900 1516 \r\nL 2900 3500 \r\nL 3475 3500 \r\nL 3475 0 \r\nL 2900 0 \r\nL 2900 538 \r\nQ 2691 219 2414 64 \r\nQ 2138 -91 1772 -91 \r\nQ 1169 -91 856 284 \r\nQ 544 659 544 1381 \r\nz\r\nM 1991 3584 \r\nL 1991 3584 \r\nz\r\n\" id=\"DejaVuSans-75\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 1172 4494 \r\nL 1172 3500 \r\nL 2356 3500 \r\nL 2356 3053 \r\nL 1172 3053 \r\nL 1172 1153 \r\nQ 1172 725 1289 603 \r\nQ 1406 481 1766 481 \r\nL 2356 481 \r\nL 2356 0 \r\nL 1766 0 \r\nQ 1100 0 847 248 \r\nQ 594 497 594 1153 \r\nL 594 3053 \r\nL 172 3053 \r\nL 172 3500 \r\nL 594 3500 \r\nL 594 4494 \r\nL 1172 4494 \r\nz\r\n\" id=\"DejaVuSans-74\" transform=\"scale(0.015625)\"/>\r\n     </defs>\r\n     <use xlink:href=\"#DejaVuSans-44\"/>\r\n     <use x=\"77.001953\" xlink:href=\"#DejaVuSans-69\"/>\r\n     <use x=\"104.785156\" xlink:href=\"#DejaVuSans-73\"/>\r\n     <use x=\"156.884766\" xlink:href=\"#DejaVuSans-67\"/>\r\n     <use x=\"220.361328\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"283.740234\" xlink:href=\"#DejaVuSans-73\"/>\r\n     <use x=\"335.839844\" xlink:href=\"#DejaVuSans-74\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_2\">\r\n   <g id=\"patch_7\">\r\n    <path d=\"M 80.226013 59.80778 \r\nL 117.715668 59.80778 \r\nL 117.715668 22.318125 \r\nL 80.226013 22.318125 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pb93e9128d0)\">\r\n    <image height=\"38\" id=\"image83d0970f05\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"80.226013\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANmklEQVR4nF2Yy48dx3nFf/Xq7vu+d95D0hJFkaZI2bJjW5IRxIkDJPDCG68SZB9kmf8iu/wJWQbZZRMgQJCHjTg2bAcxJEWWLYoUZQ6HMxzO6777UY8vix5RRhq4i+pbKJw6db7znWr17T//W0EEJdB5XuN+c4C/9wpnb3WJBcQcANwK7EpY7ymqnQQjj80DG6MVhQ1crjsslwVymdE7MORTIZsLvaMaU3oe/FWHrWszdvsLdosFr3XPGJkSgMNmwlnd583+ESOzZtMusTEDHRTdZzXZo2PIMmLXMjwIrLcN03sQuwn7yDC7C2GroRjU9Ds1407JbmdBx3gWvZzn3SHnvS7LfofV3GHXiuntDv1nBa//Q83hH2+xvJ+jdwSrIzHXAOy6OXWybNglj6pd/nP6ZaxoxfjDCzi7hF6X+tUNklGIhek9uPnNQx59sk+5J8ReQmkBoGwcuQ0sbU7P1mQ60HUNc9NSLN1I3AxEgfKm5fKNnK0PEvqjHh9+L8feieQ6sAo5+8WMiV1TJUdXN/zk4W3s5i9O8TsDyjfGzF81DJ5GdITz+4a773zGrz94FVsqQj8hWcJkEaUEEQhJUwZHGR0hGXwyVI2DoOlMSrYGKwCSKOINxekrAwY/7bL7I8vR/ojCBIJoOr5Lz9YA3C6es7mxxLbbE9Y7GhQYL1zctfSfCo9+fBPdbfWnvALRRBxVYwBYTzucJMUneo/epETrRHnZwQ1q3tg54UZ3ShkzViFjHTJ2u0tmPyg4/OU18h/v8OBym2pD8fDbF3x154gtt+CkHKGUYOvrI06/npPNBJXBs+9qdu6ecPa/O4RhhCLCuaP7TJPPhJgZmiGEruCHwuYHqt2bclRbCnUjokeCVsLQVgxtBTksY05IhmGWI99QPP3VHoMDuHjX887uM6xKbJgV19yU798Ae/J2jmnaypu/1XD75gmfPt1BOaHYKul3as7qMW6p6B8F3DIQOpaYK1DQ/2SKmi2p7+xx+EoBrZ7bSlaRgakA2HILAI6bMUYJ4b7meHvE7WtnvDt8zD8ef4MkihudS06bAdbU4FZC6Cnu3TqijpbsIKPeDwy6FaOiotq1lLtjJp8k3NEMvdlHRUH5yOm7m8y+V7A3uaR5tINoISXFOmR4Ma2gTY1BqMQyMBXBaV4ZWDrOc3f4gl8ubrLbWWB15JXsnH03xWZzIXQVphYuqw4nJ2NsBroIOBN5seizfNFDjxIvvpmjv7ZHtSk0O4G37z/mfudjypTxcL6NGAEtZFkk0xGnIl4M9VW1FapdU9NWdpMMD+fbfPJ4H9Pz/NGtR/zNL77P7u4UGzoK0WAqeHE2pPMgp94QtBGSKMrKoVcGu1Y0YyH0BDZrtiYrMh2Zhw5OR+pgUUEh3UTuPFolEup3jjVQaM8q5TgdGNqKkatIovi9u7/ls8tNfvjRG3zpnzSL67vY5EBFUALuswId24VSbBd1LpIExELMhFQkCJpe1jD3BSflgCSKo7MxCOgsMsgbutYTRdPVDU5FtBIasXgxJNGt/lxFGR0Jxd2tFzSTc5785YTB343RKWuBmFroPwHSFTBvaIJhs78mdhPKQzbXuKlB28SzszEPnu9gVOL5bEA6yxEnGNv6XBJFEkWhPbn2/P/HqESuA4Mr1pY+Z+VzLl4M6fz1EVo0aC/YKqED6AjaA16xrloXV52IGKj2Amat2NueEUpLfNrl1uAc7w1KAAFrEyIt2xFNRJFEY0gUqqGr298XAIWBrfn1k30eHu6gVoaDi0lrsJ3zBApUakGZRhEajfeGi1W3PWdABUV13eOj4d6tIwCWISMlDQJkCaWkZQxFSBqfLF3b4FQgodsucKW9JIoyOupoQRT54xwdQE4HLWPGC+pKW6LaQtCVJjWGunJIUmQzRe+JQa8NZeMojKcMjuP1CGMSYgSdR0QUPhqSKKxOdE1NT9eYK43F3zE6rYRVyEgoXrtx2r7zMHycsKIgZhrTtKyJhWTbCbHRRC3gNTGHbAbZTLNaFKyGObeHZwTRHE2H+JFHaSF4w6LKOTV9erZhZEq27QKnApC/NN6k2uM9LftUwVJ7i/bQP0yIAVtvJXgIyVyVtoAYEA3Ka8QKuIQfJXTQ2DXUM8fRYMjKZ+Q2vNRU8hpcIkSNj4ZVyFjGnIvQZ3CVvZJotErk2pPrQOkdpxcDJCk2TgVXJs7etGjtFdL25/b5HJ8TEFBrA7Uh2RZ0Mq3WUmo1ZFXCNxamGSwc1ka2ByuGeUUVHcf1iIflDo1YMhVwKmCuSt+piNWJtHQUDwr6x4HVrkFHsFetrBV+EHxXoX2rNcnbBVStURFiAflFO7fIPDcGU16sBwBsvq8YPPVkM4jdCeu+5fC7li9/6wn74xljs8KLpVFtoNFEEgqtBNUoxo8S2dSTbjp8T7D1dkR0G3lEtxrLT8HUGt/XaA/d50K2SMxutccMIKK41pkBcHQ+YvmqYvSZMLvd4+zritffPuDPJk9xOrLvpqxTzirlL9mqxLGOGavG0f+tofdsTTNyTB426OCwezfPiT/fwdaCaEUsBOPB1NA/FNwqIRaqkaGeCKZWxEGkk3m0EkauQqIiZsKnf2HIxmuG3YqubYhoRrpknXLW6Qvh+6vdTUOXi5Mhe88TYjUqgSkjmx967J3xKT9/Y4ft9xQI+I3AeunwIyF2BAYR1/FIUsTTAiUa0wsUttXKKmZ0eg1lJ8deWhpRLIEnTEiiyUxgkq3Zzpa4K0+qk2UZc35+/CruzKGioOuI9gkVE8lqrFMJe2dB/XiAqVqTtCVtnO4ZmlrhcwtJYeoWvAjEpDlt+jy82KIqs7ZYakXn0KKe9Jltdplf63Lv+nM6xmNUYh4KtBLmoeBnRzdZPxxjQiuPlLcs6iSI1djdfM53XvmUf33nK2z+t0UtLNlc6J5GxCjWW5pyR+MHAgr8JMLacrroYXRCK4hLixp61FZoo48SOibx1Z1j7vRf0NUNT6sNpr5DEsWDi20WZz2cbwspWUUsDKaKaB9BK+zIltTJ8t2vfsx/Tb+Cm2uSg2piuIpNbVcQiEXraXhNVWYchjG74wWT/TllndEtalLS5K496oTi0ndZqpz3zq+TROF0anuwtDcxs1ComBANuomgFIigPze6ga14691HoGD8sGk9y35hJSlrUZqpbdtVbWguC54ebgLwysYlALuDBb2sYe0dVXCUMePfn95lXhbs9+atPSiB1La+bAHZMmHq9LIlitNt4xrZkr6pudaZk785xdQJ44VYKJqhImWQugkpIm7ZWou6Sqt6Ybk8GXI0H7I/WGB1YloWbHTWXOvO2MhWNO9P+M6Nx0yyknmVE6NGFRGV2uRsasGu2mgkRqPLgDUIZ77PD5/dIURDbiMX9wqKqRC6ramGbmuC4iCZNiwqQGWJ5BLFZzmrasCJC5xf9NndnnG9OyPTgQ27IpvB0XoEtHfR0BiUEXQN+UywZUCFhPYRySzJabRWib6pubNxxpfGUzIbWNwC31XE4ovj1LXGzg3aK9zUIGuDRIW2iWaSGP3GcHHZQ7xmu7tCX0WlKjlEw4MXO1SxXcw8K0iNobgQbJkIhSH0M2KvTa1m1aANCaMSI1dys3fB29sH3HrngJi37efzxm4qcAtFNoP8TJGfWlRpSLUhjT2mFrb+rUDZRKbbG3ZIhnXKWLzhcT8b8GLZZ70qcDNF53FGPhNUFEydEH3lo4MMP+mgL0KfKjkAcu0Z2ZJvbRww/YMKlaQFcqHIFopsDtlC2PzIs/lRojg2qNqAKC7eEjbev2Ty05xfn+xxvB5y1vR4up6wtT9jeBBZv7cJz3PEwNavAtkigoKUaUwVUCKYMqCbiD2qxy+/G0Q0GkGryA/uf8DP/vkdqivGtIfOxVXSFRi9f0r/oMfZ13qsrhlSLqxeG7L93pL1SZenbw55cKemPy6pa8twrNn9n8DiukF7QXvBzQO6Dq3gm4A4cwXUYJ9XA/YKCMmwSIaQDGO3Rivh+E8Cuz9qb935LJHNAnbtUXUEo7HPp+yeL2lujFntZSSrqLYKTJXY+0VN+NAwuznGDiF0QDeJjY8DoWOwVWxZagLKR1LHYWZlC66fY9ch46zp0TGeWVPwuN7k1uCcG51L7t46ZvYfXyKfJZRAPbH4oUEFyC8sbl2hGk92OMWdZsRRASKkzBBzTX5es3e4IvYzmpHDrgLussR2HHpVg1Kosm4ZCxFEUDGhjcH+5pPrbFyb8frkHKsTRxcjDj7cRyWIw0h2X/H635+RujnmcoF0ckiC8qF16ZhQVdOOAZUSqeOwCxBn0LXHzFbYy6ItJB8wqzbNElqnVykhmUOtK8hcO//Nu4cAWJXo2Ybff/UzfhJfJz0vKI7aokjdHPP8HLRGAeIsYg2qSeA9EgKq00FfztuFVyWSZ2ANxAQpoZfrdiMpte+sadOAUi24xn/xv1LYb04OWIac+qoyx6bhT+98zPMbA3473UBEcTTf4Ma/eOTpMcpa1LDfAh700ErBukSqGrRCxc9ZEDD6JTBSAnMFJl5dyT53I2tQyzXkWctijNhcBbQVEm1l+mQY2zW9fjv+4OAGvT+8pPxoSP7pE/Rw0LIhrYGmYRfdeGSxhDxHJILSkBJKaySllwAUvByrz8Fp3TbxePWlQykwhv8Dl/g5vwH6jpUAAAAASUVORK5CYII=\" y=\"-21.80778\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_3\"/>\r\n   <g id=\"matplotlib.axis_4\"/>\r\n   <g id=\"patch_8\">\r\n    <path d=\"M 80.226013 59.80778 \r\nL 80.226013 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_9\">\r\n    <path d=\"M 117.715668 59.80778 \r\nL 117.715668 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_10\">\r\n    <path d=\"M 80.226013 59.80778 \r\nL 117.715668 59.80778 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_11\">\r\n    <path d=\"M 80.226013 22.318125 \r\nL 117.715668 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_2\">\r\n    <!-- Sad -->\r\n    <g transform=\"translate(87.675841 16.318125)scale(0.12 -0.12)\">\r\n     <defs>\r\n      <path d=\"M 3425 4513 \r\nL 3425 3897 \r\nQ 3066 4069 2747 4153 \r\nQ 2428 4238 2131 4238 \r\nQ 1616 4238 1336 4038 \r\nQ 1056 3838 1056 3469 \r\nQ 1056 3159 1242 3001 \r\nQ 1428 2844 1947 2747 \r\nL 2328 2669 \r\nQ 3034 2534 3370 2195 \r\nQ 3706 1856 3706 1288 \r\nQ 3706 609 3251 259 \r\nQ 2797 -91 1919 -91 \r\nQ 1588 -91 1214 -16 \r\nQ 841 59 441 206 \r\nL 441 856 \r\nQ 825 641 1194 531 \r\nQ 1563 422 1919 422 \r\nQ 2459 422 2753 634 \r\nQ 3047 847 3047 1241 \r\nQ 3047 1584 2836 1778 \r\nQ 2625 1972 2144 2069 \r\nL 1759 2144 \r\nQ 1053 2284 737 2584 \r\nQ 422 2884 422 3419 \r\nQ 422 4038 858 4394 \r\nQ 1294 4750 2059 4750 \r\nQ 2388 4750 2728 4690 \r\nQ 3069 4631 3425 4513 \r\nz\r\n\" id=\"DejaVuSans-53\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 2194 1759 \r\nQ 1497 1759 1228 1600 \r\nQ 959 1441 959 1056 \r\nQ 959 750 1161 570 \r\nQ 1363 391 1709 391 \r\nQ 2188 391 2477 730 \r\nQ 2766 1069 2766 1631 \r\nL 2766 1759 \r\nL 2194 1759 \r\nz\r\nM 3341 1997 \r\nL 3341 0 \r\nL 2766 0 \r\nL 2766 531 \r\nQ 2569 213 2275 61 \r\nQ 1981 -91 1556 -91 \r\nQ 1019 -91 701 211 \r\nQ 384 513 384 1019 \r\nQ 384 1609 779 1909 \r\nQ 1175 2209 1959 2209 \r\nL 2766 2209 \r\nL 2766 2266 \r\nQ 2766 2663 2505 2880 \r\nQ 2244 3097 1772 3097 \r\nQ 1472 3097 1187 3025 \r\nQ 903 2953 641 2809 \r\nL 641 3341 \r\nQ 956 3463 1253 3523 \r\nQ 1550 3584 1831 3584 \r\nQ 2591 3584 2966 3190 \r\nQ 3341 2797 3341 1997 \r\nz\r\n\" id=\"DejaVuSans-61\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 2906 2969 \r\nL 2906 4863 \r\nL 3481 4863 \r\nL 3481 0 \r\nL 2906 0 \r\nL 2906 525 \r\nQ 2725 213 2448 61 \r\nQ 2172 -91 1784 -91 \r\nQ 1150 -91 751 415 \r\nQ 353 922 353 1747 \r\nQ 353 2572 751 3078 \r\nQ 1150 3584 1784 3584 \r\nQ 2172 3584 2448 3432 \r\nQ 2725 3281 2906 2969 \r\nz\r\nM 947 1747 \r\nQ 947 1113 1208 752 \r\nQ 1469 391 1925 391 \r\nQ 2381 391 2643 752 \r\nQ 2906 1113 2906 1747 \r\nQ 2906 2381 2643 2742 \r\nQ 2381 3103 1925 3103 \r\nQ 1469 3103 1208 2742 \r\nQ 947 2381 947 1747 \r\nz\r\n\" id=\"DejaVuSans-64\" transform=\"scale(0.015625)\"/>\r\n     </defs>\r\n     <use xlink:href=\"#DejaVuSans-53\"/>\r\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"124.755859\" xlink:href=\"#DejaVuSans-64\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_3\">\r\n   <g id=\"patch_12\">\r\n    <path d=\"M 149.494978 59.80778 \r\nL 186.984634 59.80778 \r\nL 186.984634 22.318125 \r\nL 149.494978 22.318125 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p4ca74924dc)\">\r\n    <image height=\"38\" id=\"image23d18f1e17\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.494978\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAOPklEQVR4nF2XXawd11mGn2+tNT97z/47Z5//4xw7xz+JY5wmbSilUBTUFFooUlskelGQKihcoUogwRXqFVdcQXsBd1Sl6g2oLW2FGkRRKKnbkqapcZLGduw4PraPz+8++2/2zKyZtbiYE5t2pNEeaTR7vXrf73u/95Pv3Dzn75ddAJoqJ1E5Gs/9skvmAwBeS9d54d5ZRpf7cGaK3WnQvqlZ/9Y2UjlcN8HFBn11C2k28FmGdNoU63O4SOOM4LWw80z9fxvfHqMyi9zbQ4wBAGNABIzGa4W5VqwQS0HfTGirjJAKJY6eTpm6COs1S+GIx+Z3+f7JhFZkufDUNj9dXeHm/AqnvjFGSodUHl+WuKU50o2EdEGTrgpmBif+bQ+2d9l8pYHvtKCqajCijsEY8L6+C0t5chETS0GiChKp73eupsopvKZCmNdT1htH9OcmaOW42L3Ho8kBr/VXuRFt0LkJykL27EWmF3JOru/weDJkvXHEr7Su8bni06x/I4OywkcGMKhRivcO0MeMafCeaqHD7jMJZsmMicXSVhkaz4FrcqtY5JXJSXbzFk927tJUBcvBiM3eAQdZQlqFGOXYbB9wcCHhcD2h1cp478oWj7e2aauMWFnWzICL4YDR2Yp1pfBlDoBrhqjBpJZRKVAClSO9sMr2H2aYl8EAxGI5qBKuFytcTVe4PZ3HIRSV5kuvv5dnHtniVPOA86377IQdZlXIkW1wZXcVD7xr4w7v7m2xYMb0dApAW894IhywoBs072ooK3AesbWMvqjVkXck8p7wMGPu6wnDTTBtNUOJ44s7v8oP3zqFd8KJ5QEb7QHXJoto7fnBm49y+EiT315+lYVgzKSK6QUxZx/dxSEsmAldPSWUikAqtDjaKqOtNBOXs/jcXfzXIsQ5yC16JFCWSBCAc1CCL0ukcgCc+uo+JvMBl9KzvPTfj9O5I2TzcHd/ma32AnEvo8gMTAKu310iWrX09YTKjHBekfkAhSOUumEAAikB6EiORth3FX+1+S3+7G9+j/U/2EVWFsF7pNnEz2Z1A1AhYYBKC2wipI92MZ95/o8QL8y9BXkP2m970lwRXheOzjfxzQq0x08Cdm2Hnp7SURmF18RYACqvqBCcVzhRABQoUl8w9YZYLH994V/5+9Mfg9wiuYXAwAzwrgYXBgwv9ln4yYQyCVBnv5wTHihGpyG555mcELwCnUH/J4rOlRCMQ5zwnZ3HuFP0OaqaaHE0JacptfclKieQqu5kr7hfdpk6TyIlgVT0dMpsNUFyix9Pce1GDUhr8A6fzogOLSotUEWFKroh3evg1zPKBjT2PUXXU3SFMhYa+47mjZDgSDGzAYdlwlHVJKB6AKipchIpaKsZsVi0OLQ4Mq+4W7W4WSwBcPAnU9zeAdgCNUoRXbMrxoDzNN7cQ6YzzO4Ig4Jku8C+GDN4f8Hyvwd4A2VDCEtwgRAdeWwHLva3ORdv0zcTejpF46kQtPcgdbc5FJlXxGJJlKOnJlwMUr4yfoxGaHnjbx9DjQznvjhEFbZuCECOfcx1EySzmFnf0LpbMHe1QFzI6KQQDsHMoGhD3hNsy1MuFzzZukPqIs6pHZLjIgeoRLBeUaBR3hFIydg12CotKzrlN17+DLMbHYKRQpYqPvnsJSYfiLj+awGqP//Q9Z2vQc7y2se8QNnSzL+Rcfu5mHAsiIPZ4xmiPC7XnNnY5VbW5/3tN2kqWzOFR+GPmfKEVHXxe0hUgT5+l0QFv/XBH/C7vZfoqYJ5BZ+69kl0c1abq6MeTUpQwylohZktCOHY4AJhthCibF38WR+Wl4bk1tCKCrQ4trMuX8vfzccXfszFaPvBwRVChRBQPXyWkq7KWdaG/3jyy7xphTOBp0KhEWafX6Pdul8zBTVAEbzRIIJBYLShSe47xqc0xbwjPFQUpzImWcR0FDO3PmN71OHG1Q2qpiP5pZyLy9uod6QEnJdjH6se/C5qTyR1orgQQu4tznt+/ZVPs/zW6PhjV7NFzZrYEh8YTNEBF3qKOUW2UoKDbMWh90LKmzHSc2TLhigoGfVKHvuHlO+tb/LZJUWFxx0zVLPkaOKwUuG80JQAheDwDF3GTqUIxNP48hxiDx7WFkDp6gFZVojzGPFQRZ6y45C4gpEBL4RDRfuW5+ijKed6e3xk/n/5au89/OhT5/j4qR8ydiFNZXFeKFBoPAEOLR68o60dEDLzBYFoLmWLvJmvcGWyTnMnRyazByw9iEGVPJibpoo8rleCeBqtnGorxKSCqkCVng9tXmWzsUcoFX+x9m2mn/hPnH9HRB6AaitL5evuDMSRiGLfFQTA8+kGd4p5rNf86fJ3+OzSE4S35EEX4n0N8B32AFPFHgqFblsaUcFYg3ioQsjmFR+Zu8zn336OufgUK/GI97VusBYMHrBVO7sjwGNRZF5jvWIqlpeyNf5p+5e5cdjnwtJ9VuIRa7ogm1P4Zoyk2cOw6NzPgDPhQJFFDlcKuQ1gc4q9kWC7jjKp2dibJlx/9QR/+aFvshYM0Dhez1epUJwK9ljRKdkxi9VxkDl0hp6e8uePPM/jm1Oaovnq5ASZh3jgkMEIP9dBZvlDxqAGaAxGWSByiPYUhWa9P2Q/KgmBfpJSIfz+5kv8c/A0O7ZLU+W8lS/xwu5Z5qKUDy++RhXdY1GlBOLAg8aj8SzqKRpPUzSRBPTNhEQJ4uvaylc7BKMcvX34EJhSx1I2POSK3tKI4SihG2Z05zOMqugGGZfTk9zJ51huTvjpZAWAf7n5FNm1LreWCtIy5GMrwlPxbdrHplqgKLyiLZa2coAhEM2HGylaEpwWiELEe/yxf6FVHSaVAu9R+VKFWFWD6ky5OZhnbCOUeF74/i/QNSnffv0JXr27SukUl4frTLZbVE2HMo69acILg8d4OTvFgWtgvcZ6jfMKLZ6eMjQkBEAfRyKv6oJXWYXZHz/0s//XCErNFOHqlGocUFaaE90hkS750StnCEaKr9z+RT564Qrddsrp1j6Xb58A4/GxQ23HHG712Br3uJqucL/sMnIx1huUOGLxBKIfAALYLieIAx+F6LTAB6Zm6+cuJaWQNHIaCymj+232pi32pi16ryvkiTGryYj/unOGs/P7vLizSRRbJKqQXFGt5ARzOZVTTMuIcdVASz3EY6mIRVD87KGf2/5NomEFRlP2YqSwNVs/ZxmG9RmNoCQJLXe3WlROGOy1WTnyDCYhV795jjKG/1nqcPr8PVpzRyyuTSi94sZggbJStKMcJf5BWIylJMBReY/1tXkqBC2KS3dOsbE9wUUBYh1+kiJx9NBsAYzGxLFlOIvxXuidOeRwv41kGpsIvZcioqGjaAv5acvN7QXcOOCa8UhUkbQzZrMQ54V3z2+xYob0VEaAw6KwOBz17ujwDKop6aCBDzIQoWwazEIPxmkt5zvMOYfKsgDvBRHPeBoTxCVqJkweEWYrnvGGIlsUkldjTFDxgafe4PyZu3UceqlHfLnJ6H6b/bxFRe38UFuG9VAdJxCF8GK2zNPn3mb6SILMLEXXUM418Y2o7kat6sVXBNNOMnJrmG/NuHs0R/N6hDNgO47GjiJb8OBBSkFfafFGa5l3Ldzj4oV7XFlf443XHgEH7SDjqEp4I187lrNgPRgQyJAxM67aLp977XdY64zwx8t30VJ0jmaILWur8L4GWFrMaNzABBVpEWCiCqmOJ8RigWzHNHaFycWctKtRbYsuAn68u44SyKzBNyrEOG5N+uxm7yGrDGuNEZuNPaw3jF2Dq9kqX7/zJNksZGl5zM6ypnO5wLbrDRxb1oe+42cYzMLzMXsfLJgC2lTYlkfngmhP8Ow+zyxv0TEZ+0UL6zQTG7GTtpjmIbM0Qo0M0YHi6lunyecr6Fnu9MfYRcV72m9zNVvlH3/6vrqGOykf7V/m1eoCrtsEB5Ll2I1Fgtt7+FYTyQsoS8zCi/cYnF+jmNf1OGl4fABuFBAvlAxtg72shRKPEs+sDIhNSaAc3gvq0Qz7iKbIAnyuaTQLLva32ctafOHus1SVQgQ+cfYnAHzp3vvRBaQnmqjS45sxZjirQU1nIEK1voCirGi/DcktgxlpwqGisSNEe4btnR5tk9MKcubCGaGqWEuG9OMpAJ1GxmQck91LUHdisIq5VkpDW/ZnLdJbHWxhsIVhO++yEEy4dukUCz8e0tyaUjZq+WQwqpOG96CEshViMJpkp6L/asHOM01sB7K+p1ixtDoZ14eLWKdwXjjZGaC8o3T6AYPaOGzk8IVghpq9QZtb8Tynu/u488L+D1fgfD12vvDd5zj39cnxJq5BwWyjS3WuR/LmiKobI5VjdDLCuKRBNLCY/QlLL8NkI+bwCSFoFYh47h10scOI3uoIhaehLYUxSBGztTeH3G4QzwRV1DnOlk1uvvooR1crzMzhPuCJgooXrjzO+b87RLIclKLqdpm7Zmm8fAtpxvgoJFvskPU0zb0SU3Vj9NRSdRsEu2OidsD6dz3uexFZv4ndVJRLFZUXjooG7SBjPkxpm3oUbY1CgrEhmEI08IRThzPC/kVNmQjgWf58TL8J/t4OstinXOqgBylBoJEwqK0icEQDi9NC89oBxgUKPamw/Sbm9i5m1mW6FjJbUJRNKBOPN56y1FinuTleoHSKO3tzlOOA+L7BZJCueIYXS0xiCa80ad3xJNuO5I09GE9Jn92kGcdU8y30IEVGE9yJLgQGHwZUvSZqVtK5fMTszAJGKo8PNMo63vrj06xeyhmdVLgIspWS+fUjsiLAWs39UZtuIwPg6Y0tSqfIzgVUTnHt7RVar4esXipQsyHqzi4oQcLw2KPAry+iDyd1SlUKL5A+voyUjuj+FN8IGD69RDan+D8AyhoRuc1rzwAAAABJRU5ErkJggg==\" y=\"-21.80778\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_5\"/>\r\n   <g id=\"matplotlib.axis_6\"/>\r\n   <g id=\"patch_13\">\r\n    <path d=\"M 149.494978 59.80778 \r\nL 149.494978 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_14\">\r\n    <path d=\"M 186.984634 59.80778 \r\nL 186.984634 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_15\">\r\n    <path d=\"M 149.494978 59.80778 \r\nL 186.984634 59.80778 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_16\">\r\n    <path d=\"M 149.494978 22.318125 \r\nL 186.984634 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_3\">\r\n    <!-- Happy -->\r\n    <g transform=\"translate(148.881369 16.318125)scale(0.12 -0.12)\">\r\n     <defs>\r\n      <path d=\"M 628 4666 \r\nL 1259 4666 \r\nL 1259 2753 \r\nL 3553 2753 \r\nL 3553 4666 \r\nL 4184 4666 \r\nL 4184 0 \r\nL 3553 0 \r\nL 3553 2222 \r\nL 1259 2222 \r\nL 1259 0 \r\nL 628 0 \r\nL 628 4666 \r\nz\r\n\" id=\"DejaVuSans-48\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 1159 525 \r\nL 1159 -1331 \r\nL 581 -1331 \r\nL 581 3500 \r\nL 1159 3500 \r\nL 1159 2969 \r\nQ 1341 3281 1617 3432 \r\nQ 1894 3584 2278 3584 \r\nQ 2916 3584 3314 3078 \r\nQ 3713 2572 3713 1747 \r\nQ 3713 922 3314 415 \r\nQ 2916 -91 2278 -91 \r\nQ 1894 -91 1617 61 \r\nQ 1341 213 1159 525 \r\nz\r\nM 3116 1747 \r\nQ 3116 2381 2855 2742 \r\nQ 2594 3103 2138 3103 \r\nQ 1681 3103 1420 2742 \r\nQ 1159 2381 1159 1747 \r\nQ 1159 1113 1420 752 \r\nQ 1681 391 2138 391 \r\nQ 2594 391 2855 752 \r\nQ 3116 1113 3116 1747 \r\nz\r\n\" id=\"DejaVuSans-70\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 2059 -325 \r\nQ 1816 -950 1584 -1140 \r\nQ 1353 -1331 966 -1331 \r\nL 506 -1331 \r\nL 506 -850 \r\nL 844 -850 \r\nQ 1081 -850 1212 -737 \r\nQ 1344 -625 1503 -206 \r\nL 1606 56 \r\nL 191 3500 \r\nL 800 3500 \r\nL 1894 763 \r\nL 2988 3500 \r\nL 3597 3500 \r\nL 2059 -325 \r\nz\r\n\" id=\"DejaVuSans-79\" transform=\"scale(0.015625)\"/>\r\n     </defs>\r\n     <use xlink:href=\"#DejaVuSans-48\"/>\r\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_4\">\r\n   <g id=\"patch_17\">\r\n    <path d=\"M 218.763944 59.80778 \r\nL 256.253599 59.80778 \r\nL 256.253599 22.318125 \r\nL 218.763944 22.318125 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p5ea7692852)\">\r\n    <image height=\"38\" id=\"imagea50aa3a0f6\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.763944\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANUUlEQVR4nHWYS48kx3HHf5FZWVVd3T39mB7O7Ivc5e6SIlder2WKgihTsizABuSP4IMv/gb+JLr4Ihg+GDJgATr4IMCwBUm2JNOEJFsURdK75D5mH7M77+7pruqqyspMH6pnyJXlAApd6M6s+vc/Iv4RkfK3t98KdYgAiKVB4fEoXFCUwdBVFUNdUAeNJjDUOUYcU5dx5HrUIULjSZXFBo0R1+5RBXfqLRYuBWDTzCi9YeYyMlWRKksqltwnlMHQV0suxwesqyVGPJHC44PgUGg8RjlSqUjFYkOEDZrSG8pgUHhs0DgUqVjGeoEWD4ALikd2navxHs+aAXvNGkOd01VVuycIt9KH9JXFBkUeInxQANRoUrH0xaIlUAZN1FU1sTjqoInFAWBDRCqWVNV0CWcsAhhp6EpNKg01ip1mxO3yHI/KMVPb4V25wtAseaN3nzVVAjBUBak05MFgnWZTL+krhwtQBoVHMOIxBDygCURvpTtsNx0e2Am5T0iVpa+WeBQxjqEqUNIyNfcdHtQb3C1fYLda42E+YrrssKwN3gujXoF1mhe6C6539hjqghej4xUripejgqlXHPmYTBqKEJFJsyJDwYp9Ix65/2grtK5o0R/5lGfNEBs0uU+4U26xXYypnSZS7cZYOZR4ah8xrTocLTOKKmbcLVhaQ1EZbmw+45XeHr+eXeDO7gZvXtrmz8Yf8IXkEVsa9n2gLwEH2AAWwQXh1OTOw62QCWRKAzD3jsdNh2/vfY3dsk8W1SgJdLRFEfAIHW2Z1h0Oyy65jamdxnnh+P4IXSp0CbYf8ENL0q2pThLWfhNz8prlW3/yHW7Ee5RBM1COKoBZ4bEB6qCwKNRAtd8W3mGDpyuKa6bkm+Nfs5EuGMUFkzhnEi/wCGOTY70m0a0LOsZS2Yjj+yM6TzXxsVCdt1y68Ywvv3KP17eeMdxYML/mUEvNd/ffxCEoAjOvWyCh9VirDJ5UHJGRNrRdCGc0euBz8S47/Yc8rQfY0LIZrWLgfDrl8XLE/b11XKPQT1LUi0uWaxrTsby8PmU9zSldRKwdaWyZRgGphf1lj33X4VJUnDFUB4WW9v2a0Aa/RjAIrOh0BFwI9JXj7ewO/xpe59h2qXzElc4Be7bPT/evclKm2FmC1MLNr3yMksDCJgzjJSc2JVaOhU3IbYLzCrFCiAKX+4eMVcncaxyC4VRuBC0Bh6AJKEfArsC0iAUjgg2wqS0DvSRRDUoCg6gAYJQU1I1G9y3rLx/jgzBJci5kM5QEDpcZ07rDuc4J/bgk1g4ExLeyEIvHiKcrDZ5PA/7UHIKy4Xk3KhGMKIyAEeGCOToT0eOmy8x28EF4bWOX0SBHJLCRLniYj1g6w4lNMcqTakukHAfLHjt7Q/RCER8rPj7ZQAF9CSRyGjpyxtppZkZGFOBXhK4WhkAmgg2BDT1HEejpisLFvJDM6eqah8WItbTkQnfKR8dbJFHDQdllUSd0jAXgR/eu0+x36G5rvAGTw8OjER5wQPEZefCrhDgFqAy6ZYiWKR8CjoANrcZ0paGvS4w4Ml1jxHFQd9lIFnSitoRcHRzQiSzjpCCJGnbnPX75wcv4xxlmqtAVRAX0dhz+do/36y1iWcUSgd9lCsCgSSQ6+8zEADBWMUY8A51T+BhFQItHEchdzDjJ2/smpmoiIuWIxLMsEi7+i3Dx5jN6tw4pvrLg5GZNvqk5/xPLtx58A0WbkafxdqqRpxb9TrjAWCe4EFb1S3Et3eX9/CLrJgdgYJb0dIVDUfkIrTx7yz5NUIQgPP7TwJbTjLMla2kF6/AwGTP9PYPc2eLxtYiXIsfUA4QzbQPQEoiej65PrfJ+tQjGesF+s8a6yenrknPpjEQ12KCpXKtxWVTT+PY+BDDDkj+YPOF8MqVwMe8cXCEyDmtjxLbM7PtAKkDgTMeec+XvMiOKTBmmPmLqMn46u86mmaHE04sqRianpysqH1E0hqKJqX1bT89NZridjH/+4AYfzs/xq+lFQhDsQQcZ1UiAHxevYgio1Z83K2HVtF5SjjbYf/syopn7mgd2zPvFJR7Mx9yvNli4FOvbhtCIowmKoolZNgYlgSyqubX+hPVXD9F7Me/eu8yyMfTiiv6FE66f3yO5POfv771JGRT6t1g6Bfr/Mgaw49oeTUng5f4hT8tB+wAJFC5hz/Y5rjJcUHQiSxbVTJIcJZ63t+7SeWWKzw2LKmGc5Hz90sdc6k65OJxxtLvGe9WFM0BaPr0UtHJReMfcO2bekUpEFTz7ruKBHfMP+1+i8hFLZ+hGFbOmQ6oshY8BqFdxFSvHVnrCMCpIVEOiGm6+8JTOpMAHOKq67JV9nhSDtkMZlnxSbZKKIpZTgW0vDyiLw9JKw0C17qtD4L16wt88+jrTOuPBYp1uVLNuciZmwSSas3SGuU1REuhGNaOkIG8SlASUBJ5WA3wQPvfCLhvdnFf7uxRNjA/C0hpsHTFrOme1+TTRjIABIoPG4J5zYSrC949v8fBoxCsb++RNzBudQ86ZKf95cpWbvccsfYwNiiyq6UY1HW0Zm5wPT7bYLfrsHg5wtWI8mTPJCipvyJuYvilb9XfC0sXPaYICNG0pjDyeVBSLYDEIfRXzi0rzuBiyOZhzsOyyN+2x3Vvn2Gb82w9vMns7ZRQXDM2SSluMeA7qLjvFgINll1g7wm7C5H1hfmWdzpsNO8s1bgyf8sH0HOZnazQbgXsX1/8PKL1yq5r75uzHRCLmvub7s1s8OB5xbe2Aoja8fm6XP+w/4J9u32Tz557/2n6RRDWMTBtPkXIclxnv3XmRw3e22PvhBS7+yDP55TEbv/I8ebTO/+xt8tF0i3tPJ2z8qmTyXmAtLjEIWuS57ARQmdKUwa8yQzjyUPmIblJzMT3mr1/9AW+Mtvn23a/Q/48MHwlhL6GnK4w4Kh+RqAatPF987R4bbz1l7au7PP6G4unXxgQFmz/WuNt9ZlXKV699woNvJqSHlg/3N1EiZ9LgABfaSSkqvPuUPhSawNRmZMayUw0w4vi7975M/EmHrA7YTFB1Kxl7dZ9ENfggVC5iP+8xLxKqk4R0qijOBWxfU048F248Y5gu2S97vP32b/iJukH88xH/+OpV/nJtmyNXPefKKF0p/NzXVMHyqFnjx59cx8QNT44G1M8yetsaH0GTCaoJNOMWzJf693jn5Bq7VZ8/2rjL7cUmzUDRbGr8dSGLal7KjnhUjCiamFFSsF/2eLgY8dLv73D/8Qbf2/kC38jutD2aEjSCIxCVwaPC6WznedKMiLZTmiQQIkj3FeLBzKHpQjkRTL/i0Hb52cl1NuI5R3XG3XwDH4QvDreZu5RM1VyMD3lcr7NMDPfshMf5EOs0h3mGksBwvOCL69sMVNv7tRkaPmVs7h19pTFojpoe4iA9ULgUQgR1H3qzQNCC7YF7mnF7vMmVtUN2yiGXsnao1XhKb1aa5Cl8gkeofESqLYs6obCG1DQ4L2z15/zF8F36KmZ35cpTi3oqYe6Wq4cJhY/xEeglpAcBAixfEMr1dmCxg0BYr5lXMUtnePf2y1y6cEjZRFwbHnChM+XuYsLOYsDhbzZoeg49sCRpzSp8qGtNJ7XcGj5mXQeOXIUNMFCKKnjKEIgOVqBm3pHqiJfiA0IEZhGI84CLhXgGtg9NN9D0PCKBfJnwi3deYfKhcLh5DmXh9smEn18FcSBXc3wcOPfvit62px5lzC9FTF8LMKnIkpwb2RPcqlPOpA2luV+50gEDpVcDr2MjOoEAUdkuCALxPKAt2ErwkaL/fsrgbk01hqdf9YTEE+9GeCN09mD8oSX7TgX1oqXoaIoZrGHyEV53mCaGtXMVl80+RfhUYIvQNoxjBVEsgg2t+hfBoQl4065WNhA3AR8JZhkwCyE9EgYfF0QnJcp1CSpibWPBn7/xAd/96AtsfS+h8zTHpxFiNNx9BNaCc8S1ZdA7z/xKxMXulC1dPHc8oAAjgSJAdEplSTir8hJANaDrVXEtA/HcItajTyrU8QkkMWZfGP16xEk+5AfmVaLI4WJBTRfgPG5rhLx0Adk/IsxOwMTExzXJkeGtwSdnoE6PB1ZdNlogmvp2IHAIXRE2dI4bNcQLISocLtG4RHCJJj6pUYuCUFvIcxQjNt+Z0n/SZydMiK4skAC+lyG2QRU1zSBFeltEDwQ/X2C298l2M26lDymDkEpYjXPt1HQKVHWVX7UagTJ4+spx+dI+4lr03gjxrKFzZw/56C5hvgAlyGiIX8vABdL9ko1fBtR/94lPHCGNkLKCqiaalQQluAsT1GhImC8wRaAMEZmEM7ZYgTvtNlTuFblvq9U8CGMV8Vcv/pTjVwzlxFD3V5XMedT6GCZjJOsQTISaLhDnaLoGXQcG9zxm3uCNJqQJ1YvjNsOmS1wvxm0OCZfPc/SaWp1ayhlbnzUPqKHypOJJBfZdBxs8b6XbzD5vsR1FetgQ7y2gacA5mJ7AskTmOShFMBrxgaAhOW7QZUM9igmpQVmP7xiCUuAhaMX080M+98d32dQLis8cTZweDZyC/F8TNv3nNPiR7QAAAABJRU5ErkJggg==\" y=\"-21.80778\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_7\"/>\r\n   <g id=\"matplotlib.axis_8\"/>\r\n   <g id=\"patch_18\">\r\n    <path d=\"M 218.763944 59.80778 \r\nL 218.763944 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_19\">\r\n    <path d=\"M 256.253599 59.80778 \r\nL 256.253599 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_20\">\r\n    <path d=\"M 218.763944 59.80778 \r\nL 256.253599 59.80778 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_21\">\r\n    <path d=\"M 218.763944 22.318125 \r\nL 256.253599 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_4\">\r\n    <!-- Angry -->\r\n    <g transform=\"translate(219.775022 16.318125)scale(0.12 -0.12)\">\r\n     <defs>\r\n      <path d=\"M 2188 4044 \r\nL 1331 1722 \r\nL 3047 1722 \r\nL 2188 4044 \r\nz\r\nM 1831 4666 \r\nL 2547 4666 \r\nL 4325 0 \r\nL 3669 0 \r\nL 3244 1197 \r\nL 1141 1197 \r\nL 716 0 \r\nL 50 0 \r\nL 1831 4666 \r\nz\r\n\" id=\"DejaVuSans-41\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 3513 2113 \r\nL 3513 0 \r\nL 2938 0 \r\nL 2938 2094 \r\nQ 2938 2591 2744 2837 \r\nQ 2550 3084 2163 3084 \r\nQ 1697 3084 1428 2787 \r\nQ 1159 2491 1159 1978 \r\nL 1159 0 \r\nL 581 0 \r\nL 581 3500 \r\nL 1159 3500 \r\nL 1159 2956 \r\nQ 1366 3272 1645 3428 \r\nQ 1925 3584 2291 3584 \r\nQ 2894 3584 3203 3211 \r\nQ 3513 2838 3513 2113 \r\nz\r\n\" id=\"DejaVuSans-6e\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 2631 2963 \r\nQ 2534 3019 2420 3045 \r\nQ 2306 3072 2169 3072 \r\nQ 1681 3072 1420 2755 \r\nQ 1159 2438 1159 1844 \r\nL 1159 0 \r\nL 581 0 \r\nL 581 3500 \r\nL 1159 3500 \r\nL 1159 2956 \r\nQ 1341 3275 1631 3429 \r\nQ 1922 3584 2338 3584 \r\nQ 2397 3584 2469 3576 \r\nQ 2541 3569 2628 3553 \r\nL 2631 2963 \r\nz\r\n\" id=\"DejaVuSans-72\" transform=\"scale(0.015625)\"/>\r\n     </defs>\r\n     <use xlink:href=\"#DejaVuSans-41\"/>\r\n     <use x=\"68.408203\" xlink:href=\"#DejaVuSans-6e\"/>\r\n     <use x=\"131.787109\" xlink:href=\"#DejaVuSans-67\"/>\r\n     <use x=\"195.263672\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"236.376953\" xlink:href=\"#DejaVuSans-79\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_5\">\r\n   <g id=\"patch_22\">\r\n    <path d=\"M 288.032909 59.80778 \r\nL 325.522565 59.80778 \r\nL 325.522565 22.318125 \r\nL 288.032909 22.318125 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p96f2f529ba)\">\r\n    <image height=\"38\" id=\"image28367eee20\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"288.032909\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAOQklEQVR4nEWYyY8d13XGf+feW8Orqjf065kzRVoiJdOWLVnOwoFhIIhjIPEiQADvkiBAhn02WWSRVVbJn5BdEGSRRQIHMGLEDmLLtjxJskxKpCSyOTTJHt/rfkNNd8ii2kwBhaq6Vbj31HfOd853rtz8m38M9Sjwxm/fZSOZ8cu//yJm6QlG8JEAEAQkgDeCN93VRXD81ZrhcEnzkzHD+56gICo9+SenuEGCLSIWmxGT16BdawHojSpWiiWzKmF2nBPtR6QHwvhOS7q/ZHGpICgwi0sW8cLdf77B4Z2KVFra3CA2oOgOHwlBgdfgdWecBAi15uTJkLWnoXsGbKpwgwTVOJpByuHvViDALEKsUNqMpjH084qVtRlTk7NIYoJErLsetieoNmDG72kGD1t6n+5j1wf4RKMrRzCKEOgmPUMtKPCmu0dAn2ryxwplO7SQ7l07iBEf8EaIEsurW89578FFQqURq/BHCdN5RDKqCE6QAPVa972pAuIDauVeTe+XD5G6RVmPWbSYpUV84DeH+EDQAgLKgqkDykL+WJEeB4ISvAbVduP1SBME4lNH+LjgM/0DvvnZX6FyS9ABcYKeaZrnGWY/5tJ/Oa79y5Ry1SAuUA01Kj5YIFlK6CWoyRx1skTVFrHhhRu96WATd2ZU2xmRTMILJIPuvgtn/m+G3SKqFhY2YSOa8Y1X7pCult1cVtBLhU8Cp5cM0jrSiSOaOfpPGgytBa0R68A5QmTOYIKgzxYVIIByAeW6MQlyhiQEJS9+Arr3ugm4nnoRCkOzZGiWDK6X/Lu6RblboGqFOJh81tMM11i93eJjha4cRpoWrDsLpIAA4jokfCS4qGPncksoN7pYCkkgKM/wQ0P+zOEScGcE4Sz+fCS0uUbX8PbTq5gLju34BCWB3zr/kNu9LQ7urgGgl4p6NdAMNDYV0qlgsA6shTQhlBWSxPhY0/YNdV9xeg3Gb+zze5v3uZIecr9cZyOekamGtz93jY/+9QbJJODjjrGoM0R9h7JZgv+fMd/3bxEMNAOoNy35xoIwbjDPElwcGH3UsX25KZQbBhP6GfiAzJcdaJGhHcTMtzWzryy5tnnIs1mf7zy8ya2NZ/zu6m1uJU9YhJihXvDO6y8x/klEmwvB/L/rgwGxHVkAVAO6hux5oP9Qo9oB0UCwPYjm0DvyVCOFasFmdIiFJEYigziHG/Q4vRJz8lZNP6t5ejrgre1H3Cie0VcVV6JDNIGB1FQhhkbRjKRzZxq6dKJDx+BWzowTyDry6EZwKZhlRy7Xg+X5wOyKIj2WjmAlGIxGmpYQGQSoNlKO3nBcv7jP/qzgaxc/5sv9+1yJDtAE/vreH5FHDX964W1+dnoVPVcstzzKCi71oCGoACrggkAA8QJWUBbECeJBLwVbBNxmzWhlwSCteXR3k/4nGh+BwXl+Q4CQpVQrmvNX9zmpUm6u7/HtO7f4NrcIy46tyZ6h3A387bVvsfH5PVzfoZYal/nOINMZZTKL0p7gz5gaBO8E7xTBC22jUEXLm1ce0Tc1ual5uj6g905GNVYYsY7QS5BlhbQW2xP6UcuzOxvktxqUDhTv9KhWIZl0mf/4TcvlKwdo5dGFxXk5Y2OAyKOMJ4otedpgtCNSHh+E2hoWVUxTR8SDijxtuJofvUjkzmqSqWflgxNM0ArU2VnVRItAz7Qkx4r975/HpIFo3pUL24NXvvExf37uf/n+7CbvT86T9hoWtQYroAOiAkoHIuPoRS2JsfRMixGHD4rjKOOQnKJXo5XH+i4jvze5QDiOsZlw+MURhtM5YgzBWmhasuctz2YDXv/Gh/z0x6+w+VMwpacZGqpNzzCu+PHiOj/ce4lnz1c6V3kg8i8SM4APgg+CFk9mGmJl0RJITctJmXI0KdDG8XG2wWY6Y+eDc6y/K7godOnm6+t/EcQYgvNIHBGs5dGfXOeb3/ohbxX3+aenX+HDd67iz1WYnRRdC20/UDwUggazCJxeh3azBQno2BMnLcY4BmnNRjYjMy25qRmYCh+E4zbn14fbHB32CaXmS7c+5dPJKvrfVhk8rIkmFfL1jb/qeBs8OI8kMWFQcPyldY5/v+T82pTVdMHdww2S/xxS7FqCFuKTluV2QnLcMnklYfqaRQ1aothijCdLGoZpxWq6YBwvWY9nROKIxFH5iL1mwN2TDR58uI2sNHzm3D6Pv3uZi985Qc1LDN6BD51hQLAWWZSM7s4pnsbYdIOnQ82oDqQHJdH+DDfOkdqRHilU40lOPBIEpQJR5EgjSxa19ExLT7f0TcVQl2SqJlWdYMx0Te0M0WuOu/e3ufdoC16pecyQ3v4Ag9LgLYjqjJMuGNVpSRgkBCNkzxv0skU1DjfKEOtRdYv4BNfr6lvQHhM5irQmi1pWkiX9qGYYlWzHU7bMCQ5Frmoi6crBYdLHKMfoZskvH13kL2/9gPYNzbHNMSiBOAJrkTQnFBkuS1BVQ/J4QpzEhF6EjxQe0PMaRPBnY81AU64LKm+5NJ4gEiiimmFUsZmcshGf8lK8TyotWjqvaAJHnN1LoHGaG+f2eDXdpQmaNhiMiBCsJVTdgoz6uDwCBYhg+zF60RK0YnGhB+T0Dhqk9QSBaqRoB4H11RnDpMSIp6dbxvGCoSkZ6zmptOSqRhM49SkHruDYFRzWBT96fBV5r8/GV5+y06zRBoNDMC/kThwjSQKnC+LTBSFL8VlCWxiWGzG2JyQnnqBhfi4mPXYEI7S5YDNPrB3WK5QO1N5QuphjySl0hXYBLVNSaZn5Hg+bNdqgaYNiczjj8XrOqyvPObR9ACJxmDAokLKGtgXnOtREkEWJXlbkiwo3zqlXEubnDPmeQ3yX5G0iRIuuBA2Sisy0VM5Q+YjTNqW2htkgZWSWvBcuMTQlbdBUPiJTDTfyPf54420eX1rl797+Jm+8vMON/h4VEcaNcyBHWod6cgCLJVLkHWLDDClb1LzBpAbdGso1Tb0iZHtCtPDEs0ByqJlWPc5nUyLlKF3E49mIpw9X2Tm4iLw858bmPruzIZvFjM8Nd7mcHLJuTtnSc66YE/7g8+/z3Qc32EpnDEyJUZUF6xHvsde2O73fOuwgZXE+RQKkRy3LjQgXdZk9f+axqTA/b9A1pEew+3TMa+NnxGcCbDs/ZbKa0U769L9X8OGFgvZSjfPC19fv8OV0h1x5pt7QBMWbxQPKSzFGdWratKMUVTuip8fIIGV6o09bCG3R1UbxoC4lKAertxvqoabNFMmJx5TC7GKn6/N7MT9fv8iXtx5hxNOPal7f3uWT3hqH/THjdxXmo5j5H9Zcjg9Y14G+Shgqy9J7UtWyHs/IdNMZZnuayHZZ3+yfkqylNH1NW3Sqc7Dj6T+qUFWLjw16afGxRjUOH2tOXkqwRaD3XJj/apVfxy03V54zNiWt0fiRMB1nHH0pZvt7msVRxkgv0QgKxdI7PmhW+MXiKplqUATaoDtW6trhNkdd0IdAduAxpUI8JCcOVbWoqnORK2J8JESnFpcZit3A7LIwu+qJ5sLjJ6uM0pIL2ZSRWVJkNR/2NuFBxuyyEB0K75eXuWJu87Cx3GvPs9eOuBBPcGcKYOkSjARoVhLaXBOfWNqsMyjbt2Q7U8pLQyavDhjsVJhZDR6qsaEeFSRTS7HbUK0m4BWu1+0TWK+Y2xhF4KXeAV+7+DH/cfI5sucp6aHw34c3eDV9wrpe8HryFJ3sUgVNFTRHLmfme8gX/+wfgjhwadcQLDY1qg2U68Jgx+MSYbEtmBI23q3QpaVaTylXNf3HDbq0NMOYg9cjgoZqy2HWSs6vnnB9cMi5dMqamfODyXV+/v51Vn+hmPxOiZvGFNtzbq7v8Vr/GW/m99nSp6zrhqk3mKMveIodTZuD15pqtWsYqm1HeTHQ2zXYXqA65yl2Y0YfzPHbPaJFt53QDGOiuWX0qaYpBLPU1JOcMD4F4FE55kgX3Ow/J3+j4Sd7t8h/lrH9wxlBNJPeJX6gLvO9/Css1zWLc10vYJIDTTOAZuywRedGl0JvV9P2A20/sHIb5hc1ybQhxAYE4pnn+GZO8ayTQeIDqhWKXY+uFI/ubcLLME4XPLMDDpOcnm4xX5jifzRCP5/gNoboecP0Zp/JK0IyFYb3PRLAmBLm1yx6ofDbFaID/iBl8KBru/KnHlMHBjuCrj3tSkrdVyzXFOnEo2uHWE8099SDrhXXTSDd05xeSrBesWwiZk3Cdn7KxdGUT8ZDQtFDWkdIIhbbimAC1Xqg7StWPvIYH0E00V0/eBITPKgW6hVBNZBOHIutrqS6RHF4K0Y82ByG9y020+A1uvbEM8/8vO5aNgtVE2G9YrZXELZmqCIQK4dYCElEiDSLCxltcbatYAJR01UUk0wCK/e6v9W14OKuIU2mnqj0TF6OWFz05I8V+5sxy0uW4YcGseAThWoDunS4RBEtPcUu6DYwvWZY7hSEuSKvoFnTHFU5iyYmPRZcLyIYxfSa7hrluNsZGt739J4sMKu/rrCZRtlusnIjkO8KydSC6jpmcUK1HvAR9J4Ysn1PudoZJTYgzuPSiHjWkhxYbBGjWkN/R4GHegzVkz47j/sEE7j6qxoJgdmFhHLL49NO3ae7iuJxCVowy62Y+QVNtRYIOtB/AL1jTzRrWZ5LOXk5EAzEUwUB1t9rcalCXCA+KGlWU8qtlDYT5udS+rsWmyrMMmDKgE2FtQ8c83Oa+UUY34FoWlFtZhy/KrjCgQrEe4bV2y3iOgFpfCQkk4Cuuk1fCYFo4WiHEct1hSssxacGZcFH0Bad9O4dedwgJhiFTYT5BUU9DkxvaOJTRfEwUK4pXArDHQdohp9A9rxlfrXg8JbG5h6pFemBYuPdlmhp8UaBUfwfQ0JMsYDBvuYAAAAASUVORK5CYII=\" y=\"-21.80778\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_9\"/>\r\n   <g id=\"matplotlib.axis_10\"/>\r\n   <g id=\"patch_23\">\r\n    <path d=\"M 288.032909 59.80778 \r\nL 288.032909 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_24\">\r\n    <path d=\"M 325.522565 59.80778 \r\nL 325.522565 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_25\">\r\n    <path d=\"M 288.032909 59.80778 \r\nL 325.522565 59.80778 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_26\">\r\n    <path d=\"M 288.032909 22.318125 \r\nL 325.522565 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_5\">\r\n    <!-- Neutral -->\r\n    <g transform=\"translate(284.632112 16.318125)scale(0.12 -0.12)\">\r\n     <defs>\r\n      <path d=\"M 628 4666 \r\nL 1478 4666 \r\nL 3547 763 \r\nL 3547 4666 \r\nL 4159 4666 \r\nL 4159 0 \r\nL 3309 0 \r\nL 1241 3903 \r\nL 1241 0 \r\nL 628 0 \r\nL 628 4666 \r\nz\r\n\" id=\"DejaVuSans-4e\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 3597 1894 \r\nL 3597 1613 \r\nL 953 1613 \r\nQ 991 1019 1311 708 \r\nQ 1631 397 2203 397 \r\nQ 2534 397 2845 478 \r\nQ 3156 559 3463 722 \r\nL 3463 178 \r\nQ 3153 47 2828 -22 \r\nQ 2503 -91 2169 -91 \r\nQ 1331 -91 842 396 \r\nQ 353 884 353 1716 \r\nQ 353 2575 817 3079 \r\nQ 1281 3584 2069 3584 \r\nQ 2775 3584 3186 3129 \r\nQ 3597 2675 3597 1894 \r\nz\r\nM 3022 2063 \r\nQ 3016 2534 2758 2815 \r\nQ 2500 3097 2075 3097 \r\nQ 1594 3097 1305 2825 \r\nQ 1016 2553 972 2059 \r\nL 3022 2063 \r\nz\r\n\" id=\"DejaVuSans-65\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 603 4863 \r\nL 1178 4863 \r\nL 1178 0 \r\nL 603 0 \r\nL 603 4863 \r\nz\r\n\" id=\"DejaVuSans-6c\" transform=\"scale(0.015625)\"/>\r\n     </defs>\r\n     <use xlink:href=\"#DejaVuSans-4e\"/>\r\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_6\">\r\n   <g id=\"patch_27\">\r\n    <path d=\"M 10.957047 104.795366 \r\nL 48.446703 104.795366 \r\nL 48.446703 67.305711 \r\nL 10.957047 67.305711 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p8e2c7f9c31)\">\r\n    <image height=\"38\" id=\"image7c13a746ba\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.957047\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAN/klEQVR4nEWYya9kyVXGfyci7phzvqmq3qtydVV1uXAPHtrGWKJlbIRAggUSLBAr/gU2bJDYILFjzwZZYsPOYoNgAQssRCNbatPubtrdXUPXq/HVG3LOO0YcFve5SSmVi3sj44tzvnPO94W8/td/q9nXZywfjOk9NfReBETBlQHx4GMhOMHWio+FeiC0mWArBaDYE3ymmEYIsSKtYGqodgK9WwuuDZes6oTnLyZkg4q7e6dMki3TaMOzcsxuvOHXes95I3nG1G75ZX3A3z95F1dda6jnOSLQZlAPBYDtnsO02oGqFBDaXEDBlZeg9oUQQXIh2ArUCBIAgfxE2MwnfLY/ZPe1C65cmVM1Dmc8j5Y7bPKYoMKt7JTf6f2Sh82Uv3j4Rzz87xvc+vEKt3d1wWqbUm4cITa0qYBAcNDmQrSGNhNCDKYB0e5XLdgKog1krwLpzCNeEa+ExLD4SgQC8bllMdul3vNcf+2UR/MpAE0Y8Z29Y06aIb/7L3/O6GPH8Ljl5qst0gZcUUfUlQMDPlVC3J3eeMADegmmBgyIh2iruDIQbQzZWYstPG1uQYS2byimFrUw/SRg68DqmkPU8sTucvfWC96ZHvN2/oS//OkfcvNHhq/ONphNSeilSAiExOHKz0eEgQcBVwg+Bh+DbcCtIcSgpouOBEU8tIngSkjmnnLqaNOINoVmKKiB5EKZfFZT7DqqoUWCohZM1nKjP+Nu9pK/+vGfcO/vnhIGPXAGzWLEewhgNzXOJwq240ybK7YE8UIIUO52ETJtB86ngivAJ6DGYnzHt1+lXVrILhTTKGdvxbR9GDxS+i9a1ETMdyL+5/SQf//pm9z7hzPCZABt6L7OgAiIogjGFYIUtgM29LQZtJlS7gWqPY9cprLtd8CbHgBEheITME23MXSAN9eE87eE9e0WFKJtIJ435GcBszXMlzmD60te/tYusq348hMCaBcgRDAEwCkSB4gDftTSHtSEcYsmAdNerrNdOnymIOAjwSdCMmvY7jmaIZQHAfn2gv1vnHDl5jkhUvIXFXZd0eSCJsrVnQXfP7rP8t2C+nCEeI+oIlW3kTqDimCanRYZ1ZgoEGUNtt9gooC4gF1ZxEOwXIIK3WLT9blopczvJBR7QnmjJrux4jvXjvnTGz8jsR63FepxzOm3x6x+f81vfusTfnDlM17PXvHurQc8ezcFEVQEXFc84hVpPA6nJGmDqqAKzih1FaF0XPNJl6IQgcZKS6AeWfypEBUKRfeM2rCZZfyMG8yqnOOXU9xAOf2zLd87+oI3+s9JTMPAFFhRduM15VFDdWVAfLZBpYtUxxOLExeoyghrAy7yVEWEjTxRrFRpRNM3qAFMl39NAs1QaFNh/Nka2oD4PsuVxTSWIvY8MlOMCzRjzx/f/gVv50+Y+xyAoS0xBJZtyp3bL3n5znWu/meLW5YdmZ0BwOSDCjFKltW0jUWsYq2Sxg3a9/hMUadfgpMk4HuB7VVhebsHVshOKoYPoe0H4rQlixv2JiskCP/43m/wN5/8Hk/rKaVGPKl3mPscK0obDJvrHlO3qO2ipSKgirs6WvLK9BmkXYU0raUqu6bbGxdsNIPQlTECGgSiQPGVBtNE9I+7ilYrSBC8F6bZln5UsffmhifzMdPeloumx7JN6duKQVZwUeccf3iVu994wubGEelFTfRq3f1X6nCDqGQVJ2zrCIAk6qqjqR3GBGzqO1Aq+LUD6aYBvmum9SgmmVVMflnRpgnlvmFWZpys+xRVTNtYtmXMvEhRFW6OL3g7f8IXiynx3HD/xT7jXUP/UQXGwGXkXFDDKCkpbMS8SFltUox0fLo2XNL0NwQVFkVKmUTUtUO9oMsY04JpAtIGomVNehFTqJC6lpePd+h94dh5HPCJEGyPalf4+a0hb42e8+psSK+EahYTrxSNLOpM18tEcDf75wB8ttynaCIKoFkkuGHN1yfPmLoNH64Oqb1FRAlBaIJD40Dbs/jMwhzEB1yp+Nrw4r8OGc4gXipRERh9tsFerPE7A14tBvzTwduwiEAhf2rJX5ZI0RD6MeIVVDGHyYwbyQV3BqdYEwheIA7IccYHs0PKELGbrNnJtqgKcdzS75cko5Km10VW2gDGMLsnmEWEz5TVLc/iDtQ9g1mV0LRI44m2sLk/AoHt1YCEjp/ruyOe/qDP6bf6qDM4izJ1a5rEcnM0YFPFrF/1GH4OD+QGt354zvPtiIsip5/UNMGQWE+VWM5Cn2pkME2P+Z2I9nZBWEaY/RotHfbcUg8AVXTUpzjss70imBZ81uJ2a7Z7lieTlHYQuPu1x9x/sc/oQYQBmPucvi250zuln1bghWirHP6k5cFyl9Q19KIar8IoKdnN1qSuJcRKNTbM7kYs7np8YRlfW9IWjr2fRLjtZTGX9Zfic3zfk50IJvbsjDb0ByX9Ny749W9+znd3vuDt609RK7gX9Yj9eElQw9Rt+O7+Y/51lRNcn3jecP+DI65+7RUAo6TEmfD/czcLrI8EW0M8s8iZxb434bUnDeVUSc9g/HmB5intKGX0sOTVOxnLt2reuP6STRPTj2v20jWH2ZzjYkqrlsWtCPdos8OD9S65a+i5iuvpjKuTJaeHA0RThvcNz3fH7O6sCCosq5SydazLhGhc0iQRfhmRvxDyF0ozEM7ejBEPg2eeZhDR9sasjiIuvhkYXb/gjdGCcVyQ2oZtG3O8mvDz50dUJzkMGvRtj3v8o9dR6XT65lD4wR+8z6aOCRHUfaEeAfOIeZRTNQ4FttsEX3Q9zUS+U7rA6qZQjwO2FJILYX67q9o2U+xra+7tnXOQrXi03OFkPcBZz+lH+8RzoflaAYMGOY9Jrm9wo0cV0ipqhdEj4d/ufZVeXlHfK+h9d0M566GrCFWhrCLqRYJdOCzge55QGwzQ9JVmoOTXV4gor00viE2LEaXnavaTFas25T+Ob1OsE7SyDD6NuPagZXbHEf9vxvRTz+aKYX3F4qQJqDOIV0zlSX7eI//hiu8f3efD2TVWj3YYvnNGL645PpniZo54IahAZQ06bdC8pW4MNIbtKmE03rKsUiLr2TYR58se9Uk3xGVcM55smJ0MSc8UHwn771ckxxfURxN6x1vS8x5OwmVDq1raQUwyU17c3+OfPzjg6nue7FA4Gsx5tR0QJy1mLrgttPmlBFfI8poQBN92c3O5zCjrCBGlbSxJ2hD2CvRxj/RxRhVlyKGnmgjTX6zBGfy0T/xqTTvKWB8anBqB0ClHt6qxVYwpDMOHkD/ZkL20PLSvs3otoLEyOddL7yjUCjSGYpWACmIDLmmxBrwXnOtUS1FGuI/67HzsKXYNbSZkHxhMrTSTlOTpHKxByprNm1N2P2pwWAGvSBvQyJKdtYw/dfSft/g8Rp3Qexk6c9sI2XkgPW+QNrD6SsrmWoTaziw3g0AzEQ4OFuzmG+ZlxqaKCc9yojU8+22AQP+hhQCTT9bY+RYu5jAdQ90wfu8p/mCMM5UnRJaQOaQJqLn0la1Sj7tNfQS2EtQo8aLFrSqk8gyAwVMhOMPFvQQwyCLhxI/xVwxFHVHXFj9tqG/UHA3XeBWeRzsc/MSyPcwZrCukl0NVd+oCsKcLnDQeMQJBME1nUMsdh08joo2y3TNUO4qKsv9+ID4vMastGEP8eI1mCVjDoD8B7VqIzyLCASRRQ57UVGlDUcQAnJyPcDPH+kjoPVdoPeH0HKxFku4dxkPcr+zSryyUWzeYNub8ew39yZZRVrL94IC995Xe0wJTNcim6ORJFCFVN26S85pybGkzCE7ZlgmDvGQ337BtYpKo5fnZGL+KcAYGTwLZWdvtbS2EgCTJlyrWhdghvkshxmBqz977G+JlzvpojPm45ea8xFQes66R1RacQ+saigKmY6SosJsGyDAebClU24jyPGN+sYu/UWJtIMsrNrOY4QMYfb7Bnq/Qswvk6j6hl8LpHH91in05wyEgbSdfgjOYtpuFkw+XTD4xl2bDI41HYwdG0G0JwcP+DhrZDth8TbrodQdUQ3OWksyV+V0ItcWepOSfwLAIxMsGQiD0U8w2Q08vsEWP9miH7dWMXMBJ2zlgtRZpfJcihXacED9bgOs2pqxg0AMfkF6GFiVSVJTX90kCmMUatw0EJ8Rrof+sxaeGeGHpPYuZfF4TX5SYRcfPdqdHdLZEy7JLpTXYRcFgtsWPMpxGFqna7m7rUjWIKqYOhGGGvVhDCGgIaJ50lx9FTZgMuveaQLObE9cNbt2gRkhfbAmZ4/xGjijsflQQP5mhiyVaN4hzRMs1JDFEMWINfncIXjFVw/yrfZxK11xN4xEfIIBpW9QZQmwxadxp8UEPWRfdVdPeADVC/PQCG1vspgZnqScx8aymHSeYyhOvlOw84BYVuliCc5g4xl/bwT47QzcF7E1QH5CyxWwKFt+6QrLyGFN3/JHGI21AVDtv5xW7rkA7yx7yCAnaWXkFt6pQZ3HPzml2c0IWYcvOmCRfnKNG6D+rGH58gTmdo1f3EWPQ8QBTtjS3rqAHOx1vzy4wsyXNtQn9xxuKqcVIcyn8AqgxEAKmajBV05Vy65HlBvdihjqLJhG2aLqDVB2J4y/OCLEjPtlgym6dW1XEnz6Hl2fgLGZbouMBUtZoZHGnK9pJ1rWJPKe+c0D09ByzKpl8ssWYujMJ4jtHLF5RY9DYIZsSzZOOY2V1WQg1ZrGBuiGM+mgvQ/MUU7bUBz1Wr49Qa5DnZ4TNFqyBuukiX1TUR1N8HiHrLaZqMauC5sZul+6yy1B0suD/AALuihMzN9+/AAAAAElFTkSuQmCC\" y=\"-66.795366\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_11\"/>\r\n   <g id=\"matplotlib.axis_12\"/>\r\n   <g id=\"patch_28\">\r\n    <path d=\"M 10.957047 104.795366 \r\nL 10.957047 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_29\">\r\n    <path d=\"M 48.446703 104.795366 \r\nL 48.446703 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_30\">\r\n    <path d=\"M 10.957047 104.795366 \r\nL 48.446703 104.795366 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_31\">\r\n    <path d=\"M 10.957047 67.305711 \r\nL 48.446703 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_6\">\r\n    <!-- Angry -->\r\n    <g transform=\"translate(11.968125 61.305711)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-41\"/>\r\n     <use x=\"68.408203\" xlink:href=\"#DejaVuSans-6e\"/>\r\n     <use x=\"131.787109\" xlink:href=\"#DejaVuSans-67\"/>\r\n     <use x=\"195.263672\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"236.376953\" xlink:href=\"#DejaVuSans-79\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_7\">\r\n   <g id=\"patch_32\">\r\n    <path d=\"M 80.226013 104.795366 \r\nL 117.715668 104.795366 \r\nL 117.715668 67.305711 \r\nL 80.226013 67.305711 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p84f078b21a)\">\r\n    <image height=\"38\" id=\"imageea488fc199\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"80.226013\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANi0lEQVR4nEWYyY9k2VXGf+fe+8YYMyPnrMwanD2ibrfasi2E1YAlZiGxQLBEbNgY8UewY8+CDVu2CFjAAoxkISQPDU3b7W67uoaurK6qrBxjeBFvuveweFnZsQlFvBi+951zv+87R35n4y8UYyF4APAebVq0bTFJgqoi1oC16KpEvUdEUFUIiun3kDwDEbAGzVNWhyNEIZrVuC8vwBrqgwkXb6dcvaGEcYu4ANMIWxja9RZJPOoN2bBkdZ7htG6QGGhaiByIQdsWcQ6yFKkb8B5EQQSxFokjTJridzeoRwnSBpphhGmV2WHE9LsrQhDCLCV7fkj/WOk/a9j8cE5wQ6ZvWGTNo6OGNjNELyOaTZDYUxYx8bjCiQi6KiGEDgBAULRtYVGAancNwFrMaEjYWiM4Q0gctmxp+hFn70asdgJma8V37j3ASfedJ4s1ji/HnJ7mDO4PyU8CgweW+VGMJgFJPe2tCnMWE0YKXqhri8MI4hxhuUTrBjSAGPAgImAM6gNmNMAf7eONIG3AlA228WjsKPZiqneX/N5rn7KTTBnZFetugSXwcXzAncE5D9c2OJ6MKT/vM3yk9L6wLN4IoOBiTzNqoTFI3sIswt0wkeeEqurAXL8ncdz1TxKzOtogREK0aJE2oNaikUGtITtr4WlGc2RYcwUTu2Bsl3xW7QIQSWCSFnxebJGthOmR0g5a7NTiB9B4Q5Q3NPMYFNKdAvnt4Z8rISDWonUNUYQkcQdMBF0b0kx6hNhi6q7UdtUgbQAR1BlCZGkHEZdHMdU6rPZaejsF+6MpkfUUTcyTk3Wihyl2JSxvt+SbBd4bqqsUooBxAQ2CLh2StzhJ046hpkbiuOuttgVrIYnxgxQJSjSrwCuaWBAhZBHSeNp+TLUeEZzgSoVLodzuWB/EJbfyK/7ph+/Tf+RYbSnt0ZKDyZRhUtIGQ7XmKOqYq1lOUIFRjb5Mr0upAa0bxDkkjsA5JIrQvAMlTUAa35VQFVSpxwnqEnwi1D2DrZViX6jHAXWK94b/eXTIh8t7jH/uWG4rO++c8O7kGdvxjPOmRxUcl3XOZgZfWs+z52tEWUNrFUfwELRjyAhEMZImaJ6ikUUaj0b2+rQGzKxCI0dytsLnESZ1+MRw9TWDff+Ko9EUgNS29KOKH31xm+lbwtfefMZ7a0+5P98CYOyWtGrZSAq8CqEnnPd6VLMEs1bjaFqArq9UO8auJULa0IGrWwh0PZXGaOyQVY0FqvWE8z8u+N6v/ICfFXscpJd80P+MVBpO/YCNZMHjxYQ3hie0wfCiGPD7Wz/lSTUhNi2WTlZWLuLe5jmflTuIUcwNU6pguv4hjiByqDPdaxFwpmNNtXs2XeMDDHsl76TH/NfxPT5b7BDU0Khl7jNyU3MrvyI3NQufME5XWALrrgCg7yqGrmQ7mfP+2jEbkzn2UYZBQ1dGkWvrMeA9sqqQqkWq5pqx0AHxASlKNImQuqX34JLwjxv81U//lOVlxpv9F7x6zELWdQDC/WKLh/MNYuv5j4u3eLjaZORW9G1Jahr6tmJgS/7g1ifUE48jKLhOZNUHhK5kr3oKDJrFtIMEDNjCdUBVO8nwgY2P5sxnI8r3hJ9c3mbaZuzGU5Yh5qQa8nw15GTRxxql16/puZpJvGDNFTRqadQSEJYhZiua8Sff/hGOJOn6SgTJ3A0otQZNYjR1+CwixIbpnZhkFjN4VGCWNVLWaJaw3M+5eNvQ7FZ8+mKbjx/dYrIx55vbT/jBwyPaeQRxYHNrxnY2YyeZsRtdsenmXPmcpSRMfcbcp5w1AzaiOY6qQo108mANEpSQp0gIYMBnEeVmzGLHsrij5M8tvWfdDZjW044zTr/uGH3rJR9sfEliWtaiJSPblelfZ+9iC4PZqzkcXjJ0JbvRFWO7JDU1NqTkpsJ3taIMEWfN4Jox57pkYS2KR6oanAVjaAaO2W1L8c0le5Mpx+MNkouM0cMSlZxyI6Y8aPjNzaf8xuhTPizu8qDY5DC74NNiF0SJDgu2R3PW4hVb8QwjSq2WIiTkpiKVhl6oeAF4NeSm7kwcY256SnzoymgtaoVqZPExZFnNVj6H23DycodkHpO+VOJpi53FGJSTZsy6K/hptceD6YSiiskmK17fPGUzXTCOlgQ1VCHix4u7fGPwmHfSYyzKuQRqtUTS2Z4TkWsLMl32CgpxhCaWdpBQ7BqagfLW+jl72ZSn8zH1hqfYsmQnYKcV488SHr4/4Sg/ITc1742fsvAJKx/TqqFnazJbM2tTquA4q/oEBCNKqREDU9KTmsI0WFGufI7DuU4irnMY1vCKRbVCuaX4WyVGAkaUxhsIoEYgKKLK4EnD/edb/NHOR1QhYj+5JJWGSFqWIQHgUbXJF4t1vjhfp20sH9z7nCpEnLZDcDAwJW/aJae+h1fBaVkiWYamEbgupb7SKJ+kSAthHvH4ap1Pnu/SrCLc3JKfetQZVITkoiK87BFUuB2fctoO6ZmKO9EZqbT8stniH46/xbPzEVHk+frBU749egjAue+Tm4qxWXFgA3t2RiQeJ0l3R+JDx4LIjT+mJ0u2f9yjHhjmhxPq2w2SBNxKSC+6XIYBs6yJrwYAbNk5pUaUIcIjfFzt89cf/iG8SGC35LWtU+72zhmaFUYCsXh6pqJRi6fBIhzYBYbIdf6XJd0hUIXWI8sKe7Gg//Mz8pctIYJ4XLG1NaVa9zR9iztfIF7RyOIKmIcuQqXS0Kjjh8sj/u38HfzS4dda1oZLqtbxk/ND/vnsPVJpWLcLNm1BbhrmQbkIgWmIcOos0nrU2a6/RJBidd1jhvrWmJNvxJ3oPuhxsplAGjA1aBzdmH1ypRyX69S5ZWIXfH/2Nv95/Bp/dvRDnt0eEVnPYe+Su/kZd5NTGrX8otrlu71PSa9P4onPKDQmlQYnVdNpVlCkadG0S6+aRKi1oHD4LxfI0+edp66PqW+NcfO607vIoZHFNPDxxT5v5884iM9JTEtRpPzt938LHbSYKPDlZwf834nS9IW/+d7fs+cu+aTa4/X4hEg8HmFsVqTikd/d+0sliTvGIodUTecErUcj19lOWaFl2Zl7r4ekCTiLOtv56Cjj8vWUiw8qxmsFb2+csGgSpnXK4+NN0scxa78I9J+WRE/OOP3uAVdvgTua473h1uSKo+Epb+QnHCUv2HdXOOx1CBTpGHKhK2no4o2W1VfDsLXQ1N31qAu/vp/Q9hyikN5PKdKE/x6P0ThAEKQWogUMP59jvzzrYtIXFW2ecLmZQhAu0hyG4BGWIeEqZK+itYIxnT++0rS6QZyFNEHrGpOmXd8lESFPaCY5pvKE2FIPLcX+tfkbMJUgS4caxbRCm8HZ+0OSe31MC+WaoRoLtMKdey85Gp6RmJbc1HgMRUiugYkgdYNmCbKqutMpclNe8pR2lNGME+qBpVwzmBZGD0p8aqn7HajVfovpNUzWF6SupfYWZwKR9dTeElSIXUsf2HQN35k84F7ykiufM7ZL9qJL5iHFq8Fp03Sx55qlG9+0X6VXzWKaYYz4rrw+li6FRIbVxFIPhDZXTGno7ZTcGV1gRLmqMg56V2S2Ziue8272hEYd++6SkamIJRAJeIW5Ol60A+Y+Y2BXGBHpFimRu9ExtaZjC5DWI1WDLT2mDaj9qmTFbkSxZyhuKc1GS3ow597aBQNX8Xi6jhElszX7yRW/2rvPjptiJWAkdF5JBwrAovRMhZFAGWIcSadR0rRo1m13MJ1fStV0IGOHeKVai5ndMagBXQrNQCgnCvsrhnnF1mDBMF51ifV4ja03FxhRjARetGMeh4iJW3Dlc4Ip8aYhogNZqiWVFouSmhpH67umTh00bWdNgNT++lB0XNtlTTS3JJeWJhdMrZgGor6wWjnqyHNe5BiUVg045fPTDY6vxtxdO+ed0TMi8Ux9Tm4q3kufMDbtDWMAVyGhUcuzahuH6QYQqeqb8gE3aylp2mtjjzFNIDsPxDPBtEqbCcmFQIhphhGXI8+0l3O4cwGNoXzWo7Twv2d9eA1eG5zyy2KLZRvzfDjm13q/5MBN6ZlASidJL9oRX1Zr16ey9d3JbP2NPr1aSWl+vSMDTGlJLg121dL2ItzKkJ576mF3AOa3LWFqeXK+S1QKpoZqr0Gs8tHDQ+o7ji8u16gqx9mqD9vwjfwRqTSM7ZJTP+TfT9/iydUYp8slkudfgbEGqQMkcWfmq6oLkqsS27TYsxmIYLOk07TYgqS4Umgzx3JfyZ8ZorlSjQVZWdLdgtVZzif3bxEPK4xRTqYDLtdzHtZb5KZmEhb83fGv8/mjbcQpDmO7P341yNYN2vrOdqyBqkabBsmy7jN1022CLmcw7GNri6ynhEiwldJ7KqAgAeIpNAPDyuWIF2RlqPU6ZqWeT6c7PCnW2c5m/OTkgMVHE6IIkjemONpu39oNuqEDBDczZVfD696ram6cIk2QqsaPxt3HrRAVSvzSg0LTM6hRwqnBZ93vhDRglrZbNywtD9hEjPJzt437WZ+0gPldz1ZWXg8jrx7WdDsyEXS5ugbRTepa1aChm6iMuYlF0njSFwVuleCT7gZCJJimq0C0UGwp+FSRRogvDfEVtD0oNSZkgUBEuoRyomgSeHEx5P8BVufbwKWNnK4AAAAASUVORK5CYII=\" y=\"-66.795366\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_13\"/>\r\n   <g id=\"matplotlib.axis_14\"/>\r\n   <g id=\"patch_33\">\r\n    <path d=\"M 80.226013 104.795366 \r\nL 80.226013 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_34\">\r\n    <path d=\"M 117.715668 104.795366 \r\nL 117.715668 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_35\">\r\n    <path d=\"M 80.226013 104.795366 \r\nL 117.715668 104.795366 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_36\">\r\n    <path d=\"M 80.226013 67.305711 \r\nL 117.715668 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_7\">\r\n    <!-- Sad -->\r\n    <g transform=\"translate(87.675841 61.305711)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-53\"/>\r\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"124.755859\" xlink:href=\"#DejaVuSans-64\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_8\">\r\n   <g id=\"patch_37\">\r\n    <path d=\"M 149.494978 104.795366 \r\nL 186.984634 104.795366 \r\nL 186.984634 67.305711 \r\nL 149.494978 67.305711 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pc711ff372e)\">\r\n    <image height=\"38\" id=\"image2650615c38\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.494978\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANYklEQVR4nE2YSY9c13XHf+dOb6ipB3aTTco0RUu2LFsOLMBOkCDI4EU+gRfZZBHkAwT5IFk7uwDZBAiyCgIEQRaBEcOGE1ieIJqSKFMkxSbZU3XX8KZ778niNSgXUIsa3qt/nXP+wz3yzb/9ezURyvOM7ZUUhOwEANcpKqAGqpOBHAzZC8d/aIm7EZKAgGkNphMkQ/aKWshVBgAF0xn8lRAuhWEGd//4CX9556d4SZQysMolq1QxqCUheEk4yZADXN0zIOBXUCwV2yvZgd9mupml2/P4deLsXUfcGcBn3EVg9hjmjyPV8zUaHP0i0O15Tt+z9AcJfCYLxGSwjSADZIReHQCWTK+OQS3bHEZwanDqwAxQNIrtwUTIHmItxEqQZAhXSrGM+GXHwS/hvPMAHH7QUjw+Q6uCXHnaw5KhNgy1UJ4LGEt/lEHHSubxMrxJWDKGTP87gAyKQfFmwA0TkAQmCr2FbEEdSIbq5Qh29qyn/PQUhoh7aZj8bEBjGjt1uMf67QWrNxz9HFQAgfbtluJRCd3YCYBUjuCcybQ6otzmgqftHoNaboUr9txmHCN1kApFlNcP0wvhcqzk4pOG8PSMfL5E+378fDpBvAfniLOCq7uO7W0lLIXiUgkrJVUF3UFCBoF5RL0w1AlTpmtAAW8TM9twp1jSZk9tO7xEBnW4+rkSK0EtIziFcKVU54nyVYc/XqIXl5ASZjZFigJyBufQqiBVjuyhPBFMD7YF1yoHHygvv2tIhz1Hty7wJrMdPNZkDMqrfs7alixsw6AWgMtY86Bb8MHJG7iD/70ayzwPZGsAkKxkJ7iLLfn0HIYBmdTIdAKqqC+gCOTSIUOmuBiJUp9k/CZhm7Eq0ycVqzuZm/WKYEem7YUNWQ1Zhalt8ZIY1FKagSFZPl3dYPOjA9zyGzPCKuPXiX4+MsVEpTjtkOUKrIFQI1WFOovWBRoc2VvWdytcm1l82oGAGiEFQ9zzmKgsHg00BxW/tkdU5cC07GgnjvVQYEQ5ryYYlC472jS+/8mTQ268UOTvPvi+/usv3+fo3x3r25b6JDN90hKeL8knZ2PbACkL9OiQ9o3ZWFErbI4csRR2P+kpH1/QvbGDGiiP1wD0BxNiZTn/ukcU5DXjobuR4Vrqcp2RzjB5anDNKF/uv5+/zc5PAiffhmI5stGte9g2SF2NoIyBsiBNA93CYpISSyEFyAVsbnrcZoa/aMHA9u4cdUIKIx1nzzLtjnD1FhRvXXF3Z8lO0dAnS58dO6EhquHhvUOWp1Psucflf9vn8h0lVxm3ddhOIWYoAjqbgAE1hlR5+r1AtxCyN2QH3R6oU4ap0O3UhJUSK2j3hW5/1K/5I8P0OGEGIU4TP/i9f+aWXTOoISG06kgYAonlzZp/Of0OP/zhe7iLP+r4yp0TfvviBojDbRO59qifgzPEiSfWlnbPMkyE5kBIhRInSl5ExGX6ZGg6g+kMKmButJRlT7Mq8b8I+HWift7gm5q/sX/NP3zvH7nlVqOYyihBqxyoTcfEdfgrwb1795h1X1DVHTTVWI3KITajwdAcePqZob0h9DMlzjK5yEiVKCc93kdKH1EVUha2baAIkbroiQ/mbG8JmzuB9oYj1xm88oPnf8pfHf2YTS5YpZJWPetUskolPz97A9uBK+3AlZYYUbKBYWKwvcX1mVRYurmhXwj9QhlmGeYRAVSh7xwiigkDpR+Yho5u4uiio42O/kbi97/3G74xPeZ0mLJJBUO2zF3Dfy6/yZAtWYVBDX12OMm00aEW3LPVDouiJZfCWQXbm4YUPLURholhmAn9YmSTThK+HIi9g86iV57WBtp5YDpvsCZzUK1ZdhUvlzNkEH769Msc7y94Y7LkXnWGl4Q3kV9cfYmsQkYwKH2yRDHEZJAEro+W2axlFlrOvjnh6lXN9FOLbwzJC7GCXChxngjTHmszOWdSbzADMAg5e1adpes8J8WEnaplUnWs9g05GZrBc9ZNSCpUdmDu2tegYEwbWQ2QSXkUeTcvO7YxMA8t37h1zK/1iOFkRrZCP7/OWE7xi44Q4tg6o3RAzIIUCeMzIUS6xhM/r2m7HYZFwu707Mwa5kVLEz2rfpeb9YqYRwsyKFEN5neMWhkTjvM2kXUs536x4c/f/Jj/aN9l+KwgloIayEGx5ouLg4vMdlv8/qiQQzZsu0CzrQjNGAjrY0cqHadvBuLt0YJmZUfMhotUUbuBqOb1PZ0ZbSxnQ7FV3JAs1mXWsWDZVzy7XFDWPVf3C+qXY8IAmFQdcv3PrFG8yRhRrMlcbCvWL6b4C0u4lNHIt8rkOFO/sGxu7zFMlOHrK2I2nH54g/f/4GOCSWTkNcCsQoyG6UZxe+WGi65m3RfsVVve2jsl2MSvzRH9djFmKRWsUSo/omyjoxk8WeHiYkr5sGT3TDERzKCje7QZE2H3wxWzp4F237PczHl1Z8LtHyu/6L7Kd/7swRdRS5SYLTnLOPyvtjPmRcu92TldcrxsZsx8x/tHT/nJYs7erxRJhvO9CXdvnROuS94MnuVyQvWgZO83CddkzJAxMWPXPdIl4n6FPV8jbYmaCbsPoT42IJmdh/D5dxd8dfGKTSxok8NIRgTUgjl+cEiXHMFE7k9OeX6x4OV2ihUlfPUKv1V2P0q4z0qGZClcpHARZ68TrIPtoWF76GhueNq9QHdQ0x9OME0kT0u0dEjS63mF869ZtreEJ7864r8evkOf7WsCWJvHyHXjZ8JnN/fIKpwUU9rTiv2DUwzKjemGrpwxfdYx/7Tkxf0586OR6kaU6ayley+ylVFs89bhlg7JhvJEcNtAPxfiRJEoYCBWSty/TsIrR/Gw4v8u3uL9bz/CiFL4SCzBhXXmxs6aq7bg2c9u4xPEbGiSp42O0GTstmfxW2H5pGK4aVl1BeumwLnEfNKyKFusjAy97Epislxc1aT22tqywGAgC/iMrSJlObBJNc00QRIuupqDaoxLagSnFiah5/GLfeZPhDiBj57eZGd3w8WLOe88XiPdgMuw92HB2bs1wSW8S1iTGaLlfFvhbcaZPEboLlCWAzlEAOJg0UIQUUIRCS4yLXqCi1ijTELPzHdkFZIKoVecXp9gFvMtzUGF6UDOAquXBfsfgbnaQs6ItUw/7/ntkx0O758RXKLpPaoAltVgEbmekSzkLBijDJ0jdxbxGVQwNlN4ZciGwkdu1muCjaMTqJDztSXFyrBsSu7vnvHLdwraTYAkTD/07H7coGZUf2k7/NJy639mnJ8fkMM4LzqL4ykmGkwVvxBMl+l7R24dGEWzIAJxcFzFURasS3SDw9nMrOhYhAZj8mji2cL5qzmrTcnOrGH14RS1MH2ecWcNkhUtAqSEdInFg0vmjxzDPHB5P3D5licddRTTluAjRpSm84goziVkAikarMv4ECl8pI+WGC3TumVedug1mYwozmRSEEx9mph8FBjWgdOzGe2bHYtHyvTxBukHtPDjgcRa1FtISvZjIKzOMuFynIVp1bGoWnbqhv35hlnVkbMQNx7rMkU5UBUjG2O0pCcTLq8mLLcVO0XDbrF9XW0EnOkzBz/v2dwzuGmPfTBl56M1povg3XgYSRktHFpY1BvUG3JhiIWMrgtYk0eNsxFnHKuuYG++RRYbFkWLqmBNZt0XbLYF+7+C9vOK1Z2ST75i+dbN50QMMRtcVlwqDcVZz9v/pMTaY4cGu+pQK6gIeVaOIMcpJ008KZjXgNSCdZlFMUan0ka20bMIDTPfka7ZZUW56GqGbIinJfWryOLjnvWXKy7PFzz5k4bb00sKl4hWcNtDS3mi5MKCEVJhMbMC6RJilDgNOCOYbf9FNLFCKsadRJwos2nDxHcEk16r+Mx3dMnhTKLPjg9PbjIMjva0Yuehxa86TB+pX/SYwXNa3SR9R5iEnvMArp/JNfMUM2TUCNkZcAYTM9kLubCoLSErKmP7UvHFHm1a9NRu4LyrOW9qmt4TXGLTBgofWW9KzKMK2wu7p8rsWRy7kMG2kXAp7Dz0nIVDdt47RR24YQ7DzINAuByIE0cqLddCju3zCNSCSRmTMvRgoqGfjVKSdIwux1dzLpc1XHpMZzARZCXUDdQvMnbI2Fbx6wgiYBQZEpI9kxcDsQ40X/MkD679Ug8/FSQpqbBkK7g+49Y9/V457iHcuM9I3mCHjFrBdorpwXTCq/M5pYtcXkywLwPVS3m9oPFrxW+UYplQN3bGbgeyM2NEihnbJUw70O0U3JqveFIvcPfuntDuHDF92hHr8ZStRsjBYruEpIxkAVXEGbI1SFLMoBRXmfTScDWp+HR5C3dlKS4E1yh+M+5AJEF5NmCHPF6bdZSdrCDj75h2QK2huZW5Pzvl0ew27s7kkg/u3SFceSQpknQMhyJkazCAREXt9WE2K2QwZKyF8kJInxtScKP+NOMTxnWU6RWTdKxQn1+bNEZIVkAEt+oYFoEvfeuYuWthMeCOykt+9JWe7jM33ijpKAU6Cl22BhF9bU0opNKSivG1iUp5nkdNA8Jm/HPleQQdF8upGL+P2DE5bEeAph9nVkVoDjx/cfgxF7GmqAf+H9AzRlJ1jypsAAAAAElFTkSuQmCC\" y=\"-66.795366\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_15\"/>\r\n   <g id=\"matplotlib.axis_16\"/>\r\n   <g id=\"patch_38\">\r\n    <path d=\"M 149.494978 104.795366 \r\nL 149.494978 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_39\">\r\n    <path d=\"M 186.984634 104.795366 \r\nL 186.984634 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_40\">\r\n    <path d=\"M 149.494978 104.795366 \r\nL 186.984634 104.795366 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_41\">\r\n    <path d=\"M 149.494978 67.305711 \r\nL 186.984634 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_8\">\r\n    <!-- Angry -->\r\n    <g transform=\"translate(150.506056 61.305711)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-41\"/>\r\n     <use x=\"68.408203\" xlink:href=\"#DejaVuSans-6e\"/>\r\n     <use x=\"131.787109\" xlink:href=\"#DejaVuSans-67\"/>\r\n     <use x=\"195.263672\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"236.376953\" xlink:href=\"#DejaVuSans-79\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_9\">\r\n   <g id=\"patch_42\">\r\n    <path d=\"M 218.763944 104.795366 \r\nL 256.253599 104.795366 \r\nL 256.253599 67.305711 \r\nL 218.763944 67.305711 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p730e5cab65)\">\r\n    <image height=\"38\" id=\"image6f33664053\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.763944\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAPAElEQVR4nE2YWYxl11mFv73PPuMd6966t6aurp7To7uTEA/EOLGA2EEkSkgEEbwBEuIJMSgRD0i8IUAgAg8RBOUJISSkgAgKijMIx3bm2O2e3G63e6rumm7Vne89496bh9OxOK9H2uff66y1/vX/4tLv/Y21ElQM2geVQLSbI3NL8NYjbn7+CC88e5l3xh2MFfzsGcxDxpMIPXZBWbw9xfIPNJWb+2AtSAnKgSxH5AWmdwCOA8YgWwvYyQSbpMhmg96Lxxi+OOP5Y+8A8LHmddR8WeCNQViLO7MYp/y4MOXhQsN+WiHXDsYK9kZVilyhZwq0QE0c/ANB811N5c4IG3qIXGM9hZgliDTHBh5yoQlCgNbY6Qx8H6EU+dFlpr864VhrQMeb8v7oPol1UemixiqJHQqEASzIwiJzA1KiqwZjBaM4oDCyLGriIhOJFRD0BJ03UoLNEdZXFPUAJ84RuX58OYHQ5Vk4P0MxQ4QBdjgiXg74xPEf8kS0SduZcqCr/NVbH0PZ0JBrgSgETiJQiUWmGmeSgHIQYcG88Egyl2TsI8cKKUBmAr8vqD4yFFWHydk2TmKQuSFe8gkOcpSnkLMUen1oNRHzBJvnYGyJnpDUL+/wta/+PO5nXuH1wTo3b6xjHYvCsZiqJgNkLtGBKA9WEifyUJ5mZ1LDmMf8smB8g3+gqD0wxIuSg2VB2BNUtgTaU1gHspqPP3aJtiQqrWEeboPnljxzJBiDqFexkylH//kOr1x+hoOziloC0Yu7SFKJSCQIsA7kVYjbkqyhMEriegVZodCFg1fNMDWNM5do33JwXjBfsYQ9QbRrmC9JZmsC48B8STDecEp0jEHWa6AUIorK+43GpTCUwhpD9foeTgrGg6xwkGrs4MQSUZSAGN9ShAKZWXSkKAoHRxqCMCMb+ThjBwTk6ymVcwO0bwHonxGMP5iQtC1FRZA1LXHHYnyFHU0g8EGb8iPagLHYQoPrQr0KWY4sIO5a+lsNpF7KkDnIQiBzEBqc1BJuTVGTHM8rWIhi0sRFpBLbTZFrcxYXJ0R+hvUtk2Ma/8IQIS26UZAulKJo3AZ3e4hNU2ycgBSQ56XqG3WEcqAoSnsBjAO6onEbKXLpGy6iEFjAuNC4DVHPoCMPWRiKwmF/WqHdnLJ6skenPcHzNNPYRxuJbGZYzxDPfaJqCsqS1wxp21K/n8HeAcJz3yO81eY9jlljwHEQ2mDTDKlh6UifPHaRxhV03yhoX7O4s7Jqb6Jxd4ak7YAoSDFGMM9cMu0ghKUZxVTDlHnmUqvGONWCYuLiOhoVFOhmgZUQ3HiEzTJwvRIZKO2jEpXkV6pUJ0CaUr9f0DuoIQcuyp0bjCOobabU7xjipYC86hB4LvsXXC6293g4bSLEYy7NIqSwBF6OtYJMS5RboD3JLPZxvYIgzIiHdWyhEZ4HRpeKLIqS9NQhThCNevkbi/J9uD3HjiqgLKr2328iF9sUqy2Qgvob21jlwGRG/V6b7//oNJ1T+yxGM2a5x8cO36ShYhLjMtU+X7txATN1cRoZUZAR+RnGCmKAVgOGY4gTkA42ThDrq9jIR+wclGhqjVAK4fs4vRF+r06yUqBE4GPHE5w8R7guxaE2zjgBoPHNmzRfDSk2umROFU8bXn7f0wzPgDox4efWHtBamHFgqyw2p1S8DIBZ5iELAcZAloPvQ54h2y0evbiMcaF+v07t7RFyOockBVdhpzOCHsgnZihcD+G56O4C8sE2anOf+Nwqo2fbeBNL65VNRKqReYaczOjc26XzbYVp1bh37DSm6+BuwIfP3SE2HjcGy0wTn7yTc/DMEosv55j+EIzBLDZIOhYnERycd4AGlU0X9egA6yqE6+LOLMe7uyi71oE0RyZZqZqiINgcMVteZHhS0v9UG3O3QvNtaF92cHrDslU92KY2TajlBZMPrvIf65d48cwNHGnghw2WHhqMgtm5ZayzgpOW3iWz0pbmhwoGmcIfeijlYOohzjwhGGoGaYQS85S8W0MYi4zKZCBHM6ZrAicFpOWLn/0KGsEf/uTX2fhSF3d7XMo/Kz2peq3HmSuWG2cu4CSGww92EPOktIRWg/ufbJOej/GvhWQLhqBXdppswVKEDrpVR+jSTtRMc3+3jTj7+b+1Wd1S3YTqtubRcw66XhC0EpJBQOc1RV4RVD65Q9VL2fzWBknX0HxL0P3BEG4/KONREGCTpCRytYL13dIKBiNoNdn81BKLv/yIe+8usXDZYb4KWcuw9D1BZTvDv98Ha5md7fLwNwvU7LDGKoveU8Rth/VLW3hSc3urA8B8RdC+ViD+vs00lHSnGfGiYvfDmvFHfOr/+wRL39kpjVQIkAI7GiOiEHwPlMLu9Fh5rcY7J7u4fQfjCtJugd+KcbIImWhs4IE2ZFUHawuUM5dlKzJQ2SmwVlDzErygQEYZnaNTek9WmY0C6pddsqaDcS0LVxxmh0K+8Cf/yl9/8gWKr59n5V+vY+MEqzVOrQraYJZaALjvblO/dpzwwOAPNe4LQyZzH+0JnDhH1wMA4kWJ2A5Q2DLKqNgy7yguNXfZjesk/YC1jQNWojHWCg4vDLhwaYu7szYNNyHWLq9dP8lfvv0Cf3Tq2yz/8ZA/+KXPIV9r0H09QV65h6hW2ProAlkDFq/WKSLw3zXkFckHupu8dPUceVQ6v0wKippPVi95raR+HHcqgunTMU035t6kDQL2hlWqXkpuJPvzCldZZSmcMCl8CiP5woe/znf6p/mzb36WxaN9fv/0d2mfm/KNwXl+8tULVLYM47M5cubQP+0A4PdTehcrVJ0UFRZkDY+0G+ENUrAWJ4Pw2BhpFAhbDiKn13aYFT6z3AMjUMoghSXXDoEqe92s8DBWEKmMh1mLS/WHLGwMGF5Z5B/+/RP8eHqUvzv0Ei9+7vvs/oJGpJJoW5JfnBL2LO79HmuvxrzeX8fzc5KOZXLIZXYoIl30iHYMWkuUNxQYF5BwEEeshGN8VUDZGvGkfq8oKSye1BRWUlUZkcwwCNbrI+In54wzn7cnS/ypeZ7v3D2JjB28ocR7bp+L7T22HpzAZjlqEFMAWeqiK4a46zBbc3BiqOwY0sRFCVsiJlPY3W0CsFIZg7KkiYsUhqqXYqxACosUhoosSLUitYquO6bqptzYWubEco9cO7x06wzmwKN6ZMRza3foeBP+88sfZeXN2wCMzjRZDfZ5yAKiEMTLBlMrcMKC4laEozQq6RicWOD4AmfPY3+3i3vJIFyDSRwyo4hU2QP//1yZGsW08NG2yfFKj5+qdd66t8KJw3ssLky4ePIR768+4J9uP0v1Kw2WX7oMYYCo19h9CpqFR7c1ZhqljPcryJFC5xLT0rAfokxgy+y0LzCeRSaCzYdtVtf6bO8sMMs9lDB4ToEUFkdYDILQyYmNh5KGWLs8vX6PN/dWcYRh916Ly//W4Qft9+MPLOHODFGpAJAdbtE61WdnUmM0jpBbAd1rsHB1zN7TdSZHwB5KkGokMZEm7lqiR5KirpG+Zrdfx+aSpFDMCo/5Y9J7siB0ckInQ2LZTurspnUAzi7uEjgFy0cPyGqC5u2C/jm482sVdj99AhH4DI8HzFOXwV6N4HrI2ssFrTeHONv7tG6mqJnA5BJVuw9x7JIsGtypoHpX4Q8cRqeAqqZ4PIH/TAiDLMKTmkV/iitypnmdBS8mt5KKSlkLhyyFY6q/fZdhHnFaappuzKtPHGPUX6OIBMZIgkZKvOrQEy5HbsyZX1zHKkGykSGmCgXgTiCvCXRgcScCoaFoFmAEQlgW/Dme1HSDCf0sInRy+lnEOAtZCse80TvEYFQhCDPWm0PWKwN6WZXMKNCPdx3TiKAjGZ4veGr1ETd6S6QWwl2LDX1Gx9xySHFTcA2yCATaB3ckCPZLZFRqH49ptozRj/kFsORPmOQBhSkN8/a4g+do2s0p0+0qt36ywfX+Ch1visQyTENmhU+8F1G/X+A2E0InJ399gY2vG6J9TbJaQxgYPKHxgpzF9gQlDFhZ3ippQ143OJnAGwqS0DKYRAyjkMOVAZO87GfXestMN+s0N4ZU/YxmEDNIQnAtZimlN6rSb1ZQUrMSjdmaNSAwqLlBXa3ycnaS2gSsgIOzCpkr9NNjLnT2uXZtg+dPXkXFXYs/EMgCsjqYZs5szSPoQdIRGC3Zm1U5XBlgEChhONQY8dZODfm1FlunLTuZwB0LOFwQ3imL/5E6zKePX2FcBNQ8H+fAxb/3iIXuKknPp/9kxsontkl3Ouixx2+deJOp9rkarVEYibIu5LUSsXDPYqVPUbF4Y4uaCSpHEgot2Zo3kMIQqZxUK9aP9tikQ+O6ovPGHCfV7DxTI69AXreIm3W+HZ3iF1ducSvvsvqaxlQjqvdm1JMcb9Lkzv5hrG956slbnAq2+cd7zyEcy4XKQ5QFvCHkdZgcBYzFGwqK0OKNBVIaHGmZFR4L/pzQKVPrTr/O+049on4+4ccXjxJsRuW6QIK/L2jc1QymS/zXUx4VP2N+RDE40SJtlQKTORSrCb976TV+o/FT/mX4JHuXl2ifP+B+uoha/pFhviiZrVvEakK3Nab/vWWKx3EkzV2W6hMmqU9FZQxsSMXNaNbnbI/rBAsFv/Pkq4w+EPLV65dovhLgTQx7H5KYw3Pq0hCogp2zOXLqEGxMyr7rGBiFfPmnz/LqkePceWUDG8JzK7dpqRnKnWoCB2YzB3MvZGvk4bmWtFXuH8YHEUkUvzfwBk5B4BSomubWfpdrD1e59nAVnUn8Bz46gOGKIF/MONbt40pNP45YO3zAwaRCmrpYI7B9D9VJ6CxMyI1D1rDQyLlQeYgrNMpKQbIgady2uLFhuqowqty65DUQiWSeegReziT3UVKTaJfCSJ5Zu4cUhs3ZQhmFjmdsTRss+Qm+Kmj7M+6O24ymIRfXHnG4NuDK7ipZqmif3Of55Xc4HW7xpbsfQbRTPnT0PhMd8sX/+TjKKMHilRk6VGQNhQ4g2rFYRzA7UrrjdBbguwXz3AUi2sEMYwV3Jm0aXsyRap+ON0FbyfHqPq7QzI3Hg9kCB7MIpTTT3MdYwaHmkFP1PV5oXuW7k9P8+bc+g0wErdN9fqV9hb+4+nGqDyT/B9CYkiv5HSfcAAAAAElFTkSuQmCC\" y=\"-66.795366\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_17\"/>\r\n   <g id=\"matplotlib.axis_18\"/>\r\n   <g id=\"patch_43\">\r\n    <path d=\"M 218.763944 104.795366 \r\nL 218.763944 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_44\">\r\n    <path d=\"M 256.253599 104.795366 \r\nL 256.253599 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_45\">\r\n    <path d=\"M 218.763944 104.795366 \r\nL 256.253599 104.795366 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_46\">\r\n    <path d=\"M 218.763944 67.305711 \r\nL 256.253599 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_9\">\r\n    <!-- Happy -->\r\n    <g transform=\"translate(218.150334 61.305711)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-48\"/>\r\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_10\">\r\n   <g id=\"patch_47\">\r\n    <path d=\"M 288.032909 104.795366 \r\nL 325.522565 104.795366 \r\nL 325.522565 67.305711 \r\nL 288.032909 67.305711 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p65bd9821f1)\">\r\n    <image height=\"38\" id=\"image40bc049f45\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"288.032909\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANOElEQVR4nG2Yya9l11XGf2vvfdrbvqY6V5Xt2HFDbCcmhEQ0AiXCjAERMYE/ghFDxoyQmDNFQkLKANEJwiSRkGIJEImDm3L1Ve/V69/tTrObxeC89yxHHOnqHOnee8531vrWt7615INv/rmazoMPIAKqSO/RsiBu1UhISEiQEtIFtMqRpgdVtMrprtWs7uQ014XkAMD0gAAKkrg6REEN2BaMV+qjRLYIbG5kqBHGz3vUCptrDpeq4W5GBEKElAaAMSI+otYgqmjukJBIueX4V66xelnobnpwirQJ8UK1Z1ADKRsAiQ7gjB+AoKBWMEExfgDpmkixsDTbllgYiqOW0gku1A6bGdgYpPPIJg5v1/YYa0mTEqJi2pb+1pT738/Ir63I80DYFCRvMFuB2Fk2zmE6QYJ8AaoXsjVIFIxXbKcgYMIAPhaW6vmaze50eJmklC82mPWtnOQM/SxHrQVj0DwDVYiRlNsBaNfz+HcLvvWNe4yqjjr3xNbBIsM+qHCH+VXK1EBySsqVMEp0c6WfQsoE2w/gTFQkKeoEe7qmPE/EQki5xSwa3Nnb0O4WjPYSqTBkq5zscI1WBSzXZD6gRY46y+S9Y54s55w8nWM6g+vlS0BMJ6RM0TqAN0gavk8ZYECdIEnIl4pthw9JUWdJFkQESQoiuF/6zfs8X03Zez5n/EnG7IFBfCLb61CAOBBfxxXb9ZL7/3ObYmEIo0TKFRI4LxSnhm4roVWCYAbyA2oUqoQvIWUW1CAJXKOoXPwsJfJFRK1AUiREzIvNmMxG3nxtj2/8wc959oESxhnqLDKqSSenyGrD8vUJW8UGSdDd8uSnhtETQ35+SXjF+As07qIU48AtAKySCqWfJ9odoZsZYmXACBQ59WdHmKB0O+Vwi1nRoip00fFgsc333v85H718k+Xf3WD3J6fIK7eh6Tj6uuU71SkfjhKzn2W0u8rqzQ71BlcHem/QYLDlUDwpJBQHCYiC9AY1Shwr3WX+1WDbRJiWuGf7ZGcT/LxAiwxnRJkWDUnlirzv7ezx5I8bHr78Crd+3CEK3Z2eH/z0l3FnlvNv9Jg8QhJcHShKT0eGZgljEilaTJZIGtEgkGQAFwWVIXJ+pnS9kDUWiRnZ1hx1BrfyxFmFu1UtKGzASaSynmUo+eH9N+HeiPpwAHr21RxxHa+8dMyzcgbrnLTMKHYbRMCaIXXWJpyLhMt3zCFGB1bRLCGtxW4EtUOxxEJo54JrDP6lLc5fq5g+bLGbDved2X02Kac2PVPT8OHqK/RnBfVK6KewvJuzuSns7KzITeT6fMWzs13KA4dfj4k7Hl84UhS2ZmuMKEmFEA2LVQVGwRsGpivGGzR8ISuxFNY3LPm5Yfy8B3NB03eKp5QSaNWxTgXf3/qQrV/b8Nf6W7hzS3tdSRPPe/NjHp5vc/h0jl0bxEO2FEzIQDN23z9kVrRM8pbzvuJgOcaIYmuPbzK0teg4EqNgehnENEIswHbgx47yqEWiIusWNzcdXg0j8WAgIhTGc+3uKUdhm+zUsPXWGQ/Pt2n6jGKrJU4s5iue27Nz7j2/hntYMi8bjCi5iYRkKLJATAYRxbmIjoWUhC6Brh3ZSjB+iE62ArWgItjFBuk9LiK06iglkEkkqSGTyPXRirPdCl2MsCZxvdpwpz5jFXKerec8erHDo7AFAv2dntr1JDVsQs4o69kp1yQVzvsKHy1tcDR9Rhp5vIEYHLEc2lVyYHrF9AHperQuccs0tJK1ZkQMSQ2v5ke8Nj7intmlf6nnZDni3e093h8/5shPeLk6pQ2Og5MpAFs7K/rk2C7WPF5u00XLOO8vzIGyXW5Yh5w68xxTY2yi6w1xI1SHUCwT9b1jJCboekQV12p2JRNeHb1aerX89vQTPpy8zP5Jxc3bCyrrSSrcyM552m8zyTsOTWJn1rBqCs7aiocn22xWBRoHeXB1oK6HDpLZyKToMaKIANngVNwG8rOALNdQlWjToDtzHEBUQ8LQakabMsyFifrT1/+NP3v4Rxyva27fOuWFnzGxLaehJreRsvQ0fUaZe/ZPpqTDEtML+ZkweaLEPGN1t0atsrzl6baaQXyTYPJIKhySoDhYo94jVQlJwYDx6vBYWs2uotWmjEwCt90pb775nOVpjU8OKwkjiaTCNGsps0CzKVitS9JxQX4uTB4I1ZHSXBNsB6Nng82RxrI+rdgsC3zrSL3FNkK+SpiDU2QyRjcNZG5o4o/9zvAWKnh1eLXUpuPtYo/nYYvfv/Vf/E34Nvv9lKNuzHa+4Vq+5Ga+4JOT66QgyIsa6sSNn0RSLjz7PU9xr2TzvqLXO+yTErU6aFcztCnTGopTodproMgHB3N8ipQlqXC4m+6MdKFqUQ0RIZfIWaz5TrHP34cp3735KbtuxVE35h8/ehdXev7wrf/mre0D/uNshG2E6eeGfNny+HdKis9L2q902DxhnpWEO93gtBuLXRncRrCNMH6SMK0nzcfI432kLJHJCLtsMe/kB7yRHfJadsTb+QvezA646054PTvlfqj5dvmA81BxNz9mFQq0scjnIz5e3sBIoig9sRray/pmweQR+ElCFhmxN+y8e0heejQYpDfYVnBrYfI4Mf18PQjqswMwgoyqIaq5w2QCExPZNoFtE5kZz8R4liljbjqMKG9XewDsryZIGoaOj370Vb45fUzfO8I4sr6j7P+GcvztQPX6gle+tsevvvGQ3EacS3Ch+PlCmD5KbP/nMeITHA3pY3uOrtaDWw5pqEoD2ME+kQmDrb6SEMNr+QFP/A7Hp2Pu/pOyvAPtjvDp5iajumOtwuTOObOqvfpfbiKHzZjjVU27yZHOkC0Ms/uR8YMVqcwx6xapK7QqkMWa1LRDEWQWd5YcSYUeg1dLKUOHtSitWiJCaTz/cvwOxccV+3+ywnw0pn25Z7+Z8MbOIfvllJAMR6sR06qlzjxNyDhe1cRoSBtH9cIy+zwxetqAMUBC1g1pd4ZZbNCux0zGaOZQZ5C/+t/vqlfLKpa0KWNiW17Jj3gpO2UqHZkknoUpCcNfPvqABz+5S6iVr7//gKCGcdaxCTkhDQV02lasuxzvHSkJ/XlBse8YP4Htn20GdQfck0N0a/rFyAhI06GjijSrcUd+wiKULELFOuRMspbCeG66cwoTSQhzu+Ekjvns6XXyXnj31x9wrVzxop1QWU8fLctQoCr0wRKCHUCtcszaUpwIWx83GB8Jkxx31oG7mI4vaCMxQRxAhlGG6dKgXUmFPlmamJHUXKl/RCglsh9maOP41gc/59XRMUENN8ole5spbcxwJrHuczqfEaMheAveUB4Ytj7x2DbQXq+wa489PEOnoyFaquioJM1GqCppa0wsDGYAZUgISYWk5oJjCY8hqWBRvlk+5i++97d8a/aQLjkmruXcl/hkiRdpDNGgCiKKtQmzMYyeK9kq0M9yyhcb4ihDZ2PiKCeNSuLuhDjKkT4gIqgdhmVz6fUNeuU+I3LhNIZrg5KRrizRPGt4upnTRzdMThf/q4ueMvdkWURVGD01jPc8fupQK/h5iSQllQ7xiTjNkaiouVhPOIdaQ8zNpZEd7MmVRFykN14Mh+niPLENXi3PmjlJDbXrCcmS20jlPOOsp8oC06olRaE+GOiQMgERNjcyxCc0s7Qv1fjaEQtLrIf+qGVOey2n3bJfALuMXELwOqwFMklYlIiQEO66M/b6Odv5mtwGEkJQQ2k9teuZ5C3TomXZFuT3KqrDQDcfSN7sWlyrpMLS3ChJTnBtpJ/nGJ/AGihy2rmlm8uFwErCq/nSCGdRLPoF9xDWmrEOxVVhXC+WjOxgCF+0E87aimVb0P10zvaniW7LDaspFbqpwbWRUFr6iaHe9/ixI5TDyiBOyyGNxcUWiF84Bpcx2J/IILyXIAGu5UtWscBJYmw7ChM48zVOEs8e7TD9OGPrIIGAL4V8rbTbBhMUt070U0u972muDQZVFDY3CooTT7uT4ccXnDcykN6KXlVkUsFjvxRBgInped7N+If77/C1yR4PNzvUticzkdwG8kNH/SLRT4V+IrhO6cdCyoTRQSSMDPkisng1JznB10IohWQhFYZ+MkxP1YEOwH4xYkaGCF2eM0n0GEqJ/PDeW9T/POEHj77OPG/YxJyR7fjZ/i2KE6GbDQYxXyqhGADm58Mz3CYRakM/FUQVPxZcq7hOibkh1ANISfr/pzKpYBic6mUBjCTwmd+BvRKJEP51lx9915G7wNnZiOLTCtcoyQnVcaK7iJjtIF8nVAQ1sLxjqQ8S65uG+mDY+NgusbztLrZAsLpjcJdA4mVVqqFLjoRhrRkT6fE6XJ/FERIHAayOEs2/z1ncVvKNUB7p8HAHMRvmxFAJxUIxXpGonL6RYQJ0U0O+HFafKRO6mR0G4DBoWnWog1xccuvyiBgMiUyGzc1aM/bDHEtCb7dIAl8LW595XvpxJNYDKBOU8dNIc90MU3YmFKeRza7l7KsDKNsptldMDyYqxSLSzi+eL4AB1yr/Bx0DTi68GW0eAAAAAElFTkSuQmCC\" y=\"-66.795366\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_19\"/>\r\n   <g id=\"matplotlib.axis_20\"/>\r\n   <g id=\"patch_48\">\r\n    <path d=\"M 288.032909 104.795366 \r\nL 288.032909 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_49\">\r\n    <path d=\"M 325.522565 104.795366 \r\nL 325.522565 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_50\">\r\n    <path d=\"M 288.032909 104.795366 \r\nL 325.522565 104.795366 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_51\">\r\n    <path d=\"M 288.032909 67.305711 \r\nL 325.522565 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_10\">\r\n    <!-- Neutral -->\r\n    <g transform=\"translate(284.632112 61.305711)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-4e\"/>\r\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_11\">\r\n   <g id=\"patch_52\">\r\n    <path d=\"M 10.957047 149.782953 \r\nL 48.446703 149.782953 \r\nL 48.446703 112.293297 \r\nL 10.957047 112.293297 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pd7be474ea4)\">\r\n    <image height=\"38\" id=\"imagedcc50f106c\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.957047\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAN9UlEQVR4nE2YWY9k513Gf+929tp7ma1nxh7biePEcZSADAGFAB8hl0h8HL4MXHEBkRBIEJLgiMg28QwzdnvWnl6nurqqzv4uXJyOQ0mv6lwcnff578/zF3/xV38XAIQPyM4hO4foHQgBISB6h51lBAGqsci6x6eGbhrjEkVfSMp9STcBWwRs4VC1JAjQlSA9E8SXgXjtiFc9+qqlvFdw9LOeD+4ec7wZ01mFdZK+V9hOA6BVYwlGEqQYwAgBQBAC1PBsU0XQEuEDQUvaWUy9q7EJuERQ3Q6YtzfcmWy4P1rSe0XjNEfbCWcXY9ariOKpZvxcYFJN9qpk8ssxR9Mx46Tljc3wXuKdIlQaPe7QPlKIELCJwtiALQx6C6KzBK0JEoQHL8Bmmn6kaccSH4E3AheBN4Ek6plEDXNTUuiWrY2ZmIZYOd4UGVs/RlpFei4IImP2uOP52wtG3z8mBIEQYTiJw5YG3U304OLaIXzARgppJLryIBxBS2Tv6ceKai/CpmAzgU3BZQFhBfkrybae89l8whfjm8wmJZOkIdU9Rjlujde8vgtXUYE3Gm8E2WnP/iee5zsL9veveLMqcL1EnUbs/XdAx8seABTgA7oZAPrUgAtDvDct3dTQ54L6RqBbOLAC2QmkCKhWMD4Ee6zpC83FrZjlomUyqkiNZSctuT254mmnqfdyhBd4bZgeNow/T6l+YtDGYdcRIkC9EGjhh8ttphDWI1s35JiWBHOdb7mhXij6EbR7jmRR07xJoZfYSWA1C5A4TGLxQRBpx2Jcsp9t6LzGI6j6iBDA7vbU3mBTgXAJxZHn+NWY6d0VDSk292zvSnQ3NZi1RfYBHylcohAezKbDxxLhAu3U0MwF3XQInTss2HsI8ZWjmSrK24LqbU+etXywe8LtdIXCs2O2PGsWXLQFK1LSpEcI6HbBG01fCEbPBcmpZDXKQQaKgw3l0wlatp6gBd4IdGlpFxHSBoQ3qGoIc7Wn8BEEBQggwOauoH+jMCXMnjgmh5qumPHZYs6vdwNu1nNw8Ibvzo+J1eDJNBq+FwL0KuB6ydZpoisItQYVWOQVWzlBH/84ZvGFQ5eeYCSqDRACXgtMa2luFtQ7gnYe8Hstt/ZXFFHL12cL6kcFdgubRFG/06Jih3iVEq0FYhlx+fgm/65uUt63xPOavcmW+aTiMk7ZRAlNHdHdCgRj0GuFSz3rJkbMW3Rzp+eyM0wPBar1yN4TlBhOpNkcaNodj5takqxHS0/rNPJJzvyhw2sBAnwUYz5c8fFPvuT9/BiHoPeafz7+DuXLBfZlzokXHOw4pAhI6YniHqcddqPRG4FLYFsljMc1ev/2JetZwkU2YudzTbR2iAC6cdjCsD0Av9ORFS150mHUUBxmIzCVx8US2Qdmj6E5n/Iv38+JP7L8zeKXHNkZk4OKfzQf8vjwFjIIVnUyNAERyLKGttes0hiLQvaCroxI4h49Tyt2spKvviU4MwU3fx3QW4foPc2NhG7hyccNt8ZrHowvWHUpT9dzXAKnPzLYPOBvNqR5R/18RHJk+KfNDyj/NOKvZw/51eoBX58tiMYtO5MtPgiqNgJAiID1csg7FUjOFPWup2kN+mQzAiCOLN2DLf3nOb//lXuSEFkAZkkFQK473hov+dX9GViBGvX87P1P+WH+lNX7Oa03fLo54PFqj0fLn3J2uEBMO/7o7efcy5ZsbMLheodtP4CTIiBSR3CCaAX1lSF+mqDTqCdSjlT3HK/HrO9JshNBZqG+ITCjFikCWnhGuiGRPZWLiIoO+zoj3St5Lznhe9ExPy+/w1RVvJefclyPefTkNtmtLT+9+xUfFi8Zy5oTO0ELx6tqynE5pus1wUpELwkKoqVi/zc1uuk1Rnoy3VE1EekW8hNLUALZggN2ihIbJMsux0iHJDDOG97MNYmxPG13uR+dY4RjaQv6oNDS8947x/zl3mN+kv8vmewxeBLZ44NkYUp8kKy2GbQSEaBdgI8D67cSdGLsN6FLf1Gw8z8NLpY0CwUC1MOCZ+8qluOMTZkQRZadUYnzAh1bIm2Z6IobasuRrFF4vpu85L3kGIC7eslcNUwlFMJw7rc8EzskskdLR98N/cvnjqawfPDOEXwMepbUTKOa376+w73/WHH2xxPidUDXw6hafOHonyVcfifBzSxdIVjpoQfZXtFZTSY7MjFUayZbetTQmH3M5+0BU1XywJyTCcvGj/FBcmVTAJK0ow4QVhEUlsK0zKMKfbodYTMJn46pDizrd+Duz3vaqUZ4aMeS8YuOyVeW6mbC+n7K9l4EYRjiSzEYcO5jLuwYh+DvT3/EeZWzm5XcyVa8lZ4D4IOkC4pCNWxcwsi07I62vKjmyFYQ3Wj55PA++ihGK+l5vR4ze+w4+4FGNQGzbPAmY/xM0GeCiw9jzDZi9qhm9LjBFxEu1TRzw9mPEo6/N+W33OcXywdcthnPnu2BFZxPRqx3EnLVci+64Ja5pA+Kw25/YC3CX7cNCALqq4Sd/zRMvm4HYHUVk8UCs4XdTzvU5QZ3L4cA8dqjWkE3FlS3EuRejIsE0gZsIhAePr+6zb/V7/Lmk33MWjCtIUiobyheekFmOoxwTHTNTJdsXcJhtcO6SwlBIKUn9ILRpxGTpw1mWaGVCGjjkBZ2P2tJHr4izCcEKWingiAE2YUnfumxmcQZgddQ7yjKOwF7o+PwYkH/ZMz8SUDXHt14mqkivQB+F3Myucc/3L5Hd6fj/p0LDopLtn1M4zS9l9hWMzoW7P/XBrWqENahG6vR2g3eeXUFWYrPImQXMGWgXkjOfiixYw95D2tNvFT0I0/Yb8ELqrOc8ZlA1x7pAuW+5s1HnjCy6NiRZi33RxsmcU0kHZ3X2KDovcJ5SagUsy979PkaQiCkMTozPc4LggScI0iBLFvipcJHCcllj240m7ckfQZmr6abK5K0QyvP+jIDAc1OoNmRpKeCeBUoniu2H/Y8uHFOCILLJuWiyhjFw7z1QdA7xWqbkr/Q5L97SYgMwjqagwk6VpbzLkfkAuED1A1hPkGVHcVhRz9LMaUiOZMEEWFvBvZ21ozilk0bs3f3jFT3FLrlILvkqJ7y5HKXzdkYas3jpzcHDmcFInGEaUl2zctWVYr7uuDG5z3+/A1yPgMhMKsW3XlFU0XEBoJWiDgiqEHGyasSIwS5EtgkYvNBTzFqcF4OFFo5ZnHFLKooVMtFWzCPSv72rUPyBy3P2x36oDhtxxzXYy6qnOjaW+dXBf5Zzv5vPPmjM7xShLYbmMfzU/TJaoyvNMIB3hPSGGE94MF75MUVyVWJ8AuWHxlmWU3vJUY69tMNAJs+wQdJ6zVXdULtIlLVsbEDxTmtR2y7GIBtG7Fa5URPE3YfecYPl4SqRmgN3iGKHKREN1cxajN0auE8IRJgByUekhjRdtC0REdXjL7cp3tb8cH8hFhZ5qZkbRM+ObtHpBwPJhcY6bjqE16WU3qvGJmW3isuq5Ryk8DGkJwoJl95xo83iNWG4ANIgTCGYPRQlQCqFbhYENTAjRACpAApCcEgQkBUDeMXjqOvF+RRx0ezV/RhMGgUt6zqlPOmoHcKj2DbRVinuNjmrJc5+txg+oFgFq8848MStVwTrIO2hTQBYxDbCoxBR6MOTgzdFDB6AKXkN6sCQhienSM7rpl+kfM03IT3YRLVTKIGIx1aObTwlD6id4pEW46ucvp1jF5qgg6EIEjPA9MnJer1G3AOUWSgBwMxmlBVNN+9g+5rg5bgkkC/V2COVsOOIjbXnpPD0Rp9tGSWG3Qd8by5Dbdrvn3rlMK0jKOGVPUUpsUHwYvNjH6VYC6HS52B/JVg9qhEHS+vv6mGgosMOI/PEkRZcfmtGB1aea0jBVf3E3ZfeIJWQ55JSTCaYDTIoR7MqmG26TBVzvo844v1ATfuveHe+BJJ4G665EU952xVIDqBiwM+9Yy+1Nz61yXi9TkYA0kM3g8N1WiIr9NoPqG6FdAyt3Q6EKQhWjPkmRlWQcEo7CgGJfBKoupr7iZg9LQkWifES835dpfzm2O+ffuEB9k5R+UE22rkosNfRuz9UjH/bIk4XSL+PyjnIRJ/yGvATrNhwGvjsIAdKeAalHVDvLXE5hoRQLhAP4kIErqRIto6XCTJLhzhiaIsU75ob3PZpLxZ57A2ZE8V+bFn+ugKUXeINBmiIMWgm+NouM97EALRW1yWExTonckWIz1nSUG1HOOzCHW6ImQJQg/uld2w0xCJQm86hE+xmaTPBKaEZBXILjzLNuK1XaCXmtGpwGwDyaUbNGqRoq7KIU28HyLz+11cbAhCoFZbXCTppw758e6z4XIZaG93NDeyoSpDQJQN6cs10dkW2VhUbb9ZS8kukJ30mM0QXtkHRi886XPD/CGMXjjMNgyMJIsQ3uNH6Tdh87MCn8X4SBOEQG4qwuWKfqQQmUUv+5xvTU9p3S2qKGZ9EGO2O5jXV4N7y3oYE2VNSGJ8FqNhAKkk3gyC10UC4SB/HZgc1gQBPlZ/UPVaDhPFDECCAHltPJGBTYn94C1OPga8QNfOMDcl8bXCFgGaRYQ5kYT0Wpg23ZAH3iO8hx58agYl1fth+AuBqT2mAtm5a2N6fKJxmcaO4mFJk4oBsBDfvEfXwyjn+McZ8kaFdwLZOcV5V6Ck58/e/YrlDxzbm4oQa0TdDQ3W+6HvMKxA8dBPDO3cIJwnPa6JriyyDcN/2SK3DUiwI0M71dhU4fJhqdwXQ9XjPaK3iK7n/M9vwJ+sCEHgW8X/AY2gUrffvwxSAAAAAElFTkSuQmCC\" y=\"-111.782953\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_21\"/>\r\n   <g id=\"matplotlib.axis_22\"/>\r\n   <g id=\"patch_53\">\r\n    <path d=\"M 10.957047 149.782953 \r\nL 10.957047 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_54\">\r\n    <path d=\"M 48.446703 149.782953 \r\nL 48.446703 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_55\">\r\n    <path d=\"M 10.957047 149.782953 \r\nL 48.446703 149.782953 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_56\">\r\n    <path d=\"M 10.957047 112.293297 \r\nL 48.446703 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_11\">\r\n    <!-- Neutral -->\r\n    <g transform=\"translate(7.55625 106.293297)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-4e\"/>\r\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_12\">\r\n   <g id=\"patch_57\">\r\n    <path d=\"M 80.226013 149.782953 \r\nL 117.715668 149.782953 \r\nL 117.715668 112.293297 \r\nL 80.226013 112.293297 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p6da5d82d4e)\">\r\n    <image height=\"38\" id=\"image4cb36707ec\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"80.226013\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMUklEQVR4nG2YyY8c133HP2+ppauXmelpzkKJq0ntFm2HkaAoiSH4kARB7gFyy7+RW4Bcc88htyA55OIgEZCbAkMSTNiOYmuhSEoUlxkOOWtP71X13u/lUFU9pJICGo1CV1f93u/33V6py//0dyFOHUoF0rikkxR04pxZGXM4aVPklnIWgVfVJwAK9EITn2h0CQCzC44/+vHX7M1W2DvtMehMebkzZOEtsfYAtEx1sa3PmyNSgqDwQWFUqK5Js4LYeiQoWnFJy5ZIUEhQRMYjkcJFhs76nMU8BhVI05LpJGXRseAU0YkhfWr59JM38OslOhKOVOBg3OZS/wRsQWrcC8VI0PW3wmH+T7E2tp7IerQKpNYhKJ6crDB/2sFMNa7nMb2CfjZnsH7AzMXk3vInF7/m42dXWRQRQ9ul1AFzYomexoiFaRKjnOJeHvHHV79ZdsqJAUArwYlBUFglGBXwQaEJaCXYyHpi47FasEo4nmeUd3sM7kA8Fsq24eBmQrZdsBItSI3DBc1303WMClxfP+A7IyxKi+sZ8nlEyE018lKjv23xaXSFH5/fQYsl0p5CbF1AgFB1zQdFpKQerccaXZ0oFXBBMxxlZE8VQQVGlwzJMBCdVm3vx1OGZcbUxZxvnfLB+h0i5bllr3KUtxEU+9MOEhSL0hIZT7ig6CQFLmjapkATsNrTMiVODLlYtJIlzjQ1xoyqKvei2f3vLdyaRwUou4rsmRBPhLJtubO7CcDlzjEzF7PjV7k/GTDKU7KowpATzUZ7glUeCRpBUfhqdCd5xqhI8TW2khpzTqpzHzSagNFSTc/XbXTecP4Xjkd/pgkGOjue7v0JaM3Tdztk7ZyrnSNebz/hyWyFi+0TPnp8nVcH+5zmLR4O15Cg0CqgVMDogAQIQRHqZ4hoQtUQlHoB6ygVEFEoBVpL1TEnmtNxi+EHlnRfUXZg/6Zm789T0IGbV+/ydm+XD3ff5MvhFqU3vL/+DWvZnEejteWN//6tf+XfTn7Cbw4vEBvPtIjxUv2GaIzxONGE8L2qAO81Wofluc6dRYKiHCa4VYfrBOZXCnpvHHHppUN+8NIBr3T2+Wq8zYXukNIbXu4O2bSn/O21n5NaRzsuWG/PuJdv8eVwm7V0zp9ufYUX9UJHvn+EcPb5/nU2d4Y0cvTuWsaXhfUb+2xmE9aSGbF2nBQZX422uHd0jqKw+McZpz9I+Z/dl3jv4gMS4ziYtumlOd/l52jZSkQfLtbPVq9ACISgUPWopcbW/1e4iMYWhSWNHPFpQDvYbo843xrRs3O0ChgV+OJ4m9k04eo/gJmMkSxm7/2MT8MV2q2cXpqT2pLPh+frQgLfjgZsd8eVJNRH4Q0hKARF6c1SJqCSjMR4lKoWYN2jNuG1nGDArzgyW7IazeiaBT5oJjrh1dV9LveOuP83A4azFs55Lg8esp2NyL2lbQs2kxGRqtQ7F0sZDJHydExOpB25RJTBUIqhDFVRI9fCBU1Zi26i3dIBbHyqmS5ibE9hWp5EVzSOlCdSnhU7J9EOCYr+uRkrdo4mICgmLmFIRj+eEimPoFhIhBONrmVIUEgtBZHyoAEBrzQtUzD3MV4pEu3RtcACWOVgPkmIVwLaVNYkQTH2abXCUImgE0MZNAbBoynEUophNZqR6pKZxORiATBIDYOzBxkl0BSoPToEctWIq6r92dQLEuz81RzGlrITSKMzI22Kagy9UehhmVEGTc/mbCYjjJJllwyVODYd14SlkkfKn4mrcpQYDJVHSt2MauEBHRQ2uZ9QrggE0LpeTQ3YpiitwpIMiXakusTXyj7zMT//+ga/d+kR19oHVSrRfjm6SDsMAU8F8lSXaCXk3mK1EFNBJ/e2cosAkfbYeAyDzwPDawa5csaQBiNaBRIciXZEypPqkkj5Jbj/+clNotsZ+lJYEgYgqrFq6o4ZAiUscRQpj1cax5lsNL/NfYTlpyc83VwlOalsYun6QKYLjBI0gczkLzyoYxacuDYHX2yguoHt9BStBB80RkkFeCV4FJHy1f909fBcoopAQeHRlV1RhcSGodqLxq16fAKR8cvVZLog1SUdsyCtY2oZDB6FR5FLxONFn5VvwF6ZsBGPkbooHzQ+aHKJloHQo5YdeZ59EhQtUxJrRymGQgwLF6GTqIRI8GkVrZs/SY2JXCJmEjPxKWXNuqrwnE+eXEEJrLTnaCWM/Vl6aEat6+49TypDxVhfj/H58GiV4ILGjsYZ0X6E6wlr6XxZVERYPmS5OhQzn2CU8I/f/QHm39eYXFD8aOWYUixGCTOJMUpI1BnGni+uIcJM4hfuK0HjxLDwFicay6MWQUOyOaOfzCqlrhW8GYsmLOVjd7HKf332OuduGfJVxdZ7T7iaHXLqW0tSSFBoHZZdT5SQ6BIJuoJCMHWR9WipQqoLlT76oLGSBtTGgiuDI/rxlES75U0WEmGUUAbDQiL+8+HryMdr9MeBoqcYveJ4NRszk5iNqPrOdFFDwJJoVy1MyXKsZY27TBfMiInEM6kh8jzurDqXs9Ufsdka0zE5qS5JlWMsZ8pfBsPcR4z2O2w8Cyz6ivF1T7Zj+XX7Elk3563NPQbxlLbN6ZoFmSmW3WiwlapyqWfP+2YjEYWvIpgXjR2sjdnIxnRtdbNMF0sCNADu2ylZXPDum99y+/ZrROPAxi8VygvZ04Sim/LrdyO0Fj64eg8nmp5dVETRJblENHJVAd8vydKA30k1Sl/HIftyd0g3ykm0e2F1DVZSU1IGw16xwsPRGnYW2PjFPiovQCn8oMf4Shv9SUa+Ch9xnXcuPqrGSOUODRFyiZY61xy5WKY+rrzYV9s5Jxq7nkwxtdU0f5j4tPbGwNinjF3KzmyV/cMeWVcxu94nmjji+wfou49Y+dYQv3uNgx9FtG51uCWX4TJczo4q61KK8rko1IyvIljVDBc0SgV0qPKcbZnKYhqQH7s2I5eSS8TUx5RimLmI43lGGMbk/cDBjYjWM0ur/xLJcIN495T5wLB2xzPZNtivMz45fYXFW/d5rfsMHzRlvTVrptGAPK9xVelYoAy6Ar9BlknAB12ru2bkEiZlgtVSa4xGlYpgYH7eM9+u3l/4tqW1t0n/tifbnZHtgrQsz262+Gx+Df1OYJBMWbWzZZeqAqo41Yyu8ecm1VrghTHOJOYw7zAsWgAUQrWF10KwAW8DwQRMr0S8YuvcKdkrJcc3M05u9dn6ZU6yM6T/laX72PDNtQF2XejaBQZZZrbnI3dz3jBSq4Btqm8OJ5pRmTJctNAqVC9ZtCKLSkIcUKVCd0taWU4nzdnMJsTGMc4T/DsnPOqt0ru/wdq9nP2fRKzFJRvpGAmKuSREqkrJM4mXblC9dqiYqVSg9AbbRGmjhFPXYuITvjkYMD9pYdolLw+GpKoy8c7mhNnDHjV5ub56wA+7u7XEXOfO4Qa+K0xfMszPpZgCnjwY4NZ3iYxfRidPFSqnkuCDopBKAZrNsfO6Updl2qzZudaZgQ5EdzIef7HF8TxDE1hpLTCbc2zsWWkt6MczSrHsFassXLTc7gcdKHuByasFmMCDaZ+RS5n6BI8mF8tcYnIxFHVslzr65N5wctTB5mIRpRBd5aZcWd5Ye4ZRgeKjTcQojsM67bf36LdmZ+HRuDoOGw6KDofzNnluMWs5RWYwied8f8TBsMPJooVVQifKKesiyqBZ+GgprBIU8zLi4KRL+jDBSlCUGHS9HU60I4sLVs/N+PyvCx58fJH13yoeJlu8/cMHXOyeoJVwnLe50X5MGQy3J1u0o4JWWjKfx7S6OVoHJouEbrtyAEFxnGfLPUFjVw0rT/OUk3GGftBi8DuPLYMhonqj2GBAqNjxh4Nv8e9rdtwFLn4o/NZc4i9+/zMi5Xmzs8eh6/Jwsb7UoW6as9Ja4IMiNp5unDMtY+xzSt8UVIgh1p7CG8ZFwmiWUu60OfdloPvFIXbuY6S2D4+maxakyrOQCICfnrvHh+/FTHc22PgU/qP1Nn9541e8HB8DsGJm7MWrHCRdJi6mEItVstSljs0ppGF9JabN6MZlQu4sw2mLxeMu679T9H+1T9h9im7m3bxEW0iEVlLtFX3M2Kf8bPsuq3+1w+l16H6W8C+/eQeDsGWHdM2CV9KnXEqPuJIdcaF1wmYyohstKv9VgUIsCx9V2PKG3Ftyb1k4y3DWYr7XYfW2YnDrEHm4g8xm/C91vhxcqIF/mgAAAABJRU5ErkJggg==\" y=\"-111.782953\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_23\"/>\r\n   <g id=\"matplotlib.axis_24\"/>\r\n   <g id=\"patch_58\">\r\n    <path d=\"M 80.226013 149.782953 \r\nL 80.226013 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_59\">\r\n    <path d=\"M 117.715668 149.782953 \r\nL 117.715668 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_60\">\r\n    <path d=\"M 80.226013 149.782953 \r\nL 117.715668 149.782953 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_61\">\r\n    <path d=\"M 80.226013 112.293297 \r\nL 117.715668 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_12\">\r\n    <!-- Sad -->\r\n    <g transform=\"translate(87.675841 106.293297)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-53\"/>\r\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"124.755859\" xlink:href=\"#DejaVuSans-64\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_13\">\r\n   <g id=\"patch_62\">\r\n    <path d=\"M 149.494978 149.782953 \r\nL 186.984634 149.782953 \r\nL 186.984634 112.293297 \r\nL 149.494978 112.293297 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p4576d54b7b)\">\r\n    <image height=\"38\" id=\"image4c68cca37f\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.494978\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALj0lEQVR4nH2YyY4lSVaGv2ODu1+/Q0TGkEPlUJ0tiuraQBctxAIh8Q48Aq/Dih3iEZBAYsGODWKBGFRdiKazq5oasrIzMjOyYrg37vXBhsPCPCIzKxtMMrnr6rrZb+f/z2Ty4V/+hUoGrRS1it0a/NqQaiU1CgJqFVQwEdSUiSgYUFOeN0PKN1jFz0eW8x6AmCwA1mRUBYA8PZX3h1Gfy2ZWwWVypagBybwBNW34/4IyWqYAWSAY4uiwRhmCRwFn0w2ot4eqvDed5OmPWk6pXsmVIpN1sG8dKRdMv2XtN+DeWk+3jgvfEq4qqtWAbfQdS/1f1gJw5MkCgBhFXSY7i01lIzX65muRYkkVUEVUUHSyoIKdLDbta64s4aLGn1tGl3Eu4WzGiL4D7tpq75wRFbSatDRYsEpaJNSCGQRJ0wcCWmXUv6FMZQLlFfEZ4zKmSkidiiyajBkMca4wGnbrBgX60WNESdm8BezdaW5OC29osIXOPDkEgCThhvZrq5g31ikWn6YUSmUeyVXGdoKMBpIgQFMF0rXwVcj5fW04tzVEA+oKFSKFuey1/CaTEN52hmsHmN7FKMYpxqZyPizVYiSOFuYRNpa9J5ZxZdkMltndKyqXcC7Sj35Sybtqc9VlOXpcZBTQYLE7M20A6vVdS9npAD4jE6XGKM4nKh9RIKVECPbGsvFW5LKxN5rN2ZA0Yynf/laLtS8U2wnjviVXBbUZBHVKykIi32xQQooiLmN8xpiMCFibaapAWwUAxmS50hprlX5Tg8Dyw0tmVeBs3ZZDZ0NIhpwFa/P7wBbPA9WVpesM40pIM8gOckUBeh2vbigEsYoxGe8TxigiSuUStYsYUYwozKAPjtQKKVpiMjiTiS9bolPcYYdzGe8zqgWotZmUDCKKq84HyBVqPGpBnRRgTpEEaicKVcAU+sQoxijWZvykK2dKGAAwonibsCbjTGYIDmOU7zdz2ucGNZBfLugPM+52R90EQhCcK4cUUZzZDngr5MoQWkdqCgZJRWdhlYvWrjOA0cKsTJIzBYQzmaxCViFmU5xWFGuUeTNiTWY3VKx/FKHKiMvcOriiHz3zeiyanDQH4AgR0wX81uI6S2gFlyE10N3JmFEwQFplUCaLFU3cxF0gZkPIhjRNa/KkIcOyGXiwuMCZxBN/hz979HM+aX7Dr4e7BLV8tn7If/X3SMmQUqHUScpoUiRkTFRsUCRDrgT1itkKJCHpROf0VFVUhZSFEUvKQkwWvXZeUzzN2czMBW43G34yO2FmA6/Dggvf8uP6FT/2r/ls/XAKrIJmQY1gyJNHTEFcEpgAfqM0Ly1uN4EREJ/fSbR5AhOiZYyOEC0hOGIyqAq1j6yantpFsgpeEh/Ul5yNcz7fPmLf7Nhlz/OrPUKwWJsxNheNaeXBCpImqlJJBNeiTw2kWckO8gO3ThMAO+U/caV6cCYzr0fuztcYUY7qLUaUy9Ry5Dc87Q5YuIF/6x4TsuOiaxCBGM3NugZAQkKyYseMG0p50x8K3aPA4R+9wD3cggHry8ZptKRYxKoqxGjJKlhRZlVgb9az33Ts+Z6Hs3M+aU9Y2IFf7e5wlRoet6+pJRKy4/mwT5zWensUKtNbllAIrdDdzdy5f46fhG7rRM6mlDO9JQ3XXlQCrRGlqQJ7Tc9Bs2W/6ngwO+fj9gXHbs1v+n2+uLyNkczvzZ7SmMCR3/Bst09K5j1gToYAXkGK6LKH4RCa+1clBiXLsK3wTcS6TD9YTG/QIITK4dqRykVmVWDhR5ZVz62q44Pmgp+1X7MyPd+EI764OOb0fEm+a7jvLrCS2aQZZ32Llu3fBabjiOQMqqiFVAnjXsYmw6IauBwa6CzMAmnSgBkFMwhBK3qBehVoXGRZ9dxurjiuNtzzFwR1/Lx/xOebhzz/6ojFV46/1j/mq9854s+P/4m/P/uU76/a96xV4liM4D1qBInX6UipbOab1wf4f13SzGH2YGB9NYPRYHuwnaDWEGaOOLd4k2hsZOl6WjOSMHy2+5Bfb4/5z5MPaJ855i8y+nnLP/IxHzZn/OLsHjHaEqx/UF0YUiqVqYKJSqpL4RijofnnJbc/G3BbGKMjrSvM1uK2Qn2uuOs6C9ivOw6qLQduS20CQ/Y82dzhF6/u0r1uGVfKqz+E7ccjbTvwL+ePWfd1KQqnaP8mFIHTEJEYMbsRO/fEuQefCecNauHZn1ZglPHVHLMzuJ3QnCnNWSbVlrA0DKMDoDaRoJY+eobsOB9aul0NQDyItIc7Pthf8/pqzuluPoUanZL4da8wBWZp6lK/73psXxMWU43VG2anGbJh/UnE9AY7Csuv4eBJhxkT1abGDp6LWcvLW0sOqh1DdkS1vOiWbIYaX0VYKTkYhsGzGWouXiyRWaJdDEW3U4dzXfcr4GS1nIRfKImLqZSOQncs+I0isaSnxRPh+D8uke9egLHMTirc5gh1c57eOmBZDSzcgBHFmcytpsPbRB8cu75m2HlePj1g9StHd+xIH4UbK6nKm45JBZfnMyQlMFPVOk+IzVQXQqqhugR/YUgz5ejzHeb0Ak0J7XrICf/8jMPG0h/O+J/ZIYeLHa0fcaaURIduBzMYWsd2WXHZNVztVujRyLIZuLiYI9eVy00fAE5U0cqRZ37y08yje2c8P7mH25Y/miC0J4L78hk4hywW6PkFOgbY7qi/fs3hwT1O9pc8v11xa29L7SK1i8z9iJPE4XzL7y+/w0vi5PE+D6oz/ub5z7jctJPFuClXVAVDTJCUXFv644b6aU1tI9XvrukeBL7/g8xwO7F6GtGrLZoyurfA3DmGnGEM6LZj/t2O/SeC/arh9emSTV8T0ptUE7LlMrbMzcCn7bf8tHnK3I+lmsgF1LVXouBICVHFnQMZ7vw7PM2PSD/ZYpcBAfwvW+a/PIGqgjCCKulwie168nqDaMZedqy+bZDsWLuKjSkldutHnEtkFV6OK65SzaP6DCuZs64lB1OovBbYjVdmRa0gQ8Sdd/jvt/zoW8Nwe87mUUV1pSy/WiPbDjUCYpDNDtqKfLiPhAAxIusrZt8KZlxhxooLatZWWTYDlU0YCXTJY1CejbdICLupdfuhvkpKsobc1oSDBhWoLkfImeb5htmXHXk5R71l+9OHNKcdZtPDtsO+XqPVtLCvyoqnZ9QpI7pHf9SwueXZ7nlWdbnxSSpchBnrWOOl9ArG5UKnvgGHgpNYqLRdLJk0ZsxY3tU7ZAyYzZaZKrlx5Tdn0W0H267EQGfQVKoUGUZMn7BD2cDbTMwGI5k79YasghFlaXtqH9HryuLtuwsBR0yYyy2ytSVk5Iz0IziLOouMAbIiuwE7BDCGdLyHqSt4eYr2A+p9cYSUkLrCjBFJpeWb+cBRs+XR7Jyl7fGSqE3grrukcRGN8u792jQcRmAMSExo7cE7tG3Iy4a4rIjNm4461YbspBxO5sxO96ifniMxQYho14G1kCE7wcwiMxdY+Z7H9SlL27EyPXftml4dY7I3N0fvAVPvEGMKdU1NXlSkxtEfesaFIXuwI1RXmfbZDvf0Fcwawr19dvca+sPbVJcRfxWxmx5CAgPVWslbz6rqeTw75aH/npXp2TMDdy387dWHnJ4vb67A3gOWjpaYPiLbHrPtkH7AilB/2RfNeVeeIZaTeQ9dj/vvb9g72Sfc3SfXllwZWDZISKTW4waleeE4/6jlo9svue/WNJJYGmGjyt+9/JSwrkqHn+U9gC41jrDw2L0aux6x5xu068m7rmhm1iBNUyiuK7TxSHzTV7rLDkRI84rxVg3iSbUwrEqg/M3lHhepxXjlyFo8ln/YPuCLF8cF0LW+rm+VruNYdbJmvLdid7si36+p1nOqy4A775CTV6TzS8w8wIf3iYczJGqJZwAGUm2J7dS1t1NPYEpfmp1igdYMWFE2OfMyWf7q6z8hbGqo8wTmB+CA/wVDV4cPV78LDwAAAABJRU5ErkJggg==\" y=\"-111.782953\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_25\"/>\r\n   <g id=\"matplotlib.axis_26\"/>\r\n   <g id=\"patch_63\">\r\n    <path d=\"M 149.494978 149.782953 \r\nL 149.494978 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_64\">\r\n    <path d=\"M 186.984634 149.782953 \r\nL 186.984634 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_65\">\r\n    <path d=\"M 149.494978 149.782953 \r\nL 186.984634 149.782953 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_66\">\r\n    <path d=\"M 149.494978 112.293297 \r\nL 186.984634 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_13\">\r\n    <!-- Neutral -->\r\n    <g transform=\"translate(146.094181 106.293297)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-4e\"/>\r\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_14\">\r\n   <g id=\"patch_67\">\r\n    <path d=\"M 218.763944 149.782953 \r\nL 256.253599 149.782953 \r\nL 256.253599 112.293297 \r\nL 218.763944 112.293297 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pb454f90d6c)\">\r\n    <image height=\"38\" id=\"image506e860fd6\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.763944\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMtElEQVR4nJ2Y2Y9k113HP2e599atW7equqp6me4Zu2fxOIM949iOI2UhUbBDhEEgEI4isBAgwVv+Bp54hkceIrZEQgglMYg8JCQkLHbsTGwnztjj2Xt6eu/p6trrLmfhocb7jOXwk+7b0Tmf+/3+zu+c3xFPyWe80AEi0LgsR0iBOrbCtT9eIV80tF5VpLcMsnBUtoZgHWiFTUImR6uYigCgTASVriObk+DBxoLKgSNrS+ZfHmMSzdqzcPq+HS69uULnvKL9jZfxpgTveX9ovMeXxWwAAAp7a5PGtWXsuqLz8yG2ogn2RxTLdcK9MV7NYGpX+xSdBBtL9FRS1CRegvCgck9Rn8GpaYlJA2RoGBURMpfMvTkBKT4A9A7YW/EWtZDIuMLc6wNcpHGRxiQar+t4IchWUrwUqMySdyroqUVlDgBpBCoXCA9ezj4XCMpmBZVbXCmZlpoHHrnF5EcrxKUBIcHbDwG7E7Jewx9ZwKQRo6MhTgmKhkBlHmkg6jtU7vGJYtLRuECjCihqgmjgiIaO4Yoi2Z3BqtxRNDXRYYkvJYXR9P72GGZBkK4ew6zdAqnuaDJT0Dv/PjAhEHFM0amStQOGxyRlwyMLTzAUjB4sqF4L0VMwMYQDEHYGPDzhKA4k4QD01DNZkJgKqFyiJx4bSuZeFpS/DvrZPeTfLbD/uSPMO4fd3MFbi3fv5Np7wbwHY3ChBAEuBLNUIENLPtWcuH+Pm3GbKJ1QC0uyUnN4kKL2QlynpHAh0SHkTYEqwEaQdzxhT+AVhENP8WIT/eQWw2e7xP8wx/TUPJVuDzsaIwINzuNN+UEr0Zq8qSlqAuFAb4WYlRyhPPujhOVOj1tbLQaRRUrH8tIhdlHQG1XJlzz5YQXhIGuDrXi8BBtC3hLoDBo3HJ9duEZVFjz3J+cY/sc8S6NV5M8uI+IYn+cgBeIp8fvv2asyTTGPnKR/KoZnbpN/fx6nmP3xwFOmYqZEy+GqlpX7D1itd1kfzgGwdWERWQjMSo7airA1h5pIwp6guuOxEYyPwslP3+SPln/MX77xG0xGES7TVG4FVG5D61L+QcV8luMihdPQ3a+jljymU5LMTXly9Q1ujNtcPpinFhgmecjmRovgfkugLIG02FYJBwF+pLGxx1csfiop6p6oC2VNIHO4tLHIt4LHcE7gxgEqLSlOG/zDhsHTOfIDVnpHdLPLdEHgJwrTNFSbUx5e3KaqCj6W7jKdRBxcaZNdq3Ps3yXrOy2SoMB7QaszxNYtSPA1g4wstm4wcwZpQWWzOqdvVvjpq6fI11LUUGEnM43a9TFa2bvkGCBGE6YrFllIvIDac3UupQ2uZQ8S9R2nrvQR25uzwc7Saj3IwZertOMJZ9p7XJae0TQim4QgIGzmlHsxOAjGHlXMNkL/uMKFUDYclAKZeHZuN3Cj4C5gQoIQyEygj40JQ0P83Rqd5/fxgyFCawgCvLMgFaJaRVgojKY7rdKOxpxtb3Opt8Du1ZTamUOSqGBzGNJ9BOJtReXAgweVQzHncKkBJzCDkHAu48Ez23cB8w7XHxDdliycG7D58jL944LkTRC1ZDbGWEQ9ZfO3Voj6nsEJgRvG1JKMgzzhvuohnXhMcfY2oZrlX6WRU0SaiQ4AjfBQ23SYmgQfYBsGlKcYhVzZm79L8lsL1hLveyJl0ENBmULv8UXKRHJwzqMKQdQVmBiyeVAP9SlGEWVFUQ8ycqcpnKIalBgnWawOyYym6xLKRJB3JFFPIC00Lzv2HxXIsSLqSsqaxxzczUrvwVrmXzxk4zcbZIuW6EDR+8qIx5dvcWH/CMM3WoxOlcyv9GjFEzb7DRrNCUJ46kEGQD3MkMJjnETiWan1GWUR1ko4kpF1q6QbFj2xLP5EU90rKBONjSTSvP9Ienfc3ORYM0W3utz89gnsTxqcjxo8+qWLPPk7/8VG0eKl7io7w5RQG9KoYKeXkuqMqQ3ohGNCaZiYEIcgswFJVFAUGlMosmVLtq6oFo5g5FDjknC9i0tixM7+vcHceEJ/ukga5UyOeE4+sc6n2je4OFrimzuPMSoiNveahBWD1pZqbcRKq8+RsMfIVuibmKkNKJwGDLUg50BUUcoRJJZxqZjOK8KxIjoscZFGFSXSWLwxdwfzziOkoHd+gYe+9BpXFxa4/MZRbi62yIYRCM/SUg9vJflWQpYY1qzk2dPnCYRlTo/fnktLS+E0YxNSCwv645g8C6ikOZNlTdSTBAOBdB60wkchZHcrsO+CO/7NLg7B6ft2oWYw12sEuwHphQj1tQ4L3w/wiQErOHdki04wROFwfjZtICztYIzEszVqsDusYUqFs4Ii09iGpX8Kyrom2D7E9weI4RgR3i35Z1QIpZDdIR9LdkhUwXgpZHdvkbJlkKVm7wlJeHqAHIcI5VmqDFA4+i7hdplyO6+R6JyxiYiU4RPz62xNG7y2tUw5DRDKgfKULUvWUNSzHNGoz24X1cqHJL+Q+Lzg69/4In/whz8gWcz59rGUP3voRV7onqCXxWze6CCqhoXOgI1Jk5rK2c3r7GYpEs/mpMH13Q7qUkI+5zh99hb5MEKMND5yiIrFAyYWUIkojrXRh1NsGt3DSu/x1uJ6fY7+55B/ufEoAE+ffp1DU+XjzQ0KqwjmMtLGlHqYc63bIXeai4eL7I1rnKztUzqF24ppXnIEQ0F3WkXFhuhAgvQI7cADAnwUojKDaVZAinvnGM7OLH39GtkrLRQO4xTbWYPNrMmnl24w3xyxkI5wCLRy3Jy0iIOSRpTx0v4qn52/RnRbMlmSFG3LaqPLYmuAqXlUYvBWkKxp6usGlHy76ZFZ+SFgQuDdTLnjf3WBf379cbpFlViV7E5TFI7fXvkFJ9LbSDz1Ssa1wzaxLrl8ZZneD5f4x+c/A8DgbMGnzl3h/moX6yTCgs0VfqwJxrOGpVioIeydpmYw/RAw78FZfGlw04z0pZgL+0sE0jI1Ad86/wn+5vzneTjZ4r7aIddvLJIVAb+4eB9xZ8L0iENNJZNTBWdPbrBQGRJJQ/dn8wQDAYVEDxU2hKwh6R+PKJohrhbh6vGHgL0NOPuL5a+/DsD/bh7n2aMvIWLDyncU/7ZzjsfTNZ44c508D6hf0lR+kFLdlNjYUW+Pubi5xPee+yTf+dqvkmwJytQjYoNJLdMFz2RJoAqPiSV5J0aU97iPvV85by1uNGb6ZpPGFfjrF36PegYHZ4Fuk+1Ok6faF2kEGWuLLa5eX2L+ec3CK5a8WSesz7rg8RFB53PbdLRhbbeNiRxm3lG5HZLslKjMokY5Nv2wcvFWiHd6vaM/LBl9dcB4bQ4fOHRacrQ5YE6P6duYM8k2H0/XcUuSB7+wxavTVQJhaagJ60WbzAXcnLRY67do1icUVcXwZoPapqNMFXpcYqshwcbBRwB7y04hqf78FrvZPF/85GtcH3bY/NExnj73PzTVBInDIZE46irDITkV7aKEw3rJd4cPUVhNZjWllXSqE/bHCZV9SeWwJNqdgJYIY/GB/ohgzLpkP5ky//dVvvf0WRpvah77yhs8EO1SeEXmAnq2yrweMrAVxiLCekHpZ0skugBgLpogxawxK/+7zcLFksrGEAAXSFwSoPaLj5ZjSIV3HpfnJNd7HP3+HINj8LudV+jZKqnMUMKzHBwytDGBMGQuoG+rSOFQeL7QvMh2OcfEhQzLiGv/dJrWuqGyO8VVA1R3hCpKdGnwlfCjKwYglMKvbVCZT9h9xrFVznrJoY3JvGY56DGvBwxdTOmhKnMqsiQQlswFdE3Cv145S3A+Zf5qgSwdtqIJt3rYVg2128OPxrPC/v6G9+5E7zwXySjCFSX2849w4089v3b6MmeSbTIXkKqMeT0gEJbSKzIfkLmAF/onud7vsPvaItUtQXXPER1agmFJsD+Cbh+8m0FJiS/vcR+7p6WAyzKE1gQ/vcKqPM3BX1SRNUeqMiyCQFgSmbNetrkwXuHHO8cZvNom2YSVWwY1ndXFaKOHGE/xWYaIY1z3EJTCG4O39pdQ7F2vfiKKkHEFXxryz5yh/9UBX159FeDt0vH8wSnGJmT9haN0XnMkGxm6O0YUJT6OEIcD3GiMqFSgUYPeAD/N7pw4H9XKu4GK2aEhlEI+sMqlP28RLI/5laUdtsd1dtba1G5oahuO2q2coDvBa4mY5IjhGJ9ld+aSiCjE9fq4PH/bnf8f2LvghBTIRh1RT8lX2+w+USHse2pbFhsJ0qvD2ULGIaY5fnDnHRdASShKXJ7ji2Km1h13fqld+Z7wHrzFO7AHXXQYogc5zSsBqnBUdiaonUNwDu8cOI+bTPBFiawleGNwvdHd5wX+D0aXkOHdNN7dAAAAAElFTkSuQmCC\" y=\"-111.782953\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_27\"/>\r\n   <g id=\"matplotlib.axis_28\"/>\r\n   <g id=\"patch_68\">\r\n    <path d=\"M 218.763944 149.782953 \r\nL 218.763944 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_69\">\r\n    <path d=\"M 256.253599 149.782953 \r\nL 256.253599 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_70\">\r\n    <path d=\"M 218.763944 149.782953 \r\nL 256.253599 149.782953 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_71\">\r\n    <path d=\"M 218.763944 112.293297 \r\nL 256.253599 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_14\">\r\n    <!-- Sad -->\r\n    <g transform=\"translate(226.213772 106.293297)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-53\"/>\r\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"124.755859\" xlink:href=\"#DejaVuSans-64\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_15\">\r\n   <g id=\"patch_72\">\r\n    <path d=\"M 288.032909 149.782953 \r\nL 325.522565 149.782953 \r\nL 325.522565 112.293297 \r\nL 288.032909 112.293297 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p496002fce4)\">\r\n    <image height=\"38\" id=\"image380cfc0406\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"288.032909\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAOKklEQVR4nEWYWa8m11mFnz3V/E3nfF93n9OnB3en3XZs4QQEASVCIYJIETcIhBB/A4l/wAUSN/wOxBXcQIiiKFEGy1Gc2LHbbs/d53Sf8ZuHqtoTF9VxrmvXrrfWWnu9717iz/7+3+LqSBEV5OeR6lmL2jpEjBz/RQWAaqD33VMuZj3yN0uGnzhWNxXru+DKQEwDxf6Wf37t/5j7gvO2z39+8HX8aU7xTKJqsN9eYD/sc/gTx+UbBp9BMwqoRhAOar7z8mN+8P4rFI9TRAAdlACg7UMUAhEN+aUkvapRDdTjiCsg7jLKn5bYEk7+XBHyQDQBokA0ku1Fyb/899/he56XHzzjL7/yIT/NX2LZK8k/T2i+6NE/Fpz9sUFE8FkEHfHDFqUiF3UFXhA1qA3o2UP55cLBxxClYDvRmKVENWCHHrNUuLeHlPNA25f4PUu1tyUzjk2doLUnM44yaTlb9DieD8i15dXJGRdVxWdmTP5BxvCTlvNBgh1E5L01CTDub1jsMn7z/h3IPLYXUTuBboeBkAcQEJWiPHX4TGB7hmwaUFtJfirIppHdROKKiDCBcbWhdpoYBdd7a1LlcEHy1/fe4935IQHBrC7wQZJXDVFnRC3ILyIgqFtNaBWrxJEZRzNX2BHIBpr9iL726gWnz0Yc3pxyMb9OdRxwqXlBK+iNxKwjbU/gMmhvtpRVw7pJubrsUTxKWT8tic9aohT85PAW09cE9kbLNx9+wrzNqXPN5TAQtEDXEVcBlyly3OCDpLYC7m5hnmL3AlQW/freKa+MzvnR269igNnDlMnbG7YHGU1foBpAgCugvhbIew1tq9iclwzf1dRjOP1WwOw57l27Yno2RnxcMHoz4Wfrh1S3lvSzBj90rI4SylNPspAEBa5VFKMWozw2sVw5SYyCbz34GP3RYsJXR6fkky3yiz56G6knKb0PF4gHAxASWwhsBUwaQhBkmcVMPMO/WdNLGt4/PsD8puLzvOSlbz7la6/8hsum4oePHrJe5Bjlqfa2bA8N2VSgt+BvRvACozyFsZi0ZtskbKY5IUo0QOM1ZdYyvRYongtcJomZRjWBKCWuADsIxCCQMrJfbrlerNAi8NN3XubmDwTbccTvBCffvw3fhdeHz/je6+/xq4sjNk3Snfx9z26iSWcR4UHkjlWd0jrNrjUIERE6YqRHKhkodYMPgv79Oe1AoGxEWM9urPGZICQQTUSISJU3lKalpxsudhWTnyvO/kRy9I+f8cY//Jb6jS2n/3Wbs6aPFp5htkOISL3riqvHEekiqhUQoUgs28awuSzYLDMAtAjoSb5m5xNenzznyWqPmQLZRlw/wxbgMrBVRA5bRoMNg6wmRMHCZrRBMf/ehlcPzvnO+ANu6AXX0xU/Gd5n2hSM0zWJ8vSzhlR7FiLiVgW7sURtQWWORHluDFZ8dtxDbDp/vKgrtBaBXLV8OD9its2REZKVZXMzJRhBO4z4cct4sOGgt6TSDVp62qABGPZ2XM9WTPSKG3rB3eySs1EPgIXNKXTLcLCl9oarrOSzVlFvM0SELLEMsx3LJmP8lStWb06wHr6Yj9AuSgCOz0Ykn2WoHHyqaAaCehJxI8fk2pLb/RkvlVdIEQE4b3pcrktiFIQoWPmMVinWPqMNmrVNuVnMuZauGKgdC58zSrY0TvNsPUGtJLvGsJ9uuFdd8uOT+9RHlsFvDfOqj86VZeUy4kbT7ntu/hB8KnGFwBVdDxxkNQNTMzZrCtkCkEnL2bDHosmYtTlSRCyKbUgYmB093XAnmzLQW4zwGOkwwnO7N+NiXBGXJfak5PPRHvvZhkm5YZEX7K5rzFR1VD5Zj0CAmUvUzuFKicsgjC3Dcscg2TE0W3yUGOHwSEZ6w73qinNToUVgX61RdGgOzY7rZsmeXlPIhhAliXAA7CVbDkZLnuYFxYnkC3WDk0lNWTQA2JstyZMELUVguitIzxX5uUA1gc2BxpWRwWjDJN9wLVsD8EW9x6nsMzJbDsycW9kUGyW5suyrNZuYkApHoVsGakshG6auwkaNeVFYrlr2sg1P9lo4yUjmkjbmzLMETKQY7OC1uqNyOivZ/xTSpUfEyPa6wN6u2Su33C6nPNsNON/2uFEuGacbFi4nFY6eqtk3G1Lp2MQEG/WXKAF8XN/gypY0wSBF4FqyolAtg6RmvL9inWRECSICtUItBFsneO3lY+TKZqinGVGALQTz+ynNXmR/b83DwTlzm/P+2Q1OzofMmoJ5m2OEp4kaG9WXh2HlczYhxQhPKVtWIee4GeGR2ChZuYyZLShky81szijb0Y4Cvc8gP5WoRqBqUCtFIh363asDqqfgCkGrBbYHftywX2zwUfDW8R2a04LDBxcs6oxSt9zPzjmzA563A5qg2biUnqrxCBSRUjYoAo3XNF5jo+Tx7Bp3B1Mq3dBTNZN8zeM9R0gMegsiCGwJUUTaoNHOS+qxIJhI8RzqHJLCIkXk58/uYn7Rwx4EGqfZ/mzMR3HC4d8u+J9HX0UbTwiS8WiFlp6h2XHe9JC9wC/m9/h6/yk/PH/I81WPbx99zP9+8iryKPL1wRNyZcn7NW0/IbuMJAtoXoWYRGZ1jl6uc1QakVYQNNgqQKN59OiI/mON2URGjwObD/a58WnD/EHCO//6BtdTweJ+54HT1zxmEli5jDeP7/Cj1csQBPOXcup/PyQfKvJ/sqSp5efvPiD9mkOLwF615aLXY/RRwCcCs5D4TJBphw4XGcYK8rNIlALpwO8Uaiupx5Hla455aeEkJ+iEZB3ZXFfYHkgLm4cNbxycoaUnlY7UOOxFj8FjWH7/Fs2BoDz3/Mev/4jxjxNkJfiReoXDW1cIQDVdzwy62y8kgUGyQ+utwOeRdBEJBoQVyJ0ipBE/dKjck6YWexRZHkr8ypDtb7izP+WgWOKjwAXFymZgah7sX/DWsMfqJU153I04m2sKfa6Y/dUOpQKpiFwuKsq8QThwucAn3Vq1k8yaAi0C6I0gv7LUexrVSKKOxD3L3YMrblUzUumZJCuubMnGpVxPl7xRPmHhS95ZHwFQ6ob35gcclXO+8wePOKt7uCA5X1fMTvsgQDjJrcmMTZuw2mZs6wTjQXjQdaTtdxejJ6d7aCL0Pw/INqCaSJSRkEUGgy2jdEv6O4qkI0TJXrLhZjrn0vWZupJJskKKyO30qrMNl3GUz/jG4FOu6SXnrg8PYBsSHm9vMG0LzuhhnWK5zMlqUG3k9E8lxTMonknadY4uT0AEED7iMkFUQN9itCdESRMUTVDkqsVIz810TqVqLm0PIzyFbmiC4dz2uZdfANAEg42KTUgpZYOPgiAELxenNJnhJB3yK3+LJTmyjSBA7wTFecCnguIsosuzQJQQlcBWAp9FksxilKcNChcUWnqWrhvi6mB4Z32LgKCna5QIXYGyxUbFymf0VE0TDBexG38UESMca5+x9QlN0BjlAZAOmp5EOEjWATmLBCPQNheUzy2uUKgGhBc4pwhRkCmLixIZO9MbmB0XbY8maPp6x9ismNmS5sVsJkWkUg1GdB+to8YGjRIBKTT+xYiVK8sgqYmxA6M68ZiVwhaS4qyFKNHVSfui8ojZBornilUvYZHkFMZyUCwBSKSjUg0oCFFgpKcJhvvZOQCeboKYuurLjgBQ6YYUh48SJUKnQ5sREMRWYjaRdOFJZw6fK4QLaB/RsvVEKQi5onjeoDcG6QyLVwrqaouR3d+bF5sqEbDRkOKoVM3CFxSywUbNczekUA0jswFg7TOM8CgRuLQVX2z3aL1m4xLOVxXpSUI286jGIxuPdBFeRBaaCNIFzMpie4Zk0TL4VNCMNNNJySzfUJkGqUNHyYuZS4lAEwyVqqmjIUTJdbPAI78s6ng34sP5NU7fu0b5VKJ3sTPTRKBtpH/uyS4aRIhEIZA2ELu60GpnCZlGr9tugRQkK0v/M8XFXslJPuCgt/wSuX2zoadqKlUToqQnd9QxwUbFwhe8Nb/Du88OaVcJo18aqueeu4vulm6WDQhBMBJpA7afIHxEugAh0IzzLwHSruoe+tygthZfGKISlKcWfmlYTse8e6vP3vUlB70Vx3JIZRr2ki0AhWzYhpQz2+fX0yM+ORuTvF9w9L5H1Q7ZdrmIqh3BKKQLSBsIWqI3lnaYkswbQmrQG4cIkeffNGjpAlF2+PncIFyACNoGKhdJl4r1mWF1Z5/N/ZRRb0s/aUilpwmKMz3guB7xs+O7bKcFYqvQO9hck6QLQTYDrzoKfabQawtCQIxEIbuidEc/gO0n2Hs1uh5nJPO2E12nb2IiUVsH0SFtQLYRvdNMk5L5bRiNdzyaXadKGqZNyUdnE+T7FWLsQUQ2NwPZhaS47DRjdh6fduGgLzRRdC4g2wCh02w0EhEiq5uGB4fP0WbtsAODbAIigIwR0QZCorqXYsSsLL02IL3hylY8mmf0J2sOqwVvP7mFflygtxCnCuFBtZAsIkELoha0fYNsA8J1GvapILaxk1Bh8GmX0anGM38FvtG7RCP4PVJagBfYyiBtR2kw3eY+lQQtuvYx0zQDzWG+4K3dS5RTIEI7iLgq4qyA2CVFbaXIrwIiCIIRCEe3R+2JShC0QPjI5iBBRI24s0GKgP69vhRq52n7pgtTVPeC7Sm8Ed0FeCw6CqxAyK4bZE8T9Dbiiq6dBQ1xYHH7gu1tSfWpIlkJQCLiC6upI65Q0GV4tH1F+bzl4g9TXj98jhQRKdsOLp8IbE8TjIAQCS8Ke9FdqMcC24+4MuLySNtqTne97qC88CfZClQjyJ4kyLUiueriUp9089bvEPeZQNqOVgKkC0871Oy+tuWomOOC4v8BMVyDINT7iyYAAAAASUVORK5CYII=\" y=\"-111.782953\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_29\"/>\r\n   <g id=\"matplotlib.axis_30\"/>\r\n   <g id=\"patch_73\">\r\n    <path d=\"M 288.032909 149.782953 \r\nL 288.032909 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_74\">\r\n    <path d=\"M 325.522565 149.782953 \r\nL 325.522565 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_75\">\r\n    <path d=\"M 288.032909 149.782953 \r\nL 325.522565 149.782953 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_76\">\r\n    <path d=\"M 288.032909 112.293297 \r\nL 325.522565 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_15\">\r\n    <!-- Sad -->\r\n    <g transform=\"translate(295.482737 106.293297)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-53\"/>\r\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"124.755859\" xlink:href=\"#DejaVuSans-64\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_16\">\r\n   <g id=\"patch_77\">\r\n    <path d=\"M 10.957047 194.770539 \r\nL 48.446703 194.770539 \r\nL 48.446703 157.280884 \r\nL 10.957047 157.280884 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p81cd189a61)\">\r\n    <image height=\"38\" id=\"imagedf63e51360\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.957047\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMG0lEQVR4nHWYy49cx3XGf6eq7qNvd8/0kBxyhg+RUkiRNuNYtmwpCOSNgwTOQkLgRVbZJN5k412WQf4A77PKLoARI4s4MGArQGQLgReSJYSyZEUPUjJpSSTnxX5Mv+6r6mRxu3uailzABe7t6a77zXe+851zSl546QfaufUZOp6gqphOG+22QQSpatQIQPM8L8B7NAQkipj+0XnSv3/Ad3ff4gc/e4md1xSA7H6OO84hBKSomj2MAWug9sh4ilYV7Gwzv9jls29HtK4PARgfdoj3Hab1YIrO5qj3iCw2EIEFIAm6AoYsQC5W9vGAhz+5zMi3+Ns/e5WDrxtUYHQtY3ZlA40sagSZzpHjCZKXzR7ONVsOx8SjElPBdJJSvr1F94OIeCSY6ROd5ou6BsB8DoRI8/flf75cquy8PuFff/sNvp7d43svvsLhs4Z4ErDzgNSB+uwG869cpLhxgXp7A23FaCsBEcJwhNsb4mZC9usWvTsBOwe14OanDRudDJ3NTkAEBSuPhfELVwi4g2PyN85z8HSXF9ofkrxY8U/8BRd+aXj/+z1OXRwSuwk+GI6OupjDNskjQ/vhOdoPK9L9GaffqzGVUrUtvgV1C1yrH9A0RqKGXqwBZx8Pn6wBNKYJ+fIKnp3XC3754nWeONNnx42Irx2TPT/g+9sf8LDcxIhSBMdBr8tnOz0ORh0OL7cYjCKSfo9sT+k8rBrZKKhVXLFhaGcxRgwYQZ1FnQGviLOotUgITSi/KMzG0PrtI37++lf4u5de5dik/Onl21xrHTDyLbbcjEotQYWWreilc6wJ9OOa6UbCdCsi37ZMz8e0jpTsIBBNBFP0hJC4kxd+XuTONEB/z1IjEAJP/UfJjwbPE4vnUtqnUsuobjELMROfMPUJlRpiU9NyFWe7E86dOqZ3bkx0ecrsqYrhdWW6a3BzcLZYiN7Yx8VtAL+IoF9LjAVLy6wF0MgRfzrg5//8x9z/6x5GlEmV8ES7T1ChCBFzH5EYTxTlxKbZeOZiQmvGuEwYJSWTbsKkk+JTh+s88JgqIM6CMYTIoc4gZTjJxjV2JKyBcxZqv7rfffk+nxw8zcO/LPnalU/p2IJKLUVw7CYjElMzCzF1MMxDTMtWVGpIbUVia5KoZhx7pjbDde4MG+NciXsBQAQ1BjUGIfyerFyy3XiVthL6NyybmzNyH3FrcIkqWK5uHHIhGTDxKQGhwq62KKoUgE5U4NWgKugpcDKeQV2viduc6M1oA1QEYWG2awwuf6PWIlWN3+lRbgWkcjyaZwwnGee3RlxKBwAkpiISz0xiMltiasWrkASLMx5nAomtCSo4dO1lRlA5uWSpKSuwDGFQCGGlNykrZJajWcpvv9vmy9+8y3Nb99hyUyq1WBRPo7PMFGS2YBYSPIbEVGy5GbMQ06/anIpnxKZmWsW4xzxqEUoAWa8E6ywtRR8CMqsI/QEhLxj/1Tf5m+/8guvpQ1JTAjANCf26w7jukNmCrs2JpAZgHFpE4sFAitC2BVOfAHA6nWIwAtae1MgFUF3eL0Msa4ypgg/oZEKYzxFrCQ72yg2sBLomJ5UKi9KvOwSEbTdefRaLxxKIxJNKTSSeoEIVLEENZXC4lYC/YKkIag0EQBRZMmYtRA7Z6jH58y8xvGqYP13wYL7Jj4rn+FJnj6vpfuNlvsXFeEAkNZHUVOoWxCsRFV6aEDkTqNUwLFvsT7o4Qmg0Ywxq18zUsPpMgq48jaBgDNXOJne+F/Htm+8yqlJeOPUR56MB78ye4Ff9KxxvpGy4nFNuyvloQNs0mR+LZ+gzLAErARa8ZIvwPxx36R9u4LQoQAwSmwbIWgVQ4bESpEaQxXP/ZsY//MmPuZE8wKKkUpOZmivREafclJFvXH83HtKz00ZPQFBDz84wEshDhF+IehZiHhVtBo+62L7D4AME37Dm7GNiV2sWIeVEgzT3yTBwO98hlRqPMNWIe1WPoc+4HB/xZHKIXfjfMnwxnswUnLITembGhs3p2vkiax13+6cwRxHpoVmIXxrd6OcYQxqWlgCXoNRZunen/NuvnmOqMR5DWyrO2gkbJueCG5CZAo9h5FvkGq2J3RMTaJuCTAriBZNlcEz2O8QDQ7anGIljJEkatqygbq0P+1wiAE2LXXukrLn0n/DT0TP0TE7XVJyxFefsnHRhCV2bc1R1eVR3SKUmFU9baiIJdE1Jz87IpCAzJf915wbpQ0f6SBcSjyOI3Kp468oueAygaCN6VKGsMIMJndtDfvzBV2lLTSYQixBJk3EW5e7sDMOqYWzPb5BrU4pS8UQEulKxYXJ+0b+Bu50RTcDlUHUFp8sGEZqMXGJZ77vkpCwtNajzOcznJLeuc/h8i6eiHK9KACo1vDO/xKsfPo0G4X93d/nO+ff4w9ZneDegK9XqnQe+yxsfXSGKFDeFqi0QwIWtDlJUSF41+hFW7r+sk82HsCpfIUBVgxG23y757+kNLm++BcA0GIahxQ/ffY4zryZUmXB0boeXn4dq12KygHVDUvHkavnp4KtEnyREUyE5Dkx3BVOBme+08O1GY2qX7t4ACusMLtlaMqaKVjWt9/f44cffWH2lwvDa9Brx+y2SUaA4DdEUHtw7w88+vckro5vcr3uMQ8z9use7/V1sIWx+7PGRUPSU+Fhx4hXxTeu80pThBJDy/4YRVW3mS+8J/QHTuxc5fMaRq+Vfjl7g1X9/lvOv5xS9CALMzgdst6IVVQQ19H2HXCPuFmfZO9xka09xuTK4LoCSHda4dH+GFH6tiC+yMjIEJxhtOthVUVeFoKj3EBTT7aBbFe8Vu/zP9Aovf/hlNofK8GrC4KbSemLEtd6Qs60xG67gfDIkEk+/7vBa/ynMg5TOg5rZWUe+HejeM9h5wEkdEFXUGUJsCFYQL820YgREV9kq0OirrhelSSiv7pJ2Cv7xrRephiluZBlfAXNlytUzfdpRU4oS49lJRpyLRvTslP1qk48enaF9XzC1Mt8W4qHQ/bTxNec7Cab0oIpP7Er4DShWupPlwAugAbEGc+Y0hzdbpK/Axic1dUsouzC6CuU05vbsHHFWsbt1zI3uPleTfS5Fj2hLxU9mX6PIIzYOAsEJEuDU+4HWfgmqODeco86gsSM4QR1ILYhfam6ti/WhaXd8U/TLPzhL1Wmy6ODZiHIzECLF5oJMLcnOjO2NCdc2D3mm/Tuejg6IJPAotPjoeJu6sMQjT7lhSfpKtldiihp1BieTGcRRA86emKo6gzqgbLJUwqLv934lfFN4fALyrQHfOn+PS+mAjs0Z1RkX4z4XogGGwIbJyUzjXZUafpNf4mDcwfYjollB1bW092vctAJVpPQ4oGHi846/7vxrwte6AYX32I/u07t0lfFzcDU7YNuN6Zqcp+IDerY5cohZNIMEKgwlhncmFynyiGhkMIVHvBJNa1RAEKSsMTrLGwaW2bjEYgRdTEzYxrsaWwmLoyhFZ3M2f32If2OLN4dXyEPEOKSEhVAtASMN04VaxiHm0Hd5++gC3huSAUgdiEc1Zl4jQZGyRuqA0TyHslqAWTfTNd9ab7P92igXAjKesv1WxZu3n+TO/BwPyq0VU5U6KrWUGHJ1jEOLvapHf9QGhdZRs5epFanCChRVjSE8PjOqnJyJiW/CJ+uT1PoyBqKI1sMpvVsxt/qXmIWYoc+YakypdgUu14jjkLJfbVIdx4S5I+3XIILN60bDYWFHIWC0rpsJPHHU6drYbxuA4nXxgyUYATGYOEKSBE1jADY/rvj0nV36VZvfFWe4V24zDBmlWqYhYRgyKnXcmZ0F38ys0bhqWK8DujyaqD3iA4ag4Cx1ZgnupEkMVprnhehlnVkjEEXNgZ8xqAjRpKb3vnDr8CLHdcon5elmdAstxqHF0GcMfcaoTBEV4v0IOyma0HlFvF9cC8YkcmjkCLFpxC6N1oKTk6K+vhaDsFiDxBF4jylrbF6THXmGb57lzuQsh2WXSDzTELNXbzL0GUdVl0GRQS0kjwQzyRtd6SIqftG11B4n7TaaJvi4ycIQQYiae6kbt5d1eVnbXNIcpEhougwzVZKBY+sDw2/OX+L4csp2PObJ5JBB3WZUtzgqOzwcbJAeGFpHTSNAJRA7JITmDKWqQIT/A03RTk8YxxzeAAAAAElFTkSuQmCC\" y=\"-156.770539\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_31\"/>\r\n   <g id=\"matplotlib.axis_32\"/>\r\n   <g id=\"patch_78\">\r\n    <path d=\"M 10.957047 194.770539 \r\nL 10.957047 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_79\">\r\n    <path d=\"M 48.446703 194.770539 \r\nL 48.446703 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_80\">\r\n    <path d=\"M 10.957047 194.770539 \r\nL 48.446703 194.770539 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_81\">\r\n    <path d=\"M 10.957047 157.280884 \r\nL 48.446703 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_16\">\r\n    <!-- Sad -->\r\n    <g transform=\"translate(18.406875 151.280884)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-53\"/>\r\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"124.755859\" xlink:href=\"#DejaVuSans-64\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_17\">\r\n   <g id=\"patch_82\">\r\n    <path d=\"M 80.226013 194.770539 \r\nL 117.715668 194.770539 \r\nL 117.715668 157.280884 \r\nL 80.226013 157.280884 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pbc08966e7d)\">\r\n    <image height=\"38\" id=\"image3d79cd8354\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"80.226013\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANjElEQVR4nE2Yya4lx3GGv8ihsoZzzj137Im32QRJSzZhWIJpARa08NYbP4DtJ/JDGIb39ksQsAFLlgwLkkiKQ7PZ7Ol23zPWmJMX1SRcq0ItKiIjv4j/z5Rf/N0/ZeUz5uiRmJGcUccJGUbY7JDVkmw05Ew6qXnzFys2H2XSxYQtA3U50biJs6qjUIGr8sh71Q3X9hYrESuBF2HN4+GCL9pLvj2sefnqBNkUiBfiMlJftvSHksVvHatvIpsPNSZrUG1CDwG162B/hBAgRqRpYPJgNLl0bH+8ZPOnEJcRAbROrOuey+rI0oz00XJmWy7NgWv7hogiZUWneqyKGEk4HWlWA8egkF6jj4qhW5LrhNtkqhcjkhwmWsHy/54QwAfSOKK0RsoSCZHNx2te/xTkfo8zkeANIpmYFCEpEsLSDpTKs401vxvfwWeNJvHSn/BsWANwVR9IWWj3JVkrQDCtkAeN7TL25oikjBnOFG4nqG4if/dirpKKiDFzojHi715y+2dC8ehAWXja3iGSKQuPkszBl7TeURmPlowi82pcMEXDo8UbnAr00TJEQ6EjMQuiMyQhK9CDYAZwG49MnmwVZvdhxm0N5lhh716R9wfy5JHCIouG3FS8+fOa6TzCriQuFCKZRTNwvdoxRMPLw5LxbQW/kAsArI4oleiD5eFig1URJYYpat5b3bLvS45HS64zI1B9KmQjhMsV3R2HKR4d6b5Z4XYF5o0h7Q6okyVMnlxY+usVx2uQOiImEYOmaQZOqoFCBw7ecWxLUhLSqFEukqOQg0K5SNs7Xnc1VidEMrX13A4NOQuYBEGRqkQyhiyCPo4sv0yY/qamDJmsIS0can2CNBVpVePPasa1ISwyOQlFEWiqEa3yjGNSbPuSeOvIev6WBAgCSbDLkZSE25sVSMZWnq701G4iZ0BnUAkGRbIgOYMIEjOmemZQU8YeA+o4ku+dkxPkwuAXhmQhuYQpA9ZGhsmSs5Cz4HSYK+EFu1VIglRo7F7o70bGTYnqNHYU9CCM5wauPbX1jNYwFmnGGJAMposQIliNMS2U24TqA8P1CYfrgvFMKF/PVWwfCOjI6UlLbf0PzbsfHLuxJKZ5K3KvyQp4t0OVHvYl+nWBOSr0ALGaYVeSMTInlKKQew1JMH1GTWmen1ph3CYTnbD90YLunjCeZtwtTCsha/BNpjwbOCkHFBlnAn2wrMqRF9slwRtQmbBKyCQsqom/f/9X+Kz55OYDPv/jfcxWExcJ1St22xqlEiEp8qghC6pX82pzxt8/I2vBSIasYPeBzFthQE2AQKggFRljIlZFajNhVMJIpCgjb9qace9mni57cob9zYJ/Hv+aupwISaEWnmDnCjEK7Cxb3VC4gBSR3BskQbTCdFKgp4QaI0pPmeM7iqwz9fPM8mvBdhkJEEtIq4BR848LFblb7qmNJ2Xh7uqAXUxz8EmjVKY67YlRMXozd64LoDLSarIGVoG6GVEqoUwGnVFekJQZ15ppZWb423uK7scjtIb611C9HNl+WOGbmQtVRoxOGJXoQkEbHHfcHiWZ06Kj95ab3QLfW1JUVG6kchP9WLBpK4bbEtVqUMD5yMmqx5rI4A22CCSvkABmAN8IxweKrEpM+07i4nJPOFMc755T3szT2DeQTP4B9kIFzl3LuW154DakrDiYknblOAyOaesIorm4avlo/ZzX44JffvsQikQuI2ShqifOmg4lGastB2AyhlRA0qAChAVsP9QYPQi3n55jjoqrZwE9BMpNor/SpDrhioBIxqiElsyYDJvQ4JTnfrGhqwv+oK/Qi0AKwpu25ok95XZoSFFBFozzLOqRk2qgsRN9sFiVKG1g0ImkIBWgejAt+GXG3P8kUGwndDshgyetKvSUkKDBJlJUFDrS6ImlGQhJMSSLlchLf8IxOpS8LevBss0LvkiK9liSvKJaDTgbeLS+pTbzuJmi/mHBm9wgGaITlM8Uu4w9gLGHgG4nkjOIUvR3Kg7XmuEio6uAKz1GJcZk0CSsjgDsQkWXCp60pxx7h7EBfW9i3fQ8WOz4lCsOL5ZMhaVyE7upwqhEoSJnrmPvS3zUaBOZmkR0muXThLsNSMooPQSkn0AJYe0IlTCuhbhIpKAIQTNGjVWRiMJKpI+WiGLnK54dT/BeM3UFRicuq5a75Z77qz1Sz3ADP9ij758+WPaDIwSN+JlriWAPE8XTDQYgFxa96ZBYEa7drFt+FuXkAjEplmbgdmroteUQSgoV8EkDoFQidgUHqXii1nx5e87xpkF1mlQkDmVJZQMnxcDSDPSxIGUhBE2aNHoQ7BH0mJApICFiklVor2BMyOixbUKyRk1CCoIfDTfdil+qh2jJXFQttZl43q04To7j4EhRg8nkznCwFaE36J2ZhV1nnAtU1tPoCacCbXBMUTONljxozCA0LyJ6eDuIQ8SkQoMIympk9PhakWzGHoVkFQkDAje3K96/e8Pvn98hTIaff/AVX9+cE7wmtW9NZZGIQYFXZJtRg5BqQSTPTsRXbH3F0TumYEhRkEmwB7BdQo8R6UYIAfW9RgFIN872x85tW2wVFAm7HtAm8tXLC8KrCv3M8X5zw/tXrxF563WyIDZBEiQK2WQEwCQEyFk4eseTwynPjit2xxIOFt0p7DGjh4QaA4iQ2g4zrQ2mU5Tf7ohnC8aTWR70BBxh8IpFPXJ3eaDUni/qCw7Plvz35iFPdyeU1UQsAsFrFs1AzMLBL0Ay3iV0Hfjw/IanhzX/+/kjyrstMSrCTYU5KIrd7CyiU9ickckjqyWqP9WQMtlZju/WuG0mK5iWoAdY/tGweTHzdLc68Lfv/oEPfvScPsy+bFGOvHO25fSk5WLR0rgJKSKnVwd041kten5y8pR2LDj5gyb9bsW0KdGtwh4E073V97WeDycxQUqY+iaSjSIsCoZThfLgNkIyMK2h2EHxyvC0v8NTuYK1J/caKSOLkx6tEn919g1WRa7snsfDBf8p79FNlrOTlttdw7/+/mekpMgfvIVbMqnMsBfcLqOnjCRQYyAvKuTQYfSUkDhb2uKYGdYKd5tpHwihyfR3E8oLppN5/6cCPQrTncyqHPno7Dl/2TzmkX1NKZHf6iMn93t+vb3m01d33o6TzHuXr1leD3x5e8H21ZJiq1g+SZS3kegUekhM5zXFbQ83A8YcPVkJsTZUrwO+sqQC3C34BeQi0zzck7JQmMDHd75lbXvOTMs7xS0/Lp5zX09YEW6icN9uuG83PBvX/ObwkOoLh/bw1cWCeGckD5r6saV+mXHbRCoE0yfcmwG/KpBxZszE0mA3A3oIpEKjoqW9FE4/S/iloruIXC2PvNNsued2+Ky5Y/f8ovmMaz1iRbhNwlqgkEQjE5d64h/O/4PlTwb+rfgp+uuS5qmQvytREepXCUmzddfD7KB3HzS4bZx5rxxGTREUZCVkrXD7xO1KaO8pVo8T3TsapwOKzOPunOt6w5As/zO8y2PdkvIsU2vd0iZHo0YOqaTNBe+5G3726DGfrS7ZHWp4VqImYThT1C8ytsuoClTIaJ8pthPZGnJpMNkqctAkqxkuCvSQWH5lMUOmfulpnjie3F9TX0x0oeCb7oxCBdZ2xamdW+rUtPis2aeKMVmGbNj4hptpCcD7p2+4KUeecopvLWmniVtFcZyhT3q2J6ExZC3EUmPUlJAxkivDuFLYXqhvIm4XsduB088Mr8tTvv44cl637KeSUnuciiiZB7MiYyXy3XjK8/GENhR0oeD5YUmImsJEDp0jBoUMCntUKJ8pbyN6jIRKE51iOjHU/exezPdqLz5h+4zpE9EJdj+h3xxY3R6pXq55frzgy8tzss6oBz1/cu8VD5sNH1SvqNVIROGzxifNbqzog8VHzTBYjr4k7wvIYA6KxTeZ08/7WXSMgED5eiJWmmllOT4wmGyEuChQPlK9mpCcySJISKRFjeoGzKs9F7+1hEazv9aMDxOtL3g9Ntx3BXfsjpf+hDHN63QmELKicRPDYEmtna+tOsXyG2hehlkGRTBvevRez3FNCSimlWCIGT0EiBnjI+IjKAUhIeM0X9oZTdbCuFLoMTPuHU/DKW/qms1Y83l9xcNqw+txwTE4DpNjCIZuLAijQYKgRqHYCrZNZCUkp+cDbkrIYUSGCVVbxrWlu5cxL39Wc/+TA9kpprXDve5RvYcQyU1JrObbM9sGVNDYTqi+LhgvDEdVclg2fGkuMUVgUY+IZEZv5yNcZ7FPHaYVlIdil4mF4BuF6QSJCXwgl450usCvCvoLRTwJmP7jjvAbi/jEtFToscDdHiFG4knFdFoQS4XpErGYBXf1TWbczQAPZwXTOiOT42gaUpHRg0CGchTq5xkV3kpOyOhxlqBkBdV74mkDSshqTri7IywuW8w/fvRf/PtP/oarX/U03w2kQpMWJdKNSJq7LitIRtDjHCQxv5ebhNsKvp7b/fuAeszYPqF8RkImGyEWCj3OWhlqhUQhOUNyhtAYTBtAwHRw3JeYj5uv+JePfs7p5wa784Rao3wJjZtHQci4TUBiRgXNcKaRBLadV6/0nGCxGVHtSDitER8Rn4irAvvqOCdz1pCNkEVQU6LYDCRn8CuDGhMomBqF6TLqpuD/ADSzmnFbp9fFAAAAAElFTkSuQmCC\" y=\"-156.770539\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_33\"/>\r\n   <g id=\"matplotlib.axis_34\"/>\r\n   <g id=\"patch_83\">\r\n    <path d=\"M 80.226013 194.770539 \r\nL 80.226013 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_84\">\r\n    <path d=\"M 117.715668 194.770539 \r\nL 117.715668 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_85\">\r\n    <path d=\"M 80.226013 194.770539 \r\nL 117.715668 194.770539 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_86\">\r\n    <path d=\"M 80.226013 157.280884 \r\nL 117.715668 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_17\">\r\n    <!-- Surprise -->\r\n    <g transform=\"translate(74.132716 151.280884)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-53\"/>\r\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"126.855469\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"167.96875\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"231.445312\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"272.558594\" xlink:href=\"#DejaVuSans-69\"/>\r\n     <use x=\"300.341797\" xlink:href=\"#DejaVuSans-73\"/>\r\n     <use x=\"352.441406\" xlink:href=\"#DejaVuSans-65\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_18\">\r\n   <g id=\"patch_87\">\r\n    <path d=\"M 149.494978 194.770539 \r\nL 186.984634 194.770539 \r\nL 186.984634 157.280884 \r\nL 149.494978 157.280884 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pff475a7427)\">\r\n    <image height=\"38\" id=\"imagefdd37784ea\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.494978\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAN8ElEQVR4nHWY248lV3XGf/tSp+rcT99vc7+Y8WUAYzAYMASEkBIlJCgRDwglUh7ykufkIVLyZyQ8Bykh5AIJAgQmscOAsSe2sZnMjGfGc5/u6Z7uPqdPn0tddu298lDtGZtASVsl7SpVfftb3/7WWltlG8eFX7mceCJlCAS8CDdLzwuTx/n6xecJ77SoDRW6hGDB1yGf9UgSIKjqAwKqVJiJpux6VKlQXmFShQoQjRTRGPIZyOcCYgU70iTbitpIMDlYjXofqBJPrCwlHi9CPxRs+w4Azx+9wZXuIllp2dtvEILG70eooFCFrjBFATMx6EKBonpWViNEAqIIPUE7hSpBFIgVfCyESEEAFQT7XlBGafJQgvJkUuIk8MPJKfq+iUGIdcnGbhc/tVBoTKpRsRANNBJB2QrUti3KV4t13QAeQtNDqVBBISaAApdabAomV5QdjxSKYCHUwIt6PzAvgUAA0RgUG17x7a2nKYPmzn8dRZfQmkKyG2jfzpBIE4wi3knxjQjXjhivaiarUDaFEAd020Gpqc9lZNMakpsKdCdQ1g9YBOg6CqcQq7FTsIFHEtMoImVw4vEI19w868MuyTd7LIxLXEOTzmlEK3xi8Imhea0PIti0IFucZbKqKJtC2RRIPFGtJGp6JvsJyghR02FswNU9ZWpQUcBGgTI3hFgIkRCsQv2q+J14xuKYBOHfx08xKJt84xefAC2YzZhkuxK+nQq+pjC5UHQURU/wdUEM1AaabKUkGhjaT+2SFREhaFxhUUoQIBQGZQO1uKQWlQRRTO50iHcPGHsvWwGpQgncLjsMywZf6vyCx5/bYD/UuTRd5b/vnWIyjanXC2rWc7y3y+akw+agTXhQJ+4bEMAG1IkMrcA5A6LwqUEnHvEKRhZRYFYL6jWH0YFJL8GnMaZ4j8ZKPNPguOQSnFi+N/wQebAYhLtullcHx6lpz+cPXWU969GNUgB28yZeFGUWEQ01rTvC8DQgCpdGpJFHa0EElBVCasEpaHhMvUTrQGJLhmlCu5uyn1p0YbD3fcor2Rr/tv0Mr73yGM27Gv25PvOtCZH2XO0s8q93nib//iLBwOvzQrFcYpuOE0s7lKLZm9SRqaF1F6ZLCl8PIKBrnjyL8IVBnK4AaSAO6NgTx44jvT1m4wl7cYP9PCEsKcaqif3qpT9m/dY8vQuW5S3P4DQcbo/Yy+qMs5i/K3+L/i8XWLzvsWnA39WkM5bRCcv9RptmXJBOYjpXLekCpGtl9XOvMCYgQVWgAF1oQqtE2Wo+jkp6tZReVI2LboVOPYNFsP2fLtPKoPHAE4zCdYQz3S26cykXhqu8eeswyUgxWTboUuOaimgitG/BNJ1h82RO63JM0YHWszuoPKqMViovK8oIvELlGrGVwSotxHVHJ8mZrU1omZxIe+rWVbYVF9jmhmAKQYyijBUcm/I73bcwKvDB+l2+OH+Jt59cYeQS6saxHA9p6IKL41Ve/c4HSW7GFF3h8U/foBXlLMX77Jd11qddtsYtAHKBECKIAybxoISV3j4z8ZRYl2hVGcOxZp9r+wsoJdhgQbRCeXBtxedOXuV0NKh2hB0SYvhY/SaZWCYhpu9bFGI401Kc65xFCXzmC7/kY52bDMomkfKcqG9zKGlzqz7Hzf05dnSTTFdsaeNZ6I3p1lIatiCIYs810CrwIG/xzoVD2JHCTtYqUNqBLuHPF18EIFLQVJpMAl47nDfcdXMMfYNpqPFK/zjhWMpXHn+DZ5q3aOqctaiPF800xETKE1AMiwQX9ENLUEpo13Lm4ilBFGmooREi5dlOW9ixwmQKWxzNsXFJKYoysywbjxfIBPoSmDcGHzxe57RNyoXpIVIf8YH2Fl9++hcYFXBykGbEkoUIrQJjnwCwXB/RsI7MW8KB7mZqKR2bcj/r8tLPnwIFn/r4JSZFDbGgAti5+RFzjQmtKKemPQBTqTbWRCyNUDIVxZZv0dNTnmhsMPR1dlybLdcloJi3IyYhxqiAJjDyLRo6JwsRPTulaXKcGIpgccFwvL5DLpbLO0us/FTovPWAc93TfOoD13mVeVBgP750G60C5cGqCxGuuxlem54g0Y7PNy8TqcCub5HogjxEvD1e4fr+PLEpKUWzOWwTgqZVzzk9s82xxi6xLnFiHo7UR7RMTs+WNEyOKw3DQZOF+xmh3WD5hYj9EwnlosOvBuzhpE+/bFIGz55rkAucn57kn288zfhGl++ePcvfnv5HIlXy2uQEP9k+xc31eWRiibct8R5IAxSQlm3e0vO8shxI1sbU4wKjhWatYKkxogyGQ/UBBmG/TGDfYiZTVOZo347opw10zZPUC6wXTdtkvDE6zPHmLh7Fm8NDpJd7GIHbby9z4egKPT3lXjbDxrlDzN+uLCbZLUgXLKatGB0Fv5KjjCC5IRvHaC0oJUyyGoU3PNbbRiNkYslDhB1rVFEiSYTdGbN+fwYdBTqNDDv0dRq64CO9u7w9XubLX/8LVl9OObW9S7HUYng85s1PHyXSnhfPneXU90eYB3uQF0heUJeAajZZbjWYnphhcCYimxdcN5D225hc4WY8nUZG22ZEqtJx3RQoD2o0RXptVJbT/t+Y8dmcSV7D9osmSeLomoyVZMg7dwLBaqRmqd0dUHxohV3X5MUbp1l4HfQkR7IcZS0YjWq1EWuQeo1kO2VpWOATi69r0jnLeE1RrniOdgYcTvoEqdJTEEXSV8hkivYeKQoWX8+AhBDF2ElZo2UyhmWDH9x6gnpNYaYliDB+aoHJs1M6NqPcrlemqxRKqeoex4g1+NkWkyMNxiuGdFkgVBWszOU02jkfnn/A8zPX6Jkp94pZAC4OV5h52yFFgZQlOEd8bZO1fgcC2JVkiAuWPFhEYPeZwO5nLe1ewR8c/xlHarvcdz2+9MnX2Xmmxf/cPULRP4rONe0bmva9KjSioLXhifc0RbdqNFAxg2cVZ09uPGTKi2bkE65cX+WJK9v4wqGMJuQ5svUAtduv1v+n5/9EHmtucrS2Q09PCWgO2z00glHCKERMpMY0xBRi6Jkp0xCz5xtsll0ujte4M55hc9RmPEowNhAnDhHFc2u3eKy5iUHYcS3GPubKcImrV1Y59h9C8pOLhDRF2QgpqwSujAFjsEOX4IJlzzd5sraJRggoAoq2CiSmIAmeZTMhE8Nm2Waz7HKvmMWJ4fHmfRZqI9yM4UjcR6uAIZBox6wZs1n2yEPEvazHubfO0LtgOXOuj7pzv+o2lEa8rwABGINSCmsPUsqgbFbzSmirwCho+sESEYhUIBPDrC6J7JCApqFzbuaLTEONtXhAEE3bpOgDUEE0m2WP69kiP906wfDFZU69klK7dZ+w00dEHjIk3iPhoPUIJWiF1UowKtDQBaNQ41SUEVDUVGAUIhLt2Qu1h/nQIBy1A+6WXR5P1pmGGI8mC9FBnhT6rkUQzcXxKpcGS/TfWOTkt7dgcxufZlXYVKU5JIC8/zBAAtiTzW3m7Yh7xSz7cUImKYEqVwbRjEJU1f1lD2fGXC2W+af1j7Ix6LLUHfHZpWus1QYEUWRSdUNZiHjg2gxdwtb1eRYvCVKvPWSniqB6xJJ692jhEUDbNSmjkLDnGjgMw2CYiOXl6WkeFB12XZOnW3dYsCP+5p3fZ+v8MqEG0ckRwzTh7197juZMysdXbxNQHKvvkoeqkhgWdVS3YLJSp30nIXoISFegJPCbLvu9zaeItEcrYb01y2G7x6V8jWU75HDU50d7T/KjnScIohn8eIXaJ/f4oxNvsl8mfOfyh+i+WaO1YXjp+afQheKljmfh8IAn5zZJXYSEqgExWQn2PY3/rwOlHp2j2K39NpMHlfA/PXed2WbJE/E6NQIexVfmzvOXl/6Q9NV5siOeLx95m2/8+DP0LiuO3HUMPgDrv1vy5PENPthd55vnnmN0fgF+exMAbQXXhLIVETfrMBhUoJR+pC+lHt0PtKcngzrz5w0nvuV5YesMiVLM6Zz4IKdlEjHotzAF9I7u8cI/fILeZUU8DAyPR9R3AjPna9x44TjfuvwRukeHiAaN0IwKtPGoAPlMhNQiMAaUruzhV0T/rvaQgF58KaJ3NcVkJfd/vkqiDJGCRFU24UVz8tA2riW4n8yR7Aq7zznKuqa16dn9vZT8C/v4RFDA9MIM+bIjD5bcW6wNFL2AaCCEKse+G8r3il6bymgPNoRuPHBEm0PstQ2WXy0fIjcKnGiu5Cvc6/dAFCs/m5B3FfF6ROd2xr0vKJqNnE4jwx3JmZ8ZYaeKeMsydjFTF+G9pransZOA8gG0/o2Cr0JbhVeH6ODFsqTxs6v81ebzJErhBBZMwTvTRbJRTNwHMy1YfDPl+L8MEK3oXDHs3+yxeXsO9iOy7y5hJ9UZ1y9vrTEc1yn2YnQBpghQOPC+Ctd7Ba8NSKis5CC8tnXhPjLNqgeF44c/+Chf+9rLGIS9UOc/r52hthExc82hHwyobQnUE3Qzpnfd0dg2aKcQDT4O7J5V+EaAYYS+mdAZQjwQ4o19ZDJBXPl+lg70Jh4I/mF4bWg3od1E741QZcniG4Gvnvgznj12i59fOM3Ki5r27QnmnXWkqMoUVZZYa4g2HM3CgdZkZ1bQuSddaKBzg8mFeBRIdhzRfg47e0iWV3nxXXMVqWryX2Md6osf/mvBC2prF4LHnz5E0Ysxucfu5ejrdxERJE1R1iJliYpjEEFciYosqp5AEFSnhTTriNVIZFDOo3crpsIkfVhB/D+reKixR7v0/wCnqo3Xo8Cj1AAAAABJRU5ErkJggg==\" y=\"-156.770539\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_35\"/>\r\n   <g id=\"matplotlib.axis_36\"/>\r\n   <g id=\"patch_88\">\r\n    <path d=\"M 149.494978 194.770539 \r\nL 149.494978 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_89\">\r\n    <path d=\"M 186.984634 194.770539 \r\nL 186.984634 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_90\">\r\n    <path d=\"M 149.494978 194.770539 \r\nL 186.984634 194.770539 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_91\">\r\n    <path d=\"M 149.494978 157.280884 \r\nL 186.984634 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_18\">\r\n    <!-- Sad -->\r\n    <g transform=\"translate(156.944806 151.280884)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-53\"/>\r\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"124.755859\" xlink:href=\"#DejaVuSans-64\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_19\">\r\n   <g id=\"patch_92\">\r\n    <path d=\"M 218.763944 194.770539 \r\nL 256.253599 194.770539 \r\nL 256.253599 157.280884 \r\nL 218.763944 157.280884 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#peda901b58d)\">\r\n    <image height=\"38\" id=\"imageb3dfd9d1d6\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.763944\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALzUlEQVR4nG2YWY9dV1bHf2sPZ7r31pSyXXbizmCiiEakEyGk0A8gNe+IBz4A34ePwSvqb8BTAImmkSJ4IEnTOO2kbafsclXd6Qx7WDzsUxU7cKSrks69dfY66z+sQf7sb/5Om4uAHSJmP6HeggjqDLm22H2EnHn81wc8/MeR3f2KxbOJ/VnF/q5hPIHhLCJdRAcLPiNbh90Z/EbwO8ge7Ah2VJpLxe8S08qCwnAsXH6SWN7bsr3s8N973FZwbp+RpKgIZMrHAlkBmA4rJMP7v1xz+ccH2FEZTzyhEySDJADwdcR2E8You3GBWkiNIlnKDwTCQlADkgzVdWI4seSqfC+iIOVMyeDsmJGsiM43VVEEjEBSqAW3Htl8uKI/FbrvlbAwxE6YVuD2UL20pM2C0GRQsKNBFNRCXCqSQCcBhfFYMMGw2mWqXSY2gkw3wZUXAHB2iKiRctfwxiVZsWMiLTy7e4b6UhmPyo9SBalVUlseplZRq1Bn0jIhvcUMgh1KlsJKcb2QjTKeCCY4ls8CHXA1GabJITaj89k/CuW1KyuIIFEZTjzqYDoUpsPCmVxBfSGYUDKhlgKbAAokyK7cLy+QiY2iBmIDsYWwsFRXkeUTQ4r2jeMNIjfQFtLbOa0pgypqhGllcHtl+5PMdKgg4Hbgt4pEMFFw+wKJ9BZ/7rG9QTIzpwRtM/EwoXOwaoRUCdkJZ/98Tbqs0WQQCtXezJgqkhRUwZgCZR+KCA6E9r0NaZHJFkzUQtIBzAi2F+pLQ3VhsGOB0AQhtZlcKVjFHk6kqpA81xAbITUW9ZbV1yVjShGUA1AnkGb2xQxiwZS3wgiuV2IneJNBCpQAu3cEfrbmk/u/52/v/RO/2j8iqcFL4u//4S/pngr9mSEcJRgM6gWtFVkbsitQZy+MxzWn/zlip4r1IyU7wTCrsUji/16p88RGiK2yeb6iemnxO6ivCowf33/KX51+wau05M+XX3K/uuIvlv+FfLxm/PmG+kJY/cYhUZDzGhmLLUkGEyFVgh0zAKf/0dOeFxCdZC1KuAnwBtU5zuwEteAGQV6VoNxeSZXQvlD+/fOP+Ne3HiE+c3pnzYtnh2CV+klN/QpiB/3bCQTstZDaco4JJfPSQziwZCs8/6zCJKV9LjPHkiKzoUpKt562/qBFcnFsOxRSZvuDKsNC8FvB7CzaWy6+egsZLSRhPAvs7yvTkaJtoj635AqQYrzZFyihUCY2QvX+hvhgZDoEc+PwN+QnF/Jv31sQa0FUi0pCUZhaSLWgUgJ1PUgQcEpuMtomZG+xG0taFCXK1pG9EleJ7Lg1X7VCdmCCYiclfr2CLAz3Y8mYvI6iEVAltEJYyhuwSoTxJLM/U6ZDwe2Lq6++EZZfeZrnDjLY3mAmKYZrFL8RpgcBfzyibSL74mMI5Bt7ytCeS6m3zHahMpP/NQHc2IGEokQ1M4RdJjdaHkx5cztpyVyC7rcVrhdMBFHBXjv00Z6fPfoWX0UwWs5TbpUZG8HEmUpNwl3bmWNSoFFjbgN0o7J8Wip08sXRZf7H5uGGR794TGxLudm8C9Mvrhk+Gsg1hEVxeDXK4sMrPnvvMY8vTwhTIVWuM5Ig1RAXQn9qQODky0D1u5p4El8z2JtaOQfWvAwc/vop03FVeOWL+bF2xGj59uqI608n7ADhMPPO0TXtYkQi+K2QPuj59I8e01aBf3n8AeuXC8LgQAXJQlgpqS7BoTAeWOqLgQefj3SPPe4NjxCZBZDxVwPhwQlhYUiNoLOpmklI33asFxlcefjiieXr7gx76agzDGeJe8cbvjy/R3/e4dYW0xRx3EBpIuRKSUGKx2UlVxa/nrj3K34UmOoPPNMbv9FC6GHm2NyX+GtL9ood59q2caiDOPvU9785BRXcKMSDBE6R3pZuwypqC78kldYJSgWym0D77PK1wAxgTKmXY0JCJLf+9rvqSqkvYfc2TCcZMwqSblx4JvMyEbPFbs2cEYgHie7OjpQMo61xlxVmklLW2mJFzNZjxoS53KLTNAc218UbWyBndLdHxgVun6kvBb9XppUphhos0x/uidcV6z8wHPzWYEYhH2VELXaC8U6ie+JYPnGQD0ktmBa65yWjw6mU/swV6zBzs6jDiDiLE53f2FA8jJI5WXSYbY/fV7e1rH0e8buGsDC8OG04+MbQ3y0H5UqxdSK1Frez2K29LTt2UI6/SqzfnQESaC7m1v3g9YQo0tRo3+Oym4Wp3Hay2njIGelH7D5igeFOw/btjuEtob9bjHX9UaS6sMXjusy7p1d8m49JW4vrYTyZufRgYFclwssWf1mGFElQbUqpi11JTK5sOXe1xKX2h7d4o1HcDyVzU0S9Ra2QavAbZfFcMVHpTyybD2D7XgarxGzwVWQ6G0lXnuU3Fr9TwnnL5qcT9mgibxpSPavSl+7XDiWrtg/ookXGCRdWFjMpJuSSsQwSAjoFpGtQY4iriv0dS1gKZoLBQ6oNu4cZ+3CP9p7FwcDZYs1R07Odai5WHfGBYXPZYrYWe+mQ5KmuhdSAjJRhpi/laPm0jI/kjA4jbjy0uD7jd2CSghUYMxhB9wNm2REWC7KD6RCGdwKmjYhRFt3I/YM1z9YHfPbgGx42lyQ1rOzAq7jg4+4JQ/b8evs+X1y8w3fPj9kfulJyQhn/UFg8z9SvxoLQdo/GiBuOBV+bki0F5y0mZTQlsBbGCRMyqXbErngaQF0HKpdIanA28T+bU/57fYeFn/iToyfcr6743XTKmD1PdicM0eGqRAgGdQZ1gowF0uo6lodO4fZMFw4gdlLqIeD3HrO2xWBjRELEjhk7KSiY3pIN9EmKN0WLqrAZa/aT5wULNlNNyoajpmdKlvPtkjE44mRBhewVNYpJpUMp3DbookFiQuoKF1ZKdkpqBYzB7z3u0mPaFmJEmxq1Ugg6lm6W2VjjHJT3pdh3VSAkQ20j+1zRR0/MBmsUEfBNZMrC7QyUIbbC/q6jboQGyI0jO4PLXsmLxFQZwGAHS/vdvL+IERmn24YO5pWAKGKVpgl09YQ1mXvdFiOZyibu1huO/Z7n4wEX44LKJK5Nw3VqIZWKkau5xNWgezCjYsaI2Y3YrBi1iukirALTW5n+jhAPa3TVId5DiEhUbAAzFSMlCyJQucKNKVp2sWITGrIKWQ1LO5C1ZGYbKsbgCKG03eoLV81MreyKXZndiGx7ABwCzidMrYzAdGzY3a+ovgvQ1DAFRBXXZ5oLQ+qEUAtpMvRjRVtPtFUgq7AeGkKyDMmzjjWvxgW7UJV7kyeNFrJgenO7OrjZCaTGQMpo36Mnq3muVDAmFw4cWbYPPcunR9j1hNmPBcIMdgK3FbI1pOgJVSZFwxQdzcGGZT0yJct6bBij43y7JKswjJ5p72EymMFgwlz5YnkugJkUmQKqihoz9/w3GxaXMF1kOlQuP2yIhzV51aCmrBHsqFSbeZRTSJNBVZhGx8vtgj54+slz3TdsQ0VSYZwcORmIBlKZzu30g4eZSXGD4rcR7YeyL0npR/3YXDOzhf09Aak5/SJQXfTEbokuTJloBsEMgoonLgRTJ4bR0w8ea5UUDfuhIiVDGlxRcRAkmFvoJJXJywSotpnq2RrGETk+QgGHzkszQPWmsS+91OYn0LzqWH6zpboKhIUhB5kbO2ECorXkyTA5V5ZzAFZLMKl0pzembHvBBJBQmkPXK+2rTPf7HllvYbVC25r+4S3HpAR1A6uUQSIcKOd/avC7jvr7PXasytAiZYODChJNkb3/YRuIlgDcrkxLqZ7nUleU7foyzXcvEt3THvviGj1Yom1FPKzZnrkSWE4GES1cmK+y68rE+xMvPml48Lmnuo5ItqgpKybXQ3UNqS2TtAmzSAawQfHbjEllzyqx+JaJ4Aalvsq0z/eY/UQ6XpEbR1w4XnxaMx3p/8Ox28Dmv1bZ/3TgSdtx798i7bOexhpS6zBTYjytcNtErgypKasrMymuT9hdILeO6tpiojIdOCQr1TriL/YgQjpokJgZ7tY8+7klnQ2Y85r/BXTlnKuranI8AAAAAElFTkSuQmCC\" y=\"-156.770539\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_37\"/>\r\n   <g id=\"matplotlib.axis_38\"/>\r\n   <g id=\"patch_93\">\r\n    <path d=\"M 218.763944 194.770539 \r\nL 218.763944 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_94\">\r\n    <path d=\"M 256.253599 194.770539 \r\nL 256.253599 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_95\">\r\n    <path d=\"M 218.763944 194.770539 \r\nL 256.253599 194.770539 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_96\">\r\n    <path d=\"M 218.763944 157.280884 \r\nL 256.253599 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_19\">\r\n    <!-- Happy -->\r\n    <g transform=\"translate(218.150334 151.280884)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-48\"/>\r\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_20\">\r\n   <g id=\"patch_97\">\r\n    <path d=\"M 288.032909 194.770539 \r\nL 325.522565 194.770539 \r\nL 325.522565 157.280884 \r\nL 288.032909 157.280884 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pe66127ef0b)\">\r\n    <image height=\"38\" id=\"image85a1be5cc5\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"288.032909\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMmUlEQVR4nH2Yy49l11XGf2s/zuu+6tH16K6y3cYQO4ntkMghEZECEgPEiBEDpog/ixFzBiCGPBUgSEmMlZdj3LE77nZXd5er6lbd1zlnn70Xg327OkGCLW3dku6tfb6zvm99a60tf/79v9QH8zus/+GQyaPI6tiyvqvEWlGrqFcQwChSRlwRKcqBpuyZVS21CwD00VLYyCoUfLEcUReBmAxfPNph56eO8ZPIZt9gO0ge5m+CWwnTT5XpZy3+yTXzbxxy9keRL71xhnu2mXD5wQHThXLxjiF5JTnQQgGQJKhVSIIGw6BCjIYYDUM0jMue2gVEFIPiJDGrW5IKSQUE1MD16xa1UM4VFIZZZJgCOIpVgf/ZNbv/3lEs7vHxn5zgHnx8l6oT5m8lkgO3EYAMBpCQD0dAOgsrQYHWe9qqZD3usDaRkqFvHXpdYDpBghCbhAis7yq2E4aRsnw9goHXfus5XbQ8q3dYnRdMyxJiZHniePXNM1z53JKKHBFJisoWlMlb1SC9AZvfVDJe3LVlCAYzbXE20UVDWnmqLyzVOfiVEsaW9dFWFiZTpyeBd195zL36hlUs6AfL1Vt7xOI+3R6cfOcx7+1/hpNBSE6RBAokr2ipGciQoyUp06FVgiIiRhluCuzC0H4+ptvvqJsed7hiXZe0JxY7d0w+hdkvIYwN87cH1BviwjMrWt4dP+Kj9TFv7p1zOVoRvmoxoly3FX/zT9/Gqctvc7uLBE5v6SNCqhOUEVskEMWIEmc9MRUUVwZzXhNNTZgoLkB5JZSXyuRxT3Hdo9agpmFxP2E2hh+f3+W96UPGrmM5lDz8Yo/ussbPLeWFsDNXnCRBVElWMyifwGS6MAoiGVQZcS4CMAw2fz8L9JOsSbEJMTAMQthzrE8M8y87/LKgOofqMtHuG8wA84/3eP/gNU7rK266im5Z4i8tfim4DcgADgV9EZ0iYYqIRoMOAgbMJFCUAyKKc5FmawP9YEnbDE1J2J2s2a/XXLU1SYX9es0qFDy7njA/b/BzixpF1oJthZ9c3OX09IrKBRgka1eBBGYAJ2mrIZvpUxUQRbxifKJpOryN9INDAGsStQ9Eb+ijpQuOqEI/ZI18aeeci24EQO0CpR/YCMTTlqrpWZ+PMJtsNV4i06LN0U/5QzRnl0te0a1vZTq22WegKAYqP2BNwtv8n4WNlHbAOKWLDhGl31LbDY5Pu326aJmVLdddxeLjHY7fh/VRDX/QMj1ecHM5onCR0gRmvs3yEW6XJMWFsZKqlGl0ioiiKhgbKV+AMonSDRnQC7/IaiMmQ0w5As+XY+ZPpkweODYBYgHHn0amP/mC5nSHz75Zsr+zZNP01D7QmJ6DYoHx6fZElcyY00LBKbbMwlYVRJSiiEyqDiOa6XOBwgw56ir0yZFUqFygi5bFuqLwA83himUaUz+2pBKef9Mw/50juh3ljePPeHS1Q4qWSdFhSczcJrNEdgVMBue0idCZLaitAE2Oa0iG3WpDYTJoI0phIn2yDJpto4sObxJ12dP2nlHV89pXHtG827MeCgoT+cWzQ7529yyXKKCqe5xE9tySRapuQUnKWksODAmwijE5nJpyKM2WwpAsg5q8U/7so7uthd2Q/y79QF32AFxuGi7aEc4kpsWGu7s3VHbgw2fHDIPFmMS9+oZDu6BLHk2CxF/TmIIRn71LjOaQbkuj3VJ4W4y3q4+WzeDposvZYxJGlMYHJmVP4V7qDmAZSmZFy4cXh7RXOTpt60kIKy0wKNZm8f+6fJ1uHH7WvUS75TuqEJOhcCE/HMWZhJNEnxzLviSQvcyIUruAEaWPFlO27BQbnInM+4a79TU/PzvKcjBKt/a8f37KaXnFnltSVoHO8hvLjR841r8bIGZ9WZcwW2tI20SobMBJwm21FqLlpi2JyRAGi3fZQmblhrHLCVPbcGshSbelxCdiFDQJF/Mx4cQysS2VH2hfkCIZhzn+wQb7qMLahKpgXaIsBryN1D4f7iRR24CXDFhEb62kXRfcPJ3wybM7tNEzcj1GEquhoEuZ9o/mh4SbEoIhrAtoLU3T8fXmIft2iYi+dP4tpa747zOOd1/l0X6Bn3YMwd4+OETLqOwx28L9wiZUhWnRIWVLTIab2DAsPJebBoNmUINjWrYYUT57uodZWlKT8E8dsVG+dvQ5U9PydJjRBncbLd1uhyqTH37O3tGrLP6wR0RJSShsJKkw72qeriYs25L1soSrAr8Uwk7i8PULjicLbp5MGH/ieBIOeLo7w9iIMUo7cqzagvoXFcUcVt9dE0yJHQfeGj2jMR3nw5Su87eAXnQ1TmcTuLzm8D/nLF/ZQb60pC4DcSvqRVdws2gYrgv8laW8FOpzxa+h++CAZ7Vw/6Oe+pdnzN87Yv5GTXeQCLNAVwzZsBUO31/yeDZGd5XiU89fDd8hfM3SJZf989dKUs7KyiOzMWa+5OgHEx7vNkzvX95mmLcJkWwjsVE2hdLPhPrcMnqamP4q4G960s6Iodw2lhHoLJtNAaIMx4nVac3d77eIKv58xfWDXf5+723++PRDjFEGu22xtt2OkxDRqgRjmPzoc07MKWd/NuJ47+a2OBubMKOA1kKKhqjQ34Pla45iXlBeFFRXiVRsdWJzBhqbSEnQaeDs9z33vueZfHQFQP1F4OxiDKfZQky/BbVtWJ16iwwJrAFnmfz0nOW9Y86/m9idrOmCoywGRnVH7QecSZQ2Z+SyL9kEz9X1iOXjCn8jDI2SyoStss4AXBmRe4FnvzcC2aV+2iKDIlclD1YHOBfpKsWt5Nb5HSKoSLaPsoAYOf63Kz6vdrn+ttJUHTFaUjIYUbyNJAQLTMuWw2bB23fOOLs75dHVDk4FgiVGQ9+7nM1JSDcV7EYuvuIoj0dsjpXffucRM7+hdJFl8bKdVwNOupC5hVy81WCuVxz/R8GvdsYM7wys1yVFkYfcbnBYk1gHnyuDjbSlp7CRg8mKkAyLtmS9qkiDQUVJg8ljoIH2KLJ5NfGtr/6Svzj6Hv+y+DKjoudCswTUZj9zGINsOtQaEEH6AKr4J5ec/Kvj4c6U8Ss3AFwtG6oim+647Cl8Llcv2qHSDohYmiL8RpIN0bCONQwGvN6a9nmccljckDQP1XFLpyiYq3d3SdMGGSKkhDqLjmowhvqTC+7/7YD88y6LpxOsTZR+oNmCA7Db2tknR0Juoziucv21JuVuddrl9jkKJOGN0TnfKB/xw+v71C7QHK1uz1QBd3PfYMOE6QcbJCbSqM59typaFVQPLzl5CIcf7HD51ozLV6A/DkzurDiaLHHbDqRxPZUNXGnDoivpgmNxXVOPOw4m+aH90CCDoF75u4fv8NeX34bW8q13H/DETF+2PgJu9kni+r6luNmn/vApZr0dDkQgbb1FBP98ydHzJUciDDs1q9MZZ6/vsj6J+KMNrx9ccNJcA7xseUxuabyNOJuwdzqGzlI+Kpj845SD5x2f/mlBHy3Li4YqbK8nDLid/zon+QOef73guD/Ez1sYXvbg0nZITNAH1DtwFne1ZnrTsfODDVp4hjtj1ndO+PHeqwx1PtwMyn4PblOyTlNsKdyJ4DeJ6nyDCly83eDfWFDYmC9tDJgIJoDDO/Z+dEGyd7h4u8IvS0zIAvUbxa0ioiBR8dcdZrGNaCHEnTGSEu5yxfj5DZMhwhBzj+4sxARDTgxdraEsYWeCjio290asj4XT3WtGtkeC+Y0u1m1OJzQ/O2P/gzk3b87oJkJoDLGCWAJYZDuE1s8Lpg89/nKNeos6AwEQjxiTJ5zCQ0pZAt5lrRoD+zs5423+XRgZuv3EyPUshhLpXw69ouC6XUfjLNIGpj+fM+zWhIkjjC3trpCsYINiOyiWaTuxAFExfe7xtfSoM4jPJUxCREXQykHMvzfrDgkDKh4tLbHIQNro2AweE3JJerHd+tCwM6qh65GUKD5v8daAd0y9Rb1F+gFps7+9iILEyItyJl2ABBJjpk8EygxKUsolz1l0S7GK4DpFolDZgUUoeXEjINuImfWxsn5tmt9mVKFVkR8eBiREzLpHQsyaKXJkMIb27pjz96b0+w0SFayg1qKFR0uXgYYIUTPF2dRQb4mNox8b0kHPG+NzFl2JxNyVmF4xQ76Z5OIrnuZXDdIPqDFbCvztPQIpZXM0OQkYIrZLVJcJtw7b6Vny7dD/t2JC+oFYGVb3hP29JeW2avzvZQ5/lNuV7ngMQ0RS1pGo5kpg5WUtTaDeksYlbtkz+/kce73J36lu6fw/wIXtFN8UtLuWfqokhfN+QhhsjtgLl1L4H/u/0xHoqZJqAAAAAElFTkSuQmCC\" y=\"-156.770539\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_39\"/>\r\n   <g id=\"matplotlib.axis_40\"/>\r\n   <g id=\"patch_98\">\r\n    <path d=\"M 288.032909 194.770539 \r\nL 288.032909 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_99\">\r\n    <path d=\"M 325.522565 194.770539 \r\nL 325.522565 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_100\">\r\n    <path d=\"M 288.032909 194.770539 \r\nL 325.522565 194.770539 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_101\">\r\n    <path d=\"M 288.032909 157.280884 \r\nL 325.522565 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_20\">\r\n    <!-- Neutral -->\r\n    <g transform=\"translate(284.632112 151.280884)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-4e\"/>\r\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_21\">\r\n   <g id=\"patch_102\">\r\n    <path d=\"M 10.957047 239.758125 \r\nL 48.446703 239.758125 \r\nL 48.446703 202.26847 \r\nL 10.957047 202.26847 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pf6d4d2c62d)\">\r\n    <image height=\"38\" id=\"imageda3bed4b7c\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.957047\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALHklEQVR4nF2YS48k21WFv30e8chXvftV3ff2xY9ry5balkAIgUBmgISYMIdfwF9AYsofQIIBEwZ3gMQEJAaIAZYQHgAGCdwg29i699r9cndXZVVmRsbrnM3gREZm3ZBCmYqqiLNy7bX2Xifkd779JxoLR8wtwRuiNyAQvaBW6HMhOkEtqIHoIeRCN4XmVAknHeIjYpWibJnkHSLK7aagfTuBXrC1YHr2hwIC0gsSIBSK6cHWQjdXEHDqLWoNahIQdUL0QrQJXPADKAvRQciEmIE6iGWkOGqYT2pOy4p75YrcBK7bkhfmiCsV2lVGEItUBgkDMAEVwCYQyHA5DtcBE70hZoZoBTWJneCFvjD0hRD9AMgLIRPUJZAo+KWheTXh7YtjmuD4xuwVx76ij5bC9ZwfrSmOGrSMqDkgbFhczXBKumi6ETdOjRD9AMxJ+seBHbUQLYlJO9yh6UESwVWC21hELS+uHvEXx/fJTmqyrKfMOrwNxCiYoqc/U7LXHgaSdGBKzQFj/b7SLuY2lc6lUoYsfU9MCZgEDpPukAC2TaBdBX6tuK3SF0Jz4miPZqwf9vhHN/TB0FaebNJBFojW39WaHGiOYY3hsoneoDKU0SYwO4pjDn3xRVCK2yhuDRJ0LItEDjSkOBtZXk9BhcW0ZlK09OddYkhBdMAje3w7Uyjg1O4cmEq2o1d070LTJUASh4dGUKtEJ7RHUJ8nNzXnPf605vJ4zdubGflPC5qPGi6ma5rgqOqMcOOwteyp0T1huy+ig8aQJO7oRuyDGQaGe/CbxJCrE6C+TOVuF8nuauH48pYnx0ue/8dTZp8Z6vO00sw3FLajWnheL3Ls1o1uVD0o6cHhdNDQrnyph7HvW1laPF/qAFzJbwK2SzdktyBRUSM0Pz/l590JJwGWH0dipviyIzOBPhqO8po3eUCtS+wcMHTIIAImMSbjH0M26MztXRNKZXNpkAi2UeoTSzs1uFrxm4jbKhKUmEE3F1YfwtHHV8hJy8cPfgFAYXvOiw2P7i0Jpe51e1BCtfuSOtFBO+z1Fd3+VKuog3aRfopEQ7aJdKVBLTRTgxroZoL+xpL1mxnleUXmAt9++jMmrgVg4VuCCh/Mr3mRnWMri5iRINQk1mVoR04CyKClsafI0MP87lTId6AN+ZVQvo/4KqJi6aZCN4Pw/IjLX35D7np+af6ex8U1n27PcBK5yFYYlLWrIY+IWlRBZO/SXSllp7HDrrwXP6hTYqbEPIJTYi6osagVoreU74RiGfBbQ3SWUAhX//yA5mtbfu/BD7gJJU4ij4ol9/wtlsiR83z56Rs+fft4r3mzXxOS643E5MCdI9UOs3A3H8uIWXTkxzX+pCFMIiFLLrSd4qpAdtNjG8V0kN+A+7RgFQquuwkLt+Wev+XMrrlwK07tmu9c/Ggca7tTD9pUwrrrV/ZAWwNbIVekCJSTlpN5xdF8i04DasFvFL+OdNPksHyl5DeKXylnz5W/+u5v8otmzmW+5IG74dSumZstU9Ny6tajyCWmcyefOySqSWlhNyd3g1WdYrLAJG85KbacTTZMjrcgMH0daOeG9WV62vyna0yvVA+Fd98SbCO0wfLIX/PALTmzGwrT4aVnbmt0lyzi3pU7p6Y+NgxnFYhZapoMAKUXQmOpmowmb5j6lLfeT5SQCbZL5Vt+OcPVGe1cqM8jPGxYzCs+mF5zatccmwYvESJUku9pUZAoqNF9FBoOZzod6VS7r/U48SvHRks+22ZMpjV9b9E8snrsOP1hyikxEzansL0XOf7KFb99+WO+Vr4iYKg058fdBQ/sDY/cFi831OpHF8pOYybNWtOnieNGAUrS1+6XjG6NYG4dURzr62xMnt0c2rkhv4mASea51/Cti5f8/vH3eR9m/GD7hL9784zruuTZ2Uv+4Ox7PLIVXvoxOhEPXOl138fUSmKsB9sMTdWlQptWEJUxOaiR0c5qYHtuyG5T7OlmgrWR+/kthfT86+ZLfPK9X8MvLRLgH+b3+OE37/FHH3yXgNxJq+Mhe327Mdoe1FglJQrTyX6ehf2NmJTJQi70k/T/3RR81vO0eAfAJ//+q5QvHX6dnhWuhc+6S/66+BXmrkGCjG5MdB3ozhw0WLVgQmLNtjIwqOMvMX26OeSpjKJg2rsxOXeBe+6WQgLZa0/5VnEVHP2kQqKy/MqU/wxfRZ/UmLAv3zi8D0zh0sZDIKZYk61Sj3K1YpuIGqEvTSqxQLZRbCv0E0m9bKuEDJpeOCprTu2a5+0DJq+E8l3AVRG33ELXE745JbsRqlOHkbtA7nwCDgbRm8RWsYwU71vMtsduWtQK28dzys9XmNUGzTO2H51QvN6w/MYRfh2wXkAM5+WaqIY//d/fRUJiorrvuP74nJiBrQeJrO0dMDvBj7NSh3ZheggGXK1kyx67bjFVi9QteEd20xEWOeuvHlG+qsmuG7rTMpVaoS9SJHq1WfBP66+zvJpybIVmYbCNUlxBX0I7T+POVYLpZCzjaILDaG06xbaKCUlHoTCoKzGLHImKtKmc3dzTTg39RyW+ipg2WbufGkIuqMCr/7vgk6sFUjmih/JFQHpwVRJU9cDTzoTmJEX5mH1BWwfldKaNuFowvSK9jprqT1zaRx5s5xCwjeDqlIltnawUMsGvBIIQO4PmgfVTIRSOkEE/s4RpRFqI0577j6+5+q+LpOsvaEuGaeBM0KEkKSlIiITCYTpNAAuBkDJ/vuzx6x7ThtQiFhnbC8/qSTKHOW+Yz7aIKJPHHYtnNU9nV3x98ooLd8vcbgGoY8Yf/9sfpnl5wJREGb87M5QqxR2DXw7Cn3jc1qQ8LyndRivU5xnbU0tzImyeROK8B5uy/Zcurng6f4+XyLGveJgtuXAp8kylxUugU8uP+hnZDTQnB31sR5emtZxpetLeMmX95rwESe8v+iIBbhZCcypJwOcBe7JlMa+4zDpy1+NN4Onsisf5Ned+RSY9x7biwt5yamoyibRqqNRRq+fPfvKdO/l+h2n8VHBmucF4S3Qu7cQLQzszNMdpz9icReKkx057nO+ZuEiZdWSuZ5HXfDC95sPiPfd9ylyZBArpmJuaU9MyN6kPrGLkJloCwuZfLsDfJemLh+PdFS7PiPk05Xu72ymlrqxekSwiohijeBvIXc+9yYrHkyVPiisu3IoLd0shKW146fESsQKVKp3CRh0tFosS8qGfhWH27ioZGEeTi+sN9uoG7wwhn955gZK6vSKAdYEyb1kUDSd5xUWx5sxvmJiddhydOgrpsCi1Bq6C0GKIariNBRHDf9ePEU1m4mBWjkk2pn2q0xCI6w2mLLAn5ZjH4pBosYrxkSzrKXyPqlD1Gauu4Np2eAlYInX0TE3acRfSUUhgFTM2MadWT60ei/Ln3/8tHv5PpD7e72UPtTa6UpxHJPUl06XGIvFgO+UVYyJd53jfOkKfVPt+UdEeWfJZT2E6JqYZP+empZAABrwE3oY5XXS87OfIVUbIhvUPguIYs0eNaQSTgOnQEvpCxs0uQei2nq4XZJtA6bSnnViMKFEFL4FjWw1MdcxNYCLCRHsq7bkKM4IKf/vyGR/+fcfmUTZmursi24N0425XhJhb+pLxraHdpn3kjkUUYqnYMjArGuau4chtObIbJqZhYhqOTctEhLlJtNR9w+fdGZ83Z7z7x0vO8m6cIneOg3cZKEljWAuSetYurdo6RejdO4zoNI2VSc98tuWk2DL3NTNbMzUtU9OwkIa5KHOT47C8ChV/s3rGXz7/deJnU85/FtmeujHC78Ln3SabgP0/IdPh35G8wYcAAAAASUVORK5CYII=\" y=\"-201.758125\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_41\"/>\r\n   <g id=\"matplotlib.axis_42\"/>\r\n   <g id=\"patch_103\">\r\n    <path d=\"M 10.957047 239.758125 \r\nL 10.957047 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_104\">\r\n    <path d=\"M 48.446703 239.758125 \r\nL 48.446703 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_105\">\r\n    <path d=\"M 10.957047 239.758125 \r\nL 48.446703 239.758125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_106\">\r\n    <path d=\"M 10.957047 202.26847 \r\nL 48.446703 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_21\">\r\n    <!-- Neutral -->\r\n    <g transform=\"translate(7.55625 196.26847)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-4e\"/>\r\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_22\">\r\n   <g id=\"patch_107\">\r\n    <path d=\"M 80.226013 239.758125 \r\nL 117.715668 239.758125 \r\nL 117.715668 202.26847 \r\nL 80.226013 202.26847 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p2e5a42ec25)\">\r\n    <image height=\"38\" id=\"imageaa3fb813ae\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"80.226013\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANcUlEQVR4nGWYya9d2VXGf2s3p7nN8+v8/Ox6tqvssquKkKQgUSIFUCTCBDFgCIyiDBAj/gH+A/4HBjBBSDAJDCAN6VCRiiBFKk01sctV7u3n195377nnnN0sBufahcSRjnTvuVd7r/2tb33rW0f+8p0/1axCbQNT2+Il0eSCB8sNpr5lx5/RqaNJBV4S59ySu+0W759c4OHBOmFW4E4ctgNJgloFFcK1JeNpS4wWazMARpTZ/gR/6MheyaWiXkHh5s1HfGPvLRKGqVniJrbDSiZkO2xuEgDrvmHiOjKCQXl+tdnz88NLPPnFBXZ/kpncbZBlACvE9YowcZztOWZlRbgeMSaTkgFAjVJttITZGBgOggF1mVsPd3h7/Tpfmd6iVY+rTMCgeJs4SxVGFS+JDd8Q1JLU0OSCRSpZdw3vz3c5/uEur373DHPrHhoiYi14h38AXoTR7Q1MOM/hbkE16UjJIKKoCoWPtJsRt+9RszqwVUSUf793k9HLPV+a3MG02Q8wo1gGyK3kF8+67Djqx5z0NQnDT351nSv/coS5/QBtO7TryMuWPF+QZ3N0vkDvP+L8P/8af78gJYNmGRBTCNGytrlAvSIZ1CpSZMTA4uGUx905Lrlj3DJ5sgqliSQMSaEiENQO6c0FUYdUPFyus/t9i976eEhuVjQrkCCtcq0ZxKAnp1z5dsvt8xX+XPeCCjEavEuYlxriYY0ZB6pRT+ESX3/z+/zx5JdUAu5XpxdZL5fsVjNGpn+xQMgWI59yKyNkFbpzgtx4BUkJYiLsniOVBlFIpaE8aFFriGNHu+WRXsnZkLPBFxFrla53TMct9fqcNzae8oXpJ3x1dIvzVgkKVgT59p3X9Fa3y71uiy47ShMxoi8+n4QRB/2YmA071ZyPZtvcfnSevPCYxqAWJIHtBBMAFRAle0i1kicRsoBR7Ci+qFBrM994/cf82dq7FDKkOumnQEj76BUFCJqYa+B7zR5vz6+/+MMyeZ4u1zCS2RudsFvMALjbbvLhyQUeHa0Re4cYJTcO6Q3qFKkjYlfPWgMGWAs4n2CViTf3HvLXl7/J2Pz/wJwXS9KMFWFDKnq1ZBXyild9dgAsQklWg5XMOduwOZlztTriwcYGH822Oe0qqp3IrC1pe0/OQox2qLgsKIqxQ1oBjE18dLzFh7tbfLE8WsEkL4IzzyM0GOa54yCuYUTJCEFf/MwiFCxSQWkCRpRWPZ06QrYso+dsWdIETxccqoKqIAACEkGrTE5CjgM6ORsWy5Lvn71B83+QsiJYEVzQRNCEF8tRzrTZU5pIzJZuhVblArUPPG7WuDEq8ZJeVK2RPHCyLVguSrS1LzhlRhF6gzqwkzAUbRJyEoyFnAxvPb3GUT/mr3a/xdTISrDAPA8qaOIwl0MgJlDbHiNKyBaAjbKhCQU/m+1xGkcchCk/fPoq3/ngDbIKo3GLBsPuDyw7/2khCfnMI0HQjWGt5wiig6pkFYwo3iS+09xkJB6zSqOxImQyvwzCrX4XbyIGXfFMBkRW30e+58lijY+a8yyT5+CnF7j0Tc+z2YRp1VFOOw4+J8xfEmQcwSk6GYpAVT5tbPI8QOF0WTG2HZX0BBIZyIBLqsw18M7yJptuvsrzAKgziZyFfqVhzmS8TTxernFzbZ/Pf/XXVL8f+NrokPfPdgnJsriRCcGiiwKMIgIi4HwiRUNCEKPIqh1lFd45uszF4pROM2YVmOk0klRZtw1j0+ElrYLKrLmWse1XCxicZEobySo8adf4zPQxn50+5Jxdcrk+ZqNakrMhnJbIwg4885miDFibMTZjVsEa0ReaNmsr/u72l/les/epXCSUkbFs2jnP0hp2BXhlwguS1zbgJNOvyO7MkN7DMB4OshLlqIYYLKigo4QYxflI6SMiijWGaDMxWowZAjOiWJNZLmv+4cmXuHHlKZddwARVPg6Gd9srLHKJl8jEtmy4BeUquLTim5NMZSNT13GxOqU0cVWdjqB2JQOD8mNArK4QGg5rTcbZTFFE6rKncMOBRBTrMndPNvjXs88NVdko/Lx7idM4IqjFS2Jq2he3EcU+R0MNpY3UNlCayMR2LzhpGdLsfAKniM2IQEqGtvc0bUEXHHFlgaxRnM0YM6AWesd8UfHdJ69zksE9SSMe9FvMYsUFb7Am4yVhySxySWUChYmcaclZX9HEAqo5te0piXhJeEmUJlKYhLUZcRmxCqKkaEnRYmwCDKu2SBTFmIyq4E0mHxaoVw7rEbfCFu6jfofDMOZBs86Gb7jgT8hqMKvK3HALmlQQs2UeSk7amnlf0o0dF6tTuuwZu6FojAwbaW8Hn2UzGg0oZLfqIqL4Kg5IW8GuOKaThH/iiduWwzjBfbC8xP3lBrePtnllfEglgcDAmYQhq2GZCh4s1jluaxZtQc6Go6am37LsVHNOQs2WXwzKrkCU4Q4W2wsmCn4mmAjZwvJSIm32GJuoqqHFicuDzdah8BzAuw9foj8tSZcNhSQyhrNcEdRyZ3mef7v1BvKgxs+EfiOTxpm2TOzXU66OjoYqFR0qM1okCpKE4sQgCaafKNMHLSfXSpYXhHMfWNqtmnYv4H3CSkaDQc1gh4I6TJcd4VkNOlichJDU8CxO+dnZFb516w1SO/TMrfcSm78QpDP4pwUPHm8CrKanhsIkcjSY1lDtG6qDof2cu7OkvHvE5HGk+8ySXMDmBxlpBwNpRLFHHtcIXed5f3kJs8wF6hR/6PifZ3u0ueAsV5zGEW8/ukpsHX/+xf8gX2oZ350zehYxvWB68A8L/uvgKveWG1QScSZhrGIiuAaqw4wa6DYL4s4a3bolH5Ts/niO7TNaZwo/CHZ5LIweKeZuzVvPruHeO94FUapD4eQX23x4+SJT2w4i6yPuvwv+xv4OO+dnPP3yDnEE6jPVPcPpG5GTZUUzKjhLFQBl1bOcFrTR4M+EjQ8zYWxwjccE5fo/9ag1HHzWUa2fMak6uuQoTmDyONFuOw7mY9zdOzsUB5bJg8z4Mfzty1/m916+w9S3vHn+IT+6tMXVvze0W9vYWnFLmDyC2VXwmy3r9aB181RiRamKQLve0zvPaWGpDgy2g2anRC2cXq9pLmbqvVPOjVoKmwjJ4lqlmAVibbk0WeD8kWX0SBjtd6gI4btj3rr8OfT1OV/Yu88rX7nHh1svsfahoT7INBcMB69HJtszztct3iba5JmnkpAtqkLuLHZhGD0RqkNluS3060q/npGNnnrU03WeUxV01BKSQSxkazBJ+PrlH+Mm92F6P4JCuT9nXce4tmDeTHi7fYXre8947bWHTH6zo7IRI5lfH+/w9P4GTbNGrjNXr+1zVlb02WKNQm+wrUCGdlPIBdhWmH5sse9VQEXeEZYv91RFYLEsWYtwfLPga3/0U/5gdAe3/bMGUUWNoFYo9hes9ZliXmDbitvNRfxGS10FSh85eLZGeadk69HQ/45+a/BpXXLEbKh9YLSzIG8b9DOR0g1upY+W5bIgnJSYzlDunbFZ9oMbeVpTzjIHnzf84ca7VCI4//SUPK3JtSdNSswyYrpIeQAbvVIdOZqLE3KG0ECxq/Q3ltg3e0Kw3Ng+orKBJhZkhiDr9UCfLW10w2CyMollFagu9gjgVtxqlwX1Y4uf96TCsG4agiqmuXkec7YcVNsbup2aVHvi2JG9UM4Sk/uZ/pyy2FOqA8F9UtG2nivbx9RuCGoZ/acDxaoHtr0nJEvKhhgtOQspGVI29NENaC09fgGSlMk94Z3lKyTAqUB3ZRN/0BDWJmRv6NeH/pZKg4mKa5XpPeHozczphlI/dEy/V3Nk9ni0LXRbmbwVqCbd4BxWBrDv3TDCPXfTZvVOZGUWcxZoDa5RTFLW7kf+8cFv8ye/8R7ON5HsDGF7hFtEwmQYSEyvoEoYCcVZZu3jnslDw+yK4+yacnQhUxwbJveUzQ8UNY5+XNCfE7p1iGMlVTr4fpcHK+QzKBg3OIusgl1Y/EKRqKiFke9Jqrhuw1PtdywvVJQnAdtm+qlFBUyCYIV23TJZJIrjnvMHLZsferoNz+yyMHtVOcVQ7wvjJ5nx40EPUyHEkdCvGWJlSbUSpoqWmQTkOqLJUDZCOYuoFdSs5goR3LM3HZd+lKj3O06v1dSHkVQINigqUJ0mUmFotz3TecB0EdMG/CGM73vCtKDd9iwuCGdXDKaH8kQpzjLlaWa0D2FsCGOhnxrCmiHWSkqCCUK9D65JIJCdMPHdMCV1L3fktw22jZRnifklRzlT2nXD9F5PHFv8IoFCt1FSJcUsOlBFYqboAn7mmNwz9OcK+nNueK+SQR2YThnPetQIy21PfyqEiRAmFhOhPMn0aw4EuqlwuT6mFIP73dducc++RrdZUj9padfH9GNBBRYXC9ZvLWi3K0QV30TSaNjYni7Brmaz1VUcd5SH7fAOorSoN0jIiII6Yfykoxg7wsSSLaRySF+sDZLB9vC0mw4c/4sLP+D4hsc1ieZSzdonHaka5okwZhVwQy6E5A12MYz6cWuMmpUrVcW0EcywEYCbtRT7C9xZhztu8M8W2CZSHPdUB4H6WcAvMgiogfpZz2g/8LRZI6vyvy37d7XLCr2cAAAAAElFTkSuQmCC\" y=\"-201.758125\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_43\"/>\r\n   <g id=\"matplotlib.axis_44\"/>\r\n   <g id=\"patch_108\">\r\n    <path d=\"M 80.226013 239.758125 \r\nL 80.226013 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_109\">\r\n    <path d=\"M 117.715668 239.758125 \r\nL 117.715668 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_110\">\r\n    <path d=\"M 80.226013 239.758125 \r\nL 117.715668 239.758125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_111\">\r\n    <path d=\"M 80.226013 202.26847 \r\nL 117.715668 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_22\">\r\n    <!-- Surprise -->\r\n    <g transform=\"translate(74.132716 196.26847)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-53\"/>\r\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"126.855469\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"167.96875\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"231.445312\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"272.558594\" xlink:href=\"#DejaVuSans-69\"/>\r\n     <use x=\"300.341797\" xlink:href=\"#DejaVuSans-73\"/>\r\n     <use x=\"352.441406\" xlink:href=\"#DejaVuSans-65\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_23\">\r\n   <g id=\"patch_112\">\r\n    <path d=\"M 149.494978 239.758125 \r\nL 186.984634 239.758125 \r\nL 186.984634 202.26847 \r\nL 149.494978 202.26847 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pb580d6ee8e)\">\r\n    <image height=\"38\" id=\"image4c3339cd04\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.494978\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAM7klEQVR4nE2YWY9c13WFv32GO9XYA8mWKJmSTCmKEsOyDTsPQfxgBP4BAQLkNb8nvyKPAZLHIHkMjACBgwSxDcfWYJMUxZnsblZ1Vd3hDDsPp03lAAdVQKHuXWevdfZee8tPl3+rcnYDOQxQV+R5Q1w2hIXHXwUApnVF7AzjQti/Iwy3ImYZaNqJ2kdCssRoaesJEWWYPOP9BXf/YQ+/+BwNE4hg2hazXKApgxGYAmgGXyFNDYB2DVo7nJnPUFXIGfoBsQaZ11TbAFkZbtaMS0uqYTgRwjIjXaLtJlZdz9xPRDUcgseKMiWLs5nDOvLoJwveqj/B/ddn5HFEpwkNAZxDjEErDzEWkEYgZUgJGcHgHJIyqKIxITFhQkZCYjqq6I8tsYWwEGIHuVFMlThsG6woY3Icgicmy36siMmggGkS/a3M8x91pB98jFiLZoWUyq4rxHswFhEBEbAGvANVnE4TTMA4grWodxAz8bhhf+ZINWQvpBpSo2iTEKBbDkzJMgZ3TaUhRgsqqJb3pFVkbxyPuo6z9rtU//ZLNETEWlAF75A/sKWKHgYkKzpvcaSEjhPkXP7gHWlecbjpmRZC9qAOUg1xHbFNQinPPUyeEBwxWOJoYbSgIJMhzyJkIVeZ6Qi+/mnFh0+/jd7/ukQqK9r4AkwEdRaZAqgSTucYYiyhVUW8J80qhtOK4cgQZxDnEDslNYrpIs5HjCgA4+gZtjVx52Ey4DI4RRcR6W3ZUUiLRFxFfv83x3D3W0XTgNauMDQFqDw4B96x+XaD0SmgIaIpofOO6ahmXBZQqSmAYgtxkTFWidGSVQjBMl02yMFidhaJBqkyf1juytA+M7TPLBIMpotMNxIX3z1CqqrQmLQAqqtCwTXgcS2Ywm9GnCMdzxnX7o3Qi76U3GSYRxRIoyXtPfF5h7+0NM8sbi+wCDRfNshgaO9VLO+B31GkYBUEqBOvvqekmyu0qchVETrXFFJ51Fn8XnEaI5oVu5gzLitiK8QGYqukLpeH1hnfBOLkMBtPfW7wW/B7JTWgW6G6akge/MYwrZTpSEldKoBcJl95qDKicPGnS07/4wViDLLv0b5HnAVjriMJTrMiRtDlnLB0BVQHqdVvTgoYo5AFMwhuD25Q+ptCmCtxpkVbbWK27mlMoXQYPSlajE3kbMiTJVfK9gPDjZ9F8qyBmNApwOYKqSt02WEnxQFgLXnWEGshtUJqy4uKQsvOWdAkxJPI1UoK4CpjqoT3qTBRJVZdX6pFdGQVfDtS+8hV3zCZTBRlAp7/5G1u/etXJa+EgOZrfeaMZHBoRqqKsKpJdaEx+wJKVCCDqpCTBQHTRKomkrNgjOJc4v+vbd8wjg7nMjkLs3piWY0YUQ62IjeBqQtcfLfj+Dc3cJ89LOefAhiDPHlJ/e6iREy6ltiVDK8OJAtkLTkpC0yGZC1iM9Yn2rrUSFUhZUNMhs3rDh0s3QNP20N/poTjyPNXLc3dFzQusqoHsgpjcry0mSc/XvGtzyi1UzOEgMw63CFdA/OeVBvUFEFJBgnlu5mEDGglmCZT15HKJY6anqzCk+2S3cMl7TPL7Ini94mLTyzpnQErkDaeTd/w/tE5Z+0VBuXVNCMky+P3Z8RP7mB+/usStVTorH/34lpj3pEqQU3Rk6QCSK719YdlbabxkdYHKpPICLvXHfUrS2yVq28J2Rumm4E/vv2c02bHzx++hzGZxkYqEwGI2RCzQdrIcKOiE1MiprkU+XmHE2vRti5ilhItE66ppOShXGVsF+maiVk10bprO5QsVTehrkIU4kzJlWIXoQhfMtZmdoeGz7nBfx/eJbxssTvD/JHw/m9Gmgcv4Owm6dmLAi4r8eYSJ3WNOoMkReI3t7BwCrkqeaxuJlbtwHGz56y9ojKRZ8OS0+Wex7dr2gcVtodcCcPScTXVnNsZ0+RoftWhmxl+KbQ9bL4TCB8duPdpy41/f4vhWHjnX1ryl/dBM+7lFc6sV6TaYxJIViRL0ZheZ22vmDphbcbbxEl94Njv8ZLItXA+zDBVYlpnTJByuMnQT57YGPRZQ32hXL0Hx5++4DB52mjLwYOhex658bOXXP7wjNX9r0FKknX5ZEn21xG7BqQCaiA7RauMs5mcDReHlmfbO+xezpjd8ywfZLKFUyP4Q8aOmSc/tkgWpugYk2P2yHB4C6qPN1xedUybGhkMWGifWNonl9APrD7fot/5EHnwDERwuauQmLFjAVZcHqgFVJDRoA87Bqe4rwx5Dh/85BG3/uSK82HGlC2bvuH8qsPeb7j1n5nnPzSkVARuArgD7F51NI898z2YAM2F4vuE2ezRmCBn+rM5sweQFjVOkkLM2DGBONSUiEkGE8EOhu65cPW+Yv7ynJvtQEiWLy9vMEVLyob+UKFZyO+OhC9q1p/B5TvFQCIQZ1C9dKhVTn4TkaR0X7wknK2LvX69wVz11Oc1Ulfk2uLMYSrijyWhltv5TY7wewEF83bPGByv0oyUzJut6Tr3XVRUF4bZs4nshVdbz2HhqbZKfwPMKCVytx3DibBenJG8sAoJeZqhrXGvduhyRrYGF0473GWPxPzmNkoWVLRUgQT1JvO696UQJ0EPDomCOsVfWOIqU9/eI68WjCvL6n9e8MlvlXi6wD3+iuzucHgLwgL67/cYUbbTjOxh/sjjrUG/eoxZr4i3T0i1wbnLHjKYKWLiNYUTiBFAsWNxErK3pNHgrixuJ+RKWf2u/BZaw7RekGoIM0NedZivnpFvHzHdvcXpL3foryCsa6Zf1Wzet4gWnW0+aDj9oiZvd4h3SD5GneBkCKU7CeAPmSFaRIq+JAlHXwRia3A7gzsIy/uZ9mVgXDsuPzb4nVBfKGTwW2jPE7v35hx+9BE3//ohF33H+Zcn1C8NudZy4135rBrh+PPSNYm1SNOQvSU7wUk/Fvq8o3vR0p82JBXqS6V5neg+f8H20zMkgR0K1cOJIzuh+t4l25dz0j1P+0IZbgj7M0t/Khw+CKyS47Tb8/pWR952LO9Btcvf1OOs2EFBDGINdC1aGcJMcHo4lPJTedx5Q3NRIzmjVvBXibSes/j1Sy4/OmM8VrIzVFew/nJC/nHF7vulWdl8CHaE8ei65gJGlHXVc+fmBfeSYRda2ucGtdDfLMn49H9jsfarJVp7sjXszwwub3egGXvjlLBu6E8Nfqe4QTnc9KR3KlK9pLlQ6svSB4xH8PVPHWmRkDoxNY72qaN9rqiFdCrYLrLwIws/0NpA+27g9+0JvUoZI2xa2vsV9WWpuzLriIuGXBn27yechqlYjlnLtK6YP03EWhiOhcNb5YbGVsleMbHc1lyVioDV4sG+dqx/XzL/5j1Hfztydrzlne41tQnsqJm7kXfWGzZjQz95SMWi2+1UGu22Rq/1deejZzh7dITGCC/Ome8O5FvHXN1dEtuStVGoLwQTSzfe3yqAUGjvV3TPFL/PTHNh86kl3+k5O97y1myLM4k+V+xjzS7WZEq0QrTIwVJtFDMGiBHpR1i3APzV27+4ttZ1BSmjhx5zcUX7oiG2Nf2pIVelbsamJN/FfYMdFNFC6+GWMJxl7MnAennguD3QusCqGng1zhmSI2bLPlQcgmeYPDFYXC9Ue0X6ETW2jAmAp39u+YvuC5wOI7KowCgk0GmienTBMq2xY9FcqgWpYFoq4+l1PxCEXCe0Usw8YF1iipY+eloX6JNnF8poKasQkmWYPPu+Iuw9TS9U2wjDiHQN6WRBbC327o6VCThNGYYBcQ5ZzNEY0d0B/xSWhxlumNOfWMa1IEkwI6Q2o52iUijNgyVKcbhDdFyFmiG5N2UtqSGpELMhBQtTkUm1KY2uzjtSVzGtHOv5a34+vIszs5a876EqwzRZLmAK6NUOEyKdKnac4XoHGIYTQAzZKyKCGkXFkFMujiIZhuhIxmBNxogyRsdhrBhHR+4dfmNpnyvmEMB7cuVQK1x8bPm7D/+ZT/wrnKyWmOv2SacA2yvEe8Q5SAlzvqUJCTPNEa1QY5hWJUEWv3YdliykaInZEFKZb5hsEGCMjmHyhN5jdpb6XFg9GLGbPel0RZp51AjTWrlhr3jb1ThEkNkMDZsy9QlSBmyVL+OiGJHLLXU/YsIRaM1htExLISxKu6coiCKiJWrGoFpcR7o2jWFyyN5RXxjmTzJ+M0KI5Mah3jAeOe7+4CFBLYc84N7MC9oGPfRoKoM5skOn6U3kmALuxZZZXoC0mCiYJAyGcnODIVnFJMMkDmsyMZVhXoqWtPFUl4buqTJ/OGBe78nHC9QZzJg43Kj5q5u/5TzNCb7HqZEybmyaN2MgQnwj3NIhSwGrit2PzB4LJtaoMWQngCWuQaMSjSWnErEUDRoMjIbq0jJ7DKv7E9XX52AMsSs6yJVl80fK3//uz7hzdMnH7/0T/wfYVVG5o/n2RAAAAABJRU5ErkJggg==\" y=\"-201.758125\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_45\"/>\r\n   <g id=\"matplotlib.axis_46\"/>\r\n   <g id=\"patch_113\">\r\n    <path d=\"M 149.494978 239.758125 \r\nL 149.494978 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_114\">\r\n    <path d=\"M 186.984634 239.758125 \r\nL 186.984634 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_115\">\r\n    <path d=\"M 149.494978 239.758125 \r\nL 186.984634 239.758125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_116\">\r\n    <path d=\"M 149.494978 202.26847 \r\nL 186.984634 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_23\">\r\n    <!-- Happy -->\r\n    <g transform=\"translate(148.881369 196.26847)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-48\"/>\r\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_24\">\r\n   <g id=\"patch_117\">\r\n    <path d=\"M 218.763944 239.758125 \r\nL 256.253599 239.758125 \r\nL 256.253599 202.26847 \r\nL 218.763944 202.26847 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p1fc0b451f1)\">\r\n    <image height=\"38\" id=\"imageb531a9cea0\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.763944\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAON0lEQVR4nD2YWY8k2VXHf+feG3vkVplZ3VXV+zLtmTEzI0OPJTCSn0CyZSEEDzzweXjiU4D4AEgWEgJhI/CmwXgZz4ynl+nq6e7qWrIyq3KL9d7LQzT9EMpQpFJ54n//yzlHHv7t33tlAQ8A6UnN8+9FPPj4ECWeRydTmlcZ8anCbMHG3dWmHps4fOzQeUMcN+RxxaYKqWtD22jcOkAqRbAUJr91DP7jMRKG+FGfdpgw+yBFHJRjQbVw8OMVq1spp39ZYcRDsHHoylGMDU3PsPfhMUUb8Go+wD7LSRaC07C+6XCjhiBuwQt5WnFvZ8a19IKD6IJINWg8Wxcya3JelwOWTczhYsTrYZ86f8D05zOoG+rhAABdQ7CBzYFnu5+w2dMkaYVRLQTrljbWDH6/AuDLp1P0sEYdJgQboZw47Kgl39mSRTVaOUJteWdwyoP0hDvRKVf1JaUP2NFbGq+4cAlPkytc2oRptMcnXOd8kCB+wuSnp7SpQhzUPWFz4Gl7lvm7hnroibygnAEXKJ7/QACwWUCw1OhnCeKguN6iDgp64w2BtiRBwyAqeX94zPV4wX6wYKqXKHHs6C0BjlgsmdRkqmJHb3gnO2GvtyLNK2YPHcXtEW0siAcXQDtquXr7HGc6Rq1PckwbCdJ6ek8M+mKNzUboUrCxp92vGA629OIK64X5KqN1ihvDC4bBloEuCMTyohlT+oCNi9i6EIBALACN12xdSGRa6lojg5rjbyf0n3WkdiFIpTg5GTI+8sw/8EQ7BQaBy7sh+SuHO50h+yOazGMnNTujNQf9JdNozVmVUzaGXlRzK5uTqhqL0HhN7TXWK15VI55spiyqlMzUTOM1V6IlaxsxDLcM8pKyMVTvWYp1TnThkRbiY83eu69ZcoAqhSCwGHFQTIV44ZAkZrMf4a+W7Aw39KKaabRmJ9xQOUM4bPlo8JJr4RzrFWOzpvaap+U+//76AWeLHiawNLXBe8FZ4eO7h3w8OGRgClqn+epyTKAtm52McAmmALOFl+dDwrGgKzDKYfAQLj3hRQvec/zHwu5kSRo0ZEGNUZbChszKjJv5nN1gyaPiKgNT8Kya8uPj+5xe5ByML/neO58xCdZsbcjrasBPn9/mF49us74d8f7gNZNozVmUs5aQxUGNehLS9KAaQpZULO5HAEReMGfftjz84Cm/fHaD69Fddu7PycOaQFlyU1HYgK+2A9Z1yCJM+Xy7z1Ex4JPf3SV5abCJxyaer1+nvHB76FIIVkKbenQtDC7h2aPbnPxJj/ujM6rWUDWGyXTF7I9GDL7Q1BNLu07QlwaxsM0jzPcf/oY7yRnhXctPfvAOV7VF4VHicQizMufook9oLKfbHmdFzp3eOQ+/+ZSzuzmzdYa2Cu8F2yq8eFTcUB33kFoornlG+5fs9ZYsm5hNHbDeRgx7BWZS4HVO8lKzDQOSCwEFxdZgvtN/RCCWdFjx9OaYQDkc0pEPONvkbJcxLq8JjMV7ocoMH/RfkQ5rJmbJ1kXM25zzJiM3FQrP491dni13mCYbxtGGxiueXk5wTgGwrULkaUZ46XGBEMwM4RLqAai1QW1cxMaF/G5zDS0e5wX1Jp8uqoS61QRJQxC0jOKCJGj4ejVC4XkQH6HFs3IxlzYhNxVfrq/wT58/5Dcn+wjQekUvKCltgBbPICnpZSXWKkafe6KVwwVw5RNHeuZo+h7XbzErF3Na93m8nNKPSoo2wCGsmgjrFHlcMck39IKKu/kZaxvx2XyPXy+v0dMlShy/X+/x+HLKqowof7VDeg7VGF5dr0lunXDZJDxdjLk7OmfdRDgvlHVAsPWI99RDT7C2SKLwWtHf2WBmTY/Ga8bxhos6AaB1HWecF6bJhivJkv3okkmwIpaGSLX827NvcFkljOItv3h0m/RRRLgEprC851C1kP8+5Hm6wyzNCIzlZjpnYyOOtgOOZsMuaQJBWpDWY0NBrKCVw/zo+D7vDM/ITM1J0cM6hfOC9cIgKrmWXnAzmXE9mHMnPGWoam6FZwD8y6P30drxh/eewz043faIneJ2f87RZsDzV2OSwHIxz/jrD/+XG9Gck6bP3KQgXSHO8EbFGkSIzoWiCjFHhxOO8wEf3njJRRETBy3WKYxyDKOCcbhmalZMzZKxqthRimm44s70R7yXHvHD0w94OHzOXrBg5RJ6quC76SFzG/B36fc43fb45s3HfLf/BRvX+dShjDHG4hV4JegSmlzRJEJ87plvA8yVG3NOn4351dMbiPJMJiuUeJKg4Wq8JJKWQOybC+wbYfSU8Bf5l3wUf81n1QGztk+uSw6CBRfOcNiOCZXlrw5+xZ+mjzh3KVp5trpgJ9wgAqr1OCPw5j7cgNMQPYsxAD509H8Tsbrt8GMhNC2J6bjU0yU9VTBVW1IRUgmofEuDR4twLyhJ1SGHzQ5bFzFUBc4LX5Z7fGf4mPfiVzxtpvxyc4tU1wBs2oj6RUawsZQjRZuAKRxeCTYS4hmY09MBN/5ZMNuKehCx2ovQeedhAAO9IZaGuYv5tB7xRXHAeZNxPznlQXREX5VYhAubsnIJfyBHNF5hveJOeMpxO+CH5x/y34/vIeLJeyVlFZC/UOiqwQWCC6HJNHhPdNkVa27/A4TnK2wakh6HLCYp560mC2tmVc7/2NvkumLrQlqn+d1ij8si5r+4y26+5t3hMQfRgkWTMQnWxGI5bEe8rEb859mfc7zqocTDIqT3RJEfhZixQjUesR5decQJxViwoUJZMIXHhLMNPjS4SBOsPb2nmvIy4atil+Nhj7bV8Dij9xyWt8HeKJGTCGdguZPw1cmEB/snrOuIP7v6BQBfVVf45OQG5093MIUgFq5+6ul9tUI8iEsR7zvi16ArsKFQj2CeadJjjxHrcUahaku8sASFJ1wqyouQ9buQDEqswOhRyeTXLWffypEWkrmjmMRUQ+Hz2Q3UpOLmzRnnLuJ1PWDx5Q7ZiSKae4KtJ563uMQw/0ZMsPHE5x1dgq1D1ZrtgccZj+tZxAUYH2iaPEA3DjxEi4bwUogXBl2HXH4E6TeWPBllDD9LGD6paXq6y7tdoZo6pBWmoxXPq8nbjtWOWpp1yOaaw2cWlIfaII1j9+ddWLtA0KXHRtCOG4KsRjnF5p7HuFBjE404UE33FnrbEtcO1QSYTcD5dzzvPDhifSdkVsSEpqVuDcVZhl5p7KBlEJUs2pRYdWq+df2Mw/pK973x9PdXjNKCl59exZRdcOu2s5545tm+7/BOEUYN7dZg5A1S9cAQLltspMGDWE+waRl+1SIu4tHH+9y5f8xKPMtVijuOSRaKNvOEw5JhVLAbLklVxZVgybd2XnBZxCwfjYjODKu2zzLNGD5V6KrFhoJSgngPCrgIaHP71g0MRqEax3YaoFqNqh02Uuja0cYaXTn6X9fEF4azx9cornjMVggvoOmBubfio71X3ErPSVVNT5cM9ZaJWfLg/jG/2L3DJ8fX0VZRHOeYokPJRoLZds4vLXjjoVa0bUA4qDDOKHTlEA/rfU12DLryOC3oN0WqxhFetvS/Bq80xZ6jPLDolYYqAECJJ1MVQ72hp0o0jo2LWGQZi52EL06ukrzUBIWjSRVewGsBD+VUUP0GtwrACbbVKBdrVOOIlt2RliNNmypQgo0VLhKansGFClM4smNHNFPolcZrME8Sfvbb+/zk7A6lCzhvcxqvKX3A59UBn64OeLEc0TzPiM89bdTNr6rtUBPrcRpuXT1ndHBJOCoR8Zg20Rjf7S66UIU6V4jz4KFJFF5DsWMI155w7Uhmglcdv1zkCWeaF9s9/tF+m7+5/ksyVXPUjPjp4i5P5hMWr/tkZwroFCheOoN9sy/xCrZNwCApScKGXlihqqFGrIc30NoImhS2Y41qPKb0eOmCthwJda4IV57oAnTV7TRsDNIKR1+P+dez9zi3Oa/rAS9WQxazHsHcEC49NhZcKJQ7XSZ61f1nm3ti09JYTVEHWK8w1UAItgFmY2lTjS4Fr6HJoU0D8iOLOI/XgjfC5V0hmoMpPaYQ2hRs5vDKg/Z8frjPTrQhNzWt1chWE150fVebdicTbEAcOC24TGj7DiWe4ZvWvWgCjJcOhbjxBCtPmwk27H5YD2He1+Qvu4nZZt3z9U1HNFfgO664tjNMrwXfKH727A5740vmFxnBpSK89JQTeWsFTQbRojulJhF83LJtApR4FL6bZ13QbVy8GOKF5/wAVCPUI4dqBC+wRgiX3QJEWsAL9dBjNgIOVN21xL5Q2MRhzyNe2SF+ERLNBVN4xEK141EWkhOhjQVTeZqeoMJu+lpVEVlY47xgbAJIxy1TgCmEuu/xoe8Mz0MxAHdsiM+6FiVcCvXQ4ULQRbd0E9uh11aqK3IREy2E3gtLkyqansclDrVUeAX/vyzcXOtaIaMcF9uE2LSdwdZ9j447ZNrkDRf6FvGCBA7EowJHfcvidYRZC6qBcK6wsUe1EJ57VNOpy2w6juoKknNHclazeT+hGbaIl7fdhik8qxuKtt8SBS2BtkzyzdvjVjb12NhjI0+566h3XMeXqAte3yhspVHa0xzUVGOHMyAezFYQB166YsV2HFQ1hKuu39ruhhRXAAXhTCNth2wx6VAMRyW72ZqLbTehBdrSONXNts24xUUel1lc7EB3CvNWuvtC4+Yh3gk2dbjQvzVJacFrsFH3Kc6TzhzZ6wbVepa3NU3fYS66RgG6ZGl6UO1a4qgBYJgWpEHNtgmoW4NymQUruNS+LUgiiw4dOnTQqu5ZI6gLgzQKF3ZFqOaNKkNwYbchDJee7EVBONuyuG8opp5woToF9lyn6mtCccWRTjdo5aisYVOHvLoc0FhNPy75Pwbpgzu4EEQ5AAAAAElFTkSuQmCC\" y=\"-201.758125\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_47\"/>\r\n   <g id=\"matplotlib.axis_48\"/>\r\n   <g id=\"patch_118\">\r\n    <path d=\"M 218.763944 239.758125 \r\nL 218.763944 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_119\">\r\n    <path d=\"M 256.253599 239.758125 \r\nL 256.253599 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_120\">\r\n    <path d=\"M 218.763944 239.758125 \r\nL 256.253599 239.758125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_121\">\r\n    <path d=\"M 218.763944 202.26847 \r\nL 256.253599 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_24\">\r\n    <!-- Happy -->\r\n    <g transform=\"translate(218.150334 196.26847)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-48\"/>\r\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_25\">\r\n   <g id=\"patch_122\">\r\n    <path d=\"M 288.032909 239.758125 \r\nL 325.522565 239.758125 \r\nL 325.522565 202.26847 \r\nL 288.032909 202.26847 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p5d117c9480)\">\r\n    <image height=\"38\" id=\"image8f26dea9f1\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"288.032909\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANHUlEQVR4nE2Y3atk2VnGf+9aa39W1ak6X92nP6anO3bSHTIzSWYmo4yJSgR1IF6IEYQIEYIIInojiH+B6K0g3niRCxG9kSCiN4kiSj6IGRMniWOSmemeTvc5ffp81anatfdee63Xi1WnOwX7YhdF7Xc/z/M+7/Mu+YVf/FPtp46hEkImIDz9mEGRCCiIQj8R+olg22e/kagUc8V4xfZKtgiYLiBBMUNkeb3G/d4+9x5t8/sv/xt/8bVP84XX/oO//s+fY/yuozhRyuOICYrplH7D4keCay5nhEIIOagBM6RLIqgIiKJW8CPop8+KElXUCG4Ftk+FuVVEgiIKxgekH8jnAw++dpWf+fT/8ldvfRJpLACTHzpsx/pSjI/YLhILIeQW024buqkwjAQ/FkIuqLmAA0Ih+DF0mwnNVLSmglqlPAu4ZUSNEApDP3V0WzmhytAiw3SB8ftQWY9f5rz+6tu8Vv8It1SyhSZAHNg+YvpAceLJmojrJ6D2ghaIHrSHaCFmEJ3QzxKabrkuqoXoEsW2VaITogM1ghkUuwqYbsCcLLBD4PJJxdc3X+J3PvdlPlrf4zBsYAbIzyOHHzeotRQnHrMawBuKU4MLlaImFSWDoJanV3RCP4VQgFsBEdQKEhVIhYdSyM4DMXNUjztM6wl1ThhlwBjxEc0Ml97s+eLk03zmja/z3bMrFGeR8shz/SuC7dYvsmwhc+SdxxXHQnNFkQA2pIKGUhAFP4JQKqYXZK07FFSe6TFaYagsaqDdzTF9hm0jxkfUGkTBLnvssmf6gy3+YfIa4/uG3aMO23gkRKQLSO+RrkdjRERwe19b8PBTY9odJWaJFjXpwcNoXVQAE5LmJCrRrREOCUG1qRttH1ERTL/uyn4AIEwKojOUZ4HN71qqo0B20mLOGyREEIHeo94jImiR46o/O6B7BPFhjcQ1lQ5CrqAJFdsnGiUmHalN9Gd9egG1QswNbjkkt7GCDBHxAb9d40eOmAsobH2/JTuYgyriB3TZgCq6apG6ghCRrsdEhF+5/X3K589RC6FQQq7EDCQmtC46FBLVfvzM75KtQD8xPHmpZnW5gKCYlcdv16x2MkSV/GzAdhGJmmhbNGjb0b10kwefv4u5tAMhpmfUJebxcsyGa3n9+nuEUUSzJGp1yY8kpAfDs05VlzxOgqLJ6hgKYRjBo08JRy9UhDpHRcgWcd1EjtW2Y36rRKsCHdcwDBgfGT2KtD+1y/DhGwzXtlBncAf7M/5m/6e5/fwBjAZimyFDqiQ6JWaCWTdFoi01gAlpKohCyAQ/EZY3A9PrZ7gPBhYn21SHnlAZQpZ020+FZg8kbHN+w3DtX0e4eYsZckwfefzKiH4Kl77lMXLusMeOd9+8hskDMVPUKkhCJmYJqYuGiDYVY7t0b/uYvKtLmryyMeeN699j43ffB3hKnwngx7D1ymNO7hq6LeXeZ8Zolky0n2ZM3xuQAPEPn2C0CqmIyx1xMInCmISqAGZdoEtoSQTTJ3qfjS0IuWC2Om6OjwlquDs94NHrBSi4NvleuxNZtAWT95TqQOiuet7+Qs3yimV+w9HsWKrHyklT4YiSUOrW9n8xjtaC1zVyhrV39Rfd+awZJMDsHU/Mar78zsdRA5dePqDbirhVQE2SRpgq06qlKadr0Qp//PP/xJ/Xv4x2FlMNaBTuzk5TGdncUL6fU93LMSuToNKERLKG9MZyMeCHi0HOmsbkXxv3AqMfg58FTpYVow+ckR8scEuP8Yp0hp+9/A68cUy7qxSzlplt+INXv4Ide2azJb/x0rf49b1v4YrHFrcUbA+mSyMGXYtd1ogMycdsn9BBEj1mSFHFtYGhtrhWmb4bMYPj6PWSK/+Sofkcs/Jk1lA8rvn7N18FUa5+/ID9J1O+0zzH5za/zmc/+RZ/efQ6D9oZpfG4UK5RWQhZgOkPoN8Qui0YSn1KrwmJxotPzIQQwVpBjWDbiDvvEYXygWf3q2BOz9FJzTCr6Tcy8jl0K8ulrwoPX9/hQ3ce8o/vvcCDdsZv7X6V39z8Bp//9m/zzW+8gFNJaACYXtfZKAlM9CmjyRri2mhl3amlEAoL2BQSJxbTKbbPsc1AHOcMdYbfsLRTm5gwypM3euq3Kt7d2mJU9fTR8UdvfZbmh1NufanD/dd/42wL+blgPPQzwaz1k2hd1xGeeZjxycdinr6Pa4+yHUg0GKsMtYGZYyiFdtuQz5XzG0J7qyM7yLl2+4DDT4zxxxWXLx3xqzvfJurHePTFDfL3DtE8wxmfimq3UwvPftRxfKdIA9uDWwmuScX8JGLBClmTdCYD5Mt1DCfFJT8SnrwasNOO3a05r0yPeHe+xcOwxSTvePHGQ55cHnPUjvjbR6/xyuZ9/u+5O0zerqFpcPl50k79UNh6u0sxphZMD3kvFKeafEjBjyQ1BykOE5P2XHuxG6R0cvYBQ/fCig9fPWDelSgQVcht4PatA2Z5w14+5069z8Ss2HNnfK+7xtmLniv/7hBjcflpmomT+z0mpLavD+LT4srTgOk1jZY8JVUkFSTrwpKhKdanSJQtIL5dcf87N0FgtReJd4Rx3hNVuFGdcD0/ookFVpRGC16u3qPaXLF8fkyVW1x5djEyIv0ko92y9BPBeE3ZexWTbawp1PVIumgY2z+LRzJAtgpszQNEJZSW5RWLnwgHj6fse8PzN55Qm55tt+AS5+wPU5axYGJWbI4bnry4wXQ0wvlaWO1YxrlBBYZqHaUbsD6lh5iZlL8afbqMmIGnG9HFTDTD+iYqMTfEXBgqwc8C01nDa1fusVfMWYSCt1bPsemWfCjfZx5LTsOIOvMcbMY0xtIKpjQ7hmIeabeFbAHFPGJbpZs5+nGyDttrSqbhImGwTqqactaQAmTMDTEThiKtfSiIKH10+Gi5WT5hZpdccydctQ0HwTOPJXc2HvPulW2gxPlRQsdvQ2dM2l7mKe7Mbzja7WQh2Xnajmy3dvxBURFsH3ELn+IxMFSWUBq6icFPhNVepNxbcmN6yla25FpxwkvF+9TGM5KBmTEcx0BpPLOsoap62q0aF53QzZJu/Hg9AyMsrxiaK4ptFXcs1E8irkn7o2hacI0P2KUHIxAj6sx6F0gJuNlTmPVMRysiwirmlOIpZWAiA1bgMCp+vT9aieRu4ORuwLkm/UnMBK2SuJs9odmLSAS7MkwehLWpCtEKtkvOb1dKzC3qzNNFZbWbpU2rTtoaT1fs1kvmXckizymNZ2o8pUCjEFQwEkEthQy0fYaOB1wxj6x2DO1OGhcmCP1UiVXEtIbd73jy4x7NDc2lnJAL2TLilgNqBSTNSj+xqBFilppkqBL6zbLkgZnSecf18SmHw4TDWDAzPRblMNa0MeM8VjzoNjFGMS5i+rFhqCRFG4GhVoaRIlVg83tCcdgSasfJ7ZKhSlQZH7GLnlAY5jcK2u0MNcLiqqW5ZGh2DdWh4s4N0RtODjZwNnKzPmIRSn7Q75GhnMac/WHKeaxYxpwuOKZVi1jFnHxE8Rvr84OVpJxfB8xRxvb/LAFY7qWDFz+C4jSgAstbY85uZYQSzp8zPPglxY/Atimd9FPBLQTOMrJJR5V7HrVTPlQ+4lPVPVo1nMaKbbvguewIK8rIdczKFRoFk58Z/Hqx1ewi0wi73wR7vKTbLVk8ZxBVirN0TLS6lHF627K6JKwupV203HdpWxqnQR+zdaarAzEaRJSI4NVRijAykaCGTAIWJZOBS/k5J22F7Be48X3l+AXwG5H8zDwzzF7RuqDdtMiQ5mR+rkQrLK4L6iA//4m0sU7mQwVSpEnR7g1MdhfMqpZ2cBx1I9qY0apSi3AYNjjsJnyw2E8Ga3rOmioF0aFOGdl0Qvk4JQMw6awqt/hakJi8bSjTgPcTxfYCEfoJDON0nBRmA3bk2Zkt2KoaDhZjOp9oMKJsF0uuZSe0KuyHnGUsKMXzTneZVh2lDMQoGC+41W5a+euHgt94RuVFigiFMFRQHyirHUNzTVNWy5Xz22lg1tcW3JyeMclb7s83OV8V9INFRLEmUriBwg3cHe1z1Z3RquWf5x/ldnnAgZ9SGM9EWp4MEzIX8ICr95XRw3S0dHY7LRL5sWW5Z2l2xsQM/IZy9FI6TRzGAXYi5aRje9zQ9hn9YHk438DIhPnRCAahUaHcXvHhy/vslgsq69l0S05jybdXz3OnfESvlkf9lBfr95nZhr/78aucP9ggG8Cd3lXqfcPGu4HdN+HxJywxh9OPDCnerAyxTMiEWsAptgiogqpQFz1BC5omCSsb9cRgCZ3Fe8txO+Lu5ICPje4xMw1fOnkZZyJbbkGrOUaUVnPe6cfc39/CNobiRHBc6liUGbZ1jB4FTA/D8y1yXFAeGlYf6BGjmCwSOgutISwdAcfjVQbzjOLQMjmG5nLywjiLUAc2Nxq2yiU3yydsmJbTWGNEuVUccq/bAeB6fsKN7Ig/+e6vEZcZxblQHCv/DxZ3J0/2mlIdAAAAAElFTkSuQmCC\" y=\"-201.758125\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_49\"/>\r\n   <g id=\"matplotlib.axis_50\"/>\r\n   <g id=\"patch_123\">\r\n    <path d=\"M 288.032909 239.758125 \r\nL 288.032909 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_124\">\r\n    <path d=\"M 325.522565 239.758125 \r\nL 325.522565 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_125\">\r\n    <path d=\"M 288.032909 239.758125 \r\nL 325.522565 239.758125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_126\">\r\n    <path d=\"M 288.032909 202.26847 \r\nL 325.522565 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_25\">\r\n    <!-- Sad -->\r\n    <g transform=\"translate(295.482737 196.26847)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-53\"/>\r\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"124.755859\" xlink:href=\"#DejaVuSans-64\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n </g>\r\n <defs>\r\n  <clipPath id=\"p3fb8d858eb\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.957047\" y=\"22.318125\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pb93e9128d0\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"80.226013\" y=\"22.318125\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p4ca74924dc\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.494978\" y=\"22.318125\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p5ea7692852\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.763944\" y=\"22.318125\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p96f2f529ba\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"288.032909\" y=\"22.318125\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p8e2c7f9c31\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.957047\" y=\"67.305711\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p84f078b21a\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"80.226013\" y=\"67.305711\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pc711ff372e\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.494978\" y=\"67.305711\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p730e5cab65\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.763944\" y=\"67.305711\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p65bd9821f1\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"288.032909\" y=\"67.305711\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pd7be474ea4\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.957047\" y=\"112.293297\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p6da5d82d4e\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"80.226013\" y=\"112.293297\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p4576d54b7b\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.494978\" y=\"112.293297\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pb454f90d6c\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.763944\" y=\"112.293297\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p496002fce4\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"288.032909\" y=\"112.293297\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p81cd189a61\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.957047\" y=\"157.280884\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pbc08966e7d\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"80.226013\" y=\"157.280884\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pff475a7427\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.494978\" y=\"157.280884\"/>\r\n  </clipPath>\r\n  <clipPath id=\"peda901b58d\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.763944\" y=\"157.280884\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pe66127ef0b\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"288.032909\" y=\"157.280884\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pf6d4d2c62d\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.957047\" y=\"202.26847\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p2e5a42ec25\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"80.226013\" y=\"202.26847\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pb580d6ee8e\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.494978\" y=\"202.26847\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p1fc0b451f1\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.763944\" y=\"202.26847\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p5d117c9480\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"288.032909\" y=\"202.26847\"/>\r\n  </clipPath>\r\n </defs>\r\n</svg>\r\n",
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAAD7CAYAAAA8RMxAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d5xk11nnj7+fc26q1FXVcbonaoJG0ZJlOcsJGxsWY4JZe0nG7JKXhd2FjV++Cwts+rF5Wf82wLKAiWsbgzHBARsnWbZsycphNHmmp3Pluumc8/3jVI9GwsYaI6kFO5/Xq17ddW/VrXvPPfc5T/w84pzjCq7gCq7gCi4faqdP4Aqu4Aqu4C8rrgjQK7iCK7iCrxBXBOgVXMEVXMFXiCsC9Aqu4Aqu4CvEFQF6BVdwBVfwFeKKAL2CK7iCK/gK8RcWoCLy30Tk/306TuYKvjxE5H+LyM/u9HlcwRX8VYaIfFREvufLfe7LClAROSkiYxHpi0hHRD4lIj8gIgrAOfcDzrmfeTpO+nIhIq8WkbM78duXCxG5bTJ2XRHZFJFPisgLd/q8nilM5s3rnrTt7SLyiZ06p+caJg/plojEO30uzzYm82NVRGqXbPseEfno03BsJyKH/6LHeSp4qhro1zvnGsB+4F8D/wj4xWfsrP6KQUSmgN8H/gswDewG/jmQ7eR5XcHOQUQOAK8AHPCmZ+g3gmfiuE8jNPCjz/aPPp3jclkmvHOu65z7PeCtwHeJyA2XmpQiMisivz/RVDdF5OPbmqqI3CIid0002f8jIr91yff+jGZy6SoiIn9NRB6YfPeciPz4ZOX6Q2BJRAaT19JffEieEVwN4Jz7Deeccc6NnXMfcM7dIyKHRORPRGRDRNZF5NdEpLX9RRF5voh8fnLtvwUkO3URTydE5B+LyGOT63pARL7pkn1vn2joPz/R2B8Skddesv+jIvKvROQzItITkd8VkenJvveLyN950m/dc+nxnyN4G/Bp4H8D37W9cfI8/dfJdfRF5A4ROXTJ/teLyMOTcXmHiPzptql5ybj9BxHZAH568hzeeMn350VkJCJzz9qVfmn8HPDjl873bYjINSLywcn5Pywib7lk3xPM60vlh4h8bLL5CxOZ8NZtS1VE/pGIXAB+SUTaE1m1NrECfl9E9lzuBXxFPlDn3GeAs/gV9FL82GT7HLAA/FPAiUgE/A5+skwDvwFczoT+ReD7J1rwDcCfOOeGwNcC551z9cnr/FdyPc8CHgGMiPyyiHytiLQv2SfAvwKWgGuBvcBPAUzG7b3Ar+LH7f8Ab372TvsZxWP4+dPEa+PvFJHFS/a/ePKZWeAngfdsC8kJ3gb8TWARKIH/PNn+y8B3bH9IRG7Ca/zvf2Yu4yvG24Bfm7zeICILl+z7G/gxaQPHgH8BXkEB3gX8E2AGeBh42ZOO+2LgOP75+xngN7lkPIBvBT7snFt7mq/nK8GdwEeBH79040Q5+iDw68A8fjzeISLXfbkDOudeOfn3polM+K3J+134Z2g/8H142fdLk/f7gDHw85d7AX+RINL5yQldigI/ofc75wrn3MedL7Z/CRAA/3my/T3AZy7jtwrgOhGZcs5tOec+/xc472cdzrkecBveXPufwJqI/J6ILDjnjjnnPuicyyaT+t8Dr5p89SVACPzHybi9C/jsTlzDV4j3TqyRjoh0gHds73DO/R/n3HnnnJ1M8keBF13y3VUev+7fwguLr7tk/6865+6bLKT/L/AWEdHA7wFXi8iRyee+E/gt51z+jF3lZUJEbsM/uL/tnPscfqH4tks+8jvOuc8450q8gL15sv2vAfc7594z2fefgQtPOvx559x/cc6VzrkxfkH5VhGRyf7vxC/IzxX8M+DvPEkjfiNw0jn3S5PruAt4N/DX/wK/Y4GfnDxnY+fchnPu3c65kXOuj1+kXvVljvFn8BcRoLuBzSdt+zn8ivkBETkuIv94sn0JOOeeyFxy5jJ+6834yXNqYrK89Cs96Z2Cc+5B59zbnXN78Fr0EvAfRWRBRH5z4proAe/Ea13wxcft1LN75n8hfKNzrrX9An5oe4eIvE1E7r5EuN7A49cNX/y6L3XRnHnSvhCYdc6lwG8B3yHeffStPLcEBniT/QPOufXJ+1/nEjOeJwrFEVCf/L/EJdc9GZ8nB1Gf8Fw55+6YHOPVInINcBi/yDwn4Jy7Dx8f+MeXbN4PvPhJi++347XIrxRrk7kBgIhUReS/i8ipyXP3MaA1WYSfMr4iASo+erwbeILf0jnXd879mHPuIN4x/vcnvqtlYPclqyB4U3UbQ6B6yfGfMFDOuc86574Br86/F/jt7V1fyfnvNJxzD+HdGTcA/xJ/HTc656bw5tb2OH2xcdv3LJ7qMwIR2Y/XxH8YmJkI1/t4/Lrhi1/3pS6avU/aVwDbAumX8Q/ca4GRc+72p/UC/gIQkQrwFuBVInJh4pP7e8BNE3fDn4dl4KKfbjI+T/bbfbFnYtut8Z3Auy4VJM8R/CTwvXiZAn4R+NNLF9+JOf6Dk/1PkBc8NcH65HH5MeAo8OLJc7dt+guXgcsSoCIyJSJvxPtV3umcu/dJ+98oIocnN7YLGLzqfPvk/x8WkUBEvoEnmmtfAK4XkZtFJGHiA5wcMxKRbxeRpnOuAHqTYwKsADMi0ryc63i2MXGI/9i2k1pE9uI1o08DDWAAdEVkN/APLvnq7Xj/3o+ISCgi38wTx+0vK2r4Cb0GICLfjV9MLsU8j1/3X8f7h//gkv3fISLXiUgV+Gm8YDAAE4FpgX/Hc0/7/Eb8s3Ad3jS/GX9tH8f7Rf88vB+4UUS+UXwk+W/z1ITHO/Exh+8AfuUrOelnEs65Y3ir4Ucmm34f74b5zsn9D0XkhSJy7WT/3cA3T7TIw8DfetIhV4CDX+ZnG3i/Z2fiW//Jr+Tcn6oAfZ+I9PErw/+D99N99xf53BHgQ3iBcDvwDufcRyb+p2/GX2gHfyN/n0kaj3PuEfxD8CG8L+zJuYLfCZycqNo/gNcutjW53wCOT1T952oUvo937t8hIkO84LwPvwr+c+AW/ILzfuA921+6ZNzejneXvPXS/X9Z4Zx7AC/cbsdP9huBTz7pY3fg59M63j/1Lc65jUv2/ypei7+Az0z4kSd9/1cmx33n03z6f1F8F/BLzrnTzrkL2y98AOPb8bGCL4qJyf/Xgf8fsIEXwnfyZdLhnHNngM/jF62PPy1X8fTjp/ELKxOf5OvxwaPz+Hv8b4DtfNn/AOT4ufPLeD/xpfgp4JcnMuEtfHH8R6CCn1+fBv7oKzlp2SlCZRG5A/hvzrlf2pETuILnLETk7cD3OOdu+xL7P4q3gH7hzznG24Dv+1LH+KuAiY/3LPDtzrmPfJnP/i98gOknnpWT+78Ez1otvIi8SkR2TUz47wKex1co9a/gCv48TMz6HwL+x06fy9MNEXmDiLTEVy/9U7zP7tNf5jsH8JbMleKXpxnPJpnIUbyvs4M3Xb/FObf8LP7+FfxfABF5A963uoKPbv9Vw0vxaU/rwNfjMx3GX+rDIvIzeHfRzznnTjw7p/h/D3bMhL+CK7iCK/jLjit0dldwBVdwBV8hrgjQK7iCK7iCrxCXxUoSRjUX16ZBwCkoa444KYiUwTjFKA+hVD5ZwuHd24EjCA1aLIXRWCtgxe8Th9aWUFlCZSisJs1CVCaoAsSCm/yWOBADYhxin+h26A/PrzvndoQcodqOXWOxhpvk3yocBqGwmtxoQHB9TdQtIS9ABPRk3dIajAVrHz/gdhqvyOSNm6QAu0t2XvK/TD5rrf87+WyvWNuxMQGIopqrBE1soFBpjksiTCi4wN9PqwHtkNASaYM/ayEvNFhBCkEM/vOBA+VQY4WUoAuHSkswFtOI0f0MFwV+XhiDTSJUVoIILvBjLaVhZPsU+fCyEqWfTrSnlVvaE6BwOIRQoGMjVlbbqMLPdV04JCv8fdQKrJvcVwdKsKHGaQEFKrfgQIzFhhpVTMYx8N8TB1lbs396jYqyGOcuzlMAwXHurGFz0+7YmIRxzQXtadxEEqkcVAmqsNhQUdQAAVX4/cHI4ZRgQwiGBqcVTgtO+Xmli8l+PZEfClTpsKFgI9Bj0KnBhYqiJn5uCUghhAOHGAfO0R8tP6Xn57IEaFJp87yv+lHKitC9SjH7ymW+ZvEBuqbCB88cpfdIG1UKZcOi2xm7Zzvsa2xyVdWn732hs4czvSb9YUKZhrixBgdqquDArg3mKgMe3Zxl80yL2qmA6ooXlGUCwRjiniXuFOhx+fhJWceH7vjJHStvDBdavOC/vZWpMKUW5JRO8Ynjh7AXEqKef3j3/24XrTdAKQgDXBiACJIXkGa4skQqFS8EoxCsxcURBF7ASjYp494WlMb6fUXpj6mVf8CM9f+L8Ecn/v2OlnwmcYsXX/t9OCXozojRoWmUcVgtpDOa7kFFNm+o7+mxp9llb20LLY7Cah7uzHPmxByVMwFRH+ItRzS02EDYuF5R1vyCc+D9OWVVU/nYQ6i5Gcr5KfTWiGK+QXR8BQBXiSl2txjPRtz/vn+7k0PC3j2a3/uDGYyDRHzp1Hc9/O3s+3fz6NRQNALCfkl8ch17YRWpVSEIkGoF26xBabH1iP7+Kt1Dirm7C5LVMXqt6+dUHFE2E1RWolc6uF6fzquu4+f+5TvYH4wonK8uMBMhqnF889et/7nn/EyjErV4/vN/GFNRdA4FjOcdtXNC69ECFPR3B/QOewFqQwi7Qusxy3hG0X40R0qHTkuy6ZioX6DGJWU9YuOGGLGAhWwa0jmLOL8YX/U7JcGwoHdVlbUXgE28nKmd1CzePkJlJR/87E89pefnsgSoOAhGhvF0yHh3yb7GFpkLODWaZutsk9q6Ims7VDvjxj3n+Lq5e3lJ5QShWD493s+JaIYkrBFOjZCmY6Nbo9hKsMOAC90GoTJMJRnZriEjU0eVmqjrUIaJpgVOBKdkoqHhGQV3EGkastxvUG3ndIuEL5zbjb2QIBbSpYJoJUCNMsyuGfRWH1eJvXZQTBaBMETCELTCNuuItdhKCIALNbqXglLYqmexk7zwghceHwPncFGIjPxnkR1TKC5CjMPUQsILfYr5Bllbs3md4A4PSZICM45w3Rgtjlbkg8ibeZWVUYPzG02CjsYFUNSgrAqdhkKPhNl7DcHYcv4VASs/kjJYr3HtsQVIM4KVLuVCk2IqIMwLpJqAUmTtkLyhsMnO0mMahML5vy0RNo1w8swc+72hgioceTPAXj1P1G6gtvq44Ri31UGJYBsV0rmEtRcIwVV98uM1KqdLXBJDoCmbCWId+tw6tj9AtZoUVSGRkpETEnFsG28a95zw35UVRdHQZFOK6gVLvCmYxJG1NOHYUlYFpy3JeUVZgdG+kqgfUNTAhoICnFZ+AaoHFPMRunDYEEaLlnCg0ClU9vTZ1ewzzCPWnzfPwqdL6mczBrsrpHMOGznSWcdgb8LUw/2nfP6XJ0CzknBQUkxF6FbOyrjB8miKrVGFYKBxAmWr5MDcFre2TnMoWmVJO6oq4ky4xXQ0YiX02tRCtcdCdcCZWpNur8Z4GLOsp1ic6rG72eXYKCLrJehM0GOHeOtkoqoLaMGJYIOdFRZJXHBkep2KLujmCUvTXQ7uP86eyhZ3bByg+5G99G6Y8avfwTrKOKSEeDMjPLcJSnBRiIsjTDMB57CRxsSKsF9g4xAzUyNvhkSdnHDLYaYqqGHmtdhxhptona6agAi29hygDDWWrB0iZZ3VF1QppgAcxSAijkuWZroUbYV1gkUYm5C0DHFO2DPb4bw40l6E7mvECLJvxMHFVea+fsCjnTnUHbsoCs2rb3yIj/7otVz9v8fofooa5Wy9tI6YA5hEqB3rkazlVC7YHZ8rAY6qgMFRAGumjt4KyOuTOY13U+nMYCsBUlRRRQmNGraasPLSFr1DMH3dOr1hghNQg5F3Zexqo3sZsraJ7faQRoNi/xyjBeHudB9fXTsGbAc9HneB7fRS6zSsvkBhA7AVB9ahcqGyqlC5ov1IQdQLAMf0gwXrRYQNvGtHZRYbK6wO0JmlqCoGu71VayKIDgwIAkN/pU4rMMwkQxphxoPTc+hxgQs1rccMaw2NOLCBo3tQEQ5rvm7rKeAyl2TnpXwNnBVOrU6DOMLQ4LSjaEAynbJY7dHQKRfKJg2VsqAzhrbJ2IQ0Y69taHFUg5yF+oC8DBgNYkqjSMuQUBvipGA8HaKygGRTUOUlfk8t2Ilvy4Y7u44qccxGQ8YmpB2NWar0aIUjRibi4eOLLCjImoq4a4m3SoJRgWQGleZe6IUB+Z4Ww10ROncEI4tYhyod2UxM90CNfAqiHrQfsbigRlnRBI2IYFAgoUYKg62EqFGOCzW28lwgIncMFzSb11TJ2o5wICQbgpiIYWh5ydIpMquJlWFsQrQ4AmWwTjBOMKVCMoWUQtkyLLX7HKhtcs/mEssPzqOOjHCFv86/88oP8d86b+DQbxvvH7RQOd1FtnoQBKitHgQane9wyp4IoQgJQjERYk7ABmAiHxewgWAm/mIbVmk+GhP0Uoq5KlvPM0wt9Xnd0sP89oO3oHOHbdVxWpDCwKlzuKJAkhiJI/J2RDbt+FT3MK+uHiP0egfWeUGqd1p6Ajgo2gY9VEgzR7TDriXEW46sJaRtTdyzlImgM8vC51J6+2LMALJ2QGW9QApLWfdWRrLhMDEUU0ISFVSjgmDRUokKrBNy6y0byQqwltrZEZ3DDbIIVOn9pEXtqcuUy3rSTC2icziiqDvcZoQpBTeTkyTepHQatLZYhNPZNCvFFLnTbARdHkx3c27UIlIl7WhMRRcYJwTKUotz8jzAGEV3nBAGhiAwSMVQNBWqUOjMTzbwq7UT/MOyw5MgVIZakFE4RUUXtIMRAGMXsvihgLTtAztpSyE2IG8FBCNL5XhKuavF+k01hkuCjR27brck6ymjpQqr1weMjmTUWwPKLKD6oRo2UnSvClEF1C+AlA4l4KoRKi8xzYp3oEc77NcAQOjvh2K69HEwrShrQjFlWFro0C9jcqMZiUOJY21cJ7f+vHvjhHojpagUZGkImWZrUGXcCpmtDNg6UMEYhXPCYtxlvahz9ctOsnLsAJVNQzD2gQDXnvI+5OHYSw1jv8w5P7NwzhGKYmQNDRVgEFThA4U2FMpYEAt5QyhqwnjeUVaqNB8LyKZDxDp6a3Xefd/LiYdC7wAEoxrV0z0foNw1B5sdpDlFvrdNd3+IqZecHba4YKrs0n5uKrwvtHCC2mF3j1MQrwTk0wa97F1fysJ4VigajnROaN8vDPYKlTVFsjIibocEK5bBYkDU12gHRV2hCtC5I28o0gXDfJIxnQwZRRGt2Much9fniTcFGYyx800vRJct+ZQQd4Ta+cubI5clQIuWo3NjiRorkhU/2YtdljgwjCaDkY4jVkYNrBMi5aPvK2WTU+kMgVhKpxmbkEAZchswLkO0sgSBIc9C0sn9zPMA0RbTKslsSDAWor54U1jEByQAt8NmWSiGcOJf0PjFwzjFex+4iWZbKCs+QoiCsqYJB47a2NK9eY6tI4p0yeAqBukH1E70WH1Jm/Hr++yb3qIVj1E4Ht2aI+5UWLk1oKxboi1FdUMopgIgQBWOYICPQjtQudnRMQEoGyHlUk5UKRBxuPU6OhPMnoK0CGiGY6YqKet5ncJqKkFBbxQzzCLGoxi3GhNvKKIAsmlDGkbcu7HI8+fO8jXX3M9WWeOXHnwJ737kZpr1MT9+5AP86+gA1bMj+ktTyCilWJomPL2Gq1eRLH/c77xDEKBr/b0JRbNWToFAmQjR0EfN84ZQNHyGSzll6dyWM3xtSXk6ZObzitGCRhUQ9Ry9Q3B+JkAOxZTLbRY+DfVTDfJ2RH9vQO9qi2oU9PKYk8UcB4NTGHzYIBShax1mhwtpXOCtKzGaZB3SWdA5jPYYXOConAvoHHWUTUPWCqic8Qty3lBMPzgkb0aIeTwyP57zcZh9V69wpLlG6RRLlR4z0YDT42nKu1pEJZhdba/9VwLq53LiTsBozgc3y7rzFEVPAZclQNuVEdW5IfaeJo3TjtGC4EJDJSxYr1hUrrCDgHO6ybARMV0ZMShicqvJTEBWBuRGo1WNepSjcMS6ROEoEj3RKiArAkypEe2otsaMBPJBRLIp3lwxXlD4NKcd9muJIZnkWGQ2xJSKh7oLtD6RYAMhb4INvQ9XR95vm06HFA3IZwwuNiCO6XuEzZvbbL0845aFCzTCjJrOqQUZtz9wmMY+TfX5G/T6VWS9wvoNAa1jlqhnULnFJAF6XGIqwZ9J89oJlFOWsFJQq2T0BxXigXjflRGKj85yO7MMbsxwY41qFFRrGVFQEgcGV80YTGnSacvzDpyjGuSkJmCp0uNgZQ2N5WiyzHdf+2nee/Z5bHTq/P7GTTgtqO4I1BQuiQlPr3k/8XDssxZ2fK5407CpvPJxKp9FSijqcjFjLW/6NJ5wINhIUU4JtUrGkZee447pg+zdvUFaBhxurbO70uGxwSznB002TtVYfqVBNxVxMkLEUw3luWaURdw/2s1XV0+Dc4wczCpFQ9mdNuAIxpCsO8IBVDYsiEYVDqs1UyctJnYMF4VkXVNdTTFTiXdvNTVlLSTsF+TNiM4hhdOQ7jIEs2NE/DOwr7LJbDDg41uHufMLh5k569h63ZiHj1SoLw64du481zeWubV2nF26x5zO6diA5//jL3Pi2+d/ORebW81orcb0sqOyUZLO+GixVhbdyjETp3+ZV9go/SQxVhhnEc4JzoG1gghklYB2dYx2llAb2skYrSzG+knWs0KRBVirUJHBRg6rwWpB2Uuy2XZ4BriJxtktKgyKmK20wtrdC7QyGM9PPiRgErCRXylN1VFMGYgtKjKwHmNiYevVY1yuyW1AIGMCZaiqnMZDIcVL+yzVB5RWkTYTivmCylpIOBRMrNCZBYGwnyP5zmpaAFr7HN9qVLCV1Ym0d/GotchbKrMOfSEi6gpOB1ReOuCm2fNMR0Pu7Szx0LkGTikO1Dd4ReMRLpRNQjEkkrM73OJI2OXW+AK3Vo/z9+59C6vjBrUVg4sjwr7z6VxhAKV5PMVrh7Utc0nk2zhHVeWoEkwF8omrBwfVFUdRE8KuYOKIxq6cii543fUPMh0NAW/txKrkuqkLvLh9kuaBEetlgzNpm42sxvq4zqgIqUSCscLdnT1stIWDYURhMjJnUbDjJrzKHfXlgqLmc6WdeMWoccZSPdlhvK+JKkKmTqYE/YyyEZPXFcHY+aBgJWDrmhCnwCQOlxgOL6wzmwyIVUlTj3ksnePOx/Yz9bAma8MNu5f5Oy/+EHN6SCIGjSN1mtRpHsrb9G2FP0v0/8VxeQLUaMJNTdT3E1GVUBaaWpizd26LC+EUZbeOHgplGNKLErS2lIXGWoU1gg68kyMrvEZqnRDrkjgoqSOU1vu2BirGGYW1glL+98T5F8oLY6flOaFtDUzMo5uzlEYTBYbGcQhHDp0KJGAjsLHFhQ6Va4qWQRJvytlSkWwputcaZtpDNjbrrI1qzMUDABJVIBaOzq9e/D2zO0UJpNMRyZai2ivQwwIpDC4KMLVoR8bhUhjj71t3nBBWCoobS+y5CsFQUTQcUccn1asS8psHXDO9wrlRkz959GqSBypUDQyvKukXCS095EC4TlVKLEIihqbSVCViURf89PXv41eWX8pw4rmIBpayVSEoSmQ7dxZAdjbg6JyjoTSFs1gc08HAa02zFhdAvKYIR96kNwkoA3pxxNHWClocc1GfRwfzKHHkVvOC5mkKozFOUVUZijqxKkmND8RWgY1hFSWOC/0Gv9Z5MX935tOEOzoKfxbRVka04QtBTEVRJorRfMB4dpbKRkn7gR4qLX0amoJksyTeSMmnEwa7I4o6ZG1LOPCafKAs9SBnKhizXtT5yJkjBOdiTAJZ2/Ha2Yc4EnbZNCF350usFC3g8fzYkYn/nLN9Ii5LgFqniLeEqO+jndZnDDAdDznaWOHBYBcPn6uhU19JUhYBUZTiQkOWKoLQEMXlRBP1lUtx6ANJpXWUVjEuQoxVFBMfaK2SkZcBuVR8YiyT6qTAm/M7bcI7YDYc8IY9D9ErK3zs3EEWHkwZ7I0JRpMPIBRtL/2VEVSqcInB5Qo10qR7C+qzQxbqfRbqfZb7Dc6NmhxslGyWNfImLFW7ZCbgtGoRRIYiDbAxZE0h6gWozPjgkQMpdzZYAqCU875PJzRqKZvrDaTiqD/kMJEQdy15Q+i8NEMKzcfvvgYCh8QG9cIO43HEVDVjNh6gcYSTm28mFTx6MtktjtuSFf7eI/s5emaIq4RE3ZJga4SMM6+JXtQ+d3axFRESCShcTiiK3cEW5f6UMPIWQ6qqBKc0RQN05v2cg37MTDjk+uo5bu8dJlCGq6obPDxY4LOd/ZRWYxGqwW72VzdZz+oEYpmrdVhL62jlx+3E2Tk+W9tPt307CmhcMoY7DRNropObEIW4XVVGc4rxgkyqkjRR14t8GwVgHKpwmCRASsdgt88bbZxQjHc59u7ZYLHSpaJyBiZmNWswHkcUMyWzX9AMjhhuqpyiIYrFKGBBn+NeNeLD/eupqpxQDIV76kHYyxKgblJOqVODjZX3QVphKvCE2Jnxhwu7gh5rMono5woVWqK4nDxQEGhLEBVYq8hLTd/FRNpQWMUwi8iyAFEWO47odGrUGqnXPJ1PnvW5chbzHIjCA3TLCgMTc348RXZ/CxPnmFDQqUMVkGlBjbyPpqj78jtnfEmrbZS05/rM1YYs9xvM1Ya0Kimb4yqJLplLNNHNW3z87EGOzKwxlWSkeUieapxymFgwsVDWQvS49GV9z4E0JmuFZiVFiePcAwu0D22xZRuEQ2Hj5Tn1B2PKBOiHHLz2PGrRMVcZUDrFY1uzBMoyWx+ymde4UDZRYqlJTlVKQkBNjGGFMKtrVNtjpLA4pQhGJax3IIm98Ly4yO7wYuscXZujgFhC9gY9Xn34UU4Opjk8tcb+azb5xS+8jOhYhXjLIRaCzQAljjv6B1FiWYj7fGLtEL00oT+KyXoxydkIEznuHQjprGX39Stsezf31bf4+CevJ9lUvPnFn2dPELNpMgrnsLLTS8p2ibZ3uZTzU2RNhTgIB1BWoHeVYrC7ijIwc39O1tQUVUXcs5jIl3xHHaGsQf15G9wwvUxhNZtFjcwEHO/MUG4mzNylsKGjNjOiY6qYcIjFUlWaG6MtOrUT3D3cj9YWLU9dAbmsJ00rS9Z2FFMBwdCnizgjBMrQKyuc32oS9vxFKQOmpzBFiAsdaRCCOKRiiCsFWlnisKQwXhPdyqrkvRjd1ejMR9RU4HDTBVkWoHNBGetr4SdBJHZeqcA5IbMB/TLhnjsOox10jkQEY2+eGj2px80FU3GYVgmFQsWGoJ6z0OozyCJOb7apJhkr/QZxWFINC5KgoKJzXrf3YT69doDl4RShsjjna6FNAnkD8rpCFQ49nkzIYuc1UArFuAgYZxG2YtHKMbvQI2vNkNRzjn79KR7dmOOmuRXO9FtsDao8enYe+iFMFQShIQ5LbE0Y2pjCaVICQrFocYSiCS9poPiyPSc5tngdldNdzFSE1Ku+1HXb7/kc0ECVCMY5X1WE9RVJ4YhRscBS3GV/vM5333Q7v9N6HvaPZ0k61rt/nDAf9TmTtqnogliXXNXa4EI4RdEYsTqYo/GYor5sKE8JK+Nd5M9f49rpFT7+8RvY98c56z884q2Nx+jbbU2eHfcJg7eWdD/D1XwKXuuhPlIYyqmE4e4EcZBsFIzmQ3p7QxCIBo6sqRjPCTrzPtPOLTkvXziDcULpFP0i5oGVXRTHGrROQv8AFPtyWkHJqXyOI+E6I5fRsQEhitSGrOUNakFGVT31DtiXJUADZTEV50kPcuvTcwTGJmQlbZBuVKj3JqlGQLwlqFVBZ84Lk0gYz4ek8wF5I6BSzXEOxsMYvRwzdV5ItvxNTacnuXCJplQOpb3TWOxkxdrm0tjxwIBiYGI+eu81zDwCmzda1ElFsuXdHKPYa54I6EwoIwXakVRydjX79NKEreUppGIwRtDakRUBQ21ZqnVphyOqKuf5M+foFBWsE4Z5SCoxUuLvh/bjYiPtU5ieA6WcCAzHMdlmhaldfeZq3qf70HVtogcaLDeGvGrPMT65fBWv2/MI71p/Pi7TEFuCCzFF3aDbfWpBRkOPMU5REJA6Q+pKLJZL63h/evGPeXPzRiqlIeikvrR1mzfAuefEmFjnSERR4NOHphXEqmSYRZxN2/zuqRvZ1+zwvYc+yb992VdTf1eMzHtTNFSGWJVkNsBYxWcfPEhyNkTlsOe+kuqpDoPDTVZebai0xzTjlI8dO8xVf5Axmo+4bm4F69zFbowa0CI7bsA5Jdh6hBSG4LFlyAukXiNMC6Yyg4x9houYKv19MU7BcFFRXbG0HzGUiWLrGsXuJd9hPbcBYxOyPJxivFEhKmH0VQOuXVjlXL/pXWR5kzv0AeaCHgeCLSKx3Dm4ik+cPshrDzxyWRx1lyVAlThUIYSDcmIu+e3dokInrfjsXPE+SpVDdcWSbBl0alCFpaxo4k5IuhGQzmqG8yHEBtUNqV4QahcsTkM2JZOkWFCZwiaKsurI64pkU9DlJIDkwO2wslVYzcdPH2LmMwE6Bdcoyadi8qmAsgZ502JjC1bQmRBuacy+lLnGkN21Dp3xLnS9xG5FuEGMDLyLYjxj+ew4YrA75mB9nZloQKwKlDgaCym3mwOMtlo+8bh06HQSlAr1jldnASCOfLmGns0ItOFst8lcfcitzz/G5z57hG/b91n+3We/GhVaHhvMctO+s9x131WIEexiynRryN5Gh6PVC+wKukQYDIJ1itQJhTMEaPQkMLQY1D1rV5ZTztQJ++MdT5x/Mi6NeGeupKEivq55N/e1lzjWm6UaFTywvMBcMuAbjt7D+174Ym7Zf5rMBmwVVTLrNfB2MuKmq0+zvrdGqA2n5xaZvrdN/yrYvXeN+WqffbUtLMLqzXsZzzlaeXJRcG/ngj4XIKUlOLcJxYSprOa7FcsoRY8zXCXGTPvqOxNCbcUQ94RgZCnqirwhZLOGVjJmWMakJqC0mpnKiPrhnEO3rNMKRhROc2v7lLdkbMipbJbzeZukVnCmmOF9X7iJF1x9klY4uqzzv2xnmSomGiAQ9R2yEfHA1AKjUYxKFSr325MtXyYlhSGfrjBeiLGBEA0slQ3DaCtgM9KUs9ZTSfUd0cAwmgvI2l6AllWwycRnGEBZBxMLqpywDznHTq+hDigfbRB3HWUskHvSg6LpMBULjZKwUuCsUK4lBEM1YbSzzEUDjkyvc18RMl71kb/xnpKondKspuyd6hLpkrEJqeuMqcC38w7F8Oo9x/iEOsjggWnEgMoMKEGce04EkaQUXGhpTg3p9mrcsMe3dLdOePVL76NbVvma6x7g/KhJoCzX1i/w6OIc6SNNyrpirjbk1e2HuTk5TUPlpE6jJvfaOKFjS1BQlwTjLFq8Tx4RbKIpZxsE5zd9EKk0l1D97RwEIXWWpoooMPRtztEQ9lQ7fHTtMFfPrVEJC/ZXNlgMO/S+6h6eVz/Lg6NFOkWF1ITUgpzpaMR0bcgDsouVUQNZyFhvK6Zn+9TCnKVKj/s7izTClHMv72HGIQfrjzc0vTg7ngMmPNbgRiNPsFOtXLQUXK2CrcaM99QoqoqyIlQ2LSbxFVt6DDrz6V5YoZclRKok0oZEl7TCMbUgY1+8QUuP2BV0SKTgQtniWLZA4TQPDRf4wIVrOfPALr725XezFHcALhbGPBVcHpkI7iK/XtBJSRohyVrIIJoCA8mWIhw4KhuG2qkBsrwOU3VUM2a44Pn3asvQXBkh1tE/EOH2GkyhUKX25AABlFWH0948JbZIYL1WO+EIxfmqDROpHTfhUxPSesiPCYkQbgZUVx1cgGgghEONCzRpU7N1rfeFFsOAtAwwKGo6ZzyM0GOhmCmJWhn1asr+5hZHGmtMB8Mn3NDtKOFsOKBc1PzhagOnA2ysMYkmGPpA0k5DLBBbOt0aOjB084T1QQ2AmdqIb569k0QV3LW+m69ZepCr4lW+5eDdfLR+hHY84mvm7uea+DxNlaHFMXQBEZZQLAWKrhVaCgpn+MC4xgvjDZRxkOU4maS3bed/XuRL3dkxcRMSkUuROsfXte/meH8Gi1ALck6NZzBOcW1tmVBKKionk4DNMiI3AcQjlk2T66YucKSxxmqrQWYCUhMwKiNiVVALckZlxHR9xEo+RUX74NX2TNqeIc+Jlj4iuHySMbEwS9GuoMdeIw0HJclKgY0DRoteyaifz339ey0gHDqCkZAbTaCsL85RJRWdMx0Maagxc7pHIgUaR0ON2R+tT/KKLSvdBvGa4oGtXTxvzxkKF1xMZ3oquDxCZWU9kekgR06fJ0n2EYxCdF8RjIXqeUfSsejMeXKDLIMtQxBHQEI659C5orYc+rr2yRyXWslgT4CJI9IZzydqYwuJQQX+Vjvlq3m2iTa28z/tDjMilJknqXDKn5tOFSb0ydHDPYIqFNULjqhvibd8GV5Z14zzEOuEbpEg2qFzYd9vGIaLVdZvrjF64RCNZWQjFsMOiSoY2hiNJZSS1IW0ghHTCz2Gu2apn7Y4pTEVTfeq5M92WX+W4QTIFC6wRFXDuY0m8liNomnJ+k30Qcc7j7+Qzok2C/s/zYFonUPRKkeTZQyKA+Eau/SI3CmKia/IICiENVMjFMOc80nlG2WdYbg+mVOOeLnnU5gu9Xva58CighACmzbHAgs6xtqcm6J1fmjvR3jX+q1MRyNW0wYbRY3MBlR15HkjSFkeTzE0Psd3X23TM1lN+ABOj6d5aHWBSpzzsFpgKkzJraYSFoRRSTMYoxGsQOEcxnlhuuPi0wFaTwhQYlxp0MPCk+2UhjAtcZUQMZb6ySF6kE2sjABTDUg6lnFPs7bRoBmniDjqoc8KCsUQq4KWHoEFLT7CvivokjvNbDzgNQce5cJCg9JpDkTr5E5TuKcuFi9LgEZSUjYMLlDYsTcnER9tjrpQW/Xr23hWk7XaxHsaxOtjT7c2uVNFHYaLoY/SV3y0KYhKxvsKslmNjQyEDgJLmJSUWeDzJY03wVThLtZ8B8MSE++sN0dKmWjFXuuSEvKWT462jcl4LCkkF8I+xJuT74nj/LjJ6qiBAPVTPkjWPDakfj4g/dgSv/3qfVx96ylubmlurp0iFMPQ+lW4KjlVnVOLCs4eMNTPJdTPpqzdXGW0a8cfC88wrnwmRRwW5A9NEfZ9elu85YXhXG3I1beu8dB4kZYesRRucV28jHVCKD5KnYhl5DQah8YxrUoezWv86vJLeWxzhuvnL7Ar6fHV1ZOkbYVr+zp4RJ7I1K/UjksLh6OqHp+vqSuJRdFUAQfCTb5t7g4+0r+Wii4YljG74w59k1Cd5DRGk64NudVcSKeYjYcEYrAi3LO6yHi9Sm1PznQ8ZDoaUQtyTg/ajDsJh+MVUmcvaqDPCSambUz4bd1wCHmBHoS4WoVsb9vzR/RL9KhA5QZTj70SNcpRRUzUg8qaYjQMOb3ZplUfUUxIaSzCyPoFZ1fQ9RafygilxE4iRcYJkTbcd3qJB2Z2UzjNZlnjqfLZXV4UXgzh3JjRUpXGAwkuL9GppyqLuo5g5Av+07aiqIMciEjWQipbFp1Bsu7Tk7K2QkqHSRxRUhKFJdZoXKWkXs+wVhh1KxRpgIwCXyastqufHCq3FwMlaodTdrYDaU55KrJwBPnUJJ0om7AvBg6MoFPv13UK0jzkbL9FM/YL0cbNjo0XBETzObtaW1TDnOuUZSYeMjAxHVMjkhI7oaQyKBQO6wQXOTqHNdEgRJWOcOe6VlyEWCCymFwxziLfnkN8YDDZtPzh1k28YeEBDsar7A02GboI6xQjG1JVBUMXoJ2joQoUjkQMoVhqonhhcp6XXfVu/njhIGfzaQqnOW8iki3rhaedRBfL8nHh+RzHkjacLDTWCcf7M7x87jjgfcZVnTEPdOMKqfEEPEoc68B8PODjKwcYP9JCLabU44zNrMYXVnazONXjbKfJ9EKPm+Jz/niA2fn19RJsp5nZJ/y1U5WJP98x2hWhs5BkLSNc7WOma9g49N0OxoYgDRAjlIVmkMaURmOsIrdevC2rFnZSrbWdJL9WNljP6pwbNXn4+CISOH7+ztdQeTimsuqAdz2ls7+8PFAs1y5c4NFDR2jcM4OMc8KBH4Ska1Gl9f7RsSNrezqqvAmjgUbnvhbaxJ6aPygAK0RhSTDpiRNEhpnaCBHHmSzE9EMwPrIt2pFPaeyE+1A5h8rNzlO3yURYXnQqTTYXAonDVTxZiBqqi9q6CxxKOV+B5RRhVGJaPvesLDVr/RrtmmKp3mUx7rIYdYmkJHcBhQtQkx8rnKa0ClUvSI+WDFZiaiuG8ezOJ9LjQHUCXOw8w1bTeo7GdYUNhA8eP8rL9kfsiTb4ufNfw523X803fdUdvLl1JwARlhxF34Y+eV4sxglDZ5lVERbLtzbO8cejAceyXfz8ymupruZwaWnvtgm/3VPoOYAvVv1TOENDRRwIN+lUz7Ce17kqXiN1ISMbUThN4TSBWKpBjhK/cI7KiLsHu9l4eAY3n/OSgyfp5BUGeUz/3BSDQYKsxHzv1/wRiTyufcIlPtBn5ar/PAgEgRecxiJBgKtV6Byts/nGMbtnN1hKhp6G7v1N6o0Qp4WoW5DOhMSbBVlT4aTEWqEoNM4JIo5QG8ZBSL9MSFTByEaEYkhtyEo+xcnBNCceXES1c44srXLmg/vZ+0dd1GD8lM/+8iqREI401vjC7kNk+6YJRgVlZZLLFQhFLUAMJB2LKn2iaz7lfK5iKBQ1H/xRq0IwgnAojNOQMFSYUYAJFMNaRCUsSJKC4SjARY5aMyUKSnrTESZRvmFYhvezylOvW30mIBPeDrW9rAsTXy24cBIASzVhVxEMIW8DzYKlqR776luUTnGh2/DHCC1KHIH2BCu1IKeuM6aDAaGU5OZx4ZnZkMwGVMKC+ZkeWREwnksIh4qpUzvv7wOf96p7ilQ7CHwie96E3kFFeb7KI8057t94PWtnWxz9tT5/ePA63n7Lp7xmLeJZupyiQIHzwaN1o5lWUJEIi+NlyRqHwg3e2LiX7174McLVitdCS+ub9jl3SSR+p0fki6NwlsJZWsrS0iNuaz7KStGkoVMGZUxhvQCNVUk18KlspdWkJmB5vYleGvG6Q4+wFHcYmYjb168inB1TrFZA4NXVhykQNN73WVwyEG7HB8UhWuEMSDXGlSWnv2mBN/2NT/Ci+nH+1/nb+MLtR7BLKfkBGC2GFA1H/VTgUx4bEcM9DhKLLRSlBCjlKRMjHZKHml6RYJwwFaRYJ2wWNe5bX2RjvYELHLceOM1jWzPUlh1lKya8jMX2sqPwTT3GTpWYikIZTT7ly6hMrIj6Qu2CX+firiXueiLhvCWMFxymZgg7msqGZ2eHkK7UGc2V6KHXJDdUnbhaeBKRxOCMpRrnNJOUzkydohZ6wVl480wN0su5hKcd4nxRgUw88lJ6LdOGIJFFB5Yy9BUTNvJ5obVGSi3MONbzJYtlqaEb4qZzgqSkkWTMVQbMx32qOvsztbnbGolBMVcZXCQkPh/CYI+6bFLYZwJioDLJ7R30A4Z7LdGmIjuUEhxKyXoJSVAySGOCTsAjf7POV++5h1As4UQvKvBBksIpUvw1h2IYufxiFVJTJSRSUDhh/B1bTP2E9gQi2y+tvAkfsOPJ9IJcLEG9FFWlMc7RsTmbpo4Wy0bhMxaW0yaNMKWuMwLln61RGflxsRoRKDoJd63v5tFojnLCZlYWGhe6i0nhc0roWDcx4XdaaF4KubjQudGY7PkHqbxinZOjGX77wy9j4TOwNDZ0DlcY7Le87HX3sa+yyYeWj7J8oY2zMsk/nwSVjVDkAVr7Z2BURkTadz3YTrJ/cG2BwSAhSAquueoczTClc2yaWQuDpYjyYAx3PbWzv2xbzyLE9QwbVsA4bATZvCGbFqKOQuXa+ylLCIeWcOwo6p5BXo/VRQbuIDVUV0FsQD8NKBreJyoTEgpTBn7+R57qbq4yYLVVZzzXppipEfS84JThzgpQwNe98zhjlEl8/qqKfGsSUyjypifIdaFvL5CakEpQMJsMOGFmfAJ5ppFKTqjNRMtQjExMKIaGGl/0gRaTNGjrfNpLZgJOnJ0jxgvu3sHnhs9v6rTBhsLUSUNR826c6GRC/UVdQm0ojGZxqsf0bRdQ4nh9637gkjxFfPGGceIToJ0nlVgzQiI+8HCsEA6HPkn9Y7f8Mn/tqh+h8YXR4y2BwT+c4XPArfElsGmySW6ooLA8ki4yEw7JJtHgblFhbEJCseTW+/cWqj1WRlOIOPZ8QNA/YNgcVegPE4phROvzEa1jOfz4GnuCkgtGiORxxiGLTNor7zC0wrUaFxsijnaFLDZ63P2H1xJb2LjB0Tjp+60lK4punvDS2WOkCyFfiHZzttNi2KlA4Sv82I6VTDodGKcYlRG5aKxTbKZVilIz0x6gleVI3bOcHbjxPCf0IoufEMxlkJld9qyq65Td0106C3WirvLBgdBC7MiVpm98LXswmvQYCQWnIex7TTVvG9ZvUnSvqhCMPAW/J04QRg1LEBqUcoRRSZ76srXSKZRY6knG2oJj89qEuBcjxhH16/Do5V7F04vxjK9DdsoLMBM5XGQJQ8N0bcSo55u8ucCRnAsJ9xsePL6E3go48Kq7UcpiBMjVhDfVT+5AWUJVYp2icAGhlChxaPf4JKloH2RBHNmhFLoh8eLlVVM8E1AlhP2SsqaJOwU2TAhSIdmAldUmohxbWYPDV62wmHR5WeMYR6JV0knEXeGwFzVQn1qyXc7ZtTGRGfPt97+dVy0e482tz9JSuTftf+Q87q1j3xIYLjYAkqJ8Ljj8KDDY7Xp45zCTk9q0OYXTdE2NqsovdjawCDWds5I2mEsG1IKc1ISUVlM6RaWacfb1EfqeXeixUF31HRBqK4bzrwj5Nwc+jAUiseST4wF+zjxXYK1/JbEv3y5DsmnLvhuXObM6TbFeIW9CvAWP/t4RfvDqA+w/sIZWlnQcQaYuElI7JV4LLTXjIqSw6iJtZlYGDNOIPAsZALUkJ5iwVd06c5qT0zMEo/CZ68rpEPaGm9zYPs/vXb9IZSMk3nKMMoULHS62pPu8r0lvBcSbakJJ5b9vYke4MKZeTRlnEb2tCsFmQP2MF7ieHsY7gJPIm/Hb7ojSevd7WbeMFzTZtGc4V6WGP7ycq3j6YUOhTCadBbUXooSOauLz0dxYe9/whQBTdVxYaxJUSlQ953h/hjA0lIJv71Cqi2zaGuuFiVgMCuMiRjYis48zOhon9MuY6/YvUxjNI+Uu9k1v8cgOjMOTIQ7CvmHzmoRgJJjYl/hWHkomzFSOY3qeN+26h7Wywe5gi8aEyMEimMkrR/v8PDQjGzOnewAMs4h3f/gl/F7vZWTzhr/x8ts52lzh0VGIVCoXq9VAYdt1OL+zQsPhJlygoCb9kXBMHn5fLNA3CYXTvuYdxWw05PSozbgMMU442ZshDkpyo8nKgIXGgKtn1rjn3BLFWoWoq7EhDJY06mifG6ML5M5rnjvPP//F4DvLYiwujgjGjnERMnN0g4Vqn1Nmht6tKW4UkC34/knTdwac21pk/qYVzCDw9JChz8Wm8LzDhXb0jPImPp70xxrBTbaN+yFZPeREa4ZGkFELMnRgyFox3YNtuPupnf1la6BzQY8DyTrN/V3yWpto4HzZXmQhtCT1HKUsI1slVRCMhGAknlG+XTBVu8Tkdv6BUoWf2PGmItMJblpIKjlTNR88ascjUhPQGVUIesrnUgqk01yWuv2MYGJvmlgY7GeSlQAqNESBYWNQRY8ULoS8ZrFVC6Vi78IGU3HKuAzZ1exzKo2wmxGm9FHEbRMknQjLUD+xvMw45VmgigQ1SR7OlWZ6vsf4Py89myPwRaFKTzrTuTqi8+KchQ+ErN0CUiqiPoQDR1mBgYu4Z7CHVzQfZsPWUOIXje26d/A8tBavhTfUmL3BiBD42K2/wK8fPcovn3gJ6YUmv/XRl3H1/+6i2l2fwrSNYOJD3mlCZXwSOzxeF69E6FtLVYQ108AiDExMMxjz2GiObp5QDXKW+1P0swWeP3eWc6MWrWhMpI3noIjgNQcf5eHpBU43p9HnY2wk7Jve8t03gao4upP141Ltc8dFqoCLQggDJC9ItgynTsxy+OplHlxb4I3X3cuLG8c5EK6hcfz4I3+dWpjzD/Z8kg93rmPlvnmcAj1SmMSCE5xylP1wQhwMYgVKQZWgjM/b1iOhrGvuNPtptYdMJRnlWoXxjOIS/eTL4vLIRLCslVOsFw0663V2Dya9trfvh/FpSUWpQTls1WJLjS0hn7bo2JAWAcNzDaJNRSWTSUMpX2WUbICUmnxcYbigCFtDook/cFRGjEcRUSpE/Uk1Uum5MHcSMtEgnEBxVYp+oAKA0pNASOH9N1JCYIRSKagVDPOIPfUOC0mfUHl/4NmteWyu6WcRoyREiyVzAdpZrBMSVVCIphBPiNAvEtIJB+uJrRk663X2/p6iv/s54O9zMFyM6N2W0v7ThLwxGYMxYP2imS0qxDru3VhkIe6xJ9okjAw15TV3g8I6Re68BgqQupChVazZKueLNjcmZxjnr+Cav/swohXSboExOOcQEZyxSByhehfZrXcMgmdA2m7ktm3CFw4KHOeKacxk0WgHQ5phnX4R8+DaAsNhQrs5ZC2ts6+2dTFZfG1Uu2jSz1YGlPOK8705bCIcmVrDAn33uI9+W3hqeY6Y8M7hotD3t08zktWUmc/VeawyT6M14iNnjjBcjLmm3qKhUn72yHtpKZ9m1Juq8KH69dSPB966KbwV6LRna1OFTIK6E0FqJgRFBQQjh90Qsn5Cdzqinwm1Td8l4XKG5vIY6VE8nC7y3uPPo/3ZkHgrZ7QrRGeCixRS9Tlq2Tj0czW0mJpPcaLhnf7j41M0zioqq555yURgkm1zHMIhgDBuBMRzJQcamzSClGPFHHYQEvUgSCdEIlZ2vNf3dg6oSWB+tsfKUUVwIfItLcRRSQp6NUOJprqsSNaFdJCwPg64qrXBQtxjbCPioPQJ96WQFSHWqSdoCoULKIyv0y1sQK9M6BYJwyLmkeOL6FrBV13/EB/RR1lY2ID/uoODgl8Uu0dAziUEY+jvE6IuRF0/ucezitGhHMl8ueF0MKSlRxToi9VWFoVBSG2EmaThKBSJWHbrAYkUpC5k5n/UUHMzuP4QO1VFBiPf9qUsQWvGh+dIlge4YOc5iEIeJwH3wtMRCqyYkK6pkFnvr+uW3oe7lVWJAkOvH7Kx0Wb/8zdZz2oMiphWNGamMqIVjVkeT/nkcaMnvkCfArbt90wRQv5sdobstC9UxPunixLnHKo3ZupkhIli+rcZDi2s89kLe/mM28eN88skMwU3xmcZuohEcogsUccHqnXm/b9OJoKwfNx9qHLPUSzGoTMvRPMp0GNoPixU16zPGGoKk6F/SrgsATq2Ee87dwPc0WTmwTEmVJjIS3kEbKbp9SrYfugd99USAourQ1wtSDsJjXMKKaGs+pa/+RSUdYeJ3IRI2WHaJQuLHa5pr7I76TAwvlmbShXh0AvP7Z7wqvyyp/2MwirPClNWhHYyprqn4Nzp3RRpQGE0840B1gnl3S3mP5cRn9nCzNQR4+gXC3zs+VfTfcOQXe0+YrzPN899uV7hNFWVE0+6fqYu4Df/yf1Ecw2u+lu30c0rHJ1aZd/zti62iv5/Xvx+Cqf5zM4OC9mMkM9Y2vcohktC/axjtMv3+ulca3FVA6XCKcdrFx5mT7TBlEonvk4/LY1TF0357c6nu4IuNSVcMH58OqZKZXmIi0OEGtIf45z1hd6ikGqFbDok6kagdtxgvUgpp0Qu1qZvGsXHR1ezVdQonEaJ48R4lqlgzG1zj3F23Obj/QqmVNzzySPYfWNsrgkrBXtmOlSDnEQXRJGhl8e+99ZIcbI/w+Zswt5gROEgn2i3+qKP/TmghRqLdPu+e0BZIkVJ2MupLwcEH6xw8tBepl+wym0LxzmQrHPvcA8rRZOqyvlk5xDNu73fFHGeF0Mx4aXALySTZobgi3jyKSFbKKnNDxn1Y4LlmNGSQ6wiHDnSUNDeDX9URL7HOfcLf97pX5YA7Zcxqw/Pseu4wYlw193/k+GfLnPVP/jnSKGQLMAFGlWKd+oWCgksUaUgCktS60sZTWXb/HaU7RKpGEQcVjtmWwMONDfZlfRoByO0WDpFlUEaE68rqms+mmoDr63aHe4Lj/JtacOe48HjSxw+sEK+L0dthvRHiW+Qt1InvPsxPvf59zHqrSAnFJXGPFc9700s3lEy/4EB2ZFdRK/R5LM+C6Ea+P4siSq8L1DsRSYmY0NO99ssrzUBePPi53n38i3sq5WczmdYyxs7OybA/ql1/tarPsT/6L+e+ll44CPvIFs9z+5//xNU5nyGhcs0MpUzH/bQOHo2mfB9higskRiUWP+aaE8RlqpoalKy5mr8xP3fwO7HzsCuOS9Et6tItv2deUHz3g1Wb5vFPbxDgzHB/Q8WfPRjKa94xePFH7/92yPe8WslL37HPiLlK64qOqecCLvzaQuLcNX8huf3bNTpn56isqyBmOOHIsy+dZZqXVITkOYhUnpBMlcZMKfHDK26mLYUia8Cf7wSaWeeHxE5CVQb4byvRCoNZ7OHOL/1CC+c+puE/RKnA6bvF+wj8/zRrgXG856D2MUOpxzNBwNqy8ZTXOaCKG/d3PU/f4zr3vpPiJuzpDNC+NJNXrXnGItRl75JWE6b3L+5i/GpBiZ2qEzoH4TZu31H1KTzDNHZZXlI1FGEo4JxukVv/QQ6TMjvuo/khTdTNDwNnZjJSlD4iJeue58WkSWdN6B96pOuFzSqnq4s0JaZ6pCDjQ3moj5NPUaZgkJFdIoKg06FmRVHspKRTrhFnZKLteg7hWDogyUAU/dEHO/vZuHoGusr86TrFdIkQtZzTvzhL7L35W/mwDXPJ6uVDFaPs7YrJFifAWZwAsEI8kusrMeJDXznz9JqxuYkRVal/8A883fCsdctcEftIAfqm7xk6jGSSe34TkOJ41W1h7jrFfv4xGeajE8fJ6jH7Nv4MOn+F9MnIbPCkd2rZDbkgmsyMAl9kxCKwSLMBgOaekgkhoIALZaeizGMmVaK7zn+Rvb8wxyZamDLEgkD3GiEhOHFGnhXlthqRDh0njP1OYBtQpG+NayYkK0iZi2tXyzTrOgIhWOzqHlikdxHSsdFSByWBFdtsUUbnSri8yFn+rs41ZohruVkvZipY5retQVvmfsMGkeBoqkMmYNwMlftRCPd4ZILndsRRJOojVLe9TIhS98OLqvS0TglTJ1wKOM1TKcUVltM7OWAMnBprWowdlRzw3Ap4NVLJzhSWQF8/7LbT+8lvTDlfaPKYaqW2hlN1CuJO1wkJ38quLxKpEIIhqAyy8r5z1Of3U99eh+9uz/L1NU3U1Zh/dd+AxXGlOtbpCeOE+6aZ+YH/wb1Q3WiakH3vkfYeuf7MN0+86+9lt6ZFaa/6kau+aYjDD78Od7/uw9z9U1V7njvCq986y4+8psr3Pwf3oLqhdSWDWWvw+2f/s/c8sZ/ilINgh3Oo1eFYeEzIzZurOAC2P1Ry+byAu0Ljt4hTVlV5MsrXsh+8810E4OEjpCrcEZYbq6w+Svvojy7DALxdUeZ//6vxe4SemXC2Qf6/OnP3E7/TI+Fl+z3OZFpncVVRd5wVB+NuHtmNzfOn2fT1BjlMe8/ez3wezs6Lsb5ANDbFz5B79gY87wZqkd38+j7H+Oml99Ip19BfvOXWK8bfn55wKnPbdK+qsmLfuq1nIxuwAFTx+7ikf/yaYbrKbe9aZqzj6a87psaHPxOyx+/q+Sz//bdzPfanB88wJ7pWzhz6m5e1HoTDTeDaE0mGX+68ovctvT3gQZZe+eDayWwaQypU2zaKh1jaAUbfNPCXfzqOzp8/l2nSLdSqgs1rv++F3HVa/YRKEP3w3fxyHsfIbpqkY0/uZ94usbuH3wD+vqred7CBT77o+/GHt3HyqdXOL+8yo0vrTH/4oTpRPHNb1vnda+O+K7vrk0CVsKbXr/G3/57jZ2Owv9cZob/qsiHBNUpX5E0wXCwyqN3/z6D7lmCuM6em97A9P6bQeD+P3kHMwdfwMy1LwFg/dHPsPHoHVz3uh/mwQ965/997/93gLCg3sq5XSv82j+7nevecg2ffednSQ6fZPaN38TKb/466ZnTSGGZjnZTe8lbqLmGdw8+RVyW/ubbdDiijZQLy59nbs/zmd37fLrLD6PP9fzRnDD83N3M3vZ6Dv/DnyVqztL97Q9grcCoz/p//XUW3vZVXPtrP05zf5PN+y6glSUJCrRYzt3bobG7wX/61At44ffewO7XHuGR950gHAjB2LCychet2cMESR2A50RVmgjVVc+cb0Kh/ahhsFc4/MqT2BDCuTlEK9Z/7TfIHr2fkA6VRsrCYoer9q7y8h88wjf9/rfy0l9+G663ycavf4yHVhf4/IVF/ujHPkbzNc/j+f/nRylvupW1jz1KZdVRf+UqR9/2ENd/3cO8fOkEi0mPhkq5tnLON517DiB1ITN6yL3vO8u3fLPiW98irH/mNNFgk7dd9xlmwiEP//EZ9n/Xy3j57/5tpvfVePQXPsXLd59AD/t8+v/5INW/8bW85Y+/nWTfDI/cNaBvKzyQtxnYnPHyaapRi1fPfzcHl17JrtkbWM6P+VJOYHn4EDPxXliYYesbh5cVXX2msGFi7kj38qnxQU4Wc2jxWSa7wy1ef/Uqv/E7U3z4vj380N+r8/mf+RDTg3OEYhkUMd0HLyBzsxz+pX/I7u98Ocf/xXvYHZ7nFe1jNNSY3oe+wK+8o+QDd+5iVzTmX/5kl+NlwJveXOW33p3Rt4qR09x3v2H1guE1r413WoDeGQQxJzbuQMYZthpDoCkCyz13/y/mdt/Mi9/wzzj6wm/j5Gffw6h/wXd9UJ4uMWt7TXW7Y68qHdd/1d8G4AUv+1Fe/jU/Q+0FN5PonP5GxgMnGyz97D9l5q1/Hact1Zffyr5/8hO8+FX/BKVDHn34dykamv6ep54beVkCVGeOxumM3tn7SfMOu6ZvpDq/l6QyQ+/+O4k3BZ0KzQM30k72E/c17SMvoDh9nnKjwtbtJ4j2zNF++VGS2LHwjS8gnq6hxRKpEsFRm62w71tu5lPDa/jg5vMY3/IKuh99gKDrCYvPd+5lfs/zcVowkVxWztYzgbIWEG6OmPrECfa+9zyV9QI9tszeV/LwZw5w6IZz2IWQ3d//w+CE9f/xXo59989x9l/9BrbbZ2Z/jYMvmydOoDYds/BNLyJ95DjjrQonbu9R5g576xvYvH+RA6u3Um/vZXjAslTvMhsPaAQZrUnjOYBj6S42Nus7OyhA6TQbps6n7nAsnyt509eHfMOtm+zeHzB/+4e4OlkmkpJDX7WbztK1jEzCzW9cYvXhLsf7Myz/7gqV5i7m1l7Knb97M/dc8zaCdo0Hh4t8uH89J8opwuoU+xs3o8MIrUKWGjewPHoEWxRgLecHD7LUuI7qgxc48G/s44xZOwSH8I++f5XvecHn+bsvvJ0feMGd/PefPA+TvNdbvnaOcHaKIVVe+cYmew6E7D3+Of7Owod589znaM9qfvTvK1576DgvfNMC7QMN5K57aeqhd5l8Y5s9V1dpVuFb/94cf/z+MU2X8cbXR5w5UXDqhI+4/sHvDPm6r0+oRDud2AW63uRUfj+ZLnDam+8rw2PElTYL+16IKE1teg/Te25k89Q9Pk1JBKtguNeSTssTWp5PGOwQB/mURo4MODdu4VA0v/YNKBUilQB2JbS/5jB2D5z/a1XCt38tg+XjOC0k3WfKhDeOcHPE2d79zAS7SVzCQMHcnptZO3Unt9x1GxubljhpUFsx5DVFVIS4NCdZ1nTPj9DTLawTtLJYpwlnGz5wYEIyG1JdqHF21OL41gxby1Mk8QJaReQPHWMwShiVXRaqV5M6X/Gjn9wj4dmGg86NbWrnqkSPnid+6Dz2xj24Umg9CCfZg1QtU24X4Zu/jXK2QPXOsvpf3sWZ//4h9v74C/jwz3yK5btWKUYl1jpUtYqMNPaxlLDSYv5TIVMnM86+JkFONZhv95lLBsyEQ2bCIQ2dcjqbZn+8zshG3HbkGKd2eFgswtBG/MG7B9z6iiq1doTB8so3tfiT93R43dv3kLkA22qxsVWnXk85Y+bp9x7g5Cf20fzkfaisxsy9A+Shk7jD+9gqp1n++CLvC15K/7MBNfNxXLeHVCpIVtKWWbQK2SwvkEiDUdFhPj4AxqIvbBEMd5g7Fvi+/3IDR142QyIFiSr41Hsu8NH/s0ZqI/7kPVv8wS9dYO2cXwyzkeHR9RoHizZdu8rMwogbq2e5rnKeM8UMp/fnNLvnSd0BSqeoLtR4KF9EYTm45yxlAec3hGQ25jVvrPOu9+R8x482eN/vpvzH/38bs/NJTLipgPjwddxb3MdMOg3AuOzS75zh9j/8Z/5DAs5aZq96wcWsG3Fgpgz9Iw4+M8kM29ZGgbCbYRcdRRZwbGUOXa+hXIwLHLqdUwv6nP+FD9C98wR2MEYc2DKjiBzaPEMtPVCCHQ5ZyR7DYfnkx/8lTgvWlJhiTPHoowTdlHAQMPWFNVwtwZocZaCy6qi4JuPVPoNOBTslREFBujZgXIY8tjVDd9DyHIdn9iBnKtTXBZXDzKFb6TzyOXJTY1f1CJVzPYr5Gk4JJtxZI0ScX1jGCxG4RcIHT6NHJVuHq5gEoi1gSyMWmg/DqBuRzh8gfskL6fzpHXziP92HFAkH/uMPkUqb4UcfYes33sv0fUK60qCz0aF9b49Hvr/K7NI6a7+9QTWYY2+yRVP7iPPZvE2/SNgsPY/krbUT/NqOjgqe7CMr+Pgf9HDW8cYXngYgy2HUMzz6YE5qQzbHVeqnEtLDhrVjS5ALB3/lAuezkLWih9OCCgJkZZOiu8HUQx0WZMS5jZJBHDB62dWs3OrNkH1/1GexfxPLnYeJizq7kkNoCXxAKQyQcueDSCKOUAx6wm+auZDCBTxwKuYXfuIkP/Wrh7jq5ilCDf/4TffTVgNCaTCwCWsXDMt5k4ouqamM5XOGW74Kro4uUDrNmXPCZllnIezy0RPz6OAc9yVXU81Knv8NVf7rPzhB5Xl1VBKy+/ktCje+PBP0GYDKhZnXfA3L//XfctV3HmX53UIcN2nOHOS6V30f4N104nzGjTUOrSNMWRDEhuZ8n+VwcHEhCNIJIXOoiXqG2Q8knE8ib/ZXDJVWSrs+4rFfvoPhyQ57fvBHqadNok+f4q5P/CeCsX28cu0pQC6nqZSIrAF9YB/wAE8kzjkEDPFCOQfOT7Y3gKuAeyb7bgROAB1gDtgLnAbWgRlgFnhywkkIXI+Ps50ABk/av985N/eUL+RpxGRMvpzClwBNYBMo8NdzCBjjK+3M5Bjb2yP8eAlwA7ACrE2OcRC4wOPj+6WwY2MCz9m5stNjYoBj+HHZxvZ1nAKuA+4Hssn2A5Pt65e8P4OfC63J+3vw13oUiIFH8GN6AK/0nrjkt27A34ctYHmybUfGZJLG9D3Ab+CvcT/Qxj8Tj+Lv4bnJuQJU8OeeAruB+uRzIXAE/1xtz4Wb8Nfdm7y/dF5tY8/kmMfwrswD+DH93GT/84Af+nJ5oDjnLusF/BHw777I9rfgH+x3Aj97yfZXA2cvef81+JvcBd4B3A5852Tf24FPfInf/RBwkonQ/8v0mtzw355MiOHk738HpiYT5XP4B/1u4MeeNF634tkJ+8BvTV4/u1PXcmWu/IXG4yTwuidtu3gdwL/AL7LrwL8H/hT4nks+90ng5yfj8Qjw+kuO81HgXwGfwQuO9wGzT/qtn8AL1YPPtbHAL44p8NHJ+6PA+/GLxQbwJ8DNk32zwAcmz8QngZ+6dC4AP4BfIDqTufaEeTX5zNJkzAaTsfz+ydgEl4zn93y567gsDfTphogo4Czw7c65j3yZz/4v4Lxz7ieelZO7gucU/m+fKyLydvwDfduX2P9R4J3uz9GYRORtwPd9qWNcweXjWU+ME5E3AHfgVfV/gDdTP/1lvnMA+Gbg+c/0+V3BcwdX5srTBxGpAj+E1+Sv4GnCTviQXwo8hjdTvh74Rufcl+ziJCI/A9wH/Jxz7sSX+twV/JXElbnyNGCyEK3hfem/vsOn81cKO2rCX8EVXMEV/GXGTmcxXMEVXMEV/KXFFQF6BVdwBVfwFeKygkhRUHVJ3Lr43pdQTVwAIpPmUJ5SClGP8y865/c5ByK4MEC2OyZa61lYytJ/V6vHW9Juv7cWF2rEOM82HgVIXnq2Ha3oD8+vux3K74tU4iqqcbGpFWrC0C9ysdfNxfcX033l4nsXBLjAl7A54eK4uMnY2dC3Q/ZfcxfbFCBc7LUuAowVYv1nw6Rg+OjKjo0JQNxKnKrMea7G7ct2IM7hRJBLXEdO5GJNtoMJp6Mv090u65cJozj4v+IcYidD8SXcUGIcNlCwWFLTOWtnMkx/uGOVF2FUc2Fz+iIJ9/b12cC/dwHo2FM7KnEEYrF4jthI+e25CSbTzFFYjRZ78bOZ8Ry0lTBHxLM3OSdobZkKUxIpWM0blKWiFufUdca5EwYz3LkxqbRj11isY5xcZOOPVcmUHvtrm0weiy86ON9p+64Gzo+XCf3YbVcoOeXJkrdZ2sSCMv4YZSxP4EO4WNrrJp+/ZK6N1s8+pefnsgRokrR5ybXf63+ktF4YTogbxBjfrx0wjYRgvY+LQ8pWFT3KkWGKjDPywwvoQU7RSgj6OcFaj3x3G7QQrg6Q3hDbnkJtdHCtBihF2UzQvQwChZy5gCQJxYF5VFay8bwGn//FH9uxysWKnuJl8299wkLiSoMksRemWY4rCt/kTCvIC886U5a4qToEmvG+JkVdMZ5W2EguEiNYLQz3OIq2QYwghWBrfowlMRzavUYtyFmo9LhzZS+Du2dwIcRHuzzwjT+9o9Wc0UKL6174d6mfySir2guN0qHTEhcqpPDzB+cwleDiomBDRVlRjOYVvYNQNgxBTxNvCVHPEQ792PgWMAW6sFjtW4Oowi/gqrR+MTIWpxWPvbXGa1/xBX7lm//c7KdnHEmlzQ1f9aNs3KCxob+v0boGgWRN6N1QsLR3A+uEheqAeuhpIEdlyCPr874DJWByRXw6JtmArA3p3pyDB1YJlWFzXCXSho1+zbeTsYLbjAjmUubafQ6GBY/dtxuaBf/sJe/jZ978hZ0cEppLNd7yztfTLSpsZVWUWK5prPDqxoPM64HvQjsRoifLNj/6u2+nfZ9QNATzmg5RUNLp1IgfqZCsO2wg1FYsWUMIMkdeF2oToh9VODqHAiobluEuRXXVoQpH3DP0dwcXn72iDg/+67//lJ6fy0tjEnDhJWVOdqJRBApTiQk6Y1ygUKPCa1Cl79BZNmKi7pBy9wzh+sg/NLuq6LEiOzCDygz9fQl6LqJxLETOXMAFAdLpY5ZmCI9fwBkLc22YncaGAeH5Lbq37KKyudPlec4TwoLXoqMQiSZ8lKWBMPS9eYoCCRLPfSiCa1RxcYiN9GTVdJhYGO12xJtC2Ie8CWXDUpkbMV6v4mJLNJUh4rXOa5sXOFhZo6pyXt+6n/9WfRXHTixQdis7OyRAngXEHUNZ1ZNrUwS5ReWGvB6iLbhAEOtwArq0mFhjQyGbUowWBPaOODi/yYmzc2QSoQrPaI8TwoHDqZC4Y/xxjCNeL3BagfPC1NQiVFpQuaA43p/deTIRJaRtRVmzyFLK0nSPzeVdhAMwFajNjEiC8iL/Z2oCchtwYdBAK8sNe85za/sU3bLCe4KbqZ1LaD3i2KiEnKpOM1Uf06yknDwxjxpokv2+4CnYl9LvVji/3ObaA8tEXaHMI+4d7sG4e3dySP4MtpspWpTXsidk4qnTHAk3YDHFPVhBf/U6L9t1mprOYDe8v3I95aemCMZeaIZjRxn7nml5TRH3DWIdjbOG3n5N7YJlPKOorfi5WV2z9PdqTAT1s099olx2HqiUFlMJUdZ5FvlA47RCZSWS5ogxuDTDLc6CcwTrA2wtwbbqmFqIqYZE57tEWzlOCUEnw1YC8oaQNxWVtZioN4Xr9rB5gTqeQRIjtQpubQvRCrtnDhPWmXpwi40XzFzuJTy9UOqiawKtvVsh0L4vj9a4SozkCsIAM1WhnIrR45KyFmJi39Y2b2jyhjCe98JktGTRqaByh6sY0kGMJIbrDpzn1FabLAtYmu7RDkccjFZJpKClR/ztfR/hF/QrON1p7eyY4LljfUsFQQ9KXOB7YxVTMXrktVCnvAWjCz9hxfhFxEZgY8f8dI+5yoDNdpWuOAaVEJUp1KQlTDH21o8uHDoFUw0JhsXFli8m1phEE3ccF3oNdpo9uKhBWRGirlDYCqunK0STBmd5JMRhQT+LaSYpkS5phinH+zN0elUOLqwT6ZJf/MxtJGcidOzoH4R4XTH/WcNWt0r54oy0DJh6IMQGkKVThH3BFsDzUr73BZ/grc3P8c7pF/HOP3wVH1s+fJH5fsfwJO+LEod1Mmnl4v/iFBFeiL728MN8PDrEt+2/hwf6i8zV+6zlDW7YtcwXphvUHnBkTcGGvvkkfcibQtyHsqoIhpaop3DiF+Ey8a6zuGcIRsq70i6j9cvlCdBtK9U+0X9lI0WwNsYlETLOEKVglCGjFAKN6vaRSoKdrxKfHyDjjLLexgbCcE9C1DVUVy1ZS7N+Q4V2rIk266juCJSimKkRntuEIsdZjV7v4SoxWEfr4SeXxe8AJuQDLtCPj43WnsAiy3FRiIsjbBKStUPMfIQqfR+lrKnIWlBMOcqmQdUK9u3a5ORjC0guSKZxYnj+kVMcaawxHQ8ZlRHXTy3z8toj7A261JT1RLm6x+vmHuTcVJv7d240AO+nDPsFaD8/xDzOCK9KS14LCFKDlA6sN+NNpLCBoDPvk9IT397iVI84LBk3Q6LAMEwjorBkMExIH6ugc0Wy7michWCQgwUXe81+tBDSOwStqNhxPlAB8pb/v3ECxnNC3nLUzsNgnyO0CucctSCntIqx8SQpu6Z7PPzIbpr3Bxy+a4TOMi68tEFRg2zGsdZWTN+ywmsXH+HOzX2EJ0tqx3rYaohKCzrXt8hmY35x4zXc86Ld/LWZe5i/eYXl1RaR7GxTMQdeUDpBTUwEJY4Qz5N6qYDt24iluMvXHbyfB/qLHKhuMDIRhdXkJiCfKxkthFRWLeK8zzMaOGwIw3lN40xJPqWZOpkzngtR5eNNIVVmifqOvCmM558pAQq+i97EtyTOguC1yGYVSosECkkiH+jJctxwDNbgKjHxhQGqO4DAM7U7JeR1YbgrJO448qZjeLRguCek/WBIMK4R9Qzx+hjbrKGyHJflYCymWWG0WKF6bnTZl/C0wgHG4qrJJFg2cSmEgdeEwgAXR16QhIrxjKKoCjpzqAKyaRgfyEmmMhpxzlxt6LWC0JLMpsRhyVXtDW5snicUw0KjR1Vl3JycZikYYxwYB+mkc9auoPucaBYmxi+0NlTY0Gs5qrRIZhDnUNUQlRnUKMdWIx8IEs8565UiYZBFjCohrWhMPcywTmiEGZkJCJQhtwEPVBcoioCt9QpOB8SbASotMElA3gzoHBVmblol1mbnyS8dhH0f8EhnhPSqjPhMRD4llDXLYNK6eKna9U0CxRLrkuPHdjHzOU3nGstoqULYE0b7SqqnA8KewK1dXrv4CL0yoR5mHHu55ujdI3rXLZG2hM0XFRw9uMyxC3Pcce9hDr9kjRfOneZ3l9uk9qmTBz8bUBO2qkgMGkf0JLNhLW+gxFI6xcDEDEvfX6p0it37N+gvxGzd22L6AUc4dpgIkk3LaE5T1hRRzzDaFVK9UGAqmjIRqqs5KjMEY0PWqlAmz6AA3VZxVWEvBk62bpxisEeYub8k7hT+wRjkYB2SxLg8h7VNZLoFgGnVSZsaG0F/PxR7U3rjgHBToyIDBwpG1xQMzzVo3xsyt5mhBkPcaAy75jC1hODsBjUzjb6w9eec7bMAAZRvzeoqsScqUAqXaCQrJqa9YKoRRSMga/s+TuIEU4Gi5tCVkigsmamNWKj2WE/rUAqH59Y5WF9nd7zFUtghtSEzwYCq+OBCxwaE+Eht6jSJlIRiOBiv7OyY4AM9TgkqM1jtzXTdz3y7BOs1RZU9UfvxLWctZaIJhkJ/UGFYi1HiSHTJqAzpFzGNMMM4IVIlL9h1lq2sykq9zko5S+tYSGgdo10R3asUsy+6wFK9y4nOzI5roKr0nSHLio/Aq05I7RyM54DAobRlvuYtKoU3Zc92mz54+PWbLMU5U3HKVlphdGaG8bUpYVzyst2nOT1uo8XRzxPMTEF2YJatI4r0aMrUXQnpu5eIbw5RBbxn9iYOz60jowB5DjQvsE4RTrIJtmGYmO9wMZDUkJxakF3UzFezBoMiphrkvjNprWAqjjh7I3TKNrs+nZM3A3ThiHueUDtIDVFfKGu+BxIuwClB91IQQWcVzGWsKZdpwjvvpAewFhsHrN1So3NLTr09wr4y5eQXFpj7vKNxCsRWka2eb7FQqXgySCWYmh8Aq8Ekjrha0JjtM3t0yKiIGBUhm506LnD0DkHUr1FpxyRhgDu/glgLrSb6/IbX/HYSk0XEhQEUJVIaXAAYP1ZiLOQlrhET9QqmTipGswqdO4KxT7MZ6wq9VkhpFLUgZ7HSY3NvldIqrPNtfXcFHRoq5XzZpqVH1KSkKk8MoHVsfLGP+k5DrGfrP/mNirCdoh+ss++PDWpcIM6i+ylYh4v9FNTDArEBRd2/FwOmVHSzxC8QuiQzAf3Maxwijmac+jQdZQmVJZhNGc1XSa8JGe52JIe67GtsUTpFVuod10Adk3QlBckGJOuKqG/pHnG4wNJu+B7vvSJhNh4QiuGGuQswd4FRGdEvYjppBWMVFILqxMzd2GE6HLKcNlnNqsxVBjySKt82/MYBrzpwgk8fuxFxMPNASTA0dPsN7r25Sjw3Yi2Pv+x5PxvYFp4Kr4ECPoAEhPh0ppNlm8Wow53dA+QmoBrkBGJJTYh1QmE0wyKikWRcODxm/FhMdbWkrCoq64Z0WlPJDJWVkmwmpkw0USfHVAMwFowh6RjEPHU+0Ms34bcDJkpR1r2zeub2kHA4RX+uhZ5xbNwgKFOh/phB1SqgFDLOJqasIpuJKGqP93WvJhnGCuujGlkRMB5HLM12OE8LOpr+XoXVIclJnweK1rhs0umzssMTwAFaew1UyUUXh89d9W2eXRxiEn2RfBn8g1Rb9tSgKleMy4B02OC4tkSzJQeam3SyCmMTcS5rUbgjPK9y+mKzNh+p9F0WjfMr9tDGWKeo6S9ZLv7sQWDt5gjCnDIPKA5kdK6u0XpogB6PfEqXVkhWIlojhfEZHJklyNTFnDxjFVkZUFpFPpnYm70qRT9mvVYQJwVxWGCtQpRj40ZgaUyjPmZ/ywtP64RA7XAECe9v05n3W9rYpy6VsWCmSrA+aJKagEh5AbKSNWiE6UWN6/DUGnet7WGrW6O+OGBvq8Pe2hZreR2L0IrH1IKMyvyI3v4GRUcYm5Dwli1OzU4x/QXF/KMdOkdmaN+j6bw0pLwMYfFMwl7SxytU3pLSk1Yn27mgfVMhFMPuSodHyzlGZUSgDIMiprCatAxIi4C8DFDaMZpXVFcn3T2do7pS4EKFGuQk50eYqQi93anVOSTNSdZypHzqCshlpjGJ10CVV7tNpEg2HLWVAhMrwpElX1f0DipWb1FEnYRIgWSGYr7h/YCBor8nYDzvhUgxW6AExnlInmuKcUhS9y0NFma6nB8EzNyrCUfOB6TmZrZH3P8tdtYJfrGAQASiCEapj8wbO0l0BxnnhD1N0fLCXuc+CVwVlsqG72tdTAlF2zDsJ5wMp0mCktxoBnlMqA250bzfXU8S+OutBAW3zTzGwXiVjqnS0iOWwi0ajC8mJO8kbCAMr84Jazmtxpj+HXN0D0GQ1ph6oECNUq+1b+cPa+8WEgfjGUXe9GM3GMfkpUaJY5yFaG1RyhHUCkypyNIQa8W3+w0M7BtSr6ZMJRmdrEKoDc3oObCgTFA0wMSOqKMwCQRjCDoBZd3gnLCVVakEvk9NOVksZ+MBc9GAE8MZbpxZpphWVHRBKxzTKSrMRQM6RZVAGVrhmHZ9hKzVcPcFfGFmt/9hgfGCIOOM5vECFwhbtyq4jPYVzwS2f91Oou7b5rrGXgwi2Yk5r8RSOE2nqLCn2uFCOsVGWiOYmP+jLCIvNcYoRBzDPZZkI6R5PPXyqZNSTsWotMTUInQvx8WTwG/gc7PFWHT+TKUxTSpr1Nj4yiDrMLF/WKKOvykmijCxwwWQNwNUGSMVS39/wnBJ4bT3ARUNi20XLCx0ma0O6aQVhjqif65K9IWYs4erADSOa8rE0Xx0CKXBDUcw3UKGY1AKM9f01Kw7Cee8dg0+OwCQvPAtJIzF5TnBYESwrEjikEY1ppip+puVGqKBZohQORdQVjSbqzFiBKccqhSCvlBddcQdS1lC2lasLggPHtjNgYOrHJ5ap6JzjlYv0NIjGuq5ITCm53tc1drknnNLFPtzMMJgK6S6UiFMMx9kDDQu1vSONNi8zqcwlRWHa5RghLSTkFdKgtBrCs4JZakxwxCUozSCyTV5GPq0Oiv0hwnOCYG2NJTFOqG0asdNeBvBeE9BuBGgChhcVTK6qUCUg2FIoM1FUza3mpl4iJ6k9ZQupB5mZDYgVIZhGbMynmJlVCf9/QWmTpece6W3cqaOwa47zpB99V6Usoy2KlTPa+buKbBTVapfOEN27W6SUwmonR0UX3XlTXQ1+R/AoAixFKIwCJ9P9/HPP/qNvPx5jzAdDemXCc0wpZcn3hqzmkBbCqNxTjBGYauW4VJAdTUgWU9JF6rE6ynSHaCpe+Wrb3G1BBf5oK8Yd1mdfr+iKLwLFFIYxrMVOkfB6YC5O0e4UDPclVDWLC5yjGcUaTumqAujJUfZKiC04ATRljAu2exV2exVCQJLGBjU7hHFVp3dH4bxrKKsAAq2rq3TOBMRgzf/opDOCxeJejudSM9FLdSFAZIXF8/PaQXDPliDHXmhJlqhkoR4kOK0opxrEPUMtXPCcEl8iV/scJHxZl0uJKua2c/30OfWAYiv2Y2JY0aB4+TJeTrzFV60eIqRjZjRA2oq28nRALx10aqkHN+aQT9UJ8wgnbOMlhxbg4SFMxPfcRJTtBIu3OaYP7iOsYpxHl4s7CoKPUmxtVgrlKUiCAwuEWymvfBxQhCW1CoZUeDnw0J1QKTLi6ahtWrHg0hOgxppKqvC4IAl6GnK2LK0e5PlvE0SlNSCnEh7KyOftJgMRBMqw2LSo7SKzaLGA+sLzNcHXDgxw3zf0TkcMH2/o/3QEP3YMg5oPZZCXBDPl3STKufaCdP3tWjfq9i8JqasOXZ6UGTi81TiiJShoguUWOzEitI4hi5gV9BFKiV3fvA6rn71cRaSPitpg8Vqj26eMC5DalGOdfgW6kAeatJ5y9bRkPlBSbI6pmxEyFwLvd7FNapQOF8labwVqbYG6NpTb/V7+XmgCiSzlI3Ia58VS++gorZSo7874OC3PMrqqMFGv0Y60yAYeY3TCRBaKo0MawVTapxVWCNEiZ8w43FEnBRkNwy40KiRrPl66N7VlsYxzfQ9KbZZ9ZUrItTOjFl+eQ3+8LKu4mnGZAI658tZS4Oz3geKVj4LIc2AwvtvkwTC8GLwSQ8ynFY4CUiPpLTaQ66bXfF9wPOEk2fmKOqa3uEG9SQkPL1Ob3/MYD9UminGKKZrPpVL46iqjNZzRAMF6PaqTK1BWQM3k9No/3/s/XeUZVl+14l+9t7HXxs3fKTPrMwsb7qqutpUt1pSy3W3JCQBEsyAWIxAwgwIBjc8PAyzGFjAzMA88R5GDwFyrZaQaUndMtWS2rvyVZmVlSYiTfi49vi99/tj34gqwYAy9dREar36rRUrMjMib5x74pzf+ZmvmbDTbTP/hQRRVFhfMT4S0D2+C0BZKwKvxlqBlIZWXOBJ16INsghtpGvZ44raM1grEMLiTf/sS8O4CLgx6tAISrphRqBqpDR3VFl8RcKAN3FVtizdDuDY0R2u3+pha0HDL/Gkni4OHTbSF4ZM+7S9DF9oIq/io5cfIB8HDrVxcpdHnrjBY81V/l+Xnib71x0az08QcUSwusvuxWXOP7ZKHFSMmzmbvQbbj7YwiUaUAvThjns8YTgW7TLWEbnxaamcJW+AFIbCKnxh6GvXjZ49usmVm8d48dmTyEevYKyb8dZWHYw9Cq2otBuHBM2SUguKnmDv3ojeiwY1cXNQ6n17T3GwHBdTIow3uX2r3zuncgqBCT1UWlPMhCzf4zBlLzy+QvapI1wfdWkEJWXhIbtT8RABVjn6YZ4G2EpCJRFxTaeb0olzfKVJK5+dYYN6K4bEkD5S0umkpBttwj3J6J4m0U5NuLpLeXQGlVY0bxzycmBf+EQ52JKNAkReOkiTUpRHuvjbKeL6LUfj7LYojnbxRiVykCJqgzfMkTri+PIu33X08xwLdvi10b38xMuPIcaK/FTBxjlD/9WEZOMYVVPwf/zef4XEsF53OBds4AtNbj0iUROJu6AqtzApA7qdCcPjEULDuWMb9MKUy55mcrJHsjahbofs3g8nGymDPKKqFdaDyK/pRDlq2tINiojA0+wNQ3TuIZTBGgGVBCOofJ88rilrj8lWAhK2tUDds868V6GEfWPgdkgha1CFQBagF0oWF/vMxWPWqjlkXBPImrQOMFYQqDd+h6GsaXoFC/6QT/fPoGvJfSdvoY1ke6/Fxy89zKePn+S9Ry4z/7dH/NTR97H845ew45TFz0LyZMlrtxYwGxFSgOnUqLjGv5ggvMO9f5oy533JBUok1RSKBxwskErrEcmKf3bza1n71eOIh8aELzV57rVjPHbumqvIM4dYmRQB7ThnsTWmqD12xgmim1PYCFn5+JOY9uXUMd5WZlHre5i5DnKYYsfTxSa8oWtxG3HHSyShHU3OBB7FYxPSIuBnX32Imc6E6lTO1rUZ9rolnq8pZ2qsdD/CRAZyhUwlfiqoWpZkoaA2knaYE8iamTDlXHeLhbMjRnXEJ1bP0N9rgIV8ThC9btl8W4h+5zK9C5rJUsT4XenhamzvA+mkwIbT0l9rRL6vLJWw+s09TNBDh5ZqvgYLJ34yJs5rV9FXGuPDw70b3B/dQGEojEejkfPdj3yCn775ML7SHL9nj1PJNqfCLdbrDlt1i69pvEJLuidmpRV9EztL4UMOq2C73+TY/B4n3nmJL790Ck8aYlUReTVFLNFJwOBUiD2e4UtNKyzwlWachwwnEaM0oiw8TOrh9T2EgWRLOOpjW1A3LKIWIN3ctJ6FSeohU0W4I8kXNDNh6uafd0lYASaExcU+D/bWuTyahVoQRhXGSsZTWJEnc4yVTIxHL0gJRc1e3WBchZxa2GEvj5mNU77+3Cv8ypWzTK52+OVnHyd5fJsH/uDL3Lx4D9GXr9F5pc9O3nA/27MkNxRmJ0BlAY11cye54isSHpY5VR1Y0wJUFgbGJxKa3Cpy4/MNsy/xxXuPc/SHIkZHLUIHLD0y4pM3TjGZRLRbKXPNCQC1kcRexUJ7zOawiUxq8kWJlQpVxjSvjB1brRG75BmHiKrG7PWRceSEkm77+O8gdCjYOxeBgMkRwfvveYkvbB4jeDVGb0VEM4Js2cluRWFFuFCRNkN05jnIkq8hDfHHAlkJMtNC5YIru12sdIIKdWxRp8acnt/h7UdWuTKcZVIGeMc0N5cWCPpQ3p9x85xA7AgC/5CrLesonEjphtLWYqPQtfRVTXC9z+IXe9x6Z4A4M2GxlbJ5aRYTWERZYZMQG0iKruBYtEuAZlO3eCi5zvF7dvnC4ATXrs2DsvQXYq7HXX7ZnGc5GfJdC59lYgN8637hiyrDkDEytz/D+UpFncCJhV3uaW8xH4x5ZW6JnSxhPhqzPW4wk1vyuYDhaUdV9KShMm5hMh5FhBdj4k1LO3PsJFUavMwgS+NA+HmFDTzqZkA+65P3JOkwQFWQLhmK8xlPnHJe9LWRFJV36GIiRrn5NqlgNk4JZU1ReweVcTmF4kSem92WxkGMxnVA6gcksmRt2GH04iyyFLzrQ5/hbyx+kr+nCj689wSFtHi/NsfnHo9oH/eJX/KpZmIgIwgrqok7p9GeQVhL2XDQr8OO/V+LAnIL1ZtaBV8YLpcLLPkDZmfGrH1TDzV2RI1zyTofS+9FD3xGN3r0I4ONDM35CXPNCfPxGG0kuwImuUfVFgxOK4zXovvcDqYRIW9uHZBgRB65IrG6/ZxyZ3qgswXHv/sSiVfR8ApWwj6NYJG0gmDsmCfZfRXddkovTslrnySoGEfhAURJTGFnrauWqiXRgQNNt25ovIlBGMvoaJNXH0u4dWzAkc6Ao80+ufaYeSJjWETsjBoUewl2tiTfPmTloSl+DG0cDlRK8BTWVxgVkR5tULYksoK8H7KZ+YS7Cn9cUM82kWWNzGvqBrRkDkBufXxR81RyiTlvyOeSk7AeshclLLeGPNy6weONq+TWZ1c3qayiIUpWfI1CIDn8CtSPKkJVUxqPy5M5VmYGBwyi8mKbKrGMj0rqExm+0hS15/CeU1yiqCHZnCbNyiBrgxqXiEJTz8Z42yNMEmE7oYOEldC7oKkSydzX3eJcZ5NJHZJrd4lrffhbeIGrQFUBr95Y4oH7b9HwS4cmqB1e1VeavPZoBgUNryTTPmkdcDTY5Vd272Xv2gxzD2/z3ac+w6wa8/3Xv54vfOQhFm8aNt6jSZcF0XNNsnmoTsxz4+mYb+qt8dNbDxNvCVrXS4K9Ah0q+meSw55qYIGRUWgECqe+pBF0Zcm6TmiIilezZZb8AUvNEVtyBlnDA++5xJeGxwmCmmoc07guSDYEZcujf2+ba36bq22H8qlrCcpiAkvZtgxPSIyadcieuRnsxjZkGaLVdMfk3X7HckcJNJQ17+xdPuBarxY9bu216dywtK/kvP4dESsLfcAxC9phzlxcs+M3uPr6Il5foUq3VBqdEDRuWGYuVuQ9j6IlidcL/K0x/qjBzEXJ5uM9Xnq4yQOnbzCpAjxpON7a450LV9g+1mSnaHD9R06xeidv4nc6ptXfvoya478rsJZ8scHGk4pyVjNzZI86C6kynzq25D2PpDSQg0kCyq57nU3dYqRjGrJAYXk4vMHff/Ij/LMrX8PNnQ6vbc4TyJqzsaNrVlZxzDd0vQyFQGNZ081DOx374UlDVvu81p+nF6d0goxAab506xj+QDA6IcgWDbMzE7d5N5K8dpdjtzth7z7BjoyIdpz6kqxAmAgvN26WOGlStwKKGY/+PYr0iGblGeifh7ONAaMqop4SDmqjDr1VhSkTSYM/scz+QkT/bOyWHxYWumN6oSs6OmHOQ92bXJnM0pkC6f/BJz9Ab2nA3/26D7Pk9fmzz30X8pMdFr6Uc+z5VxHNBtnsMcoO9F7V7N6rKHoh3UuGsQ6pM49gYAk3p9oRkYcOwBSHC6TPrM9rldMt1tPkGQjNjih4KNjjZybn6HgZa+UsTa9AxBp7Jufe1garWY8i9/Ezpy3RWC/YeTDCH0nykwUqMOy8OI9eKhCewQYCHTmky+i4RJgG3ZcqOLKAWF3HTjJEq+HE2m8z7iiB+lLjC/dxq+zy2c0TFNsxsraUXZ97HrnOTJSylycMiohWUBBMpaJlJmledzzw4T0am2iix8dc2W4y/+uCfE6wG8QsfXQbz1NsP9GjvapBBLziL7EwNyQtAnYmCWZWcL65waCM6Fw+5GprqrwvqtqB55WEosI0I1RhsB7IVsXJ7i7Hj+zx6zdPs5t2Sec9GtddK5X3QuRCjhSWa+W8w8IZuFgukho3E3vnwhWe849wbafHc2tH6fg5j7bWmPeGNGSBRrCmJVu6wY1qBrh0qKdFG0moalqBm3NfHcw4/OYrLZIR1BEgLNoIJqUbOShpif0KKSzdlW02W0321pv4e4qwL5xkXSoJB4a9+1tMVoTTErhvyEKSs17M8bZ3XPxNx2GmKj/yLmhVAaePGwu6Nysu9BeZi8dEvZy9iQP9b48bTAaz3Hj2JGUXjG9pXIfgKPzlr/pF/uHFb6D+6BzH/8NL2PIKVmvE3Cxow8ozThdCbuwyPH6GoisJ+4YvbR4jbBX46f4+wkNWmmB4iOdhGpVVbNZtR8W0HpVVJLLgbfFVPlssYazgV9fP8ejsdQA+8MCLzAcjfKG5sLuA1QIdW/YeMjRv+Cx82XDj91RElyKqjsEs53hrEdWMhsCgmwadgMwlUkvar/t4G33swiz2pitK9NzSbR//HeNAuyplo+pwaTLPOA9BWapEsP2ox9e1t7mZdphUAUpYBkVEXvsUWiFLQdg3xNsaYXxG7yzp32zjdUq23gvRtQB/BDZygPRkq2bnQZ+iZzGlYmfQQFcKdT3ic60u/ftjLt1a4Lg+7BvDOpX5MHAK9Hpqa2IMQluiTUFRR5hj+y2acYsjY93iSQhGx33OLt8kNQEKy41ihrEOyXRAbSUNVRKrkhPNXc61N9kumkx0QCgr5r0hLZmTmpCrukVlPUbm8AWVxRRf2PQKWn7OyeYuv/DK/cxehrLtxDQAJllIENQIYbHWUEmJLw1GK5pRgVy2DGUTYT0C5xVD0VOMT9V0V4YoK2hFBUuNIStvHxBIfUDf3NeWlPswp8NmLUooZzXxhsdkyaMxFf8ocw+TeWx9vsPsizVzxlLHGv9VTTbnsfFug9ct+Qf/6A+y+CvrsPkiACKOpg9uDWGA3NjFphnVQ6cZPliRbXkktzwG17uEvQxVWnTs4w0y0IZ4O3G47EOMQNQc8XeprEc5XRgBrNcd5tWQ/+fq+1i72eMbl19mIRjRVDmXs3l2y4YD4XsWcSyF7YiNtyvidcHMJyVVE9pXBHUcMT6BI6YAInYFnQklReGTLce0VjedXkcSQ13/ZyI3/7W4owRqgd26yY2iy9VBj3Qcgm8ZnoUzT66yGAwJZI3BqcjURpICRelhJYQDQ7Q+YXFHkS00sW0L12NEZBy9beRgT2IwJr4hSea6ZAsWkSn0ICFZlyx8saDseKzdOEFn1+KPJ3fyFn7nw+IU6fe9nmrttvCFxqOgcSvA+JLXd2fxpCZQzsahselwiXUnpH+v5R3NHRSW1AQ82z/KXh4zKQLqWnFufov5aEzXT5nzx5yNN3l+fBRjBZFw29uJDciNf1ckT3CMIcfXF+wUDV68tUx4OcJPDSYAHQlkKRwUaRpl7TEax9RjHxFqpG8IghqZ1NSx0/esOhrVLZlrp8w3xlRGURuJJw0N5WaGEvdzAWqjphWo4bAZrrKEYFuhCku8o1l7dgXdrol6OXnmkdyyDI97NL5lnWZQsPZLJ8gXDL3nFAufKeDSa1gpEVGEzXOEsYhO26E/hIBJCkvz3Hp3wsmTN7iqF5GrinBTUdYJOhCYSCE2SrCWYHz4cDeB0/5U0weuEXJK2fS4Uc9w8eIKreURvqxJdXigAzGsIvLKI04ccmNoBaWJqGMI+oLWmmNJTo5McZ6xpjHj8NFVpahLhY49yqbELMwgbmwi2i3szt5XDsZUGcVq0ePSaB5tJFJZzERij2c8MnODSFZsF012ssQZYJUeVemertHUt8p6ziRu5lXL+tdV+KshyU1FMLQEE4NpRaiqxvqKKoHGPQNGa22SW44GKrSleXFAcjNwwhx3w3DLGGCqRq+mDwGtQUvCgSYtJZMsYDNtsXZtjvnXINoqkaUmmw3QbY1BsOj3+eLkFL0w5dHudbbKFr/07P1csAv0OzFnO1ssBENCWfGezgUiWXGjniESFakJ2dVNBnVyoGZzmKGtIJkKA7+0vky5ldAcOYOvYAh5TyBrQTUIEdKilKEsPXTqoYYKUJjAksU+QbsgPD2gG+eMi4DROGYwigm9ml6c0g1SYlXR9nJuZF0M4jdJo8GhQ0ABCPo1x38xc/5NRc3ZH9LIwYSrf/AYDQOjD434J4/9GBrBn/vC7+fEJzP8W0NY30K0WzDTdThjY0nffhKVG8LVPSdcbgx2cY5r3zJL8WDG5q8cQc0Zyq6gmK/xRopgqJ12bztBbg+QxeELrAAoYVDTXbyUhty6KvSfvP5+EDDbSLlRzHBvfAtfaGa8iFIr8tyn28oYZyFLvSH9qCIdh2RzguyUwEtqkqTAAk2laYUle2mMlhJTKrzCjRSLhQbx5rQlkuKOnAvuKIEWxuOV/hJZ7VPUbpXkdwqsFTy3d4TKKMcOKH3y0qeeSoiJUuJNQGVTPrOS1JFABYbld93g6uuLNK56eJlk96E2RrXJ5wST0xV/+NTz/NDwKRCK9KgmXQpoTyqH1Zpqbx5qWIOta9cCTM3NTBI6yT1j8Ec17WsSWSTcOhnTviXoXkqRpUYOUiJfEa0lfOnIUbQVhLLmTGOLjso4GW3zS/YBqtUGN1ckc/GYTb9NK8oJpKYhC7bqNiMbMzIRYx1RWUV6N8jZCRiVEZMqgBdbtPcg3LP4YwMNiZe5KtQbKko/wG+UmFqCdewzlIV2RaudMT+FpPSLmI1+C70TEiymxH7FbDjhZLzjZvOy5lbeORCgcPxqx2JSd4EaE1Lg70w7pq1dpyrW69C8YRmeFBgj+B8//EfpXoDTzw5RWzsO0SGFI2FUNeMH57n+7TXfeN8LXBgssPrxozSvG4wnSLZq5l6sUV9UYArW3xE6J1MLwZ7AyzRqd4iea4O1ThPzkGGAUtgD3LIvNJGVGCP5lcF97I0SRKRZ77c519lECstG1aGyilEZYo1kZ69Jp53SjTJOd7ZZHfUotKIZlAc/o+GVTOqASrv8ZC1QSWTp4HZl1yNqNRDaIOIYMbr9rvaOZ6CDIqKsFQJoNXKKylWZN4dt0kl0YL2rx1N8mwWExXjOcdF6kqrpk/ccBS+vPXpH+mRzATuPOG5zM8kJrOBcd5f7opsszA0ZRBFypqRsRYhKH8ifWf+QawshEd6+huWUT5vmU9WqAJVVRFsQDCSqCAiHGlnUyLRE1BqvnzH/XMCWXOBjJzoESUWV+czOjXhycRWvXVILH517rA5nmA0n3Kq6gLvgtJWkJmSsI0Y6IpElHe+QVfpxNrxZ7TPKQ7wMkg1DtFfjjSqE8fFHzpGg8EBMFLWaVgCeQczWhFFFO8mJvJrYq9jJGxS1R6eZsbUX8fZj13igeYvtqslG2aYyiraX0fbzgwd5ZSUBAk8YPGUOvwytasRwgl6YQVqL8DyyYx3qCLqvGXr/egc9765tOZoc0A3t8WXGp9tMFhTjE/BtD3yBzAROF/SpARvnYhY+4dN4aR2z23fV6LmTmCBAGEG04TFzUeONSqg1cpiBMeRdhXfI4FiJU1+KRE2JxCC5Ws5xeTyHMQLvZkDvbXvcyjo8K44zrgNuTLps7HTw/BpTeuztNDnZ3WVYxnTDjNpKIlVhrGBQxuzmCXntkZU+Re5TZT5qIlGFoE6gKCXpPbNEmynKmANBoNuJO0qg+9VlKyoY5SFF5VHkU3FkI9G5AiNcEvXsGwnUGesRDEqMJ9m7NyQ9alDSMBM5u4Zc+6z1u/QaKec7m3hC01QFufU52dnl8905zi5vMtk+St0J8TfHTorrsDHj1mCLAuF52KJEJFMwrrVAiahqRG2oWyEzl3InHFzWU3fTAKqa5EZKL2yyFQTc9+7rnG1tshwMSE3Ae09f4lbWZmPsoEkbWftAaCG3PpVVFMZ9jmTFnD9itThkoz04aKONdS2RPzEH2ouq0IRDhbAS6wkwktr4mNAgYk0QOmk6YwWTMmCYh6R5QBjUJGFJsK340k89yBfVg+RzBpMYCAyP3XONP7z8aSYmZKQjcusfPFhWRzOHjgPFWuxojKxrRBxTH50luj4keq4PRQFxjA0VJvExzYC98w3694F3z4gnjrzKKztLVLtNPrlxmkZQoqShGRWUW21mP72BHY4RUQRVidweEG11MD7MXNC0LgyQ43QqH1hjq4qqIQ6gY4cVAg7om9V0y1dZxeakSb0d42uH6Fgft7iy26OqFLpWRHHJkc6ASzfnCa4HpCcCh94IMm6lbTYnTdIiOFDostZV+NXER0w8VO5QHUY5iq0JHLtShoEbidxm3NkMVCsmqcvOWTbl7IY1UVDR32kihx5COxqfaWhEYLC5Ir7u0b7mLG115Dk6qLQoZdnNEvbymI3Lc1hh0SuCd85NmPNHKCwSQy9IOf7QLS6+eJRzq2NXfSoHVr8T1sBXJqZD6ro+qETfLDqNFIiiwjNT58l86hrZiJyqlbVsP9qi/FCfarvBEzPXeLpxEV/UvFQcJQ0DQlXTC1M2shYGwaQO2CldQm2q/KASjWTFdtXixz77duDDh3Q+XOSlj680WRoSxE77VGa184OvJfGWwJ8oVKkIGoJsXqJDQd2Q5FpQeD4jLaGQyEK6hdtcQa0l1dGSzq8GNG9V+MOS0cmEW19t+b6VZ1jyRr/pOEYmQOMM2r5w2IxOYxDtFvVKD6TAW+87Fhsw+Lp7WX+3YP7cNnPJhEkV8FWzL9DxMnLjM9Yhu3sN7MRj22tSNHKSsJw6405HWYEPWQ5hiNnZZeUXAmwSItZ3ABzkyZs6JzQS8nkw1eGelH3rjtx6TExIW+YUxmdrbQZvIqmblo2bXZ689wpXBz3Gmw3UWGF2E1ZVBxVbrIJ+HtMJc0qj8KShqDzKwkNIS5X52FxBYJAjzy0vpUOCCON84KM9Z9Fu2jHSfIWonEZLrBFkWYDna4rMR0tBXvqIsUJl7sAQFozAFhI1kSS3LO3XJ6At2WLI8DR4Y0mZe2S+zyQNsdLyB97xGR5O1g7UV5b8ARKDniqKN9YUJvDw8hq7X+XdDaYu+yr52rg2PvCxUeAWZm+yPRZlDUpiQx9RVJhGSHq8jfy2bf6Pe3+CP/XsH+DV8RJPNxyWsT1VVZJYzjY2aXgF18Y9vnbhFQY6YbXoHXx9rEMqq/jYjXsJdg4brwNqLLj8/BFMbMBCnSiiGxVyNMG0GvhFhd+XBHs+ZS8A62F8Z31c9AKsZ1G5IOhDMLLUMeSzMflsiLBQNQVVUzE60mD7Sc2/fP+/ZkmND5gsufXQSAI0I+PMxw4bxqS7CYOnjhJvl4jKMHxsGQS0XtpheFLxzre/zPVx182NgY+t3utmhEHFOA+JkhId1hSTgFQFFJWHUtObfXfgqljfcw/tOMKu3UR02pDl7vP0OrRZhlleppjXHLZEVWYCfj09RyJL2jLjFwcP8ZEvPE5yzaWmZB3GxwOuLM3Si1OCE5obV+ewI0nVsOjZChVqNrfbmFnhLGCmNi/GCnTqOcEZcDmqmIobSVfoedmU3DB2VuOyNojq9m2C7ljOLoyqg3I4jCvKwqcuBSqX+GPhTLOmF6ooJP5Q4uWG0SknaJDNCnRLo31Do1FyamaX54dH8PuKn3r9YTaOtnmgeZNQVgx1hBKWtpdz6fUlTn+xQE0KN/s87OXRQViH+/SEc+S0U1yokgg8N6O1U+tMeCPhG3sgWjCcRLyQH+PpY5c5Fu0hhcEXmpbKSE3A9bRLwytoqsJ54iDZrd35HE9dCbfKJtt5k+2dFvLU4cvZiU5N54JgfNyxz3QowJNQlIjc6ZUKKZFRiLAdyqZCauOWi4VAx4Jo29K5nCHTCiTkC8lUtFsAGuO5hZM3VvzZ576Lo90+3TCj1IrSeHQDNw+7sL1Af7sJ/NKhnhMrHQphdCwkm5cEfUvrRoUoK+ZeqHjlvQtkRYDnaSLfjSuUsJRaIYQl8AyjPIBS0pgtGI1jstTDrwTCU5hRiQjDN66/ThsRhe4hbswBzZiyIltOEJ3y0McaEx1yMV3CE04LNDMBQbegbnokNwWttRITBOzsNGmuFGz2m+Ab8oWacC7DFxD4NWkaMhjHeJ52y+v9MMItJC1gJcZ3FauoQRiByi2NDY2sDINjMe2rt9++w29jiVTk/rQ7NdS1OEARWWVRhXD5xAdTCryJJBg4C4sqkRjfVQ4EhkY348mVVZ5oX6VfxGy9usLcDyY8t/gQn/rGUzx59Bqnkh3mvDHbZZPouk+4vu1wcNY4MyCAO1BO+YrEVMrOFiVCSWxZHVy0+5xaG3hu1KCtc+rUBhsH6MTHSzWzH27wA1/+IPLtfY50evzG9hkiVdP0Cz537QT1bsTk3oBHZ66z1Bjx7Pg4XS89ENzVVpDWAZe3ZrGlxN4FrJuWX9B/R8nyz3mMVxyGs24GBEmM3dpxiw5AlCWyERMOQoSxeBOBDhxuuLFR4W2NKI46sZlk1VFnyvmGU+6/z0dYaKyBWe+wmnR4bc4cwFBMYhCFpLEm6WawedgSARY2H/PQocUfO2O5sqXwlrqEOzlpHqKUIQkqPGmojaSfRRgjaCc523st9NjDa1VUWlHnHmqqUpXff4Tw8ylUJfiBoxgbi52kiDB0IyZ/ujAIQ4YnPOZnd7npHe61UhnFbpkcCF+3vIL3nnydtfku137tBFyA7qWS3bdLrt2YQ60HMF8hWxVl5qN8c1CFay2nzuLKLa7LqZGgEYhKgrToxCl4qVyiCoj6FpUb/Jt7dKbJzES3nxbvKIGKWmAHAbZRo42CWhwozOuWxiqJ1K4kVtm0bDZQR5KqJZh9MWd4MqRuBGRDj89znIv9eWdZkFiCfkmyViB1l9948j6u3rPJo7PX+fXLZzj567kT7rAWag3eNEE5dZLzQojvsdb+yzt5P78zIab0Te2SaVViraNoIhNMI3yT5J3EtBOwlmIuxnrTuV8o6Fw29L0ul7ptdGKI5jKKzMemHt1XFKu7R8me9Nn5Pz/M3rLike97Am0Fe6Ubd9yatCkmAX6zdHqqhxyjjQb3/KTCH9dM2byUMwFCd/CzHJtlTkM1jiEviG66B43xFWVbEe9oZGkoj3RAOATH+J4OsrZgYP0dPub8mDiqaEQFy40h48pZIC/GIySWwnjk2mP8UMiFa0uUP7DJ4V0nULct1rPOCbuCwT2Q3JS0LpXoJMDzKod53O6id0JEt0T5mm4rcy1pP0AYiJOCySiCWuCPJP4IhicC5q85OqIIQ17Y+1Uiv8XZ4G3O1FFK0NrhSMMAo2Djau/Q1ZgssJcnFNqjMpJ7u5u8sLOM/vA8Jz+360TKs4Lw+lE++KHP8JH8CTrPBeRzlvJEQT2lp+pKYmsJkduJmEq6uafhAH2x/e9+BDXTYfb9H8AfCMJdSzDU+MMKu9dHzLepuiHR2uC2j/+2EqgQ4iqQBMsrUAtsKRn/2udIP/ksK9/7JzGBxfoOqiRrkFpgtZthYUFV1rkRzvgkWzV5z3eLgc0On/lf/jbLf+cv0TKCdDmkYcFPLaIQ3NrpMMgi2r8eE9zYxAb7T9ApbKg2d8cMVEhE4LsnfunEuGxVIdIc23LLosHwOq+tfZxxvoVA0EjmOX/0G2gsnXb6qp4TVwl3JYN7HbD8badWOZr0+Y/mbTSveKy/sMjWsEPaCmmN55xMm/aYlAH9YYIKtbOuOCSjsP3rBDjVSpZJViesjZ/j1uZzPPb4H0cYS93w8Lot7HgC+628pxCDCdZ3W9D2pRod+/TPxRgPki3Dpz7yF3nHk3+eMJ5l+5GY+p6Mh1duESiNJwy9YIKJJKGsWAoHRKImNQG+0Ix0hLaStcO+VCo3crDSYnyBVW60ka00kdpSlpbrr2yx/oM/Qr66hUDiLy4y+SMfYOFtPUQhaK5J8n4Xe7xADTzCPUiXLfkcdF/r4u/0EXEEuxaka2XtYAhh6Dqj6f0iNaiJwh6yqZy2knEV0PRLjjbH/Mqz93PqI4boygZCG8z6Jv1oxK1/+hP8s39wC2N+hvWVBZa+6ttoDY5TNUFHPkGFGx/2piigWjrFfQk2MFjfzeJFJQh3JcmGJRoYZG3xhjmiN0PVDTHKLX1vN+6kAlU6HWNjl+FlJp1RfSaQg+mFIdyHNwYRCbzpKK6KBaoA4wuy2akPeAHRrnv6NVYVHIMqkZRdn3ROYpKaXjtl+1Kb+57ZxibhG+36/vzT3gVMJGOwaYpQCluWzq5jfxtflKhRTtZRfPnSD3P+zDezOP8QIs3p96+irHLaloWmbvmkcwHFjBuHgAOiX9LznDy7wWq7h385Qu55DBsJV3Z6aC0p+hH4Buk5hXabeoiZ8r9ywF/xUMCfrRPFrfd2GL4UUKWS7YdDgqEl3tXUMwl+3sPu7GGz3C3YwtD5SRUVsgqp2yHFjLu5R6FLBPmcj2gGjI9bTCXZSFv40pBWPtLOsNRKOdvaZKwj1NTaeZ9bfbq1zTPKYg+zjVcWHZuDB5wsBF5mMYHA36kQZcq1v/sjzP7Rb2Xl6fspdj2qZ6/h78RMXppBTXNd7xVLthVRJ+BNLEFfoEqQRY3otNyDab+wUBKsQXgKqgrKEhoJxoN4U6AOGUjvS02lFRfXlrl5wefIFY03doaMNs0w3YQv3vpR7jv2QeZ+9Bivf3mJ+sWr6BnJ5Jgb13iZ0xeumtP8UE/zg+KNcZYW05mnINqxhAODyqa6FUVJenYOqwTh9lduBvoP9XD0v5pRjmzEqNLh+0QN1eYGG7/wk2Rba6ikydLbv4mZM48gNFz6qf+LxZVHWVl5O2VbsfvK59i69FlOfvef4eVf+ucAXP43/wiE4Ph7fz/9ZourP/QfaH/gHWx97BM88nSLC7/3zzD5h/+afrmBxdBtHOP+I99E5LWneMtDDCEQQeDaI2sRVYWtKlAKggAxnFANnN/P7NknEOMa6YfMds9ifcm46vPy5Z9mlN3C/4zmwfd0+Z++dYUjMyWvFsu88LzhZ//ml+mvjQkevBdlFKqQpBsNVCqh5TapyjNUowCR1ESNQ02g/xD4S9oz5HOWOnEOrUXPMs432f7CT5JtrBGqBmebb2fRLmJGY76w/ZOsNO7lWOshhLVsXLvI1VeeZfn7/zQ3/5m7Tp7/2D/GKsFs8/eh1lp8/of+A62vfRfDj/0G8UP3MPNXn+Cjf/0Zrj/fx2jDicdm+OBfe5jlI5JFf4AvDYdqtyfBRgYxVggNXgrxjiEY1MjakF7rg4DOex+kHAd4hYd87CzxLY/w05u8/qUPk+3cRFhBd/Ecx975Hcg4JtmwVKtrfPbFHyVNt5mTK65lryoIcRt4cPNQ32f8wAI6BJUffgOXj0OKX5pn+ZYhGFX44xqvnzkiCjAxrp1eCc6wUfgsPdxnvX0GWUj0zR22PvzjlLdugoD4/Hl63/ltiLkAKkm5doOdf/fjVJvbJOfvRWqBZ5ycILzJT09KyrZCGAilOICW3U7cySr7CzIJGH3iVwHQvnV4+d2Caz/yL+jc/zbu/6N/h+Pf+Ie48YmfYDLZwPjiIMEVXUW0W5Ns1ni5Ze75irc98X0A3PPf/QXe/h1/nyOdh7FSoMcj6n7OO//D9/Cuv/ou/soHPwJ/7B284z1/mfc8+P0oI3nl5i+CEujG4dMW0RqTptiqxhQFpqww0zmf2esTbRZIbbn02R9mZ/NVqjpDaI3MK2RVs/C2r+XED/wl/sCHP8T2zYp/979vs6ObzJk9PvLnPs2ZD5zm6Z/6E7Sfvo/RK88T7kHzsofuaESk8eOKKvWnJAbI1xuHeTa+ADyjxyO81D3xhQFGJdf//b+g+djbePC7/zYnvu4P8VL/GdK2Rc3PQRAcQMFs4RTnVWFpXBec+MN/GoAT3/cXOP4v/xa9449jlUUPxph+zsm/+NeZ+9B3YY3lXd++wP/6K0/wN375aWo/4if+3gVSHVLZwwWMA2BBjhXBnluuhn1LvFHg76Z4GwPk3AJKCTb/+U+QPX8BnaXIUlK1LJNlwdFzX8NTX/fXeNvX/gWqYZ+tT32UYGRoXp5w8df/DSvN+/ma2e9mafFRNqprrlPTbvtuh2NEq8mV7znNe/7upzn+jVcZndPUh6wHqnKYe74g2q6IbqaO+1+7uSetBsHx0wgheeHWz7H+4U0W7Qa9o33mz21Tz1S0v/GrOfVX/ibH/sJfph70Gfzsx1F7PnJg2PyBH6T52OOc+ut/l86ZRxm98jyqcBt5HTptUKRA1Bqpncq9leKOuto7wgIFvSajj38aPRgja1eBDq++jN+Zof22tyOUIlo8Suv8QwwvPIdVYKWgbEnGRyQ7DwTks96BE543VYMRGnbvk2w+5pH3HFbtwT/9NnbrNr+y/QA/2P86vuuPWJ76py/w+p/s0frmD7GbrqKTAFkeNpD+DRC9jCNkkiCUQvieq0IB3wt5Mvh6xN6IV1/9CL/2xX/Al67+GGlQETfnWeEU0Sttnnn5neTv+0Ze+OyEZ/r38qO/MUdeSvbe/SEuXz7KrHgHjd4xjA+TE3pKk4W6UsiBB74jLtjw0Hnff0NPxsjNMSq3yBL0Z14ijGdYWnkS3fTwTh6je+ph1sLr1Cs9TCNg7+3zXP9DZykfPAZlhcprFj89YP4513cn69B6NnK2GIGbf3c/8PV4tU+YB8hWg3d8wwzNxLLYLvjmP3GEW192Go+7deOwETtgBP5I4I/dXsBKMKFCtyKXNGjy3v/rW1HKsvdDH2btr/0tNv7Vv6LKh9QPzKKeuJcgE/ReLzjdeYLBzhWaV8dMrr+G1TUno4dQnS7L3ik64aIbJe0nBGsYPrrEN3/7p7gvvsmfOfbL/N33fxh5yHJ2srTI2hAMSifAY4wb5UzRLYHxefL0d4OU7P3wj/EzH/y3vPY3f4LhZkF0okv81CnM2Qp7KqD9te8lv/w6wkB5eRVqQ+/xryIaecwdeYRk/hhWCXQoMEpgpUDUFj3TIO9IVGGRpca0b38Je2dAehkRPXKU0UefIW4suQ37zi75rVUu/OO/+qZvNHTvf+JgJgpuwFs1oWgL6kiwd85tFPk4qApq67QSm8EAvxuT2oTTMztsZ016cpef+VvP0f/8FarRT2AQ6Mpw5YMRZ37q8D2RRBw5PyTfc4ukaUIVzYbD5GlNSy3xYNkDa5moCS+kv8Zrl36Oe+7/Zl778o/T/7Vr6LrACotoR/zKa+cYfa5Chj1aP9dm+WZFsDvk+kyPYsbS6JZg3ULP3/Sp5mvnsOiBH92+nuFX5JRY+6IXJWx8+ZfxFxfRAaS6T7q1ygv/6v/xpu8zyBOPU8xFlLcEakkzeqggWwyp6GK+7CFqQ7Tp5lJ+Zhn3LOWshj1QrQaKAFk5jGWeGv7t37jEy7+xSzqoAUE+0dQajBSHnkBFDeGum3t6mcVMl4fCdzhNNZZ0H+zy4P/89RgruP5yxq3//SPs/PRPMfP7voVrv/gzXHz9srPJNgZPRci0pKjHhF7LyVAoiSgMkWpNCR7WzZk9j3g952def5Dnekd4orfKY8k1luLDVVUWxqKGJbKsHbpmGjYKMM0QKwXNxjwPnP+9yLRkqIY8e+2nuPGPnqHz3R9k78d+muLCVUxegLGoKCHoC/JbI/xGh3Akpm4GlqA14yCWPs7LTDpacbbSQJgpuF4KirmvUAIVleDYd7+bi3/2XxG+7X1IbUlkl/bsaR565x9zeoOecMKtgaCcWGQYYOqKeNOSzQsKO8R4kC1NHRWBwT2W7tv2ONEecv3zBmOkU3MyilPtHV77wc8xWevzrf/mAzx+Yo/w9df53g+t8ne+/Yf5wXe+F77mTt7F73BI4bad+5x8axwvvq4RWe7mokoeVAJWaxomZtme4Eb/Na5+/ieQCp6e/QMEQcJ6vcrLWx/nxL9VjNdCXtzYZe5Xr1Mdn2Pr8Rb5L+wR+l2sFTDw8SaSaq5GBBqrJXE7J9s5fBiTanTYe/4zLN/7VfippWE7NBdPc/7rvg+vsAdskHirwgBR4SMGGipJ3dYMO0OKLlz6g133oP0cbD0Gan56k02Vm7yJW6BULVj78S/iX035Wz/+AEsLgpde0vzt3/McsShA1YeuJSIrULlF5VAlAm+6r7BSuGWkgrlwwl7hcJGnHgrwP3Se6z/9IoOPfhTrWxb/3p8jTtv4P/kcl7/8EahqIhNR6LHjcpcVZq9PXvSJZYjoNbCjETYv8K+s0/zZ01z+RsmJ5i4fKx9A8urhnhRrkUXlCpB9i3Br3TjHVwdIG1E6x4dW0OOEuo/rF74Mf/9nafhw9oN/kepYg8HrL7Dxix9BVuAnLerRAGusI1x4gjLt483NYTz3M4SBOlYUbbcQV4Wh6obkM7c/1hD2Nvr9KTzle4AfBq4BJ4AZIANeAx4AbgB70/8S4xBYOXAEaE6/zwfOAhVwYfq9jwBXgP1HYQs4BTz/pkM4On3NS7ixw0mgC3xx+vWHgT95GPg+IcQW7pz81yICOsAu7r37wBnc+dt3dL32pn8PcO9fAA8CG8DW9DVOA+vAzd/iZ56w1s7f+Tv67cf+dWKt/aXpeYG3rpODuI1r5f8vrpM3x116TuB2z4u19rf8AK4C73/T34/hLvpnpn8/D/zc9EB3gF8BHp1+bQ74GDACPgn8LeA33vRa3wfcAvrA7wfeB1z/T37+CvAMMAYuAt/LVAt++vVncDfubb2f/9YfuOTwY7jkMZl+/hdAG5dUvjh9b88C/9Ob3z/wBPDl6fn70enH3zvs9/TWdfLWdfLWObG3V4G+FW/FW/FWvBX/edwtihxvxVvxVrwVv+virQT6VrwVb8Vb8duMtxLoW/FWvBVvxW8z3kqgb8Vb8Va8Fb/NeCuBvhVvxVvxVvw2446A9GE3st2VhLQOKGsPNRZTcPAUBGumVsOWKcDcedkg3wDIGk/whtuco3K5mNoNSOEAz2ZfwR0HpK3N1H/dRTnjO7sIoLxyc9seEpYt6ka2vdJAYB37DIPAUqMOvK77VQx7nrO2aFl6yYRIOnqic49UVHZquYp4w8x0+tlO6VwWsDiJwP0/W+tMt0yp8FLwxjVUFUOzc2jnBCAIGjaMZpwWwr76vnnT71AKEHLqHfUmAPV/ElZJ7FSGyEoOVOhFolmMhjRkSSBAINjVPutZB1uL/1sHznpnDz2aHBqePhChjfj/QadAgFAKpMKGHlVDOO3d0mKlQOVTkoGdqpRp/YbivHD/bs1vVjDLmVDa4tDOiR80bBTPuOMzuJLuTSnBelMLDgXGe9PXY00rKBgNEmTp/l0HuNfZV2CyAlmAKvdf0+l3HNxc+z9mSumsG4KwUxDKms1X9m7r/rmjBNpabvIt//YDPL+zwsZWh+6nQmZfyfFvOsUUUb6hFWajEJOE2ND5WlslMb6k7Di1cR04SufMxQwrHCfYKoEsDd6oQNQGURusEJjER5YaMcmdcdb2HvU9K7z+HRG2V3Htu//n3wrI/hWL9kqD/+7fv59Q1oRT5WCDIDc+LZXzia2zXP/EMRY/X3HtWwTf/OSX8YVmIXDmZ9fyWbaLBoMiZlI5Z0FtBYFyF8ikCvCEIfRqaiPxpEFiKY0ikJpce4zKkP4kJr/WYv6L0Pv8Fr944R8c2jkBiIIu77znf0BMcidNplyyFOlUAsifaiJU9RsmfFWFzXPETJdqqYsJFQiQpUFUGp34pEsBe/dKjr9nlT9x/BnO+ltEQtOSgtxa/uTl7+ClC0enNg7iTZI7sP53/s9DPCMQ0eAp8bV39p/E9EGDS57y7Eku/PEe/sqE+5fWuTVps351luYVj+Z1Q3PNiZNYTyLSAjGaYPMp5UlIJ6bcH2AKp0v1WXO4NidxNMOjT/8ZZGVAClShqWPP/d06CUzrCXQoKdqSvftwGuYnx3zjmVf4j88+Sue5ACxkixYdW6f5uSeIt6xju+0YVGmcuFEN1oNgUGPllEqrLZPlAGEtux9K+cZ7XuGfP/7Dt3X/3FECVcJwob/IKIuwpaS9VhNc3XZCx9ZiG45CaEIfO9VwrBs+dawOno7GF3iZoY4FkxWB1DH+xKADgVdYoi194BVEVSOsRcQ+Vghs072+bDXwXrrC0pH7uPWhw8WxCixSuI/9SlLhDK1+Y/sMa588SueqZfWDkkfuv8pu2UAKw4XRIt+2+GU6jZRnyvMAjPLwwLBPSsuuTPCU88cJvTf47QZnsgccJFpjBfqoZDdv4mdzb/B3DilErZGDCQiBacSYZoCOPPJZn7Lp7F1UCcHYkFxP8VY3IY6oTy+RLkdYJQgGNf64Ro1yRKUR2lCfCMmXamailNeKRRJR0JY5pS1YUoJvW/wyF28tUE38NyqR303xn1TiIgiQcYStaop338fgfxzyx0/+MgAz3oRBL+aTyT1MzgWsfuoosgpo1AZvd+IeXL0OYk9gxhNEFGCbCaKukUo5OmN62ARXDgaJoragLf6gdF2JscjSHZ8KFVXiRIfrXk0S1NzMOnhxTdEL8CYgtMAfOGpvMLT4qcWfmIPXVrV7UGslqCOFl2mUtuhQ0tioUIVm51oDc+b2J5t3lEAntZOOM0YQ3giI1gdOLksIbBKSLzVQhUEWGhMpvFGJ8SUmEBRd/0CHz/iC0XFJdqKiankkGwp/bIn2NCotsVKiBhOny2ctcm/slI08x481rQSlDf5IY9PD97X2hUYJg7aSwnhM6pAL/QXKH1qkrWDnEcuJ8+sYBKujGaSwhKrmuckxZv0JHT/j+qhLlvtYK8hGISrULPaGbPWbRN0xEksvTIlVNW37Jbn2qY3ESEEnzFHCsn5SsV0m8BOHelreMNeTEpEXKK1RexZvHFG3AupITcczkB5NMCdPuXGPcPz4cHUPUWuoamyWOb/zKKBsC2SjYlhGXMnm6akJLZU5O1w75IHwBvMzI26OZ39T9fm7NrTGakP5jnvp/rVrfMvsaygsGsGsGnPc36GzkPHi5Aj9x2K2mSWbTWivBU4wGAhrjZTSVfd5iUkzd89ONWwPM6wEf1CBmuoLa4sNJCqtMZ7rWqqmR7rgsfuwxT8+5uzcDsMiYlhGnF/Z4DU1T/1yk7LnRhaiFlghSbYMorb4aY0OFcYXyMo6hbDaIrR1ItS1wvouaXZfhUtPzt328d9R9qm1Ym1zBrsX0F23yLTEJhH43oGBmgnczMr4kjqOKVuKYKzBOg/0vCuZHJEUx0pWVnbZ6TYYNRKaVxT5jCJat65VN8aV21IgtDlw4RRFhRACG/io0uD3D1cPVAhLKGt8oRmYGGMFL+8tcvNGj+iMpOwYZs/vEEjNbpawuddCSMt8Z4wUFl9o5oMxc/GEQRYxudki2JWYAG6mHljBzNIWi/EQJSwtL6cw3oGhXCk8jJUYIYj9ivmZEesnDt/WGHD2zp5yupS1RuQlqqyQA0VY1VNzvdCppkuJSQLkMIONLWxeYH3fzUy1doZo0mk2mswjq32GVcSVYp6WyvGF5nW5wJI3IFDaJc//tLi6C4qt24p9240wxJQV9RNnufpHDF8TphgrSafjocqqqZd6xtua17j/9E0+NXuGy4M5bjy/SHJTkGwadNjDH1X4W2Ps7gCRxNjxxM1TD1lRWdQWYdycHIuzBS+dB5aOPKqWYrysGJ8A79iEbjNFG8l9MxsURnEm2WY5HvIp7yR2N0GkisYNiTexaF/gW6gjhSoMVipUWr9R5e/P3wFRuYdN60bFazcXbvv47yiBWgumUPijaYlb1W4mad2SwJvUoARGSVeGA0EfZGUoZiNGRz0G5yws5zxwZJ139S7zcXUv1zKf9PGS8V6A8Tr0njMwHCOkdD4uxjh/odhZ+CIl1vdQaY3Qhy+oXFmFEq5tL4zH3jgBI6jOpxyb6xN5FdpKBlmE3ohhtmCQReyWCUfCPZa9lEve/EFbLozAH0K0HTA+U3OysUus3PlUGEJZozBUU8+bWkpqK5FYQqWZmR2zemhnYz8EptNAJz4IgUwr5L6nVVFiAx9RlNgkxEQeclyitgbYSQZ+MNVU9bHaQF1DGGACzy2UtCCrfLZzNw5ZDEcYK5DCMvYj8tpDTN0mrfndkjWnMZ13yshd6+Y9D7P6xzXf//AzB9+ipaDnjUlkwcjE5MansopIVnxD7yXyrs/FxSX+42sPYT7fIt6usb6kmm8SVDW610Rt9F0SzQ8ZiPPGPhmVVejEx/oSHSomiz7D04L8WElvcchya0QgnVttwytoAIv+gJbK6Z2e8Gz3KK9vzFFvJXSuGFTu9ihSO51PWWjkdDxoPOfuW3ZDgn7hql3AH5b4l29/0Xdn/a8RBLd8/JHAS62rDCs3mxPa4O17n0vA4BZISjI61WB4UjI+XbN0YocT7T0aqmSsQ440BtwIO9SbMaIWbL5Lk833OPJLwM0tVzRML6aD2dD0s9dPcR5mhxf7G3JtJU3lZpH3zG+z20wOWnW3GILxRhOh7MFD/7X+PMMyJlA1Vwc9tBWokaRxwzLzWsHNd0WsnNzGk25+XBgPIwShrCnwCGVNbSWB1JTGQwiLEBZPHbqgMgiwQqBjDysgKDVGesisQlQ1ptXANCLypYRoK0NUTg9SNGI3U9/tY7VxVtFWYsMAEyl06F670m6hZqxko2hhrEQK93ApKg+hnEeUu0GnJ/x3UUdvtUaeOUE+GxB/RrHy+B4jE9GSObn18UXNVt3GF+7+S01Ibn0Ulo6a0PMmfOf5L/HS8jKvT87RXq2J11PquRZqd4yNQ+eTNDncbkVo57Qr89olz2lFOFny2XrcMntmh7OtIbPhhJaXM+tPUMLQVDnGShJZuPtMVvQWJrSCnBfUCtdPBsx8wad5SxMManTk4Q+dV5TxJbIyVO0Af1AitEVVFcVcjD+qWP5kxWu3efx3lkCnGo5V29L5TO7EW7XBhq7KEFXtboRpUs3PLTI6FrD7AHAk5YGVDRLPVVIGwWrWw1jBQnfMjX6EN5GoQjE+Ybj5NT0WPxvir207odUp1EWUU1/1wIfdAcnNQ0PqAO6e3J+BAnjS0PbzA59rAE8YBkXkXAIBM/LJBM6adh4Sv6KqFfpzMxz/TEF4vU96psfMa4bsKZ/NvMWxZI+mKiiMR2E8fKEx00yca++gArNW4KvDVul3IdOCMC2wvocwButJ8pUWo+OzBGNL6/KYxrNrzuJYSGg20HNtRD7V7qxK8GKY71Estxkdc3a2slnRCCrkdMaphKXtZTS8gjnfoRtMLd94WAnrnrl3ezEqhNOTVQoZhkxOd7n+fkvnVfjJ7bfxe+e/QGkV2gq26hnmvRHaCiJZ4YvhgW3Jr/bvY1IHNLyStA5Y/n1XWfu5k8zamPjaaIqQ8TGBgrXDnoG6X0rdDKibPv6wpOgGDE8JwpUxR1oDmn5By8uZ8VMARjoC3H03MvEUAijpqJSvnr3AV89eYKwjLj64yIX+AldfWqCxJvEyt603gZuFJpuGqNAYIcFK/LHbzHuT2xckvzNBZWmnwqMCf3MMYeCG0Psl1T7Or66pTyywdy6gf7/h1H236AQZnSBnI2uxl8csJmMGZUSlFb7S+N2cSoZ4ux6ycoLLe/clzNY91M0dqLQzyppCpWSaY+uamQuHahMGuMpwH8LkC81cOEYKw7gK8aSh1B7aSETt3AO1NJjdAJlL1sezxLc8eq9oFlbdzV8tt9m932dyxPB4b5tukB1gSkNZH2z83xz7CVRJQ6HvkhmotdjIp+7ElF2fzbd56HsnGKsRwN4rbU7+8AQmKUiDbSWu3d/pY7IcEUfYdpPsRJfRMY/haahXCjqtjMQv8YTGWEGsKmJVcjTY41iwQxJUB4Kj+4skcddnzzfCGotIYrb+SMrXH3+dy+fn+NLP388j37nGvDdCYuiqFG0FbZUTiYqJCVEiR1vJpA4otcewjNiaNJhLUvz37rAZzbKoW4QbKcKCmlQHM8DDDONJqpZPMKwoOwGD0x75Ys1Ka8JM6JKmsRJtJUwLFdfx5RTGJ5EFFR4bVYdEuXwgheFovMepZBv/yAtsV02upT1K7TGpAzZHTbaem2HuhZB4yznjal/dsUnlnc1AtWuJgj5vzD+1OQDNv1lNOl2O6T9gOHXvLR6duY4nDZn2uW661FodtJ6eNIzLgE4zp4wqhl4Db8tH1JDNC/rnGnQEeBt97DiFooA4ctWu7xNf2LijN/yViMoqfDS+cJWfwtD2CpSwVEYd4DetbxG5IL6piDcs8a4h7NcEN3bYffs86ZGE8bIin4N8uebxBy9zrrnpqk0EctqDVla5f5OCCdZhQ419I4neDdvn6aKvnokp2z4bT3iceHqVG4MOk60EUUn0kmZy3zzJ9VuIVguEQO2MMMPRdMEh0Z2Y4QmP8VGolkranYxWVLhFESCFZTEYciLcpiVzltSAXpxyy+8cAKbtf4IHvatjOgNNHzlGIxry8c89jPUN3n0pH731IN+68twUKufa1oFucD68yaViEV9oOirlvtY6ufG5lvbo5zG7WYI2knzekM8odNQgXs+xnnf4tuBSYD2J1JZ0OWR4XDE6VxPPpUReTWVcMVBNl8jaSgcTRDDWEct+f/oylhPhNrt1k+2qSTFdsja9AollxkvptDNSHbBRtIm9iheONMiv+wRDhfYlOlYEe+UdLdbuGAOkQ4sq3MzTgfutYxAY7drrssK2GgyPKxZOb3KyuUtmAnpqQobPqAjdtjgaAw4apYShMoqWXzBpjVmfaTEZRVQj12YI06BTGVRZYQndUkGIKabtcNtVg2CiQ0JZk8iSjspQwpDqgIbnnoajOqK2ilvdkvBazOwrzr41uLyFHQxBKeLtHluP+qgC6ntT3n3yKieTHcDhb33sQeLcHxdUVhGqmsl0kWasS7LybkkWSiALTbSlKY77FNqjvNgmnggaNyzjY4LhcWg0G872ZDDG7PXdwzjwEY2YybGE/r0WsVAw15kQevVvGlH4UtPxUiYm5FK+yFbQYlIFCOmA9NY6rC5w97fw7mARUnD9q306PzlLY1agckXR81n3NXsLDY4Ee3x+eIqr4x6XLi8x/0mP1lpJ0fUo2hIETJYFc++9RSssuLoxS5150KwZHwlY+HKFVRI1LrDB4cIAtS8OAO1VIkmXLapd0mlkdILsgDBSGo+xDqmNojAebS9jKRzwer5wkCylsDRVwXLgiD259aiMhxIGKQypdruUlp+zUzQQgaFqCIqOYryiaKwb/JFEh18hHKhQFt3SgOeYJdbC1ENZTDJXjUYh5ZEOo7OajtK8vLdIJ8zphw4Ef7qzQ8MrybRPrj1mgoylaMiodnON0ihmkoxGWFJ2Ff1WA+NFCNuim5ewO4DaYiu3jEAe7haxNopM+xTKI5keS1O5VmqsQzpeRkvldL2UrbkG5SgieW0XUZSgJObccUanGqQLCqOgfGrMU8dXOR7vHmxWJRZf1ijrsKb7lS6Ans5aPWHcLAjxm+avhxZTHxtVG3QrhFqyeqtHNBJMd2IY3zI6bZk/exR/dQs7HjtER+AjGgnFqTl2HlRExwfMNlPXtss3FmS1VdycdHitP88gi0ivtLFzJTMzY6wWb8xAD87HXfJg+S+FEG7+2YiJ7+1T3gvff/5X+V8+9wFWftonfk+fZb/PL+3cx5dWj9H4fMJM7rzGtt6uaK8MSdMQ/5WEcA9GP7PM+opFHymgkHhD5Rxdl3y83MMfe4gLh0xEMVD0PKLtCh16WGXxPY0Ullz7dFWGFIZA1mTaZyUcsFW2yEzAdtWipXI6XkYiSyqrGOnoYLzlC42vNAqLL2oK41AgmfYZlBFCWPyxpUokVQv8ywYdObzo7cYdJVDf08ikxirPAaSzAtNOpn+WmJkW5WzM4FSAjSv20pjId2X49XGXpcaQmSA92Fb3ggnnk3UasuBaMUdlFZ4w3BJtttMGzbAkWajYCptsRQ1k1aPzJQcEFlGETfNDn+GURjEoI1pejpmWOL5w7bwU9oDSuRwMONHe45Vkkc33LuDlFqGhjgVlSzB5KkVKw1effo2mKg5mqpGsDi6IUFYYO21lpj8rlDUNVVIbia8klVa/KckcWmiDyAqHA22FyInCKEvZtTRuCreM7BoQsP1IwmLWReQ5ohEgwoBqpcfOAxHl2YwH5nZcKyYchXVQxIyrgLzySPOQIvWxmUd7TZLlIWlcoTx3DqwV2LulIv+tYtq+3/xDDwB7PH3kCv/u+lPYzOPGBzV/ful5vjg6yedfOU3SSxmed61ucb2JyiTDnQYP3XOd0+e3aaqCH/vo0/gjQZV5eCNFvCkI95zhY7SnCbczDvtZa3wO6JT+2KJyQZn7VA01HfG5p23by5nokEhWPNxcY7tquQ5MVhTGZ6Bjmiqn46UUxqepcrrKzU+1FaQmpDnFC491SDXdExgP4l3DyFOUTYkOBbK+/evlzipQLFFSIqvItc5FidAxVlhMO6HqRkyWfcq2wNv2mfgRjbmhu/C1Yq9IyLVP0ys4luxxI+vy/9l4B1ubbSgU+O6GohaISNPtTkiCivnOmP5ZzYZt42ULxM9sIcIAhKBennE2UYcUdS3ZTFt0gpymKvCFJpEOabBfKe7WDW7oLp996QwL25a8J9h91BDfVGTnc5JWwROLt5gLJjS8gpbKD15fW0koK3yhiUTFyEYYKw8oowDedJbsGYORwtlsHXYYDXnhLJ8Bbywo22A9S7xlyWYl1rPIXDI+CbLq0GsEyFJTzoT0T/sMzmtOLO5yNOnjCU1tFevTJeQojagqhakk0jfMze+yIWYQsSZQBl1LENY9Zg47S/xWMeW7C99DhiGjpzKeml+nMorYq/j2J7/AQjDixckKq+MZTp/aoJ9FnLlvlRdeOU7jlmRyoia5FPCCOErzfIEfa3qPbrH73DwEhroFas0jGhjC3crhIseFA64fYhh/aiesxLSoEDD0qTpqCkvThLKmqQr6VcKNouvuBVmR1gF7VQMpLMfDHV6cHGFURxyPd5nxJjRkwWbdBiC3PhfTJXbLhI20xaSYjr0CJ85Tx5Z0QWI9KNtfoQrUWkEUVPgTp/5CIwZj0I2IbClytqANQb5gqRdK/KBma7fFKA7xlGFjowOFIthRfBGINwRh39KaF4wfzjl3bANrBXt5jDaCVljiK7dp7TVSNk9LtvstTrw064DYtabqhnfyFn7no5as77ZphzktL59uyY2bW07nlcq6i7S9MCZdnCEYWdoXFYN7a548c42VeMCCPyI1Ab7QB5TQUNZowMcxnTQShcUwrXKlxjeaAu+A4llbibobKlAzVddKIofBGwtKCyYyZPMeec8S7Cjn8W4ko1MCZEy0axgdVaRHLMFiymIyoqEKOl6GtpKulzIoY3b7TfTI8d3DZkErLCiWRkRBxTgPUZ5x43nj2GJYcdikm/9yWItQrn2/8uce5Dsf+A2GdUy/ilmMR2gkP33jIRLfIVCGecSZmR32ioRzZ28yORnwHcsX+PCPfBXtFwI+XZzlyYdeR0lnlaxCjVGGquEhK0uwOaaadWBxqw4fSD88KYm3XfUnjEDmgsEgYS/JaPpuj1AYDykMu2UDX2geaaziC83z46MURjGsI14ZLHG00ed6NsMX945TG8nmuMneetvNlkPNieUdJmVAXvr4YY2OnLDR3HOWdEGQrhjswu0je+4ogRorKGuP0ABKIaoa3QgpeiFVIhge88mWLHXLIATUmzHhrqJoheSLBUI5PF60LWitaqS2ZD3F+ITGGsHr6/PEScFya0QnzAikpraStA6YENBtZmwcj5k8uETj5U2wlmhtcEe/r9/xMCDWYq74s/RCN55QwikmRdIxkEJRI6Xlm0++yI2lLs98+T7mP6toX/TYvKfFPY0tBjrGF5rUBG+wjaZJeL+S3QeLy+kGsjJqulgylG86pLtiiSQEeB4mCdCRwpsAlcSfyRG6ydFnSjYfC/HvmzDZbFAjyXsSoyRVG3TDkARujLGPe90HT8+EKZtJk/HIx9v1yLIWlwYxrd6E+WTCpAjQWqCURUp792/hpUMc2AfOEL1tF43Ek5rlaEAoaz524176o5g4qlhqjai15ESyy81xh9pI3r14md/YOkMxZ2h/AfJZxdVBj91BA38syCceMqmZnKzxxx6NiwaV11TzTbh++E+Vqm3JZj2ML9ChxXrAwOdqOc9a3COMSqrSwxiJHvlEsxkvzS6znAzRVlAbxaQOeaB7i5tZh8+/fJpgy6NxHbwUeiEMz4A9VnFzt4OY4qUbcUGhnFReHQmmjSPHl3a5epvHfmctvLDUtROBKI52iF66jowCTNCgaghUYVn4okHlljrxnUydbyi6kkkVUS+VJAsTsn6beEvgZdDYqFGfVQjjAz5FJ+bqkS7l0ZKTR7c51tyjFApfapQ0iESzdzYk3Gqj+imiqH7L4/6KRmDcIHwjYXcuoRdM8KUmFLXDreE29WpalZ5NNrn36XV+9Mjb8H+6x/qnV7j8/iEPt25QTIHQb65e95Pn/gD8zaF54/U9YfCmw/ba3AU62fv6k8LNuFRhEaXA8wz50yM2gxZ1A2KvJm+XaOFTN9xGto4tNphqqRYxnjDEqqLnTWiqnHtbG3jS8LxeQay2ab1oGR8JSB+pecfpK+xmCUXhY4w4YGfdtbG/OOp2WP2aFn/w1C8z0DEfvfgAf+SBz/Cp3dMESlPtRdSJRxKWnOltE8qa+2Y22MhbvD6ex5cauZLRP9+gahl6ccrWegcza8AIbC0PaJOiKNFRC28vO/S9mpWgMkHRcaB66xtMrFEjhRr4lIuCQli4EdN+HYKxpWi3uN5qcV3A5HzBI6evsxCNCGXNazvzeH2P1hUIRpaiI2hsanbfqZn7eEzVFAwerlg5toMAcg+8zMne5T2Bjs0B9vR24o4xDHWlMB5sPRIyb48SXd5CGEvYt0htqUNBOi+Jdyyqcm1cY10T9gV7OuDM0zfYaWTsVIv4Q4mXKax0wPn6RM75Ixs82r1Ox8uY8SaMdcSzo6MYK8mljxfWpMsBG0+1mHvRx9+5/Tf7lQilDNVChb/hs5fH0AKJxSDeVDm6gbXEkkznpH/q7Cf4Z9/8Ppo/O8PVQY/HO9dI6+BgfrrPr9dT+pd8E3RJYUlkST5Nqg66ZPCkJoIDoZHDDYcJFsZVFLIGWQq0lpya32HwtSnrV2bRaeioroFBR2CFpW4aVFLjKU1llNM8rSMiWdFRKY8l15jzR8Sq4pnN+5ClR/5Iytfec4H3t17kWq/Hb0xOU1UKEHd3AgXHPgoD/tB//3HW8h7P7hzBriX8v4fvJdzwMAE0zg3JJgFbey2eWrjGqXCLjpfSCyZsF00aXsGRZEB4T00gndRb2CooBI7Wqt1D1css5AXB6rYTuj7kGSiewfiWbFEQ7rqljog1Wgsa1z1a1zwa64LJInQul/TPBjQ2NLovGJyRxJdDXo4XOXqmT2k8isqjni/ZmRWcP3WL7J8cIe8qfv+jn+PnZ+5jtN7ifQ+9iicMr+wtokMHHZO1m8fKUjIo49s//Dt5rxZBnBSoIqRqwo33BZzca7mKM4KiLSk7An9sSW7meP3c6UDGHnnP8Vwf7tzg6PwuH0vuZ69IuHp1AWqB6pQcm+vzQOcWjzauseQNqKzi9XKRM8k21+UMgzLCGIn1LYNHK/xJSOewn6BWQCVRuSAv/YMt+T7oPZQVvtXIKcwIOKCevXvlCp+WMwwmMcbKg+XRPlTJAfTBl29U2fv/vg8oBrdEqrTEWCcq4om7YAYqBUwXffuq6cFAwknDuJzOrWMNVqA8QwWYYCqIO1MSxSXWCvLaYyTcImofVL3i7/FotEpXpVw8Pc/WTIs/9uCneH/zJdZ1m6/uvMore0us77UO6c3fQQiJNRbTa/HqZImbkw4312dQFvxdj2AgaF/V1C+2mLyvBi1Yz9vcn0haMicKaloqJ9UBTVWwUbR5fmeFYR5itET67iFuS4G/q4gGDmpo+wNEHDvo4SGGUgZVCIxvkTX4YwFLNWeOrXN9pUP56zP0z0tm7t1h/VNzYOGp73mOX3jlfjxfY4xkrp1SWUnXz3jq6DUeaa3xmf5pHmuv8SvfL9gbtRzUsPB550OvcX/zJhcnS+yOE/yRIJuRyBqqjsV6lry+/bR4Z6WKhZX2kNXzMyx8uebmexRVL6JqSDcI3rDMPV+gspp0OWL4VML4hLtJZCmwSznLQZ+3xVdJeyEawa8HZ9lKG8wnE44mfRaCIQA3qxnKN9EV62listaNs+JOzs77DIOzIfzqHb2L3/Hw+gpVcACN2BdW3k92b6481ZsS67Fol1+4B8SVJpunWyyFgwPgL4D/pkSopkB6KcxBkgY378y0T2k8fPkGO+fQQwis7x1UobKCcAcGN5rUZ3MiryZslNSVh6kEQlpMZCAwBEGNtVBUjgJrrDjAt2baVd1Hgj3aMuNcd4tAuQfUjbrLpWKJpsrpRSkb4ndBAsUB5698R48VrnNxdREx8fBOj8lHIdWSpfH+PpsbXcTAxzZqnr+1wsOtG3S89Dd1JsM6wiBYaQ6I/YQbdQdrBZ6vqTZCOpfAH9ZUyzP41mLDADYPW5Acom23lNYBqAyy1MdYwTtXrvJr7/Aw6wmhVyPevcVKc8jDjTUWHxky1uGB/u75ZAONYNEfsuQNeN/MBT4/PMXRRp/FZMjnNk/w2NHrnG1uYqwk0z7ZMGJm6Kw8dASyABEIZqLsto//jhKopwxz0YTVR4ckP2toX+qQzfvIys0QwqFhfCRg7/6AaqZGNUuajZw8C6grxezMBIB5WTDnuUT5vUeeYWJCUhNSWo+umnDG3yIRNZfrHhfyFQrjMapCtkZNAExoycchbz97hd59Ka/fyZv4nY6xYumzhv49CmM5uNGlsKTGQSUU5iChRlNI0lhHJLJk/sFNBp9a5FbeObD50FbiT3GgCuv0PoHc+PjTLb9LphaFQQmLxFLtt/r2LpiBIpzO55v+6qeWeF2ykcywcsyxrHSh8JMSIyQi0kh/Kjc2neMaaclLH20cxrUMCq7LGcZ1yMlohyNRn0DWGCt5PjuOxGFvjyZ9Lqp5tL4bzsV/OYQUWGPpPrnJ6mQGbzPgzJOrvHP2Cq+MlxiWEeMyRChDsDLB8zTHun1+efM837z8PGMdMahjdssGW0WTQNYH9GiAMKqY9GNaNyVR3y1ukcIpX5ni0KmcsVcxPgad19zIz58Iyk7AznyD060dnjx6jS+I49za6nB6ZZvEK3k9XyBRJcvBgN26waw/YcXfQyPdPTJFrISqPgDg39fboOdPSGTJSEdsZU3UrocsoexA0bOo3BVngfwKiYloI7g+7nL/4jqX3nOOuRdydCjJ5t3L7DygKM9mtNsZo0lEENR045yxNIzTkMCrSU1AOq0sUxOyhNuiJ7LgXu8WPZXTldAUPlsmRwpDx3NPhDwLMKkHoYFaMK5CxtXhwpishFtPOxWdeGohsV8BGuuSaYE3hWE48eX97bxB8PTiZX7qvhYGwUhHGCvwpXYiK0KDrA8UyN1ryoMEWll1sEja/xpArA55sTYN66tpZSGpQ4EwEO1YrOezc3OJummgU6MrhRAWGRjkVIpPCItS5sAjqi59qtrpCkSqYlSHZCYgkDXnkw1CWfGl4QmOxns0Vc5K2Mfz9F2fQAFkI6EXp3jSkNwSXP/FE/xIeILHvuEVvmPpS1wve3w2OMn6qIUQlrQKWO+3uDXbJdP+FBcs30ieVYi1bt5cZAqRKeItizfR1JEiGpUQ+JhGDDcP970rYdDHcsTFCD+1NG+UZPMRO7tNLkQLPNC9xf2L62ymLWbClG6QOQC9cNA+Y50+R0tlVNZjpCMmJqAlM46Ge+xUDXxhCKdqTqkJuJF32ctjgj3J6JSbuTuosEC39B3tEO4YxrQf2dNjtmnSvVQR9g2jYxJ9/5iTc33m4zGtpcJtBrF8duMEdeFR1h6DOmFdNxmZmML4fC49w+f2TlLUHl+zcIGvarxKbit8anZ1zy2PjE9tFH5Qo4c+spAEfcnF7ZPMvHwn7+B3PmxoMYEzsjJGUBl1UIHuJ9LKCCY6RgpDbRSVlbS9gq6fkqiSb7/vWWrj2gpPGrR5E13TgJlu4ys4eMJKLLWRlMY7mA06/Kk9mL8ealjnb+PM5KauilM5RCyo3IGndUu4BYfct0t0czFvmjxrI9FaYq1wJAECbtgOiV+Ra5+TjR06KuV62QNgXId8dfMVIlHxC/H9rOc+vm+op8D6uzJOHGGtL5mstQg7IB8e8OTKGi9uLfP5X7+Xulczf6TPQnPMjUGHgZEkUXlAf94tE8ZVSG0kvTAlUtUUyuUk/cKbiqhfI2tL3lP4qU++sIAOJWb1cAsQg6A3M2F4OiLeVAT9mmTDUjdCdjsJq36PlWTAiWSXsQ7xhKbjZfS8MQOdsFM1iFVFQ5RMgN26yUAkzHkj7onW6XlNKuvhi5qRiRiUMYMyYnunRaMEEzqehY00dcuSdDKu7PRu+/jvKIHKKSQkrQOSqKRswmTJI9nSmOnvYXvcYDkZ0gucdW+qA4aTCLEbkLc9ToVbrKgRL1hFzxtTVQ7LdvHSMtf7HdaO93i4uUZbZqzXHa7ms1xPu2ykrn0nNNhSEu5APidoX7n9ecVXImQuoFXjrwbTra+L/QRYoQ4qTzfoTtG4xLdRtGl7GU2vIMenMG7mpzAg3dPZIFDwm+TrCuuhrUQj0fYN7rsvzDRx3wVLJPHG5wNbWgVVS5Avavz+G7AaW0lkVB9AjqS0eEqjpEUaQy3UgROtENZtWrWj/e5L+90sOvSCCQ8la/RNwml/m5XmgJ1xgtYSo+Xdx0gSApRi6x0zHOmssvqFLlJD50eavNp4gMHDFgU0L/mMbswzVBb1wJDBMKHRzhlWEbFy/lBpFVAbSTfMuDHuUJaeY2ltB0S7ljqWlC3J1mMC64WEu5KqaSk/d7jnxFpBL07ZXuhipaLzuiQcGryJYrDXYCss8aTmRLLLiWiXnjd2rbr1Wct77JUJI2HY0U0asqCwHrn2D2CAPW/sijDrMzIRmQ7YzRuIXTfiKLsGbz6nkRQMhzHZKCJYvX2XizuuQAdZxK5JKCuP7jWDnxpUronXFXtHQsLQqaSP6ohd03DahOMAEk2WBVzMl2ipbDqLiLk4WWRYRCwe22Pz9Vl+Pr2f7dMNTiS7jOqI14dzjKd2v4FfU3g+1jcILSl7mo0nY/i1O/ul/U6GFRA1C7xBSKrfqD73N+oD7SARvtB4Vh3IaxkE4zqkXyWudZMlkaym1bZbnLxZOGS/5Te4KlczXa5M27dQ6rsjcb45lMD6EuMJtC8OaHuimv7Zm/oWiTc+CzFt36V1knUKrF+jjXQPF2motKTWkqx2YtO7ZcKru4t8x/Fn6aqUS8USF/JlgIPXE9LedRWoUAqhFNm8oNAedcvSWBN0v7gBxjD/DE5M3Pe48aEjhAMY2A7euQm+0gyriK7vCCfblU+gNBtpi/44oS4VduIRbkvnI6Wgf86V/6ahyZoapEUEh3/NrDQGXLQrVF2DjiWqsHg5yG2ffism8Sv6fsJCMDoQjd6rG1wezzIoIhaTETu6STSFAPYrNxM+FW/T8VLnV6ZjBnXCbplwa6+Nyhzr6MR968xGE0ZlxHAY498IuBMU4J2JiUjDSnvIpc059OUmfqrxxhovrWlsevRLN2/ayxN6QcqkDrgy7BFfDbAS6obHh/Vj/FzjAbJrLYKBpGwb3vuul3j/zMv8fPchPrd6nC9fP8pap4uxgnTKWU3CEmMFNlMILSi7QKeieOpwK1CroBGV2KFllKkDaa19qNGgjpnUIYVRXB7M0U9j6lpycm6X5WRIoT1HTwv1AY++wJtCncQBxnN/5rnPPnIb6YDayulWURLK+kB84dBDCEzsUzU86lhgQqgjh7UL+pKqbTChhVpAaLFGYI0EpQ+KV4u75pR0flP7KAclDWXtkdceV4Y90iJgeKvFD6x/FcIzzPTG5KVPKy6oa4k/tYm+y+pPEBLZaVPMGW7ttYnu7dP5Nddp2fEE4Xng+9jhiJUfeQ0RhVhxDPt4RujVzIYTMu2znTXYe2GO5n17NMKSfBAiUkVySxHtOJGO8RFJ1TTomdrNUrQgaBdE/uHOyw2ClpcjGjXBlYjd87D4xRIvtXipIN1JGEQlgyBiu2oejMU2ixZr/S7WCu7tbrrdAe7+GVQx4ypECkPXj+mojIF21NjV0QzVdowS4B+ZcLK1S8fP+LW9M5jMI94QDO7/Ci2Raiu5vD2LvdBk4XnjbFOlqzLCvYpgJ2TSjLhuHJ+9E+U0g5JxDrMvV+hQIiufshXi9yT9Ryo++Ojz/Pezn+JGPcM7u6+znTe48PoKW0bQamZ4ymG9rH3DC11oQTFrsLUkah/uBSAC44DaGtTAI619+lVyUImWxuNCf4EbW11O/wtojktMorjx7hNceXxMIy5oRwVrXvfg4pDCHij1vxmSVGrlZoG4ZOKq1P3lkiBU+oCmdthhpaRq+lRNRR2DDkFHUDecYIwJ7BsVKDi2DG50anELS208hF8fnAdrBdV+dW4EReUjpWPHNa56WOkS9F4/wFvImEiLmZrKmbvRXM4asBYTWaqbDUoB8axg8I0reLklHBharw0QueNm2zTFKgi8ml6cUhnFxb15xlmIXikYjmLSPEBkit5zzgXX+IBw59+bSKznYQKD1y2pK0WWHbKr7fTz0cU99lox8hNdVKEJBx46kOjQY8tvY62gNB5Nr8Cb6oPONSdMyuCg4wumdN9A1vTCmtJ4XEt7BLIm1z47eYObG12CbYWwEIUVO0WDK8NZPGWIrvuMjxu6y8PbNmW8swRaKsQX28y9boh26ulywJnUh7sFzbWQfiMgrSWmLUn8CiEsVctp7hlPQCTYOy/xH+7z/pVrnI63+PX0HJXx+IVb97O2NosaKmhZunHugNR5yDCN0FoiM4U3ElQdQ9AoDx3zuM9yKTsC41luTdpTvrbbEO+VCXPxmL1GzOqf9tBrLeIzQ6pK867jV7k56bA1aUAET81f5aWBaz3PtLf57PpxwKFOjHXQnoOEaeR/hkDZb1fvigTqCcquR94VVA3XsgPIWqAj+4Ybo7QueQrnoGmMOFgaCWHxlTl4GO1XoXnlkec+ulZEcclsa8LNlQZ4Fm82I/IMcpo8lXLnw1pxN6zW/rOwzYT4hiI9WoOyjH9PykNLtzjf3EBbyY++/Dhm8wyiEqx8UrP71TkPxClF7fHKcIHdWx1XUfoGEWjKfgiBASmpItepjY9B1dHIUiAqAQ13bpbmBmyGh9uxWCDTASfbO0jRY090KVs+jRsFeTci6AusDNgLnPhJN87wpT4QGemPYjaaLbbqFgrD1XyOi3sL9OKUc+1NdooG17MuRe0xGMXIzZBoG4oZyEuffh7jK832pVnEjMHEhhPdPZ6/zeO/My58KZh5TeNNDMJadKAcUFpbRFnTWqvJ5nwK41N4hrolaQYF5tyEXd3EH7s2rjheUGcBz3ziYT45egRROyqVVcDJGu/YhIXOmFDVpJWPMZKy8NG5ws9dO4iAZpLT79++BelXIvYT+PCcuwF2nltgfWGG3vyQdlTgScNTs1eJlJsN3+x0ONrq84HZ5zkZbPM3Lv0eZpIMKSynwi2+UB8n9ipORDt8FpdAjX3D/XM/GfynsZ9wAORdoMZkfMHoiKLsumoTQBZOsMFKgZYWYV0raT0L0mK1wEhJVe3vVwylNHjSXaalVowzB9Gp0gC0wGvmzjJlMUUpB33SWlJV0sGgpFNlktLclS18caJHvGnJzmnURkDqxbwoljkW73FlMkucFERnJ6RFwNpMzMmlXSZVgC81u9st1FChE4MYe5gGqKGH0G5h56ixUJ/IeeLUKi9tLJFuNVCJIyrsDBuHzoWvjCJWJV/cOO2uYe0k5rxhjp9G6BjMWFD0A3anyloLjTEdP2dQxHR/vsErD5yCp6AbpHzqymkan03ofefLTvxIK4Z5SJaG1MOAMIN425AeEejco2wodsYJNtYQaoQVB24ZtxN3NgMdW6KdCh1IRGXQbQ9ZgyoMJvQIdnPibQ9hBYUNuTmexxtKvIlws5gJ+KnBXPIpmwHFrCCbt+iZimPHdniwd4tM+7zWn+fV/+3nkTNd2r/366kyHypJsOGobeN7XLJqRwV7u7cPOfhKhJjClfxugV1L8MYCbxIw3Jplb7EEaZkJUx5u3+DnbjxA5NVcH3XZ6HT416tPH9DGylpxNlznge4tvrh9jF9Yvx8lLdq8kTjLrQEX/tQPcP7f/RWEkr9Jnu0Nx+e7g/tt/Km+QdN5QWFApVNwfGCdP5QWTs1KC2wtsFPCgJUO22emlag2DpiltaSuJbpWCM9ga8XoWocr//6HUb0OS//DVyGlwVcOR3tXtu1vChGFU69ymJsfUjw3j9kKsCrglz/+DqqWQIew0zOYRHPkxA5HGgM3x9MKtesjK4Fp1qibIVq51jQYClRpYWwpu3D+6AbfPv8lXtn6JmSjQqce0ZpPtA1y45ANCC1M6hAlLbsXZ5gdWGfz4Svi7dpJ8EWucrZWMM5CGkHJyA+Zj8dcfKfmyC8Jrl8+xbVIEIWw9C2rLIZDMhPQz2MnwxmXjIcB0bbAeKAD1wWlpU8SVoi5FCEsk0G8z3o8L4T4Hmvtv/yvHf6dUTkliNolDBMovIlGGPAmFTpUCG2pX7nE1Us/T7G7DkoQzC9y6sFvpek7Uv/eOUV6uqQ7P+aR+XWOxH0Uhjl/zNV8lkLHDjxtHPSkGgeovocsBc3rkC2AiGtsodiZJPy3XjwLIZ4G/jfgAUDLyGdy8Sade47S+NWA1W+StK4oZl41tC7nICXPfts5Xrlvka86+jr3NW7y8a37uVHMsJfGnJ/bZFDEbFZN/vwLv/8AKlZK76DytNNZp+j1OP8f/ur/7XEpZabqQ/8tz8Z/OayCumVcdaksIjJozyJyeTD7zC5fZvCRj1Le2kBIgbe8wMx3fjPhmaMgwU6l6LSeji20QnnaVU0WvD2P5qpgL5UwI5DS4WCFsHdl8hwzYMduMCsWAZCdNleLF9j46Gc5euzPUM9b6iOFoz53U2binLWbPVSo8addxeuDWfrjhCLzibclwoAsI3RkkZnEGzvCgqydctEHvveTJLLkH196P/ITXe75zBj57CuIOMYWBVfSw1nCCiGuAknjzILz9coD8o99jgtf/iKPvON7EXmNDt3781LwB5Jqzv1edyYJm8MmC+0xD923ysutZcIXY3RsOfHuNX7pa/4p7Q9/O18YP4aQlpnemLL2CHYU8ZYhn5VYZbGZR2uuIPEr5htjVvdmsLU4wFXfTtxZC68dr9n4zjtZ1lPbBOUk+es655XP/huOPf0dhE89xvhYgd14lT0hybsSExusdDfUJA35zNWTeJ5mtj1hMRlRTtk64KoNUSr8LR9/5EzI/Myy95ChOzNh72aH8VobL/9vd6MIIdrAzwJ/AvgxIPB7jTQIBbFfcfO9Hvb/y96fx+uWlfW96Hc0s3v71a+1+6Zq166+oIqiB6VT7ABN7KPEi8ZgTH9OTOI9ycmxSaJHb66ms0M0gghBEIkGQQoKkAKK6qi+avfN6tfbz3aMcf8Y71p7gyi1lWLVzdnP5/Puvd75dnOOOcYznvb3Cw3CwGhJYcIm4dB3lwwORJwYzmAROOc4Peiwv9NledSiFhQc7GxRWE/H4el6fdlSsd1fX0Gg2YHIi5TPFG5D1xknkXhaYy0tD3/NRuXLi5N4SDq77ab747IUWMBUKWv/6W3MfPe3U7v9VlxpyJ8+gSSAyhfWOw22EoAfA2ehGIaIwOJGGhz0jhvM5w21Zk6oja+LNWpnQ3lOS1URjL0F6iRUewpkYDGpZq4x4vTKDFMzQ5KwJCu1BxlZDTHzBWo1JNpylA1BvAFFU1A1HaqAaNOv095hySdWjzLIQ5K3T9Ho5qhHTmGK0tP3+h16N0dA2d7A96Wv1TA13xIer+UMrmuTzkiyGUGy5rChoFyLkPtLsiyg7MZ0/7TN8iyYhYry1iFH5jc4sTILwCPvvQ7xEk1jf58kqNhcbdG5IFCFpYwNKpVUTZ+sHQOliUlHISK0V1QOeMW4Z04KVG4RxmEjhcwNovLP02wVcOxt30p/JEm6McWeW9CVoLywwfrvvZvywgVw0Dh0nPlv/g6KIzVWKsXmY+uc/6X/TnZ+i9kXHsKVEWrseVzCnqN9KmP1+QmNfVukk9ImPZI0nmm67KsjxwCcc++cPE/rx5ZIDi9w9rfvJruwReMt348TGnd+g8+++6d53t/+96Tzjt6//09s3dHkvs9usPHYJt/9e6/nnp/+BEdva3LvJ1O6p3rMPG8fe/7BtyEbTfrnhjz5I7/Evh//ZlZ/9+O09tR5xb9+Ge9903v4oT/7PuqR4QvvP8Vnf/UL5N2MuBPxgr97G9e+/hCRR2+aEUI8CiwCnwF+xDl3+ms6WtsKbNLiivGgMjjIV9YBqL3wNv8WEZAcvw4EFCvrbP7OeyjPXQQByS3XMv2D34qs1UA68kdX2Pyt91CurZPcfJ23VvFJgTgssUxCK/I5mn2HHcBpMeHfkQUM3nk3g3vuwQyHXJhts/CSb8IcuIVuAsN7PsPmw5+m3tnL+ql7CWot9r782+nMX4uJBWff/h+pzx9kdOZJ8q1V6vuuYen/+iYqKzn1w++leeA4N64ewaS+PvnPsj/kiLxpN0cA4OfSzexn//SzB9h37TpPAzq1DPcn5BsrnLj7fQz75wjCBgsvej01fRvjTsT6z/0XZl99I70XvJzaoxHq7fey/uin2X/Hj7Ly0K8A8Ph7fh71+46b/vdXs1mb5vzP/FfE3pfwyIlPkBw/Rue73sD6f/gdzp84izOW+NgBOt/5NwjaU3ziiWue8QVcWSG9Fuy0XkuffQ9Ki0pLXKCoxzMgJI/f9y7a4+cRpQcJu3WqBNISpl/2atrTR0nrKRff9ZusPPKHXPuar6OpRtzzD9/N3m9/PgfedAtPfPgiw59/L7N3LhJvOGorJeP5kP4tOQthycY48m58T5FsfE130CcAI4R4O/C7wKdr1yzuvCgFdFpjeosJybnJsQrKtt/RHv7Ds7zyF76RZP8UQytYzZuc+/0NDv+f38vszCznfvH9PPH/+RgzP/Q9VBv+M727lznwi3+fW/deoNjy2KeF1eR9+MTP38u3vO1baB9sU2wOMH2/OJ6+6zzAEvA84EngJ4B3Ai951kfoMhGF8LHOyOBKiRoqnyRoOPTSLEJKNt72LurPu43owEFkwytIYaH1jV9PfOwwtkxZ/0//je67P8rUd38brqpY+89vp/nqlzF92yvoX7yf9f/yu9QPvsQrTyc8lcX2OTxH9SfO4dIU5Qpk5WietRTZLPPf/veIVIPekw9w5n2/w95X7SOKmqSZY7xyhul9t3DTm/8vRg8/wOkP/ibxD/1L2qsJKnP0Hv4cN7z0LbSLJp8ZvYflX/tjWgd+kM4NL2DrE39CVfl2wYHbIidlTu7hpN3VXujPiTCi/8G7ufDGb6S2fJJCCMQo45G7f4W9t34D09/xFtQDK5x+z3/h0OIiYX0BYySRLpla6NKt14jtFnJUEPzkMj/SuYNfeN5JXvmb34VenCU3mo0/W8P0B5jZMTd+70+SzjjSqQH1l97B4X/xJgJR8tS/+RO2fvf97P2bP4TrP/P21itCWtiu0a4SDxKhCossLU5LXKDQRDzvjh9FWDhz9+/x8Nv+Fed+79cITvXp5HN0Fq4jPSRpv6jg5r99nOjko7x+3yPMnnkITMXim+5geTyF2vciagsHCAeOZK1Clo6VOyUH924wykOCsEIFFrNQcOG1X7syDOdcH3gZ3uD5VWAtu7DFaD2bdA9NyiyO9dm61SvA1Rcb5KxnId33+uOYvXvZKFscbXdxDpqvvI1RdC3jcYf2K76Z0T0PITclIve3pvPmV/Kya8/TrDlqyndahNsF8wI2n+5i85LmXELziE+oPfCeEwDLzrlHnXMV8DPAbUKIg1+zwRLstE46K6DymIs4wApUlLD4j98KwMY738PZn/zXrP7Kb2AGA/TCDMkNxxA6QNWbNF/7crLHT4IR5E+eBWuY/o47qRYdnVcep3btHh/3/DLVCdvtoc+FxBrAg3yKu9z7ucu9n4+sv41Hz/0PhLG0TqQcro4xfz5h+smSQ/JGktosw40z6JEhGljCoM7R9ovonLPM7r+NqDNH9sgjlDWBU4Lpa25nys6iVEjnb76G/icfpv2Dp1mqHWeUbzB2A7CGi/YkC+xDmN0fE91oM/zTTyHOp2A9T/xq9zGSsEPzBS/CNgXcspf6jbcwvu9+9Nh7MMM8ojIehKaXxRRGkRvNB0/cCHg83ql47Jsu0gCE4NCR15AvBpjZgHgmZOrrjtFuW8qgTvPbXkX25NPYCKKNZ4lUDusHXGcGYR1qWCGKCud9JYS11JrzHL/lOwn6BePRKg+deC8XPvE+ll7+Rs5/6H0Ml09wpsw8n1Er4OnRHKfPj5BTbc6tTuO6IY3TkqHuoDJHvDpm9c4W7eMbOwthp64vU+hW8RVO+qsrzrlHgTcDCCGOO2MfPf1fPky4dxY3iUPun+qyeTDlPHja2TyhtIrNYB/VyixxXPLe5dso8nvRwTzBmkZlgnxqCozBNDZJ2h767/hNOb0y9mVQl1F1qDji63/6lTz0Ow/zqZ/+BIu3zvPCf3g7M4db9C+OAfYLIbqXnboA9gJfIzfeXfpV47OoshA45S1MZyCYX2D2+7/bd5atrbL+W+9g8z1/wNR3fitb7/4D8qdOYjMPuSZrviXW9Pqo6RZT7ZRxbJDSEs575sXLUbDEpTN4TsktvIQZ6b0WoRQX7AlO11bZvL5G8ZG7Ob36abJ0C6TAVDmsbqCCkmArI4pa2ERhQl9THbSmyIu+b4sVEMUdgm5GPl8jXGzjKsvjfzbNsQ3LgjrIRXOKI1zPCme5mRfv8kh4CU2APnwDvQ//KUlrAYHDrW7QH5zjC7/6L3Yq7R0Gdc0LaBsQpSTfilk/3wYnyDdjqlxz9v49mKY3qOaTIV9YO0J/vU54LkM16/SP1bEB6JGgeCxk7X++jxOPPo4dpyhhceMS3XOIKwj7XBkivRRYJRHbwedJAFo4B5VDlAadGpwwyMLQqlrs7dzCufXPs37XB9ECrv3e/w27UKd36kHW3//7fPrPjpOuBWTLn6HxmZi4C1G/4lxvE500GN9cp/eSjBtbfS4OWgh8TZ9UBlsTnr52l8Q595ie7ZCeXic8tJcyNaRVQCPMqbZ8LVlVKlwpMYXCpJpyM6YUMTKTyFwgTvcJjgjG+ytu6dzLGS2pz2uaqc+O1nRJKP+8dSWF5cBLljjwkiVEXnDPf36Qu3/607zx115HY6FG92TvtHPuyNd8ULbF+WwwRuCQvojb+vIm3KR0Sbmd94Vz89RfeAfDT36a7vv+GIDF/+Mfo+o1xvd/ga13vg+kQ800MN0+lYEoKKmMoljtEy5O/blTeK5YnZeL0AEySvzGAIjpKap4jZUj61z8jQ9w8wt/mE59P8nFEZ966tf8WgPy+YRsfUDWklQNSbxpKQddgv03ei5z4xjbHiYJwDrK5QFCS5hO2DoesOczh/kCn6LDDBJNR8zs5jB8kcy/+Bt4+nd+gdr1r0TmjpptMNU6yPyP/T0AVA7N1y2zttVE3QPJMCA+XRFsaaq6pRr3kYHhJ7/1v9M1Nf4J8KnTh5G0aVyQpCMQyjHa59hzd8X6rQH9uz9GubzG3rf+A+R1Ibfyad7//R9AVI4vQz/2F4pwV5CFE0Ks8ZdbMDHQBjaBEgiAo0CKT6Wayee3j4fAg/h95iZgBVibfMcRPOP7M0EsPOicm3vGF/JXFCHEceCbgXc5584JIfYDJ4AusAUcBh7FX+choAPcO/n4dcAGsH7ZV14HRPjYajH5jANO4sfm5ss+z5cc00AD6AMW2AM0gccnv3sIuNU597AQog28zjn37r/+KDwzeY7Ola/JPPmLRAhhgKeAwWWHZ4BZ/LXeADwM5JPjhybH1y97fhZ/3Z3J8wfxY/WXzaVtuQk/V7aAi5NjuzImkzKmt+Bj86eBg8AU/v4/iS8TPD85V4AEf+4Z3pNqTN4XANfi59Djk/feir/u/uR5E782L28w2jf5zqfwocxDfPF6vQV461eqA8U591V7TC7s9yYXPpr8/1+B1mRA7gWGwP3APwHOXfbZO4D78JPrXZPHT301z+/ZvL7J6/8Rr0yfAn4YP4H15LW7gLd8yffdBfwsPkveBz4AzE5eO3T557/0GD5J9DGgN/nNu4AbLnvv3wIemnzvWeA3dnv8/p80V/6Caz4FvOZLjr0Z+MTk75/GbyjrwC9M7u9bLnvfJ4FfntzzJ/Cb4lecS5e95ycn8+fIc20sgP145XjX5Pl1wAfxm8UG8KfAbZPXZoEPTe7/J4F/vT2Gk9d/FL9BdIHvBL7u8vkzec+eyZgNJ2P5d/gK6/XLPa7IAr0qX10RQtwF/Df3lXa5q/L/eBFCvBm/oF/2F7x+F19hLgkhfgBfzvZlv+OqXLk89/kOrspVuSp/bRFC1IC3Ar+y2+fyv5JcVaBX5ar8Ly5CiG/Au8IrwDt2+XT+l5KrLvxVuSpX5ar8FeWqBXpVrspVuSp/RbmqQK/KVbkqV+WvKFdUSB+K2CVRBxtrrPYF0MI6j9+Ih7oTziEqO4FQN2A8OrZ/CBACJyU2FFQ1Qdz09Md1WSBwmAkpr5kQ0xVpgCwg7JbbkOv+ZKybUCJAv1xdd7tU31ebCp2LFghGdoKwLibXb3FK4gKJk8KjWCmBcBOWSnmpNdZtb2OOHaR2YZ3nQJscc0L4hgXY+T5ReVi4ne8PJCYEmziKU+d3bUwAQl1zSdjxpGg4TD2inLLUo4LROCIYCGRhEXnhGzKsAyVBqcuaNAQ2DhDOUdY9tBnOj5uoHMJYRFGBMb405Uvbj77kecaIwuW71h2vGnWn5zs7U9g5oPTX5RSgHDITBEOLEwKnLmGj7rCbSr7ourbHRFjPmWc1XzKPQBqHKO2ltSoETvr1Vww2MaPR7o1Jve7C5jRhb8JDJMQOeeqX7YPYXgOBwurJHLLPIAzp3M642EhRJQLZqGiFGf0ixqQeiHr7Md4894zWzxUp0FjUecnS9zI+vsBoMSBIHWHfUNa9Bgh7FSozBJtjRJrj+gPscIQIQ0Qcw3QbW4swjZCt62L0t6/x0oUTNHTOUtBlTvv64oGNGdmIj6wf5/6HjhB0JUfetbWjfIUxiNIg8hKM4Y9P/eLXFmXoMjFTc7z08FsRpWW8FJGsl0SnN8EYqoUO+WyMiSV6bBnu0ejU4RTkHYksHdm0oOg4j9SuPdiwyny/r8oFtYsOWU0WQuVQuUMVDllY4uURNtKel0oKxksxm9cr1O1dHnnjv9m1MQFIVJMXN98IZYErSk7801v57e///6LQdG3C3/n0D6BOxix9qqJ+31k/wZOYcrFDMRVStBSydDgJJhJs3CwwNb9JRZuKsAfRlmP2nnW4uIodpX5DBZwxICRCKf+3NSAE99gP7+aQoKenOfDvfgSl/HkWeYA4HyNzKFsOnQr23lURrYwZHWpQxYKyJjCxoGxA2fRdMjaYdABaPHZo6dsTZeW5j2Tp55IsQKegx47amqF2IUWt9XBRiEtCqnbEn33hP+/iiEAwNc0Lbvtx6g8vY6eafkOES/iN4OfGxHjahs5M9zXpHwroPFkQrQxxWsJ2b7/El9xfJh6+z+KigGImYbA/ZP1VOW+68X7uXj5K7/5Zgr5Hfov6js/8zj99RuvniuHsqAx6bJCV3rEUpHGXdvptJbf9fuugLEFr3y/vHGVD073e8bq5c7R0xr5wk6ZKaUrfvqiEJRCGdpjhhKNYKDGNCJlX/vtRfoCU2bHKdkvkWKKHJU4JwoFFDwpcEkHl21nDLd+r70KJKpSnutgvyGetx8xslghtEWFFo5ZPeM8DjJFk4wATR35xlBD2QMaCYORIRgabBKiN4WRBBAQjS21FsrG2uzQnADYJoN2AjS4iDPiG13+OQ7pgYB1zquDV1z7Gh/Ib2bo2JDk/RdWJ0VspNlZ0jwYMjlps7BCloP2opHYB0iVJtZRjF1L63YjaqYDmnhZxf4QoSlxxGS6Cszjj/0eI3ca93JEvxnOYMDpbQdCHufst0doY0wgxkaBKBFVdUNWg6EzQ/aWDy8n4lMMYQTktEJXYURxqLJGhR1BzQjBG4WSNOqDOrSHGmqCoocpdXj8l1E73cYFGjDKE8Z4bgcYFChcoRFEhstLTBwVe78QXh0TrClFZnBJgHMJMPF4hcJHGKYWw1nuEAMYiSoMaV4RDjVwLeXo4RzPK6SrvBdhQPHu0xkIIsBaZV+gs3HE9hZncKDWBu9t2SSduti0MUkpkVuDqMb2jAftvOc90MOJgtM7+YAPjJKEwBKIidIbCKa6trXKXOg5WUDYDotIPliwnTJxasdtVBN51d4jcT35RGlygYALLpcc5aMX4UBurBVUM6eECXatIajkLzSFLtR4Hki1OjGYZVhGDIiKrNOMgZACUgwCZC2wgaZ6xBBNOqu2JJrIc2R0QBLMk6xLVu/J98asu27dFa8Z3HuJnFn+JTesIBKyZkGtqq3y8eQ35dIiphazelpDPxOz/SEb/OkN7f484LFlZbRN/6zr9uxeQBdxy6DwXhi16gA0DTCghDEApnHUIeZl/7AxIhZDCW6LPAR26zWclhNtB1pcF1FahcWaMMI6iE2ACT8RX1SDvOEzicLFBRgYdGpwDpRymkgjpMEZiMg1GQCkwibfapPHfIawgnZYIl9DoN2BlDaEVsthd/ixZgRil3ggINOVUQtnUlA1FNiWwSqBKh8ohHFjitZxgK/XKsfQxMBcF/n5PcDFEafxGEnocBhdK5DhHlNVOKKyKfIgkMxotJsaMnIRJriCg8ddaacKxE/90ikn84rI45eViLZQl6VKd7vMLXjV9lpos6KgxdVGQERCIikAYFI6WzFgIegStAlNJsumIaCPDxAEiNwhnJoHE3c+DmSRAlgYTa6/YhEAPvTUkxxnOesDpqG/J24qolbM01WcuGXJL6zyHozVWyjb9KP4iamOANAooU40V3gopNwTxpkPmZsfad80aopFgI0UwMtQu7jLPDZ5UrlxsI+ZbLL/w0jQzDgJhuS66yL7pLmdFg4svrZOsO/q3lPQPxuz7sGH5uyKKShGciVgPmsiao5iraASegmGoIvKOpapLv5HYv0QRCPkXBNR2WYSP59ZWHJ2nPOpUMZNgg8ti2jHY2OFaJTrytNVxVJKEJUWlcKGgFhUMsohCG0ylqEYBDgv5BMlfMXH9oWhIiqUWYbePGzxz8rRnS0TloDK4dkD/ujZ5U2AigYl9OAK88vdQiJJ4faJblMBGoQ/lTR6U3kPFWsR2zsA5v0YmlitSIHKDKvw6jVVFqCofFhGX4s3PVK6QE2my28OlwDd80c6+fdKeVlF+0Wdds87a8wJecOxxrk1WiD1yOgVqR3mGWBCWpkxZDATT7RFrm03SWUn7yYmlG0hQAkqD+OvtAV8VUcMCUw9I50N0ajGRoJ5VqOEYhKCab7N+c0g253DKIo2kHhTMRiNqsmBgYiJZEkkf/8krTWkUownyvqyXuH6IqVkGByWy0IQ9P3bVTELZ0AT9ChtIrBKE/d1XFlXD0T2W0DpVsPTiC2TOUDoonKR0EiUsT5+boz4UBK/YIPvYDDN/FnhE8kXFzAcS8rbATQsMULt5C3H/NNGtFZGqqCpJ2JUIa/zcqraTEBLcpYQE1uCcRSjlITd2WbYdpqpS2LEnSZx6MkX1C28lNUOc8HHfoglV7HACVGgRwhFGFbON0Q5wdCCtZ6/NQ6KwInMCtAUrsYHDhKDshKQv9B5Q2dBESYwbDK/I2no2RBYG16yxcVuHsikIhg7ds9CDIHWed815OqGglyMHHjRclD7mKewkkVgZRGV80tI50ArSHKrK59NGY4gi6DQRzhGMLNFGwKgKmYlGuNCPM8+qBSoFKOUzwJdn363H0BPWeRNDCG8VCJ9VFRhELaF32xzqzi1e0DlFLEuaMkNOgjYGiXI+bRgJ45kuheHW2fN8tHeMfAqclhRtjSotMq0g1EB1RZfwbIkLJGUi8PwSjrIVIsomowMN1m9VNO5YZ29thBSOWJXMRGNCWXEmn2ZKj5kNBgTCEEhDO0oJlGFUBIgYwkbGIKoosoDKBQwPKkyc0D5ZoXLvmmazPqRSW85plbtPayy1Zf1Ow/qdih9eeIzMOTZs5DdIIBYlU9ND0jBmdLrDm77307z/rjvpPCppnyzZui6k97ycGw9f4Jb2eX737hcTWbAIRmWINQopIdoqEYVPJu7EPb9MzNM9k0zt10C8gSQpM43uahpnLcH5LsJYKEqg5RNnod+ETNPiahVBWJFEBUnoN85h7tkpW1FGJxz7+VKGjIKQgXRkw9CTDFYKlfnsvJhsIDYUuNCDDO+6Ye5g8/YZxouCxXsygm4G1aX5K7Lc6xVrvRWpJ1abcaj+EBcGVLMNstmQdNpn12GScC1Ap15XmchTJgepJV4rCPoltWXN+a02M/EIF1icunLP7co5kZS8DAfUK0+EuFRKsO2+C4HQymdCAXPNXrrXKjTw1HiePA5oqIxeVWNfuMneYIsMCzLbcV9DLLc0zvGp+DBp22IjhVOCsq6Jx5U3z4NddleFwEUKUXkXXeWW3qGAoilpGcfWdYrgti0OdzYYVyGNICeUFYkqaGufNGvrMTNqSBAblsIemdNslXWWkiajKqRykrWowbm1KarYUjYE0aYkm1bISu3smPFGuesWxbZoZbnu2HmkcMwGAzat5pF8L7EoCYThQ90bOdjewr62x9N/eJQP7TvO33rNx+l/Xcz7Hr2V5j2w9w81j778II8Xh3AtQ/POtZ3vt5UgGOETeKMJs6SQO5n4y+chcOn4LktVKpwRMAwItwT1i7n36rb63pIWgirxZGrVhIRRhZYkKtDKkpWaWlDSSVKmojHz0ZCDyTpPyEW2VEJhFHFYUkYKU3giR1NKdCp2XFOVWVASkSQw2F0Namqa0aJk/r6C6OnVL8q8byt5pyWoCUinEFSdhNG+hN7hacZ7DcFCyuG581xb69ErY9bTBuMyYGOzQb2ZsdAc0k0Tuv0aVa6IzibMf94w84UxJ482KebVDpWMnYQ7nqlcsQvvahFI6XeziaITlUVUE0UmuZSFV2pigYKJFCoH8adT3N2eomhbbAAq8+Up0eKYudaQ6zqrvHbqCxwLVgmE5eb4LPPNISemE8qaxgkYLWj0OECNSz+4uynOA0lL64jXIZsLGRyx1M9JxgsBowMVN3a6NHWOFpb9tS3aKmU2GNBRI6yTBMLQUSNqNqcucxSOURxytpjh41vHeHprht6gBhdigkKgMoHK3E7gW06IyfSoQg1yVLz7YY1OkPLq+cc4nc6yN9hE4bghOs+nxteyWngE+dfNPsKcHvAfXlNj5TOL/LcnXklwdECrmdK9TVF9fcrX7TmNRXAo2SC3mqGJSIISIZ2ngIg1srrMC7lciW7LcyQDD2DHGlFIwk1JsubQvRwxGOPKEtGo47TABGBDkIXA1h3OQVFptCoItaGuC6SwSOGQwjI08Q6TZCMoMFaSBQajNGLsE7tW+4TNNq2KrUc+17u6m6Ph45ztU4b4xAZoha3FvpZ8lHqP1/iQYLnUYvN4zHA/FIslzdkeS80hkaqwTlDTBb0yZiuvMS4D8lLjrMAYSWkUlZGY9QhZCYopy+Bv9zm7WYfMECpDY2ZMsRwA4oqo0q8MkV5LXOiDsbLyN1ZWbqfwGwA7iYMq6Xc5JXFlSfj0KsHxAzgB8/dWVImkaEp610BVN2TDkBXbRArHXHgQW5PsDzZoiZxrWmuciaYp2gFh3zDcFzBOQ+rn3a4vDid86YgQvrA7b0mCvqB+0dI7KiEpyY32SqC2QekUsSy5LT7NfpUTCMGmhY6EgXV0bcicKjhb1fh4fpzPnDqEOhnTWPUFxtJAbdUXD8vS14WaSFDWJEUnpLY52vXSLgDjBE2Z0QnGBBja0tDE8IbGF1gxCcHEnzxVzvJvrnk/TxxY5F3n7+DCVpt2kvFtdzzE3nAL6wSZCyYbTcDYhrTDFNcLqV+06AmRnptUfAilcPbLKNHngjiQQ0UwFCSrgvpK5UtvnENojYtChPF1vzDJMTiBM8JT+ZaKIDA7mfzSSLr1hHEZEmlP+TLMI9Ii8GykyuGUQxa+DE7mPndhI4GNtF/Pu2yAyAKaTw12ypdENrHIhUDkJemRGTZujOhfX9FY6DEd5yjhkMJRWYkSEi0tmQnIjc8dxLoiUH5+KWnppTFpHuC0wwW+BOzbDj3Ed9/6WX76wjexljawVnzZnM5XkivmhZfjAqcEKjdUsf9FT/HBDkmV+yKXXuKMxaytM/3wHOf/YcWwkpTdGN3zbwnrBYdmN6kHnuZgrWjylFpgZCMWgy7X1Vb4ZHyE8XyNeLPCSdi8XiKrkGhzd2OgwjpMPcDU/FBaBcmaYzwvyacc5IrVQYPlfpNQL3HHwlmkcHx0eAP7wk2OhxfZowokgsJJRi5kVIX87saL+KMv3EjyVIQqYbTPYRZyXKYoTgXUVhy1VYOJvTVauzCibIU+y5jmuzomALkNWK+aLAR9WjIjFp4PfuC81dSUJV0bsqi7NGXBS5Onefk1T3G2apO5gLGNMEiyiT8lpf/cAVkyKGMWjq6z2Ztn+rMFGOMVZ2W/ONb5HNhILhdhIF6ThD1INixhv0RkJW5C3yKyHGHcJAM9Wexq4l1oQxhWO8pzXPhxyY2fd4kuKYyiZ2OcgzLTO2U9AEgfD6ytVgSDEjUqkL3RTinQbokeV8j+GKcnpX9F6bPpQHrtPKfeoGns36KJT7zlpb/eRuSrXIyT1KT/uzQKJS1pGZBOxsdYSWUkeT+alFj68Xx6NMfn4/3c0T7FewfPY7xSZ9tzv5K48JVZoNsthZVFFhYZyEnLodtRov4EtjsCpC+glwKsI3zqItlwHz/z4vdy7+gQ733kNtqfjJFP1XnqxhrJgQH7Ol0aQc5y3kbiiGVJTeZcM7POw3tbdJ4SJGue32SwX+26AnVKYCOFSg3D/REmEqjCkc5PYsSFYPR0G1kIcgEfeXwalQuKhZK9+za5cfoir+s8zKFgnVgYLpRTPJUvsJw2SZo5xY0GrQ1HZrZohhlPb87SlU1sFKAKSbxpqBKJm41Rue+0YG1zV8cE2GnHHduQpizYtFATjsJJYmEwTtCRBZlTTMuKgZWcrqbo25iT+TylU0xpH+JoqhSJpRP45412xmw05BO3O870F1n6dIvw1Dp2ffNSq19Z+drPy2WXjVJhIFl3hH3fwadGJaIy3otRChdoTCQxoQDhsIlBJhVxUlCLfNxzc5zQjHLqYUE9KLi9c4bZYMDYhuQ24HPqIBeGLcpCU5YSWQqEFVgFVc0n14SxiFHmk1bV7pcmuDi8dN/CAFGUlEtTnH9lSHN/l9E4IgwrphpjlHCeadMoijIgVIZIaaRw3gK1knERMB7FWCM8W2slEanyCrQUuMhSOcmc6vPweC9SOITxobHtVutnKlemQAOJrQWoQbbTvyys77OVWu5YnU54VkSE8BaRUjgMdjBEbAXcEF3kSLhKel3IRx++naVPZyTrARs3tHlyrslTczl7ZrswDXvCLab1kBdPn+ChPXsY7omprxjiNU027TDJLsdABdhAInND0RDo1JHNTTqHuoKwpxgvOcrmpO2kU2JShQgs/SziC5tLzAQjHpT7mQ/6nMpm+bPVw4yLgEaSs1lorBU8vTKLW4n9b9YMRccyOCAn9NIOGyiSC0PftRHHuzsm+OkRCMOU9uyixgl6k86LaVl5a9QqYmHYtJrlqsly1eZcMU3pFG2Vcj6fonSKA9EmUljGNiKWJYu6CzHs27/FZ994kLsPH6fz0H4W764jzlzEFeWO8twprFcKsXtt8IAPv0Rd3wihM1+76Lb7/62DKMQGEpU79FhQeZZq8jxAK4sSlsoojjTX2R9vYZykqTIuFh1uqZ0hswGr9SabWY2qUFBJRCUQFX6eaijamrBXeDd5MLqimsdnRS5rz2aSbbftOssvqSOPD9DKUKt5t10JR6S9wZTocqeipRnkXBy3WBvUcU74RJ3zlSBSuMka9bopuaiJNhX3L1/H//3SGoeaG4yKEMSlPvhnrw6USRb+chd9AmbgB4M/5zYJIXzXgBDI6Snqh3vMyQqo+JG5j7H4PT3eoV7FzMMGJNQuSIZxQNoOkMIyrYbMqwGxKFmc67G1mBD1BI2zjt41MJ7b3YSJ1d4i18OCeCuirHnX3ffVgkmgmK/Yf3Cdm6Yv0tQZn9/cj3WC1UEDYyWf3TxIL4tpxxnDImRltU1nasRmr06rkfLthx7gXU8/H/1UjXQe8sQiJ/3yeVsQ9Xws2kYavTnwJT27LEo4AlnRUSPOVy0skv26i8QxdoKBDRi5kLGNKJyio8Ys6h6xKFmu2jw83MuZ4RTLgybDQYzSligucU7w4r2nOFZfRuHYF3f51jvu4/FrF3jsxj0c+oMm8ccf9vFQHeAqX/bzpTgjuyHCOIKhRZbWF5Ab57006xC1GBNqglGFrHyvf7wWIKzGRILR/piT+wPKNOCT9gjH51bITMCwiNgY1XivuZV0K0EOFcKAMoKw6wvSZXkJhGS0KAmGEbVeimvUYG23Neglj1XkBS7QLL9sivzOIVP1lLzUO0y81glKo4iUV6L9PGalbLLVqyPOxQR9QdVwlB2DapWEYeVjm06gOhmcrDPziCFZznBK8lRrH1MvGJNXClGInc6wZy2JJEqHGuW+aPWyxn3hHLLyCDI7cllBvRACAk16/SLfd/RjO28JsLy4/iS/ef2Lyc/FRBuQLsCeQ+u8Zulxbq+dZK/uEgtDILrcNH2Ru6IFekcVzTOWqCuZJHR3TYTZ7m4oaZwes/ziJsI6wgGYGAbXVkwt9mmEOctpk09sHmZwocmNN5xFCMcwi+iNEqpSUVYK4wSuUGytNsEJ+sD9vX3Uo4LV6w3x4ojQSMoyobQSYb0CjbrG1xIqCXaXrXI8nkFpNfePDvL+EzeTXmxAo6LZGfPGww9yINzgYtlhvWywnjf47NkDFJsxMpc0T0ia5/wm0FDQtPgkWVsgKse94hY+fOdxfuD5n2Yp7DGthyyGfV4wc5rfCV7EDU/M485e8AnMCoRSCK29JbaLIgyo3HprxzpfsRIHyDCYeHMeS6G2pnFSgYNw5NeWTiWDqo6IHaNSslxrsd6vU2QBdAMapxTTI0fZEAxuKFCxoXAxeuyTI2EfcF6RDvdo4pUQObA+vLabMuncE8ZCZRg8b4nBS8cstoeMi8BjQ+QBwzxmywqckTs7oepqwq6kuQHxlqVswFgKTCIxmcIGXoFWuUJuxez5jKX5+BYAxUIDN1VwTX2NBy/u8e77RHE+ay68MAYxniQorPXB1m1tbUHgvrgeVAi/wwYahGDt1pBX1h9DCYFxjrq0dFzK9930GX67eiHOCvYubfGNex7hpuQci7pHbTLra6Lim6ce4E8OXA/nIvKWQGXsulkhja9FtI0YtTkk6jVIF30hdNkAAstwHPF0GmEnpRR6LLl96gzWCZ64sIDpByCgV0mwAlH4SaKHklI4ntyYY6qWcsvNp9jMamSVpuugkglOSqLu9sL0BdJuY2t3BwUonSKQFZFTCAEz90qmHqtQY/jo4Zdy4TsL3nT8Af7gU7ez8CnB0Qe3EBsrPmbuHC6JMNMNRgdqDPco0kUfMqrqDjdTUG/mPNTbw6tnHwO8wm7rMdcdvcDouj0kK2sgpc8bzExjZ1rwRLSrY+IrJybgF84hjMNpgavFHr0s9MtRGN/7nc0I+kf9RmxrhnBD0Tgl6R+3aGkpC41ajlAZZLOOdAHsnpQwNJTrCUHlOdWFAVk6rPYWqXACkwSo5S123YcXwifPyorB7Xs5/xqYbY9wQKj9Jjo0EjsKkJlEVqBSQbImqC9bom5B0C8QlWXzxuYkmQ2UEmt8C6/oByx9yhFtlZRzdYK1EelswMyMXyfWCmy4Xc/+LFqgOOfbpaT0CCfbyste1r7pLksibVugtRquWSN//og5lWIcO0o0EJZbkrN8/XVTaGm4pXGOQ+Eai6pPZ5JdKyaxs3k14M5rTvHAyeNUdYg3/I676zKxvF0tmkxWqOpQdCwUkrKMUc2So4trnJTTVIXm6dEcT6/O+oiH3E58SERgfelJ5nFRqfz/QjgaQU4jyBmWEc4JNgqNMQFlQ2Fiico00jlkvXaJEXuXROIYmpgpPeL1hx7h7uKFmJpGpSWNL6xRP7RE/5oYPZcCNa80PU0sLs8RgUZtDmkWhsYpiQ0VJtaYRJLORAz3xtx/XUyoDLe3LyGP3di+yIePH6T26RARR7iiIL92kdXbY4qVXW66uCzUJSZrRmSlL+FJIkxNY5VEZZb2U2OCcUy8KVm7HVqPa9J5X+wtx5Jz6x1sPyDIoEogWfHAIepUTPOsoX9QoXL3RSllE0/OwfoWSh8+2OVwj3PQG2L3zLLyAkU4N6SsfDY9nHTjOTeBdxwLok2fRA7GhrwjGS2GTD0OydMb6Lzhy74UEBmSpKCsFMGypH5uyLmvb1BMOcKthPT6jB/c/wVy63MMwkxcePEsZuF9fcQlnL6d2MWkDtSpiSIRAmEnMGJhgG3EjI60eNPxzzByvv0ywlE6sE5gEByurTMwsY91qj7xpE4wcwqDIHOKvo151fRj3HvsADxeQ48g2OVOCqxDjQrEKMMlIcHYIktF2XDYxCLqFc4I5qb7jMqQG5ZWqOmC9azOXHtId5yQCTAjDYVEJRVVYBEDNdkVPfSZlpZOkJKogk1ZZy2tI5XDhI6y6V1clSpULXpOlDFpaXeU6MWszeCApHnO9y0X+6cI+46ZYMT3XH8vv3Pu5bSfilCjCPICjMV1e4h6HZQiPTLF1vGAbNZRti2i8BaayxSn+1PMRwMWw/5OcXk27RD1GrbTRA5GrN4eM7w5h/ouK4tJpy/gjQ7wLYqjMXbPHGVNk00rgrGj2BcyXhQe33MupR+G3jNBIAvvlqrUf5lpGOymRmd+7W1dp6kSqC0zafP1ltUO2DJ4DNksv9SptVtiDCIKWXlRB3d0jDOSNA+oT8qUmlFBoCzDOGJcj6jqIcWUoOzA/OE1ZqKMJx7fQ+PEEqNDBjmVopQhkI4oqKiMBAGrz29Q3jqk6ke4fSVvuenPeE3zC9wzvuavhXZ4xQrU5bmPaRqPiP7l0KAvt0BdoHGh5uw3wk+176drY6zIGQCZu/TzAxMzGwyY0cOd4waBdYKRCxjZiLGLGNuQ1177GH/UvwVRaRrndlmBOnzvrpS4KKCsS5zwwMhoRxBVtBspL5g7Q2pCElUwqGIONjYZVRFP2VmKQmGqAFGvaDZSykQxNHXkWIER5LkmLQNGJtxREqEyhFFJVkqqWDFaVB5aDy71C++iKHzW+PPd/Ryub/D7P/pz/ItvegMPfuJacFA1LbfVT9ORYy68vMMnBrfSPN1AFY54oyKd0xRNweAgmKUcoSpsrhDKkbQyhHAEViCFY1DFzAQjAipSE3ok92YNlMDFEYObcp+RlbudRuJSqGtHkUlEvYaLFFVNkk9JiqZ/vWw4immLvBijjaB+1vdz28h5z0T4UFG4oSimHOODhtrcCGMk+SDC6RBZ+NZEk3ig7rDLDgaoiKNdD4EBqS+EcAAAZHZJREFUDO7Yy+btFYFwOCuR0lEY5VtWo5RGIydRpdcFJmQrqwHeK7vYb0FiGF7r2Htwg9lkxKgKyStNK8oYBhFnjkdk6yG2GxNsKsxY8dhogZfUn2RO94mikmzbWN9+PEO5QgWKV9XGeBSUbdfdXepGEuayAIK1iMowOFznO194j4etc3pHIQIMbMLYRigsbZUSixKDpJxYnsCO8iwmrQKhrGgsDEmHLcbV7idMRFFipuuYRKNTb4G6wCEig5S+bm1QxcxHA2qyIBAGLS3FBLnVWomoGZrtlAPtLgfqmzzRnueJcwsIK2jWM7S09IqY0iqs84pDa4MMDTb2oQwT+U4x9xxQoALHwMQcrm/QLWsoHLe1z/Hk9XMMT7Q5eHyZm8OLPFnOsi/eYs/Lz3HyyCxupInWQqIulDUIBhBtxTgJ6aIl3jskCkqUdNTDgoXaAInDIohFRSRLDzwcakRWUs022Lu0xcX1tu/OeS6IxcPvbQP/xsGlBKyFoiM8+rwCNfRt0b4MZ4K3K0COFHokKKcsZoJMr/uKsa2DdohUUSUO13DI0teBykkpghOe1sJONWB5d8fERQHLL1QEzTFVoYmSkkAbjBUEypAZTU0X2ElmJ5QVQjh6eUxeagb9BHKFbhVMJ2Pm4iEtq6isQktDP4/Zt7DF2WwWgHKxhFzywMpe+rMxHTUmDioymIQfn00XXgBS+djJNmzU5MYLY3FSTRJL9pJNbC15R3IsXiZzGoUjFhVzQUrXhnwh20/PJJiJbxNMkkYFCmsDMhfQtzGZDSgnn49kxeHpTb7QS8i4gs7/Z0MkuCQE69DdHF3XRF1H0Za4aYvWhkgZSqtQWEqndnbTdpCyp9GjN0pw2lAZyVpaJ1QVF/ot3Fijmr4MR0mfONiWRJe04pyi0BSB24EXLJshoj4FT+7WgHgpnCY1AZXzZSeRgDtrTyOPOOJrSl5VfxSLoHSaO+onmNYj7m/s5+n+LNF1FZWTLPeaWCtJkpxrp9Y4VNsgkhWlU+RWUzpFagIaKqe0fsNt6QxaFaYeIqVkcDBmLlnmfDGNfQ5UJ+zIjt94CT/XBl5Bmth3tDnt11BVt6AdJvLuqG1WqC2NTgXlFCxcu05vlJCu1tB9hY0dNrZUiVekKgNl8EnX7Z+vHDYOsNHurp+yLjH7MzASITxAdO40LoS0DGiEOZWTpCZAT0jEnBPkpcZYSVwrCFopi80BsSoZVSFSOOrahwASXXKgscXyVpMyDQiSklIEjMcR940PcU284tkBtnFAn81CeoREbFs3EwvUTWo/hROTfuSJe2DdJM7jmH54zE996lt41Y2P0StjXjb9FHuCLR4cH+DzW/u5vrVMS2dsVXW6qk5dXorhdU2NkY1Ql6XGarJgJhoxNTNg0+5uHZNTAlMPfRw0K0lWJMLFlPWA4ZwmF44qkUSywiDJjSRRJW2d0sa38J1Nptjq1SlWQ9JGzKATMRrGEHk33VpJO0wJJxNoM6+hpSVQHkBXjaTP2nYk6fSEKeCjuzgowKgMeaI/P0GfMoRCcDTY4tr2vQycZk5WDJxgRg0pnCKSJccbF5mNhrRVikUwu8dD/ClhkVgGNkFh2awaOxYJClIb0q8SGirHImhPjRgvtWk9sMrya2OOBhl6NUCmzxELFC4ZH1JSdmKik2sEs0sUDYEoBcQ+DBQspNSjkv5mHZVD/5jh2KFlznXauG6baE2xNt3kln3nuVBrs95tYMfat4BWcodoTo8FqsAX6Wc+iVS0Q6r67o6JjRxK2Uuo+kb6pFFYISfx/8wESByhqtDCz/tW7HXEtjfmrdWAwiikcHTCFC0Nka52gFYoJarhqKRjpjMkEIaBiclKfcnqnOxpz1T+ChboBDbfeK4RF6gdl0QIfHHwtq6TAipDsNzjhp9yPPaCm+heI/n8sYM8/+hptLS8cPoU18QrlE7xaLqHC3KKhaBLLErKnVioL+vZtlLH1gMNLzUHSAFnrugivrpSNgQnviNBD+vM31dRO59iQonTQCmRyredjUxIVMUksiCWJVJY5vSAgYl38gk0SzpTIw51Ntms1Tm/3iHtx1S1glNimnaS0QxzjJNkRcC49HVyVviFIStI57z7t9tSVYoTK7O+MyTTcABqAjIHdVFRkwpjDQtqyEPFEo+M9+xYkwtxDyUssSjpqDGZC8hswJzuc66YIXeablWjX8ZkRu8oU+vm6ARjrp9d4Z6Xdbj48gVefvwRHttc2O1inS8WN1kjk/BXNhuQzewhWckZzyaocoJy26rQ2rC/0+XcR6YwMQQ9yblum3QUEWko6w51IuG+3mFaSwNecvgED6zsJU1DylGAk45gMCn/yQEBUd+Qz8RcfHGAfWK36wB9335Y856WswKk22nZrJxEWemRp6ykwqMrBcpvrFkVYJ0grQKMlZRWUlSaYRHRiVO0MKykLZr1jM1+hLUCHVU8f+4ct9ZO88D4IHkW7GClXql81dp4hHOetGlCHAd4C9R4qH03GNB49xmaOqD7Xc9nz009XtV+lGk1pHSKrqnTVik9kzCth6jLIrnWCUo8Is/YhlRWooWlE6bIXVYWTsL08Q0qIxmszBBtaLIp6WNOY0nZ0LiaoLIS4wSRrHZ6vC8UU5waz1AZhRlqRGyYqY85UN+ipksubrVAOKpc080C8qZGtj0STWklWakxRiKtR7UBXz6lx7uvLkQhUI/WkSXEFSy/StEUFYGAupCMrWHsBD0bMTAJB6JNxjbk05uHef/jt/Cd13+e2+unAB/WkdK3cjZURs8kLKdNVsZNikqjpEdrH1chsu5IVMk3vOx+JI5IlpwNp+hVV+aaPWvi3KRqxe4o0CoSZNOSZGWS4HHCpxsyRdZt8vQDbeqpw4aC5mkwF9u4jq9XDBA46QHNR092+HQacsOeZZ40s5SjAJlLnAI1Aj1yhENffrh5PKA4mEO124X0QClxVnjl6bZxFATGSrSudvCBAUJlsK6kcpLK+gfAuAwoKuUx36VFyW14v5yzwymun1nl3swr0DgukTjqosDiIe/0Fbru23LlCtSYS/GbnTKm7TpQ+UXHt3ngURLRaCCLEpvlyAoWw77nfre+b9sgmNZDNqsGa1WTOT0gEBWFUztJpe2HFI5AGnKrCOXutpfIAtbXWjDS7F02E3R+CEZQtsWOMV5YzUrawjpJbj34Qb+KOdWfJssDRGTRoWF9WOfu8RHSPERrQ1FEiJEHQsiUZVPXCLQhKzVlqXGVRBa+oN9q0ENon9z9Vk5ZQP2CQxgom4L/uPr1/MTCn1A66Do76YUPMAj2BxvUZe5d+dmSJz51iP9+8qWsvabJC1on2arqBMIQyZL1ssmZdJrNrE5vnJBlATiBVAbZcWzoGo0gpyMLchtQOsVcMuRMw+16zThsZ3ovWyNMaGqkx5rY4XIv/QYsC4Hexos2YEJBlfh4d3q4QG9468kJh2lXqKdrPJDuJ0hK35SxnXuaYIHqzHmwEryC3kZ72jURgBE78WkhvSazE2uyIQ164oJradHCeg4jEyAnvfGlUYyLgKwIqMc+mVTTBeMqpF8kXNxqMROPuH5hmcfX5rFWciFtsWqaRNJjy7rL8q7PXgx0J07gLrkhsMN0d3lSCbhU6yYlrhYg9SyyMnTuXeVtf/wqrn/hSe6cOsWUHlE6hcJRUznWSQYmpiZzxpNsfekUpdVkNmBkLnWUbGS7S+ErS6g9FlE2HONZGC56qlhZ+I6JKvNgrpWVdMKUus5ZyVsUVrGV11jtNjCVQiiLVJa81BSF9ugz9RRrJVkYIgYasRHRM5J6O8VaQVloXOnDBVUMUc+RbFiS5ewrn/izLAK/WLc57T/69DG+Y/pzKGHpmjprVZPH0iUGZUyiShajHjVZ8NhwibAvMCF8/MO3sPayBo0gZyHq068Szo/brAwbpHlIngXYfgCRhRhWNlvEE4tFRo5OMEYJi3WSa24+x2p99+lf3OWF2hM2hyB1O1S62685DdGmJBh6Xveq5gvEB3sdplNBOUk4JRZZ+EJwJz13fHghoJiWiFJ6zvgUcHj6cbzXlM47RLz7Gy0T3FKYqA7hy5MAAmkZlyG5tNQDn4nfDtlsPwJpGJcBaR4SBhXjPOCx0/tJzilsBCZ2hF3BA50GR+/0wb4sDamcmsTSJ4rbTvACJFyJTXblMdBt63Mbxm7y2NlRzZdYoPISBYgLA1yjhtzqc+S9Ix6Rh3j68AytWkZ3WGPPVI+vn3+CKT3ymJBVtBPv7FUJ/SreKU/olQnDMvJIKrspAhrnLN1rJeMlX7tXP+d3fpWB7GuqGX+TCqtYzloURhEqw3K/STkMoZKEUxnWCvJeTNjKiYKKXhpT5BqswNUNsqtxfc1YR4RRha2E370DN2nprFCF3Wlo2E0xgQeuaJ026Aw4VeN/HLuVtk55qLeH+0/tJ348Jup6IJSy7vnuhQW7ANnhnMajEY9/5CiNO9e5L98LsIOHWeQBdhh4cjErMFYg44qL3RamJdmT9CYJKDg1mqZyz6EMPOwglSEEjVMjzLE6TvhssA38gva9824HYq1K8BihlfCdak7gagYTCfSWBgHVbIncDNED5QGEd1CG/GZmA4EJBfrYgGoc+oTVbooFKoHJFWrCOuqcoCgUAxURhyWBE6QiwCrxRay1UjjGZYixkiQqcE4wXq3TPKGQJZgSZh6ytB5aJ9/X4ekDc8x0hpSlYlB4vNlelfjQAZMWzm1A+GcoV87KGUeQ5RMlai+1cX7JjzvpcQh3ZJtu1BgINKqXEm41iI5VzCRj2lFGaRVnsymmGiNy69HHS+tLVlIbMqoiikkdZK9IGOQRo2yXFSh+4NtPOcZLvtfYhl556tTTMlSVorSKQRET6Yq0CigzRVkqVGIwI0G5liAKQetIj+89+jlKp7h77RqeWNmD7ipMw/rdul3QaY8ojSIrfPjDSR87C3uFjyE9BxSobpQMr6nQqaa+Ygj6ksd6C3SzhGEWcXBpg/MX9jD9mPVMprEknZIMjkB04xaLUcGKatP8fMzoz2ZJ91a+BtJBOJ0hpcUoh6sZ5EjhYoezgmwc0g8jNos6hICBtArIKv3cqANV4pIjp9RO/WfrREpV0zuUvtvsA7L0j8A5xktg6wYRWGYObLF2sQ3KEZ0PiTY9/7upK/J5Q7ApMcpT5sjyklUlrM/CFyeb6G34tl0UYUEPFZUEqyxCAQ4sHjw5mPTDF3nEAE/nEqlqB/8zNwpjPe7nXH1E+2hGfkjRjjJ6eczyw3OYaI7xgqRW2yItAspxSNry+mWtaGLLS5urmNS0P1O5IgVqYoWZbaHOre0ozZ2eXjtZ4H+RSDFRsg5XTxCjlOnHDBeP1zgytcGx9qpPJpU1zudTRLIiswGVlaQ2JDd6Uo6gGJYRwyJkmEWMN2tXcglfdbHaWwmtsyPqF0MG+0PyaQj7blKXKUg3Y3q1mFpQ7iCI97OITiPFWMn6oIPu+5uYpiH/7akXMOrHyPWQaChRGZhCUrQd7c6Y2dqYtVEdERlcqrCJHxeEIDi/gasnuzgiXo7EG/yLV72L9958O5/79DHqZ2Fl0GS2MWI6GfPmvZ/kF8rXMjo3j1WKbNZRLFboeslSc0DlJEk9p39MM32/QlhNtmCxNYMxvrhcBBZXSmxodzpzZGTIS023SJDC0i1qGCvppzH2OdB0Afy59kkxWbOy8jHjKnZUHYMsNSoTJGuW0R7J7S9/jDfO3gfAnmCLx47s4cboHD/8+R8gt4Lgs00aJxXDgwZTczuxPBtMIO0EBH2vkI68z3DxpbVLraW7JQ5E5ZOOLpQTXxqchUJoMm0IlKGofN5gOzlkrKQwXska54vuI12xp95jI/dhvak4Jbu2y3KjhaznxEYyXqsjU0kxq8htQK+MoZRfpDTdFSBUXZECtYHw4MGVAWkRZQXbnCpfEv8Ul9WEYu2lwntrITdcfP1ejn//YxwSzitEE00SBRUX8zZaePy/1PhC33EVYhEMioheGjMcR5TdmOS8BrhOCPEW59yvXcn1fDXESV9/maxr4rM9olUNFlysSRdrqEKSLgm2enXSpNjBJ6zHxc4uKVO5gwJjT9ewfQGLBtMwOOk5bFQmqLobfOE7f46X/8GPASCVg0aFyRVVorGhxMXRDqrPbkogJG+qb/KG+v9kfOAPeaSMKZ3mg71bya3mWLDKdxy4j3u+6zChNCzFPc5nHdqBz5hs5HWyuiatxQz3K1onHWVLYOtgC0WtlVFpzw9UpgGulJB7kuxcBpzpdhjW/FyxTjBcaey+u7r983+Bi6jGJToL0akkOT5gaFqoTCFLgdPw4MU9SBxvXvgEHx8exzjJetnEPdgi6kO66LEwseCmClw/nJA8Tjb6whfjq9yyfktCOv/c4I1yEh/DdT7+6azEVT47PrKCMPLdR0IbjJUMK01ReU/UGIm1gnrTx0if6M5hnWAmGZNWnlwOB+pczLl3/z5hrcPUN70erXxTS3/ixW1vJN4j+Cq78EKIU0AtmtvjD1jDufFjXOid5AXH//YXUSU4NcHVu1x5XtYBIsqK/PAsr/7hT/Pq1iN889GH+Wf/42WUzSUi6U1zi2BYhYwnj9IqxmXAOA/JioCsG6N6isaKpLb8tc0iCiFeBvx74EbAiDBkuHWGRmMPqhEhz6wi6glW1giGFWU9ROaSKtOU2lBPcpR01IKSepCzPq7hAkcxMxnEyFJOC7CCaCrDtgXlOKQUjjiJueFdP0FqC7/zFtKbFZm3vqqaInwOtHECfOHRgo98POW1r6jRkJJbw4K3vWuDD/3OB/j2t71ukn3fpD2b8sh4D3967hijcUSSeObJw50NlHDouKRsa4YHFCqFUjiCpCQJS3qF93VdJZBJhQsF9ANsqrBxSVZpalHBxZUOQVddEUzZsyHD0Qpb608y3Trq14eWXNi8n/Pr93HHzW9BWEeVCPTYt/fivOUIUD/nKIYtHohb/IPgel8gH/jyJadgvMf5hFImsa0KoRzkvsRJVsJn4UtHtJWz/MIGg+flqOVw93vht5NqDiikzztPkjlYsIOA7sNn6L37f1CeWwUpCfbOMf3930x4eP+O17uaa9ZkC1sJXKpZzeYQFQRDSWcNop5ldYK4ZGLHzTMXAciqACax4m2wF3sF9seVmCrKDofIvLqUXYcv3k0rXwf6F4kHkZWceGPIv5u6h/NVx5+EMNR0isTtsDXmRlNYzThXbGUNRuMIMwxQfUVtQ5KsO3RqKWtfO6tCCNEC/hD4u8DvAaGeaYxdFCDGIIc5tttDOovY7BKms5hoGj0MKKccZaHplZpazaMqaWnpJBn96dxjEuYKGRqcErhKUhaaIKyYnuujqZBaUAtKjJWTpgXhicPEtovmE3zPhRjottjJCpWTLT4ShrYe8wf95/Hb973IF00vR8RrgqQCPa5RhoKn8xmKlkB0HDJxFB1LuCW9q36ijr0pIwgM1kpsMkk+SIdtVghtMUZ6dkonoBuixmL3lcXlIoS/TwLA4aTAJt7bCvuO7qkmqhST8jSBlI4qxmeWI+dJ5yKH7ktvYQZuB53JGoHphQSF8CVeua+IUBMakcGxCd3Jzj+7Kz7R5XFwHYB2PjNvBXacsfaLb2f6B99A82U34UxF8dgpRKChFxBu+VKv7QoEXUK0JYg2Hc1zJWGvwCnJ6u01bOAwiaNz7SbPb51mtWzRijKiRk4+LUF6a19dAZjZlSjQnyuzwc+aQR/p7E6/u6gsw3ydx87/Mb1shVDXuHb25SxFR8E67ll/L3saN7Avfj5Yy8naGdJf/y0G39LhJ777BAD/9k2fRQnHa//VC6jPhHzwX36Wo99xE4/+7sPEN11D+03fzuav/A756TNgLO32QQ7d+R2Mj8+QT39NV8UxAOfcOyfP02j/fmbsIme/8EGyrWVuab8CN07JVMbHn/gNXqt/gsbZOR59+68SHTtI8dRT5CcucuyXfoRH/8sHaN6wh5XPXiA/t07tpsPs+fE3oJoJbn2Dx77vl7n+n76GJ3/7z6gvNbjtX76aD/3Nd/Bdd/8QG6Maw49/nt4HP4wdjFgO6xw++jrixvUMD9Xhc8wIIR4FFoHPAD/inDv9tRysbZEIlBCESLQQHAlX+bv/doat9/48VTogqHdYeOk3MTd3M/WLBRfW7mPt8U/SjBa42H+YoNZi5g3fgbrpWkQuOfe2X6Z2/V7Sh0+Qn90gvuEwC299E2En5uy/+y3iG66j9Y0vpgoUVa64+G9/npmv+8bnhrLY+cNdYrGd9MOfPn0X5+69l7IYETQ7zH7966kduIWqDpuPfpaNP/400d699B+4F9VuMv0DbyC+/hrESLH8H/4zyb5DjJ9+knJtleTINSy86btRus7JD/wqs1PHODT9QpZf2kZNjTn7v/8S01/3+l0bhx2Z1L16jFQQqcRFDhcbcFCurYGDxk13YDOLCBXRjcdw/RB7apMzv/97lBcvIATUn3cN7e95I+Vcg7SrGfZXOfeZd5EP1onT6xBG4rTjlrmLBMIwrCIaOufQ7CbltK8v72Uxm4/NPOPTv5IQ8udkEHFq5VO4srrURVGk3HvyHSw1rufrj/wYty59G4+sfIhhvj5RslyqG5WS3lFNW6UEouJHfutFADzvxf+IxV/8Wc7f9Coe3NzLaD3j1JmEvT/xf7D0ou9l5rOSg/Hz+bpjf587XvfPkTrg5P3v84Nuvqar4gnACCHeLoR4vRBiSuUQb1XIrIQ083gBYYCbsB2KzR4zD40RpWB8z70c/PHXc+S3/iVFfYGs0lz4n49x80+8mle+54dpJCX2nb/H1+1/ikNTnlnTPvoU/6/3vZZX/uLrd0p4Tg2mGW4Itt71fhZ/+C0c+99+lkPf9/dp1JfQa31GD98HsAR8OzAH3A28889fzrMr3hPz51w6g8CTDV4brLN4JOLOt72Ro//8Z5j5+m/gzJ+8g3LYQ2UGlRu62UVq9Vle/sJ/zsGjr+HC7/0mYn2MHvnwRv9jDzD15r/Jtb/xjxFKsfprf0TWi2jccifjux9AbIZUuaI8dwHT7dM8csNzywK9XCZ4Ekl9httv+xFu+NGfZumW13Lh/e/AdPvIAqqGI7twhmBmhgM/9X/S/pbXsvbLv40ZjX3+0MHg859j4U3fxcGf/FdIJ1n/wO+jM5g9fAfrpz5P0dEMD1iqc+cxW31qx6/f7SvfceG3q8xkKTz5n/H1ocH8HEJK1n/7d8nufQJ7voKNCN2XmMgx9z0v4fhv/kMO/OKPk18YMnj7XXTuD+g8WHHqj95G/YW3c+Cn/w2N47cxevBBRORRzR4c7mezrPP45hxPPLSf9Q/s4+wn9tOMcr7jVZ9+xqd/RdmGKGpzpncfB5KDO8fWRk8Th232NW8CB61onoXGMZbHT3BN485LH5aSarZOcHhIcN7widF1/PoHXwN8GJlZrv+lLlUnYb1oIJzk9tVXELxz5ClEtnq4VCPncnq3ztGafh2nf/c/sT8F/TUEk3HO9Scx0H8G/CqwWHTXKUd9jwlQSzzCt3W4alI3ohTBcpdg7IifdyflzAGUNljnC4LnXnMDS8catMMx0z92I+/7vj/kyL8/yt7OgD8GvvcfzGPqlqFypJteKSvhS3YQgvLCMuWhacTBJrrXwG2sc+HcZwCWnXOPAgghfgb4F0KIg19LK/Rv/NAKWu9kTigKuOXmgDnleOt3D9k051A3nOXEG+f49funOb/nJFuvvZnxxzTqQoPqR1/HmVBQNZ5P8DOfYHDyUVrtO8BB/fY7COb3kPUE7W94PRd/9hdxP/jdtPffzMbqf8dcWEd02oz+9AFa199GbVMhnwN14w898g7EdseeAOsMzfoenBTM7L+NoJtjV8Hd/nziB/6U/OxpGo2bEaVAJw3aL3kFFkHjec9j8Cd3k3/qSaLn3wFW0LztduK5JWQumH3F6zn1q/834Qu+h+noOs6M38Om3sSGM4w+ch+1O29B6t1PNjrtkIXAxNYnk9zEKLL+oYKEhX/6d+l/6C423vkeTH9AcsNxpv/Wd6CPdIgaCVZago6k9S0vofuejzL4Tkv2+GmsMNS+6WWooaJz7W309n8Ml0nue+Qwm0dWyY1ia6NJ5zHB0h+cAmtZOXeYe/7mM7crr2gEtZF0gv2cLL9AQ0+Bg6zo0Rtf4MMnf+nSoDjLnvpxb4FuixAsv6jBC2dO8Rkb8esfeA1z91meBmwscWOJXu0Tbq4RiphoI8UFGpHmVLbkMXcv6+fPkv98BgJckVNFFmG+tnUYE6X0Zn9J4riz5tGnnvxDGmrKv2EyKaWLYNKf7rRCjyra/Q7ufELerhCRX83JfGMHvZ3ZGUzlUP0e10YrALzo4Bbrk8TaKr48aWucIFTM3A99P/0PfYy1d/0e0TWHiK77NupzLcbnewD7hRDdy05dAHuBr5kCfc9vLPDqV/gyswrDO9415tff0acmAoZ/9BC/+isZ588ZrBMU44q62kBP5dCuUJ0W1cylSg650KHIu9jQJ070TBs5Up62tzblMWrPZ0R5i9YNt9F/8F5ah1/N6N772fdtb/ZYAc+BpPPNN34fM80jqEGOCxQXtu7n3Np9oATL5+7l3OlPkH9uEycFpioQm0P02Ndu6nabcs4STmWEyhLtbVJl3QkiGkTxFCr1cdOwOQXWoFYGCF1n+tCtbJz+PJF+Fb2PP8zMW7/vOWGRR3GJiRydxwTD/b7kCi7zLCUEexeY+dvfBdpSra6w/ivvov8Hv8/+v/NqVn/5fzL4wlmqtARn0Y2YPTetsLp2lt5CDUKoXRTYAKJkmmRFMvM5xWnmwUF80dcpuzxHxDGN8xVnHl94xud/xbzw17ReyqeW38kheSPgiHWT6doBXrD0Ny7VTwnhaSWMQUmNcRXjo1Msfdtpqg8MWem2ef7nL83m+NwQEWifZIojTzcQh770qao4lT7IiD63vfTvsfr6aQge48Q/+lUG1xVE67tHFOaceyxKOgxHqzTnlqgyhzm8iBwW5Fsjz0sUTmaEdSTLOcmjsHWjwka+BKd3IePCsM10Mia7uIbUkqw5zcX1AjjLwMX0XUJp1U43zagfIQea+uHrif/pMeJWl4tv/zinPv1u2i95K3J2Cgarp51zR3ZtcNjurbiURCqd3zTOnzf8xD/r8SvvmGXtulv5lcdewem//1/Jn2jQCOqMzwaYzT6ucpD4ZILZ7CJvuYGq4edN1e16vEwB9kIPlKJWNlA5tG57ARc+8DtE1xxC6pDG/CEYPAd64cWkwcS5S5nmyfE02+KJR97L7cd+gK3vu4EDHy25575fRo8qgrE/93LQwzlHmWuKTJGv9Gle2/adRhY/RhPUJbu8hZCKxCUUbcXcwTt46jPvpP3YAWQUEB09BCt/NQCNr6YE0jJ92xrj9XlmHjKMFhXjJYcrBE4533kFIB0isCSHp5l6za30PvQ5tt75YUJteMXbvwfqdTY/9SQP/eLH6aUxstOk3BjiJtgU7ZOGU1tbyGDGF+/3PCB166Qj3ihgqs3W8+e5+GrDsaPnn7GVIdwzaFualDG9BR9HOw0cBKaAFA/deyNwHtiafCTBr58Mb/U0Ju8LgGuBEnh88t5bgZNcokFrAoeBBy87hX2T73wKP+0OAR3g3snrtwBvfbbrQIUQx4FvBt7lnDsnhNgPnAC6+Gs/DDwKmC9zjtcBG8D6ZV95HRDhY6vF5DMOPx4hcPNln+dLjmn8uPbxY70HP3aPT373EHCrc+5hIUQbeJ1z7t1//VF4ZiKEMPj7Nbjs8Awwi59DNwAPA/nk+KHJ8fXLnp8F1rh0PQ/ix/YvG7dtuQk/LlvAxcmxg865ua/aRV6hXB2TPy9CiDX+cq8oBtrAJl5vBMBRvO5R+Gs/fdnxED8mAn+9K/jxagNHgGXgwjM4tWc2Lm7ChviXPYBTwGsue74frxzvmjy/Dvjg5EQ3gD8Fbpu8Ngt8CD9pPgn8a+ATl33Xj+JvZhf4TuDrgHNf8vt7gLuAIX6C/B385NCT1+8C3vJMruWv88BvBr+H3yxGk///K9CavP4fJ9fxFPDDX+kcJ8d+Fp8l7wMfAGYnrx26/PNfegyfJPoY0Jv85l3ADZe9928BD02+9yzwG8/2+Pxlc2Zy7M3b9x74afyiWAd+YXItb7nsfZ8EfnlyfU/gN4CvOG6XvecnJ2N15Gt53VfH5Gu35vCG2714vXA/8E+4THcAdwD34XXPuyaPn/pqnt8zskCvyrMjQoi7gP/mdqGD6rksQog34xXHy/6C1+/iK4ybEOIH8KVbX/Y7/v9Nro7Jc1N2uxP2qlyVr7oIIWrAW4Ff2e1zea7I1TF5duSqAr0q/0uJEOIb8KGkFeAdu3w6zwm5OibPnlx14a/KVbkqV+WvKFct0KtyVa7KVfkrylUFelWuylW5Kn9FuaJC+lDELlFNUAobefRspyZ9rOLS/zsdDhJQlkAbYlURyYpQVChhUcISYNHi8n5pS9/GFE7T3WygU4cNxFdsmEjXz627XaplizuxC5gFQFQOE/s9aZv7RmUWN2ln3AaPwIEwk0aCCY3DDpaqc3h4JS7Rp1wmTgmcFJfgt7gEB+YkxHMpB8I+9z9Y7tqYAIQqcYlu77S2+hMFxGTP3sFd9NQWTitsKLEanAKr8Ig8Al9ELS5x5YCn9nAOMAJRCWQBOrOI0ngOLuXRl6qaZGa+TyRKNs9nbG7uHiy9atSdnp3ybYrS7Vz+FxX4W/zkUc4Dllfb8JD+ZeG41FElPNK8qBxOgYl9xw0TbFnhPFix055jXgaWUPvOL4nDOEG20qfq7R6Nq2rUXdic3kFAKrcpzuT2WtnGu5v8Ld3OfFDKInAYK3fYBnaWzORzoTY0gpxEFmgsPZMgBCTS44fmLiASpe/0Gzc9FXkJ2coz0ylXpEBjUePFrTcgOm2KfdP0Dydk04KqDvm0xbSNv/GVQKQel9LVK1qzI66bXeVgbZMD0SZzuk9HjZlWQxZVTk0ISucYO3iynGG1avK2sy9F/LtZRntCTMhOn+yOTJQGAu771X+yKyhDAG5qludf//cJ+gXZfMR4VhH1HUVD0DxTUNUVsnI75xuvZ8hRvgNA7bTEhRqnJUU7pGhrP08qhzQOmTt0ZnBSkM4GFA1B2RCUDb94Guesp6oVMJ5RfP2PfZqfnP8U03vP79qYACS6zUvmvwvb7XnkIa1BKQgDRBjCNlZAHFHumWK0J2I8ryhaHpbM1Bw2toikQoeGIKyIggo1WVjGCopKk6UhdiskXla0T1jaTwxRK13KfTPYWJFNBzR+7Bz/70Mf4MffcHYXRwT09DT73/qPcICNJl1UsQVtEaHFFRKUQ4UWW0rkekDYlTsKVBrPuhqMPAmdif0mEfUtOnU4CRs3KfKFimhFozIIB/6z6YLDXTfi2oU1zvfatJOMQBnu+Tu7m1OKkmmOf+s/QljoXQNlxxBuKmrLAlF5Mr10wd9zlQnyuQpiS9zM6TTGZMWEzlh6jqT+Rt1TNTtBPJNy/cIyc/GQRJXcULvA8egCD6QHmdN9Cqd4aLyfm2tn6agxv3jqtZx+fJGgK3nqXz4znXKFaAJih0lQOM/ypzOPmC620VOSEqUtrgOm8kp0Z9cTbsIBXyOWJZkLGNiKUhhGTpM5hUGghOMNex7gl775G5m7130xxP72ru0ue76LIgqBLCwIQd5UNC5UpDOauGsp2hppHGVd4SQ0T40RRYWboPi7KKBshmSzAaMFSVX3dMBR1xEOHCIHGwpGUyFlXVA0BWULqsRhGhZRCoKhpHHBN92bUHI2nSJ3z4GmbxxuNPIbhVIQaEQwaWutKlAK16pTzDdI50MG+yRF2ysWqx3uMgvEOYFSFq0837cUDgEo6TBGktUl+bRgmElqKxFqUyOzCqcE0VbFU/ceIDhsdjyd3RJhvRJwAsKetxazRYvIFWjfqigDi60kwfkQPfTrzCowiSMY+TZQG3iDwklvrRdNgSqgtpIzXknI56CYNcTLCquhftFS1STDrZjVRoNOLcU5QWnUrne32gC2bnTUz0rCPgirMBHUlw31M2NWXtgk6AtapyzprMAkCrmhMCpgpelxFmp7h+xp9WmGGWeCilEWEgUexf7pzVkGTY86vxT26CQZr6w/zu/3ns818QpLYY+BTRjbiFcvPM67RzXGw84zPv8rpDWeVN8LT+2x7TZugxlQCmwkiYOCZpwTSEusS6ajMfPxgLZKqcmcQBgyGzAWESEGI0sGNmRkI4yTBKJif7CJmy5QRUhZu8z6vMzz8+d0RVfwVRc9dqisIl2IaZ7LqRKFKtyO55G1/SbSOF/ghPChj3pAPhXQ369IlxwOSFahecYiy4mFFQryjqRoCarYL6CyaXGRV44iqbBGks6HVKcUemSQladHeU4Eto3FjlJEGPhHqwlFuQPaYGda5At1sinNaEmSTzls5IGBv2hVS4fSBi0tgTIE8pISlcJRGYlJBGUpyWcEvUMhwWYdtd4D2jgtCbuCNdOkdOd3azQAEAbCrv9bp45sRqD7CtP03E44MLkiWtbEawIbeqK4omNRmcBqSOcFwnjvo6o5T4WhwMQSYUPCoSPoKqqWpUoceiyoEkH9giWb8xxCoTJ0xwmzjdGujgdMQhDG0yw3znjPCulQ2cTqzB069dcQjDzj7XjRoQpB8pSiqkHZb/F02MJ0KlS9ZLYzZDoZszJsYKwkrzSFUTw2WuTW5AxHgk1e33qA+7OD1GRO6TRjF9JWKWV1ZZvKFdMay0Yd20wwkfQxFssO9zdGYEtJUWgyZQjjnJouaAYZU3pMW49pqoy6vAT5nLkA6Sx1URIog3WSvo2xSP7u7R/jN05+A2EPH/fZjvlNYjw7pHa7KLJymEQTbZXI0mKmggkvvKdnkMYRDrzSK6ZC+gc0gyOezzvccrSegmTTQ3kVdUk6K8k7UNUdJnagLU7bHQtFOJDaIaXFOktVC8hbiqBfeUoIKymfA6VpzlpEPUJojYhj3Dj1VNjNBrZdZ7y/QTqjyDuCfMozmZrYggInJkpUW6RyO9ZnrCuCyzDpIl1hIkFlJSZRlG1BuqCxtQBVlsiiQpiQ6ccMP/XkNzNyJ3ZvQACsVwjB0PMTDfeBHgvPeTXyoZuwKwj7XnE6CUXLK0lZCEzkNxlh/Gsm8aEb0SkoOiFOKuJ1RzCYGDgTjjar/BqtnxMMlmKSsKQR556gbZdNUDGJ+drIkc0LTOIwdYuJBLIwBGNH0RLkHUF92aJyKOueIwrpQxRhX1C0QK4FVElA39boCcgWK5p7POyAdYKNvM75coobwg2O6IInZc5a1eTaaJnz5TRDEyOl85v4M5QrUqBCKtx0m3Iq8agyxt9c3ESJTqBdTKVI8xBrJaXxFlgkK2oqpy5zAlERC0/24v82dCa8q6WDmizp2pgXJCf5deEDy+5LzlQYJsH03Z0B2+MQrI/J9zSQxWUWlBAEYx+C6B8O2bzN4qQhOa9pP+GpGNJ5Qfd6gZ0piRs5QjgCZQmAotBUkzCIz794RSy3kypWUNSNDxFob5mMyxAldtsxm5xvHIM1uMEQkhjRqFEudRjtjUlnJSbyVpZTDht5mDqRC2xkcaFDxgYdVDvKsxnkxLpkWHoELukcSmi0tKjAYEOFDaBoBwRCIIZjVKwJe5KLwxp1UezumDgIB454y9Dfr4m6AhNCsiyxIWChcc7HN23gcwsI56lMnN9kbOjDGy6y4AS6VbA00+O86JAPYvTIu/Vhb7IWQ0gyhzQQDBy2UAjhaIQFEsdXTtE+u2ImrORB/1Ly1R8XiHFOvGUY7pOEPY+qJI2jddox3CcpmpNEbe6pTuR4m0rcj1W8rBkEDcb1iLmpATPRiFiWxEIwdo451Wd/sEFdFIxsxGrZol1LyVzzGZ//lVmgWlG1YqwW3ho1oAomhFUCUQpsIXGBxVofY8krzcq4SWE1lVPYSZZ6Wg0JhUHhKF2FcdCUk++1FWMMI9ROds4o55GrxSUEa2HFrrvwANGZTar5Fio3OAF6bKhql869rEkGB0D3JLVlQTrn6L4q5fDCBnVdkBmNc4JIVxTGUwuMy5CeiCm1V5p2wn0N7GSknRMUsaWqaawS9Pdrfmjf5ymeAxYoUoKzOxl4EYYU+6YZHIxIZ73CcNJbRyoTxOsClfl7bCJF0YRsUWBmHGEtJ9F+w01UiRaWzGgqqwiUIQ79ayMnMElA0VLU4wg3HKM2BDoOME81MLttbgHh0CIqR9kUqMwbAlZ7175xwVDFAhP7mGbZhMZpic4c+ZR34d12fFg7hLK8+PAJGrogLQM2uiFFXxH28MrXQTDylRtUjmDsEJmiNuFWz40H9d5NcQqCkbeu9XAbA9Sxdge0TtaJ1jIaZxV5W5K3oXWqQpYWnWlG894LLhuCbLGiflITDPy1yxJEAGKskM0cN6k8CERF5hwjK1HCM3MaISidZrVoMhWnLC8+c1KkK8MDVRIbTSwi49Ajgx5b4i1BFXuSrLylyacDqgTGs4Z8KqfVHNMXMU+aOU4NpznU2GRftMVsMCAUFR01JlN9pl1GKCyFkwTCoJyj/tI10rvmINl97MIvJzKvsE0PdCxKS9QvQPlaCqcC0hnNeEkQ9kCPPfVsdSgjiUvOrE9xaHaTepBjncROFrgnjXNeMRTe/ZDSl+6ISQJFK0NpFEFSUtZDnBIMDzien5zkucHLCS4vEEIgagl2ukk6HzKelzuLW5agMzARDA5bUF45JBc0tWVH+4SgShJ61yRsHawzN91HCsuB+haF1fTLGItPTgLkpSZLHEVd4JII+gOvyIGlTxpO23gXR8Mry2ijJJsL0eNJ+KmEoITGxQoTyYlH4zfI9tMOWUE6I6kSv+FsU2BX2nHD0fO8rPMUp7JZtDK4mqHo+GSMHvvyJ6snnzM+rqj7ng64myWMi2Bn7HZLdApBH+yUj/PLSsBYYWdKNm6uM/PAkPpySRWHqBLyjqK2aqmfHKJHCaPFgHjL0j4pGO4BE3tSPllCOg+0S8pBRBqXLMU9nsiWKJ3mJfFpOjLl6XKOrqljnGBURXSzBCGfJRceOWESlAJZOYJu5qlHawFBKBHWUVv2VqRVgqquSKcT8qka5/dbbLMC5XgqmeXw3CaHmhsEwtIJxiyFXeZ0nxk1pC4KAmGIRcnfO/pRfv4j3+l/f7tUEi5Zo1d0AV99cVphkwAnBWqYI4yj6iTksyG9g5r+8YpgyivMIKjorbWInkyIL8TEwJPPSzh+w1k6YUpmNN0yYWNYw1pJEFRE2sf8ikqRZQFlN0LmkmjfkCQqULWc3lJM2VCoArq2RiDS3R0UwBmDHQxQ1xxmeHwOGwpMKNCpo+h47yFv+niTrHyMz4aAcqSHC9L9gtqpgM7TlsV7LL2VhOXrAzgIe5I+iSwwWvhavspb8IE2pDVD0Q6wUYDU2ivSiWyVtV0bD/BKbLs+VRi3471FfeNd9ngCtuwE8ZZD55bxnCLveCZOaUCUYGqOPQc2+Ia5R5hRQ/IwYH+zS15qtsoWRTcg2vJKIOx7OmNhJ0bPUJBVmlhXJOGuDgfgY6A6dRRtT8GsxwJbQhEptm5wNC7EhJsFU09ZxvMhJvTxXdMIUbmldSbHSUHZVDQuGMqaD5ttXauomgYZWFrTQ/JSc2o8wx3tU1wbLlMi6MiCRd0jm8DgR6qil8a4K+BZu8Ik0nb23aEK6zPKscbEkiqRVPHEBS8h6lbE6wW1C96tLVsh6VzA4IDE6oinb1CsDhsI4aiFJa0o41Bjk+trF5nTfZrKK4G6LCja/HlN6S7TprsoVU2SzcYEwwptHMV8neHekOFeyfiGjGv2raGEpRHkxKri+PQKT8zPs3J2CjlWOOXd9YVkQOUkaRkwXq0TbirEqqAQfld1EpIUGqm/4HSzxeahgqnZAcFCSt6qU7sAf7R1K7cufGR3BwV8qZvWiFFK2C1Yv7VGMHTEm46o62NfJvJxcyfARIKiIyg6k3BNbBjvFzitSVYEqnAk5zVrzRbnah0Wkj6VVQyriHPd9o51jnJUdTCtEHnWINIcUQ+RlaPIvoYEWl9uSCzIcpL4mSRCw6FFjy02EASpxQlBsm5wCrIpRTorKKatd3V7kny+4tA1K3zX3s9RkzkdNaKjRpgpQSgNj0vH1mCaaMvT86rcz5ft5SIs1IKSrXHCKI3Iy93lRbKKSX00lE1fURCOBVXiLe21WwKmnvQxYDXZCKwWlA1NMJyQW2pJ2PNJVBNEVLFAT2yIWj1jX7tHP4+RwjKnB8zJnFjA2MGcHDMQAbEs2RdteXrx6lniRHL4ie5LKBROamwoqGKJCcVOXVpZg7wToPKAqG9RqZ80Uc/AWcg6kmw9olcJXCnpDTXdZcnJ8BB/0vBZOFEIbN2wsG/LFx3bSx03vuvJx8vY5YSJDaF/QDPzaEW+0KB3JGS4X+COD3nRvrNs5jUef3wvrcc1ybplvCAZHC9pzI9oJRmxrqgHBU2dUVqFsQJC6zuapCDecH4RdRzpokVMFcS1gjIPSMKKUBtELcPpOlNPFHzkg7dzx3efxANv754IJZHNJs5adDcjWY8R1ltgtdWSYDNDDlPOfPsiRccR9CHagoXPVKRzmrXnK4KRoKw77F5BMAIsmLFmUEbUdMxa1uDExVmixxOSFd+NY+cFWMinAgLAjcaoKEA2QuQzD209O2IdNpDkLQkC4i3jFZydlO1YiSwNwkI+rRktSvJZi2ka1EBRXZPy4kOnOFJfJ5YlM3roQ11YbojOkzcDxlXA8GBEttGkfXISP9e++N4pz5d0ankGOwh2330DkF6nbFcMCAu1ZYcsJeMlz+M+2KdonjPIwiEkCOebTJwWqFEFlY+1Oy1J1krKpvKWaFcybCasRQVztRENXZDZgJ4NQJYEAgwOa73CzJ0mDkvSYeMZn/4VuvBQxRI3KYsIhgadWsJJCY0oLE5LyqYmnfFF5ML6rLSJfdbZakHZBJRvLbPDgMYpSftUhah8AgZgvBhQNDTDp+cJlC/r+VJr0wmfwd1Nccox3uNINkKcgv5rRrz80AmaQcaoirj3o8c5dHdJNmMpE0G06ah/VNE/2GHt1iGLUwPiuKShcgYyRgiHjAymLhkvCqz2lkS8Loi2FOZCwngpItk3oFXzClhLRW5AGotVjreffTHwqV0dF6RENOoQaMoZ37FmYkm05SibivjEkP5ti5RNR7QpqF+0CAvjhYDs27vYtQZ6LSBZdWRzEG35jQR8TLhbJJxenSY4EdM463w3FlBf8bFFlTkQEtfrI+s1pLHIcjcHBF/nGUmc8AkjWUyqKoyjihUq94ZG0db0DyiyOUfQl9TPSL9mDvoLsE4wshGBqTMwCYVTZC7kidECT23OIqUl3WeoLUtq64aiKREThROvOYb9YMLJ5Hbb/vCdVF1fExsML5Vv1S9a9EiQzfiGg/GsJOoLVO7jwgAm1NhAooclqEkWX/qkmSyhtizoNUN69YSF2pBEFmQuIHMa6Rx1KuakYGANhVMYJykqTfuxZ55FuDILVPjyAhNCkDpUZgl6GXJcILICF2iquSZht8DEkuRihjAWUw+oEokeWawSCCdYumaN1yw9zm99/kXIUpFOK1TuyKYVVeK7K3whsUOWf0G2/fKOpF2SMKoo5iqG+wKyOcebb7iHpspYKVt88uIRahcEp7/XMj+3jvnDeaoajPc5mk/DeDOmG5fM1wY0VO57k4sA1w0JtyTNU+y0aSZrJdm0prZcIKzj3KvadG+RTDdHhMowigVFK0CngvVh/Sue97MuQuIaCS5QjOdDqsQvhHReMFrSqGweYFIE7j8Sb1TkHU1x3xTNIUSbvgYw6PvOlHhTEHU10dGK9XEds5Kgc0H/iMP9/9p70x/L0vu+7/MsZ7tb3dqrep3umZ6ejZzhcBEpiqIky4oFy1YMBLINAVFe2C+M5B9IXgsIAgQI4gQBAsNvDBgJYCeOLNuUJZmLTE44JIfkDGfImZ6t1+qqrvVu557lWfLiOfdWj8QA3QMwdwLUDyh0VU9N16lzz/09v+W7CInXzFk+K+9Y8A5vHeRTRLUUMIcLjVCBpicOnVtcJFGFDbPJIhQOg8sJB1+wXL12l/1xm2meUO2mJMcS816XH3Mety1YjiYoHLlLuFf2+ca9awxvLKMnkmo5LJRMFhLBrI0XzuN14Nf7jkWn5rHmfb+IEC68/qoIlNSqF8gj8cjRu21JBoqqI+bIG5MKZAOdVLUPi20VI5yfk1BU4UitR1WSqiuZqja345rlJCeRhkhY+mrCeX2MJKf2isJFnNQtptOY9aNHf1AefwbaAFhNKqj6GmljvJKoRsChWorIbo/o3TvCJzHTK8ukuxMm2zF6GgQfvJRst4f8eudn/OuVTyFsHG5eR1L2Q+JURfiRZs0HuEfDB54tj2bJc8FLRFJdgxcUq57+pw64nt5n5FL26h5FrRl/ruIffuY7/NM3fplrrw4otlpMNzXFuic+VvSfLALZoPmFyyJGjyTpoSDKHcfXJRs/MuhJjduMeP8/S7j2v+Ws/cRw51LKODJs94ZUfRgbRd31nP8EMEzCwlHhI0XdapKbAifDQuT46SjAdjqOuh+qUj2OcbFn6T2PLjx1Flq7ugfTVcXKT4b0vrVL/eYlliSs5JMwX+8nVF3F4Erwfo/GnrIr6SqFtxZfFKE1XjS8S4QdQTwweAmqtMjShq6trZlsKg5/peLpS3uM6xjvBb1uTpVVjDtt1EgxPUk5Wcl4UPVQsWev7vHDo4sc7yyhfOCK986NWG5NuTvYov0gLHyF8zglA3a6X6O1I04WXZITBF8yQWfH4QWkh566LSh7Emk9yYkhmkhMFhbYNhY4EapQp0BIgYsEOndz3Z1Q2Ut06YkmMBUBwRLLQMS4WayxpNuc2DZ1vMvQpdRe885wA+4/HlLjsSfI0oCVYQEwXZWYNEEXMapM8TIMf8tP9/Gij7RQdQTH15eJB566owJw1sPBtIMUjv/62a/x3/5p8Khu7RnWvjeA2vDgq5vUbYHrWFTZXKZ4CMr0kEDLIkPiEUZQrxo+s36XVAaw9pLO+eK5W3xzeo1/8oOvoA8iJpdjyp7ExR5nBWar4vNrt8hUTeEDrtFZATq0MsVqGKQnRxX6wZBkJUGuGXa/1KFzzyGmnqrWSOEDFTIWuMs5X17/gL9Y7G1p0BrgYj2H0rgYnPKBdZSEQ9i3DSqx2LbB5BphBPtf9ERHCrPkSDZyxOtdoolDDnJEr4ssDfreIXu/fZl8Oxzq5lqOFJ70+22KFcH2K1MoS2SWItrtoKew6PzpPGpqkdZRJxppLbalqXqa0UXF4KWKVq/gxjvn6L+lWXuvou4qWhbsc4py3SGHmkGZsqxzVvSY2+UKN++sk+xpqmULiWN43GK410EkHpMK0uPTiqpYC3sHERuqcrFLNQiF0dJNQ3JcU3UjbKIaIgHYSKDzsHgTiQpaEO3QwappIF5EU386GpE+fK8M+hReBtRHdCIZdFr86f7zXL50wG9t/YwXsjsoPDfrNSJh2dIn5HUUSAuP0ao8NhdeWo9t4ExVBlVPIAyociZTFpIsLgyH64YtUBuBbRAlTsNgmnJkOzwf75Jve6SR6FwSD7LwoJVQLXlU28DBQ5f5l7nwCw4pPNH6lGqQkKkahUc1275WtyK5ZviTd58FIg6fU1TLgc9e9ywXt48AqL1iYFpUTiG1w6WOYkPgYomwMLia0Y0l421N8laErODoGYlP64bSKbArNcJHJEnNs9mjuLb+YkMYN1ebmsPPpJ8vC7yCckkSZTVRbJDSY1sSa5uPtkAA1b02sQwLyPz6Grd+R7B8foD+Py8zuhwQH9EIOt/IKFYFvdsWGwnUtMZbh7h8Hm8salwuPIHiPdG4DslchEVX0ZcUK4LxsxVZr8C83eOpPy1Q+ZT9lzsIE6i+rQehJZ1ctOwfd7l89YBr8S43pluoY000gc4dSZQLsgODKg1Hz6QEClOAMtXdME/XhxF2oHFdiywXD6Qv+opoaIlHNdHYMD4fY1qCuiVRVaBFzxbIwhKeJ0nIMXGosJ1u8kyqGG8ryuXAUEKAaTs2NwZ04iBhl7uYQ9Mhd8mcWh4Jy/G4xdpPDNn9R4cBPh6Vs+G+C9soxCRhRhmgS6cn/OyX9DL8oqoI1YeqG+ymC7jGB6bHRX1EtVUzLWKiMVS9NjaBfNvz8pdu0NUlf3H3Uw0EROCV/2jV+QlQznjx/D3eTjZQuPkwOhU1ldBczfb5G9fg3c11jouMSRHPMZ4brRFTF2OtYDWa4LxAa0upPV57yhWPrATHzwvGF9NwMHkYPGORKxWRsijlsF4GnrwDa4MYy6LDSxk+GtZakPM7HVrXbU80FridjOTaMUtZgXUBxlUZFT7PY/xKRbkMk5tJYC31ClpxzbgXNsou8dQaVn9q6N72tG7sU2/1kcMpKImYltTbfaLbB5+IFl4Yh+3EAaK0LinWPNV2Ras/DbRdD8dPpwyvgL1UIPYSjrRArBRI5Xnu3B7jKuFWucYX01tsxwOWrx9xqFcoV4Iq2upPNN0PStZ/OGZyoRW49mVgxLkYWvcE1bJAHsj5QmZR4XTgth89k7DyTokXkG+GhTOAixS6CFWmi04p3U6BdI20qgGEwEaBWl13oL4+5cq5PYZlyhJwuXvM/byHlo7b02VasmJJ51gvaImSH06fYHqc0b41Rtzbf+Trf3wQ2OwkmCVLP8P0+Y8k2NkNCKIfgnjg0blvhsaCvNLcLNb4bHqT3//cq/zz6kuYE4WwYLqeJ17Y4e9ufB+L4FvqhTDsnj3/klM404Ir0VTUXMyOMSuSji4pfITzEikcCocUjkxVXGifIIQnVkFZ6Fx7wHY6oHQR3aiYM0KEAHTAM9JyWCOxHszW6Q2PUoPWIXkq4XFe4E2YbwnBHBi80BDgI4lNQlKYCfw6Gd40ru0Yx+EhcX++yoMObP3GXS50Tjgs2lROMdApw1EL9WFKlDv2Pi+JYkOkLHjQExhfM6T3Ig6fi5A15BvniKaOpfvH+CjGdTPK1QT9brXwCtRpiajD3LPuCEZPWtRqydWNI57oHNHWJZ2nS3IXY5zizeNtBo0U20ZnzLP9Xc4nxxzXbdIGUnA12ePzm7d5P8vZHXWRwrPb6ZOvd+nsWKarQSA4PjFz7G008sTHgt4dy+0FL9Zmo51i1eNVwtqbBTr3lCsCk4WxlM7F6TPUXK9NglCPk1ALQTwJLb00nqUPHPVeys8+dwG1VDcMNk9lFTdvrZNdq9mNerw5Osdh0SZSls8u32bpJxGiMkEE/BHjMVv4BiagmbfjwghIPC72ARZhG7X0mZq4EaRTQXYQKqRyKZwu1kr2yh6F13yh/T6tX6l45egqx0XGi6s7/P7qK5xTOT+t1/6qmHJzLeIhhaZFRSJrVqMJdUuxpsfkLiESdv5mPTZthiZlUKd4L+inU9bTMWvxmI4qiUQQODioOzgfKJwitgjlA6VMh39IKjsXEZEyKItL6fBeBOrnWFEvWxJtWdXjBd6REKLB5dlEnDoVNIcrURDDEOsFSWJQT9dYo/ngg032PrhA76bDKYikYCt3qNKy86sK23YkyqGlw0VhTtxey6mXFONBgigko6ch3VF0320jywovJdluaMnmLgALimoV8otddG7JtwTxZk6/M6UdVawlY57P7rKlB7RlyT2zzHo84rBucy17wPVkh54ssAjerzYYuYzCK86rAReSY/7Ty69x4lr8m8MX+fagxegLHt8tKMqI9LudsIBpXovs0IN3RGM7L3QWFiJUlulhEE85eTKZdyw+gjry2DRQU1URmFh4UDZ0ok4LfBxGAcnQN1J/nmTg2fyOpFjNsMOU1y5tUlwpiQ4iRpcTvn74NJOjjOtX7/P3t7/HH+2/RPeORYxyvP1FJdCHtt/ShEriYVaF1+CapUCrXWCMYnrQIhpJ4pFjfE5jWiLAVh4k/HjpHP9X/Fmeye6zFo34B+f/IwBbasA5PeXEaWqv5xCGh9t1WZ9CGxYZEY4L8SG5i5EitNO2uagZPKJyYdGzlExp64q2ClTV2fco7yidpnIKa2WoJnHBtqCpNJ0LosLAXN5NCI91UDuJXK0QwrPazrkWHS7qdpyGscjaNRYkpyIwQf4wiM5YK5HSsdKa8kTniM0rQ6JfshzWbX422OKDnTXEgwRZS2QVOpNYGxJlmFxw9N8WjJIeKy/tkyc1plEmn8g203Md2qMpg+s9lv7ox5Bli74j6Mhy+3c9vbcSyhXHaqskVqdv1oFt01c5F+WA69kOv9Pap/SGujmNJbBjFX2VEwtL4dV85v5BtcFz6T1+d/XHXEhPaKmwzPwwX+Ob915g+R2JrMNIKJoEh4OqpxY+AvMSqm6gcCbHnmjiAxInISRREZLjvLNtPpfT8KeqGuhS5dGFQ5aBJalyg/Ce9v2IuqfAK+JBwvAZw50HKyRvZkQvjtkbdfnjgxd5+2CD/MuC9GAd/drRI1//Y+NAZ0rYwp6+IeYb8ZahvVSw2RvRjiruj3oUZYfuXRvsBwBZedo7EI0kA7fCvxq+RK/7NL96/n2eWNrnvB4SCce+jdm3XSYumY/O/Kxl9w0kZlblLjAk8OnkHntmiUjYkDR9aKFrH4QbrBfopvcorUbiSWRN7VWD/5RYJKXVmFqBEQHX2Mw4Z2pDEIRGnBeBsURQa3deEMWGNK75za236S+6qgCwFlHWOBXmUnMFdQHCEJS7SoXNguThYdkikpZYGh6UXaZ1hKsU2YlEmNDmETuyOKgxia2C8kGLzh3PeLCBnsL0UzXt1RwiR74ZcfTsOS58bR9nDMI7/rK/1CJCVJLhiyVCekTTVk5NROk0I5sychn7rkVbjoHwukug9p4PTMZb5XkGtkVHFZy4jHU14Xp6n3+5/znqJc1XWjfo9ybUXrNrlnhQdYkvTqjbrQAjnILJgmiJU00RtOiYzTvjsGh2UXhTf8QOST40FvSNElwZtHb1NBxCelSFnDRt7tvJCNVtoaYtZBlTLkcIJ1j7WsLeLxueXj9iZ9gjlob//oV/ydZLI/7g2n9B+b2X4A//2SNd+mMvkWbzT1l5ZBReBGHBax8qz6QiUUGWLS+jUHpXDtMYXvXfrYiGJYOnO9RdSWVSRjLldv+Io06HtixJhWHiYyr/ECOgoW8+bKS2+LcDCCG4EjleTG+zb3scmQ5jm1J7NU+oSnic8FROYZwMnHcbsZaMWdY5UQPuhaD16bwI1DQrcE7Med7WSYyVGKMwUoUZ6KyNN5LLG8f8dveNBd+REN47hGkq0KZTedhFQFYCV0rKImbQCKYUNiKWlsJqDoZtknsRLvLYTtDBVJmhG5esJhPi2FB/ZkzSKqjzlHw/Qx9qoteXuPrTkvTmfagNdvdB+JlC4vVidapMqRBLFS9dusutwTKRsvPF2W7RY0lPqb1qPpjrup44x7+fXOffPPg0X1l9j+3omJHLuFcvcy0a8IQ+pHKK/+PeZ3hneYvfXn6diUsY2Yyjqo33odUFwjJGC+qsMYSMF/suEg6iYZDvEwYG1yAomT30TY0otIibEZAJqAJV+6BJ7DympbBpirAwutjh8Jcrtv+kz9I7Q1ReEctANPGZZe+vec5tH/Pe/XX+7vOv8fvLr7IkLf/L4S/zqY0drvzeT/jDP3y063/s80e4poIQTRU6d/8TuEqRlzHH0mGsIj/JiDxMthTdOwbdCGGMrnZwWtC67+nd9Ox+CWJl2amXiYSlK8PMqvbhVJ6JNs/bDc9HFOoXHbmzHNkOfTVh3wQx1sJF5D4sA6Y2ojChKq2cwhlBP5myGk2IpEERkqYWDh1ZjPCIXOG7HlNrSumR0mOMxBoVHCllaOtFHBJrllX8va3vcVnXLHgvEMKDmJbzpaOXwa7DqYda+Upic02u4/lIIo4tsbJUeUxiBC7y6InAVVC1IuS2p/ah/e+0Cq6v7LNxbgRPwd28z91Rnw8/3+PCv9qg9W9/DDN/KCkQ5tFnW7+IiBLDrz71Hlo4BlkWPImkw3rBSZlxGHfoqIJU1HRlgaXijunxR8cv8+9uPB+6EVUDl3mQd6md5E96n2JnssSte6tk3ZJ/e+8FshcrLiVH7NU9jA8HrmjcG2wqiMYO4SSDK/KxpNt+EeG1DyaCdZDfM60wZpjtPeYa2DIsq1VFAN+nMxSGwAiFF2HGm29Ijj9lafUKxn8/p//fWGwvpe5GlBuW3/vMD/izO9fZ/9Em0ZNjPt26w59NnuV/fv3XWOrm/OaFG1yKH30E9rESqGxgStKEz51pYBKFYqpjjJE4KxGTsFWv24K6I0kPAwau7ApMK8wwB0/BH/zatzis29wr+6G1VaF6m7iYI9MQ+x/auIvGR+WTEBKBEoIT20I2Aq0AxknGNqFqeiQpHJXTlFaTKMNWOuSt0TapqrnSOuTOdJnjIkNKR7RUUk9icI1FChFRHDyQZvatzgtoaHi9tOBvbr3Jb7TuLuYm/L9FbVCVny/7vAqVJIQKdBbWSopao6Qj0zXOCzr9nPGaJttVtHc80cRx9FzEO+1NbohN7CDCpUGMunJhLKJlWDD5qSbdr06Tp5DB0G7BLXw3KlmLx9yb9kmUwXmBArQX5HXM3bxP7SV5knBoO6Si5vXJRf7sw2d4cvOA5TTn1RtXaN1IiIdQrMN3l9eRlaDzQFC+bOivTPjW/af46vZ7TGwSDm4v5q9D3fVB8DsTlKvBGmbRUfccvtW8oY1E1s0p6xqzyia8BtfsWig5XSKJ0OUOL2vKleAJtXx1yv2fblBtVmFcEQl84vjO3lX42gppJhitppzYFv/4B7+BLxUnts2/OHqZZy7tAt9+pGt/7BmotB5vwoULG04LEYWEJqcS5yJKrcEIdC5RVRCItZEIZXbSWDlEYDIwTxR0VYFDsFP0eVD3AFA4Ch/xjf2nT8GzTcwqmIdnJIuMJRnzcnaTd6stgPkSyTiFbZSwpWj8iqziic4Rzgte/9bTrP/Q8f2/l7PSnTCcpNgPOsQDgXm2wJcq2Dd4MLU6NSJ9yANbCs/LK3dY00MSIT8hjpwhfF2jylDtQDMHjRpM3+xz5XG1pJSaSFmOi6xR57eoywMGSy3yy4rWzYh4APZuSr0SwItLWcGgyihsFHRBreYkz2h/qNE/fRcngiq+mAlNJIuFd2lhiYTlsGgHPyIIiAIvwEn2p21GdcJe1OPJzj5jm/DW0Taf2t7hK8vvIYWj/WzFu+fWGRUJ/GiF3nuSchXGz1Q8tXHEhfYJb+xvcytfYVwnjKuEJK2AOHDHNUHFqPIBU71oHGCDIfeJDZ1V9dAAvxkXCnva9UKzg5mdjc1i6eRqRP65nN+69jYr0YSxTfjToy1MpvAqMCTVAAZrKWkRcg/S899962+y9DMdhIymGi/hzu/0H/nyPxaQ/i/HrAqV1ey3AzUVROOgPpQdOqLcUfRV4LmugE0965/bI9GGn022uZAeY7xkpwgXL/GMbcJ7NzeJZ7jSBgoz+5mzm7nokEheiCywy61yba6SLkWQypp9ndcxW+0hT7b2GdiMtc/usXOxz4XemJNpSjlK2HojsCryS+GlEYXG92qECieGh3lbjPQsZUWoNHxMhOIT0sAD4PMpOrfoaXhAZ0wkAC88PnaBxlkqbB18tCbTBCk9upmLtnsF9IANmJYarR3SCfqdKYkyjOuYo0kL5wVVrSnvt3jqL4IWgFASb4Eowhuz8GdF4Xkm22HYy/jx4XkAYmlpR6GSPh722C86pGnN1ERMTVCMf6l3l6vJHie2zTOd+6wlY1JZ887aJj+8fZEkrTmfFSTKsBRNeXL5kN1JDyk8kyoK3mQtQTQNpnWBUh2qO2cXfFMaWx6xlyDOFTgj5rsOAQH6ZkK362cY4phTWx8fDgFVedxRws3xCusrI94ebLL9Somd6RQD6YGk83zJ8RMCm3qSnYgn/vWI0ZV2GC8KOHhBs9r6BTGRZlt4eGj73pwQsm4gBj5QO+OhoH3PEU8cdSYplxQ2CXOOaAzqswPu3VwjW8vJ64jjTkZLV1iv2K+6WC8Y1SmUci4e4gmn0JzQ8gkA0gug9pZIKFab2W3hIqY2DttxaTFWcly2aEUVL/XustQsjr66+R6HK23eOdkkn6SIyLH7a7ahV3hky+DGEfI4xm006irN7y1kqD6dF9RO8ddbN8i9+ASlT/BVhR6UqDJGF4K6FrjMB9dNBQiPVBbrFa7QFONGozJ2yNiiI4v3EMeWpdYUMqiMpqg1lVEMRcJomlJVClNqGEasvC6Jbu9Du4WfNrbKWuPPrePuLPZhkcLRlhUvtO/y2sEFIunmNi79ZMqhbjOctlDKzyvx6ysPcAjeKc6xpod0ZUGtNId1m+udPZ59bpd3Jxt8OFxBC8eoTklVHd4/RcJkGhPHluPnBEs3gszb3uclrZ2gcsWC1ZhQHrtieOryHu/f2QjwRBsYh8KEvCLtaeEmLY0Ad6Bq2ljOBbkRcH/Y42v5c+h/tkpGPbdJ8TLknaPXNlh52zG6JDn/jRGiDgd1PKjZfykLUp3/49ojX/5jzkBF4PHCHMguDdAIKTsrEC5Q9Fr3PcnAUXVl0LSswtcAeirIv92nI6E66FK9WPGjmxd5/tJ9elHBSZUhhef2aBlZBXvWh+nvwolPTAsvECRC4/CsSEkqax7UXRwCLS2V0xQmYlpHXOvv01KBdxsJSySDjbPzgiStaKfVnOrpXKgOXOwQY4kdR4g0APSl9k3ycXx58wP+y9Vv0xKfrOQJgLXISYEuO6ipR03D7JuZ97toHEaVR+1HZA+C93exqqk7nrodiAR1Fh7yWdtbVZqpSZDKhntVKRhp4iPF5tfvYTeWUQ+OIQrJUyQxXi6+VRnblFvVGj8cXmL31ipblw/J8JimKllvj8nLiFhbWlGNEJ5EGt4Ynmd/2uFg3A444QZ1gfCkac1ot4uoBDvxGsvnBlxYGrCcTikatflWUnHy5IRqr4ONoV4zVLPDasFLJB1Zfv/lV9kre7w/ORfa+ea/SSPmGq6zNn6u6qVCpepdkLWLRp72TcWw7rP0tqB/O8dmGjV1TUIObMjkxLP840OWf2Dh6IT6ucs4HXQnNl6bBFm8/NHdWx8zgfoAMWiGEaoCRLDtJZ5tVkPl6XTYiqXHFtOSlF0ZqlMXvl9WAYqQnMBJuoKPPe/EG3z+4m0Kq8lNzM6DPnralJ4q7ABmc5D5EukTsol3ODoyYU0PuVmszuees5eiHQUAfekiUlGTippEBHmtTNd0s5JUG4yVFFUUKm0It1yDKCSyfUpcltLRzkp+vfszWg+p4tpPANYRCN2B84jhmGjYR/eCkZppiUaMJlyna6ptl3pMO1Qf2QNPPAzLAZuBjRR1FlEkgPTYVtBItVpBLSF2qErQ+8DjIx2qCq1C9dntBHHnyiwcND6YZHz35AqvfXiJy3/smfwjhSPgeCWetXRM3VeMq5iN1ohz2YCd6RLff/NJsrsam3lM5ufkFVUI3EiQNJvreADlrVXuf9lzbXmfYRzYb94LzEGGsDC9YFHtmqqvw3towQk0kpahSXnl7hOoiUTUs0mdmIPoZ3x9aUMOcL5p3ZVA1IGRpMuA1tj+j55sr0DlFS5V1B1JlDvU2KIKSTyoAzqkrPA6CDJPtiUr//c+fjBCdNr47qN7Zz32DFTasAmbbVZl3WC0XPBjjocERWgTXphySWEyEaxHVxp/HwWdZ4640D/hrR8+QedWEFWoexGVC1vsQZniS3UqTPIQmB44LUkXzeXF4/BY7xn4gljYZv7ZtAY+vPrtqJwzlY5Mh1vFCu+cbLJz1MNUGiE9LteISuK1R2QGoTxYMZ8dOivQkZ2X3U8uH3I9Ojx18/ykJE9CZS6kwI3GRMMKPY3QhQgHogi/o7MCoyJkbLFLNdO2pMgVOhfocZiT15dL0ndT6iVHuqdo7YLJNOUKFNsG2a1xdWjjVt4cgg4apL6dIazDZwmirKE2C8cN64ngvX/+NJffrUh/9D53fvNp9DP7tKKasUnYzgZc7z3gvdEay3HOc60dWrLis1++zcimfHP3Gg9OOpxfHfDiyj3WojG5jblfLvHKrSsM8ojnr+zw/NJ9pjZiv+hQO8nubp/1H0jKZYgPFK2LU46XwkJNLjiBAvzJe89id1ooC6qcDT+DQ2uwZGYO+hYWosLPR4lehgQbjxyd282YSwlcFhEd5kCLuq2plnQDpxP4OIJII6qa5I2bXHjd46YFotW46+bFI1/7xxITUXXj3x037CIbiPwwU1cJbXbdFnPpMnxIrm4qqLuek3s9JtOY7WcfsH+ug/xpgCuN64TSao6GbdRQfQR8LVg4EuWvxMgJ/ungErfLVUqnSaSho8r558YpUl03AHrFt/av8d7OOm4SIfNgjyKaByeqmc8lXKSwmYeOwacOpEdpN8ftKeX4fP8m0SekAv8rIZpEaQzqaEyynGDSqBHGbWBYTuCERqxYVGIhschuSX2SYjoCUQsYRRTXAiJhetViWhHRqPH9nuGDS8XajwTqwQAijRQi/Pw4Cn9WNSLSC18iQZB/rPqaVAi2XvHsrvXo9ydYJ1lPxvTigrV0wmHZ5kHa4+lsF+sl19P7fPrqbd6aXuDP71/n3914Hh1Z6io4kjor+KWnP+QLSzcZ2Iw7+TKjMqEyivhejNOhwMn2YDJN6LwbUXdYuKWHuxuRvNahWAs89jm23AhMOyxU8aAbIpms/fx7nAp/H9BADh9JvBDIyuKFwEcKPSxRU4PTknIt5ujZlGwjpvPBGDnyoUMRApFl+DpYg/jk0e1KH1tMRNYeR+OA6B+aRbrwUM9Momak/kDBCq17PIAo99hYUO5rypUO984lrF844eCqxlvJ/qSDsZJqFBOV4rTSnJ1As2uZjWIX/ADsVkt88/g6W+mQViOmnMqAZQTQ0pKpmikRR1WL/X9xkae/fYywYzCWemsJm8hwICWS5KDAK4lpa4rViN0vK+Rq+HejKFS13kOWVPzR3Re5sbzFZ7s3+WrrXdZVoPypRb8rIDyUUYMkGOfExx1MS1G3FS4Kz42UHmckdkkQJQHnGkUWsVxQjeNTBa6HoC2m6zDtcMj4yOFzTbyvWHn9GF9V4VHppIhpBWUFWTLPEjPkxsJCQHrkw/xuWtDeKRG7GUdGwtqI/TIUEcM65d6wx8G0wwvL9zmXnDByKVt6wJPJHpcuH/L+5gbvTdY5Llu0dcV6OmYzGXK7XOGoavHu8TpFrSlLTXoU3n8mC8uXC6snDA/bFKuLL0jqtpwnT1kHw0pZzZosgc083gXGozIhl0jjT8WMbPh/607QkZANN17WDodGGocalShg8GTG8fOe+rYiOU7RkURYhygtQitE2bDV3C9MUDnMHgKYvhEyFc2boQQpG5vSZqlkpZgPfXUu5nqMM/fO8IXAWEl/ecLxYYfhJMh36YPoFIB9WtWfJswmqS46VWSq5mrrgEQacnd6ckXSUrtTPtpsJpoMPP7dD8N54Dzy/Vvz0ZwGhBQIIYm9Q33pU/g4QkqHVMGywDlBltaMJinHhxn3e0u80nqC/1V/hT946rv8budN0oU3q4QXRoWH0dc1alKRHmhMmuAiiasCHtEmUOcaI5mPJpKkDsyrWmFKBWUjiZcrfNsElIIRqJFCWMGT//sR/sM7iF5ggYnSIGoTKtCqBhPsb1W58HkPS+9X7L+UsLyxhhEQTQTSxhyrDs5JTtIM6wV5kVBbxc14hX6U01XFnO7rkJxPjlmOAlzrI8I0wvHBeI3BOMUaRXwjI9sPikZeQ7Fl+fDuOquASxePA/W66SZmlj2WoP9J6DAqEZ4RacDXDZSyWWA7HbpfPbW4KJAnZFFjWzFeC2TpwDhsO6buJwyuwd/5le/x1mCb0e0LZM0+JliraOQQiHQYGzxiPOYMtDFuatgAarZJrUNydAqkbzi2syQah++pesEoTvhg0Vv3DfFyQSc2aOWIlGXSqjGVwlWK+C9XC3PsY/O1O/3rRYYUno4KfrlB/zNcUSTsfL40EQklcD474Tu/bun/5Ari3h5+Og1smYBJAucD6FtKRCvjw99KiZcnc+A8gNaNVe29FtKDVRFTLyiV5x9/4z/h9c9d5B9tfv3/25vwc0OEmVLZeAnXBjWuaD2QmCz+iGiEPtEY7dGZQQhoxTWl8NTKobTFJCpgYH24TbZQyFwRH0u2vlvi3nkfkST4ukYkMaIKM0+cQ8QR3tiwjTeLT6BeC0ZPGWw/VJs2DRVUdDvhZE0zWSpJs4osqVjKiuBAWrdIZc26HnIxOiQSllRYIgIMauRi3q83KFzQoi2NJo4t+WHG1qsV0/UgRiAr8Ilja/OEwblNZAHeLDaBzpZhs8/nbbwFvCc+EVT9kCyVBFGdzj9lDarwmCzYgORbCdLE6IklGlaoozHCWHw7496vd/mDv/0feLF1i5c7t/gfln4P4SL2PyPp3IGVtwuwHrSk7v1CW/ggA+2QCD1r1efQRbxrBH4jwrbQN+r1qQ+UrdTxxJUH/I2tn3JQd3h3tMGgSqlskCJzhUYf/3wPJOFOcaj+9FsWGrJJ4Q6BRSKxWC9RIjzciTSsxBMiGfy7f+n59/nJ33qGi38eId+9DbVCKAXR7BcSsLrM/pfXqS9WpMphm1NDCIi0ZXjURtcCFzf6q5XEJ5b2+RHbyYAdswzcWtAdaUI2CVSIYK1RG9ASPapo70ommzpY7SqBKgS2UPjMkA9TVto5qTaUVmGswtigk2qcZDJOkQNN+65k69Uc+eqbeOeRkW7mriIsjKo6HEZCIFopvpXC3mJviWjeP5f/uEGxTGrqXozqV8ibGdkdTTWWjJYjOit5UOe3irfMFvWSpCUrUlmzpQYcuYQVlVN7ycTHTFzCwGbcmGxyf9QlHyesfV+SfXhA3V2jbgVIkD7W7JpV2qZBMUWLPVSEC5YsNN3rrBqVtllYa484hrLfVKKVwKQeXczyikCWPkCempGhzRSq1IjlDjZRHD2X8Ut/5w3+yfe/wpef3eY/3/gOTkPVDc63rYMg7+cyjY8kZf/R0+LjJ9DKQSzxyodNuyA4/lmBjUQDpm+WTAiEBCKo+45kM6fbCoyJt8bbJNKipaUwYWlUjWLEVH6E7TRz4ZxpjgpPs2QRs0taaDgEpdfUTqFw88Q5rFt0dIkSjpascE1b8Gxnl7tf7fPeyiZbrz5D51YO0xqUwPRT6o5mdEEzvAJJO2h8znRApQwmcupI4/UpqwcboCp/7dINXmrf+qiK1aLCB8tZIQRCK7xWuCgktPi4wkWCsqeCwEUsMEUQo2n1CqwXZLpGSUcOJDqoe1kncYWivSfZ/F6Oeu1tnLXhAJp9lBXeOXDhTSG8J4immoWftl5A3dGo0jF4pks8dlx8cp9IWe7pJeoPO6QHEncckw804+WaKDV4LzictNhf6XCztcr55IREBv+t3MUc1B3uF0sM65Sbx8uM7/RY/aFk7dUDcC44Vq5J4pGHe4LJecXKzwzDy4vXshMGkoHHxqcb9fn73wfJumAX5KmWgoGg9EGt3ktBsaSIJy6oM5UOWTlk7ZClQVQG14sZX4SpjYjaFa/84DrP/Nouph3Gi/EwAPZtHMDmVV9Ttx592/jYLbywLgDZrUcYj7IeEQVllJlUlp+V4s5jffNLTyXFIKHMIw5VhztZn1YSwMLDSUp9kCFMqEY+IhQyw1zb5u/16RxVPIyuX1A4LziuW2Sqns+pchdzUrewSDaiEfVDF5nKmk+v7hC9ZLl3oc+9YYo+6aBK5gwMvMCdnxJFBmPUaQIVnslBi6gOKkVehQ+c4Nr5B3yx8z6113M1q4WGbfxFpIQkxmdx8KvpRkSjmuSwQtgY0woPrk0lRRbEaLyHaRRRW4UxiiwJB4mxEnWiufD1Efz4HVxdhQozjhFRhLcOjwtzT+9AqgY0KEJy/QQs1+q2pG7JpvIy3Hp9i+tfuMnTm/vcAKZxm/SBpHNLYvcSbJpgWp5xlvCjBx3e6NSkaU0nLZmUMVUVNGTdOEKUkmgo2H7DsfT1dxBxjF/uEZ9UcEkHEH0b0gNBa2eKjVtzcZpFhawDwcZkoQA7NSAMS+ig9OZJT0JFWnUF1AQsug+cdlU3LhhIoplWR6SQQlD1NOe+uMN337/Cf/XyN/mfvvsbAIyeMnQ+1IHNlATzQy8FJpE8jiOO8I+xhhNC7LPw3vDnxmXv/foifvDZPfn58Qm9L2f35K/G2T35+fFI9+WxEuhZnMVZnMVZnMYnAFp8FmdxFmfx/884S6BncRZncRYfM84S6FmcxVmcxceMswR6FmdxFmfxMeMsgZ7FWZzFWXzMOEugZ3EWZ3EWHzPOEuhZnMVZnMXHjLMEehZncRZn8THjLIGexVmcxVl8zPh/AF2BOzgS7puwAAAAAElFTkSuQmCC\n"
+      "image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\r\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\r\n  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\r\n<svg height=\"250.458125pt\" version=\"1.1\" viewBox=\"0 0 336.123362 250.458125\" width=\"336.123362pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\r\n <metadata>\r\n  <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\r\n   <cc:Work>\r\n    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\r\n    <dc:date>2021-06-09T14:11:05.725999</dc:date>\r\n    <dc:format>image/svg+xml</dc:format>\r\n    <dc:creator>\r\n     <cc:Agent>\r\n      <dc:title>Matplotlib v3.4.1, https://matplotlib.org/</dc:title>\r\n     </cc:Agent>\r\n    </dc:creator>\r\n   </cc:Work>\r\n  </rdf:RDF>\r\n </metadata>\r\n <defs>\r\n  <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\r\n </defs>\r\n <g id=\"figure_1\">\r\n  <g id=\"patch_1\">\r\n   <path d=\"M 0 250.458125 \r\nL 336.123362 250.458125 \r\nL 336.123362 0 \r\nL 0 0 \r\nz\r\n\" style=\"fill:none;\"/>\r\n  </g>\r\n  <g id=\"axes_1\">\r\n   <g id=\"patch_2\">\r\n    <path d=\"M 10.957047 59.80778 \r\nL 48.446703 59.80778 \r\nL 48.446703 22.318125 \r\nL 10.957047 22.318125 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p0c76f4c37e)\">\r\n    <image height=\"38\" id=\"image26ab5498d9\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.957047\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAOBUlEQVR4nD2Y2a9k11XGf2vvfYY6Nd353u7bk6fEbmKbOImcEAQIEwHilQcUkJAi8R8g8YKQUP4CHpF4AoFQpCgRRJFQoliCWHYIiYMdbKfdtttu952Hms+wz96Lh3Pth9KuUp2qs85a3/etby35+OGeTqIhIgBUavFqabBENQA8atf554MXee9ki2f2jvmTvf8mN563yn3+6dsvsfcTT8iENjfUY8FVoAZ8IaiD8fst/VfeJa5WmF6OhohYA1mGGINWNdo0yO19Tr66yWpPcHMVPIaoQoOh0oQqJgB4LF4dp+0QI0ozy7j3yyf4m97jrD1/hm8txaFifEStwdURZgZbKxKVfAISoHdcQggQtQuibVFAqhoGfWQ8JG6NOHtuSDpXtl6f4+YxIZeAFaVRg1cLgJVIVEOlhlXIeDhZY/RWwvo7HgzUb25iDKTLAAq2jBgvGK/EpDtNq6SnJfZ0QlQFINY14hIkcWgIiBiaGxusrues3StJPzwj7K7hAAxKKhGvhkQCFiWRFotSScLH9TqL98fsHEVWOw4/EPpHgWzSEjJDTA3SRlQgOqHNDEmISBUxywpdLLqMAWK7B9emQUNA53PSR5cgG8zv5Ey+dov2qRVuaDwAAaEwLbOQkYsnl5YKJRdPUME2QjMCgOI0YlpFrZBd1MSku5m0EdM6TKuE1GCagDSeWNXExiOJw4zW0f1t2nFGcjBFHx1B46k3E06+1rC5uUBEMRsGdq0hQbluLbl4CuMZG0+lCd+5eIGX33+qy0YiJEtFguLKSHpeEp2hLSyoIiEisSuZqBJTizoL1naZiorkGX495/LJnPrWOoigVUU6bWGScnY45mIywFkEe8XI09Dy2UQ5aJXvzJ/jH975Ddp7Q9r9GuOUkAn12NBmim2UdpgRMtP9uTNEQEWQVjGxC44sRRJHLKsOV9MZ6VGPYuxIph0RqCC7f8LW6zc5fVFI0hY3iZGDkHMatghqeG3xBN//4C7+3ogbL3sW1+FsH8KGpwwp6aWQqlCPDOAwTcRWAbf0ECOm7RiqAqIQhhluYx3zCRubBmkDxiviA6QpkibEi0s2Xx/SDNdZ3O7jvjN/jjM/IDGBn5zf4d7DXXb/I2W1Kxy9mBIyRUuHtEIyF7KJYmtoc6EZWUxrSedKOrUk8w6v6jp8GX9FiCJH+gU6W6CqiDGgIE1LbBrEObTxmA8ecX1ZUd3ZwB37EVvJnF035cfxCVgkmBb6B5GjryqaRaQX0JWj7SuLAtphRPstYhUtLXZuSScJvVNHNu3KbGuLLSO2DuACUhTIVdZkVZFOPbKqUN925YTuPD6j51vcn66/xlBa5ur4YX/C4dENhu9NkTpw/OU1dm5eApC77sdRhVFWsV9MuGwK7l9sMe0XlIOEmDhsDcki0gwtYdORrCL5uSEtG5gY1LfE0zMSZ9HlCjRCjJ+ekibEswvchmmZRsueDXx9+ycc/s6Y2bv7rP3gHoMHGxyvjUkLT5E3TCcF7jDjpIF3Tdd2YgJxEDBDj55ZbKNUG5ZqQ5AAbc/gexl9O6ZXN93NiwLKCl0sEdd1GcmyLmO+hRBw/zj5Al8s3ieXS76ST/jmY9/lG3/856SzJ2gLsBcJTW1pNGfwgaN/EAmpEBNYXRP8RosddthyKyGksNoVELAl3bUOTJvgyg2cs1SPb1KvOca/OEU/eIg2Hv1EgNO0Cyw3nqeSrlwATyYV33zu3/irl75OdJH8xGBODMvHWhaPtbQ9h0QIqaJWSS4s6QNH/0ApTjzVugUR3IorIkAUaIZCuZtR+AF+YFntGAZrBSZxmPEIXa4IiyUiggLuQbXJfODYMC3HIbJm4NezA/pPTJkdDXGVYednFRfTjHpDcEtwZcdMpCtnPglkl556PcEPhOxCMS20vS6DmKtWlQuhn9A7rLB1iqk8Zjyi+cw1iOB++jaxriEq7nuvvsDdlw74s9F7nHlhKJ6AMO5VzP0IP4SzZ3PaPoQM1ELbF1BoxkoYRtQq4ECV/FAYPVDqNaEtIORABNNcBdez9E5X5FWL+IC2ASKsrmWsbW8Rzy/Q0OCKjy1vra6zGt5jwypzFeYxYVLmINDmim5DvdeydX3KZFYgD3q4Umg3W7JxxdO7JxSu4dV3niDkysVdaEctSJdV8V1nkCBIsCTLHu68RGpPrCrSB6eo3UFHfQwQzy9wxsPb0z0ebiZ8NokchEBAqMoURp42tTBx0Aq9xHPeGtY/hNGHnvCmUK0NeOOFguzaClla/J7nzs1TmmCpvGNVZVTzDO8FCUJMDK5OGZ0uoW6QPEebhuzD8w6TvQxJE0zb77xXLh0rNgw89JvI/QIR5fNPP6D3mQmkkYcfbZG9l5MslHpsUdNJQn5sad8fYLZqHr91gjORVZ3SBktoDXhBFPwoUm8qy11Lu9brxNbZTvnPL6GqIXHIeISrNyPTOmceU35cFXzz/h9xczhh+BGcbyVENXxu+4h2y/CzD24RnqmRLy9xJpLYwG62YtWm/OrRLrG2PDjcJNYWqWyHvTww2l2wGma0lSM0BjWWbNJj87CHzubgW2JdY3a3OhMAODZr5mXO1//rL2CW0P/Q8rMXRuxMlcF7jnc2d7A2Ym0kLxpGRcUfXH+b54uP+OHk1zgoR3w8HWM/yrFA6CliAKOdlmWBImsY5jUXi4JymtMOhGbYzRPxSiKIiqwqpKzRqsLFRcJqknLn3wOz24bpU0r/tYLxm6f4YguTtiwWORqF/rDifDLgXxdfYHx3xVdG93mVJ3n98hbrH0GzJlRXnUB6gbTn8ZVj8toufqDELFIcWmwDxVmAsuqcrXNdkLN5J7IiuMe+HWjWHOl5idt2tIPI/DHDwde22fy/mtkba/Q+N+POxgXHiyGLy4LsnZS/m/4ef/ub32Uvm2KmCf3jSMgsrgTbWEJm8D1H8dCy/6M5GGH2WEF+6XELj5tUaFUhzkGSICYgafJpoK53/5S8lyGLkuZLI5L1mr2NGQ+Hm2z+EiQKTWOZ1Tnn5wPseYIa2Hol4e9v/BZf2HpIemnIT1fEJGf9fiA/LkEVvbLcoZ/gFp5sEpCopAcT9OKyM4+2Az95jjiLeg/W4vz+BiG3XDy9zewrJRLNpxoWU4N/qkQ+7DN9bcD+R4H8vKLcTikOay6/tcv3n9ll+92IXXpUcoh0BlAEP044ezYj9GDrTcvF0wmmgf13FRkMMEkKdY3kWSe0qkiWdX338KsFamB1PXD3xhE+WHaLGffSHYwfk77Tu3IJcPJ5Q37eY/1djx8mbP18Su9iwHLHsrrVRxQW+45mNMY2ii86y+6WsNhzVJvK+D6ds1gfdaXL0k672gAxolUNZYUrt5V0JvQ/trx3bYvff/xtdpI5J+WQi5vbANQbkezc4Dci5ukVkzBk+42S8lqf2S3H7LOB9r5j+xcV6dSQnZVXbejKxiSOZqfP+q8iyfEMkgS1FmzodKysQaQLbL4gVjUunQq9U0VaWB70+fnoJplrOZyOyDLY/aknmTU06ykHQ0e7HDCcKYv9jNWuwQ/ArAz1GpzfzSlOAtkZmEWJrKpOzZdL0pMUYgBju2xVNeJbCLGbO6N21sda7MYaTmI3lsUcNAkUScMgqVkVCYtiTO9/3oe2xV3bQX97i61nT2iesQSgLjN87YjLhJgJprGMH0RM1XbgHw+gDUgI6LBPHPQ6/DmDmSw+tVokKfgGyQpYG6K9FNc7VpY3BTWKRCG1ASNKagOLWxEZDaHx6KNjbvxojYPbfb5x91Ue1WtcNH1WbcK759ssDgcUJ0p+tOrKBxA6u6zDPqhiak8sUgjd7KmJQ9oaGfYh9gjrQ2KRoAIun0aWNy31DY9JA+dlQVTBiGJ2K5rra6T3D5GNNYr/fcjwB4/xL9kXeXbnkKjCZV3QthY3t/TOu9EtbPQxiwY5PocYkEEfXVXIoMCE2C1TQoQiR013fXSGdpBg69Dp3FN/+RbTbz/Lje9Zmn7C8R8q1zenVK3D2MjlM312jgqkaiDPWH+n5GBnnZ8+n2BtxDeO0FjSSlADGMFeLJHGQ5aCagfs9RFqDVL7bkAucmIvIfQKsNIZgjaSXFbIosS98vLnuPPKkuRwgk5mzG89w8fXMjSJkEZWe0Jzc53kdAVWsKVn9EHkeK+HblfEIKg3SLzCS9QO1HX3IJq4TxmHb7uVgUvR1BHTT74D00ZsiJ157Oe429+vOPlin603LGni2P/PkunjOfW6pRmDCjQjR3IhqDHEzOFqpf/QstQeopBUQjLvdmHqDLHfQzeHSBuRRYksVpClhJ21DvxtJOYOTQ0qgvERU7dI03af5yWu/usJtlnyaGOLrTcSJCjNuNvsmAbSGay2LWpGJMuACrSZkF0qbmUwrWI82DqiBsq9HLuWYqtIer6CxNHe2iEUCdJGLFyV0KEGTNutCj55ERVUcV/a+pC9bEp9O+Fb89/F+M6ni0J5LVDuw/C+RY0hS4X83JMuIqa9UvWq2/6olW7dmXUTiq0j5f6AmHRm0pUB0yh+lBLybkVgmoipA+JjR4K1Ane+QJ3FPdU75m7+iJfnd2l7oH2on6hIPsrILizVXsvidsSWQrky9NZSsqmSzgISFFtHRBVfOGJhrqYhCFmC8d26ytaR6AS/nRGdIBHcKuBWLba82neIYKqW1ZMb1GOLu5Oe0ZeGDbek9+IZF6cjnr/ziKPtIcs65fHhgp7zHMxGrKqUSeOIK0d25CgOoX8UGbw3xU0EE/o0I0u1brB1V6a2MKgVfN8gQZGr9VT3XjtSRIjDjOmTBatrQrkT+X81c6c7kxswOAAAAABJRU5ErkJggg==\" y=\"-21.80778\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_1\"/>\r\n   <g id=\"matplotlib.axis_2\"/>\r\n   <g id=\"patch_3\">\r\n    <path d=\"M 10.957047 59.80778 \r\nL 10.957047 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_4\">\r\n    <path d=\"M 48.446703 59.80778 \r\nL 48.446703 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_5\">\r\n    <path d=\"M 10.957047 59.80778 \r\nL 48.446703 59.80778 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_6\">\r\n    <path d=\"M 10.957047 22.318125 \r\nL 48.446703 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_1\">\r\n    <!-- Disgust -->\r\n    <g transform=\"translate(7.2 16.318125)scale(0.12 -0.12)\">\r\n     <defs>\r\n      <path d=\"M 1259 4147 \r\nL 1259 519 \r\nL 2022 519 \r\nQ 2988 519 3436 956 \r\nQ 3884 1394 3884 2338 \r\nQ 3884 3275 3436 3711 \r\nQ 2988 4147 2022 4147 \r\nL 1259 4147 \r\nz\r\nM 628 4666 \r\nL 1925 4666 \r\nQ 3281 4666 3915 4102 \r\nQ 4550 3538 4550 2338 \r\nQ 4550 1131 3912 565 \r\nQ 3275 0 1925 0 \r\nL 628 0 \r\nL 628 4666 \r\nz\r\n\" id=\"DejaVuSans-44\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 603 3500 \r\nL 1178 3500 \r\nL 1178 0 \r\nL 603 0 \r\nL 603 3500 \r\nz\r\nM 603 4863 \r\nL 1178 4863 \r\nL 1178 4134 \r\nL 603 4134 \r\nL 603 4863 \r\nz\r\n\" id=\"DejaVuSans-69\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 2834 3397 \r\nL 2834 2853 \r\nQ 2591 2978 2328 3040 \r\nQ 2066 3103 1784 3103 \r\nQ 1356 3103 1142 2972 \r\nQ 928 2841 928 2578 \r\nQ 928 2378 1081 2264 \r\nQ 1234 2150 1697 2047 \r\nL 1894 2003 \r\nQ 2506 1872 2764 1633 \r\nQ 3022 1394 3022 966 \r\nQ 3022 478 2636 193 \r\nQ 2250 -91 1575 -91 \r\nQ 1294 -91 989 -36 \r\nQ 684 19 347 128 \r\nL 347 722 \r\nQ 666 556 975 473 \r\nQ 1284 391 1588 391 \r\nQ 1994 391 2212 530 \r\nQ 2431 669 2431 922 \r\nQ 2431 1156 2273 1281 \r\nQ 2116 1406 1581 1522 \r\nL 1381 1569 \r\nQ 847 1681 609 1914 \r\nQ 372 2147 372 2553 \r\nQ 372 3047 722 3315 \r\nQ 1072 3584 1716 3584 \r\nQ 2034 3584 2315 3537 \r\nQ 2597 3491 2834 3397 \r\nz\r\n\" id=\"DejaVuSans-73\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 2906 1791 \r\nQ 2906 2416 2648 2759 \r\nQ 2391 3103 1925 3103 \r\nQ 1463 3103 1205 2759 \r\nQ 947 2416 947 1791 \r\nQ 947 1169 1205 825 \r\nQ 1463 481 1925 481 \r\nQ 2391 481 2648 825 \r\nQ 2906 1169 2906 1791 \r\nz\r\nM 3481 434 \r\nQ 3481 -459 3084 -895 \r\nQ 2688 -1331 1869 -1331 \r\nQ 1566 -1331 1297 -1286 \r\nQ 1028 -1241 775 -1147 \r\nL 775 -588 \r\nQ 1028 -725 1275 -790 \r\nQ 1522 -856 1778 -856 \r\nQ 2344 -856 2625 -561 \r\nQ 2906 -266 2906 331 \r\nL 2906 616 \r\nQ 2728 306 2450 153 \r\nQ 2172 0 1784 0 \r\nQ 1141 0 747 490 \r\nQ 353 981 353 1791 \r\nQ 353 2603 747 3093 \r\nQ 1141 3584 1784 3584 \r\nQ 2172 3584 2450 3431 \r\nQ 2728 3278 2906 2969 \r\nL 2906 3500 \r\nL 3481 3500 \r\nL 3481 434 \r\nz\r\n\" id=\"DejaVuSans-67\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 544 1381 \r\nL 544 3500 \r\nL 1119 3500 \r\nL 1119 1403 \r\nQ 1119 906 1312 657 \r\nQ 1506 409 1894 409 \r\nQ 2359 409 2629 706 \r\nQ 2900 1003 2900 1516 \r\nL 2900 3500 \r\nL 3475 3500 \r\nL 3475 0 \r\nL 2900 0 \r\nL 2900 538 \r\nQ 2691 219 2414 64 \r\nQ 2138 -91 1772 -91 \r\nQ 1169 -91 856 284 \r\nQ 544 659 544 1381 \r\nz\r\nM 1991 3584 \r\nL 1991 3584 \r\nz\r\n\" id=\"DejaVuSans-75\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 1172 4494 \r\nL 1172 3500 \r\nL 2356 3500 \r\nL 2356 3053 \r\nL 1172 3053 \r\nL 1172 1153 \r\nQ 1172 725 1289 603 \r\nQ 1406 481 1766 481 \r\nL 2356 481 \r\nL 2356 0 \r\nL 1766 0 \r\nQ 1100 0 847 248 \r\nQ 594 497 594 1153 \r\nL 594 3053 \r\nL 172 3053 \r\nL 172 3500 \r\nL 594 3500 \r\nL 594 4494 \r\nL 1172 4494 \r\nz\r\n\" id=\"DejaVuSans-74\" transform=\"scale(0.015625)\"/>\r\n     </defs>\r\n     <use xlink:href=\"#DejaVuSans-44\"/>\r\n     <use x=\"77.001953\" xlink:href=\"#DejaVuSans-69\"/>\r\n     <use x=\"104.785156\" xlink:href=\"#DejaVuSans-73\"/>\r\n     <use x=\"156.884766\" xlink:href=\"#DejaVuSans-67\"/>\r\n     <use x=\"220.361328\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"283.740234\" xlink:href=\"#DejaVuSans-73\"/>\r\n     <use x=\"335.839844\" xlink:href=\"#DejaVuSans-74\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_2\">\r\n   <g id=\"patch_7\">\r\n    <path d=\"M 80.226013 59.80778 \r\nL 117.715668 59.80778 \r\nL 117.715668 22.318125 \r\nL 80.226013 22.318125 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p340eaad5ec)\">\r\n    <image height=\"38\" id=\"imageb5836a9fc8\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"80.226013\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAOWUlEQVR4nFWYSaxl11WGv92d7nbv3tdX53KV7SonLmOMm3SCKBEKCRJTBiBBZghmCDFlhgRighAzgiIxCIoCCEUZACGKQkgcx3Ec945d5XpVr17/3u1Pt8/em8F5roQrXeme0Vn3///1r38tcfVv/yasvibo363483/4J56NJxw7wV8ffIHd5QqFNeyfDCDAxY0JK0lBV1dczsb0VIkRjrlL8EEAYIOi8pqDss9x0WVRxRS1IV/EiLOI4VuCaBaYXpesf3aPnZ11Oh8YXAIIEA6CAjm4NubsqUC+FeGRlCFw7DPGVYZ1igf3VvGVot8vuNCdshovudE95FI0Zu4SSm+Y2Iyuqohlgw2KZRPjg2AQlcS6QUlPt1/AasVyWyCbQHIa2Plgg8/deofljRrhQNaAB1mBvLl6hL6yZPK45E+++WXmXvK9xU3ujEfs3F9DLhSmUzPq5KTKEsmGRFqMaNg0MxJp6euCKmhsUPggkCLgg+Ck6DAtEsrKYK2m2yspH62oexKdQ++25vWTC/zZJ/6D6maBtC1qQYK8mE64uXmEfTInmkj+7vhz/ONrn0KJgDk2sF4x6JYM45xlE3E5GTNQOXOfIIV/SF3uImxQXE1OuZSMGUYFLgickzgniUxDFtesjJacPhPQVcDMA4tX1nhQDfn9Wy+zuNagSgCQa2bBU4M9rmycUW04/ufrz6K0J39jiEsCq6MFsW7omYpn+rtsmBk9VeKDxAbFie3y/mKD9+ab3M+H3KtGjJuMwhkapyhmCW4aEZuGzFie2XyA7zbIJiAbMHP42ssv8snOB/zeJ39IfskjPGgpPJmsudY7ZX+zDx/2SV7NsD3waasPKQKV03hagSfCksmaqUuJZcON3iEDXfBCdpvrZszcG96tt/jX8Cynt0ekB5L5WkIvrkiVhVoyv6SIJwHRQLpr+KsPf4u/uPZN7r6wyivffhLtg0QJT6pqumnF0kA8CVSroHoWAKMcUgTcOUp7tkXmX374ApceO+JPr/0X62rGG+Vlvnr4GTq6ftilycUFVdMlVJr9SR8ANbBUI013z2M7El8Jdt7e5rULV/idtZ9y+/lVpA2K3EdUXmMbhWwgO/YQQEqPkZ6OaV80bjIWLuGs6XBY9XjkiQMudKf889EL/P3+59m3Kzw32OGZ3j2uZ8fUTmO0Q19esrU2JYksPgiGgyVeBfTSoyoQDSTHkq/8/FOsqgV/8MhL6NxFHNc93p+uMznuspIDAYKGOHKUjUYSWIkKMlljhAMJLw4+5OPdfaZNig2KWDYY4bhgxix9zN0mY2cyJDYNW705wyRnYApqr9mVK5xsW6qhRhcB2xWoGpa7Pb537SYDVSD3qwGvHl1k584Gnfcj4omnSQXeBKxVGOVItEULRywbYmnpnov/qfQ+Q7Mklg0Tm3FU99ip1/jW8S2+8aPnsU4BMExyHsnOWI8WpMoiCeisoeoLOgc1qgzIGtJ9xbf3bzB3CfLd8Qbju0OiYcnVL35I58t7nHypxKeeplYM4pJRlNPXJYm0JMKyqhZMXYoNmlvJLk+me1xLj6m85jtHN5jbBGIPPxpwfH+IJLAdTVobILCeLhDyvPvmNbpsWRIOjl7f5LDuo4/HPcxEsn1jxhfW32a/HnDvaIRoBDpydE2FCwIfBLG0rKicdT2jDIZvnf0Kvz36Gd86eZpRlLMeLag7muf6d6k2DV/beA67TNDStaIXnhWTA7A6WFKaLggBAXzcjiK9FNyeraHdwuA2GzJTc68a8f58A3ZTQtfRzUoSZTHCP7QJdf77xeQuibB8d3aTjWROV1VUXrMRz7loxsxcwqMrp7xjNxlFOQ+qIcDDbs2rCBkgnDs9/hy1Bu78+DKaAMJKttMZsWy4fbaKrIAuJKah8YpYWtbMAodk6WOWPuZADNjSUz7bf5eXF9das627DEzB3XqNRFjyJmJx2OXdwSbb2YxUWY7KLgfLPpF2WA1BS4JqR9G5TZIdCDRASBxr8YLHkkO8fxpVCjCBXlTR0TWxbBionN16xLTJyFTFtMk41EtGesGV+JRf/hjhmPuEojHIriXTNamy7OUD7k1XcF4SAOXBxwoXtWjJBryi1R5BQCNQeOqgyWJLaQEZWrEKT6Zqch9TeQ0StvSUy+aMO/U6ry4eofKmNWhVcVz3yE2ED5I799dJexV5E/HjwyvUjWJ23AXXQrM58diubuNOABxID9IGJCKADMSy4V61SlEbsv2AyBWLOiZVlmmTMnUpb84uMGsS3iu3+aDaxAeJlq3mXj27DMBWPGWklrggoZFcXT0j0zVVo5hPMvAQnSqyHc3KW3PKYWspQZ5/NQQlWsRMv8IIx/eOHyNfxKyOHcGAFOHco1IyVXNaZJwWV8mriF5ScX1wwnHZpWsqfBD88PRRPrN2m46ssEFhTjTummSvGNA0CpYaWQtkJdAFCO8Jos1hsgZvWvEHARoZQAR+cHYNIx3x7YT0wRQ963Mw7nE7W6NnKvbKFaxTnL6/iu82LE+GpM9b7p0NWe8v8EFwNOuytjUnkxW75ZCVd+HDR0eEu51WN6J96cNQ+ME9VoHxrQG2KxD+vEMFSBE77Dzm7bsX+Plbl+jsBWTd0L8NzWnK2//5BD/476f4/r1rbQDsNyS7EXi485PLJJHlcNLjeNolH6d85c6n6ciKJzoHTB8H7yWu6+nsCvp3wCeBeuTp328Q2xssr/aQttWYCCAdyDqgo9RiTyP6dwwbL89Rtx+AD2x+bZ+tf08JowE+Nrz3xxlCBG5d3+Vgs8fpuEuS1jReImVASs+Tj99n2USsyPO5+rEZ61nBOE6Zjwy9Tok/7tJ5P2K5KejciZhfbBvK63O0AKkFupdVTGyXjVcWqJ1DRJriz8bYF2+y96mE4nKDzCUXLh9x+OYGy5UZX7z0Nu+tbHKY93hwOsBOElZe17zwR6/wXHaHZYhYVQv+8ta/8dLiMb7x3jP4cczsIIHUUz5dkI8j+ne7rNyuWVw0BCnwprUNPOhuXHEWBWTZIDoZYdmODG8k5RMl1y6e4IPgS9tv8tXlJzic9ehulaTKcrV3xq3hHlvRjPwTEb/RfYeOsEgRwIyZ+4SPZw9Ye2pB7iNObJdlE/MgH3D33auosqJaiwgCXNJ6mGxAhIDW0hN0IAhBODnDP3EF3piS3Dkle2cbeSnQMTVvzC/yhzdeYqAKrkeH/GbnbaQI9ESDEuACKAFlENggWZUFiWiDpsJjhGNHrvGWvcAHh2vEFVRrES6SBH3embSUCge68R8RCyJLUftnhDhGlDW9HU9hDYOoIG8ichdjhOOBHWK1ZqQWJMLhQ8CcFzXxEWUw7VwlYHCUwXDQDPig2OD1kws0tSatIQiBqj2gQPwCMW/EOWImUK+mJO8X+CeuIFb75Bd71D3B2d01Vm4WXOmMsUGRu5jKG8rQFjA/R8YIR+5jymBwCOYkGBx5iJm4jPvliDfPtlkUcasjQFW+df2mRUraFi1VB3RH14jEMbsSkb7VpVpNULWnWNPMH21zf9EYUlmTyfrhtn1ieySibh3+PNLUQREJh8ST+xiAmU85sT0elCvMyxgpPTpyeA0ukQgXUPYXFM5uNly9fojOdI2OG4r1GLwne++I6a9tYzttPvJOMCkSzrodtPSM9BKCpAqaw2bAup4j8SSypQ6gDAaAg2ZA7mImNmNSpe0fUJ58GpN4KIaSeB4oVwX1rZzf/dhPuBKfMm46aC0d2ji8geA9onEIDy4RuNRh4gajPMsmQsXtXOypkgzR5n8gkZZIOIxocEGikPhzZKugkcKTqIbYNMyLGFGLh1Hn+FcFz/76uzzde8DtfJ3vH11nWiRoIzxGO8ooQK9DeWVEk7SeIqygk1YkukGKQO4juqECYF3PHwZHiX8YIAEcAockEQ1e1uy5FSLVEClHsYiRti3MxQK9hJ9+5wavqhuoWqDPlyGtpSONLLkBUVnqgQags+8pNiGNLP24xAfB1KYoPB7BSC/aIoKkDAYpPJFw57un5tAOyH1EJms6uuK47LKoIkLRJq3kOLTzM4cmOzdX8Ytcpo3wdKKaw57DXlmj/+Ndlk9fgADRxFA3mqppi02UxQbF2GZkcvD/ilOiPdOU3pD7+CHNH52oSqdZFjGIQHIi6e3WiACL7VaPwrUjqVwLPP/5d5BaOoZxjl6p2f1shltfwXYV2Z0x6z9rOD3psbARtVMsbMy8SSh8ROkNc5ey9DFTl1EHTe5jzlwXGzRTlzJt0vM7RkRuI+p5RHyoufC/Bban8LpF6iO9yQbiWxN+ffhztMIzjAourk3YuRxx+OkByWmrl+5re5gXLjPtp3RNTe01ldNo4dkpR6xHCxJpWzq9IZGW0rcITJuUw6qHD5LDosfhpIeaaNZ/6tHTCpNqqoHC63Nhhhaxutb0ZYF2SGLZcL1/Qn7ZcFqu4rUkeXRIem/K1suO+8MuuwE2+i11tVf0TMWsSZiErNWcWZL7iMIZKm9YuojaaxY25nSZYQ9TRu8IOnfn0LQB0UXi4fCW9Tlqb/T4+tZzLWJGOVJV89jKCbMLCdWsy3JTY6Yp2c6M1Z8MOX2mx96WopuVjLICLT2RbPDnBjtrEpqgOCq7nJYdZmVMZQ3WKuxBxugNQX+nprjUIRrX1H3VDu5fKiqIthnufOPxdkuSIqDwrEQFV9fOeO9STHUaMX4yY/SmZ+O7e8SzLfY/nTHZUFTWUFiD7AUOix7zKqayLSdlZbAnKcm+ggDZpD3SJKc18c4ZfpBRXOhgM4EzbWr96O4qAoTzXVNLEWi8pEGihWM7m3G42mOxPaR/35NfyuhNCwYv3Sc92eTkVkq5mnLQ77EXrdO5p9BLIAYXQVJDfxJIJg6zdOhlgzcSWTtQimo9o1xR+IiHFhEk59Hi/FnB/wHKaHi8GTzDeQAAAABJRU5ErkJggg==\" y=\"-21.80778\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_3\"/>\r\n   <g id=\"matplotlib.axis_4\"/>\r\n   <g id=\"patch_8\">\r\n    <path d=\"M 80.226013 59.80778 \r\nL 80.226013 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_9\">\r\n    <path d=\"M 117.715668 59.80778 \r\nL 117.715668 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_10\">\r\n    <path d=\"M 80.226013 59.80778 \r\nL 117.715668 59.80778 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_11\">\r\n    <path d=\"M 80.226013 22.318125 \r\nL 117.715668 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_2\">\r\n    <!-- Happy -->\r\n    <g transform=\"translate(79.612403 16.318125)scale(0.12 -0.12)\">\r\n     <defs>\r\n      <path d=\"M 628 4666 \r\nL 1259 4666 \r\nL 1259 2753 \r\nL 3553 2753 \r\nL 3553 4666 \r\nL 4184 4666 \r\nL 4184 0 \r\nL 3553 0 \r\nL 3553 2222 \r\nL 1259 2222 \r\nL 1259 0 \r\nL 628 0 \r\nL 628 4666 \r\nz\r\n\" id=\"DejaVuSans-48\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 2194 1759 \r\nQ 1497 1759 1228 1600 \r\nQ 959 1441 959 1056 \r\nQ 959 750 1161 570 \r\nQ 1363 391 1709 391 \r\nQ 2188 391 2477 730 \r\nQ 2766 1069 2766 1631 \r\nL 2766 1759 \r\nL 2194 1759 \r\nz\r\nM 3341 1997 \r\nL 3341 0 \r\nL 2766 0 \r\nL 2766 531 \r\nQ 2569 213 2275 61 \r\nQ 1981 -91 1556 -91 \r\nQ 1019 -91 701 211 \r\nQ 384 513 384 1019 \r\nQ 384 1609 779 1909 \r\nQ 1175 2209 1959 2209 \r\nL 2766 2209 \r\nL 2766 2266 \r\nQ 2766 2663 2505 2880 \r\nQ 2244 3097 1772 3097 \r\nQ 1472 3097 1187 3025 \r\nQ 903 2953 641 2809 \r\nL 641 3341 \r\nQ 956 3463 1253 3523 \r\nQ 1550 3584 1831 3584 \r\nQ 2591 3584 2966 3190 \r\nQ 3341 2797 3341 1997 \r\nz\r\n\" id=\"DejaVuSans-61\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 1159 525 \r\nL 1159 -1331 \r\nL 581 -1331 \r\nL 581 3500 \r\nL 1159 3500 \r\nL 1159 2969 \r\nQ 1341 3281 1617 3432 \r\nQ 1894 3584 2278 3584 \r\nQ 2916 3584 3314 3078 \r\nQ 3713 2572 3713 1747 \r\nQ 3713 922 3314 415 \r\nQ 2916 -91 2278 -91 \r\nQ 1894 -91 1617 61 \r\nQ 1341 213 1159 525 \r\nz\r\nM 3116 1747 \r\nQ 3116 2381 2855 2742 \r\nQ 2594 3103 2138 3103 \r\nQ 1681 3103 1420 2742 \r\nQ 1159 2381 1159 1747 \r\nQ 1159 1113 1420 752 \r\nQ 1681 391 2138 391 \r\nQ 2594 391 2855 752 \r\nQ 3116 1113 3116 1747 \r\nz\r\n\" id=\"DejaVuSans-70\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 2059 -325 \r\nQ 1816 -950 1584 -1140 \r\nQ 1353 -1331 966 -1331 \r\nL 506 -1331 \r\nL 506 -850 \r\nL 844 -850 \r\nQ 1081 -850 1212 -737 \r\nQ 1344 -625 1503 -206 \r\nL 1606 56 \r\nL 191 3500 \r\nL 800 3500 \r\nL 1894 763 \r\nL 2988 3500 \r\nL 3597 3500 \r\nL 2059 -325 \r\nz\r\n\" id=\"DejaVuSans-79\" transform=\"scale(0.015625)\"/>\r\n     </defs>\r\n     <use xlink:href=\"#DejaVuSans-48\"/>\r\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_3\">\r\n   <g id=\"patch_12\">\r\n    <path d=\"M 149.494978 59.80778 \r\nL 186.984634 59.80778 \r\nL 186.984634 22.318125 \r\nL 149.494978 22.318125 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p9b3a2bfd7b)\">\r\n    <image height=\"38\" id=\"imagee6f8738e38\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.494978\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANLUlEQVR4nE2YWatlSVbHfysiduzhDHfMm3lvZmVlDV3dVtsl3WC3OAsiggr6LIifwQeffBEf/AR+DBFEtNEHkYYGUbSbHiuzKrOqcrw389575rOHiFg+xMksD+yHA3tHrFjDfwj53e/8tUpM2PMZut4g0zHh9IDtrYqhMaiA6xQ/C/hZh5lvkBAB0MKhtSeOPLFyxMqgVlidWuZfgTiKlMdbuquaya0l7dYTg+Ebd5/x1ek5n66O+dk/f8D088SL34q4yQCPa8prwWlhsddrdLGEwpEmI2LtQAHADmA7xW0jZrFFQkSdBV+QGk8sLWH0ZVDJgiikKuFWFnszYdeGGPPjfCSo4el2nzYWFGtQyXvF3jK6FIql4uy8hes5WIvUNamwSFBsm77cKChmM+Sg6pJUFsRRQRg5UmGIlZBcfhfI3wyCGSBGQyqU7bJi72DN7GrEq82Iyg500dEdAmrABjTmbySBk+cX4ByEgG63yDBBQsIMBreOJG8oNgHTB9K4IlUFqXaE2r0JKPrdU0Iq8vHrc2FzlvCAv7XBuYSzidFey93pNRPXceC3PNG3GMYgTlEFErSHgiMp9ANptUa8R4aA6S0SE7EpeP1L3hGnnmQNsTQMY4MaIRUQKkENhGb3v4b2bo9YJSXBGGV9VVPfGug7hxGltgPff36Pt/51zeVHDVtANg6Afk9xGgLa94hziC9AFUQwXcD0ETPyyBBJ1f/LkhXUCOx6Qw3EUogekgfbgrQWrSIpGcbNFu8DIkroLY+X+/SNZbFsOOl7bAvFY48JgokQxwnDMOTVjQExpGnN4v0xl9/cpzuucbMtGKE/8KRCiN4Qy5yZWAihEmIlhBGo/bKRpx9b/Ljn5uGCe/tXhGDxNoIKz18csAme2FnMqqPYKm4jJKeYQSmuDU5jAiNojOh7t/n8D6e0ZwPiE1cvPW//yxh1QqgNqRBCKSS3q6/sMlVBrEBiDi5WcHA/sugc277AjJRx3dEFh0YBo+yXW/yoJxyOKFYRMxiKlaCiYMBJVUKMyNu3+fRPJgz7EaxS1APhNLG5VVKsE6kQhib3Uq5fDiIV5BI6RcwuY7uAiy9K5qJclD3WJFQFcYlq1HNSLpmOWs6/fcz+pwG3yeuZASRILqWc3eTFbx/jVgIKN09n9GtP9dMaieSJKwS1X2YqFTCMhGEEw1hJLvcakpt/ddvQPBNSZ9kOBSFaLmdjNBqG3lFIpB1y6v1yoJol/EIRBTWKkVHD9r0jTA+2h/d+4RlXiwZ7WZBc3jzUJjd6ep0hIdZCaCA2ijrdZQlipaQysTlNiOayzFcVs0VDWHiKpuf0aM5vTO9T/eMeB/cHJCihzAfXHUA7vXOTq695Fh/1lJOOTx6cMv7Esb2V6A8UfS4khVALmJwVNZAcO2hQtFBkAC0V9QlcIqrQzj2ysgx9BVbBJb599wv+8uy7/Onf/QW3Hm4hah4waswABHAbwT37nQNWbyekSHSrkvqxwwQwt7ekJw3RCxS8OU0sd/BQQRinHKzbBVcHynqgLgeSCgsFeoM0Ae0NBEOfLA+HY/xcWZ+WzN43mNCgAn6Z1x7Giuv3IZWJ6tMKieC2edNh5Rm/zFiVHGDYIfvryVOS18ypAhQJWySmo5bjZk3jep5XHcu2pLCR6+sxGoVHsyMuj8Zc/2JCm8iN0zl7VcujF8f0jytsD/1xxI0/V7p3A2Fluf0fgWFk2dwwjB8UlJdKNUsMI0N7lLlwGOWA3pTNKFIkNBhibwnRcFytGLueSdHxw4szrq/HsCywBx23J3NaLShPN/zync/5xuQpN92c71bf4MHeDeY/OgKrmFRAUQbk7ppnv+Ywg2KC0rxQ9j/tmP74kuYiZFoqNZfUK2oV8ZF6r+XkeMHZ2RXv3HnJB0cvsaJ8PD/BoLx7cEkz7mA88NGdp/zm0QP+7eWHNFXHr+9/wlfKc5ap5s9ufp9x2TEcRMq9FmcG0IcjJo9g/5Oe+TsegHIRKa42GfWnln4KYaSkSlGXQEBsBs5J2VGYyLyr+PH5KZtFBUa52mtoyp5x1dH3lvPNhJ/4M16sJ3zn1hdMzZZZbPje9Vf4uLzFLx0+5dVqxNl0gdv7rKOaFbhNVhII1JcJPwtgDFqARM2TWORMvQbY1Four8e8ihPk0pOqhF1bXAAJsGw880JhfwCF5/dv8OJgj1s35tzwS1ot+Nsf/j7Dy5qvff0xlR1YXTas6xb36I885ZUhVoYbP0gcfNyCKiYkZIioM9he8ygDEiXjVqGIS6SNo/msYPRMqWawPoHNaR6aYBQzCP5+Rb+fSGVmh9vjOaUE/nv5Dv28hDKxDVnJlE89Fxc3cW4rbO/13Px3x/RnMwiR1JTgDFpYZIiYPmUIGYToE/iUYWDmMTtq6vaEVFgOHnTsfyp0+47lWxY/V/wqEirD6o6hPQAjyiZ5Hq6OGD8oQCH+001+/ntC4RS3Fdy7f/O/qCriPTQ1UhTYxQqdjFBfQIgUq4CfFwxjyUIwuswCTQKFnsyNGw/XH3qKhWH0VDn+UZcP1QVMO2DCPpu3CpIKhUSe//09Tn7aYbvI8m6FOWiJm5rkFCejBhkCWAsxol0HziGbFhkCWjjsvKW5KOkOLGCIlYIKySTUJeIoERswW0OqEt040t1RwHP0ow1mM4AzjJ907P285gcHdwi3DUc/bjFdZHW3pvjzc24kw8V5hekEh3OI9+gw7ESiyTK7bRGpM9+lRH3esT2q2ZzuZI+QJUqhuGrA2ISIMvQOvSzxM4NaZXmvpp80mCG7rWEEvgw8uj6i/9UKM8DmLGGvJ3gfs3QScGIMVCVibQ4uBLQNEBOIQXyBAG7WMrrwtMcORhBLBZ8Qlyh84GS6orSBG/WKJyf7fPH8kO7MglX8qGdUd5R+YBQtv3P2gH/4+CO+9Qc/p4+W9VByUG34z/vv4IJkEs+jJlA4xBroBJK+0fraD4hkWSohy2ZS1k0xZN/ZtQVXrsaZRBcdpQ18+/3PGNkeZyKFJGrbc95NmLoOgMPphm9OH3Pslkzslp9s7/A/z7/6Rla5rNkFiVnrYy3YLLPR9MYDYOWNDlMLcS9iqkBqHRoM62VFPepZ90pZB9pQcN02JASDclStuV3PuFe94tUw4VdufsbYtmxSydfLp/zVT/8YMwhq9MvApO2hcBlQ6xLZZQoxiDNoWZBKlwOqQQvNU9lZZGuyXG6Uvrd4l01HQghqqN3AYbnm0G8oTeB5v895NyWp8MpNAPiv7bvEFzVWgSRZTGBtzkqIkBKS0s6vRXAOnY6J+w3tzZpQGiTmUhIFVDCDQC+YvUhZBlSF8+WEsgg4kyht5tnlUPFksw/ApOh4tDjie5+9SxwsqbfY3baiO8MLZIiIKZfOOdifZisH9KdTtjc8Q2Mo1onyEsyQvWWo9c1ihc9BbVqPiLJpPdYm1p1nGwoOyg3roWTRl1wtRgwXNc0TSyxh8oVy/bV8YElgArg3/WQUksk9VnriXoPZ9CRn6CaZlspZwG0T61uOYqNsTgz9Xl6waz1nxzOiCsu2ZLMpd+1pWXUl26Fg1Zasr2qqJ57JNUwfRy4/tIyfDczfLxDNHCwRnJY+95dIBtRtm535XkWYlKBQbJTmoqe4bulOGuqrSCyE6ReBoTEs3jb4cuDe9JKL7YTFtiIFgy0T3kVElJeXE+RFxeiVUF9knQew9zDt7koE2+dD2g4cIsTDMclb7HpA9kaYqyXFiznheEIYeyaP1qgzSB/wl1ts5wm1Y/ZewfhZxC8husjFdsLFasx6WaHB0Pee/rLCLS3VTChnyuRJwG6zOCgWPbFybG8UOUub1+VU3HAy2d3YGNQZTB9Rt4dZbHHnM0w3xlwt0emINCpRAbsJqAh+kYWl7ZQ+Gp7M9lm/bLALh9vmZi4WQnWllPNIeR0orltwhlQYwrgg1IZuT6guv1QwAG4YO0xUhrFFjeC2Qqwd8aShfryEqBAC9ANmCITjMckIbtkxei6kIk/q5uUIuzLU14ZyvuuVpOw97CmWA7FylOcrZLVhuH3Iy2+NGD+LbA+ywzeDUmxf+1PBDROL7RNDI4Ch2zP4VcIMyvq9KbZNFJMyH8MIps+wYtqACUoq8yRN7juqK6W5GLJrHxmmDzdsb1Us7jVU10qspizePqQ9FMpruPzQsr0TMBvD9KEBFLdVQg1uqPNFiZps9c0A3Z7FL1M2n9Ew7HkkJLoDh2uV8rIjjn1WvArlIlFdK34R3sicYVqyvNfg2sTkcSA0hu1RLvHBg8TqLO85euQYP0n4dSAWQiwz/bn2SKhfkSfNG7qpYAIMjVBsMj2ohWHkUCP0E0Gi391dCLZPuOsB00XMkCAkhoOKWBkmD9fEUYHpE34OqNIfeEJt3jj/+qXiOiU5ydS3o2kniV0WBiQkhg8aRucBMyTaw5357RJWhPbAYDvYnLg8RW32BpIUu+rAGBYfTKlf9ox++JTt18/o9iztYbZ/r118rDNgTR5BOU9vQBo0CwaB/wNsITVDHwOASwAAAABJRU5ErkJggg==\" y=\"-21.80778\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_5\"/>\r\n   <g id=\"matplotlib.axis_6\"/>\r\n   <g id=\"patch_13\">\r\n    <path d=\"M 149.494978 59.80778 \r\nL 149.494978 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_14\">\r\n    <path d=\"M 186.984634 59.80778 \r\nL 186.984634 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_15\">\r\n    <path d=\"M 149.494978 59.80778 \r\nL 186.984634 59.80778 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_16\">\r\n    <path d=\"M 149.494978 22.318125 \r\nL 186.984634 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_3\">\r\n    <!-- Sad -->\r\n    <g transform=\"translate(156.944806 16.318125)scale(0.12 -0.12)\">\r\n     <defs>\r\n      <path d=\"M 3425 4513 \r\nL 3425 3897 \r\nQ 3066 4069 2747 4153 \r\nQ 2428 4238 2131 4238 \r\nQ 1616 4238 1336 4038 \r\nQ 1056 3838 1056 3469 \r\nQ 1056 3159 1242 3001 \r\nQ 1428 2844 1947 2747 \r\nL 2328 2669 \r\nQ 3034 2534 3370 2195 \r\nQ 3706 1856 3706 1288 \r\nQ 3706 609 3251 259 \r\nQ 2797 -91 1919 -91 \r\nQ 1588 -91 1214 -16 \r\nQ 841 59 441 206 \r\nL 441 856 \r\nQ 825 641 1194 531 \r\nQ 1563 422 1919 422 \r\nQ 2459 422 2753 634 \r\nQ 3047 847 3047 1241 \r\nQ 3047 1584 2836 1778 \r\nQ 2625 1972 2144 2069 \r\nL 1759 2144 \r\nQ 1053 2284 737 2584 \r\nQ 422 2884 422 3419 \r\nQ 422 4038 858 4394 \r\nQ 1294 4750 2059 4750 \r\nQ 2388 4750 2728 4690 \r\nQ 3069 4631 3425 4513 \r\nz\r\n\" id=\"DejaVuSans-53\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 2906 2969 \r\nL 2906 4863 \r\nL 3481 4863 \r\nL 3481 0 \r\nL 2906 0 \r\nL 2906 525 \r\nQ 2725 213 2448 61 \r\nQ 2172 -91 1784 -91 \r\nQ 1150 -91 751 415 \r\nQ 353 922 353 1747 \r\nQ 353 2572 751 3078 \r\nQ 1150 3584 1784 3584 \r\nQ 2172 3584 2448 3432 \r\nQ 2725 3281 2906 2969 \r\nz\r\nM 947 1747 \r\nQ 947 1113 1208 752 \r\nQ 1469 391 1925 391 \r\nQ 2381 391 2643 752 \r\nQ 2906 1113 2906 1747 \r\nQ 2906 2381 2643 2742 \r\nQ 2381 3103 1925 3103 \r\nQ 1469 3103 1208 2742 \r\nQ 947 2381 947 1747 \r\nz\r\n\" id=\"DejaVuSans-64\" transform=\"scale(0.015625)\"/>\r\n     </defs>\r\n     <use xlink:href=\"#DejaVuSans-53\"/>\r\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"124.755859\" xlink:href=\"#DejaVuSans-64\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_4\">\r\n   <g id=\"patch_17\">\r\n    <path d=\"M 218.763944 59.80778 \r\nL 256.253599 59.80778 \r\nL 256.253599 22.318125 \r\nL 218.763944 22.318125 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pae867167ef)\">\r\n    <image height=\"38\" id=\"image31ed0de36b\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.763944\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALQ0lEQVR4nGWYS4gtWVaGv7X2jseJk3ky876q6la3WpbtC3pkT5woCAoiIoiCjtoe2KJOfCCIQx3quHEmopN20AMFaZyI0L4RsSlRxOruor3eqr6PzJuZ55yI2I/lYMU5914rIIjz3LH2v/71r3+FjP/7jrEc/5P3fO5Xfp3xPNDsjdIIWozuMhN2mebDK2zVMX5iQzoJlFYYz4W8FixA7gGB2hphJ1iE5hZW3zKaXWX1dCZejcz3BqbziAUBQIrx/PsD3TP47K/+Jb928Q0irxwPY8fP/v6X+cKf/CTn71fEQLMR9pl4tcOGnnSxYj4NmMJ4LtRGqA2YQG0MCyDF19PZr1KN0glpHZHUIsVotpXSCzUIz78v8IVf+EN+sJ9QlGSgrwamKJ8/+wa/+7k/5cU7iiYj3hZ0nwFI9wZKHwizYUHQDKUDydBew/oRnHwT+udCSBBmD3I6V2oQaiuUPhJvZ8JYwEAqfOYn3jsGdTheQ6xSUZQfH57y2xeGmNHcJnScqX3LdN5QWkEqpEEovdDeGHEH7bYStwUpRlkFdvcDeRBqgDAZUp0xpVOiCs3VyHRxCgKfPn1EJFCxjwemCAcAgwgI6GzEj15Q1yvKpmW8CMvikHshTB5USEbuhNz7cnE02ptK3AvzRiidoAl2dwPNzhDraZ+PhKlSW1lAMRQ5Xo+BvRrt4WhuMnUzUNYt+3stpQMMR81AM5jCdPaSa2lwwsfRaG4NyaAY6cQ364ErTRPono6kTUs1/di9Y6Ue+XVIJ0B7JcTLPeWsZz5rmE/UAyrOCylGmL044ghSvVjSoEshQF552ikenC1JSYPQtUpIhXQauYjb18CpmCNWzFmoKMWMnSXCDEQlnTaUTqnRiRyS0WyN/llm9fVLZJohBKxrsBCQUkAV2Y1YE0kPTtk97CmtozieKaUT8iog1bj+9sDbzfNXCtDTGRVF5ZX0SeCn3vs57v3bxPRgwBRq42mQatQIcW8014m67pneuWD3oGE+FdYfFbQY+zuB4Ulh/ffv0273xNtzdp88YdooFqA0QumVMCpv/t0Nf/vZ7+bHVv/6GmpRkdc+2NnMh0/P+M5UqUGpg5I7/40FAYPxQknDyiUjGWE2Vs+NMPka3XWldMKLH/mUpw/nZek48qy0sohx4Iv//gP8zv1/opPmSKf4/0n/xZt3eeMvOmpMlNb1R4vBJOSVkz0FobQsgUGzNTRDmCs1CLlTcu/KL2UJQoGKf1YX1DqltMrDLynjD5djYLDIxYHwAI/nc4aPZkqnjpD44ooh5uSvwdPbvTBWTzNxVzAVdC5IGxieGDUI491AGoR0CmHygEyXa3BNa24yzS4zmnFxgBP1wF6tyGQBBExdqaeNum6tPMi4M6wTqNBfFvrHO//vKlJWEROI24zOhTC1XH1XixjU1jd4DEygRqitElJlZ/JxgT0gVsz4r9sHmDg557WSToR5A6UzwixIWVCLMJ8q8nAgr5TtgwDqgQ9PCs1tdtQVSgNx72msYdG/yLGJp5PIaOFYkcfADqjd2Mh//Pn3cLdL1EZIJ5DWUHpvzkUNELpnHsDuvrJ7Q6kBxgdGWVfCVhnvRNrr4BtoxHumwbz2Rl8bgeobDLMSpspNbV9DTCuVYsZX58KXbj/FW1/ZgsC8FtLa1bysjLyu1ADzeSVtnPAolNZToxOwzuRNwSJMd4S0cUQ0w3zqqNflLCtvazVAjcJNXR3pVKnED/LMb3z9Z/jvv3mHzdeMk5PEvAmUztW79EZtDEwoQwWB6cKIO6W79FZTo5N5dToyXp6iM2gCTYapsH/DSJsKAWTy35ce4g5y7x2gkfyaOsSf/pfP0/7VhlVc9KdV0uDmL6+N2oAUoXbOQ8mCRWO6I5TWDaIFyGujFYi7xfyZc2j30IOyxo7/tcoRKfBCe5I3VL51LEQtXz1juhDSGsLo5i33/r62fgdr7EBEbDGDpbWjYGoGojHP4WWfHGD/wFONAcGwtmKtYboUQrN8D/zeH/883/vlX+av972n0gS0wPpRxYIwnyi185tJBusgbPWV5u3OQrL/RhPkFXCasKqIeLA1LLDh70kC0dw2rA0I1OgcrlFYPzKktvzWe7/Ib/7SnxE1ea77y0LpvcIkL9Zl7/IQRiNM3oS1VDQZUmC8E5hPhPkMRA0RR0MyqEH/DPIgpHUgr408GNZViBWLRhmMPAp5CyePE9uHLWmAP/jPHyV2l176YazkQZEK7bXR3bgjjbtC2CdMBUkVFCQVLATaq4bt2z3bb5MFKd/AyaPK6kki7jL5pCGvlPEiMN5R5+ZKkez8Kq0XQm2EMLkJLf94Qewvqw8P4v0rJKN7UWmvE83ja3hxA+cbJGXs8gXEiMTgVqe5Q3tdCGNDumkoTWDzXDj55p4wFWTOxGdbrIusHjeMb6xIa2W8cCmy6B2gtEIaFE2QTpwycToThicVzLkmsxG3hRqV6ZPn2HdcEG8Tzdc+xKYJXQ9Y32J9RxkaxruBGp1Lsg0+GQUhPLuhPnkGIlAK8fyM9WUPMZDPB6Z7HbcPA/OpO5TSyaIA0Owglt6tTNhnpEafgNR7mBSjtoppC+++hY73yE0gDw1pE5g2gd2bQm3N1xiVPMDVuz3D5gHr91vkxS1k1ygbOjDzSk5uvU2d/N1VIa0Fzd5x4upJpbvKziPpyStlOnMtO+yitmDSoGWZFQ+S0EM+MfKmIH2hVGH3UBjvCdu3IzefuMv6wwuamwwqjBe+8biv1Ci020qNgdoa7YtEuBuWqQpiaQWdKxYVUxfM6UyZzyCvXGDBp2t4aVkQ16e6qoTNTIyF0hbKHMhjAA2kNezeUrAOnf2/zS2ESVk9ry4/1Tcbr0fmzWppVRDDbDSPr0hvnrkTWJyliYvgweC5dLhm1ZMMYkg0YlsIsVCr+LUIclLJsSJjQG4VyUY6O/gxQYtQ20CYzFtXNq909ccJ07mgzz4tcHWNlGVCCQdxBJ19yrFo5LUx3SuUs4y0Be0K7TDTdglVo20LIVQ0GKJGt5mQs5l8Wo922oAyGDW4LBymNlcFF24MuksjPvxKAbNFq1bHVmEKFnwRL4aKDAVtCwLUKnRtRsWIodLGzJgiIv5djIU0R6wr5LWg88u50hqwmeM8oAVkPxG3xnhXaG6NePLPH0DbkocGC/6QozZLX1zcmkWDYEis9H1CtWImDN1MEGPKkVJ92uqahJmQSiDEggxGqe6Gw169NdWlvy4uNu4qmHmr+6FLbsaGaLs9sjklnTYOrRy44BKAGFLFXwqUokxjQ9slrnc9tSq1CrUoTZsxE0KozHMgzxGRZR3cJEpyhT+4CilGe5Owm1v294V/+Mwf0UlDpIlY31J6PXZ6U4dZCtA4+SlC2UVqEUJ0C2QmlCKsVzOpBHLWY/B5jtg+LL1TIR/ytvh9d+LEyQjbBOLtsCy7UESwoSOtdbHCfkoVNC3ncVFDgxFiIaVAmqMjZkLQigioVmIsXgRdPaIldhhGzKVHXpLfVMAqOsOuFrc9EiOmPj+Ca1RtDSlO1rIy6qpAW4mdS0PXZgxIyUlYqiJi9G3icMQmkyxiRbBqyPRygxZeBlWDYI0/RWpvjA/yijuhLsOI+bMwzT4tu4geKtKJH9qKhkrb5gUdo1alCYVUfOF1548Q9ynSNIVaFDqvUmsMWyYsC076I2pmSIyUDt4Ie6BDaRokFcLMsf049hyLgeBe68Crw6laUa0Edc7djB3FBBVoQqFpM6qGNHVxvocqWObMyksJyZl0KtwPceFYSpAyml62H0wW++t2GEC0+k2WAIMaQ5togn8/TZGUA7djRwyFvLhZEXPXGOwYhIBPS8Gbue4zyOL1F8//fxB6YNtUstHPAAAAAElFTkSuQmCC\" y=\"-21.80778\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_7\"/>\r\n   <g id=\"matplotlib.axis_8\"/>\r\n   <g id=\"patch_18\">\r\n    <path d=\"M 218.763944 59.80778 \r\nL 218.763944 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_19\">\r\n    <path d=\"M 256.253599 59.80778 \r\nL 256.253599 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_20\">\r\n    <path d=\"M 218.763944 59.80778 \r\nL 256.253599 59.80778 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_21\">\r\n    <path d=\"M 218.763944 22.318125 \r\nL 256.253599 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_4\">\r\n    <!-- Sad -->\r\n    <g transform=\"translate(226.213772 16.318125)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-53\"/>\r\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"124.755859\" xlink:href=\"#DejaVuSans-64\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_5\">\r\n   <g id=\"patch_22\">\r\n    <path d=\"M 288.032909 59.80778 \r\nL 325.522565 59.80778 \r\nL 325.522565 22.318125 \r\nL 288.032909 22.318125 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p7eccc8a145)\">\r\n    <image height=\"38\" id=\"image278168333a\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"288.032909\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAK8ElEQVR4nGWYy48lR1bGf+dEZOZ91KOrq+22PWNbHnvGMIhBaGYF7GADs0BiARs2sOCvQAiJPSz5E2aHEBqxYIEEEkiAwEIjxobxSx7sbveruu6te/MVEYfFiXurPaSUyrqVmRFffOc73zmR8q0//XPTGc4+LQBs31AWj43h+xvKf5zTfz2BGs3ZSNNkxqGlXLV0TwKLR1BaGO4ZOguxBwxKAwA6+9nsjDCAFKM0ggl020KzzQyXkc2bikUojQFgAjEMsHhqYDDcVST7wCd/dcqTXy7oyYyqvzCODXnT0GyV0AMC89qfz50R94LO/jstDTvB/5cEE0Oy1GeFtAqsDbrrzPKx0L8kiAri/BDDCOOFcPO6kDvjtX/KTCfK0+8I5d6IACUL5EDZNcikhEEIE6Q1lM7QxJExycZ84gBKa0iBtBSiCSqGRSEvoBgMd5TVE2P1JJNWkRlfrCnEMBjtBi5/nEgLZfu1wM0bMF9kKIKNAcxfkEmIO6HdQIkwnRoWIO6EZu8rTUvBFKSAJqG0vgBTaHYOGIEcnbncCs1Nob02TPz53EF8+d82bL9xwpffbSiNUTrIi8rnAZSBZEGSECahBEhLkOKhkwLTadWI+PMAkl0v89rABAugyZ8XgdJBiQICTW+kFSAOPj7+3hn7+0JpjbQ2LBro7eBIpRcj9IqOgEIcfOLlIyMvXA42CWll5BbC5CyV7sCkoQ2E3tk1gbRwhpteaG4y00mkNA48Lq6MEoX9az6QZMG0rlwO6CrCUkM0g44QRmO8U/UU/PHFE0GyZ2JawPCSg5Xs4dcAkoAWLMB8IjQ7pUkFnSEMRu6EePUtZf25sXwo8AqktUESCBVU9N+SPGx56RibraEZ2o2DE4PxwhgunUkxWH4pxD00NxV8dHsBiD30p0YePZSajHZXAGU+Afn3T1+3P/rx71P++h7TmTBeuKBNIJ8UTA2ZPRN18lUCtBsh9LC4MjQZ04mgyUNTGmf/oKnuyjCF/mVnL+6F9tro7zvwxWPPzNwK06ky3hEU4A/f+mc2b0HcG92V0GyFxVOhfaaEXgm9s2WN24OHwBgvjeFSSAuhRCGtBE1uHxaqyJMnynBPyF3VXayixyWQO8itoNkXaQrxXGd+ZfURf/drH/LgL9/GqsmFwWivIa3VxbuA8a5RGkPENSfZXX9eu4XodOvsw6V7WJgEiieXJgdj0SVxCDkCFgQr1QEK6Esh8lrI/MnrP+ThryfCaCwfF2IP3cY4/zhx+V+Ts9B41lpj5IWRl8Z0N9O/PtPfN8a7wngOeVGzMnpFSCujtDCdFXLntpKr+CV5uE1AzDCtttJJw6m2fD0m/vhXf8jzdyH2xupRQpORW2FeB9KqvpxcrERnREclXkd0FDCfxFftzOelkc4z6SxTFoXSGiV4VdDJF0CpSR9rkjSgihAJnGrLb60/5J3vfsZ45uGLu0LsjbSUI8WY2wbFrUVH8fR/wVXyAtLCSEujtAXUPMujYV1x5tWHwkAzVW91cRNoqU4aCSxE+Z1X32P87ef0l5E4ZMJUSJ1g0b3IOwa3Dwt2q5Ho4cotHrqFYU1xswbIrjX3yZrd4uGWUkFSEyaDFgoHcCtt+L3Tj3jn7hOfYBnIrVJapzfuhWajNBsl7gWZfZLSOKjS1qohYKGyZCBJjyWNfJutmDMfB2PxLNHeZIZ7wv5VO67nyNqJdPzZG3/D6ncf8tlvKk++E2l2RvvcbSTuod1A90wIo2dgaar+cl3tJIS9Em4COqqHvjJ7KHeaa4tTETTbme7xAOa6iwDOGiiKIrzTRP72F37A/tuZ7//nH1A+v+Ts00J/qdy8YZz/hBo2b2GovVYYvPUpEcLgRTYvXaMWax0uh/7sq4W+dIE4JpqdW06czZWneK+iBCKBgcTDHLj64C6np26O6y8z81lAk3HyMPH5m9HboVRB7dyX4uy+d+xkE4StekVR1+WxDJubbvtoh4nUThfiYJmAN3FjMVQSDYEnOfPB9DXuvQdhLuxfUq7fDpx/lDn9ZIekwvLxHW7ezFBdvrt2f9IZ+pdhPjMu3xPS0lm1IMzrynLtEeyFKqDXN5z+dM182hFnM2aMBjmuYCSxEviLj36Ds497NBXOfzQg44x1DdY1jPeWjBd2bCCbrRdiKYJkY/25ED4W7vxkT39/wbwScgulqT5YwwgQR0N2PaRE93DL+UKJQ6V0rpmpGAXIBlf/ep/2XiIthO6qJa0Dw0VgXgnDyzCf5aOXNTsjDkZzk7EAYVLSUnn6iyty68Yp2bOwvXaHL5XduC+QMjbPyHbP+v2R+Ky0hAMoMRoKoQrg4r8LN68G+pcEC4HSeikqbXEhC5gYJsr1N4X+OnDvR8bqsy1LwFRJdzpKo5ToTFoQxvPAdOYhXDwrLB/sICU/5xnb74nbsqigiqcqhcEaAsbpJz2Pvrcm1670UCctmhtsNIjugqmFdNf46WtK9+iCi/8ptJvs4g4evtII/d1AWsvRv9YPJsLDK2wYsFwgJWyaiQ/TOSrlyNpgDdmEf3j+cy7Wk9rZVjMkye3mJPnu6XBYdvDj/cyjM6HZNDQ37vIlenZqqhYRvFn0WlRur9OMtA3xcTrzilEVOZYGlcLfv/8u7+6GY0Lczs5xc2LxhRvJ26DDZqQ0MN0pzGdewnQSGKvopbq/gU4OyuYEOUMIMCfiv1y/xYvHOo5MJdJ+3gIOzOItKMneOeRVud0NFam5L8daZ9XlTcASx/umtxnZ3hTi8x7MIGesXsmZeDN3tCGxCDOdZlIJnDc9cSegcOfDzPN3AmlldFc+qiloVqZz3/2A10lrDUv+noVqJdl/Sz54BMfNSneVkP2ApeRMTTM2zVjOxDYkWs00UlApLEMiUJgufMLTT3ZYOGH7deW1f9ww3ek8BGPm+TeX7F9xYaeVy09m35hkBYIhE8eWScztYfnYWD2a6b7YYDd7bJyctReO2Gqm0YyKEcTQerZvb0inHTpllo9moEE3PW02xAxS4fwTJQ4t05kw1DAdhV0EE9+5L55WlpNx+r+Z1WdbpJ+QXe9s/exhhahSiFIcXBVNMeGXXvmCh/EbhH0hjJn1gwJNBIUSAhKVuB05MWOfWkoImPpm9rBLWj4yls8ScV+Q7GM3mwnZDUgxbF+BlYLljDf9lbEDkGxC1EzAb3779AFftO+g+5l8quhYsCYgqUABnRJMM7odOOlXNLsF+12kvSnMa/WvOA96UKF0AR2zg0sFKQZmDirXupSzgzsASyX4lp/bfy7DzGyB7euR5WegQ0JyRvYjcrOHrsWG8ThoMGORC92zgPkWirB3ZuhaSlxiIuic0M3e/UrkFhRg5Wc09v4Pfr4W1/qda2HHLzKrlSCloNcDFoNrYhhgnqEY1vcQAhICqorsq70sO2Sc/Jkmoqmg+wl9uvH7KSF68I2vAkTqfuPiA3c9C55NklzcpTlYgyLjhMyKTZMzpQohYLm4n15v/DrNEBRJCZtntwCWUAy93mH7HoLCNFNSom5QfRwV7AV8UVOl8HAV/yQZ+lxX38DWPeYwEKX4acUHU8GeX/vrIUBbfSln5KYn5ALjBEGxccKmCREB1a/o6sCWqBAPQI6xPjRLAGaUNqBdC8PoL9YJ/1+a1wkMYCjOKkAuMIzYPHnZqX51dPlix2wUPZiwelYeBHvbKwqi3p9jBjEgqtg0Im2LjSNWzAeyAkUddB34MKmIYH2PmfnfZrdARG/toTJ1tAwx/g9uCJyR9hNM0AAAAABJRU5ErkJggg==\" y=\"-21.80778\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_9\"/>\r\n   <g id=\"matplotlib.axis_10\"/>\r\n   <g id=\"patch_23\">\r\n    <path d=\"M 288.032909 59.80778 \r\nL 288.032909 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_24\">\r\n    <path d=\"M 325.522565 59.80778 \r\nL 325.522565 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_25\">\r\n    <path d=\"M 288.032909 59.80778 \r\nL 325.522565 59.80778 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_26\">\r\n    <path d=\"M 288.032909 22.318125 \r\nL 325.522565 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_5\">\r\n    <!-- Happy -->\r\n    <g transform=\"translate(287.4193 16.318125)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-48\"/>\r\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_6\">\r\n   <g id=\"patch_27\">\r\n    <path d=\"M 10.957047 104.795366 \r\nL 48.446703 104.795366 \r\nL 48.446703 67.305711 \r\nL 10.957047 67.305711 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pdfbb326ad4)\">\r\n    <image height=\"38\" id=\"image7d29dce54b\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.957047\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALCElEQVR4nGWYS48kWVKFP7N73T08IzKy3pX9qKFnBtSjbg0IVrBAYoEYJP4BS/gx/A7YIFYIlkgsQGIAse9BoOmhZ6q7aqo6H5EZEf68ZizMs7IGQgpFRqS733OPnXPM3OVHD//cMcdLQR89xB5vOX684eLzjFUwPjDqneIKOIjBdOqkAeqdAFDtnWrvdM8US1BWYLVTGhAHDPJRSD2UNq7TXIMLlAZOXxrrrweqV9dIP+Jdh3oxACQl/PYWGWfGrVLtIfVQ7RWdoNqDZ6e0jhhUe6HaO/XOcYU0OgBpAJ1BB0EMdITmSjh57egMzSXkI1iGaRPHD1uhf1IjxfCuAxEygJeCVBlEkWMfF5wc1kLqIHcwt6CT4AVkBtdYNI3OpIJlIR8cT3EcDvV1MJqPgBCbSMG6VUIag1GdoLqd8bZBuh7ve7KI4KqQM7iDKvVtYdxkShWgpk3QLjOkAqVe3itwFUojDBpMAdQ3Dg7DgwA2t4AIyZ1SC1ZDPjpShLmF5spZ/WIHpeDHLjbD8pKmATPstCX1RnthjNuE+LJjD3bSAIePhGof55WV4AlKFlavDMswt0JZCciygdaRK8ElgHoKxiwHe+1FYX68RidDbw8wDGSfZ6Su8HFC1i0yFXQ0ShNitTpOLnXsGnekxI6bG8fVsRwLjusFTCNIcVIvy4aE+saROUDrtFQhQX0N3ZNEtYN0cQuquCiq58+Qsy3S1Pi6hTcX5JuevLCGgJQQKQKehebSyR3UN0Z1dKaTAHY8Fw4fBhNlJaQx3JqPocl5HWUsTegKD5fm3ilthnHCpylKufvt54hDczlRXR7RpoF+InXG8XFi3EJ1G6w1V06zM1zhcJ5IkyIF0NDT6iKcV5pgbtpIGCUF2zo50yZYDCfDvAqjpaFgD06RX46AkRHQMcphJzXIGV4lhgeZaSukIS5QahjOhGmdWL8urK6M43MldU7qnbIVxjOhNHF8dRuM1DdO7p1pLVi1ME8AKk3kmZSohPQDkhQ3IVsSaGDcVBzPK5qdsfskc/zIscpYvVGmDUwbp7kUTGBaKzo71W0wpFO4LXfO3MZmqr2/c+nwIOJk2oTLdQJpwAlwh/NEdZiRYpASuJNdoSTBUujkze9k+udxxdRF4muJ5EYgDc7cgiUlDU7unNKEMy0vjA0wrYXq6FgFLgHKGsiXYR5Pwnh6z+DhvEbsEfXPL5Eqk60KQGLOzXeV/jsjCDAq9aWSxtBDc+mUVZTLlpA5eR0JPm5C6FMl5GPESvdUmBdTWLVkkkH/SKhvIwPLKlidTyQyTxoe7NbozZGMh9sOHyjdiwnJBi54ctq3zvBQKC2UemkxJcrqCZproX8iuIAWQUqA6B/Hb2gA1ymA5C5CeHVpHGoljULqnXkV513/unJ8+oDm+gwFmNZweFGQ2kiVoXWBIozbKF+0HmjfOtiiEY9F8yFcN55GD61vPf5vMJ8E256i76YeUudYEporR0fonguyuNRqZ9rC8FDIloNeXxdEHVHDTUkHRSzor69jUSmwugyKp9MISSnxrm8iBsZTeRfK9W6ZLHpnPBVy76Q+ZOMpTGI14eqnsVHLcf1cGhieGqijyVF1VAvsFZ0h7ZcRZ29LBxDmlVAdQh/TJkqoU4DHl0CeWEokiyvDnetXRprCjWL3jAJ4FZPKBGhpBVsZSxvDijLPKfJrcE6/nmlujNwZYk777cTqytApSnwXoJ6i1ZRGSFOAGM8iu0oL01mwVR09JNA5q0tDlkjRSdAhWC+nRj4+92Crsrt+zoKR9sLQwSKZu8LVD1Y0dWjv+lMnjUK+hWqZr4YHQvfcKW0scNekXZ1qF6XEoToYpVHmHOX0JNExACmC42g5NUgO4mgqQakL/VNj2CpWKzoa44OKk7eFuVVcoH2jTM8mhsfG4WNb2AoBV7fRI+eN0z0NB1fHGJ36B8rxScJyxEpz7TRXFuw7WGt48nAl6sGSB1eqRjrvuPxN59sfVpRVCi2ovBNuPsDqqxo97ymbgitUBzj5JrS5+9Sx73bMD+cYGD1KXprQn86gs6MlJl/x0KdnXyBlQ1K4UdRJ2dAUf1sdTOTDTHVbKNUi9Nkp7TLXT7G3zZ+8XrQCV585+SDoT1tWr6rFbfdZKMXJnS3zmrB/EW1vXkepARQF0QWlOiIeY5cJ1Eb71rFKmdeJ9TcDCFQHJ+9hOjP++LMvkEn5cLND5gBmKyMdBS1C/2Kk+6iQO2iuY1yqjk51O6NzhOt84owPDWssgBkoHvPfnSuBAKcOyUmT0z2roglvM5tfDGy/7Gh2hoxCqyNeGy/aK6yOUK2/TYhB/3zm9z/7LzzHBKLFOXk7M2yV/Ud1bKTEXZetDCoHDfdlKkPEef8lsuRZZRzOlcdfjHGrtVKO5zXTWumeCeuv4e/+87doH3X8w1//LlXvtN86lpXu4wKrQhKn/TqzeTVhlXB8lkNbM4g7x3PBTqclyGRxgJB1ARZgDDPFLOhLyTi8MDZfJ6pjBGw0/OgG45lw+q8t86pl3sTU2p0LzQXwMuEp8U83n9MkOJwvnd8hT1AdjXmlDI8NbQo265IXArqUkjtduSDi74ABlLUxnGk4cnZcBUuxseMHxrSB/acT49bonxqlcbrnzvDYSD2c/o+SDzBu5d2UkSZHinN8qvjDES8aUrpbVh11vwfhLrz/XdRpnxzZvxBKLaTRSFNMpBg0l8rwKP62k3CwlDCFVbD/jYnjc6d/Emmf+mhtOi23dw8FN8FLvN9/Zc22gOIdqDv23MFM0M9vuLAtH/3zRLUvWEpUR9i8DCbKmwoU+sfR65qLRN7DvFF0gPomRuyqs9DX6Nx8kuk/62BMcFeh97Se74LV7D5g7w4wU8q8gP30yFdty6MvQh/iYXux5cbW4eTVklOLsJurCNO7xwd3zf72O5mrHxZkV4PeOdFBJbqQQ7YipPyeK8XvAd6VeFbMQT4YePM4Ub3NbH+29NIpbjw8EU27ZumTQr0Dq0KX1THYvPi8YnjkaK949R6o/8dYuv9S1TOlKO7Epy0aWA7xMYHDvDWuPxV2RaluhJM397M/cj8CVYfYff9I2X0ftOgCdBG6CTKCVyH4KFNERrZJ0WZG1SklokLVSckohFtcPPQnhg8ad98roERbmk8FmZbReyJW9Ri3XWJsFg/2rIpzYvS+Y4r3Pj0C1k1ixve7lsSvxIU7+MKiCJCDficmEjfB2vdKb4DG+PLu+xIFLncNW+J3f/9YwS1AURn58Y9rbv9woswJE6eqZ9yFaczYLJExyaDEuBMluNvhr2oRYqG4014WSSBzMEgCskWfFpA+IduR9WnP/udbzv9F48FNr+Rnf/9TdPo+b39vRlYFswqbFDlkMJCzCVxIq8LJusdd6LoaG1Nkz6IJ/i9GX9h14MTQbKxPBjargdu+Yf6Ph7z4xz359XVscLrBdjdIU0NKyI/O/sxJCZJSvvch82kNQPPNDVzuYJ7xfkCqzKs//ZzyR1dkNXIyVnkmqdHmiVoLuvQsc8UQzIX92HAYa/ops1kNvLnY8vHfVKz/7WdgBczj2ZyVeOJUV1DK8nysFCiF9N8vSW4gCnefKvEYtBgf/u2XfLX9Hu0fvKYbK3oyZ6v+voriqDjmzmyJoWQOY01So0qFX74945O/EtqfvIxy2p0TA6DkHL+Jol4KXgoeGfEOzL2Y42QfR2x3w6/95Zdc/Ps5TTUzTJnboWGyxGiJ0TKzKbMlduOK17enAGQ1rq/X/OAvbml+/BO8v9/MuzXc4r28/hfaiZvFS4tHvgAAAABJRU5ErkJggg==\" y=\"-66.795366\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_11\"/>\r\n   <g id=\"matplotlib.axis_12\"/>\r\n   <g id=\"patch_28\">\r\n    <path d=\"M 10.957047 104.795366 \r\nL 10.957047 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_29\">\r\n    <path d=\"M 48.446703 104.795366 \r\nL 48.446703 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_30\">\r\n    <path d=\"M 10.957047 104.795366 \r\nL 48.446703 104.795366 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_31\">\r\n    <path d=\"M 10.957047 67.305711 \r\nL 48.446703 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_6\">\r\n    <!-- Neutral -->\r\n    <g transform=\"translate(7.55625 61.305711)scale(0.12 -0.12)\">\r\n     <defs>\r\n      <path d=\"M 628 4666 \r\nL 1478 4666 \r\nL 3547 763 \r\nL 3547 4666 \r\nL 4159 4666 \r\nL 4159 0 \r\nL 3309 0 \r\nL 1241 3903 \r\nL 1241 0 \r\nL 628 0 \r\nL 628 4666 \r\nz\r\n\" id=\"DejaVuSans-4e\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 3597 1894 \r\nL 3597 1613 \r\nL 953 1613 \r\nQ 991 1019 1311 708 \r\nQ 1631 397 2203 397 \r\nQ 2534 397 2845 478 \r\nQ 3156 559 3463 722 \r\nL 3463 178 \r\nQ 3153 47 2828 -22 \r\nQ 2503 -91 2169 -91 \r\nQ 1331 -91 842 396 \r\nQ 353 884 353 1716 \r\nQ 353 2575 817 3079 \r\nQ 1281 3584 2069 3584 \r\nQ 2775 3584 3186 3129 \r\nQ 3597 2675 3597 1894 \r\nz\r\nM 3022 2063 \r\nQ 3016 2534 2758 2815 \r\nQ 2500 3097 2075 3097 \r\nQ 1594 3097 1305 2825 \r\nQ 1016 2553 972 2059 \r\nL 3022 2063 \r\nz\r\n\" id=\"DejaVuSans-65\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 2631 2963 \r\nQ 2534 3019 2420 3045 \r\nQ 2306 3072 2169 3072 \r\nQ 1681 3072 1420 2755 \r\nQ 1159 2438 1159 1844 \r\nL 1159 0 \r\nL 581 0 \r\nL 581 3500 \r\nL 1159 3500 \r\nL 1159 2956 \r\nQ 1341 3275 1631 3429 \r\nQ 1922 3584 2338 3584 \r\nQ 2397 3584 2469 3576 \r\nQ 2541 3569 2628 3553 \r\nL 2631 2963 \r\nz\r\n\" id=\"DejaVuSans-72\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 603 4863 \r\nL 1178 4863 \r\nL 1178 0 \r\nL 603 0 \r\nL 603 4863 \r\nz\r\n\" id=\"DejaVuSans-6c\" transform=\"scale(0.015625)\"/>\r\n     </defs>\r\n     <use xlink:href=\"#DejaVuSans-4e\"/>\r\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_7\">\r\n   <g id=\"patch_32\">\r\n    <path d=\"M 80.226013 104.795366 \r\nL 117.715668 104.795366 \r\nL 117.715668 67.305711 \r\nL 80.226013 67.305711 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pdcf0f86971)\">\r\n    <image height=\"38\" id=\"image579daf7e6a\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"80.226013\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMFElEQVR4nF2Y2W5kWVaGv7WnM0SEw1NONXS1mkKFEEgMT8AFAnEFb8AV78CDwDPwDNyCEIhuLmiqEZ3V3ZVUVXaWK50Ox3DGvffiYh87qwnJCh+Hfbz2v/71//868me/+7dKTBA8aoXx+ZqbPwq8+NOv+LtP/4HXccM/7n+PY6r439MlGeE0B4bo6MbA/pfnXP+HsP2iw8yJ7C0IoHD8pGFuhfNfDIQv36LDiDiHTjOMI1iLrFrmj6/pX9Sg4LoEIjhSRlImWwFjqH/1jo/fBN598xF/9Zd/w19/9q98N224mxrOQs9uaulmz92hJb5ac/1TOPtyQFSROWHnhMQM48RGlVQ73G0PKQOgMUJOAGAErEFSxo4ZiYobEqmyOIkJUrlZXnmoAjLMXP3kFjde8vd//id88tFbnq/2VCbx9f2Wu9db2leOs9eKG5ThOiBZUdtg+0zYTbjvJuxdh6kc5thBjJC1FJVSQct7NHjUGuyQsV1EUibWFgeACMwRsy+nwlnUGM5//Ibx7AVv/2LFOoy8fHfN/uUFV/8tNLeJVAl3nxnGi4yZDAJU7yzrry3nhxFz7JBxQvvhPUIZ8AEJvtCnCagzmJixpxGMQZ3g6HqoKzAGcmmrJkGMgXFi9SZx+2bF53cN4Y1n/a1Q7xLdU0P3Qhg+mji7PlH5yO7QcNzWpOCo321ovhiRB7TcgkEI6GZFDh5RLYVYwcwZ6Se0CqiRBbGYECbUWdRZUEVigirQfn3k+sdbumeOaqegyv2PLN0HmbydsFVijpZxcsz3FRKFuFb6K0v1bYsdJogRESmoVYF0uSJ7iz1OSEqFnykj0wzGIFmXwlRhjqWYpTCyonXA7I5c/szhhpZpIwyXwvAskzcR4zI5GvpDg+ks7XcGFZAMqYLhg5b2NMCpQ3VGmgZdNUjMuH5Gpohai0wZe9+jwwhtjSRweF9OEmMpSPXxZBizQG2YG6F/KoyXGXUKUcizRybBDQZJRSLsDGYqt+ivHLY/px4nmGa0Dqi3mG5CTsuktjW2E+Ruj6ZUPp/zgtg8o6qFV8tLvXt8759VdM+F6TyTm4wkwfQWOwjuJEgEUTAz+KPierCTMq2E4coRbteYQw8iSDci3YCeOjBShmCY0a5HzjbMZzVmyjgdxoJW8AWhVASuTJCSzxqOH1jGJxldaKJWIUNslbgCmQU7CWYCtUIKYCLMa0GtYbUKmEOPHDs0Z3QcS9u8R+ZY/pcR9GxFXHvCbsQ9ipxzRfymGVm1qLfInMjBMm0gVxnTGzQDBrRJ1NuRq80JBfZ9TXesmHYB25fWxjYzrw2rmwq3C7A/oONUDv/Qqb5HAOqatKqQrNj9gBMRVIpUECNYw/zxNaePG+rbmewEBMxoMFHIVpEm0axGzlc9AMPsyFnInSPsDbYTcqXoOjK2wm7vCfdrqnf3pTARNGXQZRJXLfn6grj22D4hp/5BLiK6tE7WLfefttz+gdK8qajulFSVdqVKqS4GLjYdT9oTh6niq5tL0r4MUHhraW6EsFeGa2H+UaJpJ04fbji9DlSvGmQY0AceZy0tXDWMz1fkYKi/G2CaMXhfSGgMUgXSs3N2vwP+Byf6p8p4KUguxNYmcb7uedYeOQ8dzmTSYDF9GZrpKjFeQQ6QHTif8DahVxPHDw3pcg0+FCG3BjGFtGldMZ85zJSxtwfy/oDTrkPqGlJCNytuf3/DdJngbUNzL6CF7DkodhV5ujry25sbtq608dXqgjkKZhVZrwcOeobfW9RAnCyTs4Rmpn8R6F+0rL8pdvcoUc6Rg8WOGX+coR8gJcpveIfOM/F6w/5T8DvL2c8d1Y6lMMi10rQjV9WJtR1Jali7iSfnR/zZhLWZykdUFHWAQB4cKRlUhbTKDOcWrC18VkWzIlWFOoPtM/bdCe3LgR3GPkaS/kXNdB3Zfu7Z/jIyXFrmdeGWtglnMq9PW16ftozJ4W1CgFBF5tmiKpjJlMMI2L1l6lvMJFSd4Ia8SJEprUxLDjSC62bk1JOXWopc5Iy0Lf2VQaqI65X67UBsGrK1ZA8kYffrM/b9+aLyQtokzGrGV5FVM7IKE++WgGIStK8NYadU+4w/JZqvD+jxhE4TCoi16GLmpp/RaUZEUGNwD2qvbU3ygg4WSWD6GZMaMCAJ7J1j/aWw+SZiopIqw7C1jJeO08eZ+MNIVsEsQotAe5PZvjxh7jvk1KNdX7QSigK0VXEYBZkXbbMWUsI9qH1eV1T3mWf/ZDj/nwPmdo/9YI0kix0FfxBW3yba1z2okr3FHz1ucKTKcLxscCZjErhB0Qd3U0UOJ/TUoTGiKSEhIG0DZ2viRYMkRYYJrAEb0GnC4SzaVEjMXHy+x+w76Ho0ZXwXcb0n1UUC+muDiQ3ZCdkJqRJiU/iknePgGrRWsjWEo5KCMG8r7BvL/39JCKR1Q6oMfj/BOBW/DgFpapzWFXldkWuPe3tE3909hjrbRfxBibWQK4iN0F8VzkkuBaVKSLWCy/gQ6c8j03nAnyjc2g1F7Y0U4j+8vCPXDslgTxO6LCcYQbzHYU3J+8EwP98QugE9HAqBTyPVfsV0JmQPsQEQUlXyVq6UeZ2Ry5Hzs56n6yPHdaC7Dnz3zRnP/9lg707kYYCcH/klzpVACvjDVNLGQ8ExofOMy21Ahki2Qlo7/LpBd/dF5O6PNDdrxrOK2JZkOm0hbhPt0xMfbA88aY4EEznOFTfdhou65w+vvuFf5IdkdwlzKUaXZUSCR9qGHDxmiJjTUBK0c6hqWe1SxjwEQxMV1yWkGxBbmJt394RvdqzeJPwB1EDaZNx24mrdcVF1bH3Pue+pbSzkF+Xfvv2E/idXbL/oSnqQ4sNoLpl/1ZT0ktL72GPtg4FC8DiJGckZd1qi7t09qvqo0HI4Ud2d4TvLkJcsBhyGisbNBJPoTWJIjsoWdG5fXfCDf5/xb+7hYcE1AtjHXRJnkHGGuMhESqV4MYtciKCuICRzKuST5QYpoSljjyPVrmK8t6RgSa1hTpaMENXQTYFTDBiUlzdPWP3KUt+cShu/FzpLYg1ka5EpFomYZ7C2xCBAnEXnjFNbYHxIp1RV4UIViocGjzpDOGSaGwMq9FScZsONyXSzZ4qOYXaMg8f/dMX1f82Y+654ojElJPRDaeP5pqB1Gh75R36wi2JX2IeFN4PkTG485nKL7MpUavDkTU2uHJIVf8pka0CEMXr2ac2xrdEkaO/YvHRc/mym/vpQlhoR8A6iwTQ1cnFO3DaY41S45RZDl2KLZC1DEiOOTFk8cyY1FfO2JlQe+fVb5D6W+CENxhtcb8hOUQvuKMw7T6o9doRwr1z/Z4d7d1pWv2pBoWzosj0jXa5RI8g4lXThLLLIBvNC/ATMEYeBbC32MON2PfnpmritsP7Zo39lZ8hOUFeEtdor1S6SnTCvDOGYqN90mMNQkAoe9RaoSnQWQdctGIPt5scVUcb5fQuhEH+5dhiz3ATk/khQJa9rjj9oSZXgBsXMRf1TJWQr+F7x+4lpG4iNINlQeUs6bzFTQkVKpLFF7bUqPJVxRoYZyUubH5765O951SIdrjyvEDQ4aOvy2XEg3Af6J55pZRBVYiPEWjBRad8mbDdz+qzl9o8zEoXVV2s2X2Wam7Lt+nddmfYmlELnhExzQfCBf87Cci0iKPq4QTkAiRl1Bj1flYB3HAm7EcmQvRBbS2yEeQ1uEOyQ0cX3zOXIs8s9r88uURNAPeGQcZUn+2J3ZkoFwSW5FulgeTfvf24EsgFy0bGHE2RX0FFnMN2ET0puHG5I2Mkh0ZEDDJeOeb0qEVqF39q+Ze0nXnYf4o8GEyEsbSwPS2KxnfS9ni26hsr7J02wxCW7FJYU0YydU5kWa5FhxoiQG4fpI839iOtq+ieBcWvKHmCF/LbiF1fXtH7GjCUk2iFjD2NpUTfweHgo39uHlX5p6cOXKpIzmjMuVRY3J4h5SasKZvmDacZ2FrWCTBF/Vx7A2dGRnWAnpb4zdD9/zjHA+UHZfjnhDlN5LgaFQ8H/ZgGPqOVSpOr7AVjkxaXa4g6KqJKrgMb83prGiNyf0KZ6HO/wZqZ6NZPbGpyhcYatCMRc2n57KqSG4re1+Q101L6/Fsx7JK08LkUYw/8BkKvxx5MSbWUAAAAASUVORK5CYII=\" y=\"-66.795366\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_13\"/>\r\n   <g id=\"matplotlib.axis_14\"/>\r\n   <g id=\"patch_33\">\r\n    <path d=\"M 80.226013 104.795366 \r\nL 80.226013 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_34\">\r\n    <path d=\"M 117.715668 104.795366 \r\nL 117.715668 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_35\">\r\n    <path d=\"M 80.226013 104.795366 \r\nL 117.715668 104.795366 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_36\">\r\n    <path d=\"M 80.226013 67.305711 \r\nL 117.715668 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_7\">\r\n    <!-- Neutral -->\r\n    <g transform=\"translate(76.825216 61.305711)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-4e\"/>\r\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_8\">\r\n   <g id=\"patch_37\">\r\n    <path d=\"M 149.494978 104.795366 \r\nL 186.984634 104.795366 \r\nL 186.984634 67.305711 \r\nL 149.494978 67.305711 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pc85956cf40)\">\r\n    <image height=\"38\" id=\"imageb73b93f3da\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.494978\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANuElEQVR4nE2YSa9s11XHf7s7bbW3eff1fnZsJyaxnQaRBIKQCIrER2AIE4Z8AiQ+CBNGSAwZMYoEIiiJUKzISYy7vM7v3ftuU3WrOf3eezE414YtlY5KqjpaZ63/+q3/Ouon3/572XxjztmPBHFCcmm48zOPDkLy7x8CoGczuHVA+OgzzFuv89lfHzMcetJTi+4VYqB8KWTrSLINmC5gtj1YTSgs3cKhAuRnNXrXIs9fEusaM5shfU9sW748ejrl6d+9i0UEV0VMbQhlpDhVKIHsV48JXYeeTlFZioigtCLOcpSH7AtHe8djt4aYCP0S8jODioZ0JST7lOxyQAmYNtIcW2yTkm5qJASUS+DBHdTZBfQDOkvRJ8dsvnub9iRgVd3hKo+KBgTS60j+9Jq42QEQ93sIAdU0YAybN0t8IcSpx5QDai5M8h4BmlspMSqa0wzTK+w+ZflJIL325JeB5thh6in6GYgfUHUL8xlqu4c3H1LfnXL5vsbuwXK5Yvuj2wzLMAZiNarpQKsxtyLEpkH1Peb4iLO/8KTTDufG35dpj9WRIApnAuvVBDnu4dIRMmHbG/ILTX7pEQWhsBhjEBHi+SV6uUC/9Yjdm3MAjn4dmX14ie2/8zVCAioo7Fbjc1j/4C6zj6eo330GIYzlLHIe/80jDm5dkthA7w0AuRtoBkeZ9ISoWR7sabqExivwmvZYERJFe+hI10JINBgD2hCbFlX08KphttoQ7h2xf33C1Q9uYa/eyegOgdLjJ4L5NCXZBGJuccdHxPU1SKR6/x7mu9c4E/HBME17lBKGYMjdgFWRZdawHxJi1LBoaTYZ0RjqN3smHyU0R4ry7EbkiUMfHtB+/Q66D6zfyVm9H1HznthY7Ob7LcoIsnfYWc/mLcivFLrxDA+OsMOAKgte/qnlVj52T9UlpNZ/9QlRs+kyMuuJokidx0eNTgNhpjArR0ghJiAGCIHYD+g0QYnQHSYcfbDj4LdjFWIS0P/w/X/lnftnkAaC1/h7HeffM4jTuNM1AC//8i7hQUszWKouwZnA2WqGVoJVEaMjR0UFgA+GundoJUwmLVhB369p7wbyc6hOLPpgCRKJL89wv/yY7LJn/1rJFz8uOf3jkotvZ6hfPnkogxh+uv8D/vnz7+G9ob3IQYObdzz4R8uLv+0J3uArx/JkS2ID613BcJkjWihuVRgT2V2VmGtLWHpcPpBmA94bbi+2fHGxpPx5gemEww9rzK8+RkIErRh+9C0u30tpToT8THH4mw7bigXgzyYf8fjuEf999oAuFCRHNX3rOP1hSp5WdFpQOrLZFsgqgfnA9FNDyEDfiXSdo/gsIbsSfJkQTUJ7JPgDT1M2pNlAeyTkrxTrrxccfejANyhlyR5fsUyOsZVl/qQnWbfYXczRRIyK/Oz568TfTbEO3NMp3dsDkx9eMM9azncTUufZbnOmvzfsHyrsjy9JtZBZzzXQf2fHuk5IniWYZpwIdmU5T2ekxYAY0F4QCwwDEgXe+RoxRkKuEQ3bB47NnzvsmZ/jVGAQQ3OVY3JIV4rmTsRNe7rBsiEbO0lHksxT3RPyc41+e+ywdZ1TbXLYWbJXBtGj0EMZII0jNnYpqVf4HHQPKksxk5JP/2rG0QdCtvLc/o81sUiYvMyxj7tjjuyelS+ZnezZ6gm+syiv8BcZ+wONz3uKdEAp4XBacfkamC+mbHY51gXaVyVEmH1iSK+FkEJ7qMhPLUMp+EVADQrTghq5TP0nb1OdWN76pxViNapqUT5Qv7UgJAp91s1Y+ZIPt3cRQGeekAnZhUL3Cq2FxAaMjmQ3eFhOa7bf7pCnBSFoiGCPWjbf9NR3FNGC6WDxaSSmAmlArBAyiG5ExuaRozlWrN9fjoH5AF1P+XhL+UWLXfcFF+2ETy5vkScDMumoVik6jDexOnJQ1izTmtonhKiZpy3Z/UuedCe8fbTC3IpkZuDpZMlKzdGNIb1SXB0rzO0agiYOmpgIKHUz2AUxiu0jTfEqQz87R1kDStHczrDPtktevViSzDryZKBMe3i4pe7miIs4FzjO92gErwNeCQCFrQmvXxBRPCrXXHUlVZNCUIgT+m80zKb1zbhVbGJBTMxYph5QUN0XQhFZvZNysrqFfnmBXu2Yna+xuyYFLRRZT9M7FkVDYj374x66GxKLog2OVVtQuJ7WO4x25HYgonhRLzivJnTbFN3q0aMtwJpIYkZRVUmCTx1iIKRgG8jOFc1txfaNSLRzTn5h0T6i6x7bNgmu7MmSgVvJntJ1rNqSdtZSX5QoBRfNhNL1RFG82k2p24QiG/8DsIkZgzegwfSKYRFwJhCioseQmIC1kSELhFxjeoUKoAfIX2mqRwEx0NzJyC56EEHHxnK82BOipvGOakhJjWdWtGAErSMvLhc8v15wlFccTSrmkwZnAz6MGXUmkDoPXhEyARuxNrJeT7h4umRd5UzyDhSETIh2bADbCr4AsRFbjRLZPUyJqcVmi/ardBsdqYaERdaglaAzj4hCaWF7NuXDJ3PECtmpoXmjJ512vHa4po8G0REzGQgK0OC9xrrAwaMtuyalGyzlsqHyBXGraY/G7m3veHRtWPx+4OK9hOJcMPsO65znus5xNpBZj9x4b6MEl3q0GvXHZUnIhckTw+RFYPrccfFHhs+94WBe4YMmVI701GIrhS8dbqdYHRQMy0B2auneaFGdRgXoF8JwNJAvWswvZkSr8AX0U0V/WGCtjlRNiggc5DVBa6yKTJKOK1NgdCRPBtLvXnD++JD6trB/TWH3oFtF9BqjI9e7HFMOTJ5abBtZfFKxe71EPRai1bRLIdoU9AhZP43oNNDWCQdr4fJdh9gRJ82xw1oTEYH5pKUeEoIodkOKVoL3hiIdOM5HS9M/MPiouTHd+KDpOwdAGAzFpGP1fkq6MrSHU3w+YmEoBRSka8VQgi8EJgPGRvxlxuq9iNtqbKVI1xFXR+z1tiDPe3I3YHRk32QUbsCoiDGj14ooCtvzxvKKKIrM+DEw0bTBEUUxv9cioqjebnm1mtFeJ6DBbsclJ+SRaDWmh2EekaAJQTCHHWGVogdFcSbkVwHRYKMo8mRglras25xusFzuS6ZZhzGREPUYRNREUXgxRAJRFIker7VPmCUtfbAoJbjjNeFQs+8SqmWKRIVsE+zKIAoki2gXkKAIVylup5g8u+nKB5aQKGye99yfXmN15Pn1gvq8ZFh0HJQ1ifXkbmSV1ZEoCi0yBhg1fbB40WPZbx5giIY+GDZ1TrXJICiUi+jGYJpxzOnaEF1EGcHtFelKUd++GYE1FK8Ey38tuPpJxbvLlzzPFsTbiq6znO8maCXM0h0T2xEZg/Fixu9KUXvLdZvT9I62cwRvSNJhRMyvp0xrvvL6phuBOl411UyRfpbi9tAeC+lagRoDS6qI7Q6FF1dzWm85vvHtKodtm5In4/bzZUaiaM6rCReq5Lio2PUpvTdEUUyKdlzbrscspe7/MpCeCiqOKDCdoL3i6D8d7QF0h4LbKaIBW0GyE0wXsfmpgm+M5fr88pBF2TBJutFVZBWHac2XRyth16Tcnu+4k2/ovCVEjdGjPuZlQ99bQmPxheAnQnqp8YVC+zF7ple4naACqAi6V/hcsLXC9ILphWTdo20jTLIOrYSuc2zqnHvFZjSFac3MNkQZAdF6R5n1rKqCdV8wTxu6wWJNoEz6cTy5ADcW50t7LRraIwEZGRadoro7AlX3YOvx/rYZrbc726CbY8W3Dk45KXYURYfRkYf5isOs4nm14OPdCTufsnANAN88PMPZwNR2rLuC1I175RA1611Bu0/ARmQ2evx+EREHybUivxDK08hQghJAwO1HsU+fR0IKYhSyq9B3ft4RRfN6ecUib6nqlH97+Q5RFOf7yaipZkJEsUxr1l0BQBctRkU2Vc71Luf0bEm3yiEqTB5QlcV0ChUUciNq08Pu4cgy00J6zTiGZoqhGB3H9NMdUlVYFUd97EPKrWLH1b5gtS3pBkvVpISg6QpLcuB5Wc95sZtjTeDJ9mAsf+1QWjBnCX4eICrCxqF7RXRCTIX8fHSt9YkipOC24CfQLUH7sYSmA9cI+otzYghY3Qa0imyGnML2KAXBG9bnU5S9GekF/M/mhNPtjKZ1DJsU1WmYD7B1xDJQXiiqRMOtDnJIznN8Jph23IzCQvBTITvX+AkMJfSHgfyFwe2E4txjugjDqFU7zBOiaD5fH33lrarW4CY98qwkpEKTJpzrCdt1QfIyIZFRsPZzQ3NH8Bp2Xx+4+/CKV6sZ+mnO5Jlw+YeByRNLPxs71DQK00GyEXx+83ZpMi4pAOnpFukHiIJNVi1dNKTWc7GZjF2lhWGfwOGAWVv0JyW7vIBZIFrw88DkAzN2VAu+MOTniu3d29z/7YAvItdvGvIXFp/BsIi4jcbuFXoYQVu+FGwt+Gwsc/nRK+LZOSICEtHm8xf84qffxOrIrGxpqgS8RjUGs7YgCtGCHlGHrRTJlWH9bqSfqRGgqxGgKOhnhn6i6RaCq6E7HndKUdy8H4OhHBcS0wvleeDgN3tksxuDutG8DVcr3viXaz6+f8Ddk2vKaUssx7lXXeckLx2mU0QHbm0YZpHpY83mnqc50dT3RhT4Anw5OoiQQnYFybUw/9jQHkE/jwxTDQKmE/JVQAUhXXXYZ+dE7/n/538BGV6SEa+9nkEAAAAASUVORK5CYII=\" y=\"-66.795366\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_15\"/>\r\n   <g id=\"matplotlib.axis_16\"/>\r\n   <g id=\"patch_38\">\r\n    <path d=\"M 149.494978 104.795366 \r\nL 149.494978 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_39\">\r\n    <path d=\"M 186.984634 104.795366 \r\nL 186.984634 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_40\">\r\n    <path d=\"M 149.494978 104.795366 \r\nL 186.984634 104.795366 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_41\">\r\n    <path d=\"M 149.494978 67.305711 \r\nL 186.984634 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_8\">\r\n    <!-- Sad -->\r\n    <g transform=\"translate(156.944806 61.305711)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-53\"/>\r\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"124.755859\" xlink:href=\"#DejaVuSans-64\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_9\">\r\n   <g id=\"patch_42\">\r\n    <path d=\"M 218.763944 104.795366 \r\nL 256.253599 104.795366 \r\nL 256.253599 67.305711 \r\nL 218.763944 67.305711 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pb1c64d4622)\">\r\n    <image height=\"38\" id=\"image57f9115747\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.763944\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANUklEQVR4nEWYS49k2VWFv30e9954ZeQ7s6q6qrpd4OrG7UcjI6s9woYBEybmF1gyA2b8CcQcJCaMLYEEAyQkPDIWMggZ1MYvcJe72+V6ZWXlKyIj4j7POZvBya5O6SpCKWXGirXXXnvtLX/4/T/XnaqmMIE6FKyHkg8f32L2i4KdR4HJhxfgLHGrYnV/zPlXhHS/4dOfdFWiVjGtQQKMTg3bH0Wqyx67GbAnl2jbQowghutvfp7yz074xuEjAKIauuQA6JKjNIGx7XGvP0ANSYXKBgB2PgyUFx3hYMYwdQxTy+q+Qe/XvLG/YKtsWfUljzeHSGdQo7jGALB4YBlPK8ZnjsLtY89XsFzD0LP1g1/x4s7bmO98yMy2DGrx4rGSGNRiUCozYESUpAJAUEufLMWJxzWR+nZFv+3ZHHuWb1k277bsba8JydBHizOJ6f4GdYqtDX4txBIQSB6GqaHbKwkHW0hZZAZi5M4/PubvPvldZrbBS2TXrSnNwNj0VGbAS8QZ0ddlKUzg8dUBh/+d6HYcq7uW6tzQ7QrdvnL7cMHx5JqrbsxlM+bs5ZzJo4Lbv06Ulz2uDvTbBcPEYAK4OiIKWhi0KmCTGU0Xl/h/uU//0DE2HZUZiNGARCwJI4r5jC3DzHc0v9wmFsL1PZu/YJkfNfBw+xVvz06ZFw2btkBaS3uQOP+y8PL9kmffnHB93yEJqsue6mRNcdWRrIHCgzVgBJlOOPrBGd87+wLHfkElAzPTUElma1CLG7seACeJIVlmj6HbFoYtqM5AEqD5+fh6n59d3OL8k11sY/B9LpvpBRKoy38r0TB+qZirNTodofOCNC4w1kKMiPfo4pr/eXwXfztiTQdAq0q8IcoZUZwkjCQW/RjXwOa20G8l3MaQnKAGXCOc/ett/BqOzhPJgagiCcyQsIOCgu0UvxqQmNBRCSHi1wMAIoJa+1o6/knJ8HWLRbGS8AQqUaDPwIwoW67jyWqX5KHbVdI40e0JfimoAxL0O0rzdseyt4yeePxKSB5ckwGVS8WEyDDzxFLgqMI1CdMnipNrVBURAeeQlJg8g+fDLnt2jZeAJWvQSsrAShMozUAbHGpBreIvLSZkkADFtRBHiWI0UM4b7FGibguGzpE6i7vwFEuDRMPkRKmuIijE0hBLQ/FCEedAJGvNGsZniY/bQ7bGDREhaQY2qMUZ8gdHDKumZNKCKKRCSV6I0whVpNk22MlACJa+9WidLdDUBgP4lSARYgXFKqEWJMAwNvg6oaMCGQKECKpgDOOTlu/95h3eefsFu2ZNYSIAm1RiPi1lSJYQLKIgg5AqJR12+O2OrZ2a3eMln7/1infvnLC/t0JGAcqIeqW8t6Z7u6F+J4u4WAbcOtLuWvqZ0E8NYbsiTUZo6cFkZvzTC/b/asxf/NOfUKcSQ8q/l4Azkmii56TZYjgdYYKCEfxBw3zaULnAblVT2MDd0RWDWsaup3KBFxdzTBWI0fDm8QVX9Qj9rxK/bIkjT7LZaNsdg4kl46i4tcla6wOyWFGernnwDwV/+fCP+JsvfZdVGpEwuKSGX1/vcme6RJ1ighDHicP5mlnRMfUdb00uuFdecre4YJNKHvlj1qHk6Wqfcr+mKgZ+c7pH8b8j9p8HMAa7GaiWJYt9yzAls6Ql1YXFr3okJDAGaTpMiIz/fp8Pfvstvlg9pVeLebLa4eXZnInrsRtLcqBVxJvE2PXsFA1vVud8sXrKQ/+KLxQvGJueRTuiPHWkn8yp25K3js8J7264+q2sPfWG8nLAthArpd2D+shSH3n6eYF6mxuhbpCuZ+eDc/72V1//rCufvdxBg+GHnzxg+xH0M0GKRFKhsJHb1YJjt+TIrjm2sNLszgCT9y4YouVLhyd85+jf+ODoTf66/Qbdz0r8OocBMyhqoJ8n1BhIBtc5iqUFZ9FhQEJE6Ol+dsCr35lRyYDRxkFnCIuCyUmknwtyMz93i5o7xRV33BXHFrZMRSXC/eKcqMLyekIIlsfXu3z3/H2+f/4Qd1rgNgG3aDB9RJ2AZF8Mk0QYQ/RCcgb1LluId+hkxOwJfNQeZ2CUkWKvZf/egmbf5nQADMlQmEAhAS+RVhNXqWGTlD275r295+irkuGjGaeXW/xqecDjy11GrwS3aJG6JVbu9ZyVkM04jmAYC6m6KaUItB3SdMw/7vlgeTeLn9YyrBxXw5hdhTBSxIAVxZLYtjVjCQzAWbS0mkfKQbGiureiPptA7bisRzR1wf65IkNAq4IwsfRbZNN2Ck5Ra5AEKgLOgjW5nDFSPlvw02d36I8trnzlUKtMnuVvpg6MSTiTiBg2qaRTCwkWqeIsbAEwsy2zUUczKtFoGAZHai2+TqCKWke9b4mlZscm+yMKvk64ekCdQW5mKDc6i6cjBnW46hy6XcFEzUlhyGGiHjwvmjk/NXfZpJJKelotWMeKk35OlxyHkzVnFzPERA621jzvHJBLlMaeWIHtIRWCqw1uLVTnSrFKmLrnxk+zr8WYGfzUYIcZxFKpD4XZE4UEMRi6wfF4uct1X/G82sZI/i9t9Fx1Y9Z9Qd0VWJcYas/Lqxm6KLJBW0MaOVwD5ZVgW8H0MH6lzD9ucFc1iORypsymhpDZGyQzZjvo5+DXYIJie0PfW2Iy1F3B5WLKo0UBk8Bo1tJ3nvSqwrRCOOoRAQZDaH1Op05gCJDAtcrQCWFPqWrB1wnTDshyDd5lhlKCriM9eINUOvRWS0RwozPF1bD1eCBM8qbDYGjqAr0o2f4/AYH1vYLurMAEKDdCsYTrscPsd8TBUE07OptIroTCEyYOMyjdHsw/gr0fX0FUJCW0bZHos1UAGhOn78/55rf/k2+NTrEo7uxrCfWJ8ZnBtplWf2VJK8v4lXD0w0v6owlowdEPrwB4+fu7+LUyeWpZzyx2HPjKrec8W2/TjI5Jo8yeWsFtwG8ScVzgf/0SrEWNzboKIb+WBQc/rpn+acexXxLVYP7gqz/n/ptnuDohqtgOioVQXgqS4PqdObEw7P6yo35zC60cO496qkV2f1rL1qzm4fSU3apmmAlhmjeiYSS4Wmn2DJs3Krp37hDu7sPBDmIMGkLWmLX4F1f8x/nniGpo1eOSCi8u5rx13tLvlNgeJMLoImEGuH7LEsaWZB3FSpjOphSrRCwMEsG0OcKc9TMSwvp+YvyqYPK8Y/44UB8WNPuG1T1Lu2OorjzTp+CuriEEcLmTtW74zatbLG6Pc1B0JpKSQVJmwPSKljn0TZ80jM4cF++WtPvg1nn5kKT4VaS6EFafT7x3+JyDYsXI9vTvWR4Vb7Dz84qDH10z/8UT5iEgo1HelACtW7TrwAhYm1lLkXg6YpUquuRxXhLGRmLlCJOboKgwTIRur6Q6bzn60YCK4E+XqBG0Klk9nHP+e4k//uqP+frsIyozcBGm3CsvuT+95CcP7vDxgwNu/fuE6UdLWK7RtsssxZhBicnvAZJSnhnOhxlJBZcQjFEkKjebEwBhJLQ7lm4+xgQIldB9bcL6XiLNA+987infPv6Au/6CVj11KqlM3obuVlf0u46fvG15GXbZ2t9lfDGnPO/xlzVyuURjyuDgNTg78PqO4aJmYBjBNQkJBnFKKoRuJ5tgKqG+ndh+cMH7e684Kq+5W13iJfB02KNVz1WYUJqBZRjzvN3mtJkhoqiDYSa00eJqh7s2SFkg/ZBHV0yZuZsx0CWHEcX1yTGpemJVYruEaxU1AiixFMIIUpk3p7b3nDVTJq7jfJjxvNshqbCOJc/r7ZvdwXBeT7haToi9xSXwG2V8GvDXnyVXVHNXQgamCRXYhDID66JjUvSEkWV02lCWBhMtocrgwkhITpFBqJcjngtc9yWljXgbSSp0wdEFR+ECQ7RcXE7RyxLbCv5aKFYJX99Yg0jekqy90VvKbCUlFbCJRdYYwHbZcLJrGT8N+FVArSBJiD4fR/j07hKF+rpiGCxFEShcoO09qjlctoOjaz1p47G94BrBr/KoG8YOD5g+5o08hAwwxgzSWsJE6aOljR43sgNGNN8cmh5TOopr6Lc8rlNaI6jPmUrKiHUpa+emU6piIERLUiElISUDCUx8LRv6qUEFRB22Dqg1n3XZTQNIWTBsR9ro6aLLjI3sQHOoSD8gQ0JswnYJEwzFtRIrIVaKAr4IOJfLWPlAOziSCjGa/LQWt7I3IwnCBCQJts83EAAJEY3xdbIA0NkEu9XTBJ9vb85ErCjDve7GYAMYMIPF9ortBFdDGAthMAy9oyoGDiYb2uC56gpiNITBosEgrUUiN8eW/CpRsb3iVyHnsK7P2rrxM+17wtEWk3HHpi8Ygs1dWZjA7cMFaXuKrBvEGUwXcbXFlYJf54GszhGCsOgtdVtgbSIMltBbtHG5hH1mx23A1TfXn1opFgG36pB1jYYImj7rSODsvTH700sWTUU3ONxqKCmM443Zgk++/JD9f36JlAWmj9g2UqwENbkJbGdo93IMirYgkm8cAtggSAAzCOUllAvFNQnbK24TKRYd5rrObIWQ/Stl1sxsyvIrPZPgGGKWwf8DnuVMIBg6NbkAAAAASUVORK5CYII=\" y=\"-66.795366\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_17\"/>\r\n   <g id=\"matplotlib.axis_18\"/>\r\n   <g id=\"patch_43\">\r\n    <path d=\"M 218.763944 104.795366 \r\nL 218.763944 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_44\">\r\n    <path d=\"M 256.253599 104.795366 \r\nL 256.253599 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_45\">\r\n    <path d=\"M 218.763944 104.795366 \r\nL 256.253599 104.795366 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_46\">\r\n    <path d=\"M 218.763944 67.305711 \r\nL 256.253599 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_9\">\r\n    <!-- Neutral -->\r\n    <g transform=\"translate(215.363147 61.305711)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-4e\"/>\r\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_10\">\r\n   <g id=\"patch_47\">\r\n    <path d=\"M 288.032909 104.795366 \r\nL 325.522565 104.795366 \r\nL 325.522565 67.305711 \r\nL 288.032909 67.305711 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p332cf9d3c1)\">\r\n    <image height=\"38\" id=\"image87ccddde60\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"288.032909\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMJUlEQVR4nGWY2Y9l11XGf2vtfYZ7b02u9OR22m233cHgJCQMIeEhCRIhCEQkBqGIF/4BpERMD4D4BxKJJ4TgCYSIQoTCYAkhhRChACIKlmISKwTH8tBud7uH6hrucIa91+Jhn65yyJVKVaV7zz1rf9+3vvWtI/nW0w4wesYwFOXFIfHJv/w01z77Ij4MoApmuDsAInL6d/rQs9z+YMvsrek9g35PsAqsgjxzXMEi5G3D28yHnnmZ33/sH6nEOLGK23mHfz95F1/48k9y/Q//m1d/+30ob3tFAs/38Kuf/zTX/voAd0cWcwjhtBBgKtQhZ5pX7rJ1w/AAyyvC/fc7J09llk8luvOGayk2DBCWiqwD//mNd/Gn9z5MwGkls6drHq2PqK6usPc+zbU/exnNbvQ+AnBsHb/+ud/gypcG0k6L7mzDmJCgSF0jIgWtMYEbhIDtLuh3lQfPOt2lhO0kwrkemSdsLzE8NtBfTFgNOkJcKiThuf96P88t3w1ARtkNKz7x9De5+74F7l4QU5TRMz/+hd/k8ldHZELHd7e+hz6p6/L/VBTvuc6Nn9vn6AcMD46MilaZph1Z7HS02z2hyUibGfcyCIReqA+VeBz44xc+yvPdFcyVzmsuVscsHweZtWiiaOtj3/okj33FqJYJGa1Qlg0RgRihinhKBS1Arj/JjY/t0O87XhteO+Jgm8g4BnJW3EHV0OgQnHHXsOCIQVwL8uqMz3z7Z3h93AdgbTWXf+wW6cJuQewz99/D+PmL1EcjHqXc2B1ZbfCcISV8GLGuR0JAn3qCN352n+ERx+pJe9GwRQZ1xi6SkhKjUVUZEUcqg63EuG+MW46rE3qh/59dPn/rA9wbt3kwzvnIxZdYXp2jLwzwF//0U+z97xqxiTYHXQ/4ZnOKkm82iArh4nlu/fQFVleMtJvwypFRYFRQR9tM1SbadiSooeqEmJFg1PMB3RuwxrAaXCGuhJe+dpU74zaH45w3No9w6xdG9F9Xz/DOL494UFzAVbBKkb6ghDm2XuM5I3XN8QfeyeGziXC+I2wlyBDXiiQBdTwpYx9Zr1r6IZJSwLIiSkGwTvjMsMrx6EiG+lj4+6//CFEzR2NLrBP6uT/5OLHLiDleKS4TlcOId32hEpAQkMcuce+9AdlKzOc9loW4VkInxKUSDio8CxqNWCXMhKGLmCkiTs6KqoE41ji59akhoHoQeGuzw/PfeYLrv3dMPPfCunRgFHBQM8JygE2HBAU3vNTG8tlz9PsZHDZdhd6pqY6keFUAapAukAclC0guh7TgoE7Yy+SsSHS8MiwHXIqN6AjfvX+Oq18U8o03iYiAAtmRABaVmB3vBzzbKVq6teDwWsSrBElJEpEAaeGkuWMzg9qQ4FRNIvUR7wLSK3GlpP0REXCfRBymbo4KXrQ2e26H+b+9SB4HogdBsoMIFhQPgosgORe/EiVcOEd//RLdeYfGCE0mbwI+M5IrCFAZEo3YJOq6QJzU8VpJ2xDaRE7ToBHA5QzRGh7/h7v4KzfIwzhNodMxM3X9yUi4d4QNA4jiOTM8eYE7P9qSZ0Zsi750y1mtG8ZQI71C0kKpwDgGzIVYZZKDqCNAGgOijo8Ko4CBZAgb8Nduno09EaJkL/iaIOLomPFhotGNsLtDrhSL4JWjwQhq1DGTWiX1EdaBuFTSLgxSobFQ2rQj7WzAXYhq9GOk7ypwEBN0EOIGZvcNzMAcCQHPoDLpCC2mSi7DGShj59HzHD7VkFvweULVyaaYC3VM+KSPdG6k3u+Q4wruNeRVxawemdcj71isObe1QsTBgaQFrSR4gOYwIbs7SPX/CJQJwVOriBFUkBCwRcPqsjBuOaHJuEPKSjdGVIA+IFY0E4Lh81wmQJKCbMhcWhyT7G1BJhSbiJ0QV3DzoxXf+exjHPzKD5fi3FCmYlyE3IZTjiUEpGno9xuqJXh0VBwzQQRyVo6WLTjkplzWdxVkQXol7A7s1D377Zr73YKjTVusIpTx5NGRBDoWVKwPLB8T9OL5onUXYOrMuBxBwdNkqk3N/XfXRZy1Yy4ELcWlpOQxoJsJCfVyRnXYzuxsbTgeGg42c7IJm77GXVBxPBouBWmZVBPniWG3Ip3fgVcnKh+OIavDRGWAEDj54FW2bhq5heqBko/rKTE4qo51ER3KKDodsia4w9HRnON1y7qv6MdIXSXaZiREe0jSaYAc9xO8PiNdHOguzpBYEQmCBSkf2iR0M+LjCOPI4bXI4rZRLR2rhOoksn58RkpCdWmNNJm8VQxSKiPGTA4OXu6s6rhP6GY9s5JUrAKHNANMyAsjHFSIZVBBXYQwGjpkxB2vI7KYI3XN7F5Bol46aVEG7uLVwBPPjdirC+RejbeFi1hlzM7QC9FwF8zOftIYcBM8K5ILGLkph2gurbHa6XcDUtdEfRgKH6bWKuBNDXWFjo4H0FS6bnU1I1l47XKFLRKyCegyYtuJxbxnuWrByswdjxrSPODrWNCZZXBBqzJry83AA4RlQM47Xjknjwf2d7aJkouxodNoSgZBGX/wcbpHlGrlpAaaA3BVNAsyQl4K447j+wPzRc+8GRhSIK0qdBVoDpTugnD5q8Ld9wvhTiTNnDwPUDlhpWiC+R1j2FU2Jw00mdUT4LOG6CLIdAQX8DaSFxWbizXV2qk2zvKycvJ0xtURF7zJVFsD57Y3+KSnboyEYEidkRwYF878ZmB9rhzKKggKcRPIjRNXgmSoVsbsLaG7IjAoYXfE5w0RAQ8KKnjzcH4ZqS0acCk+JYPAuZGqSSxmPTEUCQQtIyqbUgUj7DmH68j89Uh3zlj/0IAnRU4i7V0lDJROnujMtZTEfBKxeSavIzJmoqucGrKkCbmgSC7R10P5LVmwQdHZ2X6pUryNydXbmGhjYv7kwL39LfJBC+tYYs2m5DYLnBblCv2OsridObquSBfY/5bArTtTHoNirLlsOmLOsC2EHiwKmovnkJRxiIg4YUJMxAlyVmw2JaixmPU0j46sVy35pMKiE718l02H7fdLeq2PEte+mOn3G7a+cRMb09tijwEiOCWbuU4UekmX4qCdkkOk92IPVZVPL3VgPVSTbwXcIadA7sIpQpKnD8fyfcOe0RwouVGqBxu2bh6Q3rxd7EeSleAmgku5QIZE+8AZduShVxbo40R1FkyVPHmWl7OU9GSCm5KT4rlsT7ope0GRSfmuNHfqQ0Uccqvgjh8vSzgF9PipWVnb7KwzJRthcHQ8K0oyaDcZqBQK35bryPmhkSp5nIpKZXsSKwVZLGk1t051IlQnEDpHB0eSYScnIEWv+onf/QrjVoXXipgj5lgdmd/a0D7I1MtSoGSwxmE823hs2rbNBLwgdQqxC4yCjIKYEPqyW+Taae4LcV0kUq0cj4Krnm5kiKIf3/4mr/18VQLiaSMI4bijvTew9XpHe2A0D8qKhjg2lNFipkVHWTFTLAuWysghnWV6SUWEVpXt28O0j/RnzeYvvXKKFm7o01Xmlz7yNY6fnJUVTgTXIpjqzQfUbxyw/VrH1huZrddg/lpFOKjgpCL3AcsP0QLPiqeS52UoNGovp0FUktAcQLV0JBekxoXQ3l6fPUGaEItb0vAHF/6DD//yM+z8UYurIObk3Rnx8ATvemJd0cwC9YliN4VuL9DvBbrzyrAXsNZKKs2CjAUtHYo16GSokmF215nfLU99XIVcC2Fwwpv3SXzvS4Y3r/nGBwDe+7ef4qm/GU7frG4ewuFxyf7v2KO7vI1VSuwyuQmkudLtKatHhTx30qw0ho4ypVMhdJNXnTjbNxLt7VW5cT9ibY0OCfvuq+XJ5YRWaba3PepcWs8H//y3uPIvfeFdhOblO2WDUYUqki7soOsBm9ekeYVVwrgVSK2wfKeSFo7VIGNx+/oYwsaZPTBmb/XEe0tktcEOHiAxYn1/VhRluf6ewrIbicy3BufX/upTXPnnntwG4nIkLgdkuSnImSEnK/yRHYaL26RFmMwZdDDG7chmX0lzoTl0tt4cqA46JGekG5F1h927j02L7amuTivT7y8sSHmy+O1x5Bf/7tNc+VKmWiZ0k9BuJD0yQ/tchv7kCJtLDaFz2jsbdMhYG+n3G3KrVMtMfdChN+5A3+PDiOf8fQh5zmcdCdz8nZ/g/wCT/xDu9arzSwAAAABJRU5ErkJggg==\" y=\"-66.795366\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_19\"/>\r\n   <g id=\"matplotlib.axis_20\"/>\r\n   <g id=\"patch_48\">\r\n    <path d=\"M 288.032909 104.795366 \r\nL 288.032909 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_49\">\r\n    <path d=\"M 325.522565 104.795366 \r\nL 325.522565 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_50\">\r\n    <path d=\"M 288.032909 104.795366 \r\nL 325.522565 104.795366 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_51\">\r\n    <path d=\"M 288.032909 67.305711 \r\nL 325.522565 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_10\">\r\n    <!-- Neutral -->\r\n    <g transform=\"translate(284.632112 61.305711)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-4e\"/>\r\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_11\">\r\n   <g id=\"patch_52\">\r\n    <path d=\"M 10.957047 149.782953 \r\nL 48.446703 149.782953 \r\nL 48.446703 112.293297 \r\nL 10.957047 112.293297 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pf1d5f2c7ee)\">\r\n    <image height=\"38\" id=\"image2f40f59fbc\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.957047\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANFklEQVR4nE2YSY9k+VXFf/c/vRcvIjKzMrOyuuZuu93dyIy2MWywkCWEMGKyxIYtG/gGrEB8ABb+APAVGLxAYu2NMSwswMajqspdrqzKKcY3/YfL4mVXE9JbhPQi3n3nnHvuuX/5nS/9jcqQMW2PrjdwcgfpBtrP36c7scwuE9VVD1mJxzVxYUkzQ3dqaO8p42kGAdMb3E6QAmqgOEh3EjjFrB3zl4ZH//yK8vwlEjzm3l3ivUPahzUXv2b409//Fo/CNUvb89DdYCQrEhMMIzgHpYAquRaqTcHtE6aLiComFdQIxUKqAQEZDW5jCSuDHQQTp8sOgt1aGA3qlLiEi996B3N8hKYEgBkTritIEqwUjCi1RLwkDKkgY0RTQoyZivSO7IWwirjtADEhY6I4Q/FCnAu5AgC3F1wrmAEkTZcdwHVgRkGSgIAKtPeF9ktPEecgZ2TImKiIQiWJogKARTGSM6QMOYMxYC35ZIlvC5ILMiYkZUrlKU5IlVCCYNKnRVGgBMg1qAPJUyGlUtQqtjWYBKlRrj/0mLsnAMgYcfuEJBjU0ZYKK2VCk5hAFfEegkcrTwkW2xVQIKaJXmcowTAuheKgvlLCZiokzZUS9K2+cg15ptPDo5kQHad7+1Nl9ev34ZYdiRkToc2Bhe3piycjOLktDECDR4MDBdsnzJiQIU7FOkNsDCVA2ChhWxgXBr8V3F5AwaQJORT8TjCjoO5TanMlFK/cfGQ5+k+ZAJkeTVEhyKQ9LxlD0QmR4Cc6ARMzZsyYLkKME72NI82E5k1hfp6IjWG4IxQPUsD1E4W2BzMCZfqeZspwrKiB+hJcK6SZ0r97AqWgMqF8HecYCl4yFsVp5RFVtKkhF9Rb1BkkZhgjiJDvNPQnHhTqq0SaW3IF/ZlSnnTkTSBcWswomAgmw7hU1EKeFWxv8DsFATsK2gk3HwTuf2+cEBO4GuZsy4y5GScqCR6KotaiTUCNQFEkZmTfoQcL+rs1sREWP49QbrVTwK+FdudxG4u/9TC3B8kKOmkRPhG+EOeT/opXtu/BfZGp0wMchZZdrpmHN1O3qzFQebSyU1caQVK5/XMl32lItTC7yrh9Ii4c+zPDeCjYEdy1w++F6lqRPBWc5lNRJoPfTiiqhfFIyU1B66mx4rv30GBQoxz5jr54GjNMVEopaOXJTcD2k/jIioogVSDNPSZD2ERKMAxHjv1jSE1h9tpQXwluP9ERD6YmGI8gV0rxihShvhDGJaSTSHUwUIVEP3jahzP8dvKWogYvmVrihJj0I2XmUSeTTWx7tPKTMOczijf4TZqKdYb1ZwzlvZbgM/tFzfwnnv4uxA87nMsM24rjsw396Lkz73h9fcCQZ8SzyDsPbjgIAwWBJdwczfHbjCh02QNwZEZ6tZP4AXIwqBHs3lCcwRSDejtZiRGwQlxauo96Hp2sOa5bxlPL/1bvwNrzuXuXvNktOFp0fPnsOZfDguuh4efRwP2Ru3c3HFY9R1UHwC5WxLmQGkuulathzlfvfJ+2OLwUXJlXlMqRa0MWsK1H8uS+xVskK3lmMbHQnlqePnjN+weXHIc9qRjc08L3Xr7DD1/cQwSePLjCiHIcWvrsuHO8I2bLshpY+IGlG0hq2Iz1245UA/sUeNdfYEQxKA4R1AlmVNozR1hb3CqBFUzMgJvSghW6M+HLR6/51cULahm5zgsqkwgm8Xx9jLOZPjm2sebItxM1s57KJk7rHTMb8VIo2WNEmV0U7FAoQdiNgSMzYFAKgivOQJnE3R9b+mPPwZs9pQmQCnlmp7dyhvFAeVpfcWJ3/Cwes04Nu1zxqFlxVu/4zusn7PvA/jBw5FsuuwWVS1x3DT96dcbBsuWgHqhsYsiO5Yue8cCjXjkInxaVEZw6gxSFoszPI7sHYZoEpYAV0sxgolI8hLXwr68+z037JXbbmjJaxBcOD1seH61YVANjspyGPUPxXG7nxJ8umX8shDlcv++4BogGdzDyuddr4uIEtcrd2Y6C4G8HrpNcQKa44bYjvnPEkzkmFShK9uBaRYpy/IPM9fAAdVBb8PvJt4qr+e/3jjh8d0Vwmcf1Nf+1fUj64ZLlC0gNxAPFXXnCSmjOletfrOHmBWpPkSQ8nK2IaqglYyXj0El8NmbUCPVVJB54XDslUwCTFDMW6jcdrp1x/aGne6QMp0q4MVQrWD4z9DfHHP3Ga07dltfdktPvKs2bEbeLlGB584WGxatM2GR2TwISwhQejOIlk29pnJzfGTCThkw7YvpIerikOKF4Q3G3KaAoZt3SXG6YPa/oHx/y4ncdzbkyu5pEvHvouFNPdhCzZf6yx4wZe7XFqnJSW9x25PVvLgkrwDmkgDQZK4WoFrg12DR3mFiQ9En+ANdncjD0x3b6YVZMnCxEux66nrooR9+7y+I8oSKYpAxHQiyW7+4fM2TL7qMZi5eJEiwA46Hj/MsV8Vd2zL+1mGZuKqjCxbhkZLrPo7g4NyCG+kox1mLaFreylJOaNBN8O2UmyQWMoTw+I9cOdYbZTWE4sJNzV5buTLnczfmxuct+CHTvgxpH2Fm6E0N7X0mPek6XHXmcTy9qBdlZdinQF09vLF4STq2QA8S5wwwZyRVm12HnnlwJ9apQ3DTYS1PR3W+4+GVHXCphI8wudEqg7wj5eGRMlov9hIY+7tmYmsULgx0VvxXydeAiHfLosky7xcwgUViNDavS8JANXsDZsUwJe2FwrZv4zYrbDhTXTF0XzG32n4o0GWYXgt9OAXD9PsQnPYtlz6IeWIQRgLYe6JYtw2cd3b7ChcRhMxBcRsoxxESqDFLg4/Uh8R1HVIPltiulKK5T4oHFjJm8rDBdZPlxJtWCL4oMU/KoL0eObGA4MGzfhfx+xy88PKdLHm8yjRup7bTxtC7QB8dB6KltJBVLnx03Q0NWwNm3cXt1vcBS8FKwIjgzKrExuLYwLiyutth1plSO+jqyeVLhFbRySDtg2xHXOW4+sOT3W377sz/iXrVhlyu8ZLxkolqiWooKXQ4YmR7YZU+fHWO2+HjbbLcfsYWMefvdSVGKF3JtcL0SDxyuy5g+MqF5a6JNwG1aTBdx+8zsjaMbLUkNj8I1jRnoNbDL9ZRWEIbi6Ysnqn0ba4oarjZzHm8iWgeKBa0K792/4q7dsDQZg2A+cf0cBNcVUiUMx4HcBMyYCbuCGcttgCzItsXtI81Fpvl+xbc/fspP+jMAgiQaM1CZSC3pLXLbVNPlwDrW9NmRny3AClr5qSlWlvvNhsdu/RYzZ8aCSUqx03rlBp3MNRjMyDT9/ZTRcBbdtZhNR1U7Fi8NN4sl/+Y+gidwFjYUNRgpFDX0xbNPFV32xGIZi+P1dpqddh+nYLAUJMO9asPclLdUGtslTNRpCQHCKlGtImlmKcHc0iyYMaPBgxZkvcUMiWpVaF4Lu2eHfOfyKT/rj2lLoKhhm2tSMXTZ02VPUsOQHOtVQ/FQwrSNmQRxORVUi9xeFmdiplpnxqXBjIrJBdtObp6rKdWmWjB9JN9psKsNZd9ir3e4ZWB2YSje8Lw+Y8iW9w6uedzcTMIvgYJgUHap4mI/x1wGcoBcO/xNT3Ewe7jjxO8xgJeJTIcqfjPi9440N/itQiqEyz39gyVpJqSZ0D9YMvvJFRwdIMMAN2v8YUOuDPwcinec6wnbezWb45r7s81bWsYyjZr1uqF5ZZi/Ktgh099v2L4LX3n4nC80z7AIRXWyi/6sYfZqT32T6E4dubaYVJA2U131FD8je0t3aqnPa2SIyOEBerPGvl4RggMNNK8ENY42LvhpEfaHgWUYKCoUFV6uDzGvavxeaS4SKtDfscjTll9afsxjt5q09UkEe/F7hg//Adwu4meG4Y7DxoLkaVMKNyNqA/2hpX9nzuz5Cq0r5PgIvV7hLgJwgMmKGxx+a9n1S56d1vhZZN4MeJfZXM5pbgTJim0TiLD+rOFrH/wPX5g949BkwGARMor7q9/5Jn//nT/i5N8vCNUUrcelpxrLdHaVFdsrwRX6Y4sZD6he7yj1HJnPkKsVPibs4Ry3qwhrj+s87b1ArgPb+Qx1MLswzC6U+mYKptsnFfUXr/n6nf+glki5RSszGa/72vyH/MufP2P/5iHV9UAlQn/qMSkQVsPkykWnE5y20J84il9Sn9/uBeEUe7lGXl/j1xWuqbHjkrD10+mjBzXC/HzExEIOhpsPalZf7fnG5/+Jz7gdAHMx+NvYAyDbl0/0eUr88bf/gqffENQIcTktwGEVkVTIzbTexeZ2OswNJilhk3HbiNv0yHr36eFfFdBZNe2kMgVNVClNoLs/58UfKn/7lX/k64uPqcQTNVMomP83kmT78olaEX4cE3/5gz/D/d0JkpXUWNRAdTWC3KZZ/4nxFrpTx3gghK3SnEeq8z0yjEg3QM5oKcisRt10JlIOG3ZPG87/ZOSvv/hN/mD+gju2Iep09FUoZP10fv4flJcyKpi4gFAAAAAASUVORK5CYII=\" y=\"-111.782953\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_21\"/>\r\n   <g id=\"matplotlib.axis_22\"/>\r\n   <g id=\"patch_53\">\r\n    <path d=\"M 10.957047 149.782953 \r\nL 10.957047 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_54\">\r\n    <path d=\"M 48.446703 149.782953 \r\nL 48.446703 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_55\">\r\n    <path d=\"M 10.957047 149.782953 \r\nL 48.446703 149.782953 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_56\">\r\n    <path d=\"M 10.957047 112.293297 \r\nL 48.446703 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_11\">\r\n    <!-- Happy -->\r\n    <g transform=\"translate(10.343438 106.293297)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-48\"/>\r\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_12\">\r\n   <g id=\"patch_57\">\r\n    <path d=\"M 80.226013 149.782953 \r\nL 117.715668 149.782953 \r\nL 117.715668 112.293297 \r\nL 80.226013 112.293297 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p73d9c18efc)\">\r\n    <image height=\"38\" id=\"image9f53591675\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"80.226013\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMkUlEQVR4nHWY2ZMlx1XGfyeXqrpb7/ssLY00EtaCJTlkLNnYEQ4CzAOOwC/+O3jgjwKeiAD8BC8GFDaWwRiHpBGjkTTqGfX0cvvutWUeHvL2bStsKiKjbndVVH55vu98eU7Kn9gfK4AYwR4ecPmd24RMMK0iCm6hmFZpeobLV4TqqIEomJlF9iru7F2S25ay9Rz0xpSt54Of3uPoX1tsFTBlwD+5hLohbm9Q7/dQK7hZi7taAFAd9DFVQL0hekO0gkMjYi12Z5urd27T9AVbgUQwrWIaJWZCtSaYWuh9nOEnADCfFnx2cYBmCj7yRbFJt1dSvHbFE93g1k8VU8f0srVoblErAKgRYjdDFg0SlZjb9H8BDDjEIFnG4g/vUG4IEtJD0QQuZkKbC2rAllBcKmrg8nXl+JWnDLIKJ4FJU7BoPOMyp5M19N8+5cTsc/cnLYSIFhmx8EQrmCYiUQm5xdUtKITMYJrlIiI4sRazv8v0yCMKLEGhEL0QMqHtQDMQ2i7MM2F+v2Jnd8LlrMvVvEORNZyeblD0K944PGEnn1JFx+N3S07OnuP2w4AWOSG3acGaIqZWCN0MaSNqHcFZUDj7usMBlM/v0HQFiYppWK4gAarXhaYP9UZEBy2uaOnmDcNxF+8DL+8943b3imeDK3753ku8N3yRH731Prc6V6y5ki+/P6D61RESFXWyBCErSkPXIVGRoDR9w+kfCcdvfIExa31mhz6FML2LGmg70PaEZqA0axHtBohgP+7SfLwGTwvKcc75osd53SMzAT8Vtn/m+MeHr2IkcpiN+O6th3z+ZznBmzRFTFJRI4TcpJEZJnccT/48cPzGE0I0OFkb0PSWgpQUtegSjdFD09ckbqsYH5Y8J/AAz676jMucXl4jr48Jb7X84Pb/8nL+lKvQxUvgD955xMUvnyMbB4SU7aEwSFBCbjh709B784JXBxMWbQqSCxt9oluGarmi6CFm0BYQOxHpBIyNbG9NWfQrqtLjjNItao43hkSENhr+9OhD1u2CfT+ikIZSM+Yx4xsbn/M3L9/j8N+aBCimiA3ve8p3p7x88IyqdQDktqURiwv9DHVJV6bVBMoL0YE6BaN010pElDYY2tbSTDPs2DKre/xqc418a8GLe+fs+TFV9JTRc8YaH80PyE1LwNC+OiW8nxNyw/SWZfR2yRvPP0q202ZYkzLSiBJVcJgbWjQKIUsRU3NtKuBtYKc/Y1LlDL/o4MaW3hOhuIyEzFLuDHjwlnCvf8CaK8lNwz+ff41WDd/aeMQ8Zrx29JRff+9F4lHJy7dPue8rypBoy2wgqmBEaaNJwKRNviQKapfD3CQCUWiCpQkWZyL5uSW/ENxcaXpCvS5M77V8++7n/GjzfR7UBzws9/j1s0P++PYn7PsRs5hzu3uFefdjnInUwVIHh0GJy4mcRCKyAujspAS6KTgWomXlwGqS6GUp+Ny1hCwtYvI81NsBaYRie8GGX3DkJnzZrgNQ+Jaj/IoDd0WpnmlRMGkLZm2GM5E2QlxSFVVuAJqYgJnRDD/dpN4QlARMrg04B3yk8C173QlOIpPXzxmFnaTJ0iCN0NQOZwKT6KnV8ni+ybcPP+G7/Q/ZNgsmMeM4O+dpts4ibGJQMNBGaKNbRcmIpmcChhAZnLQr77rWV8wh9CIuDzgbKGzDwJe8uHHO2tcvMLVQnBrcAlRhz08ICBHDYTHiLzb+k10zp5DAvl1wx19wN78kMy1GlMI2ZDbgJEUISKCWl9FugR81+GnSVfQpM0OhaCfQ75V0fYOXiBVl4Eu2uzPKg7QYiQIK3rRMYsGGnfO9tQ/pSc1EPTN1lGrYNRXH2Rm5SUL3EjEo5poeSBpbDnf11i7VmlAPlpoyCVwolKxXsz+YcNgds5XNAKiiQ1Uwaw1VbfAjQ1w4Rm2XUhOVUT0PY4f/mt0lqnC/c8rbnUds2yk9VzFp8xsQalYRWwFUwX3zr3/BT/7pbfwUQrZ8YiH2W462Rux1JiyC5z/Oj5k3nhCFwrfcP3rGg7iPTnOkMpzVfQDK6Dlt13l/dMyTaUoEs6sEDN/qPGTTzTmXPkGTKV9TeC3+qCkzXRstmGQTSBpqFFMEer7m0/E2jz/fQSoDg4ZOv8LbyLTOef7onMdPbmGq9NFbdsRJs8X7o2M+HW1xPhyw8S8F//CDPrtrUz7aPmAvS8WcFSUz4be8y97oSxT33pfH2FJQu/Sy6408Cldlh5Onm/gLR7PZQmvgF+ucHrf096fU/7OOq4XohM+mW/x9/iZ/9/BNZqc9JApmbnCVEj/q8yTvE18X3tl7tAKQ2xaCo8V8BRSAGz7apD9LFlGvL7kW0Lnjy8s1/JcZbioojtBRDn5eUT1wjO5tsP04MjsUJs9FPn6yxyfPtmmuCux6zfP7F1iJPL2/hpaeF3Yv2S5mPJptJ6/SSBstkaVV6A2dAC6/sORDJWY3W5OpBTszyLhDcS5kYyVewPSusNjxFBcNxbnh4lUh3Fvw0uEzjvuXRDV8MNxnrzvhh3u/4l72DICMQKme31S3+OnwPmXrMU5XTh/1Rl8rKk2d9NW5iMymZhU1W6YaP2RQDwRbw+AzZbFtuHwlp7m34M7+kNy23Old8Wb/c7qm4rhzQW4a3sgf4yWyayPbpsMwTijkUz4u9vlwtE/fVyvx/77LuUWqUlGDqQVTXycAxExRI+lvB+U26J05+1tjXtt6yrDuMm1y9vMxrxQn7Jo5d/0lAFu2wQAewzAumGtasJfA2azHre6IMrjfsYobKq+UxY6w2BfcHPxMKHc0bU2awIUC2kGgdzDj7uaQe/0LvphvcLbo8a3dT3mpeEohDQ2GQhq6pmEWDdtW8WKYxJZySdNeNubyyTr/LXB/84wyOKKar+gLwJhGyYeKqSEfLn9XsmpIJIJahSLSzWuciXww2uds0eN4MGTbz+iZerUhewlYlEotuRgavXH2gLBlZ5BFzk/WcSb8XlAAZvSCIXpwJfiFgpL6yvZmu0EFgrCoPZ8NN7laFKznJQNf0rUVhampsUQVwnKSHdusJhmIoSuKlwDAnaNLsmeOx9PNr2xJ1xs5gPnhX/47V+9UjF+4ecHPwDTCb9MvtWE2LiirVNwVtsGKYlFmMWcec35TH/FhdchJu8ZpyBjFgBGhazw39gkHvTFuLpycb/z/Gvtm7xO+/e4D/upnP8bWGcGnIjDzqW3DLZvfRogLh+YtHd+uPjAJBaNwyIPZHg+Ge8xrT9M4tgYzXlg/5+21z/h65zMKgUksaJYOLwrhtEN99NWCcQUsIFy0G8SpR4LiykhjDHahRCuplXcKEYig0eBt2koWwfNwvsvJfJ2PHtyi98iRjRUfYNod8IvBAe/1X6XdbDm6e8F39j+ha2o+PN9LHb9TFq2n45qvgEo1P9CoxY0spmmJLh2omCCYBkwNxgEIag0xCOMypw6WL4HhrMP8tMf6B47BScA0SsiEOBbiGUQnhMJx+eSAv72zxcbOlLL0NF+rEReZ1hkd16yKxWutOYBR2yUbCRJSz5fNIq4STG1Qd901K2qFeJUxHGeoKHZu6Jwads6VfBxws4BpFTUWW6VJQi400dA5VfwkY7q7Sbvb4LsN8aTDqa6zdrvCmpuCsY0G16gjIqvu2E8D0iqiip8YJHrKbcG06RSIsU0Zq5BdKd3zgC11dTKkhnS3grSKrQGJ2EaoYoqgrT1tz1GcGRY2o71lsNwkXxMtLqiw6WaUe5GYC7JIxWLTSw1o96zFNpZyQ4g+VSGQTn3yUcDUiq0ipg7EzBJ96rCvdwwAWypWFDUGW0K1IdhS8DOYrbX0fP07+6UDGJgFslWB+lXGmFqJudB2Da6MFENDyMAERQJ0zpvV2ZeEiHqDCZFAov+mtgMJICFF1LQQXbIjtbC2Pfsdq7ASEzAryvbWlLazjVtEUHBlwD8tkaqhOlrDzWP6eBtThhowVQtGICpqTepKSHRJSHckgVIrIEnHnWGi/OoFy3pRraJ0LXwjirFLwT23fkm1noo+EyJuUiN18qvsdIYf19gyIE1E2ojUEbUGFSFmFnXpjqRomyZiy4gtdXnmprh5xE9T5qrA7LhlPS+/AqxqHU20mGvRfWP9c+b7KQNVkn/RtCCCeos0AVMHpI2YssXOayRERFMUpdV0vlZHXJmycxWFVpFWcYuAm6fkKrcMO3evVg3u9SXL3tIBBBUO/ZDydoP5OZgqYGd1enEyx0gPdQZZlOAs1E0CVWRgTKKp8MSOQzQdZUmrgCG65YRBlyNimsjkOXhtbUi9bHh/+4oI/wcn9rzNEHop7QAAAABJRU5ErkJggg==\" y=\"-111.782953\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_23\"/>\r\n   <g id=\"matplotlib.axis_24\"/>\r\n   <g id=\"patch_58\">\r\n    <path d=\"M 80.226013 149.782953 \r\nL 80.226013 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_59\">\r\n    <path d=\"M 117.715668 149.782953 \r\nL 117.715668 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_60\">\r\n    <path d=\"M 80.226013 149.782953 \r\nL 117.715668 149.782953 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_61\">\r\n    <path d=\"M 80.226013 112.293297 \r\nL 117.715668 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_12\">\r\n    <!-- Angry -->\r\n    <g transform=\"translate(81.237091 106.293297)scale(0.12 -0.12)\">\r\n     <defs>\r\n      <path d=\"M 2188 4044 \r\nL 1331 1722 \r\nL 3047 1722 \r\nL 2188 4044 \r\nz\r\nM 1831 4666 \r\nL 2547 4666 \r\nL 4325 0 \r\nL 3669 0 \r\nL 3244 1197 \r\nL 1141 1197 \r\nL 716 0 \r\nL 50 0 \r\nL 1831 4666 \r\nz\r\n\" id=\"DejaVuSans-41\" transform=\"scale(0.015625)\"/>\r\n      <path d=\"M 3513 2113 \r\nL 3513 0 \r\nL 2938 0 \r\nL 2938 2094 \r\nQ 2938 2591 2744 2837 \r\nQ 2550 3084 2163 3084 \r\nQ 1697 3084 1428 2787 \r\nQ 1159 2491 1159 1978 \r\nL 1159 0 \r\nL 581 0 \r\nL 581 3500 \r\nL 1159 3500 \r\nL 1159 2956 \r\nQ 1366 3272 1645 3428 \r\nQ 1925 3584 2291 3584 \r\nQ 2894 3584 3203 3211 \r\nQ 3513 2838 3513 2113 \r\nz\r\n\" id=\"DejaVuSans-6e\" transform=\"scale(0.015625)\"/>\r\n     </defs>\r\n     <use xlink:href=\"#DejaVuSans-41\"/>\r\n     <use x=\"68.408203\" xlink:href=\"#DejaVuSans-6e\"/>\r\n     <use x=\"131.787109\" xlink:href=\"#DejaVuSans-67\"/>\r\n     <use x=\"195.263672\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"236.376953\" xlink:href=\"#DejaVuSans-79\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_13\">\r\n   <g id=\"patch_62\">\r\n    <path d=\"M 149.494978 149.782953 \r\nL 186.984634 149.782953 \r\nL 186.984634 112.293297 \r\nL 149.494978 112.293297 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pb073ac5100)\">\r\n    <image height=\"38\" id=\"imageebf7a251df\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.494978\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAN9UlEQVR4nEWYSaxl11WGv7Wb093+vvfq1XtV5apyVYVEtmMbSyGxEFEQRCEChBBDxIgZA8Yg5kxhxIwJTHGQUFBGCSiJTUhIo4gYl3G5Glfz6rW3Pc3uGJyKOZN7Blf37r3X2v///Uu++tpfpTDKQcBXhvx4i7gApxdQN8S6IYWAvnOTky/tsXpJaG50iI4AvHRwxoP7e9gTQ3ksACQBN4TirTPe2H+MIlEHC8CD1YzjH+/z8j8tkbsPkaJAhhWpzJGzBWlYkQYFRmJEdR7xEYkJcYFkFCrLCBcLRCvUoGTzmTndWGj3AqbwALy8f8Ldh/vs/MCQbRISIqZOZCtHvZdxnM94ONhyUC1Z+xwjgaHteDpIqMUW2ZlBiCRr4OkxSQnkGQAmGQUixNKiGk/KDH6YIcMcs92SNls43Ge7q6n3EmnoGY+2bOqc++9eY/ceVMcBXwqSQGLCLFrGT5ck2eXezmXUnUSuPV0y5MYzur4AraFuIQRYrUidQ6qSWGWo8zUKEZISkvRlwEfMsiHmmnjzELW7w+bWlG4idLsBZSJ1m5G/N+LqdzryVWR9RbPd02z2Nb5StLsl0jmm733C7X/s+PgnVzhvSgrtMBI4GC8JswpEwFq4chnJLFIUuFFGnA4w/WkZ9NYTC4O0AdU67HlDfTigqh3bXY0vARuJXuHvjrAJTl/NWX4mcHj7iD+8+lMmesut7Dl/ff/rfPBsj9t/47FHS4YPKyZvNSy6koHpSEk4fW3Apf95gJQlHJ2AzUhVQfZ8Q8o1Bh+JWiFGEUpDVjtwHukcZltQXx3RjYVuklBFQARiltgeQBhEko08frTD3539BruzFTvllhujUz4/e8y3/vJzbO9fIlaOsim5NTll6QrWLmPxlZpL/5yRRgMQIUxKVOshJCQkTBjnAKjOEwtNUgoxmpRbzKJl/coINwS/56jKDqUS67lG2UCWe0TAmMDheElpHGdNxRvTNQBfOHjIYregi4azuiImQZHIdKCqWrpXrpF/8IQ0G6NXDSiFLNbEnTFGr1uSVaAU+YMzktGkKkctNrjDGd1I6KaJYtwyrhoq6ygzx2Jd4p0hOkXTaO4eDfseVYm7gyW7+Yab1QlNtCx9QaEdI9tQagdA4w3PvjjjpZ/WUNeQ5+A9WIs6WWDCMCdqhQb87ggJEWkDNC3tLMMNhTDyDKxnmHVMsppVmyOS0PcLxp+ABNhchZ0vHOGC5sPTPZqppVQdO3bDWnKUJLQkctOiJFF7y/NLEZlNwQdSVcDpOfHSDJTCqNaTrCLkmphpdO2xJ0vSaEA3UrhRQg0cufVYFeiiISWh22ZIlbj4NQeSmEy3vL7zhMP8gkfNjAfrOWduQK48z5sRpXaMTAOAlcDhQHH/ypz6zh7FvVOk7aAsSUoRSotRtSOUFkmQH61JRoEPUKm+jJPEYNgyytsXaqKYl1vOs4o4T6SgEJ24Nr3glcFjNJGVLbi2+xFNtDysZwAc5AtmdkMbLU5plCRu7J5xsX+N8n1HalrYnZKM6oWaENFNr/y0HRINyXvCpCRmQho5lCSsCmQqAJDZltuXj/nfZ3vEi4xUBlpvuFfvkSvPhStZ+YL9bMlnB0dMzJZCHFoiq1DSJAPArNjybFdIRYYAYViQtNDsFRhxHuk8SWsocsR5mE9QjSdqEBMZFi1D25KpQBf73c7zLfPJhuPagEr4pFCSaKNBSyJTnkq3zPWGka7JJFCIo1Itx36Mi4Z5tqWd0v+nEqR2hGlBtnSYOCwgghCIw4ykC5ISzKqFF2bw4gOfFIXufXLrLVYHdOlJUci150p+zol70U+6Yc+sGKkGK56Iwoonk4CVwC+fbhohJfz+FNUFzKolKYVJWoMGCQG17vCzEr3uSFZjV4nUap6djTlZDhiULXuDDZfKFZnuf1ypSEIxtC1WAiPd0ESLSxqAi1ABUCj36WI08dP3NPCkPENvOuRsAUDcmWIkBJLVEAW/05+W2ra94wP21JDODN1BS4yCVondYsPItAgwKDtWmwIjkZgU25gRkiIifNLNAXBJM9QNc73Biv90USEJ6EQqLFJ3kFkQQY5OMep8jT+YoWqH+ITECDEinUN3kF0I+VmiWRTUlwPH64zXd59wvTylDpbv/+wzyMCjJNEkwzZkDHXL3Gz48eol2tBv8Fp1zsJXVKpjpHvZ6KKB+ILhXuCO+IAMK1TablFbBz6gGod9dNJ/scqpnjsmHwXyReLN3/0FZqOY/9ByszzhR+fXefcnv4I91ySv2M3XFOLJXzT9+9sD3j/bZ+1znmwm/PzikPdObvKgmdMkg0uaOlik1khISEpgNOn8ApoWJVnWi5sIarHt+choiJH8tGF0b834ozXf/8VtVCdky8T3Tm/xsw+vwciRDJjCU6mOgNBGwy/Wh3z74zv85sFdfn73GstvHDC0LffuX+I79+7wrJ0QEdYuxywVscogpV4/93agLFBpNABrkPWWNCiI+3OS1ogLqNrR7pa0uyW3/yFw8G7HxR3Fw2/dwFR9r8i1LbcuH2NV6MUzaUrt+NUrn/DOh6+THRmWtxKnzYDbN48YfG/IN/77DRa+5LwpyZaCuICstqQyI8wGpDLHyGrT42yMiI/4SYG5qJGmI5U50SrOPmvYXFeg4NLN54zylgfP55jMc2VnwfXhGSEplER27ZpHzYw7w+f80F8n2wjKCw9+dsjhdyPxBpDgWTPmYlMyfJJQJwsQIWndtxWgUozQtJBnxML0NGs1OA8+EK0QcpjdOOftNz9gsSl5+O5V1N0BInBlsGBsGqwENAmXNOddxbsnL/Nnr/8bn/v6XdydmiTw6Pcj8csX3Ln6nPOmYnteUj33+MM5aIVebFCrDd3eAJP253B0hqRE0gpJ0O1U5I1Dmpb83DF4qoj/ssO95ZypgnYCF19s+PL1j9nN1gx1+6loKhID0/Gjj67zt/d+m7/49W/ypwffZRkLfrC6RakdT5sJ731yA7U0KOcwJytoWtJ4CFqhuoB87dqfJ7TqscMHSH3aCdMhKFDbDj+tCKXh9JWcxSue1z73kFfHT3BJc5AtPtWlSrUUytFEyw+WL/P9b7+KXQmHv/WIr+zdpVCOe/Ue3/zJ5zFDh7lbceOdM9RiA20HVUmsClJhMBj9/zfCGmS1BWsI4wx7vGF7cwoJjt+wtK9tubF3zo3BKVYFZnqDkvhCzRNWAopIoRxfmnzEpd9Z8c77b3D0r9f4+4MrqE6IWUL2Ovwyo9gCSkHbkYYVaI1arAnFFJMuFhATMqigyCHGnvldJFYZEsFsPNFaUhQGtuu9MmTk4lmnglx67WqSJaDQRDLx3Cqe88ev/Cf/deUlfv7hVUISdg8WbFvL1inGHwfwkeQ9aE3KDckOERcw5DmEQBqUSPvCz7zHLBrcrER8xI0Mdg3N2rLucp7UE2ZZTaU7rAQK5fqm9wOsBHLl0KRPT/Ot6UNefrMX7vvrHT6oL2FPLMMHa6RpYWdGe3WCvWjQ5xu6KzMMO9O+fK0j1TUyHvUh1wfMskH5DGkDMz2gnWsWBwWV7djJN4SkyF94X0wKK4GhbtAkAJpkaKPhwlfUwRKSoCTinSa/6K1INjXJOfTuEAmJ9qU5odAYPy2RcYE5WvS91nakvTkoCIMcXTuk85RPtwwej1jfyjmzFdOsptQ9/MUoWAm4pDlxI7TE3siTcNSOub+e03iDVZE2aHyrmT9OxNz0l63so5tsGtQg67FLtZ5Q2l6zlmt0lsGDx8jlPbRSfXlfpPXqeWT5uOTYK7SKPFzNKK3jzviYTHnqYNn4vHeBYPBJ8WQ94cnRFJP1cuKWGcMPLabpK4LWpCIjFAaoICXMusMkrXoodA41nZB8QA0qUuoHLNI6UpGRtKI8ajn8bsbTtwuerC1kEV0E7h/tMB1vuTY+56wZUBiHixoXNOebEmUjbpWhKo9eaUIJxamHlEjjAbHICJUBLag2gBJMzA2q9cTLO/2U5+MnJCDsjnq/dL4nypNVn87XI662A5q5ppka6n1IJnE6yTkxU9TAkZKQFf1Fcq0hLTLsUmG2/Shq/HHEbB1+XPRiGhPZeYsfWvSiBucxuvG4WQkCeuPAGIgJ/dFTiAHmU9S2IQ4LZLUhWU1+UmPWhtEDcCPLds/QjTQxh6gNKIAe2bWFbNXPzIZPeovLLwJJBOUjKEGtGmKVYdaOZDVpkPegmC0U3eEEfbaGyYhUZj1J3n+M1C1p1E9m4v4ctW76hT+rSeMBqstxg4qQK/JlQndg1wHlE+1E4yqF3UayZUC5hG48vurhMSnpkbp1uMMxeuuxpw2r1y5hsAZ3aYjeOuKk6oNJjEjnkcm4j3QXK6QsSLlF6ra/vUb3cHmxYRgjg0cKXoyz9KbFz0qylVCceexFAxFSriEmTB1QPpJ0Dwzu8gTV9QNEd3nCo6+BCZMSc9EgdYe0HX5/SrQWCRFlFPJwCaJ6k23bXudChMkQ2dSQZ+izdQ8AMfUNnVlU7dEiiI99FCz6U0IJqusV348L7LIjKSGUGnvqePB7E/7k7X9HtfN+2vPL8ulVAymhaodabpHppA8JSpCqJI2HiFZ9FgRwvsfh0wvSYtnjEiAJzKLFnm5IRhEzQzQKte6QzuOnOXbZgY99bNt4nr+9w/yLz3izeoB5/GXD1W8PqD48IQ4rJEZipkm6wHa+7zWlSEYTR0U/OGbYlzPP4HzZe22V4W/sIyGBj+jTFXS9BsbdCSlTqDa8KCfY8wZpHWFS0uwVPPyDyB+9+R+8NbiPFc//AT4MZCjtvhy0AAAAAElFTkSuQmCC\" y=\"-111.782953\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_25\"/>\r\n   <g id=\"matplotlib.axis_26\"/>\r\n   <g id=\"patch_63\">\r\n    <path d=\"M 149.494978 149.782953 \r\nL 149.494978 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_64\">\r\n    <path d=\"M 186.984634 149.782953 \r\nL 186.984634 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_65\">\r\n    <path d=\"M 149.494978 149.782953 \r\nL 186.984634 149.782953 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_66\">\r\n    <path d=\"M 149.494978 112.293297 \r\nL 186.984634 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_13\">\r\n    <!-- Surprise -->\r\n    <g transform=\"translate(143.401681 106.293297)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-53\"/>\r\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"126.855469\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"167.96875\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"231.445312\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"272.558594\" xlink:href=\"#DejaVuSans-69\"/>\r\n     <use x=\"300.341797\" xlink:href=\"#DejaVuSans-73\"/>\r\n     <use x=\"352.441406\" xlink:href=\"#DejaVuSans-65\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_14\">\r\n   <g id=\"patch_67\">\r\n    <path d=\"M 218.763944 149.782953 \r\nL 256.253599 149.782953 \r\nL 256.253599 112.293297 \r\nL 218.763944 112.293297 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p9938081fc7)\">\r\n    <image height=\"38\" id=\"image98ee8d755f\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.763944\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAM7ElEQVR4nE2YWY9kWXWFv32GO8WQkVmZVVnVXXRDMzRGBmEk8CBsy5bFP/AP8H/xr/GDkR8s+cnCMgYh5AeEGxpjuqtryqwcIjKme+OeYfvhZBeEFAqF4sa5+66z9trrLPmbv/xH9ddbuF4hdQXWoN6BMbBcw9kxaVoTpxWpMagVqlVgf17hdxm3TwBI0vKZFbMPmBdvADj88ReornfEeUNqLPXVntx6JCnLD6csPt5ilzu0rti/P6e92HM4bXESMzKMUHlw9v4mGRVBph25cqi3pNqAlhu79UDjDSZlUm0hK34fMPuAHEZksyMPAzqO+OUAIkhWsjeEkxZzSMTOc/KLFeZmjbY12jgQkJCQmHEAqEJdoZ8XFiISIlp5UucZFx5J99epYN4sad4sSe+ckrzBRMVdrdHVuiA+BggBDRF3tSKfzDB9hOOKw8JjoqO+HZGQChi+lGHGjAwBkxSXWodXRa0BIM9b7M0GdZY8bxkXFePU0twE7CGXa+7W6DhiraVZVXC3Je92aEqYuubzlxgh3y4xzqLeIalDLYyNAa1wl3eQyo7pvMHtE+m447DwuDC31HVFnjXIIZEri57Nsas9MkZSYzBJyVVBpnq5Ig0H0Ey6uETcPejpvujDARFBtXBOxxHdbJG2xR4SYWKo14n+gWOaFXKGnAlTD0aIE4ffRMxhbokPpsRZjbYeiZnDaUOeNKRZQ/JCtoJkMGOC2xVoKUKzoimXojSjKUFKaIyQ0ttrCBFUkayMU0PoDKGD9GAGKZFO56gzkBWVgrbz+0x/3hTixYxf9rjOAzCcVsRGsEFxfQQFnEOsLUh5j5nPyMdzJGfSvMGsB3hzQ95sISXECFgLOSMhIxnUCIdjoT9vmV54UuNQAwJgoD/zOLfLqBOGhaURQb3FDpHhvCM2hlSDSUBS1Ar66AQ76Vh+95zlVw1hpqSjCFHwJwPx6pjm8pTJK2X22Ujz898i8ymMoSAuEBvBBNifWrqTGVh5KzvDqWU4MbjduaO7TnRXEcmKitA/Kgiqgf5MsC/AxExqHS9+cML800RzHTjJ/h56ixsy2bW4IaNGkfsH2f7119g+tjz+l2egSnaweywMD/Nb+bB9JNcWuwu4wSFZcKmBMDFUm0SYOprdSHaCGhhOCiImKrHzpNqw/WJk955w9KsaOxSC2xFEDX77e7G1Q2ZcOF7+LfgVaNeQphWxFfqnkfn5hnUzhZ+AimB3gVw77KBMLjJOrRBrMKEsnFqPGzKbdx2Hk7edT/ZCroXpp47DiTLOwXSC3yp2hFgLUHQw1oKoEmth8kyYPs/Eh3OSN8QJnLyz4nvnn/FRd07szsgLx+S3a6gsfj1igsOtP8i0l4awtUxfgolKqg2pFlQgHiViYxGF0BrqW8XtBASqO6VeJ/w24W8H7PUdGCEfz+jfmbA/dbRvlPoukasyzmIDXz++4evdaz5annNYWLIV6kUDIpiQsEPC6XHgECpMEFIlmJgJnZAqCF/rMQrZW1JVik2NYIJiAtSbhBTlwBwCOIuuN5gx0AJhMic2QmwNdsjkyiAZjqs9T/ySz149oPnAMHlROOnu9qi3kBSjCnGeUAuhE0wfiY0Qvrvhrz74XybTgTAXhmOLZEh12VbXK9VdJDvhcOyIi5bbP30MD47REJBDwIRC9uyF2FnGqcH1cDVM+cBfoYNl/LAn1WD7gOwHZDdg7raYZjoibSxiaEC95XAsfP+93/EPD/+DLyxWxBb25/fKpxDbcu145Lj5hmV/ZkitQy1c//lD0pffIU8bsgO1IBmGE8s4K2v84vm7/Lj/MmZvqJsRtfL7MRYTOo447yND31KtConX7zfECZxVG77iez5bLYidkmqQLNihFHb5F5m//7Of8cPffJP9xxPGoxpJsP1q4Op7DQ//yxYLFOBwJIzzcvPsIN9U/NOL7+C3Qr+rWVzd8yEUgKRrcbtNQ3e2Y39+RL2Cw0LIXlnFjl+HCZuLGU4LQsMDpV4KZoT2teOHv/kmziX27wZGl7EXNc0LT3UHiJJqIbbCeFT+X/wamFF4fnlMHQTdO5rrgOyG4jRSmZ0uR0NTBfZAc5vJzhBV+M+XX2Th9iCKei0LCwwG3F5we9CPpuyfjhAMGkvB9RKmrxLJC4cjw3Cm5ArMWNAyEUwU4l1VxDmD2xd+4R1IQda4OrG8mdFdKu11YvY8kb2yuZjx0foxEgzZK7nNqFVyo8Rp2Vq1imkSEgW7sZggSIRqnUi1MJxCrgpSn/NSouDXglsbqg34tS3uV6S4Zu/IswkuHooour6402qdMMGCyzyod9RX5ffUKqlW1BX0cl1uloMBW8ZPdkpqhe0T/5ZTEsH2gt+D7RVQwqxMFhSaN4L0AbwrRtVZcAbHaKDK+F3G9on9eXnE6tLzo/YreKBagbkWclX4Ejsl+/IweudRq0gqzaEW+lMhe7AD2FHuPxWJECfydoxlB82tIsPhbVG59eTGY6o3Dll7XJ9x6wE3KNUKupdC/cuW8ThjEkVUD+C2UK0EtxPMKLitILFMCUng9oXgkkEUsi+SYQ/gDgoZ5p8mbC/ECTTLXM4YXU3uKuKsJjUWN3sGqw+LR9LK4beRVDtSC90rpdoYsoOjTyJ+HVl9pSF2QnObCa2QK9g9EcJJxkTo3mTcPuP6xP6Rpz81nPx6pLrpGR52VOtM93zD9bcWmCjUywCqRT9PW1It+G3CNcuMX1vsGMmVpT/1jMfK+GSkvql59NM1l9+dv1VvyVCvMt1FIMwth7mlXklxoArt1Uh1uYUQcbsp2U5ItSE3HlHo/m8JMdG9lqL4+1DOF94ynFj8PuN2AZe9MH2uDCeO2gjbJ5ZUKQTztqMe/veWcVGDCLPnI/52KCccJtx90bF7mqluDSZBf1bhNhWmF+zNlgd3PRiDOoPdjRATeTFh9jISOoNag04aUuc4HAmpsnTPEi55obtOXHzPMvvUYUfFHiBFobkpbWyXe9rbHbLZoX0PzsHZCWFuSVXhVphnmmvDYSaYpxNcn2lebZBPX6ExIpMJMpuUTh0j5qBM7kZsH0CEVBt2T6C5ESQlXHsdybWQv9SznDZMPzFUK5h+ZmlvY2nl1Rq9W6OAtC35vXO2708ZFuatomcP4xFUG6F/YMjesHt0zEntMZ+8QjcbdLNB2hZzGOliJhy3yG4gnB+hRqhXQnuVkZBw1d3I3QcdIkpuE6k1+C2MC2G8s7jTDjOrSe1TxiPHsDCMcyHdC2aYKblStM707yp6YZF036XHcDieUf/RV5lcRvwm4F/coLs9aXYKVpCYSLUhtoIk8L1CVhwKfp958uCOVzLHbzzVRqnWpc2vvt2gUhQ8VZAaRU0R2lyXcVWkXdA6Mc4N6oqumSikBsa5sH/skeSpb1vqdaa9Cri7A3nW0j/0oLy1UqhiMMUghmx472xJrooYuj6z+J87qlUR01Tfq3+npC6Tz0bcWY+ZBvAZnEIWECXPImmeiF0mNRCnSpiUMbZ7V9g/tLi7A/Z2XcR8nbFB8TvF9sVhmOwNNiivLxd8c/GS7dNcpr1CmtY8/PeXPP5pT3eh2EEwB0GbjKvLAjkYCKYU5hTbCwSD2VkkC+QyqLMvI2jyUnn0s83bNCget9Q3B/wmUa8ydh/KiESKqrP2fGvyGf988m1Sa2kvR8aFR80D7D7y8CdLVt9YEDqhf+QZ547UKkbBbQR7cKiD9lJpbhzVurhXPp8IfTkfTH51RX72EtqG9fe/hBqoVpFxbmmvArLtS6KkUjx8c+n40epDfBu4/VrN4x8fyslbFXuxBCMc/dpi9gfiyYTxuEKtYA8Ze0i4ZY8kRXY9xFTstTHFMaRE3mzRw4EUY4ml5mfYQ6ZaBbI3VOtEdbVDYgLVEkOpKSfjn1885e++9DH/9smfMDyqmf7qtsRR2x08WGBv16SXr7GvWrqmuSf9vS0fRzQl1FrEWjRG8r0jBdCUSrTgK0zbgDWYQ2bzXoMaWHy8Q27vikZ+vpWSFb+Bza7BmUSulVQZ4ukU99Ez8naHbeoSP6UEfV9yibougd8fhCmmqUvIYi2SM3kMiBFM5cGY+8zDkV5d0saESeesv1CXXVEtbygH3lwJGMjXNf/6m2/A2YHN0xZoOPrYINa8LUqqqqQy9wWKZhAD3hdbbC2669EYEOcxlUemE7CWvLpD2gaZTrCzKXneUb3ZcfrL56jmUrSWaeOgkFMFuleGcd+hk8xwqlRrQeazMkacg6Ym3yxL/jWOhT/OQYyICDKfIlWFef9duF6SNxs0leiUsxPsH+ZmlSecdFSv1+gwIJVHVZGcwTmcJMUeMmp/30HVyjD7BMJMWH3nEZMXR/cnCfDGkK9uyvfP46jZlN2HD6lWI+53r6HyyGKOgRJ9Hkbk6haFgm5WZLOjfhbJry/vYyotdMgKMfH/W3hC8DTvMsQAAAAASUVORK5CYII=\" y=\"-111.782953\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_27\"/>\r\n   <g id=\"matplotlib.axis_28\"/>\r\n   <g id=\"patch_68\">\r\n    <path d=\"M 218.763944 149.782953 \r\nL 218.763944 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_69\">\r\n    <path d=\"M 256.253599 149.782953 \r\nL 256.253599 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_70\">\r\n    <path d=\"M 218.763944 149.782953 \r\nL 256.253599 149.782953 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_71\">\r\n    <path d=\"M 218.763944 112.293297 \r\nL 256.253599 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_14\">\r\n    <!-- Surprise -->\r\n    <g transform=\"translate(212.670647 106.293297)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-53\"/>\r\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"126.855469\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"167.96875\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"231.445312\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"272.558594\" xlink:href=\"#DejaVuSans-69\"/>\r\n     <use x=\"300.341797\" xlink:href=\"#DejaVuSans-73\"/>\r\n     <use x=\"352.441406\" xlink:href=\"#DejaVuSans-65\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_15\">\r\n   <g id=\"patch_72\">\r\n    <path d=\"M 288.032909 149.782953 \r\nL 325.522565 149.782953 \r\nL 325.522565 112.293297 \r\nL 288.032909 112.293297 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p8c07e0b45a)\">\r\n    <image height=\"38\" id=\"image7c90c982ec\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"288.032909\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANW0lEQVR4nEWYSa8k2VmGnzPEHJl551u3Jne37bbbbcvYyMY0LLDYWYBYgWQESCD+AxsWSCzhf7BBSCwQEsIykpHVliVjuwfT1UPVre5bdeccYzgji5NVTimkjMw4J95ver/3O+Lb3//HKF3ETCSbEwEC+vuOP/vOj/nu5D2e2n3+/kd/BFaye2+BC5JXdm9xQVJrQ6kcAHNTcbFpcV5y2GzYLze8f3XM/GKC6CVRR8pzTdARX0WEE+QLwb3/3qCWI0//YI/Xv/eIPz76GY006KtvCNzMs3NnwYN2zWG15qRc8NXqU+6oNX/zP3+JXGr2v3SNFJFX2hukiNQ60ChDoRw+CgCsV1ysW276GhMUO3XP5OHIoi/ZdAXGSMpzSb4Q2GkCeP5bDdmqZvOa5Z2zEy66CfMf3kGHuwNNbRAivtzQRckYNO8Pdyk+LHFf7lAycNIsOSzXhCjJpKdRI4V09D5DiUilLMf1kkpZAHaynloaLs2Es35KuCd557MTxNMKIkQF0sLqtYBqHFVpufrJMa/81wq994MSX5RIBzHAxsGHObxfCzb3IyqL7O+smeYj+0XHVA8A1MowUz2FtIwhY+VLupAztxW9z6iUZaIGJBEtPVd9y7PrGeG6QBSRkAfkIDFTiFkkRnBv7/Lav10TH3+KLucBnwuEjygTER4QECUUc8XV748c1Bv2ig1T3VMrgyRykK0ohaWUlkFkZMKjfGDjCnqgVSM+Sm5dSYiCz8+uGJzm+rykvJC4VmCngVhE8mtFvFHU55Fn391Hb/bQ0kZEiBB5CUqaAIAeJTs7G6xXtNrw4lOr8SWoieyZyJ4uFBTSsvIlp90uS1PxlekzWj0yhIxXymu+OTnlP9s3eO+nrzD5RNIh8a/2+L4kW0u6YxABCAKdQKVqlDYQlUDE9H31UPLqbEGpLDYoKgmSSCkcmXAoAqWw5MJTCksmPGOecVM23JqKk3zBoV4C8CC75qnd543pc949OoGPKsyeZ7ft6R56wqMWvREID74EqYYAArK1w1cS3XmCEthWs3noyaWjVBYpAh5JJjy1HNlRHYd6iRIBjyAXnkw4JqrnjeYZb06f8czMeGr38EjmocZExcYViPMCswPtnTWHzYZpM+Dz5K1sE1O0XKXQncdVinzh8IVEjQmE3DNc9S11ZnjQ3JIJTyYdpbQ0ckQR8QhWoWLua0zUNHLkOFuwp9fc1beU0nJmdxlCThcK3j7/HNIIuoeOr+3dcFItEGKPyz2LW+YIJ7At6HxuQAikCwgbMFPN7Zc0wz4oNVIoR5uNKBEppKOW5iUogCFmXLuWU7PPwlVkwnOSL/hSeUYjR1ahYk+tCUjmouZm3qAANTVc9/U2GhGhA65JaSUC6JArpPHI3uPanLM/Nfz5mz9i6Up+ePYFlAyUypJvQU1kTylSaIeQ8dzu8KnZ49q0/N/yiOtNzbQceeuw5fcm7yMJKBHI8axCSQyCbC3o5jln/R5Xbcu0GShqy1jl6LVA96Dz6w4ANyl4/FeBv/vmv6fKq0aqB5ZnwwwbJa0amemORhoy4bBRvazSgMBGifWK9abk9mzG2c2U3a9u+Hp5ymd2lyO94umwB/OMbA3CC2IEe1Wx+KjB1xGyiNkJuEagQ6EZjiqe/onjb3/zPwDIhGfuG25swxg002yglKnqlAj4KLEoLt2UczvjtN8DoFCOsjLYQWM3OT9fPkARuZ9fswkFc1uT3yqkicTGI3QgSvBWoDfbNrXjiKVHh0pz+oeRv/j624wh4zO3y0ebQyplyaRHioAWHklEETBRYWLNE3PAJ/0hj5aHnK9avnXnKZ9c7pH/rEXvR3wZeLzcwwTFq82UTHie9VPsNFC+B3KhefDmc04/OIYIahC4WqAbS1449OXXK/76t3/AJ90Bz+WUVo387s4jFr7mX05/g4N6w3GxopSJUEOUXLopn/SHXAwtnc0Yx4wf/OIN2kcZxz8dWN0vWH1O8dlkl/mswuxr6i1B67sd89db2iew+cUJX/7JDYs3d5HOc/NlxXgkESKiv/H9XzKEjMuxJZeO3zl8xEfjMe+v7nD56Q71q5YQBZnwbEJBF3JClNwvbnmz+Qy7p+juFvxqc8zN6w3vfuUu+hxCESgag/eSq77h4cQwzQcOZmsW3/Csn0yYPpLMv7aLHgKulIgAflTkU4f+5uSU03GP3mUYobBRs3AVPzt9QH6lWd3N6UPOwlcciKS9bFSMUfNxvw258LTa8MHtEThJfNhzsrekyiwn9YJWG2xQrFzBJB/JlWf5Bcv6bsl8XjB9L6O8iZTXka5TOK/QhbTMdM9bBx/z9vUr/PPZt3h8vk/2fo3qYbFs6A8z5Ja3XgCTRMaQVMSlmZBLx7ePnrB/7z0Cgpnq6ULOypf0PkPKyG2o2Cl6lqZkI3OaaqQsLEvd4D/IyReR+lNFt1egL+wUHyVvlGe8ce+Mf3j3e+Tv1JRXSWmYxyUfHRwAIDnkYXVDF3Iy4XmtuqRVA6+Xz8iFx0TFjW/5+eoBC1Nyp1rRqJGVK7kdawav8VEyOo3zksFkOCcTudYgrSBfRDarDD2EjIfFNU/MATYqhk8m7JxH9JAu9SvJhTvh6b19RK+IeUBNLMd7S75z+Jh7xZxSGzahwCMBGL3mvJtw3k2SgNSWxViy7EqcVSgd0NrjnMT2GWKZYaeB6kKiBph8kKGXrqTLcmxUPOn3Ka4k0keiFPgClInMPoJ+mRM0VBeS7k7GVVPxrw92+Pz9S946+JhdvSETnj215ovtBYPXbGzBxbrl0rSYQRNGBUbigmCcWFQWECoiYioW16QCKK8j+pe3d7kxDR/OD1j++Ij2bPtgBiCQcdvtt11f2Uhxm9wesoIP3THzvuLeZMHD5oYvVhfMVE+uPOddTjfkmEWB3CikSJpPDQLrc9zUIrNAyAPCSswkonqBHgKafzri0dFd6gtHPIpECUEmCeJz8IVA2nQfMoGZgHTp0p0grDSLuqLQDikCN6bhpFww0SOLrsIsCrIbjTQgjSBkaS/dg80UwQuQELNAyFKbkzais4WhzEQC4CJBpwddRWLkMQ0NIqR7227FXAEhj0QdqSrDtBi4GRpWyvOsmzLLe4rMsnEC1QvyOUgPQW/XasiWCjsFJFB5WCdgIRNo4bf9KhfYWuDzpGajAuHAFxFEAoVMs4AvYdwNxH2D1BGtPFoGXJA8u52itedG1yzmNcJKdAd62EajFgxHAdWJ5MVREvPtOwKICMOuQMvREbTANhJfJldvx0TyLmIbQdQJmC/Tf76IhCpQ1pa7uwu0CFxsWtZDgR00/rKm23Ho62ybAmm9tOBKUPc79P+2RA3SgFcRXVrcRONKhWsFGh8JmcBVaYOgfx06n2+BqmRJ0DDuB2IRyHcH7uwsmWQjN0PN7arGXlRkc4nuBCM65VK3HYYnKQVcG5lUI9a2hG0xSCtQKmJLT8gUZhbQkF7oKrHNmzQpqQF8BVFDUODLSCggVh7dWorCkm/VR4gCc1tSnSvyBfTHEd8E2EiIqXh8AbaNuANLN+RkIhmvhhQRZxWMklBAmDl0zBRBC3yZPGZmgaiguJXYSSQqCDoSqkgsPKry7O+s0TJgguLidp/FbYPsJLpPKeDqiGwtrMt0X21/nwSy2jCuC/Q2X5UBqxIVyUFiZgGZebSbFbiKpLeBUAUoPUOhkIMklAFRO2azjqYwGK+oMkuMgs+udrCLAr1U5POk1e1kO1mPCiUiUQlcE4kywsyiVMTJSHfPo3pJthIQBH6Zo43AHVpwEm12NGYq8HkkFAERBHSa7KDHe8mkHgGYVQNH9YrT5W4C1GeoG019LUFAvgTbpCTPlhKTp7HQzMK2miNCRoZ1jlCR6t6a4ckEXyavydutVN8WnhY+JbYawDcR8gAq4p2iaQZCFOTacblqeHqxm9aeF1RzCTG1D1eLVMkC8kXa3c4kwglCE8gWErMfiEbBIIkCOisRKq0RPhkkQlK2MY9ovUmspzuBryQ+i5TtyKQeGK1m/bxFBEFUkfK5JsrUNqTd0oAANaQ2psYtEQuBXkuihPJc8WJuESuNGhN/Ra3weVIwckzc6cvt2YkRaGkDIUscozuBbwVKBboxZ3NTIRpH/riguE0+Fk7gq+TlfLHtDoaXBzHjjsDVMRGo3RLmLCCMIJ8n9aAH6E4i5aVMp0xbeopKJFYgprOLF9a7CoQRdOsCISPV4xwimJ1IcbMd3wOEPL1U+rQ2dYNktZ1se+GQaMbVkWwl0/MG8lUi7XwuUhpUAmUivhCIrYOIAqlvO7JNZDwIhDzCjiUaiXhW4prI5DSmE8A2tSg9RPLFNgQ2ecpX4iUlQAIaBVswKXS6g2wdkSZ5OFslQ7MuGZetUjpIsz3gIUbqy4C0AlSkmQwcniyIWQLkc6ifR5RJXhUxgQl5IuUXievLLS8N27DIbV75pCTUkOgoqhfiICI9VNchSSGTFIsvI2bfI2OmyFYeAjC1rG9repOx94Wbl16QDvJFal0+FwTNSzZH/PqExueQbVKuipDUhPQJRNal7y9yEWDYEQSVNF5U2+5w4KgOOv4fgW1EKLs8YzYAAAAASUVORK5CYII=\" y=\"-111.782953\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_29\"/>\r\n   <g id=\"matplotlib.axis_30\"/>\r\n   <g id=\"patch_73\">\r\n    <path d=\"M 288.032909 149.782953 \r\nL 288.032909 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_74\">\r\n    <path d=\"M 325.522565 149.782953 \r\nL 325.522565 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_75\">\r\n    <path d=\"M 288.032909 149.782953 \r\nL 325.522565 149.782953 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_76\">\r\n    <path d=\"M 288.032909 112.293297 \r\nL 325.522565 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_15\">\r\n    <!-- Neutral -->\r\n    <g transform=\"translate(284.632112 106.293297)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-4e\"/>\r\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_16\">\r\n   <g id=\"patch_77\">\r\n    <path d=\"M 10.957047 194.770539 \r\nL 48.446703 194.770539 \r\nL 48.446703 157.280884 \r\nL 10.957047 157.280884 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p7864ebd23e)\">\r\n    <image height=\"38\" id=\"imagecbc7cecde9\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.957047\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANQUlEQVR4nE2YWYtk2XWFv32GO8WcY3V2VXd1S1Y3GizJyFgGY4QNxi8G/yn/HoPRgxHYLzbGxkhqDW5VVdNSdg2ZWTnGeKcz+eFmZSsgIAgi7lln7b3WXufI3/zkn9L5j0ua7zZU445R3jPKer45veJv558zVS03Ycyv6yfc9iOsChxmG2a6wUpASWSiGgDmumaua0bS45Lmv5tv8JvNY54vj7hejwBwnWH6PyXzL3oQoZtp7C4yenGDdD2ECFph7NWOfFmw21k6G5iWLdfbER9Pbrj1Y66Y8qZbcN2NMSrwYXHDTNdMdMtENWiJuGRYhoqIoo45t2nMOhS86RbcdCNy41lManIdAPjq+4ZsZck3gWgBgTir0OcthADeY1JmsNuEdAqtE+umoKlzmmC59hPqkHHezQDYtzsOzGZgRXVM1MDabRhTqY6QFOtUcOWHzdz2I/bzHdOsYdlXHBcb5rYmJuHqo/c4+iVMvurQdY+4QCoyJCaIERMzTb6OSFJk1rNZlSAAsPIlAIpErj2V7rHiASjEMRJHmwwBYaQ6CnFMVMu+3qKJjHUHwLPdMY23fGt0wbeLN5y3M14fHrE71rRzTXltqE6XoDXE4flGXER8IgkoSaROI3lg7Yqhb2xDrj1GAooEQEAoxDFTjqUvCUmhJdImiwuGl26fz+sTXqyPeLOa0feGbxxd80l+zlNzx3G+Ru13hLyiuAuYJiBNB0oNpQwRAxBzAZMwOkIc6Nq5jLHp7tEHrAS0RACmqqVSDisDyCs/5TaM+Ko54OfXj7k4XyBbTfFWk99B7hIvfqLJngTapJmallHVEW1FddZi367AedKoBKMRHzAoSEpIOiEyMPLuVWqHUQEfNQ4ISRFRFOLQ9+zN7xX5rxff4fdfHjP9neX4KhIywXQR0yYkJG42ljdugRXPRLfMyparGSSjSNaQJiXS9PfMCSZmBrsNqNbgg0KKQTkuaJQkYhJcUuQSscpjJdAnTUDQwEQ5flC85OlHV/zz7Ef8bPYJ27OKpBOpCqitRrxi/t4dq1BxE8YEhNI4/CjR7VncZEFx2SC7SJpUSNNhdN3jJxbVCttdQVb1BK/RKpKroRFjUgBYGUBnEhiJp1KaOgQKCRTi+OvZM374/a/YfG/oT03idb/gs9vHiCRyNTDdRUsXDH4c8KVifNkgrR+aHyBGlNo0KBexG8HYwNODW4wN5HoApSThkyImhUsalzTrWHATcwBmSnjjp9yEMcswYhMLCnE8sbccmjVNsKy6gverFZ/mZ4zubSUmAQWuFLqDnFRapHdDKWPCEIeG7heRg6rlcjvGO01Iii4alESMRErdPzDWJksdc1zqKUTj0Dzv3qMOOS+bPZQkjvM1t27E75bHrOuC+XHNE7PmWX9IHTP6MLATcvCFkLRAStD1JB9QAN3CUny84Tt7FyyqoZnfKdAnTal7DuyWiWpRDN8vY8XboAgkJqrlopvxul1w3kx5tZtzWu8zMS1/tveKvXHNq2aBS4pXbp83zZymtwBIhOq8Q9/VQxmNIbXtYBe3n2rmVcNVNwYgJXmgOyShVIHZ/Rx8Z7CbWPLKz4ElAEfZhj/s9jlfTykyxzxvmOgWpwZmVl3J/7Yf8ov1h1y3I8rMsSk9ITdISJASqSrABxQzTFhMqD/u+fH8kohw01SEXrHtM1ZZQWV6rESsBCaqoVCOjMBIdbhkOPULXDK8Z+/4y73IdTPmaj3GqkjrLTufcbkcczjf8u93n3LbjRjboc8uBWIGMdeI8+CGTae+R/lZTjbpeVze8enogt4b6DTruqD2GX00lLqnUA4tkZEMvXaodxTiuPJTTvsDbsOYJ/aWvzr6knHZsestPikaZ3F1xtVyzO9XB4xtR+0zNl0OUQgZhFyRigx6R6obCAFz890Crdf82/knPBqt6bzGLDVNUVBPMvbymrHuHkoIsEsZOkUKcTy115xywIvmEef9nC4ajscbGm8ptKPzE2SnoRR+dPgSgLf1hF2XYUtHMjkxU7ijMcZq1N2WVGQY+bsbPhhv2fQ5b7YzNldj8k7wTuGiYmQ6ZqZ+GNIALmkK5TjRHcca5uoVr/s9XuyO2LqcTHmiHkZb01uSTXzz0RULU/PF7ohVU9A2GUpHJIDuIkRABJQgmx3m0/1LznYzzl7tY24M4xsZMlIQQlTYe3VaAnuqxaHYxZw2WTax4Pc+8KvmY55tH+GTog0WoyJGRZQkQlBI5YlJ+Nn5p1xczVDnBX4aUGNHuQGz86jaIU1PyjPILOblZsFBuePsynD4WUL3gd2Rpj1QNL1lFzK6OEi7kIhLijO34D+Xf8JVM6bxljeXc1ISvvvhGZXpyVTAqICWYf6KSrx4fYx6m5OvBVPDzipSyMg2iZgpxKnBx0RIZYZ5c7ZHd2SYv4Dp50tSrpEwojk0bI8KNi7n2o15rk7QEglJUamO2ltOr/ewNpDWGfZW8Xo+488fvWSsOx7lK1a+wprHpFxQKlLPNd4bmvcD1eGO9tUE3SWiFtI4Q7UO6e7z2OOfaprFPgefrVCbHWxAHVa8CxptsDQh47TdZxMKJrolV46/P/w//vHol6zCiF+cfMDOZ3xrfMlEtyiJHJrhXLA3qrnajKnynuwo8ORbSzLleb2Z07dT8pXH1PfCUmrosZAw08/eMm1akg8k75GqJL9uyFaW2im2fc6ZmnJSrrlxI+58xXvZihN7x4m946k55ZP8jJ8uf8CzzTEfVrcs7ODidcw4LLdcLKfcPN/H1MJvH4/44OSGEBWmHkAkJZhlO3hZjEhww6xMPoDrSSFC3aCv1+w9y4lZzutsAYdQaM/75ZLnm2P+Y/cNPp7dMLEtK1dyutrj7ZsF1V7N9755xp2rqFSPksjI9LTLgr3nwuhtIP3ccPvRCe1hothBzBT62iH9oHjpHXQ9Jm13Q9wQhRQZkmcggl22zL/Q9LOS18DVZkR7aIZUADy/PaRuc4JXPNpb8w8//Iz38yULs+Oqf8K/nP0pf3F4yl1XkV0amgMh5Ia9zzvsThEKIeRg6oC+XJEmFUkp5L5yRuygOPIMtB4cWIbF7dYz/VKztAX1geELdUjbZGgT+PajCz44ueOinXKUb3ha3LAJBZ/XJ/zX+VPubsYclFt+9eUTJjfC7klEBUU/N+xOBCQxOYXs7Q5ihBCRlOCeOYMxD+EMawb2lDyAK289/Zmlfy8xLVu6ztDdlDzXRw95rQkZb90UHxW/uTtheTtGdOLzt48o/5Bhd4nFb4ViGVAhoRxkK2Hxux3qZggBUrcDjhAQa+/z2D0I0v2UtwbpPdmVw6wMuinwVc5Zd4BZaYxAU+Vcj8ecjFds/HAOLbXjYjVB2YhSkfZiRGZg8spjd57mIKMfKaankcmrDvv6ZlgvREQpyCwoIbUdJnmPiJBSQmJERMBoYpWRQiLlmvztlumpIWSG+ZeRu08UYWu5uJtgdeC43HCQb4eOsJ4YFe0mB5Xw44juIuauQU8tyidGf1ijNg1xMYYI6m7NOxx4T6obDN6DtYhSpBiRrkeUQjJDshrxEVJi+sUG044xdaCdZ4Rc4aSgmxu2Pme9KYhJWK0rsi9KTJnwRw59M+SxWGWQoLjsIEKYj5GUkBBAqa9BpYQYg+EdW8YgWpOcGy43fAF68BkYjlm6i6g+Mj4P9HODJM2mzVnWJVYHVq9mZLeKbA1mJ+xKQ34n6MYPOb4JKBeI44xQGMymQxxf93RKQ0mrEiN5PjhuSuCHByTvkbYDXRBGGXFegIDqI9EqTBPRDfQzqOscv7Xk55bRFnwJ62879FpTXCqmLwNm1ZJEyPpAsgODuvXDuu96XOthfYaUoR7UmNLAXHafxUNEeo9qPJIGd5aUSEZISshXCdUL8bJA1ZrFs4hpwM0imEj24ZZ+MSSTWFrQAj4iLqDXLfquRlyAmB7A/LEIDVqTjEaChraFLBvoBKRzKOeREAijHOUjqgtEoyjuBFcZQOFHEUlQXkXqR4J6m9GuLYe/FkYvd0jvSVqTSo1et8iuAZFhBPXuIVVgzMNnE+cTUmFQO4X0jtT3yB/9QGKCpkff70pSQvuI3jnyZcZNKmj3FO0iMXkd2P+tIgkkDZNXLXrXD5F5XEJMyHpHahqkqoZLOu8HQFqBUvckRQxaiPlgsgrg4poUB+t4Z77SeKRuSdMRschQ2xZdt+iV4qCf4UeGbmFQLjH+qiEWGl9qQq6xvUN8AKPQmxa8R6YT4rQa7iqsId2DIgSk7cEajNo0iI/EzDxk+tS2kNnhmkypB4ql7Qfwzb1LFzn2/A4L5OMKd1gNscUPCjTLbph9RYaqe6RzpMmIVOWIC4P676vAfVJOuUV2DYaUkG2NTEbDH42BrgPs16MqhGGWwnCEhyGRrDegNGKGt9kMG1DrZkgJYVCc1O3D3SpFNmyybsGHe0UONz7k2cN1lImzEepug9o1AwjviW2HzvNh8TgoRwCsHXoi3Xtb7xDxpGjAB7Tzw0L3x3zR6msr0Gp4Tt0OZr7dDYnmPs2I8+ADqcxxRxP+H9ayXzEa5TvfAAAAAElFTkSuQmCC\" y=\"-156.770539\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_31\"/>\r\n   <g id=\"matplotlib.axis_32\"/>\r\n   <g id=\"patch_78\">\r\n    <path d=\"M 10.957047 194.770539 \r\nL 10.957047 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_79\">\r\n    <path d=\"M 48.446703 194.770539 \r\nL 48.446703 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_80\">\r\n    <path d=\"M 10.957047 194.770539 \r\nL 48.446703 194.770539 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_81\">\r\n    <path d=\"M 10.957047 157.280884 \r\nL 48.446703 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_16\">\r\n    <!-- Neutral -->\r\n    <g transform=\"translate(7.55625 151.280884)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-4e\"/>\r\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_17\">\r\n   <g id=\"patch_82\">\r\n    <path d=\"M 80.226013 194.770539 \r\nL 117.715668 194.770539 \r\nL 117.715668 157.280884 \r\nL 80.226013 157.280884 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pbe320588e7)\">\r\n    <image height=\"38\" id=\"image4b207e1802\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"80.226013\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALfUlEQVR4nJWYy6ttV1bGf2M+1mO/zrk3t67m3iTGqiSlRVGlUkShoAQFsVEgiGDDjg1tKmJDbPkHCAUFNsSuCoWCoohSYM+S8o1IDIFoEpOb5D7Pveex99przTXnGDbm9pwbYlWR1dm7sdac3xyP7/vGlHL3JeM7PFsdefUff4XwDxvyAuaVUXrFegVnUASZHGHrCIOAgXnQaMxrg2DYIuOComOALIQLTzwXwgDbFwt/9NXf58ud+9je4TuBArjQjL22IfeQFxUUgOwdLgkuC34QpFx942aQIrhZ0GDkFNFlAQG8UVpDVvWdeO749vAyX+7e+mTAZsCPMK8N84DUBaWAmwU/CRaMeWNoZ5g3JDncDH4viApuAvMOawzEsKgUdcgKwlZ4c/f9cP0TAvvm7hVKBxpqenAVrRTBBMzVlOnxTLtMmAlaHFqE+bzBXzhcBlWBwuXhLBgaBIC7+83/u/d3Bfa1P/85tDe0MSzU01IcSo1YOtZDaB3TWYckh6S6oVMoa8VGwbxhYuANtAI0b2grBNFPBuxR2WG+loYYaDA4tIlLQnMmNO96Nncy21uBs5cgXghlYfhBWN0xzAu754Tpml6CwlHBBSitMZbAoImFaz6y/8fb4fD8+ntfRXJdBOMSFP7wM4GfjLRylEbw09UBwgh+tsMhwGUg1C4FkFyjagJvvv4c/5o+Cuq7Ruyf3nmRJgvqn2ITV+uqLJSLl4x45vGjQzI0Z3IA69AA5y868sLIm4I1CipIW7CppkFyXbJ96Plwvgbdk+8N7K+HDh61yFzfsAA0ijSKdIZZ7bi8zGTA9qFGQWuatbcKxhsuFpw3MMH0EHijdmwBUUjmv3fEiim/9ve/xM1/gfNPgx2ihEBoMiFo7TKoAMWwLhNjIfrCmCJ59jivmArOH7hPoBTBVGB2FaFWYF4+zvEfqzEvjmaRKM2BEv6Pv7zhvdG3ib6d6duZtp0vv1t1E8ErIRTEKTEWmjbTNpm+nemamRAUcVapw9WaBPjG3VeZrXwEx0eAzVb4uxF+6gf/iyefr7xloaYldDPeK06gjRnnlFIcaR/JyTOkSMqe4BRVx37X4JyyaBPrbjoAq2m1XtFWMalp/fB8wy++9bO8kQbeSAPv5S3ytFb+xt0v8bd/9ipurh9M1418pLCeCU2m72bamPFOOd0u4LU1YU+VrJURdnJZ1H6C3QuFmy+dEJyS1TGkyLhvKMWh20g49cQLYfWBMT4jjM8Y/QNBf/L0oxH7q299iXlj5B60oRJro7igeG94V+vFieGcIocauf2tkev/Wf+v3zNufXtEI/jxavmiDi+GD4oPBYJi0bBQv9u+oMzPZHa3ja9/4U+uiv8vdqvqDlzlnbyotCCx1k3XzOynhr5NODFKcZS1kY7g4Y90TNeMeaNoFHa3OqYbigZofME7xYAmgIixnxpyMMqq4CZhuCm42Sg9aKfcmZ+5AvZb//bzuLkWPNSI4UC84pyhJrWwxZiLY9lPnIUl2hnnrxjdjT3PLEbOtj27IUJy+PVMMaE9RHo/R/qmNoyqkEqDtobGw6ZWyfd3//gXcJPNvJ+3NE3BBFZ3KrjSWuUub4gYbcws20T0indGLp6yVPxFbX3nlBePHuO9wuSRybFYTKgJ+zmSiidlT1FX69TXbGhjaKy4Fv8Ta9YChHdz4g8efYXoC/ZYMAflQJC+LTin5OzZp0hwSjHBi7EfI9IV8lFddJoir929xbit8mJt7U4nxn4O9DHTxkxRh6nDeyXEwtx6Su9oTqsT6R450pHhbnnPZxf3OL/oEYO4s0Maq3/S4smzJ2dPMSFnj5qACS4qbj1DW8lUVXBBoS3QVCIe50AulU7MhGkO7MaGlEJdh8qVq/eN9onhx5rSsHIdX2jvoKNHfRXdyi9C2UVk8OCMsQ2MUelWiSmFA+i6cOxn+j5dbpRy7cacHXsqPcxjwGYH+WCNHLC+Imj14BPkZXXBAeAnuqpV7Rm4YogdvPwgLO4KzbkxHdV3xpsN85HCKteNxFBvNKHQhszDtKqSA9DD/klPezeweSgg4FJ1H9vbwr7Vw5xggCDFiFuhyfKUVs6O1YdVFqQIYRD6e8Lxf89oFOJOEIX21LG75fHJU1rYf59SHPRx5no38Oh8idt59Him++cVsYWjt5X+YeLs0w3dE2Vxb0K0Jx0HtKvOo3+s+EkPqX0KmKjgJyVuM5I7/Cj4ZLSPp8rkFxNycgohcP3Z65y9vGT3rKO/5xg6oQ2ZRUhoccQLgfOWMBjrO8rmzXNkN3LjyQKXMrKf8M91xK0jq8NP0D2cCKcjflyyvd1cATt+/hRsgyQlDDU6aSPcf3VF/1BZv+fgqCOvIiefa4gXhkuHQ42eR9slwxwpxeFLHc/mtZCOPWIbmtMF7cOB8x865uJ5T+mqJ3Op2vT4eIAHJ7RzxsLxFbDf+/w3+J3pV/H7mbCvA0hewnjD2P4AnHyxp9wesTPP5k3IC0EMSlOpIWVPsbYWfW/EC2FeAwIffgVsJcR7x1gAk9p9fhT8KMQdyDBiRbEP79M9enwF7ItNQqNDUiYMhhjMGyjrAr56LvGG7B2lrWOdehg/pbjVjHOGQOWmtTLvPS6BVqz4LmMvZsrssNEDgfa0Hqw5M5gStt9DjFiaK7BiytdOfoywz5BmulPj/AVHfx8kB0pnQCBeCOs7VQP3N4Xd84VwY6TvU9VDExZd4uLYk1JL+9ixfN+IF55h6snrKt6YELdCGKocdaeK5QLOYeOENJFQTHl9Tvzhaz/OZ2ZF5oxPdZzZ3TYW9+TSBpmDJ58V0u2ZdjWxjIUuZoIvRKeoCcUEt1HycmR3syNtOhZ34dobEEZHbj1pI+QFDM9CPIf2dMaGASsFd3wEORO+uV/wM70R3+4Ijx7AlHDJkMOodfa5XCelVuk2E13MfKqbLj1WGzLrOKEIDmOXG2JXmNWTlwPchNNXek6eLHEnETdRI2cQzx1hD839LZoq2dpuVyP2cjwhypLcgzWxXjFM1WthQFDCIhObTH8Q8VUz0fhCVsciJBYhkTTgMK61Q5Uu9WRzPJkWxFBYHQ/My0DJDhsi7jyAQXNuyPmOpx+bM+GVuARg+b7gdnvoWtxUrmZJlTr6HwYQNWEqgeCUzs+Eg6VZ+sodToyztMCJcZE6Tvc9alCKq3ZcpI5yBeJWWN5P2DwjMWBzBu+RRX/lYPMSLAbsYoufCi5XZ4kKmuUgwJGiwlw829Qy5IasVy7VSfVt15p99f4IwRfMrqYqTC6nEJ+geTJBzqAKTqBU9XFQh5BbP30HXXZI0yAp46d6wyOzYNlRsq9iXDypeETsEogXI7iCkwpm0sCYI1kdRSu7mwl59pTs6r1aFsLOcEOCUpC+R7wHEfTkMa6YcqYjv/3i3zA+u6ihTJnmwi4dJclRxrqoPFULFZi7qik9WCNzJPXMxWMmhAOVlOzQMSCTwyfoHysyjFU9NiskVFqVtiV4caxdw4X2B30RrI3EnRIvKodJEawIpTj2Y7y8xijquNFvSRrAZfQAaMgNUwlkdeRDlFUFHQPuwhMGYf0OrN7ZQpqR1QqKIosepoQOQyXYgOcvT36U7sEeWy+QlOke7FncXyHqmK7VKyMFZAmlFCYC0Rd2c0u2zEj1x/scyebYpYYhReY5MM+ectYgyRF2wuZtuPHvZ/DWHTg63I+Vgo0jiMPfeGoYeX93jEQPiwbJikuF4zf3iPZIEUonjN4owTNJpIRapCkH+jgTfaGoY5gjuTjGFElTpCQHoyeeeeKZsLxrXP+Pc+SDh8hmDd6hD0/AV78nXbXmAeq1wNc/86f88g//Jst7GVHo3z3Fi7B4EBENzAuQ4pluCOUINDryHJhiZh/ioQqMlEJtlCEgydUrz8Nd7dHbytHrp8gH95FFjw17bJqwOdd7uBAQ76Bt+F/zeqFUb3mG0wAAAABJRU5ErkJggg==\" y=\"-156.770539\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_33\"/>\r\n   <g id=\"matplotlib.axis_34\"/>\r\n   <g id=\"patch_83\">\r\n    <path d=\"M 80.226013 194.770539 \r\nL 80.226013 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_84\">\r\n    <path d=\"M 117.715668 194.770539 \r\nL 117.715668 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_85\">\r\n    <path d=\"M 80.226013 194.770539 \r\nL 117.715668 194.770539 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_86\">\r\n    <path d=\"M 80.226013 157.280884 \r\nL 117.715668 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_17\">\r\n    <!-- Angry -->\r\n    <g transform=\"translate(81.237091 151.280884)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-41\"/>\r\n     <use x=\"68.408203\" xlink:href=\"#DejaVuSans-6e\"/>\r\n     <use x=\"131.787109\" xlink:href=\"#DejaVuSans-67\"/>\r\n     <use x=\"195.263672\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"236.376953\" xlink:href=\"#DejaVuSans-79\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_18\">\r\n   <g id=\"patch_87\">\r\n    <path d=\"M 149.494978 194.770539 \r\nL 186.984634 194.770539 \r\nL 186.984634 157.280884 \r\nL 149.494978 157.280884 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pbdb62b832c)\">\r\n    <image height=\"38\" id=\"image30416f504b\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.494978\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANU0lEQVR4nD2YWZMl11WFv32mzLx5p7pd1V3dpZbUErKMsJHDYAQOHnjigVf+jf8Of8HAiyMIIMDYAWEIE5IdagkN3a1SzffeyvFMPORV51OeiBz22XvttdbZ8uO//1l+NN+TstAFy11bsf1izekv4ehX35BLx/WfHtM+FkgQS0CABCqAZNA9mDYjEZIFidCfCO1ZRG1GrAtUxUjlPN1ouW8LfOsov3Cc/mqkPG/IViMhMW4qEDBaJUJS+KTpg6HpHBKBDORM+/aafiPTWkHWkGye1r2g4hRsfwx+kUlFAgHxQnYJAGMiAD5qchYA6nVH8yb4jzXlOQBkq1ExMS4sRiRz11e0owUg9BYdBHcf8Gcb9k8NYXbIEoeAAUlTUJIglJAMqEFIs4wUCXPk0TqjVGJeDtOrWRDJpKTIOVKte3ZvLlk8F7JRZDVVRXLG7NoSPxrCYDBFIPcaNUzl2L9VMq6EWEI2mSxgWsE0QnmTWX4ZcDc9sbZEp/BzzfYdS3QwHFv8IlBvOgZvWFU9Y9SMoQAgRkXhArv3Pd0nNe5uJDlNLBTJCqa9qJEoIOAHhd5ryishVIp+owgzSC6TXJ6eyzB/kdn85hY5v4T1Er/cMC419cue8nr6uAoZ3Uf2by349i8y+c0tPmrGUVMUnsIGtMqUm57LHy04+xdPMkJyiugUxt5pskwZkWQwjeB2mXGhGBeQdT6A/TvwZ7oTYffBmtlRhZ8b7s8Mw5EQXcW4mEp8/N/36FfXbF5ZyI/5Vq0wm56yGilMxJlAOuCtfebZfV1S3kaSEaIFozwoLyQLahRMB9pnhrUiG6YsMXWcAKmA5mmiPYPiuqK6yBTbxOwyEyrF/DwSrbB7pya9X9M9UPTHmWwiZTViVEKrRMqClowxEVUFbt83bD7W2C4hSTASBN1PwSkPbpfJSvD1oQNNJmlQccJ9rNOURZNoN5n2mYIoSBWolz3NvkSbxMPNjiezPSvX00XLF9sNu7ZkTAZT9wyjRauE1RHjIuMTz/jCYlsobwJGjxMfMYIeM7bJjHMhuYkWkoVs89TmGbJLqDKAQOo1BAGTWaw6jI68/+wrfrL+kiPT4LPmyi+4HBecmyU3QRG9JlZCTIp+sJSFx9pInnlC5TBNRPcRoztQHiRlTAfKTyWJLhMdpCpNHWkFs1fgBZlBioK6N+hWUAH6b9dkA7/7nuXd+RXPigtqNVCrAS2JL9wG3ziKxUDtPD5qYrT4oNE64YqAr8F0EVLG6CGj/MRNps9kLYdOPFCEymATzBIBi9lpgs5IGXG3Ct2DvZ8gMK6Eu5OKqydzLoslz8MMnzWvhhWfvDhFdGZWjq/pgiwMncWVgZQEyoy+nzhPqQDagxkyZkj4Sgj1RA+pSEgW8Io3T2+YPb4nbKYy5iQMDyLJTpvQPmOajLSaf/7sPa78gm2suPY1n9yeAvDe0295e31DZTxvrLcs5h2uDBgTOVndT3I2BqQdMGRQIaP8ROl+LiSXyXZaf4epmR1xpqCbBVJrULeW7DJ+memeBrqHBt0LajPiPqn4Oz7ibz/4DZ9sT7nczXn68JajssWpwMx4rIo03qFUoukKluuel+vIxV8eU10lTKgF22b0mCcOKSbuymWELKgyTLtSiTdWW/rR0o2aNEvILFC90XEybzj6oOXl/Ypnyxv+tz7FAp/dH/PiZk1VjHxwdI6RiJLM1TAnZmFTtexUyb4pSVkwy5Hrn2rcS4cZ1uB2QrHLBzmAWCVs7QmjxpWBzaJhaXsq7Rk3mm1dcnG1pKg83z++4LTccep2/PXxxzw0O/5sfcy/377LZ7cPeLBo+OjkC94ur/nWLwEoqsDLbj3d64AxiSEaqtlAKhXqqMWkIuNrIV8L5EwqQGaRqhrZHLc4FXlQNtRmQEvmbLZliIYcFUpljouGH9Qv+aPiBWs1sFGRE73jP+7e4Wy5429OfssTe4vPhkf2Dk3mlT8iZSFkxRg1j1Z7Oj+ZiPa+QK4cxi8T8VrjZwrtJ6EWnXAmUujA2WyLUZGQNAHo4vQB7SJ9b7no52yrioUaOdGJfYJ9qvjD+TnPigtOzZbvroV49qmaMqUCCzPQB4uSTDM6urYg3xvMIBj1YCC+mjGshOpmoo7kNd1oaa3jZbsCYOl6Su0pdKDQAW0iwRu+2h1xWu7pa00hmfMsjFnz4ewrrAT6bPHZ4LNmT0WTCmZq4LG7Q0tCSWLrK4ZouKFGsmB3gilLTygh1ILvFKYFtTW0piAEhR8NqTOgMrYeeXZyQ2EC1kZi0LSD485XpKzYp8hlXNEefg6gJdEmTZ8tYzY4CZTiqRlY65a57nnePuRuqDAmMoZJ2E3XOHQxdWSYTRa5vFCMY0HKBQrQCcI84X3Jp8ND6mVP5SZWVpI5Lu7Z6B6foUkFViK1Gnjpj/jF7Qe8bNYs7MCb9Q3vVJdoMk/dNTOZgh9Ky/VQMytHYjdHRTC2CDAczOD95N+rq0x5A7EQhqOJ2bnS3L8dUYtM1014QDJHy5az4paNgpsk+Gzos+Uf7j7k589/gL+skFFIdeTzRxvuHlV8tPo/AJxEFqpjpTtmZmRejDQeVp9H1Dsn10iefFaoBEmgB6iuE8lMJnH5ZeTJv+5ZfqqJe0u6KYidJl+UhKjY6AYrirvk+H3/mH+8/iE/f/4DwqiR1UhaB/TCE6Piq/2GK7+YZAnBSaRQnrXt0CrhdkL9osM8rW95Xr4FmUkj9yABqsuR7kHJ+Of3vHpqUUbzB6dfsn3+hPnnhu6hwrQCz+DE7CjF8PFwxq9v3yZkhdaJsSkpLjSbjzOhtFz+1HIJfFKfkhAe2h1r3aJJzPVAHwzldUZCwoSkCVXGtEKYZ8Zu8mfD2nL0+4FQLRg+HHj37IrtUDJ/biluM24P7SOwJuIkchkH/m37Hv/z+RtIYyguNfIg4ucHCoqvWYP//OX3+LX9Ht//46/48dHXLHRPoQL9aKm3CfERcz3U5CJBq0kaxiWoGfTHBndnKG4zj35h2aU3QGBmMrGA6IRYZZRkXvojxqz57fVjZp8WFLcZPWT8QnjrR6+o/2TkUbnn0+0Jl//0hEefJV791eRi7/yMUnmGZLhvSo624ZCxrJAyAnrCWpVJB2+fPmhpoyJeFVTnGrcF3WckAMV0uE1Z+Kx/yDd6zeX1glmArCc7fvJfcP3VG5zX8GUH81eJB0Pg259oNk/vyFlQkohZMSRDuHPofiQbhSm1x5SeZC0qCGGRUL1g9sJYFZAF2yjUOJlJFPQbYXiQiY8GShP4Zlix9wWpNROFjJkwE/pjmRrIwujg/E0o32r46MnXpKy4GWZ00XGZFRfDnPLCIHkkVRZjVMK5SDNP6CtNlkxcJFKhwGZsNRJrRfdWpo2CNmnyUYBWGa0S10PNEAyz45YmzJGoqS4ySQvtacKctfzwySt+vPqalWm5jyW/a04n3U2ab7olF82c8hLUEFDNgBmjxplAW0ay1ohXMPPgEkonTo72vLu6otKeJhSvhRfAHE47TsVJro4D6viK82cL9l1Bty/RLnK0aCl14NrXXPgFK9Pxw/lLvhlXfLp/iI+ay/MVj+4SxMkHmsYXiGS0i4RZRhJkySiTiZ3mZl+zcAOPZzuWtkcdZgS1GZipkTY5QlJEFCkLlfZ8uH7BmbvFSWChek7MjuWB5SNCnw2fjQ/5vDuhNJ4mOMy1xTURjCIczTA33WwCoU6EOqDuDCkJ1nmSV/T7gu285GG1Z2H6Q2t7rERmamRIFp+nDM51T60GFqrjgb5nrQZWKlKKoBGUCNsU+ToY2jSNCkJSnO8WuFtB+UwyilRoTIgKORw8vU2kMkMUnA24dWD3akEzONrgXp+cZ2pEk9AkCuUp8Kx1w6nZspQBK4mFisxE0CgimSYnfIL2sIlJZxN9tAy9xSUgMU2KQkYZPY2KnIlomyZOCwqtEsfzBhTc7you2gV3fvY6Oz5PHahJ1GpgqXqWMrBS/nWWErDPiZsE+6TYJstdKuizpVSeQoXJGVfj62CzVsRKT2MorUAk4QpPikJqLFpljCTMciTsHPu+YOtLTpymTQ4rkVJ5SvFoSZTi6bNhgScBY84koEmKm1QCYCXSZ0uTCtRBho6Le2bFyNZO/BeLw1DleNZwvl/gTKJ0nhA046DRKnFUthytGi4bi1IJpyJzPbBQ/WtrYyUcfhpQkmiyweaElvw6C7V4LuIcj0aTcRLRknlkt/isOSo7ruuMrxV+rvAzQZ3NJusbk8LqxKwcETfRwLFrOCo7dO1RAkvbH1xnZq1b7HemT0ZKCTgmWCQETcZndcBk4KG+Z6F61OGZtW7YmPtJjqIha2hOFc1jRXcimEIFRDJj0CzKgClGutISomJtWxauZznvpgaROJVQRuqDQy3Fo8lYSdQSsAIW0CIUOZIAn2GhPDYn9kzlLMXTJ8c2VJxvF9M0KYN46DcZMyRDZQM3gyMDczvSFA6RzEyNPCgarso5Q9R00VEoT61GFIml6lGS0GRqCRSHcagVwYpiJkIkk3JmnxORRHk4BwD02fJ1d0R3X1A2QhZonmbSk57/B+atWOCtVZo6AAAAAElFTkSuQmCC\" y=\"-156.770539\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_35\"/>\r\n   <g id=\"matplotlib.axis_36\"/>\r\n   <g id=\"patch_88\">\r\n    <path d=\"M 149.494978 194.770539 \r\nL 149.494978 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_89\">\r\n    <path d=\"M 186.984634 194.770539 \r\nL 186.984634 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_90\">\r\n    <path d=\"M 149.494978 194.770539 \r\nL 186.984634 194.770539 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_91\">\r\n    <path d=\"M 149.494978 157.280884 \r\nL 186.984634 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_18\">\r\n    <!-- Surprise -->\r\n    <g transform=\"translate(143.401681 151.280884)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-53\"/>\r\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"126.855469\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"167.96875\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"231.445312\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"272.558594\" xlink:href=\"#DejaVuSans-69\"/>\r\n     <use x=\"300.341797\" xlink:href=\"#DejaVuSans-73\"/>\r\n     <use x=\"352.441406\" xlink:href=\"#DejaVuSans-65\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_19\">\r\n   <g id=\"patch_92\">\r\n    <path d=\"M 218.763944 194.770539 \r\nL 256.253599 194.770539 \r\nL 256.253599 157.280884 \r\nL 218.763944 157.280884 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pb63a646845)\">\r\n    <image height=\"38\" id=\"imagee512825040\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.763944\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMjElEQVR4nGWYya9kyVXGfyci7piZb6r3uqu6ytV2t21st2kzGHaAzNALtniHhMQG8W8gsUbiL0BiwZYFEgsLscEIg7CNbCOw2y73VMOremO+zDvEdFhEvirb3E1e3byK+OI73/nOOVdOP7mnGUiqAPzt9a/yD3/xu7htpnuy4dHXD0DAvxbp7wwsWs9hO/LG4pp7zTWVSTQSyQhnYYnPjk2s8dkB8MOz17h6ukf7xNGfKv3zTH0dSY2hvvLYHzzCHB2AtZASuuwZHu7hLAIoCbAi/OnBf/HHf/Vd3vuPP+fNvxTCnqLLSLOaOViMVCazqGZqE0kY5ug4z0sufM86tMRs2KsnAGI2NFWEJjG9ARiHZIMJFjslRBVxDmIirxbEg5bx9YbHf6CUY+2upAVgUPizL36Tv/naH6JdoOoDfetZ1TOqgjOZrIar0HHpewCebffYzDU+OqzJ9E1htraJqgsEYD4WyBYTLItnClnh5IhwsmI+qgEQBXdlXwGrRMqNKgH45sVnWb87Y+tM23maKuJM5qAeqUwiquHGdwBczj2dC1Q2cTl0zMGxnWt8tHRVpGsDIhCMEmZhPDZYb4ldT3XQkJ2AgjpQA/2p4AL6Ul8ACfg4LfnR+QkArooA3OkG9qoSIoMS1PDh9RHnF0teO17z1v45R/XAD/I9Prnpyec15o6nOrzB2UTfKrSeq9ER9oRpMCx8egkKARUhWyE1/HworQhJlf8c3iIlQ9UFrM30dWBZzRhRNqFhkIrvvv8mB9+pWfRw+rZj81oDwPB0SffYMt5P8LRhWEwc9ePLPdaLjtgb/IHgRoNkMF5RC2oh1YLKzwBLO41l4NF4wjTUVE2kdolVM2NQrnzHT14cM21qSMJwT1EDNAk/O1I0VBeG9kxxW8vdf9/w8e8fIr8zAFCbRNMFpqoh7ClxLcRJqLKSbWFLDbhpB+yWKYD3wz7/9uxNrMuIgLMZK5kpOc6GBdNFi10FVkdb3BuZ+6trTtoNCzdjyaw/3/Ht0wfcXC0Y7i+or+DD/7nLg196zqzCovVMQKqV1AixFWwQ1BRQAHbcZeUtqFnhG+tf5vqmx9qMc4mUhY1vuPENIRkO761J2TD5irYOPNns8f7ZMdNHK3KXef3hBbVLtL1nPDak3qJN5mLbI6KoCiZArsDvgRsgRIObMqKCKJgI7hZUBv5x8w5//8N3qaqESHkuoozBkbNhs21ZLUdW7Yy2MwJcDR3D6YLVx4buTAjfOeHyKxmWAZKgi0i3monRIAKqBZQ2GXVCrgS/D81aia281KK71RfA3330VZomEqPF2owRpasiCiwrz8FOxPs7A/3eB/dpHrW4hXLzhcB07rj7rUT9r4azX2nQByPGZFIyGKP07cz1TV9Y2ZS4pXrnUkYIvWAiSAJ3qy8D9FXgZmwxJuNMpnKJZT3T2kjvPEaUypRjzMlxeLRh2wXePr7gfn/N+9cnPDV32X8f7nxPWb8VcS7RVpHDdmTtG6oqMXWJ5tSBFmuQDOORIewJ4+uKHQTnd6H867Pf4nLoyFmKmdpMbRPOZHrnOahHTuoblnbiLKz4cDjiZLHlqB/5tcOPud9cclRv+acvNFzc7dHR0QF77cyD1RUxG6IaYjcTV5Y5CfWFBSOQwSTwKwjHgfe+8n3Mrb7O/JKuDnjvyiLJUNlEbeJLU+2Npzeee/UVKzdzPiyI2XAeFiUjY0tWwVYZXKapIg9WV7zW3LBfTSwqz6L2dP0MbUYd7Go9fiXkSrF95KS+wWXgSezYxpqbqaGuIyKKjxZVIathSo6ghou44CIuyCqMqSIrbH3NTWg5iyse3RyzPl8gg0X2Aqt25nxacFxv6WygtYGtqcnZgCixz1TRkGthfE3xdxJHq4GM4Azw7enT+OTYa2cutx3eO6oqsfU1WYVlPXPpey59jxGlNpFNaOiqyBwdm9gwpJqbuYHZgAFbZToX2G9GrkJHVMMQa+boiNFANGi9K4UC7bng7yoXZyvCA4sLCkEtN6GhqwIv4hJrMwBTcKQsXA4dIkpKJZP6JtC4yBgcRmCOjiHXDL5CoqBtRkzm+WbJs5sVTRVJuViBj44YHERBUqmTEim/TUKDYch1sYugltP1iqNFKR3GaPGvoWEC4rou/QhAEsZlxNWRZT+TUXy2XPge70umkYUwVlzPDp0tMlqqtRCXSm4ytBkJUg7hQAP0zzPrwUGdsWRcQPhwPGaeKqbGkZLB2oyIYGwmvOiorwpTuYbUZXTrCLPlJhuaNjC5xCY0+KlCtJiobF3ZXECtYoJh+aGAGKZjJTVKbhUmwQ0lnO7akpaFWWdR3M6b1tuWHA1aCcO2IW8d/WPL4oly8WVQp6hVqDK2K9Vh2DTULrINDShUa8HvG7TJkKG+MtTXBjWweJoxUYmtJeyX/7XkAVefN9RXEL1hHbtiF8fVhpyFvvVoMKQk6HmDu3RYD25S3Ahv/Iuy/KlDRku6rgiXDZqEtPMonSzNpZSdjKK18uCfZ46/79k+TCw/HqlvEt1zZfVjS/vCIhnqa2U+Sux9mOlPd4wlhN9e/i/Tlyte+CXfOHsHVNC9QP2sYT5U3CB0z4Trz1jcAKsfW+ICYqek3tDf9VQmUe3PuK1j+YHF71uqLTQfPAMRlh/cZ3u/JdWCDVA/zVwtDJJK7eyfWJ5/NWNnZc4WY1Hu2w1/cvgt3l1+AqkgFqvkupSL4R74fTAB5oOih+654kYhHUbuLdZ8dnXGycGG+Ug4eBSp12A8fPT1B3z0R/exM/iVITuhuU5sHhgQsLOQakEi2DcGPvUbj3m9ucF5NVhRJrVcxgUohMlhqsz8mRn3pMZthf1HmeYqggipEYZjixqoek9WQ2c9tU1MJ5nx1HLwk4jxihsTsbMgEHpD6A1+ZUi7Q5sAGJiPlPfe/iELN9OagMsINZmKzBfbJ2AUgkGt4poIbwXGdUPqHKufVqWMWGG+A9PdxEE/U9vIVejL9HTsuf58Q3jiOPhJwEwJXTpiK6zftMxHiqjgNqWLsFORZG70ZbMZssUZClsAKzOCgHgDbQJRFp1H+hl9XZjfMSzbMsIdVIH9euJOU8rNnXpDZRLmgfJ4tc/13Zabz1SY2BP3EnYrZJfBKHZbwmhCYS2sIB1EfvZymVfN2bO4X3qjKiO5eFBWobaZvXZkUXmWbsaZxJ6b2XMjvfUALO2EQVkczryxuOaT/QOGexXDXDP5irmr0GSQ7W7EtgUUAnYEcZmsxecsuWQlQEVmYTwyWtQoYjPGKD68GqSySunJJNOYwCY1zNmRMFyGnsNqYEx1Aeg8c3QYk0vTWWXS6JBUpiC1kFpghPZSGeuEEX0JzmUtwLIIB3ZbysQik6MhRYPdnWTrS6tZm8gkBawRZbsDaySzSQ3b2LAOLXMs7+RsSMmQg0FC6b3UlUFSpTAWW16VvNtQmt2DoIagDrWK1Kl4mQqqoCrMwb1izCSmVAHw1vKMzgbm7LBkPt4eErJl40sIh6kmTA4NBpyWYj0b1ChmZ00m8P8uc3vjMSQEtzVlEaNlQL4dIHag5ugwouxVEyfthsZE3uk+4Uv9E+Zc8anFJXfaLVA+qkRvy3qhCB7zM+zkMinZoPzmw49+nrHbm1YSC/HEVX6F2uRSkF/lB42LtDawcJ6ohm1qOIt7u32E83nBEGusKM5kxIBUGYUCTimJleVlZo53DEZ24r/d21IEl1WoJPK1X//vVyh2L4oo1pQZ4FZblUmsXMnEIdc8ng9Yh/algBtX0t+6VJiSAoi8+4CyS4BqAzefS5zUm58D5oIa/C6irUQedhe4iwp9MIIoORkCUNlEyIZeMj45LnzPUT0UoWfH6bTCSSKqJakphT2Xse3llYup/sK56e5tML8o/rRzfoB9E/hi95j2c9dsrjpoymFzMvhdlr2IC2qXuLdYM6dd5qlwp9nyYlqynlum6JiDe5k8RXCFLclFYpILW7GHt4/PX4VQlEoSppJMbyJGlNPUcd9d8nsPfwRZSIN7OZHHWMDFZInJ8nxY8ejmDqfjivN5wdNhjzk5pugI0RKTIQRLjLZ8ZrqVxS6Udi7sDQ8SD/vLl6AsudTKoIZbnfUmYFE+3Z4hVUbOa0IW7CIipvT8qmWBlCtEHG0VGUKFAEmFEC1zKANH2oHSZMrs6AtjdhQkwfg6vP2lJzQ7v8gqtDbRG1862EktW62xmqkk8aXmMfv7A1cbB0bJSdBsMVaxDsZkUBWapixY2cy8qxAhlbFPs0GToN4ig8WOO8/yYD3EDvynJ949ePwq402kN55KEv8HfQHwbEvgkdUAAAAASUVORK5CYII=\" y=\"-156.770539\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_37\"/>\r\n   <g id=\"matplotlib.axis_38\"/>\r\n   <g id=\"patch_93\">\r\n    <path d=\"M 218.763944 194.770539 \r\nL 218.763944 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_94\">\r\n    <path d=\"M 256.253599 194.770539 \r\nL 256.253599 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_95\">\r\n    <path d=\"M 218.763944 194.770539 \r\nL 256.253599 194.770539 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_96\">\r\n    <path d=\"M 218.763944 157.280884 \r\nL 256.253599 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_19\">\r\n    <!-- Happy -->\r\n    <g transform=\"translate(218.150334 151.280884)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-48\"/>\r\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_20\">\r\n   <g id=\"patch_97\">\r\n    <path d=\"M 288.032909 194.770539 \r\nL 325.522565 194.770539 \r\nL 325.522565 157.280884 \r\nL 288.032909 157.280884 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pd7d91dc497)\">\r\n    <image height=\"38\" id=\"image83be68f79a\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"288.032909\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALvElEQVR4nFWYS49kSVKFPzN3v494ZWZV5kwXXVMNo6FZjAYJWKAWG/4lewR/AIYVC8Qa8dBAIzT0ADPd1VWVr8pHRNyHP4yF38zuSSmUdxHhcez4sWPHQu7fvrb/mAMzjmLKbI6v40t+v33PTibOXeRDbnAYl3nDX119wb++f03OiveZnJV5CpgJeXIAIEboI3EIuJuAOcAAgfXv3bPrJtZh5hAb3mw/svYzb48n7JqRVJRGM/4qJzoRxhIAuCsr1jrhKGSEx6J0kvly/oS/uf4j/u39pwyHhpIUJle/0EAnxc+CKZg3YlTcJlJajwVDB8VNwv7rHfttwjWZl6d7HmLHV3fnqBjFhMZlUnH4R/O0kgE4WMNj7vnd5oponq3OFISfP/4h/3D1OXdjzzg0lZRHj7UFt03INx0AYS/oDGkNOXpSKMg2IWKU4nGDQ6KwOhnYf9hwGXd0rxLDHBiOLflEWTczxQQfKDgxOonPbEXznLpHHMZfXP05//1wwZACtw8r8uhwHz3rd8p4rsilx00CAmEPkqB5gOGHQj549GzG+UxSgwdHc68cHjtWFweGQ8u3NycgRh4dN7dnXLeF9fkR30nhaI6MsNUBgFM98u/Ta/767Z8yxMCL/siQAiU7/E1g9VbQVEGUAKU1NAImrN4bUqC5g+kl+JBY9xMHaZl2GZ08/m3L+NoQNdJNR3OrvPgGTn81M594Ht6c4P/++Dkv3Z6tDlzlHZ1E/vLmz/inD2/wLtP5xO2w4n7oyAfP5loQq9flRqG5h+bBQCC3IBlcNNwIOgnOFYIrrLqZqWvJrdHeCf7bnrSC7W8KfirkINz9pGHeCij4f378DCfGT9dvieb4u/c/4939jm0/smlmUlGm5PFa0L3DH8CNhs4gK2E+NaZz8I+CHyFuhHBlNI+Gm4RSlGLCqons+0juPMUJaQViMJ4puatFmYfia1f7L29f8Xp7xz9On/Mvv36D85ndekTFUIxtM3F7WBGTo7lTutuCKTz+QBleZWyT0XtPuK8dmXsYzuv7/EEYjoHtamTTTMw7x9VDQ1oL/ZUAMF5A8YZmoTgDheLAX91vuHlcE3+9Jr9I7LZH5uTIRbjoD6gUptkzD4H1CLkVplOhBPB7xQZF41KtVOvILQwvFT9A+E3L4ypyvjqwbSeu+0xpHKa1kBKMEsBy1aZptUJN71Zsf77BjUJYzfRNJBdFxFApHFNDyYpeV5vIDeQOpIBGQSNIrtUDaIT21uhvCs294UYhzp7bYUXMjtAmzNdzfvuMWpRJ9UF/9qXQPhZyJwRnz6Aan0nmyKY0bWJKQvvRCAdj3gki0D3UTgwHw49GboTiYPs2Eu4mrv5kQ14Zee957FrO1gMhZOauYF5hqp3tSi0srQzzRmkN3zwsBwYoRThMlRknxpwdU/Ks2pnxRwP39Lz8BZz+KlM8vP9CcLOQPpnxXeR0O3Dz9hQkMP+sYbwwDCDXQgxQLdAUcmuEx4XpAmljlKa+EPD9VWS4CCCGiJGz0rczXkv9jAlT9LXST0c+nDuadwE3CuVkpmSh30wMlytuvl2xulb2P4LcLkIOBn0muEwxwUwQrbpyk5FbIW4rGHMgqVbg5xOPmw2dhTh5QptQARGjc4kclNv9ihQdlhRtMumzzDw55OiwtjA8tvVAheObhI6KRMGcUfpCs4psu+lZh4jV+RrrIwI6Ux9K1ZtPndA+ZPwhMB0CxRdyqZUVhKCZvp3JWcmqlMmBUl+7SGgypSj2YqbtInH2JA3I4LCmoJvIyWZg145M2WMmWKmTw031Gil1zprUhvAH8O1dBqnzLa0csQnMbUJkpJiwa0b8rvB1UWLIxOhIs6PMDsuK8xFHwQxO1lWHiVBbX6DrZ7bthIqxnxvmyUOsSUNzwY+CH4X+uqDRnkn1uVfCPuMGcCOUg2NeOcbkWYcZL4VdGHmxPvLx2KNaiKMHA3FGKcKqm3k8dHy4OsEmB0XQKJTTzLafOMbA5eOGefakySOjLrMVuptq2LkRcqhhAMADSDbcZLhZKEclHhsem4yKkYqya0bWYWZqPMc5ELpE3PcYmfh+xXC/Jl9kcEb3TQCB6QcZcZWBm7sNcd9AEnRSdKwuIAbNQ2Z84ZBsNRgYYIbXWIXo5io6KTVrDaGhFGHvW27DisZl+hBpfaLxmcsPPZjQ3ir+APknM/1q4lE26MHhDoq8yFzdbLH7Br9fLF3AgpEbcLMRHiIlyPLdtTsp4P0xk1ut3jHAvFus5RAYTZjEeDRBneF8ZtXNdE1EzyfCL1eMryMSCn0budgc2D/0NG8DxRnxpiPc1bNTb1hTGZQohH21BU3VlsxXv8NA1PDNzcDwO+vaEbkyl9cGatjosCJIEopBUbhzHbqOrLcj+/OW9VeBuDOOF8r/7lvkY4MbQBohfOOYXhhpWxtMj1X0fi/4Y9WVxExznypT32kfj9XhCdXg/FFIayE3gDPwhgWgCDIp/sGh145RO9gV5pOqzXDrKc7jjzWv+QNML40SjObWsf0f6D8WcgAx4+PnSn9T9a1TJq09mr/XlWnb1hEUjeJrS4QHxRyUbUJ8Rd2vJ0TgcNsjR0d36Wg/OtK6xhYK+Emeh3HcwYs/vuT9Ny/Y/cJz8be/rBL57BPu/2ALi2fVwZ8xF7BSQWNPXVkMNxv+CMdXhj8K3aVi1w2mVXuSO3ILK4HxojD+MNNdOvwR5hPIXR2+bhRKFHJjfPjqHNlFNHnKjz4hrwPHVy33P66FSzZMBMwQW0BR//u4DZivomvvCvNOmc4LGoXT/4LuLrP5zxtkmCgvd+x/vOXdmYLBdFYIeyH1RjlJkAVTB4U63Itgo+Pyi8ztT3dorDuChUJ4UNxcgehxxrceSQWJBYkZb64GNikQBqO5h/lMSJvC3efK9v8c8BKA4cxx+FTI24TbRsp1S+6g9AVtM6pGEojqFpaX4OcK6aJAVCQJOlbx+0MGr8g44x4c1jrEDCkFr8koVHAYtPeFYVDyCuJ54vZMuBsV84b1Eb9KbPqZUoRjCKQAsk40bcIMSi+UAkmqb8lU2X0KkzoL/iC0t0buHHl0qFPixep5W5dieClWbaIYaVXpbe8gbgXrDe0TelI9zPs6E6fJgwmySVgWQptoQiJlJQlIl2uhSSogW0xzqNajc/WtuFbCXpGU0blQQi2CbIv4lzW/uGVxfTS6a2XEU04ByVhyTIemAnIF0boXqjNUrS4vajUIBqEA5hRLUpcBAZsEnGEq1QFkcQJVTL5jCxG8ZINiNepSNxSoW7WpMudAWTlKm2tcAMwUfMG3CSvK0kw0vua3UoSYnzIMWFIMJfeGW3zOlGUZUcqmq4BiQVNBUsG7MZNbh8SCZqX4ZQ1bFg4/QBKhUPOVNHU4t12sGpKMLIkgZkdZshzU0YIthm61GTQtz9/biFAlvL2FslSogneHmRK6CkjA9Lscnts6DZ6iyNOf8xkRewbktJCKkrPWgJnrfLS0sJkFiYvWrDIm5cmzwERIr87q1dcbRiXmZ5RPTgyg+SnuUjWSlmssghUlJYdIPTwtgFJ0NemmmnRtXn6qSrLoZ6nEKgFSFoAKufeVlKVaT0zonDEnuNlInSGljhbNYLFuyGJUIWu9KjOI0T2zVoqQs35XWa7FPIMpgqSa8zXxPLQlGaXxCxsLbgMvMaFDIve++sdYuya3v60Li4JIpToXITuH69JzQ5SFFYv6zLDk2pFS6vYjhe9tQ7b8+JIqpjEjuVQGzRbGHo/41mGuQZo60P0A5oSoIF6W8SEUlSpmMfLwVKlBWsqNC0tZcMPSgVLZl2UDklTjlT8WNBb0MEHKSMpQqp58/uQM9+4Wf2mUcEYJgqnipip+NwvmIPunQxdfyoKpPWvmydkl1yuTLM9A3LIrSq5X6SYIB6P5OCNThFywJlDWXb1OEfzhzZrNmJCrW9xxTWkUk2oZbhSKB/VLtzaGLOPLIvVenrRSKlBJUtnJC7jlGZ5YMsIB+uuIO0zkdYud9N9d49Kt/w+jOu6nMzi5IgAAAABJRU5ErkJggg==\" y=\"-156.770539\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_39\"/>\r\n   <g id=\"matplotlib.axis_40\"/>\r\n   <g id=\"patch_98\">\r\n    <path d=\"M 288.032909 194.770539 \r\nL 288.032909 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_99\">\r\n    <path d=\"M 325.522565 194.770539 \r\nL 325.522565 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_100\">\r\n    <path d=\"M 288.032909 194.770539 \r\nL 325.522565 194.770539 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_101\">\r\n    <path d=\"M 288.032909 157.280884 \r\nL 325.522565 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_20\">\r\n    <!-- Happy -->\r\n    <g transform=\"translate(287.4193 151.280884)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-48\"/>\r\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_21\">\r\n   <g id=\"patch_102\">\r\n    <path d=\"M 10.957047 239.758125 \r\nL 48.446703 239.758125 \r\nL 48.446703 202.26847 \r\nL 10.957047 202.26847 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#pfffbbf4ae5)\">\r\n    <image height=\"38\" id=\"image255f14a783\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.957047\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAOrUlEQVR4nE2YyY9daXnGf99w5jvXrclVHtp22waaDnSTbqBJaBBSxJAdIoqUTbbZkE3+guwiZZMskkWSHYusEgSJECQIMgAhjeim27g8tV0uuwZX1Z3PPdM3ZHEtlN2no3OOXr3v8z7DJ/7j0VX/zPT5m/232b+zxa2PH/CF9btULuC7f/E2g+/dRyQJrt9CWI8PFKKoEXUDzuHTGJxHlBU4j69rhNYgBFiL3Vqj2M3INxTFpqDccLiWIemVeC+Q0rE8zbj8bU/27gG+aUAp9F51gZ5a8gc77/D31Vvs7W9zMRuTqIb+BzP87iZOS1ykcYHEJAoXtQinBpU32DTAK4FaGryWCOPwWgIQHE1QZ1Oy+ZLkuMX0eoaNJFUsKZchQnh0aNFTRbAs8f0OHJ7gJlP0mWnzdvqAY53y57e+zd8d/Q7/dvcWQsKVvkCWFpNpFrshqvY0qUAaWA4VsomIJxYbCtxmgC49svEI4xHOw1YXPSmR8xz19JTB8ZjW03XGN2OKDU01cNRrDelUoPIGhMCXFUJr9N/+9G1e+eIBV/WIiUt5rXvAL8xl1CigaTnMekiTCqYvQ29PUGwIqr5HFxBOBKqRCAvLTQkegtwTzj1egGopEiFQsUZOckRRET44YuN5i/M31qk7Aryg6XjksgbrEK0MjEEHI803/+mPWX/lOa+uHXJ7tE2U1ah7EcVAEC4cJhbUfcvkayVpXNMsI5qThGAm8AKQoJee8auO6FRR5YJo4vFLqNYCTBzRfiyBNvpojKhqgsKtPqwlTnu8lIjn5+A9ot9Dt/ah88QwebLJydcXJEFDv73kdC1jsOdpPZyiqg5ea9KvLfjqhdu8O9vlfrrOouyz9bOSphtQrAeoXNJkHhuDSQSqFqhS4jQ4nRIuHK1pDMZiYoGqBH6ukA2Uu23S6QK/yKEx6GJD0DoUDD8oee+jl9l56YzzSQvbsQgv8IEiOq9oKzh4PGS8kfLp3iNqq3l0PEBPShaXYuoOqEJgWg4Tgo08qhSoSAAwviVIjzWy6RGOaqQBaSB7JojGnmKoSJII4T0AurzQcOoD2vuK5FBw0u2wvTblyHfJHtfMr7cZ3VLggajiWdFDCs/d5xusPzb4WJNvScoNCwJ86MAJvPK4SGAjCRJkJag7MLoZ0D6Q2EAga1ClR3iIRxYxW+CtQ7RStEwN6YmmyQSDO5axSTl9zaK0RVQNrcc506sdTALZXsTPz27x3ljQ3Xekz3KKrZT5DUO8VlAtA3ACoTxJVrEcpbjYgBXgFV4KXAjLTUXdAeFg/GbNN9/4d350dpPbP7vKxR/UxM9m6LRVsbgU07vrWQ4l4QzyBy385QIXh6inp1z8bg3eU2+2ybdDoqkhHNeIxjK+qdm5cgzAqWuhlENKTyuu0OuOoghpFuGqg6EnO4Rw4ZldB9YqXr9ywNSkvD28y2e+8iH/cOUz9L+zhpY/6jH88jGzyRbCQdOGYC6onybYDFSa4LKIciMm39BMb0B8FhDMNempw7015WbvOXMTYb2gNopOXGGdxGqJykrqyFDst5G1QDhPMLeAIk5rjvIOpQ1wXvB02qUexYw+JtCdA8uiCik+uaT/gwRVCKKpgydgU019oUfTDhhfD5i90vDxGwfMqpgnxwNGRvKNl27zUnTK1KZsxTNGdUYkDbkNOVx0KY2masBFDlVKgtwRzhrik4BmS9FYxf3/uoILQC8FW/cd8XmDVoVjcbdPemOCCxMu/MsBfpHjrmzz7ItddBHiJcxfL/nSzbu81b1P7TU/zG7RDQquxc/Z0hMGesFuOKJ0AbFsKF3AvXSLh4shH9o1ynZDkCvikUEuG7Ijz+gVxbIKAbj0/RoApwXJwQwdP19y+V8jine6dD84x40myF6XxUst8ksWPOilxC81P312BYAb2TGhNFxNzuipnExWdCgJhKHxGikczkssktxEnMUt8iJCWFCFAaD7oGB6PaFMIpQAG0rShyPQCk7HaDkriJ6dEe0BUQhhQLO7RtmXqLWCfjfn9EkfgFc3D8l0xU9HV9lNJ0jhCIUlEJZM1MTCUnqDRVASEIpVEY2TNJUGAcI4ZG2Qi4JL3wMXKsLzJWJZIYoKny/xRYFGCFAKX5ZgDCIMsYmmbgu+fOM2n20/QL7siEVD4zUfFLtMw4RENVwNT0lFRSZqAuGwCHqypvSK0gcEwnIhmvAuO+inEcKAXDaIZYmfLwjnOX6th1iW4D1+NgdAZCmaF0yL8/iqhJ0uy82AuguTJuHl8ASA3Iecmg7DYI5DMNQLLAL1oiDlBZGwK7sjHGuyoNETchexkc6ZnW+RnRhcK0S8cBC+qhHLEtdJEWUDSQxVha8btLBuVZhcScfio0POXxWYjuXxbI3j9Q5X9QiFp1E5wYvxKBylC8hFhMKjZIlDUHoF8KJ7BTvBCCk8TQtMuvJpdtBCNwZaKV6plYB7D73OqpRl+f86BsjNdSbXNE3XIDLD8bjND6av8CfDH9MWDbBE4VnXM5yX1F5xajoc+j6prNjQc2qvWLqIWDZc0ecAfHC0TXWx5kwHSJOQHJWrCWUxLglWDrhuoDH4JMK3U7RXEqEVSEVzoc/8hqF/Ycp0mmKPUr5rP85X3nyPK8EEKTxSODJZcdz0+PHkBr883sV7QTspeWVwzG48JlUVCk8sGt7Jr/KHN3/Bt+58CmlDVOEITqb4VgJ+5cPEssKHAWZnsHpWmBX4fRojgNFHE8AyGWf4UqEc6Icxf7n1e/z19X/E+dW4G6/55eIy//mrmwRjTbNZs95eMG1i5maL8zIjkJblWkjjFQ/ydZplSDqC5CiHqkYANCtYuG6KnBXUnYDRRwI2f1Gg0StM+FZK1RPIUuKUAgk2caTPNIffu8S3/ugNvtF9h9IGHDdd7s42SB8HdB85yl7ISbvN/t4WeAi3llzfOOPX820WJuL9h7u0PwjpPWyQZ1NwK1wL68A5XKQxuz2m1wJahw4vBBrABwqvVgW62NFeX2CtZDlO8Ap2fjjl2+Xn+cKf3uF+vcV3jl/lwaNNLjywdG+PqbbaPL3YJrieE4aGVlxxtsw4NB1m85T+zwP69ypkbVe+Pl8i4mh1jiNMqlnsrBRGNp6qH6BF1SCqhvpiH5OASAxaOtpxRRbXnNZ9Tl/vEI8cf3bn6xR1QPG4TTKWFEPP9PeH5NcasuGM/DjD9mrqWhNHDdcGZ7w7yejsG6LjOT7UYAyEAX6+QLQyfBISzGqijiaerhbx+A216hiNoUlXR19oijRESY9WluRQE+SO6TWJfX+N6FywcehQ1Yt0pAXtvQDhu0Q9qFPLxZ0xbwz3SWXNXrqJbKLVv5XAt9LVBtYNPi8QaYxQYtWprqTqSUzXomkMPgrwWhDOwEWKMgrxHpKoYfsnFfOLIdX1El8qotEqpiVHJcI6sqMAkynmO5rZTctbNx7yqe5j1vWcR9U6nbSk2GgRTqMXATmCMIDGrBTAOmwaMt9VtA8sy02J6ldoAg1KkT0YI2yPqQnwMqTqKxjA7HLI+Scdn79xn8fzAafDFk9vJeizFOFW3t5rjxwWfPXlO/xud4+RabFfDdkv1jjZH3Bp7rCxRi3rFcN7v5KgTsbycpfxjYBy6Gk/hfnLhn6rQP9mQ8qa9H8fkzwbcvZaj+W2pmhSzl93JNsLbmXH7MQTRr2M8LLBOEXjJcYpChvwZN7nw8UaUtxgI5zzk/Or3P+fy2z9yhOOS1yoEJFGzkuYzhFSMn/zEpOrGhvD5jsWLyE8VyxGgxci7hzUDVQV3H3ExnyL2Sc2mdSK5a6jXIbcyzcZRgsSufJNuYuQwlHYgL3zDWaLhGkSs2xCGicZ//cWg31POHdI45C1Rc3L1Z1GUeJe2qEYKISDziNH6845PglZS7rkW/IF81uHr5sVQL3HHR7TVpJgMeDchBRFzLu9C3xseMyT+YBWWDEpE2qrWBQRxVkKoWNRKRaThOAoZOt9Q51JovMKdb5YBVnr8LM5otPGRprZVQgnkJ40LK8NyPae034cEE0iNFKCaVYi/oLLVsninKQxbJ+3mV9tMSqGnH1hwXme8uTeJu2Hq3ebLU86FaRHHl16vIRoZolGNfFzT/DkbMVbaYKvG0Qcr/zWk+e89M+e2fUW0ZMRomqww+4Lv+bQojEg5W+ujlSaYLcHeO8RjUU+PaU7K1D1kP3f6qOVw+tVAYO9hv49CCcN+mSKTyN8FGCyALlsUMfnoBSi28autUFKcA5RWVwSUK3FdB7m+CyG6QL1fIzZWcMFAk3dQKDxnQyXRZhWyORaRJh7wpklmxdQVLTfO2b8s13Mp6fomWL9lxV6UeMijR7lVJcHNG2FXliatkZ4jzrT4D3ltXWWGwHCQdUVrN0uGN9MCHKPMCE2Tki0xAeKahCRHOasDFJZYXop9SBGVnZFA6HAS4FPIrAWv8jZ/f6Y6nGb5ESgKks9iDGZxvRT8KAKhwskNhTk2xGjz+3is4RgWhFNLK2DgtahZXQr4exzDSYRhNOa+Kzk+W93mF9O8VJw+noX7Y0Ba6l7IeVA0X++JJ66FasHYqVnxq5G/fSEm3+1wIcB1cU+etFgWgHCeaJfPca8vMtyJ+bo8474WGNantZhm7odkH04odpug4DlBYE+C+jv5dhUIxpH58Cw2NIUQ41XvBiltbhIUHVXDdS5xcQaEwt+YySDAKHUakG0YnwjZPh+gc4N+mQK7RY21cwuK4KZp/XUE+QepyU2Epy+uUbryKAKy+DXgtPXJEefbVEOPdFEEE49i4uQnEA8cmhfVYgwwAYC04J6kBBOa+quxkQCryUyDEBJ0ArXSfFCkJ6tuElUDX4yg7UeeIjPPO0njtb+EpXXeCGwcXvFfZt6hbOewEYO+9YMc9wiO1SMPmlBeLr3NfOLEu3rerXKUuAUVANNeJaj6hgTKXygVrHOexAC043Aetr3pvhQI89nOGPg6DmRlERPVnooTycQhbh+GxyMPqJYf88w31FUA+jeE8hfd1gbWZ69/SJ3aM/5Jzzg+T/G2KruscLnLAAAAABJRU5ErkJggg==\" y=\"-201.758125\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_41\"/>\r\n   <g id=\"matplotlib.axis_42\"/>\r\n   <g id=\"patch_103\">\r\n    <path d=\"M 10.957047 239.758125 \r\nL 10.957047 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_104\">\r\n    <path d=\"M 48.446703 239.758125 \r\nL 48.446703 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_105\">\r\n    <path d=\"M 10.957047 239.758125 \r\nL 48.446703 239.758125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_106\">\r\n    <path d=\"M 10.957047 202.26847 \r\nL 48.446703 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_21\">\r\n    <!-- Neutral -->\r\n    <g transform=\"translate(7.55625 196.26847)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-4e\"/>\r\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_22\">\r\n   <g id=\"patch_107\">\r\n    <path d=\"M 80.226013 239.758125 \r\nL 117.715668 239.758125 \r\nL 117.715668 202.26847 \r\nL 80.226013 202.26847 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p946616853d)\">\r\n    <image height=\"38\" id=\"imagec352b9f7e1\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"80.226013\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAL8klEQVR4nF2YW49kV1KFv4i9zy1PVlWWq8rdbsvG7RnjGWRZWAIEbyMkJBBCvPE/EE888Bf4H0ggIcELV2lezUWIkQfbY3tsj/tid9clKzPPde8dPOzT1QMl5UvWybNXRKyItWLLD//8Ly05QPg/fxrAd+A7Q2fwo6Gz5X/+v2cBTPOXEg1JL76D5AUx0NlwU0LHBCqMG8+0FlIBoRGSBzfm81aXEe8P+QUo3AE0cBP43nAjFF3CTYY5SE4wIR8WMlATATPclMH7PiBTwrwSKyUVivklGhV0ShS7iKkj1IKpIUnQYPjRkAi+2hqxXKIrMnIANxq+N4qD4buIOSF5JXm5AzivYV4LsYJUgMQl04eC1XeJ9eOR8mbEVEiNJ1buLsO+j6RSMFFASLOhIZ+rU8KXu0SshFgIMRrqQdKS1t4oDhEJRij0Dvi8FvpXheE8YU0AtZzpJBAFHZThQhg3Ncdfe8rrCbef0NGRKoeJoHPCDQlzudQmmS6+S/hDwJfbQGzyobHUu4z9MvpUKubzj+dWODwQxouAO5kpqxnv4x3txskz7itm7ziYkoqC+spRX0bK7YSOEXOaSz9mMrpB7igkyZhPCnxxO6JzQawULYxUviAx6JyQkKBUTIXQCP2FMG0S1AnnI6oLz4AYFTNBfObXfGygMLfKtBZWz5RyG/B9BAMdIxKN4bzk5nuO6tpwM9w+FPz2V9fUl4FiN4NIJqoTJBkyJ8QglsqwUYZzYT42rI6IT0z7krl3yCRIzCVJhUFpIIZViVkWblaCeUdohHLnqC4nQut59kHJ4d0RCIQvK8wZ4/0Z/+wDodyWnHzuOf55h5sjskwFUmK8WHF4zdGfC6E14jpBYdjo0J3DTYIpmDNsKYvsc4PMr0SsMKIZ5g3IHTqvhFDXiEH3g5GjTUf3+QkPf/Qlt2PN89sWLxHGs0R/q0xHLeOpsPk8sno0kOqC7UPPeCrM6zwuzBnMgh5yh9mbPet2wLtENxb0+wq5LvE7QTvFXG6m5GFuDZJgkoNprozyq4r93nP+E+F/jl/HtXPu2vUvhPR7N8S3hO13Leevb3nyXsvZv6yIJYybnKlUGhJyx5kaVhq2ipRFZI6OcfaEoLwgnHnwvaCzECvLJRYjFRArQYMwraG6Ap0c9XWg+bKg+q0d+09O8e3TyJMvTnjjvaccqobtvqZeTfQXDQCxztFKEHwvlN++mNZQ3jjCqmRe59pLgqYT2seGaR7C/Xl+1lwGnApIJcQZtIKiMzQK5gQ3wu7TU46+EvzN9x1v/PPMd5cP4LVI9VFFdZOH7nS8lG5pZQDXG/XzfJDvDUlGf67MraAxj5TpWHCTEWphPDPCSYSFAogSyIFqENxoYLB73TGdGr6TPNTPPgpMR472iXHx30Z/ZoQmR2U+f5I37G6UKEPI2Ym1YH5RDpdwY55Hxa0QojCcG3ET0CYgAmnW/C6naFDcnJvk+KvA7Zs+V0aM4Uzw1dWI7zzto8jh9Zpxk6NIHmJlxNpIdYIqYlEYKwcRXKfozMIflrIbOglhZcybhL4yUrqEc3mQpkIIhSeaJ3nNMuhy9pvLRKyVVCyqgwhujITWs31bCWujvJY7LqQ6oe1MUQVSElKTuzEcKbLz6KggCSsMGRQk86i+f6AqAtEEJ4ZqBncAonMguezmM7+KLtE+YVEg8FgmT1rUf94kqiuXhbowKBLOJ4oiomKoTHiXOAwl/eBgBJ0Ei4LfC7ExdBbCZ0cMD0Y2mwOljzTFzBQd/VjeNYqkbB5CJVR9wo9G81XPdFrisWx1TIX6ytDg0Pkl2X/Ze3kXUYEQlf7ZivXPPeXWmE6UWGR9XX+zaOqREMuSeNwDkX4u2A8V01hAUCRyN8hjmbkp0UCE8nrCvzjUFqNW3eSnQyNIyG4hJSVGJUgu4zAWSBKmY2M6hunefBdI3zmKrWZ52gRiUm67mnnyxKD5uV/6mCyUKQTfJ9xuIJw0GZg5xQ1GtU24MdGfe3TOQNOoRHWMBrN6RPKg1NORSUskCtoEmtXEPDvCYZX17l7A1YG+K0m9RzoH3jBnaK931RDLDRBLobxNmHN090v89ErJ9mGBG4yLD69Jq5LDPY9EcKMQRyHhSGN2DuYMfAJnyCoglyXypOawLpBJ8X02jkQh7gsIgt9lskc1dM7PFAfJlFkAhkYJjWNuW8pdwh/u+Tv/pbseVO8ikQgyCwpIUDTk1MdaMZ/tMJKHsEQBNVK1+KoomEGxdVSXGURYucXnZa8nCWKRu3JaQ2g8+keXXH36Cv7om5nQKLs3PIdfe5X6u4G0mEJJ4AchLZHpLPghd/C0MWKd0ElIpWFFylkpsgWyOuKuPb4TTj8LNE8Htt9fMa2F008nwipboOlICSu509ir6xYrDR8apbtwbN9JpKLgbHGVYsuWdMjR+8Eo95mDoVG2D5X+AaQmg1qddUuTCPNtBZOyepydr+vzOzcf75k2FRoT5h2pyICqm0Qshfo6Uf19RWgEf/M9T7kz9HzE/7RmOCswBZ2Mcmc0lxE3RG5/pWLz4WOIifmNM3ZvtrS/cAyvGLGFcSixBGl0+GtPfZnHz+rbQHk9InMitgWxcXT3CqZjQRLonCsQamH7tmPcGG4S/Pw7O/y/rik+aRbPlPmW/Xf24P4ws/ksgSppswaDzc8iw6mCCQNK8AWoIfMyo5Z3TMeOsFohCfqzXLZ5nStXXWUX4sa8IflrWD01Lt8HP1zXNAa+h/kIjr+OTGslNDmK/YOCqnUUu0B8eIYbIrF2SMoamQoWd5obhJS1L7QwLSJtTpiOhOkE5uOEKaweayZ/lfcIc9A8M9wE8d6Ef/uvEtjE09+uiBX0Z47qNv84NMJ4LHT3Hb5z+C4vwGLG3MpLZ7uMaRMDn4EmL8R6yf7i60KbkAjVc8VNEFa53PV1ft/+DXC9UrUTXqfEfOTp3p5ovirBYG7kTs/cBPMxDBcJiYLrhepGkGV06CykaNlvLc2VguVxk7jb6ttHRnUlpFKYW5iOoNyCmyyXcjZi4dBoVH/d5smvU4Ko1L95ybOHR5TthHzSUt4I5dZYPYbpJMtJtc13GaHJAziV2eFSJMQtq5waUxJiLaT75IU4LcGaIQHK28VMVsLUCt2DvEBf/Hve0DyA7wL+esV47nn3rSeoGJ9+3VI/h+lEcFMmal7loD8X5hODZMTGsOMZX8UXfgApA7MaqXY5k7aAA+TgqTrF9Tmjw5nQv2ps3nvO+6fP+dlH73L85YRHQfeBN/9xIv54RVe1dBeO+9cJE+hedcxH0N2D2BipWlYxb5BAqkS1mnAuEYJDNXuvlJT44vYlSe7y0eEPQrHLnTi3wtkfPOJP3/on/uKjP+anf/MD7n3S428HPNGwylF9u6d785jVox6daopdyDdAvkKD5GumhUPRWR4NhSE+kaISgyO9KNeSHS1ilqwo2OTQXih2gj8Yvs/gvvmPB/zZsz+h/MmKi49n/HWPFS6XUqIh2z3VdUXySnE7071WUV8G6quAxtx2g728Dco1MywJITosKETJ2VmEXpbLFosKc24cP2StLHqj2Ec2XwRkMjTsICyqEw1/t3WHgH96w+7X72Mi3LzjaFvl5LMe80JyjuRzV6VaSYXle7EkMGsW8bi8S7OjNV34lQTXK24Q3JDvwNyYb3tkSrhuAssmUaIxvPrCj71o8++eU9xeIGbc+zBQPeuQbgQ5wUReAvPCLA6rJPNsVnRarpNc3thJwAJcIrhesoMJ+XaxvA1IMnTJkjnHfFpz8065LCOW1yk7XiPjhBsjJMP/58dIUyN1TVEWmG8zqEIxySBCmw2fzFn3xBY+aY5WFscgIW/lvstlLHcpjyhA5ggixLbg0Y9Kfv8P/42/+/FvvPT84WyNHtW47YB8e0kCUj+gVYVcbSm8kpyQnM+BuMXeLLNLYu68zL2cMYncCbUfoNgbzfNAsZ2wUnH7aVEM4eadhvd/91P+4Ysfcv5fgr9bNgRS5RGnOEuQDCxhuz00NfLNt1RyP2fO53tYDUIslwzxcvPJQDMgDXkgF51RX0Wq5z2pcLgua5V5JRWOyw8S5f6Ek79tWT8e+V+L5t7+FjDPsQAAAABJRU5ErkJggg==\" y=\"-201.758125\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_43\"/>\r\n   <g id=\"matplotlib.axis_44\"/>\r\n   <g id=\"patch_108\">\r\n    <path d=\"M 80.226013 239.758125 \r\nL 80.226013 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_109\">\r\n    <path d=\"M 117.715668 239.758125 \r\nL 117.715668 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_110\">\r\n    <path d=\"M 80.226013 239.758125 \r\nL 117.715668 239.758125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_111\">\r\n    <path d=\"M 80.226013 202.26847 \r\nL 117.715668 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_22\">\r\n    <!-- Neutral -->\r\n    <g transform=\"translate(76.825216 196.26847)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-4e\"/>\r\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_23\">\r\n   <g id=\"patch_112\">\r\n    <path d=\"M 149.494978 239.758125 \r\nL 186.984634 239.758125 \r\nL 186.984634 202.26847 \r\nL 149.494978 202.26847 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p3bac3b3020)\">\r\n    <image height=\"38\" id=\"image7b314fd03b\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.494978\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAL0ElEQVR4nJWYSawt11WGv7WbqjrNPffe18d+MXbsYJR44iCEATGAARkgJjAikwwQE0ZkwhwQzJgyQWKGkGgkhGAAKBFIIBQaWQm2aWInz857fu1tT1NVu1mLQV1fxzGxTUklnSPt2vvfa//rX//aUu+/YHzMc6Y9L//5V5g9dKSVUQ4q8WDAe6NkT9Nm2lgIXnFiiBileqoKTaik4tlsO/JJSzj3zB4LtZnmvvFqpru/4e4XD/mPX//9yzXDx4EC+N3HP0Hohbxn1LlCo5QxUE8a3CBkZuT3BhtoczGuVUJX6GYJ5xWZV2p2DFehPRY0wpOXIj/5W3f4q6f/CHCfHNhf7zr+7B9eIWTIh4oFAwP3pMH3gjnQCBYNE3AZTMDvHFqE2nsGIMRKaAt57ijO4ZMnbKB/uec3bv4dXpYfWNf933Cmp5rytbPP0R45age2KBAUksNlwfeCVNCZorOKzSp1oWinSBb8zkGF0gdUBcRwXcGCkReGNmCPW+7V5YfW/khg75Qdf/vHr1BmRl1UfFuRYEgWwkaonaHx+2YKBq1S50rYCmHroMg0xBniDZyhM6V2RlgLO23/f8C+cueXKEuoneFWGecUGzxh53AZXBb27oAbBRkdMjoQIzyJLO56amdIAbf15OEiahfgLSq1hbATzrX70NofybE3/vkz0Bo6V/aWA5vzGeHc0z0S/AjbzybGq4HnPv8uX7jyXfraoAh///YLbPbnExcHx+yhY+cb9LoSQsVaQTWgjWFOyPZhGD8wYl/t/WWGyaxQq8M9bjj4T7j9l/fpjhUJRry1Yy+O7Iee0zzjStzy6cNTnnr2CX6V0UVl/9vK7IGjnjaYCT5UcIY1hkXw6CeP2K/+45eJBQiCJU99fcXqPuzfGdm9eI3himP5zRZoeTMueePwM8Qz4Z+ezcSjgE9CO0KZGy4rt7+65t7P7LFtG3xX4eJYa2e8na4BJ58MmAuGqwKj4Z4Elt8FDfDgxzvSvlEWFYsX2uwNaZT6tMLoKSul5gvCj8LRS57zZ/aQCuEoUg4FquAGwYCvnzxLvvJfRPEfDez11FM3gTaBiWDe2N0QwgD9DUUXFWkVFxQRpqMBzCA0ldJNC8SmkIZI2QaGaxPX4rlgzmMeUEGA1+49hT6vwMcA++17P8/87UhtQaNRZ0ZZKmHrcEVQAcsO23l87ygCYSv4LNS5IdEwB/Wm4YNSZxUZHFIhHVxIjBhSAQR5a87w04VW4kcD25WG2kLeV3RZkGYiZ547ZDN9Ir1j7zueuDFqFMoCMGjWAirUGWxnDX4vY4OnO3L0txTdK+ANRo9VgQKuCB75AIYPANtp4me/+SUePtzHzw1dFuIy4b0RQiWlQDKQ3hPPHBog7V2QuAUL0JxCd2LsouB6R42eeOwZblXcYaKNBa2OGhWrDZblInL8YGCvpsDJq9eJAmWl+FnFe2PWJoJXoq/EWNkezRFzbG8rrkxJIVdGfKysj2ZsRsFaxfWCWwfylUpYJfaWPWZCUYeq0BeHjhFMeDMLX/7GL/MLz77Gb17/BvK9tue5v/kV/FFEqlCuFNr9Ae+V1XyY7AyQquf0fE69P8Oa6VM5SNy4es6ySbx7umLYTXrlHrboXJnd2jBvM8t2xEzY5UifIuMQySct3YPA8q7x5JUCBr/2U1/7YMRkF7AArgBuWrSNBS/GLE7GZhYz85j5bnXIoxYciDO2Y0OpHlWHZg/JUQ8K15865bDrib6iJqgJY/U4MdQEvKHRWP+QQFR8W/nDP/ni+8q/0QFZJcL6goQXwMYcqBcTelHUhKEEFssBu5rQ/XxJ2/WuxXtFghJWiZtPn3DY9bSh0PnMPCQAvExzN01BWkUbqO2UEAKkK/p+xH7v6AvoNhI3wnBjysJaPLV4TtXBckepU7EdcqAUjzgjNBXEpoiEaZ+hKbiLjRVzeHWMpSOpJ7hp7iZUqk5F3xw054J2jjp3EG0CdlJ3/OlbL7P3rUDYGf0tIDnK4JEiaBEezGbIvOD8tGBNDqqg2dMsEk5g3iaGHABPKZ7N0LIZWqKf0k5NLo/QiVHrxYGJ0Z4IaR940hB6mYB9fTxkezpj6QCbXtd72seO2WOjLARwmAS0gbw06rU6jQ02+Swxqgr9rqXsAhKM7WmDS440CCjgJsHWADar+EXBLsCZQNg6mnPYPHNxlC/GI8QZouAquCTEjXDwljJ7lBkPA+1JwWWlv9Gwvu1Z3PWc/GjBbTx16bg233IyzCZQo8edCS4L3eOJgc254QeozfT/5POeGhWygE0WfX7fqJ3g8oWOPReXSFBmjw2fjNA7/ABxo3T/8wD3/A3CSY97dILUW5jr0CAs3prKVrrmUBPMBOk93UOPy7B6Wxn3Ye+dwnjoWd4bqdER+kpeztm4iDY6cXQD3amyvj3V0UvyWxVW3xnQxnH2XIt5OP5cwJWniOcJ2Y3orau4VPHJGPcdYTeJqybP3dODiTM2yY3LEyWW9yqL/35MfPqQeLyDK/Mp6TOEtaCtRyq050ptp86pe+S+T8eq4neKTy0aYTww3vk5T/d4gcsL8h4s7xppJYhC6SAdKr6rlOLQ6rBo5D3DjcLpDzv86BgPbjF/VBhePOD0eT9tpgVRQarhMizeHZFcwRbkubwPTLzhNyMW/QURIa2mDmj3QgEBdxZIK4cfp2/G24peTywXA7U6YqyUhafuHG6ceNNfN7bPGBYc6BROt3OEnVy2f74X/HpAhszeHUd/q3sf2O/82F/wB9d+kXg24Ar40bj6mpEXntoEfJr6ybSC9bNKXVXag4F5l2hCpU+RNhZkZayr4IeG5kRoT4TNpx12a8B5Q1VQIu40EHqwKLQnhvQJTs6I5xvS4TOEasr9uuPfty/jhwIiuAT9TeHss9CeCOahzCDfyOxd23IYKlWF4JUuFNSEa8stYwl4p3Q3CvmKZ72ZEb81Y/mOEN/oGK7J5PGaiezjVcP3wuzYkCGh/YAB83/5NuH1nBis5fWzT+GyIkPBjwYmaKv0P5IJsdLNEgexsGgSwekliFnIjDXQ+kLrC32ZzF47K3xqdc54M/DuyT7rewvCFsxB2VPyUgi7SRra44z1/XR0tUIphFu+cugibz64zgunawgen99PCAzcheXxTml9ofOF6KaiPA+JzufLUjMPCSfGXhjpa+R4nHN1b8v2uUwqnnFosG1A8mSju2Oje3eN9cPE9abBciHc8ItpwL8ukN1jbH85KTpcOgcRyNUTvTKUOLVgTul8mcTTV4o69uNkj5wofY087PemeqkOEcNsKm8IU2OyFRb3C3K2QUvBzToQh3g/uYtqU1eMCLIbcMUuwVl11CqoumnH1ZN02q0yuY7GlctIta5Q1JM0EN1UqNUmtfdep6KvUw1qzqF71GPbLRfFFEJA2mYCpu+hKAWqEntFDKQIlhw1e3L25OpJxWMmVHUEqcxDJoqyCuMl2OCmCGb1FJ1qYVVHKZNfQ0AU2jPFrwdQQ7xHxxHb7aBrJ2AOQQxsfw+8I64rUkGyQBF0COhFsY1e8U4RMTpfcDJxy4lOL0bSQNKAmlBNyMVPv6ug9aLfTNAdVWTM0LZI+z0XK7lMcjFaIS8MVCe5GCt+YLo2Sg71Fa2CqjDmSfq6UKCFKNMtIkwGcNTAOreoyWVCVBNSCpQhYoPHDY7uWGjOEqSMtA2mFQkBiYH65Ai3sZF/Sw3NS2fkmyvMO8Im0R0bce1wabrJ0eQZ+oZcJ361vlDMkc1RzDFqoK+Rs9yxTh3nY8d6bBlSpBRPSX7qQ9ee7qFj9XYlnOymLhmQGJGuxVJGQiDsuxl30jU2jxfUuREBd75jdaelzDuGq0KZO/IFN0vj2KU43bOa47Dd0bjKWAPnuWObG/r3mo0UMBPSpkEGT9g6ukfC1TcyizcewjBC10JVrCqoYbkgTZxK0sIl9l+LtI9OoYlYLvhNYnbUINWRVoJLnnQgjN7Q6sg5MDSZoQRkkjv6FMl1cq85BeougIIkR/fQ40e4+npm8dr9SVAP95Fc0KNjJATwHokBauV/AazHmyFWjZyoAAAAAElFTkSuQmCC\" y=\"-201.758125\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_45\"/>\r\n   <g id=\"matplotlib.axis_46\"/>\r\n   <g id=\"patch_113\">\r\n    <path d=\"M 149.494978 239.758125 \r\nL 149.494978 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_114\">\r\n    <path d=\"M 186.984634 239.758125 \r\nL 186.984634 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_115\">\r\n    <path d=\"M 149.494978 239.758125 \r\nL 186.984634 239.758125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_116\">\r\n    <path d=\"M 149.494978 202.26847 \r\nL 186.984634 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_23\">\r\n    <!-- Happy -->\r\n    <g transform=\"translate(148.881369 196.26847)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-48\"/>\r\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_24\">\r\n   <g id=\"patch_117\">\r\n    <path d=\"M 218.763944 239.758125 \r\nL 256.253599 239.758125 \r\nL 256.253599 202.26847 \r\nL 218.763944 202.26847 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p7cbc72bbc7)\">\r\n    <image height=\"38\" id=\"image95b458903a\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.763944\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANzElEQVR4nFWYya9tWV3HP6vb3eluf19br15VwQMFqiAgDNQCE4gOdKTM9N9x4sSJY2wGGhNiIhpD1ESQaASLTori1avi9ffd9txz9jlnN6v5OdiXR9jJyk7Oyc7+7d/v262lFs9uyd8sX+dfTj/Bs6+9Rl4nLj5uuP6djvz7HyIhoPIM6Xrk3h3M6QJpO5iMePRH12luRcQm7MSzu7XixnjBjXKJ1ZHaF9Qh50m9xTTruGgqzp7NUL3GLTXTB5CtEovXDCmDmMtwrxL2P9sZf3H/t/HvbDNGuLhnyC+gePcpAqjDPWRUEEcZ4jR+ekC751jd0KQMiICDFBUXywqAtc8ZuY7MRPpo6YPhqJswKTry7ZbuoiQWwvJ1xeippnohtLsKFRTZCyjPFOrOX/6pqEuHPmjJck/XZrzxZz2psKzulDS7muYA/CQhVpA8QZbQNmGziAgoBQDORZQSZmXLK5M5uQlohKNmyqOLbWLUpKSIwSBRwdKRnxuyBagIphWqs0T5osVKr/njL32bp802Hyz3aL8+YfGxnNPPQhxHkKEQk0eyLCAC1iaUEpyJxKTRStA6kdlIYQPb+QaAkenRKjF2HZOy4/RiggSNBIXKEuKEZIVuG3SnsE6hj4YvtV/93Hf577O73P/ZDXbfMViE8z9ouL13ydlqBIBSgrl6eeECSa5aBPTB4KMhxuEOsNY5+8UKqyMAe/maNFHM64q+duQnlskjYfZhR/7eI+ov3OHskxa7EaonK+Iow37z8cfIXQAgq4X5Pc141FJaz729E1Y+p4sWEUXleqZZS0iaTcjY+IyYND5CjJquc7Sto6ssuQ1cLxeUxhNFoZVQ5J7e5IgRVAR32QJQfeMdDvynaXYsm1tj/Ehji7/bQiX46MMNohVnb1VkNrJXrDBKSKKYZi1aCVYlgmgmrkMredlNrYQ+GKxJNE3Gps24yCqsimxnDVoJm5BhdAKXiOUwrjjKUNtTDFA+W0MaoX3C9An74u3Iq18X7MNjZHcLV4+4XJVcVCO2soZrZY1VkSQarRJBhnFFURTGc7SZYXUiao01gRA1vrfUbU7pPD96epPy+xW6h+Wve8wokHIhlAo/cShfoKqMWDpQoBJ0M4N1s46HX814Vb1C9d4x+z/wPHojhwPI9cCqXbemS5bLUOGTIYgGICRDaT1GJcZZR93nZDaSkqb3lkVbkLym/OIpZ+cTxj8uyJaWdlehvaB9IkwyVBJME3B1IOYa0WDdD8fsv/2CR7+/z6thn+QUROii5bwbcW96jFEJpyOZHrC47jM2IUOrRGV7CqNY+ZzCDv9rnfDRsFNu+Mqb77Hnat7ZeYWTWxPuPzlk/MMCtxb8xGBXER0EU3fIrCA5y/T9Gt3PhOdH28xuLTj+jXwoTODZfEYTHE5FvBiciuQ6YFWkNB6t0lAEA8Yq2zPLGvbLNdcnNTtVQxTNUTvjh/VtSuPZyhs+evuY0ZePWb6qcXUk5Zp+5khVhhiNjgIpoYszhTnLmBQd6dM1oVDolaHIPK+M5xiVaJNj7iua6AhisHoA9X6xIjeDfGglWJ3ITBgKdT0T1/L+Yp9vvf8GTiXujY95c/sZTicOfucZF/dyAPJ5jyjQPqL7xPruFLv+RMet6xd85fpPOdmd8M+/9wnS0nEwXjHvy5edMUrooqU0HqsjRglLX+B0xKpEn8xLphbGs5EMgM/vP+TZeIvvPL/Lna05hfUcVDUrn3P5uY6DdzyiFbr1hGmB9gnbJPSdm2d86dp9PlU+5tXinFv7c1QZB8NtxjxZb1P7AuBXRhhF4a4ENDEIbhJFSJo2OrpoOWvGvF8foK9k58ePb5BEUZiATwa9cKguYjaefm+EEobO9Qmd6cgq5Dz324xNS24C2eOMVZPz+P1Dll3B43qby74k1x6nImPTMTYdB3nNXrZiJ9tQmIDV6YqtmrrLiaJ4dLnN09UW21WDfl5wspkQRPPoZIeUJ1LlSIXFLVrEKkwXsWuPfXC0z6PzbWL4FEoJ41GL9gp+MOXWbx1RuZ5FV3DZl1wvFnTJkevAzfySsWnpkuMsjHm+mTHNGsKVd87ylp+f7MLDisutyPR6jXu95tGHBzz2h4xvL3H/UeLHFrsO6CQon0hWYxqPnfxPSbKwej1ias0iK0l3ej7/8Q+ZuYbTdozViZ18jRfDOmaMbEe8Gt/MrIdObkfmvuJYppxsJjx5usv4pxnZUrCNIbktigDN2x49DVR/PyNbRZRAygfRVklIuSHlBrt4s8fMLVIF1E4gXeZU2w0j01P7gsIE9osVU9uyjjnn3eglnshgRUGlO8amRTOAf2Q7np/P8FOH6RTFZUI8ILD/LYfbGPJFgCSYNg5pYtkStkvEKMQo7L27R5wejBBRdN7iM/cS6F2y7GRrXitPWcWCb794neOHO4yurXnr2jN+vt5l5lq23GYYn22Y2sFX89wjvkIMIIIOQ97SUeFWiVBp8nOPaTzmxZy0v4VuAu5yg5QZ9s74Aq2E1ZWdbM4rsn+f8U+f+SR/8tn/4pXsHC+GB90hZz/Zx0ZoJhk/OrnOalGiXeLXbr7gtfEZbXJ0ybKOOV2bsfNECAXYVmi3DXYTMB2okNC9ptt1uEyD2hmK33jSpEBFQV/Ll+zkG5yJzOsKgqI6TXzsz1f89bd/k4gmovGiSYcd5rUVyRvqFxNYOJLXhDR4Z6E9AO/Or6GeFviRwq2hm2miAxUFFQS7CRSnLflZT7IK0YpYZUjpQOshj41Ny2G+JIliPck4XuboIKgnx9z5xzF/9cYXuDFe8L0Hr1I8yPHTHJ0JqYrYg5bP3n7CXr5ibDrqWPDdszs8vn9IsVT0UwCF6cF04CeGfB5ImcFeNihvUQJhkpGdbX6Z0TODnZkG7ywAm5Bxkk3RXqHyDCWw/sY13rlzyP6PITrh4noiP9hwd++cz2w/4Xp2ySoOAvy/i1d49MEBdqMRC2YDxTyRrEIHoXreIkaDhjgtMHWHWbSIKojjHFO3KB/RRmEL1VNoz7bbcFguUeYGodRQ5NjaE/OMuOM5+SLYIvCRwzPe2nnK3fyUSndkalD/RaiwKrF1Y8nliwl25UgWQqFQEWwjqCRAIlmDuVizeX2HfN7hTlfE7QpdN+ADZtVgjRIiik3MqH2B0kJ0kGYjVq+UrN9q+OiNU26MFsxcw4GrcToQ0RglFNpzU8/pkuMj4xMu+5Kmc/jakJ9rRIFrBdsk+llGtugxa0+allSPFqTSgdGYRQOAdD3KGmwdC1ax4LibctqOSb2hmEfUusWtJ8xmG0rryXRgbDqcDhiELjla5SiUZ6Ib7hXP8WLJVaAwnne5RseI0XOF6Qe9UlGG1QwkUesGrRRqvkT6HkmChIAA9mm/w4Uf0UTHST3GnGSUzy5RnWd0/5xn9/dpPr1m3lcYJTTRsevWFNrjxQwLw0j1OL3hXqGpdjtqX/BB6/DjAtcolAimDZASaZwhevhNLddgLbJYgjHgPWo2RR+1M55vZlgdyV3ALRV6uQERVO+5+w8t939+bUisCKuYs4o5bXJ4sbTiWKchV7XicCqwb2ve3n+fvd2abmsgmmhFchq5Gpt7dgE+IHWNbDZgDNL3qCxDaY3+YLlHExwPl7tcXI7RHkgJYoSYyB4ccfdvhZ88uMlFXzG1LRFNJ5Y6FrTJYRDWknEZR7Ti8GLYszVv7j2nea1ndVPjR5YwdqAVhIhUxfAeOyiC9P3wBWVBuL2PPa1HaC2s5hXj9zJu/tsCQgStXz5YPjhl+3s3+dnhPpPDltJ4DAn00KXzOCZLgSgapwLrlHPmJ5x3w1mGipCcIltESILkGar3sFhBTMNuPwl6OkaNKj78wzFWRNE8mLL7Huz9YIE5W/IrlwzGfP2bR7z7uT2OpjP28xXJKnIJbGLGtt1grgJkmxzPuxmn7ZgfPblFduTIFoIOgvZxYF9KyPNjlDFXp0k5emsG+9uEacHtf/XY9O6E6RHsvLtBN34AoctQ1gxg/EVxKfHG1yI/+927/N9sOGDJdxrK3DPKe/poMDpxuapo5wXu3FKdKexGsO3V5jgMEFHrBnWwh2QOJYIUV1ZUDQEim3fYfK6YPvLY8xXKBygKJCYkXCUua4dd8+6E9c2c6QNwjSIUGtuMaPY08ym4FcQCLDANUJwJMReyWijmAbsOqDYgVT6s3OEnGaaLiFXoLpJyg1l7EMEefK/Bna9RPiBGo5xDqQAiQ3FaDwyNQraMuJWin2rcRpjeX+LWYwD6icZXivGLQLNjsZ1QnkcQiJnGdIqwVRALg+kSMdckp4cofd4gucFtevxuhV122OzDY3B2ALtSSO6gzId2W4u0LaosQYTRe6fEnTFiKnQvhHGGbSLJaUZHPaEyiFb40WDeOmiK055u16HCEGtMN1iYnXvUFfMBVNeDCPmqpXljDyuj4aUvT+D0EGGkKlBNh8pzpO1QzxoYj1BtoHq8BqA7rAilRokQC4tphX6qqU7TsD/tBTTk54PSp9KCgL3cgA9XjE2DsV8lCzGa4uEci70CeExDcVpdFaiQUYnqepRSSNdD16NDRIoMtCY/htwokjOgAKVIVmE3kTImotMkozE+oJKgVz36skbKfDD0q2aoJIgenkcEFSJWrIYEaI1K6ZedUwo0CBmKHpWNkHo9xKHVcGJouh7JM7RSgyArhVlkoAcGqlmJ7gMkUFeyg7MDya4m84tLJUHMUCRK8f+IbnajBvtLZgAAAABJRU5ErkJggg==\" y=\"-201.758125\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_47\"/>\r\n   <g id=\"matplotlib.axis_48\"/>\r\n   <g id=\"patch_118\">\r\n    <path d=\"M 218.763944 239.758125 \r\nL 218.763944 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_119\">\r\n    <path d=\"M 256.253599 239.758125 \r\nL 256.253599 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_120\">\r\n    <path d=\"M 218.763944 239.758125 \r\nL 256.253599 239.758125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_121\">\r\n    <path d=\"M 218.763944 202.26847 \r\nL 256.253599 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_24\">\r\n    <!-- Neutral -->\r\n    <g transform=\"translate(215.363147 196.26847)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-4e\"/>\r\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n  <g id=\"axes_25\">\r\n   <g id=\"patch_122\">\r\n    <path d=\"M 288.032909 239.758125 \r\nL 325.522565 239.758125 \r\nL 325.522565 202.26847 \r\nL 288.032909 202.26847 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p65a85b0dd7)\">\r\n    <image height=\"38\" id=\"image7383800146\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"288.032909\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALgUlEQVR4nE2Yy6tlWVLGfxFr7cc595E382ZWZnV1YVUXdreJDaI4EFFEsEFRaFEUeiLOFMGB/4ETnelUHOnAQfkPSNPiwNaqQWGjVgsl2ppVldYrM+/7nLMfa0U4iH3vzQObvc9r7VjxffHFF1uGT950w7h+zV75sDjf+ts/4s5/wbwWPIMnqA3MB45nx1rHGwcBkiNdJWXDXbAieFUogowKJnhjtC8SeSuIQxrg4Gnlzj89ARHs4T3Ov37I8O1Tfu1HfoACaJy4vv6zz36J9adCbQVrwPJydBGUJ0BBiiBVwAGHssvUScEFjJvPdQZxwRtAlq8b2D5Q6pcf4MOInl3RXlbm7x3zN9/9OTIvvWavVJz3PnudvHPm/QgMAWuhrFjeOxh49gjOFSaNILPjyXlppyAgs1BbJ2VBLOK2Rti8vsfh0xa/2rB+579ZvwO8ckw2jOqxUCOJvz7/Cum7d6lLENYsMK4cW1tkQYBKBKJx03wl5K3EBvacuo6766hY6yCOt07ZE9IgKIHC7r5ymBJ2eoauekgJmUtkLIlQ3Zm98u7ZW0h1ahfcQgLCurbIhDi6TeSNUPYWvq2Mae3MRXGJTUqV2IA6OkPdc0hOuVOBhHhsonbC9huvsf6BgAg+TXR/tSEryuwVgDMr/Mt3HtN2YGmBYqEQVUAdRNBJOHgC06EiFcZ7AWtzIYz3oiDSTtAZ2nOY7sDQgPcVsmGN4oPgCrWDq1cz63+r2PERKPzMvfcCyiQCBO77HzvjUVSOG3hzXX1xQzGhHBVOfkJpT5TV58L6U0cr6Oy0F+Aa6/lSU9YseyyK54q3kWkGufl+/NqX+OibHW+9fcb7l6+RBy/8wUe/zDvvfZ1Xv/YFlmNBiYzHe1l45UARSFH+4yNjOlbypZIv5ZbvFWoP84FRVxYbKhIwO7gucPtS7Y3w/Bs986sjer7h+e88IL99+Rbf/7vHdALT2w+xVWQLB9Nl1y8d3hlSJLRpv0I/Y0eONQVVx13YDRmvis+LltnCt3wdkFBbyAo6xT1Wz41X/3zD9OV7iDn5T//5V1g5tJexgyAut5mD212KI53hk0b2quCu5H5k3U8AFFNEnGlsqHP8zpNDE5nDYi1PjjUSgSUY7whPvnWPuoqs5v0P2pAEjWDEHTG5yZSlJWvJITvaVmgrdZejIEyYx8xOoG9nulwpJWFlEdnWQCF1FauCV4FpWbtx0KgurdBcRTYxyPNBKHN/4riAKNBck9YX8kfLkmSoxnU1IZ9kdAadGxCYZjh/VAPuSaFxpKnkriACiFJLDikxotVpBCUV8i6yCJBr5+SdIBW8Acuh9p6htlGV9IZkIzcVEZCFxHd+COtnFUuCZWE6EJqrhOWEGMz7sPuK0bYVVWMcGywZ3uhSDLcV6wLNBqZDSCOotU7eBoS+tA9PUPvrRh0Z0uSkbDRLcCRnvLPsbmfsjpXpjpC3zivfH7j7nzNSA8KkFlqrjiSHbHjrNwFdtz2pTnvhWIbs2UlDqLPvRVC2BOaNIa0hyUCctimoOKrG1GXmAzj9aqa2MLxawaA5U1w7yloYj4380n/mkvCiSGu4ScAm8lJCQpRrD1mKUDvBsgeMeemLL0GYciVnI6eKmZLEkaVKxyOYjwvr+1tEYDhuOO9XNJvlZi6YC406qk63N1GrMM/KS6YGLGzVdBhU0u5UyUOoujXRIq65JdlI6ZojoVFdUzAXbFbmfUfn8DF7/cQb907ouvkWoj6CSWqoONMUfa5tK9pVrLdAZskYBGKrZ5AP/9fozozpQAPGbiF8a2gOCIehQYA5JbyfeMnURLXOwm5q+IJ9dlcd7VbwFFRwh6TObmpomujJIk5KhjVG7fXG9zUb2PvEWD0v5P6ksv7wgvpjRze9zSVaj1fB0DibUKfExZRITUUbw2XxZLOwuewZ24zvcjiODDIoZsJmaEN8i+KLAJtHN3ANr+dJSKPRnVfyUMmbR5n1eyes7q05f2OFpYBVdwm5yKTxNsWWwdbG3BrSVmgcT2H8NBu1JGTU+F27+K8pUwbBHRjTbZrVwQQtSydQIQ/G+oPPqccH5Af/+Bm+3dJ+9Bz9qdfjP1O0irwTuhNHCwz3BUtgO6V2SjkQSCHKAGaCqOMS1jt443DakreCpxByHWMjZd+pXQR3venVpzvssy9IImT7+BOoFT89Jw1fJg1CmmJYaC+c/U8qrjDvZw6+CE07f1PROTEfhXl0jX6q4th1pSVHJqW5EtI2/H4aoDv18HBHQu3DbIqHqKYPP6dOM/bhUzK14uZ4KbSXYX09gVgclgP7+++PtM+3yG5id/8h3Udw+jiM4nzgdH2haQqXbYteZPzhyPHf93iC/f+b2N3PeBKardFcVrQ0jHejorVGEvzyClHBzcmkhGbB50J7ZYxDVGdZw3AsWFK0BG9W9zJpdrpTZ/tQyNvYadlzmqaw101cmtBcCvOmwRrY+7yyenrJ6inUg47hQc94N2YgV8i7WOPwowGvFWlbxIwseRmU3OmfT2weJSjgIgz3nXk/9K09E84eg/fO+kn01vZ80TyFWpXt2N4MK+sPM7sHMB5lzt84RkvMEdaGB6sdaInGnQZonzzHckbaFmolS0o3keZnl+i0ovaRWnFhWtxH2XeaC0XOwmOlKWRlPnS8j44wlBQDx9ppz6PVzIfO5k4oX9qFRuooNFeCLtlqrwy/uEL6DjRFYDQZ3BERZLNDKxQRyh6k0elMkOp05057aZRe8CQMR8JwLIwPKulgxkzIuTIlDwOwWaCehLyRZYIH5pi+0gj9ieEidKcF2VvjwxDg1UpGEyIFUkS6el6YDhssw+ZL0FyC1iWYe4rOThpDEOvaae4O7K0mcoqKLfuJchn0WL0w8s4DxlYY7oYDcQ1E5j2hO3f6T6/weUaaJs5tS5akty0mZ6Q6Uh1SiN/ukd1O111FkuNFSV2l6ye6prBqZ9pUyWqIOM8OWnYpMR0peRuVK3bLK0+wfSisP3PysJjQvsOHEUrB5xJVSZNhLmFBchD7elQTcyw5si7064kmV3KqtLnSpfBajdYbQb/TD7SvVS6GjlqVnIxSlXFsqFcNMippp3QncZ+0M5hmfH8NV5sIctWTyWlJYQEzaqe3/kg99KwKPivzlMm50iSjUaNLJRK9uIeT3RoVJ6tx0I9sx5bqgpmGebgeAS0KKs0B87UqSNtCzkxvPCD7ul8moZiy86bimiJrxDxIAWalSGbQeNQ0pcpQMk2qrJkpi+TPy3mcM1NJlJKYx4zvoo9KiZaEh89vX+ywwxV6scP311w9vs/P//G75PmVfdonA5Iz1EpzOZPGhrmJRwG1jxbC9YTjwjyngClXqglTCbJXE6op1ZRpzJQ5xX/GhMyyUGMZ6pfD+owUw/d6rE08/Y3C7917F/3hb7XYwR6YQUrk0y3NbhlMLcQwrJCDOrWElZFlCN3sOqaSqCa4C6Uq05QCvsVByCQRWAkEdLluLyouQl01UIzzr+7xq4/f52Faod/+2Xc4//EjyBlyQsaZZmPxsK0Si1SJeU9AkiPXltmUlCxmX1PGObPbdJgpuSmRLRbPZrFWGkPf8uC0ZxNpM9J+/AI9veDiTeVPHn0PRdBvHr7Ps5+UqMxSYS50LybSFHZHpyAqNcyjzUqtcZSimCnznDGPjLX9TErGPC2tblZkVsTkxk5Jgf2nhfzFBXqxBXfK6/f53d/+DitpSaLoj+YrfvEX/pXTn36EH6yhFJpnV6xeRNbSBGmMRWVSfErUIVOmIPW4a5jnIHmtQi3BPy9xXJNcSmiYFujOnPWTM3hxFkWXEv/z63v8/tF/YMRzOu1F+cNX/oGTxwoiIbKbHQcfnLB6Zjdckyph8kaFQbFdxuaED4k6JqYhR1BL4G4Ck6Kjkia5CS7v4PjfL5GLDXLnAMYg8V/85l/SSAoYEf4f5iziKtNq6JcAAAAASUVORK5CYII=\" y=\"-201.758125\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_49\"/>\r\n   <g id=\"matplotlib.axis_50\"/>\r\n   <g id=\"patch_123\">\r\n    <path d=\"M 288.032909 239.758125 \r\nL 288.032909 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_124\">\r\n    <path d=\"M 325.522565 239.758125 \r\nL 325.522565 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_125\">\r\n    <path d=\"M 288.032909 239.758125 \r\nL 325.522565 239.758125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_126\">\r\n    <path d=\"M 288.032909 202.26847 \r\nL 325.522565 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"text_25\">\r\n    <!-- Neutral -->\r\n    <g transform=\"translate(284.632112 196.26847)scale(0.12 -0.12)\">\r\n     <use xlink:href=\"#DejaVuSans-4e\"/>\r\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n    </g>\r\n   </g>\r\n  </g>\r\n </g>\r\n <defs>\r\n  <clipPath id=\"p0c76f4c37e\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.957047\" y=\"22.318125\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p340eaad5ec\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"80.226013\" y=\"22.318125\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p9b3a2bfd7b\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.494978\" y=\"22.318125\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pae867167ef\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.763944\" y=\"22.318125\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p7eccc8a145\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"288.032909\" y=\"22.318125\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pdfbb326ad4\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.957047\" y=\"67.305711\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pdcf0f86971\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"80.226013\" y=\"67.305711\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pc85956cf40\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.494978\" y=\"67.305711\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pb1c64d4622\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.763944\" y=\"67.305711\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p332cf9d3c1\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"288.032909\" y=\"67.305711\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pf1d5f2c7ee\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.957047\" y=\"112.293297\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p73d9c18efc\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"80.226013\" y=\"112.293297\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pb073ac5100\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.494978\" y=\"112.293297\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p9938081fc7\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.763944\" y=\"112.293297\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p8c07e0b45a\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"288.032909\" y=\"112.293297\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p7864ebd23e\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.957047\" y=\"157.280884\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pbe320588e7\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"80.226013\" y=\"157.280884\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pbdb62b832c\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.494978\" y=\"157.280884\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pb63a646845\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.763944\" y=\"157.280884\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pd7d91dc497\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"288.032909\" y=\"157.280884\"/>\r\n  </clipPath>\r\n  <clipPath id=\"pfffbbf4ae5\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.957047\" y=\"202.26847\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p946616853d\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"80.226013\" y=\"202.26847\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p3bac3b3020\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.494978\" y=\"202.26847\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p7cbc72bbc7\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.763944\" y=\"202.26847\"/>\r\n  </clipPath>\r\n  <clipPath id=\"p65a85b0dd7\">\r\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"288.032909\" y=\"202.26847\"/>\r\n  </clipPath>\r\n </defs>\r\n</svg>\r\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAAD7CAYAAAA8RMxAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d5ivWVbXDX/W3vtOv1TxVJ3YOU73hJ7MMDADMsRxkPwqBkQFQcRXkOcRvNBHRUER1PcVHxHkAckwwgyCpAGHCTA59XT3dO4++VSuX7zDDs8f+646p5sR+rTdXWe01nXVVVW/uO997732Ct/1XRJC4FAO5VAO5VCuXtRBD+BQDuVQDuUzVQ4V6KEcyqEcyrOUQwV6KIdyKIfyLOVQgR7KoRzKoTxLOVSgh3Ioh3Ioz1IOFeihHMqhHMqzlP9pBSoi/0FEvve5GMyhHMqzERH5SRH5voMex7Ukh3PywsifqkBF5AkRmYnISER2ROQPReRviogCCCH8zRDCP33+h/ppx/ZGETl7EN/9tHE8ISJf8LTHvkFE3nNQY/pMEBF5fbuedkVkS0TeKyKvOuhxHaT87zgnn8n7xzzD1/3ZEMI7RGQOeAPwb4HXAH/1eRvZofwvLSIyAH4d+Bbgl4AU+BygOshxHaQczslnnlyVCx9C2A0h/BrwdcBfEZG7r3QVRGRZRH69tVS3ROTde5aqiLxcRD7aWrK/LCK/eMX7/thpIyJBRG5p//5SEbm/fe85Efl7ItIFfhM4LiLj9uf4//yUPPciIn9fRB5tx3+/iHzFFc99Q2tl/LvW6viUiPyZK55/p4h8v4h8QESGIvJ2EVlsn/sNEfnbT/uuT1z5+dew3AYQQvj5EIILIcxCCL8TQviEiNwsIr8vIpsisiEiPysi83tvFJF7ROQj7Xz+IpAf1EU8x3I4J59GruX986xioCGEDwBniafjlfKd7eNHgFXge4AgIinwq8BPAovAzwNXs8n/E/DNIYQ+cDfw+yGECfAlwPkQQq/9Of9srucFkEeJczUH/GPgZ0Tk2BXPv6Z9zTLwj4Bf2bvJrfxl4BuBY4AF/n/t4z8F/MW9F4nIS4ETwG88P5fxnMpDgBORnxKRLxGRhSueE+D7gePAncAp4P8CaNfS24CfJq6lXwa+6oUb9vMqh3Py6eXa3T8hhD/xB3gC+IJP8/j7gH9AVIrf1z72T4C3A7c87bWfC5wD5IrH3nPF+74BeM/T3hP2Pgc4DXwzMHjaa94InP3TruH5/mnnaAzsXPEzffo1XfH6jwFffsW1n3/a3HwA+Evt3+8EfuCK514E1IAmWhnbwK3tc/8K+PcHPR9XMW93tuvnLHFh/xqw+mle9+eAj16xlp4+X3+4t5Y+03/+d5yTz+T98z+ThT8BbD3tsR8EHgF+R0QeE5G/3z5+HDgX2lG2cuYqvuurgC8FnhSRPxCRz3q2g34e5c+FEOb3foBv3XtCRP6yiHysDW3sEK3o5Sve+/S5eZI4Z3ty5mnPJcByCKEEfhH4i22o5M8TrZDPCAkhPBBC+IYQwkninBwH/o2IrIrIL7ThmiHwM1yer0+3lp58YUf+/Mn/xnPyGbl/npUClZgVPEG0IvclhDAKIXxnCOEm4C3Ad7TxiAvACRGRK15+6oq/J0Dnis8/+rTP/WAI4cuBFaKr8kt7Tz2b8b+QIiLXAz8GfBuw1C6OTxJdsj15+txcRzxV9+TU055rgI32/58Cvh74M8A0hPBHz+kFvEASQvgU0fK6G/jnxHv74hDCgOhm7c3Pp1tL172AQ33B5HBOrv39c1UKVEQGIvJm4BeAnwkh3Pu0598sIre0F7MLOMADf9T+/W0iYkTky4FXX/HWjwN3icjLRCSnje20n5mKyNeLyFwIoQGG7WcCXAKWJKIDrlXpEhf+OoCI/FXihrhSVoBvF5FERL6G6Mb9tyue/4si8iIR6RDDJG8NITiA9oZ74If4DLI+ReQOEflOETnZ/n+KaAG8D+gTXbpdETkBfNcVb/0jomu7N19fyVPX0mesHM7Jp5Vrev88UwX6X0VkRDSF/wHww3x6CNOtwDuIN/qPiPGE/x5CqIGvBP4aMb7xF4lwjaq9iIfaC3sH8DBPs2yBvwQ80bouf5N4Yuyd0D8PPNaa99dcFj6EcD/x5vwRUeG/GHjv0172fuLcbQD/DPjqEMLmFc//NNESuUiM23z7097/n9vP/ZnnePjPp4yIwf/3i8iEqCQ+SUxE/mPg5cRD+DeAX9l70xVr6RuIIaSvu/L5z3A5nJOnybW+f+SpoYMXTkTk/cB/CCH8PwcygGtEROQbgL8eQnj9/+D5dxKt/R//Ez7jLwPf9D/6jEM5lP9V5aD3zwtWCy8ibxCRo60L/1eAlwC/9UJ9//+q0rol3wr8x4Mey6Ecymea/M/unxeSTOR2Yqxzh+iSfHUI4cIL+P3/y4mIfBExNnQJ+LkDHs6hHMpnlDwX++fAXPhDOZRDOZTPdDmkszuUQzmUQ3mWcqhAD+VQDuVQnqU8UzYmAHoLSThxSjNyOVvbfQBCFpA6YliDCRAE8YAHZUE5EBcggAQgBIISghaCIj5O+9uHiMgS4nMi+4+LC/F5ILSQ2ZAovBamW2c3QghHnosJuVop5rMwd6KLELBBUTlDVSeoqaA86JlHGofrJjRdIPEoFdDKk2pH4zXeC769qBCEYBXSxM9XNv6IDajaErSK123a+RMiSm5vTtr/y7WDmxMAU3RD1l2M914Er/fuP4gHaUNHQcn+uFW7TvauSQLg28cIBK1AxblACeyFnwIEIwQleANBt3PmLo8nCFSTLWw5uRJw/YJKqotQpPO4wuA1+LR9QtpLVICOFy4C0v6GQAiCSPy9J0rFuYnbSvBe4oV6wO99aJzHvfnQpUeqmno5546VS5w549jYcgc3J2k35Nn85Qfkivu691DjwbU30/uoQ/ZraPaGfvl/2fucvd97n7m35v5Y2PLp/wujsPWM9s9VKdDusT7f+AuvpvIJv/RTn49qwOXgMiiPOFDQf0RjpoFsN5BvNrhCY/N4MaaMijBowWWCSwUzC6RDi8sUPhHEgZk59MziCoPLFQRQtcdMLKq0cR5zg9kcQwj89ta/PLCytcHxLl//s5HK8Nxsno+cOwmf6jF4FOYfmqInFRuvWGDzZYHk6JRep2SxM2MpnzCXzPAhOgGFrrFBs1b22Cy7DMuMqkloGk1zscPivcLgiRpXaNLtmsmJnHogNJ32wGr3TjCgGrj3337HgZbyZd1F7vrS/y8uFXQd4lrJhHTkCRp0GVA2INZTLRhMGcg2K0KicJnGG8HlCnFxfajaoypLM8iYrSSY0qPqgO0omkIRNCTTwPi4oh6ArqB31pNOPC4RfCJ88jf/zUFOCYXu89o7/gbbL57Da2FyQnB5IKio9G3XEzoOXTi0cWRZg1EekUDVJCTa0TiNSGCuKAGYNYbaGqoywTmFnxmkVKhSxQNEQbIrpCNIdwPzD09JHrvIha+4ibf+/R/ka9789GrsF1byfIFXvvJvXX5ArjCkAF1a9NoO1A2haQjjyf5Lg7UgKh6me2/XGkkT0BpEkKIgFBkyHBOsJVQ1oa4REVCK4Fx7SHtCa6CJEn63+YVntH+uSoFObMovPP4Kph9eZvlxh7jA8HqDzaG4oEmHoKtAselJJo6ghbqnaLpRYSobN5KuAqaMP7ryEKA4N0Zqi+vnuE5CUEIyrNFThSsMQYHPNOLiRjI70zhBjb2aS3heZOZSZi7hkZ1lmvNdeltC91KD2Z0xuXmezVd4imNjVgZjuklNrhsK3ZApiw8KjzAwcUMUquZoPmLSfua4yThfDNiSeQgpyx8ZIo0j7Se41OAScAWoOp7FTQfueNPD3PtvD3RKEA/p2FPOa3QNLoFs16GagE8E1XiSYTSzzcyhagfeo3Yt4UgXn2iqgaJcFPItTWfN4pOUpqsYPDZldjRndMqQbweKTcvwesP4hCLbjt89udEyW1UMHjMUGx5dXSPJUhGCREtZV2A7IE5QFlwhBCe4WiESqGuDpJYAOKdwTqF11CyTKt3/yKbRUXlWGpwgjUTrXUWrU1n2LX9ECNaiK7jkioOYgadIgOhN6Tjm6F2Az6JhYbZnYB0YA3Ud36RUVJDOIzq+TuYGUDegFZIkhKYBrQm9AtfPMVUNVY1kKdLOASKIMYS6dfeCB1H7ivSZyFUpUHVB4353mROfKEnP79KsDkjnNUEJ9RyUS3Dk447uEyOCUvjCYLua8UnF5KRHAuhSyNcUc487ikslelgRchPN7MZiTq9hshS3Mo80Dj1rkBDwmSaIEBIdLzDEU+paUKCVNzw6XGb9zALzjyjyTU/x+DYyLbn46iU6x4ecmNsl0Y5BUtI1NUo8A1OSqwYXFIk4ctVQqgSAbdvhUtVnPvVUXcNkNWPnzg7FVo/e46M4l3VAPKhmz38H/+IRX7v6Id5+gPMBMWxjpp4kVZipJ59FF8yliu6jQwDU5g6h1wER7HKPoDQQNxQ+hnFGt1mmY8V4OyHbBQJU93SZe6xh6d4KlxuyS2O6901pTiyy/vIuS/c7Zhc0LhdUEzeDLeSp1dMHISHEQ8IFHNHbUrUQNBBAzwRVG2zPYb0QWs/NeyF4RQDSJK73sk5QKoaDbGMIVkXl6SQqINOujbr1UIghEmnifaj7wvVmdgCT8FRxhbDxkgyfgE/A5QGfAAKdC8KJsx6ylGA0Ym105bWOVqOOSlJ6XZgfINNohIQiQ6oafOvoK8HPdVE2XnvQGqUUfncYlahW+Nr9D8f4J8lVKdB6TrHyoQnJhR3CzpBzX7NKecwREg+pp3gsIx1acAEhWoo2EyanHOZIibOKpjToWULQINajJjPYrCDPCIkhzPXjItsex5PGaFRpCSJgVIxzZQYxCj2q8P2DP0W364JzG/MUZwyr791ldGuMD49fdpzmVM1yZ4ZIIFWWTFsS5TiZbdPXJUo8lU/o6ZJULDuugybg293eBE2hGyprODNKWb8nId/KaHqKdOSo+ybG0iRaG2lqGfqDnxPxAbGBZOww02hhqsqSDWdI3eDne9GqSBN8J41rIYDtZ0yOpeTbjqChc2SCrMBkvUM9NOzt+aabkm8lZLse6JGkBtV4jnxkgu0liAtMVqNCboqD1pyXRaYVycRT9zSqieEWmwSCBp9Edx4AL3gnONGkWUMIHmsVSgKN060uVngP3gmhUvsp4SCABmUFVctl65PWPRaFT6Gj9IGfKfliycu+5pP7HlkijkI3aPH8+r//3GiIzXUR58AXMXaepYSy2rc+GfTwvYyw0Il6AtDTGpmUoBTeKEI3AzWPGk6RpDXYdomHmroilx78Hx/knyBXl0Tqz7jw2V3mH82pu8ep75pycmmX0hp2xwWdiynpmW2krCEx1CcWGN6oSFbHaO1jgiTxlxeJEkJi4qQ0FqkbSAwhTcBopGqiWW4TlBacTkAL3ii8jopVxgd7igaE7aqD3Um58Z1T9PoOybEO05sWWH+pYWl5h15Sk2pHL6nom3Lf2uzrOPZc4oLpqAqFZ+oz5trnXFD4IHSSmrRfU60K5z+7YOXDdUwONFFxBgXeQHXvPO9auQ141wHOSjwczbhG1Ro9aRDvUVsjSAx2dR7bSzGZIRiF2ZnhiwTXS3G5ph4I6TiGfbT2HB8MWTOWnaJLZRV4qJYV5RFNuqPJdhT9sxo9cwSjSIY1Yg1Zrti9SZGO2LdoD1RCQMoaXXp0rfHJXkIt3jtgP5GkO5YktdgmHgIiAa0D0zLFO0WSWkKI82NSi21f431UDmIFfHSLVWtc2Uxw3QQV4h48ePUJQiCRpyqtmUtYSKb0z1zOd0iIVmPo5gSlULWNukEEN9+hWs6ZHjGkY0/TVWS7GcUFE+OjWhDrCYnGzXXRu5OoOLXeT06JEsKzMEKvSoGWlwpsF86+2aHSmqOLQxqvSLTDO8XCAzNkPIU8g7Ji+44C8+pt7lm5gA/ChemAizsDbJ62mfqAW+yixjVyaRO8Q0wXtodIr0NIE6SskGmJMho1KnGL3XiiZAnNQo5J9NVf9XMoAZjUKWakSU5vMHzVSWwe3bJ63rNgLJmx5LpBSyARx0IyZTXZJW9T7U3QKPGk4tAqoCVwqYkEU31dsm075NrSLSrq7Zxy2TM6mXDlugsaEMg3hft+7kUv/EQ8XQLorTG6jVOHWUkY9LBH+vg03rPRjV06azUhNdRLBbajcInQP2dpOoq6D8FqVooRAI3TTEY5SWbp5DWJcWxu9agu5tQDQ7GmyXc8tsixhdC52LBza4btsI/uOFBRCpwjGTXIahIz6ArES9SiQQgq3tS4vz1JEhVlL6/QEqisQSuP8yrmPtrsPESLdO8aVRPjqntJe/HRyq37CWm/R7Ee+OwP/VUeHv+ng5iJp4iSuOZ9UDgJaDz3j46hao/vJNEF3/M4c0PQCq8TyA2ulzJdSZke0VQLkEzjwTQ5biiWehRbDjP1eBNPz2RYE1QMa4gx0cX3PoYC2vEE98w16VUpUN/qquxsQr2oWTo1JdcN67Me/lJOev4iGEPY2mH2utsZvWnCN978Ic5V82zVXRayKRumS9l3zJY03Sc9aqeMF7A4B85FE7y1Qn0nhU6G3h5B3SCzCmNjskEv9PGdBJcdsAINwqxOUA2ELCHdtdg8YXJMEZRnVicMVU6nWzOXzFhKJvR1uf9+LZ5ELLrVhgqFQ1hNdtmyPaY+ZWIzUm3pZTU7hUUmKeURIRlBtQAui5tD14KZxljSgUvwsDsG72LMOk0gTWICcHtKdXxA0xHGx1O6SvBGmC1qkmlgeExTzwEe6irhieESrlUUynhCgNpqjPYcWRox7tZMFgpckVIPNIMzjt2bFMVGzHIjbUz1gBWo76SEukZPG8QFlIuKzicgFtAgViIkyyrKMkGIMVAlASUBoz1aeRqnqJoE7wVjHM5qfKlRU73vtiO08dCIjlIWbEe1iSwI71pADQ/aLBdsiF5F0prKSgIfv3icYzYQTERlzFYS5i8MITUo58B6muUOk2Mp9SDmYGw34PLWmFBxb4wnhnwzHlTKBvpnNZ3awqxGOgVMZwRrEa2vSB49Two0GMg3wGuhWg7UTpMqS+00vdOKMByBtXBilbOfb1gebPFLT9wDwGSW0VQGP0kQK0xXhPJoh05poapBq+jiDMeEfhefJUhpoT05pIlZszCaQFOjJjPUfJ9QpH/SkJ93CUBj20U7mpA/VFPPnYwKNQlMZhmpcdENV/W+oly3fRJxdFVFR1WkOBKJLkuMgXrKYJj6lELXrJc9aqcpehWz3SRi+qqA7cLLP/dBXtI/x6PTIzw6XGZ3lsO/PMBJgRac6PchIjgHVY0eTwFQtkc28jQdRTVvmKxqmgGMM8EWLZwkQJbXbE06NI1u3ViP1p7UOHpZxUI2ZZJlDIuSrX6X0VqByzVBwfh4gjctQkE4cAu07gnUgiui9yC2DcH4NhPvAl5A1QoPMRufOUQFqtqgtadqDDOVxEOkSmIWu8V8SqUxk6iQ9zGgzeUwAUQjKBQZtivkm2H/8YMSH6DxGqUCLkQ8tEeoHx1gRjHJM76uYHRSMXikoJ7PYliicuzemDE9GpODthNwnbCPQHBZABMIRrBdIRkLqhG2O4Zyfp7OWkNxWrUhwqclouWZHypXp0AFVBPQM5BGMW1SXFDsTguyaWD2yptIhjX1QopY2Lh3hYX7QDcBu6pQPagHATMVsh1oOgqfG1TdILvj+B1lCc6jtnZAaVgYxAzcXra9abNr0ymUJZIdtAIVbKNJGpA26RVUxDnqmaKpDE1H0TU1ro3yj1xOFQw9XdJVFaVPQMV4pxaPa3d6Io5MItSpdIaqiZsopCFi/AIc+WjggbU7+PCrruPrXvRhXjP3GNu2yycOcE72RLIsuq3ex5/JjFDXYAzJhSFq1qFcLaISXYJqweNzDwr0RBECNLUhyxs6eYSwZInFKM8gK1nOxyTiURLopyV3LKzx+MIS548McI1m/XqN3olxsKAO3gI1M2BpQNBxIMq18ckAPo0JJLGCrkCGGluAm4cggdopdBrxodYqlAp4F5VHNcyQUmPG6rLiBPRUUC7CpfbCPTHjH+JcyGWv8qAkINQ+hrBUCExsRj8pSbfjHI1u7LJ7o8J2Auc/dxDfo+K81XPsH7Y+DYQkXleEa0WUTtCXcwRBonc2OyK4LEHZAXlZRwzorPwfDfFPlKtToBpmK/EGZ8fHvHz5DCvJiHfJLWxVAy69KqGe02SbCjvnyFam1Gf6HPlESbZt2Lk1oTzqyc5rlu4vcWlUKL5XoNIEGgvzfeqVLtJ4kktDZFbh53r7mE/ptX97j9/ewW3tPKsLf67EB8FWhsF6zOZNb18h32poOlmEqejAfFGymEyY07OYFELIxLJqdumqqBi0eOqgY6craZiGjKNml6EqmPqU+WzGpVEf5xTJXEVQhmLbIy6Qbwr23g6/9qHPYXSb5YabLxE7Ph+ktK6z0SAmxp1mVTwUffQ0tPfkQDhe7FcZoQPoiBUNacA3sYQp6VSs9Mak2jFpUlRrOvWTkmP5LgCXqgE3Dzb4vNWHAFg0E/7N73xJHM1Bxz8BFDTH5iM0z0cYWhP28I+Xx7hvgXtQY71fmWULTRjU+y57cIpQasxQx8q/GghCshvfm4xbXPaWRzzU3Vi5FxKN+LiXwwErUC2BVDl8UMycomsqdpsC240KcOcWTb0Q52N6fA9KAK7jLx8Wvq2+su1celprjxZoCkG3MY0Q9VjTFaoFQ9bJkVkZ454q4kLFKXiGuemrw4G2LsfkpONFRzZ4YOcoW50OO2VB/0zN+FRGttUGa7cU6cN95h9rsIWhuDDBZz10qelessyOpFQDoZo3cSF1hNmyQjyYaWB4M8w9UrDy3x5DnEOcB+sixsu6mGHs99DGRDjCAYkPQig1g9MNYTQm2yyR2lLkGvu4YWshoTjRMPMpU9/QUXVMJJkJA13SVzNyaUjEMfUZZUhwCH09IyFm66c+ZZYnnM/nWB/2sLWmsLEsD4kgdWXjwpm7zzD68LVBzB/yNN4375HKEqoqukfBExqHVA2qsjEcMQPpCnRBZTHkIUmswknTmFwLQVAEjHgqZ7g0HWC9JikcN+QbJOLYth2WkxE+KF5VPIY+OiMMuwS1VzN8gOLBpwoz8hHmFYRs16OaiDjwSSzvDBItR1UTrcQEbA62ESwpPncwMUgl6FpIJkK+Eehe9CQjC0ooF+K+MjMfgeqmRWqkYAc56TDQOOFpCfAXXLq64jVzj+97XZVPUOJ554nb9l8jNoYP90q8gw6oSsXS8b3QTIiJuKBatEWIONv98EWQtsopWqQI1D2FnS9ItnZjEsk5ROuYnX8+FGgy9qx+sGLrjowHFo8iAhe6fUabXW5IhPqOGXI2p3NBWHzQk2/WzI6kdC5UbLx8ju07o8vZOT1heFuf3jlLcX4MItSLBbPlDNuF+ccs9XxbO17kyGhKqGqoKsQ5gnWIVogx0O8dqAINxMqPdHOGdAr0hS3CaEx3q081f4oTN2yQ64a1ssdqOqSjKxb1mBUzYlGPmVc1mkAiUKqaHZ9ShiRCmwjgYF5PIYfZYsoHm+uoZjFL5DKFhBDLN21MFijApQetKaLscRcQQoyBupYkwZh20Qdo69/34Fh6V+OcQOIR4+n2SozydNNoqeemYSmbYJQjEU+hay5VfWYupWsq3nfpBo6d2mXZjDhtF/nzL/oQP//457YDOpBp2BefEA2GadIWlXiyLYdPY8mqTxWqCSSjBlU2hERjOwnNQFMNNNOjQonGBjATRb4m5FuBzrql++gOshvLFcUYsuU5CAHXy2gGKbM5je1E5VzPJTHZYg5+Tow4VpOduNYhGhBB+Pw7H+R095b4oivH2CrMYJ4WvDWhtTLbePIMkqEiGUeL05sreCVcW/Ys8UADkMRcrohPnrlavCoFKrUjOz/k+EMzxJ1i/IYp80XJKHRRtSd5uMDdMWbuZSPOXlxAreXkm0LVL0i/9hJfunyG3x2/it7pZL/ULCQaQsBMG46+v8EVBjNuWPQtuYQIYTzGz8p4OpRVuwElWjT6YH0Q2Zt2D2E6w992HWxsovIlRtcrjiUNtTfMp1M6uqKjak4k2yypKUoCCQEtUY/kEphXNU2I8d5JMDRocmk4lWzhC0W1bHj3+CZ8ChLCfhiEcFmJmuk1UrbY4ntDEwP1oa5BxYNPWqwvxI3scmLGOAGMRxJPljcsdmZk2nKkGHN2PM8HHrmBUGvQgbRb0y0qOmlD7TSfd/xhtoYdPjo8Re00kyZjIZ/SHKsxlw42Vg57sTna0mTBpWAmxHJmQILHjBuSxy7ihyP04gI6T0nzjHS5g/iYcUbA5R4z1cw/WpKe2cavb8Y94RwyP4dMqzi/AXwiND2h6QrpMFDNx/JqW/DHeTReYElwrOgRqjWFNZ4yJPylI3/IP3c3k4zB9uK6DioqzmBCi1YIYDzYNvarA1IpsjXNwkOedNi0LrvsW6+zRY3tRst7n8xlD0ivFKRJNNaeoVwdjCkzDO9apPf4mHQUaLYzzl1cZe5xBVIRVHS3BlnJ0tKYDaeQ9ZSNz274xze8i9P1MvWCpzySMT6mqJaEoPu4LOCLQOeM5sTvjwhaqOY1+bajPj6P6eSosxcIZRVrWKsKivwyQ8sBSiCCliUEZHkRdWaNoDXlTUtM7yzxQRjVGZ+z9DA/+eBrEYG/ctv7uH8c3ey+KTmaDpn6lC8ZfJyuNCgJ7Pickc/ZcV0uNXNMfcpG00NJ4JbVDZ7IemQbNdVyiliNT2NCQFkOPK4FxAVdVlF5hhDjnokBY5A8A60IRmPncyYrEbuHj6W+NlEEFRNIF7YHiAQeqY8QNjPSHUXnYiDbCdT9BNV0cVVgcr3iN16V0i1q7v2NO1BNjJnpY1O6cyXlZnLQugJxEcGyl7wJqaBrTTpsSC4MYXcE8wPoFEhVE6o6upVlje4k5JsaZaP3Ebou4mldwC31kX4BZQOZweZJTM51FeVCVJzB7CVRBF35iBLpHXxxgZLAvJrt/53g0RL/H91YoKsQk2FVVHgub8McJnouWIVUCl0K6a6wfK+lc3obgKAUdj7Dt+xlqg50LwWquVisYXNhcizFDBfQ51xMShvD09mg/iS5ulLOBTj/BrhhWGA7ghlrumeF47+7zsZrlslessN4nHP/+BjdfklSNNhXVfydF70bLYGL1Rx+rmGymuIKYpax55DCkRQN057hdNan6QV85ikuJOg6YfBkxtzGNn48iZ6f87EOFhDfXM0lPOfifSyX87lBLkwjkQGgGk/+UM5js6OoqeJtTlM93uf6l51n7HJmLuHStM+5zTmanZz5Txg6f7PmlZ3HyFXD+WaBjqq4b3qCtz74MuxmgVSCLzx60OBXHS7XkS4vaHQJ0sJX9srZDlYCYTKNHoJWEFyrPPOIVGixvrPVjHJZYhnjHh1iEEIj2DqNlvVM4QsPHUfVs3TPJfSfmKFHFRiF7WfMlgumleG2E2sM/7CDqhzj6wrMN45ovGKm+wftrcbkRUcoQkSmVLlitqjxiWDzBcx0gJ41MeE2141kII0jaI1PNfVA4/KA7jco7agWE8ancor1BjNV2NUutlCUC5pyUagWA64IES5lwYwjM1Yy9fgklpIeNIzJ4JlTDXqvAICYD3IBtm9XrH7Ikm8L2bbFdjXlgqbpKMoVqBYd4gVVCnOPQL4TyWpmJ3s0HYUtVNQxaYu1be0tXUdKTRSUi4r0WJfepZ3o2SYJUuSXu8b/qeO/GtGBzokxT3x9BkNP90nN5LVTdi8uMVsWmtqQFzVae5xTLM2P+eLjD3BDusE7du7i/GxAf2HK+LoUaE3xWoEV6lKjBzXzr72ElsDWuMO0myNTjZko5or8Ke66GvSjy1I+O/jBcyXOK3wSWHtljxW/in70HJJlpB9+hBsfKAiLc/gs4cFvXaK4IbIx/ebZF7G53SMvarLMopdm1H/G84HtG/jv67fxAzf9FzZdj++770uZ78xIEodfqOh3S3bWe+SfKMg3A/mFMRfesLQPlt6DplwTNNnO46sKSVMkLaLidI7QyWOFWWNxcznTlQhRaQYeNBGipgN4QU8VeibR1SoVyVDRPReYf7QmGIXvJKiyYXwyY/cOy6tOneWu/gXedvetLN5f0TtbMvrJVdb/bBldvgOeEm/Adluavra0tOkJ9ZwmaN3ydeboKlI/KhdQTYSslYuauhctMdcmRVwG4xOKyfGMZJxiO0LTjYBy2/GEzMdwyFSjRgpdgy4jFNFlrfXZPVgvTgG5QLJXw94ecyWehVdfIvutHoX1qHGJVA29LCFkCdVywbk3pjRzHp9B01WYUmg6BnGBphfRQkv3Tpmt5jSdSJ9Zzwv1XPyOPYVqOxF+KElC6HeY3jAHjz2z8V+dArWKflHy4y/7z+z4Dv/0kS/jrv4Oj8zdzvhmy0tX1+iYGhsUH378OppG81vcye+p20m0YyGbcnJulwevy/GNilUllUbKGKtxlWZapUynGbY00CjMWJGO4tJXvW6MqVVV3IhZihqp2BbqgCR4wfcdu69s2L29w+InbmflD7e49PpFtl/iyS9GqyGfHzPolNz76Eny0yk6DdQmp3f7NrU3eK/5+MOnWD46ZMdH6FJz/4CLNyX4rYy5+zW6KVB3BcoVz9L9Hqqa/jmLzRXTVbXvuos9aFUB1fEOD/6TF7P63w2LH9smWIfvZGBUZAQKmqZnqOcEV0RsK5mDWqEmGgmQ7iiSYeT5nH8kluBV84aNF2eku4F07LG5YnxSUIMqEm0EzbGveoIzxQ0QYOFhi9/OSGoOPOMcAd9QLuiYfXcx/msLWq8rxvZi9lgQp/YhTnvEI6qOa26vHDEY8OoyJtLnPh5AJoAKkaHJCnoqmEnAVIHxsZiDMFM4mg8PdkpEyEWhRPAhoERI0Gz5mr978zv44Zv+PLqB6ZE+tguDxx39xydkGzOy7YxmACENNH3IdmNcWTXC5AQ0gwChE2O9EmOhLo38xRDxsdjIERC6BeI81dE+uzc981K+q0siWZjLSvqq5u604e13/TR/MDvG91x3O6rXoMTzyfWjjDa6EIT0kYLwSAdrITSBM13F6DpBDQJyasb1K1soCWyMu/ggzGYpw0s99DjiIXUpdM4Lg8enhOkMSVPIcxTEmvv0GqhZDJD0K247uo71iic3rsenhuHNYJZmvOgl5+knFUY8H984jhoaypM1yUbCTa84w+mtBVbnR/ggbJuCv3bTe5n4jIcmR5l7GHZu8chYMTkZIRuqFJKRMDyl6Pz+Gt1uzvaL5/azikGBXANZ+CBQPJGyfWfAVPMUl2oIAWU9ahpJP3yq8CayEIkTQq0gCYTlGl9qZFNFYu4dx/atGdNjMX5Yz0VcY7qtqec9PvMoYb/a66beJg/cegIElr9ojTtMw2PvuuGasMy9hvFJRb7lIvFFR+P7bUY8gOv6CLlqMYyqUq3yi9euG2CUIEuzttoruudurxVBAJLL8UE1VehK9iGIygYmJxTTm2t+9A0/xfe842BDYAIkolAotBIM0QpY1o470kts3AP9JxSqDsw96tm5VdN0+nQ2LLMjAV0qvInwpWou4kB9Cskw0gMOb470eHoWMa9BhRYrGstZY3ijBePP9RidSqPCfYZydQrUx2qZMmjAs+XhVLJJuGVKaDQf/dQNmB0DPcepm9c5my3QXMwYPGlxLcFGuerIjk2pLnR4rFzhhlPrdLKasjFo42naaoJ0V5GMoHvJYXZml4lPlUeWFuKAGkvYPdgTlNadet3iY/ze2u1UN5fMTnSxA8ephRE39zbYaQqOZkPu16scvWONaZXSP1VxvBs5QntJxaVpn1MLO2zYPvN6ysl8mz+4A248ssXuYMpwmlNe6iK1EKatW3vLdWy+bH6fyWc/IXDwBijZbmDpvkhlhwjbt+fkO558o4ldBbzfj00B+xAUmsh9qTqW2e2OcjnF56AntAz2cR36JFDeVsZr3U0IHs6N57izf5FX9h/nd+dup1kvKExDrhuqEzWmc8DKonBk27G80OUK3ZKKJ5N4P10mSAMhiyDyPWtU19Ed3YPjYIU0dTQt/EvXMZs/PQ4+Z9/qxPOUklHdJpe/96/8PF/RW0OhDjwuLAiJRKWp2hPO4tAIR7Vj4Y4t5N4lTBnpCav5QL4Ow+sM6a5Qz8dQoMsD1gpmFi1Mf4Vm8wbcgo8xdi+YWQyFtAOIRQYrXcywivCuqzhor86FF7hz7iKnTMOWj8h+TSAvasabA8w4xlnsfGDWJGjjGV0Ps5WE2XUN2dyYl7Ru/h8Nbya5mHB27Th24PbxXdLEutVsC/ItT7FeE5RCspQwHKHm56iuXyJdnyDDCb4+2E2BQDNKaYLms5Yf59KwT7mQIY3HB6HyhkFLYbdUTLm1t7ZPpAywknWZ2Iz1WY/PWnocgInPSMTRLFu08hzv7TKtE+jaSOU3FWwhcV7aE3cPkhE0yMGGhYEYuL/0akX/ccX8IzUEmC0plDUkW75Njsg+IbTX7AOjVe5YWhgzl5ck1zl2q5zdacF0mIMKzM1N6WQ1ziu2hh2O3LbDHfNr3Ld1lPW6z535eb77pb/Fb23ezUo2Qkng4aUjbB9wxuTmzgbH/z9P8Mgf3EgyUvQuNCRTFd3KVAgqYLOANCpmdyQq0WyLCHzvRSZ7MxFCiPXf2Wa0pJQNdM4J06D248lRAQuqZbyHiM09YoYoFB5/LZy1qKep8kcay7c8+Bc4+9AKxQVN33mGN8S4cb4h0W1XXFZ2IRpnLo/tgrxp/zaRZCfoKwD3EiK5Shm/L7S9ulTlCLqFd3Wfpyy8T+BFnfN0RHPeCqs6Bmbmi5JxGGBKIdsEM00YXVgm2WvsFcBsGuq6w8e3ro8fFuJFDJ4IVPMG22mxgB7SYbRg8m2H2ZxFFvosQfKc+oYjzFZSskfX8JtbEVt4kBIAHxXlDfkGRdowPSaEjqOXVsxcwnI+Zk7PuHtwnkxZbs8vkIjjsfoI1sfj7uWLZwC4WM2RqcgPivE8sbnIdYvbZMYh81OG6z3qJUe9BDt39cm3HU1XX47vBWIjtwOWICA3TRjdCKMbuqx+0DNdUVQDTbrYIb0wJB060qEiaMF6wRctzs8J41kWac6UJzeWU6sXKI43nB4vcENvi90m51Prq9jKsNoZcVfvPJtVl/dfvI6X9U6zYoZ8zsLD3Jyu8S8e/2LGl3rU9urshedaUhF+6Za388D18OHyBt76195EaoSmMNFCLAWfRUSCnipCEsi2hXzTM1tRbXwv7qnZKCcUPoZBUtCVIDbSGapaYzuxNlzZmDgSC6aM5Y9NMMAB75tPIxZHGSzfe/otTH/pKNddsAQVGJ/Q1POxHZDYFgaWhv1GhXtogqCJ/DVpwHU8IfWxYtG3yrkt64wwsoAo2e+91PQTgmkxtlcBGb6qFTXXm/K6zqPseEtHCVoEHQK7s5yQBJIRLN9bsnVHRlCCmYCZBXQF3QsRl5XveLLthmohYbYUsDkk4xgDEwuoGChXNmBmDtfPqBdTijMOZTQo6Fyo8OsbsbveVTCnPC8igPE4FKlYplVCSID2pvmgmLqUY8nOPuP2RTvHru2waCa8vPckI5cD8Hh1hK6JYPupT7np1DpPXFyiY2puWt3k/HSO0y0XZACq+QV652oIOmbgVYyx+eSgHbO4oJvKoC9mnHivpenGRnHTo+CSjHxpiaYb752qBEnb7q4CodbMbE45TWOHUhXYXiy4+8gFbp9bY+YSHtteYjrOYJzwibMn8EHxpiP38+/W3sh7dm7hxf1zrJpd/vOl1zGuMpJtTTi45pNxTgAtwktSxfXmYf7/r/9zLN3bkE4iDZtPpG3rES1zPYlJtKYbN7qu2/ubARODmSjERutUHNhOtL7SUUyYeB/nVs/2svotpdse7vKacOHZH8XUN/zy+BYe2VqmqGOvLJ8oVB0hV7bTBn33Yv2t9yJO2oNF9uPC4mJ/KRQEc5nLMD5+RRWWApsLXpvWwo2JvGcqV6VAM2Xpi6UJsKoVTfB8rDrO5NE5xMR63YuvyZncaCFAftHQDASXhv0M8Wyo6Z5XdNYsSSaMrleYyHAWs5K+VZ5lQE8apic7jI9rsvUEdoekD0GYTHF1g+51D94CBaTUbFQ9HpFVlArUeYAmAugnWcrAGHZdrNGe1/FijyfbrOgRO77DfdMTOBRrVZ+5ZEYTNH1VUpgGP06Y2thg7nhnF6McFycDKmtoVHQ9dA2NXIYyHTQ4GmIcKowNZiKs3ZNEntIUJjc3QIIr9D4TkHKQTIRQRio71yHmQ1IFiUenDqM9G2WPqam5MBlgvWJhYcw2Pdwo4dxojnylobrQ4d27t/GpY6vM5SWPX1xGzuQx+XLwhjkAHk9HEu58y4NsfugGXK5IxjEeHDvWhljjPmpr1ztC77wn23XYQmGmGlTsfttZtyRji801w+sN9SDGTZNJBO2bMqIYkmnY507oqxpFeo048FGi9en5lQv3kL19nmIzXlPQgqkCYhVBty1P2vCGmql99iWxsm+Jit9j31Kx3ZAmktS0uTXlZd8zFtsq472qY3V1hShX58IH4eFmgZuTiPR/pMn53k+8hZO/51h/aUK17HHd6Cb0Hjd0z19OFEyPCeVRi7++oXwxjO8r6J6PV2Q7LZmEBeUhHQWKSxV6a0wyn9FZE/TOFN9Y3MbWPmP0H+/vfDASUs+F2YDFdMLNi5vcl80BUDYGoxyVT9hoelyXbdJVsRb+iJry8eoE7xvfDEBPVyynY5QEbkg3GLqcjqnprY65Y+4SSQtau74Tu3a++9xNbb94v78Y9kh0p0cPfl7ExgxydXNJsIri0ZRkAkmvZnbE0H8iLvgQqzLZY2fX0hIK6/b+NgpnFMNJTmM1PgjDzS7UCunamLkPwo3zmyyZMQufVGRDYeeWI0wtZNJaZC1V3EHLXqIE8dzWW+N94Xp06UmFaG01lxvg6SpgO5FYJB158vPx8O2cN7EcVC53NA3SWq1NtK7ERRSTuHgv9sI6ydiSi7vmlOfI1/y3yS088uHrODqMfrXtqvYaL1ud0WenhSVFw0zVV9zXEEMWwcT+8C4ofOb33XdpVOQM3SMZEa44yGPpuH++XPglPeGEGdJXwh+V8/zQk1/I/Ft7dN7/EObWO5guNqSdyN242+lQLWYRt6YifECPNC6A6jfYTkDXge4FKBdln97LTKFYb0jObeHXN8l3xxRa4XciY4ikCUISSzr9QQP7ABVILxmmN6Rcl22RiOO+k8eQrYzxNKd0CUVbNRWJEuIGen95A+/dvZUvW/w4v7T2KmyqmU+mnCvnOZctUPmEx3eWqGvDVt3h5YPTbNsuLigqn0TkgnCZvmtvURm46VVnnikO+HmTdOToPaEYDhRZv2J2SqEfMfhzBcEEdB03ti0uU5BF1nAARdP3MQnSCMElVLWmMikEoXgipTziCNOWat14UuW4KdmgnhMWHyzpng0k2zPWX70YP1OuARwo0frck0RctIJ8QNWBbOgj3ZwOlIsxNryHOigXNOI6mKkjKEFVsZTTdg1+kFAutbwCcpn/c8/NlRbqpOr43R0J14DzHsUTGPmas9bwfe99M0sPxjVR901sfT7z8WeqqRcuQ95w0rY69/gioBqDsm27aB/1TVBtp9NSs9+p1O0xXbXIh7TlaQ3st11XV5GXvioFahE64rjoDD+3/hrOvfMU1z28Szi2wvgGz+pqVHK5scwVJf6oMMhKTnR22K47PLK1zO6wgx8niIug1mLDoWuFS4Vk6sk3G9LzQ/zmNn5WopxDjq0i1uI3t5A0IVRVJKS4kkHlgMQYTzPvubA94LfTFzGzsZQzmICtNeMmYzmboCRQ+YQd16EJmrP1Il+2+HFyafiy5U9wqZnjwekq5ydzvG3yMh55cpXugyn1jRZ7Mm4OFxQ7TYedpmBzt0u/CbFuV0BVcfPY+cDNgw3ecbDTAk3D4qdqknFCPZ9y6kvP8OT8Apzpkm7LfkuLdBxwezRuKlpeqgEzE5y/IpY1k8hWVEfqttmNjqRTE7zCDlM+cPo6vm305/mn3/Sf+Wcbf4nuRXuZhT1pEwzXQGhj3wIFjqU7TFdTio0mYj/bbLLXchnT62PlUN0XbG5IJhplId8WvBbKRR17cLVWZzLicj1ku7tj9wKPTxTNwJCL7FugB71/bAicd5p/cubNHP09Q7koNH1BlwGXCpNj8SK8iQgdUdK669ENN1ONngnpEFQdIWJBYot1sRECRptYMtOIGVVW0DW41uDwpk1CiUSawauIlV+VAt1yPd46eimrZpdzk3nKo47Rzf14s3Xg0pkFpIiWQbITq4vO9j33dY8jOhBmGj3SFDuKYj3GOX0qpCOHnnl05dCTGpmWBO+RxKCOLNMcXyA562FrJzKmiAKlCM6jlhdhfFX37DmVQjcs3LDN1rl5nvjIjfTOepYF1l8BZiFCcLbSDkYciTjKkFC6hDk9IxHLveVJdm2HnaZDpiyfv/Ig79++ASoFr9nlSFbjES7U8yTi8Ajrs17sE67A9lNsTuvSwMpLLrGaHjA2FsB5ikc32b3pKC6FRx84zspNm1xaSsm2U5JJQHzA5pFIWTWAhJZqLFYF7LlWuoJ4gULnYtwgeJjrRbzWDtBMUy74Od69fBvlW3ap3znPyscspgq4ayCptieKy8rr6/qP8i/+bMVNPwYE8JnQaIXL2OetNGVAV62r2oTLjE4tC5epYnVRUO28EBWPyyA48EbQTYgEIpXjzNcLuVwLbDNRHMIfTm/mk++5hd58ROJEHKfQ9AO265G2QZ5yQCOX450esm0h3Q3tISKoJpJx55stRK5NSDd92QfIi40hQ9uBYNlHrkiILvzzhgNNxLHddBm7PDaA6jV4kzJdVeTrkZ+yXo4XaFqSV10pgqT4NLoR6SiQ7jYko2gnB6Niz/DGxwVgPWE6bUHzQujk1HMJZitHEtN20osWKCtLzG5YhCeu5iqeW0mU4+Ur53g4q3nSLJOMU7oXHapRJImjcZrSJthUU3lD5ROaoOnpkk/OTrFrC5oQ3fdcNVyfbrB8ZMTNr9ngHWduB2C77AAwl8xi2SeCnRqyYWByNMXl0R2ZHXN89bEHn9K07sBEhHD+EkffaXj0Ly6DwKUL86S9mvJFjsETGaaMde8+aRdtC0mJylVAYlM4aZOoZga9c57NuwWVOYqkofGRc2FtfUCSWpqgyRNLTexAWc7HEtdrheLvythjR1KOLu/ikgVQkS3IVCEC6l30LPJtT3GxRJWWaqVgupJQ96OiUC5QDRSddUf3jx5Bsgx/ZJ7pqR7VIGIaIYbGCKBqx9fd9XEyuVzBdy0cLT/x+OsYPA71QKgWWuymgOvFqiwxCkqJyrBFtyTjiC7ItwPKhn2+T1tEN15c63UYMKMYT95j4Ff71UeXW57oOh483lwdyfRVKdB5NeXL5j7GuhvwkuIM75u/mf/WexHNQwNO/veG8fGEjVOW4IWmrxArpLuQ7XqyNY+qPbrymEkDPvZpDiG6bj7ViPOoaYmfTCF4REyMcwqE1MRSTiXRjb/xBBc+d4Hx9R5+l9tF5K+HEH78aq7nuRBF4Hi+gxLP7izHdhZbADTUtWaxa/EIO3VBquIGL33CfeNjnBkvsNoZ7X/Orb01zjcLZKphwUy5fn6bx7cXeXKywHiQ8lB9hLmiZFxlpBcSsm3L5JiJwOEUuidHfG7vUzxcHQUObk4gJoCCc4THTnPjr2Y8+eYB5XFPM0tQ6ymdizXBxAWbTGM9sr/C5dyrnAkmumreRItDV57mupr5uSkrnRGnhws8/kO/ji2Wmf/qL2St6jOc5Fz/gQn1QhqtDL1n4R7ETFyWADTBoUVQKJrgePtdP83nv/S7OPF7O5RHu6imdeVVtBxtITSDhGJzTOdTQzoPR0x0aBnUe0pFj21xnnqlz/R4HuN6ZbTKjI3Zd+U8F1/X57P7D+2PZy8OKiLvBH7mINbKYxur3PXWZWwvskfZbqxEDFkbvG2Jkp0oVK1iVVYZ4UZ7bZunRxSuICpfFb0YCVBcigqzWmgRDipm6M0kQsZ8y/6VzMK+5brXP4lnuH+ekQIVkSeAzt13G16a1qy7i/ziz095/9s+yVt/4b385u138+O3vg77UDzZ9FZCcSleqK5icDwZWVymcHl0H8R6fKp55+99N698w3fR1wukazPC1ja+bqK1maZgIt1XSDTUNXiPWlxg/Z55dl9kyZefIff+cyx7c3Lsjj4dVZMpy+47Psza2x7itjd/a8zueUXjFZMmZZCULJgpPV3SUTXjLOM9H7kTd4viO276XY7oIfeWp3jX9m384ut+jK9861eSHrM0VmPPdLm4GpurLXRmbO92SZxgu9HdCwbKI55vv+0P2XQ9furJ1wJ/cCDzsj8/e7+1Rh49x/W/DsNbetjc0Dtbk10asxku8uC532U6XgMlFINVTr3qLXSPXA/EqpK9Fg3SJkdGpzRJNqNIG3yIgHutAjYarOxUBfUkxWztMDlVxHYYnUC2w4EF/PbWykvuTvaV50/87Iif/5URv/1fYogD60lGDUElKKtiYQmCWxCqQcJ0dSWWsjradiCxKeOHfuo7edHXfjfZ3PJ+4ijo2AFUOdDTiKdWM8vgSce5ZhGKCcCBZuL35qQzfxzbEWZHA1ufeB+TD32Yo9/xLZdf2CIngok17ck4HqwuFQgRpbBnsWbbsa33vf/2O7jrq74bvbJMeUSwnbB/CJtp/DxbxMIFXRHDJ0aou5H+7vmCMemNDY9rJ72vNFMvNCi+ov8JXn7PE/z8da/hvz92K8FmsfHcrm+B9B4zqhCbYLsGsT5CL5K2qVwqBC9Q1YQm9mjGB2RuwGylw3RJk4wy0paMt7plhY174unU1AdaXaInWzUuKGYupWxMXNjd6G40owQWoHERfhN7wDuWTEy2fePn/AEjl/Pe0a3MmRmv7jzKm04+yC8Cnz33MH/IEcpzPYoNhb/Ocmx+yO1zazz6wBF6W3ED7cW7rn/RBV6Wn+bHL30u2x9cOcg5ibLHSeo9BI8azhg8QmRiEqHsCR/74M9y+01/lsXXvpwm9exuPY4JBt1EBbFXpmc7sBe2G97uCOOUS27ArE4wbctoJHDs6DYdU6Mzh+9lNEXcPMq2FsjBFiLpjQ3/lCTS3jFTzwfsQoEZlqQhYAuFyyPLusskYkNtIIjg+hHu5BNoYmQnhihmbRxQR2WAAE3AjO1+9j0ZWbZtF3hqLPYARdf1mHKJGIe8cjgtx8RTvIb2MPVJ/HGFUKzFIoTKxMO2XI4fMj4FyZG2vTFxOe618/DKAZE+MBkHTBV7VPmEfc6OZypXs6R+cH3df//DW5bBnGLHezzC1Cc8+qjlB/7RaT71yUfRc13y1385g8HLaLrCp37r37Ny4h5Orr6KZFiz/tgHOX/xQ7zy7r/ORz7yHwH42O//ayQIdy+9iaSuuLd+L6fM7Zw++6ssjW7hlubLue9jP8fO5BxhAv37bqTzli9n9VjsFf74VVzEcyw/ONqovn9rBx6rl2iG8WQvXz7Fvn/I2s/8KufOnyGZL9Df8lLufktcvP/w6x/mzi+9ntd8zQk2mh5/8MvrnPn1+/nCH30z7/5bbwPg//izDxD4FAvf8NXMigHb3/xz2K94Ke/7lQ+jbruPY0f+HJ/62C8w2TiNF8/g3Zpf+e7X80cP3EE+uwYiWyKoTgc/GkXMpkSLwWcG10kYlucBON5/Ea706EaRDG6l6Slmww0e+9AvM925AAK9G+7g6Bd9FW6hIOSO5uw5Lv7EW3ni4ibFi+8gKyyqHzjV32E5nfBEf4pPc1wOzakaJoZ0R8PBUl/+4KV19/07u47Fuaduu3rtEh+5/1eYbJ0lMR1uvOULyV/zKgAe/rUfYe6uV3Dk1tegKxh+9AOsPfZ+XvSF38YDv/MjADz4S/8KRDj1xq9F9wac+Z2f5chdr2f93nexsHgLdx77Iu498zaGO2d4/+sq3v3qhB/5gSMcP37gyaQftNPR9w8+Pmb40h6qii42Dpr1NbZ/4e3UT55F9brMv/mL6b34ZfhMOP3jP0L/Za9g8KrX0nSF4Yc/wM5vvp+T3/xtnP3xOCenf+SHQODIV38tatBn42d/joVXvp6tD7yL3g23sfKFX8HFt/0cs/NPgvP0jtzAsTd9NVotXFUS6WqAHR8qusJ/+tEJmkDdfsv2RPMtf2mdz3vLHD/x/rv5gn/+etbf/l9wZy6gyxhrCDoGxavFDJe17RoGCXe/8VsBuOcNf5fP+bx/zNHFu5E0pabE+orPUW/mzvGdqPffx9HpKp+bfwVvvP6bMM4w+Ve/zujDy2ztdq/iEp5z+VDaTfj1/3iR02uLJEPF3JERzdhy4Wf+b/oveTknf+R7uOH/+Are9y/fx7s+3mWtGeCCQiSQiGM5GbOaDSl0zanONn/3Z+4B4Mt/5i288m3fwfKbIlVgsz1mtttwy4/9HZa/6mtxGhbveDU3fsf38nd+9wsYmwE/8V1n6JxV1wRcBwHSBNXrIkVOSAw+NdheissU2fwKiHDfY7/C9pP3EnZ2SaaWdOTRtefk7Z/PPV/xD7nrK/5P7O4Om+/8LfJN6DygWPvXP83gDS/h5v/n77PwxtvZfu+DaB3JW2Yu4RWrZznzhV3Kxdb960QmDXWwCvRDva7wr//DLp5AaPGgw4njwo/9KMvX3cPnvPr/5KUnvpyHHnw7/snzJBOPbiJaJZhoiXsdY8H5puXlL/smAO74yr/H3d/yA/TvfjmqCTSzEbIz4dVv+PvcdeLLkNpy5MZX8Yov+R6++x1voMgVf+cfPEPK9edXPqTSjLOPv4vVDzf0z4RI+LzVsPZvfozO617CiR/+Xpa/6S+w9Uu/QrV+EZfuJcQi1tPlLYzPQeeScPNXfRsAp779O7nxn30/vXvuwZSCHY9gd8rtf+17OfolX0OQwOLtr+KeL/seXvX53w1pwtn3/Op+rPSZylVttSOrmp/7qQnnN2J8JiC85/dmrJ5IeeNXL4PWvOylwtzr7+DS1r101myEKmlhcjTBpxLJfsMeuLc1r31cIL6bQxHZT2/SL4lJAzFkWZ+j2U2YwQL+1CpHX/4mxhcf5eYfP80tP2yv5hKec8mWuzz61k8iH/LYTuBEusNrd36NZGWe4kvvQbY6NKs3sPT6W1n7g4c4Uy5gQ2wU54MikdhdUrUK9YlyCYDdJkdLQGuPUgGUYuFrP5/haI4j96fIoEf3pS9l8LohNy2O2XnjV1B96jHasvqDlySJPatEIUURE4ZGxfYVXQ39gpe+7lsISnH/6V/nXR/+F3zioz+F39qmpxdZmruVxGkKuhy77XOZnn4UsYGd2eNgPfNf9lk0G33M3S+nc+txmspwerjAbpPzxDgm8pIxBCuRl0Cxz0B+UHL8qOb//okh65sOabfeD/yGIe0vsnLDq3H9nN7Cdaz2b2fnsY+SbceS6MgkH7Gg9VxkVt+9MWHn1lgyUy+0JMESDRYR4bo730RiFQaDLC+yfOzFaJ3ykL+e7/r2Ae9+3zWA1ABMb461B97D2bsqhjcIugqo37mfZG6R/htege4H8jtW6bzqLqaf+HhMMrWHSDqK8Cafhv0EpJm1+NYWOK9aFn4R4djLvwgTDMqkpEmXxZMvIfUJqpuz/NlvYnL+0X16xWc8/qt5cScXPufzc37s34+57pYUIbB2ruFTH5/xtS97oK2W+gSNFYpXv4K1VyZUDwjhtWOqL9ih+Y0FeBBQgu2oiAEkxmxsR+FOdvHTPulGjhaNZLHiyFZTHgofY2PjIs16HXFwvmbrs44z99j06q74OZZG5xR33Mjk19/B1/+VR/jAk4GFjSeZPbTNub/9j/At7EKCo/iSW/ZhSA7FpWZAR9XMfIIiKlDVBoKUBJbbYP80sZhBh2nVI388Ix05JnOWJ9/3NsLPfJK/s2MR/4f4uorY2GuAOThogYU5uLRBmM2Qpr/Pg2nzuPCL+aO86EVfg1kfMZlc4hPrv8kjn/o1brvpy3jozG+xM3oS5ypCCJi0QDmwsyFmbg5jAq4Rsn6JLCyiE8dyZ0KuLaW2+3SIu06QzF/1xng+pMgVX/IFGf/q3+1w2y2GCzbnZ99+N+X53+T9//V7gbaCyDuOqxejS9dWULUUbNXlJNHkxOVkh2tRGLqOrcdN1sU4gy5rbC+lThyPfOztbK89yPt+fcavpg3TscddA6xdKk2YO3Uns7e/g+zYUaYdYeq2qU6f5sw3/ZOYQASC8/Q+52WE1LfKMXKguuQyUbItIrkItFjPUiLDVQUm76JJ8DZEKrtZzbnf+1V2Lz5IY2fx8KkrvHjkKgiKrkqBagJ/+zv6fM2XrfOX/0bkAr3uROClry74lz99CoBzdoGfPf8aHl1b5rajj1L8wQYvnyu58UbFTx/7M9R2HCtmMkU1iBdbzWnsURM7B663R6mS2L3RJZyuP87ETfmsxa8hbQy7s4u8b/Zfqftw+ksG8MGruYrnVlxluOmlX8yn3vbDbF3qoxBuOeE4+vKj3PkDX8esSbiwMQcBjq3ssFnNqJMO6+OMF+nIExq2h22JptmveVcS2K1zKmvwQRGCwGZG90LAG+H8w3+AHp6j911/l+vWF5lsn+P0j/4QqHBNKAsC+EGBnvUJkylqNEH3Umjjfy6J8S5baNSgoBtWONG7izPDT/DoY7+FEs9rX/q3UP0Bl3Ye4NH73h6xoMUcdrSDtYLr+th/a3MHv7KIEc+JYofSGZouFK2XqlNHuRSuKjnwfMk//HsLvPaLzvFX/0aX9UdXWLpzjnr5Ju74/G9GuUC2bdFTS3Jxh7A1xZAQmoZ8J1DOgxuOWryswBXOl28VaFASSYonFj2pcUWH02ffzXSyzt1f8O1kaZ/zixd58j/+ED+yfRPChQObC4h5ooUv/GKe+LEf5ljyBhBIi3k6L76ek2/5NmYnLahAMqhIEkdVNkgnwRE5ZpMJ+J1RrB4S9te+KWNWXjXgmoj5NGXAu2jlrr//96l21rjzS76d8o55ZhvnePI//hDeeDDPPIcgz4SQo4Uc/HXg54EngeuBBWAGPAzcBZwDttu3FMRishI4AfTa1yXArUBDtEUBXgo8DuyVz/SBG4FPXDGEk+1nPkIMO9wAzAMfbp9/CfCtLySO7XBO/mQRkXXivPyPJAfmgC3itSfAzcT508SUz5NXPJ4Sr1+Au4FLxG5Yc8BNwEXg/J8yrOtDCEee3RU9e7nG18r1wH28wDjQa3xO4JnunxDCn/pDrPX5giv+P9VeyDvb/28HfoO4oDeB3wde1j63DPwOMALeC/xfwHuu+Ky/CVwgVuR9LfBG4OzTvv848E5i0eZDwDcTgQ6mff6dwF9/JtfyXP0czsn/9PydAH6JuEkm7e8fBQbEzfPh9to+BnznldcPvBL4aDt/v9j+fN9BX9PhWvnfb06ekQV6KIdyKIdyKH9cDj7bcCiHciiH8hkqhwr0UA7lUA7lWcqhAj2UQzmUQ3mWcqhAD+VQDuVQnqUcKtBDOZRDOZRnKVcFpE9VHgrVa//7NGBTIbaYCIBW1EsZuh9pxwTQysfe9hLad0eAayA2rHM+lh2EAM5p0g1QZdN+ZrjiO576tUO3sREOAN8HkCbdUCRzlx8IkdV6f8xqr3Ngy3ZtVGRab9sHxB44LWWbi/R/4gPS2Kd+3t58Xznt4Wl/XPH/sFk/sDmBuFbU8SMknXj/rVOxpNLL/jj32NWDDkgTyy2DBlVeUbcergCJS+z8Gsv3Ln/GXt8t8Vf+BMQGpKwJbe+sMoypQ3VgTCv5fB76x7vMbII+qyJTlVKRTV5HbtSgaRmViP2eBEQFRAIhtKxle4S/IfJXRoo72v5KkbleWR9Laf3e3ol7jRBolgv0fIPzQnVpFzecHticLC/qcMOphEAgALMAj2+ukI7C/r4RF1pe4HZfeQ9ax/JgdfnS8LTzyH7prqoD4nxkevLte63lT0Mfjdh+RvvnqhRooXp81txXgla4m45j+3EVZ+eHsLUbB1ZWSGK48Bfuwn3hNkZ5jPbkxqKVpzANqXKolvbZB4VHIrdjnTGpIy1cL69Y2xxw8hcTuu97HHy7GIwB7wh1g6Sx3vq3t//TnwTYfl4lT+d5zR1/I7YDaH+C1qhJCYnBzuX79H3NQs7sSEo1uNz7Zvd2z7Hb1+gkDY9/7ATz9wu985bO6SGEgEzLywvn6RJCnJO9v9vFFbznty/++wObE4C8s8Rb/ssX8tjuMuu7PZLEMdnNYyMaAb0d+5q7ImAHDrOrsXOOxY9qVH25nW+x5pkcVyzd12A7ip1bYjvkoKFacSS7CjMWkgmkuwGfRvZ5m8dmdSu/fw5/cY0QAu+r/ttBTgn9412+6qe/lN964EXc+Q83CN0CnxvsIKNaiOz55ZJQLgfscoMpLP3ejJXemNImrA17OKewjSZYFXvD76rIGVHGPj/JMNDZ8BSXapKtKbK1SyirqEyVEBqLvf1W1v5eRZZY7v/2nzzQObnhVMIHfvsUTXCMfcVrf/I7ed3vV5EfQ4Ts0bX9g4bEYFcGqGmN76TYToJPhKYX+0KNTypsN64BaftqpUPQs0Cx7SkuVZiNMTKZ4be2EWPwVfWU1uiiY7na7za/8Iz2z9UxJIpi48vvYP2zLJI7RHt8o5DJIvhFmGsgCCrxdLrbhCAMxwW+1rEx2N7p+fTzLsJX4wmaepSJ5BpHl3fZ/msZ6y+5lVO/N8Zc3InKpLGx5YcIZNlVXcJzLyFaTqLwiUZCQE3rSASdtg2xCkN1JGeyYvBprNHWdWC6olHLFTfPbXBpOsBnsUeUyxWunxG0QhUJatZAYxHr4mLaU5pKnqI4uQwSPnAJWsiUo7KGQbfct0CTXk043cVlAX/bhH63ZHuzh7KadENTLkXG8NmxgO07hnd6jl+3xtl7BqgnC+YeDmy80tF7wuB3FLYXYvfFOnJ+To5HflQJ0D0LkztX6RQZPHmOg6akD0FovCY5HdesTyNDlU8u87raDvgsIIknSS3WK9YnXfLEUmQ1tTWxfNUpaieEcewp5ZNomQcdyUaavkGXKXqSQtO2mQweSVOSS0Mm0wGLR6b7hsxBSSAw9pHY5BVv+7vc/I7LJCfp2W3CbAZaw9I85fE+PlGYwuAyje0oynnF5JjgOgFbxO4VqhHQkWCl7oNOBZTCTBP0JCUUKdLv4PMUVVv8I0/sK9Hgr27/XJUCbeYzdr9kgraRhzNJLSETmtTjrRCcQrTHlZpR1dLMNU9zPcNlF66dwae+rtR4YDhMGZr2M26qefh4gQw03X7J+PSA1fcJug7oMsB/vaprfu6ltRCVjX2dxHp8J6UZZJF9qKOZLStmy4IpIX/EkmyVzBYHIIFHd5c5f36R3pOaYsNhZh5xIbZm1Sq2M9mrfNhr5azksnt2pfL0AcLB9+8VF1DiuXlhg1RZPnLhFDp3NOMUWYmLtShqVnpjnFfMioZmN6OpVDyIhwmhcPTvS7k4XoGVCneqZFwVmKGmWgyYcVxLth/7CFWLkVTXDjzFOR3XBlAdG5BdWIOD5Z0BYOYSijUhpAkhUYRU4TKFN7EnkCtC2xwOmtrgveDN5VSFkgDaIxJwucP2FckwkgObSewntd98DghGRwUUwj4fqowmuOEyxbFmn/f6IMUR+NwPfSM3v7WOvdt963ZPZgTnYTEqz2AUwQijkxnVvFAeCdTznpD7GO5wgjQKp0CJgAptiEhwmUAwuKwXH1PxoNF1YLC1gL20/qz2zVUpUNcLBC9o41Aq4JyKYT4dacuCDtG1UCHqFCeX01QSogV6pbT9zPfbiO5Zp208g1ohobVaA4TdlPEwBQ0XPyeeNiT+wBVoMAo1a5DpDEx0Aer5jNmRJDapaq3CZBwp/FyuSNvH/FbGxbUV+mcU/TOeYj1aC1I1KK+jIhUBHXtGRWptLv+2/rJ7v6c8rwUrVAk+KOaSGZtVlxBAG8dgZcpkluFcXBh3zF0i15ZzoznM3AQtASWBsyygVGB2JOALDzMDjVAPPGYm2G4gXxfSoWDHgssh3dn7ck0w0PSFqTcks0CWpAc1E/viEcZNRrYTCEWKzwz1IMFlgs1iMzNpQFLwlcZ5QbXKEqCsE0IQRAJKBZTyOBU5QnW7z9Kxx0w8ZmaRxiHuCt55H0BDqGqSHU2uG9QBs9J7At+39jry/zIPlNF1V4LZmkGeIVlKc6RPtWCYLSmqxdh4znccoXCoxKFUu+xd1EFYwWtFaCLlZtABVQvjU4JLDcqGNtYciUW6x5fg0vqzGv/VNzmQvYD2Xo4kBrehzXXotoWil9jPxEnLMi1tUzCJi8TL5Qb2ISYNQsumEky8QJ9Err8gxNMkxOf2mk0dfEcCACFohdQ2NvcadPG9nHrORGaZiUc1AV0JJou9vJuuJu0ksXf5hwzJxNM7MwYfYqsT2aPk8kjZIEoIqSHkSft468pbF2NDQLBt0klrsAfLkQqXb01PVzwwPUpVJRxZGHGsO+QJFjHa001ram9YyKJpeH484OaFdTbKLlmnwTnBHq2h1KACes7ifYoaKlQF9QCyLehcCkyPCq6ICaViAk0vJpZc1jYQO7mCbBy8ubVTFeRbjpAamr7BFpHez6dt4mhviDrQGZT0i5JMOxLt8EVJZQ2VNaTG0qQNm1bhK4X1oPqCXxeSqUW1CpQQYidb5+LaAHAOMxFS7Q7chS+D8Ct/8BpuenwWEz1hr3Wz0BxfIAiMr8uZripmK4FmsQETQxxat7oIENVaXSIEUYS2QZQHpO3QEEygWhTMNMaLxQaSSaA82iFPDGE/cfvM5+QqY6ABguA9JIkDIs2ac4rgY4Yw7FmTVrVchoIqBXFCMhQ6awEzC1Rz0sYr4oQlk6gQy0XF9Oger19Mr/kkEJD2+7mciQ+fJiX/gkuICxUIcz3qlR4SAr3T0/3HXZGguwbb09h9Rv6UoAUzCyRTjzQONSrjAkoTfGoub4DKglL4ThoV5ngWM5Ot8kTJZaXpQ0wYHLA0PUGJ5/HJEjuznG6n4ouPP8C9w+Os9MYY5emYGkVgu+qwkE05Px6QKYsLirnuDB+EZH7M5rBLNUlxMw1dixtFS0PafklmBv3TnuH1qu1JBekwrildB5quMLq1D584WNSeIjCpUwYzRzNIqeY0TScqT5fFfaOsEBJPZ27GibldbuhvciQdU3kTE60u49x0HiUB69uuEDrgak0TUuq+kO4asspdRnDsrQetQKK5pmro6hotB7t/hq7g1t9oQAs0reLyATfIKZdTmq6iXFRUCwHbi8aZSm3UHcqjtN9HJ4S2p7vHE1AEGxArsRdWHXWKywLJSKKxlglBosUrt95IuO/BOD/PFx/oldLUZl+hKgn4ve/0Eu9b6gi1xgwVg8eh2PTYTLB5/HF5SwgbIuzAJRHWk0wCy/fGGMjuzTHWRQBUICSt9bkn6tqwQmODPI3rZQQlJFslcmEDESHM9VGJjh0VLYQC6r4wW0xo+uBy0JUivW7A8icSzNYErENEkLKKSjIEZDyFPPYTMpMYaA9ZchnuBJdPzqsMhD8fohr45NYxAKbTjDxvOD1bZLPscstgg4GZsdN02GkKAO7bPEpjNSObsZBN2Rh3ydOGRHkW+lN2BMrNApkoxEE6iU3X6vm4AZp+zMQ3XUCiBdr0Yjyoe6GFwuiDVaAigUmZslA66rlk3/J0afTOzDSCTep5IU8bjhRjerpiORmxqMc0wVCGhFP5Nplq2LUdzhXzXOr0uTTuMVxboukK01WDcjGZKS38J1qh7fqQeNB0TYU+YAt052KfZK6Jyk/HQ0TPGibX9ajmFC5tvVINqhJcxxGCYIxrwxtxXl2Iv4NXsGdsJYHgA8FFT0TPBO2EailgJhEC1nSFfCvmFkTrmER63izQp0vbDXH/b0BMbEEhpwsW74dk6vFt/2+fxIVOYL/3t1hi5roG3cQG90HF55buaxidNGy91McwgCdaW63i5oBPzz3Zi1GqymK2p8jOCJIkwlT6OT7V+FTFHt8doZ6PcZxmyaI6luCEycxgOx0W708ozoyQskLKGhID1hFGI7RShNU5QpYijY0xUevYzwSIivOTHPy8BAXjMqOT1WRZw1xnxrnpHCEIm1VsJ7nHvp+bhkmZcnRuxEI65YnREllisU5jncZoR9NoSDxqpHFF3AAA+UbMXgcNahronodySWj6saWDmQq2iJCWYA6eUdn7mPyzhYoE4joqz2wn4n+Vjf3MqyeW+aPrFvFzljtvOs9XHf0Ip5JNypCwpMc4FIt6Qt7GwS6O+oiFZBTIdxx6ahHrY6db5+O6UPIU7yRT9oBxCaArT1Cyv4YlQNARlXAlMXjQ4POwjyOOseD2uQBahzb075EEnFUEPMFJtDDd5a6c4oSmHxAnEb2RRny26vdxOztXNf5nFQONcc+nPqyUR5n2uXsHnHhXiU8U1ZyOAOiOxCxjCigol2KvZl0LZizYVVAVpEMhHQaUjY3u+6ctQRl2X1cSan05ESUx63ZNiIo3XY8r2Nol+BD7odcNagSEjNBPaLoxCD47EnCLDYOlCb28oraGsjGUcwnrWZeV0Kd4tI4ro27AOfysRNwWOk8JWUJITFSwrlWgPkQWf2OuBaOckMCsTOhkNTcvb7I56zCuM4ZlRtmy7PeSitpramfoFxXTJuHCbI5xk1JbTeM0qbHsTgrc1ICL8SszFXQJ2W4M/9T9mAyILWnjAezTy0rWpXHdhatgGn8+RIgKNGh5ytlvZoF825FvtJ6FCMml3QiwzzOGt5/in33eKd782o/wuv4j5Kph0/aY+owz5QIPbK0y+tQix97v6D2yi+yOCU0Tcdl7ClPUUyxwl7QK9KCNEIl7Z08CgZAZyoU2qXbF8MQKIQPRAaVjNwJpk457LwtBsFajjcNZjfWCL8B5hZlGRRp07A8/W/VkWwpdtlb6oAe7Q65GrlKBXk4W7U28cxKbnhF/+/sGLH/SRbeqp/EmWl3TY0IzCNg5C0HQY4VqhGrJUS0IIXeYbUM9D/m6UKwrkqmHAIMnLNV8wfS26uqG+wKIBGKsci8eWVURkeAdjB0kKZIvU/cVs5WoPP1qRbdXsdIfs5BNqZ1hYlPUIHD6Hs9G3efERgdd1m1xQgk+EOoatTMiLM0TOlm0QJum/W53udLiGoiBioUTS7u8eOE8H944xXCWU1WGLLPM6gTbUfg2/KPEs9Id0zNRofbTCucVzivG0xxnNcV8Ga2OMwmqiXjJel7QVUwc+SRaojsvb8ifSMk2I8wl2xZsF+pG9pNzByUB8E6jywYzMYTlWKWWTALZZoXtJGzenVEuB4qLXfIdT7bjMFPP8gcN/9Xcw+RlGdcVW4xdxr07x3novpMsfFJx8weGqDMXYyy8KGI7HDLCtIxrUnnQSXvQBqojnuVkhOZgXfh9UYALT0kk6Srur2qhTTDnHt2xpFmD1nHcewoUIEsszit0VlNbjfWKaRBc0yZadfs9IXpI6Y5CVwFdeVw3ZXrqGD3n8ds7kWb5GchVKtDLx8Hlk6vNcHlhtt1h6UwM3LtU4ZIY70RBtegp1hR2AdRIReBvA8muwuWB4kyCcjETqWyMDQalyEYxi51tB2Ytrgu4nKy6BkSsJ2QQEh1hGGEvoeNReY7tZVTzinou4PoOYzyJdigCRjx5OkOJZ9Jk3Lqyzidv7FDeX9DdGkcF2VqXAKGuEefwRU7I0/0YqGhFcJ5gD155AtBzLOUT1qo+4zJjfLFHMh8PjZ1ZzrDKURLomBqjPCoEbIhKNdeW5c4EOpAqiw+KURMt192Xe0ZtRZMkHtlOKS7E9VQtR5OluqXEn8nI16NS9SYq3IPuiRSCoFTrskJ0Hdvy1fF1BaPrVRyngO0B2xGvaDuxQknNFB9dO0FxrOH0dIFHPnqKox+E7rkSN0gZfd4tzJYVtiPRld/29M7MME+uRUD6XiZeGfTqjL4qDzwGCuxjVPejgUpIR9EDVbYtd1aAicUFedpgdCy22TuEAXIT90LjFZNZh3or3084K9smjto1ID4iOFQD9Zzh/Oek+AQWj13Hyi8/Q+3Js3HhgxBCdNW9V631GUVPFNmu329TLD6gnGAT6FxQmBn0HkywvWihBAPZZgz2uxwmRzzZtqJ3+vJnukTQWuise3a3U1iq8FZd1uVPx5a+wBIkKnrbTQiDlHxnDnaH+5VSod+lWkhpOkJQYR/z2s8r+mlJPynJlMV6zVbZJTOWpeu3ufSqZU7tzGEeGsUv2gtu+wDOg/UEoxCj92uDWxKBy3CVAxTvhbOjeZY7MUxhVxSpcTROU1uDEpjPZ1gflaYNel+ZpqqhdIapTTHKUztFohxeC4vdKamxTGYZwQtN4XBFtOR8x6GMj4/3YoJx8GgcTzBcVb/v50uOL+1SLR8BYT9BMjql0DUMHnexq+bM0fQMxcUp9WLexkoVPo/K7kg64ux0nt6Tis7FEts1TFYNtgAC9E87io0GPbPoYVvZY8x+dlk6BdevbDGvp/vK58Ak0CJKJIZYPBG7uqfo2jr/oAOS+v0ut8C+8tTK47yitIaqMeycH9A5bXBLHr9SE6zCFrHkd89I2+MNyIaeyVEdQz+5Y/PVsPKelcudmP4UuToFGiRCBoLgvdoH9HqvcE7RO6PIduvW3G4tJhVdLXEw+qwZadZg3jcgGQfScWB0SjE76QgdyxvvfIj3/8aL6V60+ERi/FRB01GkY0e2mTDr6f2xtH2UrwnxRnCFJnRywtYOAGp+jurEPJOjmqYfb5geKaxK2cw6JNq1CsNSOrOvTF6z+iR/+Aph9/FFls8U+KpuK49UdOMnMyRNIplCYpBZddltFxXjpgcsIjCrE4Y6J9WOLLEsdado8Wy4LjqLN84oj/UKQ7TIlYQYF/UGJYFhnROCMGlSLm0NsDspKDBDHTdB4bF5iLi+UuGNRqUOdaSk0Rnj6zS904H+GYuuD1ZZjKYFTz5xhBMdhS4DLoNmEFsWF2vC4IFd6tUuW3dkrL4n7uDt21KScTvu3DEcdXhwvMpW2SEZBcy4xuUFySxQLin6ZxzdsyXJ4xcj4UbdxCSKMbFSzTma4wu8bvmDaPEHDqSHqDAJgjRt5Z2OHTTrXowV6wpCGghjQzNK2M5Skl7NfH+2H+rxARqnGe8W6En09vINRfJYju3Gg8rl0bBz2eX4uK4jztz3LdQK3WsIyTM3QK5SgbIPmt9/KEgsN2sU3YuectHEuELtybYaxHlUU7D+Cvhzd3ycX/nwK/jKP/8+3vHTr2XSF2wnUJzVTK8LuCDMTljG5w2mCnTWLJPVeFwEEToXA9WiiZUpei8Tf1VX8JyL+ABaUC6ghw0ynsVgvVaEuR6zlZR6EF0QMxbMDNy2wV2Y42w24PFeQBYrBoNIGrFdFpzbvZGdcwOO2hCz8BA3gLXxZzpDugWun4HpoBu7XzMsaUK4Bko5tfLMyoTUOIqkoUgjKxPEw9Z5hSJQ2oTTu/NYr/ZvpXWKukpYXhixtjGg06uYnOmTbWm6W0RLS6DpBlSjyLaFphvDQc1cjI/ZjRwC+CSC7HV98Fa5mcDCRw1mYrHdaA02Cw7Va5ikGZdevwAC4+tgePMCysb3BBEmpxw6c7hJwscunKCaJazOQuRJoEBcwHah6Sr0tMYvL0QI06UNRCdgYjmwn85Yv6fD2GZcbOYOdkKeJhJASosqaxBhslJAiMiC/sOacjl6tNJoXJ6wMejAQk3RrZjvzmKlVq0JGtJdYXrCcewxYf2UoKsYznEdR0gCQTTJWGi6itmqRH1SONwoQaY7z3jMV+3CX8ksF/9vKbac4BKhd67GdjXJ0DI+lREUVANFSB0znyK14sxsAVXH+MP4Joc+a8gvGd59/22IFVwuKAvTI4Zs6Mm2G+p5g9eQjIRGFD49eCWxJ8EoVO0xG2PCaBTdJcB3M6pBvHGoCPhOh7Fvu7QFWy5XzIY5O8c0VWOY7eZ0Hk05ci5gSo9b6KJGE2hasoNWiao21tn0U9Q0h1EbtzEauQYawweiFbo7zllamVDahH6bdTfG4bywPuvivGLnzDx6pPBZrG93RcC39fI6ccxmKYsfV5jSM//QhNGN3UgFaIRyQZgcD3F+x0IzTnCDAHMNi+/KKJdi2We1oPZjjwcl3sDoBnBpQmfNR4B34ik6NXRqhsspfieFrqXol9RVQrWW0/SE0Lf4WoMTynEG41iSSN1gJpZqPiPbhN1boJpfoH/W0Xt8jM5zSAzBaGRWIVqx+ke73PuRF/O2b30pwgcPdE6QmDvYUyqCAudJHjhNfvLWmDGvYHyd0Mz7GAIL4LsOmWlkK2XaxPBQXcV177uOWeGRjuX85xvw0BSx1FElEZ/uuoI3mumKoukFin7FbKND94nWo3uGcvUKtI1BeC97GG9EBagVsyPC4AmPmcDkeAYhAlVtL1oHv3X/iwiJ5/x4bj8mpUqF6wTwkJ9JUVW0MLyJVTriBWVN/L+khSII9XzMyh20BYr3qN0pYnNCkaIWF2AaSRBcx9D0o0IQH6+n2HT7uFiXRSyrLgWsoqkNeseQ7rTZx4Einc/JL6WEqnrqydVYVGmxXYPrppgsi+WcPkQIywFLCEInr0mMo/GaxitsUIzrWAfvtGJapUzvXUAVgc5FoXfOYwth/dUBZWJcq9ep2L40YHw9mIli5/YeyUioFgPNgiO/YGiuK2E3Qc80ZqRospi1rxZylu9tuPTKJLr79uAhO+IiyN9vCS4NqNShlSdLLCfnd1i+cbJfXlm6hO3VDuM6ZVqlzGYpjRNM3mD3FGhiQBFB+VncH97EsJfPE9Rcry1vFKRqIMtQT15EG4NcuOnAt0/kyJWYRPKxqk+qmlA3+0mkoAAJdJ/UIHDkoxVn3pTik4AfWGSqmUwzRPl9ApGkqEkzi+/UWNtm4b2KMdS9i27vh+tFcL40Qv+0xw9Hz3j4Vx8DdRLR/hJwVwR0VR0zobZrcJmgmxDL1IygZ6AKQSceW2rGv3EU2rr3hfuF7bsCaqWkHiX0HklQ9jKgPmjBFgpxMbvfOxOYHlX4RKiLqxr98yMBZDzFz3XYuaMPDJh/cIy+uE3TiYF9n0AygmLD0zk/gxDwicb2E2ZLhnJJkE7kfpyUBcoFmm7EOSa71aeFJYW6Ro1n6F4kpSBLEeegaQiz8o+P8wWWEIT5zoza6X1CbQAXhKYyJImjrBLqZYcqFaNbHE1XM7upJutXXL+0Te11pETsNlTHoNKBpFNTBWFxbsJolmGOerRXTEpN0Jp0RzDjlNlJhTruOfLxgJlCOmpJhg9Q9rggOmvRC0GBNlF53jC3xY3dTW7O18ilpgwpY5dzoZ6j8oYnJkvcNzqGSh1HF0acsxpvUnAeNbPYglic0QvoOnpxTadg7omE/PzochEKMRxElhKScPAx0BBwiUJ0TCZJbQmTKaGumS0L3YsxFmomkUN3ep1jcjIhOTrBVQYZRqvTNpo0b2JSWQecVUgeUIr9RLe0BRmifYy1qkhgDlBd7KBqIdt1T+EH/dPk6rPwXlr3bK8uXhHWMhbvFboXG3Tp8Eks8wwqKr6mL5TX16iLeSTZ9pEIolzxJGNh7kFhMikwOpbm5RuyX6nkWp5DkUjEEYlWiaeHlUgucqASYhXSuKKam2PnJRaX9Vlu2uywBpdFcpTJqkbZIjIyZYpyLgLryxVPbzCjl9WMdLQmosYJ+5l8UQqms4gLrWtCWaHqBpOlNMsdQp7CaHJNEIlAhJnVLoLhtQS6SU3TKlNfGqRfErwwODrixoUtJjZl98acHlH5DusMJSEmCcYJaqrxPYsxnnKacumJRTqrE7LEsn5xDj3WqAbyjT2mHUN5vGHnpoT5xxxNcblU8KDEmxiT9Rq0jQerAJ2k4Xixy0s6Z7grPU8mjnXfYd0OuD7d4Ml6mQ+sXd9yTSjWhz18uZdMDahpgy5piwUCTcdju0LQmmJTkXbSyFFL3EdXojTCwdugqJZxzBUGVSfoJCEkCfOPWWyuaHqxcqhediTzJWnqsFYRKo0ZK0IScI3CmhjiwLRk7a2Bp3Ukdd+TJgiurfg0MyJRzURjV2uC0ldVCn11CtQRBxgE7zRKxUqAbF2RDR2q9vhUke40bN+Rk+14bKGYrXiStQQzEpJpXDgRAH25tNOMY9uGei7QdCL1W74TIVEuU9hMqOYFCbF+OAiomcJ3DjgW2s61TEt0E5DcEbTGF0nEnPmI87N9y85AGN4aa7kJgus7VLchyWzEQkrAp5FUOWiYHFM0RY9s2CGZeIqzI+TMpXhCKiFUVcSBtnEkgWitXhN0doH1nR5LcxMK09BNKrbKLsNpxHB6rzixvEM3qdmYdZlUKdMypZPX5GkMQTRO01gNJoY5fK6wVrGwMEYvBVLt2Bp34hlWyn6pXtMVzBTEKmy3hY2drg6cIyCYQDPwDG8VFj8hiAXvFdYrNJ6uqsjE0VWehpI8aZj6jE+6k4xmGWFmIhYysdS5oekksYLGOTobjtENBldE4GPkjYiuvO0kZC2cKYSAGE3IUvTqDA7aAqV13fdbjxCxzM7Rf9+TnPn6m9EzaBY8elDHojsfE9cqt/hUX6bDDLJPpTk3N90vB3ZemFVprAJruToghhBdCsmWIVw/w5wuyC+NCfaZh8CuSoEqC7QZd5VExbU3/bMlhZkpXKrwRuisOZKxw5uEhfsjdV09iHg8ZWPbBdUI2W6gmm9dCwfihWYuYIfSZloj5lNCJM1NJjF5ABEbdk2IUoTplGLTE6pY814u59hCofYsaR2YXxmx0ovJnsoZEu2YNQk704LJLEOrsM+f6jWURzzj6yOXoZkalu6dY357jFiLaIWflag6EjH4IsGkCb4sIy70gEWpQDNJKYua0SxnvjNj1himwxyIe+VIMaZ2Ea602h9RFglaeYx4PEKmLWuTHnhwacDsaHxfo1VUngDWKqTU6JnsH1Y+gdmqR6royRQXSpT9f9n773DNsqu+E//scNKb3xurbuWurs5Z3YoNCAFCZINtEQwYhoxtsMfGAYMDYDQzGGxmANsD6IfHgAi2YABhIVCmFTuoc6jurnxzePN70t7798c+91ZJIKsL033bnl7Pc5+qN5+zzz5rr73Wd32/fjHeV5MQLE5p1VN4dBY9FWTWpzUMkp6pMdGaDjlLyjC0JedsxEbeJD3fRGcCjubM1KZYK5nOJbhAI8dT9NgQDjRFk8s0ksY7CeGc50ww1u9klCI73OG2w+d49OXgQEvnWfljjRoX3sEDLsuZfSxn6+YQkXvM5y6FpmeDgyKxqJHaIzHCChhqBmHCycVNEl0wLkO2gEkaYpz0nMVVN9Iu3rScaGp9gd4YcDV7uKtyoML6oo+N/MFLZX0HVuTpuIaHNCqDcOTfO50LSLvSX0Dhnadv5ndVFOp8T27PUca+HU9NQRQeWF/UPG9f3hC+ElkdrQ0cNvLfqYb7jY52ez3GyUpKuFljctDhlN4jS1GZwE4UZVeyVO9zPNkCYC1v8fDWEnlWQZWE8+iCii3HtAxR27cwZjsxZVxVK63FGeP5C/MCYR1lLUDVE8R4jNv/GpLPO1nBJA29pIeV5KVGb4SUjWr+VJ1IxFA6SSPMCGXJ5rRBpEsO1XrEqmAwjslyiYuE55A2ktJ4KsUy18jKUaqqeJouOGzsaD+lWLyvj1zeQITh/re4Wsi3Yja3Yo5uGqYL/roH0pJbTe40hVPEQtKSMZYpW6bBQ1uHEAsZQVQw05hwqr1BI8x4eqFF2YkJnEOlJSqLENaTqKjU30vBxCFTcxk+E0e4JKJ/MuSL2hd4bH9H5PIOzjlUWl0f53wPf5YRbWcUjRBRet00rWxFHmKpRQWbvRiV+c1xFBdMpxonHaYfMuhGTMuApUaf0kqyQlNkGlfIPZo7G/iIXUaGxiWHvUpi5at2oNGGZNoUWONzktZKaFhsX2I6gmDgt9yyAIRvoSuaPgIV1fjI0j+2Gi8AVfW9UrHS5E0fmTohMEFVTNpVXdzFixe+MBGM9z+HQ1EiggC9OaT1bI3NVxuKDiSX/IIiDMhUMJ1EbGV15sIRbT1lVIZs9BoUgxBZL8kKjXB+a4cCGZd7+jdqLIl7phIH84qOYncbX1rKdoCZqaOHYy8its8WypI7rz/LM5sLAIyzkPH5Fs0VwfC4pCgUG9OG5wKwClM1ZoyLGhfOzHPdqWUujLvEqqCeZGQqRkwl4VMJ4zjGXTPxPLSpQuYVQa4DHNQveh6GmScz5MV1hFbYmSZmsM/6WRKILDopGR9MCPuOcYWr3s5rXMq7zKoRbbkKpKTOcS6fQwlHuzWmMIrjrW3+xtxHeXB6nMcXlyjrGuESbCA9ysAJ5ESixxI9AVUpdIrCw9+EEIjxlOFRuDZexb4McqC70HKxt4Wv0CQY5DijvtxgfEiQZoogMGhlq753AZHxeUvhFTLERPlFpGEw1i+yq+MWgbpi8aygUGXsKOuCQx8oSD51CTcc+aDkxeQDjbcd6aKC1i73Hpi6xUlf1cpmvHOMdvzWPG87bATRjo8S8jbkNUe87ftdi4ZnysnbPloziX9fGQuscgQVb9+uUJiJPRMPwrO8By8ccfDimJS4NEWEIWI4ZvbRIYNrm8jrRuSjBsmGh13JHIqxZn3cQOJohVNWJm2KcYgcK6wVDAYB8YYiHDrSQKBDQ6gN/VFEfUWSrIx8fuhKwpCyROYGE0UUjQCdxDB4GYDGpeX29iWkcDyzNc9kFPlFU/mUhrOS7XGNcR4SVozrkzxgdbWD7inObs5QrCfouZSiH9F4XvvFOYbOacdaLcF2CjACmVcUZ8LPjzKB1llL0EsR9QQyz2wli/1NbQRBiQwN917zHB++dAvzDzlcLn33lVEspx0WggGzagSMyFxAUe0xxw/NIkrBA7dq1qZfwbn1GRqPR0TbQ++AAo9MEdYRjCTxFsQ7lmBQMdNXHLNU+c/o1h4LaliJiu+j7frvSpIYdUWRyxhY2aDzXIN0NkZMNLZWoKp6wbQMEALKukNvBuSFhFaB0J6tfpoHflHOfEuw22280RZKhdO+tTrraOL+4DJf6lXYVTvQYAz1C4rRKYvZ5eVUjnDgyLqXCzzT+arvNKhyu6XHvwkD4dB35uRNsYcH1RMfkQrjiUQAnBZEA8t0XmJDaJz3TtlrgQuCgY9Y99UqITdnLeQFaq1H56kmW3GdZF0Q7TiKI57bUEwVvVHit+oIXzyIDSb3C1G4pYi2PLuQLD00owgUYiukccmitke4IvdOOy/2FATVKCMYhNhQYmabqGn6gtlkXiwLhGFGj7m1tczprXlsqglTz5BkQ4+LzUuFVpbU+e3ZzrBG61MR09eOUcpSSCg3Y9rPKKKeb33MI+idksjMYTOFKP2CurvDaZ8rGC9qug/vVCJkCkHI+EQLe35/0z2RMhyY7zMuQ0zdIKv8bWElkzJECsfZdA7rJL1wi7GNmNiQTjzlwmJJbW5CHBacWZ0jfCKh+2xFJFNYspnAk3OngngLamuGeKskGOZ7ygbUfM505645vuvUfwVeBlV4T+3mKSGlwAYKFYYVOQ6Y/gBRWF8gLAS26mLLCkGWBn47rhxlx0JoCWs+f2WMJEsDylwhpEPuQpt2heaklz8uE1+/aVegdleUvOiEyvUVi4kDpscrdiQjmM57oLsY+9YrU7HOB6MKSpB6RqWsLSuco6+aBn3HdN4XADwtmY9Ey8TfFOmMJ541oY8+hPPPt85ZOk8MkIOXgdSi1gjpO13cdEr72Qk6S4i3MqwWTBdCiraPmLOdmLU0YFCP6dSnHJjtM21p0jxgImsgNXlLeInjTDGe1mhektRX0z2A/m6RSFTKnGI8JVqVFPM1n4gP978TKRQlM3pEU00ZrDVQA40eC7I5i55PSZKcKPBpC60MW5M65bkGOoF2c4oQDrVkGfcTBtdBvKYqQDWkiyVUvfQuBBMr9NQ70Np9z1DTmtP/8DrmHnLE23WSCwNqlyaetGJfzXGitU0vT3xOT4OaSDb7DYqGYlKElFZxbjLDkWSWwik2swa9NEE1C4pcU5aKY4tb7DQThr1Zahcsph6QtiXByPd41zYttZUMPcr3cuZYi0sibC1k8vV97krOMLQvByB1ZRZQUDYD5Fwb2R/gJhOEUoRn1lnQBzg/F1GkmrETXt6llMiJlw5ylcy6cxCGBmcFZaG80JwBoUp0VXhyQdU9aT3axSQgjh2CMxd8PH4VKJar7oXfpZdqnnU4GfrJDOQzFrHpq87ZjOdpDCvCW6tE9VkIR14PSTifH5WlIOz5ZLcNPPtS3gakTxf4SqJABX7C6Ykj2XA0ljNkf7z/kB2HX7Gk7zcmLwgubNIaNxGFoZypgwuxkQUrwQjcRDPJJdZKZptj4qD0DEW1kqIlfT7LgBhpwp6k81xJuDa6LBznHEJJQELoOR7l5g46Cci7Ea6+/zdGIAzzaoASlmR2il1rUrQcyYpk1AzptCa045T1ooG1kjzVNC4JRkctkacXoFvzjjSvadJmSHg+9LIMY4UYKMzBjKhWYHXgHagFl2bYfMTJdwwQ1jI62WL182c9CmR5v/N9gkQVdOpTTi/OY3XdtxluJGymGh0a+kmMVoZRERFKw/KoxeZmE2cFdqSJD445uzqLKyXRHBTt2Hf0GXAFBGNLbS1D91KvarC7LdWabLHB+S8N+fEbf4Ox3ed88K45t8cFKo3FiqrorBS7+k1mbZ1wPCa+62aKjvTyHaFFDLVXHKg5KDwjV+n8lrfMNC5ViEyiMkE5A0E78+4i9znTXRSPzOH8V8+TrM8x/18exwxeOKny1RWRnO8QotIoWXjQ0D+umRxy2MA7SyehrPkqoIm83ogsLUVNUCbCi8iZqkWrIrgNxj66lDkI7XyTP1Tv945W2ErXJIP6ak54fhvy4rJT2U8z1ifotWZXxEsUZk9lMxxCmsnLhK747Xw2qbG8WkMUXlogyH3ErqZ+oSoakrDviNd35T0CP7GyzBeKggCRJLgogOEQOc5wszGmFe/rcAAo4XGNAG84cob7gyP0z7eRJyeINGD00XmKe7YpSuVb7QQMrzHQLijfO0cWQ/raHbIsQH+qQXfLJ/yt8pFmOVOyOD9glEY4U7X+Tpwfk7JEPPkccukAatpAWEnrQkG0s79VeIenYNPSoLXxhGKBQ6YCphFFw1CkGkpJv+5lT2wpPf4Tv4XNzjeItn2R1sSey1I4R7xtKOqehFz3UuR4Wqm2CpCS4sgsmz8w4Z/e8PvUZIatJuK+b+EBjF8xnRDI0uKUQEYhYjrFlR5xYkdjOs+XjI4LqFl0WGJNiB4L1NR3XpmaxMaOYqqqNk0B2lFG9jLMCapkuUDk0hdsqzzq9KsGTNauJ/7jh+EFNiNd9RZeZY6wVxKMCuS0IFlRDE42GC9JTFRpn+eXNUiCscVEHjCvpg6p/dZ+l0HchgD+/1HuiHq+jdGTKl/OqSJ2nafx3UhK+tbF/XagUiCi0FOF7fJywh5oWw6mNJZrZG1FPmN9Mcz4wpJKfYua14WqCKZHDj31C5XMPV+hGldEIo2aB05PAi7rH2n/m9YhBmP0qIa9CjquF8sEoHC8b3QTH1s+Rll6zsVsOyFoZxz8aMal2wIvuzAO6C4OCGeG7AxrDE8ZnHTUjCSKCobX5mRzGtMtCJKCOC4oS0USFGz1GtQ3/YLcfXriCaiFxDlHemKWnRsCpouOshbiPrLfkDdvCkszySjiqoSQ+XQWKBgpwoEgXZCEixOiWobqWCZpSFHX2ExRFAFh3+d+86YkrhaGYFKldqa5pzQUooriHJODMW859jCxKEhdwKSKQPc7qVEmEpRAlA4XCqyUuGaESmLc1s5enh+g8fgm0R0HyDoFSVwwXMgpygiVXoY4utigkhKtDdYKTKGQ0kMEhfDSQ64UiEL6vKrzaUMbwLWzmzz8dUe46akleO6FHf9VO1AbeLZrOcmRWwNco0bUi8kbAflhX20W1vdxR32Lk5B2JbU1izAwnZcI67f3sqzkXCsHmbcEWddDUmThiwa7xKeyhKwD7qIH3ro4gv5o37tLgL2o58p0gihKz9VZlCRrGbVuAlKSSR912MRgY0FZE6jUb9mDgcC1BGUM4dCL7MVbJbI38jdEPcHVY8+4pDxrjdMKFwfIWoJLU/QgJZ+v7+NgeEttwE+c/0oeP7OEqLZK0abi2B+M0Ot93DQl+eC1DF43ZeZA32/jS4UxkpM3LCPxDPWJLhjVpowXQ7JS7cVL6SDiUtkhe27C2V/4MW7/5n9FcH6TMsuQUQRKoVJD87yppGX8jmY/zTnIrCazAbEuvR6gERQzhqCniLaroqoANZXk04CsH5OcD4i8TqFfXDN/bwVjUyFU/HnpqUXmXt9nku1w3+Y7+OLD349wMJmXnIzXCYQhECVFdevvdy/8zMKAMlboiUEUFoIqMg4DL0uSZntRqLu0ytwj81xc0Ex0hFSOsmYBSVm3uEbpO5VKSekEOihRcYkpfbpsFxKIE8jMBzA4v7MtuobFZMCrrj/LIz+5BF/P9UKI73TO/dJ/6/ivaklWk4IHf/fHGT72SYRxuCzDxQHL6w9y+nf/L8IBe7jHrCsYHVJM5n1yOxxYVOH2sJ7prGC8JPa8fzBylT6Jd5428CussFUnTwg63Y1cFbI3vKpq2Ytmu5GnlKA1H998J3+y/B+webqXvBfGEkwdybojXvcgXrRD1gvoFJTtEhP7gpwJfcoCINkqiS72cIORl/JIfUXV1kJsp4Fr1nBhgKmFuG7L84EWBhu8tJGWEOJeIcRHhBB9IcS2EOK+i9s1nrx4ADKF0hZ9KWLhAX+TFAe7ACz912XUhZgkKKlHvlf+wMygYqj31dbNiV8MtDLUKk7R0SiGUmAv1mikc5z80f+NxobFbu+AkMilAxSvvp50LqRxbszh9445+JExwfSldRafOS7Dcz02Ht9kUEa0otTD/bY9bjPa2m0/xae2dwSt+2MOvE/RPOtINi2NS5bamqG2YVCZD0iCYUGyltJ4cov4zDYqLbHNmJpu8cWL3+3Z3cuS8WE4FGxTr7bvZleKZ5+28EKIs0KI9TpTLn5RgDCW5ZX7eeiBX0QWFhdpRBiAFMhazUsO5zmtT1yk87jGbMSYkfaFp5r1nBhWILTl3Lf8MGqwTBSWe/LHzvqutSLXiKnXYxOlLyLlLcfX3PMgpVW0g5Qyf+Fx5dVFoEWJz3qXiPEUtzBL2YqxmZcsxvncqAkrApDSkc0I2HbkLY8TDSZ+EtdWK4cRC4RxXjkxAgREPdBjR5l4yNIuga6aenxobVpCGCCMwZn9B41T4esmbsROegktI9bzcxwIr8d2GmzfVGeyKIh6HokgjWSypLFth4oM4WyO7QomtRiRexC0Ou+IlyeISerTFVp7IpHRGNecwSQBauT1kVwoMe0EPUm9DvZLuIMXQrSAPwC+D/gtIAQ+T6Xij6KnE9KTGaaQzJ4GmTtsognOb2JHY8gylj48z9YNMbUwI1IFWlqsExRGEShDO/I93IWVTPIAYyQ2U6iBpmynJGvJ3qKNUsgw8FK+QhBt5Wze2fSy2O2c7J/u77hEc/UJgVckbQUpFxNfKLWRB73rqatwrI5Dr19hUgSsPtdFTQSqyhPLKm/ntK8ZxFua2ceniGmGayQeC7wzQe7Ku1Rih8XRjADjnaeTlca8wOyvzokablm+9y3v5/ee+EJY9096eZYQnSS+EBZokBI7nmDWNjj4JwllskC6IDx3RGQh8HnOXZKVPNMEVnqVm9JX4/NJCGONmLi9nXJZd5x6zTkWKoG9hs44+PsB517gCVydAxV4uIFWfpK269hQIsdubxu+fv972X7sY5jJiLDeYebNX0b3yG0gYOvpT7L9xMeIFw7Rf+IBgqTJ4c/7OmrXXI+J4cxv/DzR8WNkz5wm21qnfvhalr78G4hGdZ7/g1+kceIGrotf6x3vbJOPPvh2ro3uvKpTeFGsAidf2nicTnyQdnyQS6MnOBCcYHJ4gacf/3XE8wF2uU/6/PPUmgsc+dJvxtwwT3o4J336CVZ/8d0U22Nq99yFObuGbN3JTHYNFwePcnH8OO1wkeXp0xyp38L5849zz8lvpRXN4wJFVoz56Md/ii84/j0EQf2lJg6+DsA5947q8RR4T6t1mN673s1IbnDgr34zJoSh6vOp+36SL4q+EWkdn0zfQ/dDD7P88CbZ+kVu/ff/Cw/+zLup33CI6aNnGJ/fpnvnEQ7/4Fch6prRpSHPf9/PMvMtf43B7/0JQWuG5M3fxDO//BPc+5afBOBi+gxnLj5OfiknFDGnHn0N1z34BkYnGixvThBCPAkcAD4BfLdz7oXeK//d49K6fpH2tbM8/IufZLrcQ3zhjcw/5BiXOzzySz/BHd/xf4DQLP/7X6Dx+XW2PnWRlSf6HP8338+Ff/su4iPHSZ85TbG+Tu34tRy79xtIBjGTosdHz/9bbjrx1Tz3oQ9SUy1ujT+PD23/Ol8y913IuVlmnvhjvu2Hn6W/bWh0Ar7m7x7jNV+1gEUghPhfgB96icblSvup9Q3ztu/SD/Nfv+EmygcuEyuPppuc3vo9+tNlQplwqnY3i/EhbJrxiad/mYPDVxP+zS8i78LggfsZ3/cJDv7A32bl534egAv/8BcAwcL3fg2i2WLj53+b5uffy/C9H6Z2zXUsfPnXsvI7v0a2co4VMi7d2ebNP3InH+ROGudeODTyL7b8FIXnoxxOMbEkb1TqggLU4ixHv+1vc+of/CtmP//NrPzOrzN1HhYgC8dk9TxxfZZbv/XHWLznS3n+Pf8R1xtXhCEwevB+jrzpG7jlb/xzhJCsvvd3kIVj5vp76D31ANNZhd4aM1p9nsyMmVeH/0Kn8Jdmu3LG1rI8eJyD7Vs4OHMbm+MzZKpgfEChk5LsgU9x6Ltfw9Gf/DGC7hzrH/5Duk9Zgidzzr/tv9B501dx/Ed/nHqwSHrhLMFOiigNBAH9cp1EtXjjwrdzTXQ7B6OTrK48gJj4NMH66sN0u9cQNDug5UtNmvEMYIQQ/1EI8WVCiC6AmGQeWiN8fklPofXQGoBP/VTM+svDJ3hV9joO//y/ZJIcwDnB9vse4+jf/Qru/o3vxwrF+X/3x+xsN8jGvvCRP3mGU3/zH3Hj53837ec9cFrmlrJMedo9yF21L+FLDn8/r7n225H33M74WIPtS49RjAcAXwfMAx8G3vFnzuZFHJfdZU0KR2kVyQ09z3G77ItAKrvcz//Uu85ww//6xdz7B3+HzpEEpGP8ifu5/ua38vp7f5hky7H+7nf67r+Ox/1uZRd47av/Lq86+Fe98CDgRmOW39Diyf/zQ/yt/3Ar//dD9/CDv/4qFq7vUDjFdFAA/PBLOC5X2v2NuuBn//2AP77lN+jd4PWQSlny0BO/wsHOzbyx8Y3cXnsjT4z+lLEY+mgUcGubHPnjAdG22GOpdwIO/vPvBODkv/0eTv3aP6X22ttxRmD6I9iZcuLv/SgLX/PXKWNL48vu4Oc/dDO/+acnCGPJH73tEZbvP4he77/gE7g6B+pRpjzU/yPeu/Ur/MmZ/4uP/NE/58J974SqmjV75A7CpA2BpH7XnYQzc+TnzqNSXxTRSYNDxz4PtKJz/Z1Es/Ns7Ty5t+3sXnc39cYBtIxYuustDJ55mDJ01G+8mWJ7g/F0k/RIm5XxUxxITiHVX6gX4C/XnGMnXyEtByzO3EI7WKAWdni+e4mt1xdEuuTwFxzj8z7P0b5hgP6yOxhOVigjAR96gnp9kWuHN3PgAcGp8LWEQcMXoaIQl4REqsHxxu1IJ1BCs6SvYWXylNdGmuasrj7E4tJdmHrk6b1eQuZ159wAuBc/O34R2BBC/J5VEPVKj8gofJWcOLz8QSEQUrJUu4HaUHLw/RHlagtTKOr33kHaPc6EJjPf8CZ2PvwUCIPY9o5i4Z630FnWtNY8dA5ATUvPNoRg3DAYDcHZTRbWE/TEcmHj46hOC+fck87rTv8kcIcQ4thLNS7jSz3SbR/dGCc43O6zfrck7HsHmmyXRNsOWUDyhrsZzF9D4UJmmxlJXNB+8y30vm6R5S9t0Pzar2Rj9RH6RwVZ29/GR67/ErTR6Nzt1Qfk7Azlm/sICWeeKdgaB9Tma8yc7DCxEaOdAuBtL9W4fKYtHVD8u7cP6G3DP737PWQdyebW08RRl8PyJEoqWnqORX2M1fQ5346K8Of36GmO/OE2yUrlQAOLLbwjmYwi0mGEyRQulyAEM2/6UlxdUc5r3MGYf/TdG7y+u0yjCV/zfQd59pM9Gue5KkLyv4D3EdxZ/yJmw8OwtMjOHTMsr97P1lMfxyTQe+yT7Hz8g+TDbQBsnmPGI+x8xb1Xb6MMTOsevqM7M+STPnnH5+7UTAcc5G2BDmZw1lBmY5hr0j51B1tnHqB97ItZ6T3OHY0v2tMf2j/zvbuXdh5ltnkNkdG4JKB94z2s9j7Ov3x1xi/95xTVbZNZxeF2n+xIyg4p27dA/siAmmyRrKWVQBjEqgmA6dYwhMRR25+nK0BqOhxEjTVbk/PEcpZpuk338M0UTqNTs6ev/VKZc+5J4NsAhBA3AL+amhEmlHupnawjEYda8Kz/jGw0INPE7UXYNLSfHbN9cwOZCWRtFnehxihMsFkMxhB93KI3/WcPPZOgROk1kZr+htGbIxCaW/UbOD9+jMc2/oi2m+WGZ8Y0h9fiNrYpRz2EEL0rDl0Ah+AFp7z+u8bFlfbJR372I7SPtZA4QmnIDxaY2DvAoF8grURPHbXpHFu9BofmeoTK+FplPO81w2oWtdQBazCTMZUcOq1Jgt4e4LLLIMblrzvGN930AS7+9K287/93nnf86JMcu6PLl/yDm1m8pk5ZOICfFUL89Es1LldaLVZ8xRfH/Ouf63HjtSE3Llzi3MyAweMX+JPhv2dX191hOahOeLjgrhM1BtkfE9S86kC8qslnqsh7qpA9D7Q3OwpVq0Mt8FV7CW+5+ZN84ifu419/MKfftxgnycaGuYeGlZN+YXaVOdDK0xuLaDaxoSYc2D3RtEm+yep//S0Of+v3ER8+jkRy5pf+NSbypCFlIijGfcqq09BEUAx2qN180x7jUlrseBXFFCayB1IRBHUYQeu2e1j5vV9jWhxGSU23ddyrUe6nCSiFYa33JA7L+87+gid1EDnlKGPm7FPE0hEFGYNKgyTSJVJamtftsHxDk+mFIU4IXKAwWpKaIaYZMzxeY6o1bll5yrwCr85pHUvBtaykzxC5NguzN+NqEXuB51VMgL9sc849JYT4FWvLV5FEGJvjtGNy0CEe8MwvIoo8KbR1CCFw1qEGU5xueJrCS32CU55BXj3eRwjFgWcCir7/fDjIcXVPnhIOqhBUSoRSzGZzLOhrKKMJp9MHeHz6p9x9JqAmNUW7S7Gz1dmvcYkXmvSf32buhhlM5qWsAbYWfVSqN0aEvQyZW+JtEOcSLlafzwpNuDnAaYdMJVm6A1IxuxLDsh8XfXHLE6cYs8coNPNVl7AIll53mG987VFGE8GHf/5x3vnPH+NbfuXzUVpSZvZ7nHO/9pIPSmX/4odmuPvNF/iB72nRkPD33/JRfuKZk3z+5udV5OGefcxV+VGFwgrjeU1PzDNyz4CDxgWHOCc4C9TPK/SCxCS7ChYC07C42PC6G54j+M/v5vnnDb/8OwcoZ7u885ML/Mo3vA/xyLM8/0N3wb98Yccu3FW0QgohNoAWcBa4kgdpFpjDr1g3AY8DWfX88er5zSseXwA2gE71+BE8pd/1QITPH+XVaw44c8Vv3YIvZe0AK9Vzx5xz8y/4RP4SrRqTIXAUeIJPV6o/CYzxC1UOLFfPN4ET+PPWwK34c+zh81BHgPNcHrM54OnP+OkAuBk/bmf4s/QhL8mYVBHnVwC/6Zy7KIQ4AvwGcBf+Op8AnqyO8zj+mj9Qffx6YAt/nlzx3GebAyF+rB644v1XPqeBBjDAX4cl/Fg/zeW5drtz7nEhRBt4s3Put/8ShuHP2GcZl+fx13iHl8+4nMJfp69/KcZl14QQZ4HvxOdbzwHHgC6+CHkaP7cv4ccKIKmOPcVHx43qfUF1DgWX75Hb8eOy25N55f22a4er73wWn8o8zqdfg9uA7/9cOFCcc1f1h3eeX/wZz30b8KfV//8VsI2/+D8DfBD4zivedx/wc0AfPxnefMX3fAB4G74SOAB+H5j7jN/6EfzEueZqj/3F+gPeDfz0n/P8W4FV4FeBn7ji+TcCF694/JZqLPrALwAfBb7lM8f2z/n+P6muh9jHcz+Eh+lcwi8Wl4D/ALSq138e7zSeBb6runb6iuv9nZ/xfZ91DnDZaegr3r/3HHCwmm/96jc/ANx0xXu/BXi0+t4LwNtfGZeXdlyu+M2zXOFH8EFDCnygenw98C58oLUFvA+4o3ptDngPPnC5D/gXXHGPAN+LD656+HvwjVxxv1XvWarGYYS/977nc12DP+/vqiLQ/14TQnxbdVD3fpbXPwD8qvtveH0hxLfiYRZ/7nf8j25CCAlcBP6Gc+79n+O9bweWnXM/8pIc3EtgL2QO/H/RXhmXl6ftdwXmqkwIUQO+Hx+l/U9jQogvBT6O3778ED51/rHP8ZnjeOjJywAI+4q9Yv/ftJcHu8ILsMrJbABrwK/v8+H8Zdvr8PQFm8BXAX/FOfdZq2NCiB8HHgN+yjl35rO97xV7xV6xF9de0i38K/aKvWKv2P9M9j9MBPqKvWKv2Cv2crNXHOgr9oq9Yq/YX9Cuqog0N6Pc4mHFc+N5wjUqcSZRsT87D7KXlwWiPPGxB98L46o/W/XpOv8FUvy5wG8nBS6Q5B1YavToqBxZaQg6HOIKGq6HHsk33T7hQJsz2s0diimsYnOnRTCp2gut873sQlxB7lFxnzqH2B0rLr+EELuj4rtmP3NYHAjncNKz/Yt2SaDMHiWZwGErjdjhM+v7NiYAQVh3Nd32D4wFKTyrlHV7fdpe26lKISkN1uw1a3itrep9Ag8MVxInJeD89+yO7e78A5yWnuGcqmNFQBlLZLdAbm4y2C73rcsgCOsurnUxUcUdodiT65aZp6bzIPiKCLksKwKf6lyk2GunvizGJqE0OGsA3x5LoP33OKr7S+JCT3VIXvjnqrk4NUNyM923MQl1zYWtWcqaHw8ZGM8VkGkvFLirYqP9/3dVL5zy/999bHUla3KFBPrePLJc7s674gaTlkoN1L9kK6UNpxz5+Usv6P65Kge6dFhy+Oe+l7m3HSKayyiaIelcQDgwhL0MJwRlMyBvKqRxmEAQDgzx6hgXaigtarPvuS3jCFeLyQ80mc4FlSKfdyr11QJZWEwoGR4O6L0p5cde8w5uDz2uuC4kkbh86M1D518K5pg/1+YOxfzYO2/h/924g+f+03U0L5QE4xI1LpATL+rllMI2Qpzy7OCfyWHrlF8snBC+rc9xmRBEiD0xNScEsrDYUFLGguUvdNx4o+9VkcIhhSMrNRbB+970b/ZtTACSsMNrT30HYpojspxysYMLFMJY5CRHnF/Z65ZxWYZsNb1gXruBmGYQhdXYVU7XOc992k4wtQBRWoKdKTbWuIqBXxgHpaWYiQkGOSZSmJomvjjgzFvnGP7mC2wveZEsTrrc/qYfZHhY0z9l0QtTjJHUH0poXrC033caNxp71VVjPBTeOgiE13OPI+8MyxKXZshWAzsY4VyBCAKEkohGHZTC9vrIRt0/FgLbqvnxWd8GZz09olJ8ZO039nVMkqDNiW/8ewyudVgNdHNcLlE7AbKE7hMwPOb9e/2SQ+We5tJEAl3xu5Y1T0KuU5jOewcYDMWewq8wFRF16vmGy7rACYi3LWWtWpQcTBcrfuLQ8ewP//0XdP9clQPt25jol48ze3aDfKlF1tXoiSXo54jS4gK1FxEUNUlttSBaG+G09DfNVg+iELc4Q9mIKJoBo0MBk0Uv81HWPTHqcCOktuaIdyzdZ1J0GvEjjb/Cz976G8Si4IDKkGJ/9W32rPJzZ/szRH1Xie5JXDMkKC0iK8gX6zjleU9laX0/hQQ5Lb0kSG6xQiCcxUQSG3qGGafwQXrmo86yJr0cSMVcVT+n6V8T040vF+wjXVLa/c/MCGMpOzEy0ggTe2nazGuUi/EU4thHUEkMUQDTzIuJlcaL4jmHbSV+0ZFeL0eNM2yiMbFCFgIb68t9X9ZhQ4UE9LjwUb51qKnBJgFH3jPmw6PGfg6Jj3py5xVo5zK+/LrH+f0P3U3zgqV+KfUKA8aiuh1sf4CdThFKIVSIiCIvIGgMTAtPpmEMIo4QRFAU2LxA9PoIrRFKQeH5Y+1ghCrmyK47wODuGebfd6GSPtlfhn7wO4aiLog2BdmMw/YCRKfAHUzRTyUMj0LedtQvebb+UgryttdKs4HnRFVT56mYqtMRVcS56wyFEZTC62YJ5zChd6wq8+3lKnd+VyD8+6+GpP+qHOjqoMMNj/YpZ+vkLY2TEA4L7xSc366bWJDXJfW1kmhl4IXVxlPcds8TMM+3KJsBWUczmZeMjjnKuZwgKWjWMgJt2Gi0ETbESUmy5miez+g/MMM7D9/N13XvR5JhnSMQErPvqi6eWWdru8GhqfXXUUAZKfLjjb1URhlJTCiQxiuNJpsFRJVYmLFVNtrPAFl6hylLh9W+J3wvClOCtFmtwBMYpRGzyWRv624rjfV9N+cIVgbkS23Cizs+qkpCvxNZHiAau4z6V0zBSqKZWoytR4yO1ki7Ep06VA7BKESWjrwpKWqaYEYTDgyycKi0pEwU2jq/6BSGYHtEemIWUWqC1T7BCxdbfNHMSUHRhHo9pbTKS0vkBr05QnTbSMDVE2QY4C6tIJIEEVcigbknm0F5aRNXlJ6pvSw9P0Wlx2Xzwj9flEhi1NIi01MLTBcCvzM80EVd3NhLcey32cCrTugpZE1HveE5/cbHFSK0hGcjH5Q1PAGRU37dFKWAwFWfdZ6wfSjIO1DG1XdOBOmcxYaOcEdhAy+/nne805UlmIq43elqGy9fuE+5Kgca9h3MQdkIKOqSZL1AZgaRFbgoIO+GpG2/fY9XxwCINMPt9BGtJsV8i7wTMp3TjA8JJkuGeGnM4faQZpjt3fzZnGayHRD1wNQ0alLSfs7yh8/czPHbNpmtP0ldOQwO9TKYAUOb4LYjdrnV/ErmtwZ6Ysk6irTjWfud8sdropCob5C5Q2UWmRtsWG1FS4erGP536dqc8p83gfDELHUIB9DfqkN359OOZ59ZxgFwSpEvtT1pzkwDdW4NsbOb71S4JPLzJlDI9R3MkQVwDjPfQDgomgFFzS86RdOrcV7mXvUTPRwqxgcUjWWDDQKint+VCOuwSYDIS4Je6tnMGzFyZf8lYIT18t2vOXCBP37+euJNQbyWMTnZJRgUhEUJRYmZaSHjiHKmTt4NPbFKZlGZQe9MfT1hV3mzKJBS+vExBjsc7XGumrJAt5rYSNI8l2IDSTYTkUza/vP7bD4t5a9nWXOgHMZImrUUNWcZrDTJZy3ZgiNe1TjpUFOBtJC3Id72pESi2oZHPYcNBUXLUVYONRhJ0gMlecf6qLNio0/nLcHI6yOhwQYOJ91VKTpcnaxxabGxJu1qVO5QqUFkftJmszF5U2JDqF8wiLGfuK4/gEBjFjvk3ZC8qZgcFIyPldQXxxyf2eZg4kOD0kmGRcSx7g6PH4wp1hMm85rW2ZJ4x+DO1Xj0xGFuiFZYUjtY51D7vQ0RsFPWidelX0wqpxcOSkwomSwEpLOVEqn27xcljJcERU1R26xkXEOJzO1ejvNyJalSJ9WCvCnIOoKy7ijrDmEkcqAZFyGRKvfyoC8LkxDsTH0OV1cFEakwJw8iCoMcptha7BUkoxBRGNIDddIZRdqRTBfBaUfRNp6BqF7gnCCMfRRWZJppP0QPJHnbz/jWGQh7DqulX5DqEQhB2QgIR+lljfR9MoHX9EoXDV/QeYr3P3U9B54u/fjsMgYd6CKygv4NTYpai+miIG85TOIQTqKHASpLcBqSNb/1DAfu8twyPhqLBpb6kxvYc5dwgyEmkkwORoS9krylUPN1wizf/2289H9lzWFqfu+djkKKXFOvpzQOjAh1SZoHpA3PJ1uuRYQ9uZe7NInPd5Z1/C7DQdmwqLEkXTQE/SrX3iwpg2qsQ4sYaR/NRm6v8OQUuPBFikABilZIURfUVwwoAVqSd2OcuBxGx8tDzGwDdWbVby3mZig6MXlTMV6SjK4pOXBsixOtbY7UdrBOMDYRpZGeI9Fq2u0Jg4MRNpDUVxTxyoTm2RYfu3SMk7UN7o62CcT+R1oCh8RVjtNRNJSPMrRPZaRzgjIBEznvRGO/XXfCkc5JiqYi3vQTPnBVDjXwE8Ip4SOwRFI0fLI86zrK+YKgVpC6BDeTo8WnO4ZAvgzyw9UclKtbvjgkvZKo2hx6h1ka0IpyrolTgmw2ZOX1irJlICxRsUEIx2xrwpHWDttpnVgXFFZRGMXWqEamHEUYYGolYjVicI2kvhIQbo69uF4cks/HqMxg2glO77/csw0EtAoeHh9FbAeoacF0MaS2khFc2iY/Nsv2XQ0mBwRlzVF2C4JWhgaKaUAeKwj99bYqIJ8rkWmll5ReRnsEQ8148QBzDzfg7CqtB5bJj88hcr9gFw1N0KjExvbRnPB/Jq625FX4p2pTxpOIWi2jMIr55piFxVXOD7psK8u0G6C2NcL4cw8rx5m3oWw4XGBxWiByH3CIXCAaBiscQjmSekbab7Kr47Zb2bftkqsh1L1qPtCsrXzIHQpsJnGNgLKm0FODDX1+wcYBamfiCU/rNcqZBmWimM5LRscsx65Z57aZS3SDCTWZMzSx37obX0Gu6Zz5+pjeXB21HKPSEhcpZAnTSw22jtexQOEsSuz/TdHWE/K2z086AUVdUtYERU34hHXkLie0Ozmdzpg4KBHAzomEzbU67Sc1zUuVIqkW2MRvW6320et0UZAeyenMjRhPQ4pJiFjIWZzvE+ny0/KeWu7/VhXnKJsR4XaA3VpHzc1gR2NEs+6r5taTwgpjmSzVWH2dwC2mLM33EUASFJxqbRDKkqkJqOmCQBoyoymdxDrB8igiaHry4KJpUKuSdFYTbgnEYIwsDaoeeKXKcP/nCc4jUw4u9nikd4jGBUk6FyCMQ40y1r/wENMFf71N7LCRQ6SSMtLoqEQGFmsFVEgskzgILFb591HB4mQGCBgfEpioyWJpUdsD9M6UydGWF66LBVHF8L+fJg2EA0fRApVL8hkDsSHfiZGpZBiHiFqJEo7S+ut+aK6Hc4LlpM2kEaEHvtqqp16AsmhZUL4YFA4kZd0HdtYK4kZONg6ZXmqgCi9tnLcdpmnQPXUZ5vQC7aocqIcaiT2ITd7R1UGW1fbT65vbUKHzAickrt3ERpqsI5ksOhrH+9wzd46FcIB1EiksTZVSOEWiCiyCwioiXdLuTHBFjMx9RGU1BEMfdabOVV0A+x9tBcJQto3PcUrv9KzarQJerga6wKKUoxVnzMZjmkGG7Dgudds8LQ9R1jThwBeZypovNhQNR9ktWTq6xb2Lz1OTOf/lzO1EDzQYHzM0DnkHcuXW/WVRRBLCFxe1QrYaPj937BBO4hVFAZGXCOuYLEjkoQkz7THHmjssxEPaelppmBsmNsSEEiU8c7h1gqbOiHRJWmoC6fPMq2GH2lpI2YoJ17YRaY5KS2R/gl1ovdRie3/WHKjcoaXl3EaXeg4m9JjM3s1t8o7PB/r0jdjDVbs8pIwCXFBdY4uPQp1ADjXCgCyFV5osBSr3W/lo2+9synYEtBDGkLf81reoC0zyMuASMhY9BT32ECI5lbhcEu1In5NMFXYk6Q8DepFBJQbZHaKl5dBcj14toR/XSXVA/ZIkGEI6JxAdAy7wKY2RH+MsCjBhibOC+iW1hyVFOlQrx05i5EDD3AtX+r1qVU6rfdlfZY60KwlHFpl77XMTSfTE+Bun9BAL00rIZgJGhyTqxgFvPvoUt9YuYJGkNsAgsU4ykaFP5CLQwpIazWJzyHOHu5h6gO5nhEPHSAnWshZjK2m+DCItARzQPWSjwKmQMpZe2jkRmMQnpnfzPEgQ0lIYhXWCRBUcjnY4UdtkIRnyzNEFJnlAUWhmmmNOtje5p3WO25NzxKJgaGNOZwe4YW6dJ1QXUQoSXSBx2CuWzZdDHlQYi760XT0Qftu+sQ2dFgovWyuEYHqwxvgQ1GsZM8mEZpDSUBmRKIllQeEUgTB09RhV5QVS56dtpHx0apxgVERsRk3GhwSdp0ufe51OsdEcoh5jd3Nf+2xFTbK+1aYYhBRNfI62Bs1zjvmHUmRmMIkmb2vSjiRvCUziF+ai6SgbFhdZRKYIBxXcTfhdp55AtOOor5UEw4Lg4hZuPMFcewjTCgnPb5Os18m6mjKR5G2972MinEedqNQvGGHfXyeV+gKQDcAqgZl6+eeyI9gSDZJaxsHmkBPdLdajnEvpHGUiCXNfec9HAUr4cFJPfRCjh5KiHhI1MoQNfYEzxIvSASa2xOuatP3Cdyt/oSXIg1klOnNE2zkyLSibEXlDevEw8F0jtZiyHjCZV0xuzPiCw+c4GXvx59xpJtarLBoEgTAYIWnqlKkJsIGgtAp1fARGIbLC5wM7hpVJiwtlmxvCnc92iC+ZjW3E3/3INyC2Q0zocyllTZA32WuUdQJc4BBJiRAwLa5oAlApi0GPu2tn2JppYJzggO4zq8bMq5y2VMRCs20yLuCj3d3vVItTQlmS25dBJPGZVhovt9Jp+Xs0yxFS4rSibMWYWGFnInZOafK5koNJSk3nWOcjzd0FQQpLYUNGJiaSBQpHIAyRLFkMB+yUNQAGeYIOjIen4KFAqIbHjKaC6Pz2S61W+mfMKUE0NDgnkFOFmnq4TdhzhCNDsDlBbGyj+gNCoJkk2GuWGB1vkHa87K0NBdYqklVJOPTgcBt45znzxAh5ZtmD8QGXJIhaghpmWO1zwCqzvlahoEheBisKIEtfPxFOYMvLXUZq6ue5dKCGgrIAEylKK8iUJa8rEieRwhF2U9Ii8UHc2DekyMLDtGzg1U71ROB0QG1uSOH8vWpi54H3gaGMLDID2X/h99NV33kec2fJ2opko0DmxoOdxeU2KjnJcVphk4CyrpguCFRo0MJyMZ9hZKK97VnhFIXzEdnUhEhhCaqiiBSW2daYojVLeClHGhCZ5OzKLBtHWhyyA2K1v1Fob6fODR+NcLrqGQOKuo88hb08QV1oabTSvegwrSIng6AuM2oy44AakCOpi5K2NDSlwjrHxBWflqhYHbcoa45Dc72Xx3b9zzPnIC8q0HwEuQWtKds+p102AoJhSdEIkI2CRpixlPSJZEkkSjKnSW1ATWUsBAMCYVBYlLDkTtOnxgO9ozx6+jA4wdzBPlJa0rmC0bEarUmBWN0gAlykfcXf7K8D3S0OyucT2mf9HEnnYXSNQU818XqA6LQQ7SZiOMZNp8hzq7QmM8jru6Rz/naVBYR9UJkj2bboqSVeHiLOLuPKEtFsIpp1/5vNhOlSA50aXD1GDzOKpibruKoAs//zRxYOPRV78CFXTXaV+4Kqq6rtsoR4XWISQe5iVqVDdh2JLug2J4wCw6QVYTZCTKdEbAWUNd+VFAx9i7UeCcbTCL3XtumvgzECkapqbF94cfoqc6CgCl8sCaYWlRoPwZkWjI/UUIUHMYusBKUwtZAykdRWHSZO+ACnuPHQKtMyIJCGms6JlS+ATMqQ1GhaYUqsCkrrRzNUBhN8+kV2RqLY/+07+JVNFpA1/IounMelOQ2UroKneHxbEhYcaAwZFyH9LKYTxkxMRGpDZuUYKRyqohfcNMFeimLoLKkTFNUMu7A8AwslRxo7e0J1cDn3+XLYwqMUotvGhQEEutK417hAIntTnEwoGlW/s3SMCw9RqamcQJbUhM9DKRyxKAhEiUWSO81z6QLvfPIOkgdqqIMWmQt2+jPY+RxKyeCEonVaegE+YxAZiEnKfq81wsFkTjH7mCPqGbavDzCRA+1IZ4UvMnVr5J0ImEEWlmA7RRSGYGBQuYfdhNuSsgG1TUf9wtirueYFHFqsonzfFizGKS7U2Egw7oY0U4Oa5KjMUl+uUDP7nRauGkaCscVqCdZHjU75/LDKnFeAcqByQVEHMoGcSrJJwLl8lnZrzKHWAC0tRaHQJzJCbegHNeiFRNuXI1GdwvRiDWoeOWNDBwrKNEANJTqFYPwiwpicFBR1QbJe+Fa5YYbTkuFhReuC8fCbSCNKSzoX0rvWe/X6RQeXEp4+coLiaEa9mdKIMxqhL4JMioBpHnCh6DAdR+iwpFHzAxEKoDSozHcdtGZGGCSFkxi3z0UkAVlXYEP/r3AVrqzqSHKyyrGkkkkWUtYkN7bXuDjpcG7Y5WDcZxz6yBuocn6WSBgy56gJxa7Gt8KxbeqQS+YO9X0nS8WmYPc7mfWZtsszq6uWwihAGIsa5NgkoHamR9mpceDjlq1RjbM3hzRvzGi0MtZNi4NhH6BCWyiUsKQ24OODa7jvfbcQDgWLX36BL5x/hlgWPD+d510P3YZu5ZQ17YlKohAxmkAtwbYbny7Rth/mYHREcPBjBXpc0liWpAsSE1hkpUS8fleD5nKJmlqGR0LkwYD6ckHRUsRbDicl6ZxDFoJkI/d8C0WJmW3QO1Un7hmi7ZyiGZCcK5C9McNXNzERtJ61iHGKqoVE/YBgYl8WEaiwPtoMJr7jzElfTcf5AGV3d2sqrKYegygl5TSiaFvKekppJVpajs55WGQ7nHJOWrbHHcqaROYCaXzrZ7wuKRrOF3ijqgvQUcELIdl5sRyo8LCcqGdRaYkaZZAXlN0Wsqy277nFhRqndvvCIet4wG+y4Wg/C5NRzOiUxHYEpVFkpWIyjhGXYhrnBXHhSGdi+os1bKvksBQQaHRmcVJyuN0nECWBsPteg7fKRxbJmmNy0EMidlliECBzgcog3tKkwxbPHAnoz8TcMrNCqEqeHBwgUQXHw02aoiB1AakJuCYYkDsIsNTEZVT9et5iZqnPbXPL9IsYLS2l5eXnRLXCpRkC9ohETKSILvURaUZ2Yp7+NRFWQ23DknxIcvHhEzz22iW+4PrTADRUtpfzXSvanJ3O8sGnT+HmS/7B176Lo8EWAxvz8eFJOsGEN932JB+9eJysZcnn68SjFACnFeJlABq3ykNsTCgJdwzJZkG4E6PSCJU51l7b8qxChUNPDE4GZB2JsAFFUi3SHUfZsgRDxXQ+pKh30FPDZDEg6wrqaxaZFrhWwPhkl9qFIZODDlkKTC1ArxtkYYi3TcUKtc84UCVIu4raeknWrliqhG/rtNUWWxaXm1CCkUOWUFifDxalYDoNGcQxC7UhNV1wMO7TK2o8UyyA9k0ImfL3og0qwHwARct4NEMpYar2eBVk8SJGoDp1BOMSOS0RkwzbrGFihcocJhREpcNpiRpOSFYEh3Y0TkuymYAy8hFabQXS2YBwbsR8fcTFfhtxIab1PIQjy3RWUjQdbiZnfnbIZG6OVuFXZRcIOuGEjpxgEFzFub44Jn2La9y3jI5JbOhbzYT1F0zmfhVVObT6YM/V2Fqs8SfXtDmyuEOkStayFk+kh6jJjPP5HJEs6MgnCIQlVJZZmYD1bXeFU8zXx2RWvzy26p/NihJRUa4JY7GhItyaIMZTXC0m6waMDwqS125yzew6D1w6gn2qQXg25iPxCe45cp6DcZ+Gyojx8LZxGXLy8AZfceBR3rN5E586fwS3FmE7JY3uhKXWgCPdHs/0fNW9nGui161PHxizh5PcL9uFtAnrEHlJ0Uiq4gZMFwTpoqX1rGR4SGOPBZQ1KqdZAfbiqgMtE1gNkwWJCSU2uFxN374hJOoFyNKRdiRl0vIQoRCybkB0TiAKQ7Q5paw6e/bVDpSc+t4nebY3x/CjCzTOO6T1DlPl7DWW+J2cIxw58oY//7LmsM2SmeaUuWTM4VqPU8k6hVNcmHZp16YUbUUOyLGPdIQBlQrKxEFiPLZ2IBGF9BAyqmaHF2hX18ppHNFOWcGWDC6OKDsRTnlqKVsByZ2SYC3ywrovRHda9E7O01gtcUIQb1umCyFzd425trnBTpoQPguNSx5+0TgP6aWI7WFM7/aSeij2ft81Sho6J5YF8cuAkclV7XPTWb8t2D0kE/vqaDIShEMfiQ+PwdzDlu4zBcOzMSvXHMRckyIOOqQ4inWSJ3cWWagNmddDrgnX2bIQYkhdk8ezQ6ymrb28sRTu5VtEEvjiUZYj0xIbac9HGWiPDS08tdjO2S4fOd9l4cQWzdf3OLc+Aw4ujdvUdUYkyz2URjeccGNzlZ9/+I2Ej9YIIiialiO/J+kf73D6zphXX3uWWnfKZKFF7bFtv2vqNj0L1Or+zhcXOFyroEw0ZSumjD3xhYkd5nhK+Ezie/4D7/DKhncSwvgorGz4irHMfcGlrOH5LKuaxy7+00Qe+oOEwXGFSRzBQJB2JU0lEZMMEWi0l+XdxxGBRBXc3T7LDY1Vzn3lLB/53dupr/hUnTRujwuirHunqTKfKivrDnMg49rDG7x+7nm6ekwgDE055blskdwoGkHOJM6R0pEnGpspyCU2EtAs0IHFlBKZS2xoCYcaWTrK+MVyoNbTse31FEsoY4UsLPG2YbKgK9ILf0VFEuOSiPRIm95NDoQm2bIIK4h6jkAabq9f4JHtQzSemiJzg94ceiqzaI7D752wNm6yi9JxWiKEZT4cElab92K/W9F0lfu07MFkXOAwdYtq5aQmoYwFRdNvJZLNgqyjSecEs49bxtsJzxw/wunZBZQ2FL2Y1VaLYRGjhGVl0GKaBpyY32Y2HlNaSawLtDS+0CaoHOnLpHi0a1LhajGi8L3ealJ4MuQ49CD7wjL3WMGBT5aUsWL1NQuMMnC3TzCF4tJmh0iVHJj1DRebRQMlHKdHfpzKusPEjmO3LyPvcMjfOQICDsQDLtQ79JfazMy1kVsDhDHY2v533exO1aIuCRNFODCAIl8seNPJ03zkmdu8Q00cJnKeAyATVcQEtl3AVPmON+lp2uItR94SpLNQ1v3uJ5gI1NQhSo+DNCFEJWQdgYsjz44mBHLKviMTlLDUZE5mA44lW7x/zpKsC3ThseZFTdI/KcgO5YipYnyNRTULFmcGvHb+LIeiHnN6QOE0Bsm2aXB6tMDapAlAM85YaIzoZzGDSUxZKJS2aG3IMo0z1T2USfTY40/T2RfJgeIA4ypSkQBTD/yPlw5pDLJU7LKE23aNbC5h+/qA8WGPQ5gcEB7/FyjyNuykvoIcKMP4UExtPUe4JjZUbN0U0VjRzDyVs/L6EMrS50cmCuPkXm5sv01FJaVHjCDLKocjHaJWcmBmwKVMwVpI2S1BO1ZfHTE5VtJY7LH1WBuVQ9iTHL91ndfNnuG3n7uT8Vqd53aWkBPJ3MOO9AbBcxfqjG9d43ULZ1hJ2yjhUKr07a9OvLzyn+DZ5YsS16ghxqnfuneanjM21ESbnmjk6e+NiS6FdJ+ydL/7PE8+t4QILe5CjefcPHd1LxDpgkAY+ibhwUuH+bpTD/OO/mvoPqiZfe2YTz51guDeEV976jEaOqMbT9loOf9bzRpimqOm+eXC1n6ZcJ7qMPHF2Lzpu20oJVtZnWze+IgydIjCg+SF9WxBmqq/e3S580hNobFcMMIT1jgNZdORdypSkYmna9vNx6cLDpcE0Bv69Eq5//eQxLGSd7g+XgEgPjFkutUm3oQyFgyvgcW7VzjZ3kTiOJpsM7EhgTDM6DEN5fPcdZmRO8UET6yzWBtyIBlSVxmbeYNEF3TiKcZJslIzykKMlpAUlNIRnI09q5OF4XXFCz7+q86BeqJSzyyezgYkq1lFEuyA0PNXSkneqdM/rnAaom1BMPZRmtUwPG5pH+9RGsVm2WQxGfKJ2wWN8xFlLSad91uVoqmorUrylsXlvkwprIfzKNxeZ8p+WiPIMbFDj8WnQUKEdHTiKXLJcaGcQ2QS4gLu7rOYZGhpiV434sL9h7Dacayxzde0HuLgjT3et3gDZ/szbO40KZ+KkdePWGyNuGP2Im09ZYU2wF5f+JX2stnSO4eLQkReYNs1VJr7GzYKPHNXy5Nvv+Gmp/jExo3kLcG9s88RSsMjjx1HlFCkmokNUTgiWXJTY5nkRMH7Vq7j1usuMDgWMyoirjm+zrWtDQ5EfSYmohFklC3PfI8QHgmwsl5JiOznmAi6s0Mmi3MEY+VbWAtoHhhyU2uFh4OjqJHCGbFHDqInvgjptMCmyhdFIouaCpwWnlkpc8SbgnTe50z11N9nTjuKmmcmylNF0TKVxI7zY2E8KfN+mhYGJSxPpkt8fOs4B9sDzt4S4J6soaZgjk852d7kVG2dGT0idQHK+Jbe56fzdIIJvaKGlgbrBLPBmKPJNu3GlIkNGZqYpk6pq5zVtImWlkEek5aaOCwwWjIYh+gJ6Ikj7wh088VyoFfcm2UzpEgkra0xtua3ZarwCVhZwvb1ivkvXGZnkjAZxkxyhQgs7faEWzo9hnnE9rjGhXSGTjBFXzdkqJvUL0IwEEyuzSlnYXJUols5dNs+B6odl6Ydgq6tikj7y8gk8AzjwrBHryWswKSKcRFyvLXF0k19VsctJkWAsQIlLY0w45mLiwQl2LpfCC6ZNrHIeVX7HOAxsLwVvnD+LMfjTV6bPMcfDO4APIlzbtUeXvZKe1k4USmxtQBl/W7FHplDbw4Rk4zJQpvxIUG07XjoD26iPGDYvsdwZjrH3d1zNO7MuO/h6xDaspk1OBTtkFnNxETcWFthOhOQGU1DZxyp7RAIQ03mxKKkEJpEFbikchYWRGkQ3Q6M95m9SzjS3KcS0hnPsGUjxxsPneEt7Ud4h3utjzzxkVC044uQRQvsTSNq2jDpJwhtsaEm64KTinjbEYx940be3kXD+O8oaxbRzhFrSUUbF6BqMSIv9j8iBxyCfpnwqZ3DKGH5hqVP8mjnMO/iFsyZhHZrvMeRsWu7DThRVfWZD4es5S0e3DjM2qUuql5wYGZAEhQcrPVp6JzCKrS09LKEzGiM9YD6vBfReiIg3vZsaZPDhmbtxeqFr8gNBDA+UOHIdolcS98R4WEHjrzt+LKDj3NttMaFYoZ+WWOrqCOFI7eaTw6PUpSKzbzOobjHXHNM9Ko+w1sixr0GM80JrTgjqrap5WLX/7YRbEwbSJzHge7z1nW8VmfpAqSzPonvFF6yYaRZ3m4TqZKDtQH3zHmnmFnN0/1FTi8vILZD38scWebDEQCxLDgSbLM01+NTyVGsE5yM17knOUPqNDtljdJJEmkqCJN62fXBAx5IbyqZl2pXgpS4QGNCzwiedcEcTNFhSac5ZWoCzk1nOTuYobM0YDj2LF2xKKmpnMIpNssGJ2sbgEckNFTKjBoTiJLCaYYmJpSl7/8DRJZ7ZyHEvkegUjomG3VmVh16CvGWo39K0tETbgjGNA8MmfY7CAPxlkClfrs/PVjy1use4XefuY3oYoCe+I6m0XUF6QFB/BEfhXo8JeQtPx+s9kDxo4s7rJ6JEbWSdC4k3I4Rk7Q6qv29fyYmJJIliS4IZUkgStp6yp1HL/DJ4TU0o5xE5rTV1M9t5x1oJEoWkgGFU0xMxKgMmauNWdNtxPmElbWY4NCYi9sdZptjjjZ92/cwj+hPEqbnmrROS2a3LTotKWPJ+JDE1QxavfCo/OpzoBLyRoDVgng7x4bar2RKoKaGsq4QpSUcCM6ls3T1mBnlnUNmNc+MFjjXn0ErQ6vmQ2uAuWREP0+YSSZc110nUQWBsExNwFraZOtoTDQwiEIwyCMsAvky2MKrccnME1M276iRRgInPMhZpZCPQ9biJoVVyIYjUiXGCYRw2EFAsiFxAcikpK0nxKKgEBopChbUkFPdVWJhCLDEwvJo3mFcRsiKg1TikMJSVlW2Xef5cnCibrez1Tn01pSym2BrEWgfBRazJapeEGpDPfFEIlJYhmWEA8bT0GNIK8aumsxJbYASlsPh9h7rfiwL6tJHDFul1zxSwoERiLTwOkKjiT+oYH85A5wTiKQk72iEccw8lTJeqrGRNzldJBzt9Hhu0kVPINlwTOf8Vn7xPslH3/Nq1C2aeMvRfSZjfDAg2dB0nxojjGN4vEZZE0T9SjgthqIpkLM5f/3wA/xM4ytI6hmT+ZjWM1eMxT4vKpPthFgWzEcjtDQ8PD7KqWSNWjvn7OEZakGOFI7CKWbkiJacslG2eDZb4MH+EVbGLTb7DfJ+RON0wMn7U4aHYXhMMu2E1Nspc4nnBhjkMZv9BuqxBo2h78TqPLpD/+YuKveUdyoy5OWL1gvvK3s2FMR9g0wNLpAVzq/S97EefpCsO57sLVJYxUzoq8enRws8cekAJlMIAUeXtmgGKVnFDdmbxhRGkRlNN5rQDadYvMzHdN6Tl8hc0AhzejaiKXOC/W7ptJaiHVA08P26RUVJlgrKqWI0jonDgsJJtBMMi5itSZ14VfucsPTtnoXVNGXKhWKWR8eH+fLOwyzJIaGwSGDDRpzL58msqiaUrMbm8rb05bCg7JpweNiSBNsIEdZhGmHViy0QkeHAzIAD9YEng5AG6yS5qXR9rMRZz7JUOMXQeF2guNq2ddRkr72zKacMbYLh8liIsfZqoJ0aMpjxOdneSz4Mn2bOCtz08n0iCkO04/jwuWuwTnC+10FPoba62wLs85nCQtgvmX3cw5fUtESYgLlPrMN2D+ZnkGXNdwFKiLeN141qCm47cpE3JM/yr2uWLA2Jrqi6O632HRurJ5Zf/ujn8a2v/QhzesRm2eBPe6c8vGnhAqMyJLOeFyG1AU01ZTHokVZUfP08IYoK7r3teT7cuoZV2SCbdZjYcOjgDkuNPifqWwTC8GB+hHK5xuwzlrXXwpGbV3nqVYuIAqJtRTZjUdLiriIFdvUwprRApR4vpaYFJvEterIwOBWgMouwjtqm4dzyLMZKZuIJuVU8deEA9AOuu+kS66MGaekryNt5jUkZsrPdACeIg5Kg2qKCj6hc1YwjLNR1ztlinpvDZex+t6IJGB7yznC3e2JX51uNJWVNURpFagJKq3i2N8fg4VkIHflMVW0VsF40UTgklpW0ze/37uTruvczK6cMbcilssv5bIbcaiSO3AaUVu6RC0vhXjZROeAjGwlOKeQoRxRegdRFwR5b/e6R7tIXammJVUlhFGaqQToyo7mUdf0iakNGJkIKi1GSppoSCkPhNHlFSrNrYc8TZei1HrZZp+zE++4sAPRAIQwEE4dNtG9M+USTDxancA7aA0e8Y5jOqYpnwcv45m1/z+mBQfemzKz0cIMhIgyxUbBXe9jtYkJAP5HMxyOeK+YRsSF8KvENL0mAyGNPbK32mWjawdHfF/yn5DX843vezYlog+viVcY24lMjj40unU9TGSShMNRERj2+xLwecjja4XR9AYvgxPw2K68rKHdqYAXHW9vc1TrP4XALhWMlbfP8QJJ2HbZdcH51BlcziIH2rEzaUYwDjHmRyER2k84q9xygWOtxoaX10cZcUlX2HMHQkDwVsxK02QgapL2Y+nMBJoLn1ubQ2tDbbHCfkaR5QLc+RQUWcS5hw7RRS34l2M3vBWM/MVSqmI3GnMvmuCc+T3o1ClAvhim1pxYoHHvtYE5WzOCFJC0065MmSlp2Hp2jviaYLjpsbBFKEIUlpVU0ZUEoDEdqO7zv0nXMBSNeVz9N6gLO5XNs5o09yJJn55Z/hkh5N2LfdxMCF3pOBJFmfsu43ceeOIA04ErJKI0YhRGxKgG/UPbyhO1+3evVJJ7ByzpBJEtGJiKvikmF1aQuIBYFSliGJiF1msxptvMaUQ9coBFpjksCZGn3BP32zYwg2hZVZ5rXbtrt/w6eTkgPlsjC318qk1gNJvLth1mhiAYVsXgUoIYTRKOO7TaZHqp7ajoBemoRzvmWagk7eY3losvRpS2y9xzwzS5KUMzWq6Bnf8dEWEftwpCT/3fE/y6/lB+9+10UTtFRY2aCMZnRjMqQNAgonIcwKmlRWJb0joclJZrVrEVmNOk0hEwRdFJub13glvgCq2WbBT2kE0zIu4Z4SyHGCpeAyBRq4oH5SFA9jSxeOGb4qnvhhfHbeJkbT4qbGY8NHU+RRZO8rVGFj0Lbz1u2Ggl5zVFf82z18QbUVhOfr3Ew6cxhIsdq0PQA+22Bmoasui47rYwoLEmzgPneZcXLRPltXK+CuOyn7U5A4XwlXlIRiFTVeIzY2xJkpfaFJgHNM+DOK/K2YBQk9A4lLJdNBtZjY9NCs5x1WI06jG3E2XSWYRGhpSU36tO37sLtkSrnRlH8OZX5/TATa0/0WxiclkitUf0pMq8jhhrb9eoDu4vAtAx4bm0OW0hcs0QoS6RLrkk2UFgMkqZKSW3Ac5M5Sqs4XtuiG4zJbFAVFEJ20hrxpvPOM82QoxRbjypg+f6ZyqC24ghH1gcDkxIVS1QmEU6g+wqd+t1WMLWMjmiyGUfQ9/rlRUMRjBQshejMA8V9e7QXlctmBSpThP0Cq7y8znM7s8xFPgcY9SrZnV6KaUWe7X6/+QG0pGxGyNxw/O0hPyG/nG+5+RMMypgPLF/LYmPEXDxiZCL6ZY2mnO7RP+7mwSWOQFgCZWjUU1qzfV4//zy3x+cBOBTsoHAcibehU1A0FE75NEkwN6V1LGU0jciW64Q9ib4KsdKrd6BZgVLissSsEojcQZajxwXpjCZvBUTbOVGvpH4hIG9Lr2c07whiQbIGwcBXDWXp1SalqaRrHYRDKLcC8qkiiy04qF1KcaH3TFJYCqdIXUBd5Fd1Ci+G7babCQOi9Fi8vZGVjkAZAmVIS002ZzChor7sW1p9Sk/zic5RZsJX0dIpR6Mtbl1YYTOrs1a0mdiQi5MOj370WuxSyvWH12gEGam5vFKWVTT6cmnvdFKAEjjjyBYbqGmJ1AqMJRw6wr5gMooYhgVRrURLy8a4gc0VYieArl8kL/Q6PF47xFLUo1ckPLxziIO1AYfjHmcns6xk7b3cZ2kl20Wds5szHFrzUttCSRhNEdHLoBPJgc4cOq3YtaYFZRwTb1usVp6qDb8Nd9IxOl4irKB+QaHSy85fZ45g5KPRYAQqteQdzfZdkLcl3fsHuKU2egzblzrcZxSDtQYnJwa5Y3CxBiEomsH+R6DOgRDYRKPSkqXfjPidY28knQV3w4i52oTUBH7nYUOGNqHlUmLnd2sHgh7glSxu7hiCruFg2Of6eJm6zBjaxEuYIGnKFCEdRcOhOjmLMwMONfqMioitrQZ66seiTP4bB/wZdtVbeJEVCKVwESCkX8WUQAiB2pmg52OmswqV+Upjfd0iS8l0XlDOlCA1shBX0FJ5phirvWSBLCHeFIQ9j6W0gZfICM5eoDi+iLCCXpFwKOoxsRGxeuGg1xfLhKXKz7pK08Zvu3bV/QqjWB00CZQhnp+SBjGjwMs7F11DNDPluoVNrq+tklm/Lf2KuUd4cHSMzaKBQfLY8kEOfbDERCErh47TvyfljhMXAJiU4adV4F8OVXiEwCpJMMmRufGFxmYdudUjHM4SDDXZOCBragqrqOkcIRxhLcddCqk/EyIMjA9HPBzl3G+OUJSKI50eM8GYhspYiIespi2GZYwWhqkJWR63KS/VSE6veFb8WgxbO2Ab+85ILywEY+tzoCPPCyErzth425J1/LZdTwqE0zTOxLTOGqKdjGwm2GvUUJn1ihCpxUnPvq7HhsN/LBkd9NynapSgpzHJBc0wa1NblSAMwjlMPUCNC8x8uKvtt2/mlMCG0jPJTw0qtcw+lmEiycVT0m/hi4huOPFYYBsythFNOd3jip3VI0+0Heo9RMZG2SLQhprMWC66e9jRmc6Y/vkYMwiZPTShG04Y5DGu9Ez2wdAre75Qu/ocaF4gogAxLLCtxJO3BgpXTxCDEfFGjTKpMToYUF/1zs1JKNoO1SgorUDmylNLKZBGkDe9xEDZsKhUoiceJ5e3BGVNEG84cL4PX+bQy2s0VMrYRrsQqeuFEN/pnPulqzqfvwyzDlFWwyPEXvQgS0+1hRVMBjFCWWZnRmhtCBo5ouWoxTnHOjt7Oc31okVbTT2sQw24vrbKTlkntQH68QYq9ZOj86yldVbz3MlTpK8fcf2BdbJSI5XZKyjttwnrkBVngt4c4rTC1SKII6KdnGCkUENFPqsZ5eFe1OycwBxP6R2SuNSnIpbPzoF03HPT88xFY7rBhIn1nxmtjPidb/4tvum938RO2WCQRyTrErfT8weS+xZOub6z762LuzRpk3lNa1winCNZS8m6ESLy0CVpfG5UFJbDf7SNHKXsvPoAO9d5hjLTLqEUBDNTyo2EeE1RX3Y0z+c0PvA0zXbLF/CELyo1LjpUJom3HMH2lLIT44SgbHj9rn03C2VNEYxK8rYm7JWUiccO2+2IuSMjarpSXnXK575twNhGe86yKad05ISBjdk2DbbLBn2T8Mz0AN1gzFLQoymn1GTGaxbP8e5whtp5zZnFGbKWZidNUNuB70ZK3VVF5S/IgQohzgK1ZjAPxiAmKRcmT7B88SnuvunbPUi5wtupnQlxPaA4EpLOaqKe8RdwXWB7NZ8kzyqcoIBHf/Z/5dS3/RP00vyeNEjR8B0YJoQycXSfySEK9yrxs9GYpvSJiv3OgYrSesot7Qf96Xf/AtPtZW78jn+JDrRXGbQCmxi2thsEZ2IIoYwcvVbIeBoSxwX1KOe3T99JFJR8weFneVPrCWKRU5MB922fpPu0xYYSlVZ61xZmnsopzyc8c+cJ6nducbA5rLosXtobQwhxL/B/ADfjZVKfrMVzWCVR1pIdm0H3MmSaY9t15KQgHMaEPcl0EDGQlpGMGO3UkIEhiEpECLptWGoNSHTBdlrjuobX0zozmaNfxORW02vU+Kvv/XZ2ypB+HjPJQg58LEUkCa7b8ou+lNAf+ZbOfbTxaJXt7dN0guv8bq4wXJw+zuojn+DmL/k7lLHyuxklELlFrG1jtrZpL6/SDgJkq4ntthDWYloxarAD61vY4QiMwQJSSEQceRnnKmVgA0Ft0yC3h9CMKFsamVvCoWHfKSUkfPKP38apO/4aM+FJyppClo61M59g/YEHyd/xFUjjiKSXdCmcYmIjeqbGpAqgQmEqFIZmaBKeHB9kJ0/4gpnTzOsBAB05YSgS6jrDLWaEzyf0VhtsKMMkDfeInIv61aU0riYCVbmd+MmYF3s5UBt4NhNcgAoCMD45rqcB44OSMhaEQ0+EnM14so0y9vomdpeOsKLw11MPQBcW0jmvVaLGlvjsFkhZFWZgJhhjkb4qt98kGtYQjB1ZW1D0txitPY8KYkanH6Nx2x0EI0EhwFViYLurwG7edKEz4nCzhxaWBz52E+qS491vvpFDN/nE9/lshqc+eoLD2zlIgbUGhEalFhsIVGY5eJ9hcHGWx1/b4pqj6y/p6QshWsAfAN8H/BYQAp8nHH8EYEPt5SVspdRalBSHuyQbJdPZkGIjII18H6zclEgXkNctLvAwqOenIXPdIbPJhI28QUunfGLlKJOzLUyUc/BEfw/ClRvFZBIRPn7BO09jMe0EmZW4TnP/GemBaLsgCgpUZjD1EDutGgI2c8rYY13LRBMUuSfQMQZnDOQFLs1gfRPnPPeE/QxYlrOu4j2VuED6YqZ1RDuOZHUKRbGnRwX4jrl9J9TF3/+CPeVUZzw1psocF/tt5uvjvUKYRZA6Tc1plHCegNwFTGzEwCZczLuspc2KpKTNZtkgtQHLgd/GPzk4gFiPPI/vtmLQTmA5Jih8GlFICIYv/NCvxoH+VGYmbytcToCGsvSru4CB2ea507/HYHiJUCWctF9Me+4eZC556o9+gdkTd9G9/XUUTdh5/OMMP/5xjn77D3Dh7T8HwLO/+tMgYPab3krsWqy+89do3Xsv/Q9/iO7sKY7wOh7Z+K/0zq9iHnak93VY+PGjHFvi07B/+2HOWOorBVk7Yvvp+6nPH6Mxe5SdJz9J5+TtWC1Y/S+/gWsElIMtsmfOEB2ZZ+5vvZVaq8NcMmb64LN84H9/gPFGRv21d9B+4Dk+/tWLnPiaG/nd/zii/ys/S948zMrapzh46NWsXPw4d975XTQaBzwkJR3yyC/+FHeu/DDnvmCJY3csv5RDcB2Ac+4d1eMp8J52bYmzz/4x6WiTW677a16Kwo340Olf4N5rf5L6hSFnP/UbRNecYLh+muLcJY78wA+x/pu/Rf3AMfobpzEba1z/mjbf+LZruG1hh3/2sTdw3zf9Njed+GpWL7wfuTDPiZ/+fN7xll/hK973fTSCnOV//ygf2vxD8o2UUMRc23g1SwfvxoUBuZkghHgSOAB8Avhu59y5l2ykHKjBFF3LEJnBtiL0qABrUcOUlcfuY+3MxynTEVHU5rr2G5gTETjLCme4VJ6hKbqsmDOEJNwg72FOH8Q5x/3Ze2iLObbHm4wHfbrpSY63voHAxjx539vJs4Mci29BbQ4QnYj7P/qzHDv1JS/ZqX/WIRGicp4+iBIGbCh97UNCr1dn+vvv42PveoxsZ0r7QMyb/s6N3PuWBlj48Ds3eN9vbnDwxjaf/L1Vktkar/oHr+fWN7SIZMkvf/tHWbx1jnOf2GDnzIDo5CqHv+QbmByscenXfpH4puuZvfPzMaGjcR6e+N1/zdLtX/qCj/9q9nr3axlyZvggrij8Smctbjrl4U+9ncX52/jC63+QOxa/kqfO/gHT7RXCoRduKhqCvOUr1DLzeUEn4ei3/W0ATnzH3+f4//aT1F5zm2fdHg2xownXfcePcidvwFnDUuc23nDPP+DkD/4ocSz4tR97nriSud1vi89sEkwcO0/fT/fUXcycvIvB8tPItQG1NYeeOKb3f4r5V7+F6/7ev0LOzjF+57sJg5Lnzkf84T/8U5K/8pWc+n9+iFO3C1Ye3mSjaPB4/yD2yQbD/gXqpsnr7/1hjl73xSwcuI21lYcAUJOS9eVP0Z6/loQ6hz5gWXn/4Zfy9J8BjBDiPwohvkwI0d19QZS2YhUqERWUCSDamCL6I2ThGDx6PzPf9Fc5+kv/jPjVVXfJo/dz4/Vv5aZv/BdcPHeAf/mtBT/yj76L8hfmAeitPcNrXv33mP+B72KQe2lsKSw2zbn0p7/Lqxa+li858rd4zalvp0UbMUlZFufIihHA1wHzwIeBd/BSW1EgB1NE7hVt5XDqOSZCTS2c4aYv/lu84Qv/OSeOvolH1t5FERqEUoh2m77dpJbM8cba13MyuJVHig9RaOep6YAVd5ZbF7+MN578flCKs5/6XbKW4sCBu1gePrnHW5GuXSBL+xwIT+x7Fd5pv3XO65LJnGI6qxgfUEznJGUNgnMRZm6RO//N1/PN7/smXvPdt/DOf/Igzy2H9E2NiQ0588iI2qE23//+r+bO776dD/3j97K57blGA2F4+l1nOfKDX8nRX/jHCCVY/tDvkHcNjVfdzeRjD5HPGszRlG2WMb0e13y8fMHHf1XJsihocn74KXKRe/o6B1sXHyZqzHBw6W5EFNKsL7HYup6t5UfQmdtjzC7rjrJWqXY6T1y6W3wRzjtWYQQ2ciAFC69/C3PPOcTWgFAlLM7egmvVEPWYL/zua3j+/p09HNi+mnPYtQ3M46fJRzt0T9xObe4IUWOWrecfJBxZVAHt47fQ7B6jvi450L6H4VObzNQnBE88QvtEl1u/doHZdkb2hV+E6jZYHrd57iPHaJ3NiVSdY43bCAqQOmBx6S7WNh6Bwqssrm48zOLSnaipQRaWhQdfOmSCc24A3ItvLPpFYEMI8XvWmU9nO9eSslE5uzMr2M0t1LRk9uQ9NMJDOBdQqxtcy1B79atQh5dor2uOn/pS+qcfRo1Lwm1PgLHwxr/Cmb/Z4OSr12lH/rnSKVaHTYSDUb6JyadE62PqpoFLU1bOfZRI1XHOPemcK4GfBO4QQhx7yQYLeGj993nvsz/Le0//W97/wNt4YvO9vsg1mHIouYGGaUCgmT1+J0l9jkE8Qc3P4do1grDBwbu/An1gkaXmTdR0h83SIzGcg6XGTdTnjiJbbY7e8Ga2LjxCMCw5GF3LuNhhbPu4OGR17SHmD95O0M+R+0yoXDYtxJYz73s7j7zjh/nUb/8wj/36P2HtQ7/NfHeALATu1rvJWrNsF3UOftEpWkdaPPVQykreplfWSLoRx996B33XZOmLTtE51uLCfZcYmhiH4LovP8GxmxJuPblF95vfxPhTD6N6gtqNt1BsbFBe2kQIGG7dR+1VdyJuPvWCj/+qqvBKBsw3r+XM5FPUZRukYJr1GA3O88GP/LhH7TiHw3IguRNZ+KqirBxlWXfY0Dftuyt+uYxBhr6VCkDV6jQ2NLX7n8OWJUZYnlj5QzaffZ7iA1POakM+LrHGYfTLAPOY52w+ej+dxevQtQYig9njd7Jx/n6OHPs8hHUESQsTw3RewFaIGOcsf2yJzUefII8XefbsIio21OoperbF8GyLm54sWHcQ6yYizZFpgaxrWt1jKBkw2HyO2MRMp1vMd26gIqu5ymXxL+H8nXsS+DYAIcQNwK+m+cBDu4zFxho1SNEVisCOxiipIM9puBbJhqDoaAZRDedg8U7YvCtn9k9Dwn4X5wx5OUE1fdJ8+LoZrrl2lcVkyGqFOMiMZrw2z+0Hvoqz25/gsZ0/oVM7zPX6VTRcTJr2SMshQojeFYcugEPAS7aNv3Pxa5jTS3tkHhdHj3Nx+BiiKFm7cD9nP/Vxppk/RGNyssOS9LpD2IsrRHEbF0jK+RaynpDkM2SiABEgUkHUWdjDVMaRHzexugOtDge6N7E8eJyTyRyr249x/Wu+FTcK9n//VkislRz74b/OyXsXmE9GHIz7jP7ofj75ny+xfW3K+PcfY+Vj7+OBtT5COMy0YGvLsZ3XGZuIZL7OsEzYmDZYHzUouvOcvyBxm8fYyWvk0VF6Fw/h1mPqa9XuuTcmbDRpX3cH9g8eojz0JnoffJwb/9lXc3G96RM8L8CuThdewMkDb+Sjp3+J48mtgL+52zMnOPVl30uyWRJtpWAcxUxMYR1Kh4hpXm1TLHkxwCkvWbBbSLEhuKYB7cCAcIL5D69it3uIMOD53v2MzTa3fPHfof+6Dp9/8g94+9e/n6kNKNzVIbFeDCtNwWpxGpfCY//Pv/C0oLbE5FOG45U92VYbOqbHC9KyxL4fzDUpCwPH2vMbHDuyyYH6gGmheXp1RCewyAVbtc8Kj37IjOdEVYKDC3eyuvoQUVBnbuEWglLihEM4sauCvC/mnHtKCPEr1pWvkmFMmRmKRoCcFuR9n52XUYRLc1xpiNYmhANHtKFI6xrnBCvPGW7/qi3OvWYe90QfIRXjm9rkIwcfh9otPY42dpA46hXEZVyE6LFgZulmZkdNbFPzbP4gjxcf5bW1ryFWDWxQMsl3Ovs3OkCocWnht92qooIUMOmv8fj2H/CqG/8m9QMnsYnmwQ//W2ysSWc1ZkOSpX1EYbGRxkaa6ZkxczM3IqYxTDVjOfEBjBTkwy2EkEQqQQ5zGq9+A+fe92t0JsdRwi/CLpvsN5sdegKkoD7S5EJ+lAsCpodLbs2fI3erfP+h/8w/+q2HWfi7382BezsYobnw9/8d00LTL2KmJmC8MWUni9lJE890trXDwsED9CYJWRrA8xnBnSHxjiTNd3z/f6eOGgpOult4/LH/zNz7ryGuS/7+lz9HXT7JW9/2wo5fuBdAqlrBmL4TnzM6BxwDuviCwWk8fOUSsFN9JMF3haf4Fb5RvS8ATgEF8HT13tuBM8CgetwETgCPXHEIh6vvfBYfXx0HOsAD1eu3Ad+/HzhQIcQGMASOAk/Ap9FDnQTG+IUqB3arO1eeowZuxY9BD5+fOwKcx9eNZ4E5Lo/XrgVchg2dAUaf8fox59z8f+/5fS6rIs6vAH7TOXdRCHEE+A3gLuAC/jyfrI7zOJ9+3a4Htvj0+vj1QITPrebVZxz+HEP8WD1wxfuvfE7j59oAfx2W8GP9dPW7x4HbnXOPCyHawJudc7/9lzAML8iEEAY/h6+s8+5e33PATcDjQFY9f7x6fvOKxxeADS6fzyP4sf1vjduu3YIflx1gpXruJZknn82q+6cFnOV/xHFxzn3Ov+rkvviKx0fwzvED1ePrgXdVJ7AFvA+4o3ptDnhPNTj3Af8C+NMrvut7q4PuAW8F3ghc/IzfXwI+gHcSzwDfUw2Crl7/APCdL+RcXow/4N3AT/85z78VWAV+FfiJK57/tHME3lKdVx/4BeCjwLdUr33bleP1Gd//J9W1Eft47ofw8KVL+MXiEvAfgFb1+s9X1/ZZ4Ls+13WrnnsbfhM1AH4fmKteO37l5z/zOeAg8MFqHHvVd910xXu/BXi0+t4LwNtf4rH6tPvoM68v8K+Abbxj+JnqXL7zivfdB/xcdX7P4BeAzzluV7znR6qxuma/5sv/bOPygiLQV+ylMyGEBC4Cf8M59/7P8d63A8vOuR95SQ7uJTAhxAeAX3X70VX2MjYhxLfhnca9n+X1D/A5xk0I8a146Naf+x3/I9p+j8v+JxBfMYQQXwp8HJ8S+SF8Zupjn+Mzx/GQnDtf7ON7xf7HNyFEDfh+/A7nFavsv3dcXgY4oFcMeB3wHH6L8lXAX3HOfVZSLSHEjwOPAT/lnDvz2d73ir1isLdAbwBrwK/v8+G8bOwvY1xe2cK/Yq/YK/aK/QXtlQj0FXvFXrFX7C9orzjQV+wVe8Vesb+gXVURKVSJS3TLA1Gt9fpH1nqxriulAUTFVQfgbNUeUwHCBZ4tRnnfLUwFFneXP7L3f+mFwdh9D9Xzovq96nsH2dqm2ycs29yMcseOaE6nHbjkJZ536TidEpjIk+TudV8pB8JVp+DJj0X1GOd1jRzVv3aXpgaE8VrgsgA1NYi8rMaBT+e5rMZsUKzv25gAJJ3YifkuzglUJQ5YGoWUlnaYkpqAzCgEUA9yIlmiMeiKX01VXRYSh8KxN6OE2IWe7HXReMExL50ihKNwmrGJ6OcxLlUV6z9ko23MeLxv0PHOjHKHDl9mbxDAwMasT1pQCq9lL93erbQ3L6pPXMnz6qrztQ5wYu/22J0vWLGn0SWsJ+oIGzmJKvZuMyks/eUJ451838Yk1DWXyKYXHAwUTolKasQfs5P+D/kZXXZXjAsAV6owOP8nrvj/rolqPGQJMvfSQzjn59UVXzGcrLyg++eqHGgStHndqe/EhhqZ5rC6iStLRBggwnCPrADnINC4OET0KmxsHO05QduoUczXKuErgdMC3ctQvREu9t8jphlOSVwtQhQGMZ5edpzVDHNSIMZT3r38cy8do85n2PEjAR999yG+88IXsPK3jyEnvjPGNCK2b2kwnRdkXYeNHLZuUPWSKM7RytKIMxpBTqTLPTXNaRlQOsk4D5nkAUWhKQqF6YeIXBIMBK3nYe6hPjx3Adlu+QMxBjedgpCIWsK7L/6f+zYmAPWDDQ7/1HegpENJS1Zo+v0ac7NDXr1wntODeZ5bm6PbmnDP4nmOxVt09ZhZNSKWuReLw9GUqVcrFa5iIDekTnnHKhwTqxm4iNQGWCQGwdhGPJMe5P3r13H+wUPULgmQ8Oyv/8x+DglLhxX/5V1zpE4xsQEGwW/vvJr/91N3gIOg7j29VBatvcRuqA2RLgmUV6mt65zUaIyT9NOYolTkpaIsFcZIryc11YhMojK/6IZ9QTCA/o2GL3/tp0hUXo2n5T9903v3dUwS2eR1x/8mZq5J0Qop6goTCYqaoGgIijqYGJx2mBBsbHGBA20vB1zSQVl51kLsaZGpqV9EnABpPNOTSj1lZtRz1FdL4o0UOc481WLpCZIA3n3mZ17Q/XN1MCYpKTueX3HXRBwjtAJdfVVZ+ggzDrFxiEriPYbs4kCHsq7JuppwaL2ufCgpE4UN/v/s/Xm0Z1la1wl/9nSm33TnG3NEzlmZWZVFzQVUMRQUyAwKim0jNmjj2EJhvy1iv76+2mgr6lJRXuVtbRRBFESRBqGgqJKh5qqsKbNyjIyM+Y6/8Ux76D/2uTcCFrYZrEp+uVz5rBUrIm7cuL9z9jn72c/wfb7fnGxWIqoGtzFEeo84mCCsww8LSBOEdTFylbIbbWwhz+7oFl4Kszi+fv1j/L2tB+l98hC/PqTayllsC6pNT0gCIfHIwiKVQylPaixKBHqmJlGORFp8kCTKsrDJ8c+uRUApT6s8zSTFOsXkHgGMWFcCrh/EA0UpRJYR6ga3u7e8xejsSNhOSU/rJIsqITRRt2m36XFQ5bi5wQ9g0mYxUg+CQ1ewfjTjC5hgMcKR4ZAEHAIjPC4IFl5z0/VpUcesXIeux9RlVN6QKotw0LvesUK9eJKdl8QC8ZoBtlXJh+rT/PKl+0EGVOqOI2itPYm28c/KsVVMWU1Kaq9JpcUj2Kn6ZDrekA/iOKNprDyWkgkyILzApZFLurisuLRY5YHBjagAIOSx6u3STAj8oMD2ojRzkOBMFNGzecfWpDrnmYToPFWICpqZPY48vYwhZ5CRwJxW4GRkfhMego1qqEHFn+kSsEWkzfOjKIIk3G0R6YvEttwxDlTWFjmvEYdTQmIQWkdihI5gOWQJIU+iAJ1z0ZGmBjdM2Hsoo1oTZPsBXQVm5/PjUH3wQg1JR25gPW6QoacLwmSKPEpR2zZ+XudEQ5bEEsASLRCY+uaYIZ8QdaPaXpRgiGTR8aEr5cmzltRYeklDzzTRacoa0+UWUvhjYbhaapzykUDBSWRm8UCrJdO7JOm0z2h/Rjg4RIyGhElJcC6u0ZLNeomS8T6qxmAbBVbivOSgKjgY98AJvJc0XjFzKUZ2ztK3ZEKihKcNGkWgJ2tMDCTxwDwI5sF0X3dMfcbcp7gguNGOmNg4G63nAjN3qMotnTxYEGi6HHTfJzxenqZ6aoQ6UyKlhyCQKjrP1FhGaUWmLIlypMpSe40UgZ2qTyItK1lJaQ2tUezNi1tVNB1LAcepsIS2HwXontld54HBDeCoXPQycKB5fF+DFNgsOvygOCZa9xqCiUEIxqMyh1QOeVu5w2uBbRUidQQvCCEeqeK2UoBsRUdwA0ELnBG4TKNKi88U4kjJ4Q4Yqu5sp1kXuQzrhtA0iKKIEedtKXXIE1wvPdbh9lpSrydMT2vKbbA9z8oz0BaSvUcEQUfZjiAzVkqLPOInlIIw7EVVRSFulQZC6GqvAdHe+uxlmUAwkhl/4+JXkV1bxFQ60TSDWJ8MOkASH7rS/rew3/ggkNKjREDLTvPbC7TwJDIqeTZOYb1CiIDSHjKL9xqXSMo1ybDI4ADCZEbonkWo6+Usxm8z5wUhSJra4Ct9/DUbJHaSIArLIKsZmQojHYWMB0rlDRWGTLZkomVFlnRlMJKj5y09SpS4IKiDIhMtSNh3fWYuZbfus6gTZAvCBVR9VItfngkg6agS5sFwqVzDrrUIK5EmIJXHmE5tU3pcl5GsJQu0cKyYkhPpmKEuuVEPaXwncS1FlLv2t21n2Tmhrv57VD4tr/XxF+Iavhy0sxDgk1j7dElX/+yu3auoShGOhBz0UY04Ok5jYtQeQmzLBC9u9Q5UF4UfCT6G6DS9Ad9GOs24PwWyiQ70iMXiTpblDkOVEOsE1sWU3XuCj0lASA0+S3DDBK8lwXpcqghSUK0qym1oR7e03asNics9bq0lH9TstX3MoqB/cR5rnrPoiCAH5wl5ZHUSdRMdqO3ysSN55SWaEYqrv3yW8/MbhKYhJBqXisicZAJCe5SOqbtRjkS5rgEQBeBcENhOH10SSKXFasncJijp0dLjhER3m8urQNAB25P4IkEqRZgv4myuUsj1tTiBv0Q7imwaq3CtRNSSkDmcl+zOeuChPyzZKqasmAWmax6ZjiTWIZn7FCMshazBgxGegXQUQjAQkkIEquDJgscEz6GHyhtqr5m0GWWZcKwac5SeLdECt5xW6zXv+cjDkHbZ1VHaHQTOSxqnSLXFB0HrFWUw5KqlkA1F2lD6hJtVHykCte0OJ6uOmyZBBoQkZoJd1NX2YfCUYuf1fbbTO9CteCntOIQM3E7v69Vtkj8yROcJCBkQ0qN13EMAWnl8EGjjcE4iiCl9sDK2XayEVhDkrUa26D4vyNh0U6WNPZc7jMfu0IEK6KI+IQShaWOkqCQh0fj8SP8mxN9tAA31SOCTgNyqsDPDwYMGMwMzlrihpHm+T3IgAYcsW4IQ0Kl9+ixeonABUR919m91zpYdgR6ZnhMj4kEfl6rjzjsyIHU8NVPTojqd+J5pSGTUQz+yI4e6VxfHztS6GH1CrHEdV8WJdZxmNSXTXQmltZAsV+LkyEQX7lmrCK1EVQLXCzStpp4nkHl6aUOhm2OnsvAJRrjoFLyhDYqZyzh0PXqyZiBL1tWMFVkzko5MCHpCIqVAecfhET1ikGSqJc1a/FHoepTPvQysCop5SNBTSZseZR4SpRy3z7XUVlMpw9zGFL6najb0hCokSALr6RwtPQdVjvUyAl5aCa3kCLYQZOeYQoy+8j2PD/K4TLRsO+q6H73a8ZCLtRpVg+vQKbebswqtfecCAs5LjHKRys7HMoh3CqE94gjZYgK0AkT0TUHGHxwEiBBQ1w4iSTxEVNGLtDuUNfYxdTcmRqAh1iR9lhK0RC1a9GGJLxKatQxVOuqBweUROpAXNS5rMduO8Qsjkn3J8DMGr2B+1jMpFcXVDGE9dpBgxjUQ6xR6Wt9K491tsJ0lT1JVHfnm/EzA93Lk7gE+Vccv8FHKIeUtKEqqLFIEKmeQIpBImLu4KVJl6Zsa6xWjtMQjGFdZbCS1umspxrSm7Qfm24bcGHzbReTOEWbz5SzGbaZkrN16JxFzHfVuZKBtNMEKslHNKK1QIjC1GXMb2ep7uqaQDQufYL3EEZtLuWrJZMvp5IBEWAayYlNPGIpYrnDEg6PopG619JwYTrm4OsIbgbT+1gZZsiV4FAHb8wjjY6ODWzHBkXM7ikAnbQYtDHTFp8szXTOp5dnJieNmnZYenTha3x1drYwp6ZGTlJBMYoPmg5fO8Y0PHC7n5n+bRWcGQUt8V74TPqbYbgg2B58HQuoiXKtRBBmonECnluAlSsdyl1EOK9VRIz2m8kd2Wz1VdXXh416l97Sn1wgyvifC+sgP9SLsjrsNQoi4Sb1HSAlpArpr6oiAaEBYj0slwgVmJxXNMNCuODazmrV8gQ+Ck8MJn72yjXgqjzXQgaVeNbhco+ctNleohUJNowDXsTzEUZcMCN5Dtdx6Xx0UbXDoEkQTC04ujYJYEaMpsYcJNtWEoSAxMerU0mO9pHYa6xUegSQ2CIx0tF5hu6J2axWzwwK5Z6L0ycDHxpQQNMNYK+bGzvE1CbP8JpIUIaajjUIvRJRzCQLfCmTqWBvM2cqnJNIyaTNsiGkrRGfggyCRDhtkPGgIXJ8PmJYp5TRDJY71lRn3ruyynU5wSEa6ZKRKctVQ2ZUYwa+3ND1NYf3SG44QoyEjPEbYKGHTKND+uK4XM5XYZByYCikCo+73uU0pXYLsdv5aumDSZkgCpstkKhmoFwZKheiwpcJLvOoacGaJN/87meBYKwsi3AhiuaFe8/gVi0xiw8jVsRgqlEfIgLPqtyShjdXYVh3XQYOTEV/rBaLtYE2xV3cLD9p65KzCDjOC6Zy4efFZ3J2n8PBbnGfIkrgA1hNSFUHc9w04uF+x8oyk3BbYkcOsVaTa0tc1W1msv1yfDigfsdhpCpXEFV2UtmhAZFRbKb15xIf6QX4sjxtCQBiDsBZvl4tNGUrP421Le3eF3ehj6gafxFMVD6PP6Nj9DYogExYnA5PTLWm/xhhHZiyL1mA6p+GCiLg+p5jPM7iaUVwTrB9G5IJNoRkqbAEuD9gcmu0+5nkTMbm93q368BJNikBjNaFSsetpPDQS0Uh84dg5GHB9Z4RQgeAESnsG/YhkUDJEB5LU1FZz+XBEeb1P/1lF/2ZArwlm5z0HylMNNOtmzkgvmLmMT85Oo4VnmJTYINk8MaZe2Yxhx8vAjkozh64XG4ytQGY+Ngi7f+8lDbluKXRLKi0rZkEbFEY4HBKFZ9UsuF6PSKVljx6lNbEhqTzSeJwJcfiiK3uJrjaqK7jjQt9LbKHL1qSLKXU7kFQbHj+ySBOdp9KOLGsJAdo2OlLbKrwTKB37Cd5HVIe3MVLFRp01PAgbnadwogPSx+EdaQP4mOqHECNicQeSDnfmQIUArWM0qBUhMQQtEY1FuIAH6u0+kwuK8oylHaj45PotJ1anbOYzPILduk+uWupW0zYak7fYRYaeSVwqsas5LomQhuY1KwxeyEme3YG2JTiPSEyETikZr2XyX73yl8wEgodNwre9+gP8mnkzwcQOOUDviqBaj0BgiHrTq58N+GcM5VbC/Kyj3qjI8wYl/XFRfDrLCTdT0n1JcS3QjODgVeAGPgKIrSS7pimuQTOCesWQFAXM5/jDcVyfJVsIgqZRqJkkaBBBIKcStRA0xtM2KeZAke4JzDzqZtUrPer1gD1Zk504YD2dM5Upi92T9J9XmGmgGQl8CtmuxI/7fPoz9/Ox0b1k56e8/tQL+CC5UQ84XYy50Nun0A2f3NzEp/p4+m1ZJgBF1LCf+4SQO7AxUvJekKUtiY4h2FEa3wZJ7Q1DXVKoOKTRVxVjW5CrhrlLmNsEF6LzOALTk3hCKxBBdADyGN1VqwLbqON6u1g2NIFYB/UmXqctBPUKhCREmNvMxOBKB+rcoQtLljd4L2gPYtmnVbFEdtQaCZVC1N2zPsoEO2FL2YDwAmHBzGO6HrTCJ/LWBOQdHLZ36EDpgFW3GjiidfheSttPsD3F+IJh9qqGU6f22Tns0x5kFP2ajXyG9ZLVpGQtmWO95MRoynPTTbwUZCfmcGPI9KxGWE126Enmnt1HNNVqzlazjrl4I4L2pYxIAGtjJLxkU0LyrvWP8qv5F2ASQ7UiSMeB2VmotxyoEDGcKlCv5eQ3BaqEwdOKWZsz25IUvTrWRWuDP0xIDyXCwvyMoF5zyI0aDbhWEpyg7QfMLOL8qhXJUKuYGWTpspcDiOOVtjLoVhAUqLlEeLCDQLJS453ENilmqgilAB/IdgO6FMxkSrWhOZmOuado+FhxFjD4RKAXgWwvUG5K2h7oEtYeB/XeHh9448P0H91jo1iQq4Z1MyeVLR/asl3atnxncWQn9BgA0UrIY/NIioDzgv15wU3fp5/VhCDITcsoqVhP5+SqZT1R7DQDnplscGU8Yj7OkAcGaQV26FDzOD6MDNEnuK6hGcDlEKw8nkRaunW1yaM/1yOJy+NzMruawUXo3YyHSrlqmJ9OmJ1JUIMW0cZpKyugkdGJ+lIjKoUuBS4J+IHrGkdAKwk6NpDqNcnweYeqHcJ5zM6CkKrYrG5efAZ3h02kENPDo3qkVuDF8d/LNc3iVExLJmVG8JJ0veSBzZuc6x1wvRqSq4ZtM2HqMl69epWDRc7BXp+Htq/zkbsy9DxhftaT31CsPO3wBqrNwMGrCjamK8iDCaHIQArEdEGoqju6hZfKHmsSZOsJicYWAq+70bGpip34PY07XRFyj6rjGyMdZDuSRWHweYNQAdsq1FRiptAObv18V2nMdYPq+kiqimqmAM1IxEmtPD8erV22CQKhivcZBOiFQFpQpSB5rk96GJA2IHycEvI6AqgJcd5fisA92U029YTN9UeY6hzRAZx3Xg/nX3uZnmnYzqY8Nd5k5z2n2PiE5+raCpsPzvEhAvFTadErDS5TS284AmTC0QTJ1OccCS3GmW3BvExoJynJTc3gOWg0eCWYrMPzJxwrZw+5d22X2msuztZ45vIm+mrK6Kpg5ZmW5KCh3kixWWByXlGvhePU3Zu4rmYG6nD5NfJjC7EW6TUx4xzFwRM9k6w8Cdmho/+ZPURZ01sfko0HXBspwiLClVQFXkt8EtN5OVfomUA6gc1DbKQ5iZ5ETgRvIijfFmB7imTPE7IEN0xj88j7O4JG3rEDDd5D08ZUXohjeda2r5ncI3AXSoqs4b71HRqv2V30eH68yuM3TuCs5MTaBNbhdHrIQ8VV7EnFp7KT3NPfxd6jePza3aS7Er2A5NDSuyqp1gWLE9Bs98jGM1CSIGV0FC8TB/pnP/WtDFOJyw02v9VJTA8E+U5gcKmEELB9x95DMR21hUA1IGpJoh1F2jCfZegyRm16EU/nU++D5DCQ7hwyvXfI9KzCZREr57IQoWRFBrM5Ymub6vwK/KflrocW/jiNki52gFUFg8uWZGzZeW3G5NGG+8/dYNKkLN6zTbYT591VGWtap80BjyR7vHr9Gu++b0Q516Q7Cp94Ln7iFFsfghtacPNtluINY26sDxBtjK6OsKWptPR7Fc1o9LKAMTkELZLHq1Mx+DCxIWJrjb6akM8FK0970sMIF3SpiAduUMzWU5qRZqVYYP0Gcjdh9CTkB91IZxYjKLMIDJ+HdkciXWB6Nr5PLutINGrB3Kb0dL30FF74OOTgUkW9IrG9QLoX35vZGZie0xzct41wxANWQNCeoAPZTXU8nmnRiBBn3fVCxClAGRCZY/PdKaufmuB6hsXJlIMHVDfO2Y2BFgm2b5CtP76mF2t3OAuvui64j5GftYjRgHYl4/A+TXtfyZnNA071xpzOD/nsdBuAB9Z2GJiKcZtzcbzGz37stRRrC77l3o+RypavO/UJpPDcTAc0W5a1D2t6NxztQNP24mJkuwJbKNzWCDmtELg4D/8yGFsEOHxhhaHwcba/CKgqjqxufixCitS0RuwdYrTm5MEa4/t6NCsCl0DIHBv9OZvZjJ2DAUEF2r6guBbI9zyDpyaIeYUfFAyfOGT0sZqDN57g4EGJTyKOrV0r0FLSbPWYb78MIlAR03EAPRMkk4CwkB627D+YUX/+FFEZnrmxwb0ndrh+b4uwhnIroBcRedAExaZK+YLRU+zc3ccGybO764TdguQw1r/DbQ3TN7z1SR7o32DLTFhRCypveKbaIkta6tGdg6Q/13bELJUJx6qegwCTWWyrSJ9LCSqSzozvlph5QjMAMwczixLg7SJ24EuX0DhFtiPJDyyH92iEA6/jc9cV6EWIRCJTj2okNo8OSDaQ7gt+8ZkHOLtxiA/LL4EFGaeQbAFmFjORZtXjBxZhPDWQ92qEgPl+jlgoshvRedoe0DlO2XaMZRZUI1i/d5frl9fwGuQL15HAoDyBNwPG90iCEvEdEvHdiA2kiBN9sXbHNVChFYEEISyiyHEbQ/YfTJm8pub85gFr2Zy1JEKVHhjc4IvXn+SUOeCUOeCCnvHE9ir/ceu1XC3jvPKqWbCmZxy6grlNyFYqDh/oMTuraM80nDt1g3mTMPvgBrLxuNxEWFNr4yy+enkAx4MMuFTi0iSOp/YDbiao11K8EbizOcKv0PQl81Mx8nQplNseTJwmWdgEqTztIOBXGpJxyuGqIsgR+U7B+O6E7MBTXK8jY00/RHYaKak2U9TQUK2qWyw1S7TGaVQl8CY6RNnEfmK5mdD2BOGpPqc+5uk/v+D6W87Dw5bZ3Y6QOfxMkwE7dkgV9ngovcLV1VU+MzsZOQF6Le1dLdfOKFRmKdKWzcGcV/Wv82hxiYEsaYPmkl9n5lIybdldX/7QRUBwxfX5xcmr2Wn6t8YNnUA20Rn0rsSSh8shPYypbbkV01F1oLk2H7KwCTuHfQb7gcO7Nc0wOtpzP3kZhOCFbzpNccPjEkE9UvQvew7vlbgskO2BywXuasELz/Vol+xAj8oyzsQSj1PQDj0+d7HEYWNzZ7FfIGqJXsi4VkWgOuHRE4lqBC4L2CKgF3HSyExg/6NbyCIwuRfC199PfuCPPydOa8Vr8Karfd5Omfki7Y4cqMsNN77qLjY/MkYeRChSvZHTjEAaTz+pOZVPSGXLupkzUBWpbJn4nKZRPFae56PTc8xtwoODGwxUdYxpK2TDTtlHKc/6A3u0VnF25ZBEWiq7gi1CPDF8wA1T1EIi6pbwMqj3AWA8s1MJ6aGP6VIaKE+ACIZkEqhH8alUW4F25KBv49SIiEw8ZWvYDb044tlz0EqqN81opyku12Q7KQhYaEkzyJmdFriVNtZ4GkG5JtGVoNyKzadlW211V6sV6DJOw3gNNpcdF6Ngcl4xOTdgdsGhBu2tKavCopVn3/Vog2dFNjyQXeN8GjGf//HpR2h3cmQjcD2BKmrODfbZMPGdVATmQVF7w2Gbx9HIYYid1iWaIPC+2YP8+KfewGi46Lq+ATExNKNAviPI9j37D8Pmxz2H9yjm51zE/ALkjkWdUJiWdpxie4LZBUfIPLUX1Bc28IlkdsFx4jcrbN8wOWuo1uTxbLxsYXHKsf1+QbUmOFzmgnR25MhiFz7gk0jCgxcRimRFNwcLduiQvZbeoGJ2eUgyFrTDQLtmEamjPUjQC4nrgZnG6atmzbG3DnIRm056JkjGXXNNCXyqkC78rrgS7siBtisB8Y177Ll11j8ccZ/e3CIizVRLrhrOpfs8lF3GBcl1O+Jnbn4en752EmMci2t9zL7k6Uc3eOOJS/RVBMKPbcH+vMA5ybxKWOwXzD+zSrvqKDbn+CxQjxSy0bG+OKvj/KxZfrj1/ip2CetRfGhBQEg9bRGYFLGJFNLIJJP1G5IQSUOsjMsvpaexiqrtHoe51R3NV0vcUDI5r6PDtRLRxFE3kThCrSLWjfgytH1wyfKbJSGATyNSQPgYbdergmYlnvSB+DXbj3R/3gp6w5o8aSkbQ2MVV+pV9j0YwvGM/FetPMajj17i3QcPcWW+wsDUnOvtc3e+c5yONkEx9Tljl7OwCbM6wZuuhrZk2237SBlYVAnCeJQKuPUaO9e4scFmkcbt6tsEPrWRiCZ3SOljg1H6WF/OHPVq11H0AtEILn9pSjIW9C7B7GyOtIFyS1CednHeeyFpRoJ0XzE5H53Vss1reYvsQ8XxZHx3T0Wk9AtBIFXEghZZQ5a07BwMSHcV83tbhPEUgyqiesQG7jDDq0C17TGHkmRfxWGdJGCTgMsE0kpUEwhG0Yx0zK4d3bW8RDVQYyynB2M+c/86ZrGCajzzLUW97un3KwamZsPMeCC9yt16zDRonm22KHTLhY19SmsohwntQHBmNGav7jGVGTtNHyVCrHvVmuAF6lCjF4JsVzMvB4QkpsjSBdS8RZTN0lMyAIfnE/VZZOaQjq4mSYwsey0UlhAgTS3GWKxVJMZRlglSRexaWxqci2QhtrlVktDak6cN1il6eU2iHWVjaDvyXOdknM4gNmpcEmfy296SFuM2kzIg65gu6QWUm4JqyxPWG5KspW00vtQgA6bXcNfmPqm2PLe/RlUmpFnLbt1n32Wc0SU9WbNjU+Y+ZV3P+IObH2S6llMFQxM0ibBkoqXyhjkpV9sVXqhWmbUpiyo5hsYs0wKRNAZg2KvYt5HnoOjVNMZRnpbYnkTV3fy2FoRW4oJA9FqKfh2nlEwdaSmGkeJNdIDxdhhoVj3pjmJ+Ms7D235AVgKfheMpnJUnPbuPClzfHzP/L80kx0xZNr/FhCR7LWneYrQjNZHSLzctPgjmTYLfTalOt2SXDXoO1escO7MeoVY0Kx7ZCPR6hR1JwjhBzSQ0txjS2n7o0B+dMobtmkcC7gTddYeSHo7DOqfdtNx8nSbb05EeqnDkSUtPNaSdfkLVRQOnzAHfuvV+MtFihOOxM+f5wPgubJBMmoymG0HLVBupqbzg/jM3mG6lXN8Z0V7L8LlH9luaQR5p+Ft/7DxF2dzJLXzOrQ3w2cUJhoOSRuS0PYFsQgfvEkjluvkDhxIBdCTLQISOPTxuKJHZiGOzEuo4gCBlIDOWCsiNxQURXybtqFpNXRkc8eScnYmEsd7wsqiBeh+Zv/U8YErPtFD4kaXXr1nrLShMfG7DpCJTLUoEri2GtK0iBEGRNqyYEik8A6nYVHPmPsV3kzguyNsYnFzHBSqpguFmO+R6PWTc5nEk1qpjNp9lmiBwPt8lzVoybePUUMeV4J1ErdU0OrnlRZxA9Cw6sfSLGiECmY5cCUnW0ogkOoSejVlOrRClwpvA7HzApx4yj5ipmLUIsAXRWY0cJMvHgYZOlsYl3JLwGFiKXsOoKBkkNcNOAma/LFg0hnmZggJEoF6LtJl2nDCdGbLLJuJJtxy0iq2NCfu6R5smYAWylshKxLppImiHhmYgu6mko4mtlygCrawm0y2nzu7hzwiuX14jvWoiWbD0xwXpFsW+z8iE7Vh0Kk6pmm2VMxRPMnY5T863yFTnbJ3BS4FSnrCIpLHvPPkETw23+Mxom+ks75orYHsaJeNIpzycQb1cB5oIwXdvvo//9PyrqNcC5oVu5rbposMskKYtedIesw75IMizlslhhh4r7NCRpi0Pb1/nU9dPUtaxYC678c7cWAJQt5pEO4T0uCqJBLK1RJWCZsWT7sURuGSy/M4qNkZS6ThGPt6ANPGgLUzD6WKMlu44IiudoXY6UrKJwLnhAefzXTLhqIOnJwKJcHxgfoG70puc0OMYcQZDJloykXO1XeVGO+RGPWSn6tN4xbROI1GH+K0d+2WZEY7t4fTWu+Ajs1mWNxjlaPPmmEAboEhbUm0pW40UkEjHWrIgSSyNiFAdk7f08iYSkBiL60g0GqspFymujjVQMY/llMWWRBRNLAm9DCxqh0Xguys8pmgY5BWrWclKEsd796oei8ZgvaStNCF1CB0wJxbkFxrsPMNbSXUWcAI9UdgirsP6yoxZltI0OmZ7E016qAgC6lGkAAxK4I6mlu4gArmzLvxEc2l/lbX+gtP9MfPNhHJvBWE8RnrmNmVsC+Ym7V7qyDDeBsVlm/N0a7jYnmThEk5mE+pE8/R0k9ppCt2QJy2LVvD09U3uH95kI50xyke0TtE0umvOSFTtuiJbIAx6cO2O7uJzahLBGd2naRQiwOxsID0QcUIilQQTxb/qVkeCjE6GQas4MeIGHZDcSy6O1+LGSR1BSBaLlEFWk5s2MhNpiZKesokpf2hjB/JING1xoUUu1MuiiSR8pCMzC4/NOm0aJ2msonaay/MV1rM5AxMZmY7MNYpiWLGVzRipkqlPUNSsScdAljw+O8FHDs/xVZuf5JQ5oA2aKphjSY/aa6Y2pXKa2sXDOC9qZnb5MCZBdKADU7Nb9tA68lcqBZmx5Kaln9T0TewLRKYuy6TJ2aVHbTWptpETNGmZ6oBoJcFLtvozRml5TMAya1MOqzzqaWl9PG8edPd7HUlMlk2qLHyIQxR5p33UcySJO5YrsUGysAn784LWKdpWIWScLApeIGWgagxaO1ZXp4znOeV+jjcBasW0TDkxmrJZzNlZ9NjzfdpM4k1Eq1Rr8RDJd/3vSrHgjhyoLuPJ+I6Tn6WQDc+P15iuOIpBRWGa+OBcShtu/dieaDDCs+8KLrYbHLqCrWTCCT3mE4uz3JgN8AFyHU/a0IujVx/eOceZwSG5bumlDfNxju6U9MzNGWIyjwzsZXnHN/1S2P/++p/mXdf+SJQNIMJ28BzPOUsRuTCNciTacTjLEVYgF4LeVUG902dv2MNMBL15rBf6SqHWx9iOYPfIeZZ1QluaLiW55UCP6jv/8x/5t3zH/3dpSxHNg5mHrq4kkTWEhaJME54f56RFy2yQcNdwn1y1XFmMqKxGKI/3gt26x6fEaXbbARtmypaecLHZwAfBlcmQf1m+mTdvXuRCtseNNgrrtUFxrRqxsAkhCG6MB2yPpiwaQ9GvkUfkxUu012cXea+6n0mVEoIgSSzOSXpJw0oaSxaryYIVE99rHwQ+SF6YjFAy0Nc1hWoYpDU3Ug+LSFhdWoNH8MDw5vH/K7VBa0+tPaLs9mSAaj1OC66dmHJjyUB6r2MK3wzBDRwmb0m0jY0jEZg0GTdmfRZVQltrQiOP59uF8jgr8T4SJ4/nOW1zJA/S3WuZMM1Sct3STxqmqaWtNC4NeCWwGTSjgC3kMUuTvgM2yDuLQJ2nmSZcLlfxdNFU6hgWFYWOBMGlS6i8wQXJPCQkOA59Ths0mzoCnCcu44V2jV+7eQ+zMmVzOEMLT25aTNGwuTLj7tEu+3WPQje0qeKmDKgmFpxF1UBiEIkhLF4eDvQbejPeJW6NpemFwGUSZwLWKioBeRrVONURa85UoEvY/HjF9GzK9LxkcDEwuFxx7S0ZzWqgcQodRKTqcpKqMTgnokjWTKFqQXEzMD9LrONUkrNm+aJy0oGqY3QhXOjkmCVtYiAIGhnYp8d6HinZLu2vUk4yaCRVEDyxu8Vev8fVdMSV2Yi7hvt8aucEArhvfYdPXz/Je5r7eMvJBN2RMO/W/WNYXO001kpSZSkXKbZWx/XmZdopXdLTDYOs5sb+EKWi8maUuPZkymKEZ03P6auKNigO2wIpOKa429BT7h7scnO9zyJPsQvNtEo5tTFGipgJVs7gvDzWWtILiejwpul+pDUZrxTLXo6I0EgktueRvRapPOqIQ5cQ2fjrBO8keHF8CPpawdzQpipOc001tU/xmUdWEtF2JC3CMDb5cUQrREDIgNcdKqMj3G77ITLg++jMX6zdkQMV1lM8m/DEmS3W80UshCeeftIwMhVaOlLZ0nYwkipEjObU56yrGRf0AXs+57PVST5wcIFplbLSX3CqP+aRwVXaoCjbB+iZhi9dfYL/fHg/VxYjpnUanUMDsnYEo+McvnVRTvllYl/7tg/zSz/1phgRhoh19I3EpxInPc7LY/kB7ztsnoQrb8uw/YCew/ScYHoui2zc2a0iv5Ke2iqcjd13bHxJhI0/o38pjrzmNwV//hN/EPirS1sHIHYyRRyXU21A1R2VWBUJcT2ahig+d306oK66iHohCdZQXk95dtTH7EdA/gfvH5I8ntO8quSe87uM13Iu76/wmYMTnOhNSDrJTSUC+2URa4YyyiHbScL6RxR7i6WuCBD360Yy47HmFEnSccMqH8tUXpOpqLq58HHqaLcdMLUp68UcFyTrZo5DMtSRI9R10La61VyergBxTedtwrxJKBeRKlLYW6qkyTRESNlCY5dcGBYu4JKoWJGkXSM1RDavymnK1mA6+Q7vBb5WJNcMqhKUdzXgBPmgpiwVohIUlzQujThsEQSUkiY1TLOULOlStRCjXm86Kr0Q0TMu67CgdxCU3/Ec5NoTjoM35Dy4cpN5uxbFzjolSSUCbVCMXYERDiMsmWzpyZqz+pAzGvYauNkMWE8XVEMTtUyEZ+qyYwLhUVryxux55sOU2t/DtcmQUGpUHcH0CIFYVOA8/nB8p7fwktnfOvEBfvM7P8xP7L2FX3zfazFTia8ETitILM7LTgRLUGQ11aOe+SxFyEBvUEXWLRGYzjOCE/QHVReZhGNZjxBEZJzpap/Cg/2mfe5d2eevn/v3APSk564lrsOReR15UVUbMLNIJeaNIKQh8oI6w6JNaKzGL+Kr6FdbxFRjJoLimqF3zdPmsLeR0Lyq5L9/5AMsfMKrRtepreaFm6ukJyO0Z95GoOe8TqgagzGOSZ2hDxVbv7bLM2X7/3S5L7mJDjnyP238Zz66f5YbVtPYDoUhIoH2kaT1pM0wHbuwJLAz7zEvU5Tw3CiGPDXeZPbEKmtPga4Ck2+ASZXyrFtnNStZtIZZmWKnhnS3U2U7kjxRkEzB7RpuHC43Cg1dCk+3Cu4RkQAAVxJJREFUL5RyMdsy0dvLjmB6vkiRVzI2PxEwC4/XUK9pVCOokhSzVrEyKNnpr7D+QU0zElSbEUrnS0XrFIWIDbrg495xaST9UaXA9uPo6zGI/0XaHTvQ9KClenbAp7MTxw/fdd13LRylS9ht+6SyZUXFI39FLthWHoVi6rNOWbA65iTcTifstz0eP9xmf1bw5s2LGOE5a/a4lK/zdLLBhBhpLU6m9K1HX2/iLH6WLZUP9HYzQvH2DP7Ec/ex+inB7GxH5NpIbGVQKp6utgPMK+VJ8gjfKpIW5yVVq5HSk2QO72VUluycp7WRcUaUElnLDm8Kp4YT/vU9v4ARy0/Jjk2AM/EPspWYMqDnsmNElxFiYzyXrq/B1KCnErtqETKQ7kXmHNl0GuE9QSgcX3TPU2yYKWNbUMiGV61e58rOCk+9sM3K2ox+2rA3K6irJKoxZrAz7iNbokDhsqkPO3iMBxat6brtCusDvhXMVMqUlL4xNB06YZREspyD/T7psxnP9Pp8dsVi9jQn3+9oe5Ld1wpCE0sWdW2YLjKKrKZtFbJUkZuhBjWNniHf9wgvyXbh2nJBLHgFqgnINjaEemnDvI78polyuGDZnxeIF3JGT0eY0eE9Cm9gcBEIYJ5M0JXBJT3WFQxfaDGHNTuv7zM/A3R4a0Fs1tLEiaTjKVYZS26W+PN8+lKRiXSeOTmQTBYZ59YOKOvkmDZMioANktIltF1qkImWQtYYIamCw+B4IL3GdbvCSC/IRMumntIGFR1we57DtuAFOyQRUeo2UfEkVnU8bYXr+EizNKqEvozMBU+zSFBNOCazJcR5Z+dErOd0MJMQxHFkOavSqOliFcFL2rbrMqqOIUYQa59egOIYFA3wrSc/iBHLr+/dbkHEE174gM0EZuHRi4hDDFIgTASJU6korjZ0qL7FO0Gz6lELge3B4mRsjPVWSzbSGZt6woVkhx07RAnPq85c59PPnGZRJfTTBqU8iECaR5xlCCJmAf20ExJbrimiA/3D5z7MP/jkF8VJJCdBecruYF3UCbN5xqBf0rqILzi1fcjhIKe63mPwhCHfDcy3FQePeug3hLnBaU8+qPFesKhStHY0Anw/Uiiqhk7KIjI2uVQsHZngcqgHMmogOXFMLN7Y6A+U6IZrdKBe7Ug/dMSMVuuR+q5yAmk7IpEGpt6gN3Q8NBYC1bcM8si327Yq1kgtx6gEb2LqLmzMEu7kmL1DNiaJN5J2EBCt4uLuGq6DpQDH6bgUvkvhHUNZsS5rQDH2gdN6wqFPO+iJZ+pjQ0kRyFXLKK24shjxRH2KE3p8XB7AgykD6W6NKLsZeCUR85dHE+nIlJD8gy/8Mf7c4beT7hy9sFG72jYa18bRNLw4BkyHUtPamGLJRuDzgE18JGI2DqHijHjwEX4iuvriUQ3VLXsX/E4mwacc36dq40y8akSkGQsyKrU23SY2geCJBf6+xacSdGC4OUMrx10r+6zpOYeux44dstsO2GkGzJoU02toa828MZ26pcfoKKHc1Jp8DjZ/GZCsdCm8BL6q/2kuP7DKTz3+WpTyx86+SNo49t05kmmV0rSaLGkp0oawDfN6wPR+z/a5fbaAySKjdBlirimtpLe+OB6BtC14ZER8tAEz62jclr0WnQnjmX7NDPd8D7dIKAtz7ER9kFG1VXnsRgM3sthI7gTnjjTjJSFqHxHrmvWaoG1EpKzLAiaxrOULaqdpa92xNcW9403AmziMIny3Je1LhAM9OsF9Fhj1Kg73+9DJitZek6vmuAt6FIE2QTEPmsJbHIIqKKpgeN/4QX7xmQdwV4s4gVA45CwKYQ3uP6DeMjgEqWxJlUXPFLp0NKsJWesQVQ1KHqVlDwghvjOE8CN3cj8vlX11UfHnNmrCYX58stF09U8bBa6CDpixQlWxERQRBhELFyWRY+plh5H/Ei8QedcFEJH9ySuBlJCI3zEKX+qaBNHdh4p1LmkjzZpsImiZjjZM+I5To6uJouPBEdVXBdNxTm9Y8dHnzvGYPsPW2oTtYsooqSidobIareNEj5JxoCPp1qmqDe3CMCgDtqdeHhGoELgQSAW8c/hJ3j24n+ksx1pFZiz9pKbQDVdnI268sIoatAx6FVp5TvUnbG7M6F2oUXgmNucjN85QLRL0riE5FJQnYK23iCJ0TcKicw5HfKym9ATZ8TV02FAhxK8C/3IZ74pWjkdPXcGfFHz0+XPMy5RhryLRltIaUm1Jk9hcslmGqgP5TsDmknrDE/oOOdboeceyJOI+yvY9kwuS9lzNRhHLhdM6JZQK2YjbROXiuyidwKtu3DW6rhe1f16UAxVCXASKfr5N21f4zHP4Sx/l+i98lhPf/50Y5Y7rmebIgXpNGxSJcCgCjhhaf7w6x7+68iaefWab4eOGT/3d7+GhP/AX6afrXXrueWEwZHT/gnU14zLrlNag54J0v8XcnBIyA1Iipos70nD+XNrRmrz2kVsogB/5sTH/6qem/MpPn+HNd13kIxcfvFVngShu5QVqIclvCpJxLIiXG5JyO6BqQTPyPPeu7+XVX/+/UGxtUm4p6nWBG7hI7dV1DYOOjrnedJwyB7/Hd/9ft/rmNSZXnyR/4D5kE3fq4jc+wI1f/CBn//ifRYZ4iHRl3ChDYaKCZLonyW8G0rFHNRqbD1mtIhVZkFtcNVs8sy6pNgLNlmWwPUPLmKkUaYMSgXGZYRtFcjWyYR2x3i/Djt6VRx7RuK4O+uM/vuDf/fQeb/2Hz/PzTzwUoywncUGSKctGMWe8llPNEg5nA5KbmrFcpz3ZYDKLsxJ9MePp738X9337X+T8Zy0vfFmf86+6DsSJpZtVH4jcmEflL2kDXt1qaC2Lze5oTdYfWGUtWfBw7wryl9/HL/3UFPNXvgOtHB7BtElJuvHnyYqnWpOoKpAeBFStaFYiJ+6RTLFs4BP/4Ht49df/L9jeJmkRG4ezJuVwUiBLhZ5HHl4RINsBl0UOUqG7ppJ7aWqgqrELhI9qf+G35QClM+SqPU7flfBIPFWIkSTAoc8B+MoTn+b50Q0+cu4M/F04fChCfNKD2LFVg4rT5oAVWTKuE8ZlFumnrEe0FjFbEHo5IV96DVTd3P2dP//vn/uPfL5+MP6lO+kB6L49Qi0EvZuOZiiOyW5llz44I9BEeIXXxLSio/TywqIwiAD3P3yZNyQN8PKBcx2Z7TgaRdbRhqmovChs1PqG7rR3IGvIr0sGlz3FtZK2r5md1tSrgt5Vz+yEQjrY+PgMdXUPEsP+W05yY01SlQlZ3qB8INGRM8BahS81q58NpBN3LPS3RFO7uzG4UIAmasHfne+QFQ1tq2hsHD1dz+asJCUPbN1Ebns+9tR5imuRcLhdUySjClJYrMVnPr/geebVBcW9B8fChLXT1KVBVA4zMeh5QNdx7SXxQBF+6am8sgdz3jH6DANZ8nFZcSo95G1nn+FDN84xaxIybUm1pWozfN9he5EI2WWxSWkmojsgY03XzOJ71fYELg3HB+uiMbSlQVdRx02XUdk2O/DoOuCMoF4RNANxR0HZnTjQv9W0sx/wswXY/vG8LUC4eoNf/fvv4fCzu2QrKW/+k69h/WtWAPjeb32er/vGjD/+32kUgU/++4u8+yf3+Zs/eTfv+5P/DoCb//vf5gaSE3/m6wgbQ/b+3E/yE39swP/1z2+y+UbB4hsf5eCnf4Qnrj0P3rFqTvKweieZKGC5Wt9/68aO+4HDsWNl9FubOLvPGq7+0x+mvnIZ2e+z8rVfQfHWVwNw5Z/8EIPXvp7eF7+J8YOC6Ufez/yHP8SJ7/nTXP/b/wiAx//D3wYh2PiWb0Gu9tn90R9n8I7PZ/JL/5nswfvZ+NpvYOdf/AQv/MCznKXh89+Y8Y//5hZnTr08GPoBfO7xeSBoRxA6jnS6CKG5+oFf4fBj78fNZ+jRCptv/32sFK9m+JlDrl78NS63T1JsnuPG9Y+T6j733f91DE7eTztM+NAT/4H8zN3s/fpPYv/dDYpH7mLju74Rt5ry1P/7XzN6/d0UX/6FFM8Zhs8teP/H/yFnX/XOY46OJdnf2tnxPzAee0Yjie/Ahm8onuX/d+0ervyjX6K5eAU9ymn/+Jt44CvO0jc1v/Knf5YLX3Ev7e/7Isb7fdTHfo2dH/oI3/x/fBk/9r++F4Br/9vfASG467t/H1eHfS794H9g/WveyM1/90F6dz3A2Td8I8/+/I8x27sE3jNYP8/dn/f70Wp1mesB8Ldme80PnCqv4Qc5I7VAEPi29V/n7M1P8YN/aZ/JZ2+SrWac+ba3oR5+C9WG5vrf+0es3v968ne8mXYAO89/kOkHPsD5b/tzPPuvfwiAz/7kD8K/he0/9fW0WwnP/+2fpf/2L2D67l8jv+9+Vr/r97H7j/8N9dOXwXr6Wxd46NzXU2yvMzn34huyd3Isf1irlMsX39dpKMdmgK8bPvSun+HRrz7Fn/zlr+Xtf+2Led/f+DDXn5kB8YBrUYx9JH2Q3YuTiZYf+TebAPyln3k9f+VD7+S7/mjFQ1vXafYXXNrL+CfvfZBX/4Uvwe8ZNu57I6/+A9/PG7/0+5A65TN7vwJKRUD98uzDg57kB//x4W/54nzh+Yo/dJU/8McE93zvX2X7W/8I+//6p2kv7URYUxclJIdxOgQVEMpjNkpO//XvAODk930Pd/3VH2D04OeBBzeZ4qYlp//697H+h/4AwsLokTfyxT/57Vz88AXyTPBnv2/n9/r+/8smQA1b6FnMsMENXGw++lifynrrnP0f/gx3/+W/xto7vpxr//5fcbgy5eYXrNJc2GRcXadI13jrl/xlTr/mK/jk4/+Kqw+3XPwaQ3lSsHP9Q1z4C1/JW3/yu0iSwP7/+XPUtaH3ttex9yufptrP2Px4y3R6lboas7F6/x2x7LwE9uF+T/BP/8kCIwSqC/3W6wlX/j8/SvGWRzn3w3+RM3/hm/jU330vV546Qv0LpIDzo31ed9clEuVoveLx8TZ3/W9/FIB7/v6f4NGf+l62v+QBnJe0B3MWu5Zz3//9nP6SbyYdO7bPvYG3vP3/xRvf8ReR0vDcYz/zuyYR/hzah4ue4F/80ymKQOUTPJLrs4y//x2f5Lv/0ITvfPc38vD3fxXP/IN3Y69dw663+CwQTCxjyTaSdgsvMHO4+1v+DADn/9S7OPd3/zr5m15LWSfYwxkcVNz15/8yq3/m68iymt7bX8/5H/oezv/w99BuaR6b/CyXv9Lj3v7iseV3lNekus/Vi7+Bnc06EgRP9YnH6Z3s8wW//wSpCaw+sMHZLznPx3/h5vFMvA2KeTBI4RGdLvah63Gx3QDgWrPCM4tNnllsdlclOP/HvpBfrx/martJUQ45XTzM6mVPf99x18kvZH9x6U4u/SWzUycU//D/GLNzWyr/H39pzoUzmr/6bRN0q8i3z9B75DUsPvJYN8cb1RKFF5ipQM4UoZU0+xluJ0pt6nHEqkV5WkAIVr7+yxBao2SCSXsMH3yUM6slg77k+/6nNd73/pcPIkEQuPGDP8YLf+qv8Nx3/DVe+O7/lZ2f/WkABs9XbJx8lDQZYUrF6t2vI1nbYLb3PPNTguk5her3EX/4HVz7kgz3Ta9Dn9rgYPoJ1MkFUgWGX/QaVu5dozU5p/77tzP9jU8TvGf45vupr+6TvP+Q/Nqc6zc/zvbGq0kqsewIlO0Tiv//P5tzfdfhOs/1nnfXnDhjODX6AnyVIk6eZ/jWB7n6nqfZKfu4IJB41tM5UgT6psYHwcEip7FxfxVJy3Z/FvkWGh3flS//SpJ5Qm9sGMwzznIvvRfmFHPJ2fvfwXj32eOx42Xaxrbix/75nOu7AiUcLgg+8p5Dtk4nfO239PnTJ9/HN3zBAdtvvwf3sY+jMkcwgWrd065Z3N0VLgt4FWj7HV0fnXxzz+JbiWsUCMHqO74Cuy4ZrDvqapPeGx7hzKmSfEWx+k1vp3nmGc5f2GGt9+JH1u5o+ZTQDM+/ivF7fpns7rU4zz3ZZefTO/yNz/95IKopOhdQX3U3u3ZAGxQzn7Ln+ijhaRnjOsnZnogF3ruzm9xMRjw13WKn6qNHBc9VJ3iughcubbD+VM1Tn/gZDnY+i6vLGJH5mrBYdJWk5VmeSb76y1L+5j884MH74ujqpcuWD3ys4tGHbzCrvw+AEDy9N72OcMQk0ylqqkVUEZSNIL+sbxHK2q7TnkbSXDXoIRKDKKNjlQctV3/1Z/jpf/Zx/s00svdMZyGuvVp+txngtX/taxh+3l0sWsPeuMfhz3ya+pc+gLmyz2JymUtXf41mug+Abxr8Yh7XR4LujzC1oDWBdhBQa6u4nRn2Zo63EjFaO8bO6q0RwXrCbIbayine8CjV+z9EMG/hxu4nec29f/AOQ4WXxvJM8OXvSPmhH5px/30GgeD6Vcdzn1igH/uLxyqReI/+soeonT7GCq+Ykr6q2TcVqbKcGk6wXvI4cLI3IVOKfVdga40a9MjGGb1rgXzX4euKx5/7WfZ2n6B9sgYhcL7B4491mZZlvQwe+NKcH//hA87dGzHlz76geOKxkrc9cqVDfl2lsYKzX3E/Ju+Q/1kEQruJiSOYIs6zHzXF7NCSpQ6/lxJqher3kKnBGs98nCPTGfMf/w986KPP0Ezi/vFlw0Av7mj/3BmMSUvW3vGVPPt//h2yjbdAgLUzKep1W/zgj51mKCv2XJ9PLM6y3/R4vnKELGNvnvB8s4kUnhs3xx2E0VPIeOF3mV1MusF+0+MZpwhBcv1wQFtrVh4z7H/w56kmOzz8ZX+Onu/jPvEZfvP5f05Q6mWhyvlX/sIab3jnC3zPd8Wa0plTmre/Neenf3ydN73/O9G/OYwNgH7A4RF5gtMV7ZrF9iRNOzluNB1FBM1KIKx5QmERN138dyeONV32f/1XqQ9u8hP/fouvO5vw8U/VvP7LX3g5SJ8fmxKeVFl8EPTyhsPu5S7tlKc++VPc/87vQr7mLgSSZ370byOO0jEHdjZGloH+fpyhv3l5zGjwCMVVBR7s3hhrFUY5wt4hQkvUsGB+mLF6z5vZ+dCPsX9yGykNq9kpGiXviGn8pbLvfdeAd/6+Xf7En5Bct33+7S9/JSujD/Kms9/Ks39gJTITbVmK9QWLtoE0oS4DCk+mW/ThAYVquHcQZcOho71TjrrV0MayUHEtkO969MLx3Au/xrza5c3FV5NvnGJi9/iNyz/K4IlDkkNY5jCSFoI/9ufX+GNfe4Vv/o41tPD0t3s8+qacf/JjG2yolhsuQRG46QT/cucFXugptFgwODHFOcmsOQATsJu3RnVNv8HVkWxH1HFzuTTQPzthmNXc+In/TH1lj3f+yNexsa15/LGG3/zjPx7Hz++AfFuEF7HjOsjBdwI/DjwPnAdWgRJ4CngYuAIc4Wly4utaAaeBfvd9BrgPaIHPdt/7KPActwYyB8BdwCduu4Qz3c98mhhLXABWgI90//4a4E/9XuLYXlmT/2cTQrju2qa3fXkd2CCu10PAp4G6+/qF7uu7t/39BWCHeF8XiPfvgAeAFHiSuP8vEKt5z932WY8Q1/uAW4yx50MIm5+zm3yR9jJ/V84Tn8PvKQ70Zb4m8GL3Twjhv/oLuAh82W1/P9vdyK92f38A+Dniy74H/Arw2u7fNoBfJG6kXwf+CvBrt/2s7yK+4IfAtwBfDFz+bZ9/CvhVYEbcNP8jccPo7t9/FfjOF3Mvn6tfr6zJna1P97VvP7pP4K8D+0SH+XeA9x5db/d9vw78Q2Dc3d87b/s5vwr8APBB4ib5WWDjt33W93frcfey1uCVd+W//TV5URHoK/aK/V6aEOLbiS/vF/4X/v1X+a9ETEKIbwP+xH/pZ7xir9jnwl4GpfVX7BX73JoQogD+FPBPln0tr9h/2/aKA33F/psyIcRXENO+G8C/WvLlvGL/jdsrKfwr9oq9Yq/Y79JeiUBfsVfsFXvFfpf2igN9xV6xV+wV+13aHaHQE5GFXA1wwwyXgu5ka30i4/TIwoF1x8SxqMgg7VOFrD0iBGha0AqfaHwiOgoqj3AehOh+1i26/aDAJSBTh29VJFPtJg/0TOANVNcv74Yl4PsAEtMLWbrSXWwc0aS1BBdHO4XqiHy1xmtJ0JGVKKiOSuxo6OH2Soq49XcR4p9FiLyO0gaEPdIniJ8XBLhckWxUlG2CGksWe8tbE4CNNRUGp3KuzlZIDkDWkaMzGIXN5fH9B0UkWFadEmMnBKeFP2brd0F28r5RWOyIcSg4caz1I9uOrq20dMzMRH2GyC0avKcKc5pQLW1MK9FFyM0o/uWIx+92666V0D1fjpiBRORQhVt7S3S8qh5ECITu68KHW79bd4tZ6Hf6PKBsxzSuXNqarK3JoE6sUl4vUKUF50ApXKYjTZ24/T2h2whway43bpajZTmuSAZxSyDOd2O8HWGytKBnFlobOYWFoNowPLR+A9kt0kc/0byo/XNHDjRXA97a/zpmX/wg01OaE79xSLVdUK1rCLD62D7sHCCyFLyHNCGkhutftMHGJ0uCFCSX4+hedfcGO69NqTYDoyejhni+21KvaOqhpH/NIqynGWl2XidJ9wTVRiA9jDyas7OQ3xBkB54P/Yvvff5O7uNzaVm6wpse/ZPovRns7GMfOg8+ID/6BDLPEFlGWF+h2epRrxqqFRlps1YCtte97K04ZsMO8pamtYBjQmZdCswU0nGguGkx0zh1oeZxjsT2E154Z85XfvWH+Nn3voGL3728NQE4e1bxd//9Sf70Y3+YEz+YYK6PCf2c/VePmNwtsL2Ayzyh55CpIy8a+lnNKK0YpSWZalEikEhL4zVzmzCuc0praJyibnX8VRr81KDminRfsPZZx+DxfcRkHp2NtYS2JZQV7y9/bplLQq5HvPXct8VdLuUtZ+g9oqyjo29aCB7R7+H7BcFEspx6u8DmMgYhgKoC9YpCtlEyJR17kmnbcc4eOWLQh4voKADhPKFzGNFJC37z+R9dyloc2eaZBPttf4k3/PC1GFwJQXN+g4MHc5pR5O1sBwHb94TMI1KHNJHBX4hbjlPrTg6nIzqyrSI4QSg1oo7jz6qMss66hLXHW4qndiMdZgjYk6t82Y/8Ot+z+hRKSNTJp1/U/rlDTSQBiUHWkewWwPaixISqw60Xom0JbYvQCqxk9cmGIMD2NHJ7hHr6CmqxwvB5zfSewOyMxvbhws95VB3Y/MAe9ckBtlDsP6TwJnDyN2b4VCFaT7OaIKzGZVCtLbkKIeKLKSYzfF3jUoUIAfu2R0h3FrCoadcK2p6m6UmakaBeDbTDQEh9fOG1jCzZIWq8xOjsKMrsdJVEHGnUFTQDiaolwgeCUYjGouYtp39V8Z+vvJH1OqKUl2kSwRuShuZTI8yNGwjnafsJ1ZqgHfioa5N6ZOLI8gbT6V7VTqOFx3RSLqm0qC4i9UFglKN2OgqyBYFLJG0hcRIqI5lUivx6gZlGQojQtoSqRiSGsFhyw9RHPlukJIgQgwwpo8KsEIS6RuQ5fm2AmJaETLM4XSCbgJm2yFbhjURVDlsozMwzPaMwc/BJjEbrdUO208RIXEt8P0OULcI5guxmWTsnLJzHp8vV0pq4nPMfDdHJawVSUq8nUepYd3y4ho5ENRw7T6WiCkEIUZxRAEIE6jJBao9JLE1pwPgohdNG4mUQhBZmZzTJeIia1cjJAv3CLv/sX38Ff/J//DT5HXDr3rEDFVqTHDZIZ3C5oRpJpAMz8zGF1Sq+tGe2efLbRhRXJSfev6AdRKKNIAX1ay7gjUDPPSffGxXSggBzfYqaZyzOj0jGDTZXFFcDe1/QcvBgj7VPzwhKMDmryQ4C5oZjvr18MbVjApCtDdqhIgjB/qsUvasJo6dL2qGmGUiaoaAZgh0EQuGifIWP5QqvxTHZMjIKqSFjFBG8iAQsZfdSGUEz1JipizPgDQjnSPYWbN+YUZ3sL20tjkwgSIXGzEWMtoLFpwqXAUHgEwcSpIppe2osvaQ5lvJtg8R0w+suCFJpGZiaxutj+WslAkliCQGsDHipqNYEzSjBJIYwnYMPBNtFYEvmTQipJhTZcbQp6hasjZGn84g0PY4M5w9uEqSg7UlkCvm1OYuV+FyrkwltIehft5g56DqgKk/b1wgbJVRcz+Ayhao9bpTgjSSZtKhxRUgVonU06wXi2nIJAvZnfV7zqcNuHRRhkNL2onprUEe6RyEeOCGWbYKkK/d4mkajlUdJjzQB0YvCcbbVCBUIFoQVx/pHQYAIMRptVhKSAHaUow9Khs95vu/62/jBk+9/0dd/529UlqIPF8g2xfaTqPtdxlqoKGtQCpEmvPDOVdILY0o3xKWKZL/Cpxp9sMCdGuJyiZ45VCPJ9huSZ3cgBNozI+oVRTPMqUeC9U+XiJCjy0AzSnCZYutDE4JR1Gspmx958dx9L6lpjT2xQnajJijBik7J9iy2p2l76pbzzEPUOFIBIUNkw9E+ynU4EUXYuq+JLgoNVuJCJz2QCWwF0kpkG5BO4kiQ1oONPzfdfXnQ2nm6F3Y8BWNoBypG1ybEaCKzx6qjrZM4L9HCUzlNEfn+8EHGX106n0iLFAlKBIx2+FZEuWgVZWN8AtW6okgN7NbHzhO4lSEtydqeZHFhRPH0foxE25bQEYKLLvpCRcb1Zqhoc4EpA20hGD8wpNyQNEOiMFwG9ZpBWsh2oR5qkmkgO7AIG1DjCt0lZyo1tIMYVdn1HFk77DBFzdv/0qX+nlm675FyHu/dOexqQZvfkhvxXTAoQlSkVfoo8ozf08vr4zKv86CVRwho6pjGIwPhSOvdxXqpN/GQaYaKdD8gyxa0ZPTknP/4mVfzP2+950Vf/52n8FIiJnPUwQSlFBuztXiato6wKGHYZ/bQBv4tY7TyLIaOnc9LWXsiPk3he6TP75MUKSE1SBtQk6jxjlJkz+xgDgdxQb1H1I71Tzrq9Yxk3CB2LOLqLiIx4NeptpevhR6UIIz61Ksp2W5FtZpRXG9AwmI7pRkKqnWBLUKMLKErcAvEkSKj8cdyx0LG7wmuk1xQnmAELo/1LpVC6wVNT3P4gIZzJcknB2w+1pJfnt5qOCzZjgryaA1K0uZHsrQBkXiUcRjjMMqRaIcQURTOBsXCgjSe1qak0iEJ1F6jpcdIh5OSximU9GjtcN0hEyTUI4kbZCgpCM4h0xTSFOrlRltBweS8Jjnoo8clHByCSaLzVOq4gaT2pvSKhEtfmdGOAkF70rWSPG1ZTZvj+z6cFVQHGeWeJtuNDVXQmFSS1xZ5OI+qtVmKnJgY6XZ6YkEKgr69i7kcEzY+k2AtwhjagYly2AF80kWdKpa2ULGbevTOaOUxylGYFuslrVPHCrW1jjVyaxWtCoRSQS3hNkG9IEBWlqAEYl6h5nDmpzb44de8Ffh3L+r679yBeh9P9abFLxaIvX1EliJWRrgzm0zv7rP/KsVdawe8cLgSGdg9HNxvWJwIJGNDcS1HV4EgIZ14ZOvxd21jLu0SxlNUawlNG+tWVYU0hjRsMrm3z8qHbyCyFLcxQviAbJc/CCBqR70d06vF6ZzFpiI7iM6iWpO0gxh5uizyex7VNkOnfySTqGFurYpdaOmpa4NvVawPdNLAPu+4MZt4ktpCcOb1V/juC7/EXy6+nv16le15jj6slrcYt5kSElUTN26RxTLFURNZeZSK95poR6ocSZe+S2In/ihdN6bqnKcjCZbWRwcij7r0TmIbddylbYaCaiunf6UHZRU70dbGLvcyLXdM7gbZFGx83KJGw9gph1vt4y5IefrbFa++9zk20xk9XZPKGEmv6gWqE26svOFqPWKn6vOJF86gnsvQC4FZROpJlCL0C8LVGwilopNKU9AavbmKG2aEJQntHZv3UDfxOWnd9VSi4ix0pSwdwHh0ZsmyliJpSZQj1zGCNsqR68B+WWC690J2ss5HtVKrPVYaKOPhQcfJ26znpJcOwGjEwYTBR6/ygT/7Bl4aB0rXPfQhwg2ObHOd8q419h5KKLcDg0d22chmLHoJ5x854PDenMYp2jJlsVuwuPdIgBnMtYQTH0xoepIhG+idaWQ5SQxhMkXkOfbUGhe/rk9yKMhvruFSSe+Jm9jtEX75YmH4XHPpnQnJfRPOrh7SF4EnP3ye/guxZmlmUf1PBIFLBPWqoB2FSAydB+oAOo0c5d6BkAJXK2hkJ/FLTEVSh+1FzWthBWYe2Pv507xr64+y8sge9/z+J3hq9gBrjy97RaDF0wZH9cY54Wez26A5gI913RDiyy9EINMtmbI0XlE5TV86GqfQ0jO16bHq60DXbOdT9usCLT11iA0lqQOujpvC9gLzk4res33E4ZjQ2ggnW/LUnQDye8fsrRfU6yNO/zKo6we3fUNcoGvvPMna1h4n8zG5ailkrA2v6jmFbEiExQWJEZYNM2U3HQDwseo8zc2EdCLwRsEoRy5axOkTcDDp1sDjD8dI79DVkGa4ZAcaYqMPAClRtUd4GdEnXkSCbRUQJjaGBLHcI0RAOo2S/hi61U9qXJCUrWFapTgn0cojpSegbkG5ZGxMOSNuKbUKQWgaKEvM4y++BHZnDjRAUDI6t7pGCIE8dYLJqzc5vFuxOONhvea1m1fZSGdsJlEXaZLnSOGZthlPJFtMZjl53rDeW9CelOyWJxg8H6jX07gYPqCmFSRrhGs3ketDhs9CM4TFtmH1Izv4YcH0QsH8hISfv6O7+JybLTR21TIwls9ePEnSa9BlJEdOxrGrXq9FXFo6DvSuBewh2FzQDgS1NNghiI4dPLQaOdWoKmJGkV0USjx3XBJwuUA1kO0FkjHM5xt8cGONzRIWJ5av0NkG+FjjuffEDn5lHVG2OHPbNwjwLqZdSgZqp3FBUlt9HF3WTpOqGHmVNv7nicqQItB6xd60R3OlFzXBJfiBP8bPVmuC6tSA7GZGKKu4OZZcA9XSc2o4oSxKrqYrXBYjzv/EpMNGa2hbygdPcPCGlreu7TDUVZQKl45UWDLRsq5mZLKh8gkOgUeijGc9jWTeQYFsAy5XyNYh6iZ2t0d9OJx0eavAz+ZIrUmny2aZ7jrw3QEnbNwvBI7VCYQThIWmdIJKBYKVqNSRZg2pseRdRKqlZ1xl7FwfIRYKtZD4RUSxpD4q4UrbNad0hzHPJSQmKv1qDc4Ryhefwd15E0nGDyRN4a7T3HzdCouTgvJkZE3Pi4b7ezeYuoypz0ikJZWWNkhy1fLg+k0uJasM04p7BztsJVN+40srnvrAeTY+IUkOJD5RBC3RuzPIM+TNA/L9AfWKZnKXxCzWAdh7tYjduSWbT2KkWH1onc1LAWk1EHAp2EJQbUA78AgXHWZ6GLGdLo01O2nBtZLQ9TtEKUkOJWYahxVU07G05xGu0vbicIFLIg5WTQLpBBabClscpfjLtVwITqmah0fXeMxsIoPGpTF1krUkfSIjKKjygulWS7UxJ9UO5wVaRZlrf1TPsjpClrzk0OZMZznmqZx0D/qzQLXRyUK3kuRQUK/HRkG9ZsjzPG6Io4GGJVqqLLlu2S4mVFYzM3nXOFKgJM35kzz3hwQP33uFtWTBxGasmzmpsAxURSZbHIKeaMhUy9yntEJz2a7x2O4p8mcT+lc8Zm6RtYuZolaIRUVIk+M+g0iSLtqqEM2SG0m3b18b65FBiWN1hvx6RPnoBYBGtgFVQ9tLWJzKaO+ZE4Kg6ZqRk3mGnGqyG5LBCx5deqQNuERQrUYYYZCQ7UdHbbOYwYaqRkhJ0BohXnxWe4c10O6es4TFq7YY322Ynw60q5Z0rWTw8332Pq/PE6dPcHG6xs60z/wgR+8ahAeXxiaK3Kh57X1X+MLhk+zbPl+4/gynv2TMu0cPc+7/SkgO2zi5IgSMBoQQ6D95iKxHHNxvuPEGxYkPOpp1x+qp5XbhgxCoylM8m+LSuEamDLR5fFAuAVVBui/Ri4CqAyIE2p7ABtHBNIgdwiM4VCuOJzAQ0dHWq4J6zQOB5ECSTLt/S+LntD1BeSKgSsHiy2bwE0tbEiDCmM7oPq/vXeSj2euQtcUnkN8IjJ4J3SEgKBrgWUMzXOXglMcNHelKhc0aEu2YznqkxlK1mulBQXI1IT+I0ffsXCCcqJAq4L3AzwzCatI9QTuEck0wyhJEniG0xqt0qWtipONUMeawyalbTTsM+GGB3J8SEsNz35Bx/12XKXSDR9BXNX1Vk8k2Sk2Ill4ng5OJlsPQY8cOeO/OfezuDRgdxs+JvQEP3uNGOWG1QI8rxCCm+qHcv+VElx5/dMTE3QRSuaHjZJmFwfMx1RYukI4DydRjs+hgbQZqISgPMqY+Clxq7WhmCV3SQrkuoduD7SBE7DEhwuesoLjhcUZQneyTj2eEqgIhCc1LFYGGWPuc37/J4T2aajPQnmhIew152jJ8vkH4hPeu3EeoFP2nDGeeceTXFgjncYXB9hTT0zk/N3mUw9fkvGF0kfPpLh7B9vl9msEG+fVu7C8zsUvXWsRkTvGsx8wG7D2SQYDBU5rpML+jW/hcW7MGB/cnyBaEh3zP0fRl7CS6eNKlY4+ZWkQAVTlcpmj7ClAEKWK3MY01UlzErUkbHa/q6nqqAj2XtENPteWRVyXpQaAZCJqhICjoXQmYuefmA8tP4Y/sL33oG7h/d04wCq/BpYK9C9CuOkh8jEjHmt5lweCiBCTTuxSHm4b+sMQ5iQ+G+TRD7RtkLbA9KLcDPveEucF74qZYSHwSsLnAq0C9Kgh5ghArtOt9wmeWG4ImwrKZTKmdZmsw45mtgvJ0n2JeMb9/neH9B+S6ZTVZsGbmjPQC1Xk4I1z8hWMeElpf8NnqJB8+PMcLeyvImwlmFpuqQQhcplGVRc7ipJqYLQjDHmJ/jMiziI+FpSMTCHGgIEgJvRyv4miqmkM7EDSDCDmanwFCN7RTxoESMwO/o6ilwaxVWKuiblgV94/LYj28GXXTW6UgmICsY8ZSrUnMLFCvarL5IjYbRTd+/SLtzoH0dYuwgWYIzboj6zf08xqtHNc+P2X4nCd9OsPlsflhM8HiVIZLBOVGBMiKAOkNzW88eQ9XTo9408bzFLJhssg4cbNFzmt8bhCLOqYYTUuwDoY91KJhcNlQr8QOrztYblQhVGyO2ByyvZhGH41imjKQ71mSgxqfKMy1Q/ywAG9ohhrZxhluYY86jh4RJMKBnkMyCXG+2wby3Xii2kLS9jmeJVd1YHApRrTSxs9VN14+DjQ4geunHM3z2x7RaZaS7FJcg3YQ77UZRsRGuiupSViogDaWtpGEeawJQ3dQ7Qh6VwXFTUfbVxzeEx20TyN2MOjYoHODDJEZphdy/JPLXQspAn1VsZ1OKJ3huWSdatWQ9zLanmQ8Lih7cxqvmbmUQjYgLYVsyGSLEp5FSHm23mLscj60f55nd9axl3qkexKvY6rqslhPlK0jFCZOrPkcn2nk6jDWGqsGZgsol9yEPUL1NQ1uc4BP4vNthnF0GxGj0OQwlglD5ikuGlwSRzLNRNCMVERzGE/jIhLhSJzRTATZjohpfCrwSRzndGnXSEqhCRIx7ON3Y2R+J3bnNVCjMQsLGERuydOGRFtapyhPWfKbitEzHvet+5SN4ebFAemBItsN2ALm97T0NhbU13uoxHF1f8QvzF/FPWu7VIs4MQExbBezxXGHTvR7+EQTlMQbQTLzJDPP/NRyJ5HEXCIttA+UFO/LMPNAtXoLCBykwPYMk/Mpm1f2kXsT3Nl1Du+L112tBVzPo4YtwYOvFWEuCRoQkEwc6V6FaD3ZjqFZTaiHcaqpw5rju25iO4B6Bcxs+TXQ2y0oiU8krtsc6YFg4xMWMynRNyeEfk7QksXpgsWmik0DJSlXFFne4ATYVmCm8eWPdT5P/zM3aU6vkl2Zku0UCB/YebRgcTKWRTwwP5XijWB2qlvTpS4EKAKFahiYKgLDW5DjOf1LCbOP93iyOcGT4gQ6s9y9vctr1y5zV7qDC4LKG/Zcn8obnpptcW0ypD7IyCbdnukCFtVIimuRe8LnmuTKmMU9a6QHNcxq3GqBrhpEmiy9sRa6rBYfqDYSvBZdcwfMXJAcBqQFrwMrT4NqBfUgsNgWNKOYoQkfxzmLtGESEX4szlvWP6zo3XD0no1lPjdIqTbjYWWzDpvdldqaCxuo6zePI+IXa3ccgfp+hpo06DKnKjV2JDmc5ywOcvrPaTY/Mub654/4e6/6t3y6Ps3PrryGzz57ktUnFCfee0B9YsDldwxJ7p2TJJZ+VhOC4OLhGlIFJuc1qh4gG0eyp2G+QKyvxui3bGg3RtSDWAzuX3Fsf8jzzB3dxOfWVB0jbb+bYgvB6JmGepTgugdUrUmEM+gqcPimU6jaY3OJV1CeiuOMwXjSrMF7iTOO1gtmQ4GwmnLLsPFYIBk3qMqiSsVg0lKvGtoivgjSBnQF/Wselwjscqsav8WECkzuylBNwCcxsl57wlJ86irNPVuEIkVe36O9+wQuidCsaiNuIpk4zqwccljl3BRFjCo6KMrstEK4TepVRV+CMxJdOryJo7I+8aiFpB5KskOPbLuZ6iWaJzrBg7bgRjkkOIEuPVQ1dmBQNah9w/onwRnDU687zaWtVe7a2ON1qy9wMjlk5jKU8NggObw6RE9jc0zayEbl9ZFTiIeQ8AG31qO4NCEIQbvZj9DiQR6HX/aWPQod8E2LzNJY+sqOkAQxK8l3PaqOv5LdBaJsmHzlNsWNwMFDtxqxbauZA8iIlZa9yB2w2FTIZkC5oQlKYBae9MBiT8a+TFvEjGVyLmPtQ4rQNIQ7wAvf8ZksWodw8QNkJZnudHPXbaz5XfnSEd/0R97LpppzX3Kdbzjh+akguXrvWYJao1oRqAemVNd6tAHaE4p7t3YZmorZKOWTbzqDLVLWPtuShIDoFcfsMaKq0QvL8FJg7+EMb0Sc+FmiCQ/FjsM9pRk915KMGyDpKOZiHcZ38CTZSnQl8TrqvhNAlgLvJIvd4jbyEEHIHItTnmQsI9RiDIcP9mn6gtUnG4SNcBUyQb0SNc8Xm5LDt1WEcQL/bKnLAsBz7YxgJeWmIJnEYQLhBG1fUt1/gnpVkyqJHOWUWwmzUwpVB+b3tMiZimN7ItLchdxRnQRZCZrVmJbtP2RIJoHJuQzXZV6z8x4/aiOGNgjavohZTReZLNMckr22x7VqxPX5gNAovBGEOpLt9L7mOvf1x3x48wLZ0ylqLmmu9Hj8IOPp4QZvOPsCG+mMoa64q7fHzXsGXHpyGzOO5YtqVaKaeMIsTmWkBxbhAmpSERKN6yX4VJHsLuI0Uipv0d0tzQRCRo6NZhCbQ8hY848IlYA3goP7U4qb8QRsBlBugR14ZBX9TlNpnJWIJtbBwzhh9w0eM5HMTyYE0zVzD+QxI9pRjfSoZCAGffzO3h1d/Z03kYgF6fRwjdk9HpE4QqVQpaRZCZz/ghf471Y+yMJrMtlywox5YHiTpy+coB1p2u2GC6MpmyeuIUVgr+rhg+ChwTUqbygeaPgAdyNtQn5lhNw5jB+t4pywrC16Z8ooW2f/VYbeteXuCp8Ipmc1ZhbofeYmftRD2lvUdDYLBBNinVMG6izymQYdIlBYdTVQGcHDsondeI/C9Ty2FRzcqxmf72OLGGnsPZLGbr6PYOBjE7C2Omd/Z7l14SP7bLseAfMSvIqjefVG4DBI6mGC7Qmm51Sk9Eyg7QeaDQdW4PuORHt2F70IbSosFvC9gFsoXCZRlaBapwNGh4jtyx0q8XGkT8Q1XpyMDnzZMCYfBDfqITfKAQfTAtpYeglnt3n+axX/y/n30wbF6kMLfkm+iiRrsbMUGom9mfP++i4ePHed+4c32TAz3rgRGdeuzE/SvyRIJhHhYVNBMXW4RJKMG3wvxaUK29MkBzV2mKEq+1+52t8bE4lBmBSxOuq4HmKm4pJYmgpCHTeExndJfBpwacAOXMdQFhsOQcT15Sj77oKQti+O+US9icgP4cH2488RViDbGMm689vI8QR5chuefXHXf+cR6KIiLCrWPlOy9/qEldU543FBWCjsPRXvOv+fgFgwJ4ARls/rP8/kNSkfu36GJAgqqxmZijPZAcWoRhF4KLvCB+b38Kr+dT5anKFeSyhP9uhNFoTUHPMiynE8PZNJy4n3d7RdS7SjUVKvY1rks8iNGrpRsWDi+GbIfSRE6IhCUJFtSewlCCfwyiMaiaxFx0TjYzoycgQZ0zSXRyypnsd6oKqJJMttwMwh37WEH16hb93S6ewA3pwe0FspET6JzkuAzx3lGU91Ik5T+dwjCovsonSajlRFckyerGQgL2oq6fFekg0jzOSIAu9oSuno96oxeHtr8MD2PO0gZgvLtDYo9uuC1ilWBwtujFMWm5KrX9Hn297wayg8HhGp/G6kOJciT1f01ubMxjnSeLS8NcYJ8NDqdS6fWcU8ntH2YHDFE1bVMZ7SFhqfSHwiInuXD6hFg6hdZGVyyw1A7MAgZEFzbuO48eOTgE+7LnpHdRFUPCB94QlJDNyYGsTRoJ6MUDZCzOCE6ghHVhvsKE69Ud9WruiGU9RcIlxswJYncwY3t3Br/ZfIgQbi7K53mKsHDJ48zYEfIXoWfXLBV933GS6YQxShYxCXzH1KT9Z82epn+KKVJ2mDopA1W3pKExQLn8ZIVU14Q+9Z3vXRb6adJQgVcLmk3R5hLu8R1gb43EBm0DfHmIs3CXkaQf1LNGEDG4+V2J5mds8IVXuk66Yc0iPnGUmDpYzpKCLEeuc4gSTASk2vaCIN19UCPRe4lYDqtQQvsCYgFqqLtHykc/Nx1E25+Fx06dGlQx/WTO9dPp0dwKoq+OZ7PsY/v/mF9J7Tccos8eg0Oj5tHCv9BdZ1DbVWYxNFU2mU9rGeH6BubnVGtXb0s5pe0pAqi/OSxseRz7I1cZJJHfFeCurV2JEPa03E2y7Raqe5MesTgqBuNahA86Vjvvrc0zwz3+SgLbg73+FEOmbj4R1uXFyj12t4zdY1qvUYdKyYBVKEDhsa1zHNGmZnc8w0NpHMwhOkwKUC2Ubnme61qEWDun6A31zBFwZ1uFjugtAFIGfXKLfjIStdLNf5wiHXLU6FSGF35ByVRxuH95LQlQ1DAt5KdGJpU4+cKehY/PWKReuOuziXBB/HQH0QuErja4n2XVSaSRYPbqPvICj7XQHpAfyNHVae2abaVNggOHHigC8ffQoXBIug2fMFc5+yY4coPIWs2dQThrJiICsycWuW3iFoOw2PR05e49Ofvp+1xz3F1TLuINmxpVQtvkgJiYE0bioxXf5LIJzHZYJ6JI9RBEcQiZB6VOZI0haj4z1XtcEfpCQH8XubVDNfxEchO+Lk7IqhOhforZT4rKXtdTWeAD5omKvjSFc6YpPGSIRzS68L327vWv8oP9p7M21fIVuBA5R2KOUZFhWFaTFp1RGEJCyEoV4Y2kqjU0frFNZKtPbYJjpWAC1iNFboeK+zNpYtGqtuRSIe2l7AZz5uoiXXQOvaMP7sGm69xWQ2RttA6Qw+CHbrPrXXDHXF6zYvc7k3Yz2ds5HM2EomsYMva6pgWLiUA5sxcyl1bdAm1pcRcfzX90QEnQtIxw6XSggGd/c2elzi8xQ7WMFfWy6MySvB/K4RzojjDEEEQEeZFyk9Hhl5Y5WnyBpcEMzGeUShWEEwnt6gIk9admuNsBoZAnY1Eon0sobGqk4iJgYydWVwHYpFNhH141JBua7Id1/CJlK86254/zO7rBdbHDyouPC6PU6oCYugmYeEQ9fjuh1xsx2yoWdkckZP1hQypuySQCI8jjhys+NzrrRrkXV8BnoRV1PtzyJby2SGWBkiMhObSocTqGu8W/Ysb7Sj0cxmGFPryDkYKbikjJR1WjmkiOWNQ5mRTKI8STMxOBPrm+lhJI9tBwJ5qFFrnn7WQgGzKqUqk0hr2P0SIb4Asg3YXKIHWdSXeplYX2aESYIdhIjj7Gb6UxOZ5qUIuCBjVKUtO/uDWNaQELbigTMoamZlSrASu9DcmK/iTx2ympV4JY5HPo+ozJpGE2oZN4YX2I6oRSy57KdKQXFVMss14UaCTAKLg5z5iYSRKdmp+kzaFcp0zoopWU/nbKVTNsyUkSrJREMVEmY2i538esil6Squ1OQTgapj/dN379LO21tUbtn4uYxk5mMg4gJ2mCFajxDilrTQksylMD+p0GWI5agaRCagicGINIEsi1DGRFsS7Sib35p1BhPIk5at3ox5lVAXKXohEK1ECHBekCct+5MCpQJCeJyT0MY6umpi198ZqLcl9WoCv/Dirv8OHWgXgkqBKHLEbEFxo2V+MmXFlDzVbCOFJxPxhnfbAZfKNarUcMocRFb1jqqsRZLgaYNkz+dctyvstgNuLgZU64H5tqK42EQdF2sRaUIoMuRkEenRuoF/seQU/siED1RrgvKMo//sbXPXt72g1qkomKY8+eaCGQVq1jHyqyiSV20GZBs9Y9hoUF3NKzctSkbO0LJUBBWbLxCjz0j0EtOfZvXlA6QHCIVF7pl4vZ0DrVtNaiyL1iCAxikOJwXcTCMBLvF7e2lDP2lY1AZpHEHH+uBus8b8xIwibemnEQp3ND8vRcA5gWwF/cuB+qTENZKNtcnS1gDA9TzNW6YoqxBrgVGvovrQOp+4+CAbb7tGYRrGdYYPgs1kRk81KPzxNNLY9di1fR47PMMwKamcZphW3H/hOs8V69QXC9oVx/DklNYq2C3wi5TFN49pf36F4UWPqh2ycQQtkbU75uNclsV5dIFeBGQbNd5UA64VkUhcBppGoXXUQKpbHenqjO9EJWNJbF4lXKzXqOvoD0SIiA3vj94LT5I4nJM0jcLXCllFByrihHT8fw7KO5BivHM6O+cQJqbQYTZHlZZkmvDzTz7M+0cX2Lm0CgLe+uqn2MqmjJuMga54ttnkvvQGWWjp0ZAJx2HHKAOxwH61Xoll1jM14fkUX5gooqUVzfYQnyiSPRknlIYDwnxBmC85hReAiFhMAHMYeUBjc0fgW4mzkraNqaXv6n2ukYg23rtPYqfeIuMcvARzz5Sesdiu1tO6rjTgbwfpxxRE14GgBTYVjO8tjiE9Lxf7l1/0T/kffvxPx3WpZZRbEJa6jXIM1kkaq2lnCeksAqSlBb+XcjMM2TMOu5cjagFp3DCiFSx2ejTDBtePzSbrJd4LbK2RlUR4+Kd/+e/xRx/7dr72wqf4T2q5PKmpsXz1PZ/mvvwGUgR+6urreN6sIR+acvnpLU7ds4MSgZUk0qmlMgYiV+oVtIyaUHOX0u+kTY6USsd1xubqlEVRM8rjPV752EnOf941TvQmfPj5c7jXOtY/ZaN+l/P4XKMW9ljNc2kmIpZa2ghZCqoTf+sJXCUJMuACeC8x2nUZy62aaHoIemEobR983H/9F2Lzqe0Tae9EwPnoTOt5EhtI7raOPUToVB2xp7Z48WtyRw40KEn94GnKrYTRp/YJ+4eYy3tkpzP291J2d1PMQtKuOD5x4xRvPX2Rt649yyenpzmdSpqgaINiGjIqYWmDRnayDU03JmKkx6QWQkrQEp9o3GrOpa/McXlAVSuc/DVL8cw+DHuInQNYpoJFAJcq1MIyelYzPylRdaAVcWpGVhKPoe4kO0StwIFeyJg25LGQKY4YlEJMJ6rrPZq1+lhAC6LztK0+Jh6JNaCAcIG2kMxPxlFZM1/ievwO9nmJZfXzdrhxY4TajbIsUjnKOokEEI2mmSaIKh4+vctxnBXA7uQEDflh5BVYbEkWpz1+YDE3DNamTIJAG4t3MqZmc420ca75XhN47E0/DsAvLhnHFBD0dc0pc8DT9Qlqp2nONWzkNVv3zShMw0pSspKU1N4ghad1itprmjbuj9KZY00oiBR5g7SmtprzKwf0Tc0nb57En6rYKqZo4Tm/tc/Fm6ciN2gINGs5qna4VMGy1QtClKrxi5jCC9fV9CsRZcCbGBwo6Wja2CB0TuJrhZnC6tMW2QTGFwwuj/SRK0/X2Fxhc0N9UuMTi3eKEARCe3ylEG0MVujqoIRYB/VGcCfn7J05UC15/qtS8vsPqX5+nRO/UBJmc/rPzejdNUKXMSqanLK89fRFvmD0FE3QNF7zbLnBqp6TiZYqGNqgqbwhky2VNzxTbXG9GjCpUmyjunEujSwt43tz3F0VWd7QfmaIajz12RW8FuQAN+/okX1OLWhBuWloewnFjiM9jJNA0oKqRRwfPOoYtoJkLBE2PjSX0TG2R5iGquOm1wuBmSqqMqdZscjcRjGAVhIaiajj+Kjw8WUTLs7Jl9tdHckuGxz9W62QCe9/7b/l6576Sp68dDfBaFrAJp4aQ2glYq4JuaMdQbavMLOAMxEnSwUIqFbjevo8NubaNUl+WVO3KfVARWhYraLCqWfpXfffbk2jec/1+zEnHTebAZd3VgmlYi1f0Dc16+mtk690hly1SOFRHf+p6aRNgGPWdU2MTAem4p7+LlfKFaQIvPrc1QjpchojHX7UElKFl4Jkdx7roF0TcqkWYrQYDsRtjiw6UJcQnah2eCdwNmYYQsQIMh3HtbC5JN/zEYhfCG6+Ljt+/q5WuFzGZpQXUSbHyuOARXQBy1EJ7KiH8WLtzhyoFPQfOGA6z1ht4OpXn43yxgI2H2tQC0s7MASR8e76IW7cP2BSZ1y6vkawkpXPK/GpYOwKrtQr7P/f7Z1JjF3pdd9/33CnN1S9Gsgqks1mieyJ7G7ElmS525HhxI4sKDGCDMgigGFkkwDZ2QmShQEvAmQVBDC8MRIYTuIgAyLDiaHAsJxeSFEiq2XZUhSpO2IPZJNsslms+Y13+IYszn3FttKWWY1OigHef1NFgizcd+u9c79zzn+ou2TaMfEp98bLlE5yTMIooekqylWLKRMm5xTaeDpZzRFw+6dT7FQxeDMAS/DaSV7FRwtXKNKR5/CphL2PK7q3lCyCallaKAdaK6gVdqYotoWzGQ0yOA+R2bqW9EXfbtUbmWuaUjFzlmZFSXFoFLoSrug841p5ydmZ+4oqp8j3Tt2j7APRsbW8OY80YZrgO+I2nky0iA4KiEVg+HTEzCT6105kluk7Uaz/NNil1mEo91RrmuK+pmoS/Ly9b0+vwUb8aa/e3wc9U9z7n5v8F2Bn2GP9dzN2Pg4Pxj0ubhyymQ0pg5wwrfK4aGiCxQVD17aJpO3CbY6y3eADfH1ni7sPBnzuuddZS8eUIeFrDz6G0YHBNzKqNU162BDyBO0CPpf3zWlCxYfmxsS2jW8UysksNCaKqLSMqCLYzAm/U8HRFRg9adqdgXxuZpuemAmnOiYRZQJ1bVDK4L0m+nZ0Ft9XPNvraLryvT+BDuVEBdSn0Mlq3H9fpVoVF516IAqk/hcc6b1DzFqfFQ3p0PK93Y+R7ypWRpHOTuB3Bs/zo+dvMXIZd0YDamdYyit8EBt+H5REwlSiiW26mnopodwI5G2Q1NOffocQFe8eLXN/s09ymDzyxuz/BkwFd/6C4eIL97h9b43qEzNC4tGvLktBa3ltx/ewEK9KV4jDjOuIKqKVH2GnUgCjhqySliJqcxywpdtCbCqZHUWhvNG/Ky3ZbEOcmR5H/NKF3+FnLl2hcysBFMzAjjW2hMkFoRmpNKCKAMvC+QSEbqIgNnKkNNZTl4kEhbUqk2SoiIPYLtLaOfGVKbk6bQeRhwgW/HrNqMzQ3+pjS0/oBco64fZ4hY1sKPxO4xn5nJmHymcc1GJukBuHVlFmvS3POkTFtElpguHp5R2uLO/SRM318QaHVUETNHtfPsfm9Qqfy4a52J7hE0NIJULjNDFv28tVUVK9v2vQjUI1oJScQqPXhPn4QkfcqpPCmTvS3JGmDR0TmJQp5SSF0hAbTeNTTCanWFQbEeLVcScYTLvMKpSkgJ7glpzs3dX37P7RBoPtSNORY/bkiQhPzCQidTpD5ymdGyV20seWKdmRIz2oMbOGo68OuP6ZswDsD7sYE6iahF5eUTvDbJYek+hDKkWk6bck62nKubPbvLh0j2U7pVpP+BfVy6x8tXOqZiLBQu/yEXuTDrHSLK+X7B90WduJbQsibafPIq6AeiUSdQQN5SVP3q9IjLQXzmlmlaU8mx5vB+c+o/NTlW6EtmRqKd51X9H0oH9HHPD7zxwwjiuneEf+ZDyfFpieI6SJKLKAzgNRmBQPxCDGdYNsVgFvrBRUEwiVQZUG1SgaMkylSCaKZCiUsfJsxC978YOcaKJXvHjhHprTz8yaQ3s4f+6A994+w9YfVLiusDUurBxR2IYmGnItX6tgcdG0HFEtuwJkaTR1KZW3lM5SNpbGG84vDTmXH7GejPjm8EkOq4I37mzQ+3bO0nuBpm8kRrwK6GlNSDTBnP7DJeRSNFVrojw3CFcBMVb2EIPYIhIhaEOsdSs/AnQkycQVDqByrWLRRrxGuLZaHsLiNfHwq27U8Z+DkaXT3IbzUXGiOxiConcb6p6i+8Bz8LTBPDUmRtBljX/iDHd/cglXiHC/XI9kBwn9W4bBG4GV647bT6+Tr81oSksd5pIrmO53pE1FTm26VmIY0FHkD0DdL/gjd4lPf+otvrz7LK+9epmLr9Tkd08m/v+o4VMY31ymf1OzWkZmN9Y597anc3dKyA37JgOljqWdIZdAPT0xqNrickeeNtg0MK0SXGWF3+nE6CD2RPMetZw+dSOnT11H0nFkdElRr3nKu4bZVkM9yeGJxyMX/oMQnJgd+wz8wDFuLJ33YPPrJa5jZBnQtlAhkQdOcqSYbjXYocbUCl2B60TWviv3+e6f7+PWGkzu8VNLyCO2Ufzoyjsk6vEZhMZO4N7dVbb+c6B4a4fJtQ0wkcw41rIJEyceoE0w1MHSBENmHFZ7XDCMXUY9V205y7RKKVtO5P6sw7/79o+wvj5id69P9zs5K8NIuSZpBZ0H8gSOVuH7GdFodBPEO/QUsdk7AiV5Z6m4zklBbZc7EeTzENrPUGnEOyJA7HmUDbjGMoXjvPi6tMSWtUIrTMEZYiryaNUa9hy3716yyjZ+/0BmwyE+8qHsZI+goJhuKPq3IvtXDc3VKeeWxry3t0zMEsZbXfF8dDB5ruLlZ25wsXPAF956kfTfFnTendJ/Y4nxVus8lAZiUExLA06hR9KSzZcAuobOtic90kzOK1a+nvLvv/Q5il3HM9+8QfQB1TvlXHgF2Z6m2Aks3ZxCiMfkZD10LN80jJyFqMT5xStiEQh9jx4Z1O2CsS6OT2S2ltYiGtH9EoFalkbJRJG2OUnzAXp9qaI3mLJfLXP1qbsMq5zdYfeUbsafjl/79G/wdz//d+SNnHrM81OG3T6mzDjz3+5TLW2w/dmGpGi4urnNJ1du8b3xJludPb6xd4lxk7K9t4yfWEJiePen+kwvOtJeLYEJum3zS8WldPeUX+0fR/SKrc9D59u3iWsDdn4oIeuNAKiCBOjtNV1ClBkoGhI8Y5ditWfmkmO5qlKR2hm80xRFzXJesp90mX35DP0ahs83mK4jHKRkB0JKT/dLUc0VCU3fYsrTF1ysmoqrn3ud3//Gc6z+2APCf9zAtQcOFR6eROcnRdVoYtam+joFswQ90uhRuxQCCi8L2qYf8EUg6tbMxylIRahiao4XTSrAbF1z/xe6XPtHO6J0fEScqICqWnHm24506Nh5yXJhdcj9/SXcOGGyldK7OaZz11Kezbhz0XChOGQjGfLs2Qfc3LpC9y1H937AdYz4NvbEOVoFecPPHcdDEkmHiD3cfs34UkFIFT5X2FmkXDV0lnqoaSmJfqcIO4WNb9Qko0aMg3NNNAoVIqoJJKOG7nsK5Q3lulirORtQhSfoSJwZVN0aIMTWqan9JQOoRu6LnSnyXcgOA+kokO3VuK6l872M0bPAasPNL28RTaTafDycdj4IP1WIi46uFX5mMcszwpmaw6sZ1co5iTBxiuZ+h9FaxpErGCQz9psudw4GzHY7MgsuNUeXNbPNgBnUKBWF4hWEEqYasY97nGBHimrFkm5tELWi6UdWezNWswlGRe7P+tg2kdS2np+FaSh9wrjJcEHjgsYHhQ+GprZoE+jnFf2k5Ccuv4W+EnlvtsS94RIHez1MpcS5fdRgRiXqYIjaXJNlr+bUzUQUil+/9ApceoVtX/HXP/8PZC6ZtgtVJ8LHOG/B7ZwHrEn3NcW2qKu0FyK+K2TZnYzkYAOach3qQRB1W3uaBfneNKLiW3mjYnouIyx3OfPP7sJLj3b9Jyqgc7Lr7gs5f+ba20xcytpgzM7dM0QVUY2nOtdldNFyfus+K3bKq4cf49bhCtPNiBvkZEeedKhldhrkl2umIqcypcwUu/cj6djTuXEIzhOuFAQLkwuR2Vm48BWPmlXEyVT8Qk8RpvTYqRfXm0SMG2BOpA/YicPUgfxQoYLGJxK5EJNI2qtJVjy6VRt5r3HO0FQWphZVaZKxwo4V2YEs4tIjh52Jg3cybDj3VU95PeXwiiE7iJgGhv7xUGf9Sbj28g2uf+kKfqqZjHMxgViylMGQHijy2ynFg8gtd56b2TmhmBQeu5fQ21NUA9m0z84GGNRoHXBO1CWEhx1Mctraze9DXPWEn9vljXdWOfdfNWamqJ1ht+zRsfXxbDNGRSepWUpLRk3G1KVMm5Rpk1A2Fu81VZWgtWjDV4spZ/IxhWmY+YSOrfGhlSrOZHZoJjXqYIjf3aP8xJPMVi35gZel2ylCAb5dsmpgfFGRHrZ7QC3FTjVIpYqyP7CHluU3RTYdLFRnFdFGkqGiWpUCa2bSoqdHDzftsfVDULU4gR0LKxvIrt/jyu4ANLzYv/vI13+yGWgK7/45y5kXttkohry2f46DUYdsT1MtReLTy2Lqe80xPerxm9UPM5lm+O2Czq5idEn4WaaSGItsx2Anov+200g6Cbhc039H1EVqWoJS2FK8+3zfw1iTvzsizmbivJGc7iA8Gk2zZAmJwqf62JJLOzmdRtvGLYSInUWKHYlBrhItBHwT0K3fr21JwtFplFMkQ0Wxo8j3A/meJz2qJd/GyH8IqcFnskld+1/hmAZS7ClOOf7nB+KXt36Lvzz+h/hU0QwT1CCico/rKOzYEJLIaAtxssraMUZUuPWGSWHIdg2+iISuJ82duOsEwIn+2bQz0iV9usqj78dSWrKclWwjy7/ltwP7V3NmRcmdwwEgyhmjIqMq5SjJjylKIJpuaOMrOhXdrGYprThXHFEYqRKmdRoqq0SEG14sFJtBTnYfpj/zcXZftOS7kdXvjCW98xQRAaMUPkYG2vKJz77O6//6Kr5QhDZbTEFr/wgoWTCPtmThGK2o+FCRZqCPOzdftL4IK/IAiW2AIU4I9PMZq6mg957EPeujMbGu+dr+5Ue+/hMS6SO/8lf/JZftPjfcKpfyfX7tvU9j1gPr35WoCltCemAYfK3L+GKPsBJJZu08o71o11H03zQkk0g6EjNUU0eyvYbOrEEfTlCzStL6lno0RduKpQHtDCoEWFuBvQPiweFJXsJHjmgUdd/IybINM5v/YpSXfBrlolAmUkgmke490M5SNppZYUVaNteJe4UuNXas6N6DpdsN6UGNrpwkW2aGqJQsADKN6xrZXCqRdKppIDk65azvPwVP2g4//Tdf5Xd/+yVCYvCFpCmSRFwvYkcKiHh4uDV1Qk8yU43rRnwRpJ2DhwTpoNCz1mj5rDiAPU44mHR4af0mT3QPefupdcrf2GTtCwV3Plngey0JOA2YzJOkjsksO9aAJ8bjgxYDFh1IrSe3jm5SMWpy8RBVgd2qy7ujAa4xqMJTXQjUHwvsfsqS7l6W3UIln8HpxR68edp35eEJNFGGlwdv85q5JqMcBTFBeM9a47sBoiKmkaYNc5wHFNqxkjC5VJavvhPa2amk3qpGPEHtyAjDxbVslirS+c5d/O4eusjBGKq/tfTI136iAnqmO+K5xHPfdzBEvnl0EW0DbFYkY0W263FdC6RoHykeQPeetOVi+iuZPZ3tIGmTTZTiEiJ24rCHJXo0gboBa6kvb3DwbM7srJLjt5Jjeuik6FlDHJ++ZjEaYSVEPQ93a/9+vu0LBjv1bVa3RM6mo4idQr6raHrJcUKgqIgkN6jzINC7V2EmjXg79lKR3gG6DoRE43ONy8T3cR4ZHAycfnraD4ZRmp9cfp3fXvsUdqQIEyvOVWn7uoqWdTDTRKeOxQVRi/NOSOU0YguH1lEUKqWVU/ukFRicqbhgxsDj4Y0KgIJ/86UfR58tSbOG6i9WPPVPa/rvWMaXClGTnZXlR2VTYhao0oC2AZt6YsuHBUgSz1hFGm94sn/AxKdoIuMmYzTLSFJHsArvDNGLCk47RXo0V/oIx/i0dQYKKZyBQBM9P7v0Bv/8MwfYLw4I8/GCQ8zIlcR1zLe00cTWzi7SrESaJQU2Hi9kAYIO6Eq8QVUpZuRzWqB2UOwG8B7d74EPEvd8gq72RJ80qwL/ozrPjuvz6zf+LHu7fT5z7XUK03D94BkAdOMZzLwsSwpDyBTpkcNMGnwnEbOAqSNajXLhuMVN7h+hqoaYJYSzA46e6nLwnKbacKiOtGlp6qmXU3w3QU9rVJ4RTrmIRiM0EdrYinn2jm/9KKOS4mpqiVvQTnhtpo5ko/aN8L5/o5uInTlULfemHmSERJQY8yIMtFpfyZ93hRRv3US0U4T08VqefBD+UqfkKz/xKv/p917GjrS0YymE9Zp4kKJLhfbIyRSEA5i2J4ssYHMn0t7G4CqLmhrsRGHH8jAqvlXwT57+DL964asY9Xjcjyd7e2RbRzTfXKFzJxLPK7Z/rOD8b73N4Hs1g7UBsZvjuykx0QSjKdcTxuc19TJUaxLrqwtHjLC6NKWb1JTeSmCdS9ge9zAmMOjO2Bt2acYJZiKz0OJ+xM6gXFM0a4qQGkL2eNwbkEKqY+RHNu/wh8UKdgYO+YzpGqxuGxEjRVN5BQZiElCZJzot7A4li0jaroQoD1470sfR37rNFOvemRCrGrXcZ/L8BnvXEmYbAf7+o13ziQporms8iv9w95Ps3VjhuRfv8FTnAVVIePWFJVa/+Ca6KFArPayPJIlBzWrJdg8B08mF5lNWUunrGmWtPFa9x2+uMXuiy+SsYbahaJYD2EDeqYlRoXVguuxpOpb0YEi0Fr22CvdP/sv6qBC1EHC/36dCDoGqHXxrbPWw+M1pTsGq9/0cSVNUacQV6fHPDla1krMotnUhElJN0zc0HdUaN7cn36hwGaSPD/XxB+IXz3yN3yxeotjWRKVxacQOasyFBtcYkqwhSxzWPAyXc97ggyK1ntoZqjIhTo2wFPbUsRPV+ncbbr+yxQ999of5zs//6um+0BY97fnbz3yFL668wN1/dZnV6579q4by2hNk37pB3N5FZSmmqonPXiLdOSJ7rWK53+XW3zgHc7mjiawuTTnfO+J8McRqz6iReWlqPeudKfuzDtVBfsziWHob0nHg6LKRzKEsUq+0791TRnif9CcQ+Hubr/BXzr3I8putEKXdwsdKoVKAeByXM2/jUdKRxKgkzkW/jySf0C65+WMSzs5OwLy7A3lGGPSo+4bkx/f4a5e+yz9+xGtXMT76GV4ptQPceuT/8P8Ol2KMJ3Dx++iwuCcfjMf0vizuyf+JxT35YDzSfTlRAV1ggQUWWOAhHp8ByAILLLDA/2dYFNAFFlhggQ+JRQFdYIEFFviQWBTQBRZYYIEPiUUBXWCBBRb4kFgU0AUWWGCBD4lFAV1ggQUW+JBYFNAFFlhggQ+JRQFdYIEFFviQ+N9Y+5sxCanf0wAAAABJRU5ErkJggg==\n"
      },
      "metadata": {}
     }
@@ -202,7 +252,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": 5,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -214,14 +264,14 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
+   "execution_count": 6,
    "metadata": {},
    "outputs": [
     {
      "output_type": "stream",
      "name": "stdout",
      "text": [
-      "X (53631, 48, 48, 1)\nY (53631, 7)\n"
+      "X (152252, 48, 48, 1)\nY (152252, 7)\n"
      ]
     }
    ],
@@ -235,7 +285,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 5,
+   "execution_count": 7,
    "metadata": {},
    "outputs": [
     {
@@ -299,21 +349,21 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 6,
+   "execution_count": 8,
    "metadata": {},
    "outputs": [
     {
      "output_type": "stream",
      "name": "stdout",
      "text": [
-      "[0.1431607  0.14394405 0.1389222  0.14134979 0.14626577 0.14387079\n 0.14248675]\n"
+      "[0.14478482 0.13992985 0.1444098  0.14547563 0.14638613 0.14012544\n 0.1388883 ]\n"
      ]
     },
     {
      "output_type": "display_data",
      "data": {
       "text/plain": "<Figure size 432x288 with 1 Axes>",
-      "image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\r\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\r\n  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\r\n<svg height=\"250.052344pt\" version=\"1.1\" viewBox=\"0 0 251.565 250.052344\" width=\"251.565pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\r\n <metadata>\r\n  <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\r\n   <cc:Work>\r\n    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\r\n    <dc:date>2021-05-14T16:37:56.363156</dc:date>\r\n    <dc:format>image/svg+xml</dc:format>\r\n    <dc:creator>\r\n     <cc:Agent>\r\n      <dc:title>Matplotlib v3.4.1, https://matplotlib.org/</dc:title>\r\n     </cc:Agent>\r\n    </dc:creator>\r\n   </cc:Work>\r\n  </rdf:RDF>\r\n </metadata>\r\n <defs>\r\n  <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\r\n </defs>\r\n <g id=\"figure_1\">\r\n  <g id=\"patch_1\">\r\n   <path d=\"M 0 250.052344 \r\nL 251.565 250.052344 \r\nL 251.565 0 \r\nL 0 0 \r\nz\r\n\" style=\"fill:none;\"/>\r\n  </g>\r\n  <g id=\"axes_1\">\r\n   <g id=\"patch_2\">\r\n    <path d=\"M 26.925 226.174219 \r\nL 244.365 226.174219 \r\nL 244.365 8.734219 \r\nL 26.925 8.734219 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p4fabb6213b)\">\r\n    <image height=\"218\" id=\"imagec292145d21\" transform=\"scale(1 -1)translate(0 -218)\" width=\"218\" x=\"26.925\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAANoAAADaCAYAAADAHVzbAAAhzklEQVR4nO2dya9k91XHf3XnmuvNr2fPc5zYiROctBNBRBYRYZKQQCzYRQgF/gUUYIVgjZAISAQkhCBRFhmIogRk2UriTHJix2N32+3ufnO/92quOxSLrM73e6AqVvLrzfnsflen6o6nbp259sSn/3bugGAm17NuDUVcFdEmIpzKdWOvJJnOT0/EuvbOLZKpra6Iddlt8vE0YrEenstI5vRiQNvGW/L05yFdDjdfzcX67vP7JLOWDcV6VCQkc6Z+KtZxwNfjeFYX66DGx3Oa87ldP+7Jz31lhWS2/v0VsS5v3yaZ0e98SKyLTx+QzOWtK2K9Eo1I5ken58X6lYNNPp72QO6r4vtz47BL2z548W2x/sTqT0gmqclr+5c/+STJzN7oyP23+X7Ub8oHPW8rz0ckt7Wv8nnwFsMwfuGYohmGB0zRDMMDpmiG4QHVpZG3pfMjmLEBmB3JbdkhG5LNn0jHxrzfJ5laXRr/83PbJDPdlM6PyWpMMrN2AGt24BTsQyFDturlJNPpSWN/JWXjPwvl5xLF0bGRyPPP5yHJRKn83HQZr5NzbrUpj+nqY+xEWP+hdFBEN+oks/f7Y7H+7D3fJJkL8aFY/2B8N8kM8lSs53O+H9d218S6nPH1aPf4Wj/Sks/V4+kNknm7kM6gIOBnGJ1+rSt8rWdd+TnFN+XWfijXnat8zPZGMwwPmKIZhgdM0QzDA9Fklf87d69WYt2+MiCZ2qSQ6x0O4jq0v+46RyJlJv8XT9dSkpl25X/3IuNjzptyW97iw6ki/oNd1eW5xllBMmkst109XiWZ0UQedxBUJPNSJO3PSrFbZrm8Htr3RCFvwzOrn+V7tvNhabed+9cdksn35D37WP06yfThuD/ZeolkGoHMVthdY5vx8//5cbG+/z8OSebGJ9Zo2z+Nnhbrb209QDI7p22xzl/skUz7HXnV+hf5+ahV8ly7P1X8FeCfqOVsn9sbzTA8YIpmGB4wRTMMD5iiGYYHosYuG3fdl2RWd9lmB0U4moh1tb1BMpOz0iNRKxRnRCJ1fdrhoCU6P5Q4r6vi/3/tnHMlJ73zvqYctDzuSwdBPuDM/OhQ7rCxw46O2kSefxCyTHMMMmxXq8H4wd3SQVLbmpLM+Al5z4oX2Dn10GffEOuPrn2GZP7svd8S6481XyWZ92TSifLj0XmSaV+T5zrdZg/W6ssz2pbelvfj+j383eFYXqPWHj97g4tSBqtNnHNu5TV5XbX8gTKTz/DwQoNk7I1mGB4wRTMMD5iiGYYHopWXObCZr8r/mOGA/ydXHSkz2eaM3aIu9ThQbLTJijS4Zh22P0owiebKzwPaZGWD91UqFbQuAdsmUoLBWPmrVGFXidymnUdQx2RtPpzsEJK1b/MxzzpsgKJNdnb9mGRCCH5f+9RZkrkUXBTr1vOcePzPHVmF/YP1iyRTDzk5G8F71j/Ptu90ha/jdFVeo/iUZer7Uma8xTIZxMdXXuUbEo3k9S8a7CAYnpEncnoPidgbzTB8YIpmGB4wRTMMD5iiGYYHoqLFBmg4hsz8kg1yDC5ihr1zXI2KGfbOOTdZk9sKJag8hyBhmSktv+Crq1gphWU/h4sgWz9JFxvxgZI9H3VkMDi8W3GqwEGWJf/O7U2kYa1VBq90j2nbB3uyLdx6yk6uAiL95RO8/929M2Ldvcb3fvIFmVH/35c7JPPMw6+J9cU6t7YboA9FqWYo63z+bdntzsUjxckGz1V6yDKtHXnv41O+93NIqJh1OWK9f1l+LmpwBYi90QzDA6ZohuEBUzTD8MBSLZZmGxyMHq9Dq+S6EqCFv/daom8Fph3aYz/7HLTtVn4eiibYRNpPiGK3RbE8yJXmmGTSSP7nnhZ8kCijVU9j96x7W9xuez2WttVKNCQZrXvWjSm3AEe6kTy3cZdvyHNPSXvrzPNKRfGevLhFg5Nob12SFdVbKXdACx+VLdLz19jW63K+sksG8pi0LgGNHfk8JH22meNTec9yJRFgsibv9eCs8mDBvQ6ucpDf3miG4QFTNMPwgCmaYXjAFM0wPBBhhbNzzpV1GcTWgtHk/GB7lJwfheIwKcFuzFtKZjw6MZR9zaFtXNTk4GO9wSW0GDTWHB29TDoRzjROSeZoyg4BBAPGz+9xK+2DE5kIEEUcMF5rccvp861jsZ6hl8mxg+ZgzBXNH4DZY68/8hDJNHelE6H9Dgdo33hrS6z/8Nx3SGb9Aen4+fvBMyQzPeIMhgB2lx7zM5OeyuuW7k9IZrYqvxsrSZxzLm+Ao0MpALnwZSmT7VpLcMO4I5iiGYYHTNEMwwO1y5/6a/qDWzSk/uH/VOecy1uwTcnhrZUQWFxXvqcjZcq6koyrVDQTmfxco8uB54aSMDyaSkMyz5UWW2Db1K6wPdaDwGp2xH/mk77cv1a5HvShu1hbsVEmbBPl6/KYpiscfN17Qtqf4WMnJPPJu18W6y/8z4dI5tJX5f5nbcW2acpnaPy7xyTzV49+Sax/JeO28jcVm/kzr/6BWJ9+nUd9oX+gscPPUAH+Ae35LKBSv3mTZVo35L2erNgMa8O4I5iiGYYHTNEMwwOmaIbhgWjaZV0rGlj1zAYgJpCjYekcz5bSqmWxTZvq+Fji5yCALPxECfRGIW9rQLfzkxkb3+WuPLl0rFSKw8i0MlYCxgkEP9tK27hN6dSYR7yv2/fzMWJFg9beOr9HOojainMIZ2bf9Z6bJDN7VlZhz5XW5slAOqeyz7VJ5i+2/0isj97DjrDP/8bf0bbtpkwYGBTsDPnzP/4Xsb4/2SOZGEru//HoIyTzjc/JWWzpCR/jeFVe/GjCz7C90QzDA6ZohuEBUzTD8ECE9phzevIvUoJto41EmkMHJ63Cmli8a+eUtt0JdLNqpBwMziIO9GL6Z6h8d7kmDZ4pj1V2M/jJqmELMOfcEOzI6ZA7kGHrsCjlY75viyuzA/hcgW3MnXMbYMiFNaUtGHB5403a9sW75Jikldf5GLEdvJLj7OoHcv8Xvs7X7E+u8tio00flvW3/GnfY+s2m3FY5PoDfe+O3xXr3c5zkvXpD3vtSScLHW60U19sbzTB8YIpmGB4wRTMMD5iiGYYHIs3xgcFndR4ZziyLFrfpLjMlMx8C1trsMVdCoDfjwHMcQxtz/hYXK+WxcSCN5FadI71FIgO7p32Ozs/h1OY1pVIBg+GKwyRrSkM/jdnRcO1wlbbhd690uU1dAgF7bJHnHDtVGsoQt8lT8rura4uHg2uVyTgvb9bmB639tpJksCvPdbzGrfaefO5PxbrzFj977SuywrvV5XPNlcoEZB7AjHVzhhjGncEUzTA8YIpmGB4wRTMMD0SY4eEcOzqKpuLowEwIJckAZebazDKc/6U5QyBbA/vlO+dcvIShHwV8kI1YGsClYsmuQZs6LetkMJEXEp0K2ncPB+xEmEC2yLjiGxQmfB5VLi/2cMJZJ3PI1n98jTPzsff/Qc4t6X7rwRfF+r/ueppkVl7Ddgf8m45J/9FUuffaJvhc74rSWvAGOGwyrniYrkunlubEqMGjViYshLdaufX2RjMMH5iiGYYHTNEMwwPqfDQoslUzr9Em02ZGU6B7icz8mjKzOYUgbpYo/8khsJuGbKNpoN22knGbuiyU+1vPOBhcX5EyU+Wi3RrJmWE3lRnWU7CtQsXW1CjHcn9FwftvdaT99WjzBslcm6wv3NdmIiucJx/kedmVMiOMZKB6XLNtsGXhsuBs9nm8+J2iVYrT8WgFD9gdv7IKa8O4I5iiGYYHTNEMwwOmaIbhgahQxnpVqTTmtMzrZQa4U0a/ZuxC8FUr3U/ixW0KMGCtBYw10NGhfQ7nimlVAL1YNkXAtm3OOXcUNsU6CtmyHoFTo1ICz9GAL3brUB6j1ns/Wpfl/e2AHT8HMxmgvlg/Ipkczu1jd3O7g2/f916x7lxTHiJAfc4WJ887pzoowNGiOCi0ADXJwP6x4sA556p48RfZG80wPGCKZhgeMEUzDA9ElVYZjcnA2nxqrIzW/qa+i1ij1u4Nq4yxUtg5tq3QrnJOTypOwDCIFEOhAEPhZMbJwJgwjJ9xzrnXdjbEOv0eJ+xuHCy+aPGQzyM7ktdovM422q2TC2L9N0/z/t+3JYPYWoV1CQ/I2eyYZIaPykTszjW2WSlgrdhRGpTEq9lfS3w3bqvSxbYW2mzLYm80w/CAKZpheMAUzTA8YIpmGB6IlAJepzlIEK29HFIrlsiGxuppZa6Z1jMfQWeIFnhOAv4ezPKPlPTsOgS1Z1WTZDAzX+t9767JzzV3eF+dN2UQOX6bB6i7ij83u1fOCCvqHOiu78trUn6tRzLPXZaOnqeeeItkGoF0dOzmXZL5wH3XxPpK7wGSSU7heDRnxBL+ES2ITI6OkO8HtYkLlohgv0vsjWYYHjBFMwwPmKIZhgc0k4TnPWlBOuhWVZsoc6NghvW8zvZXAknEiWKPLZMwjLaWZo9lStU12l91JUCLVMqMrFEhbaJ3jnokU7Tkxd77da4U370sjebo5BLJhBOljTt8d/eBQ5J5cFXae/sTDljfFU/EejLnQPNWeCzW/YoD+E/1ron1D+9jG23ruzDTTUnOXWKEmx6MBrtNq9zH18xSScbKqwkfNeycpezKMIxfBqZohuEBUzTD8IApmmF4IFKrU9GJobSgDkbgIdFagkOG/zJzzRIlYD0ppEHeTSckg5XSmuOjE/PnmqEMvnYjrjpGUsXRUoCVfCPmIO60JT93fpuHnG82+mLdjnlem+bBwqrv97eukcy5mPeHXIqkzMuzbZLJwGHUC0ckgxn+2QMnJDP/fmfh8WhQdYkSaEbHRqW0mytTuU1rN0ft7pS5dxRVt5bghnFnMEUzDA+YohmGB6LlgmtalG5xticmJ6dKh6sMbLRSScaNIYiN9tjPtkmZ9ZTbVGv2F1YQaxXFaSD3l0ccwW+E8nP7PQ4GvzKUgV20PZ1jmyxXKrW7KZ8HnttGdEoyaH/dE3MV9skSVc7tQNq6/Rq3/z6dy23PnL9CMt9rPCHWoTa2SQFuhwtmymx0sMm0TlVY4b0U8yWS6RUZe6MZhgdM0QzDA6ZohuEBUzTD8ECEGfbO/R+zplEGbPS54hypQYAaW3trdDMOKrch0LxMMFpzaizj6OiGPPssAY/RTClnwArec41jkrnVaYv1yYCdCG9Gcj4Zzth2Tg+8Y4A4V7Lum9BuL62xM+Q6ZL03Aw6Yh5CdgBXXzjkX1xYH0J9df1KsO28ps7kVh0U0lXJquzn3LqqnFSeGlq2PUIW3krxhbzTD8IApmmF4wBTNMDygzrCmHMllumJhi3DnXJxJ+0dLGMYOV2iPOcc2mda2+zSXwWAt0KuNW0IbLcNoqHMuq8E2pXUY2ilrMdt65zoyiMwTpJ076MtOWSstti12xm3ahhyXPI/rGMYtdSsOfO+XPbEOFIOjX0nbkq6Pc247OoH1MckU0ExMydV2WoZuOIGRYYodh3ab1iUAE4+1sVFoo2kV3/jdmoy90QzDA6ZohuEBUzTD8IApmmF4IFJsf1dBN+l5qATyIKgdNPmL4hgC1koruVYinQhaK7lmtLgFXD2Uhv12wtnr7ZAdLRigrpQI5WgunR9DxRkSggV8JuGK4kFTfk6b4RZ0oAWbUs0wU+ZjD6Dd3UHBDpMJWO0nFQeaEXR8OMeOlrjG9xUD3W0lWQCrO7Ssd6VQY8m2cD9/Zr7aSg4cJNpM7RqcWpBb9r5h3BFM0QzDA6ZohuGBKFTMnwKKg9Uk41jaJIFixzUz+eUrmVLhDPbXSsIdlbZTaW9pycFnoMMTJgI7pycDow0yKLm9dbBEX+oM7BStlfZmIjtcTRssg/aXFnifKdtSMCZaij26DR2/lvmV1dp938p7Yt0N+b4eV9KO21BkAhjrpdk2RaaMW8rk52Iupqcg9lzpXoVBbbU9PiYsR1rre0hyVsZI2RvNMDxgimYYHjBFMwwPmKIZhgciJfbpyhSMOaWVd5TKbXHCQUuslu4lbBA3I2mgX8iUNtmxdIb0lCpoZL9Yrt00BqixUtk550YQwdecMVDQq8pg1bGW4T8oZVC7X7AzAq+Zc+xE0TLqu4F0ovQrvq8YjL463SCZ9Uh6HzRn0Q44TLZDTiCggLWWPa+06Q5K2J8S6MYW4Fq7OWz3Hc4Upx92BFecfvzFvMneaIbhAVM0w/CAKZpheMAUzTA8EHXfZEM2b0PEPmUrtQaty7pNdnTgAHcczO6ccxuJNKzPxMckg/O3cD6Xc8s5P9oBH6PWlo2AbBF0jmjb0GGggf36nXPuuOAWBEgrZGfIGKoetJllWU2e602lTduV6aZYv3DEw+p3BzxXAHl845ZY35/ukAxdesWpUXJHPEeXTcn60FoXIFgoon0Gs1W0qgB04mjt7+yNZhgeMEUzDA+YohmGB6L2W/xf/vaD8j94qVQ946yzOGBbD1tX92Le1xYEo7FS2TnncvjzfJivkszb0zWxniqReAwYO8cB4ndGPZKZgKGgVkbDNYqU67GVyez9umajzWQ1AbbRc865acnndq5+LNaaHZvP5fm/nq+TzNduPSLW2P7OObbHtar4XWiJ9+PJBZIp2vIaaW3jylSxibh4naBsfa3dN4qoM6xhvbiQQ52XbW80w/CAKZpheMAUzTA8YIpmGB6IBhe4nVjRhCCd0vIMjf1QMf7RSNacEVjyXyo946eVdEbcmPZI5mgmjfaJ4jC4NeSg9s23pROlNlNK55vS8RNEfK4hbKsp8+JuNOT+mwkH8Mc5Ol5IxJ0m7CDB5IBD7EfhnOtXB2L9Dzc/SjLvvCYD1tkeR3Fvx9LR8eTHX+GDBL669xhtmzfk81AmvC+tBZzWlo5kSpRRgtpL9NXHrH/VGTJfHNS2N5pheMAUzTA8YIpmGB6Iph3FJoFNoTLXLACbTAtaYmBXS8Z1YKZogWYMKh9OOYiK+9obcUvsnVc2aZvLYK7zFgfVZxN5TKsrXBldlPKiHe/x/o+OpG110mEbrTqS12ieslFw0uRqdjz/h5qcxPt6IW201795D8nc9w15/tF+n2SQ7zYfpG1nH9sV6/3nz5BM2JHnphSTqzPT0NTXAt3vBnWuGSQVq5XamJyszHSzN5pheMAUzTA8YIpmGB4wRTMMD0RYTe2ccxW0l4uV4GsFQey85GDjoJBOjGC62GGiZavfnsigurYvbG13c7dHMvOmUikOMwR6X2RHS/uqzFa/dZmz3t2Hj8Wy/haXBneuyX3lTT5XHDU2OqP03l/hbXuBdL48m91HMuiM0mbjRa/JEfbzPjtDahfOinX7Kv9e969K58fqHnsabl2Wz0Pe4u9RiskpQKz1uke0QfCIOp9thhUGfIwVZP3jZ5yzN5pheMEUzTA8YIpmGB6IKqXL0DxbXEaKtpVWdTwDW+qo4oRhnP91NFJmJh+D3XTAM6QHR/I3Y3WH/2/nTT7G+oE815UX9kimBi2oz3+VDYfrgaz6XrnK17C+L6ueNdti1pM3JFDs0dmJYhOF8rpdTbgKPYHo7+wxDs4PPnK3WGf7XKkd9qU9vPUclzzPocp47ykO4M9hpvlkle9PQ7mPwRI2mVYtvQitJTl9r9ZxC3MslI7x9kYzDA+YohmGB0zRDMMDpmiG4QF1PprDamElMx+z9UvFGYJt0bQWbAcD6eg4uc0BY9eX3xMPeF/ZgTye9tscjVXbOUMJc9VhZwwS9HkQ+/mvS4eAFvysTeUx5ZtcBY1tqZM+X7N5oLQzm8lzm064UuJgLPd3Zo2dGNc/IeehBVMOqsd9eY1a10mE5opphRvhUJ7seJvPtbGrVCsXi9vULdPpnYfFKy3p4JnRKr6RMrF2c4ZxRzBFMwwPmKIZhgcirYIVeyWnMQtl0MFJq7DG5N9S6aY1K6TMvOD/29FYfq5WscxENrNy0x4bBVpiKSbxBjl/LhpDN68hB18be/J6hBPeWbkmbZtpjw2JIpPnNllVrlmPNrmiAy3aQ94/dio712Qb7XBLJhUESkJ5He795HE+jwyemXMNrkpvREpkF3jn+5wc7dCU0zplYRW2Nlc6//mTk7Uq7GiE3bzMRjOMO4IpmmF4wBTNMDxgimYYHogiTuB2biL1T8vML5SsciSF7OxccYYgQcZGfAEt8SrF2Ewgez9WRkhrQVOsXtACknkLgsFKljk6X7TgOAajh+fY+C7WpKMhbrHDYK3LjoUVcEZp9wydUc2IqxDWWvKBeHiF29Zdyo7E+mxym2TuimVru+GcL347kIH/L91+kmR2h4sdFNo8smqJFnSYiV9T2sRp95GF5DKgduT2RjMML5iiGYYHTNEMwwMRVhg759zwWBoTkzUuw0YbIIk4qI0V1qUSaEa09uNhVx5jvMH7mqxJG2Ay5GMOxkogMYekUeUQS7Sb6pywXO9I22a7xd2jWmATbWYsc2+2L9btcEwy+wUHzE8KGWi+NlojmRvDrjzG9JRkZl0ZfH64eYtkLsTSRtuOjkkmg0wAnAPunHMVGMSnBSd0x0MlywBuoxYgfjcjmQIlWeLdEOTWBcsw7gimaIbhAVM0w/CAKZpheCBq3uBq4cmKNEpv97jKtupB67SGFlhc3L8rCqXhiFUBzjkXQga5lpl+bksGVtdTDupqYAu2zZgdFCFY0qnSS7sRLM5Ex5bcvZCzBc5GMvhbKb+FN2crtO3uVDpRukomQgDncW+6SzIfab4m1nfFxySzX8rnY1hx+7+8Jp0qWY2v2WQuHSSX6ock89aQHV/Y/q/Y5GA4BprjETso0BmCCQU/E8KdswhWeNdyC1gbxh3BFM0wPGCKZhgeMEUzDA9E8S5nB3Sb0pDNO2xsDi9Cyb3SSm6egpGotDsIYVuiZYYon0MwUyVSGqmnSt+GdUjz1xwdSK5Yza+PtxZ+LoZjuh1waz3M+hiUSrs35dweSm+KNWZmOOfcpURm1L8PPuOcc1uh/O3tKy3Y8LubIV+zGfyGJ+RVcG44l9/zeP1tkvlG7xnaVr8uHVZ5g69jPF7cSg49G1pf/VqwREs6+JgmY280w/CAKZpheMAUzTA8ENVGHLBO92TGeO91tkmqUG4bNTk7O4LW4pFif2HAehlaCVcGjwppRx5Mud32espl1wc5yyFT6JveL9huqoOdcj7lquMKbILbOc+LQ/sL54A759wjDbatNpQsfwSrnkOlovhqLn97S8f3vg12bKbY0BMwXLSW8Uge8LOYN3n/jVxeo1AJEEdjaBu+RKW01sYdg9raDDWcWR1MWcjeaIbhAVM0w/CAKZpheMAUzTA8EM2HnOUejKSRnu2zoyPdkhnck2OWKaDkP1acIRjE1nr48yw27fcBHC9Ko/1WyE6URiiz7rVgNAbDL9aPSGY9UvrbAZi9rzk1YggGn1fK9O9PuAXcBI57R2l30Azk+ZdaKvoS4L60Ko0G3DMt6WAXWl3MlGtfKi0C56l81jQ/yzLt5qhNnOJUWcaJEsCchZo5QwzjzmCKZhgeMEUzDA9ELuLZVrXZ4sTa9FT+n41G/F92NpJ/sONY+S+fStsqUaqncfZ1GnLCLM7a2kjYZkJ7zDnnArfY/sM2cZo9hsnImq33cHZDrDtKgPa0ksFwrTK5rVRzo92UKcnRmAx8U7HjELQZnXOuUZvAmm2bBBJ0teTkpWxEJRe4aMsgfpny92RH8jmqFBm0ybQ2cWW6+F1U1qUOBTO+ZvZGMwwPmKIZhgdM0QzDA6ZohuGBqJZydrjDStNQMSTB3otPFWfIGsw1U+ajUTBakalH0rDvJZyprs36QjQHBTo/tLlibXCiYNs27bu1KmhsW6fNDMvn0rDGzzjn3FHJWf/Yuk11NMCl3QrZqdMGx9N0cXG7Ujvt3GEp958rVQANcLS8VHRJJj3hb59swCw6pU1cmcmT1TLz8RbpVdgSHAzvnNK2LuYDsjeaYXjAFM0wPGCKZhgeiOYFB9dcR3YVqiLWxxrM6c0O+P/trCf/q+ZtDo7nkFiapWxroU2G1czOcdJqueRvCLbyxiroXyZahTMm/jYCvh5qENvJILL23Q0wrDUZtMlmSgAfr/Vsibl3sWLJoT347f59JBON2SY6PidttLzJ+8cEivRkcfcqLYE4gOrp5JD9A1Umn+taYfPRDOOOYIpmGB4wRTMMD5iiGYYH2DvhnKuNpQGeXeW5VeGWDC7WKm7BFrwCw8Bzlhk+Kp0R3Ywz2jGorQaMKxhMrwSetQrrCoLzWlAbg8845FwjVBwWiFZRjAHqScWV66HSfh33prUEH0HbPK2aHZ0WiXKtIT6rfg9+aqgkIiDPvnMPbVut8zUabcOQd2U0XXYs75mWhR8P5FHWlOz99FQ+M1rb8KIh71E00KpEDMP4pWOKZhgeMEUzDA9E841V3lpCkDBQ/t/uHEuRGbfWzuryv2v9iJNoDybS1jt6mm2brboc0zOrVNNS7kvpgqWxTDIwVk9rNiJ+TqtM7sPsZ432Eq29f1H0lDFWiNIYirahzebccr/gN0uZ0D661iGZxip/ed6SB7D+o8UJw1qldq2ATl0Tvh5zGGM13WQ/AyUja4Fv3r1hGL9oTNEMwwOmaIbhAVM0w/BApKla2ZJG+/AcG/HxUDoE4j47MapUOhowE9o55zZ/ID93u79OMi9+XH7PQ+t7JBOBg6IdceAb55w551w3ks4HLWA9AqO9oQS+0RkyUaun4ZopDpMJtA3XorHDSqmKR5T7uqq0t0PQ0TGc8zXL0PGjeBpGS8xD+85IZuvXd/igx/w4uATGrqcnStUztAQPiiVKxRWCEcyCK5WWdHVsUW7OEMO4I5iiGYYHTNEMwwNRvsYdlcIhjFsa8H/gWQeqp5tsN+RNqcfa/2Rsy7z2Mts/4z0Z1H7hV7mV9fsfvSLW2pzpQqnMPgU5bbxQHeyk2wVfsxSCv+1QS45GG42va7/CwDfLdAIOamOgG7tpOefcFO1PpX0Vnr9WGY0clZz4fDqXz4OWiP1v198v960kB09XlMTngbSBioaSUDGERHBljBN2r8o7/AzH0D2rbCm2d0Nea81fYW80w/CAKZpheMAUzTA8YIpmGB6Ixhts3AU9adxqs33jERjJis1cZGBs1pW2YKDqkzU2rJNTadje9UU+nheP7xfrzfftksxqfUTbZqXSTxrA2WsafagenxaLKwy0Sull2p9r286mx2LdVaoAuqGcV94L+XpgK7tK+S1GGWxH7pxzN/IVsX55dJZkbl6R0eh6k0ScVqiBfq5pV8nwh5llaV95QGuLnSpVLJM1tJZ0ISRiBNZuzjDuDKZohuEBUzTD8EBUsonmxjBuaa6MbYr70k6qHyqVyTByJxmSiKvgu7XgeBXDaCVlHvGlL8sA8c7hNsncvMTfPYcZ2q7k764VclttxjLJiTxGJV7toiWKpw/A/rii2C15m22A+Zq0I9fX+ySz2ZRjmjoxH+T9LZmwjd3FnONZ4CPlIRpAIvZXXn2MZIKJvGaTTWXU1YTfBVjgrhyiSyaLk4gx71kb7VQ05Jcnp5wIHvXl9agpicf2RjMMD5iiGYYHTNEMwwOmaIbhgf8F4VtG+IP/hroAAAAASUVORK5CYII=\" y=\"-8.174219\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_1\">\r\n    <g id=\"xtick_1\">\r\n     <g id=\"line2d_1\">\r\n      <defs>\r\n       <path d=\"M 0 0 \r\nL 0 3.5 \r\n\" id=\"ma3747de2aa\" style=\"stroke:#000000;stroke-width:0.8;\"/>\r\n      </defs>\r\n      <g>\r\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"29.19\" xlink:href=\"#ma3747de2aa\" y=\"226.174219\"/>\r\n      </g>\r\n     </g>\r\n     <g id=\"text_1\">\r\n      <!-- 0 -->\r\n      <g transform=\"translate(26.00875 240.772656)scale(0.1 -0.1)\">\r\n       <defs>\r\n        <path d=\"M 2034 4250 \r\nQ 1547 4250 1301 3770 \r\nQ 1056 3291 1056 2328 \r\nQ 1056 1369 1301 889 \r\nQ 1547 409 2034 409 \r\nQ 2525 409 2770 889 \r\nQ 3016 1369 3016 2328 \r\nQ 3016 3291 2770 3770 \r\nQ 2525 4250 2034 4250 \r\nz\r\nM 2034 4750 \r\nQ 2819 4750 3233 4129 \r\nQ 3647 3509 3647 2328 \r\nQ 3647 1150 3233 529 \r\nQ 2819 -91 2034 -91 \r\nQ 1250 -91 836 529 \r\nQ 422 1150 422 2328 \r\nQ 422 3509 836 4129 \r\nQ 1250 4750 2034 4750 \r\nz\r\n\" id=\"DejaVuSans-30\" transform=\"scale(0.015625)\"/>\r\n       </defs>\r\n       <use xlink:href=\"#DejaVuSans-30\"/>\r\n      </g>\r\n     </g>\r\n    </g>\r\n    <g id=\"xtick_2\">\r\n     <g id=\"line2d_2\">\r\n      <g>\r\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"74.49\" xlink:href=\"#ma3747de2aa\" y=\"226.174219\"/>\r\n      </g>\r\n     </g>\r\n     <g id=\"text_2\">\r\n      <!-- 10 -->\r\n      <g transform=\"translate(68.1275 240.772656)scale(0.1 -0.1)\">\r\n       <defs>\r\n        <path d=\"M 794 531 \r\nL 1825 531 \r\nL 1825 4091 \r\nL 703 3866 \r\nL 703 4441 \r\nL 1819 4666 \r\nL 2450 4666 \r\nL 2450 531 \r\nL 3481 531 \r\nL 3481 0 \r\nL 794 0 \r\nL 794 531 \r\nz\r\n\" id=\"DejaVuSans-31\" transform=\"scale(0.015625)\"/>\r\n       </defs>\r\n       <use xlink:href=\"#DejaVuSans-31\"/>\r\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n      </g>\r\n     </g>\r\n    </g>\r\n    <g id=\"xtick_3\">\r\n     <g id=\"line2d_3\">\r\n      <g>\r\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"119.79\" xlink:href=\"#ma3747de2aa\" y=\"226.174219\"/>\r\n      </g>\r\n     </g>\r\n     <g id=\"text_3\">\r\n      <!-- 20 -->\r\n      <g transform=\"translate(113.4275 240.772656)scale(0.1 -0.1)\">\r\n       <defs>\r\n        <path d=\"M 1228 531 \r\nL 3431 531 \r\nL 3431 0 \r\nL 469 0 \r\nL 469 531 \r\nQ 828 903 1448 1529 \r\nQ 2069 2156 2228 2338 \r\nQ 2531 2678 2651 2914 \r\nQ 2772 3150 2772 3378 \r\nQ 2772 3750 2511 3984 \r\nQ 2250 4219 1831 4219 \r\nQ 1534 4219 1204 4116 \r\nQ 875 4013 500 3803 \r\nL 500 4441 \r\nQ 881 4594 1212 4672 \r\nQ 1544 4750 1819 4750 \r\nQ 2544 4750 2975 4387 \r\nQ 3406 4025 3406 3419 \r\nQ 3406 3131 3298 2873 \r\nQ 3191 2616 2906 2266 \r\nQ 2828 2175 2409 1742 \r\nQ 1991 1309 1228 531 \r\nz\r\n\" id=\"DejaVuSans-32\" transform=\"scale(0.015625)\"/>\r\n       </defs>\r\n       <use xlink:href=\"#DejaVuSans-32\"/>\r\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n      </g>\r\n     </g>\r\n    </g>\r\n    <g id=\"xtick_4\">\r\n     <g id=\"line2d_4\">\r\n      <g>\r\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"165.09\" xlink:href=\"#ma3747de2aa\" y=\"226.174219\"/>\r\n      </g>\r\n     </g>\r\n     <g id=\"text_4\">\r\n      <!-- 30 -->\r\n      <g transform=\"translate(158.7275 240.772656)scale(0.1 -0.1)\">\r\n       <defs>\r\n        <path d=\"M 2597 2516 \r\nQ 3050 2419 3304 2112 \r\nQ 3559 1806 3559 1356 \r\nQ 3559 666 3084 287 \r\nQ 2609 -91 1734 -91 \r\nQ 1441 -91 1130 -33 \r\nQ 819 25 488 141 \r\nL 488 750 \r\nQ 750 597 1062 519 \r\nQ 1375 441 1716 441 \r\nQ 2309 441 2620 675 \r\nQ 2931 909 2931 1356 \r\nQ 2931 1769 2642 2001 \r\nQ 2353 2234 1838 2234 \r\nL 1294 2234 \r\nL 1294 2753 \r\nL 1863 2753 \r\nQ 2328 2753 2575 2939 \r\nQ 2822 3125 2822 3475 \r\nQ 2822 3834 2567 4026 \r\nQ 2313 4219 1838 4219 \r\nQ 1578 4219 1281 4162 \r\nQ 984 4106 628 3988 \r\nL 628 4550 \r\nQ 988 4650 1302 4700 \r\nQ 1616 4750 1894 4750 \r\nQ 2613 4750 3031 4423 \r\nQ 3450 4097 3450 3541 \r\nQ 3450 3153 3228 2886 \r\nQ 3006 2619 2597 2516 \r\nz\r\n\" id=\"DejaVuSans-33\" transform=\"scale(0.015625)\"/>\r\n       </defs>\r\n       <use xlink:href=\"#DejaVuSans-33\"/>\r\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n      </g>\r\n     </g>\r\n    </g>\r\n    <g id=\"xtick_5\">\r\n     <g id=\"line2d_5\">\r\n      <g>\r\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"210.39\" xlink:href=\"#ma3747de2aa\" y=\"226.174219\"/>\r\n      </g>\r\n     </g>\r\n     <g id=\"text_5\">\r\n      <!-- 40 -->\r\n      <g transform=\"translate(204.0275 240.772656)scale(0.1 -0.1)\">\r\n       <defs>\r\n        <path d=\"M 2419 4116 \r\nL 825 1625 \r\nL 2419 1625 \r\nL 2419 4116 \r\nz\r\nM 2253 4666 \r\nL 3047 4666 \r\nL 3047 1625 \r\nL 3713 1625 \r\nL 3713 1100 \r\nL 3047 1100 \r\nL 3047 0 \r\nL 2419 0 \r\nL 2419 1100 \r\nL 313 1100 \r\nL 313 1709 \r\nL 2253 4666 \r\nz\r\n\" id=\"DejaVuSans-34\" transform=\"scale(0.015625)\"/>\r\n       </defs>\r\n       <use xlink:href=\"#DejaVuSans-34\"/>\r\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n      </g>\r\n     </g>\r\n    </g>\r\n   </g>\r\n   <g id=\"matplotlib.axis_2\">\r\n    <g id=\"ytick_1\">\r\n     <g id=\"line2d_6\">\r\n      <defs>\r\n       <path d=\"M 0 0 \r\nL -3.5 0 \r\n\" id=\"m616fb5c2ba\" style=\"stroke:#000000;stroke-width:0.8;\"/>\r\n      </defs>\r\n      <g>\r\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#m616fb5c2ba\" y=\"10.999219\"/>\r\n      </g>\r\n     </g>\r\n     <g id=\"text_6\">\r\n      <!-- 0 -->\r\n      <g transform=\"translate(13.5625 14.798437)scale(0.1 -0.1)\">\r\n       <use xlink:href=\"#DejaVuSans-30\"/>\r\n      </g>\r\n     </g>\r\n    </g>\r\n    <g id=\"ytick_2\">\r\n     <g id=\"line2d_7\">\r\n      <g>\r\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#m616fb5c2ba\" y=\"56.299219\"/>\r\n      </g>\r\n     </g>\r\n     <g id=\"text_7\">\r\n      <!-- 10 -->\r\n      <g transform=\"translate(7.2 60.098437)scale(0.1 -0.1)\">\r\n       <use xlink:href=\"#DejaVuSans-31\"/>\r\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n      </g>\r\n     </g>\r\n    </g>\r\n    <g id=\"ytick_3\">\r\n     <g id=\"line2d_8\">\r\n      <g>\r\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#m616fb5c2ba\" y=\"101.599219\"/>\r\n      </g>\r\n     </g>\r\n     <g id=\"text_8\">\r\n      <!-- 20 -->\r\n      <g transform=\"translate(7.2 105.398437)scale(0.1 -0.1)\">\r\n       <use xlink:href=\"#DejaVuSans-32\"/>\r\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n      </g>\r\n     </g>\r\n    </g>\r\n    <g id=\"ytick_4\">\r\n     <g id=\"line2d_9\">\r\n      <g>\r\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#m616fb5c2ba\" y=\"146.899219\"/>\r\n      </g>\r\n     </g>\r\n     <g id=\"text_9\">\r\n      <!-- 30 -->\r\n      <g transform=\"translate(7.2 150.698437)scale(0.1 -0.1)\">\r\n       <use xlink:href=\"#DejaVuSans-33\"/>\r\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n      </g>\r\n     </g>\r\n    </g>\r\n    <g id=\"ytick_5\">\r\n     <g id=\"line2d_10\">\r\n      <g>\r\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#m616fb5c2ba\" y=\"192.199219\"/>\r\n      </g>\r\n     </g>\r\n     <g id=\"text_10\">\r\n      <!-- 40 -->\r\n      <g transform=\"translate(7.2 195.998437)scale(0.1 -0.1)\">\r\n       <use xlink:href=\"#DejaVuSans-34\"/>\r\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n      </g>\r\n     </g>\r\n    </g>\r\n   </g>\r\n   <g id=\"patch_3\">\r\n    <path d=\"M 26.925 226.174219 \r\nL 26.925 8.734219 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_4\">\r\n    <path d=\"M 244.365 226.174219 \r\nL 244.365 8.734219 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_5\">\r\n    <path d=\"M 26.925 226.174219 \r\nL 244.365 226.174219 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_6\">\r\n    <path d=\"M 26.925 8.734219 \r\nL 244.365 8.734219 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n  </g>\r\n </g>\r\n <defs>\r\n  <clipPath id=\"p4fabb6213b\">\r\n   <rect height=\"217.44\" width=\"217.44\" x=\"26.925\" y=\"8.734219\"/>\r\n  </clipPath>\r\n </defs>\r\n</svg>\r\n",
+      "image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\r\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\r\n  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\r\n<svg height=\"250.052344pt\" version=\"1.1\" viewBox=\"0 0 251.565 250.052344\" width=\"251.565pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\r\n <metadata>\r\n  <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\r\n   <cc:Work>\r\n    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\r\n    <dc:date>2021-06-09T14:11:17.946663</dc:date>\r\n    <dc:format>image/svg+xml</dc:format>\r\n    <dc:creator>\r\n     <cc:Agent>\r\n      <dc:title>Matplotlib v3.4.1, https://matplotlib.org/</dc:title>\r\n     </cc:Agent>\r\n    </dc:creator>\r\n   </cc:Work>\r\n  </rdf:RDF>\r\n </metadata>\r\n <defs>\r\n  <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\r\n </defs>\r\n <g id=\"figure_1\">\r\n  <g id=\"patch_1\">\r\n   <path d=\"M 0 250.052344 \r\nL 251.565 250.052344 \r\nL 251.565 0 \r\nL 0 0 \r\nz\r\n\" style=\"fill:none;\"/>\r\n  </g>\r\n  <g id=\"axes_1\">\r\n   <g id=\"patch_2\">\r\n    <path d=\"M 26.925 226.174219 \r\nL 244.365 226.174219 \r\nL 244.365 8.734219 \r\nL 26.925 8.734219 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n   </g>\r\n   <g clip-path=\"url(#p8cdbfa3d76)\">\r\n    <image height=\"218\" id=\"image8cee45176c\" transform=\"scale(1 -1)translate(0 -218)\" width=\"218\" x=\"26.925\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAANoAAADaCAYAAADAHVzbAAAhzklEQVR4nO2dya9k91XHf3XnmuvNr2fPc5zYiROctBNBRBYRYZKQQCzYRQgF/gUUYIVgjZAISAQkhCBRFhmIogRk2UriTHJix2N32+3ufnO/92quOxSLrM73e6AqVvLrzfnsflen6o6nbp259sSn/3bugGAm17NuDUVcFdEmIpzKdWOvJJnOT0/EuvbOLZKpra6Iddlt8vE0YrEenstI5vRiQNvGW/L05yFdDjdfzcX67vP7JLOWDcV6VCQkc6Z+KtZxwNfjeFYX66DGx3Oa87ldP+7Jz31lhWS2/v0VsS5v3yaZ0e98SKyLTx+QzOWtK2K9Eo1I5ken58X6lYNNPp72QO6r4vtz47BL2z548W2x/sTqT0gmqclr+5c/+STJzN7oyP23+X7Ub8oHPW8rz0ckt7Wv8nnwFsMwfuGYohmGB0zRDMMDpmiG4QHVpZG3pfMjmLEBmB3JbdkhG5LNn0jHxrzfJ5laXRr/83PbJDPdlM6PyWpMMrN2AGt24BTsQyFDturlJNPpSWN/JWXjPwvl5xLF0bGRyPPP5yHJRKn83HQZr5NzbrUpj+nqY+xEWP+hdFBEN+oks/f7Y7H+7D3fJJkL8aFY/2B8N8kM8lSs53O+H9d218S6nPH1aPf4Wj/Sks/V4+kNknm7kM6gIOBnGJ1+rSt8rWdd+TnFN+XWfijXnat8zPZGMwwPmKIZhgdM0QzDA9Fklf87d69WYt2+MiCZ2qSQ6x0O4jq0v+46RyJlJv8XT9dSkpl25X/3IuNjzptyW97iw6ki/oNd1eW5xllBMmkst109XiWZ0UQedxBUJPNSJO3PSrFbZrm8Htr3RCFvwzOrn+V7tvNhabed+9cdksn35D37WP06yfThuD/ZeolkGoHMVthdY5vx8//5cbG+/z8OSebGJ9Zo2z+Nnhbrb209QDI7p22xzl/skUz7HXnV+hf5+ahV8ly7P1X8FeCfqOVsn9sbzTA8YIpmGB4wRTMMD5iiGYYHosYuG3fdl2RWd9lmB0U4moh1tb1BMpOz0iNRKxRnRCJ1fdrhoCU6P5Q4r6vi/3/tnHMlJ73zvqYctDzuSwdBPuDM/OhQ7rCxw46O2kSefxCyTHMMMmxXq8H4wd3SQVLbmpLM+Al5z4oX2Dn10GffEOuPrn2GZP7svd8S6481XyWZ92TSifLj0XmSaV+T5zrdZg/W6ssz2pbelvfj+j383eFYXqPWHj97g4tSBqtNnHNu5TV5XbX8gTKTz/DwQoNk7I1mGB4wRTMMD5iiGYYHopWXObCZr8r/mOGA/ydXHSkz2eaM3aIu9ThQbLTJijS4Zh22P0owiebKzwPaZGWD91UqFbQuAdsmUoLBWPmrVGFXidymnUdQx2RtPpzsEJK1b/MxzzpsgKJNdnb9mGRCCH5f+9RZkrkUXBTr1vOcePzPHVmF/YP1iyRTDzk5G8F71j/Ptu90ha/jdFVeo/iUZer7Uma8xTIZxMdXXuUbEo3k9S8a7CAYnpEncnoPidgbzTB8YIpmGB4wRTMMD5iiGYYHoqLFBmg4hsz8kg1yDC5ihr1zXI2KGfbOOTdZk9sKJag8hyBhmSktv+Crq1gphWU/h4sgWz9JFxvxgZI9H3VkMDi8W3GqwEGWJf/O7U2kYa1VBq90j2nbB3uyLdx6yk6uAiL95RO8/929M2Ldvcb3fvIFmVH/35c7JPPMw6+J9cU6t7YboA9FqWYo63z+bdntzsUjxckGz1V6yDKtHXnv41O+93NIqJh1OWK9f1l+LmpwBYi90QzDA6ZohuEBUzTD8MBSLZZmGxyMHq9Dq+S6EqCFv/daom8Fph3aYz/7HLTtVn4eiibYRNpPiGK3RbE8yJXmmGTSSP7nnhZ8kCijVU9j96x7W9xuez2WttVKNCQZrXvWjSm3AEe6kTy3cZdvyHNPSXvrzPNKRfGevLhFg5Nob12SFdVbKXdACx+VLdLz19jW63K+sksG8pi0LgGNHfk8JH22meNTec9yJRFgsibv9eCs8mDBvQ6ucpDf3miG4QFTNMPwgCmaYXjAFM0wPBBhhbNzzpV1GcTWgtHk/GB7lJwfheIwKcFuzFtKZjw6MZR9zaFtXNTk4GO9wSW0GDTWHB29TDoRzjROSeZoyg4BBAPGz+9xK+2DE5kIEEUcMF5rccvp861jsZ6hl8mxg+ZgzBXNH4DZY68/8hDJNHelE6H9Dgdo33hrS6z/8Nx3SGb9Aen4+fvBMyQzPeIMhgB2lx7zM5OeyuuW7k9IZrYqvxsrSZxzLm+Ao0MpALnwZSmT7VpLcMO4I5iiGYYHTNEMwwO1y5/6a/qDWzSk/uH/VOecy1uwTcnhrZUQWFxXvqcjZcq6koyrVDQTmfxco8uB54aSMDyaSkMyz5UWW2Db1K6wPdaDwGp2xH/mk77cv1a5HvShu1hbsVEmbBPl6/KYpiscfN17Qtqf4WMnJPPJu18W6y/8z4dI5tJX5f5nbcW2acpnaPy7xyTzV49+Sax/JeO28jcVm/kzr/6BWJ9+nUd9oX+gscPPUAH+Ae35LKBSv3mTZVo35L2erNgMa8O4I5iiGYYHTNEMwwOmaIbhgWjaZV0rGlj1zAYgJpCjYekcz5bSqmWxTZvq+Fji5yCALPxECfRGIW9rQLfzkxkb3+WuPLl0rFSKw8i0MlYCxgkEP9tK27hN6dSYR7yv2/fzMWJFg9beOr9HOojainMIZ2bf9Z6bJDN7VlZhz5XW5slAOqeyz7VJ5i+2/0isj97DjrDP/8bf0bbtpkwYGBTsDPnzP/4Xsb4/2SOZGEru//HoIyTzjc/JWWzpCR/jeFVe/GjCz7C90QzDA6ZohuEBUzTD8ECE9phzevIvUoJto41EmkMHJ63Cmli8a+eUtt0JdLNqpBwMziIO9GL6Z6h8d7kmDZ4pj1V2M/jJqmELMOfcEOzI6ZA7kGHrsCjlY75viyuzA/hcgW3MnXMbYMiFNaUtGHB5403a9sW75Jikldf5GLEdvJLj7OoHcv8Xvs7X7E+u8tio00flvW3/GnfY+s2m3FY5PoDfe+O3xXr3c5zkvXpD3vtSScLHW60U19sbzTB8YIpmGB4wRTMMD5iiGYYHIs3xgcFndR4ZziyLFrfpLjMlMx8C1trsMVdCoDfjwHMcQxtz/hYXK+WxcSCN5FadI71FIgO7p32Ozs/h1OY1pVIBg+GKwyRrSkM/jdnRcO1wlbbhd690uU1dAgF7bJHnHDtVGsoQt8lT8rura4uHg2uVyTgvb9bmB639tpJksCvPdbzGrfaefO5PxbrzFj977SuywrvV5XPNlcoEZB7AjHVzhhjGncEUzTA8YIpmGB4wRTMMD0SY4eEcOzqKpuLowEwIJckAZebazDKc/6U5QyBbA/vlO+dcvIShHwV8kI1YGsClYsmuQZs6LetkMJEXEp0K2ncPB+xEmEC2yLjiGxQmfB5VLi/2cMJZJ3PI1n98jTPzsff/Qc4t6X7rwRfF+r/ueppkVl7Ddgf8m45J/9FUuffaJvhc74rSWvAGOGwyrniYrkunlubEqMGjViYshLdaufX2RjMMH5iiGYYHTNEMwwPqfDQoslUzr9Em02ZGU6B7icz8mjKzOYUgbpYo/8khsJuGbKNpoN22knGbuiyU+1vPOBhcX5EyU+Wi3RrJmWE3lRnWU7CtQsXW1CjHcn9FwftvdaT99WjzBslcm6wv3NdmIiucJx/kedmVMiOMZKB6XLNtsGXhsuBs9nm8+J2iVYrT8WgFD9gdv7IKa8O4I5iiGYYHTNEMwwOmaIbhgahQxnpVqTTmtMzrZQa4U0a/ZuxC8FUr3U/ixW0KMGCtBYw10NGhfQ7nimlVAL1YNkXAtm3OOXcUNsU6CtmyHoFTo1ICz9GAL3brUB6j1ns/Wpfl/e2AHT8HMxmgvlg/Ipkczu1jd3O7g2/f916x7lxTHiJAfc4WJ887pzoowNGiOCi0ADXJwP6x4sA556p48RfZG80wPGCKZhgeMEUzDA9ElVYZjcnA2nxqrIzW/qa+i1ij1u4Nq4yxUtg5tq3QrnJOTypOwDCIFEOhAEPhZMbJwJgwjJ9xzrnXdjbEOv0eJ+xuHCy+aPGQzyM7ktdovM422q2TC2L9N0/z/t+3JYPYWoV1CQ/I2eyYZIaPykTszjW2WSlgrdhRGpTEq9lfS3w3bqvSxbYW2mzLYm80w/CAKZpheMAUzTA8YIpmGB6IlAJepzlIEK29HFIrlsiGxuppZa6Z1jMfQWeIFnhOAv4ezPKPlPTsOgS1Z1WTZDAzX+t9767JzzV3eF+dN2UQOX6bB6i7ij83u1fOCCvqHOiu78trUn6tRzLPXZaOnqeeeItkGoF0dOzmXZL5wH3XxPpK7wGSSU7heDRnxBL+ES2ITI6OkO8HtYkLlohgv0vsjWYYHjBFMwwPmKIZhgc0k4TnPWlBOuhWVZsoc6NghvW8zvZXAknEiWKPLZMwjLaWZo9lStU12l91JUCLVMqMrFEhbaJ3jnokU7Tkxd77da4U370sjebo5BLJhBOljTt8d/eBQ5J5cFXae/sTDljfFU/EejLnQPNWeCzW/YoD+E/1ron1D+9jG23ruzDTTUnOXWKEmx6MBrtNq9zH18xSScbKqwkfNeycpezKMIxfBqZohuEBUzTD8IApmmF4IFKrU9GJobSgDkbgIdFagkOG/zJzzRIlYD0ppEHeTSckg5XSmuOjE/PnmqEMvnYjrjpGUsXRUoCVfCPmIO60JT93fpuHnG82+mLdjnlem+bBwqrv97eukcy5mPeHXIqkzMuzbZLJwGHUC0ckgxn+2QMnJDP/fmfh8WhQdYkSaEbHRqW0mytTuU1rN0ft7pS5dxRVt5bghnFnMEUzDA+YohmGB6LlgmtalG5xticmJ6dKh6sMbLRSScaNIYiN9tjPtkmZ9ZTbVGv2F1YQaxXFaSD3l0ccwW+E8nP7PQ4GvzKUgV20PZ1jmyxXKrW7KZ8HnttGdEoyaH/dE3MV9skSVc7tQNq6/Rq3/z6dy23PnL9CMt9rPCHWoTa2SQFuhwtmymx0sMm0TlVY4b0U8yWS6RUZe6MZhgdM0QzDA6ZohuEBUzTD8ECEGfbO/R+zplEGbPS54hypQYAaW3trdDMOKrch0LxMMFpzaizj6OiGPPssAY/RTClnwArec41jkrnVaYv1yYCdCG9Gcj4Zzth2Tg+8Y4A4V7Lum9BuL62xM+Q6ZL03Aw6Yh5CdgBXXzjkX1xYH0J9df1KsO28ps7kVh0U0lXJquzn3LqqnFSeGlq2PUIW3krxhbzTD8IApmmF4wBTNMDygzrCmHMllumJhi3DnXJxJ+0dLGMYOV2iPOcc2mda2+zSXwWAt0KuNW0IbLcNoqHMuq8E2pXUY2ilrMdt65zoyiMwTpJ076MtOWSstti12xm3ahhyXPI/rGMYtdSsOfO+XPbEOFIOjX0nbkq6Pc247OoH1MckU0ExMydV2WoZuOIGRYYodh3ab1iUAE4+1sVFoo2kV3/jdmoy90QzDA6ZohuEBUzTD8IApmmF4IFJsf1dBN+l5qATyIKgdNPmL4hgC1koruVYinQhaK7lmtLgFXD2Uhv12wtnr7ZAdLRigrpQI5WgunR9DxRkSggV8JuGK4kFTfk6b4RZ0oAWbUs0wU+ZjD6Dd3UHBDpMJWO0nFQeaEXR8OMeOlrjG9xUD3W0lWQCrO7Ssd6VQY8m2cD9/Zr7aSg4cJNpM7RqcWpBb9r5h3BFM0QzDA6ZohuGBKFTMnwKKg9Uk41jaJIFixzUz+eUrmVLhDPbXSsIdlbZTaW9pycFnoMMTJgI7pycDow0yKLm9dbBEX+oM7BStlfZmIjtcTRssg/aXFnifKdtSMCZaij26DR2/lvmV1dp938p7Yt0N+b4eV9KO21BkAhjrpdk2RaaMW8rk52Iupqcg9lzpXoVBbbU9PiYsR1rre0hyVsZI2RvNMDxgimYYHjBFMwwPmKIZhgciJfbpyhSMOaWVd5TKbXHCQUuslu4lbBA3I2mgX8iUNtmxdIb0lCpoZL9Yrt00BqixUtk550YQwdecMVDQq8pg1bGW4T8oZVC7X7AzAq+Zc+xE0TLqu4F0ovQrvq8YjL463SCZ9Uh6HzRn0Q44TLZDTiCggLWWPa+06Q5K2J8S6MYW4Fq7OWz3Hc4Upx92BFecfvzFvMneaIbhAVM0w/CAKZpheMAUzTA8EHXfZEM2b0PEPmUrtQaty7pNdnTgAHcczO6ccxuJNKzPxMckg/O3cD6Xc8s5P9oBH6PWlo2AbBF0jmjb0GGggf36nXPuuOAWBEgrZGfIGKoetJllWU2e602lTduV6aZYv3DEw+p3BzxXAHl845ZY35/ukAxdesWpUXJHPEeXTcn60FoXIFgoon0Gs1W0qgB04mjt7+yNZhgeMEUzDA+YohmGB6L2W/xf/vaD8j94qVQ946yzOGBbD1tX92Le1xYEo7FS2TnncvjzfJivkszb0zWxniqReAwYO8cB4ndGPZKZgKGgVkbDNYqU67GVyez9umajzWQ1AbbRc865acnndq5+LNaaHZvP5fm/nq+TzNduPSLW2P7OObbHtar4XWiJ9+PJBZIp2vIaaW3jylSxibh4naBsfa3dN4qoM6xhvbiQQ52XbW80w/CAKZpheMAUzTA8YIpmGB6IBhe4nVjRhCCd0vIMjf1QMf7RSNacEVjyXyo946eVdEbcmPZI5mgmjfaJ4jC4NeSg9s23pROlNlNK55vS8RNEfK4hbKsp8+JuNOT+mwkH8Mc5Ol5IxJ0m7CDB5IBD7EfhnOtXB2L9Dzc/SjLvvCYD1tkeR3Fvx9LR8eTHX+GDBL669xhtmzfk81AmvC+tBZzWlo5kSpRRgtpL9NXHrH/VGTJfHNS2N5pheMAUzTA8YIpmGB6Iph3FJoFNoTLXLACbTAtaYmBXS8Z1YKZogWYMKh9OOYiK+9obcUvsnVc2aZvLYK7zFgfVZxN5TKsrXBldlPKiHe/x/o+OpG110mEbrTqS12ieslFw0uRqdjz/h5qcxPt6IW201795D8nc9w15/tF+n2SQ7zYfpG1nH9sV6/3nz5BM2JHnphSTqzPT0NTXAt3vBnWuGSQVq5XamJyszHSzN5pheMAUzTA8YIpmGB4wRTMMD0RYTe2ccxW0l4uV4GsFQey85GDjoJBOjGC62GGiZavfnsigurYvbG13c7dHMvOmUikOMwR6X2RHS/uqzFa/dZmz3t2Hj8Wy/haXBneuyX3lTT5XHDU2OqP03l/hbXuBdL48m91HMuiM0mbjRa/JEfbzPjtDahfOinX7Kv9e969K58fqHnsabl2Wz0Pe4u9RiskpQKz1uke0QfCIOp9thhUGfIwVZP3jZ5yzN5pheMEUzTA8YIpmGB6IKqXL0DxbXEaKtpVWdTwDW+qo4oRhnP91NFJmJh+D3XTAM6QHR/I3Y3WH/2/nTT7G+oE815UX9kimBi2oz3+VDYfrgaz6XrnK17C+L6ueNdti1pM3JFDs0dmJYhOF8rpdTbgKPYHo7+wxDs4PPnK3WGf7XKkd9qU9vPUclzzPocp47ykO4M9hpvlkle9PQ7mPwRI2mVYtvQitJTl9r9ZxC3MslI7x9kYzDA+YohmGB0zRDMMDpmiG4QF1PprDamElMx+z9UvFGYJt0bQWbAcD6eg4uc0BY9eX3xMPeF/ZgTye9tscjVXbOUMJc9VhZwwS9HkQ+/mvS4eAFvysTeUx5ZtcBY1tqZM+X7N5oLQzm8lzm064UuJgLPd3Zo2dGNc/IeehBVMOqsd9eY1a10mE5opphRvhUJ7seJvPtbGrVCsXi9vULdPpnYfFKy3p4JnRKr6RMrF2c4ZxRzBFMwwPmKIZhgcirYIVeyWnMQtl0MFJq7DG5N9S6aY1K6TMvOD/29FYfq5WscxENrNy0x4bBVpiKSbxBjl/LhpDN68hB18be/J6hBPeWbkmbZtpjw2JIpPnNllVrlmPNrmiAy3aQ94/dio712Qb7XBLJhUESkJ5He795HE+jwyemXMNrkpvREpkF3jn+5wc7dCU0zplYRW2Nlc6//mTk7Uq7GiE3bzMRjOMO4IpmmF4wBTNMDxgimYYHogiTuB2biL1T8vML5SsciSF7OxccYYgQcZGfAEt8SrF2Ewgez9WRkhrQVOsXtACknkLgsFKljk6X7TgOAajh+fY+C7WpKMhbrHDYK3LjoUVcEZp9wydUc2IqxDWWvKBeHiF29Zdyo7E+mxym2TuimVru+GcL347kIH/L91+kmR2h4sdFNo8smqJFnSYiV9T2sRp95GF5DKgduT2RjMML5iiGYYHTNEMwwMRVhg759zwWBoTkzUuw0YbIIk4qI0V1qUSaEa09uNhVx5jvMH7mqxJG2Ay5GMOxkogMYekUeUQS7Sb6pywXO9I22a7xd2jWmATbWYsc2+2L9btcEwy+wUHzE8KGWi+NlojmRvDrjzG9JRkZl0ZfH64eYtkLsTSRtuOjkkmg0wAnAPunHMVGMSnBSd0x0MlywBuoxYgfjcjmQIlWeLdEOTWBcsw7gimaIbhAVM0w/CAKZpheCBq3uBq4cmKNEpv97jKtupB67SGFlhc3L8rCqXhiFUBzjkXQga5lpl+bksGVtdTDupqYAu2zZgdFCFY0qnSS7sRLM5Ex5bcvZCzBc5GMvhbKb+FN2crtO3uVDpRukomQgDncW+6SzIfab4m1nfFxySzX8rnY1hx+7+8Jp0qWY2v2WQuHSSX6ock89aQHV/Y/q/Y5GA4BprjETso0BmCCQU/E8KdswhWeNdyC1gbxh3BFM0wPGCKZhgeMEUzDA9E8S5nB3Sb0pDNO2xsDi9Cyb3SSm6egpGotDsIYVuiZYYon0MwUyVSGqmnSt+GdUjz1xwdSK5Yza+PtxZ+LoZjuh1waz3M+hiUSrs35dweSm+KNWZmOOfcpURm1L8PPuOcc1uh/O3tKy3Y8LubIV+zGfyGJ+RVcG44l9/zeP1tkvlG7xnaVr8uHVZ5g69jPF7cSg49G1pf/VqwREs6+JgmY280w/CAKZpheMAUzTA8ENVGHLBO92TGeO91tkmqUG4bNTk7O4LW4pFif2HAehlaCVcGjwppRx5Mud32espl1wc5yyFT6JveL9huqoOdcj7lquMKbILbOc+LQ/sL54A759wjDbatNpQsfwSrnkOlovhqLn97S8f3vg12bKbY0BMwXLSW8Uge8LOYN3n/jVxeo1AJEEdjaBu+RKW01sYdg9raDDWcWR1MWcjeaIbhAVM0w/CAKZpheMAUzTA8EM2HnOUejKSRnu2zoyPdkhnck2OWKaDkP1acIRjE1nr48yw27fcBHC9Ko/1WyE6URiiz7rVgNAbDL9aPSGY9UvrbAZi9rzk1YggGn1fK9O9PuAXcBI57R2l30Azk+ZdaKvoS4L60Ko0G3DMt6WAXWl3MlGtfKi0C56l81jQ/yzLt5qhNnOJUWcaJEsCchZo5QwzjzmCKZhgeMEUzDA9ELuLZVrXZ4sTa9FT+n41G/F92NpJ/sONY+S+fStsqUaqncfZ1GnLCLM7a2kjYZkJ7zDnnArfY/sM2cZo9hsnImq33cHZDrDtKgPa0ksFwrTK5rVRzo92UKcnRmAx8U7HjELQZnXOuUZvAmm2bBBJ0teTkpWxEJRe4aMsgfpny92RH8jmqFBm0ybQ2cWW6+F1U1qUOBTO+ZvZGMwwPmKIZhgdM0QzDA6ZohuGBqJZydrjDStNQMSTB3otPFWfIGsw1U+ajUTBakalH0rDvJZyprs36QjQHBTo/tLlibXCiYNs27bu1KmhsW6fNDMvn0rDGzzjn3FHJWf/Yuk11NMCl3QrZqdMGx9N0cXG7Ujvt3GEp958rVQANcLS8VHRJJj3hb59swCw6pU1cmcmT1TLz8RbpVdgSHAzvnNK2LuYDsjeaYXjAFM0wPGCKZhgeiOYFB9dcR3YVqiLWxxrM6c0O+P/trCf/q+ZtDo7nkFiapWxroU2G1czOcdJqueRvCLbyxiroXyZahTMm/jYCvh5qENvJILL23Q0wrDUZtMlmSgAfr/Vsibl3sWLJoT347f59JBON2SY6PidttLzJ+8cEivRkcfcqLYE4gOrp5JD9A1Umn+taYfPRDOOOYIpmGB4wRTMMD5iiGYYH2DvhnKuNpQGeXeW5VeGWDC7WKm7BFrwCw8Bzlhk+Kp0R3Ywz2jGorQaMKxhMrwSetQrrCoLzWlAbg8845FwjVBwWiFZRjAHqScWV66HSfh33prUEH0HbPK2aHZ0WiXKtIT6rfg9+aqgkIiDPvnMPbVut8zUabcOQd2U0XXYs75mWhR8P5FHWlOz99FQ+M1rb8KIh71E00KpEDMP4pWOKZhgeMEUzDA9E841V3lpCkDBQ/t/uHEuRGbfWzuryv2v9iJNoDybS1jt6mm2brboc0zOrVNNS7kvpgqWxTDIwVk9rNiJ+TqtM7sPsZ432Eq29f1H0lDFWiNIYirahzebccr/gN0uZ0D661iGZxip/ed6SB7D+o8UJw1qldq2ATl0Tvh5zGGM13WQ/AyUja4Fv3r1hGL9oTNEMwwOmaIbhAVM0w/BApKla2ZJG+/AcG/HxUDoE4j47MapUOhowE9o55zZ/ID93u79OMi9+XH7PQ+t7JBOBg6IdceAb55w551w3ks4HLWA9AqO9oQS+0RkyUaun4ZopDpMJtA3XorHDSqmKR5T7uqq0t0PQ0TGc8zXL0PGjeBpGS8xD+85IZuvXd/igx/w4uATGrqcnStUztAQPiiVKxRWCEcyCK5WWdHVsUW7OEMO4I5iiGYYHTNEMwwNRvsYdlcIhjFsa8H/gWQeqp5tsN+RNqcfa/2Rsy7z2Mts/4z0Z1H7hV7mV9fsfvSLW2pzpQqnMPgU5bbxQHeyk2wVfsxSCv+1QS45GG42va7/CwDfLdAIOamOgG7tpOefcFO1PpX0Vnr9WGY0clZz4fDqXz4OWiP1v198v960kB09XlMTngbSBioaSUDGERHBljBN2r8o7/AzH0D2rbCm2d0Nea81fYW80w/CAKZpheMAUzTA8YIpmGB6Ixhts3AU9adxqs33jERjJis1cZGBs1pW2YKDqkzU2rJNTadje9UU+nheP7xfrzfftksxqfUTbZqXSTxrA2WsafagenxaLKwy0Sull2p9r286mx2LdVaoAuqGcV94L+XpgK7tK+S1GGWxH7pxzN/IVsX55dJZkbl6R0eh6k0ScVqiBfq5pV8nwh5llaV95QGuLnSpVLJM1tJZ0ISRiBNZuzjDuDKZohuEBUzTD8EBUsonmxjBuaa6MbYr70k6qHyqVyTByJxmSiKvgu7XgeBXDaCVlHvGlL8sA8c7hNsncvMTfPYcZ2q7k764VclttxjLJiTxGJV7toiWKpw/A/rii2C15m22A+Zq0I9fX+ySz2ZRjmjoxH+T9LZmwjd3FnONZ4CPlIRpAIvZXXn2MZIKJvGaTTWXU1YTfBVjgrhyiSyaLk4gx71kb7VQ05Jcnp5wIHvXl9agpicf2RjMMD5iiGYYHTNEMwwOmaIbhgf8F4VtG+IP/hroAAAAASUVORK5CYII=\" y=\"-8.174219\"/>\r\n   </g>\r\n   <g id=\"matplotlib.axis_1\">\r\n    <g id=\"xtick_1\">\r\n     <g id=\"line2d_1\">\r\n      <defs>\r\n       <path d=\"M 0 0 \r\nL 0 3.5 \r\n\" id=\"ma43117e8d4\" style=\"stroke:#000000;stroke-width:0.8;\"/>\r\n      </defs>\r\n      <g>\r\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"29.19\" xlink:href=\"#ma43117e8d4\" y=\"226.174219\"/>\r\n      </g>\r\n     </g>\r\n     <g id=\"text_1\">\r\n      <!-- 0 -->\r\n      <g transform=\"translate(26.00875 240.772656)scale(0.1 -0.1)\">\r\n       <defs>\r\n        <path d=\"M 2034 4250 \r\nQ 1547 4250 1301 3770 \r\nQ 1056 3291 1056 2328 \r\nQ 1056 1369 1301 889 \r\nQ 1547 409 2034 409 \r\nQ 2525 409 2770 889 \r\nQ 3016 1369 3016 2328 \r\nQ 3016 3291 2770 3770 \r\nQ 2525 4250 2034 4250 \r\nz\r\nM 2034 4750 \r\nQ 2819 4750 3233 4129 \r\nQ 3647 3509 3647 2328 \r\nQ 3647 1150 3233 529 \r\nQ 2819 -91 2034 -91 \r\nQ 1250 -91 836 529 \r\nQ 422 1150 422 2328 \r\nQ 422 3509 836 4129 \r\nQ 1250 4750 2034 4750 \r\nz\r\n\" id=\"DejaVuSans-30\" transform=\"scale(0.015625)\"/>\r\n       </defs>\r\n       <use xlink:href=\"#DejaVuSans-30\"/>\r\n      </g>\r\n     </g>\r\n    </g>\r\n    <g id=\"xtick_2\">\r\n     <g id=\"line2d_2\">\r\n      <g>\r\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"74.49\" xlink:href=\"#ma43117e8d4\" y=\"226.174219\"/>\r\n      </g>\r\n     </g>\r\n     <g id=\"text_2\">\r\n      <!-- 10 -->\r\n      <g transform=\"translate(68.1275 240.772656)scale(0.1 -0.1)\">\r\n       <defs>\r\n        <path d=\"M 794 531 \r\nL 1825 531 \r\nL 1825 4091 \r\nL 703 3866 \r\nL 703 4441 \r\nL 1819 4666 \r\nL 2450 4666 \r\nL 2450 531 \r\nL 3481 531 \r\nL 3481 0 \r\nL 794 0 \r\nL 794 531 \r\nz\r\n\" id=\"DejaVuSans-31\" transform=\"scale(0.015625)\"/>\r\n       </defs>\r\n       <use xlink:href=\"#DejaVuSans-31\"/>\r\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n      </g>\r\n     </g>\r\n    </g>\r\n    <g id=\"xtick_3\">\r\n     <g id=\"line2d_3\">\r\n      <g>\r\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"119.79\" xlink:href=\"#ma43117e8d4\" y=\"226.174219\"/>\r\n      </g>\r\n     </g>\r\n     <g id=\"text_3\">\r\n      <!-- 20 -->\r\n      <g transform=\"translate(113.4275 240.772656)scale(0.1 -0.1)\">\r\n       <defs>\r\n        <path d=\"M 1228 531 \r\nL 3431 531 \r\nL 3431 0 \r\nL 469 0 \r\nL 469 531 \r\nQ 828 903 1448 1529 \r\nQ 2069 2156 2228 2338 \r\nQ 2531 2678 2651 2914 \r\nQ 2772 3150 2772 3378 \r\nQ 2772 3750 2511 3984 \r\nQ 2250 4219 1831 4219 \r\nQ 1534 4219 1204 4116 \r\nQ 875 4013 500 3803 \r\nL 500 4441 \r\nQ 881 4594 1212 4672 \r\nQ 1544 4750 1819 4750 \r\nQ 2544 4750 2975 4387 \r\nQ 3406 4025 3406 3419 \r\nQ 3406 3131 3298 2873 \r\nQ 3191 2616 2906 2266 \r\nQ 2828 2175 2409 1742 \r\nQ 1991 1309 1228 531 \r\nz\r\n\" id=\"DejaVuSans-32\" transform=\"scale(0.015625)\"/>\r\n       </defs>\r\n       <use xlink:href=\"#DejaVuSans-32\"/>\r\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n      </g>\r\n     </g>\r\n    </g>\r\n    <g id=\"xtick_4\">\r\n     <g id=\"line2d_4\">\r\n      <g>\r\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"165.09\" xlink:href=\"#ma43117e8d4\" y=\"226.174219\"/>\r\n      </g>\r\n     </g>\r\n     <g id=\"text_4\">\r\n      <!-- 30 -->\r\n      <g transform=\"translate(158.7275 240.772656)scale(0.1 -0.1)\">\r\n       <defs>\r\n        <path d=\"M 2597 2516 \r\nQ 3050 2419 3304 2112 \r\nQ 3559 1806 3559 1356 \r\nQ 3559 666 3084 287 \r\nQ 2609 -91 1734 -91 \r\nQ 1441 -91 1130 -33 \r\nQ 819 25 488 141 \r\nL 488 750 \r\nQ 750 597 1062 519 \r\nQ 1375 441 1716 441 \r\nQ 2309 441 2620 675 \r\nQ 2931 909 2931 1356 \r\nQ 2931 1769 2642 2001 \r\nQ 2353 2234 1838 2234 \r\nL 1294 2234 \r\nL 1294 2753 \r\nL 1863 2753 \r\nQ 2328 2753 2575 2939 \r\nQ 2822 3125 2822 3475 \r\nQ 2822 3834 2567 4026 \r\nQ 2313 4219 1838 4219 \r\nQ 1578 4219 1281 4162 \r\nQ 984 4106 628 3988 \r\nL 628 4550 \r\nQ 988 4650 1302 4700 \r\nQ 1616 4750 1894 4750 \r\nQ 2613 4750 3031 4423 \r\nQ 3450 4097 3450 3541 \r\nQ 3450 3153 3228 2886 \r\nQ 3006 2619 2597 2516 \r\nz\r\n\" id=\"DejaVuSans-33\" transform=\"scale(0.015625)\"/>\r\n       </defs>\r\n       <use xlink:href=\"#DejaVuSans-33\"/>\r\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n      </g>\r\n     </g>\r\n    </g>\r\n    <g id=\"xtick_5\">\r\n     <g id=\"line2d_5\">\r\n      <g>\r\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"210.39\" xlink:href=\"#ma43117e8d4\" y=\"226.174219\"/>\r\n      </g>\r\n     </g>\r\n     <g id=\"text_5\">\r\n      <!-- 40 -->\r\n      <g transform=\"translate(204.0275 240.772656)scale(0.1 -0.1)\">\r\n       <defs>\r\n        <path d=\"M 2419 4116 \r\nL 825 1625 \r\nL 2419 1625 \r\nL 2419 4116 \r\nz\r\nM 2253 4666 \r\nL 3047 4666 \r\nL 3047 1625 \r\nL 3713 1625 \r\nL 3713 1100 \r\nL 3047 1100 \r\nL 3047 0 \r\nL 2419 0 \r\nL 2419 1100 \r\nL 313 1100 \r\nL 313 1709 \r\nL 2253 4666 \r\nz\r\n\" id=\"DejaVuSans-34\" transform=\"scale(0.015625)\"/>\r\n       </defs>\r\n       <use xlink:href=\"#DejaVuSans-34\"/>\r\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n      </g>\r\n     </g>\r\n    </g>\r\n   </g>\r\n   <g id=\"matplotlib.axis_2\">\r\n    <g id=\"ytick_1\">\r\n     <g id=\"line2d_6\">\r\n      <defs>\r\n       <path d=\"M 0 0 \r\nL -3.5 0 \r\n\" id=\"ma374941881\" style=\"stroke:#000000;stroke-width:0.8;\"/>\r\n      </defs>\r\n      <g>\r\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#ma374941881\" y=\"10.999219\"/>\r\n      </g>\r\n     </g>\r\n     <g id=\"text_6\">\r\n      <!-- 0 -->\r\n      <g transform=\"translate(13.5625 14.798437)scale(0.1 -0.1)\">\r\n       <use xlink:href=\"#DejaVuSans-30\"/>\r\n      </g>\r\n     </g>\r\n    </g>\r\n    <g id=\"ytick_2\">\r\n     <g id=\"line2d_7\">\r\n      <g>\r\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#ma374941881\" y=\"56.299219\"/>\r\n      </g>\r\n     </g>\r\n     <g id=\"text_7\">\r\n      <!-- 10 -->\r\n      <g transform=\"translate(7.2 60.098437)scale(0.1 -0.1)\">\r\n       <use xlink:href=\"#DejaVuSans-31\"/>\r\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n      </g>\r\n     </g>\r\n    </g>\r\n    <g id=\"ytick_3\">\r\n     <g id=\"line2d_8\">\r\n      <g>\r\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#ma374941881\" y=\"101.599219\"/>\r\n      </g>\r\n     </g>\r\n     <g id=\"text_8\">\r\n      <!-- 20 -->\r\n      <g transform=\"translate(7.2 105.398437)scale(0.1 -0.1)\">\r\n       <use xlink:href=\"#DejaVuSans-32\"/>\r\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n      </g>\r\n     </g>\r\n    </g>\r\n    <g id=\"ytick_4\">\r\n     <g id=\"line2d_9\">\r\n      <g>\r\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#ma374941881\" y=\"146.899219\"/>\r\n      </g>\r\n     </g>\r\n     <g id=\"text_9\">\r\n      <!-- 30 -->\r\n      <g transform=\"translate(7.2 150.698437)scale(0.1 -0.1)\">\r\n       <use xlink:href=\"#DejaVuSans-33\"/>\r\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n      </g>\r\n     </g>\r\n    </g>\r\n    <g id=\"ytick_5\">\r\n     <g id=\"line2d_10\">\r\n      <g>\r\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#ma374941881\" y=\"192.199219\"/>\r\n      </g>\r\n     </g>\r\n     <g id=\"text_10\">\r\n      <!-- 40 -->\r\n      <g transform=\"translate(7.2 195.998437)scale(0.1 -0.1)\">\r\n       <use xlink:href=\"#DejaVuSans-34\"/>\r\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n      </g>\r\n     </g>\r\n    </g>\r\n   </g>\r\n   <g id=\"patch_3\">\r\n    <path d=\"M 26.925 226.174219 \r\nL 26.925 8.734219 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_4\">\r\n    <path d=\"M 244.365 226.174219 \r\nL 244.365 8.734219 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_5\">\r\n    <path d=\"M 26.925 226.174219 \r\nL 244.365 226.174219 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n   <g id=\"patch_6\">\r\n    <path d=\"M 26.925 8.734219 \r\nL 244.365 8.734219 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n   </g>\r\n  </g>\r\n </g>\r\n <defs>\r\n  <clipPath id=\"p8cdbfa3d76\">\r\n   <rect height=\"217.44\" width=\"217.44\" x=\"26.925\" y=\"8.734219\"/>\r\n  </clipPath>\r\n </defs>\r\n</svg>\r\n",
       "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD6CAYAAABnLjEDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAsaUlEQVR4nO2dfYxld3nfv885577MvXNn7rx4Z9/s3bW9xtgQoDXGBqOAKcTFNNCKVpA0citXSFWrgpI2mEYqjZRKILWBSInSWjWK26YxkCCZItLWcZ0QIBgvtsHv9nr9srve3Zl9mZk7c+e+nfPrH3MX/LzM3ru73ruznOcjWd7fmeec8zsvv3vn+c7zQiEEOI7z8090sSfgOM5o8MXuODnBF7vj5ARf7I6TE3yxO05O8MXuODnhvBY7Ed1GRM8R0X4iuuuNmpTjOG88dK5/ZyeiGMDzAD4I4BCARwB8MoTw9Eb7JOVqKFWn2bYQywMb50r5OOoNnnMwjgPiGyk1jiP2s44jz9+t6s/MrGSdX5zPvAxxwsywEPdDHhYAyNhPEqIzjzfahoSfMElSbRLzCcTGhMpRl5/LePiRuEmZYZOKSS61ysoGXXEh1vth3Uf17mkbtc18HmKjcf4wxPupjiPWb6u9iE6vaV0dEmvjkNwIYH8I4QAAENF9AD4KYMPFXqpO4/rbP8O2dWp8XiHW8yw0+AWNndAvlyQYV5aJYxdW9HGyAn8prOOUTvCX9OhNY8pmdZc+diiJFz7V10o98cA72qa4xOcYt/QckzW9TZKKNdGtaptuTS/SMNNh49nZhrLZUl1h44mCnuTe8Xl+rkx+8gOVmJ+rmRaVzUrKP1m//dxblE04xm1CohdS3NKfbIVlfv/Lx/V+5VN8W9w1jr0m7qPxIZoW+cbisv5kSRr8flDKj/uDp+/WB974lEOzA8DB140P9bc5jrMJueACHRF9ioj2EdG+Xnv1Qp/OcZwNOJ/FfhjA5a8b7+xvY4QQ7g4h3BBCuCEpGb8nOo4zEs7HZ38EwF4i2oP1Rf4JAL9yph0oAMIFQ/Uo9zkiw98hKSIa4lNrmvt7vbL2dZM2P06I9eUXGtzXtubzyu3c2d3y9qPKZs9YU23rpNonlVSSzkCbRpefv90b/BjjSN+0sYRrD/WidvStbdtLi2w8GWubyZj/FleP9f0oEz9/Znz3SJtWKCibw90pNi5cq/WSbyzdwMZjr+l71qvoZy0FysiQi+S7ZvnsUkTNyHg/m/zg0ocHANS4ZpGs8vsjRWhmu+FPBhBC6BHRvwTwfwDEAL4SQnjqXI/nOM6F5Xy+2RFC+DaAb79Bc3Ec5wLiEXSOkxPO65v9bIl6AWML3CeNhc/RmdLRKJ0J7utaASPy7/OFNe03Sf+7fFL/HXNtlvuER96vT/a3r3+BjWuFtrIZi7tqWyoidGIjGmYs4vcnMmxKIoqjZvyhPRI3qSCjQ4xtls1EpP3xmvDRq6R1hrrYr2QcW16/vD+WTTPTr2wl4vf/quK8svnBlbvZeOWFrcom03/CRyJubWlJP4/CKr+2rGBFzIhApKZ+rwpL/GTpuJ5Qt8KvP2oPESx02nbjHzmO8/OEL3bHyQm+2B0nJ/hid5ycMFKBjnoZCid4cEVW4SJEd1wHnhQbQmxqGOJXme+XJVb6HN924jotBmYfOMXG75zVYk8ixK+aVHGgRTQAmBTZKV2V8geUiO9XibX4V4kGB97EkAKdnk9VHKdsHLeAwUlH1rGlIFc1gnpk7EkL+n7E4vzThvBZCfz8ltD3ict/xMb/pXi7siku6v16IujTEtZ0tpoyUeJwYVk/V2rzHWMYz1lkwqnMuDMkhPo3u+PkBF/sjpMTfLE7Tk4Yqc8OQCWxxEvcj51oGL5MUwQbTI8rG+mm9So6IOH4W/nllm8+rmzeMsN99IKV+SDoGb73RKT9eOmjW0Es0ke3bCRlI6ilOMx+wke3/PNqpJ+HPr/22dviWqtG9pKMPanCKAMzBBUReNMwfPZ3Vfaz8Ze36vnMPqb3O7GNj9uT+vtRFlPpjZ3bd2hW4QFd7RldcUdWqikuDdZvTuPf7I6TE3yxO05O8MXuODnBF7vj5ITRCnTdHmjhJNtEY0KEiPTnT3drnY3Xtmrhoj3B91u+Sp8+vn6Jjacrg0uwFo3gmEyUL7GCOCyk2GYF1bQzLtLEkY6SaIvzW1VoZhJe3VWWWx41i0a2WkGIdkUjnVGKeNZVDFE1G9uF8FnZvaxsyg9q4bewwufduEI/6/KirO2tzx9EkFda1vcjXuMBQ+WjurpPd0q8+7K09Bnwb3bHyQm+2B0nJ/hid5ycMPqgGkEY48ko7e0TyqZd59Ns1fVn1PLVfJxdoYNaJso8ACEzfG25TfrngA60sfx6q92RbGU0TMCMrDhjkQ7xmT1ckI1OMrHmGIvrkGMAqIh7YtlIOsa9TjG4ms258N6dB9S259auV9sqR7mu0q3q87fq3Ka0pJ+Z7EYUFfS1tqu8s1D5mPbZkyZ/RoPaQbFzbvgTx3F+rvDF7jg5wRe74+QEX+yOkxNGK9ARgRJxyjYXHKKeUQlEiButWS2SdKe4IFQuatGsEIugFqMd02KHiyRWKWcpmsmqMBvRFLWKLYFQVrN5o0iNSI+WmI9lk5H+PpAtmKz9aoELpJdFWmyqqWCgwfexbAQZrWZ8jl3jO0wUO8JNtf3K5qmxX1DbKgt8x7XMEGyboq2YsaqkhquENQCZaPfUmdGtwGUFJpX1dob2T/7N7jg5wRe74+QEX+yOkxNG67OHDKHNExKoKFrwymqZAGQORXfCCBwoitbPRnKI9JGLsQ4Y6Wbcj5c+PAB0hM34mK7mYgWjyMqx0oe3tlmVZEsi+MVKqJGJL1blnFT441almmmj1XJLnM9qoyxbQh1LdZLJMXE6q0rttJh3yQgymolFpZpMH2dR3NetyZKysarQ1F7lz7ZV10lYcYvPKStpv1k+ohANDg7qVfRzTUSrKeqKm+hBNY7j+GJ3nJzgi91xcoIvdsfJCSMW6AD0uHgSpEBn0J7gYkavYvTIrnBBKIm1kJOKgIiOEVQjbSx6wmYh1uKT1f6pEove9IbYtNLTLakks6IKjcUzrR1in4aykYJYZnz2W6Wka0I0XEwrykZWz9lunF/2WreCc2SATNMUoPi2iqF9NYbIurMqzCSitHnc1s8nLQ9+Z9KiyHqTva+GJF4T79Vw8Vzr5zynMzqOc8nhi91xcsLAxU5EXyGieSJ68nXbponoASJ6of//qQs7TcdxzpdhfPY/AvD7AP7b67bdBeDBEMIXiOiu/vizA48URaAq74GbVrgP1LpM+0TtKVE9pm4EmiTceTE9O1WFRjtpcotZcUYkx/Qy7fuvpPo6rOCXQTavrk0rm4W4xsY7S6eUTSau5OnmdmUzVeABM6e62ve2qtK+t/IiG+8uLCobGcQyTKUai7IITiobiUlN8RyHqWZjVe6JjU5KJBK1jNMj6g2+tkyUyZVjQAfeWMWFMtGanKSGcT6JMCGE7wA4KTZ/FMC9/X/fC+Bjg47jOM7F5Vx99rkQwpH+v48CmHuD5uM4zgXivAW6EEKA/VszAICIPkVE+4hoXye7MLnajuMM5lwX+zEi2gYA/f/Pb2QYQrg7hHBDCOGGYqSTShzHGQ3nGlTzTQB3APhC///3D7VXRAgVnjXU3sI/ABb3ahFrbQdXKgpjuuRxbATRSHop/2xLjKw3yUpHC21bq7x10GxJB7lYQTWzhRVho69DYol68x1ebvtUTwtrMutuPNHBMfL8ls2Rbl1tW0hFyWMjW+3l7iwb10uvKZs9Bf7MGpl+HsdSLvQ1jV8iO+I7q2hEmqyKzLzlTGevFVb1+UOB3//UENZkP3brOFL6DYaQJgNtLBEvFdVsSIrDZ9Amh/nT258A+BsAbyKiQ0R0J9YX+QeJ6AUAf6c/dhxnEzPwmz2E8MkNfvSBN3gujuNcQDyCznFywkgTYUIhRneO+5tLe7gvtbJb+3+JCKIpl402RUP43z2R+NLpaX9Ytki2jquCagy/Wp4L0P73loJODpFBPJZfv3fsmNomkRVv6kbFme0JD8axEmEebe5W255t8wCdk2lV2TzR4Ik4rSmd8CSrxVjBOS1RqnU10xqKDJDRV6qr6fxk7Qp9nEV9r7MKv4+FplH9WFSdGaYKjQqGAVRSi3UcGdSjbLy6rOM4vtgdJyf4YnecnOCL3XFywkgFuqwQYXUHD2ZYETpJcUaXPC6KVk6WaCaFtTQzgh9EUM1ay6iSIzKmCkYbqaMLk2ycrerjRGv6czTqysAKffp0hotEVgBRfYJLUFvHtdAnA2S2lLVNo8yDY2qxDmcuGMFBL7UvY+OXmzPK5vAqv0cvVnT6xEOLb2bjt9UOKpvLCzwHa2uyqGxkUM9CWjNs+H18ZU3PuVfVyyFu83ctWdPCmkxwlC2aAKiAciujTb0PhoZHQ2TYbYR/sztOTvDF7jg5wRe74+QEX+yOkxNGK9AlwNqs6KVd5+LKREkLUsVkcHSc7NuWGtFHrY7oK25E0GUrwqal03KLJ0WW1bIygdHGTQkwZtmhk3zHKNUH6jV4ltvB6DJlI4P6HtmhhZ2eFAPHdV2mmclVtU1GEFrlvQqilPTR9oSyeXGJZ8YVDTGwWebqV6Oos9V2F46zsVWSOhKRiROJFiO7VSOico0/pLhj9BAsDC43pkpHWxF0Z4h+24iswN/FM1Xk8m92x8kJvtgdJyf4YnecnDDarLcIUEVVyqKvulGrV1aUsWwk0me0yFpG/+tlvi1eMzKPxKF7RrWtyPDHZQKbVaimtCiy7lb1tVbm+Y5xS58sFSWHxw/rR90r822taa0PLNV1a6u1HSLIqa4DoXbM8Iy2VaOt1YkV/jJ8v7lH2TxW3Mnn2NXXUS7w+cxWtM5QSYw60YJuVT/rMpcDEHWN0uI9/p1pBdWYWW7SJjv7FlVZPLyf79/sjpMTfLE7Tk7wxe44OcEXu+PkhNH2Z6f1wBq+jYsSbUOAkZSLWtkqJ1ykSQyBTgbnrCVGBtOYEAzb+vOwfIKPJw/o+ZglhYQAUzo+uGlG1NDiV1blgSWW+JOc5HOKelpoa4tSUUlLH6e9qq+/W+PiX1bTQqfsc/9qQ/f+bB7j5ayse91t8Ps4rhPjIHWtwzUdZLS6nRsF49nPWNlqQ3wdqqpkxmFkWWjrsDLIymizh15F9Ho7iyw4/2Z3nJzgi91xcoIvdsfJCaP12QOgch1EQILsoQ7oRIvYCKopxfzAVuDN7DgPtogMv34x5n5kzwgGaYlknqinK9VYARpjx/n5xg5on51SbpNVdOLHoQ/xKjCTL+nrGFvgQSSWbyd9xE7d8JmN68iK/Hzlsg5YmR3jra6eOLRD2Vz+f/m4vKD1iVhoFiHW+kAQySDz79SVatIqv9jqK8arb2gfWSKetZEII7tfBSsJSpWb1jYyYEcGb1moxJwzuPD+ze44OcEXu+PkBF/sjpMTfLE7Tk4YvUAn4k+oNfjzRoptlvgmK9VMFIxgFCH0SVEP0BlU3WktCE2W+bFfPGRUiuno/RoFKcBsUTa1l7hod+QW3UeNblpk41OFurJJi1wlsoQ2KSw1t2mbzpRWieI5Psc9MyeVzVsneT/25/73XmUz/r0X2Dg0dLlrupz3lTv6S1uVjaQyr+e81OPXVj5pCJZW+zURaBMZyXOUyh0HZ6IZ7QGN+Rhz9FLSjuMMwhe74+QEX+yOkxNG6rNTBhQawv8WPntmtG2SwS9W+yfZ7mi2tKJsKsLhaqusHGClwoNoTrS1zyx9/+1zi8rmyLPaH8/KfL/Fv68rqsy3+Jymp44rG9nGamWXTsRZ2yECkSaM3uOikm0oGf55VesaW6a4b/3emf3K5uYq98e/VvhFZdO7hgfaJAvaZ5c09ug5bn8L71e/8P1tykYGrBRWrDZOhq8tKr4GK1lGkA3hj0dG8FhalJVijbUgg67kfLy6rOM4vtgdJyf4YnecnDBwsRPR5UT0EBE9TURPEdGn+9uniegBInqh/39dncBxnE3DMAJdD8BvhBAeJaIagB8R0QMA/gmAB0MIXyCiuwDcBeCzZzpQlAKlZRlYwj9vzJZMwsZqNyQDbaQYBwBTBS6IFYz+S+2MZ7CVjJZEJztctNta1f2fwrVqE157lfcEbx+TdbWBIASxk6e0QBgn/B4WJ9rKZrzCA3+qRnWftUl+rVYlY2u/qya5aLitcErZ7E24QLr31gPK5snZXWxcntf3IyvwSd1407N6koKJ9+uAqqcOCDHQKCNuBR7J4JfzCWphxzW+ZrOiOL9xKvXqn0XLqIHf7CGEIyGER/v/bgB4BsAOAB8FcG/f7F4AHxv6rI7jjJyz8tmJaDeAdwB4GMBcCOFI/0dHAcxtsM+niGgfEe3rtvWfwxzHGQ1DL3YiGgfwZwA+E0Jgv7eGEAI2SJsPIdwdQrghhHBDoaSLHjqOMxqGCqohogLWF/ofhxC+0d98jIi2hRCOENE2APODjhN1Mowf5EkUJ9/MPwBSo3pMT/r1mf6Mkn5818g0KIvMj1qsK8WUE+6jTiU68OXVRPjeRnDONeP6dqzM8tKoh5p1ZdNKpR89WJ+wKunOlXmAylisNYzjbX7vl7u6Ko6VUDRb5L+hzST6N7ZaxO/JP9v+HWXzH1u/xOezTesTU1X+jF4xqtROlvgcb597Qtk8/eQVbGy1Xpb6EWAHtiibIVowDVN1RrZ1TqUPDygffaiWUaePP8iAiAjAPQCeCSH87ut+9E0Ad/T/fQeA+4c+q+M4I2eYb/b3APg1AE8Q0eP9bf8WwBcAfI2I7gTwCoB/dEFm6DjOG8LAxR5C+C42jrj9wBs7HcdxLhQeQec4OWGkWW9ZMUJjFw+cSMdEWx5DkGq3+TS7Zf0ZJcWlaqIDNGSATCXSwSgF0Vh9R0FXYSkKoW810+Wma5EW/7qBX8feMS3iNVJ+He0w+BHNGgJZKn4ZW0m1+NYTIqZVuWe6oAXK1ZRfbyvTtZMLxI+9t6Cz927b9jQbf7d4lbI5tjL4LzjX1LkY+day7hGVNPg7Qz0dUBW3tdg1xO3XFWVIv5/SxhLW5DarhZhElZ/2UtKO4/hid5yc4IvdcXLCSH32tAQsXSUCZMqi8kZbB8MkwiVeWh1TNuNFHjSyluqWTAsd7v+VZalbAKn4/KtD+6zS17d89kam55iJ7AfpnwPaR7cSeuS2yIjYSIU/3ky1X52oRCB9z1ZSfW0dEUS0mGp9pBV49ZiaEfhzZYlrFu1p/TrObuF6hHWtZeLPsUr6nslKulYCSaxfB41V8VW7/3o3cbrI2EcG8FiBODJWTLWVOsMc/JvdcXKCL3bHyQm+2B0nJ/hid5ycMNr2T9D92eM2Fxgyo4JILx0cXLDU4mKXFSDSGaLGr8yWOxXpTCxZmWUm1kEtHSPrTop2saHAjEc6y2wQTSOoRVbcOdHV1yGFtq5xf1Z7+tiTIhOuFbSwt5RxBcr6VqnHTTbeU1pQNoc60/zcRqbi1uIiG9cM4TUS7Z+s9ku6jZOR9WaVdxaBLVHXyMoUK83KaIvE+YfJpjujIiePP7yp4ziXMr7YHScn+GJ3nJzgi91xcsJIBbpAgArkkglDXaOcr/hMygzBbrXFD3wqNiLYRC8vq+STjHKzOBzX2XhrUZeSrsVaaJuMeTSeJexJrOg8Jeyl+loPCmHrsFECS5a3kuW/LBsAKItQMyuj7qiIvNsa6wxDSc0QJ7cVFtm4oELhgHrEhb6Wob5lCb+OrDBYIAOASGbCGa+HzFaz+qqHSO5o2Mj30TzOgN5z3uvNcRxf7I6TE3yxO05OGG1QDQGZjr/gJoY/TqJne0b6IN0CD+Lo9Ize68T9SOl7AjqIJDHSk9bSqhjrwJPt5UW1TVaP2W60TZIZXBbSjz/SmVQ2L6/yctdHGjVls9bm854abyqbuYrumT6e8Kyy2UTblEUq2GQ0OKDJqu5TFRmGEXQgkmzj1TCCjFRQjREcY1QER9waHLVyNuWcf7aP3iZjmobJelPag/vsjuP4YnecnOCL3XFygi92x8kJI896U0h9oWcE1Yge3dTRNr0WF+06ZS10kQgQaRi9zQAe2GFZ1ItcSKonWtiyykmpMxlqZSbKEFvZc00h0FkZbYeXJ9h4pamvZE6UYK4U9Jy3jmnxTZaXltlrAFAX6Y2TkS4JfVnMj72QahFRinYnUn2cg10uRlplsmTLPkuMy2SACoC0zLcVGlqMy4qiTLVRckrGJg0Ru2XaqIpbUsTzUtKO4/hid5yc4IvdcXLCyH32EAmnQvocZgUROTZ8K1HhptPVl1YqcD9SVrcBgLYIxpkd08kqstVUUZbfAVDIBtcXXoL2tUuiyorVZ35JJL5YSS5Ly/zY03V9HVdN8pZMVqUa69pkIo6VnLIqkmraQWsolyd828tdnfQjy3ZLvQIAlkUFoMdXrlA2Y8dFIozhn1v0Svw6hmnJNFSQjRHUIyvlWD67nHcsz+VBNY7j+GJ3nJzgi91xcoIvdsfJCSPPetNZO2Jc1qk+SpAzsoFkME6nrS+tVeDbqiUdRJKKaiEto2ecrN5yvK0DPWSZZgCoimotk4nO8pJVZ6webUfaPMvt4GJd2WSinHE50SJaQwhitYKuJrPaG9zrbaE4oWyKQlV9RZ8euxKd9afmmHEx1CpbHYsX4q8PXalsJpr8mRm31c5Ek+9n0ajm0xZls41S0lHvHARCQ8STUTNW9t5G+De74+QEX+yOkxMGLnYiKhPRD4nox0T0FBH9dn/7HiJ6mIj2E9FXicj4xchxnM3CMD57G8CtIYQVIioA+C4R/TmAXwfwpRDCfUT0nwHcCeAPBx5NfryIIBsrYCarcJ+IWvozSvrsVhupbolfbifWgS/1MZ4IYwWaSD/eqlI7DMPst9zTlWOPrfGEESuACCt826GjU8rk4NplbJws6WuNW0bS0Th3bh++RgexvGmat3JaaGldoybaSN08fUDZ7CrywB8ryUUGHrWe15V7JlPpkA/3zKQfbwXMyCQX2Q4K0G3OAg2TCTNMcM5gk9MMPGNY53T4VaH/XwBwK4A/7W+/F8DHhj+t4zijZiifnYhiInocwDyABwC8CGAxhHBaYz0EYMcFmaHjOG8IQy32EEIaQng7gJ0AbgRw7bAnIKJPEdE+ItqXrq4O3sFxnAvCWanxIYRFAA8BuBlAnYhOO4Y7ARzeYJ+7Qwg3hBBuiKs68cNxnNEwUKAjossAdEMIi0Q0BuCDAL6I9UX/cQD3AbgDwP2DjhVIZ/IojcoIbIAQ7WTlGgCADNowAhtkoE2SaIGum3KxJ46sCQ3WNa1WQoWIC3uW+BcJRehURwt0cr+tdd1+6vCLXBCb/oH+Y8nEizyop/Cq7o+OTF9/56qtbLx09YyyeSHi26wglgO3cIHu/TPPK5uGCjLSQT6PL+9k48n9+lwyiMUKoDGrvMiOTEbWm2zBZAa6SKFvGO3NSpyU8xGv0Jk032HU+G0A7iWiGOu/CXwthPAtInoawH1E9DsAHgNwzxDHchznIjFwsYcQfgLgHcb2A1j33x3HuQTwCDrHyQkjTYShDIhUroX0d4z9ZMXZc4thQejxz7ZezwiYEZVqqkWdLCODYazgGCsRpp1yJyw1Wkv1ROsi69jbKktiH30dh3fzwJLV4zqoJUtEgMqbdimbwqp2bssnuUCSrGkHdHk3v9fRzTrp5T1zXNNtGm2bGqIddDvo+7pv/2423rao56wqvMhWzNigMoxor2QlsMj2ZJEK4AGyTGoGZ98yChiuUs5G+De74+QEX+yOkxN8sTtOTvDF7jg5YbSVaoLRJ1u2drL2E+2eLCElJGcveKQ9faC2yCArGJlxRbFNVq4BNhLtuJDWMy5E7jdZbCmb2SIvC902xMBrtvIAmYO36FLOC8d5RCMZmYLJip5j6QQPbGlP6evf9a6DbPxrO/5G2Ty0+GY2tgS6kihT/VqrrmyqT8lAG/3MZKUYK6jFeoPkY7QEMurJtDfjOGI/o/o2pPZoBdUM0zZqI/yb3XFygi92x8kJvtgdJyeMPKhGdjeWvkyvYlQCkUE1ln8+QAsAgNARQTXG5XcSHhDRNJw7ElVprUALy4+3KtVKyrFo/2QEzCx2eTBM27Bpp/zaeqn+XI/HuFMY14w205fpTSuz3LcuGvv1RPunRqYTeqT2YFXSHReaxV+9dJWymdvPr6NXtgJf+DizgreM5CWF9fUoKsqEyKikJFs2G4eRPvqwLaqGxb/ZHScn+GJ3nJzgi91xcoIvdsfJCSPvzy6R7b+NRDAVSBB1jWohwibTrdf1PoZK01oRWWcVQ3wT1WtKib6NY4kOYlGiVUdXXamJ9kJHVnVrpZUW388SA1UbqzUtfgVRASjtGK2VikY7LiGQWhV/Vtp8jk+t6nqk20uLbLxklM2e7/DrL/9QZ+9FXfESGQLdMEE1pmo2BMmKEGzL+n1IS1xEtcRAVfHG+CpWQp8K8tlY1PNvdsfJCb7YHScn+GJ3nJww2qCaAIiuxcovKcgAGgAyPyIrGs6VrN5p+fVyk1W9UwSf9AraZ5UVaNs9fRsLhvjQ7PIL6Rj7HWtzm+WG9mOVb2kFiMgEDqOtVrnKfc1SQWdnyMQgAOiSqOZT1kE1MlnouaUt2maKn29bcUnZ3PPku9l47mWjuk+FP7PEqEITdfm2zrgRZNQZ3Npp8Uqta5y4rs7GE6/od6Z2gAcQdSe1XtMVfr1VoVj66OqdPkMcjn+zO05O8MXuODnBF7vj5ARf7I6TE0YbVJNZZYcHZ/b0hN5hltMVfd5jo4d7Jsr3ZiWjB5A49DB93kNZ1cc2s9W6IqhmZU2LNJ3W4EciW3uTESGSFLiQ1e7qoJrWKt/WK+l7dvXccbVNBvHIYCEASIXyGhv9lmRVHqtSTfkRXk1HBdBAZ4cZt14pWcWGns/iXn3vl6/n4mNtVjcnffSd/4Of3+hh9g/3/z02PnXPHmUzfpifKy1a2XMiw05WWT9D5p5/sztOTvDF7jg5wRe74+QEX+yOkxMuQlmqM6cWWSWFBkXdrR+b79eN9HmU/jNEP24Y5aaliNYsamHJKiXdE5F3VilriDLNpePaprAixg19IWOnuEgUWdFhQswJRvbeob271TZ5/+XzAYDGjbz3+/SUFrYgEvq+u6BLTk2KiLnemL4fMqNNRssBwOpWfu9PvlWLaP/9I7+vtn3p8IfYeP/Xr1E237xuio33FueVzRd3fYONv/KZ9yibv7jnZjYuLek59kr8vUpaQnQ+Qykr/2Z3nJzgi91xcoIvdsfJCSP12aM0KD8k7oo+3rrAC7rjIiBiWdtI/1P21V7fxschNjLjhihXknW5/9cx+rwnsfa3mm0xASMYJp7jvm66WlE2tVf5uHzSaFHV4DcyXtGZaVGDl2nOarq8T/WADmLpzopS1lM6E6w1y7P1mm/R5y+JMkUvP7Fd2exa4Tadmr7XMoNt7R8sKpvfuf5+Nr6pvKBsXjOyEI+KSkFGpy18/p5/zMaVo/q5yiI8rVlD09kh9pPRUwDGD/Nn3ZqSZZz0/Ib4keM4P0/4YnecnDD0YieimIgeI6Jv9cd7iOhhItpPRF8lIv33J8dxNg1n883+aQDPvG78RQBfCiFcDeAUgDvfyIk5jvPGMpRAR0Q7AdwO4D8A+HUiIgC3AviVvsm9AP49gD8844GCDoAorHLBIUu0AJOtiQ1W3IDYZol4ulaTkRkne8QZ55I2HSm8AYgNgU4yOa57r8+NN9i4vktePHDy3Vq0kySi3PWJNb3P8SVeltkqCT0zroW1neM8aET2nQeAWRFUdHxNl4A+vFZn4+knLFGVb7NKNc2/j4uRn7/2QWXzTIuXsv7M9z+hbKpPaoFybJ6fr9rRz7W0zO9baUE/1840P3ZpyciKrIrAsJoyUVlvU8/w5onx2sbv3bDf7F8G8Jv4WaW3GQCLIYTTUukhALowuOM4m4aBi52IPgJgPoTwo3M5ARF9ioj2EdG+bscImXQcZyQM82v8ewD8MhF9GEAZ6xHNvwegTkRJ/9t9J4DD1s4hhLsB3A0Atcmd59hzw3Gc82XgYg8hfA7A5wCAiN4H4F+HEH6ViL4O4OMA7gNwB4D7NzrGzw4GRMLnidd40ERsVGppznGfuDtmtffh48QIjkmLg+vuysAbOQaAEPNfiNK2rjjTWNU7luvclyslOmBlrcf3W2zpUtJyPyvpZqrEfbl3b3lJ2czu4Bk1U4n+zasbtG95uD2ltkkmE641PFvcqmy+99KVbLznaX3+LOH3+vjbtfZw9a6DbPxUU3uU337pOjZOXtPPrHTSqPgjEk1a05ZgxO9RIP3MiktcVygH43tPlOhu1/W5Dt7O9yvO8/vReWXjX9bP5+/sn8W6WLcf6z78PedxLMdxLjBnFS4bQvhLAH/Z//cBADe+8VNyHOdC4BF0jpMTfLE7Tk646P3ZJcUFLdKEmAdk0JSetkwgS43gXZk9l2l9DJEQ7UJsiDYr/DMyKxlioFHuuiey5U6tGn3c5D5WRp0IfrECeI6v8BLMz87PKZt2i4uBkVHdZ2pSP4+r67y89GxpRdks9rhw9OLSrLKRZaKb23VQT6vO7/Xi39JBPm+t8B5xMpsOANKnePZaZIiaS2/S1187wO0Kxl+Pm1v5HLsVfWwZDFM8qa8jafHrj3paRFy5VmR37uFCaCief1CN4ziXOL7YHScn+GJ3nJww4uqyAYmomJLJVkqx9lFL8zxAJERVZSOrjuo2U7ptVGdC+1bS14/XBgfedI2PzFRPET0RMJRlRnCQ8Jt7bX0/eovcHy4uGhVXRcWfWLuI2HKY+3flU9pnPnXNZWrbD9/FNZTts4vKJhaJOEcf00E1ux7h/ubxt2kNI7mN6wPvmz2ibMZifrEnu/rmj4vqPlYF2vaUfh7N7SJxa1nbjC1wm7U5Q6+p8pdmqmdoQU1+/4tLWnu47Lv8OMuiXzy1L0xQjeM4lxC+2B0nJ/hid5yc4IvdcXLCSAW6tBzh1HVc3Jl95CS3qelAgniel50py4btANrbReCNIYBUhCgTdQ3xa0wG1SgTdGoiOKdpiHiG0JiKyiPBCGKhslDWUv2Ios7g0tqxyNayymbL4I+0ZLwORnJWOMaf0WuoK5usx4999f/SFXeS53i22so/v1zZ/Ks9D7PxL1afUzYt8ZD+58mblY0ULGuHtGJZParv0eo2KYgZbcVENR1Z3QYAVq7gNsfeqaO+pp7n77VVtlqWYp/9Mf/5a/o2/xT/ZnecnOCL3XFygi92x8kJI/XZswLQFAEHS9fzqie1AzqpIqvwypx0VLfuGVvi+2UzE8omK8sAHq0PgLj/Z7WQlv6f1bIq1gVGlc+elHTQRL0m2j9V9YGak3zevau1hhGJZBmrmk2ry+9HFOnjWG2sZMhKmurvjOSvJ/n4+ReUzbOfv5qNv3fLf1I2DTHv2BARHlnbzcZbCg1l09jNjzO7T79nhz80o7Y138kDunbPnVA2R5f5g135SV3ZjB/i825coUxw4np+HycO6GsticCn0gn+fshKUOxnG/7EcZyfK3yxO05O8MXuODnBF7vj5ITRZr31gLIo19vcInprT+ueN8UVvk/5hLapPsmzoehlXcY+GeNZVXFjUtts4fJTa1qXhKZMfkYaQTWqbDUQrYmKJkYQS3uMb9s7o8XISiIyB402VleM8WAlqyR0W0RtyDEArBrVUo40ufj50jPblM3e73ORjIr6Pha2cDHyr9Z0UM3lBS6IPbq2R9n8+fz1bHxwsa5sem/iQtuz/0a3o6rVT6lt//TKR9n4w7WfKJtXe1xk/i18TNk0Iv6uFZf0+9GZ5O/54puVCaKUP8fisniuVqXr0/tu/CPHcX6e8MXuODnBF7vj5ISLXl220BDtjyeNaiFbSIz1Z9TSlTxKoTKvq65MPMOrkNIhXfWktMb9r2RRVz3JKtz/XN2hW/2mJT1HWd02OqX92AbxKjSnxnW7o0iU0m32dFLFWMx1jUKk78dih2sY8rgAsNzV13Zylc9p6kl9rfELh9i4d0r7w1vu4z76703cqmxumTvAz5U0lc14oc3GZFyHDIbpKd0FOHxCazhPr3A9YmdRB9UUSQQwGRWIMvGIVq7UAVVjr/Hl2C3q6zj+Dj5u1/mz6D3vlWocJ/f4YnecnOCL3XFygi92x8kJFKw+0RfqZEQLAF4BMAvg+ADzzcalOGfg0py3z/nc2RVC0PW/MeLF/tOTEu0LIdww8hOfB5finIFLc94+5wuD/xrvODnBF7vj5ISLtdjvvkjnPR8uxTkDl+a8fc4XgIviszuOM3r813jHyQkjX+xEdBsRPUdE+4norlGffxiI6CtENE9ET75u2zQRPUBEL/T/P3WmY4waIrqciB4ioqeJ6Cki+nR/+6adNxGVieiHRPTj/px/u799DxE93H9HvkpEOvj/IkNEMRE9RkTf6o83/ZxHutiJKAbwBwD+LoDrAHySiK4b5RyG5I8A3Ca23QXgwRDCXgAP9sebiR6A3wghXAfgJgD/on9vN/O82wBuDSG8DcDbAdxGRDcB+CKAL4UQrgZwCsCdF2+KG/JpAM+8brzp5zzqb/YbAewPIRwIIXQA3AfgoyOew0BCCN8BcFJs/iiAe/v/vhcwypFcREIIR0IIj/b/3cD6i7gDm3jeYZ3TNZ0L/f8CgFsB/Gl/+6aaMwAQ0U4AtwP4r/0xYZPPGRj9Yt8B4PUNvg71t10KzIUQTufEHgUwdzEncyaIaDeAdwB4GJt83v1fhx8HMA/gAQAvAlgMIZzOAd2M78iXAfwmgNNF2mew+efsAt25ENb/hLEp/4xBROMA/gzAZ0IIrOXjZpx3CCENIbwdwE6s/+Z37cWd0Zkhoo8AmA8h/Ohiz+VsGXXxisMAXl+xYGd/26XAMSLaFkI4QkTbsP5NtKkgogLWF/ofhxC+0d+86ecNACGERSJ6CMDNAOpElPS/KTfbO/IeAL9MRB8GUAYwAeD3sLnnDGD03+yPANjbVy6LAD4B4JsjnsO58k0Ad/T/fQeA+y/iXBR9v/EeAM+EEH73dT/atPMmosuIqN7/9xiAD2Jda3gIwMf7ZptqziGEz4UQdoYQdmP9/f1/IYRfxSae808JIYz0PwAfBvA81n2z3xr1+Yec458AOAKgi3X/606s+2UPAngBwF8AmL7Y8xRzvgXrv6L/BMDj/f8+vJnnDeAXADzWn/OTAP5df/uVAH4IYD+ArwMoXey5bjD/9wH41qUyZ4+gc5yc4AKd4+QEX+yOkxN8sTtOTvDF7jg5wRe74+QEX+yOkxN8sTtOTvDF7jg54f8D1fj6aGof/fYAAAAASUVORK5CYII=\n"
      },
      "metadata": {
@@ -329,7 +379,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
+   "execution_count": 9,
    "metadata": {},
    "outputs": [
     {
@@ -337,13 +387,11 @@
      "name": "stdout",
      "text": [
       "Epoch 1/5\n",
-      "399/399 [==============================] - 56s 135ms/step - loss: 1.4518 - accuracy: 0.4442 - val_loss: 1.6893 - val_accuracy: 0.3210\n",
+      "1130/1130 [==============================] - 148s 129ms/step - loss: 1.3903 - accuracy: 0.4971 - val_loss: 1.4602 - val_accuracy: 0.4642\n",
       "Epoch 2/5\n",
-      "399/399 [==============================] - 55s 139ms/step - loss: 1.0833 - accuracy: 0.5951 - val_loss: 1.8123 - val_accuracy: 0.5011\n",
+      "1130/1130 [==============================] - 142s 126ms/step - loss: 1.1473 - accuracy: 0.5998 - val_loss: 1.6280 - val_accuracy: 0.4651\n",
       "Epoch 3/5\n",
-      "399/399 [==============================] - 54s 135ms/step - loss: 0.9446 - accuracy: 0.6483 - val_loss: 1.9944 - val_accuracy: 0.4933\n",
-      "Epoch 4/5\n",
-      " 19/399 [>.............................] - ETA: 50s - loss: 0.9010 - accuracy: 0.6706"
+      " 175/1130 [===>..........................] - ETA: 2:00 - loss: 1.0493 - accuracy: 0.6291"
      ]
     },
     {
@@ -353,7 +401,7 @@
      "traceback": [
       "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
       "\u001b[1;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
-      "\u001b[1;32m<ipython-input-7-528c4d211510>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mhistory\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmyModel\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mYcat\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mepochs\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m5\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m128\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mvalidation_split\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m0.05\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m      2\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m      3\u001b[0m \u001b[1;31m#Affichage de l'historique de l'apprentissage\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m      4\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mhistory\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mhistory\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'accuracy'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'accuracy'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m      5\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mhistory\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mhistory\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'val_accuracy'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'val_accuracy'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
+      "\u001b[1;32m<ipython-input-9-528c4d211510>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mhistory\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmyModel\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mYcat\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mepochs\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m5\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m128\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mvalidation_split\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m0.05\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m      2\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m      3\u001b[0m \u001b[1;31m#Affichage de l'historique de l'apprentissage\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m      4\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mhistory\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mhistory\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'accuracy'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'accuracy'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m      5\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mhistory\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mhistory\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'val_accuracy'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'val_accuracy'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
       "\u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\tensorflow\\python\\keras\\engine\\training.py\u001b[0m in \u001b[0;36mfit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[0m\n\u001b[0;32m   1181\u001b[0m                 _r=1):\n\u001b[0;32m   1182\u001b[0m               \u001b[0mcallbacks\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mon_train_batch_begin\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mstep\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1183\u001b[1;33m               \u001b[0mtmp_logs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtrain_function\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0miterator\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m   1184\u001b[0m               \u001b[1;32mif\u001b[0m \u001b[0mdata_handler\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshould_sync\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1185\u001b[0m                 \u001b[0mcontext\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0masync_wait\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
       "\u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\tensorflow\\python\\eager\\def_function.py\u001b[0m in \u001b[0;36m__call__\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m    887\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    888\u001b[0m       \u001b[1;32mwith\u001b[0m \u001b[0mOptionalXlaContext\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_jit_compile\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 889\u001b[1;33m         \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_call\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    890\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    891\u001b[0m       \u001b[0mnew_tracing_count\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mexperimental_get_tracing_count\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
       "\u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\tensorflow\\python\\eager\\def_function.py\u001b[0m in \u001b[0;36m_call\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m    915\u001b[0m       \u001b[1;31m# In this case we have created variables on the first call, so we run the\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    916\u001b[0m       \u001b[1;31m# defunned version which is guaranteed to never create variables.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 917\u001b[1;33m       \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_stateless_fn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[1;33m)\u001b[0m  \u001b[1;31m# pylint: disable=not-callable\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    918\u001b[0m     \u001b[1;32melif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_stateful_fn\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    919\u001b[0m       \u001b[1;31m# Release the lock early so that multiple threads can perform the call\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
@@ -378,19 +426,19 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 8,
+   "execution_count": 10,
    "metadata": {},
    "outputs": [
     {
      "output_type": "stream",
      "name": "stdout",
      "text": [
-      "INFO:tensorflow:Assets written to: exp905\\assets\n"
+      "INFO:tensorflow:Assets written to: exp906\\assets\n"
      ]
     }
    ],
    "source": [
-    "myModel.save('exp905')"
+    "myModel.save('exp906')"
    ]
   },
   {
@@ -401,53 +449,93 @@
     {
      "output_type": "error",
      "ename": "ValueError",
-     "evalue": "Mix of label input types (string and number)",
+     "evalue": "Training data contains 1000 samples, which is not sufficient to split it into a validation and training set as specified by `validation_split=1`. Either provide more data, or a different value for the `validation_split` argument.",
      "traceback": [
       "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
       "\u001b[1;31mValueError\u001b[0m                                Traceback (most recent call last)",
-      "\u001b[1;32m<ipython-input-10-bc0ddd3965dc>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m      7\u001b[0m \u001b[0my_pred\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0margmax\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my_pred\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m      8\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 9\u001b[1;33m \u001b[0mcm\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mconfusion_matrix\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my_true\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my_pred\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m     10\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     11\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\sklearn\\utils\\validation.py\u001b[0m in \u001b[0;36minner_f\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m     61\u001b[0m             \u001b[0mextra_args\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m-\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mall_args\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     62\u001b[0m             \u001b[1;32mif\u001b[0m \u001b[0mextra_args\u001b[0m \u001b[1;33m<=\u001b[0m \u001b[1;36m0\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 63\u001b[1;33m                 \u001b[1;32mreturn\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m     64\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     65\u001b[0m             \u001b[1;31m# extra_args > 0\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\sklearn\\metrics\\_classification.py\u001b[0m in \u001b[0;36mconfusion_matrix\u001b[1;34m(y_true, y_pred, labels, sample_weight, normalize)\u001b[0m\n\u001b[0;32m    302\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    303\u001b[0m     \u001b[1;32mif\u001b[0m \u001b[0mlabels\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 304\u001b[1;33m         \u001b[0mlabels\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0munique_labels\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my_true\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my_pred\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    305\u001b[0m     \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    306\u001b[0m         \u001b[0mlabels\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mlabels\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\sklearn\\utils\\multiclass.py\u001b[0m in \u001b[0;36munique_labels\u001b[1;34m(*ys)\u001b[0m\n\u001b[0;32m    102\u001b[0m     \u001b[1;31m# Check that we don't mix string type with number type\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    103\u001b[0m     \u001b[1;32mif\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mset\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0misinstance\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mlabel\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mstr\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mlabel\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mys_labels\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m>\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 104\u001b[1;33m         \u001b[1;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"Mix of label input types (string and number)\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    105\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    106\u001b[0m     \u001b[1;32mreturn\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0marray\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msorted\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mys_labels\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;31mValueError\u001b[0m: Mix of label input types (string and number)"
+      "\u001b[1;32m<ipython-input-10-b659350fff8c>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m      1\u001b[0m \u001b[0mmonModele\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mkeras\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmodels\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mload_model\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"models/exp906\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mmonModele\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;36m1000\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mYcat\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;36m1000\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mvalidation_split\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
+      "\u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\tensorflow\\python\\keras\\engine\\training.py\u001b[0m in \u001b[0;36mfit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[0m\n\u001b[0;32m   1117\u001b[0m       \u001b[1;31m# `Tensor` and `NumPy` input.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1118\u001b[0m       (x, y, sample_weight), validation_data = (\n\u001b[1;32m-> 1119\u001b[1;33m           data_adapter.train_validation_split(\n\u001b[0m\u001b[0;32m   1120\u001b[0m               (x, y, sample_weight), validation_split=validation_split))\n\u001b[0;32m   1121\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
+      "\u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\tensorflow\\python\\keras\\engine\\data_adapter.py\u001b[0m in \u001b[0;36mtrain_validation_split\u001b[1;34m(arrays, validation_split)\u001b[0m\n\u001b[0;32m   1474\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1475\u001b[0m   \u001b[1;32mif\u001b[0m \u001b[0msplit_at\u001b[0m \u001b[1;33m==\u001b[0m \u001b[1;36m0\u001b[0m \u001b[1;32mor\u001b[0m \u001b[0msplit_at\u001b[0m \u001b[1;33m==\u001b[0m \u001b[0mbatch_dim\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1476\u001b[1;33m     raise ValueError(\n\u001b[0m\u001b[0;32m   1477\u001b[0m         \u001b[1;34m\"Training data contains {batch_dim} samples, which is not sufficient \"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1478\u001b[0m         \u001b[1;34m\"to split it into a validation and training set as specified by \"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
+      "\u001b[1;31mValueError\u001b[0m: Training data contains 1000 samples, which is not sufficient to split it into a validation and training set as specified by `validation_split=1`. Either provide more data, or a different value for the `validation_split` argument."
      ]
     }
    ],
    "source": [
-    "print()\n",
-    "modelCM = keras.models.load_model('models/exp905')\n",
+    "monModele = keras.models.load_model(\"models/exp906\")\n",
+    "monModele.fit(X[:1000], Ycat[:1000], validation_split = 0.9)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 19,
+   "metadata": {},
+   "outputs": [
+    {
+     "output_type": "stream",
+     "name": "stdout",
+     "text": [
+      "Chargement du modèle...\n",
+      "Predictions...\n",
+      "Calcul de la CM...\n",
+      "(6, 6)\n",
+      "Affichage...\n"
+     ]
+    },
+    {
+     "output_type": "error",
+     "ename": "IndexError",
+     "evalue": "index 6 is out of bounds for axis 1 with size 6",
+     "traceback": [
+      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[1;31mIndexError\u001b[0m                                Traceback (most recent call last)",
+      "\u001b[1;32m<ipython-input-19-5e456c6b1639>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m     39\u001b[0m     \u001b[0mfig\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtight_layout\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     40\u001b[0m     \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 41\u001b[1;33m \u001b[0mshow_confusion_matrix\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcm\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0memotions\u001b[0m\u001b[1;33m+\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m\"A\"\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
+      "\u001b[1;32m<ipython-input-19-5e456c6b1639>\u001b[0m in \u001b[0;36mshow_confusion_matrix\u001b[1;34m(matrix, labels)\u001b[0m\n\u001b[0;32m     33\u001b[0m     \u001b[1;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mN\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     34\u001b[0m         \u001b[1;32mfor\u001b[0m \u001b[0mj\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mN\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 35\u001b[1;33m             text = ax.text(j, i, cm[i, j],\n\u001b[0m\u001b[0;32m     36\u001b[0m                            ha=\"center\", va=\"center\", color=\"w\")\n\u001b[0;32m     37\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
+      "\u001b[1;31mIndexError\u001b[0m: index 6 is out of bounds for axis 1 with size 6"
+     ]
+    }
+   ],
+   "source": [
+    "print(\"Chargement du modèle...\")\n",
+    "modelCM = keras.models.load_model('models/exp906')\n",
     "\n",
-    "# À remplir\n",
-    "y_pred = modelCM(Xf)\n",
-    "y_true = Yf\n",
+    "print(\"Predictions...\")\n",
+    "Nmax = 10\n",
+    "y_pred = modelCM(Xf[:Nmax])\n",
+    "y_true = np.array([int(nbr) for nbr in Yf[:Nmax]])\n",
     "\n",
     "y_pred = np.argmax(y_pred, axis=-1)\n",
     "\n",
+    "print(\"Calcul de la CM...\")\n",
     "cm = confusion_matrix(y_true, y_pred)\n",
     "\n",
-    "\n",
+    "print(\"Affichage...\")\n",
     "def show_confusion_matrix(matrix, labels):\n",
     "    fig, ax = plt.subplots(figsize=(10,10))\n",
     "    im = ax.imshow(matrix)\n",
+    "    \n",
     "    N = len(labels)\n",
+    "\n",
     "    # We want to show all ticks...\n",
     "    ax.set_xticks(np.arange(N))\n",
     "    ax.set_yticks(np.arange(N))\n",
     "    # ... and label them with the respective list entries\n",
     "    ax.set_xticklabels(labels)\n",
     "    ax.set_yticklabels(labels)\n",
+    "\n",
     "    # Rotate the tick labels and set their alignment.\n",
     "    plt.setp(ax.get_xticklabels(), rotation=45, ha=\"right\",\n",
     "             rotation_mode=\"anchor\")\n",
+    "\n",
     "    # Loop over data dimensions and create text annotations.\n",
     "    for i in range(N):\n",
     "        for j in range(N):\n",
     "            text = ax.text(j, i, cm[i, j],\n",
     "                           ha=\"center\", va=\"center\", color=\"w\")\n",
+    "\n",
     "    ax.set_title(\"Matrice de confusion\")\n",
     "    fig.tight_layout()\n",
     "    plt.show()\n",
-    "show_confusion_matrix(cm, class_names)"
+    "show_confusion_matrix(cm, emotions+[\"A\"])"
    ]
   },
   {
diff --git a/game.py b/game.py
index 3f3a995b7727fdaa8d3e8fc21689f4cb2934d9eb..9ae95912cc87e57466ff45c1074d2c4ea46613c1 100644
--- a/game.py
+++ b/game.py
@@ -7,7 +7,6 @@ from config import emotions
 
 cap = cv2.VideoCapture(0)   #0 means we capture the first camera, your webcam probably
 score = 0
-t = 0
 N = 15
 
 def smileyRandom(emotionToDodge):
@@ -25,22 +24,22 @@ while cap.isOpened():		 #or while 1. cap.isOpened() is false if there is a probl
     if not ret: break
     
     emotionsList = ip.imageProcess(frame, returnEmotion=True)
-    if len(emotionsList)==1:
-        if emotionsList[0] == emotion: #If emotion recognized, increase score, reset smiley to mimick and write "GG!"
-            score += 1
-            cv2.putText(smiley, "Emotion reconnue !", (50,50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,255,0), 2)
-            cv2.imshow("Smiley", smiley)         
-            smiley, emotion = smileyRandom(emotion)
+    
+    if emotion in emotionsList: #If emotion recognized, increase score, reset smiley to mimick and write "GG!"
+        score += 1
+        cv2.putText(smiley, "Emotion reconnue !", (50,50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,255,0), 2)
+        cv2.imshow("Smiley", smiley)         
+        smiley, emotion = smileyRandom(emotion)
 
 
     cv2.imshow("Caméra", frame)  			#Show you making emotional faces
-    cv2.putText(smiley, "Score: "+str(score), (20,20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2)
+    cv2.putText(smiley, "Score: "+str(score), (40,40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2)
     cv2.imshow("Smiley", smiley)            #Show the smiley to mimic
 
     if cv2.waitKey(1) & 0xFF == ord('q'):			#If you press Q, stop the while and so the capture
-        break
+        break   
 
-    if cv2.waitKey(1) & 0xFF == ord('p'):			#If you press P, pass the smiley but lower your score
+    elif cv2.waitKey(1) & 0xFF == ord('p'):			#If you press P, pass the smiley but lower your score
         score -= 1
         smiley, emotion = smileyRandom(emotion)
 
diff --git a/models/exp906/keras_metadata.pb b/models/exp906/keras_metadata.pb
new file mode 100644
index 0000000000000000000000000000000000000000..bcaed56d1aaf5c93ecb85881e3bbeb5954ea6fc8
--- /dev/null
+++ b/models/exp906/keras_metadata.pb
@@ -0,0 +1,25 @@
+
+�root"_tf_keras_sequential*ː{"name": "my_model", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "must_restore_from_config": false, "class_name": "MyModel", "config": {"name": "my_model", "layers": [{"class_name": "InputLayer", "config": {"batch_input_shape": {"class_name": "__tuple__", "items": [null, 48, 48, 1]}, "dtype": "float32", "sparse": false, "ragged": false, "name": "conv2d_input"}}, {"class_name": "Conv2D", "config": {"name": "conv2d", "trainable": true, "batch_input_shape": {"class_name": "__tuple__", "items": [null, 48, 48, 1]}, "dtype": "float32", "filters": 32, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "MaxPooling2D", "config": {"name": "max_pooling2d", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}}, {"class_name": "Conv2D", "config": {"name": "conv2d_1", "trainable": true, "dtype": "float32", "filters": 64, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_1", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization_1", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}}, {"class_name": "Conv2D", "config": {"name": "conv2d_2", "trainable": true, "dtype": "float32", "filters": 128, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_2", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization_2", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}}, {"class_name": "Conv2D", "config": {"name": "conv2d_3", "trainable": true, "dtype": "float32", "filters": 256, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_3", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization_3", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}}, {"class_name": "Flatten", "config": {"name": "flatten", "trainable": true, "dtype": "float32", "data_format": "channels_last"}}, {"class_name": "Dense", "config": {"name": "dense", "trainable": true, "dtype": "float32", "units": 128, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dropout", "config": {"name": "dropout", "trainable": true, "dtype": "float32", "rate": 0.3, "noise_shape": null, "seed": null}}, {"class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dropout", "config": {"name": "dropout_1", "trainable": true, "dtype": "float32", "rate": 0.3, "noise_shape": null, "seed": null}}, {"class_name": "Dense", "config": {"name": "dense_2", "trainable": true, "dtype": "float32", "units": 7, "activation": "softmax", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}]}, "shared_object_id": 49, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 4, "axes": {"-1": 1}}, "shared_object_id": 50}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 48, 48, 1]}, "is_graph_network": true, "save_spec": {"class_name": "TypeSpec", "type_spec": "tf.TensorSpec", "serialized": [{"class_name": "TensorShape", "items": [null, 48, 48, 1]}, "float32", "conv2d_input"]}, "keras_version": "2.5.0", "backend": "tensorflow", "model_config": {"class_name": "MyModel", "config": {"name": "my_model", "layers": [{"class_name": "InputLayer", "config": {"batch_input_shape": {"class_name": "__tuple__", "items": [null, 48, 48, 1]}, "dtype": "float32", "sparse": false, "ragged": false, "name": "conv2d_input"}, "shared_object_id": 0}, {"class_name": "Conv2D", "config": {"name": "conv2d", "trainable": true, "batch_input_shape": {"class_name": "__tuple__", "items": [null, 48, 48, 1]}, "dtype": "float32", "filters": 32, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 1}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 2}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 3}, {"class_name": "MaxPooling2D", "config": {"name": "max_pooling2d", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}, "shared_object_id": 4}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 5}, "gamma_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 6}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 7}, "moving_variance_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 8}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "shared_object_id": 9}, {"class_name": "Conv2D", "config": {"name": "conv2d_1", "trainable": true, "dtype": "float32", "filters": 64, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 10}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 11}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 12}, {"class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_1", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}, "shared_object_id": 13}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization_1", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 14}, "gamma_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 15}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 16}, "moving_variance_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 17}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "shared_object_id": 18}, {"class_name": "Conv2D", "config": {"name": "conv2d_2", "trainable": true, "dtype": "float32", "filters": 128, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 19}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 20}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 21}, {"class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_2", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}, "shared_object_id": 22}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization_2", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 23}, "gamma_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 24}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 25}, "moving_variance_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 26}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "shared_object_id": 27}, {"class_name": "Conv2D", "config": {"name": "conv2d_3", "trainable": true, "dtype": "float32", "filters": 256, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 28}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 29}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 30}, {"class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_3", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}, "shared_object_id": 31}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization_3", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 32}, "gamma_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 33}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 34}, "moving_variance_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 35}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "shared_object_id": 36}, {"class_name": "Flatten", "config": {"name": "flatten", "trainable": true, "dtype": "float32", "data_format": "channels_last"}, "shared_object_id": 37}, {"class_name": "Dense", "config": {"name": "dense", "trainable": true, "dtype": "float32", "units": 128, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 38}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 39}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 40}, {"class_name": "Dropout", "config": {"name": "dropout", "trainable": true, "dtype": "float32", "rate": 0.3, "noise_shape": null, "seed": null}, "shared_object_id": 41}, {"class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 42}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 43}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 44}, {"class_name": "Dropout", "config": {"name": "dropout_1", "trainable": true, "dtype": "float32", "rate": 0.3, "noise_shape": null, "seed": null}, "shared_object_id": 45}, {"class_name": "Dense", "config": {"name": "dense_2", "trainable": true, "dtype": "float32", "units": 7, "activation": "softmax", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 46}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 47}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 48}]}}, "training_config": {"loss": "categorical_crossentropy", "metrics": [[{"class_name": "MeanMetricWrapper", "config": {"name": "accuracy", "dtype": "float32", "fn": "categorical_accuracy"}, "shared_object_id": 51}]], "weighted_metrics": null, "loss_weights": null, "optimizer_config": {"class_name": "Adam", "config": {"name": "Adam", "learning_rate": 0.0010000000474974513, "decay": 0.0, "beta_1": 0.8999999761581421, "beta_2": 0.9990000128746033, "epsilon": 1e-07, "amsgrad": false}}}}2
+�
+root.layer_with_weights-0"_tf_keras_layer*�
+{"name": "conv2d", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": {"class_name": "__tuple__", "items": [null, 48, 48, 1]}, "stateful": false, "must_restore_from_config": false, "class_name": "Conv2D", "config": {"name": "conv2d", "trainable": true, "batch_input_shape": {"class_name": "__tuple__", "items": [null, 48, 48, 1]}, "dtype": "float32", "filters": 32, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 1}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 2}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 3, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 4, "axes": {"-1": 1}}, "shared_object_id": 50}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 48, 48, 1]}}2
+�root.layer-1"_tf_keras_layer*�{"name": "max_pooling2d", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "MaxPooling2D", "config": {"name": "max_pooling2d", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}, "shared_object_id": 4, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": 4, "max_ndim": null, "min_ndim": null, "axes": {}}, "shared_object_id": 52}}2
+�	root.layer_with_weights-1"_tf_keras_layer*�{"name": "batch_normalization", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "BatchNormalization", "config": {"name": "batch_normalization", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 5}, "gamma_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 6}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 7}, "moving_variance_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 8}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "shared_object_id": 9, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": 4, "max_ndim": null, "min_ndim": null, "axes": {"3": 32}}, "shared_object_id": 53}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 23, 23, 32]}}2
+�	root.layer_with_weights-2"_tf_keras_layer*�	{"name": "conv2d_1", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Conv2D", "config": {"name": "conv2d_1", "trainable": true, "dtype": "float32", "filters": 64, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 10}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 11}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 12, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 4, "axes": {"-1": 32}}, "shared_object_id": 54}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 23, 23, 32]}}2
+�root.layer-4"_tf_keras_layer*�{"name": "max_pooling2d_1", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_1", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}, "shared_object_id": 13, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": 4, "max_ndim": null, "min_ndim": null, "axes": {}}, "shared_object_id": 55}}2
+�	root.layer_with_weights-3"_tf_keras_layer*�{"name": "batch_normalization_1", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "BatchNormalization", "config": {"name": "batch_normalization_1", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 14}, "gamma_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 15}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 16}, "moving_variance_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 17}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "shared_object_id": 18, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": 4, "max_ndim": null, "min_ndim": null, "axes": {"3": 64}}, "shared_object_id": 56}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 10, 10, 64]}}2
+�	root.layer_with_weights-4"_tf_keras_layer*�	{"name": "conv2d_2", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Conv2D", "config": {"name": "conv2d_2", "trainable": true, "dtype": "float32", "filters": 128, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 19}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 20}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 21, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 4, "axes": {"-1": 64}}, "shared_object_id": 57}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 10, 10, 64]}}2
+�root.layer-7"_tf_keras_layer*�{"name": "max_pooling2d_2", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_2", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}, "shared_object_id": 22, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": 4, "max_ndim": null, "min_ndim": null, "axes": {}}, "shared_object_id": 58}}2
+�		root.layer_with_weights-5"_tf_keras_layer*�{"name": "batch_normalization_2", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "BatchNormalization", "config": {"name": "batch_normalization_2", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 23}, "gamma_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 24}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 25}, "moving_variance_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 26}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "shared_object_id": 27, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": 4, "max_ndim": null, "min_ndim": null, "axes": {"3": 128}}, "shared_object_id": 59}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 4, 4, 128]}}2
+�	
+root.layer_with_weights-6"_tf_keras_layer*�	{"name": "conv2d_3", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Conv2D", "config": {"name": "conv2d_3", "trainable": true, "dtype": "float32", "filters": 256, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 28}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 29}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 30, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 4, "axes": {"-1": 128}}, "shared_object_id": 60}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 4, 4, 128]}}2
+�
root.layer-10"_tf_keras_layer*�{"name": "max_pooling2d_3", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_3", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}, "shared_object_id": 31, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": 4, "max_ndim": null, "min_ndim": null, "axes": {}}, "shared_object_id": 61}}2
+�	root.layer_with_weights-7"_tf_keras_layer*�{"name": "batch_normalization_3", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "BatchNormalization", "config": {"name": "batch_normalization_3", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 32}, "gamma_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 33}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 34}, "moving_variance_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 35}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "shared_object_id": 36, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": 4, "max_ndim": null, "min_ndim": null, "axes": {"3": 256}}, "shared_object_id": 62}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 1, 1, 256]}}2
+�

root.layer-12"_tf_keras_layer*�{"name": "flatten", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Flatten", "config": {"name": "flatten", "trainable": true, "dtype": "float32", "data_format": "channels_last"}, "shared_object_id": 37, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 1, "axes": {}}, "shared_object_id": 63}}2
+�root.layer_with_weights-8"_tf_keras_layer*�{"name": "dense", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Dense", "config": {"name": "dense", "trainable": true, "dtype": "float32", "units": 128, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 38}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 39}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 40, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 256}}, "shared_object_id": 64}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 256]}}2
+�
root.layer-14"_tf_keras_layer*�{"name": "dropout", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Dropout", "config": {"name": "dropout", "trainable": true, "dtype": "float32", "rate": 0.3, "noise_shape": null, "seed": null}, "shared_object_id": 41}2
+�root.layer_with_weights-9"_tf_keras_layer*�{"name": "dense_1", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 42}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 43}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 44, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 128}}, "shared_object_id": 65}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 128]}}2
+�
root.layer-16"_tf_keras_layer*�{"name": "dropout_1", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Dropout", "config": {"name": "dropout_1", "trainable": true, "dtype": "float32", "rate": 0.3, "noise_shape": null, "seed": null}, "shared_object_id": 45}2
+�root.layer_with_weights-10"_tf_keras_layer*�{"name": "dense_2", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Dense", "config": {"name": "dense_2", "trainable": true, "dtype": "float32", "units": 7, "activation": "softmax", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 46}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 47}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 48, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 64}}, "shared_object_id": 66}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 64]}}2
+��root.keras_api.metrics.0"_tf_keras_metric*�{"class_name": "Mean", "name": "loss", "dtype": "float32", "config": {"name": "loss", "dtype": "float32"}, "shared_object_id": 67}2
+��root.keras_api.metrics.1"_tf_keras_metric*�{"class_name": "MeanMetricWrapper", "name": "accuracy", "dtype": "float32", "config": {"name": "accuracy", "dtype": "float32", "fn": "categorical_accuracy"}, "shared_object_id": 51}2
\ No newline at end of file
diff --git a/models/exp906/saved_model.pb b/models/exp906/saved_model.pb
new file mode 100644
index 0000000000000000000000000000000000000000..91a757b67e62a81dd144fd846b5d901d3e99f200
Binary files /dev/null and b/models/exp906/saved_model.pb differ
diff --git a/models/exp906/variables/variables.data-00000-of-00001 b/models/exp906/variables/variables.data-00000-of-00001
new file mode 100644
index 0000000000000000000000000000000000000000..01e3b74ad9b42b581d0916589338fc2bdad09368
Binary files /dev/null and b/models/exp906/variables/variables.data-00000-of-00001 differ
diff --git a/models/exp906/variables/variables.index b/models/exp906/variables/variables.index
new file mode 100644
index 0000000000000000000000000000000000000000..49c461765caae8d27f721756cacd5f18e90ad62b
Binary files /dev/null and b/models/exp906/variables/variables.index differ
diff --git a/test.py b/test.py
index 8fb1880cb8d6411300b0593e9921ae3caa75ccd6..62e3c9c16a93b8b1ae516d758d4a7b0a5a639ff0 100644
--- a/test.py
+++ b/test.py
@@ -1,7 +1,11 @@
-import numpy as np
-A = np.array([ [[1,2],[3,4]] , [[5,6],[7,8]] , [[1,2],[3,4]]])
-B = np.array([ [[1,2],[3,4]] , [[5,6],[7,8]] ])
-A = A.tolist()
-B = B.tolist()
-C = np.stack(A+B, axis = 0)
-print(C.shape)
\ No newline at end of file
+
+import cv2
+while 1:
+    if cv2.waitKey(0) & 0xFF== ord('q'):			#If you press Q, stop the while and so the capture
+        break
+
+    if cv2.waitKey(1) & 0xFF == ord('p'):			#If you press P, pass the smiley but lower your score
+        score -= 1
+        smiley, emotion = smileyRandom(emotion)
+    print(1)
+    cv2.waitKey(2)
\ No newline at end of file