diff --git a/__pycache__/loadAffwildDS.cpython-38.pyc b/__pycache__/loadAffwildDS.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e75528a0eca1aa40f634bc8582612fef1173e052
Binary files /dev/null and b/__pycache__/loadAffwildDS.cpython-38.pyc differ
diff --git a/__pycache__/loadFer2013ds.cpython-38.pyc b/__pycache__/loadFer2013ds.cpython-38.pyc
index c01c5f18e516716bf499d2202d506dd2c2a25905..a316a4dd38cba45517e3dd0a8472d7d2c166a134 100644
Binary files a/__pycache__/loadFer2013ds.cpython-38.pyc and b/__pycache__/loadFer2013ds.cpython-38.pyc differ
diff --git a/__pycache__/loadRavdessDs.cpython-38.pyc b/__pycache__/loadRavdessDs.cpython-38.pyc
index dee7ea69bad7a07207953feec090113a673aaaa8..237b6781a227be003d6ec1ac037abde0494cc327 100644
Binary files a/__pycache__/loadRavdessDs.cpython-38.pyc and b/__pycache__/loadRavdessDs.cpython-38.pyc differ
diff --git a/__pycache__/utils.cpython-38.pyc b/__pycache__/utils.cpython-38.pyc
index eb8bbc6317920b51516da144ef65c317a32d9963..9edb1cb500e204f798effc2c96c65af2ad8b8e24 100644
Binary files a/__pycache__/utils.cpython-38.pyc and b/__pycache__/utils.cpython-38.pyc differ
diff --git a/build/buildEmotionModelFromFer2013.ipynb b/build/buildEmotionModelFromFer2013.ipynb
index f82baacc2f82d9a87f821dae64a8226e7b941390..f9d022f477a1ebf117137b82ec7c8b6fe31ef970 100644
--- a/build/buildEmotionModelFromFer2013.ipynb
+++ b/build/buildEmotionModelFromFer2013.ipynb
@@ -1 +1 @@
-{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"name":"buildEmotionModelFromFer2013.ipynb","provenance":[],"collapsed_sections":[],"mount_file_id":"12gj_RNUkhCcpPsrHCcnjM-aFz0bHG8Nk","authorship_tag":"ABX9TyP/j4/kXn/SBJc9poEkTWTi"},"kernelspec":{"name":"python3","display_name":"Python 3","language":"python"},"language_info":{"name":"python","version":"3.8.5"}},"cells":[{"cell_type":"code","metadata":{"id":"1321rUeQzURj","cellView":"form","executionInfo":{"status":"ok","timestamp":1616663382789,"user_tz":-60,"elapsed":3339,"user":{"displayName":"Boulet Timothé","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GiayvINTDL_0Iuf52iuumxhg4psHVMYz59ow2vJ=s64","userId":"06174172927805952140"}}},"source":["#@title Imports\n","import tensorflow as tf\n","from tensorflow import keras\n","from tensorflow.keras import datasets, layers, models, losses\n","import tensorflow_datasets as tfds\n","#from google.colab import files\n","\n","from matplotlib import image\n","import os\n","import numpy as np\n","import matplotlib.pyplot as plt\n","import matplotlib\n","import random as rd\n","import cv2\n","import csv"],"execution_count":23,"outputs":[]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"-6y_a77Xmx3X","executionInfo":{"status":"ok","timestamp":1616662751659,"user_tz":-60,"elapsed":5015,"user":{"displayName":"Boulet Timothé","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GiayvINTDL_0Iuf52iuumxhg4psHVMYz59ow2vJ=s64","userId":"06174172927805952140"}},"outputId":"fa99ea9f-0f75-42a2-fba5-c09606d4198d"},"source":["#from google.colab import drive\n","#drive.mount('/content/drive')"],"execution_count":3,"outputs":[]},{"cell_type":"code","metadata":{"id":"a4LizvrK0fes","cellView":"form","executionInfo":{"status":"ok","timestamp":1616664903890,"user_tz":-60,"elapsed":1577,"user":{"displayName":"Boulet Timothé","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GiayvINTDL_0Iuf52iuumxhg4psHVMYz59ow2vJ=s64","userId":"06174172927805952140"}}},"source":["#@title Hyperparamètres\n","classes = [\"Angry\", \"Disgust\", \"Fear\", \"Happy\", \"Sad\", \"Suprise\", \"Neutral\"]\n","Na = len(classes)\n","maxNbrImagesForEachClasses = float('inf')\n","h = 48\n","l = 48\n","p = 1\n","input_shape = (h, l, p)\n","\n","epochs = 5\n","batch_size = 128\n","validation_size = 0.1"],"execution_count":24,"outputs":[]},{"cell_type":"code","metadata":{"cellView":"form","id":"J26HwuSTpVQK","executionInfo":{"status":"ok","timestamp":1616663639205,"user_tz":-60,"elapsed":726,"user":{"displayName":"Boulet Timothé","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GiayvINTDL_0Iuf52iuumxhg4psHVMYz59ow2vJ=s64","userId":"06174172927805952140"}}},"source":["#@title Fonction utils\n","import numpy as np\n","import cv2\n","import matplotlib.pyplot as plt\n","\n","def afficher(image):\n","    if len(image.shape) == 3:\n","        if image.shape[2] == 3:  # (h,l,3)\n","            plt.imshow(image)\n","        elif image.shape[2] == 1:  # (h,l,1)->(h,l)\n","            image2 = image\n","            plt.imshow(tf.squeeze(image))\n","    elif len(image.shape) == 2:  # (h,l)\n","        plt.imshow(image)\n","\n","\n","def predir(modele, image):\n","    # Return output of image from modele\n","    return modele.predict(np.array([image]))[0, :]\n","\n","\n","def normAndResize(image, input_shape):\n","    # For an array image of shape (a,b,c) or (a,b), transform it into (h,l,p). Also normalize it.\n","\n","    h, l, p = input_shape\n","    # resize for h and l                                       #\n","    image = cv2.resize(image, dsize=(h, l), interpolation=cv2.INTER_CUBIC)\n","    # if we want (h,l,3) -> (h,l,1) , we first transform it in to (h,l) (grey the image)\n","    if len(image.shape) == 3 and p == 1 and image.shape[2] != 1:\n","        image = image.mean(2)\n","    image = np.reshape(image, (h, l, p))  # restore third dimension\n","    image = image.astype(\"float32\")\n","    image = image/255  # normalisation\n","\n","    return image\n","\n","\n","def selectFace(image):\n","    #Return a face identified on an colored image\n","\n","    #Import cv2 face detector\n","    face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades+'haarcascade_frontalface_default.xml')\n","\n","    #Face detection is made on gray images\n","    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)\n","\n","    faces = face_cascade.detectMultiScale(gray, 1.3, 5) #This return a list of tuple locating faces on image\n","    \n","    #The face returned is the first face detected on the image (if exists)\n","    if faces != []:\n","        x,y,w,h = faces[0]\n","        face = image[y:y+h, x:x+w]\n","        return face"],"execution_count":40,"outputs":[]},{"cell_type":"code","metadata":{"id":"33votd1Y0fcg","colab":{"base_uri":"https://localhost:8080/"},"cellView":"form","executionInfo":{"status":"ok","timestamp":1616664902296,"user_tz":-60,"elapsed":102287,"user":{"displayName":"Boulet Timothé","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GiayvINTDL_0Iuf52iuumxhg4psHVMYz59ow2vJ=s64","userId":"06174172927805952140"}},"outputId":"ec40cf93-99e9-458f-b24b-a9d45934f7db","tags":["outputPrepend"]},"source":["#@title Load data as array\n","nbrImages = 35887\n","maxNbrImages = 10000000000\n","emotions = [\"Angry\", \"Disgust\", \"Fear\", \"Happy\", \"Sad\", \"Suprise\", \"Neutral\"]\n","\n","def traitement(a,b,c):  #For testing\n","\tpass\n","\t# arr = strToArray(b)\n","\t# print(a)\n","\t# plt.imshow(arr)\n","\t# plt.show()\n","\t# pass\n","\n","def strToArray(string):  #Fer2013 provides images as string so it needs to be transformed\n","\tA = []\n","\tlenght = len(string)\n","\ti=0\n","\tnbr = \"\"\n","\n","\twhile i<lenght:\n","\t\tcar = string[i]\n","\n","\t\tif car != \" \":\n","\t\t\tnbr += car\n","\t\telse:\n","\t\t\tA.append(int(nbr))\n","\t\t\tnbr = \"\"\n","\t\ti+=1\n","\tA.append(int(nbr))\n","\t\n","\tA = np.array(A)\n","\tA = np.reshape(A, (48, 48))\n","\n","\treturn A\n","\n","\n","\n","#LOAD DATA AS ARRAY\n","X = []\n","Y = []\n","\n","filename = \"/content/drive/MyDrive/Colab Notebooks/facial emotion recognition/fer2013.csv\"\n","filename = \"data/fer2013.csv\"\n","\n","with open(filename,'r',encoding='utf-8') as file:\n","\t\n","\tcsv_reader = csv.reader(file, delimiter=\",\")\n","\tnext(csv_reader)  \t\t\t\t\t\t\t\t#Passe la ligne de titre\n","\t\n","\ti=0\n","\tfor row in csv_reader:\n","\n","\t\ti+=1\n","\t\tif i>maxNbrImages: break\n","\t\t\n","\t\temotionNbr, stringImage, typeImage = row\n","\t\ttraitement(emotionNbr, stringImage, typeImage)\n","\t\timage = normAndResize(strToArray(stringImage), input_shape)\n","\n","\t\tX.append(image)\n","\t\tY.append(emotionNbr)\n","\n","\t\tprint(f\"Image {i} sur {nbrImages} chargée\", end='\\r')\n","\n","X = np.array(X)\n","N = len(X)\n","\n","Y = np.array(Y)\n","Y = keras.utils.to_categorical(Y)"],"execution_count":27,"outputs":[{"output_type":"stream","name":"stdout","text":["1 sur 35887 chargée\n","Image 35222 sur 35887 chargée\n","Image 35223 sur 35887 chargée\n","Image 35224 sur 35887 chargée\n","Image 35225 sur 35887 chargée\n","Image 35226 sur 35887 chargée\n","Image 35227 sur 35887 chargée\n","Image 35228 sur 35887 chargée\n","Image 35229 sur 35887 chargée\n","Image 35230 sur 35887 chargée\n","Image 35231 sur 35887 chargée\n","Image 35232 sur 35887 chargée\n","Image 35233 sur 35887 chargée\n","Image 35234 sur 35887 chargée\n","Image 35235 sur 35887 chargée\n","Image 35236 sur 35887 chargée\n","Image 35237 sur 35887 chargée\n","Image 35238 sur 35887 chargée\n","Image 35239 sur 35887 chargée\n","Image 35240 sur 35887 chargée\n","Image 35241 sur 35887 chargée\n","Image 35242 sur 35887 chargée\n","Image 35243 sur 35887 chargée\n","Image 35244 sur 35887 chargée\n","Image 35245 sur 35887 chargée\n","Image 35246 sur 35887 chargée\n","Image 35247 sur 35887 chargée\n","Image 35248 sur 35887 chargée\n","Image 35249 sur 35887 chargée\n","Image 35250 sur 35887 chargée\n","Image 35251 sur 35887 chargée\n","Image 35252 sur 35887 chargée\n","Image 35253 sur 35887 chargée\n","Image 35254 sur 35887 chargée\n","Image 35255 sur 35887 chargée\n","Image 35256 sur 35887 chargée\n","Image 35257 sur 35887 chargée\n","Image 35258 sur 35887 chargée\n","Image 35259 sur 35887 chargée\n","Image 35260 sur 35887 chargée\n","Image 35261 sur 35887 chargée\n","Image 35262 sur 35887 chargée\n","Image 35263 sur 35887 chargée\n","Image 35264 sur 35887 chargée\n","Image 35265 sur 35887 chargée\n","Image 35266 sur 35887 chargée\n","Image 35267 sur 35887 chargée\n","Image 35268 sur 35887 chargée\n","Image 35269 sur 35887 chargée\n","Image 35270 sur 35887 chargée\n","Image 35271 sur 35887 chargée\n","Image 35272 sur 35887 chargée\n","Image 35273 sur 35887 chargée\n","Image 35274 sur 35887 chargée\n","Image 35275 sur 35887 chargée\n","Image 35276 sur 35887 chargée\n","Image 35277 sur 35887 chargée\n","Image 35278 sur 35887 chargée\n","Image 35279 sur 35887 chargée\n","Image 35280 sur 35887 chargée\n","Image 35281 sur 35887 chargée\n","Image 35282 sur 35887 chargée\n","Image 35283 sur 35887 chargée\n","Image 35284 sur 35887 chargée\n","Image 35285 sur 35887 chargée\n","Image 35286 sur 35887 chargée\n","Image 35287 sur 35887 chargée\n","Image 35288 sur 35887 chargée\n","Image 35289 sur 35887 chargée\n","Image 35290 sur 35887 chargée\n","Image 35291 sur 35887 chargée\n","Image 35292 sur 35887 chargée\n","Image 35293 sur 35887 chargée\n","Image 35294 sur 35887 chargée\n","Image 35295 sur 35887 chargée\n","Image 35296 sur 35887 chargée\n","Image 35297 sur 35887 chargée\n","Image 35298 sur 35887 chargée\n","Image 35299 sur 35887 chargée\n","Image 35300 sur 35887 chargée\n","Image 35301 sur 35887 chargée\n","Image 35302 sur 35887 chargée\n","Image 35303 sur 35887 chargée\n","Image 35304 sur 35887 chargée\n","Image 35305 sur 35887 chargée\n","Image 35306 sur 35887 chargée\n","Image 35307 sur 35887 chargée\n","Image 35308 sur 35887 chargée\n","Image 35309 sur 35887 chargée\n","Image 35310 sur 35887 chargée\n","Image 35311 sur 35887 chargée\n","Image 35312 sur 35887 chargée\n","Image 35313 sur 35887 chargée\n","Image 35314 sur 35887 chargée\n","Image 35315 sur 35887 chargée\n","Image 35316 sur 35887 chargée\n","Image 35317 sur 35887 chargée\n","Image 35318 sur 35887 chargée\n","Image 35319 sur 35887 chargée\n","Image 35320 sur 35887 chargée\n","Image 35321 sur 35887 chargée\n","Image 35322 sur 35887 chargée\n","Image 35323 sur 35887 chargée\n","Image 35324 sur 35887 chargée\n","Image 35325 sur 35887 chargée\n","Image 35326 sur 35887 chargée\n","Image 35327 sur 35887 chargée\n","Image 35328 sur 35887 chargée\n","Image 35329 sur 35887 chargée\n","Image 35330 sur 35887 chargée\n","Image 35331 sur 35887 chargée\n","Image 35332 sur 35887 chargée\n","Image 35333 sur 35887 chargée\n","Image 35334 sur 35887 chargée\n","Image 35335 sur 35887 chargée\n","Image 35336 sur 35887 chargée\n","Image 35337 sur 35887 chargée\n","Image 35338 sur 35887 chargée\n","Image 35339 sur 35887 chargée\n","Image 35340 sur 35887 chargée\n","Image 35341 sur 35887 chargée\n","Image 35342 sur 35887 chargée\n","Image 35343 sur 35887 chargée\n","Image 35344 sur 35887 chargée\n","Image 35345 sur 35887 chargée\n","Image 35346 sur 35887 chargée\n","Image 35347 sur 35887 chargée\n","Image 35348 sur 35887 chargée\n","Image 35349 sur 35887 chargée\n","Image 35350 sur 35887 chargée\n","Image 35351 sur 35887 chargée\n","Image 35352 sur 35887 chargée\n","Image 35353 sur 35887 chargée\n","Image 35354 sur 35887 chargée\n","Image 35355 sur 35887 chargée\n","Image 35356 sur 35887 chargée\n","Image 35357 sur 35887 chargée\n","Image 35358 sur 35887 chargée\n","Image 35359 sur 35887 chargée\n","Image 35360 sur 35887 chargée\n","Image 35361 sur 35887 chargée\n","Image 35362 sur 35887 chargée\n","Image 35363 sur 35887 chargée\n","Image 35364 sur 35887 chargée\n","Image 35365 sur 35887 chargée\n","Image 35366 sur 35887 chargée\n","Image 35367 sur 35887 chargée\n","Image 35368 sur 35887 chargée\n","Image 35369 sur 35887 chargée\n","Image 35370 sur 35887 chargée\n","Image 35371 sur 35887 chargée\n","Image 35372 sur 35887 chargée\n","Image 35373 sur 35887 chargée\n","Image 35374 sur 35887 chargée\n","Image 35375 sur 35887 chargée\n","Image 35376 sur 35887 chargée\n","Image 35377 sur 35887 chargée\n","Image 35378 sur 35887 chargée\n","Image 35379 sur 35887 chargée\n","Image 35380 sur 35887 chargée\n","Image 35381 sur 35887 chargée\n","Image 35382 sur 35887 chargée\n","Image 35383 sur 35887 chargée\n","Image 35384 sur 35887 chargée\n","Image 35385 sur 35887 chargée\n","Image 35386 sur 35887 chargée\n","Image 35387 sur 35887 chargée\n","Image 35388 sur 35887 chargée\n","Image 35389 sur 35887 chargée\n","Image 35390 sur 35887 chargée\n","Image 35391 sur 35887 chargée\n","Image 35392 sur 35887 chargée\n","Image 35393 sur 35887 chargée\n","Image 35394 sur 35887 chargée\n","Image 35395 sur 35887 chargée\n","Image 35396 sur 35887 chargée\n","Image 35397 sur 35887 chargée\n","Image 35398 sur 35887 chargée\n","Image 35399 sur 35887 chargée\n","Image 35400 sur 35887 chargée\n","Image 35401 sur 35887 chargée\n","Image 35402 sur 35887 chargée\n","Image 35403 sur 35887 chargée\n","Image 35404 sur 35887 chargée\n","Image 35405 sur 35887 chargée\n","Image 35406 sur 35887 chargée\n","Image 35407 sur 35887 chargée\n","Image 35408 sur 35887 chargée\n","Image 35409 sur 35887 chargée\n","Image 35410 sur 35887 chargée\n","Image 35411 sur 35887 chargée\n","Image 35412 sur 35887 chargée\n","Image 35413 sur 35887 chargée\n","Image 35414 sur 35887 chargée\n","Image 35415 sur 35887 chargée\n","Image 35416 sur 35887 chargée\n","Image 35417 sur 35887 chargée\n","Image 35418 sur 35887 chargée\n","Image 35419 sur 35887 chargée\n","Image 35420 sur 35887 chargée\n","Image 35421 sur 35887 chargée\n","Image 35422 sur 35887 chargée\n","Image 35423 sur 35887 chargée\n","Image 35424 sur 35887 chargée\n","Image 35425 sur 35887 chargée\n","Image 35426 sur 35887 chargée\n","Image 35427 sur 35887 chargée\n","Image 35428 sur 35887 chargée\n","Image 35429 sur 35887 chargée\n","Image 35430 sur 35887 chargée\n","Image 35431 sur 35887 chargée\n","Image 35432 sur 35887 chargée\n","Image 35433 sur 35887 chargée\n","Image 35434 sur 35887 chargée\n","Image 35435 sur 35887 chargée\n","Image 35436 sur 35887 chargée\n","Image 35437 sur 35887 chargée\n","Image 35438 sur 35887 chargée\n","Image 35439 sur 35887 chargée\n","Image 35440 sur 35887 chargée\n","Image 35441 sur 35887 chargée\n","Image 35442 sur 35887 chargée\n","Image 35443 sur 35887 chargée\n","Image 35444 sur 35887 chargée\n","Image 35445 sur 35887 chargée\n","Image 35446 sur 35887 chargée\n","Image 35447 sur 35887 chargée\n","Image 35448 sur 35887 chargée\n","Image 35449 sur 35887 chargée\n","Image 35450 sur 35887 chargée\n","Image 35451 sur 35887 chargée\n","Image 35452 sur 35887 chargée\n","Image 35453 sur 35887 chargée\n","Image 35454 sur 35887 chargée\n","Image 35455 sur 35887 chargée\n","Image 35456 sur 35887 chargée\n","Image 35457 sur 35887 chargée\n","Image 35458 sur 35887 chargée\n","Image 35459 sur 35887 chargée\n","Image 35460 sur 35887 chargée\n","Image 35461 sur 35887 chargée\n","Image 35462 sur 35887 chargée\n","Image 35463 sur 35887 chargée\n","Image 35464 sur 35887 chargée\n","Image 35465 sur 35887 chargée\n","Image 35466 sur 35887 chargée\n","Image 35467 sur 35887 chargée\n","Image 35468 sur 35887 chargée\n","Image 35469 sur 35887 chargée\n","Image 35470 sur 35887 chargée\n","Image 35471 sur 35887 chargée\n","Image 35472 sur 35887 chargée\n","Image 35473 sur 35887 chargée\n","Image 35474 sur 35887 chargée\n","Image 35475 sur 35887 chargée\n","Image 35476 sur 35887 chargée\n","Image 35477 sur 35887 chargée\n","Image 35478 sur 35887 chargée\n","Image 35479 sur 35887 chargée\n","Image 35480 sur 35887 chargée\n","Image 35481 sur 35887 chargée\n","Image 35482 sur 35887 chargée\n","Image 35483 sur 35887 chargée\n","Image 35484 sur 35887 chargée\n","Image 35485 sur 35887 chargée\n","Image 35486 sur 35887 chargée\n","Image 35487 sur 35887 chargée\n","Image 35488 sur 35887 chargée\n","Image 35489 sur 35887 chargée\n","Image 35490 sur 35887 chargée\n","Image 35491 sur 35887 chargée\n","Image 35492 sur 35887 chargée\n","Image 35493 sur 35887 chargée\n","Image 35494 sur 35887 chargée\n","Image 35495 sur 35887 chargée\n","Image 35496 sur 35887 chargée\n","Image 35497 sur 35887 chargée\n","Image 35498 sur 35887 chargée\n","Image 35499 sur 35887 chargée\n","Image 35500 sur 35887 chargée\n","Image 35501 sur 35887 chargée\n","Image 35502 sur 35887 chargée\n","Image 35503 sur 35887 chargée\n","Image 35504 sur 35887 chargée\n","Image 35505 sur 35887 chargée\n","Image 35506 sur 35887 chargée\n","Image 35507 sur 35887 chargée\n","Image 35508 sur 35887 chargée\n","Image 35509 sur 35887 chargée\n","Image 35510 sur 35887 chargée\n","Image 35511 sur 35887 chargée\n","Image 35512 sur 35887 chargée\n","Image 35513 sur 35887 chargée\n","Image 35514 sur 35887 chargée\n","Image 35515 sur 35887 chargée\n","Image 35516 sur 35887 chargée\n","Image 35517 sur 35887 chargée\n","Image 35518 sur 35887 chargée\n","Image 35519 sur 35887 chargée\n","Image 35520 sur 35887 chargée\n","Image 35521 sur 35887 chargée\n","Image 35522 sur 35887 chargée\n","Image 35523 sur 35887 chargée\n","Image 35524 sur 35887 chargée\n","Image 35525 sur 35887 chargée\n","Image 35526 sur 35887 chargée\n","Image 35527 sur 35887 chargée\n","Image 35528 sur 35887 chargée\n","Image 35529 sur 35887 chargée\n","Image 35530 sur 35887 chargée\n","Image 35531 sur 35887 chargée\n","Image 35532 sur 35887 chargée\n","Image 35533 sur 35887 chargée\n","Image 35534 sur 35887 chargée\n","Image 35535 sur 35887 chargée\n","Image 35536 sur 35887 chargée\n","Image 35537 sur 35887 chargée\n","Image 35538 sur 35887 chargée\n","Image 35539 sur 35887 chargée\n","Image 35540 sur 35887 chargée\n","Image 35541 sur 35887 chargée\n","Image 35542 sur 35887 chargée\n","Image 35543 sur 35887 chargée\n","Image 35544 sur 35887 chargée\n","Image 35545 sur 35887 chargée\n","Image 35546 sur 35887 chargée\n","Image 35547 sur 35887 chargée\n","Image 35548 sur 35887 chargée\n","Image 35549 sur 35887 chargée\n","Image 35550 sur 35887 chargée\n","Image 35551 sur 35887 chargée\n","Image 35552 sur 35887 chargée\n","Image 35553 sur 35887 chargée\n","Image 35554 sur 35887 chargée\n","Image 35555 sur 35887 chargée\n","Image 35556 sur 35887 chargée\n","Image 35557 sur 35887 chargée\n","Image 35558 sur 35887 chargée\n","Image 35559 sur 35887 chargée\n","Image 35560 sur 35887 chargée\n","Image 35561 sur 35887 chargée\n","Image 35562 sur 35887 chargée\n","Image 35563 sur 35887 chargée\n","Image 35564 sur 35887 chargée\n","Image 35565 sur 35887 chargée\n","Image 35566 sur 35887 chargée\n","Image 35567 sur 35887 chargée\n","Image 35568 sur 35887 chargée\n","Image 35569 sur 35887 chargée\n","Image 35570 sur 35887 chargée\n","Image 35571 sur 35887 chargée\n","Image 35572 sur 35887 chargée\n","Image 35573 sur 35887 chargée\n","Image 35574 sur 35887 chargée\n","Image 35575 sur 35887 chargée\n","Image 35576 sur 35887 chargée\n","Image 35577 sur 35887 chargée\n","Image 35578 sur 35887 chargée\n","Image 35579 sur 35887 chargée\n","Image 35580 sur 35887 chargée\n","Image 35581 sur 35887 chargée\n","Image 35582 sur 35887 chargée\n","Image 35583 sur 35887 chargée\n","Image 35584 sur 35887 chargée\n","Image 35585 sur 35887 chargée\n","Image 35586 sur 35887 chargée\n","Image 35587 sur 35887 chargée\n","Image 35588 sur 35887 chargée\n","Image 35589 sur 35887 chargée\n","Image 35590 sur 35887 chargée\n","Image 35591 sur 35887 chargée\n","Image 35592 sur 35887 chargée\n","Image 35593 sur 35887 chargée\n","Image 35594 sur 35887 chargée\n","Image 35595 sur 35887 chargée\n","Image 35596 sur 35887 chargée\n","Image 35597 sur 35887 chargée\n","Image 35598 sur 35887 chargée\n","Image 35599 sur 35887 chargée\n","Image 35600 sur 35887 chargée\n","Image 35601 sur 35887 chargée\n","Image 35602 sur 35887 chargée\n","Image 35603 sur 35887 chargée\n","Image 35604 sur 35887 chargée\n","Image 35605 sur 35887 chargée\n","Image 35606 sur 35887 chargée\n","Image 35607 sur 35887 chargée\n","Image 35608 sur 35887 chargée\n","Image 35609 sur 35887 chargée\n","Image 35610 sur 35887 chargée\n","Image 35611 sur 35887 chargée\n","Image 35612 sur 35887 chargée\n","Image 35613 sur 35887 chargée\n","Image 35614 sur 35887 chargée\n","Image 35615 sur 35887 chargée\n","Image 35616 sur 35887 chargée\n","Image 35617 sur 35887 chargée\n","Image 35618 sur 35887 chargée\n","Image 35619 sur 35887 chargée\n","Image 35620 sur 35887 chargée\n","Image 35621 sur 35887 chargée\n","Image 35622 sur 35887 chargée\n","Image 35623 sur 35887 chargée\n","Image 35624 sur 35887 chargée\n","Image 35625 sur 35887 chargée\n","Image 35626 sur 35887 chargée\n","Image 35627 sur 35887 chargée\n","Image 35628 sur 35887 chargée\n","Image 35629 sur 35887 chargée\n","Image 35630 sur 35887 chargée\n","Image 35631 sur 35887 chargée\n","Image 35632 sur 35887 chargée\n","Image 35633 sur 35887 chargée\n","Image 35634 sur 35887 chargée\n","Image 35635 sur 35887 chargée\n","Image 35636 sur 35887 chargée\n","Image 35637 sur 35887 chargée\n","Image 35638 sur 35887 chargée\n","Image 35639 sur 35887 chargée\n","Image 35640 sur 35887 chargée\n","Image 35641 sur 35887 chargée\n","Image 35642 sur 35887 chargée\n","Image 35643 sur 35887 chargée\n","Image 35644 sur 35887 chargée\n","Image 35645 sur 35887 chargée\n","Image 35646 sur 35887 chargée\n","Image 35647 sur 35887 chargée\n","Image 35648 sur 35887 chargée\n","Image 35649 sur 35887 chargée\n","Image 35650 sur 35887 chargée\n","Image 35651 sur 35887 chargée\n","Image 35652 sur 35887 chargée\n","Image 35653 sur 35887 chargée\n","Image 35654 sur 35887 chargée\n","Image 35655 sur 35887 chargée\n","Image 35656 sur 35887 chargée\n","Image 35657 sur 35887 chargée\n","Image 35658 sur 35887 chargée\n","Image 35659 sur 35887 chargée\n","Image 35660 sur 35887 chargée\n","Image 35661 sur 35887 chargée\n","Image 35662 sur 35887 chargée\n","Image 35663 sur 35887 chargée\n","Image 35664 sur 35887 chargée\n","Image 35665 sur 35887 chargée\n","Image 35666 sur 35887 chargée\n","Image 35667 sur 35887 chargée\n","Image 35668 sur 35887 chargée\n","Image 35669 sur 35887 chargée\n","Image 35670 sur 35887 chargée\n","Image 35671 sur 35887 chargée\n","Image 35672 sur 35887 chargée\n","Image 35673 sur 35887 chargée\n","Image 35674 sur 35887 chargée\n","Image 35675 sur 35887 chargée\n","Image 35676 sur 35887 chargée\n","Image 35677 sur 35887 chargée\n","Image 35678 sur 35887 chargée\n","Image 35679 sur 35887 chargée\n","Image 35680 sur 35887 chargée\n","Image 35681 sur 35887 chargée\n","Image 35682 sur 35887 chargée\n","Image 35683 sur 35887 chargée\n","Image 35684 sur 35887 chargée\n","Image 35685 sur 35887 chargée\n","Image 35686 sur 35887 chargée\n","Image 35687 sur 35887 chargée\n","Image 35688 sur 35887 chargée\n","Image 35689 sur 35887 chargée\n","Image 35690 sur 35887 chargée\n","Image 35691 sur 35887 chargée\n","Image 35692 sur 35887 chargée\n","Image 35693 sur 35887 chargée\n","Image 35694 sur 35887 chargée\n","Image 35695 sur 35887 chargée\n","Image 35696 sur 35887 chargée\n","Image 35697 sur 35887 chargée\n","Image 35698 sur 35887 chargée\n","Image 35699 sur 35887 chargée\n","Image 35700 sur 35887 chargée\n","Image 35701 sur 35887 chargée\n","Image 35702 sur 35887 chargée\n","Image 35703 sur 35887 chargée\n","Image 35704 sur 35887 chargée\n","Image 35705 sur 35887 chargée\n","Image 35706 sur 35887 chargée\n","Image 35707 sur 35887 chargée\n","Image 35708 sur 35887 chargée\n","Image 35709 sur 35887 chargée\n","Image 35710 sur 35887 chargée\n","Image 35711 sur 35887 chargée\n","Image 35712 sur 35887 chargée\n","Image 35713 sur 35887 chargée\n","Image 35714 sur 35887 chargée\n","Image 35715 sur 35887 chargée\n","Image 35716 sur 35887 chargée\n","Image 35717 sur 35887 chargée\n","Image 35718 sur 35887 chargée\n","Image 35719 sur 35887 chargée\n","Image 35720 sur 35887 chargée\n","Image 35721 sur 35887 chargée\n","Image 35722 sur 35887 chargée\n","Image 35723 sur 35887 chargée\n","Image 35724 sur 35887 chargée\n","Image 35725 sur 35887 chargée\n","Image 35726 sur 35887 chargée\n","Image 35727 sur 35887 chargée\n","Image 35728 sur 35887 chargée\n","Image 35729 sur 35887 chargée\n","Image 35730 sur 35887 chargée\n","Image 35731 sur 35887 chargée\n","Image 35732 sur 35887 chargée\n","Image 35733 sur 35887 chargée\n","Image 35734 sur 35887 chargée\n","Image 35735 sur 35887 chargée\n","Image 35736 sur 35887 chargée\n","Image 35737 sur 35887 chargée\n","Image 35738 sur 35887 chargée\n","Image 35739 sur 35887 chargée\n","Image 35740 sur 35887 chargée\n","Image 35741 sur 35887 chargée\n","Image 35742 sur 35887 chargée\n","Image 35743 sur 35887 chargée\n","Image 35744 sur 35887 chargée\n","Image 35745 sur 35887 chargée\n","Image 35746 sur 35887 chargée\n","Image 35747 sur 35887 chargée\n","Image 35748 sur 35887 chargée\n","Image 35749 sur 35887 chargée\n","Image 35750 sur 35887 chargée\n","Image 35751 sur 35887 chargée\n","Image 35752 sur 35887 chargée\n","Image 35753 sur 35887 chargée\n","Image 35754 sur 35887 chargée\n","Image 35755 sur 35887 chargée\n","Image 35756 sur 35887 chargée\n","Image 35757 sur 35887 chargée\n","Image 35758 sur 35887 chargée\n","Image 35759 sur 35887 chargée\n","Image 35760 sur 35887 chargée\n","Image 35761 sur 35887 chargée\n","Image 35762 sur 35887 chargée\n","Image 35763 sur 35887 chargée\n","Image 35764 sur 35887 chargée\n","Image 35765 sur 35887 chargée\n","Image 35766 sur 35887 chargée\n","Image 35767 sur 35887 chargée\n","Image 35768 sur 35887 chargée\n","Image 35769 sur 35887 chargée\n","Image 35770 sur 35887 chargée\n","Image 35771 sur 35887 chargée\n","Image 35772 sur 35887 chargée\n","Image 35773 sur 35887 chargée\n","Image 35774 sur 35887 chargée\n","Image 35775 sur 35887 chargée\n","Image 35776 sur 35887 chargée\n","Image 35777 sur 35887 chargée\n","Image 35778 sur 35887 chargée\n","Image 35779 sur 35887 chargée\n","Image 35780 sur 35887 chargée\n","Image 35781 sur 35887 chargée\n","Image 35782 sur 35887 chargée\n","Image 35783 sur 35887 chargée\n","Image 35784 sur 35887 chargée\n","Image 35785 sur 35887 chargée\n","Image 35786 sur 35887 chargée\n","Image 35787 sur 35887 chargée\n","Image 35788 sur 35887 chargée\n","Image 35789 sur 35887 chargée\n","Image 35790 sur 35887 chargée\n","Image 35791 sur 35887 chargée\n","Image 35792 sur 35887 chargée\n","Image 35793 sur 35887 chargée\n","Image 35794 sur 35887 chargée\n","Image 35795 sur 35887 chargée\n","Image 35796 sur 35887 chargée\n","Image 35797 sur 35887 chargée\n","Image 35798 sur 35887 chargée\n","Image 35799 sur 35887 chargée\n","Image 35800 sur 35887 chargée\n","Image 35801 sur 35887 chargée\n","Image 35802 sur 35887 chargée\n","Image 35803 sur 35887 chargée\n","Image 35804 sur 35887 chargée\n","Image 35805 sur 35887 chargée\n","Image 35806 sur 35887 chargée\n","Image 35807 sur 35887 chargée\n","Image 35808 sur 35887 chargée\n","Image 35809 sur 35887 chargée\n","Image 35810 sur 35887 chargée\n","Image 35811 sur 35887 chargée\n","Image 35812 sur 35887 chargée\n","Image 35813 sur 35887 chargée\n","Image 35814 sur 35887 chargée\n","Image 35815 sur 35887 chargée\n","Image 35816 sur 35887 chargée\n","Image 35817 sur 35887 chargée\n","Image 35818 sur 35887 chargée\n","Image 35819 sur 35887 chargée\n","Image 35820 sur 35887 chargée\n","Image 35821 sur 35887 chargée\n","Image 35822 sur 35887 chargée\n","Image 35823 sur 35887 chargée\n","Image 35824 sur 35887 chargée\n","Image 35825 sur 35887 chargée\n","Image 35826 sur 35887 chargée\n","Image 35827 sur 35887 chargée\n","Image 35828 sur 35887 chargée\n","Image 35829 sur 35887 chargée\n","Image 35830 sur 35887 chargée\n","Image 35831 sur 35887 chargée\n","Image 35832 sur 35887 chargée\n","Image 35833 sur 35887 chargée\n","Image 35834 sur 35887 chargée\n","Image 35835 sur 35887 chargée\n","Image 35836 sur 35887 chargée\n","Image 35837 sur 35887 chargée\n","Image 35838 sur 35887 chargée\n","Image 35839 sur 35887 chargée\n","Image 35840 sur 35887 chargée\n","Image 35841 sur 35887 chargée\n","Image 35842 sur 35887 chargée\n","Image 35843 sur 35887 chargée\n","Image 35844 sur 35887 chargée\n","Image 35845 sur 35887 chargée\n","Image 35846 sur 35887 chargée\n","Image 35847 sur 35887 chargée\n","Image 35848 sur 35887 chargée\n","Image 35849 sur 35887 chargée\n","Image 35850 sur 35887 chargée\n","Image 35851 sur 35887 chargée\n","Image 35852 sur 35887 chargée\n","Image 35853 sur 35887 chargée\n","Image 35854 sur 35887 chargée\n","Image 35855 sur 35887 chargée\n","Image 35856 sur 35887 chargée\n","Image 35857 sur 35887 chargée\n","Image 35858 sur 35887 chargée\n","Image 35859 sur 35887 chargée\n","Image 35860 sur 35887 chargée\n","Image 35861 sur 35887 chargée\n","Image 35862 sur 35887 chargée\n","Image 35863 sur 35887 chargée\n","Image 35864 sur 35887 chargée\n","Image 35865 sur 35887 chargée\n","Image 35866 sur 35887 chargée\n","Image 35867 sur 35887 chargée\n","Image 35868 sur 35887 chargée\n","Image 35869 sur 35887 chargée\n","Image 35870 sur 35887 chargée\n","Image 35871 sur 35887 chargée\n","Image 35872 sur 35887 chargée\n","Image 35873 sur 35887 chargée\n","Image 35874 sur 35887 chargée\n","Image 35875 sur 35887 chargée\n","Image 35876 sur 35887 chargée\n","Image 35877 sur 35887 chargée\n","Image 35878 sur 35887 chargée\n","Image 35879 sur 35887 chargée\n","Image 35880 sur 35887 chargée\n","Image 35881 sur 35887 chargée\n","Image 35882 sur 35887 chargée\n","Image 35883 sur 35887 chargée\n","Image 35884 sur 35887 chargée\n","Image 35885 sur 35887 chargée\n","Image 35886 sur 35887 chargée\n","Image 35887 sur 35887 chargée\n"]}]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/","height":108},"cellView":"form","id":"9c7SsmqlpVUT","executionInfo":{"status":"ok","timestamp":1616664903889,"user_tz":-60,"elapsed":1586,"user":{"displayName":"Boulet Timothé","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GiayvINTDL_0Iuf52iuumxhg4psHVMYz59ow2vJ=s64","userId":"06174172927805952140"}},"outputId":"6cd175f5-9d89-42cf-80b8-71d4d8eb82a6"},"source":["#@title Visualisation\n","N=5\n","plt.figure()\n","for i in range(N):\n","    k = rd.randrange(X.shape[0])\n","    plt.subplot(1, N, i+1)\n","    plt.xticks([])\n","    plt.yticks([])\n","    plt.grid(False)\n","    \n","    afficher(X[k])\n","    plt.title(classes[np.argmax(Y[k])])\n","plt.show()"],"execution_count":28,"outputs":[{"output_type":"display_data","data":{"text/plain":"<Figure size 432x288 with 5 Axes>","image/svg+xml":"<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"90.742263pt\" version=\"1.1\" viewBox=\"0 0 352.7 90.742263\" width=\"352.7pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <metadata>\n  <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n   <cc:Work>\n    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n    <dc:date>2021-04-02T20:07:40.408573</dc:date>\n    <dc:format>image/svg+xml</dc:format>\n    <dc:creator>\n     <cc:Agent>\n      <dc:title>Matplotlib v3.3.4, https://matplotlib.org/</dc:title>\n     </cc:Agent>\n    </dc:creator>\n   </cc:Work>\n  </rdf:RDF>\n </metadata>\n <defs>\n  <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\n </defs>\n <g id=\"figure_1\">\n  <g id=\"patch_1\">\n   <path d=\"M 0 90.742263 \nL 352.7 90.742263 \nL 352.7 0 \nL 0 0 \nz\n\" style=\"fill:none;\"/>\n  </g>\n  <g id=\"axes_1\">\n   <g id=\"patch_2\">\n    <path d=\"M 10.7 80.042263 \nL 68.424138 80.042263 \nL 68.424138 22.318125 \nL 10.7 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pe605125ad8)\">\n    <image height=\"58\" id=\"image8789de4dd2\" transform=\"scale(1 -1)translate(0 -58)\" width=\"58\" x=\"10.7\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAADoAAAA6CAYAAADhu0ooAAAdh0lEQVR4nHWb2ZNlV3bWf3s60x1zripVlUolWVa3ulvd7W4w2JjoMLaxHRBB8AgvRPBP8MQLwRP8DzzwRBhewIYIjMFTQLsld+OWJVlDqVSqIatyutO5Z9gTD/vkVXUEPhEZeTPz5r1n7bXWt771rXXFr33vX8btnRHNvqKfCHwBUUGUQBwe60jIICgIVUDudUzHDcfjDXdGC6a64YvtPiEKCuWYmJa5aQhREKJAy/AzjxtvkCJihKdSPWPVMpEtlewISAAq2fGmecE3M8P1pYTkr7t8DAQiNnoAjFC7vwUC2k1yXCHxGSBBhPRHESCKZGjQ4PNIKAJ61jMZNxyNavbzLV1QfLI5JkRBpXtKZSmVpZL9S28k2PqMJmR4LyiVJZcOIzy5cBTCUcluuEGPjYptyHnoDthXp9xUJRLx1xr58nVt4PXzAxGJRNuJxhWCqARRJC8Kn4yOevCmgZAH5NhSVR2zsmVkOgKCy26ECxItA1oEbJSsbYELCi09l33F8+2UVZ/TWY2SkXHeMTI9hbIUyjE3DQfZZudZKSKKQB1yHroxddhSiMBECiYyGwyRSMT/18uBQNh5Og4eLQRh8LLwIOLgSZHC99pIikBWOKq8Z5alm9m6jM5rSm0B6IOiDwoXFC5KVl3B6eUUu8hRG4W06QAvsxQdqAg6IjPPaNJyc7Lm3uSCO8UVh3qNiY4zN2UhKj7tbrCvN7yVPeO+aZFAIRQGhRzC3UZPIOCJhBjxRGyMeECLCNIBfUzhqgTBQGQwVEPMA6bq0dozznoKbdm6jMYZRjr9vLE5G5vjo6Sxhqu6pHk6pnqsmF5Esk1EdRHVB6IUuFISZXoPnxnag5JPX5nx+NUZb5+c8q3pE25nFhsVZ27Cv3/wfYSIfPf4Cf/k8H9TCMtMdsyloxi8aom0MeIjWARtVMOXQesmQARXCHwm8HkEneI76ogfedTYIWVEy8BJuWbrDJl0jIsUvluXcdWWADS9oW5y+mVO+VyRX0VUlyLEZwKfKXw2HKb6KnL0NjL5XNKtZrxb5/SvamaHDYW23MkumBYdXzw45n98vscHb55wUq15Z/aE740ecEOtMCKwDYZVKLAo1r7kwo85txNWrkD84Af/OrpS4UuJLQWuEthK4EbQ3PAws+jMI2Tk3uElpbZIESiUQ0vPoq9YDEa2TtP0hmabw7Oc0ROJ7JJBvgQ7gmAivITowUSijqgmeUX2IHtBPw+88c5j/tntP6WQljrk/Ofzd/izT++RPyionkWaYwHfXvG9Vx7xWnXBxuV8tjni0XLOclURNgbZSmQn0Kp1IFLueKNSzEroZ5E49kgViVFQ5j2zvGHVF4xNh4uSbZ/ROY0UMd2kiHStIZ7lVC8k/QTan3PIqSXLHUoGglVMRi2H1ZajcsN+VjPVLStX8Hg7Z5a1fHR1zPPncz7+5BZ/Mn2Tvzf/S4xw/I3ZQ9x9yXv1fQ5/Kjh4v+XqyYQfvvE2f3zsEJ2k+lJRnkVOthHpIkMSomVjiUpCoRjul6DBTTwqTzVJyMC46NAi0HlNjAIxPDlcw3gULOsSu8jJaoHPod8PiMoTnaRzCS2jlVzWGZtxwVk5Ylp0VCaVomerKUVmkSIymjVs+hF//OQ+3xp/yUh27OsNb45f8OHJCUFP0Ocb9gDTlGyPDNJFxk8d+cIi+oCIkSgFUQq0aC0y04igIUZA4DMQlUcOhV6pyNj09EHRWEODQctArt0O0lunaa8KVC1T3Z0Fooyw0chGonqQVkCAkEXcSLPQJVcmIkcWkzu6OoNOIQqPzDyycqyuKj7Y3uKb1WOMcMx0w2sHl5zOpgDoi5qxEJg6IxhBtnSorUNYn+wRqXRK0fUI6xE+eSgqsJOIzh0hCgRgjKPUlquuYt3krJuczmlCFPggMcqzWFWopSYY8Cc9IY8UzxXlE0W2FGQLQfUskl+BnQbC2BNNBBXJCsfNvRWv3LxClI7si5z8/YrQK7LK8u7ZXS79CBs1Rnjuj8/Z3BZgNHiP2nSYjUP4SMgkQcvrIoqwHtk6NF0PLuxKi6sEbs9SZQ7ba7TxjPIeKQLrLqepc6KThIkk144IrLsM/6wkHPZgJdmXGdMHcPFdj64lbhyIJiBHjn/6zT/jNyd/gRwomCKiiBwqy1Ofc/r6jH8x/kfIH86Yv5tR/cNLFtuSL5pDQpEMODA1X//BJzz59A0O3rtArrYYISAWIEDECDHuvgPo6PzAggS2FLT7ETMd6JuIlHnPNOtovWHbZcizDOEEbYQ6s2gVWCxGxIMesciYfSw5fL9BuEiUJYtfbfjV1z/h1fKCNhhey8944vYwwvGgP2bjCw71ml8sH3AkO+4VZ/zbd36HfzX6bdr/eMLVn95g/5dOWdiSkR5RSMvTds4v73/Gv/vHh1xwwMGfXyKv1hjAV4YoBFFKEBERAgiBRg5gYgR2LLD7njJzeC8xxlMaR64dLkhCEOhaIJzAV4ptm6G1JzQatVIc/himD7f4QvHotzJ8GfjB/U/52ugZ53bM+6tbfLC6wdenpzxq9njv6R22ixKhA2/dPeWVaslr5TnfrR7yz+/9Cf/mN3+N6nennC3HHFdruqBxQXLWjpmbGb9x9yN+55e+j7J77P2fBrHtoDTJkzJVD4IAH9DJcwI7UvQzENMeKSMhQKY9I9NT6R4XhjpnBaoDV0v6OsMZj15oZh/D3l8uAbh8a8br33/Ek+WM2mf85eYWH1ydcPr5AWor+fH0HvpKU1wI5htAwOef3+PjceD3Z57Dm+/w2vyC2/MFp6MZ/tGI57MJR8UGJSLLvuDLZo/vTL/k7be+5OPFPYrzI8rPzpEupLD1EQJfhS4hEjNNOxd0+4Gi6pEiImWgyCy5dmTSIVHEKJAOZAdmI4haA5rxQ8Hhj5eITUPz+gGbV+EXJ+d8cbHPjx68mv7vLGP+ucSsIyHTmE1EupC4tRToRqQuqpRsnhzy7tEe+fEW9qF8ITi7mvC8rBmbjsYaTusp61HB395/wPNvTHixOOTukwzRWNAy4Y73ECJIkTzanJRsbwo4ahkVfboxERlnPZl09EEnHuskKoDqI/JSUFwI8kVk791T4ukZ9d/9Gpdf09hJ4Pc+eJvqg4L5IqZuSECUkX6a6F9zKH4G5ePtluAEsUnlSK8l4XJMLFLJc+cFn2SH3Jit6axmtS14Np3x9vgpv3H7Q373b73N+uN9pj96QpxUyZN+6GGkQsdbh1x+TdPe7dmf1xTaYYNknHfMsmaokQbrFd4N4etg9MxRPVwhHj0ldB3y1du0e4lZ5ecSX+fUrzn6ecuo7JkUHfvFloO8pguaHz68h7/MwQvi2HH/5IJv7z1mz2w5NisK0bP0I36yvsOD9QHnmxGbFyMefTrFF5FoAu/qO5SvWN6onvPrdz/iP/z97/P19wRi2xLzDLSCGIlKoK++OaO+6xnvb5kWHblybG3GXr6lUI7Wa1qv6bwmNHrX0WyPFdujPfwv77G9Kejudkz2FtyYbLhZLXmtuuCmWeCRbHzBuR1z3o95VO/x2Ue3mH2gKK4CwkPQmmXxCv/t+DbtSaC4s+btk1N+YfaI39r/C0aHHY/sAX9w/BbvfnEX86BE9pp6O+O9/DbyKHAjW/Hr336f//t33uHgf30JJhCN3hEavbonkQfboZnu0SIQo2BsOpSItP4ar4akblIX0s3BziJ27qmOat6Yr5hlDQd5zVG2IReOSzce1IKMha143kw4XU0QXaKILheYJqK79NqqF+iNYHtR8Yk+IpMeHyXfKL/knjnjHxx23K/O+cP9Nzj78QmTB5LnxSE/kYFfOfmUn6+e899/MbL/5yPobaKAA3nQ7Q3PfNwwLxrGpkMSkSKQS787jRgFMQpQEd1EghYghk4k9wgB6y4f/jcSosRIjw2KXDoCAheTCmGUJxQBn8vU1FvwmaS+KbCTpE3hBOtNyWfZAVPTcmKW3DALjtSKb1WBzWHO75bHVOcR91DxeLzPo+ke+5Oa1956xvbVE6oHV+A8MdOIGNFqP0kjU9MyMS0hSrT0uxu9Ju42SGTmicKgmzg06JIoDbWVbPOcZVVSFRWjzFJqi1GeedZQKosWgUr3aBUQA3oLn7zaHQjq1y0EgfDpEH2juFiMOR1NuCwTUTDCsQolLiqiipg6MHkM3X7GgxuH3CxW/MrRp/ynN29TvMhRVzWQE4VATidbZlnLPGsYq45S9eTSk8lE2F1QdEOfmRWO7a3kZbOJZEswK4loFLFJpP7qYsKzixlPV1MumoqtM4QoWLucz64Oufj4gP2fSPY+cSgL9SuC5ttbxkd1klYiIFPBd53m08tDTrsZbTC0wfCsn/P+5U2yywR8ZhMoLgTPzmZ8tjnkdnbJ6ls93WEJISRmpAR6WnRMs4aJbqlkTxdSThrhcVHu2jAfJN4L+Lktl+OS4kxiNlBcgOokzY1IzCC2CtdL6l7RNhnrpqA+rzDnmmwlyA1sbsPlNwXlKyte279imrVctCOassUFiZKBTPmhyY+c9WMu8xEhSj7bHvLkxZzxFcg+0O0bXJHS67Se8ni6zztvfMnjO/cpH5cI6wm5RmfSY0SgkJZCWpQI2KhSZxIFkkiuHWWWBDDrFPJ2TXNoaFaG/EyhayifKfpZxI8C0aS+04tIvRihVwo3C4y/seDGZM3NckWpLFPdUKnEq6+KiiZk2KAwQ0RVssdIjyRSyZ5PmhM+vLiBOC3IlpF+rlm9KumOAkoHIvC43eOd+WM+vHef+Wcj8s/PYZwnwqClTxqrtBCgUj1XtkKJSKZc8mwmyJRn02X0TkNhsSLSKoNeKbKFIF8I/FbhxhE3TQ23qhUhj5jDhl84eczcbNnTW5QIyRDhsFEzVi02KmzQmEHzLYTFCM825Bjhebydc/5kxt4DyOrI+o6iPYiEkScznkI7Gm/Sa93p2LySkX/iETuu+9JlxLXRDqcskogWgUJZ+pBkk1ULQiiEAKsiThtAo+sEMmYtEE4RtULXSX+SMnKUrdkzNQCFcOTSogYFdl+1GOFog0GJOBjpUCKw9iVf2n0+OjuhemgorgLdTLC9EXEzjywdRWYZmRQBisirty54cecV9osMYX0yNEQ5hKvc9Ylj1SVJQwlsVDTeULucTDqEiDTW0CuF1opOBlzmca1CrTTZQlC+EAlYANUJ6nnBs27GzWyJjWr3PjYqPJKR7DhSK+qQp4OQlkJY2mgweP7n8i2aRxOOvgy4XLB6Hdy+S0YOzGtqWkaqxyP43sEjfufuCe54ij5bo43yhChog6GSPbkIO6+q4WZ8lOQyQ4lIqdSOMfVB03vFus9TryoD8aagbnLsFyNmn6QSElrwjw1/PH6dm19bUqmeNhgKmRRFIzySwEhYlIy7yKqEIyOgZODd53dQW0F9Q1DfCcSpReWequrYrxoOy00yVHeEKHm7esKf3LvP5dePOfmvZ8mjqcgnY4GUq0BO+h6iRA2AZYNCioiNii5oapdzpsa4otm1cnFUU882PDnYp/gyQ3aJH8tHJf+lepv7e5dMs4ajbMNxtmaiWwqRELaP17OTsEP8UzdnkvdsXq/p7sOkSM812nM82jDPmsQDdMtEtUmOFZZfOHzM733nkOM/KpOhRvqXJMv0JAA/SP0IjxzQ2Aq9Q2ZFhjHD9Ep6fBS4oLBR0npDc6y5ZIpaaGQniMBmWVIcWaa6I5duF8IBiR1SCCAj3VOPpI2G16fnVKanccMkTnrGpmM2eLFUlrv5xS4N22i4U1xyeO+S7Rv7aCkimXRflZag8VImMOArGqhIB2CFxiOQMSCJQ75FCmnxURJiyumVK7g5ybBesVEVvpegI3lph/Gh303UPJIXbkIh0msoEZAikIlACBIjHHfLS0plqX3G2uZIEXdG7ukt+7pmIhvamGGiw0fJWLXcn1/w6a1DtCRNriQROaCHIuzyUw6oqERAErAxjfWM8ASR2FMVO4rhsUfs/k4FLkheyID1CqM84zw19i58Nb9MxH/MXG0phEVdo9jwepnwnJglhbQsXYkWE1yUzM2Wseo4NGuO9IpMeFRI9vRRoUTgRrHi/QOBDsONXeeDke6rMN4N3xI4qJeM9lGCgJHsaKPZ1TyPYBtyJrJlphty6ZjnDRubE6JgP99ipKf2GaOQUQQLErpg2IacQtmfMdIjkQTmarsDSSkiXdAcZysmsmVfb5jLLZnwmOHA25DhEcx0Qz+PaBckLip8lBiVhrIJaMzP1Lk0jkunK4VlG9LkrJIdR3KFjXoAlECIKa/aaLidXfJFdsiFHdGEDC38bgThgmQbMvIBfeuQc6RXFMKSXR8qYafnjoZhcSU7Jqplrmp8lExly1w2eARzGupoWJOAbU/X2BOL7q6bai1SIqPwMfEIH8TOk9uQk0tLIeudh+Xw+0x4KtmRkU68GFq8i1CmE87h0KzpguHSjZJnTEoBH1Nj7qPk1ex8FxlGBBQRT8rRQMrdiWoYiX7nOSM8E2GZyMA6SCySAkdNIJAi7cbNK3TnNDZKuqBTeZGpvHTBcB1EFjUIzclbqcZaEEMYI1CE3Q36l8bwBs9c1YxkRx1ypAhsQwKpXYgOAHRd3q4vucvffDjAHkMKz2tqeI0N6yBZDmTDCD+Er8FGzZ3JAu2joA96VxeVCOQk9PNRomQc8iKFUn8NNEMOqeFGPTLl1MCw2mi48Elh6KOijdmQhxk+Si7sCCnijrgrEVADNiRAkyCSwtBGs6uvasCERaiwUdNGs8OS60UPSaCNZndPM9OifUglwQ1ULJWI1J75KFExDJ5Jnr0Oma9OPSG0IoVaGzUXfsylH3PmJmx9TjccZIiCJmRIIqfthEI59rOasepSWryEuB6BRWBRtCHdtI2aha+49CNOuxkrV6ZtFwRahB2Xnsj2pXInyaVDW5dOSg+Idu3y6zAKIbVq191GQj83AIVMpxhhNDCbJ27MXzR3+aI54KKrWNtiV1pKbVl1CYT64XeLosRMPPt6QyF7ehQqisGbgrUvE/AheObmPGr2+OmLWyyeT9ALzfW5hywSTzrunFzx8/Pn3MqXVKqjG+xIbdpL/Pba2Ilq8ddkH0GI6WSlCAMzSqe79iVLX/IH9ut8tDzhs9MjwmmBbgRBD7oSaU0gFgFZOYKV0CkwgRel43w+4pW7C9a+xMdE8I3wBAR9VCx9yXtXd/nw8Q3Uo4LyueDOQ4dZ94RM4kpJP5a0hyWP7uUs7xW8Or/idrXgKFuTS4u+HrzuwEOmEnMNKNc9oo2Kjc/50eY+M92w9RkPtwf89MVN2k9mFC8E+TKy34EIkZRiSUgLJqnxCInPTFrOMuCqiKs0z1cZv1++xW+f/JRVKJmresiLlnUo+XB9gw8f38A8KBh/AdWFw+eS7ZHCTgR2DHYU8ZUHBctlxRMVBvZl02rQNW/MpaNS3a5PtFENfDatrRRYKiX4vDnis80h582Yi03F9qJCh7QK4KphZOEEqgXhBapPyxrSJuPDXCAc5OuIWQl8Iejnggf7B3w4voUUgeNszU2zYK62CXVdxsHehrPbCmJGVINolwlcAW4U8dWwATaysDCcb+eECG9Pn5ELhzbDItR1w3p9hShTSREeA7uy4KOgtjl1b/BeIkuHmwpUrYgmEnugFUnnGrZOpI2oPnlXhIjqQXVQXnqiFGw7yeK45K8OjlEicFmMWBYlN7MlbTA830y4+Gyf8oUkXw6dkAWaiOxBbwUhU0gH3TynfJE2XVarA35PvM1+uU396HXp+AraFW3UP6MCeCT2WjhTHqMCUsY0eHUCsxGIkLZKTA1mnTyo+ki2Ccg+zSmlk4iYwju/sAgfkLagvq14upiiVGDZFaxsQVNlTHXDxeWYo/cEky9bhIu4SqH6gLBJ4YsiSaQiRGylya8Sg9o8rzjvDli8XqG/Iu9xZ/A2DGtoQ9kwwkHUbENqvqem5UUc01yUjB4YJl8GdOtxhUB4MHVANx7VJo+pTY9cb2Fdk19cIqsKcbiflkSEYNR7ylenrI5LELDRJcuqxB1IbpYrxEVG9cKRP7wgrtYY70FIYtcR+54YUiQKpVAxILKM6D3zFzfx2Q3U91doLb/y5stXF0yqp1KSS4kiMFEtj5o9Ni7n7PGcwx9qjv7oGaxr8B6R5+A9od4Sm4boHAKIUhGkAKUQWQZSENc1oshBK2TdsfeJpT1IQCU89CbnozpjeVIQD3pcaYhFhohjkDLNVcpsGPpK/DRjcytHelBdwJWSbiaobwluyIDOpCOXbteW2ajY+pxAUhx8TMT7WT/jDx+/weLZlL2fKN74sCV78IzYdog8AyFAyiQaaw15jihL8B6EQKivKJ8oy/RcJYlVgZuXRCEYP4ZuLvDlUI5aRWUs42nD6l6BqWcUj1dgXTosLQmZwk4z6hPN4i3wRQQh0bUguxIUF/Do6QE6U0PrQ5qZvHzZqPi8OeTDqxOefnrE7APFKy88489XyHVLHJf4m3uEXCOtRwzTZgLI3oF1iLpJxgIoBZkhagVCEEYFbpbTzzR2JAlKEDLop4EwdWSTRA+PxjUPfn4CMWPPzCgfb5CXa6QPMCpQmcJsJfmFon41wNRi5wJ7J5IVlm+cnCWPypc45jX9A6hdzl8tjnl6uodZSkIO/UiyvT1CuoqgBT5PhyP89abWUAJdRNqIWY0QnR+mz6SdYBeIRhFzRVQJSFwusBOw40iYeIpZx8GkZp41uCg5u7Fm3c0gGoKeMIoReblGdT3CjoAKnwlcpWhHnul+zc3pijujRBq0ESGJY4ORPsqdAFb7jLPVmLhV9IeOeL9nVRtEo1CNQnZp1KfatMgs/PAVUkmRFvKpQg/gJDuP2vZpEm0UwnpUI/CZTJ6cRdzcYcY9k6rl1njJYb5h7QpuTVd8cUuzlhW+0PSTOft/HuBigex6st4y8VOkzzkvDe3oq05IijiIY0OXcH1dj/oAZqMGISKzUcN3Dp9wlK2RRDY+Z2Erlrbgoh1xtS3Z1AV2naGWmvxSpCHUViBtQK875HKLaHtwDtEOeb03wd0saI4E9sCS77WMyo5J3jHSPWPVsbAlh0WN35ecak89Lei/49jcPuTkRxPyLy5hucYs1+w9yilfHLN8bcTDu2M+vnfCd+8/Qp91Y3LldkOmSiVddO0Lfq56QSYdz5oZLsjdc4zw7Ouau/klbdScdjOeV1OelDOeyhm2UehWMP+sp3xwiVjXRJu62yhEQucQ8cdTlm9OuPiWwB715NOO6ahlknfs5VtmpmHPpFUALQNT07KXb1lOS+5NLujvad79m3eonxxTPFOMnqahsh0lnl2dRkZPcz758ZvoJ6spU9PulMAQJW1Ioz4jHW9UL7hTXNEGw0S1jFW7Ay0jklw51h1PWsmyKeg3GdlGYNYR1QXCtESMirRLoCV2XrC+k9FPBe0B9IcefbClUJFJ1XJY1UyzlonuGA+U9Ea+pAsmySmqw5ZpwAzwW/c+YH274LSZ8HCxz3KIKmElOIG0iYXp5WrEdmbojWbjcqxMHDeXbujl0kD3eqn/hZ2y9RkrV7C0Jau+4Hw7YlUXdJsceokbRdb3BP2sQPbFVyvrGdhpxJ70VNOWXAUm2lOa5O1p3rKf1+xnWw7Nhj09yDZ4lIzkgyP8AJhrX6AI7Juaud7y2uiCJmScdyNab+i9wobUB2u/NNQ3cpqsHZB3+DiG6PFR7vo5GxVXtmLlSpa24KwZc1lXbLc5vlcIFZCZR5UWpVNNboctFm08uUn7+JWxHBTJmMYbumFHog+KiemY6JZDs+HYrDhQGxa+SnLsMKoIMSmD25Cx9kWqWiJQScdxtkoSS5nt6CqkjkxnV4raZumzKET00I/aoNKycnhZlC5Zu5xVX9BYg3WK4AUy8xztrTmqaubZdvdxj6lumentruO/Hhq9rDx4EutauIpr8jIeFL4kSBsK0mTtOmU8cqddJS3J7vpoRRIIgnA7bckj0cW5YNXmbMsMLQI6eJSInPUTjPToQUdVBOZmy+3iCjPxTFT6QI4amnY16DT9oCAWot+pg2GQaGxUFCJ9JkYRmelrpU/sBr5qGIko4k66mcp2p2pc60ReCdqoUcSvlJHh50p2tCT5hZgO5v8B29hpUnWBnewAAAAASUVORK5CYII=\" y=\"-22.042263\"/>\n   </g>\n   <g id=\"matplotlib.axis_1\"/>\n   <g id=\"matplotlib.axis_2\"/>\n   <g id=\"patch_3\">\n    <path d=\"M 10.7 80.042263 \nL 10.7 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_4\">\n    <path d=\"M 68.424138 80.042263 \nL 68.424138 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_5\">\n    <path d=\"M 10.7 80.042263 \nL 68.424138 80.042263 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_6\">\n    <path d=\"M 10.7 22.318125 \nL 68.424138 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_1\">\n    <!-- Sad -->\n    <g transform=\"translate(28.267069 16.318125)scale(0.12 -0.12)\">\n     <defs>\n      <path d=\"M 53.515625 70.515625 \nL 53.515625 60.890625 \nQ 47.90625 63.578125 42.921875 64.890625 \nQ 37.9375 66.21875 33.296875 66.21875 \nQ 25.25 66.21875 20.875 63.09375 \nQ 16.5 59.96875 16.5 54.203125 \nQ 16.5 49.359375 19.40625 46.890625 \nQ 22.3125 44.4375 30.421875 42.921875 \nL 36.375 41.703125 \nQ 47.40625 39.59375 52.65625 34.296875 \nQ 57.90625 29 57.90625 20.125 \nQ 57.90625 9.515625 50.796875 4.046875 \nQ 43.703125 -1.421875 29.984375 -1.421875 \nQ 24.8125 -1.421875 18.96875 -0.25 \nQ 13.140625 0.921875 6.890625 3.21875 \nL 6.890625 13.375 \nQ 12.890625 10.015625 18.65625 8.296875 \nQ 24.421875 6.59375 29.984375 6.59375 \nQ 38.421875 6.59375 43.015625 9.90625 \nQ 47.609375 13.234375 47.609375 19.390625 \nQ 47.609375 24.75 44.3125 27.78125 \nQ 41.015625 30.8125 33.5 32.328125 \nL 27.484375 33.5 \nQ 16.453125 35.6875 11.515625 40.375 \nQ 6.59375 45.0625 6.59375 53.421875 \nQ 6.59375 63.09375 13.40625 68.65625 \nQ 20.21875 74.21875 32.171875 74.21875 \nQ 37.3125 74.21875 42.625 73.28125 \nQ 47.953125 72.359375 53.515625 70.515625 \nz\n\" id=\"DejaVuSans-83\"/>\n      <path d=\"M 34.28125 27.484375 \nQ 23.390625 27.484375 19.1875 25 \nQ 14.984375 22.515625 14.984375 16.5 \nQ 14.984375 11.71875 18.140625 8.90625 \nQ 21.296875 6.109375 26.703125 6.109375 \nQ 34.1875 6.109375 38.703125 11.40625 \nQ 43.21875 16.703125 43.21875 25.484375 \nL 43.21875 27.484375 \nz\nM 52.203125 31.203125 \nL 52.203125 0 \nL 43.21875 0 \nL 43.21875 8.296875 \nQ 40.140625 3.328125 35.546875 0.953125 \nQ 30.953125 -1.421875 24.3125 -1.421875 \nQ 15.921875 -1.421875 10.953125 3.296875 \nQ 6 8.015625 6 15.921875 \nQ 6 25.140625 12.171875 29.828125 \nQ 18.359375 34.515625 30.609375 34.515625 \nL 43.21875 34.515625 \nL 43.21875 35.40625 \nQ 43.21875 41.609375 39.140625 45 \nQ 35.0625 48.390625 27.6875 48.390625 \nQ 23 48.390625 18.546875 47.265625 \nQ 14.109375 46.140625 10.015625 43.890625 \nL 10.015625 52.203125 \nQ 14.9375 54.109375 19.578125 55.046875 \nQ 24.21875 56 28.609375 56 \nQ 40.484375 56 46.34375 49.84375 \nQ 52.203125 43.703125 52.203125 31.203125 \nz\n\" id=\"DejaVuSans-97\"/>\n      <path d=\"M 45.40625 46.390625 \nL 45.40625 75.984375 \nL 54.390625 75.984375 \nL 54.390625 0 \nL 45.40625 0 \nL 45.40625 8.203125 \nQ 42.578125 3.328125 38.25 0.953125 \nQ 33.9375 -1.421875 27.875 -1.421875 \nQ 17.96875 -1.421875 11.734375 6.484375 \nQ 5.515625 14.40625 5.515625 27.296875 \nQ 5.515625 40.1875 11.734375 48.09375 \nQ 17.96875 56 27.875 56 \nQ 33.9375 56 38.25 53.625 \nQ 42.578125 51.265625 45.40625 46.390625 \nz\nM 14.796875 27.296875 \nQ 14.796875 17.390625 18.875 11.75 \nQ 22.953125 6.109375 30.078125 6.109375 \nQ 37.203125 6.109375 41.296875 11.75 \nQ 45.40625 17.390625 45.40625 27.296875 \nQ 45.40625 37.203125 41.296875 42.84375 \nQ 37.203125 48.484375 30.078125 48.484375 \nQ 22.953125 48.484375 18.875 42.84375 \nQ 14.796875 37.203125 14.796875 27.296875 \nz\n\" id=\"DejaVuSans-100\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-83\"/>\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"124.755859\" xlink:href=\"#DejaVuSans-100\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_2\">\n   <g id=\"patch_7\">\n    <path d=\"M 79.968966 80.042263 \nL 137.693103 80.042263 \nL 137.693103 22.318125 \nL 79.968966 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pd0be011859)\">\n    <image height=\"58\" id=\"image7c4f92e754\" transform=\"scale(1 -1)translate(0 -58)\" width=\"58\" x=\"79.968966\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAADoAAAA6CAYAAADhu0ooAAAZg0lEQVR4nF2bSY8l6XWen/MNMdwhM6uqq6snks1mU6QskqYoi7Ih2xK0kRY2DAiCvZJXhneGl/4B/gVe+E94aQNeeoBNeCGZsEiKY7PZA1ldY+Yd40bENxwvvriRWX2Bi87KvkOcOOe8533f86X8q7/6S31/8Yxn4wU/2b3BL54+JD5e4HcGO4A/gDsqdgQ7Ku2LgN/0PP7jS975Jx/xH9/7T1wZw6fJsMkNWQ3nR6+eY67p1RPUMqojqKXL1fw6I5mshqCWbWzJKjwdLvisu+D5Ycmpq8lZ0GjQ3mIPBn8wtE+UequIggqcvzZVQnXI2KCoEUIrjBeC+013xcoOnHJFVsEYRb0C5QNQMAlMVKpDQgWe/sEl4e/v+Zdv/R8ArnOegwnqSAhBHeP53yoAVBLJKmQ1pOnKkhoyQp/L+7MKtYlcVif6xhGjpe8qMAoukysp1yWgFshTkAq+U3ynqIGwMKRKSBVIBpdVOOWKITkAnEv0TlGnSC9ILh9ig4LC8c2Kze8G/umXf8pXq6dkYJ/9FOid4KZgz0Geg0qYObi7v7/7qG1k4QKNi4go5Om1Atjpx3znmcAkxQQlLA2xFVIN2QkImFFxRpQhOYbsSNmUD3YZNRYTQbIiuWQ0Lgzb94Xf+/qv+KOLn+El8zLXbNKCfW7p1c+BWSlVkbnNXJp+zsgrwZ2DtmQQgyNRm4g3qVRWKheMTkHq3SBL+aKQGmFcC2EpqJuqMZaMOyeZoIYueobkUBWwWu5ELHdLcsnm6YHBf2vDX7z+f/mKf84mNzyPFzwO97iOS4JavCQWdmBtehZmeCXIc9neDfDz2bRkrIAzCWfylPI7GS1vLEErIEK2kLwQWxgvhOzLy0wEIqgV3JgtffLsQ8OurxlHhxiFDBLBDuUNYWHYfE35d1//H3y9esJRPZ+GB3zQP+KX3WtcD0tiNjQ2clGdeFTvebPazsECBHX06qaMZ8KdvgQYssdIpjaR2kQaGxDhtnSNzhlFIPspwIUQVpCaKYuh4IpM/asCbkiOyiS2fcOhq0nBYpxiB5kAKJOd8PKbwp/84Q/4w/aXfBqv+GH/Dp/298lq6JMnZsOQHPux5mm34iPzgHdWG95bvuC+O1KbQFDLTVhiRPGSyCrEXBAX4Jgq1q5nYUdqE7m2S6zJpcJyyayMAgphVdA0tqCuVJ7fF4AysWR96p7So8/2Kx48PNK4iGaD7irkJFTbMlpSLRzeMTz8zhP+8uH3eJJW/GJ4g//62Tf46NevgQq+DTTtSOMjlU0sfABgM7b8XF9n7QbWvmdlB2oT6XLFKfm5Z4EJiYVjrPFy26NG7gQZyxOB2JSs+X3JoB0L4o4rIVdCdhMa5xK4u2h77lUdz08rchbMSfAHgzspamH3juH02z1//ubPeGBOPEkr1vbEZdVjfCZ3jnD0xNFyNIpYxdpMUwfuLU4YUWI2bEODEaUyJYjaRpxMgUyP2iSGbEuGMyQVnC0ZlWCQKJgwtdRY2sp1Wko1TjPVlpLOtmTUpFLO7iuXL3hYHfg5r5NHS3USbF/+5+l14fS1gT/6rV/we4tf0U9g85a74RuXj9kMLY+vLwgnj462oGOGZCAsHDEZwtJgRUkqhGQxolw1J15rjlz4nkoiRpSs4E0iqikEYgre2YT4DCeLJCmjJIAZS0lKAtGSlOgL4mY/IXKYwFTB/f7Fx2XmJYscLdVOMCOEtXD8nZ5/+Fsf8Kf3fsQDe+CoFQAP7JFvLT7h9MCT9Uvc1C1DX7Kqg4UkaOc47Txd02LqhFidJ8S+rgmXltwK96uO1o5gIKvQ2sKWCmAp3mTEFhJwRqFz5mI7IawKaiHVEJfnuTr9N5SMu7/bfsyP+7c5DhV+Z6g3SlgI+98Z+eff+j7fXX7IlT2yzy2jWi5MDwJvuxu+s/qYoJZnqzWHULPpWzZdy6mryMFgDh678YBHHWSvqMDJ1Xy4bXlxf8mX7t3w3upFYWfJU5vCns4ANZe2MlG1EmSqSg/OyOogV4pEwZ3AdWB7xfWKHRQH0OWarq+wnUBWTm8o/+a7/42/t/iQLtf8JtwjqOPKdoxq2ecGL3EO9nmzZhsXXIclTxZrnnVr9n3NwTekzxqqbektRM7XigmW/tLzw0crnn9hyR+8/jFeEpfuRJ89KRVwyirohLYmgkm3n/FKkE4xoYCoOyquBzvo3Lvub05f4sPTQ8ZtzWqAcCEs/841f3HxAz6NC16mFdu0xEgmIVjJjGpJ07Bfm57eeBbVyCO/4616w+P2ih/fvIERZQec1h7TG0wv2EGodrB4mrn6UBmXju27j/hf37X8ydu/YGFGAE7Jz0gMIBNpyFZxScoocRAXoAq2F6ptCVBSoawmlWqIjeD+5/VXOYQaOVnUQfea8q+/8ldcGstH3H5RVkOfPVioJJEQMoZ0h7MCLMzIo2rHcOHIF8L2XsN2bNn1Dce+ou8qhoNjvLRUWzOBClx/esUPFm+zeG3ET2hclI2gWUAUFSlc10CeStcO03gZFDsUSuimTAKkypRA//bJm+WOnArTT28O/IuLv6HLJTg7feGQPb1WBHV4M2CYlIeamfGc6Z2XxJcXL1jZHoAu1RxSzcuw5OWwpIsVN33L5rCgP1TIwWFGw/Pjku1Vy6U7TZ+TS4/Gad5OqiVN48ME8Hst/TgW5DVB8YeMxEyuDaGF7MD1L1vs0VBvhdTA6vLE23bBz0NfSpWCgEWNWI65xpBpTKAxAZNzkWfZ4U0EIKgt2Z+CbkxgYQder3YcmoYuVXS5Ir5mGbLjlDxd9DxsDizMOEs2Z1IRB0mQVHoUILVKtRGalyV7UIKxo7J4MmKGSK4d2ZtJkIAzJ0PzrIjssFbuL05YMXTq8JLKhUqY4N/wJF7yUlZUEklqeBouuYkLahNZS55Hw5ALpw1iMRTK502kNoE+e1Z2AFs4r5eEmaTJoI4uFuZU+vQOodfbXq1vlMWLhBrIXlAj1NuE257AGNLCF+1qS886iYLrCoIh0LjzqD6XbmZtT1zR0avneVwzZE9CeDZe8P3rL9AFz9urLV9ZveDSnssuYSWT1BBUCGKx6jDofBPKa8p3eRMJ2dFnT8yWMU8BBwdGC6qOMrEgqPeK69KcNckZvxuRmEkrT2osqTYkX77AnWHaREUihGznUi360lBJ4r49zIC0zw19qrkel3z64opwqNhcLtjeb3nYHFi6EW8Sa9fPwAJnuVZmo6WolHOmLcpBiy7OCCFbDqEmJAum9B+UIO2p9CJaJGQBooTpI+otuXWk+pbvmgQOoyCCRHAnYdc3BE2Tx1PGiCdTUahGYwK9+nIxahABOVmG45IPrhs+XEaWq54313veWW648t0tQUdnkX3u3XIj8itAlkUwkgnZkpKZ9HExh849p+ZM2hUbMraLoEpuPckb1N6dtxNhKHpNcUdhu2855IGgq9kdOGcYijBuJGBQapN4eHng8ckjNx67ceTOsh8s3iasyQzZcb86cs90NJNUOwd0fkIRKEW0lzlq75B9kXKR86+02CS5MmWMJIWcybUjtQ51pmT77EQkcLabavikNNfKblNznfMcWCOBRsIsqdb2hJFMl2vuV0e+9eAxf/xGGfTb1HKMdQERhE8O9/hg8xpXzZL31i95v31WMpUsdgKt88NL4p47chOLXnWSaV2gcokTt9qSfKtUciVkL2TvicvS9zKVs6jOlNGOivPHIrBdn4tbtrO8zPV8p8PkCExThj5X9NnjJXLfHSd7pDCmd6obgrfsU8PLsGTpR/ZDXTyp5CaX0NKlCoNibKaeULdYKJnBlNFydhiczWgW7CiYQXA9+KNSbSN2yKgR1BXUPZthkrRk3BfUdaeMM+ME21FxKeM6yyYtWJqBY65nH8jajEVnty9MHm1W4WVcckg193xHLWXYRbUMsXhQqlJmZa5IaljYkbXtqacerSRiyAR15Xe5wplENZljjIVB2bGAkA1T5mJGrBArR1yYYpTd9ZOmMrd9xiGTQA2KCQm/9/x4eJvfbz+kz54u19MFRZZmwEtkrw1B7TQ6LPvQsKfMzpUdcCYzJMeYLc6mIrJNImSLN4lLe2JlixY9Z9NIJmeDJ82/ywhjtJPgLoRBzs7kRPHUlKyp3PrPZ0Nbp9hE9c54GRP2FKhvGr6/+yLfaT+iV0+vjpSFSiKVJKq5pO0MLHHyjTLF5atNZMjFi6qqxGV94sIN8zi5tN2EuGWsnPu1J99hYoYxWUK0mGGan4GSzQQm5eIAejP3oe0TkiE1BjWTGMiQvcGVsqXMoX1Pe73kR8/fhEeFMITsyGLY0+IlcWWPr4DIGTiyCmOyDMZiJoZ0r+lY2pH71ZFLV7LoJU2VkSZ0zRhuhXbQMm/PhGEc/BxomZfFqFYRtCp9KQncMWLGBCLEhb0zd5VsBWdH8CdFQkJCpNpFbp6vsRTkHbQY2/vUYCTz0O6mWRrmrK59P3lAmaUbCr0D7rsjK9vTyPjKuGhMYV9pWk3cNcm6XNPlikOs2I816eCoD2cxrfhjRlQZ7hUubfuM3wfsvp+pXwmwBGnHjB0zzg5K+yxgbvYwhpLyJPyw/wJXtqORwDYtuI5LbuKS3vuZ/w5yJu5linu5ZTsLO5AQDqmhkwqL4qeePBP+czbPN+F5XPNsvOD5uOZpd8HT6wuqF45qA81NptpnJCvDlcUEpdolXJ9AlbSqybUlrFxhQ0EnBAa3H0vpqhN02YJ32C5y7/sL/sOv/xn9GxFzEVgsBy7bnm8/+A3faM18wWdv9pTO1jjsY8ORmswFSztMFC9NFmZ4hSRYnWSYFr/okBp+3V/xtLvg8e6CfF3TboTqoJgEYWnIjlvHXqax0jhSY0iNQbJixrPHNG0ZAOePhSfm2iPeYmLm/s8Ghqeezy4MeWHoDjXHbUs3et6qN7zfPKExgX3OEzCZmcJl0VlxVJP/kzAkKWV65rYAlttyTgjb2PKiX/HssOK4bfFbQ7VT7Khky4Sught0WgtCbG2he3YyqrtJ0dSmzFUEdQbX3CTsbiQtb9lF8+SIOwRyvcBUidQ53AvPZnuP/73+Cu+8+ZKlGbHoZFUaohqMGjx5dgfs9HNWIVBmbhALuZrK9ryIKiR+FxuuTwv2hxa2Hr8XbF8yrpZ5q+dOGUll/5n9tDELij9E3DEQV55khGwFg6LW4JrPDpjtke6Lb7B915E9vNEn/Gc70AU5GszB0T4r7OQni7d5+vCSr9WfzSUM3C6Q5t1JoDZxDjQxrR60jKbzGDmPqiE7bsYFm0NL2nmqneAP01y0pQztoPguF9Q1t8skO2TcMeE3fTGQ8DPpVy2c2MlvnqFi2H7Zkf7xli/eu+Gj5l2+9J9PrH9piQuLP0D7ooBB9p5fffshX62fsjBDcRkkkyeq6EyiteNMzufm1VympAoxWyIluGHSnn30PO1WDLsav7X4g5SArEAqtqXrMrbPc2lKgmobcPsB05XvS5ctqZq26dMmMFUGlzdb0j/4JrvfDvzbr32PP1//iH+/+FP++9U3ufdj5d4HEXdMhT96g0THIRYqtzQjtQnzosmIciGlnA+xpjZxHkGzU0AxqDehZTMu2I81fXSM0bI/tJiDw+0Ff7xdWVaHjDtNRKI1xNZge6V50WO3J8iKelfup52CDArjRP694MQ5nn635f33P+XbzSdcGsuf3fsh/CP42Tdf5/HNmrCrkd4gWbCPjnzn4hPW5kTAct8eufIndqFhNzYcQk1lEis/8O7iJa+5w+wh7WLDMdazwwCltIbgOHQ14aam3pWZacZybsL1hSCMF3Za7Bbzy+/DnEWsQb0lrSrUFZGSKXvRNCkcp6rEFgzKk3jJx7YD4FurX/NWs+HXl/f47HTBYazJKrx7cc271YuiLbOlMYGlG3CS2ISW4+gLZ3WJzdjy8rRgCA5rlNaHMo6Cw9vCpmIy9KMnnDxub7H9xILOQUYl1YXSybS+d8eI6Qvp0Kroz1w7Um1mm/MMVNkVAe5ICdfB8+OSD4ZHAHw4vD5vo698R20jSYXWBr5YX7M2p/nAhSWzMCPOZEIuFz0OHhElRMvmNxfYoyUvMu7BictVz26/IPa3WSUJ0hvc8VWqZ8dcVva1YINih9KjthuRUOieVsXt07OrMHFbtZNkmwSL0xhpnysvtgseD1cszMj/271DzAZnMo0NXLiBR/WON6sNr7sdwCzXEsVAc1IYjrUZM2lI7xKmN/h9Wfiah8o3XvuMvw5fYPikxe9kHh1qwB+LH+S7Aj4SS38B2FPGnRK2C5jDAEbQ2k8nVKSY2/Aqzw2KxIkCIsLq8cjzXRHD79XP+Fv3Fs+HVRHbFlo78shv+aJ/SSOBo1ZFgE9HbgzK0o1c1MWwHlxCRHl9eeD55SX55DERhn3N2vXkLDTPhOWTjIllZTCuS2lWB6XaZ+ygpLoQAd9lfBexXUROARkD2lSlZCs7PQtIpUpwfQEvOyQk5GkarFb46x5zWnPhTvxR8wz/2l/z4fCIXh0WZWV73nAb1uZ0e0gq+7KSUENjAle+I7fCwo10sZqWvpGr1w5sxgvq55bFLyv+y/i7NJ857n2cqPZp6iGLrQoR910hBGRF28kWPcSiP7VYJOodWjlS64mLMgJjU3rSdxm/T7guFFJhhVxbnDQNhIQZhV1sMSK85655YI6M2Dvu3NmFd/OqoiKAlDJe2YHBFavyvOVubOTtyy0AG7+i+XXFo+8ZLn7V4a6PpHVD/3pLbCcKd1L8oYyyVJlCEnrFjJk70wm8K25fa8u4mYJ0p0y1idghFUFuBEQwQ8KRE5ISJgjHVBE0szYKDAQMQcsiKathxGIoHk9xAiIZw1pPPOOCTWg5hBojymXV09rAVXXiqjrxdLXm04srXjYrTg8XuGNb1vCuBGl7LdIq5AImTopNeUqYIRZLdowQE3lVk9pin8TaIEqZtcc0+0hnz5dcWJQjK4RYeig5MlDJqxsy4JWtmZ/cBkMu5WtKCe/Glu3YTCAWaW1g7XoeVTu+vnpC/8Dz9EsXfLh/wJPtmm7bYjaO+sZMx3yKoM6uPAvKphIgFKQ1Qmo9YemIjSmHpU5KvQlIyBNBMPMhK1ByZXGyXJRzSalYIkkVL0I1HbSaFYak+fDTWUeW9WHGi+WR3/G8XXGMFS+PC14clizrkS+ub/jC4oZHfsdrbs8jv+NRveOn9SN+Ko849kvUGFQEk8rMzF4QVWyf53lJLjMz1460cLNkK9QwlfJ2ggwJEVBvyI0pJW8Ep5erYuM7iNmwV2GN4gWs6itH0+aMUrwjI5k0Yfl9d+D9xTNaG3hcX/KsW/N8v2TTtfyqvc/DxZF3FhseVvuJH2s5jkexclyv2L4greSJqHehrBmsoM0UZGOJbQnSBHDHQvILPZ1UTWumHhfQAkguLSvS0pOrIrd6tawlEqbgivKQV0r38+YzFKP7Lb9hbXrerm94trjgJ9UbPDuuiMnyvFtyDBVPqjWNjXyyu8epqzGjKe5doFyUMSXIw0Txcgbv5yDPLMnEYoiZNJnVlJ7MlSVVpcdLAFICVWeKeJ2ISq8WiIxagGjkVlSfgyw6NE+WpJkCn5aXtnhC9+2RN6stv1lf8XxcsRtbjrHixWlFUuF6tyAdHW6Q+QjN2dEzY8YMEUkKZmI8Rl5BXhMLHaS0IRIn0t/YiRlNHTflxCEyn4GNaujVY2WcASireWXvYiXP7n2aVvue9Ir5ZckkMSzNDZe247pe8iKsuR6XvBwWPOvWaDaQb4/JqhFSI7eHLKcLVGeKIlGd1xJq7q4oSkbl/BmVQR0z8kLhyy77aYcoEJKlyzWGY7nw6cMShdOegSnAnOU07VBRsCLkyT3spx3qctKs9+2RfdXwol4DcHNsieILBpiysc5O8EPpsznIyqHe3gZpSymSz+UKpGJa59qS6+IsnI0xyUAGN9z3hWrdyWjQcnDJoiTJVHfAaMTOa77zDvVuaRsySxOnfvccc1ld9OoZJkvgXnWiqQKdL15QduUwlD8WFmS7EUmpSK/GkSchHdaWsCgjxY6CCQk7FIcjtpbhvidVpULsqJjJ0VcrzBJCEvTRzVZkI0ovitWi7e6ypM8fJT+D06iWrOX9vfr5s86PpIYhO8L5xkyHi8+V47tcuGmmIKaZQGVyKmFaBI8Zv0vYPqLWkFpLXBiyLRRS0p1TKY1hXBucJEWlrMdPo+dlWk0XxXyC6/O92uurAZyDOJf5+ciOlzR7Rec/EDilii5W8/vmg4mcT3ufV35Kdmb+fTo7B1Exg2JCRr0h1QWJs5WieKYT44VxTcLbginitHzhGB03cUkCwhSUuTNK0nTU5m5gn//5/DATcAFzkEHtK2fpS2PdZvQstTiPC50uPOZik4jMR8vVCtmZmUKapLPdcl4ZpkpI/myFLg2pKd8ZguUmLOj0HKSWJdA0Tu4+7s7Su3PWTozpLgrf3iRLUnnl6OrdR3H75PaZp232dPFQWqy8Vm7F9Xy4MU970nIyO/nJKRQw42U5qo2BlAybsGCf/RygnY7OVKQ5uM8bz+fePb/2fFPKgatXebOdllLlam+Pjevkupc14BTUmZjPbkHpP3RaDQplAx4UM+RpTN1mNPvbPxlx45oJ3hXNwj7WHLXikYyMquX01vmABWn+U49zGefJfT/z36JRy7Qu/W3mM4Tn80TF4D4HyHQsvDjv5yCZ+lS9IU66VCZ1405FhhU01qmclbBw0zwtp8vOfynhe+X/A7GZBydeMmInAAAAAElFTkSuQmCC\" y=\"-22.042263\"/>\n   </g>\n   <g id=\"matplotlib.axis_3\"/>\n   <g id=\"matplotlib.axis_4\"/>\n   <g id=\"patch_8\">\n    <path d=\"M 79.968966 80.042263 \nL 79.968966 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_9\">\n    <path d=\"M 137.693103 80.042263 \nL 137.693103 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_10\">\n    <path d=\"M 79.968966 80.042263 \nL 137.693103 80.042263 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_11\">\n    <path d=\"M 79.968966 22.318125 \nL 137.693103 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_2\">\n    <!-- Happy -->\n    <g transform=\"translate(89.472597 16.318125)scale(0.12 -0.12)\">\n     <defs>\n      <path d=\"M 9.8125 72.90625 \nL 19.671875 72.90625 \nL 19.671875 43.015625 \nL 55.515625 43.015625 \nL 55.515625 72.90625 \nL 65.375 72.90625 \nL 65.375 0 \nL 55.515625 0 \nL 55.515625 34.71875 \nL 19.671875 34.71875 \nL 19.671875 0 \nL 9.8125 0 \nz\n\" id=\"DejaVuSans-72\"/>\n      <path d=\"M 18.109375 8.203125 \nL 18.109375 -20.796875 \nL 9.078125 -20.796875 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.390625 \nQ 20.953125 51.265625 25.265625 53.625 \nQ 29.59375 56 35.59375 56 \nQ 45.5625 56 51.78125 48.09375 \nQ 58.015625 40.1875 58.015625 27.296875 \nQ 58.015625 14.40625 51.78125 6.484375 \nQ 45.5625 -1.421875 35.59375 -1.421875 \nQ 29.59375 -1.421875 25.265625 0.953125 \nQ 20.953125 3.328125 18.109375 8.203125 \nz\nM 48.6875 27.296875 \nQ 48.6875 37.203125 44.609375 42.84375 \nQ 40.53125 48.484375 33.40625 48.484375 \nQ 26.265625 48.484375 22.1875 42.84375 \nQ 18.109375 37.203125 18.109375 27.296875 \nQ 18.109375 17.390625 22.1875 11.75 \nQ 26.265625 6.109375 33.40625 6.109375 \nQ 40.53125 6.109375 44.609375 11.75 \nQ 48.6875 17.390625 48.6875 27.296875 \nz\n\" id=\"DejaVuSans-112\"/>\n      <path d=\"M 32.171875 -5.078125 \nQ 28.375 -14.84375 24.75 -17.8125 \nQ 21.140625 -20.796875 15.09375 -20.796875 \nL 7.90625 -20.796875 \nL 7.90625 -13.28125 \nL 13.1875 -13.28125 \nQ 16.890625 -13.28125 18.9375 -11.515625 \nQ 21 -9.765625 23.484375 -3.21875 \nL 25.09375 0.875 \nL 2.984375 54.6875 \nL 12.5 54.6875 \nL 29.59375 11.921875 \nL 46.6875 54.6875 \nL 56.203125 54.6875 \nz\n\" id=\"DejaVuSans-121\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_3\">\n   <g id=\"patch_12\">\n    <path d=\"M 149.237931 80.042263 \nL 206.962069 80.042263 \nL 206.962069 22.318125 \nL 149.237931 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pc19dba8eaa)\">\n    <image height=\"58\" id=\"imageb9535c68e0\" transform=\"scale(1 -1)translate(0 -58)\" width=\"58\" x=\"149.237931\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAADoAAAA6CAYAAADhu0ooAAAYMElEQVR4nH2a2Y4kyZWev3PMzN1jy8zKrKyupZfppgiSQ1DUMhcjPYAAXem59Ap6AQGSrgQMoAtpoCtBkDQzGoojUk11s5vN7qrurKzKLSJ8MbOjC3P3iOrhyAFHVkQ5POy3s/3nPyZ/8cUHlhC2VrHLNa0FAJRMRrlLDfd5wUNqeNmfcj80/OJf/Ywnf/418cuvEB/AMpYNXS3R8zPS4xP6iwXZC8NKeXjhaC+N4SxjaqAGSvkrlMso/xYDQMZ/y9EzuXO4G8/mM2X9MqGDIWaQwfUZf9+jXSwPJ0NSgiEi3YDn77icZIbsyWgBLpml9ny6f8LiOmH3D2BWQKY0Lk6w4EmLwLBy7C6V3TNh2GRyY5gYkgWTEZmNALOUW2xECKaG+BG4gTjDNYl0IuyfCidfGZIMyYZGQ/uMDBnpY3mHGcSEDBFiLECDZJxlEkKyEdgIECCb0uVA0MS3D2vO3wzYdlcWlG20iEHw5M2S/dOa+/cd7WMjrjMWrFhSwBifz8ygkNG6WSAzboZhybAsiMuzVaVKdJfC9onj5MseTYZEQ7uIDAliAlUwQ1KGbFgezRXIuHEBCSEhB0uSARjMAXBzu8Lfd+R+GHcugyju7BT74CkPP1hz95Fj96y4aq4z5o5cVGy8OVgUwNnsyqaj+0aFTrFBsSQFtBq6Hti+L5jXAnJIxZopITFBzuU2K4BVi0WdTL8Gg3kcmR5wGI0OtDaQTMkm8LpG9vdlIc5h2XDrFfGnH3P90wUPH0B/EUsMZg4AJysi5f8MJEnxYGfgAX+EPAOdQ7sRJCDeMAVRo/2wp/3Us34YkC7N8cgQwR28EadQhQJ0GN31YFWlz+7IdYVswmCOxUtF2g5yAvX4J495/c8+4frvG2mdxpiSg5WyoHvFdYIOxS21g+oeJBnmhNhAXEJcG7kycpXBGRYy5gTpFOkcZhmpSz5oTjruPq5YXDn8XVviNSas6xHvQARzCoua4XKFVzEGU4IkltrRm2Mwz4CjtUBvntYCCeXr/RmX/7PHbu9wP/yE239wydU/VIanQzFElAIyF2tJVKR4Pqkx0gJcW6zaAxoLeL+D+sbwrZGCEJee/hTay0xeZPCGDIKNi5cqkZLQfhhpPw9UNx65b0t8WvlBC568ahjOG/aPR4v2KA7DkakkzfGZ0Dk5Afzm7SVnbeL1v/hj7n4A3YuBsNrjs5L60R8yoMUdbWU0m45l0xFcJmUl5WLtlEsoDEmJURn2Af9dRXMlVPfG4grCg9KdK93jhDlDomCtQkjkrOhqYH+xYPmqorotyREzUCWvGuJZTX/iSbXgsx2CyGEoGSWTjrLu8fXynyzYfhQJj1o2zYCZEGNx8ynSBRDN1HVk3XTULhVQYogcvTcrPkSayuhCYq/Gw6kvrr4X/BbqN6Cdo3ucS3wmIWtA1wPijPYCukeB6psDDqsDeRmIC0eqhVTxt+uok0xFiYPBHG70vZiVVdVz/4/uuVy1AHSDJ5vgXEbmQm+oGsEl6hBxYrTRMyRlSI6UlJyVnEsWZXw+RYc4w5+16Hn5vL+r0C889VvDvBKXRkn+ii0FEejPMvtzZb2okO0e1JGbitQ4UqOkIGRPiVFnZZEqGWdGIrPSSEZJWWfQ66rj4kR5aGuyCWaCGX/wSllp+4CIEXMBF6OSU3nf7ElZSQPkbUCilDBvEmE5cPL0nu1JDX+9ZPGt0Z8I3bmhSHkXGTuJdBcV8aQhvLpG6orceFKlZAfmwJyM5QUjjXUgSJxBKxlHJkgiSOKua3h1dUruDxn5QN0Y6VqphT4kbARjgGUpZSJpieMsSJ1QbzNhsDBSQyB2noekxVv+9IY3r9ZU1w6/FdLCoFcMcItEe27s36vwf/EAHzwnNw7zQvZCdmUB3mFjaTOcCZVktkduXLKwQ8V49XbD4pcLTMed8pCdkSvIVVnoRA4GcQfGYwJJkCil+niDOuPrSF1HvGZWj3sA9oPnYdcwdJ48EoU4OKrzlnyq9NtAeF3iOPtMjoKdJO4+8pyebMjBk10BOeVRMXvXoiqGwwikEp8YlSQcxmCOeL1gdQ+pgVxNpEhKCbGRD0wWPkpyCKXkxNHCdSYse9bLjmU1sAo9q9ARzRFrZREiN7sF29sGTHAhzS6vi8hwAbpzkAWLCnVm9yyz+/kHNK+2mCu/Ixl0rDhe+dtB5jAGCv1TyQSJBEloK0g2xORA36y8UI4+z/5KIQiFv44h2RSqp2qIjEnLj+GC0bgBbQwVI2eh25duSkbq6BRkBSkeNlJ8Jq0zNz+seO/1vpD8WBqIyQiaEZwYSrknoO5oA4Iklq4nV0ecdbKUcuQiI7DJqtNjScr3jHTPhDxmXzMhZqXPnji+qHEDZ82eJycPuFAqgLqMc1Zun6DO7+QH6sTDh0ZaV6WTiYYmmzdc73NFwKimLQeWGmnGpDRda9cSnuwxPapXUkBOnQkTyGkTpMSj+dK9SBb8nUN6nWllzMqQ3ZyFVYw4fj6pW07XLaIZ5zLep/mWkMcFjEBCJj3p2T6r0S7i+jx7EQL6xfCYDASBRjLNGJMqNtfQycofX16TStiM1ju46AE9Mw00P3Ujxap+J/htacF0vI1So7vkiVkLSMomdNEjMlrRZYJLBJdQNXwVZy6NgfOJetXz9keKeUVjnhvzMVaVm1yRDNyRu7ljN5ZSYj7ZXDOsx4w7AciFsx4DFmMuEyaG9oJrBRnG77U8lE1GWlhuMyEf+Xy08p2IlTo8PidihJDwqwGpE6KGjfW+/aCnu6gxESQakkDSuJybvKC1dymfYjQy0Gg/1tHIedjSn5YmWI4tOTXFR0lntq6UuMyVkRojNgY+I1LcdHLX2pVQiUeAJlATMckjP57qsw8JHxLiynvMoNr0PDxz5EpxfS6JaSiEiVfxjHsLpHHxpfGWApACUsXYuJZ8Ekvyye+6r+SjZJQpdXPsN1HIvpSkXBu4knFFDKd5voEZYLQCeIiOOEzUUchZZprpfcL5Er+iGTPB+8T+iRAXOsos4HpDl9pxk5bc54ZhNE1rjsF0dtups6l1oD7pZpd9p7yMLiJji6ZxzLZD8RRzRg6FVKjPc3lxYnjJs3UzQrTCi/eDZ7uriZ0jRkceM7cby5LXQ4Jys1WF7iITF1pit8v4LuN/Vn1HRhnMc58DZ9rTmqOiaEiDeRLCSjtaC5yt99zUG1wLOsacGWQvkA0ZFRFzxbITMZqCN48lwvtEcAVgRhiSK5ayEpttLAwpvVpAkzGfkQCVL80CwJAUtdKnQqGZ0ZS8TgwLj5gRtpHBPNoIXLo7gsRZF3IY9Zh9gRGsstE9z9e3pZ4yso5RFvF70EHmOJ2TwDDe6SikR4s4zWNP6uizm5NRysq+D/RvGvxWoMr4qlhucu8S20c5RTPqSslxy0iuQPpMeL0rsfomO27ykqt4wk1eAkUVzMhMDZOV24nx89OvGR5HUg1a6CnZjyUnHXQgiaPFGRPXqO7N5J9DBzPF5xSXbfT0vS+c+Syj1WGXpnZwAjvFt45sCzGqeqA/EdLSwxDRPqOtOZIpvTm2ueYmV2QTWnP0o8IwuTbAud9y9uSe1EDYGuEBNDJnYkmgvaBJStn5A7XWuYzTEp+TVW0kEG30tIPHDGQZsVVExzqqckhiE2in5R0qE60s748rGNZuVgK1kcSFewDgKm74Kp4TpMRnnjXePLp04b0/vLgiLg2/N5bfptFtD4lJY7GoxKMaO5YZXFnQTBiOyoWZ0MeSYaGUD1cnnE/j5uQZ2B8CO30HMKyMYVXeI9nQjSY+8EVveTmc8Xn3hKWM/FIyjQystGelHWH8/iebV6SzCALrL3fUb43qtqTy2cWmDBxB06S+g4TDgiYaOC04ZiUmN5IERvUhF3Iwgpw2SI9AyfcsnbOQNonuRMA7JGY0AN/EBfd5AUCtA60pK4mzrnvmtpy7B9xYBp6FG55/cM3tJ4rb9jz61T3L17kofN9jSJpAxoQkCdDDgo4XnLKyHzxDLECnmPO+UD8/WvQdyeadu/ymamFR4bQr9fTREm0H/Odxyat4xlN/y4vwFoBv0obn7p4gmTNpx5j17FLNSju2ueafPvkt/+lPA18NF1z8cmDz67eEhxPuPgrs3itN75RtXaZ0/MHwIdGEiNM8JzmAITnaPhQtaaR93wd5bMUppie3n9TFyaKhirTnmYcPFjz6bzf4hLLSbp67ZJRX8YyNtlxoV14iJakspaOl9IeP/I7nJ3f8n8fnvP1xoD85Z/Wq4/RzIzwEts+U/sxgX1SFHAxbJkIVCznXzDCyoCEp3RDoujBbeqJ1Ewizg3xz7BF5BA1jwyQlIagaeR3ZvVfxaIh4N8qbOj7Z5sBV3BAksqlestIywwiSaXRAc0lMS9fxXnPP35xH0pvA9qmS6ga/P5Dd7MEBORQVPmy6udgfQCh99PS9I3WujHP8WG6AvndFVQypxOEI0LviEdkK0EknPra4VJnuDGxRF81obsfGTRzM8dvuCU/9LZU8jA2HUZFGaaXQwrOwY/Foj2lgWENqBL9z6GDkME4nFIa1kTeRdTMUNxw7F4BsEKMjdh46h2mZoJkTkCKXaFWyrh51PYchXgFpxwDFio7tM3Fl2KIqhnQYQVLRdCXRSORlf8qvu+dcpcW8S5OsUpJSZuEGXjy6JS2K3hqX0F3A/omQmpJ8ho0RLwaak47Kp0NPKQdumrNge19mLL1Cq9jOlzvKXCNVDrXXTN5hRpNLl3tcr+ZRtHP4hNDIwNYqtrkmmbJxe5ba87vugjO3pZHvmDZkoy2tVvTm2biWTzav+Xz9guZKiJWRwhgsVjoVO+9ZLHuaasC7ROMjQRNeMuBpxYiDw9272QNyEKzOSJPQqowf+t5T1wPBF+rYj9MBp4bIQVrNqqQkZWShxrDIpGWFH8yzNcfO6nfmLFDkzjYHthY413b+fjcS/ME5nte35HWi/lRIjZDXZSZKyEjINCPIOkSCZoIm0kj14thsYxC2QlyUsSC+aD36OtBc1YQtdKewvcjcn0XCYmCx6GcCoWPNLUlrzA9jO0fIDBuPV8lkCzQyoGOs3ueGtetYupJ1Wws42dOIMeR8NHVz3MqS5x9e8+rhCVZlLIzTr5CpF8MMsh5d1mvG0kEfqnyiamLpajporhS/A9/aeBeSsvxOsM8gNoH9k4q7j2tW722pwzCHgB2RDyikQ3xmWAV8IwM3thwT0oHynfsHltpRSaK1wC57GjcUrXdMSo0MBI08W93xzaNHELUQAp9Rnwkh4l0mjMR7ctmsgh97X2/Csul486wmXAVyVV4TV4KpkOoijrtWqG6heZs5+cLIzrOtFuRToQ7xiEhMA7XCqkTLDNZXI4/d5npkQj2VJFb+niBxJvTXecmp3gJFgZg036X2PKr2hCYy7EYNdvwRr4dCPzXXKpnqe4M6FUOf3nG9f4SJYt7IC8MWiXrdsawHtrua9rph+Nqx/r2x+M7oHnu6OszC2YEGHlQI0dJZ+ampvupPSCgf6jVnbleyK0ZvZSB8k1bc6m7elNYCDuPCPXBZ3eNDYsjVPHtxo1yiYu+Q7Sl7ey3MRtWIY396+7glWoN5Q9aRxbInjI22rjNx0dNeBq6eLzj/heJaoR+UlHSsrdPpGHvnL4AO5rh0WzZuz0Nq+E33lOf+lo22ozg20MiAk8zv4iOu85KVdpy53Uz0n1R3LOq+yAkc+k37HmkH6LM/dEXjJkzWvjh7AIXmlaf+vGF/16Bi3G4XdEMYeTDoec/Nj4y4KrJMzkIcBfGpvEwlxka+rWFUEl74tzz2d7yOa/7L7gespIjYpXvp2Oh+noRfuj0v3AOX7p6pPJ0tWmRkNJa/V+COrjyqCDG/C1YxTuuWxx+/oX0e0R5O/6ri5mrNshmp6AgmdY60KoezLOms+ieTUfc9atkMNBq+kTRKm5En/p7WKj5rn3DuH/hBuKLicMZny8FllwJJB850xxUns1w5CcpmzFqtWeHROs1hR4H8+22ambCpO9qn99yzYfmlZ/1pxe1ixfnZA9TQDp7eJzpqSA4blOQUUZv72GkDjXLaLNzFw/GbQGaje574O167Db/av2ClHZfuHoeRR523tUBrjqUkNmI89fe0FkonkbRMuI5SfTZhGF1KKazGayrSpckMeALryZw0HelS2ac1zTcO+arhjRinmx0nTUcfIluX2UkDUUerGhOLnpr0ITmkc1S3uyMKSGYlxULvV9dc9Rt+0z3lKm3mIfFq7Ga25hmARpSnLvGz6ju65MdTKcVdLJezQRMXnTSeabf/f39rH3m02rN5ccf+RaS6Ffh6wc3Nij45NnXH5WbL+mw/H8fJuQyu4hFjSknRnaI328PYcJqoBYmstOdpfcvfPLxgl2p+vvySC93OYO9zw0YGzr2ylsCFCtu+KjzVwJISB4jBlUFXeDfrtinMMTpdpdnO5NGqGoYSby+M2+GM5TdKul9w9TwQ/ug1ToyL1Y7gEtt9TRyKXGpZSElx1UCMSnUncHOPOjGKQCYzuW+058PqNefVls92l/znu5+MLhvY5prrtOY217RWdvPfPlzwsK/nkf1k2Rj1SJo8yCf7GN4BmbLOSqCOpaZ2kdpFzpZ7Nh/dsns/oQOc/Mpz9VfvMYwUclkNnK73LJZ9idHxdyqXiG1g9XvDdjv0N8PF4QcRKjIbbakk8X71lk1oedOv+LPbn4+WLwv6Lm34y+6Mf799xL/77h+zqHtslQoFzDJOoQ6i15DLabTpqN1x7yhjnMYjF/eSqVyi0sSm6Tj98Jb9jzq27xv+QXj1xQV9KkcOlmFgs2ip6giT3gRw5zn9osNiRP/lZ/+cq7Sap1gqJelMg6XH4YGV73jZnvK/2/dZSc/JSPDv84LrtOZRteek6QjLYSbkZszi1vevY+sez0WPE1g0pU8l3oJLLOue9dkOe9rSXWaqN47Xvz3n1dsNuyEQNLOoe2Q8+tNGT7hTqm8fkKpCf/9/n/Af73/KdV4QyAymZNN5VHjq9jwKOxZu4BcP73OTlyh5JhGVRN6r7zitWtarFmnSPBSedjZlmUsNlPJi9nfX2gns8cYEzazqnvWmRS47htOMDMJw03D9ds3b3WKcpWbqENm2FdWtIG/vkKZBq2vlz778Kb/ungNFXehxBYwO1DrwyG953tzw1faMv959yM7qccEF8ONwz0W95WK1o1n24PMI9MCQ5kVzGCYdfz8RiT90TXHb+Mim6Tg/e+D0g1vsoi8nye4Du4e6qH8+sap69g819RvD9nukrvDDxki/fsSfP/4xP372zfzylXblQJVJaWo8nFQt/+GbnzA8c3xcX81nkpba8/7iLfsUuF/W9L0nbYuiJ0DwaSb4TvM7peb7m5AR8tHJUigzUxWj0hKzwTksCOerHV30bLuKtg8kE5bVQNAENxWLt+VgMsGjeZHRAT69vuR/7D4pLRjlANW5e+DCP7DSDofx0fIND23Nv/5ff8K/+eZPaK3iqb/l6/4Rj/yWD5ZvebJ6YLEoVp3lj7GT8WMim0b3fXbzAY3vE/8pfvP3XFzE8Eez1FXoeXZyx0cXb7hY7ahc4qZdsHyp1G8GZLPGmqp4Ug7QR8/vunO+jo/ocZxIx0r6cmtHrQODOR6vt9ibms9eXfLL7Qsu3JbH/oFdqjn3W54tbjlZtOUMvMt49+7s81itm1jRnI05JKPpGsaEdKwxTQwLoEuefQy0MdAnR3CJ765OWHxr+PsOgsecQyUK5o1qPOtzk5bsconBiRGVWOxZu45V6LFFIm09f/n6AwZz/LB+xanfESSxcAPr0Jex+3gYctJbp/ic+lMvxdIzM8LeAXm8Kcc08dj6E0eerN9Fj/+mprnJSJcw78ArXpKQK2NRDSy1H3vP5dyPJqSoCVqSTqURt4rkm4qXr0/59I/e48f1S6jgOq35djgpI0ef8aPaN92z8GyHUaGYoONRAhGbJddp4fo9l56sOgGf4n36fLtvWH4jhPuR+TpHWgRUIlgwGh+pxynRdVrzRX/JXW6K6iADlSQu/T2VSzSLvhyveVvxX+//Hg7jj6trfly9ZKk9uyH87ZHeEZ+dGnI/xu7xdQxMxah9PHQ6Y6aeTquUM0rlhkJjH66XrF8mXJvKubgmMJwE1G8PtKmc/8ustOP3/TlOMudux5nu6c0VHux6FtWAOcPtlf/+7Yecac+pOj7yA0vXse8DZkI1jh6c5rk1mwBUGqk0vtOPTvF37AFd9HOcAvP5BoBkQkzunSze/K6iuktIMnLlSOuaYe34fz4c4NhGzeaXAAAAAElFTkSuQmCC\" y=\"-22.042263\"/>\n   </g>\n   <g id=\"matplotlib.axis_5\"/>\n   <g id=\"matplotlib.axis_6\"/>\n   <g id=\"patch_13\">\n    <path d=\"M 149.237931 80.042263 \nL 149.237931 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_14\">\n    <path d=\"M 206.962069 80.042263 \nL 206.962069 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_15\">\n    <path d=\"M 149.237931 80.042263 \nL 206.962069 80.042263 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_16\">\n    <path d=\"M 149.237931 22.318125 \nL 206.962069 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_3\">\n    <!-- Sad -->\n    <g transform=\"translate(166.805 16.318125)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-83\"/>\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"124.755859\" xlink:href=\"#DejaVuSans-100\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_4\">\n   <g id=\"patch_17\">\n    <path d=\"M 218.506897 80.042263 \nL 276.231034 80.042263 \nL 276.231034 22.318125 \nL 218.506897 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p8b240d9d25)\">\n    <image height=\"58\" id=\"imagef6b759184d\" transform=\"scale(1 -1)translate(0 -58)\" width=\"58\" x=\"218.506897\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAADoAAAA6CAYAAADhu0ooAAAZF0lEQVR4nF2bWY9t23XXf2M2q9l9VZ3+Hl1yb2LZcRODEImIgoSElEeE4AEkHvkGfBA+Ak+8geANRZFAQkGWEImToDiO7djXOff0XXW7Wc2cc/Aw59q7zt1SqdY+u6n1n6P7j/8YR77/7/+D2oNiezARJCkmgETFREABQFQxY36SnGC7RP3+gPz0K3QMYARSefOdhzQ1Zj4D78Ga/I8xQSo/AMacfjuLtjVpXhMbR/XVW7Tr8sd+6zNuvpzRbQySFHVC8pAcqM2/EVADySnq8jWAQ08vqgIIySpGBU2KaAaJghpBgiIJzKiYw0jsesQ7iBFNCpoQa5G2xWzW6HKGiuQvDxEJMf/luyBF8rU1qDX5IEIi1ob9958w++lrdN9BUlQAA4rke5Zy/+UrtGChvKZWQSUDVREwiqb8IaG8efoSBEFJTjDFaKkypHmNaWp0DGhSTOWRqoK2QWYtadlmIKpIKMBU888EUCR7gzFola2uxcJuHxhXFelsibGWVDvUCiog5gRqAolmgNO1TA4pisunmt88HSx3TmcCPlk+eUGSkrwQFp5quSC9fYepa2S5ROYtWlekxqPeZoBRTwC1nJQRSOW3tah3aO1Qa8EKaiTfbFLGswbTesalQw1IOrnk3fsVPUZavtACQhSHyX9PLGgqXyLZgncfWk4hOTBBUAuhtdTzGahmNz1bkSqXLWIlA6S4fiwWnayYUo5ZY9Dao5VDnSHVjlTZ7DFOSJUQK0dyEBohNMVl3TcsOV0nwGbQJJCY3+uSBVPiT62SdHo+3dTdY/r0BE1QOHSIr9DVgtRU2XUSJ1cNCUKEGJF4cl+tPHiHVo7UOMLMExvDOC8/C2FcQGwgNEpcJlgO+Dowdg49OPylpboSTCjJyIIJGau64r4KqlJcd8pUVjCqEDLw5BQTciI5xi35C7PlQRcz9PUbJEREFRUDFlQMMkYkfgpSnc2uPfOk1hFrS6wMw9LQr4VhLQxrJawjZjPQtAOLauS83XPR7Fj6jqQGbyKH6Plff/pd2hcWMwIl+wJIElSKRyVwakuoFPQUQHevQVCdMnA+KRMVRIgXC+zVvewRUmKrxMvRmgXgZMGwqAhzR2wMoTHEWhhncHggDGeJtIjY+chqceDBYsumPvCgvuXC75jZPgOVyEN/zZ89fcpht6H5IKTqGJKo0VPmdYo7Jh5TLGVBIxDuxicIpUQUsBKze8oYkbo6Zsrs0wKTNaVkVO/Q2pIaT5g7wswSayHUQqwhtkKYKWkWMU3AmMQQHB8PM2ZuoLUj9/wtF3YLgJfIhd3ynXtv+b9vFqQrn8GpoEZRW6xrMjZ3PP2pPhk5mZPTCR3Ds1hUomK7iL3cQQgF0JQQSjlJmsuFt2jliI0jzhyxNYRGiLUQK0iVEBpIlYLLfywGy7537G8aDoNnHyp2y5ov23c88Zc0ZsBI4ndWL/iri8ekV/6YnSaQanIdzUD1DphP3PUELL+mR+AmKbZL+MsD+v4jOgzIapGTUI7+DPQbIMPcZTdtDeOssJpKCG1OOlpAptHCKJidxe2F/lXFL+oVP1s+YXl/y+89fsY/Wn3FI3fFbzcv+fLeB366WVBdmsyIJpe9QyTcEVTKQJPLaGKlMJTkNPm9gDrBDkr1YQ8vXqPDANYiY8AMIQOzQmocGENyBq0MoXWEmSF6YVwI0QuphtDAuFTG84i0AWJJEDZ7me0Ft8+/bSeo2fAnTzfc/rOaf3r2M574S75cvOdv7j+Cj+2p7EhJPCZby6m947qSM5QkLeQgu7IJih0FiUpyZBrYjaRDpmWmqnLS6QeECnWeNAGuLLE2qMv1L/mcC9RBrLIlY6NQR1wVGbcW/8HjbzIDijPl8OXAk8eXnDUHxmgZb5d0weMlJ7pH1Q0PL65575tPicQdL3WnZHPHbSfqV8pIfkFzph3A7wMyjIgIqhGshZSQmNA7zCeV0qFWSC7fOApmLHWucFF1p/ipVj1ha2k6YfY2//H+Rc3H+494+TCwfHLLP37ya749e8Obcc3z4ZxRLQ9nt7ytHh4xyMSKyv24b1IqlVyDJOoJJORko4rtFbsd4NChMWXSCegwQluj7kTS1Z5OUFQRFUzMXVK8mw8siE1UVaT2IzcPDVtXMy4stofmg7L+W2X2yrJ/fcb/2Nf85Pwxbz6u+Nbjt/xg85JH7S1/WSlmkELk77owmQJORXbiu1pSstxp047tziFiugDWYtZLpGnyh8YxlxBrP00Eha8SBZkOVU5MRi2oS/gqMqsHZn5k03Z0546rJy37bU38qmH+IntCfQXhWcuLmwp/abk+b5iZgaYa0ZJX1HIkC5PXuCMQOWVY0VOZyfE5WRqqDwfUW8Ln94kzx7B2+JtA/XaXQfrSaokcM7lSwKqQbI7LcQ5hrsRZQtrIYt6xbjq8iRhRnKRchoKF792y/75yttjzxeKae/WO14clXfT8/sWv+K36DV+P52iVCs/W0rqVZGSn7uUbj+TAlrZRErh9oroeMWOkv9dmlyyuqQbC3GIuZsiYMqDJ22PpHyXHaPLCOM80b1wq4yZiNwNnqz3n7Z51fcCI0gXPTWi42rYMlw3u2hJnidcbT1Lhi/kH/u3THxFL4bYkdqnGzkd0a4sHFtJeQLtj8indCwI2nFzVDorfBmwXGJdVbrpDIrkMtn0zYMZIbO6cWekLJSpamWyZWgitMKwylx03keq843y14/5sx8p3PKxviBie7zd82M5Iv1xw8Stwey2H1XD7sOV//hPLP1//mH2q8RKoJLKxe+aznl1qjp3g0VVRHKKQpt6PTxJQtVXatwPutiesa9SA7RPJGySB7SP2MKJGsF1ASoZRm5u8VBlSnVursRXCPHck4zriN/0R5EW9Y+0PPKhuMZI4RE+MhtkrYfFyxB4SpjQF9XXF2+UFP/nNp3zuP2BRvESW5sDZ7MCO9YmhQSHxYI6ZiRNQ0SyVtO9G3PUBFWGcOWwXcbc9ZojYQ8DuhwLMYA4j0o+ZyJNjPNYms6A2k4RhmcmBLALLxYF13bHyHWt/4MztWds953bHhd9RVZlsdxvL/qFnXDjUCH4XWXwN/+nZ7/E6rPESWJqRlem4125LEtRjiQQQUxpvTXdUhPLjDlC/3kJKxGVDqgX7esR8uMGlRbZeeU1iQobMd9VakjPE2jLODONcjr3luFLiMjKb9yzrgYXvM1B3YGk7GjPiJXLmd2zajndnMKwN41xp33qajw47KKEVnr865+XjM35QP2djIGrPo+Y2V5C7SklhSLmOFmqU1bOcxtsPEdnuSZsFYe4wg5Jah7m9RboeaWq0rTF9yCCB1HriomKcO8aFZViUxLOAcZmIq4hfDqxmHYuqZ+l75rZnYTtmpmdpstrXSODB7Javn9xDRsO9Lz7y8WrB7Y0Hq/z2t57xLx79BRd2SyORWgwbE3lSX6F1ApfuANViUTJBMIFjnPqd0r7a5feGhN0HdOE5PGxYfrgPHy7R/R4ZR2TvsmKwWRIXFf3GMywzaR8XQnehhEVCZxG/GFgvOu7PdjydXXHudyxtx8wMzExPREhqiAgPmi2PPv/Imzcb3r1dIUZ59Bsf+MMnf8O/Wv8Zj2wkHrOOxYowsz0YRdydbFTUPGdGMqEnMxbbQfMxYa73YAxy6HEiYAUzGLTxmPkM7Xp0HKEfitA1Ly6bM2xshDDPrZdWiqkjziWcjSQVDtHzJq34aOZUJnDm9tzztwBchxl9dMz8yHKz53Co8FXg4WzLPbfFokRVYi4Wx4ctRVu1kDPR0k2BO0qHk4Y8KtV1QPoRrT0SE2Z3wKeUScDugHY9DGPWclURa5BuyKKynAh78iUpJEi9pUtCCIar7Yyfhwe5q3CJeTOwaQ88nV/xuL5mnyoOMdfMRdNjRGmqkYftDQ/9FY1EIlAVqmkRoiofw/yOYnYnTpkooCoiciTcbh8ySQ8xH09S5GaXgQ0DxJjFZM0JSSGT/EIWjrVZBTOCjBZJNotYUh+lm3GhjOsc3zEJIeXTHpPlamgZosWK4mxiVfU8qm94YIvVky3xCbUoe4Xn3VlGpZKtaijmLZqRBDlKg3YA0xcdpetPBD1EGIdM3u1dhyGDDSEzo0lTGsljjkGwPdTXSn2t2D7HybA03HxhOMwMMRq6wVO5yK9vz4nJcBg9fbDULhKTcNbseeyvWJqOd7HlWTjngb3lod1SSeI2eX69PT/dk4LGzOjFpixcHDluymzG7IdcKkKAYTy1XrHwwnE8ecGkuMeI6QO2T9g+N7lqCsirRLVNuF3Mr+8H6kWFSkN15RBdEBpo/nDLr796AEEydTOwrSIXF1v+weprvlW/5iq1/PHND3jfL/jO4hXfbV6QuORtXPDqenVS+b7hwc7EzAtTJaRQWqsx5ESjCkaObOk4QzHm0+9RhWHE3ByorutMFEovaAeK7ioMa0esBNE6a06jsnyRqK4D/cZx898e89nbRGiFfm0IM9g9tfy9Lz8W4n7Bzw+PsCQ+bz/yoj/j2/Ur3sU5f7r/kt272TFkjqJ26WKygE2hfimL0jKGMrMoblti8VMSybFHnaxvtnvcdYtbOGJlsrZa2kAtLV/yQr/JtfU4BfMGUVg8g1jluK6vc5OsdeIHq5eMavkvr/8hP/nqCc1iYHg+x+2EP/7Od/j8/JI+ugwkSlYw7R39dopR1Zwh1ZZ6GmJWDyAreRPI4qLHMd/kysV9NURMN+B3NWFWEeoMZJzn7sXvEs1lRFJO88lDrCFVIKNgRsUOubnXMoKgSjRm5OV4xsubFe5tRXhT0VwLfgtDv+Jnn81o7+0zUUiTglCMMdXRKZYoVrZ9OgEoroua07/dTUDFwpJSkVNirru3NW7hCLXNmm2RNUNjcF3Rj2P+agTkSrAd+L3i9jmhjbUhVoJrAkYSr4Y1212DvxXcAYZV7me19JvWTmRg8rZsFzF3mBGSs6PbQnVTOGtKx8Hu0brTuO8T750UcM2H0fWY6z3V3BPrnPViDcMahg3EWcJ02T3VgBmg+SjYvkidlTDODd2Z4fBQudhkgnA1zgijpQo5m/cPA/eeXvHZ8pqF7/nYz/jp2/lRFz7SPwFjUua6toPNzxPrX+6xH7bQ1MihQ52DFIGpCxfE2mxJEcSYfAgx11uNqSiB4N85xrnL0y+bxwVxnlg/veY3z99TmYgzEStKVKGLnpfbNZeHhhgNzkUezQ78/v1fUZuRp80lf/Ctv+XPl0/pf7xh8/8c79OGzbcPJISvrzZIMKjL9youYVzCmGxppxbMKFTbiL3ti8WKsncc9Rmk8oVCpTyeKAAn0FP86lRTQ6CZ1/Sb+WnUbpVu8Lw/LDhvdsxEqc1IayMP61v+/up55qvlYVGW9kAjI/fdDT+cPeNf3vsxw/csP7r9Fj96/QXvt3OGYOm7Cq0SUgi9iGJEsVZJSXBTsOaxoSBD2S0QyeCiKVlXs3XLHsOxtk7kYRrVTxl6GLEvP7D0BpU2c+C5YRwct31VOqY93kTmpmdhex76a+amx0jColhJeAl4IpVEjCQqIo0Evnfxmn9z9n+ICP/58nf577/4LlEsxt+VLk+FwiHTaX/jlSJw4SwSYmZE6Rsgi+vmg5pmiqXxjhH2B/yLj6zkAhMaTDDsqDnUI60PJDU4SczMcOxHc08asCiGVMBGGhlpJNJIxKMsjfDUDXyMkSE5xn31ibJgSnuWnW2apn2DRUx7B+psnmtKyt25nk5Lpt2D6fmxnZdT3TWC3mzxLw2rYYXrWszguJ619E1WJ7yJ1CYwMz2WlMEVkJMV5zLQSGQmkUbAipTBtvCrsOYXN/eRvcWcDaee2+RMbIzmZAQTH9WsGoig1nwynT4xZDJTorQ808qN/UYmjvlQxPvs2mPAvrtmcXOgeTdH3ZzL5Yz78+0nn4t3TGIlYSR9YslGwE8rBkAtnv+9/TbP3p8hozCfd3S9L+edWzRrEpWLOLXK7I1SXQ4whhPbSQm504plR3cn4iAGsSbvD00JaLKmtdni1ubZaFvnUb4z2P3I4z+54ZWu+MXvPuDeF1seVnwC0EsoACcXVnwxVQKiKo0Yvgod//WrHxJezJAE+32NdZF52xOiRaEADRjTGerrYs27lonpmE1FJPeczoGxiPcZ5Dcf5b13n2tToY1Ha5uF70UFIiy/jphftfzVu8c0ZmRpOzZ2V9w0a0deEnUZJEWFERjKof9dsPzrv/h3HP56Q/PO4LeGcF0RRkc/Zqt6G6l97sSM6fIYUGL6dPdnAnJ34akAnq4BCCFbs6qg8idr+rKMUVf5O0wWzOLMERYetUJ9KVy+W/J2WDI3p7LiJWJROrX0akkInRp2yXCbDG+i5z9++AO2PzvD9nlSPmwSdj2A5HJiRLEmlxhvEm7aAsMI6kxelUkFdNJTFp5c8W7dnNgQgCtp2+jRkngHLg+D80qNJVkhOUu/yoNgBsMvt/f54fwZD1xuqlOZfCU17LB0ydOpp0sVu1TxfLjgj37xXdrXuWmIdR5mjdLAesTPemofsCZhS5y6ab0qL1qYLC59s0uZrGrNKfnctXJKOYHdeU1np8larAtIL2AgtHm9JswUScJXl+e8uVhz4bYMaokIMRn2WvO6jAYP0XMTWi6Hlr+7Pkd+OaO+ytLNNDl3O2G/FNZthy/alKrgJOGSK7PKIyhO1prctFyrd1kXsmXtLWm2WjkMNWQC6x1h1eRzSHoEqWUjrFubsgEmmL3h5u2Crz67z313iyHRacXbccXPdw/4yzefsd3m79Jg0M7iriztx2yh9jKPRw4XmU+vznd8vrxkHzy7sSaoKRaF47A2L2tYZMz0T00hDKm4qHdZUoF8fczQxfW9PU7UwsyiRnBdxMSEqBAaS3dmia3g9opEwQzCEB1/9JPv8eMHT1nXHc+v1hxeLpg9t9RXyqqk3OQ4bnMOG+XwKPe3aRXY3Nvye/df8xuzD8zMwF9vH7Mb66P9XGoTsRJiY48WMF3Ie0FwYjqT5aqc0dRmVT5/pozrDMRZxbh0eQmjNpiY28DkywxmDrZXhlVu3UyA5a/B/rzi+vMHXAk0H2D5MWHGrDagisRTY6IW+rUQWiXVmd9GFd53c+auZ+MPzF1PVzm2Y53HkNpEhoWnbmxeeVMlLmvMwaCVQw4jdH1xwVMdVW9zDAJJ8h7ftEOrRhgWhmEhJOewI8fPVTdl6DMWMW5UXJcwo6LiMBHcITfgoooagx1O02sVQSNUt2XxcrCMQdgZ5bbp2YWaQ/SEZEkqx1mrkyoxbIT4XvA7SNYQvaEaI8kbjLrcWHfDJ0tTeUHRkqwhVebO1DwvKk5W7M4F1ylmzEsfUtRGEzJA2+lRJm0v00kZEPL6rAIJ7OQZtqzTjlDdgolZGBhtxTu/oHEBJwlvy0DZJCobcGKUYaNlazIvVKTKnBJJnadYdtr1cwaioiJEbwjzvHUSfY6XabMslYWmMMvp33W5yZYI1U4/WSSe1nvsIZHqvJqjJq/LTjsWJkyfkbwiBJghk/VcsgyBlldFEF81Ha0baexYLGrybGRYGFpv8mjwMOZljRgYNw3aWEyXR4Ja2Vx+hJyAbI617szkEcS0bVLcM+WQziu7IkiE1OU19lgZ1OTlLNMl4twe9SUU7JjX2l2XD/a4aS2nVYTjhCEAO8PhY0vzaAJXmm4TcdYm0iIwbGqGlaUZE4wgY8z9acyuEpcN7uqA2Y+kRUWqclaNXtg9Ngwr/aRNCm0RpfaCHaSI48r8TUQlC2FmzLGJwOG+p1/L8cYl5TI3zjLoqQKGRugusognZTKvjrL/BNW658nqBjPJnCbhJWWgWgcODzz+1tB8gFhbTOWQGDFjJFWGYeMZl57m+S1mOxyn294J1bVggnC4r8Q2KwkSJYPsBAl5QtdcJsyg2D4eLZK8EGaW0OZ4jFUOHxMB8m5TrLJlYw3jUhhWSnUrmB5CS16WrBW3F4xRNtWBUE5sbgfmrsd5F4nRkNaB/SNPfe2ZvxzR2kI/nW52nXFlkCcLqsv8goSE3wVWz5TtE0dyQuiFVOkpjgK4fc6kJmTrxcqUJKNF2ciyZ2jzXqAWlbC6zZYPs+kQijzqod8ofptLTGyV1EbGyvBgfsBIJghGErUN1CbgnI0Y47BNZLgw3H7usL1j3gXEnjqR6b9b7B75TAR2ITfnRrB9xHWW+irv7MVmuuE7SccIscqaU3KCidnqsRKGuWFY51gfVyeXT4eTJSGDjMV6qUmEuUGbiJkHKp+JzNPlFUlNBmkirRmY2QFnSyceRJFZZP85SHLUlw4f0nHZOLk8mug3ghpH+0Fw+8iwdse48jvFDBA7sF1etVELYZ7jLVmoNK+vmpCfh1lW7g/386qcXgzo3iEh08ZxMZUzJcyz5TDgFwNtO3BvscObiKpQu8B3lm94djjDS6K1ec93Ybsy8Z4Gpkahjuy+HXlLzf0/zxRu2kJBM6vpLvLyRrW1RA9hLtRXijskqtuEBCXMDLuHlv6suJsr5UcMKESf4+1wXxkejGCVzf0tIsplXBAbw+FRtp45GNIsIeuB1aKjcpHWj3z//BUPqxtGzeTgd2Zf8zqs2RYXWNiec7djZnr+P/QYUueB4pkjAAAAAElFTkSuQmCC\" y=\"-22.042263\"/>\n   </g>\n   <g id=\"matplotlib.axis_7\"/>\n   <g id=\"matplotlib.axis_8\"/>\n   <g id=\"patch_18\">\n    <path d=\"M 218.506897 80.042263 \nL 218.506897 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_19\">\n    <path d=\"M 276.231034 80.042263 \nL 276.231034 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_20\">\n    <path d=\"M 218.506897 80.042263 \nL 276.231034 80.042263 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_21\">\n    <path d=\"M 218.506897 22.318125 \nL 276.231034 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_4\">\n    <!-- Neutral -->\n    <g transform=\"translate(225.223341 16.318125)scale(0.12 -0.12)\">\n     <defs>\n      <path d=\"M 9.8125 72.90625 \nL 23.09375 72.90625 \nL 55.421875 11.921875 \nL 55.421875 72.90625 \nL 64.984375 72.90625 \nL 64.984375 0 \nL 51.703125 0 \nL 19.390625 60.984375 \nL 19.390625 0 \nL 9.8125 0 \nz\n\" id=\"DejaVuSans-78\"/>\n      <path d=\"M 56.203125 29.59375 \nL 56.203125 25.203125 \nL 14.890625 25.203125 \nQ 15.484375 15.921875 20.484375 11.0625 \nQ 25.484375 6.203125 34.421875 6.203125 \nQ 39.59375 6.203125 44.453125 7.46875 \nQ 49.3125 8.734375 54.109375 11.28125 \nL 54.109375 2.78125 \nQ 49.265625 0.734375 44.1875 -0.34375 \nQ 39.109375 -1.421875 33.890625 -1.421875 \nQ 20.796875 -1.421875 13.15625 6.1875 \nQ 5.515625 13.8125 5.515625 26.8125 \nQ 5.515625 40.234375 12.765625 48.109375 \nQ 20.015625 56 32.328125 56 \nQ 43.359375 56 49.78125 48.890625 \nQ 56.203125 41.796875 56.203125 29.59375 \nz\nM 47.21875 32.234375 \nQ 47.125 39.59375 43.09375 43.984375 \nQ 39.0625 48.390625 32.421875 48.390625 \nQ 24.90625 48.390625 20.390625 44.140625 \nQ 15.875 39.890625 15.1875 32.171875 \nz\n\" id=\"DejaVuSans-101\"/>\n      <path d=\"M 8.5 21.578125 \nL 8.5 54.6875 \nL 17.484375 54.6875 \nL 17.484375 21.921875 \nQ 17.484375 14.15625 20.5 10.265625 \nQ 23.53125 6.390625 29.59375 6.390625 \nQ 36.859375 6.390625 41.078125 11.03125 \nQ 45.3125 15.671875 45.3125 23.6875 \nL 45.3125 54.6875 \nL 54.296875 54.6875 \nL 54.296875 0 \nL 45.3125 0 \nL 45.3125 8.40625 \nQ 42.046875 3.421875 37.71875 1 \nQ 33.40625 -1.421875 27.6875 -1.421875 \nQ 18.265625 -1.421875 13.375 4.4375 \nQ 8.5 10.296875 8.5 21.578125 \nz\nM 31.109375 56 \nz\n\" id=\"DejaVuSans-117\"/>\n      <path d=\"M 18.3125 70.21875 \nL 18.3125 54.6875 \nL 36.8125 54.6875 \nL 36.8125 47.703125 \nL 18.3125 47.703125 \nL 18.3125 18.015625 \nQ 18.3125 11.328125 20.140625 9.421875 \nQ 21.96875 7.515625 27.59375 7.515625 \nL 36.8125 7.515625 \nL 36.8125 0 \nL 27.59375 0 \nQ 17.1875 0 13.234375 3.875 \nQ 9.28125 7.765625 9.28125 18.015625 \nL 9.28125 47.703125 \nL 2.6875 47.703125 \nL 2.6875 54.6875 \nL 9.28125 54.6875 \nL 9.28125 70.21875 \nz\n\" id=\"DejaVuSans-116\"/>\n      <path d=\"M 41.109375 46.296875 \nQ 39.59375 47.171875 37.8125 47.578125 \nQ 36.03125 48 33.890625 48 \nQ 26.265625 48 22.1875 43.046875 \nQ 18.109375 38.09375 18.109375 28.8125 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.1875 \nQ 20.953125 51.171875 25.484375 53.578125 \nQ 30.03125 56 36.53125 56 \nQ 37.453125 56 38.578125 55.875 \nQ 39.703125 55.765625 41.0625 55.515625 \nz\n\" id=\"DejaVuSans-114\"/>\n      <path d=\"M 9.421875 75.984375 \nL 18.40625 75.984375 \nL 18.40625 0 \nL 9.421875 0 \nz\n\" id=\"DejaVuSans-108\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-78\"/>\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-108\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_5\">\n   <g id=\"patch_22\">\n    <path d=\"M 287.775862 80.042263 \nL 345.5 80.042263 \nL 345.5 22.318125 \nL 287.775862 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pe15e666baa)\">\n    <image height=\"58\" id=\"image9881fc3420\" transform=\"scale(1 -1)translate(0 -58)\" width=\"58\" x=\"287.775862\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAADoAAAA6CAYAAADhu0ooAAAcVUlEQVR4nF2a6Y5k23Gdv4i995kys7Kmnm73nUhekZRkUaJpC5IFWLABwQIMGH4dw0/h5zD8ywYMW5D9Q4JgwZBomoN1KZJ36u7bXXNl5slzzp78Y5/Kpl1AAjVkVZ3YO2LFirVCvv+f/k3eT45hcMStw9xZzAjLL6C9SnSvBuz1DnJGxol8d4+sVrz81x/g/uSS3330kpSFY9dz5nZ0ZqQRz8oMOAkA+GzZxIZNahiTo48VPht2sebeNwzRkrJwPSxwJmIkMQTH65sj/EVLda24jaATaAD1GcmQBQDsAHbIaMg0b0fcj36JnKzJziLDBDljYxJyhpwEgmBGkChIzLhdwuxGZBhBFWIiDyOX/+o3uf/+yB+dfQ2ASkYl4zTQiKdRD8CQHAllSA6fLYaMk8iJ27GNDT4bag2ErNxPDSEpISkLN9G5ifP1ltejZRJHsorty/OZUZAAkjNkSAaygsSMxEyOEe63YC05JxDFhqTkLJBLgOoFSWDHjE4JGTyME9QVedeTf+ubXP4g8fGLC2qNqKRDsA8fMStOIgllyhafLUO2jMkB0IeWMVlCMoffs5qobcBHc/h7SzfRLUf6JIRoyapkK2QFu4ecBYmQbSY6wYyC+gg5k8cRiRFUwFpsSkpKQk5SbjKAJDATmCEgkyeHgJjyAG9+f835Ny74YHlDyoLKIT5SVny2qGRiFmJWxuTw2eCTLTechSu/YEqWmIUpWYbgmKIhJiVmYYyWhGAksWqHUlaNEoU5UEFD+celOkoGZgPkDKkcfo4RsiIWbM7lZHJQNILkUgdmTJj7sdxmTOQQ4PEZmz/q+Z3VLUq5iSlZ7HyrPht8Nrgc8Fj6VOOzYUiOMVvGVF43U0cfKnw0TMngoyEkZfR2PryMNYnWeWoTUU2kKpE1E52SnKJjyTyxgECKECsB+bWThxK0KDbnUqN4RaKQKjADuE1Ed3vyfDqkzNf/7BE/+PDvaI0vqZf18GC1FuCp1eMkElF8NocDGJJjHyvuQ83d2LL1Ff1Ygk1JSEmIwZCzkGIpJeMSq+W+3E4GsRlpPLkT4qbG7srzIqBBiBXExmJyhhgRAOcQo9iStgqJw0s92G1BK0IAFfKzM+7+cJhrUBiiZYil5qwk7rUmIXQ6sdKBPtUAXPol93NN7qOjD477qWY3Vgz7iuANOShEKek0KTKnZagyd1FAgNGQ60hVBaxNDG1VArXzPdgCSONZxXK5IN1vyTEhJoEIVgRSmvM9lSJ328yh+HxA1kdcfe+ED56+Qsn0oaIPFftQAq000tmJmAWfDZvU0McSaJ8qxlRSstZAMErnPE4TU+XpJ8ewr/B7h/QGHQQJggBphAhQR8QLWZTUKMvlnr5ZogFSLgEmC9nAtFQ4P0WGkTyOJRtSwhqTCuJmKfXpwUyZLAIxQeUIz064/Q683+xQyaQsxKT4aOgnx7oduJ1aahMYkz0EeeUXfLY7Yx8cYX7/bd/ivSFMhhyVPCkyKRrk0BcFkAiaIA9KsmkGHiUGxWoiu4REg/gSYJ5bTHJCOF1gr5oS6JzGVjXx/39oAIkJQkCOVmw/7AgfDlQaD+gasjIGy3bXULvA/VDTGM/CTDiJ3IeWH12/x9W2K7duI85GvC91m0aDjAYzCKYvrcEvM6nKZJiBUWAPqVZIAqn8XswCppAGM5XbRAqByAp+XeHaFtnuSkAxYR8wKksubzSgMZdArWV6/4T7jwynx+WXhmjZB8cQLP3o8L1jUzfsblsqG1m6EZ+Vv714wdXfnZEWEbPyvDi+458++jnbWNOZiR/eveCL+xOubpaEtzXNVenhw6OMRjD7kmFpEhBDsvlwQP1YlWee+2lyhTQ8fM8vlLxskU1Nnny50cpG1GSSAFoCDbVw8YMjVl927J5Y9k8Tz7uStkN0TMlwu2vpb1pkMOxSh7uw3K46fuyfcXOxYv3DivR7E3/6D37Mh80VP+h+yR/Ue67TxEoNP1v+hPtnDddxyY/3L/izV9/m9n8+4vR/C9U2Ibk8x3gspI0wnEPoMlkz+8GBZmIFdpdxIwdQQiA0Qly32NuWPIzknLHWRIyNBJtJNhMrwS+F/ongl45pnYmnHquJkBUriZyF/abBXjuSy5idpb4W0t+scC8z3/xi5O7jzMn5ht/oCk38P+N7fB16/n54wr89/zF/vv0up3bLU3fHB/UVlYmM70+kLyvcNlLdjOgUSZVh90EHGIZzSK2QkiJSAq/uBR0yOkFsStfIRgidwyw7uN+UztDYQFt7psqRrSHbAgRmLCnhjzL1YsJHwyAOlcQQLGws9ZUQW8EMsHid0Ajthcdd9qyBN39xxr+7/ucguTAvgeyV//ziu7z9u0ekOqErj2rGftqxuof6NmKmBCqkxmIuN6ymCKzIYoiVko5KK0puRlspwCVxbjUGYqvkuiqMzlnswk3sbIW6RKwSyQgawO1gWkFqEot2xGhCJaGSEclIENyuvK+gNgwnQv+oRj+pUD8/wJUj6wwuM6Bc3jymuxB0UiRZ1GeWrwN2F7H7iNmOyBRABNn2yH5k0Vii6/BLZYgKmg+llk0BV/IMShZireTWoYuOvFpgj9zAvW1wLhJdLjeawPaZcS1IE1nVE43xVCaWfmgi2RVwaK5TSfdW2H4A/ulI1Xn83s0QXg4mza2EJLhrQ2ih2UN7mUoW3E/I3oOCDB7x4V0bSAlzt6e+rXE7ZR8EbQolzHYmDfmhL5UbTVaItUFXC+LpArtyA8tqZFPVjJUjG0uW0ktTJdg6sKxGrCZWdmQTajo3oScTw1lLcw1ul9ifKdlAs5z43nsv+e3VK87t5jCL3sWWW99y51s+vz/h6m7B7XXD8MYyriuaa4sdMpIyEjJmTOgY0SmQaks2CgpmyBAUkUhyEB0YJ0h6Nz1llYI3jcF2NRISttbAUTVwVzdsXUNy5WiyCNlmqjrQ2WmeNyNrt0fJPDq95+sPDJux4uTTyPLriD+ybE8ark4XbLqGTidq9Zy7DSsz0OnElCx3u5b4uqO9Vty2PFz/uNxyqkAncLuM7cH1CUmlbWQVNIK9MwTJGD8H9pC+ImgsKZ2skI1ASOjosWOytMazrgfumpZeGzRkJJVp4KjyrGzpjdtQkbKikjlp9uzOKrY7g9sY1r/yLF4m/MLx8mTNi8UtjXqWCHeh4814xJe7Y351cYb+dMnpl5n2OmD7RBbwS0P/WIlBMGMJ0o4ZRAhtSc1YC9NKkJxpXroCmlP5WZby/TSncp6ps8QIPmB3oaY1nqUb6eqJXZVIzmDGTFxEFlW5TUOZMUMuKoBKZtWM7E4nhkct1b2l2iWaK7i7adk8qfG14c8uv8uXN8cEb7AuEibDYltKQ33G7CNmCKivCI0jdAXx7ZAhZ0KjhdpVMK0EvwTxhapqnKWVWNSGLGUAyFpwRuKcziLolIqc0RhP5zzUaYZtQbpIYz1pJqHT3JWH6PDRIEDTToynkeFUiE5wm0z11nK5X7KNNa/uj9jfNYTJoJpxdcAv54deGGKtkBLufqS5jdh9xkylVpN7GL1gPC5BJpfRUFJY4gxCD6+ZGUEJ/FC31mBTFqxGWuPp3IRtAtFVQOmfjQkkBCUzhNJHfTSMsSgElY3s157x1OB6we4z3Wvl1fUR3z5+Q1t58smetvI8WmzZTjVfPm9ItkgjkizGV+g+FBCaKFKICrESkoNpLUzHedaFgLk253m/BJeltJtfv1GfimhQOSxAykJrPKd1T9NOJNcRW2G92HNU7Q8KwpQMMTkSQspCzoJqomo906ljPxjat1DdZfqfL/jwN6/5k09+wi5VbFLLNja8ntYAvD1esmmWZGMIdc20aoi10F4m7FiC1QCxUfrnkVyV3q1DURYY5B0QKYiZb1XL6yF1JUQwWgLdx4rTasd5veWk23PVHeOPMt9YbDiteh4O41l7z9W4IMz5EedxzdqEP5nYa0VYFmnS9vDVeEKj/iCg1er5Tvua6dTyqlnzyypwt16yu7bEZUJPJvSvWqovA1mF3VNl+22PtqEQfG+IVsm2tLKibxUZ1PjydUHfErSGVObpnHmgwhgSJ7bno6MrXp09ITWZs3rH2u7xadaCXGTlBkIy7GLFxtfcjN2hf42a8Utl8gpB+ao/5uP2gloiY3KlnwIrO7B0DSEYZNIieURBP29oLxL7U8P2Q8F/sudk1WNNYvQWHwzTZInOAhadBB2LSJAMiD4EWBCXnMF7CAH70B8BjCQeVVvicYAo1CawNnuiEXyyGEm4mVD2qeLGd3R2ojZL7mzD3gZCKrfduMBZvcMny0gmIrMEKoSk3E4t02SRSTB7oboRmuvMcCJsP4L8Qc+T03ucJowmGhvYDDXTZMFrqcV5rEwuI0YOMhDMWq9V8iwHWSsJOz+8kjmyA+3xwP66xSeDk8hSPUmLCNbIhJHMbewOcmaoyjDY2EABt8STdsMn3VvWtidlJWZ7SF+fDTtfkYIeyLgZCkHvn0F4b+TF2R1HddGorCQGtUzR0JtENJlcJ5IW1S9r6aEPqfyORCgiQg4BazUebslIojMjT9YbPrtquZlahmw51S2GRERZ6EjMiiEVNJZEbQq7SrmAVKWRD9prvt28xkjiKiwZosVnQydj0X9noTobSFXGHwn9CsK5Z3W0p7aFkVWzSK6+xlcG3yk7ycRgiJMhOoNMs/AuZSB5YFF51r1yTFhzsBMitXqOTc/zxR2f5SdcDQsu/YpTs+PY9DTiGZLjNnZsUlOyYFbaF2bCzyDVGk9nJi7CilO7JaKHgzTkw/tIpcGHRS4j28nE0WKgrUr+VRo5rXY4idQa6axnXe25aTqGYLnvGwZbFXnFK7pXUqDc8iwkAEjlSurWGlDynGLKJ4u3/KX5hFfXaz7vTnlW3eIkUEnkIhxxHRZcTCuup45tqNn5itoElm5k7QaO3R6fDV+MZ/SpRufaNprpU8XGF58lxyKXZIVcJ3KGVTOyrEaOqoFnzR3P6xvuQnfQjSPKpm141a+LJSEwGUvwhoQlhpIpkinyrTFIU2MfRGg3p7CRxIvqmupoZNpVfHr1iEoD3+wu6cxIpxM+G1QSrfHc+4aL7YJ+15CCULWeZyf3/Nbx1zyqNkTk4WDnlqTUJmB0Vh/j3OyjkKOwGyusJqwmXg9rrqcFKzdgKBfiJLIwI0fVvigeWjTlQRwhQ+618N44MyNVcltjYxb6VFFrwGdDzMrK7Dlfb3l1fc7N5YofJuX1as1132I084PHX9LqdACK025PCIb9VDPeNXy2q7jtW/7gvc94Ud+U8Wp20gYc++gYfEFPMxZVPi7KQfRDRczCZqx4q0sGbzGzRVHZwKoaedxucJI4rvaFuMyHOGQhzdq0HR4EPgOqpUanZOlTNdeC45ieD1c3vI6PYGvYuYZN5emHGv/Fgv9yt2DRFXF48pZxV5EHg3hBB0U9bK4dP+uesDofWFFGNJWE08AUi9+io2J3hemkysymU7FIUqXkDOPoiINFNCM2cekib9slZ4uexQxWSzcRkzLsK8y+TD9mmi1Ea8jOYHWeSsZk6aWiSZ4hO76xuOSv3LfQ3pCT8GJ1y/cffcWf//T7rP6sJVYtfiW4BGefR5IR9udKbN61i8/Pz3i+uOObiwucRBrxJJkF6CyIl4MzYPZCqg39UyG6hNShiGAAkxY5dlSm6Ii7BTerNc3ZnrPVjtZ5jCZ871jdCjqV4b0YTEKqDNZnRXMmJMMo5WY3seFbzRvqk4F4uyRfVLx9uuJPz39M9S8D//G//YAnfw2P/8c9kjN6uyW+fsPxR+8zvXeEX1qygd2XNT87fczz9pZTu2Wle3y2fNhd80V9Qm8z6oXubcRtIlmhf+q4/u2G3api/VPDyUUiVuAXQqyLH9pdJCQKmxcrro5XjKeJ3EaqC4vbZOr7RH0zonc9EiLZzqmbsuCzosnSx4rBOB7pht99/pK/fvsJ9YXhqzcnvH52zHfa1zz/F/+Vv/xH3+J//eJ91n9bcfJpR7PsCEc1fmHZnxm27wuxzlQ2cmp3nJktjXiu4rLYi3GGqFys+uHMHkav45+BJKW5CSz/9ivS1TV6flbqTYS0XvDVnxzTP0uoL8xKeovbFBCyQ9GYZNuDc2QV7BiLwuBmhc9nU3hpavi9oy/5m7P3yVcLzNc1P908449P71mbPf/k7O/5aHnFzz58yqefPaX6+gSJhd3ENpPWHtHMuh4KE0o1qokhu3cG8oOY5YTte0VqtbsCLRqL4j59/Bi3XhIXNdO6Yjx19I+VZMHdK7EuU47bCPVNxo6Z6mZC+sKqctcQO1vai53Zh6EEOyTHkBwndsfZ8ZaLRUt9rfz97Tm/t/6CJ/YOYxKpUq67jlenR2z9Eu3LLWVb7L9sE7dDy9tpxYlds9OKN2HNZ7szBm8Pg3M2gusz00qITZFCkoP9I2H7okOnrkiYVVEaYpWx+1LfOgnGg9uUWdb1uRjYk4e6Ip50+KUp04v5tf0DQ2JMZe+gk5H3V7d8fXKCvqm4vFrx+eNzTFsa/6/6c35y+ZTdfYPZKaaf/RIrZAvhCPaT43JccuKOGI3j63HN9b4r5DyVwdq3QrUpXDVb8F0xeKejTOwSucqHNBcvmF6hLyKaDUUZtMUvxu6KgY0xpNWC8aRmXGlRGMq+gSWJHvrpkC0uBz5eXPGLx2f0X5yjb2p+9OQ9XrVH3E0tr27WjK873Eapr+fFCQOhgek449YjJ92ehHDjyxCwjTXOxNJC6sS0NmRVmqvM4k3ADInYKOPaMJwp/RPFnyayZCQV71TnPQsNYPcZ25d2AlDdjOAD6XjF+N6S/bllWsuDwlBSzs8UqzMT29iw0oFn1S3fPXvLX35wxOLTitdXa27aFquJrhlZfmPk+mZBMg3ZlRvQlefx2T3vr25RySxMIRf72SFvrWfZjWzOlWFpGQZlODeE1rJ4kzBDor6NVJtEfasHKTQ2mewKZdTwzo5ASuBlXWgivHfK+KihP7fFpKrADtGR8kBrihIQkrJ0A3ehDNSdTnzUXfGr56dcf/6U9Lbhk++/5Hvrl3SmkAbzUab/XmlLD+72w+EVOXWaAa9MSad1X+SbyrOfikmcniqbjxw3O4fsFR119mkhm3dpnQxgoH+WcFvF7WbTOGTsPjA9XrB7WjEel3onweJVwi7dOC9bzI5ZUhoJ3GThOiw5tVtO7Y7nyztePTuneW350VfPUcn8/smveGQ3KEUq2aT2sG4Tsx62VB5URIAjOzCmYj02JjBUlt5X+KQsm5FpOW+pBFMEgtEW5QBQLWCZkhJ7S31VlQWrOW3HYzenfKn9snRSHEL7kFbAPGGkogZo5CZ0dGZkaQaeNve445F0bchvG37intHZiT9c/4KVKVC+0LIeVwK0RMpOQx/LGo6RhJHEkd3jsxKSYR/d4YBjVvbqCCkSnRKTEKqAkYyzsbS/qOz2NTG7g3hdZFHBd8K0LkHafalfgLAQbG1CkS7nGaMzE2Ny1BK4iKtDrT6vbzk+6rk4q3G3hvFtxw/dc06rnt/sXtHIRCMeBIbsiEmpJdKnCiPpIJnGXADvyJb+ajUexLYHvTgDIhkwWFPGs8rEIqBHgx8tujPIXKeTLXXol3OQu0IrJRZNONZgrUSiCiEZvBoaPHeh5cTtiFm4Cy1LM/DM3fDR+pr7XcMUOnQvbL864s/5hOVHI8+qW45NfxjFfDaYOaV1nlyUQkjSrB897CFVGstMLJkpGlx+N9iFpNztG0ZvCVEZh4p8X1HfFiXQL4ueG6sSkNtBc51BytexKvuDugs1Z67sJ+xCSTGnEZ8sR3bgPjS8HE8wkvmH6y9YdSN6OhKXCfFC/4s1//7T3+Unu+d8Pp5zHZYM2RULAyVlxUgqgz1CoqzOHfq2ZI7cDIZkjqqBlRtorcdIYoqGKZQgQzAkr8hUQCbWkGoO5pTbFUMaSouLTg4Glb3zDef1lmNXkNAnw+Pqfk7jkV18yuthzdo+4rvNKz5cXyOSubeRcVNjrh3xsyX/Xb/Fdx6/4ePFFSeuLxtkxMP45zTgZ0sjzftIAFYiIRvG+WchaVmfm1fn9pMjJcGYokDkUPYAH8zfUBfiUN1Be5GKL1oV0vKg3MeGInfe+pan9T1OMvehmRlSQeKFGbn3Db/oS6DfWb2hDxVGE3eaGQZDdWkY3iz4VB8zRMf7ixseVdt3asQ8GpflR0OfKvbRHVpQyuWmHz5yFnw0+Hk/0E+WZCMpmqJEmEyqCjkxe8FtoL7Lh9tL1fx3pFBJCRTCsAs13hk6M2E1sY0NJ3ZHysLSjCzsyM3UcRWXfKt5w5vuCDtD/ZvJkm9b7EbZVR1fPbSArBy7vtymie/cHyAkUzAh62xDpsPuUsiGkPUQZAiGGMqqbfLlig42RAC3hWqTMWOpy4cgkV+zKxJFHJuSOez/nNodl37Jud0wZEdnRo7dno1veDmd8I8Xv+DD9updbzyFV7cV9YXF3Bs2tuPlPPqFVjl1O5y+A6Jf3+tNs16V5jQeomMMtvTRWYWIsawDxFh0pYJuGcmC7YXqPh/aSHTF0TM+E9oSKJRbtVYjJLieFjiJfLv7mrfTakZFi5HAqd2xq2q+2J/yO+2XfFBdsokNu1jRLD3yDbi4foLZC/nGcZuX5XkkH9LWajpsgj4sfRRerYflySkWYXuKhhD1sKNYJgUtY52Wz3WC7k3GPQRZCdNRkVHywxLHbAaHdk5dq5Gtr3nDEY+rDe831wewgEIkjl3Pq/0Rv5we8Un9ho/rC0JSLqYlf/D4V/yHD9dUP29pemGaHLfDEcPk2K5rjus9nZ2wGjGSWdlhNp4UR8LZ8VCjOQtWLcOcFcMcrKkjKQo5GtRDcyG4PpG1LF6l4nRiRtg/LmirsQQ5vOfRKVmmZKlM4aGfD2eHfVsngSEXhf2Ju+eT1QWf788ZkuOj6pLvLb7g2O1RyfzxJz9nPI9ogPat0LyxjF93vLw85tX2iOuxLCMX19xgfu1mfVZ8MizsxMKNdG6isYUoiECzmHBVKGs/k+I2SrXJhLpsw8R6biFDZlrLwZeJFUzrzPl7d4UOPdRbyMq9bwqbIdGoJ2VlMy/6v6huUEl8Pp1zFZccm55vtBekLHzQXrP64J7xpIxN1R1U14Z4VXN1s+TNZsXVsGDra8Zo8enXMyYdjK7KRCqNMzOCqvYsmqm0lyToKLjtjKjVO/CRWAKbmwZZIbYQjgOnbf/ONjwEi3LjF5w2u7nOSgO+iy3PqxvO3I5NbLiNHY14nto7Lv0KI4nvPXnJX9y1+KuG+rYsWkg2jKnmLpa5N8//pzHhkMqH9pPModWoFL2prTyLamLwljyZImcOpQZj/bBXPzOhRv6fXSO/TNQnA0ZTkTuRd4GmLNzOI9ou1TiJdDpx5RdsTcMTd8dd7BhnD+Zsnm5eT2t+Y/GWNy+O+PntC9pLwd1nSIJEZQoVm5ndjNFwVI3UNlBpKMq8JIZYymiKBZ2PmoGFm6g08Pr2CNkrZi8H8AlNqUm0yC+xKbZhrIqfE9eRp0e72azWWGB+pmdK5nrquAyrWbUfaNQzJselX/LNpueZu2HIVVknD7A2PT8cX+Cz4dvrN+y+XXH76inLr9IMCoJ6xQ+O/aBMx5ZtW9O4QG0DrfO01pcJJikimdZ6OjvxuN7war9mmizq58uoZhGuKoAT6/I9SfNKaw3TeaQ77annWv+/foPGmt+VzOEAAAAASUVORK5CYII=\" y=\"-22.042263\"/>\n   </g>\n   <g id=\"matplotlib.axis_9\"/>\n   <g id=\"matplotlib.axis_10\"/>\n   <g id=\"patch_23\">\n    <path d=\"M 287.775862 80.042263 \nL 287.775862 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_24\">\n    <path d=\"M 345.5 80.042263 \nL 345.5 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_25\">\n    <path d=\"M 287.775862 80.042263 \nL 345.5 80.042263 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_26\">\n    <path d=\"M 287.775862 22.318125 \nL 345.5 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_5\">\n    <!-- Happy -->\n    <g transform=\"translate(297.279494 16.318125)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n </g>\n <defs>\n  <clipPath id=\"pe605125ad8\">\n   <rect height=\"57.724138\" width=\"57.724138\" x=\"10.7\" y=\"22.318125\"/>\n  </clipPath>\n  <clipPath id=\"pd0be011859\">\n   <rect height=\"57.724138\" width=\"57.724138\" x=\"79.968966\" y=\"22.318125\"/>\n  </clipPath>\n  <clipPath id=\"pc19dba8eaa\">\n   <rect height=\"57.724138\" width=\"57.724138\" x=\"149.237931\" y=\"22.318125\"/>\n  </clipPath>\n  <clipPath id=\"p8b240d9d25\">\n   <rect height=\"57.724138\" width=\"57.724138\" x=\"218.506897\" y=\"22.318125\"/>\n  </clipPath>\n  <clipPath id=\"pe15e666baa\">\n   <rect height=\"57.724138\" width=\"57.724138\" x=\"287.775862\" y=\"22.318125\"/>\n  </clipPath>\n </defs>\n</svg>\n","image/png":"iVBORw0KGgoAAAANSUhEUgAAAWAAAABbCAYAAABNq1+WAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACJDklEQVR4nOz9eaxvS3bfh31WVe3pN5/pzvfNryd2s0mqKVoULSkUI0eWHUuyJTmILDAOIydGIiOQEztAAtmCE8uInRi2YUS2HEuWrISwI9iyRA22KEqc1BSb3U323P3GO98z/uY9VVX+qNr7nPu639M7l00+DncBB2f4Dee3a1etWvVd3/Vd4r3nmT2zZ/bMntmvvqkP+gM8s2f2zJ7Zb1Z75oCf2TN7Zs/sA7JnDviZPbNn9sw+IHvmgJ/ZM3tmz+wDsmcO+Jk9s2f2zD4ge+aAn9kze2bP7AOyX/cOWET+vIj8Wx/053hmv/bt2Vx5ehORnxCRH/mgP8dvNPvAHLCI/ICI/IyIzEXkRER+WkS+94P6PL8aJiJvisgPveNvPywiP/VBfaZfD/abYa7EufFYRIYX/vYjIvIT34b39iLyyi/3fT5I+426dj4QBywiE+CvAf8hsAvcBP5NoPogPs8z+7Vrv8nmigb+lV/tfyoi5lf7fz6zYB9UBPwhAO/9/8d7b733W+/93/be/6KIvCwiPy4ixyJyJCL/pYjMuheKyHeLyC+IyFJEfhTIP6Br+LabiPzrIvJavLYvicgfuPDYD8fI7z+KkeBXROR3X3j8J0Tk3xaRnxORhYj8tyKyGx/76yLyv3vH//rFi+//a9h+M82V/zvwr168hs5E5CMi8t/HE8BXReQPX3jsCXjgYmQoIn8//vnzIrISkT8iIr9LRO6KyL8mIg+B/1xEdkTkr4nIoYicxp9v/cpe7rfPfr2unQ/KAX8NsCLyF0Tk94rIzoXHBPi3gRvAR4HbwL8BICIp8N8Af5EQDf1XwD/7q/exf8XtNeAfB6aEKO8vicj1C49/X3zOPvCngL/STZRofwz4F4HrQAv8B/HvfwH4o92TROSThEjyr//KXMa31X4zzZWfB34C+Fcv/jHCEv898JeBK8A/D/zHIvKxf9Qbeu9/R/zxk977kff+R+Pv1wjj8jzwxwm+4D+Pvz8HbIH/6Jd5Pb+a9utz7XjvP5AvwoL588DdeMF/Fbj6LZ73+4HPxp9/B3AfkAuP/wzwb31Q13HJa34TWAFnF742wE+9y/M/B/wz8ecf/hbX/nPAvxB//gngz1x47GNATTjW5sAp8Gp87N8F/uMPejyezZVvmhs/BHwcmAMHwI/E+/pHgJ98x/P/LPCnLtz7H7nw2A9fnFOAB1658PvvinMjf4/P813A6YXfn/gfH9D4/IZbOx9YEs57/2Xv/Q97728RJt0N4N8Xkasi8v8VkXsisgD+EmHXIj7nno8jEe2tX91P/su23++9n3VfwL/cPSAif0xEPiciZyJyRhiX/Quv/VbXfuPC73fe8VgC7HvvS+BHgT8qIgr4nxEiw18X9ptprnjvv0DAvP/1C39+Hvi+bl7EufE/J0SxT2uHcV4AICIDEfmzIvJWHMu/D8xERP8y/se3237DrZ1fEzQ07/1XCBHOx4H/G2HH/oT3fkII/yU+9QFwU0Tkwsuf+1X8qL9iJiLPA/8p8L8F9uIE+wLn1w7f+trvX/j99jsea4Cj+PtfICza3w1svPc/+229gF8l+00yV/4U8L8iHHUhOIe/d9H5+AAn/G/i42tgcOH178cxv1MG8U8CHwa+L45lB10Iv8bt1/Pa+aBYEB8RkT/Zgfwicpuws/wDYEw4asxF5Cbwf7jw0p8lHEH/hIgkIvIHgd/6q/vpf8VsSFgUhwAi8r8gOJmLdoXza/9DhKP5j114/I+KyMdEZAD8aeC/9t5bgDhpHPDv8eso+v3NOFe8998gRF1/Iv7prwEfEpF/IV5LIiLfKyIfjY9/DviDMYp9BfhfvuMtHwEv/SP+7ZiA+55FbPRPfTuu5VfJft2unQ8qAl4SQPFPi8iasJi+QNiF/03gewg42F8H/kr3Iu99DfxBAqZzQsDG/gq/Acx7/yXCDf5ZwoL5BPDT73jap4FXCTvz/xX457z3xxce/4uE6PAhAbv6E+94/X8R3/cvfZs//q+k/WadK3+a4Fjw3i+B30NIvt0n3N9/B8jic/+fBMzyESFa+y/f8V7/BvAX4vH8D/Ot7d8HCsLc+gfA3/w2XcevuP16XjvyJCzyzH6tmoj8MCEJ8gPv8vhPAH/Je//n3uM9/hjwx9/tPZ7ZM/uNaL+W186vCQz4mf3KWzxa/cvAf/JBf5Zn9sx+Pdmv5Np55oB/E5iI/BMEfOwRgUv6zJ7ZM3sf9iu9dp5BEM/smT2zZ/YB2bMI+Jk9s2f2zD4ge+aAn9kze2bP7AOyS6kg6eHQFzfHpNqi8CgJ8IUWh+DxkffsvdB6hUNoncJ6hXWCd+FxYxyJsmhxKAmv0uLCF+G9lHicF1o0zgue8CV4Wq9QeEQgkZZELAZHQyjakQscc49gvaLxOrxvfB3x5+4zS/zp6F7J6rR53+RzUwx9Mt3FG/CpY5xVHCRLDC5eCfGz01/Hxc/mLvwu/d/ja/z5661XWBTWh5/L1mAbjbSCWBALqgHVOnAe8eBFwpsKOBOv0134JxevMg6ZN4KPr0HO2frbo7tH3vuD9zMmejj0Zn+HNG8ZmxIT/6nCY8SiCb9bwjXN24Jtk+DqcP8mow37ZkWCo0ExtwWLJqd1Ci0eiXNG4vyT7nKEfh6+E1nrx92H11287/3j/nzsLz7W1IZkIajGITb8zSWK1eLe+x4TADMd+ORghnMCXsCBqgWz9oiLn0MJ3ki8Z/G+th4ceB3+7rv71v2swKvws7gnv7ycj49X4DW4JA6a8WBBrCBteKx/XwWoOL46jLnRrh8TJZ5CN9ROI/F3LY7F/TXr0/p9r59slvvh9fET98sox1DV/fpxXtF6RaosCof1ChHQOIxYKp/QOI0Wx7LNqLYpZhOuvbtmr8P1inZo5Z/wPd18cv58nXZzIvg22LYGX2ukBdUS7xWIp19LXj35s088SdqixLP82uNvOVcu5YDN/g6/7c/+IW4M5xS6IY2fZGq2ZNKi40JrvOa0GbBoC+ZNzuF2xMl6wGaTYWuNaAcCWju0iYuxDcG4SSxZ0jLIagZJw16+ZjfdsLUJlQ0ft3aacVIxNiVX0iVXkgV7esWZHdB43W8MzgsWxcalHDVjNMHxZ9Iy0BWJWDYupXHnw/D/+ud/8jJDQjbc5dV/9n/P6jbIy2v+qVe+wL+0H96j9JomOv8aTekSHAobF3jYGEz/e/jMYRws8XXeULmEpc2Z24KzpuC0HvDa6R4nD6ckh4bsVEhWntF9S35Uo9c1eI/LDC4Nq6raS/FKUI1HtR7VOLwWXCJ4JYjz6NJRTwzOBIftjOCSMHk/+5/8yfddxmv2drn+f/xXuP7qIb/z6je4mZ2yp1ccmAUaj0VovGHhcu43O/z941f5xTu3cGcpMq35U5/67/hI9oATO+LYjvjFzW1+4eQ2d09mDPKKRDtSbUm0JVEWCJu+Vq6/796HzU2Lo3H6fD64ML5ahQVoxAWH7IXa6fC6uACdF6wXVmWG/vEZu1+uyB6ukaal3R3yd37m/3Kp0ub0ypTbf+Z/TVMb7DxhcNcw+7pleK9E1RZvFLYw1BNDM1Q4Iwwet5h1G++nRpxnfT2lGQptIdgc2gK89uitkM4hXXlM6dGVwxlBWY9YsKlQjxTbq4JNoZmEdWI2QnoWPqPNzr/bgcdmHpc7pFb43KKGLSYJY/6JG/fJdYsSR6YsE7PlR//o37rMkDC8PuYH/7NzjSQlnpcGR7ycP0aL47AdM28HaHHcTE95UM9ovOZ6esY1M6fxmi9sb5Grhq+tr/BTX3uF4S/lZGeeZizUU6h2HMxqRtMtu4Mtu/maXLcYZdESAjGH0DhN7TSlTVg3KYsyRyvHMK15vByxOhqSPjIMHgi68tg8btRtCHjaQvrNzWmo9hzmuTUvHRzzt37Xf/At58rldEC1Z5hUFLqhUDWZamm8xnqFVo5MNeF5DnaSDSNTMUtSdtIN80HBos452gxZrHOqVYarEmylMCshPxVUHXaONoGzFA4nnm9crRlMSox2pMZSJOF/lFmCzaR3tk3cvhuvcS44OedD9H0xyrResXIZx82QrUs5qoaUNqG2msZp5s3PX2pIxIEuw06YJJadZMNAPJu4kC3Sf5aLZi/8rmNUEZ4botxvGnpxJBImjPsWj0OIlvD+/EsJaAEbnK5NJUQCLX0kh5EYIQhiFeI8qhXEh0kFgn0KoErVwrZO2LiUXBpmesOe2lCj2LiMtQ8b0lEzpnYGuzaQOG7sz/lQ+ogTO+K1+gqVS6icQeGxraK1Gq3CGHSOFgj3ODpXR3hMRcfafybxePEhkn7n2Ek4ddnoyLvXWS9Mi5LHNzzju4bsIWAtettceky8F5wTbKlJjzXjtx35cRuiX+v71RiiXiiOGtLTIHtso/O1mabNhWomtANwqceZ8Py4FMJmWruw0dbhPorzSBvCYTtXtIUgNtz77v+pxodo2IfTlLgQEeqtJlkFh9+ONXVhkVZxdzzjQzuPcV5ROdi69Jvm+fu1bh0bcewkaxofItru/aZ6S+USjpshN7MzZnpDIi13ml0qZ0jE8vlHNzH3M5KVpxkJ1QzqXYvs1EzGW2aDLTvZhp10ixKPiu/fradE2f507bxQt5qmTbFO4b0gqcUWGpsLZgO6CmMfbi7o0oeTpgflIFkpytMcu/fuY3I5CEI7BiZEviNTMVA1ZbdAxNF4TeUSSpcw1iU7Zo0zCrIAFVgUj5sJX11d5WvHB5wejjEnmvGbMPtGiVlWwTF4jzeKZpazvJ1STzLKPVjuW8zeFq095cCEQXKGdZtRZglXk8UTn6FyhsZrshipWxRnTc7D7Zg3z3ZZrXOaZYo0ClpBNdCsk8vNHO9RbTjupKZlx6zRQEIXhV9wtBFisT5Bi+ud8MWfO3Oo/m8qOt9EAvTTm/iA4kv3a7cCJYyhhOgWCcdd8R6vBS8esf78dy3BORcSHbDHu3O4ooMv3rdJWOx1G6bXTG8YqOBIus3GoSh9yspmrJsU2WrUfsX37N8hEcvXq2ssbY4Wx9YmrJqUttG0qSI1EZqJUW63YLqNtltQSkJkoy5sWlq5Jx4nvs9F816CQ47PyUxLe6OinGUMM41aWXzruKx5wDtBzQ2Dh8LwQR2Gq7KItXh0OI14T7qwZPdX4XVFEtbD0LC6oWmHQrXjsYXH6+A0VSs4A+0AdCOYUlB1cMRewlQRCc5WV9EhuwA3KQuq9iBgNj7AF23YlG0G6VJQFeAFbwCvMRthvi5wswAP4BWVdU8EO+/XLjrfSVIyUDUWRekSlDjGuiQRy916B+cVz6dHzPSGx+2Y17cHFLrh7e0uy7cnDE/DxtSMg/PVexU70zW7xYZRUjEwNZmO/iDe98YrnFckylJb3Z+EAOoqOZ8TyuMyTzOC/BikBhz9KVFX4Eto8xiYbcGcGU62g2++6GiXcsCptkySkky1EQN25Kqh8ZrGGd4qd3mwndI6xSdmQeeicxyNN5TesGozjDimRcl6lNGMDM1YYTNFem+LLNf4pkGATIT8Kxkohb0yZf6hMcffOaQ8aHrMqLKGNlMMTcXUGB5WU4xyLNuco2rIvCp4YXxM7Qw//+A263tj8gea4X3PXuVphtLvYuLgwaUDm7BgvBKKtGFPh0WjJUysBAteY8VFkAhyaSL0cG7BCWs0Di1QRugCAtbVOeFC1wxM3b/Ox+MORPxQCV4EEUG1DhcXtbLBGTkjSCa4SqHLFh39iNeKplCYCiA4YVoPXmHTp1hUTdiQnstOuGlOAVj4cL5d+5S1y6hcQiKWo9UQ2a14+dohHx/e49gOOWpH7Jg1D+oZD7ZTFtscbwVrFa1VGB2dKD44VSd9VPxOaOGdTjjR9onniviYpwj3J9Nt76jFGhqruXKwYHX1Cu04Qz88Raz9Flf9jzAvtJVh8FgxOAwDryuLqtsIB+mwkZ81mLMtXgQ3SrG5weaaZqiop0I9CVGt2QSgvi08bREAbNUKzVDwSjFsPTYzAXZqHKrxpIsWmyZUaXDQEJ1FDc1ASDceU3lYg9kSnXtwyGZ7niPwAs4JZ3URosk+4LjcXBE8qWpZNRnGOJ7Pj2m87tdILi0NmkfNhK8vD/htu6+Tq4Y3632+vr3KWVOQqZaf+PqrZEcaZ6De9bQTS36w5ep0ySzbMjB1DzkYsVTO9NFvIg4nnnWbsm4yKmsoY/DgPZTrFGXCXPKpC9DGONxD30DrBJdCmwvp3GOzcIrQNaRz4ej+9F2v/3IYsDh2k3U8CjsqlwT4QRxf31zhyydXWWxypsMtyzYnVw0Kz8pmnDUD5k3OcTnkdFP00aeuhTaHs5dTqtkV8uOG9LREzTdIWUPbgtHo4yXTr4CuR5x8NGV7W1gANib2xkmIyA/rEc4rHm3HPFyMWS9y3sh2ST834uo/rMjeegzLdbj5eUb58hXmL6asnhPqF0ryv/t0nW68hty05BGGKS9AEABpyHZQo1GESDCRlrUL0SBAKhYlTcDSLaDoE4gQnHSmWpIuNI3Jly7oaAaKZKVCVGw9OIe0Hp/KefLIgE0VNlWkcyFZRYzRaWyqaAZhdenah6/SkTeX5Ir7gIV9aO+QTw1ep+YcHlq6goXNKX2KRXhrs8sor/hnXvwlXswOSaTlYTvlZnrKvXqHO5sdHq9HbLcptKp3tNYpWvFopcIGRYzg5DwyfWdk20Va8KSj8D4kiyFEyOsmZV2llHVCkrQM0oZZvuXxdUe1m5AuV0h6yZMSYTGzMqRnIcLt7olPwvh4HRfusgzOd5AgjUUpwaUK3XiGDxy6VLTDcC8RUFU4vbkkJp50wHuXNwzZ3KGsIE6h2nA/i8MGXZsYfIQjs25C5Gsqj2riWJZQHIFNCHPNSJ+Ecik084z7xYSD4ZrCNLTuifPZ+7bWaQam4Wq2YMes+ermGh8b3KfxwT01XnPWDJimJS+lhyxszhvVAffKGc4LP/v4RcxbOS711DOPm7XM9lbcnM65mi+ZJRtM3FCVeLY26Z1v4xWlDfdyUeesmzTAka2mtQpRPmz8le4z0i6B8sCTrIVk40k2HtsK9SRg58nS0w4FF6Pi/P67z5VL94JqvCZXDYlYrFdsnOkn9nxdUB4WbHXB/3A2olknyFajtwpVga4l4KUOCgsDG34OOzQhSksU7ThDpQa9qZGywefhCOYyg9k4ikNFOzBU5Dir0MqzzlNWJkOL5/F2yN2TGdXDAYO7mtE9x+4vHMHxGSKCn45prk5Y38w4+qQgL6158eCY28MzfkxfLgRW1qMrj3jBiCOXhkTCpO6w35oY2eJJsZQ+3BCNJ48O13pFgw4nBZdQ+gRFOGFYFIkLEdfS5pzWBWWdQCPh+NiGG41AMzJI69GrGmkdumwRd454ioW2CFivSxQ206jaoktLfgzNWOO6bLsKR05pL7esxMLoI6f84O5XOFAb5i6jRrN2GWuXUfqUjUs5bYcs6pz/yY0v88nB2wykovQJG5dxYlPubnc4LEcsNjl2E6aqUh4PNG1IthqnsPIkfCMXHK2NmN47E3Qm/l47TWN1v+jm8wEsE7zyqFFDnjZs64RhWsOsZruTMVYCTXupMenMrBTpKkSkzgjtICEvG3yiA8tiY8OcH2QBG3YQU/OI9ehayE8cbhnmmPhwAqon4eitmjAXVB0Sb8oGp2xqh6oC28IbQZcO8YK9kISFLrMfWCJdhl88OLkISYEdOordLVoFVlLrFQb7BMvn/ZgnMKauZQt2kg2n7RAlPuSWEBqvOWmHnNQDXh09Jlc1Xy5vcFSN2LQpx9sB91/fJ7NCO3K4nYbZ7prrkwUH+YpZzEUpfB/IrH2G8xKjYOk37VRbhkmNkuSJTbnHcJyEL+VxqbC5KgweQrIJwUq6gHosYTOzIJGZorfvMR8uN1hhAnfwA9BnoYe65mCy4u46JbmXkn8lYXbiyc8sqm1xRrBZuCCJSaHOQlbekyzqHg/DESI5HV7jE40tDC4Lybp0LnhtaBQsjeO+nmLE0XrF/cWE6v6Q8euK6ZstwzcWyGINeYYbD2n2B6xupsxfVjRXaybZ5RMq54Pi0U04/iXaMlAVDp5IpJ3Tri4mhOIRNFLMOszXdnhUpGutXcaJHXLUjDmphxxXAx5vxgGb8pEn5mISpQ1JAK+77KwD2gABRzaE2A7/jR9fAVqQ1qMqi0oDZu+V9I+/w7/9o4fEwO97/ot8JDuHofAR93UJlUs4bYfcL2fcHp71zhc6bDgk546rIcfrAeUmRL8k58mxi062w4EDxfDCvJK+w8E3WRdFV1azqVLW6xx3miKN4AqHGjUMhhVKOaoqZV2nFKOKajdHigJf1d/yfd/bhPRMMKULDk8Jqg7zwCtBVS1qUyOtxUlInkJwiLpxyDIkfjq6mBfBRWaDOEhWYMoYzLS+d5h9cs6f/2wLFSGL+ICPVC0fMH+vhAv7Ni4NDr4deuzYYfa2XJ8tMOJItEWJp3bmm+h//yjzHlJlGelw/0/aIVOzxaLIpWHeDjhrClqvuJmecthOeGu7x2E14ng74NHJhPRU4zKPnVjGOxtuTudcLxbMks035U6qC4ynsAZVn4zLY/DVekXjFIkTau1wSqG1xzUK3wIRO28HnnoSNiqzDX5AN+f0QVFhLaj3cC+XdMDnFB2NB3E9hWNoKj48e4zzwv3VAYN7mnTtGNxdo5YlaIUd57jMoBobnIP3kQvZQtMi6y102JrWkCZ4o5HWIkohuQEfjknJMkw+l2hKyTh0wiQrqaxh+XDM5A3Fzjcairsr1OkKP8hxw5x2mrE9SFhfV1QHFtGO5dmA5aLgzXyXrb1sEo4+09xFwNYHMqDGP4H91uiQ3Y2TQeOCw0H3lLTSJz2zZG4H3KtmHNYjFnXBuk2pWhOohsqB8j0EEWhkvqeVdSU20jrEOBDT80cvfCSImDHi++y51xq0v/Dcy0U1SdbwQ+Mvsqe2NCgScYHhEeGUuS04bQZsbcL3Td9gpjaUPqGO1117w6NqwrzOWa1zfBmPf8r3C1yrENV2DrejnL2XXcSBnRcap1hXKetlDscZyVpopo5kVjIbb8lNy6pKsVZRNYZhXjOfevzOBH/nwaXGJH5I0rNwn4Lzc6gqrAWlHFK2UIfVKi6uD5GQIAYUFr8VvIknmFTRYELitIF0GRxA9zqbBAfgjGATjc49pgxY8HZHoWx0HHVMyEqYN63p+MaCV+HIXY+hHXmasUMmNQezFdcHC5Q4WqcpraG0yaUjYIChqUhUOFG3TjFKyz4ptrIZ6zZjaGr29IrPbp7n3mbKaVmEJOBphmmFZmYZ7m24NZ1zc3DGQbpioGoqHxg0OpIEAIyyGK9Q3gMxHxDnhhEbNhXlIGmpGhNO2cbSYrCVCs7VEU+cgS0iLmyOqo7QkD93wu9ll3LAATPRMakRkkadJWJ5sTjilcFjHhxM+Xu3X+Hegwk7n5uw9+WU9PVD9NEZJksDrpsk0Lb4ssLXNSiFtxZEEH3hyDwcgFLoukHVLaopEJtSjwVVC+lC0bYJtRWafc3hasjkq4a9L9XkdxfQtPhRgRtmuFSHZMZAUe1FWs5pilkL6amg65xtlV5mSMIgbi0SQftcwgaSSswIe7ASuK9EB9N7QOGCYwrOd2lzli7ncT3hy4trPF6PwpFZWwZJw36xItct1imOrMZtdGQ2hEIBl2hcGuAaaWz4ssG5XggOQzIuJl8QwqKOUIQz5/QuXMD+LmPXszkHOlLH4qbdbSyNNxw1I9ZtxvV8zsfyu31SLpeGsQrntdO6YFFmNJsE2uAYRAj4slPAk0kw56VPfHa/u8hm8BcSc0p7qjYk1jZVyupsgDpMSc+E7a2Wg+dOyU0gz1dWs61SvBMaqxnnFUcTR311hHntKSJgL6Qrjy6D0xXn0csqBB/bOmD2LiR0pW5BRWa/92DDmlDO4ZWK+H+KOE+6cqhGkZ+2IXJNQl6lnihUG+AJm4KyQrIQdA3r2yGKy48DpKEawWbheWLPI2Wvw7G62vXYoUWGLcNxyTitGJqKWbLlrCmo3fCbCo3enwmzZBvXgFxgLAkbl7KOxOSXB4cAfGV59ZzKuszQG4UtPPnVNR/af8yLw2N2kg1ZhEmdlVh0EZLYTgkD6kgMCEVerQ8U1C77I+JJdJhfWdIGjrkOiV6rdUhM1iE56ZPAuECE4jCcOlQdsOCOzmeLd7/6S0fAlTM9PSoRy0BXVC5hoGoGqiZTDftmyfWX5nzxynXOPjrgl75ym/1P3+bg7z/EL9dgbXCy3uPbFl9V+DZiakojSkDr8JztFpI0RMCbEuMc9SxhdStwICViXJJbNk3CalFw801LfmeObKvg2JUKeGhjUdsWs03RdYayoCtHWyiqKaxvCGlyOWxPrCM5LVF1Hlgh0QEnAqWPDuEdx7KQuHzSgZQ+4X4z4161w/3tlMebMYfLISIwLkoOBmtuDc44SJckEviK6ypllSY4rSIBXCK2K7Sj5HyBO4eqzq/LJTH5gqBLCdV0kcmhK4uuQ4VaR2fjkgn/7MK1aTwlmqXLqb3mbr3DssnZTdf8vunn+w0I4Ipe8kpSMlUlzZXP8Kcf/T5krQP9qbBPnKFFPIlypMrGKFg9kWTrCjMuRr1tjLBqp1mWGcs7E4r7GrOB7TXPtReOe5512Ro2VUpdGbSx50frScv8hYz9n7t0+gTihqfLCzxi55DWPnHKkKbFJ+Y8Gjb6wonRI0rwiUavalTVUu9kqCrgyuI8vhKk1bSFop7ESrtWaIewfAHstZorV+ZMs5K7Z1MW90cM7mqyszB3IERxLol4bxE2b1UpXBaqEffzdR9l3tvOWNZ5pKNdbkg6auZZE6hae+mK03ZIJi2n7QDrhev5nBezQ75RXeWt+S6niwF2kaK2CpRH317zu57/BreyU8a67CEFJY6BqnuWVkeR69hJjde0MYjMVMuaFKMcA1PTek2tNNYHOqVzEmh8xuON76sHdRXGqJ6G6sjhAwe14HWAA0VCncC72eUc8LsMbqYaBqqOCaiWxhuWNmdkalqnObh1xiEztgfXGd9xmNLT5qGENlk7zDZEXl5JmFTLDSzXuOMTxBhkPMTr4BDcMOP01YT6Rh2O3saRD2pe2DvherHg4ZevhIi0rPHLVYA0REEVIm3vAr9zqjV4h6Qp3lr0zescf/+1J5pEvS+zDlltUe0Moxxj8SQibNx59NcVY3TWEI7UF2Ptk3bENzZXeH25z/F6gPfCznDLc+NTbg9OuZosGKiKxhseNZMnihC8CRQYmwuq8hGvU0ibnEfBZYtuLNIYvM5o8+C022E4ziYrGyhGWpDGoYlJOOGJyPn9mCecBEISJcAOpUt5u97npB7y8uCQTw7eCnANIbodUjFVFXnsAfmHRsf8P4qKUg3DxDMxM2/cEwk1CAsq1c150oTAZrBOoSLlzLrz0vizTcHyrSmD+wqbweKjLTdeOApVUeJZlBnrbUbbaLSO9bxAbTUmb1jfyjgYDEIzpEuarmM5syPkOlobI1/ARierVYiKnQ/zPv7cj6/RiHWIryExmCws465QwyUBQshPLTbR1FOhmUAz9Nhpy+/9ji/yW8evo3CUN1Ievzrha+srfP7RTVarPPyPVuFLjTnTFI+F7MyTn3mcMWz3dvj08zv80kfO+MSVB2zayzNCOlPiOW6GJOICFCGWjU0ZJSWLNmdiSm5mp1gvfGb+HMtNhjvJ0KXgcs/w1oL/6Qtf4HoaijMASpew9DlJpG9alzyRJ0AcLjpe64V1m5GpFoewqPMnOPmptqSm7SmKNtG4NPDvdUUvAWBTaIawvq4oHntMCTaLfu49kLGn2Ma7SqPzHWYTK2BsRJ0tKlDC/IhFk4e68b0t22HL5mZKdqz7UD1ZK5KlxivQtSdbJKi6ANmnGb7YV/Fkxw1iHdurOdurnsFsi9aOYVZzMFjz3OCUidni92o2VzJ0tYe0u7QDHSZ940B3eGd4z2ZgyGKl0dlzA04/LDQ/dckmsC4mUXTAgLUIDqj7kmLps7mdhQjYU8fEVOdUH20ntE6xN9xwtVgySUrGpuzH+KQd8qia8Ppyj4fzMZt5gSpDAka8x2khqcKGYzOFzRW6StCNDUf4ukXXLS7VJKmiGQWOr1wYI69VjzGqOjiELoF3WbMRBmi8Ye1SHlZTvmN0j1ezhxzoZV+ksnYZ18ycoXI0Hja+ZO08w7TmMHVgBdEOk1iMsaTGPhHtAuS6oSTpoQcIUXK3UbVeUbWGZZmxuD9m8FBR7nv8tZKD3RV5XGTH60HAhJ0gJiT9lHZoHRy6MY564mE2hseXGw/xgU/bm+MCzmv7uYR1CG2Idl2HvXD+HNUxJBy0FrPQeBOeFy49pn0F8rmjGWu88riBY3JlxYvFIQdmQUKgk76QHPLx4i7fP32Nu3XIgyzagtO64K35LovP7ZGdwXYnbNouCSXPi5Mhbxc7Pa+60y65jHkCDa1IAmQAQdqgcQYtnqnZMlYlD5od3pzvUp0UJCtFO3aMbi74wdtf57nsmFzqPtndVY12p08X11+XiLvIiIDAhOlKkMs2oXGBotZa3WtgDNIG64WNdqwc1E1GeqpIVjGfk0IzCoUr5a6QLgMerFWoyns3u2QE/GRJbeCyWvI4qyoXdkIljiRiOY3VNFZFARLwxtOMfKBPJfT4JQKuBHEKXYcjcrkbPrjZnGdmNweKZqfl+dkCLY79fM31fM71dE7pEvZ2Vxz+lpTl7ZxsHip7uixkW8R67TRkf6sZFI8TvIL1bc/sY8dkl4QgECAJ+gmZblFAGZNwFy1oIARrvKHxhkRaHIq1S9HimKRbVBQJ6dglyzbnXjPj0XbMneMZ9vURg0dCvvZkOo7Lhey1+FjJpkMkbHONqky/iKVq0duGJFF4E4pYbCZUOwlmbTEb21cjhi9Q9eWLDixCg2LtE87cgLv1Hgfpsne+Go8jOF+AobQkQOkdh87wZrMbKpZMx4ECUefiKVqdR8LAE8m1b/W9ag2n64LtwxHFfU099XBzy2y8IdWWZZWxLlM2ixxahSQOpTxKO4wJ129dxAIHDjcbXnpMwg0Im6U4FxJt8o7F6S6ES9096KEgi3cO6RLFMWKWTYUkBp8adGXjiUVjlWA2jmSlsLlQHXhe3DnhqpkHSqRYcmlQyjHxJQd6wavZQ0qfULqUtUu5O93jzy//MaqTIV5FjYjC04w9ojzzbU6RNuF+XBA5er/W4fOd89zYlCvpgtN2yFBXjHSJRXGvmnG2GJAea9qhJ7uy4buu3uMjxQOGscqy9Emf6HVesfG6T2h3uZcuwl60Oa3TbG3Cpk170bDWhYKc8CW0TqPjZq/EY7QlyVqqocGbgLGbyuM3IaCsp0Gfo/GC2UYn/B6lBZemoQWKhsZqoTt4dGXIzgcNBh2xCi1BO2KbJpR1QrU1mIUONJlGInWKMCkjxNdhUKG6USKlw7MeamwO9cyT7W758OQxShxX0iXXk3D8uNPscnW0RF7xHI6nuDspw3sRz0qFegzN1NMO4rFy2lDvGHzq2b15xj95+4v8v81lCzEErzUu8Qx1TSKKQ+t77qvr8fK2Zz0EjuN5gcXSFSg8s2SLjhU58zqn0oZFk3NvPuXscER+N2XvG47JG1vMyRo7zimvFGz3NTbrcDsVkm5t5FQXGl0GBoT2gYKmyhadaEwSPltTKOqRwukw1mZrz/EmJYi9fNmtjST3pSt43E6Y24LfMnyDazoI8tRRlKiMZdkddr70wsN2zJ1mL1SpaReSUnJOMVMR/zUXnHDr9Dc5XaCPfhdlxuZwyOCuRlmob5fsTkNBzqLMqGtDtcqQjcZnDtGud746lgtap0JSL7PU08snaz1xfjsfMN1uXDvGw/mHDtBZ53y7v12MhJWE11mLlCGC9koFZTIiQ9GExGy2CDAEqePl0SETXfaQmBLXM5pyHDNVPVHu/p3ZPR6+OuFv3PkUZi0442lHHnUQgM2Oj50YC9peGgO+WLrceB11OjyN0+yYDbk0rGzOw3JCc5aRV4K8uOU7rj3gE+N7gScf73dXXdk53SY64PP5EDjhIbofUFtDaQ2bJqWJeg91G3jhbavxHprK9EwGpRyID0lg8diUUAgTBa6SDehGU+4FJwxCsvSY9bsPyqWTcI3TVM6wsRlowJ3zWy1C4wwbH54z1BXfMztjM055c7THL6nrlGdT0rmQzX1fk+5VqNRyJmRh27wrBAj4ZrUrtANPO/DYkeOjB8d8dHifRCwzvWZPrxirkoftlIGpOT4dkd1NGL3tGRxbbKqoJmCSIPXnUdiBg7WBWcP+7ornpyes2iwkny5jzuEjLjQxW5z3vN7u8np1ldIbNJ6RLrlmztjTKxIJ6lG10zSEHbtySU+3WTYZmzbtj9j35lPO7k/IDjWqhke/3TF/acDeFzPSpUWcx2x9VC4TmpEmWVlU47B5iHxcqnq+KQBNi9oqdCx99SK0xAINb0JF1KZBbNCKcNnlIAhHKP8tveFxO+ZevcOL2SHfkT6k8Yo6bj6lD+pwQ6lC1tt7li5EzBrXq9+hAv4rQk89EzmXFOx0IJ7QgIhHYhEfEm4PxwzeNiQrmH+yZneyZlOlNI3GWoUtDVQqYLNJUOlTyqN14Lk2VvesCpVZmsnlHTCKKIikzp2u99/aEXuPtw4x+vxvxiDO4esaUSo8x3ukaUIkXNV4lYKTPurSlUV2E6odz87BkivpkrXLmEU9hCaq8eRiSWIUmksoh1fADMe/uPdT/OSHX2b9xR2SpaCsUGYpetKgojCSdYJWl4cgbKxIC44zRKilD8Vdu2aFEs9JO+Teakr+wFDvOj556x6fmIRszWE7RuPZuJSlzfviii7wqZyh0DWFblBYFm3OWROEwZZ1xrZOaJ3COUVVJrTrBNkqVBWj26AkELQxDL1sgRaPy+KJoBJU68nOGtJFi2pSqlnIydQToTh69wDmKSCICzuWMzSY80quSFEDGOmKV/KHDGPi6EPFQ37b7HXmLxccNSO+Mr/Kaw8PcA9zzDbKHyaxGsd4fO5QgxbXKKg0JA5TtFydrfihg6+wp1cMVMVQVYxVyVBaxmrLR8cP2dxK+TLXWJicZmSYvtkyfd3iUhUywyNFua9ZvuCYTjfcHM+5li+ZmPLyRHLnaHZzXBF21r9XXuG/O/4uDqsRRiyjpOJqtsTl0h/5hqoK7IBYEVe6hLNmwIPthEWVU7UGEc+V4YqzoxHpicZr2Lxc809/8vP8nbc+xGI1ZfgwnCJsFihEzkQlM6tCdZ4LDrQZGdJFE7KzIqimBa1CJt6HIhizDWNjUwmYoQmMCGkifn6ZMSFsxvfaHY7aCftmxfcPXmPtTV8ZWLqEjc9QcdEf2iJKh2b92Jxtc3yUKRX17jem0yIwyoXF5M/lKFdVxtEbu+SPNS6F+XfXzPZWbMosyKFqF+55ZuHEBLGZGP2qeKxurI7Ut1gAIk8hUAQgnmoqDLWcO10ISbfW9g4V58EHZ+wbB6IQ/Y7AwL+jyMT7ULofhZcwHtMEicvlbY17acPHDx6EBFUIz0BDzjmv3yFkYtECCaBFsN7zvLH86Hf9Z/wh/yOsXp+GDXpao40lSxpaG6LGd5Z+vx/rdMU7Qa8iCRFvx+neuJQ3N3vcv7fLsAJ1peTrxwe8cbqHUg4lcHI6RN3L8YnHDhxq3HBlb8Ht8dmTLBhRrGzGSTXg8WrEclXQlgZKRXKmGb8Nw0cOXTogyLVWM8XmiqItwOYeJYCD/DgyPmIBizNCWxiKOwv0uqE6yNnsG6qZsL7xbVJDgwhBxNAeAhWtu6E6FmboKNLTyUEqHDO9YaY3PI/jufEpas/z5u1dfnH7HG9t9ziuBiybnMZqEm0pTMOiCiLcdfzbTr7lw+NHDFTFWAdwvsOOVMS0pnrL79z/Gt81u8vbL+/wS49vcOfRGHOW9gkQl3r81ZLnrp7y4dkjbmTznk73NETy1Y0UmZQ4hNerKyzbLBC64/F4a1MeNVOUeK6YBWMVSjjpAh+EdZuyqHIWZUZVJb14vZobVCUB9xpXLNscpTzlFY/NVT8BvIJkLT2dKVHBsYoKGhHSGrwErqzEMlppHaq2faIzOGOF1yEadkmokNP15RywAId2yNIWjHTJc8kx99tphGE8dYx+rVe8kBwD8NiOIlc4KNg9rieBk+0CDaMbj042EugXfKdL7eJxs4MdAI7PRuCgvNYio5ZiUOO8MB1uaWyQt7RW4U5Sdr8qLF+AeqpQRUi+KOVo2ycrvER4okrsMiOzuSqM7qckp+c0M5TCFyYUHDUtvm4CV75/mQrXX9XnlaHdY9bhvUPysAZlUyJ1g89S2r0hj75vyPp7N3zo+mNG5knucih/Dy6gqzxLCInQJEbASoQGz4sm5w+++Hn+cvUp2vsDhoOKskpYbfJwGtEh9HoqJ9xV1UZKWocDAzyoZ3z5+Ar52ynlvufG3pz9YsW8Lrh/OqV6MCBZKrKTTl5T0eaGw1nO8a0RN/bmXBsuGJogo7uyGds2YbXJsEcZ+bEmWUJ+7BkctugynByrqabcU2yueppdGxQEnSC1YDYBGjVb+nJtr6AeK9Jhirl/gtqMUc0IcQnVzrcpCdcdMNrogBOxwdFGLmenERG+WmqvSXx3g6XXPVj7hJyWPb3iO4u3uZWecNiO2disl5B0XtgOUhSeh+WYXLfspmv2knWfJNhT6x7D0uIZ6y0DO8Ci2M3WvJgd8onxPR7emrJoi/6oasRxkC7ZSdaMVRlxJMWcd5eNe49BYXsgTKcbbmRn3EhO+a5JoL2ULmFrE7Yu5X415bQdsMpyPlkEClYt50mC1sduF1bhbMAam1bj8qC+5AYOccIXjq5TblPaKw3NlfgZrCBllPhRxCgYEt91WpBQehpxdbEOaULEJZ5wjI0exmzCSaGDNHymwmsvOU/WLmOst70A+9IW/bzoxIdmes1UNWy8DokUFxIpx3bEYT2mbXTflQEP1kp/CnvnQnddAuVCImXbJLRHOXqj8MbjfMK2VbhRhRLPepPRHucU9zSzuwHTs7lHJSEyvqgL/M7vT2suDWpZQXjHB3z9ooyoSIh+w0WFeyO+p8JxUQbTdRGzA91AVSOzCXZ/wuZGweI5w+IjDfuTDal6MpHaBS4QWTl4SpK+SlNhAY+OuHPlG35g9FV+av9lXjssWK/zc0xeh3GyTj1xQn5/5nuFsqTn0IfEfiKWN9Z7nDyeMNpA9XLFd+7e56XikI1LeWO0z+fyG5yejLB5it6EsmBngmNs5hmnRcGN4ZydZMNUb9nahMZqRAKvOZ1DcehQFtZXwwmoGQTOdD0JEbWPVaFePJiOEBD+T1tEdbgY+NQ7GebQoM6WZIDTY7x6dzd7uQg4Vhp1bWW6CpNwjLC98+2qTt5pjhCx2ZiAScRyRS+ZqJKxKmMHCE3pUyoXxLxtpLsp8QxU2MGrKFZjkXNlMQK5OiiwhZYmQ1XxQnpImSdR2q7pj7ydE1C4UIHmCpbOPcUECjXy14drXske8bHsAYlY7jc7vYrTg+2EVR0EQI4mI17KHrOrVwG6iR07WqdIlCNPG1JjSYzlynBFnjZUjUErT5E0OC9MxhuSmYtUGUVZJ2yXGe1GodpY0VSDsgpdO3QdS5Ql1v83aRA6aixStyincBgkifSzxuFFRYbKeWL0/Vp3iuigFoDaa87sgIGqSMUy1lv21AYtgO+OwEEHY+NSTuuCpjS9+Il3oQKudQrjFE4F3Q/tA+m+dqGaqXWKxmq2jeHk0YRkpQJu2UYWjtLYLGWTekwpDOaQnzp0DatbCjtrKPKmP734i3xrHwTVvbs8N/rC4DxpkfUgEYIIybZOgKPr9uHBekTk/PcLrw0/e2Qyormxw+pWzuqWYn3LUextyUzEe7v8jcsY6zJ2Zwl6CLUPuiRrUixNZLFYEu8ZK8HiecnMeXVyyDcGV7GVRufhfb0LjQS890+1QVkvdIhOR2Ht9MPvLGfoU4NLYH9vyfPFEftmEVhEQ0vjFZ9tb7HamjC/AZ94fOLBOIq0YT9bcSUJJ0+LsFtsmG9ztsqjGiHZerZ7inocOLtdKXG6EHTMvXgTuL4uBZtGGCoNzCqdh8ILs4V2qHHDAnV8hlquyU7T9wxgLh0BpyrsTFn8Dpw74ljz35XZpu+oiOqe2ymDJeJALAMalDhKl/SKYGuXoeyAjUvZiwr5QI8zd5nP/n3ie4diEEuu6qAmJg1jVYZJp0oGEYeYR/pTIpZjO2RDwB6/VTeK9x6TcBRxCNfMnOeN5+s1/OLqFl89u8LD0zHNIkNKhTjh8dUxn5q+ySCL1BmXsG4zWq8ZJDWjtAriJEnFC4NjxntlLGRIWLQ56zbrBUUWTc6iCkfPtlA0Y42uNLqMJaVOEBeoSD4eXV0itMOgH6CjA5Ym4IZaq77suNMX6F5zGXNIf+8vbngn7YhSJ+zqFbk0DC6UndboHpponOHBeoI6TfCpxycOj8IJNI3BKEejQuVbIyELb9155Ns6xabMSB8koYKrDlRGU/r+C84jmTYX1jeEzXMtw50tWey6cu5443W5wDHw7lze81Lmz08nYZA7r+POaWYX2CdYgnpfjHK9Ut0HeSJqFq2RQUFzc5fFC8H5bq855EpFkdVRLCdsWF2yaqo3aBy16HiCdCS0ISkmilIcKSES3XjH0gX50FS1JIOaZnWehHReUC5GiJc0kcBgScRhxaO8J1cNuWp41Ew5Phth1op65vnk7Iip3lL6lLkteFBPebSZsDoJ9DSxsXJPwA8tojyzfMuVdMk1Mw/Qn3heGB7zYDlho4kMLB9kWCV0tdAEFbl04RneK0lONrhhRj1NqXYTNlcU9SQ4X5t5bBsS2d372EmGWiZQ1ejTDcl7JGwv54Al4DSZanu4IfRgO+/YoHFRbFz1DrnxButjEko3T1Cw8gtOukFzZoc9neSkHX5TJN0l/PJ3SAw5Ymm0qvriBoReUzTsqGHCj5UDKhoUTSeSrkIVX+0udyjweK7+3JZvfOgan7v2HC8lX+Bvnn6Cv/uTn2DnS8KNRy1mbRHb4hLF8XcM+YUXnuP23gkAJ3bIWRPgkUlasp+tGZuyTyYdNaMnqDRDUzGk4qwp4j3xZEmLDD1LLzR1gaoEXQs2dj1QjZAuwjgGpoTCmZTcOvR8G4j/jcXMt9hxSFx6HSLGkMy71JAER4Nj47MnqopWNqPypnfA1gvrSFfbuIylK1i7jMZr7r+9x87XhM11RTMVXBaSZZVPnlRC86HW/2I3jLrV1KUhtUGsvLnh8JnHK49eK/JDTbKGahr6drlZQ1I0TIo6li/HNxff58ouOmPfKpL15al5nUmUlkSp8NXagPs6e56AE0X3QcTFwDlqpZy/kYTXpwn2xh7LFwq2B4pm7HGFI09bxlnNTrZhYBqMOGpnWNmMR82UwQWCqiZAeLmEYKjbQGuv+Znlq/zMwxdpWk3dapwN5eGuuZAgNZ53Uprfj3WUt8YrlI89G1UImv7m4uO0xzmZA3ut4mPjBzgvLF3OTx+/wudfu830sykvfK0mv3eKnWRUuxnbfc3qdko98cyv5iRiGcaTV7g+j4vYbTgRhn6KykKbhe4w4kKVbvrGY9zxCXp/j+JQU4gwmQ65+3tmlAdBQ8OZQI9FwuZa76SY0xypamRTojfvXltwKW+j8KHYQHzvdLNYd52ppseVOhigq5brcM6uj9PGZThpqNEsXZAfLH3C2mW8Ve33/dqMWCYmlCQmYhmZQMxuvGZpC0q9Crt3jII75x9uqObYBec11iUzvQ76xaqk8uEoErLtBofqoYi2uVx2RbQm+cpdJl9+lT938Nv52zsf482/8wKv/tUT7v+PdtlcTUhWCcWRI106vIGRqUMHWZtTxbYruW5Ile2rx0aRj5xge6pO54grlzAxFZmyzNINtTOUbcIjY3m4TmjLBBVbLHkV5ApdEiJhvXWoymELTbmfk+QGs6xQmzp2yI0RaxJxSudR1eUiGxHPRJVo76JDPZ9m3eY5lIYqar52Yjxrl7GyOferKWqlqXbC0U5VgqpDa1uXecqLCz1paZwmUTZoBUeqGBJKb0OCEXwrkHncfkN5w1J6QRvLMGvIk9ABo25173xDTrJL/MX536mxNYpk+RQSph5c4qlHCjvO0Mexlvlidw3vgjOOkW2P8SoVouGOH6x1KNPPUvzulPIgp9N5ClG2kKdBvClV5xFw1WqOqiE/u3qR+TbHWoUxlt3Blu8/eJ2b2SlHzZjXNvt89uEt7C/MyI7h7OMtr3z4AYVpeONkl/VZiu/w+SRCd/byHtgTed0xsBvoIGmwdDmfu3cTvVY0Y8etq6dcT874pc0t/trf/RRXfw4+/PUl4jeosxX2wSPMC7cDZVIgP4NHnwobxkk75NiOeqGnRCxJ1womQmz5cYtX0FxLOPsotGPH9EuGdvAcNn2OZhigPbEwOHRMX7OoSlPPoNp1+MIizpCdQJsr7LRAN21IrLp3Xz+XjIAj/isudBJWMFVbUlX1R00IHDmNo/YaF7PdQBTaHvUwQVA8yihd0ksvPq7GrJqAl+5mG5ZtOGJfyZY9Buy8Yqiq0J6d4MAGBPyoc/BrlzG3A07aIZUzXEkXjFVJaVbUXpOKZe3D0aCMx6vTdhiO45exJEGGBdM3WuZ+yp1kys1/uEXKhuXLFmYN5UmKSxTlnmLxsYYXi8MQIcZrDxtVTHA6zdamuKgM1dFoOn6yEh9aq3DeBLXxmioxpLrldDKgahTSaJK1ICsXOrbmEQPuiOON7yvg2qHGrDOSsxK1bdCFweahMEMh6KeohCt90kceS6dY2oKNS/nY4D7PmROmqqH0iqVPWLqgABc21pzXl/skq9BVQ6xgWsIRR8BXYMuM7b7CTwWtPGVMjlinekK9SSz12CKVAh2iXzz4UmNbIRk2pGmLEIoJ2o5tLx7rQkKpWzauY6QoR9PowKHePI0ecMANzz6kqKYj9r5syL5yPzjZtg2Rb7dYo1BV/ADh5/OdANEqON/xkOZgSDtQ8RgcIBe9VszvTPnc12eoJkAtqob8RNDboOuws3U0Q0W5o3h4dcaPf8rwh5/7Be6WO/zU119h8KWcbAVn39myf+uMoakZJRW3Z2d8+fF5JaBvVfjYT0HNEwILwqgAaw5UzViXfHl7g+o0R6Uev1tzZbDkM6sX+PEf+x523vJsd2HxQ4ESN3lrjNM32O4rbB6KunTpaW5XfHTvMblqAvylgtj/W5td1lWKtGGOba5omhcMLoPNNQdXSobDiuqqYlUb2kV6DvpbYbnW2LEj31uyN15TJA2bJuG+3qU5SVGNwmwy8sailmXU5f7Wdmka2kVx48YZnArYSRdFAhfU7E1f9eXiMbOMfZ6AXiPhtBly3Ax5a7XL49Wop6Kt6owbozn76bpXWksk6Bp0TR47C5FwqDQ7swPmdsC8LUI2vdsAdCy0MAGfXrvsfKNAMW8L5JK+xiUKuzMmO67ZLcP1m7MSNx0EZ2ccdtSyvZJgC89HX7nHVTPvy5E7KKY7VQCRCXLucLvvXX17RttT/iDWukde1Gy05agxNLWiWQvJUjClx0ssAlCaZOOiMDuxvFTFLG6OWXd6tN2Xf7KI431aUDnr9H01pTdcT+d8JLvPwYUWAS5KcXZC9FubcO90it4Gp6GrgN+qxveiMslSQBJKgTRpY1HGeZQh4lHKI0WLxwQmhQlVdQjQ9Y9zgWvlIXQ00ZZ3BitdEu4cB1aoWgKL5GnMByZEOxLqiSHzIbnmI+brLzIirI2SlN1niYk4kaCXnWe46YB6ktAUqm8pn84hPwJThk20LUJnE5eERBIuZD5V7ckri64Cl/H4bIR9TkILn8QGPDWD7JFhcbTHXO3RHLSM9teQuiCSD2F8vcQk3OWHRIvvnW+mGnJpeH29jzQqNB1VnrvLGV98eJ125Dj9oZLhoEIBdWO4/4kUX2qk8ahShfZMmef5G8fcLM56qDSctA1tV9GYeNoiRLZBbtPhBy2Jsf1JygOkLpTBm6BHMrxVsTfcMIy0vm2bYJ0iGTRUs4RkFaoQicUy71XKf2kHbFF9pVPQez3v3ttFaecJM9M72SbSyzYu7Wlf3bF60ebc28y4v5iwOhvgawXGsxlVXBsuMBcoNIlYxmrLRJVBwPsCb7fjmD5qphzWY9Y2Zdlkkbkx6D+X84qpXlP6NDblC22CHpaTJ8VS3oc5I9hJil7UmGWFTw3NbkE1S1CV4GqNyiz2mme2u+IH9l4jV03P4gh9qhyGgK/3lV1eY7UCH0puz+l9ttfZ0JzPdqvDWO4WG6rGMG8UzSrFnoKp4jE89goTH9gRqvaxw0LQk2hGJjb2jI7XxhLxpypFjnOBc774jfSIA7UhEWh82Di65FvHjDlrBmxPC4YuON781GO2XfueqM7mCBFyZtgOk6B8poVEOawXlIAxFpsJTS8jGKhlKuq6KhWdtPgYhflz+AHfq6l5gkN3TgX+b6vI1hL0e5/Cuo3NS9j40Poc2+0Edt5pSgXdiPhz+K7xRUY7TmMBDb2gla4CfqlrTzVVNCOJvQChmfigo70UVBMKdpQNouxtGQplrqdzRsOS5XhAMyL2DhTqGTSxMWocqLChRfIG7ukgiDQ63zw6X4vw1nIn0L8GjtG4ZJxVNFahP1LyqSt3KFTNWTPguBpyVhU8XozYLrNQ/Wkcs901H509Yqq3/XpxXtE4Q6ptEBDKHO0w5DraUdA6TvOWLGtItA2i/9qhhyVGO1LTMk4rrhRLEnFUznBSDVg1KZs6FFXZwgchrDRCeK2F99isL12KXLvQs0wpT6ariLvqJ0p4u0KNoGgUHt/YtKdlJRHrbJ3um+I9WI5ZHg/RZ6HwwCuodXBIbaTPNLFr8BWzZKxKzlzRD2zd482Gt7e7PNhO2LZJL2zTqWQ5H4SeVeZi9KXZNStWbc7rZ3uhvdBlxkSBzTRJ1UDdYAcTTj6csb0i2EGLMo7BsGJalHzX3j0+VtwLEWGEHoDIBnF919auy8i5w7WReXLOs4auW3KMgr1QmYT9fNUzAdYrQz3RmG1gAHgHzsQadi8h41tZvEgsW1Y0RqNq3x9npdMtuOQ8cdGhWq9IxXJglryQHJFKIPp3UpUXx2FjMx6VY8yJQdcwfOgYPqxwRrG5EoWeOtnoBsxKqJcZVWIp0nNMVquwWAJt7PwkEbQdYgudi8k2eEJnQvqI14FTvYiSiMfXiuyMoDV9WYt4tGqkz9hj9AUt7Mgg6lgOF6Jfon52J8wjRmPzlGZogvPVcWOK/ckAyh1NNROaUfhfnWiTNz5GwxL53uFn6nA/ns+PuDFZ8MUrI/JRTXl3SDsU9EeWfHj3lMoa3jwtOO93Hz/jUzhggUg7s32z36UtOJqPIHPs7C/5+MEDXh4cMdCh8e6DesYiQpOtV5xsCuoqQZQnnZZc31nwHbOHQTv7AlurC8AKHXB/Ehc2QS99B5lBXjMtSkZpxSzdkqmWcVJGyK/tq/YeVWPO6oJFlbMsM8oyoa01oqLoVx5Lzi+q3H0Lu3xTzidET1RfTttZx+Nsosp812CvcoZ1m3FYjnphbAhHvHWTcvJ4Qn4nRXXNJSee0XRL2SYsVEYWK+sgZNiTC1xjFbPgaaSdvbbY58HpBO+hyEPW88QMuDJcMUsNk6TkbfYY67I/8twpdzl6cxdVXv5oKa0P7ZTqBvv8Lqff0/Kv/cCPhUg34tsn7TCIReNofNZvUko8hW5ovOo1UQeq7jPUGt8XmyRyPpmgqzx0/fG79Am38jOyeGJ4bZtSzwvMWkJL8mUQ7K5mXVMxH+lmFl2CyzTNyJy3NRLes5/Vu45HLMToPiPANXPGWBrWMSEXumSYwJSIs/+0HXB/MSE/Ena+0jB4a055a8Li+YTN1QhJbEMjUoiObBM+c5OfJ087pTQdk2bWqm/ip3YtjS7KWnaFBBef6zlPxjknqJVh8MhBcnklV4FziEtFGlxioKx6WplEeKFPtvUf5BwbFmPwowHtNKMdqJ5Op1r6djk+Yv2Dxx55EE45uvak85ZqZthcUSHqLYRqqmgHIJXilxY3+Hhxl3/u2mf4zuk9ALIPBXH0H5x8iYkq+Zn1q/ynr1/poZ0wSPLU5OjOR3TJ+rv1LvUiI51UfGjvkO+ZvM2uXpGK5bCdhM4WEa5S4jkYrcmmc0ZJxTQp2U3X5KqhcobxO9TQtQSNEetCPiT4ZA/aI9ozzGpy0zAwNdfzOTezU+btoKd+Nl6zthmLuuBoM2RVZtSVoW00fmtCB2pPOFVGwaT32qwvPYu61s65ashU00tQdruL7biGbU4T5d5Ka6idobaaZZ2xqVJUrDJabzPcW0P2vh74eC6BzVXBPbfln3r+iwx0jSL8PyWuZ0w4L6HVO9FJxeP4NXPGskrxrw3JToTlbYefNOjMUjaG1SBjv1hBLIfv4IfPHN1i97OK0/fYrb6lKdheSUhPxqj5OmQ8tecT+R3+4fYlTtsh1ocmmztmTS4NJ74ru+2gGkXtDE4cxoVIYN4O2DVrRroMWqcXJncnv3eR4gVwYJbRYXsqp1ntptxfJph1EjuDQDZ3ZPMgUNQONF4J6aJBL0v0RqGqhGo3w2bnfOB2fDnhmQzHTXPKZ8oXeNxMuJIs+MHB46jLqlj7tF9sEFSsnBd+5vGLVP9gj+d/7BhXJCw/ssPypo59t+gV87wKpcBeB65y22jKxkRh9nOtYC0em0poKxSHr42t7btWRZ24j4oCPwouOBLVF54p5WlqQ3qiGN1Z48bv0WfmXcwTuNmqDgkxsR4SgyRJcLjugr7DhWKLHvtVURs4TXCTgnpqqIdBeastAoykq8BzTtYWXTn0psaOUhbP5WwOFHJD0+aw93vu89abB6Hdk4560anlrfku35hd5VOD17mdHPO3F5/g7e0uHxk9QIvjQK/51OB1/vLBp1gfDZ6MgJ/SKmcCPCShuOvr6ytghRu7c54fnAStFxWYQwdmQSItA12xl+bM24J5U0SNX0XlNGdNwe285Hp2xq5ZcWaHzG1B5RKmess4KTHKIdrTKzFWChnAssz6ispUWSpnSMSyaIsoXZlwWg0oW8Nym1FuU1yloVEhORt9rQ+U8cDtLt+9JcalO2J0zvdiWN853Q7T3dpQXFBaw3E5ZNskvcxbVRnayuBLjV4Y0jMhX0PsSIItoLzV8Lteeo3r6ZzG6/P+TpEN4KLObBdlhdbtEkuUEz519Q7/w2u7DL/kKQ6Fs4+mNHstaxdLfb2Q6xaFZz9Z8sXNTR6+ucerX9rw2iUbUHqBpggtYnxiqCeGnYM5llDemUmgOA1UzUxvaKIQTeWS+N2wbHIWTU6qWiqn2epQwvwNd8BQ1+yma6Zmy0iXPdf6iSKYmPwsfcJAhQh6ZGrGaYUetTQjg2oEXQkqcliz0wavQ6fqZpzgEhWSBTHT7gzYRHBGXZqG5oEbZsvX1JbHTKhcQi6Ow3i/ShcqD7tydueFB82M+3f2uP66ww5Tzj48igIoPLHAfTyl+yQklbwG3HnUelERTStHkbRBLKbVMRIOkWyjNT6W/OooM/hOsSnX+0DBGEs5Lxg99pjTDXacX2pMiJcR1OfiNWjBDVL0Yo0YExg1gG8tNHWgo8W/xQ8SvmuNy0zAGrMoxpR3eteKdi5kc4WuHOwm1GPF8gVhe7Ml3SnR2lG2hhdefNyXbFetJjMW64TPLm4z1Ru+t3iDPzD9DG+3u1zRS67qFXva0/gV16cLvvF4SN+ZG/pGrpcxT7hnoUov4YwB99ZTEM9evmY/WZKrpk+iDVXFgSyhhZXN+/u1jswhF6HNTZJykC/7wi8IAUuowO121RC9m7WgzhTNJmexr/G7a8ZZRe00J/UQJY5VkzGvC862Oetthm01ttYh+VcHrr004Ts+7uEdh7x+92PkpSPgjv/b9V2CQLBf24zKGrY2iQrzpheX6fQ1m0Zj1wnmxISLbsMC2l7xeBMGoh168p2S69mcsj+uKuiwTx8iptrvULoELZ7chSKKDj96ZfCYn35uyfLRlOkbjslrwlwM7VQogaWxLPKcRFk0np8/fo7B2wbz+PBJ3O19mjcBB2acs93VfPzgwflYRQxqrLe9MtxFc1E4poveMmVJxLH2itNywCkDlm3GlWzFQapinXzTF450VYfAeXWguJDYMDVp1lBnGS6JJcoZ6DrqENRRbjIRmrFBb6VnPogFknBMVpes+rIId9qwo15PzriWzNlcSIAGzndK400fzX95eQ19ZsB7Vs8PqHak1zjux7nHMMFd6NrsmnOIQb1DrMcoh9GWNjpf4iJtGg0JUdpSkHc433P2Q0dB8+ilJlv4UDhhLj9Pwgf2oCQmRMFlJqQp8yxEOM6HXohGnyfoLkbGSgUIIlEhypLIbshC5r8ZQ7UbuMA+tncSD83IQdS4yNOGIml4YXxC4zQn1YB5laPFs20STssBD5oZyyzntlkwVg/JxZIJZKIZq4YXRid8g+vxmkIxhuhLnh4J+YLGa7JYhTdvBzyaj0FgJ92SS9ufkJSESlUtIfmv8DivqKxhUedUNkhRmggtjXTF1Gwu5FouFI7FppuBtidBkOcINmXCyhTMipKNTtkQOt2U1rCuU1abnHqRBf2VGNSEnoogFyAgcb7n/36Tkt0Fe6qWRJ11uE3lTIx6UzZtyrYNgherKqVuDW2raCqDWyWYhSY9Cx/YpqHVdTuxkDi8JCFB4ITDekzjgyizk3NR88YbDttxn+TrHFzHLd64jKne8pGDR3zmhQHZmaE49gweBoX8VnvKLGHdpEySIEz91v09rtxxoY/cUxynvCK07RGh2hG+Z/I2OuLRTlTsmVeRxMkUruU8mWbEMTIV46RkpCuMcv1GVnbdlnUT9IaVMLcDLCWphAhSexdxcNXjqRoXsr3GUmY+tpIhtCrX4LRCWdt3UrZpAMRU62OyyAMRW7ykHKVDOLYjIMAit80JTRR86crqOi0OG6sWv358gNkIbQHNKMj/dV1jgjg/UWk8JBK77LvYUADg3HmSVV/QcRDxpCbo+TaNDlidlcB8UOfQA6hz6pGXcy7whQmRrIVkHfUZLnlSCi8KEETAIsL9aAeGRKm+zxsKfJGFQoz1Fr8toW4QGwXXdah88xeq5CKPDpd4bOECbSpxmKxFa49tQwuszDiGec2s2HJreMb1bN6fXLdtQm01rVUs6oyH1YTHxZjbZsFUWdJ4MtIIA4Fb+Wm4JokVcE8JRXhP3xjTISzanO1ZDh4SFelj1vQJ/UTCyWPjQleLRZtxVhfMq7zX9gWYlyHAenXw+Imq2cpFfnpSo4yLJ5Fw0ko2MLgPLs14YKbY3cCs0cqF03tjAgPEClIFOqJqIvbuBNw5xt+xh7z3YL5dYjwQmQu6V57f2DQUVXihtoYq7hTbOglqXk6oywQWCfmhxqzDxKtmkXeXRADcOOww9Ldqjgo+U9zi2njJ9WJBEZ3PQAfqz2kzYOvSvgKqo7Ekyvawwq3BGW/dnHO62EOXwviOxRnNJte0w+DYgjxdTnInY3SvClHHU9RTdoI1LjU0Y/hYFpIXuWr6/lSdME1oRXSe8U3EMk5KMtWGdtrShohAt6TKhvJda0K9vApVcfPY57qDZlJpUf5ck7ljpSiC8wlZ7yDa7k1wHt4I1OfRbkgcgJMgQSlRcMYpQsuoS1gnSZrG656pmrU3UepQ9bBJx3s+aYecPR4zKKEZxqx9zOp3C8Ql/vyo+y0CCmtDCxmrBOVUoBkRIbPY762qEvzGBAK+cViroh6wXMhxnTvfjivcJfLMGpJVhGmepu4WwiLtxM4SoZ4a8iwJzlcEN8hp9wqcVqTHCuUjF7UNVYkowedpULWLUZeuwTYSMUJQmSUrGqbDLXvFhoN8hRHXr5Uds2E/WQJw1IxZ6tC3cVVmbLcpdat5NJjwaDijTB8yEEvtg0aClaCQtmvW35x0e6oc3DmH3XrFYT1Cnxlc7qmsYW4LGnfe2cKiaJ3uKaan1YBFGZxvVSbYRuEbxbJVHI+WfGzU9rmq7hRmlGOWbknTljL12MJT7Qae+f7nPboSVuWAR68G4SujHVVjaNoYESQuaLv4GEE3oUNyJ00JQUtCWhew++Tdm5ZeviNGpA4pAh2jcoZMtUEhHqFqDds6YVsm4AX7oKA4VCQrArthBNtrFp92n9SHDgSJI7u2Zm0GJEeG+s4ebyZ7vG6g3rEUN1c8v3vKJC17XLl1KlCOon6wEs9utmYwrriezvno3kN++tqQ+l7B+E7L5C3BpopyN7RuuZWf8tmz24zfhPTxGj+4PK5HPAZ6IzGx5ZnpTY9XhQRcSxIThrk0WBGSGL0q8ewlAePtW2hbjRFLZtq++0Ohm/7xeVtEDrb01YGdOl1lk9jaJTQaBCB1uFSHI28i2MTHljWhAEOcx2wC17a7nj6aEYLu8CXM4Jmp0E5mKOHzNXEcuhLwLqlovfD5+U2SIxNafMd8X9eqqku2dRlrL2Fyd0mOvsKtq1br3jeS7Y04nAi5admmLbWH5ExRFxrSTm0shNMd97f76vBivFBXCdOFD3X9icGlTwFBdIkZ4nUVUO4qRtMB+mgRmA2znLYwtIUiu9fg15vAfEiSEEl5j1cK1Tp05TBp0G82RkK/w1pwRtMmltaes2x2kzVjXTLSJWO17fW6w2Y/YdMkLM8GISKtNY8GI47aUbhfXU+6C2YJc6Xfhy5sYk9jFsVpO+DNxR7ZsaKZeI6rIeMkJLCcD92Lj6thKKm2hk2TUHf+ZpPi5ynJWVC/8wK3fstZDHoC7DCNLY5+cX2bVZNhjMWnQegJ7XHPV2zvB1+Rnwlnq4LTDxtU0YaTV6OhVqhSBbjuQuQbHG4MFkycn53zNe8ub3ApB2ydsKiL0G5eqZhwS2Ohw3llllYOrT3+y0OmbwJ46olQ7UA9c8H5Ko+kDp1a8qJmlFdcHy7YubFlbVNeO93n5Ou77HxJGHzWU00mvPHClOYjG4qiZnU0RCqFTxwkoVpmNNvw4duP2NVrEmkpBwlvXtnj8U6BSxVm4zBlWJjXhgtupSf8+W98Py/caZD1FjcdftNE+0eZj3SiNlc0A0U7seypijcjTzGRtsdsIRQmWIS5HXLSDlnbjN1kHek3O6zbjK0NesLrJoxtplsy3fbY+0DrEF13GFhfNefYuLRP7pU2obUKUR6XhhYqbS6ooaAbE4TWPag29JBTje+DGhV/9yK0l9QDdsChnQRYKNbfW6TXfujGxXnFmRtxfzVF1TGJdiHybYvoYPukVTxtROrmE/fBS6ygdCSmDVxfIrPBhzlZpA31bklbDqBWtLVGKY9JL7a6v3AdLmgzIx67MUGWMFU0+wPs0zhgwvU4c66I1gyF7fUho6MF3ijswOAVFI9KeHQISYoUGb7I8EWK1C04h17VZIBqDLoOSmCI0FSapg4FKPO+uk/Y5gn76SpSGl1kFYQcyONyxMO3d5FGcfDiCSdnIx6+ucd/cef7+YevPs/vv/Y59vSKj6SPGCiw3oeWZE6Cxgb0kNDTWKFrKmc4qkacbgrMJuQpHq7HTNJtT6t8sJ2Ek0kM9MIpJTBb/GlKcV9TPA486LMPwa3slOfTI9YuZekKVjbnzXqfL5xc5/F8RPvWiOkdIT921GOFzQqyU9er/w0fOlSbsHxJ4VOPtIIqBV0K6aLTWqHnd3fJN5eE8XBGoRODz75NEbC1inmdMzB1yJBH2kcSMyVGhajNemE+HzANbZtoRkI9hWYSRSsySzZoGOQVw7ShMKHyZBCj2LGpeHnnCPmQ5yjdpXrTkJ14hvc8VTlg9UpC1ykXFyqITNHyyu4R17J5n6C6np7x8d0H/M3dKzH6VpR7nusHc14eHXG33mXyiynZ0TzStJ4iARdf0hahi3Myq9hVijucc3MBhoRk09IGxa+lzTmph3z59Cr3H+4gpwmqluAoJy27VxZcHa24Pluwm67ZSTZPdCLpqG2dBTio6I9qrVcB14vHpt5hdfxTCaWoqg1Rnd42eK2wwwSb6b5TNUSS/iVs6xPuNTt8JLvPOG48eWQ7dHxmjWcZlc/OVkVP34msxtAaSMKROmDWBF1gTdcko88yixWclZDo1ZZUhyrNvpcbcg5FDEqW1wRXGkQHnnA3Rh3+6y5EcxKroexKk2zjhjTQuEuOSW+dwI87LyrZ7mmGowFSt5h1S3mQorYtMh7jdkZgPTiHywxkBr0Mmh04gk6wIyTcJIyFWEXjghNepC2ZDiqEHeQWxr7p+6893ozJ7yeIg9PVPoPHQn4SHNm9L73An/mu6/zI9/wULyRHVL7hzCnuV7MQAEU8G91hwJcfFyWerU04qQaU25RRA3rjma8LFsOCnWwT4DRlUbphHatbuwrFepuQnmiKI4+pPNVM4V9d8Va5y39z5zvZVClF2nAwXLGqM+68tU/6yDB+KAwfWYrDGrVtqXcy6qnpo1dnQrHS4J6mnnkiF6APFsLcO/9CxSnZQ2eCNxqvv00RMFYx3+YMk7ovRS6t6XcoCPhfohyu1kEEpgiYXjMJsn/Dackor5hmJdNsyzQpA9juNJlqcch5q2ir8OL7Kp5k49EPwUsSJPfSUEKoC8vebMW1YsmuXjPTaxICWduIRazQDDXLW4r2RsVL0yOuJgv++sOPs/O1BrWqAiGep+OSiw8ydu0QpuMtI5WF5ps4iKW4XdmwRcVmlELlNIfzESxD1NPOWtSwZTwq2R9suF4smCUbsrhSS5f03UcaNDrSqDostcPkK2ee0DUOBVT+HMuVGOF2Gg86cExV1YISnBYQdYEudbnxcAgzvWGsShJC+/lcLA2KOuo+WAKeV7mEapExjJO2W799xKu7n4PzDU7YI7UKzsbFPTjye70PWtGdWDvQ9x1DQ5EIblCximpoSp1DIT4mcNqYu+gKz0Q82bHCbNsAycRS00ubvzC/LkA9bQHVtRHp4Rq1aVBVgh0miJ/QjtLQybpuEedxicanpj+pBSjCkmwkBBBdUYQPLIjtIGOZNuQmI9ctqQr0y4GqsKI4bYacbXOyU8iPHeIgW7ShM0qiqMcJt66fcCM9pfSGM9cwdxkPy3HQEukcsL/wdclB6dvDNyltadCNR5dQrVNKa/rK0NyEzbx2wd+0ToXNc56QnQT93mYgbK57buwuyFTLtk5YnxZsTGzA2SryewnFY09x7EjPWvQq9NLzsSmwakOTTV2D00J2FmRd2yLmIi7M0YusB48ELf3OAScKtEIuqt29wy6nhtbAYlUwiGWfRhzbNmGUVD2m17cPtwGTOtfcFGwVWj2Ps4pxWrKTbjhIVz2O2WlFXOxsoMpAbu6yjap1jO4Km2uKaseD8YxHW16eHnMrOw1EbSyHdsIXNzf5zNFt9FbY7AvrFyy3rp/wXBEyuG985Tofees0UH2y9Lze/rIWqVFt4ZnkZcR3G1KxNFHusmtRX8bkpYoSmt6DLyz5tOLW7hkH+YqhCQnFsSn7KDc4Lfpx6ihTVhSJansH33hN68P/SlRsqW4j+VQ6yKSbNBG7jl2PTWODGlqmaW0oyYXLZ/w90le+6XBAia2JYsVTFN13XljaHLUInZjpoIUOV4+/exUi4V7VTAi4WxtwN3yIgDvaWI/jRvZMBy/gwCpHYiwmCeXInYPtul04p7BtSMAJoIylbXXg/24dXnW6Ck8bAcdv6vz6XCJsDxJUXWCWFcmmxeYaJMMlsWLUhCaqYh2uSJ4QhBfn0ZUj0dD1UBcftAjKoWGZFKTGBlZMDJa6wqbjZkhdG3IgP7NBrjRqfzRDzeo2/EvPfZprUUBq6RIWLudoOwpJqCjC87TwgxJ6uGzTJFCpuNY9fqMpo5yA80EMvnaGXEfB/AbKbUp2okPE3ng2Y0V9JchwjnTFjcmCO1bRNmFTbSrDcAXp8rxYBaVoxinlTNMWEru1h0pCrQXfQuZ8CORGoXmw06Ebj3R6GF1s03F/O4ElCOXI72KXcsC6AnecMS9yEm3JdBsa3DUZA3NO9eioO20B2ZknXQIPA1d2c33KN57LGe9suDou2A4SXhwccz05w6J6cnVbKBqneS0bB0WsKtzkNhPaXHoK22Bvw6t7offbK9kjUrG82Rzw4ycf4effeg79eoGuheVLjqsvH/Fde3cZqJqvbq5y5R8IslgHfE0kHPWewjoc2BvfT3CNJ5eGUhJqrzlsJ7H1UR6dY+hxd3v/jM004eYowCJTvcUhgV2izrWAlfheAa1yBoeOUgXBcWSqIZOWTLU9Y2KUVIHv6M4xR2eAIiz64OQCD9glgqoselGitm2QpMxAkm/GW9+PzdSW/B1K7q4vloml6t5w0gxJ5yFye6Kw7x2OqrcL9DNVx6oyG3FAf16I4bxQWUOm2769EID2rqebheIydwG+FNpGY9uQJxAdnlMtUkYPLKp2tIXu9ROeyrrNhSevqx4J6kpKrgWzbnDjIGEqzkchoqia11hsbkKG3Z07PlU7lBZMTEqKj0JRc00jGScXuko3LmiqWBTH1RCtHZvrHrM1mI2P+GVoIDr5riO+I7vL0hW9sNbSFZxuiu6mnrNSOordJazTKV41oUJWaoWKeix6rVnXgSbXneiMOIx2bNqUZZnhT1LyQyiOW8odTbkHxc6WcVKRKMsPXf0y870Bj6oJd9Yz3jjcoxmBPQ1z3haadqBpRpp6ct5d3Itgot+xKahNRzETyiuxCCjivzhQLnDrvZcL7J0uVH73QbmUAzZby/BtzWowIDUtwzTor55WA5SsAch1EEFRRYu4BNXC4LFl8OYCefs+rqpQz9/i+Puu8PDqDvey23y68NT7lmRWMixqxnnFbr7hueEpV797yad3XmB+EsjPftTy0vOP+Z07d9lJNlxJFuRSM7dDfuzkO3l9ucfRasjq8RBzZmjGHp9YJjeW/Jb9u7xUHPKgnvG3P/dxPvaT90KGslObepo0rkA7CJsTHsr2fGWq2L1jaYtYPq2iuE5NKi27es3OlQ2n7SCIfugSJa6n+CkfW8VEKcpO1an5FphAE3H4XDVUypD6loERiqQFF3uiQc8HrsaC2YYmnkH7QaGaFLWpUbVFlxadhUo4e8mWRIJnpmr0O/a0LgHXifQ0XvP6ci8wZOJRVlz8jB3XN5qPUS86RF0uDd0qxIcsNC48qauA63Qe5IK4EYQF3EW8Sp13ru55wut4/1KLJDFavJOSHa9D8YORHhq5tEXaUkdF65C7bp+yqdCMDGI9ZtPQjJLzCFgL26tp0PRYXOyYHN7Pp4HNorcubE5WRX56oI/UPucwdoGuCkMddVpap9kbbXj8suJ4p8DMNXbgkFnFlf0Fv+Paa8C5/KtFOLMD1pvsCcgofJbLrx8BtjZhXuVUZRJ7sgUnpmvY1gnLNmC+u+kG64Vlk3NaFiyPhwzva0YPLC4V1jcV1Y2GV3bmXMmWTPWWTDVMsy1XkwW38lOuDxZ8Wj/PyWxEdmJIVmA2cZMrAgvHmW5LFpKNw2zptTa8hu1VKG826KUmPQ0Ru/jgtFUbcCvx8fSm9Xui4pfDgJuW3S+3tIOUs3SI3l3hvXBWJxjlmKZbctME/M3ErLKBxXOG5e0dsrMZOz//GP/gMfnpHptrhmrf4Xdrhl/Kyc6GiB2yEVgreDMNkUYadU69hqZMeCvf4417+0H8YqtCNUoDPgFdCtWeZXBjxbWXl5ysB1SN4VPX7vBScchRM+Zvv/0Rbv1NFSqMxkVwvN0x4bJOWDzlFUd2pFCNcLIpsN4xkJazWG5b+tBgdKDqvjdVx4oY6y13671A7bsQMV5s+9SxH+C8/DI08jwvgtm0CQf5ir1k3WPGcE7L6hycj+Ip1Y4gToeTBWGyVFON3haoqo24o0dy8Jdk56XSogiSk7VXUdnNxUjmPOyzCG8c7jEo48QXvnlRE3+PCTlppXfUXnvaATHiOy/EEALXM1G2F7Bvo8MxUSXNWkGp80IL54S2jg3FkqAbbFtNWyqufdUhrcMWUahI5Mmo/JdhquWJaL8dKJphRrJxDO6Ejhm2SLCDIJJv1pbkeIPXOmwI+txBd5ww1QaoJomc+4D9a1qbcdwq7CzIyXbjU5iG2WjLqRfUnicRz85ow83RnGWb8+/d/ScobcL3773OK9kjTuwQu07QreCTgI92VYaXNQ8s6pxNlWIbhY4NEcR7pFXUlWHTpgxMTeM0yzZjUeccnkzI304Zv+1wGrZXNOW+J5+V7OWBcjeIladH7YC5LThrgp7DdLjl+Lpim+X4RwazCUGiKX1U/wuQjqosqm5xmcFrRTMxlDuGdmrRoxZXxuRtl4jrbqSLzCLrwShc/m0sxCgebRk8GFFPM9aDGqMdrVWs6pTCNAzMhkni0bHKxKZCM449k4By5xpXP10w/MohqtnjwTjhh37gi/ydwYc4K02ITA5Txm8o0kVItCUPQrY+CLEI9VfzAEMUhNLLA0t2ZQNfHGPWYD9c8ur+EaOkYl2nTIuS6/mc0iX8rbsfpfnZXcZfPsRNR2AUtDE+eo/WIe9mYjzm9pq6GWE2wmpecM9umCl4ZP2FyjTfF2R0zreTYkzEYpVcUHsLehujqOS0sRkrm3HcDDmuhmzalNOy4Gw1oFylyMogVpi+dMrvuPkaU7Pte2dZLwE71SEKFBdkHF0C5Z6QLom0n9A5eXMtJV2GIy7qHDO+jGk8DfJEInDjTF9a3tnK5jSPi77qDs7ZDWFRB7pi75BjPkHsefmnV6GgB+P7MuSLzheI5akW54RFlTNf5XinsNb38grOCb4JlLPu/7lGYQ5Thg/KoL2QqnPH+zRoVYcTdg43QvMqQgld5KWiUH69V5A9XJEcnmGqijzPg5NtGvzOBEcgTXfdqzv8vFeys6BLSNbhb14r2lSzSnKMdgySBq1cLyzTlIbsjZzBPU/djvna+BqfveFpZ5bkVDP/7pzfcz1sqFKrELnbQEmRyAu+7LhYr1jVGWWd4COdLlTJBniprgyrOiNVLcs2lCRvmhR3mpIfh/dohjEKtVCuUj579xY/t30xPBg1n71VQWfcCclJaFw7PIHiyFEcNiSLGtk2YZMvG6TpKColWgQ/G9OMZthcwITcjWpANwErDjRAYnDgUS3o0iKbCrc7/FaXDjyFA5a6JT/zZCeK8iBlMKpwLrRGr1JDbS4ozhtwGTQjj91tUYll5XJ0PeHg5z35ow2jt6Z8Y7mPMZZPvnSPoa750sFVHhZ76I3CTizm1JAfK0ws5igPQm27nVr2r8/5xOyYRZ3z8GTM6rbn6s6Sq8UCLaGV+9XBkrEu+cnjV5h/YY9bP18hZY3bn4D3/bwR3h0sfzcrkoYX9k/42oMh2ZmgH2T86OKT/PHZFyIEIb2TzaXu+a+WoJkbtDXaXluj64D89nYXhzCvc+Z1waLMWZcp5SbFrwzZkSadC1kdIJD18y0Hw1DQcS6UFPBjTDy7Rwemm6DGFSKu4Ix1Fb68BLpeB1koe06XuoxZL/2xHyLscOH3jrGh6nfghr0Djr92Sbh3LG6v/RM0NJ8EsXUV1c2McpgoWwhQ2oRFlXO0HGIbjdK+5/gCodFkpS7IKwKVZvS2oFc1zSzHm44hcvnx6K7tPGt+fp3vlshpC02SG7S1uPkS5kvUaBgKMpoWSTSYWJHVHXmjzkSHnffVWl2U1gb+86ZKA69/OcAeZ2SHmkEF+bHHbD3NUKhm4J/bcnN3waPJhGlW9kqHEqlYwWHKefL0koNjvaJsTdDmiBVl3bwUB77ULKuUQRIS9Uo8ldV967ByN+QP8lPH6G3B3c8ClNZAuS+UV0IgqCx90YQ3sZO5hs2BopyljB5ozDrFbG0oPNFBeU62JajQ462aaZphCLq8k4D7tpEcYCNVkm7NBK1tWa55L7Tq8loQPmQP07miXKS4Qd1zKddNSmbavh7bJQEXsUNHOqwxxrKZGc4+ojHbCZM3S6Zv1rz2D5/DFo7h9bf5jtF9rmYLvjBYY8TysclD3t7u8Jn7tzk7KxDj+MhzD7k5mPNiccT3DN7kYTvl3/3S/5h87dHPrbk6WFLo0CR0mpbcLk45akZ88Su3uf45T/GNQ3ya4IxCvA9O2MHTCEqPTckr4yO+WtxAWsXgkfCXX/te/sh3fz5Wp0W6kLg+8q29PtfyfUfIsHEpj+oJry32mW9zFssCt0pCq5VSSCshXcDgkSPZOOqhop4Ju7fP+M6de0z1tq/v73rNSWwZ0y1GXHTAJjjvtghOLJ17TCk0StCN749R5t3V9N7V3AWHq2PVXvi76tsQNV7j8lDZdZH9cJEB8U2VeUTnawjNg1tBasGn0tPQGqupWhPa6iDU0fmebQq2yyyc1HVoO0PHftgYVK1wJlbHtQq9Usy+XiNtqBLsdHe/JUzyfs1zLq3Z0p/snng/HzYcmwl2lKKLHNGqF26XNAmt7FvXV5SK9YFOSMzAS3AITvOkY7fgraKuA+btHuWM7igGj4PXryaK9U2hvNoyvrHkd9x4kw8PHlHeSHoe+sPtuOfCStS/DZWKl2dDOC9BsqBRqFqhbEiCNcOIOpUqqI8NNjilgFg6Hp9jixDlZ2ehe0pxWJM+WtPsD3i0l+P2GhAfJUjBN4prt054/NUDXOZQ4walPNuvDUgWhvEdS3Gk0NvYdaZu8KOC9a2CzZXQcVq0C5WX3X2MmyqGfpPVlUO2sZKxfvfuKU8lxqMaT7LyJCeKZteQpC1No9k2hioxIQGiPPXQhx1tYBnkAa4oixaXWR7/1pRqNmD/C1te/KtbTj5S8Pf2X0G97Hm+OOY7p/d4JX/EWJX81uFrfM/kbVY2Z98s+ceK15mqhqESfqHa5c+9+QPkf2PC5oZwMF0xME2PoR7kK66nc/78N76PKz+tmf3SCXiPH2QxGy19NPI0SbhC1bxUHJJOK2yWkD30LL60w3/98nfyqcHr7OkV1of+eBrfd4hIpKXB9A0p5+2Ak2bIw+2Yx5sxyzJjtcqRBznFPFTdEI+ZNoX1NUU99dRXW67dPuH7rrwF0FfC2RhddxuA1x5aQdkQIdXT8Pm9Co7YFR5bCOkczDokEroqOVNeflx6hxsj4b6ABOlbSSViMXtbmvHonPcblc5cCi4Nfbu6UuQeHogbClZ6gR6s0GxSVoSE2rpKGWbhiL5tDKtNTlPF6S5BoCbJWpxVuK0hOTbYPEAeYhx+bRg8UAw+fwe3v9PTvnot4l+GGFr/cyek4y/8DCCCi+2jmoEhSZMAx4jq+8T5GKHFQUZVQSnQZio01oiR+sVsfQfd+Bgu18uUpApSlovnFXbgqW9U3Lh+yk6+pbGan73/Ao92JvzTVz7PgVnwhe1tHm3GqDrg9ufR+5NJ0/drzgvbKsAPHa3Q66DulqwhWQjVNCW5YslNQ9km5KaFcUu1p3CJRxWCtCp29kgZW8/8xYzkB475Ey9/GgjiVzO94RvlVf7P+1/g37n5UXbNimvJnMfthL+0933cub9LukxJFwq9Dr3c7O6I9XMDVjc01Z7Hjh1KB0ijF+LpE25xU7WEZGhVf7Ow/jvscg44Zlyl9SRbT36iWCxSkv0WfBC+XhjL9eGCQVazOajxrSIfVwyzGg/MZmvOvr6L22k4+6Ricy1n8jqcfJfDvF3wd04+Ho6Tw5Y/+omf4/eOfxEljmtm3reg39cN923GL9VT/k+/+AdQn55iEtj57Q852xTM9rZBLISg9/BTJy9T/P9m7H3mGNlWuJ0xzSwHAb1tEedCJPyUAisDVTHIazaDkCgqHgr/4c/9IH/4uyf81uHr3ExOabzpuzGPVUnpDffaHX5h9XzfCfqsLEKUtklxjUIfJ+gKbO5pR92JIiTS/Mgy2V3z4Z1TXhodMdJVyCa3xbkqWMRERXt86nE2CO0YLz0NShzQgiIwC6pZpKVtQmRhyiDyfRnzEIVT5LwnoDc9KySNiUXnhWs7S+59XONq/eQbdHhaxPAQMIntk2Ye8E7wVvA2liC1QlsZnA1887NH4/BERXCs2qOiJGOWN6wejkiPNcVWsIXHFQH3VsYjC83kLYtbLJHpGGXjicCdR5mXtV6sJX6FaFrA+577KjEQ6OADbwSfJ6gix5cV3lrEaMhSfBLaFKm6DUwe61FW0cZkoWqibkYU7OkYL67StMqD9jRXa5p9QS0N2Yli/IWMzWeuUZXhM9S3IP/dj/oN9GE94dHxlKQJUei7nVIuM1lsq0Nw0Aq6hmTlGQDjOy3rq4Z2mNA+rzCRsibiKcYlm1aQUtOOLJU16FdXNL+t5rXDMdPPCfOjMV+7fo3n82M+MbjDb8u2nBRvsfKaHxx9iYXLObEj3q72qK0mu5OiamhGmnY4oM2kXw/lvqcdhOSmUg7rNWYjfRMJ10W/ip7FIqtNcMDvUWF7SQeswKhYAeIxG485NTSTQKpvasPapLiBYpxVrIchAhnEJnfeC4PBluX1LXJ3gEs9ze2a45khf6hjgkijK026MPy3n/6d/MVXfwBfxGICHbKc12YLGqu5/2hG+mYOBs4+VbOZjziYrni+OGJXr0Or+2bGl/7uq7z0C8dQN7jJgGYnp54YzNahypA99iJPNX+2Lg3CO1nNfOKoZhpVw/iLKf+V/h4efGjCP7n7S9xOjp/om9c5388d3+J0U1DFnlK+0jGxAS732FmLymzgpMbX5lnDtemSq8WS3XRDIkE1rROjNhdKlHuN2y5KIXCCTU2McMP3EHWEaj4bBXGcjkfup3A2T+K9YfPRdL3izlXbJlmJPZizKrO+HdBFZTKg73LcJdlEPK1TOKdCh4vYJLK/Vh9xZSc9a8LnFpO1FEUdKFT/YMbuadQo2Q35ClIXVPm2mtGJUDyqkfEIWW9R5RDJg1ynsoJ9SgiiSzJ1pchdxZWyvsdyIT6nCdV/9d6ArL2G3HmAr2t8YnCpCZCD96iyDTBaovGtidi4QbJYHTfoYA8JHTkaQ70jMIyZIysxeg6sEpt53NgyPljxj19/m++dvME1c0bjDa+v9vGH4fQoLQEKimP9NDQ0F4toeuzfBu7t7CtL9OM5yfqAcr/geDNkN9uQ64bGambDoDGyOSsY7mxZ64K90YZXZ4cU197ms9duob66x9/4hU+gxw0/fvXD/M6Dr7OyGQNd87n5Ld5e7HB8OoLHGaO3FSaDk084dKUwqwCtOA3t2AdaJAFHLvKGZp2GTc3I/7+9c/uRLLvK/G/fziVuea2qri764qJb7jFyu5nx2AIGaSQQEjNP8ziCP4L3+TPmBYk3eOGBB3gGWRpAIMA2mgYzPb50u2/u6srMyszIiBPntvfmYe1zIsp2N86ipRYilpRVqbxERuw4Z+21v/Wt76Mr5efcSiAYW0fM9Ya42cjG+Cn3z+0SsE7OD2YLwLsbRd1YbN4noWvLpncc5RXrUu7kQSAZFWXxFhVnBxlmaVAfZ0QTqe+JLYreaEyLuJUGcEtN79NuC7S15aPLBc06g8bQvtSgM48OirZyfPWV90Yxni4a3l6dMvsgQteDMfhZLu6/Rgl5ffCcMYqoBnv2nz3WPuO8m8sGM/W0C41bK9Gu+E7BX8ZXMa9F/sfJt3hgr1jHjAs/5c3qRb518SKPLud0GycW316NxHY16SmnDYfTjQhQJ2xTq8hhseG0WLNwNTZppvbBjGPcUxPHBmAXNHF43KF6HDrkjTjoDoLr3ilqVKIukWQgFaF/NghiEAsaGo51cgEZqimnPKs252I5ZTEVoLnpkl8XP3lyMzqQO1Hek0lJjdbidBGCFuZEUKAD2kW8EexvGDn2vWH5aM70h5bsOrK5p6SqSXKXyqbj5dKSX0Tsshbx86ZF1z2mFT1Ywf2ehQaxk6N+rOEGW8xbIYlVjrZimNodlWSbY1S1kQ1xqJ5RRKulc5/6GWbsa9j0d7TgySFRxhKdLwLaechkg+qOFdODDQ8Ornllfs7D8ozn3SVzs2Gua/589Rpvn5+QXaUiLOmwjA3SZ1uStC7bHkUwg6FlT/b+JYu7GY++MoWjMwrT0yeq6yTv6CaWeVmTu4770yUL27CwG7529z3etD0XKzEGeLya8cf161yvZICkvclQjRFxnSrJJcziCDH5UnCFkEW6A49q0zWZeyZ5y5IpKkj/JNidjTOII7VabQh1I9XvZ6YFoRQhM4nmkhosLcTKEJxcSd4rVl3GSbGmdB2Z9qPj7DBOW9ie4qim9iXZE4NZaZoT8W4Ls7G5LbQgHclmLdOyYVE0Yzf0o3xBkYl4z3JTsDqbsri74kuTH40WJtd9yTsXxxxey9/vT6asXhBvLGkw2eQMIc24qBXcMgE33nLWivi4zjy+FGM+FJSPI8Hk/B/9Ki9+5Qk/f/BNroLhR/0R/3j9PO8/PiJUNinD+eQqIOIvRd5xNNkwyxqZ30/VX6Y9uRZ1tKHSHSq/Lphky761LOq9IXZiqS56CpJghzFS3aeObh9xfcSvwRdqbN4MCmT/mvBR0yYYwqNHLrDVgXWbYb895+ylEndUUxSdVLh9Ek9Pj6GARge63DArGgrbkxlFF/yYsHsvI8hDldx0ls0qp1sVsrFvFOVaYSvhQbeHYcRyQyl9C1Qku9KUT7xYzysFwaPrFlM7TK4xmcL3z7YoUbHDgHi6afXjBWSaHhfrqMLgj6aYtpOdaZAZ0SkBawU+TccFMGMCt3K6i+kBkUarbhWhV5CBsZ5sIonl5+ZXvDo/48X8ghMjPOQ6ZExVy5vLB2wuSibNNkHtHLZ49s7k0yHaLxqsJS5vmL07x747o33JiJWYClgVyG3PbFpT2J6jYsNBVlOallz33MlueOPkA35YnLDp3Sht4Jyn6ww6F51s7zQh1/S9Skamw5pDVKIVjAvinadFa9kkqYWhHyNefNuTjbtuiZsNse9RWSaMik+I2+kBayU6qHp7U+oe7I2hLwI688SgWdU5/UyTm56Za9Aq0nqpjEGoJAfTDb7X9E1Jdq3InmjqzKAXHVneo3Wg6wzzqQjT3ClXHGdrFrZm2RcUpuMgq3nr8i7r6xKC4lcfvM1du6SNho+7A767ukv18ZTjPtKfzrj84oTlK9De7VCNpl1YyjODqwTfAwj/dLvuig+ay3YiN76WN6wj0JcaW0UW7wa0L/izu1/k1+bfAUQR7botCJ3QnlzZUZQthevFlshKBzY3Yis033HLENePTIwDf0yZvAlmdIseNJr7pOAftTAHghNRdk+qcI1ghaYVsSMRmGbEYbf0omeLofoNfPK63v/rDdcfFSx/fsrNgw43bYWn25pUvauxwupcRj83TIoGZwb9XjW+F0NXve813cZhH2cUZ4rsJo4VS3MMzanfYrE2oqcdSkeiVxQXkF92T5XgqunQVYfNND4l4WeNYQpu7J7vPJQkyqGcSk/RINrNzhCbFoodk9QQU1POoJIFugoBFWSibkSggtA3VJRrwVaKkBuCBmUimW04Lisy49l4x3k3T2waoVDWzvHW+V3slRXKVVBpMxnK3/TvLavgOGiUqJh0MaT5qGKUxNV22I8uOXxrxsXXptyfLMdpR2c8B6Un014E1rWM4k9MQ+VzTtwaPYusE38YYD3PONvM6Lyh9YaqddSbjG7jUJVQ4SJAYpCEIoxed9EGrA1Cs+1Ehzk6RubDoB9hn6zFyQRkA//MKmCt6AuDz7WAzqkpl13LTHU8CCgTqBvHdVNS2i6JaHiKTDQOhiQcoiIvOjZ3NJs+Z/qhpji3RGNlwGIKuMiNnnITT3g7HROjjZhNGlhoRRpOHQZe/coH/JfFdwHBHP/2+mW+/faLFB9bqtPIxZem8MaSrz94jy9MLlj1OT/48h3euz7kyXIyUr26v7rVimBNoPWWurcoHVCLFg6hvRGJxcnjyPzdwNm37/EHR7/C79z7M7r8Ef/t/j/y/tExIWoeN7PR06r1hqpzOB24V97wcHrOsV2Pqv7n3QynPBPbjoL4ATMyHqa2YWZFCL4LSbRHA6QGnpfKxdbSlOnmwjxQXmHXwpDQPU9xcW87iAGQEUbFszYZt+66dQzx6tEZHxULTv/knzi9c8L1G3c4+8Up/XOd3Mx92gUGDLNSdJeWa6YjHcwkjVbdyHN3HeStDJfYOuKd8ErbA6jvBEIZRkZAyAIUMvmmdaBbFpQXAbtqt80TpSAE9LoWppFW+OwZxCDiNvGOHOYd9oPgtMPA0XbzCyhMDJiLFf78HDufSoIaBoeUkoEib4Qf3HuZ7Ox6bB/QrSOUFpsbfKbRXRoOajTtgaJvNcuoaHvLRTblspzINJmrR1Gnf1g9YPXBgvJKbWmMZqjShVmhNLdOwABai2LeoAHdzdT2tTlLrCqO/+8l3310zL2HN0zslhMMSR9CS2XqUpN7ODs1wdLr7cTocH+tm4x6k8kpK8F/sfB4raVvAMRMNmZhk0TIhGu+qnN0rUbh9YErrzxkqwDnT8SIcxBG+qyacMOopIjhbI+puoPsStNYS7ARa3oer2b8wp1HVL0bnRkmtoUCLjYTnPH0RtNaT7vwdFeach2xN6DP41Pz8YP77agwpGRqqDmB5pWa11/6kF87fUveL9Xze+/+Ou++fRfVKo5/6RH3Jjd85eBDvjp9m+fMEqcCVXAsDwq6B4YbX3LhZ5x3c373d9e3WRLRKTU9B0VN74Wz2NVWGhlW0c40to6c/EPkG8WX+c+/+Q5fK95hPvkeP3R3+H59j2WfU+kM6DnIahbZhnv5Dfez63EGX16b58itacL2JGF1QKeKKSTLpkGSsvYJTx06RokNgZKGgd1EvFP0k4SBzZEk0e1UaJ7Rov424VSgDhlVyLkJgrv5qNAECtUSlMIQeFBe8eYbGS+9taD/3tvM33mPw7844fw3HnLxesTPAqORpY7ETPQn9UZL0u2kCtMNZDeSwKJR9BMh4vczobOFzG81a4OCNEZLwn4BjIm49yzFeSPC5zaZYw43UtejbyrypkP3nzzd9KkxNOB83PqHpckpFeLIlJBR6x29iAhqVaGsE43ZwaUigEqym9GYJIsIygdU71FdhWosZmWxmSUUFls58mtNN00fM0M3K/FFyVURuZgf8b15h8t7utoSNxZ3aZhcbY10h6pPLK52KGi3vVRUROmQmCryERz0swx7pmTopO1QH11w8FevwEPEiDeJLA1CVQvbMLUNk3RKnJlaaKtuRa57qpCx7nO0CiyyJolbSU9KVPAUvjfEctsUtC4wn21YVTkhFxivay1trXAbeaG63yo1qgD5RUtYrSEGcbrW+iebGTtxawiinekkWMHINQQB9c3a4E1EH3j6oPl4M+ekWFP1GddtydS2TGxLKBR90ExcxyTruLSeTTNDd3IBmU6qF9OK/F9f6pEA7zNFfaJYPwgUL93w1XuPeH3xIXMjXdH32xOWdc7xgyv+490P+a3Tv6ZQHQe64VAHinQzdaamjht8hM4p6mioo+EPbXW760dFCtMxdzVdIXZCbeUEprHCZ9S97IyH/9/wv7/wX/lfX9rwWvaIF9wFheo4tmue9NPRpn1iGuZaZtlDwkw9GodAEw0OH8VbTZ6E/PeUEliS+IsR4c3u/FyCAhP0IJTCbCliJO1CNrxg5NeGEc/bxmD9vR3GCGJwmIYy6ihuHw7P5n4gFjlo2aj7x+ec/PGGgx885OIXSlYvQHsiTdqB+xsmgTBh2zDQUCFVsrA6oky17VqlB1CNTFFFG4m5R9nt9+tlznPvBEztk4i2B2tQeUa0w9x/gPWGrP5kcv2nRmT04dO7U3GfJOmYoKBgFZQFsWtRyxXaaGJmZYjFahFmt4lMjRQrqhf/OtV2UhnXGtU49KYjWk2WW0JmCJmWQZNMbLXE4SWnL4qRmy1Tdum+18NzGv/cFq66ZShSO8kFohGjy2igmxuyaYmuG1kWrXjuG2d881df5PWf+5CjbEOOnA6sCkxtw9zUowXRoKEyfF7oTuA2FahzhzOemWtpg9yzfdA0nR0TujWB0kmPaVXJ8E7sFbF2qEb6CSAnAZHLFQF7U/fCerBWoIcQiD584uu/9eFy0EINlqew4IFWExpNV2UYE1m1GVPbkukeLKz7bHQnmDmp7Ka25bDYsJxVPDpdsL7KMSuD7pSMAGZxi8PYiM4803nNK/MbXp5f8EJxyam9QSPY5/Pukt9++Hcc2xWvZR/x0NVooFAGpxw6HX+76JmogCcSYsTj6WJPfstx5IgIzUxsx9r0oxayzPanyj1V7eVFYP3mIX90+p/4n/f+llezxxSuY6433DhRTNtay6eqNorNvNyIOom8S4jQuB9F2kEE3wc62jCRuK38xl9k5G2m6kt3EbcRrLCbCk48Ho2foeO/qwPhlGwcmRJ5TbFMchgVZHjrtCEmxkxM4tV+tcZ+5x3urh9QPpmzfMmyuZuMXHdJ/5qdFrRgiePXdRQIYwdDBgh5EGPFJLqjlCS/4r2M4rIDpYi5gQaUszJ1tuuL5gO0W/nVnzl2IIithc1Pru1WWSsl6yBKhHFdSSP86hrlA3paEvOMWDjhBPfye8poGNT9dp9zjKgGuahyiw6gW7/ViZg7suseXXvao4zqrqWbKugZdUGeqnDT5TUk52dSiEPWX9mwtZyySfR+kaNXGXSdsFEeXzD/y7t88N8POTipk0vGdk5+K1wlrisTDVXI5XkG8Frw7KOsYmpbMRIOlrp31N5SW0cXNC7hy0YFrpuCEERHQjUa3ShspcbpUDVUwKmY+YlqV2uIn1ECVkGEQoYGzjgNpAYAGnSj8TbSOkvlMq5twVFeSeUbFa03WB3ItMdqj1OB0nTYuefJYsLH1YJlm9N0FqMjs7xh6loK01GYnkO34SRbJXPBWo4SaeT3jl1yR1d8OXvMXCvmOgMyNBqNwqTq18eAUwapy8J4Ufkojq+3iijNMhCaVIwKep1k9ST5Dj5gtgocfF/zree/wPPlNS+fnHOiGzJkTLkK+Q5bQKbnxoSbqtYOEXN/mr8k7JIx+UbBvAa3WTU0EXZoaFudXeHdah8xdSS7kYTsc0aTTvXJ188nRod+ahQZQCcN2qEhN1Qohwdr+vkUmzlCXUslHAP+6hrzvmGmFDBDeUN9qulnaUJu1IgY3rP4dILYaeCpIDhltEFgBxO26+IVsbJMP4ioPojmAwYdIrEzo2QpA+6qFPFZxfsDI8wwPGVgywHe+bruYoL4InbVEW9WKOsIbYe+uYGmgbJAT0rCvEyUp1SKDs7Nw3MemBP4MekrE4Qn7Mxo0Ooua/SyItoj1KndDoSw83x/vNodNvNn4AGDYMAqOZ1EK2vkM/CFxWZOjvLpBHLvb6757n845r284eH84unHSboqQz4IBHLdpeSrKHYuDumfOJrkrhFQY88kN/1oZ3WzKcTdp9aYSmNrhdlsG9XKI2P7w0lRRKbT+pp/kVV1ywQsJOO+YBTgGHfFKDCE7iKx0QTlqIx0KzPtKcya43zNVTsZPctKJUf3o3TsP7IVX5hcUPmMtc/xUVEaGSt2yjPRLXNTc2AEpzUqjpzSqW542a64b8qnku2/FENyBsFUNbdMwErGkYfoeyP6BP3TugHeKayC6Ucth3+f86eHr/HL8+/z9eJ95rqjDZpOJfsiFehG5TC7UxUHacYMis87b8yuRnDjLVXvqHtRlxshiF4xFPi7QueDoLzysovrPuJbEb33GbfH9RAhII9ODshh53XJ97WSm6PqMu7NVqyOD3HTCdQ1SivicDEn3LV85FA+x1aa6r6mmwdCIfijuD/Ep6vhoLbDATpBEjqibMJ8I6NGRmgN+Zlh+lhseKKJyarIorqA8mZMZjGKM8KnNVY+LdSI2+4U7rsjyQmKEIw4Em3iq68bfN2gnBXpzbaDpkFVFaoq0f0BcT55ulIfknAQdoRsIkroajESrUEZQ3SGfiLXm768IVY1upmnhmBqgA5Tkzol4+FENdAVn2k12DroKHmPgpP17XNhXMXCoZpMBhqmE9R3fsDpN3+Rd+Z3ePDFK/KBRrizIwzXmyaQqZ4wUGa15Isjt2blC3yv2Xjpp/RB0/TbdBii0GmrVQ5ri11pbKVG0SqxoY8p70kSHiyjjFJCP7ODYMlnNQnnA7YOmNbg8+2xY1SGJ3XQG4XqDT7kLHcW+oXpFa/OHvNudUwf5MVb7cn1IB6jRoHsUrdYHdh4cfgNSok4ebS4kCetz9Tc0w0v2wsemMmtXk4XJRs5tU1et72QMt3zXH7N43Yh1ilBjUpNg0hJMKCsop0Zyjpw72+u+VF5wO+f/hJff/g+x1qzjp46udTKL7fU0bEOOTWOEBE/taTxMMSgooYmMSIE/71uS27qnK61Ul30GnrB2MZGj99WXVFDN5HmarYSoR9bK7pS0S6eIQP/lBhw66GqD1FThYz75ZI3Twzz+QyeXILSKAMxSMLTnZiGurVl3gSKS83qgaG+E+kOQ6qEd3BuhWw6SdRm+J4aPh+quCBjuWZpKB+J2I6OgJaKCUA7TRxoID4p58WYJDRvGUOhMqqgxYQDb92oZSIzPX7aJINThNKhi5yYBoqEW5/w3rrBP3qMusrR04lYoQ/c0138cUjC6etKKWLmwGpME8jeekSs09laqx1p0ChThcOSDkuYvj/mGH/7TDxgwEoLxOhzGRCKRmQm3TRHNWnSLwRUkXPnG+/THrzI/zt9jjfufDjmji5YauVkgMv4UfzKKc+NL6iTAFTVi053m1hEfdAUpqPSGc7I3ELVZZxfz2DpyJ6I1b1uGeG6Qf8Btlh+NGIDpYxBLWZEZ1F1+6lNOBVvIUCjlDoD3r3dEv+bi5dijHd+1h/+d7ImcIt12a/JT49/J+uyX5OfHj91XW6VgPexj33sYx+fXTwbkLWPfexjH/v4V8c+Ae9jH/vYx+cU+wS8j33sYx+fU+wT8D72sY99fE6xT8D72Mc+9vE5xT4B72Mf+9jH5xT7BLyPfexjH59T7BPwPvaxj318TrFPwPvYxz728TnFPwN5RcHMeOzeQAAAAABJRU5ErkJggg==\n"},"metadata":{}}]},{"cell_type":"code","execution_count":29,"metadata":{},"outputs":[{"output_type":"stream","name":"stderr","text":["<ipython-input-25-ac46f3f204c7>:50: DeprecationWarning: elementwise comparison failed; this will raise an error in the future.\n  if faces != []:\n"]},{"output_type":"display_data","data":{"text/plain":"<Figure size 432x288 with 3 Axes>","image/svg+xml":"<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"158.265158pt\" version=\"1.1\" viewBox=\"0 0 375.2875 158.265158\" width=\"375.2875pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <metadata>\n  <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n   <cc:Work>\n    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n    <dc:date>2021-04-02T20:07:40.816205</dc:date>\n    <dc:format>image/svg+xml</dc:format>\n    <dc:creator>\n     <cc:Agent>\n      <dc:title>Matplotlib v3.3.4, https://matplotlib.org/</dc:title>\n     </cc:Agent>\n    </dc:creator>\n   </cc:Work>\n  </rdf:RDF>\n </metadata>\n <defs>\n  <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\n </defs>\n <g id=\"figure_1\">\n  <g id=\"patch_1\">\n   <path d=\"M 0 158.265158 \nL 375.2875 158.265158 \nL 375.2875 -0 \nL 0 -0 \nz\n\" style=\"fill:none;\"/>\n  </g>\n  <g id=\"axes_1\">\n   <g id=\"patch_2\">\n    <path d=\"M 33.2875 134.387033 \nL 131.758088 134.387033 \nL 131.758088 22.318125 \nL 33.2875 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p4c7a23dddc)\">\n    <image height=\"113\" id=\"imagee64058ad25\" transform=\"scale(1 -1)translate(0 -113)\" width=\"99\" x=\"33.2875\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAAGMAAABxCAYAAADBJR0FAAA5EUlEQVR4nO29aZOk13Xn97vbs+RaS3dX791oNgg0SHS3ABAgAQ4BLqJIiaBGQ4ZGipAUIYUVdtjhd7Y/gz+AP4DfesYejbXMDMOeCEmkKIockiIBkgAB9L7WXrk+y1384snMysrOqu7GwlE4dCKylny2+5xz77nn/M+554qVo6eCEAIhBPuR9x7nHFJKxufOXhNC2Pf66ePja/I8R0qJ1hql1MzJDhEg2DoBjzfbZKJP7tt8+av/HS994cu88vQRNn7wZ/j7b1FrNnHJIrmMufT88/SLHX741/8PO13L929rTn3uj/D14wy3NzFCkrQ0pu6xJXTu9fmbP/+3vPPj/5NE3qemDh/IC2st1lqklEgpJ+80jyfOOcqynLy7UoqiKPDeA0ze3TlHURToAzn4IZOUkrIsJw0bC3dWUADBBwKWgKe0ARHXaLWP8olLl2BwhZ/8/Xfw937JUmIoXEo9OsQLz79IPZHceu8dMq/p+zr1hSMIkdLvbmNMQaPeRkUK64a4vAQ7pL91Dy0g0vGB7Q8hEELAez9p936CGx/TWuOcm3wnpZy871igIYSKHx+Yw49IUkq894QQql6gNVrrPcKYvAgCjydQ4LB4IpBtXvj0axw5cZzO7bdZvfYm1pX0idDLJ7j8yqssLLZYvXeNne4mydIJrm1Ijp59DlsqZLAkccAkIDUIJ9BAf3uVbuc+sVZEMmb/MTFq26itD9MEwEQY407nvUdKOdEEY2GMv3ukkSGEmNxg3BMetTHTvd57T1EUe4b47D1DCAhASIGnxDmQUZOkfpTnX/w8TimUlYShIKiIhSMnef6zLxM3DWt336HTu4FWKTfWOzRPP0tuFgghsNBMMLHAi5LgA1pqvM/Zun+NbOcONemRweAQexg+O2qnv3uU94dKC4QQJlpBSokxZsKfsbp+YGTM031CiAkD5x1/GI0bUpYlQgiSJNnzkrP38iHgvcOTE5TDes1zL/06zaWT5AQ2OhZPg2PHzvKFV19FiIIbt35BL19FRY4yj/jF9W2KxhFsElNrRNQihZYJ1ls8HuEVsVDcv/lLhO+igoNSQ9ht8+xnP/4cJIgx86fvOT4++/9jq6nHEcZYLYUQJhNfvV7fMyrmUQgB5xxBOKQWLCwe4cWXvkiQdQZlwb1ej/MXn+VLX/kCeX+NtVvvIl3JwtIKK8ef5Lvf+RmytoJoL6NaMXEaiBTgYjyBgEMEQX9nh9tX38LIApwFL+cKYN67P05n3O8dZz97uCIQEMLuZ4YedzRMP9RaS5Ikk7ljv3PHLUGAkAFtFC+8+BkWl44S0Kyur3P+4lO8/KWXuXXrl1x7701kmXGofYilhVP87bff5Ma1DT729CVErUYpS6zvE5wFb1DK4INHIrl57Ro725so4QjWEumYwHxBTPPgcQRy0L1mhaElohLC6OcD14m9Fz+qQMZWgrUW7z1aa4wxE0vkoEYLEbBe4VmhfehJzn3qVfLYUw6HhI7lxOElbv74H9i6/TZu4TTnTn+chTjh/ptvcP0XV4hXTqKMRhYDNAakQKqA9n18FhGCY6d3j9t332GYlWiTEieBki7BP9C0PTRtBT4KTVtgzjmiKJrwYFf1S5wHPb7p4w66R/ErxsJzzlGr1SbH5hkBe0aSDyhhcE7x5FOXQKUMcsvde+sIkfAPP/o598I1njqW8LELxzm6cogrv/gHrr/1c3YGQ9L2OSyagELpGO9hq9Oj3ysYiIg4Vqiiz9V3fl75NEiCcFhnISgY9fp57/h+VNS0MKbvMf5IKQjIj860HVsJZVkSx/EDDuL0Z3puqf4PgKa1cISVo6eJ0zZbOxmdvsWkCwzkEnd3AqdOPcGRVo0f/91/5s2f/hdyPAOhUc0lCiJU1CQrBJtbfe5v7JB7gdISgaO7vcHG/TvECrSsnml94NHspMcn5xzW2glfZo0hrcTjO30HjYjpY0qpPV72rPUw715jwfggkKbGqbMf5+z5C6SNRe7fXkNHdeK4ycDFfGzlCYaDnP/wF/8ejGYxspQuYvn0ObLmcayu0xlY1u7dxdgeK0uLNNqLlN4S8h1uvvdLbNYllR4Zqs7ggkCJB0fso6ileZP9NHnvCVPqafZcAbsjY5ZRQgjkYw7HsS8xNmVDCBN7et650y85fmnvPUEodNrmU//iC0S1NsoktNttbFlw7eq79Hc26fe2+Xf/7s9498p11rb7FDKhvnycxWNnKGXE6maHq+/dwJWB7na38pOkRArwRc7d6++i7BCDBV8SAgil51pTj+pX7Dfax3+LsT8x5XmPHUGCf4iaEo9uyo6ZaYyZCGP84HkvM09VjRsmTMynvvhVjp77OKbZIrcFjVrE1tpN3vgv32bt6o/52ff/My99+nmeuHCJ777xHv1Q5+S5T/LOe7e4cu0G29s7LLUX6W5ukWqDJoAvcUVGPuiwef8OyuUoXyCDI4iA50HT9nE97ll+7eejjPk1dghrafrhYVNCiAmA5pzDGDMRzKwpO/1y0411zqGU4vjZJ7j82c+Tq4gA+FCiQokhI+/eo7z/BnFjh3t3b/LqH34TefIi2zffJU4P0WodopO3iJeO8N71++S9HocOryB9SbAFRT7g7u1b9DfXiFRABgsICBD2mbTHneQga3L2+4c5jCGECVAYQuDUieOPMIEHpnwPHvxMPVwIwWAwQClFFEVzJ+3xPQUCvMZ7jRcBJwuCDgRV48XPfBldaxFURBBq5BB5Ljx5hk9dvsCJRcVC07CxscmVX/ycz734EseOn+Hf/8f/l/byYRq1Nlv311i/e5tzZ04RBAipCN7iipz7d24yzDoYIwFJCJrK5QrwGEj0fkKZZvj4PhN1RGW5aiURBIQIxJHmt//l1w8WxtgDGTNesPuZR977CYY18aL36U0iCAgR+ITSewrZZ6gsp595mTMffw2CIXiDswKBxkjJUrPB5Wee4pu//RWWjp7k8OFTqNWbNNev8NXPvUy/KPnxG2+wdneTu1evUFeeKNbsFJYCQ5mXlP0Bm6u38X6AxRJEggspwUsIJXJKxUz/3k9VHxRSGH/nvcdZh5YavB85cx4pQQrPs88+zcXLn/zw1NTYwUvTFOfcJP4x91wCXjgEBcoL4iBApIhkiRde+zKuXif4gBe+Ok9AYUsaaQ3VWuTSM5+jpiyu10UrwXtvv8lJqXn9i5/jf/3f/nc6ItDLS85feJbSDgjOIqWgzBydrQ027t4mShK8z/AVRyvGfljMmEtjYYmRSvdEkeHMmdP8wR/8IY16/cP1M8bW0MOwJwR44QhkSJ+hyoAo61y49CrLT1wgi2OcH1kh3mHLnBACuQ0EndC3ii+//jscWjmKVIHO9ip/862/oNxe46Vnn+Le/Xep1wXtdoyzQ7QWiBAILnD/1nV6W2tIEfABPIIAlcr4yLyMSt5jB6/yKxRxnPAnf/InnDhxHPwIm9oPGHscnSmE2DNhj4foWFWN71cxOFAWJcEXQIHUEa2F0zz34lcY+IhuWVZMCh6cRQlRMU4aVK3NwClMfYEXX/ksrYUm3mZce/dt/u9/839wqN3k0HKL8+fPoITHuwK8o8gzep0dNu/fxpdDtBgFepD4MMLkvHuAD7Pm9zxfad73D6qsyqxlBNFHUUSr1eLkyZOVU4xAztOF8/5/VMh47PZbaymKYvLdrN0diRiQlMqRa8NzL3+Z9tJZhNdEUpIXFeTubAneoY3BSU0pIkoMd9a2aCwvc/7C06xvbZEVlmvXbvO97/6QT1x4lmNHjmFLi7fVyHJFTr/XYf3uTYx0SDwgRiNjNNkGV3WAA977/UzqAFJWMaFp51drTRRFgECJKWF8UFg4hCqCZ62l1+vR6XQm8Yvx8UnvCWBcjC09hRHUjh7m9MXn8aKGsYHQ65EXBdaWEBxSgJASGyRDJ+nljtwHbt69S/vQYc4+9RQ7Q4vTDda3S44eOUtwETJE4CUSQRwbdrY32F67Q81IhHc47/CTmeKjVlNi5FeMoBApOX36FHEcE0LVCj0+ccwwMQMHzM5qYern+IQxk/M8x3tPHMcTPGp6DhmPDgKIUmHilDIqufCZl8hUhMgtUeHQMsdGEVppIqNGcIrE+YALgcI71tY75LKP625w4dlf4/nbGX/3w+s8++KXkekS3UGGFCUSCyKwvbXBretXUbYgisFPoPwKpBMzb/U4CPUe/uwzcnYRB4mUVTLC5cuXq+9GbJ6EtkLweB9Qajz5jkGzqQaNWhzY1f/GGIbDId57arXaxOtGeEKwCFehsHiB8BIZKjvZ6AEDn9I+8hIrZ7+EUnVEGIJSeJXiVQISlADlK7USgiAvLKtuATLLducd3ty6TbzyJM1f+xIXD+9QT1us28BAwUBA31laWrF59yZr136BNhbrSwgBGQRCFAQ5GrmYPe+7H2q7nxCmnbvp67331NIUpSRlWRBFhmazzqVLF1GqYqoPAp0kyUSdaC1GvSWwr2qc6kJKqclk3Wg09qq6AITKsQnjCXLksAgR8AqErvH05VdI60dQSqAIoARCS2JpkULikBRBIx1VKNZ6RF4yyHsUWwN2th1o0Nojaiv0nSNI8FIQpCAvcnaynDtX36G7fo+6GTUuiJFF6xGiCvXyMHToMVT5tI+xK6hK8ygtef311zl+/BhlmZOmCc5bdL/fxxgzccsfmLAe8lDnHEII0jQlz/OpCxUi6NGE6AjCE/CE0e1zGbN44jSnzn8cbxRSjzxSpdFKoFSBExE5BolG2hKVD4ltRi2/TzLcRJQambdIOAxigUIneO0QeQ8RKnNWBMfd29e5ff09fDlAmL3Brfc7Ic+jaSdxrJqttZVgpMA5i1SCV155md/8za8QgiOKDaUtkQj02toaSZJQr9fnxh2mf88eGwdLvPdkWbZXkEGCNxAKELZSgyIQhIAgsKbGZ155DdVoEZRCaIkUHiE1QSmckpTB4ILCeIcudkj792n7Hk2xShwVFLGiIxS33n2PpXgJceQYVknIRrBDCAhnKYc9bN4l1g4t9yYEfBQCmf6McbnIGIxRNJsNvv71r6G1RBtFWRYVtI5GhxAYDAaTaFwcxxMTTIQKq5n2HebZ2eN4xRhMq46PwLcQ8PjKmw6CgCagOXz8PMeeuEBpalgfkITKwXMFhYuwUiJxxKEgyrcw29dpZndZSUqSaAcvJJiYpbZg7c5dtm//mNaCYkBCLRiEB3zlZ/iyjxvuoEKGLT3a6Emvne1ks0x9HCFM03Ti2ohTCBG4fPki586dRWmJc7b6XoJCVmHXMROHwyHD4ZBms0kURUilJmpqNgw5rdLmNzwADoQjBIcnIE1CYQ0manHx06+h0wWsikmExJcDvCtxaJyQSBFIwxDVvUO5/h6LqstyalHFEGcH5MLQLw0Iz6lDJVe2fkG5eYjakaexWWWMGKXAleS9HcrBFm3jCPJgJn8Q8372+vHI0LpS1855vvjFz6P0rpEkJKP5VKCVUpP5Yuwtb21t0Wg0qDcakwD8dAx3XgMecBTxIByEEoTFWkcUtVC6ydHj5zl24kmyQhCEIE4itB1WdnYQqGCJh2tk998lzW5xrG5JVUFRegYIIisZes8g5CgyVLnN8UabK1ff5XDtHLaIcNajlcLbgu21ewhfEmtPGWSlKnmwg30YwpimMd/SNEVIweEjy5w5exqlqlEhRkBxZUGAHkedxrP+eJT0+30AWgsLk4hf8B4/GhFBCLwPYzd+ZJ0IqKC3ym4aQb5ihPiGAM4HLj7/IkrG1UiRksIWOFvibYF3FtffQa39I/Vig6P1krrPKbKSTCUMZUy9iMjKkmEoSVSGKHOC6xOG2+Trq4jGydHI9SibUWzeJ9USK6BKP9hL0wjrPMHMQuLzqAqdihFzdyOlAlBK4p3l1c99jsWFRbzzI0R8LyKmpx9SDacwefBgMMB7T7vdxmiNKyv7fByzdU4ghUQJXXm6SlVZ4yFQAoUAHTwyQKoNTgiOnjvJ0seOE5sUD1hpyYQjSjXRoEu0dZe4e4OjyXuohiYvSrZs5YGX2ZDhYIPNoSMfDCizLjJ4TFyjlIFUe4r3/prjz/03dFVO7oaE7Vu0B+sQSdZEjZqRRGWJc25PB5yGKqYZPA16Ts+de4QgdoMLYxZXE6ZDa4FWgZMnTvH133wd4UCI3YTvyr+pOrUWBwzZEAK9Xo+yLGm1WkyrtEqcnumAx24CmEcEMITKokEShMF6w6UXPktUW2IQxYSgMF7RDpJouAFbb1MrbtJqZBQ96GcDlNZkw4xur0+32yUvCppJjVoUUWsukUSG0np6uWcnG3Dj3Tdon3yLuN1g6EtWtzuUypBEkEiL8HIC8T8KwnyQGbxXKCM2jPu5gNKWKCXQWvGNb3yDlZWVPek6kwjo6JID4xnjzI48z1nfWKfZaE7CqUorSluMBCJBBEJwI5F4JAEZqkCKCxobYpaPfYzjp5/BUqNrPU3taeYd6p1Vos4V2noVLe8zHHTJispv6XTWyPOCei3l5Ilj1Oo16lLSSCIaaYrWEoRkuztgp5/Rite5+bNvsXz506SmzvrWBplWGFViXE4IEc6FfYUx2+sPEtIDmN6UsJQUeF+pqOPHj/Hipz5FWZaTBI2xfzZNetZCmiXn3ER99Xo9lFIYY0Yp/dEI+Brj9bsjLDiLwlN68DIi6BrPvfQqOm6RBUOzFBymj9n6OfXOe6wkGbbo0s1yhtYwGA7odTsoJTl94iitRp00iUnThKU0oZkmGKMnUbRapEiVo3FmidpGwfVrPyY6/hTZYJtSOUossshxQuK9mIskz0vJOXg07IU9gnejhLSAkAqlBEmS8tWv/gaLi20iHU06wWw0MYQwMmDmYPHzQo/jRmdZBuymtsdxPPE1jDFIKZBa4J3HCUnQmsbiEmc/dh4PqOA5haC89Rb1/Bccju8Tii55mdLJG6xu9XHFOitHDrO82Gax1SCJNGlsiCNDM0qqvF29myqZ9TtIOySVJUiB2My4efvniM5tlBgQACNjvBeTts8yfRaBOAibmh4VY74oPf7bYkyMEJ7Pvfov+PJv/DpKq4la2s+ved9h1xAC1pVYWzIcDoCAVIo0TWnUG0SxwgJBKrySHD66QhRrMpvRqsfoe1eQvTscamo0mn4RGFrHxvYGUmpOn1zhyKFDLDRrJEaSGEktjkgiTRTX0FGNIDWFteA8UgjqsaFmakjtaCcNDm971j5xir/72U9AJtjCYH0AuTtpj0fDdIbfPObPfieEmKw1qbSEQskKezp16iyXLj3LE+fO8sorL9No1KuY/z40fsYHioGPAzFVLxNYW9LvO7x3pCEBLSh85fAtrxymKAZEpk7Z32Tj/k95YqmBFC2ygSfLJRubt2k3JMdPHKNpUhaadWItaKYRRnhqsSCJBKUA6wPWOYaFJdgSJRVxFBGcpZEYzDDjXC3it1/+JDLO+e4b1ylJ8T5DSLfHGHkcYUyPjFqtRpqmrKyscPLkSZ48f4ZnnnmGEyeO0Wo3CaFKOhgbNAcBkUII9CR5RIxjwbvkJzD6vKtBCk3wHmc9ASqU1XoG/SGEkjRJMbrN0DrqK4tkImEJw/2r3+O5dEjNFVgB68MNtjr3aS8knD62TLuekJqIRq0ypyMJRhqU0AgM1hf0BgPW1jsMBgV5NqRZj2g1DEoBuoFKu4iyx+HI8RsvPEU5sPzgzbs4pdFxSpXBJ0ZekcCHqkNJP1o8KQRC7sY5QghI4YmNBgFHjhzma1/7LZ555gJnzpzGRBFaRkCoHLogkFJPJmvnPFLs76eEMFoSsF9aRGXB7nODMNaz1cuMnTohJN4HskGO9gpTk6jEoyOF0RH9jU1E5zbLx2sIStaHO+wM7hE3FIcOL1KPazRMQmQ8RoI2ColESI0Lkiz39LI+t+7eZ9ArsSWYKKK70yEfQpxENFrLJM0G3vagyDkkEl598TL31npcWR9gnUOP4jZqFAcPsvIzjNg7Z+5Z8OMLhC8ZDAd86Quv8tWvfIk0TdBa4pyf+GBSV7kA1SLRMGr/gwtJZ+ekj2y1q/PQy3KaUQmlJ6ZEF102b7/LshqidI0sK1m9f59aM2FhocnywgJRgCSJMKqCM2yo5iITxQQPw2FG1itoRQ1qTWjU25S2pCwznM+x1uFcIG7WGPYySjsgjescWdK8/PxFbv6nbxNFBus9pXVIVfV0fBXT6Ax7kwk5jCJpY2EYBQRLu93iM5/5DPV6nRD8KB4kD0z1mVWB84yDucKYd+LjwszSiBHzBphIU+5skCwN2L79DuefcLhQsLG9QaNRo9as0aylGCFIjMZ7R5RGSCmxViCkRpmY0jqGpUN4TSw1ULKzsYn3gbzIyPMhuStpBMnywnHitMGwKPFBUjOKj58+xuWnz/GDN98mSI1HUVoHQlZm+Yhp44QKYM8adakktvC02i3Onj0zStqTSKmrkfEYNM8w2HdkhBDmqq+Dwo7T51RrLAK2LGGQ011fRZ8uWLtzA/3EITr9HVAQKU09jqibKjk50gpJwGiFdR7rPHlpiZBk1rG21aW/1mFncwvnLFFkOHJkBZOkZIVlMBjSubuKFJ56qsiygqSeUDOSw42YZ8+f4q2332ZnOMSJGK8MIniEqBY8hyAmE/psCo61liRNefqpp1leXh4JqlJNSqkHVj3t57NMY2HTfNP7XVD9w77zycOE5EeTiAgeX1hW79yj/EQOQpBZy+pWj0NLy9TSuDJXhSCSEiWokhCUIs9LrHP0djpcu3Wf2/fW6PeHtGtLrJw+S3uhgdaCTqeDMQmHF5apDzM2O2vcvH2PViNmYaFBmeXEJsWJktOH25w9doi3btzHjpLYAGTwSDxC6AcYNZk/nEdJyfPPP4+UihBgPzTlIEHsRx/ZnLHbFoe3Jbdu3sYFha616DvBqaUF0kaNWErqSYzBE0mJURKtFQRXjSohKMqCja1thDKcPHsMoxtYCav9LkI48iLHDYbEps6gn6GQtNpLNOoRcWLAWlRwyDKjFUuePn+Wt67exQdPUGPgcyyM6eVdezktlWJpaYkXXnihMleFeuC9PwgdLIwpeONxScBIIg4fPOv313j77V+yuLyMNENqaYJRithoYq1QQaClQgqJCJDnVQ6WiVLarQRHROFARylliAgioISitEOcK+kNMpyMGZQ5TelJahFpkpBEBqktPs8JZU4kI04fP0KzUafIA5kXU1kvYTe5exp58GFkykvOnj1Lu91GG1NZj4+ZoXsQPx8QxvQC8iqFYC89DMuaHHMaGUCEAQqJLRzf+9u/4CsvP8shldJ0jhaeVEmEdRipMcFQdEucAqcqFVWLoNFIiXRlgpbO0ulZfDCUBbhC4DuW/uomLh2g8KSJZCU9TCIlsVDVCNAG3agz7GQspSnHlxp0725TCLBCUIpR3MW5Cs5GVCGBELChylRRSnH27FmazVblY43C0tULT34cKIiDBPIQNTWVl/OQh8wXzDg9pxLp+vp9fvjDgpd//6vEkR3Z5xajFCE4rK2yCAXVWgpcoBwWRNrSrDUq81FKlCh5971rFEXBcJixvb3DieMnMFFENuhy8+YvSZOI1vHjKCmRWqOkxijJkkwY7mQcWznKW7c3gTE4OP7sjuoxspokyWgde8TLL788AyiKqXc9mEd7ODMnyeOBCfzDo908KUa5Qt47lKrggVq9hi8KdFT1B210tchQSpIoRkpT5TIJiR0WKBT1RpNhlrN57yaJKNAarCt58vRpnvzYUyRJHe9LbizE5PmQEEIFk6QJUgTKXNIMlnYpOHX0MEYEZKiy0Ucs2/MG050sjmOefvopLl68uOf4h0l7hPGhp66IsUAgBFcltHmH1lXOqYoNtiyJkoQoNgTnUVKQpAmJMaMlZBAQlM5TDAtc6fDlkE9eOE82LLFloFZb4Mjh40gVMeh1OH3mNBvrawDU6zWMVjhX4kqJxtNKI1aWF0jjhEFe5dsGIZhFK8YT+Thz8rOf/ewoN/ZBhHcePS4fH1BTH2YOEZMZJ4yyIyylLdCmwvqVlIQgkUqgpMD5gNIKIUAqjVQKpTRCamwIDLOCEBzNWg2XZxihSGsJtVqMChZf+tHK1Sp9KE0ShJRVnopzgMBIqBvFseUlmmnMZtavVsBOIVXTNFZJrVaLz77yygNLBPbLkJn2T2Z9sPF9Z0MXB84ZH2wQ7o6K6mYBpQRSMpobQGuF1lVwSilB8AIpKqvGUQlExTFCGQgQK4OKY6Q8yrDfAyHQzhMlCVnZxblAb1iFia21yFH66W46qsQIcCKw3Gpy9uRxrq+/BeOlb9NzxoiKoiBJEi5dusSxY8c+EEceRgeXOPowdOLU3CiVRMoKai/LAiHAGDX5DhEwkSZO40oIRlfZ4kIQpEQag0oSoqSGiWvVokgpKGyODRlB5aDKydIENcp68b4aFUopaklEGmnSSPNrFz9JGseEMRjo92oFIariXc1mk9dee404ST44Pw6gPXPGgzN+lVIynTEyndWwH/pY3UuBVCgBuJLYO5qxpo0YmZsCpEKMPi4I4ijCmJgoSSrXVoALYbROG4KwECzSSGqtOqaIkHJk8QmI44h+r48rIFYpzkKQHmEkQQVK76u0SimoicDJo0tESYQdxfK18HgnK6RVjtdqC5577hIvvvQ8QlSQxPuduB923YHW1Ljk0fTC+v1g4AcEiQChKW1Oyxg+cfo4X3jpEst1RV2ZKqVFmipWrDVKKKIoRioFQuPH5qYDgkDKgMYThCcvM5wPVXRNKXxpqRLYFbaw2NwjRAXqmUiQ5QXDfIAwgtRoIiOpSYFRDhcCQhvwJTLY6v9x5E1LkjTmt772FRqNhBAcUr5/r/uhwnjI5fuGHeEhwXopCC7HhJJnnjjPn/7r3+H4Yg0VMvrdzSqAMwp7SqmITFTF0amS35xQeCvwthoZWgiUrFSaUR4ldpOuq3ojHhc81lUePyEgtcL7gHMB6RQ4T2YtoiaxzpMmUZXxLsNoXd90YgVA4NKlZ3nmmadH6KwaAaAfLk3y1g46qYKV9xfG9I1mv5cCpBK0jOH1V1/h4tkTSNtne2sbXIEUtQr/EZWZG0UGrTTeVek+TlpsCLjSI73AAcKVhFBWEcgREFmpL4ENHus9hXf0sz61Wo2dfp9sOCRYh/QBV5SUkad9qImQkjSOWGym3OlsVSFSPJUTCEIG0lrC7/zOv6TRqOODw7uA/JDxqGk+6nEceDplZaKSRlydPT59zuwNx+R8QMlAIzI8dfIoDSxKQw9XRe+UrHJhfZhEBy0OCThX4FVVXNE6iy8CvrQEVyLxOBvoDQakaYoyhka7hZASlEQoQVFk6NiwvtFBSkVsEigtWMOAnGJzhyQ2iHSBpXYTcXMNpTQEgTES6yxCKF5//WtcvnwJbVQ1XxwwKGbN1Gmap11m4flJdsi0EPaooCkbevzdrD09PaFPn+uDJyBYObTMUr1e5SzZAaurqyyeOIYPVQAnNtEocC8piwIpqhVMZdElG1o62xnDQVn5G0CW9VElLC8u4axlmGXoJKbRbqEiAwKMFpjEYPOMtNmk0yswKsYIxY07d8iLTQ4vNojaOQuNFC08pSuJlEBI0EJy+fJFfu/3frdCfcdd84AY9qMK4aBz9byMujFjK3Wwl9nzHJm5vULIKrf26DESbRh2trl+412ah5fwypBGCeNECK31JInMaI0QnnLL0utkhGBIoia5tZgkxntD2V1jOBjQaLXY2N6mubSIMpoAJLUUGQJ3795FLy3x9q2b/OSnb1M3DV745HO88e4VmqljqVWjyDPqSYRWkqL0qFHu1+XLz/E//y//EytHj+B9taShCjp9NCpqIow4jvB+d2RMB+ArAHy8AnY3QD/OWt81d6vje+YPqQkEkjihzAv6nR69To/myZP0S8/qvds8ceYUhGqBvjCgpKLb6zHo9rHdnO3tDBlrSizv3rjJmfPnOP/URa6s/zWr91e5duMGzaWFUWlWGOYZWmvqtZS3b91k7c4d3rm7ylYnI+9tEETM4pEVTiwnxKmmOxxgbUGkNU5CksS88sor/Mmf/DEnThwf5VVRrS4arQE8yGiB/efQ2WPzSEOo8lUZO0i7GXKjE6qlAN7jRAWrO+8geFBqxmfdO4oiK1gSESYrybOc3Av62zlXb9zjR9d+xje/eYzIRMTKEbyjV8DdrS6b99dwa+u8ee0m8ZHjbOaO2/dW+fnqbT6dD9m8tU7W3WFhocWxJ44SQkQxKCuLqggkh45yDgU3bxGcJD8Ey4ePcHjlGL0yI+9v8rOb17mzusV2qCNizakjS/ze7/4OX/j8V2i12lUav3cjx29c+SFA8A+o6lk6SCD7CcV7j/71L3+Rzc0t1tfX6PV6ZFk2gROsrSoGCK0qFHW0YGacL2qDh6mI2HixTQgBKwUOS5CO4aCHFoK+LVi/c4O/+8c36JV97qxucKhdp7Ql4CnKQBQZlg4tkwXL4aJgNctZ29jGO4crC375i59Tx3Lk+DFOnz5JrdWsPHSlMNrgCHgUR+QKvWHG5vYOt+7e4erVK8RpDVNPSQ0UO1sYmbDYWmChtcP/+N//D7z0wkWCTCb1PXaZNh2z+GA0b2RNTNs//dM/pSxLBoMB/X6PjY0NNjY2WVtbZXt7h52dHVZXV1lbWyPPq4IqzlXVBXQI+FCBgJUQppZHGYU0geXFJj4bkNQUwzLnRj7k3cEOMi947+ZdPn7uNCJUAN8wL+n1CwaDIdYXLKws0zR1zj9TJ1hwg4zuxiZQkFMysBkttYBKY1SSILXECEGkE6IkYWU4xHqHkIJOf8Chw0eQRlPToMpj1BaO8PbqgL/5h59y7+Zt8gsfJ2qmc5MFfhWkK6BOY0yDVqvOsWNHdydw77HWTkZKr9el0+myvb1Fp9OlOxzQ7/fpdDoMBgOKomAwGNDr9+gOevh+h+U0odzuEKXLfPzJC7z39tvc6wyoobhya43NbkbbWGpG4Kyjs7PF3furdPvbeBGRO4X3CjssKXp9fJ7RPNTi3PmPcfjYCkeOHyWKIvQINxLWY/CYyPCxs2c4eeo4v3b5EnlZYJ2jsA7tCmSRsdVz3OtCMRjyZ//2/+KFS5/keHNx0mMfUDFTsbZpaOgg2g+hmCuMEKp6ThUWM/1URhXVNFC96NLSwh7I2Ku9zt+0GrNlie52Mb98l1vf+XZVCeDwEvfubFMMPEWAt67d5hdXbnLp3FHqcUQUe86dPcORYysMyiE7230GA4eSEe16i0gKYi2JFxosHz7M4uLSqC1ylIJfwSph0K8CWSKQGk0t1pRWUdqSLCsxSNCQlwULrRaNeo2bN+/wV3/5V/zBf3tqsgT7AYgcOUF2Z8356fPmHX8U0lKNhDDPjBaz3nb1ZfVwKkdrdFiIcYmjqiEKWFg6TJFb3vr+97i/ep+NzU3e+PlVEtEk04Ib97f47vd/xBMrn2epkdCo1zFxQlstoJMI7wR4g6DKbldKYAwIXUUBBRKEGhUlVoggmZRDHKUJBe/w1iG8RXuHlr4qHlnhmAyzAaVz5Lbk73/wA77xR39UVQq1drI2ZZfBBzPzfSdvjLGwavINIyY+cNoD0Ef170inSrEH/K+g6tHfQZAFgVhqE04c4c2f/pgf/PIqXSvxLsUpT+4GrG52ePvdqywkkkMLLYTIEVrhJKRRHT0Kwca1BOtznHAYoRBuXNob4jhFjBbA2Nzis+HIyChHEcYqyihFQMtRUMuJqiqDVuS2REWatc1Ntre2OXJk5YFtJX4VpHcR2TGjd0nMJkVPGRcCMVrNOh6eIEa4DqNjIdL0Y8OqUvz41h3u9Pp4neBchreByBhu3d/gzXducnhxkSSuczipYyKDVwIdmZEKgtIXWGwFVRSuCiJ6sGW1PqNUBc4HyjxDl11K67F2bJoqpB6b3Q6pDIXQYGTlmygBpWOYZWysrcOTHx9FIUfqRsy890zIdb9lAweFZucmJEhhxksj5954Rjp7/w179aUUuz3JBkuOZaAV3/nJz7lxb6sSrypwukQHjS8d3RB48+oqw/wf2d4e8PLlpzm03CZKalgCthygjEE4MWlAKEqG3T7dfp8gZbWcOIrIS4srM0J/nW53SKt1iIXFQ4jI4AmUvkC6Eis1wxBRiMqrrkeKrBQU1rJ69x5GSIQPeyChIB5837ksmjNnPCrpebHYhz1o9ru530uJ0RLvHFtbW5O4dFAC5T2h9CglKPOSrU6H6z6nFQlOrCwTJRHtRBNpQxLF6FFYNC8LBIK8dPSLkis3b/POe1dY3dpCmYhGu4VWiqK3TTYsEEFxaHmZy5cucuzYMsYIChvo9Ids9izf/+k7vHXjXlXlzXmEFKxvbFS72nhf1Wr7MKKdj0gPCOMgocxj/PR309eq0arL7e2dSQklpdREGGVREEXVHkc2CDIHndxy9e4azYUWtVaNorBI4RBRVKEApaUsSrr9nOs3bvPWe9e5eXeV0nl62Q6dd68SRQkLCwtEJibvD7l57x06vT6ff/UlTh4/jI5TSgG37l3l+z/6R67cWaeXF1ToAWysbyBFlSyHqBbM/KpoTyW22b/n0X7H59nkQgh6vR79fp8kSRBC4ESVcDCqtEKcpmilyXzJna0u3/vJL3jv2jVe/cwlnnnmmVExgB6utPjSUuQ5t9a3+NFPfkqn28OOalLVFo9Q6JT7a+vc7W2iESw1mkTC8NaVm6wcO8yhI8s4oVjb7nH9zn02t3tkhSUvLCaOEcFhomopgi99FXXch/YzXR+Hf7Ngq5530uPQPBsbqKJLIWAiA4Td4sOjuIAgUNoCJySlq4qyb3QznIc7a6vc3bzHM1dvEkmNkQpbFGA9kTZ0ipLOsETVWiy022x3utxZX6fTH9ArAy5AJBUMSmI8osx4853rPHPpIh7J9btr3L6/QRkkpYcoScmDxZclzUZjtJheIQ4QxiwzH4V/D1qmezXKB84o3HdCE5VR0Gq1qNcbZP0hSqtRsL8KBCk9yocqSqSQFKXFBgjOsuNy7v7gJxTDjGZaY7m9QKvWQCEYljn9LAcpSXZ6oAzbg4LNTr8qo+QdwSiybIi0BbEK3Nka8PbNVQieK1dvcuXGbXrDnCAVUml8Ue0UMBj0saVFR6YquPIRhFn3o49MGEIIXHDUa3VqtRqboxBrGNWTNbEhSWt4ESOHJcOsICtydOnxAfJ+Tqf0HF5cYGtQMCi3OdQGW5RIJShtiYkTXG7p9DsMihxUFbotM0eW5ZR5ictzEiNRq1v88M1fEsqM+/fW6PUzVBST6pjtQZ/SVnPEnbt3cd4Rq6QyjT/EOeOhEPq8xekfhKa9VSUjFlvLLLSWuMMtnLWIUaqMt1U2oS2GSGdJpMcbcC4jBI9GI72m37MoqcmDZLU3rJYMV2ubaMV1ekVJLytwrqrn5ENJHEWU3jIo+0gFNkDRDfz9m79EAMNBVq0+HRX9HWYDjK5qay0uLJEm6Z532Y/er1O475KAD9N0m53InPNEJuJj587xxj/+GGP0qFZtACRKKiwWo2S1wonR8rNRdeRx5YUQqvIPSEXpPEhFmtbY3N6Z7Eow2XsWqgpnAmr1qi57lmX4smBze4cQoCiq+HoURaMAkhj9Vpw7dxYxvdnIY8S1H4UO6uwfmTDC+P/gaTaaVSbHFOTunJ8UUxwnRUzXvTLGEEXRLmTv3KSOYr/fZ21tjXa7TRzHkw0Zxwvth8Nqe6FarcZwOKyigMOSPC8xUQRilEOrqk+cJFXATDB5prW2Gjm/Qhj9IxOGcw45SvM/cbJaO1EWOcooCmfJ83xS42m6ANn49/gzhu+VUmxubrKwsEC73cZ7z87ODnEcE0UReZ5TFAVKaQaDDGM0VfpUQCuDFY7gKyYHAcaYKv5uDNoYut0ubhRKjowhK/Kqs0xhd3uQoUcYMR84C/1xbnaQINUo2w8fWFxcJIljpAAbqsozURRRFAXGmD1bPMgRJlQU5QQFHe/vBzAcDic71yRJMknXH+9oMxgMCL5Koh6jzON0oMqKg6IscaHAxDHSWaI4RkcRhECaphRFMVKNFSodRryokjt3aTbd5oGttKfOmwexz9KHYk3t1wBrLYrAkSNHqNVqFGVBNsxAiwkD8zwfgXl66p6M6vhVmwymaYq11Wgqy3JShHE8usYFVdI0RQrJYJCPBFwdy/IcAhgzAkVllYQdRLUQv6qQtZsL5kaF8KVS2FHdDzEVWHrYu+/Hj9mqbrP3+egmcMB6R6QUx44d4+jRo/T6vSrI76vJciyEcYWb6VJ1xphJo0MIxHHM4uIi1lqGwyFpmqK1pt/v79nTyTqH1hEAeT6qXCDGkE/FfKEk0ugqFUkKkJJytJZvZWWFJE4mqaJC7dYqn473fNiYVZVdKfZWFJv9zF6w37Hp47s3r9bg1RsNPvfaawTCCG4Q+OApy4I4jjG6gsqV0lRZKrvFuIqioNvtkmUZnU6HLMswJiKOk1H6kKTfH9DvD/E+EEXJKHlaEMUxCIExEUprEFXVBhkECkllJEt6Oz2CC5x/4mOcOnWGwjqEUFXwKlQRvqrM5MFRvnnHpnlzoDB4hHXgjwIX70dKSUrvEMLz7AvPkfybOtIodna2UdXWdJX+1xFFYatRIgRC7O7zlyTJHl2cpimDQcH62nZVqbrWoiw83W6X4DMQUE72fgp4AYWrdo4MPqAQCFeVdYyjiLqu40RCv9/n2acvUm8tIlUMQuJ9WW3yGUbbY0297izDhditObgvRLQP78Z/PVRN7Ze09bBkrlk6e+YMX/rSl/jWf/qPNBoNsqxKOCsKi5CCKDI4F0b2foTS0WSSttbS7Xbpdrtsb29Tr7Wx1o1GiSFNU0IIoznF4kZYmPeeRqMxSayw1lYY12TnG7C2yoxpNBp8/vOvTUzbedvZzZk2Ju/+uJbTHn6NLn2omtpPNT1MZc2SVIoXXnhhUjBxvB211tWuEVWsmYmvMKbxdhDtdptmszn6bjBhwLRaKMtyYlWNLaJx1sp492UximgKUf1uNhs0GnVefPFTfPITz4x2euGBkqm/CvrAwMs8oYx7HVRhSoEgjiM+8YlP8Nqrr04mbIAkSTCRwZhowohqTognuxeM5492u0273UZKRb/fJ4RqN5s8z0mShFqthlJqcu3YoiuKYlIpxzmHNhqlqhBxCJ7DRw7x9a+/TpImo5VQD74f7B0VD5szp5PEx5/pzjNvJB04Mh6V+XMbNH2erGz9Wq3Gv/pX32BxcXFiNTnnULLaZHG8Ksg6OylGOd5H3FpLlmXEcczC4gJpmk56b1EU9Ho9vPcURTExfccCGltebrSQRkqIYkO9kbK4tMCXf/1LnH3iNIjxjssP6v39tMLsu48FMT2nzNtEay9VOQgHb5r4iAKaey27ghCimgSNMRw/cZxvfvObNJvNCUM7nQ7b21soJUc7c+1NFR1vpJVlWVVoOMsn2NH4vLF6W1pcpF6vUxQF/X6fPM/JsqzyRUb4UxRp6vWUw4eXeeGF5/jsv3iFZrOB1upXrppg7FQ+pjX1fiapscPkQmXJKKX4+te/zp07d/jWt76Fc5V37Kyn1+sRRQn1egPrsolDCEy2Eep2u/T6PZI4RUo5mXDHBXwDTBzASd7vCAOLtSY2gnarTrvd5tVXX+UrX/kKCwsLo3lkxJUPuOj6fdF0pO9RaLbXPFQ4oyFfoRIKT1VVTWjFH/7xHzPIM77zt99G5QX9bh8BGOUpij5OQhTHlXfsq6Vl1pYELZHWMcx6o8rTUBYlUkEUV2sEi7KsskXyDGcdUWJGm/gKpJKUPvDpV17hq197nUa9Xq0DFwI3gk8O5tmD7/w4nXSuaq8OIG5fv/a+YMn3k4oyfV0cC7a3N/nLP/9z/uLP/4JimDPo9/HWkpclA1tZRkmSTtJGK8hbkvUHBB8m2NRwOKTb7Y1edFQdIU33qDIhKghGRYaXPv1pfv/3f5+zZ89OPP1dNWzmrmOE8Wqsve8y/U6zZv/D54rxjapfH6j41+OMlNlzh1lGvd7kG9/4XVrNBf7DX/4VN2/cQCcpsfOEbuVtF64qTp/GMWVRYr1HSVWhv0Ux8TUajfpENY0h9fHGv1pr6vU6jUaDi5cv81uvf40zZ85MsKI9c+JB/Us8bnWpx6MDR8bDHL5ZBs86StPXj3vJRI+7nICnltTIBgPW19b43nf/nr/9m7/l2tWrlFk2Os8y6A8QUpKM9v9DVzWkut3u5N7D4XCPOTu2qBqNBs8//zwnTpxgeXmZi5cvc+zE8VGVZj1TXFhAUOynqiqbZ76ampfu9Lgj46HCmGXo9PfzcJn9roW9wrPBTlohfEBJiStKhoMhP3vzTb73nW/z5ptvsrG5Qa/bYzAcUlqHkgKTRJP1d2PfQQgxcfoWFhZYWVnhwoULXLhwgfPnz9NoNFheXgYlJ2b3tL8TxhN32F9ZjIUxi7hO0N6ZnXceWRiA5CFzxuMKY/ba2ZGy6zwF3KietAhUK1yFJHg/+u3o7Wxz+84drl+/zo9+9CNu377Fzs4OZWnJ8srSGgwG1Gq1iWnbaDQ4d+4cTz75JCdPnuSZZ55haWlp4pUDBFlVWBu3ZfqdKtqdM2aZt58wxudOC2PWHfjAwtiPHlUY+z08EEbJbEy2AJIInLUE50nTGGuzSa8PIUyS4bq9HsVgyPb2Npubm2xubmKt49y5J7h8+TLNZnNkOanJtqZjaMRaW0UfZ+qe723r+xfGPMT2cYTxkVXvnG7IvMZUhyavjfNV9K5wOT5Ue7iiFEmSVA5jktBcaLPiA1pIjNL4UaGZYVZljcRRFQ8XUuKsBUY1rEa1q4QoEEqNMhr3LhV7GNgXwm7cdQwYCtjV9+Pv9jFqHsXyfKSRMTsS5vWMh9Hcqgrja+dMfrs9azcnYCzAcUbimBFuAl0z5sjcmEMIYVKbZNzqMPmx+64H/j0D3U6d8VCz92EO9NyyeA+jDwsymGbIhFkzw3v3jN0rJj/F3vjynpvOae/k92wbJn3iQYPjge+mnjv7DrN0kAEzVxhz7vGR0KyOnj02/v1+ncn/P9AeYTxMb35YNP2ceT7Lw0bew9CjRxm570fVPgrNM3sf9f4PqKl5Q+lxEdt5NO85szp53pw0fe1e1fDw9jxUqI/AqNlRe8CZjJXVLHz+KCTEg5s5/jP9V6R/FsY/IdIzsSpmgovV/2EcAAnsNeb2JyHEHvTzca6dpnnm5ewq3MeG9h/juY8z/wh50LmePW8t/N5/Eei9OOTeqXFs44+r51cPZvoOB7Rw142YbvD4KePr9wvdTl/zOGjwBxXEoxox+523v/BCJYDJv36Gf+JBa2rP5Q972AHC+KD2yUfR2/+p04GJz/AQE/BhHP8A/HuYg/SoJuNBjtdB5z3OPR/pXPFwdh1YC30/vbnHxJzDtFDptj3XTS9xnp2Z5j1jGvGdNnlDeDAb/HFo1sufZ3LvZ2LvR7to9AHPJDy00R96QsI0w2efvp8H/rDjs4De44y4/UbCo2qA/WIXD7SZB6+fnSf3lcVoXv6VwSH/Nen94G+/Wqoy5P9ZGP+E6P8DjnJRqKQFd7oAAAAASUVORK5CYII=\" y=\"-21.387033\"/>\n   </g>\n   <g id=\"matplotlib.axis_1\">\n    <g id=\"xtick_1\">\n     <g id=\"line2d_1\">\n      <defs>\n       <path d=\"M 0 0 \nL 0 3.5 \n\" id=\"m839a88af9b\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n      </defs>\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"33.521954\" xlink:href=\"#m839a88af9b\" y=\"134.387033\"/>\n      </g>\n     </g>\n     <g id=\"text_1\">\n      <!-- 0 -->\n      <g transform=\"translate(30.340704 148.98547)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 31.78125 66.40625 \nQ 24.171875 66.40625 20.328125 58.90625 \nQ 16.5 51.421875 16.5 36.375 \nQ 16.5 21.390625 20.328125 13.890625 \nQ 24.171875 6.390625 31.78125 6.390625 \nQ 39.453125 6.390625 43.28125 13.890625 \nQ 47.125 21.390625 47.125 36.375 \nQ 47.125 51.421875 43.28125 58.90625 \nQ 39.453125 66.40625 31.78125 66.40625 \nz\nM 31.78125 74.21875 \nQ 44.046875 74.21875 50.515625 64.515625 \nQ 56.984375 54.828125 56.984375 36.375 \nQ 56.984375 17.96875 50.515625 8.265625 \nQ 44.046875 -1.421875 31.78125 -1.421875 \nQ 19.53125 -1.421875 13.0625 8.265625 \nQ 6.59375 17.96875 6.59375 36.375 \nQ 6.59375 54.828125 13.0625 64.515625 \nQ 19.53125 74.21875 31.78125 74.21875 \nz\n\" id=\"DejaVuSans-48\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_2\">\n     <g id=\"line2d_2\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"80.41271\" xlink:href=\"#m839a88af9b\" y=\"134.387033\"/>\n      </g>\n     </g>\n     <g id=\"text_2\">\n      <!-- 100 -->\n      <g transform=\"translate(70.86896 148.98547)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 12.40625 8.296875 \nL 28.515625 8.296875 \nL 28.515625 63.921875 \nL 10.984375 60.40625 \nL 10.984375 69.390625 \nL 28.421875 72.90625 \nL 38.28125 72.90625 \nL 38.28125 8.296875 \nL 54.390625 8.296875 \nL 54.390625 0 \nL 12.40625 0 \nz\n\" id=\"DejaVuSans-49\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-49\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_3\">\n     <g id=\"line2d_3\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"127.303466\" xlink:href=\"#m839a88af9b\" y=\"134.387033\"/>\n      </g>\n     </g>\n     <g id=\"text_3\">\n      <!-- 200 -->\n      <g transform=\"translate(117.759716 148.98547)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 19.1875 8.296875 \nL 53.609375 8.296875 \nL 53.609375 0 \nL 7.328125 0 \nL 7.328125 8.296875 \nQ 12.9375 14.109375 22.625 23.890625 \nQ 32.328125 33.6875 34.8125 36.53125 \nQ 39.546875 41.84375 41.421875 45.53125 \nQ 43.3125 49.21875 43.3125 52.78125 \nQ 43.3125 58.59375 39.234375 62.25 \nQ 35.15625 65.921875 28.609375 65.921875 \nQ 23.96875 65.921875 18.8125 64.3125 \nQ 13.671875 62.703125 7.8125 59.421875 \nL 7.8125 69.390625 \nQ 13.765625 71.78125 18.9375 73 \nQ 24.125 74.21875 28.421875 74.21875 \nQ 39.75 74.21875 46.484375 68.546875 \nQ 53.21875 62.890625 53.21875 53.421875 \nQ 53.21875 48.921875 51.53125 44.890625 \nQ 49.859375 40.875 45.40625 35.40625 \nQ 44.1875 33.984375 37.640625 27.21875 \nQ 31.109375 20.453125 19.1875 8.296875 \nz\n\" id=\"DejaVuSans-50\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-50\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"matplotlib.axis_2\">\n    <g id=\"ytick_1\">\n     <g id=\"line2d_4\">\n      <defs>\n       <path d=\"M 0 0 \nL -3.5 0 \n\" id=\"me6af93a7b3\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n      </defs>\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"33.2875\" xlink:href=\"#me6af93a7b3\" y=\"22.552579\"/>\n      </g>\n     </g>\n     <g id=\"text_4\">\n      <!-- 0 -->\n      <g transform=\"translate(19.925 26.351798)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_2\">\n     <g id=\"line2d_5\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"33.2875\" xlink:href=\"#me6af93a7b3\" y=\"45.997957\"/>\n      </g>\n     </g>\n     <g id=\"text_5\">\n      <!-- 50 -->\n      <g transform=\"translate(13.5625 49.797176)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 10.796875 72.90625 \nL 49.515625 72.90625 \nL 49.515625 64.59375 \nL 19.828125 64.59375 \nL 19.828125 46.734375 \nQ 21.96875 47.46875 24.109375 47.828125 \nQ 26.265625 48.1875 28.421875 48.1875 \nQ 40.625 48.1875 47.75 41.5 \nQ 54.890625 34.8125 54.890625 23.390625 \nQ 54.890625 11.625 47.5625 5.09375 \nQ 40.234375 -1.421875 26.90625 -1.421875 \nQ 22.3125 -1.421875 17.546875 -0.640625 \nQ 12.796875 0.140625 7.71875 1.703125 \nL 7.71875 11.625 \nQ 12.109375 9.234375 16.796875 8.0625 \nQ 21.484375 6.890625 26.703125 6.890625 \nQ 35.15625 6.890625 40.078125 11.328125 \nQ 45.015625 15.765625 45.015625 23.390625 \nQ 45.015625 31 40.078125 35.4375 \nQ 35.15625 39.890625 26.703125 39.890625 \nQ 22.75 39.890625 18.8125 39.015625 \nQ 14.890625 38.140625 10.796875 36.28125 \nz\n\" id=\"DejaVuSans-53\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-53\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_3\">\n     <g id=\"line2d_6\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"33.2875\" xlink:href=\"#me6af93a7b3\" y=\"69.443335\"/>\n      </g>\n     </g>\n     <g id=\"text_6\">\n      <!-- 100 -->\n      <g transform=\"translate(7.2 73.242554)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-49\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_4\">\n     <g id=\"line2d_7\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"33.2875\" xlink:href=\"#me6af93a7b3\" y=\"92.888713\"/>\n      </g>\n     </g>\n     <g id=\"text_7\">\n      <!-- 150 -->\n      <g transform=\"translate(7.2 96.687932)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-49\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-53\"/>\n       <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_5\">\n     <g id=\"line2d_8\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"33.2875\" xlink:href=\"#me6af93a7b3\" y=\"116.334091\"/>\n      </g>\n     </g>\n     <g id=\"text_8\">\n      <!-- 200 -->\n      <g transform=\"translate(7.2 120.13331)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-50\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"patch_3\">\n    <path d=\"M 33.2875 134.387033 \nL 33.2875 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_4\">\n    <path d=\"M 131.758088 134.387033 \nL 131.758088 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_5\">\n    <path d=\"M 33.2875 134.387033 \nL 131.758088 134.387033 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_6\">\n    <path d=\"M 33.2875 22.318125 \nL 131.758088 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_9\">\n    <!-- Originale -->\n    <g transform=\"translate(55.352169 16.318125)scale(0.12 -0.12)\">\n     <defs>\n      <path d=\"M 39.40625 66.21875 \nQ 28.65625 66.21875 22.328125 58.203125 \nQ 16.015625 50.203125 16.015625 36.375 \nQ 16.015625 22.609375 22.328125 14.59375 \nQ 28.65625 6.59375 39.40625 6.59375 \nQ 50.140625 6.59375 56.421875 14.59375 \nQ 62.703125 22.609375 62.703125 36.375 \nQ 62.703125 50.203125 56.421875 58.203125 \nQ 50.140625 66.21875 39.40625 66.21875 \nz\nM 39.40625 74.21875 \nQ 54.734375 74.21875 63.90625 63.9375 \nQ 73.09375 53.65625 73.09375 36.375 \nQ 73.09375 19.140625 63.90625 8.859375 \nQ 54.734375 -1.421875 39.40625 -1.421875 \nQ 24.03125 -1.421875 14.8125 8.828125 \nQ 5.609375 19.09375 5.609375 36.375 \nQ 5.609375 53.65625 14.8125 63.9375 \nQ 24.03125 74.21875 39.40625 74.21875 \nz\n\" id=\"DejaVuSans-79\"/>\n      <path d=\"M 41.109375 46.296875 \nQ 39.59375 47.171875 37.8125 47.578125 \nQ 36.03125 48 33.890625 48 \nQ 26.265625 48 22.1875 43.046875 \nQ 18.109375 38.09375 18.109375 28.8125 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.1875 \nQ 20.953125 51.171875 25.484375 53.578125 \nQ 30.03125 56 36.53125 56 \nQ 37.453125 56 38.578125 55.875 \nQ 39.703125 55.765625 41.0625 55.515625 \nz\n\" id=\"DejaVuSans-114\"/>\n      <path d=\"M 9.421875 54.6875 \nL 18.40625 54.6875 \nL 18.40625 0 \nL 9.421875 0 \nz\nM 9.421875 75.984375 \nL 18.40625 75.984375 \nL 18.40625 64.59375 \nL 9.421875 64.59375 \nz\n\" id=\"DejaVuSans-105\"/>\n      <path d=\"M 45.40625 27.984375 \nQ 45.40625 37.75 41.375 43.109375 \nQ 37.359375 48.484375 30.078125 48.484375 \nQ 22.859375 48.484375 18.828125 43.109375 \nQ 14.796875 37.75 14.796875 27.984375 \nQ 14.796875 18.265625 18.828125 12.890625 \nQ 22.859375 7.515625 30.078125 7.515625 \nQ 37.359375 7.515625 41.375 12.890625 \nQ 45.40625 18.265625 45.40625 27.984375 \nz\nM 54.390625 6.78125 \nQ 54.390625 -7.171875 48.1875 -13.984375 \nQ 42 -20.796875 29.203125 -20.796875 \nQ 24.46875 -20.796875 20.265625 -20.09375 \nQ 16.0625 -19.390625 12.109375 -17.921875 \nL 12.109375 -9.1875 \nQ 16.0625 -11.328125 19.921875 -12.34375 \nQ 23.78125 -13.375 27.78125 -13.375 \nQ 36.625 -13.375 41.015625 -8.765625 \nQ 45.40625 -4.15625 45.40625 5.171875 \nL 45.40625 9.625 \nQ 42.625 4.78125 38.28125 2.390625 \nQ 33.9375 0 27.875 0 \nQ 17.828125 0 11.671875 7.65625 \nQ 5.515625 15.328125 5.515625 27.984375 \nQ 5.515625 40.671875 11.671875 48.328125 \nQ 17.828125 56 27.875 56 \nQ 33.9375 56 38.28125 53.609375 \nQ 42.625 51.21875 45.40625 46.390625 \nL 45.40625 54.6875 \nL 54.390625 54.6875 \nz\n\" id=\"DejaVuSans-103\"/>\n      <path d=\"M 54.890625 33.015625 \nL 54.890625 0 \nL 45.90625 0 \nL 45.90625 32.71875 \nQ 45.90625 40.484375 42.875 44.328125 \nQ 39.84375 48.1875 33.796875 48.1875 \nQ 26.515625 48.1875 22.3125 43.546875 \nQ 18.109375 38.921875 18.109375 30.90625 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.1875 \nQ 21.34375 51.125 25.703125 53.5625 \nQ 30.078125 56 35.796875 56 \nQ 45.21875 56 50.046875 50.171875 \nQ 54.890625 44.34375 54.890625 33.015625 \nz\n\" id=\"DejaVuSans-110\"/>\n      <path d=\"M 34.28125 27.484375 \nQ 23.390625 27.484375 19.1875 25 \nQ 14.984375 22.515625 14.984375 16.5 \nQ 14.984375 11.71875 18.140625 8.90625 \nQ 21.296875 6.109375 26.703125 6.109375 \nQ 34.1875 6.109375 38.703125 11.40625 \nQ 43.21875 16.703125 43.21875 25.484375 \nL 43.21875 27.484375 \nz\nM 52.203125 31.203125 \nL 52.203125 0 \nL 43.21875 0 \nL 43.21875 8.296875 \nQ 40.140625 3.328125 35.546875 0.953125 \nQ 30.953125 -1.421875 24.3125 -1.421875 \nQ 15.921875 -1.421875 10.953125 3.296875 \nQ 6 8.015625 6 15.921875 \nQ 6 25.140625 12.171875 29.828125 \nQ 18.359375 34.515625 30.609375 34.515625 \nL 43.21875 34.515625 \nL 43.21875 35.40625 \nQ 43.21875 41.609375 39.140625 45 \nQ 35.0625 48.390625 27.6875 48.390625 \nQ 23 48.390625 18.546875 47.265625 \nQ 14.109375 46.140625 10.015625 43.890625 \nL 10.015625 52.203125 \nQ 14.9375 54.109375 19.578125 55.046875 \nQ 24.21875 56 28.609375 56 \nQ 40.484375 56 46.34375 49.84375 \nQ 52.203125 43.703125 52.203125 31.203125 \nz\n\" id=\"DejaVuSans-97\"/>\n      <path d=\"M 9.421875 75.984375 \nL 18.40625 75.984375 \nL 18.40625 0 \nL 9.421875 0 \nz\n\" id=\"DejaVuSans-108\"/>\n      <path d=\"M 56.203125 29.59375 \nL 56.203125 25.203125 \nL 14.890625 25.203125 \nQ 15.484375 15.921875 20.484375 11.0625 \nQ 25.484375 6.203125 34.421875 6.203125 \nQ 39.59375 6.203125 44.453125 7.46875 \nQ 49.3125 8.734375 54.109375 11.28125 \nL 54.109375 2.78125 \nQ 49.265625 0.734375 44.1875 -0.34375 \nQ 39.109375 -1.421875 33.890625 -1.421875 \nQ 20.796875 -1.421875 13.15625 6.1875 \nQ 5.515625 13.8125 5.515625 26.8125 \nQ 5.515625 40.234375 12.765625 48.109375 \nQ 20.015625 56 32.328125 56 \nQ 43.359375 56 49.78125 48.890625 \nQ 56.203125 41.796875 56.203125 29.59375 \nz\nM 47.21875 32.234375 \nQ 47.125 39.59375 43.09375 43.984375 \nQ 39.0625 48.390625 32.421875 48.390625 \nQ 24.90625 48.390625 20.390625 44.140625 \nQ 15.875 39.890625 15.1875 32.171875 \nz\n\" id=\"DejaVuSans-101\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-79\"/>\n     <use x=\"78.710938\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"119.824219\" xlink:href=\"#DejaVuSans-105\"/>\n     <use x=\"147.607422\" xlink:href=\"#DejaVuSans-103\"/>\n     <use x=\"211.083984\" xlink:href=\"#DejaVuSans-105\"/>\n     <use x=\"238.867188\" xlink:href=\"#DejaVuSans-110\"/>\n     <use x=\"302.246094\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"363.525391\" xlink:href=\"#DejaVuSans-108\"/>\n     <use x=\"391.308594\" xlink:href=\"#DejaVuSans-101\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_2\">\n   <g id=\"patch_7\">\n    <path d=\"M 151.452206 127.587873 \nL 249.922794 127.587873 \nL 249.922794 29.117285 \nL 151.452206 29.117285 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p09d509db69)\">\n    <image height=\"99\" id=\"image5b2022bb5a\" transform=\"scale(1 -1)translate(0 -99)\" width=\"99\" x=\"151.452206\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAAGMAAABjCAYAAACPO76VAABGNklEQVR4nJ29Wa8s2ZXf99tjRORwpjtWVZNFdqnZbFJE0y1ZkgUBgi0LlmUY0pMBw9/A38WG3/xJ9OQnw5YAv1Byj2STIlms6U5nyimGPflh7cg851axm1ZWJc5w82RG7LXX9F//tbb6n//3nxQ2PY0uXCw0axvIhzfs3vyCdPcFT5aJl2ceW3pUDpScSQmmBGMs9CFzGAshFpYXHa9ev+Lm5hooLLoFy8UCYxXeWLqu5eL8HK0VVmuM1hijMVbjjEVrjVKKq9ZjjcFaizFGfq81pRRKKQCY+tqcMylFpmlkGAb6vqff7QkhMGDZjpGv7npuR80+twS34sW3PkG1C/7X/+1/IU89Vicak/AqYUioksgxHD8rmzMKUEoh53y8jofX45xDKYVSCuD4/cPfzff32x429Ac+sp7zpYPpnsO7z5i2n9PkW87OYaF7CHcYHUkxMsVCSJZQGsbsmHLDmBV9iGy+/IL9fofR0LUtZ6sli8UCaw1t41gvllhvMEpjFCIIY2ThtcZYufDWVSFYU4VhUEqT683nnLHO1YXI5JTRZCwFpzJ4jVUKozKgGDqD0ZpmymzCjsO7zzmkQr59DV6jvUZRSERKyRgKzjkMhpQSPQU4LfL8KKWglDp+nR/vC+F3fVhIvOwcrcrcbK45vP2c3L/i4qxw3ipsChh6hqEnpUwqhlhaIp6QNWOEfZ/ZDYl0uMNoWC86zs7OWK9WdG2Dc4auaVi0DUqDAYxWGKNFEEY0xNad0ziH1QZtrAjCaEBTgJwLORecM+SUiDmhAV3AqEJjDNY7Gmc4pKEulmfZOVajxm4m+n5DOvSYPJDGhNIW4zxWK1TRKEBjUcVglIHCUQMeLrjW+pFQ3hfWN/38NwrjbNGy1pHdzWuGm6+w04G2MSwbsGXEKLDasBsGlLZgPGhDToopRg59YNcn+jFz0Tja1rNeLVmvVywXHU3jcdbgrcVpcM6IVrwnDFtNlmiGRxuDVhZljJgoFBkgZVQpGGPlZoNCNm5BayWfZeTnOPR1hzqWpWXZWpy2bIeCxfLD73zEz3/zKSpN6AzGeow2lKxJEVIElRVFP1609xf+m4Txvqb8LoKx5+uO+PZzbl7/kml/y7rTXKzOaMyAKhPWtOScSNlhtEcpTy6GaZo4HBKHPpGSxlnD06tLGm/pukaejadtPN4ZDAqlCt6oKgyw5sFTgzGgFFg7a4RFKQNVGORCUlBXn1IURQEKtFKgNViNQaE1HIKYCo0CpemsxRbNymdWreHv/+ATwnjPXb9hjJEEmKbBakcohRCBpCg+f+NO/5sW/H3/8TsJo7GK23e/4v72c5aN4eLsjPOlIw4JcoM1jl0/YewFyihS1oxjYL8fOOwGYoJFu6JbNDx9spD1MJrGWxpvaJ0VYShQqmB1QSuF1WC1/Ow0aF2w9TVKK5QycvFKUZBnLsgzFyi5OlOgmgytDSix+VorrDOoWNAZyIlM4sJpWq1ZOMcPv/sRYbzjZ5/9mt+8vqMfJ5RSmKZFa0fJiRihuPQ7L/Tf9Jq/TSB2v7ll8/ZXqNKzWl3SdR6lFaUYtFmSKfT9lsZ3hDQxDAe2+4H9YUeKga71nF0ZLi46ztqGnBIaReMdrbd4p7Cm4Iyh8Y4cRvSsGVrhtHxvNDgNShcCovolA6pQVCHlTMyFmDIpZWKNekoBpTRKGzAZnQ0K8SPOWzFuIZPChEqZBi+aQuTlWcvf/9EfolymD4mvrjekmEk2oXWLNoY8ZSiB99dwXuyHfuP9f/tdNeIojE9/+Quuhne8uLxisfaEHEhDQSsPKXN/GCicM4ZI30e2+0A/jCgK61XD2eWCiycNyyW4qCkanHV0bUPjHZREmiZs42l9RygRq6i+SGOtwhqF0QZjFFYbxghZJYlfVCGTSbkQUyHGTEqJnCOGgiGjqZqBoZREyYWUI846tEowBTIJXcBri1WaEEc6p/no+RV9+i5BZZrffMXr6z3jlEgqg27QFnLpKZSvhauijSKMlB5rz/uC+d2E8ekveb6Aq6sVRsPQ79HFsOwWHA4929sDTy4vub19zW7Xc+gHUIVu1XL5bMnV1YJ2YUGN6LTAeEfXdSwXHVYr+sOBYRhQOcOqwzuDZtYEjTVKNMSaYxyex0RWJ8ec0cQMMWamFEUYIWANoMU/aKVRaFCKXMNfYwy6KLAFNCijWThLKpp+AqVhHwY+fPmM0npstyb97DN+8/ktUxhxpsFoS35v0R4JBQWqCqFqx2PNUFV7FXJDD97n9IYijB+dveG/fP6UPG7kRjUUq4j5GtNMqIsdX/S/5vrwlkKmPXdcrFdcrtecdQt8UfjR0jUtmD3eORobsLmgisK5wvpyjdZKwpMCBU2q/iBrRdSGEDVayw0kfcA6R4yF3WbP3d2G3bYnhExOEGNis9nQdS1t19C2jsWyYbFoUaqQS8I6Qx47UooUHchdT4oD+/QGcoBFQhfFEs2T9pxEDxcN5999znrq+ctfvOHZB3B9syHoM6zzdF2H0YoUAtM0knNCGcj5gbhqUJGBoiRwmB86TygehMVHgcrv7MV6QYihmgxLLomUc5VhIaXIdndPKYWmaVguWtqmQddkxzqHc/7obN/fNaLep52jMKddo+oFM2e3skkyic1m4HAY6A8DfT8xjiPTlIhBnPYwDEzTyO1dAhK+sazXCxaLluWqY71eolBobdCqUHQDTkGyUAKFTCoQEwzjiLWW9XrFC9XyB8lyux959fodq4tzAp6CIowDSUuCaLSaFQFr7dFMgRKFrushv9JHjZn/6P28BcBenS2h38k/VnWnZGII7Ic9h/2eFCJKwaLrOFutaL3DKo1GYY2h9R6tNDmaI3yhtbjJXNSDD1YoI3837w6F7KRUCromVykl9ncbNts94xBIqVASlJAgFaw2fPKd72KMJsaJECcgYYyEz+P+ADGxXLUSmWmN0U4+txhK0uSSUDmLPxonlosFxYJpFW5xwW5IfPbl/yOQTUGChpyOuYwxhhACKSWapjlBI0fTpShVCKUapKZpjqbpm6Ivu2otJlhyjBIyGkXJhUN/4Pb+liGOdF1HTIFF17JYLGidw1Iw1d5prWmcZSr6KAh93A0n/Ga2nUprtFISBdXLyzlLdl0y0zARp0gOCXJBF/kM21oUBuccOUSscnjr8FYjaUZhCoJRpSnhmoC1Bo0kmFoZSs5kFCEmQowkFNoYls2SYgtJZYx3fPL73+WDv/hrhnEgZIU2FqMVWiu0Ai2KfcSqTgs7a0S1C0qffMMJVXmwJqe/tU5HsVmm2usUGfqe3XbDYb/HNJblYkFKkdZ7vLO0jccphU6p+iTBclI0gjdp0Q5KoTxwZADGCM6ktRKHi6pCEJOYcmbqJwyGRdMRdCKlUoXg8b7FWc/9/T3O2ipshTYKYxRGKXQpGGNIqaB1AavRRj6zpEyMihAj4zRhXIPRggR4q3AmUrLi+ZNL/vDvfIc//4ufEsaetlvQeF+jJ1VxsgwUYgwnlyFOkZNFykcz1feHbzRR889WxZ6YEs5boDANE5vtht1uj66mqfUNKI+3Dqs1zloaY1AxkkMk5yQ715iKxMoOKvlhqFfVUcsOnR1YBZzIBWLKxBhJU6JxDa1rCSERQoKiaNsFXbfAmGomtSLEiWkaKTkJJFIU3ni8d+xzBgR0tNZhTaFoSDHWTZBprCOGTAgRpWSzjYeAN4bvffJdvvzsC173G3SOOOVFyDkTYqRUJxemSfIcucHTvc7+UJUqjP5raO8MfALYEg7EYvDak1KgHw7sDztyTqzP15ydrUGBb1q81UfE1WoFxqBLPpoZrfXJZyhFnh23UhWCBqUM2phjhp1zTepKIebMlBKqKKx2soA6YYjkVDDKoDLkElm0rdxMzoQ8MU2RnAPjNBLChLMGzs6x1gIaYx3eKUpWpJSwrkGHiHeeIYyEKWC8p3GOPRMlTnz4/Bm///G3eD38hr4fSGHEaFBFkUMgx4jxDSEEjJV7LY8QXtmESs3OnUfCeATHU7AqDNjmksM4sN1v2R/2aK05P1uzPFvjnSOkgLcaZwSaVqmQVcYpMM5jlGYYe1qnHzlwkNrHrBilJmeqakapsXdRilwUIUldxNuWkiCkmmGX6sd2e7ZpU5HbjLUCccco2lnIxCkzDhNBa0LZEmPCGI33Duec2H7rsNZjXaCgcNaRKaDAAq23xBjwzvKDP/iErw6Jn/31X3PYbSh5gXWeFAMpZVzd/THGqgm6RlNzXHXSEO8boFT/mI8Cmb+3qkys1gs+++xz3r57S1GwPluxWC3JKpNTxFmLztB4i9WKkhM5FrAG76WuEIaRztvjhz8MdTlqhUil6DnSkJ1UlJbcIwv25GzH0PeEMByjrhAC2+2W7XZLCJEQxDk/VHPxE4kQAs45tn3PFALaKLzTWLPAGkVGUdBQNMMU8E2H9ZphysQYaL1FK0M/BD56+YTvvHvGL37+c6YpYO0kC50nSlaoko8anquPUFWws1COyeBsyr5BS0op2I8+eMnbL96x3e+w3uMbj1KF6+u3pJS4urpkvV5W6FtjVM2YjcbWN3fa4JdL+v0d3VVH2zTElJjGiRACMUsRyDjLGCONtpjGUVDEKTKGzGGciKWANuwPPdM4cnd3x/39PX3fM00Td3d3HA4H1usVf/RHf4S17rgrx3HkcDiw2WzY7/eSl7SG5f0KrWC1XNB1EjbnVEhFcb/bEabE85cvsc6hVcYoaHxD5zU5bNj1Bz58/ow/+Pgln33xFft+YNgNpKJx1rPZbHBtV6PCugFlqSXCOxotSFk0/aHPeAiX2FdvX7HfKVJJ+MaxWHYYZ/GtJ+fEarWicR4oGCVKqNHHD5Q3FNzG1CKRkmrMMfkvRV4aCwz3W7plYaEszjegDTFl7jc7Xr16xd3dHcO7PTFExjBSSqZtGs4vzvjkD7/Hs6dPefbsKSkljLEYYyuwKZn5NI4Mw0QMkV0Zud/eMw49P/3pX5NzQKnC1cUZLz94zvNnL3n9+jUhBJSyaBAznCO6aBpdmFRh6TUfPn/Cu7fvGIYB4y2xGKasjqXhlB9ESDXsVTXDUEdA5ZT8fVOxyu72B25uekBhnNyYMZqmaQT5tJocg5iqgoByCgkhlZotJFpJHdgY0ZaSs8T0WULAnKDEKFFI3zNMgXGK3G+2vH37jrdv37Hb7ogpctk+YXXRsj5bc7Zes1otaNuGtvNY64hxYnfYobTBWYu1DmMcyjhsa2ltQ4qZYbjDOU8IgRInYsyUktj3Pfd3G6wzGOuYpoBWFqMd3sgOTiniNDRW0TWWb334ks8++4z9bktSBWUMKZZjQvfbHoqCKrUIoIyYrwfFqIelWzvGxBAm2qZFW12FV2oZVGrTJUUpCKlaMq2CMLWoY7QWsE6bI0zy0DGVUgSrSYntbscw3bM/9Gy3e7a7Pf0wUtCszs9ZLJZcLp/ivT9WC401QKJYQyBzt9uyO+yhyGcaI5GX1haKqj4lElUEJbu3lKbmOBnvHWiDVgbljDhjE3GNq0hCgJhwqtBoRecUT85XvHx6xbvre+73I64tWKMJsZBTkhT4oVzK7MCP1ZhvFpY61dDtYQo0XcdqtaJbLrDOHjPWxjmc0RRdk6m6+CKIqhl6BvioNWweC6NCz6WarnEK3G923N7es9v3pFzwTcv67Jyz8wu6rsPRidkpsB0GUgrEONF2Hucsu+FArLA6KaNSxsSMMZKPjGNkmiacr1prDBZfNVfRtg7vBeLPKTFU9EFVjVc5U5Ikw1ZlvJWa+svnT/nNV9dc37/GpIj1C9I0knJEW3NEE44a8eB5Ml+n1zz0G6UUbB8ST87OOD87w3sPOVNSRisttenK0iBX7dD6KBh1/Do7osqyyHPNIR8/rG4WlDYYY/FNwxKDNo5uuWK1XtO0HVprUlTElIjTBGRCHEkpMJVA4x19mE6gZkqQwSpNLhowRGDKGaYo8IU2NSqTiND5mucYIywSY6VsK3G07OIUEbgu47RETc+eXnF1ccavP3tFDImm1UJdKgVtmweCeN9U1XU4ieXxusyagZUIyjcC9sWUyDlhlWSouRaLKPqRZszPWRBzkSXnTIqSSeeUUZXzZEyhYPDOcX5+wWJ1VvGhTC4CL4wh4pyDmgsYK2VtVxpSnig5MeRI1JLVTlnwJYVcrzcWrSApRVSKMgWaxop2aI11Buc9isIUIzpA6331jwVVsqAGACWRp4RSCmcVqiTO10ueXq5ZtpbNUGiKJLoq/3a/od8zT+9TfR5pxur8HCLkmYNU42ZdSWM5JmzjSUqhVREHzntQeX3OiKs8I7kkDMJ7MhRy0WhjcNqgLWgTUToREyhr6LoFi8WCPkgQkHIglihBhW1JecQUxeXZku1uRw6BRA0TswCXRWkikVigtRJQxBiIMVGKUHysNTjjWXQLFBnbanKMkj9V6g+5EINA69ZIeSGhef7sCR98+JLb//glMUa896jy/pJ/80Opr2vGI6Cw65aYwyS4kjFYbTBK0XkvjA1gsViw29x/45u/L+mchVRWUkUzFWIqUFA0H3/729ze77i5vSelgvctF6s1vu2IMTIcBrJuMVbErpXDOgkQDv3Ioe9RRqGNRhlNptRaQkSZiKJwGAYO/UCOPevVCucMTePpuobVakEhkeJ0hLud8yQKcUyCN4mOE+OE1RKgNM6yHyMX52d88PIFf/GLL4gh4rsOXTT9lDiyVvi6qfpdHtbfjzxvNGq/qxfmaJuGRoFRNfN9e4M3Fucc3gm3iFKIfWRIQUhkWqM66PtRNKOCaDkVMIVl1+JsQ5gOeD1xtbbklcVai3OQ8p7duKMcNij1DO083lpBkkMkhoBJijOzxgVH2Ey4YBh2mTQOGB9otHCspmnHSkeetAUVN1g0rWlpY8LuJgzQtC0r6xn6PSUkcazGkVUSqGexZFkz+s8++4L11RXWN6QxcdU6fu/Cc98HSBMog1ECzecarGQlLMeIwDmogorx6MBnHFsfIXewM3dWiGauAmuS1eb6IuccNdc/AVw1WnropEtKNUafnbfY2mSSFKgwNE0DaLQaSTO4qEUrV6sl1hr2gxenqjU5V7NpDVnDFAK7wxarNUMIDIee3W5LyZnt/b2YjRrO2qXFGkPXNSwXC9oKLuYQxGHzAM5Wj9kexhiom6Hr2hqyZ4xWtG1D1y14u7mj7RT5IQAHoB4Yo29Qk0c/PrAstm1bKAPaWKzTWFvZDjmQi1yUc444TuSsyFnqujPhONXFKkXyiJKTfK03mVDoEInaUggsuo7iFUoLelqKRFjaaBrnWS6WNAdPiIlxGIjTSExJggUNJUWGw4H9Yc80juSUpP5+vHmpk4Qx8PntKxrvOT9bU66EoOCde0SonjeSrmE55WR6TTWB65UholEq45xlvVpxfn5O/OoOaxRxDKCtwB+FB/5DwNL3iQi/7WGdc9gcj9TKozhLOdZ4Hz4kgcvknMglU0qmoKsTzRIeFlB5LjcWSsrkIKFinCJKaZy2WG2Pu0MpVaF1RUyGoT+wub9lv9+TZqaHUkxhoj8MvH39BmM0F+cXrGtYPtehtdIc+gNfvvoVChiHnlIjn/Pzc9oHSMHMSBHYH5SSexFUWTbjCsNuGLGp4J1lvVxyeXFB4VPZiDnLRqlacDJEv5sQjsKAUmuzUm0jpSMF3yhdq3/pkbN+v0ByUm99XNyiyrEwr4qipAIkxn7EWIux4i+0kpsued5ShXHYs7m75vbmHX3fQylobaQOHQMpgcoZ7z1nyxVPr57Std3R7DnnGPqeePcl+/0OoBIaJkp9zXxfxpiTMGpJ9aEwcs4sjGMKgWgNWSmWXcvF2RkWqsN/kNgxJ3b//wQBYLVRNI0jxUhOiVzV1BgjJOAarj7sn3ioMvONyE2VCokXiq5AYS2vzmyRaRgwztOgsNpinFT8Ys6C8MbI5vYt++0taTpglZRQSylM00AYJ7SxPLk4Z7FY8eTiiqv1OW3XUTIYa2mblpgiLn2fd+/est9tsNX+z4/Z33nnamKojwnsfM+lhvlOG5w1tGgKhcY5Ls5WrBpLClFymwp9yG6d1aO8567/FmEsFgusEfMi4N7DHc8R8p1DX6UV5JNmKKhlTYnHjxoj/x+pOMIC0ZKkqUTSkawNpfoLBaQQGIaB3f0tVmWeXp7TNC3WCJi32Ww4HAa0tpytL1it1lxeXnF2dk7jGyj6WMDyxvHxxx/TNJ7rd54YQ83ayzEoUErhvXvkMxRzfaSQs2i6jgVv5d5DjhitOVsueXK15subLdZ4chH0+lhS+k+Ib61ESqP4jGKP0VFKEY5qbwXhrCqdU/UVVYuslURKQlEoeVbaUsut5ehXjDIkijTe1ODOe4WWnJMSE9N44PLykqdPn7FYLCkFDvuBi/MzxjGQU8Faz8X5Jev1OcvlmrZt0doy9BP7/Z6coe1a1us1YRoZx+EYnYUQaJqGtm2l+qcflEmPZeQT+aykQGMNVlkOU0SRWbQNz58+5dOvbmjPl8SQSVUI6pEQHvjhv00Y2+2GrhEMynlHTpkQxVxkFE3TfC360FpRaoY+mzStNc66r/sVjlHxMTqbpokpJGJJaBWwR/q/lGTHfk/z/BkXZyu8bxj6EWdgvew4W66E9aEs5+cXdJW14X2D9a10G4UgptNPrFYrKJlh6AVKzwLVtG1L0zQ4+yBwKQL5f63dK0TRfGcxFFSOeG84O1vLPSkFZHQxZPXNy/67KIm9urrCTVuctXUBhQxmjBVzRMI6Lf6g1PyhCMLpqrYYrUDlY4RyouYcUUQxWzU6adtOmCCVUX44DIQUj1pZkrDGp6GHnIkhQkk4I+zFUhTnZ1dMUyTFgG47rDXkGJiGHmc0i8WKL9/+hplGJI4/CUeq6+i67uSoj7mTwDhSDTwFLU3jyPX6L9YrMA69G/nWRx+QgdViQR+3CKFXv2eeOWrb3yqMUk45wVGKR5T1VASZnWg5hrynJLAcv1fVz0geMYesCmGnC+QudltjMCpRVMJQhFUYBTF9cnmOt7LDsQ5nDEULhbKoRNN0kBOafNyphAmyghwpKRLGfb3WU13l4f3NuNDD3z9ahXkxlULnRKoI7oxcN9aw7loWCrbbDSULeFkJrXCsg/9t5acHwpDkLVNsqTv+Ad708IKqvdVaU8hfE3bOmZSToLRqrggqSeiq2hdVG1pAbFaSBLIog9UJpWVjPHv2XPKNWIkHxqEUpBRQKLquk++VRuki8PpUKFmRSyDlSN9PjygxMyqg34uqHjH7HjEDH3wtBZUSOmdBh7X0n1ycnfPs6QWfXm/wbYtGid+Yyc5lDnF/t1DXSgiXyCVVNPZEVJ53+rG4PpN9j5Faqal/ZgaL9ZEGIguNrvxaZSiVwCZ3mCk1H7Emk5NGZdG+1dkFw9ATU2acAsmKsENKFCJTjFjAOQ+6EEsgTpJUSlONsMTfF8TDjaVqieARQ+PBwsw01FIKRks7gqJglJbGH2c5X6/58IPn/PLt3dcW9pRrPPz6twkjx8paEBriXIQ5CUMd13b2FUXNwldHGr+uZmmmc5ZKSFVagzYoXcPiB0V5SfgyFC0E5VwLLb4hRqHcTCEQYmIOGXMpjNNAwWOspdSKn/gyuc5cJqbQg85HYcwCUZyy7oc0n4eaAbVHcAbwtNRHpK9EiM+N0iw7zUcffkj7F7/gGM8qqXk/yDreE9LfJIwkBLCcs8T7j+oTp11SHuyi+XfHhG/m1j54qoc/Vw2ZWdnHy6rlWlXKCXsqhaQ0znlyLoQQKqtDY4wDpQhhwlhNKVJ7LkV6MmQRNahEJkCRjqJYnXK98MfCKDP0c8qij5yvWiuxRhpIlRbHbI3CKYNzmg8/+ICnF+fcHMYjFHQM6Y/3Wt/3b9EO/XDXzDv/mJHqk2bkGY0t+ZFtNbWvwzmBOIypSVzl0halyUoo/7lea0Z8rXSqalBGWl2NRhlDQWOdxzctxnpQhoLCWIN1VmCKUkglkXKkkEBllM6gM8oUpDO5mqn4QDPeh3UeOPfyQBiKk0lztgKMRmO0tLrNrRMvX7zgu9/9bkV1OZm7oyR+d1jECiwQKSUhpaSTqZqbV6AQUzjegK4RktYyasJaEUix9pTxqKMtk90OCNuulujnDL2+VnyRwAjG2GpOLEpb7GSlFFzxLFvNU86RXFTVzAe9dlbhvCMepmNgMQcfs5maH7OAZOdysiOKY1uDsRZUJmIwRVqbVZbE9cnVJd/7g0/4f3/681NC9Z/4sL/NgT1+qEetUqVCk/POsdaijezuoh79WX39/IeStZ+aSHi0i+Ydqo0DCsbKxANjDSFGIKPqLu37PbFkdCmCKWnxO4Us4b59uPu/bl6V+i3Z2fHS63sVMEaBspQk+JrSGkjEEFicd3z44YdYJbHUw7hprnTKfq5QyTdA4fP+tUs6tClkvLRa1d1dSkFZLwNTtCWhcNZKpa/C2bpGHFk7rGtIzH0KM6nxhEuJ1oFzcrkCwSdykU5U0cwMJaHcoqL4BaXEZhvvjqXcnCOLphUtLaBLteG1OLbf77m+uYaxIY3gyoKuO6NtGpwx7O8nco6gC8tlJ8GDUShDZcQnQorEGAg5sqi7RhkxyyudETKk4ze3n2FNJOnEoApJO7Iy5JIoKdJahBg3jYTkZTWOxuNx2drmlNAP/Wp9kWAsp8Rt7kZ6tLMe7CPZ4JpTGFd7+kr99xkSSVJwEY1QKOxRdKJxhsM4StHpwWc8bD2TN3q8w44Y2IMgI6ZwjKagMCooxZ3ut35GiolpmogpiEkrol26Om2FYR6HobTwyObPN0Uir3EMKO0wZmbJzN1SIkn9aL2+/lAK7PuJ3vH7B9Kbvx5bxKrtVQ/+vZRy6u6sAhDAUEsNuC5+UnNWb44CE1s9V8UghIFSTiGoqdHY8bOVIo7To8V/38yWUggxHKHyOWJUCtrWY7Qj5cBcEigxE0Mi5kChoI2MYHJaAgbhXsk15VrBU9RKqNXCnTqaMF0FXVAqHwtb9aMerfNDGVnFKck7PquhKw8EJVHSKZs+2cEHC6DM0SFLxUieeXYOpcbhnKIVVXvelFJQs/NjPyD1379BG98XxPy7fAQnK94kbyQEiTw39Ris0xBhHAMpB1IU/6CLIAwkyJMgvKqxohkPupJOzBddTa86CksXISZoNCjxWadN/WjFHm14q0iPBXGMsR8LyNQWsYdTAciPMZEyR0VlDvNEAGUuA+fC7EH0nOkjzYoodazje+e/5nAfCuAhrvRNz2MjSsWHeHBfVD+ntEGpOaSXBNRqS0Yz9+pRWxYnnXClgFUYVaqgJRw01tB4Uxc5i8Yo87VFn++8HO/p0dLNZioh/TqPVedIKXmQJGlzqmlQHjZPzmZKQMLH9lu6jkgcI4o54tCIg54BNlWlIQjyHF19fbHn23v4Xy5f/z4fbYJEW8K1UnUWSSGlXE2HohRdS7+izWoOtZE+8VQsDXX6AhDnbiOjhZPlDLuYyTGCqYBpzlWwqvYcvsfHVQ8Eo4oIQyn7Ne04htv1gh5qxrwzv26mKt40KwIc2wJOwqC6eVmsCnKgSgZV8SM7+5jHux1O0whSVXHpHy9opC9QVY1IyPyQUuvqM0JQtGKMkZIn0iTN+eRyhM1LhdKPAYNS7M2Azw2lKJyV2nhK0hRqjaVxjsvzBYfrHWOYmMvMKSUUGWc1MSTA1TWd161uyyoU+9AvnGzyKVp+31QdhZGzELYeCkRlioaSi6DZx4U8pd5qJiqUAiWjShKyNamWcxPZPKZBfuNDP37N1xw4ME3jkUzhvccqqWQe+p4wTcQYOez3qDIH41UjagRWar2lXFm6I+4l1cyYReu1VjTO8uTJJV9cbwjTJLV9a8kxgS5o7QgpYUx5L6ytAERNrO37mc9RbR6Elg9N1eOQ9nH4iYo8SOXEec1hLCAjWXz141UIOcssqCwFpFJgGOKjzz1GUb/lGqqbYv60+ROnaaqdqHVxSiHkVFvOhgrvQOMcbdPROo/VhpIyUz+w3+5IcaQfE9qESmoQSCRlEb7RGqsV5+slWilSCpiSKEVLSaHehwyWebhw5Zjylxp5Wdc25Jzpuo62bclZRlWQy5HA1jTSXptTQqt5AoI6TtAEAeRKHurizJo12+5KdEhilsI0UVKqXU9igpyRhY9hxCpHjJGb21v6YaBddDx9+hSA3X4vrW0Lqdah5vkkQk2V0ReZbrmgbbcMw4HVeolvPdv9jpu7W4z1RwLd5eUlTbMg5cJmP5CDmChdQOuWxXJBaHsSsDv07Pc7aS1oW3y3IuXEfrvl6dUTjLa0vlqSAstuUeH3SWas+IeVUGFt9n0PZD766CPsOEy0XXNS9dmu14hpmiZKEmHN4WlKqYJ96tFrR6S1y2grfX9aUVQm5cAwTIRRKP8pJGIM1UbPlJiC0cIEs6Uhl1Jr2x6Aze0dsWSatj3O7XDOSWNkJUFrcyp5FqXYb++PuYUxmtV6SbNccBhGphi4uHpCDIkxJA77nvEwUEKq2bzFKIstisMQKCVidabRCmsVaX9gPwSa5QVn589oG4d3YOJcXYwVClGcAmJo25bdbscwDDhnWa0WTNPE8+dPsdqJ2YgxHuvBczIzV/dSEpCuVAR0RnjnwPboSzJQYtUSRQyZaQgM/cShD4TaUXRsTnmgRzFOjNMIFJZ6gdGG1XrNcrkECpvdljhMmBDY7/cY7/Btg1XCDrTOoa090k3nndc4K2MmKlnOOsP29pZcCk99Q0gjzXLBYn0hid8QmYZJ2g1CIeTM25tb+n6HLYll61i00nAac6Y9G7h0HcuupfWWw5SYqL4GUEZLBUFrGcva98K2sUuZvTv0PH/+jH/8j/8x1rcdOstA3RlmNlqjncZ7Lwt/TFoeJ12PgEKtCUneI8QoCz9GGUsUCzECRabbNE135GCZmpmO00je74BM6iNFCypKKfimYbWU956miVwKrmQWKcGcA9WkNJdyrC52jQclzJdMZpoiUSkOQ89iteYQApu+Z799R38Y0EWzXp7z/OoZZ6s1t2+v+flf/5z7tGO7vUPnwLTugBWNd6SUGIae7eaermmkjcJGhD+R6swpQEu52XlPjLH6HtHWrrvgH/2jf8Q/+Sf/BGucxyOUyIcLPZsfrTWqcNSG2ebJ2CB9JLAZY+j7QgqRMAaGMRBCIkWFUoK0Gt0IBdM8yNQr2qqtRlnRKlt6aUeYJoZhwDpH17bs93vut1uWxhwTO63Vcdzq7MxB8orzszPuN1umcSAAhxBIStO0DU9ePGPbj/zq88+4u71nc7cjxcLF+oJPPg78wSd/gOkWBKVFMw5bGgONNyfurzFkpRn7nsZbqXloXQvQEvqXB/O1msZjjK7WwfDixQt+/OM/5p//8/+a3//k97HGOrw5acGcP8zmSSlpdEl1gs5DjXiYdyilUEmjokGlgsmQi0zQUdpiTIM2DSolxhCIOYFW2DrxJmOJxbM9bDmfpjpLSsxaCgGjJYg4HA6s1mvZLOr0+QC5SOfVbB4uzs65vb3l/v6OMReGlFDe056dcf7kil//+V/x+atX7HY9u+2Bfj/w9vqOMWaaxYrOt2yHkVdv3qFVxq46VIVElFJYY0nGkHOqk3nmNRFg8JRtS4Y/j9ZIKXJ1dcWPf/zH/It/8d/w4x//GN84bDGWGKV4b+qOy9VcTdMEcJyEoMrjMBc4vq6UgsHjlKHoBDqCysRSSFGL6qoExrDd7SWk7Fps02G9DBWOxXF9t2e335NipFsujgHDbrfj7v6eYRgIIdAuZaz33DyZc6ak2ldSk7zlaolWmvvNPftpYsgZfMO5c9xvd/zHX/+aPkyMKREoTCUzjQOvr2/41WefU1LhJ3/6p0Tdc7ZesVgu6RbLR1ZE1xC1UI7Irsx3NzUiPc1R2W63pJT54IMX/MN/+J/zz/7Zf8WPfvQjuq5jCiP2+vaWvHnHs6dPWK1W1f7aY4SUs3TkpJQw6oRLlVJkJMU0CfwcIyvVEEOiHyeGIYi/SJCUQWkHWtEuW7b3I7Fk1njaZUu3OOfp0yuUNbhmzfWfX3N3dyfE5Gpn311fc3N3y2K9EiK2czgvan8kKmcZxz1vLKMTl2dn7PsD20GGXW7v73m72/LV3R2/+vQ3vH73Dt8uWS7PaZZL7m/u+dl//CXvru+4vLhgiJE//MH3WC9bLlcdF8uGZWsxKktH7kx4iIGSJK+wWuOMJHSylpIkr1YrXrwQZ/1P/+k/5fvf/z7eezbbe6lg/uxnP8P0d8Qw8fLlS9brNY1vsFZmgGsto7EfJodz7ThME4e+Z19Dte1omMbAoR8ZxkjKoG3DYrlmebGi7db88tNP+cl/+FNut/d0yyXPnj/jo2/9Hj/+kx/z8Xe/w8XVU7rf+xZ/9qf/gevra4ZpZBgnPvv8M1zj+fG3fo/lcomzrpZbjSR6WRxmTPHo86Zp4urqiiFFkjWM3PJuu+X29hZ7twGt6JYr9v3EYbgm1ejPtY4Pv/V7/Mkf/2cs2pZc7onjHpUmmRiqJK/a7/ds9j37bFCLi1NlT2sZRlaofS+yen/yJz/mX/2rf8UPfvADlsvlERnQRnE4HLC/+D/+jPvLjF6/4OKDBSu3JGvBfpwuWFXoGonrkYl+hAx9SOyHifv9wN124DAMfDgNKDTX9+/46vqG20NPNJarl7/H71/+EZv7W/7PP/93jESWL9YY3/Bpf8OnP73GXC55+cnHfPbqK778xVdEd0Xf93z+2R3jOOD9Jc+ePyOyJKsF1q3p+0QIfTVX0uZFjBASKUaC6xix+KcvuFqssWdXLC+esdls2OwPXPglh24k5oxxjtX6jKsnT3n6/Bnn5+cobQkh8OVWU1xDo1uyhv00srk98OrNLXebnmA8wUT2GKJ1hBgZwsA49XQYvvXhS/67f/nf86//9f9Uh5eZ4zPlCSi0rcf+7MtXdKblzZu3vH3+DGc1q9bhVCaSsbqQwnR03AlFzNQJaUJkmBtUXn3+G5qmpR9HQhRnuxkntlMkWcshSlJ5e3vHfrPn6vKKtmkYh4H/8JOfcH99w0//8q94otMRnrfWcH5+ztXVFS9eyiI1jXsU9R0jvGpGjdZgDGEURoW1jq5bgNIYLY2iTbtgP0688I5cJ0Y77yWpVJphGISFkoQtE4bEpt8z7jZsbt7x9vVrbm5uKdrSnD3lkx/+HX715Vvu9q9RSnF+dsZy8Zwf/eiP+Jf/4p/zdz75uPYznq734UMCgk4TYub2/p67+w1Pry5Qi6YWiGRgSc7C7Ui5yPjRShrTquCsZbEwNDnjP3wpc0D6A0UpfNOwsI6QMz/96U/56S/fsFx7Dn3PcrFk2XboAoftjq92e1rnWK+W9DdvpP25azi7OOPJkyc8efKEs7MVvnHSbEmRyaDiRSW5QhjhpYa2KowYNFp7jJ1Z9NKYE5OgvG/eXZOKoL+pVEKc1Poqj0wzmkIME4SBPA3EoWcaB6HsODl4ZTj0dYqp4vLsnO/90ff5/ve/x/e/913+4T/4exhVOAyPAdmHAlFKYS8/es717pq7zY777Y5hDKAM2ip0URgDOSRhmst2rAUhmUXYaId1MlDLpwu6mPCrJWfPnnG379kOE2OBPmaUXzKFifvtjpIKMQSKdVyu1yzajsZaYilcvXiKs5ZVbWQ8O1vTdS3KaDGf1j4oJKpKlpN6tSmSaZMSLtZaAoqYBMo3ZqRQjrMN3759Qz9O9OPIOE0y9QeZMNT4BucdpWnwztA5RWMsvmlxudBoh/YddrmmcZbL83MoXzD2I6tuwQ//6Ad89OFTpmHkbLXgYevl+4IopWAHpxlj5n675+Zuw2Z34MllxBonqHcuTDHReqHPlGOx5+TTxV4rYpHxFu1qSfGe0jSYIaB8i+uWfPxJ5vr6vrL49OkQEoTV7Y30l3st3UFdHd3qWk/REEpCY9DO1Gn29bwHI3NAlKnNjghJwHt/5GnpKPWK2b8IWzDTeM8wDkzjIHMIS8a5Bm8tXdtI/uUcZ6uOdddgycS+p9eK3Ba61QWLqxeY1Tk3G0lWt/cb7q5vyDHitOX+9o5F4ytK9RgNP9aGAPvV7h5SYT+M3N1vud1sedYPtN5K4pUjMSVCkqEl86T+EDNTLoQkZitlUONAiAFlLCGL6Kx3tKsFzWLNmXNcnj+RsNR6SkyEcSKOI6HvGQ493nvCtCWkQOozIUfG2NA0jcwZVI4MKGvRTobMaGtQVs7ZkOGMslPm5p1Sq5SFQpcWrMeJMAWU1tiPv8317S1dd8PucKAAi8WSs7NzFsslxhqGlFgvWhbeQgoEZ1i1Hmc9Z5dP6S5fcD+BQeGNIU4Tb1695tNf/pqXT69Ydo7h0INd/lYTBWBv+j2X2pMx7MfAZrdn349cnp/JOIhKOg5TIBcBwELKjCEyTJHDGBinwBQSvgwM44DzLcwCUYYpTGzfvSEkePr0Ge/e3gm7I2XRjAKH3YbXX73CGotpavavFV3bcXZ+xtXVFZfNOUprYk4YZzHOYawMgVS1HFzEuVV2e0WUlZhbrQXCkEb9tlKCCre397y7veFQhdF1HcvVGa4RQPAwBjQJnSMqaWznWTQNy9UZxi/pi+WQJqZxpDGG1jnub+/4iz/9Mz7+vQ/4e3/8I8b+gFkveP/xSDOKteRoyNrST4m7bc9mdyCkLBBFrFV5VfHV+scpSpFmt92z3R8YxsDbr35FUfDk2XPabsE4Jbb9KAeghETbLnj35g2H3QEypCkw7PYcdlv6/Z7hcOCDly8pjYyqXiw62q7BOEPbNazWa9brtURvvjbXO4ueGY2IUmSE+zAXo7SWsUwP6zPr9ZopRpTRvHgxcDjIcMlcCqoezDXDQhFDDiNp6lFhojGa5aLD+5brbc/9mxvOLl6wbDuZX3XoGYaBf/+Tn3B5seaHf/gHLJdLwntMl6858GHKbIcRpS13uwNvb+95e7vh+bMerQrjrkfnicuzNVrNU8dkfLVW1C6hgf7Q8+yDF7x584Z31+9AGYqyWN/SdEvGKbDfbSkJdvdbNIocIykEnDWcPX/CcFiwaDxpoXn67CkvXrzg6uqKi4uLY3i7XC7RWjMMffUT8qTC/6kUIVuThQB/ZDVWFooGbw3WatrsCCXTNS1Xl5fVR0pmPfc1ppQICRbNOV4V0jQQ+gNxDKRxwmRpIxumiXW3EN+ZEgbNZrPh3/3f/xd/78c/4h/8vT8Bd5rk8JD9Mv9scyhs+0yIWwqKi/OeXT+yOQx4UyteVBg6Z6ZpYJomtDZcPXnC+uyCJ4de4OS45fnLFwzjRN9P9MPEOEXCOGGNwivDxdMruo+/g6bI/PUgOUUKE+QoRaxVy3K15PLyksvLS87PzyXrdpYQhMzsKs3U1BPL5pqK96ch8Xmz+Tp9J8uwrnkBZFhx7ePImagyVmchT2tDzop+iJQUyKrgtMJ3LclaxnHCJ1gtPTkoLi4veXZ5wbvrG4YwMQ0Tn33xjn/7b/8tP/jD77FcnTMEqYY2TSMVy6ZhGOR3dtxmusYTlWLXT7y5vuWzL19xvl5ieca6kdbjNLMljMV5hB3uPbkRODkVWNq2TtCMjGNgmgJhysSYyUkirqZpWLZLrKnRlJKxrFLQ0qwXS6YGnG9YLJYsuoWMyqvg3NxnIdU0dWSXPyJmF1XH3L3fESF0IFMFkVSBI8e3diZV7lMpuVKJBAzUpX5l7tuTIEFXjeu6jsaLCey6FuWMVBv3B376Vz/j3/ybf8N/+z/8jyxXq69pxPy0q3ZN0rJThhB4e3OPt1/QOotTGf/BU85Xa1IBx2l0qK22N6NwvpEbb4VXFGImhESMiRSLnOhV6jPJ/CrvrNAnrcE7AdO8lTLkrmb11roTMosk5fM0hpNQSuVYqZq0n7Rgrv+rmWHx3veGUs9/E6YKOaNyRueCAELyn0GY7vPCqzoBwlRmhwJykv7DWIdVhhhlwmfJvL1+x5/9xV/yX9zdsao+b3bcJ/ppFmHcTHuUFjbDrp94/e6WVeu4XLU8PV+inlyIr7B1jjlCNHNWNKYgkYpfOUCRkuQnJUPJCor0fQDkKPV0e5zZITUNqYEruuWCEsKj3aNKrvQiOa8DYwiFytQwxxknQrRWx9efNOVUp1H150pXIidhtBSKsFXKAx5XTaZmOo2qLWLqSE6Ubitt4LA9cDgchL1ex/VVoij9OPDu5oZ31+/41re/fayMnkjZ4qtsjoqiJIlKSRNTYd9P3G133G23bPcH9ocBvKpdO/NswgdEtjIP0634kBVPKadB6sriNszNG13bofXMdZKJNDlHihIgciav5Tm55EEjjLbHwo5wueyxpgEzge7kE6hzdY9ki5JP3Uq1t11eXk60ziqIakhOVNT5ebyeU+KWsjj9GYqRfkZpOhqmxLvra968flOrkw+aiI6zqsD2fUAtPUVlYhZVj0WOv+mHifvNjnfXN+jLtRy3aYWZd2xczJkYpSIYxhEZOm+OfX6z4CptDmsszgl0IR1FwqfKRYQQ69cjmzCfzuJTnE4esMbW4x/mcFHXSmSu61koKR13+0kgwkiv9Oj3puKcnsf+Pubq8GlGI0VqFbLgQFY0XUtWSnCtue7tLI5IjInbzT2vXr965OPen25qS5KyqPRPV+afkuGf/TByc3tHZ2QEtdMF1Xiwp7puSieENUwBpZIslAE9H8BXVR8AbeqCzUy5ugC6GgtdO4UqeTorJWdA5UJOhcIk03MWRrpK8/xeUm6VHsXqNyqqfHKSuYKeVQtmTGemlXIyQ8KWrz5Hn+5XkVFaWOaqMgK11izXCwrSiTtMEyFnLDIyNqoBFLx5/eZYyp79xcPKqV0sVrwNO4wqcrCt8iiV6fuBt9c3rBycdZbdbkdj5eRJXQ/1gBNpwXvPGA6ye5SwPk72XEOpA8JKqtTOSuUsSbhVzMzxhM5zS8DcAqzlxAJyHcUEcQrVPGV0Pd04VzLz3DSq4nQcAPlIK8ocRZWT3Z83Sy2hfp2gXH0GJ9OkjiAlQGacBGyUhptSZ5QI98t7y/XNdSXPnSKoef2MzNg1DLsdzUoYejYbmPbcb7akfsd5a/jk2x/QjyPD6OVUSmslDNSgtENrLclamWp3qDAljLEyXBIruz6LJ5TBWtK3IHF/ZIyTuLse1FhR4SN1/zHARil1mPzcNJmqMDIpFWKS2Vk2n/zPNwmjlCxzUXKdSK1n0yTlg7lEl9XctsAjAc0UTaXg/v6eYRxxjaftWogBpQ39OJBiZIVnt9udfMT8/g82tH2Xfs7looPSU3o5lFCGDDu0bvj0TnH3k9/w/U8+5sNnjo8/Oudp8ayT4aw4nlysIU+UKROKzIvFN2RrKUoxIke3aa2xXmLvu3gvoae1aG+gOIyunX/O0+x3lCQ0zVwduTyrKSsZ69di3RMULS3L2ioxXVMmq8CCHarU2kWCVEHNKSTheGU495doZxmmEaMNTetJObHdbmgXHTFF2N3iz9Z4vyDGwmGK9FETzZLUypGj/fSKRitWVrHSGZ0j6EzRigG430387M/+kteffcHlci0TerTBGkueAs6Y2pgh++pRCJgqKDhNE+Oo+fzzLxm2G9KwZ3d5xuXZghdXF3S+1sgdx7bgx9OfZVpOVhzN2Rzt5HTauTMnK4TAyreMw8A0TozTREEK+8bJ5J+c4HA4yJRq50m5MOx2x+k83ssBh2+vb8gpMU6RaQqSdPqO9dklz64u8E3H7tAfs/dSCjGK6Tz2oEThF6dYmNRESuLDoNp6iSgEG9Nzb4qsqTFSfNI2YWKg5MI4jnVSw3uqBlhBOvMxalBKQLZSpIVqHEd6Xfhyv2V76xgPW+6vznnx5JwS5TSZrrF0TQNLLx2pOteLmkPL2jpWCiXlOnEHgeSTmJiZZ5RjYH8IYv+L9EEc+p5+HMm54BqPb1s22x1oXcd0S2Q12+nb+w1hCizVhhyzwDOHgRAi1njW6y2r9QbrPOv1GU3XSrSmJO9I9Ty+OfAwNfuXQ1AApdFWDscLQQBT5zxNu6BrO7z3DDHIIIIoeUfOGZU1+/1eaKdNc/Q7Rwqt1pr6CSenpCQ0TDEyhgmjMq2z9OPI/WYrZ0p4y/4wcBgnjNZ4B3mamBtMlHIcezqozryekWT0PF67DiNGIi/Z9UJ/EYcmI1VTObDbH9ju94DCeserN2+ZohzJ0LQdy9WKxWIBWrPb79lstnTlQAyh0oliHRpm8P6Wtn2Ldw0ffPABV08uWSwXOGck0sq5tlYLRJNDZgoBOWfWEItmypH9cODd7Z53dzsmFOMworTGNx4bRqYUCVMiI0hwzpnNZsM0yVCy9yER0YySJSmrTlIrRVJSF55ixKhC6x0hCidq348chpHDMHEYZHS3b1o5GKtGC8dISAvuNJuwsUw4XemdeU605m4m+Z0yTk4mmyb6aWIIkTFENtsd17d3QvPc7Yh1hIN1QiRouw7fNCilySWzmXb0h55pnAQRQNUIW9F4z6JbsusHPhoGPvjgBev1sobVhfk0TG8t20MUL64yWVliUez6wJvrO37zxRu+fHtLUpbX1zcMw4hSwj+e6pB/bQ2uaRimnvv7+xp8qEeDjnPOVRhZijESYmlKkarYjOeHqAg5QYgM08QwThzGid0wsdn30r3TdizaUzva8XGMSiSHMfXUSjWDbLM5SzXuT9JS048ju92e/eHA/tCzr5/1xatXfPXqtThs88A85Uym0PiG83nWrSkcpsw05TlGIsbMOPRopVkvA9e3d0wh1FA9s1g0OCsz4Sm5jsbQtT9Q8q8xJDbbHV+9esOvfv0pX7y+ZoiF/RQ4TFMlaxgUut6+lID70nN/L5ohIfV7wtBaE0qoLIqHrb7U0XByhFtKEorGAhFFyHAYZ2FoFsvAspqmUjPgVIcQU6DoTI5ZhJ1Sxa6E4Z6TZOCzmTqEzGEY2Q8jm/2BzXbL3d2G282WwziRkDGsap6yE0NlMY6UsmN7GFhv97x8+ZyoHTQWoy0KRRonQh+YDgP9MMlw1FJovKMQefrkgvPzNcZ4Yp3F1XYraahEk7KCMNKPgdv7Dde3d9xtNuyGiSlBRJ6lxr+lcMx7ci5st5ujZsyVyaPPmM3U3P1z7GZFzqGYJeiblmw1vlvi2o5iLH1I3G5lhkezXLNcGMmSsyLZUokKElokU/A1aEqVzzvbypQScQrHjPR+PzFOge1h4OZ+y7t377i5vWXfD3TLM75z+ZSQMiFFpimiQkD7FttODOPI9jBwfbfh9jDStS2LrpNGFm1RyuIXawqaqT9gjeHt9S3WWVKF0xeLFmNWDGMkZ2iW55ggtf80JaaY2B96Nrsdh2EiFxk6E8LIGGMN5gFKPaK6MAwDOcNutz+e6aeVPra8pZQktJX1yigtCKU5+g+x5Epr9sNIjuOx6zVMge1mx9t3N6xax+39jtZ9l9VywZTkBLE5zJVZIxq0JaTMNMnpj3OWK00kIyVnnHN8/uoNt3d3vH79mtev33B7d884TbjGsz6/wHSOly+fcegHNrsd5dDDNIGZKMaR0EQUX7y9Zb1c45tQ4fFC2zRcrNcYv4RQ8J1jc3PN63c3OG9Zny15+cFLijaEVCBEspPjiaYpstuPvL254/W7a96+u2Gz3ck55UUzjYF9P5IUGG8x3slh8IgL6JFg4gj/P3DeUKfqmDmkzXKGHSiMc6zXQkVMIRKmEaM1U8zc9wMhJcYYOQwDb1Li57/6Db/46b/n7/7dH/LDH/6Qly9forVMvUxJMYwDr/c3lbtrjiYpp9MMqN1mx/X1NZPruL7f8erdLXfbPVkbVucXKGN4e3PLX/3il6SUWK5WPHn2nMsnT1hfXjEMA2+ub4iHEYxndXEh5Oy+2nEUU4SUNcuulQmfr77AG8UUM6/eXKO0ZrU+4+ziQk67bDxDTBz6SQ7t2vdsdnvGMZKxpAJDiGz7gW65JtTTeWzToJ1ld9hjvFQiC/Dxd77DixcvZOBxlmmih8OB1WolmqGNIudECFkuoI4Y6vv+ASe01pcLqJgxJqNTHXqQCiEVfvPqNdkY9lPgW9/+Nk+fPKFtpGlzGmTQbw4JSmYcJ6ZBtMF7z7JboJRiGCPFZJrFgifPXrBYX6C0ou1afNsSc2EMgZ/99S9Eo0JkfHsNKKYY2Pc9hynUsXpjHW8EZDCqRm9jIGdFGCNFO0KO7McojZnbPe/uNmz2A10rdZhpyowpMQQRymEIDDFXSmiLiQoGYeLPG9k4e8q1OFUo55OTS82JdCmnYyYENYQYBUFVWvAWOdl3AqSuTKrYTg2UxIRFglGQEimASplPX71hO0W+vL7l6vIS7zw5RjSKpm2ZhkGOgQ5BQs6UsNpIZl4K0zAyWU+IgRDkSAiMxruGtuukL8M3vPzwI/Z9z3a3Y7ffM4yTUDNLJqMJWVrGlBKY3Vh1bGnIyhByEVRX2drSkAkR3GbPm+s7bjc7bHNJior7/YFhGNnsDlzfb3h3c8vd/YZ+nI5MFG0sU5BRAdY5nHVM9WjqkmXCj7cKV1GEGCMpyuvnw90rHDLDxnM0KjcV6xg8mdRsZREpx5i9IPVrsnTkOGNIMZO3e4b8hlfXd8QQGPuR1nsuLy8w6Loo8xFzGmsUUwlVSJHbzf6ERRWpwikz4MeRVYg0iw5tHMZllB1JiPkMKYGq+FNMYCXJw5jjSNdjeBoTU044rZhSIZRMKorDGLnfHbjZHFhfnJOS5DfDGLjbbLm+ueXNuxve3dyz2x8YatOo0pYQR9BGRr9qQy7jMbpPKdG0suHGcaxaJA9rrbTLqVq7sFbJQbD1/IhMHeeTxCw0ujYvziEpCZSM9lE1ax5zwVklucIQoJ8Y+p5+f8Boy812z+X5Bd5aOeHeOZzVOECXIqOQjGdKvYyDqIyNuWlyTJkpFtwwYJzsprGCfmNMgmNV9CDkQpkiWoMtUvnNuUi5O2VKDJQYWTSOmCTnUUUxZsVuCNzt9lwcRsahF17YENhsd9xtdtxttmx3Ow59YIqRmDLKeij1GLqa+6QswU+uIzvaRUvf93ImSEo4fxpXfoRDUpWOjCYVyr9BywjumAk1fMulJohIIqeiVMxUEei6D4mmKWSbCAThRimDajpizNzuDijrcdbSuoa2KXhb+99yqZm6nFGRSiHEVON7MBgR8jjRh4lUDmhtiCnJ0aQhMowTZYZgrGccMlpLx2zJmYiqswWTtDmEVPvx5HROnRVThsOYuLnfsbrbcdjtJGQdJilB9z39ODGFKAgACmXtMQm1dYx5CJEU5Wi8XPE36yx3d3dHKL01nUBPD+EQo1U9CUBOItYZ5HhMTdFyOqTS0qMmI+yKnBqp555rmSnVJ+Q87tTj7IT3jq5rWS5XkAtTP/DubouzhuViybooGg8lJcZexkdYY1ieSZIVHmiosnJ2H1oYF/04Qq00jiEQS6l9Fqqe3tySomBZx0RU7MWjauDuMLLsPIlMKhk7OvbDyLvbDX5xzX6/R+fIOIzcb3bsDwMhJoFWlZLzOownJAlElDNMMUrvYY5YLw03MrAYrq+vj8IQuEgd25EtgPe2dmkajLV4bQUQi1Jd6xbm6EdKknmyWYIoqr8XIXoIGaapoKaIjzJlx/tWjnW2ntdvN3gb0NbRdgu8rswRU4//aVvut9t64Lq8uTYWlyT7N8bJaNachRKTEqlkjLE0rQUl0za11vjGVXbKXMgSDUmZ42L2fU/TOEKYKDmSS6btPK/f3YCtidz2nr4f6fuBvh8ZRhkWllKhaEXjG9IwSh0cOPQ9h8MBbQ1NV52zE6Hc3t4yVo6vzIQXKL5tW9GM1jekuqjOOaxvSUXT9wMmKzrn6fu+Mj3mWbWqDk+Zs0ZdowrQTh/5rcMUeXdzR9c0OGO5uDqr4YelHyfpFa9HvzVNQ2us2Hatj2iAjL2odBYr53X0d/fs+wMhRox1dQautLvtDgdA+ktIMxyRyTHVKQ/i+xQwpkAqME2RaRrJpbBYHPDtBt/KyfZvvviSw6FnnEIlUGhyVsSsUK6hHkuOd46QpJg1xYTTp1EeSimmaTpC6MfW7jruz3vP/wf9ilRYHtFPNwAAAABJRU5ErkJggg==\" y=\"-28.587873\"/>\n   </g>\n   <g id=\"matplotlib.axis_3\">\n    <g id=\"xtick_4\">\n     <g id=\"line2d_9\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"152.011698\" xlink:href=\"#m839a88af9b\" y=\"127.587873\"/>\n      </g>\n     </g>\n     <g id=\"text_10\">\n      <!-- 0 -->\n      <g transform=\"translate(148.830448 142.18631)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_5\">\n     <g id=\"line2d_10\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"207.960896\" xlink:href=\"#m839a88af9b\" y=\"127.587873\"/>\n      </g>\n     </g>\n     <g id=\"text_11\">\n      <!-- 50 -->\n      <g transform=\"translate(201.598396 142.18631)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-53\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"matplotlib.axis_4\">\n    <g id=\"ytick_6\">\n     <g id=\"line2d_11\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"151.452206\" xlink:href=\"#me6af93a7b3\" y=\"29.676777\"/>\n      </g>\n     </g>\n     <g id=\"text_12\">\n      <!-- 0 -->\n      <g transform=\"translate(138.089706 33.475995)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_7\">\n     <g id=\"line2d_12\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"151.452206\" xlink:href=\"#me6af93a7b3\" y=\"57.651376\"/>\n      </g>\n     </g>\n     <g id=\"text_13\">\n      <!-- 25 -->\n      <g transform=\"translate(131.727206 61.450594)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-50\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-53\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_8\">\n     <g id=\"line2d_13\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"151.452206\" xlink:href=\"#me6af93a7b3\" y=\"85.625975\"/>\n      </g>\n     </g>\n     <g id=\"text_14\">\n      <!-- 50 -->\n      <g transform=\"translate(131.727206 89.425193)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-53\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_9\">\n     <g id=\"line2d_14\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"151.452206\" xlink:href=\"#me6af93a7b3\" y=\"113.600573\"/>\n      </g>\n     </g>\n     <g id=\"text_15\">\n      <!-- 75 -->\n      <g transform=\"translate(131.727206 117.399792)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 8.203125 72.90625 \nL 55.078125 72.90625 \nL 55.078125 68.703125 \nL 28.609375 0 \nL 18.3125 0 \nL 43.21875 64.59375 \nL 8.203125 64.59375 \nz\n\" id=\"DejaVuSans-55\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-55\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-53\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"patch_8\">\n    <path d=\"M 151.452206 127.587873 \nL 151.452206 29.117285 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_9\">\n    <path d=\"M 249.922794 127.587873 \nL 249.922794 29.117285 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_10\">\n    <path d=\"M 151.452206 127.587873 \nL 249.922794 127.587873 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_11\">\n    <path d=\"M 151.452206 29.117285 \nL 249.922794 29.117285 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_16\">\n    <!-- Visage trouvé -->\n    <g transform=\"translate(159.440313 23.117285)scale(0.12 -0.12)\">\n     <defs>\n      <path d=\"M 28.609375 0 \nL 0.78125 72.90625 \nL 11.078125 72.90625 \nL 34.1875 11.53125 \nL 57.328125 72.90625 \nL 67.578125 72.90625 \nL 39.796875 0 \nz\n\" id=\"DejaVuSans-86\"/>\n      <path d=\"M 44.28125 53.078125 \nL 44.28125 44.578125 \nQ 40.484375 46.53125 36.375 47.5 \nQ 32.28125 48.484375 27.875 48.484375 \nQ 21.1875 48.484375 17.84375 46.4375 \nQ 14.5 44.390625 14.5 40.28125 \nQ 14.5 37.15625 16.890625 35.375 \nQ 19.28125 33.59375 26.515625 31.984375 \nL 29.59375 31.296875 \nQ 39.15625 29.25 43.1875 25.515625 \nQ 47.21875 21.78125 47.21875 15.09375 \nQ 47.21875 7.46875 41.1875 3.015625 \nQ 35.15625 -1.421875 24.609375 -1.421875 \nQ 20.21875 -1.421875 15.453125 -0.5625 \nQ 10.6875 0.296875 5.421875 2 \nL 5.421875 11.28125 \nQ 10.40625 8.6875 15.234375 7.390625 \nQ 20.0625 6.109375 24.8125 6.109375 \nQ 31.15625 6.109375 34.5625 8.28125 \nQ 37.984375 10.453125 37.984375 14.40625 \nQ 37.984375 18.0625 35.515625 20.015625 \nQ 33.0625 21.96875 24.703125 23.78125 \nL 21.578125 24.515625 \nQ 13.234375 26.265625 9.515625 29.90625 \nQ 5.8125 33.546875 5.8125 39.890625 \nQ 5.8125 47.609375 11.28125 51.796875 \nQ 16.75 56 26.8125 56 \nQ 31.78125 56 36.171875 55.265625 \nQ 40.578125 54.546875 44.28125 53.078125 \nz\n\" id=\"DejaVuSans-115\"/>\n      <path id=\"DejaVuSans-32\"/>\n      <path d=\"M 18.3125 70.21875 \nL 18.3125 54.6875 \nL 36.8125 54.6875 \nL 36.8125 47.703125 \nL 18.3125 47.703125 \nL 18.3125 18.015625 \nQ 18.3125 11.328125 20.140625 9.421875 \nQ 21.96875 7.515625 27.59375 7.515625 \nL 36.8125 7.515625 \nL 36.8125 0 \nL 27.59375 0 \nQ 17.1875 0 13.234375 3.875 \nQ 9.28125 7.765625 9.28125 18.015625 \nL 9.28125 47.703125 \nL 2.6875 47.703125 \nL 2.6875 54.6875 \nL 9.28125 54.6875 \nL 9.28125 70.21875 \nz\n\" id=\"DejaVuSans-116\"/>\n      <path d=\"M 30.609375 48.390625 \nQ 23.390625 48.390625 19.1875 42.75 \nQ 14.984375 37.109375 14.984375 27.296875 \nQ 14.984375 17.484375 19.15625 11.84375 \nQ 23.34375 6.203125 30.609375 6.203125 \nQ 37.796875 6.203125 41.984375 11.859375 \nQ 46.1875 17.53125 46.1875 27.296875 \nQ 46.1875 37.015625 41.984375 42.703125 \nQ 37.796875 48.390625 30.609375 48.390625 \nz\nM 30.609375 56 \nQ 42.328125 56 49.015625 48.375 \nQ 55.71875 40.765625 55.71875 27.296875 \nQ 55.71875 13.875 49.015625 6.21875 \nQ 42.328125 -1.421875 30.609375 -1.421875 \nQ 18.84375 -1.421875 12.171875 6.21875 \nQ 5.515625 13.875 5.515625 27.296875 \nQ 5.515625 40.765625 12.171875 48.375 \nQ 18.84375 56 30.609375 56 \nz\n\" id=\"DejaVuSans-111\"/>\n      <path d=\"M 8.5 21.578125 \nL 8.5 54.6875 \nL 17.484375 54.6875 \nL 17.484375 21.921875 \nQ 17.484375 14.15625 20.5 10.265625 \nQ 23.53125 6.390625 29.59375 6.390625 \nQ 36.859375 6.390625 41.078125 11.03125 \nQ 45.3125 15.671875 45.3125 23.6875 \nL 45.3125 54.6875 \nL 54.296875 54.6875 \nL 54.296875 0 \nL 45.3125 0 \nL 45.3125 8.40625 \nQ 42.046875 3.421875 37.71875 1 \nQ 33.40625 -1.421875 27.6875 -1.421875 \nQ 18.265625 -1.421875 13.375 4.4375 \nQ 8.5 10.296875 8.5 21.578125 \nz\nM 31.109375 56 \nz\n\" id=\"DejaVuSans-117\"/>\n      <path d=\"M 2.984375 54.6875 \nL 12.5 54.6875 \nL 29.59375 8.796875 \nL 46.6875 54.6875 \nL 56.203125 54.6875 \nL 35.6875 0 \nL 23.484375 0 \nz\n\" id=\"DejaVuSans-118\"/>\n      <path d=\"M 56.203125 29.59375 \nL 56.203125 25.203125 \nL 14.890625 25.203125 \nQ 15.484375 15.921875 20.484375 11.0625 \nQ 25.484375 6.203125 34.421875 6.203125 \nQ 39.59375 6.203125 44.453125 7.46875 \nQ 49.3125 8.734375 54.109375 11.28125 \nL 54.109375 2.78125 \nQ 49.265625 0.734375 44.1875 -0.34375 \nQ 39.109375 -1.421875 33.890625 -1.421875 \nQ 20.796875 -1.421875 13.15625 6.1875 \nQ 5.515625 13.8125 5.515625 26.8125 \nQ 5.515625 40.234375 12.765625 48.109375 \nQ 20.015625 56 32.328125 56 \nQ 43.359375 56 49.78125 48.890625 \nQ 56.203125 41.796875 56.203125 29.59375 \nz\nM 47.21875 32.234375 \nQ 47.125 39.59375 43.09375 43.984375 \nQ 39.0625 48.390625 32.421875 48.390625 \nQ 24.90625 48.390625 20.390625 44.140625 \nQ 15.875 39.890625 15.1875 32.171875 \nz\nM 38.53125 79.984375 \nL 48.25 79.984375 \nL 32.34375 61.625 \nL 24.859375 61.625 \nz\n\" id=\"DejaVuSans-233\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-86\"/>\n     <use x=\"66.158203\" xlink:href=\"#DejaVuSans-105\"/>\n     <use x=\"93.941406\" xlink:href=\"#DejaVuSans-115\"/>\n     <use x=\"146.041016\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"207.320312\" xlink:href=\"#DejaVuSans-103\"/>\n     <use x=\"270.796875\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"332.320312\" xlink:href=\"#DejaVuSans-32\"/>\n     <use x=\"364.107422\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"403.316406\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"442.179688\" xlink:href=\"#DejaVuSans-111\"/>\n     <use x=\"503.361328\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"566.740234\" xlink:href=\"#DejaVuSans-118\"/>\n     <use x=\"625.919922\" xlink:href=\"#DejaVuSans-233\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_3\">\n   <g id=\"patch_12\">\n    <path d=\"M 269.616912 127.587873 \nL 368.0875 127.587873 \nL 368.0875 29.117285 \nL 269.616912 29.117285 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p7459b3e2e9)\">\n    <image height=\"99\" id=\"imagef02dc22d8d\" transform=\"scale(1 -1)translate(0 -99)\" width=\"99\" x=\"269.616912\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAAGMAAABjCAYAAACPO76VAAA9cElEQVR4nK29Sa9sW7bf9RuzWEXELk51y3ezeulX2O9JtoVpgJBoICFLNKHHFwA+AX2+DJ8A3KCBkAxuPASysWyn/eyX+TLvzXvvOWcXsSNirTUrN8acKyL2OZdMG5a0tasoVswxR/Uf/zGm/If/839frMlcdzNGCu+PG46L5/HtFpktZUyIy7SrJIEkkPVLgmAWqf+E7t6w+bYQB2G5heIg9YXsC+k6gSuYPiGmYG3GmIL3ESsFYzLWFN5s9gw2sHEBbxKdiXjJhGLIxeBNwlDI6PveLyNPsef9ccP9YWRZLHF2lGQgCDJZunsDUsgdmFkYv4f+LvP6H35N2R8RZ8EY/Rz59HnXv7UrJUopkBKUArlAyeA7pPMgdS1EwJrTzyIU++y1nl1OpNSPBLkIc3CEaHVtTTk9sgClCqGI/g4noRSQrI/LVoVQHGRXKPV3bEFsQUzBSMEYFYAzGZGCtxlbf3cmYyRjKHjRnz2QpWAoGMlQzCqQXKSuXcYYg9gCpVCMgC0UVyhtnQqQwSQgZcgJsD8sgI9dYuqLANmAkd/1jN95udt+Wn+Zouf+mxvM0cBNxFwHShLVhskiQRCjQpIqEDsL9ijYCdxBF31+KcSrwvJKNUH6hHWZzbhgpGCrBnRONWLj9e+dSTiTeNkd6U1ktAteEr2JWMmEYknF4CVhJXNIHYfc4UwCoHeRTWfoXSL2gSVa5tlTRmHZGpgt7tFChv4x0z0kym5HPk7YNwO4M4G0HZ6yakApq8aICMUAWNUMA2LMqgEq0DMNkd9PUK6ziVyEfeg4BI9EwQQhG925KesLSRYkCYWCIJCBIkgCSbrLTITYQRrUNDEkjMv4PmJtZvARacKQQu8iTjKDjTiTVmGMdqE3kY1dMBQGE1RLciGLYChYySpYTibFSMGZXIWtuztGSzFgbSYK5IOhWCFb0V0tBhHRhW47/PmipsLzS9r/rajZOr+evwaohv4uYQw28LgM/NUvP0Fmi3s94b+ISLCUbJBqqoot4ADRL3cwuL0KgwJhC8dP1BzkPkOf6TYB7xOb/qQRAnibcCbTWxXGxi04k+hNwpvEjZsYTGBjFoxkbDVLByBkh5WTABIGK4XORF2Haj9FCk+mJ2az/p66yOwz80vD2xee/p3nq8ef4t/tKd++hWlGXtxQnEVCVK2IUbXiJIWTGauLLevfz4RQ/1fMuWB/h8+I2RCyRQ4WMxu6LyK3myN3TxvCYvR1pFCknF60gEQwi95JEchdddBSViftfcLbRGdT3TDltHsl05mIkUJvo/oGk3CS8PXLSMaLPvdcA5LaCHKRk6+QgpO8mn4jBW/T+p6rbxwWkjcstrCUjulNB6Xgv7eQltNCNtNUCqWUkyacC+WHTNK5IM4f/zsu93//1Y8gC2XIpFE/8BQc1mboIvPkNSoxUFzBPVrsUTABioF4VQhXhTIm7DZC/dBdH7jdHJvs6Gzi9bBfF9FIYbARI5nRBpwkRhuwZDLClD0AQSy5GFIxzMUxZU/MhlD076EYNWU2Ek1mSfr3WAzOZDb9whItx7lTE2mb3S/k68g3/7Gnu9/wB/Yr3N0ReZqQJYC1+tWipnYZU7+qhohQjCC5XDzu30UjVmHw4NV21hC2FIjJ1teoJiqfoidJYOcmbUgdlE3CDBHn47oJOqcaUYoQcl0YtwCwZAdQNUE1xJJXxwyQEUKxmCqEVAxzdutXe40W4hrJmCrkXO9VtS0TxZKSwZiCs7lqO5guUT5PTGPH9LpjyOCPC5LSuqvFmFOo23b9M0FQHfqZ9Txdv6fzxgiOLCAF4xPGFkKw6vSyUIqQZwvB4B4sdtIQNnsIV4W0TTBk3BAxNmNtpnOJoQv0NjG6oGYkel20al40NFWzoj6hOuP6aUK2JAyH0pGL8MvDK3bLwJwcMRv2c8cSLb2P9D6y8YGtX9bPlYsQs4a91mScVZOpG82Qc7P5IKaQN4m7P+7oPht4ZQW3mzHHACFWx15g6MC7dfGlRlk1wj5pxvPFP9eq9vO5UM8E5lYBGjA2k5MhF9HnFSAKEgU7CX4PqYfsC3nMmOuAdRnnE1LzBu8SG9+StUQsRh23lNU86ZcuvJVSN0ZZBaUmSJizJxTD2+MVj1NPSLrD58mTZ8s8RroukkazCtPU92l+pb22MZmcDTkLOcuZuS8Un5hfFbIXlhcOKQWZ08lPlAzOUpw9+YNSkFRWgXxgop5f5dKMnXbDyZy5so1gwFhd0PW5SSjJYHeqESZCdhC3hTQUSp8xBpxPjP1CKapJ1uS640+L7I1GT6fF0dC2CSRhIMOE+on3y5Z96vj66ZZj8Dwde2KwpGAo0Wj4Ygo5GubsWWbPe9libV6Dht5HjdhcpLOJ62FWjUmWXCAkS86GlFRo4SaResPbP3f4neOL/23BvLuHvkOGXpduCatApNrC4qzmJzEhKZ98xfP84iOaUJovMfo3p9CE+ofz55YsEAU7C+6gNrHYqhVDRnyG6hAHHwnJEpNZIxdzJljNpqttp6ggOP0/F1HVzCqYXex5Cj3vnjbMsydHo4nnbDXX6TLiyykhDQaSkHwm9onQ1Y3lYDyL4HIRQv3ubSZlw3Hxal3GSPGGY2cIOwvOUJYFtiN4h0wLpKwJ3zmsYQzFWiRr1HWxiM+jqfO8Q2QVwqoZvo+nRclCAXIS7HuPndRxx7EovCGQrhL2OuiiG/2QvuYPRgqdTWuU5EwmZsNSnPqJmi80rKllzi1EXUpHyJbHZeAQulWzcBmsYAaN1kpWUbZ7uDTFuqnm4ChF6GzVFBvX90nJclj8araMKWxvJnIWjvueCLz/W1dsX/0h479+j9w9Ql99hq3RVI5rVi7nDv4jC7+GyuG01nL++LZp1bEJMZrqJxRrck8Gv4flWsG1UjEms4mM46KCK1Kjk7Kaoc4kOhvXhTz3EWrXC33NL1oOMRdHLoY5OY7Jcwgdx6Amy9is0AuwGRZ6H9nPHSFYnGvZtsIrKUs1P0KMFmMKIau2Ol81o5qXENwqCGszN+Ok/w+WkIT9l47Ue8a/MuTHHeb1K0pvV3Oj4Sy6yA0yeS6IXE7akQsS00f8Buvf3Dw7RMC5hIgh3HnFpkSR19wrtFG8gmLe6aK6iuRakylFkApveKuOu+34c3MF6qDPhZGLMOMIxbBPHUuyqmEu0jkV6hQcORuuh5nRBbbdQsqnxG+KbgU4w+LUABYhmrL6sRuvGNxgAzsZeLAjIoJ3mhg+Tb0GLllBxunTTNwItz+6ZchZfcISKH0Hxmg0FaIusDUf9RPFCCT08SHCcbqETlKq3zOUjEvBIga6LgIZt7O4vZBdIQ9FBdFl8OonbN2NriKsRgoxG3oX6W1UE1SFkYpGLuf+AdAMu8HgIuSo0PgUPUu2iuCazE0/0ZnI3bxhjo6rbmbjFjqjCzglzTe+P2xXQaTlBPYlo5Ghk5MweuN0kxi1/2On4ffjfiAnoxvLFMrrhWVrOX7qcYdr3Pc75DBB5ykiSCmUJejODyDOnZLBekluZksFV6Zp1ZIVhs+ZEiMlF5x1urOf7keIBiuQhkLuKvTts0ZgrmCcOueUDbYmhLZiTufRkxM1CYkPBbGaLVQzQrFrVBWLQjNGCkhht/SUMjAnS0yWX0+3pJonaKSoHzYulrzYGoafnGsIhvfZMG8dr4c9zqQKx6tZTdkQajTVdVET1KBmLkVLcYWnrwyx3/DmcYZv32rdQwRiWqF3sWZdWP2QZw7+HF7pezVdOanDb/8vBbHgnE/EYDF3HruoRqQe8pjBnhZSbMbYc4d7iTW1RW+hbNOKk8tqwjhl2lbyRT0iJEtIlr76nPfThiXaNXfYvd8i+wrlJwFTFMouYBuK3CJogTwLeTY8Zbi/Hdm4hWuvRTRXYZGcDSKFTRcAOIhXgSeL2Mzhy8xyK7z+x5b8tMdtRsRaSggqABHA1J3e3jxdakgViHhffYyhpPrJS31OKbhlceRoEKrvHooitKCFoy4jTs2TqbC6IrCKQdkK+pUizMlx5WdGs3DMGhnFihMZhFgSS3YccsdgAld2ggz72HO3jHz9eMM8O+LiKEmQg4MEpasRFQq9aHR1Kk61qlFKhhTMWvAiA0kos+Uvv3uDtRnnkgYRPmJN4emoUZuz0xpgsG48q6G8F8KLgeGLz3TxW1Qkpn6Jrh/lMpxtgqiL3XzEB5B71RCXjg6yYIqm9WVIiM+Uo0OSIF2i62MNGctZ9JLX/MFIYc6WOao9vnIzKRqWbFmSIySLNZkpaoS0jz042BiFMPap427e8PRug3ly9O8NdtZilSRYXkDcFJbPIt31zKubPa/HA53RhK5p5WMYeJwHpug4Lp7p2BEfO2SypPsNCZgN5E3m85+8Q6SwTApCpEHqhtPozftEMoW5c6QoTK89/otX2PdPcDieIqXzxW941g/hURUBXsGz9Xlq1pwcrELiSdayJAK4TLGCEc0/rC01qjsldVJtvyZUCRwXkVTMqhUZIWeFOKbkuJs2ZIS/KD9mio7v3t+QFotM6nzDbSbUzYGBPCbwhc3tketRUcp3xw32rJjkTWJOjpANqYbdgJZcyxlEUb/t527d3IhGXS1Cqxu1WiAtCUwvDO6LDdvDAg+PYKx+tV3/e15rlbAJM9fyLeD8g8ILxeoHX4U1pFPlMZlKHshVO8rFQjhRkHGwGlGlYojF6lc2xKxRylwcx+C5e9iSJov/zmMWYdirpZlfFtJYkM9nhnHhqxf3vOiPa82iwSy/uPuE+9243qv3Cn/ohy2KBlRHLj5ruunLqW5f4HDotV5uU61oXsLczRKIy5ROOHxuSb1j/KZDphkZh9UHlJR/vxp4c9arQE4CAnBIrUtsMsWV1WkbUxCTV5jE2lx9RLmIiE5JXS0gVaAvVc0oDdaG1bY3ELJYLUotVn9O15niT4FCy8LnpNm0ryZpDgoH5CKaT6whvt5LjCfkWW9KK5Cc7XRz9tlMTVhbvgScAEWjPjRtCiEK2VtsKVrr6DxlmrUaaI3+7fcUyPqzqeuSC65YZXPIqwVfI6uSBesS1mYF3GxeVb/5itVvVNijCQLgmDzH5EkVxm5hb6IyW1J1uKOGzVxFxGW6LtYFUtNydxi5l4Hp2JGzwbqEc0kXuigulaOhZMjJICZjaxkgHd0KkWMK9BmxGT/EtcgkoiXg51cposFA1BzM+ER4YUi9IfcWEyLGGE0ADxP5cMCMw+8WRquNNIcvZ+phBJed4k5SF+G5EK0p9YbtKXLjHOrIl6AfUs2TXcNWKxmDkI0CdK6PJKvxPAK2U8F3XVwhdVC/U1BkuJTL3atwv9UqZRaygMFQTFKNqKEv5mwzCmsE1qLCFuKuxIvmP6IlJ1kDJkTD6HDt6L/8TLPqmn2bvl8F8YPO+7zqd87LAn2DknHpKoPRjHd1WhVskwZLVAZJKXY1BYayakXb+Yr9qImaaiHIGWV/ZASbK0fqtrBEy5MfALX51mRux2mFV3IRjsGTsnB9NWOlsJt65uBwTn1XDJrolWIouShKkOVEtAMw+RTmorCPwi2K7A4NcoludfoZFK4PBjsmjMkkA5jC7g8slC/Y/PoJ8/YBnENurpXc9nyRf0ggH/2fwSn7DEo2ZNEPqdmgop0tGQNq1JLxtfYRi4HkLjCoXHfYkk8fzkjGSaEz+veYldERe020NObXrD2nk6rbClk0QevnOau5NEJdVJub6+ctyVTSHSoI1JEbewrPOxdXpDlX87sKo4BxhVwKJaPOXQrFF9IohCtDcab6ijMmIlyQF87zCU3wSnvQhRCoaIbDqjBy0p3fDwvWZrb9gjeZY/BMyTB0gc6mFR+akleUte7izqjwQrLMVUC5Ol3VjsCr7sCSHb+Va2KxXFVK6ZWfidnw148vWaLF2YQRGH3A1ntosIWrdYgYLSUapFYiJUHuDSkliEY1RKAEg3SJfhOwVotaziqdFTQ4MMDGh3XjiRS224kQLcf7ARYDY8L0gfmlRZJh+2uHCUEXvlFDczOlH+YShY9U+loEZlwVRrWHtGikhq0f241tgdccokZLuQhRCpJVWxpXqcD6uFxBO0Nh4wKxJJzYyhIJRLFsu4XOmdNOQndlyopHNR8SgiVFqzzaWE1QVu0gmjXzlpaB1/uXKoi2QVQYbV3U/Jaisb+ziYJiciWXlT+WvZL0FMRT0yS5fOgH/j0uJ1YjGt8p688ZzSemRbPloQv0rqyh6pycZtzJMUX9WahlzLqzYlu4Ksx96InF0htlDn7WP5IwmolDhdQznw47AB7CyDF5fr17wbHC57kmZTkLy0OP2VtsFExSS1VswQShRBWCRMEkJWWHayFtA84lrvpZay4mkos5mVJqEmsL3urfOpfIN4YYDWFx5GBgLMwFsjWUaa4wyEcuIyftKLlGAb9DGC38+yFKaCmimnN2td1aipA5kQrKmSadBW2agRdhrvQarJLSRqtwiBLWFMVNGFIRlmTZzx3H2a+vm5KWX2UxynwXDctzV2H+dv9FhVEmg1kUyk5RTVtDDtplTb74jiiP2NuEyYbeB4zRvEVEi2zZC8UprVO1QrNpkY9QPf8dLud8WhewlFqDSHaNNnJdmJZXqABO5uqc3dFYIKbt5KLxdNOYxzCcWIQm8rp7UgFUJkcoljkZfrV7xd1hZPebG+yTWRnkdhEkanlAsrDcZvJ1ZPPyyFcvHtaKY9OiX71/SfzLK9Wch445GXip9xqLBgqjC6upPC+ETdETi2F0gVgM30TLUoS0SSSfSb25ZI9ko6brY9fvoRUAzti8hrEaj580oUUa62LLh7nIOdnYSVZicn2eqzmBq1EaVTCxGDynG/eSyKjmhGKZomMJjiJlLfcWUyhBKTbFaqtBHjNuE3m5PfLl9mFFBGJR7bqbRt5uNxd25NzvKfNdWSQNUzstTIIM2ahPck4T4myFkizZC7Ld1NRfi0pNK/59NcTdbLX6FGuVK53Z+vOrq0X9tnuiNSttc3SBwQaGWod43jPx/NpHhdc7E+lN5NYqDfQ+bni/bHjYjyyz482P79l2SwX/DHe7DWF2alZN4ctXj/zo+p4/3Lzl58N3TMUzZ8+UPU+px74u/MImdlPP0+OI84mlhs6dnelM5GV3XDm+ALFCOQCLFJaavG77BW8TD49b0gzHl4bNz/8A+3BE9seP5xnnfuP3EYZfEzohl0KqoV0urESAtvsvuU/quNvfnVHObOZSAO2D5WJW4ZwLK2ZDtko6C1mdf6oUnJth4rNxx1PsWZIlJMPk/Bqivh4PfD488mn3yCfukUPueZTx1L+RO16PBwSYJr/W7QGcVCZ8DSrOidVgK4HiZF68yeBqZCmQeiHcdJglIdO8MkU+uJpAfp+WgCW6lUzQrpwNMVligk2/0Nu08mKbv/AmYbwyyAcbuHYzL/xhFVRb7OdXwlQzochuLoa7sFEiW31uipYSDJ+MT/zR1Xf86viKh2Xg5y+1ADTaQGcir/2el37PT7u3/NS/5z4P+JhWJvqVnYjZcuXm9f3bxrrtJkYbeOEP2ohTKaUhfRxfGl2gR3joIikY5teex5903BhhWCJynJFGMKjY03p9rIfjY8LQxhtZd701tQBSY/rmmBsOlavj05i8rLC2q6zBix3WcppneFNCc4+5Mc2rUNpjGzG5M5GNWZQcbRNbu9DbyNbO9CZybScGiQwSGCTRkSoOptXHQQKjXRitZ6xJXcrmBOVIe7z6mo/0xJw+ihQsFWC0yqoMV0LqzIccqfb9PAP/PfyIa5D4uWNukMHZeq4LkuOpj86ema3VDIm5IDK3Xgtd6MvHH2pp9pA7QAtEow1cXx2Ze8eUPN8stwCrCTwmz7WbuLZTDYWFqXjuc8d93vCYFO/KGB7ShmPqmCsE03pBeqcMllWDK+O9aWyq39vmaGXljDD4SNkI+5cesJRfgrx/uBTER67fSzOeC8JIIXGWLzxDZ1tj43mk9UOOurEIz4Vha2iTRP2EMUXzDzGYqmlDF9awuiWGWicxZ4t0EuxSLFPxLMUSilNzU1TIzay2nEhMWZ01aOPN2oawhu3PSNNSqoAUw/I2QZ+Jo6EYURqoscoc+f9wuTmoz2iVu1bJa/HgBQXHJEyj0qw3e/ogoVhsqWQ3CQwm4CWxMYpBdXLyS6kYLCr4FtqGYgnZ8pObnkPsWLLj2+l6zU00sze8t1tyEd74J65M4D5tOeSeKXtCcTykkbfhiiUrQ3FKjjlZvMk4ny/YLKoNNXDgJGhvEqZkFrFgNNHNRc25dIHxdmLuPWHslWhgPiKIM1P1e5mpVASp/qHt8HME87ToJ6GcGlQuBfb8MrX/ognCn+1IQ6aveJU2jepuDmK59UecZO6XUWEWKxfBw5wtx9QRnMWSmbPnQFcX1zBlzy4MKuCs5d9UkeLn99oCivb9dH8aNTmjbRLrghltymnam7paVPr/o/U4BKd4fa6Vsnaz9bu36uRiNiziVhDQVQhjsJHRhrVDtfkIL0kdHuVZ2Hi6OonrbkRYzctogy6qVexrSZZQLL3TyC0Xozs+e6biV0E2M9jMTciWpbJW5uAqwe6SftogmnzmJ6wUMIlcjHbgtl6SnFeTt1QM7viZMP3dn9H/dg/fvquS/PcTjNP6wwkRtc/8R4s0cjHEfNZ9VHeZN9qn3ZuoLcLVR/gK/p3b9vPLSqkA2ulvzXQ0+mdjnczFsWTLSFijvlDO+/rsCqlYucykV4ZKi6SkcBlInIRwniPpOuSVkLcy5jn5DiuFeVs4fOZx+x73TSO1nZms86TvdwjJKb9Ua9zWXGJN5459qbvs9Lp5RT+3bv5oq/DqrNEGydOC1VJn+RCzsWQ2FUDshkjMlns3smTLYAP+jIUYs0ZkXhKDCet99SZy7SZ2cSCWYe14SlZqp20583Xmg0T1XCCtpVnfz64lgpAs0+JZ3iTe/5nFHweu/3n5YXzq97hcaT7jDAY5t6vnmFKqnaXnQvI1fO0l0puwCqAtTHsuQMbWyOT/HTjzklaBtMcek9dMWQqhcrAS6h+MKSshrj1/tIFj6lY4v1UgW4TXroysKAGctbU9C2By5ekekyeLkCoSbK4CYUjM1x3Xv2Oxf9flGm+o8YS8PdlIYJ1esGRHLnllgfcr+houulRbWGxrQ+W5SWgfrBPlVoWaQIbi1uc2B9z+pzeZ2J61pmktQk494pLxNUAYTGCXBr6ZbngK/Vp/udlODC6uuUoT7pVbTotc/cw5OPrczLo6xeHFqJje02EgJIMUKDEixp8ip5RADGLN6ffzS06sdRHBWdsYgvXNJK+179ObZ0BNxtYtXLvTvJHmtIGL+JwzM3V+NWe+zgKpTrsJogmpJWntPT52WXJFX1VQgwlcmwo6LtpGMNcC2HU/401aUeMlO5wkbipUEoohZsuU3MXn6Co42nxnw7KuvT5vWjxBXK23187YZ9n3+nuj15yzG3NRFjvn3a5yRtl8hi01Cmej+38slP0hZ602ubUcZwKWgWbf1Yn31d7roli+C9cckz811aCRW8vsm4lqkdglCGlO9RZqmTYblmTpbGLjdHTGxulckjlrvf4Qu1UYKx2oakYDQn3VinOf42zG+kx2aB28ktnEqKH73dSd0/9dE0QT1HkecbHYlPWGng9P+aErPXuNVCyWQuCUOOr76WtaySzFEbPlmBS38nJqymkNNtp2Jmeva+p3WX8/r1ukbLT7yQtLdgw2MFqN/FpPyJR08kIjZ6/1GaM1S2W45A+aQ51N+C6yWlVbu19T1gaaXFvMzpHbZ4JojBLXmk5OsEeDPuQMOk/rTbQaxPMkCVgzatDdev5zWyQrmd6I9lR80EiTycVw4470Jqz3o6+tyCqw4kjt0uzdEUpiKfaiErneW8XbfkiznVTkoJro5jeXGkGBRlNtzkms99C5BCwqjGam1hu7YP2xcongovp34tqufygXAnGk9SZbiOdr2NibqOqNvZhws95DFcS5D2iaZkq5wIOaEIC1InfrjuuiA0zZr3DL82y5RWcJqf7HEbL9IDp0jabzDCBs73+q7KW1CpiLrLQjqIFD7cZqyW9vE71NPLjqF86aXz6g5vyQIJ4LY12YNcm73PUqiBPelI18wNxeBVC/h2JXvEn/r4hurpoBl7nG+UJfmKGzxT9P0NRc5DX5a49JaKI3V1KDoGZHmY4eEtzPI6kYjsFfQEFNgKG2q7XK5zJaBhcZndZSQlaIxddaz73lxLVNWSt/IawA4sdYJM/9idM3P/GKVqGc/0yp86AivUS8ieQshJppPvcvTRAtRD2HHIwUeuLFTm+lzsbPbcJrkxTWm60atGqSQF61RVZmSfMTS7QcDz3WJcY+kCrVKCTLw1GTweO+0xZqr+OZTO2QjUudn5JPQlq6QOoMvdV2t1SEjUlc+ZnsUR8hyjQsISiVp+u0h/yizYyPZuOu5RcbHxidRjXxbMd7k9YeuwZL+2p21pCPQsiOLCeWR/tSEpu9SK6ac267OZzZ5CbcXIR30w0hWV4NBzZuYZeVUH3lZ0Yb8DXRbN21+lwdmze4wH7pSNGs5LWUhW93V+RsWGbdINblVQgXbH1bKh+5ogjJMEdLyj3O+hUOCdnyFHrdz86dFtlaHXNh7Kl5/2yyQjnr61AhCk77EwrXfubKzzyFniW7daFHG9jamTk77dMripQ233Exkij7VUtaPTsU+0FCNaVL63iRn9QrFsNv3t+yTJ70qfB6lLVF7NOtln1vTOClP6ygZLt6E3nRH7mfRspsSXUe4tPUs3u7VVJ0EegyVy8P2vlazVEIlVdchw2o74GUhJQ8pW7Uq+3Etl+Yo2PC6XjAzq/RkxgD46jNNDHq7+70uSVGSpjVtA09GKM+o6yJ0MnRNlS27WInid6ENb6fs1t9gDdprSGvi1nLqvvU8bAMWluI/lToOXOSK22z1p9bz0TfRWWcA8foV5bIHB17263Jp6n+zEvCnIXdIgXMiZppTcb0aSVMi6v5g0sMFYDcS6c4VmPL1NaAMlsVotOoa1dG9seOcQhs+hpNdV77vUNQgZzVMi4ceiNGp4z4jvjFS7K3LbRlhQ1WiLxyiXahZxd6vtrcc+MmHuPAMXdqchLrDJBm+4E1mTomz2MY+P6wZQ6O/bHnoyOZcrXzR81k7ZiwLvHlqwduu4n304aHaVh7KPZBK3jXbib5PYNErs3xwr+sswndKVF0NrO5mnUz1FEVvdeWhzfjEwDfyjVLdDwde3IS0tHCYuje63ShcK31b+503MXTF5MKw0HZDNq4P02qEbmANWqGgLIENVXe198XzM0193+8JWzr7JBmktRkNM3IFzDE85pE++C9CfQmaj072TWJWqotnc8yWp3CcLoaeKc/G3IwZw4TlmQ5Rq/TF1zk/WFkDn5tZctInTGV6c6gc1uz5nPa6Rzcyl43JjP2CzFZvn9/TcnC1/aF0v7rLKpxM+NcItz1uCeLf9JxsamH0qyNKZSow8gokAeHaRMacsWizn1I31VydgTnMD/6kuWLF7z/M4jXCXczTgg6E1Ydsb5YbyPXfuK6CsKZvMb9LbrykriyM9d24pvllmPyPIWe+3lcw0orOhCsc4lXdWbh2nDZ+j5qjflBxrUxEuDxOHBcPH/j1Vve9Hv+0f4nNfqB1KkPMhQGCWzMXBM/u6K2rfaRk6hWVqTV95HPrp74fn9F/y9G/A76e6WQHj/T3T/+nSfebPb84l/dMnwnjG8LbirkzjDXKdalK5TZsLvbcJ0g3vT4kJA7oOTqKwS6DjpPvt0ixwW+/R559ZL7/+AzHv7Q8N/+F/+Avz3+EnfJl81reTMVhQ4MhYgFAs0ltFF2cIqwGpfKGe1CMtmceMjVTzwXgq+00K1fFIpYPCKW6dhRkrY7GykcYse9ZObgyIslDwZtwc5rHSOj+c1SN0xntAEH0eaZ5VCb9ZOwZOHtYcvD08D4BH5fsEtFhO/BLML3393wsBnp74T+oUDdANmyzt4qplwUx0pL4GyNoGw+NdOUgswVg/vkNfMfvOD93zLMXy38pHvLJ3aPi8lC7SJ15oTYNkJA04StW1bE8tx8PaWe+6B93aMNa5zvpF/Z6im3apo2vTwdBpxLfPXigetu4mfbWq7kS+6nkcN3W8xkCD7jfeTbp2vemi2H+xGzc6RNoHORK7ewMTNWMvtKSJiKJxXDldUJPMYW0tHi32mTVhEo1vH2yWOfDJtvM3ZWZrlkePGvdcG6XUfqe67/OuKfEo8/6ZhvhHBTSK0zWFhHiiOowxbR3KIOlBTnFKuaF3h/D5+94eHvfMLdn1j+m//qf+Jv9b/hc7fDk3Hv77bak2AyG7+czSHXneI+Anc0jchF2MWBfexWX3OIHY/zwLE67NP4JA0Tp8Wz3A0spvCrbBh7rY+MNvCqP2Ck8K15qTtxchyAfZseGoz2YVhtZ2t+7pzFfg69dCbSDwvHKBSnoy/sLHV8uMEeBEk6Y1BSUWEZ7XhKnRBHOL6yhK1huRHCtrYf+AIZHWSQtfdPWw9KMx3NJNTfDeXmivzVJxw/H7n7U8vxpwt/2n/DH7jH9XO4m/9jJI3w139u2dxM/OTV3ZpUGU4DgM+vXIRdGHgIA7/d33C3H9epZmFylL3DTDoRWsdMzNqI4xPH9yOv/8JiIizX18xX8I/+5IqrFwf+65//BRuz8ItvPiXPBvfWI9EzvFPnufvDTH6zcLOdeNEfGe2ylnRzNkzFcUj9ymZ/3R/4s89+y9fbW77mBTx6+juLCTqX1ywFU2mEdtEh9vMLSxiFhz/O8GJh39Z1qqFtnaUidx1uX+fALzC+zUioCK21YJJCIs6BNez+7DW//vuZN1/e8z/88T/gE/fIH9gnDDDVzeTGd5k4Ck9Pjrnr1sQsZLsW45EzAnOdH6V8JK8siahtXTkYymSxR4M9Ct2jEKMwjZ5sILiMu3f0jzr5MjtV5em9Z5e2/F+f/IitXUh7j5sMdtKml7WB3xdcp/NyuzNUAE6VReCC/9SZxNYv+CGyBEMcLMY2UE4H1mu/hwojjhBHofQJ608WIsw1SloMZTH4ndDtBLOggk2QO52aXYwgfYd4R3p9zeFHW+7/0PLmyzv+/M03/Gn3LddnqIFFAxj34h+/I10PHD6/Zlp63t+MF9TH1kSytgLU+P1hGTkEzxScRil7h31wmKimoHuA7ddadNn8tvZIZ4vfF7a/PpI7y/Six86FV/9EKMbzT//5n5Id3D6BJA0hi4Xjp4V4lek+O/DmZs+r8cBgA3N2vA3XXNvpRIaQS75vLsLWz3z1+p7dVc/78Yo0W8y9DqoxdZa7Ol/IfaFYndqTjk5zmwz2yWIWob8T3AG2v03073WMaxx0TaY3ngHodhPhs2uevhp4+7eFv/+f/wWfd4/8pH/LtTnq1Llc2NZoz1PwUnCEiISMO4A9tlGjJ+j5nMLZfm9Yvu4tMPXmi60N7V3RyMOj0/iL0rBMABOpDSbagUSufwP8U6HUxyPazJi9TtQp20TfxVqjTxeL3bTAlkonNQmfE1kMziQGIHsdpbofFmY6sq87vfUA1vekCBghB6FBrVLQcbJBNcHOBRMKJmTSoLNXshOyQ+8/Z8K1Z/cjQ/hi5j+5+QU3ZsJXkjZ8CK4CuPjZLbkzDO8ykgzzn2p5slEqL4vzZ6wQU6fobJMSgTczhxd+DWMP+47pU6+OLqsg/JOOZaX0SAY365DH6XUVnNOwMW2KztC9TciQGK8nhi4o6bjezzmlyEtikIC3ac03NmZhyp7RLoRiteZtEveHkWAyJQluL9z+K/DHgt8lTMirDwlXWhmMg5CdOu/U6WdJvTC9tMTREDZCHKsgHAx3Bt7d8/iffc7f/S//H74a7gnFMRWPr6S98yTbtB0NuIagu6mQjoV9rPVio8cpLFULTnVx5Q2lclnpczatbcO5CKk3hK1do44cdAcWEeYbs3apZg9x1O8t9MxO/QM+Y7yO9W5j+NrV6i4tA/cSsWd1cS+WJEYJE0XLuhu34J0erBJt1UKAUnBTQkLGxMpy6XS+knHS7Jg+tHIPwlZIHcSN+hlo9y+UGMlW+Gq4541XmGXljJ2XrJ9rhv/2EZxFyhUmed6+H/h194Ifv7yj647rRIMc9WZaPeAYHEt01XmfWnhzFkobCgzgC1xFShbma51ccPiRcrW0DInOQcxC/53DLKj2iJD3nmI9u9eO/SZydT1xPcxrl9SVnbm1R67NxNYsJ6pPUQK0t4mNnVfHPtrA8sJxN2z4FRBeOb5/4bEHw/bXA3ZWJ14szK8gdWVt9C0WitTfS53j2Gdkk3BDIH29YfO10ZHcwPbbxP/4T/4eP/vyLf/dj/9Xtmb+AF1W4ZwJQ6YFnMXMCTM77NEyTf5iVGmDSKC2HZc6TzDoxMy82FN7cpvAXLQjtUD1AeU089DWYYlNYM021xNqShWSWJ3LFKOh1GnSbVSrM2mtOnqpUH45YbatAOXJpFpnubYTrzrtrnrYDsyd4+ASYeuYph6zqCCKLYSXmeJ0k0iW9fwpHQIglKuIHSPDEBi7wLt+1M8hQM74p4T9pue32+uVivT8es5bd8Q6NCtm7Jzp33omM3B3O7L1M4/zwJJ0ekFvVf1Aiy3L5OHB0z0axfOjxu+VDLjCBql3tVFenbV/KuvxQG3XSQF3rBDLRsidcPhCz+bwb47cXh3501ff8uPxbhXClZ3YmpmtWdjIzIG+9mk45uxXWH2QgEE7mTabhWl0/OHmLXN2PCWt39z9dHMx3aFdc1KAcXTKOt8tPVNwdHXW4W7qedwPFFNYbgtpMJR5ZvNPv+Fnuzf85j+95Z/9jS/5cfeO6/63alLJdGfJdBOKazi7xIxJGTepmZiDzowNddxo8xvtq5QaJdUpBG2h7QKmtdAZdJZVPDlxEwrdrmASq0qvZ1VU09zuM/V6SMp2nHk5HPlieOSL7n41O4NcaoYpGtZaThyuU1tZwUrASmZTDBuz1JKwwid5o/fQSsX72K9lgFgM105JcN9NVxxity7kYfHaMiD1BIUG2t7d40Jg/Js/51fHV/QS+aP+tx9qhwipTXzO+wNiDQbwx5Hh7UARYfcw8k09jARYh7G0g7KuxpmbzcTjdmB+rcPjCQaiYGajYeBMPTiLM9sr7H6mP5+G8NYPYAFTSJsEPvPy0x0vN0f+5PY7PuseuXWHlV8FrKFiV1sQXtgDN2bSDia0i2mftfMpFSFXbm5jMVoKb5yOyDjkfp3DmxEsuQ7JH9YEGOBld+Taz+xjx5Q8V72agScpBO+Zbzy3m41+oOPEi7+c+d//lz/nH/6NPX/77/2SLIYdA9dm4jOfMBgeykIC3Nq/fDwiInT72h51dBymHl+PPmjRiw5WFLZdWLGsQ+frXEB15nGxxNliDhaJ5XSootEoKb2MOm7urJ6hB6roUK7toGHqT1+853V/4Gfj97yyekTQeTXRtmiKphEFYwJDZajsc8+kfMQqEFOZJvplz9jrTUC+zhTpKy1nNu4CDupNpEfNF2hVcuwCS6wzTrwH77TiFyP+7sj1v+l5f71hyh3eJA6lrxoNBqMT6gBnbs640zFy9YsHxm96wtWW46dX5J/tub59whptmNn4BWsyL/sDL7sj+77jELv1aLdYDEtyTMlxCFoRPKf0tKraOoa11tmdSbz2+xURtpJ543aVP6sJU6OJTln7954XvBJCWvv6pDIXs0Y/leNlS77gbO1qQ2Z7TmO2aBnhw/7BdrXGm9YPH6MhHRx2RucWAohg3j3y+p84ws01/+f+p/x0eMvPu2/ZykIoGUiEUoVBX+3fUuu237/H73rG7zcUJxx/pL1woDmGoro6OfnGHdcO1a2beekPF8Tl1lrcrozgRBfdntWtX9gDgwQ+dw94iexzX1ke8YKlmCpvt0VH54t0rjGpMgw/1nrwnBN2LoT2Hut7FakHctmL57f3vqiQ1vNG9FTMVHm3lnI84r5+T//+im/mW27dEd+nejxqI3PoPTtiG7hUh1dNEyUlhvtEGiz7dx1fm1te3e657ae1ZSAV4Zi7lV7fMuHm4HsTuXIzenjJCe4eTOAz/4Alr4Ug0I7VxzxUdrqrJmW4WMgWo7fR3erAWx94PLHZMQRYfURGz/DIRduUVQinU87OoYnWBXXR33dGMW1Xm6m+Do/JRseC5wLea63bOUiZ8rhj8zbyj/76p9x9uuE/2v5LLIV9uWyjcM+HqZd6WKA7JPze4J4MYew4jMs6Gc0Y5cSGbFdKzpy1lmAoleimoaelrCxzDTMXPnf3AOyysvr2WbXzkPuVbwushaJ2DSasDlz7MeIaUdmWqBTLidPedv4Zu/GZEM5b0OCyjfrCP3HJ0T2PLHXhZEWYpTHRnaOkhXw44J8i07uRrzc362vMzyiGjs5rkbzxfbyy4txuYfCG8XuPFMeT1wjhZpihZ2WkA2ut+Zi6laX+3JS0Xoos5mRuVvvcPnRahXb+XNUUWSOhpVg6SQTjCOJWc9b6wTWK6phKx1Ma1Gxlx8X5f1Urz7G3j12tbeE5CfvUF19qd7CG+TaUlUlYjNXpntfX5JAZf+N4u7k+cYhLq+FnrIDT8qAyFvTMIO2mMYeAt4bu3pGtEG4dU9/Ru0TwtW+6fZBaS5irknWm2dtL9V4LQbVe3ZplVjstmrl3TZM4+SrEcMi62FmE0DJGoybOSmbKHVM5dcHO2XPI3UnoRVa+1wdCKKfd//H+kw+7di+0oyqmpEJegp683HnVEO+RmOnfwfSpX4na2n2V8aKJn+M4Xb5ryXriwNMBSYnttx1utsStZWZgZzOjD4x1GkBv2sht5cr2JnJl5zVLbkKwNQO2knmXrta3S5XsvP6O4T5tTgLi1NV6qIzGbIwS6rKpaKgmfm3URCNJhOxWc9S4ve30gn2NAD/rdytZL2O5qWMwDln7ARtH7LXZs7ELh1RZlbVfZLAno6jlATDbjZoqMVrtm2fs3Z7bv9KcLKA5zmBae7Ymf67MFbto1MNcKCnB/oiEyPBdj516plc92RmWG89y1eYQGvraVnZMvsbnYZ3r4c/7vFGbn4pwn9Tkbc18wQBsmrZL4wWe00zM+RHUpih16ECnDvyi+0nLr6fXNatQ56QnYD6GQbtnBw06dmVY77EJo1FTQ7Z80j2tsPxKzKZcDA0zFUyV4SzwSFnN1v2OzS89/U9fE+qBYIPo+ED7Qy0B60iFGBXfmyLWW65+4+geDbtl4Lt7z9s3V7y63fNms+eL8fHUZCOnFqvWMD9ljzdxbaRsV7Pfp3awvi6mOtpdGgjFcl8HSPr6ut+bq9OB7XVuVDulZs6OfeyVJFE14hA77qezQfZWS7FGir53yWvBasq+nid7InZ7k07aVu19G8avpG2rk3a6QvJyaqgEZRR2nZIUQsSksmqrPpMTHPJcGFUiSsACZF6wVrj6N4EigpuuOdxZno4jb4MhvLA4o2cavfDH1d6mSoQOxXJIHSZ3HCpssamHw4YKVTThzWdhZyiWxziwjz3fHG+UWWiVitnAvHbyWes1PETPvrIYp3qWR8rCce44Pg6IKdgu0Q+B7av3p5xDzDqs8rx9Qe9N/UHMhgOnVmYN3xc9Pa3oGU65K2SnvCmpAVGxFnqjxOcQkXTeEVyVp36vxKhTOCciWg+uBzOZY50y1nlwBr9PdA+CeyXEo2PaeI717FatnWdm2+z45XHSG7OsB+rqB/ckTo6+JT9wCgoywiF07OaOp8Otzgmc9LzZ9XJFD3Fch9rXEdzRILNBFqE71Bq3hWM38E/vRkyf+Je3b9h2gT+6/Z6tm9eek4s6OsJ92JyI2gh384Z97Pjm4YbD44B56+nfGdycKWOPzOGUidcNrqdcnhJNUBM15aYZz5s2jCj2HYKekvX0BJNDrq9g6PAPAQpMrz3h1jBvPLtZj1VztQFychPGlJpn1LZgWbixGiy06Oad0vJOvmUdLHZaiJAt+6Xj6TAQf7Ohuzf0dwrDN+Q3jlr6jBuIG5QzK+COgt+BiQUTWFuHihXipiMN8PBJz/vrxKd/c6d9KEU3gq2DzFo9p5181szZL+9f8rgbMb8euP5WQVE3FdwhU7aDJn+7XW24dNpEGQImnjhnzVeEyuD80Ew5h9Tij9Sm8lWyKetw6AaHz8rSfpp6pVL2ZxMF2sgi9OSaICderQrk1HLWzNV5GBqK5bv5iod55OFpIOw7+ic97NdNSsdsEag7FuwM3Y61lp6dntBMLfVq/bpgooagfldwR5BkCHvhn7/5jO+213x59cDWLuvcwoabGcl0Oa1zSPaHnnLXMbwXhrcFN2XcVOh2AeoBvHpEalmb8Qt6Dy20NdUahPq7u2iJNYK4UxRCOhNETEg9LFBywc4F/ySkwXLoB4VJrs92dLEcUr8Cbl4S2ZrV6QJrrtEe1xop96nnmDy/ebplN/WEuwH3aOnvhO6h6OIvWsMuBvwx4/YJGzLmGEkbT9xalivL9FIHAqdei1+SC3aB4V5NRv5OCFvh7XjDX7/YYH5SeDM+aWeUTWzdrGOUrFuDiUPsCA89m68tV7/OXP1qwh6DHlv9seHz8USHNYk1UmydfqEYFsyZZtSJxWvzhHPaAtX+DtoKFTMmZLonpeNQDGHuuI/Cv3aJV+MBI6catWpDXjWFGo4Ca2HnKfUrg2NOjl/vX/C49Pz2m5fI3jJ8b3EHcAetEKZeSP3JvBZR4lieMk70qE8zZ7wIxSglNLsadlYqZ7Z6NkZL1vr3wpIcd5+MeJt42R1XGCejRag5O97PWx7nAbs3+CfVUkn1OOraWCkx6Tl+XQVK69l8hGoGpdRhN1pYakDlh2aqHo259p81QUR9MZkixlvG7wPdTglccRCeftTxfXzJ/QsNIW+6iU/7J5xJbMyywiOpGB7jcBbOKl93Tm7t6fhX33xC3nlufuHo7wr9Y8LOmbC1pA7mF4a4OZVxJQomFvxB6J4Ee8z4XcAdNdhoOzV3lnBtyU4pOFKU1mli4fpXmeVauP9cHfVn407Hg9cN/hi1PPvN7prdfqB/a9h8l/GPEbNEJOihiXKcKbsn6HtkO67mvTVcAnUQWsaiwUBCWLBnDjwlitQzS8+PWF7PLM11Z2XMEinOUKzgyJgkjN8J4Jheb/nLbLjaTiwv3NnsEV34mA2HqL6hHSWHbtC1QzUHPXIhW+UqzdcGsxGtjXtZS7l20TJuq6ebqL+bWGeUU1jPz6hmw86m4ok1aotlJaplJ/DoeHQjh5eeF/7U5jwlzyF2zMETZ0dXSRPU87+LVAtiDHT+dNJlXUNpWmrg2kwMkghFCKiWdCTc2uK5qEoWI0g5nVO6HkZe/QZLwKS8vpE96q4bv06YOXL48TXv/2TD05uRf/Fzv4aaKRri7GrIKZAEt7NaO97m00GNZ1fc6qLlrjL2OmUtDm+F7l4dsJtrDb8SGtwhYZasO7WuV4tSbdQAJHuDNI7uVDeKN5hY2P7aMe8H3n+65XV/WDfR4zKwW3oOTz3svB5Wb5UxWZxBnIEglN5fdLWeb2pxjuyEz909rwxMJZOAQbS+4S5MUbsarJ45+ZF6fLLEBLkgISHeqpByqZOPA/4pMr61SBH23Vajrwot27PFkayUSaV5mtMZgbDudLfX3d/mMaYk2heRG52ykKuG2KUgTSOy2vD1AHRbd689nUUoSTeRakXBLJkiBnfQdoApnsgIMRse5oH93FGeHH5nsEd9T7uoHyVm2uFWxTtdq3Y0dSmrxhSryMRUDppXtUSdgmuHL61D1XXutp7Qex7atqPP6mkqBn0leRY9+HcHXu4DubOkjcMsGfcwkzeewxc92VYqpBGyL5XKIysrRFKhfyjYcEJT2xZftobUKwMxXqmJKEadaHcfVg0xIWmXkLcU58nOUDqjbL9qlt1RI5x2grGdI2YxjN9bJAoP+5G3w5anpWeOjrvHDenoGH/jGL8vjO8S3UPEPy6Y/azvFyJl7MnbATMH2B/VqdcePm6uyB5+G1/wwhwZzo7Tg5UZf+rIbDZwHQ2aVBNoM71LXnMQOTv5XSMt1R6TQUJGUsGEhJkWpBS6e0v2htzpLg1jPeQ8tY1QNabafcqJtlOM7kT1X8rRtXNZ/YTEvGopqazFMnLGREhW6lP1/43GudKEUh3vFPVQlGVyqzbEaEmTg1mPObVzdfxrPlE/x7l1afdSjxAV0A4m4H284t6NfGl3az9jRtSBiwgMW13wOlJBalhWnvaUFE5vFKNWA8WoFjXhTTN5f0D6DjOOajtDDwZKr83qw18/gLOkbae9DC86iq1OtPZIAMRNHZ96UCJyC0PdpBojD/U5VUjdQ8Du5hMe5C151BqCOSwqmFj3XQ3P5TirIDqvi+kMpljNn44F3vb8Nr7Q85aS4J4sZoH+odDvMvaYMHOqZulsNoiIJsupmq2UVDO8p3RK1P1nhy/oTeCPtg944PuakbvVJ7TT3lv51epii6+VwHO/0qbHlEprMOjohXYTrcvTGHCW0l0mj2aOak6invZlYlm1A8AuWXOFVP2AQKHWlxG109Xmq09qs0TklGw9u982NF5iPuUDjX4qgmRtirRLxi6C2xuCc5hZy6n+STuU3FGZl01ziwDe1ntxp/fI+lXONITasnZM/oKs4dFzR5QdUoVQrCFfjeAMEurhTl4HWMm0KF7VygbNFlrLyqe2lhIj7BNMVkO8oaeYrQps7PSG9hOyOOzW66IvNSMfNMn0D+HUHweYpEldxCoVNGp/hDto1luMoQwV/2mOu9TvVoMMmaMuWIhr7E8patfrxjLe0xuDPfZc/3IgXFnsUU3hcJc0WjtWtvqSkJTJvSN1FhMckrJq6MMTKx+tfo6yBMxujz+8YB+7Cv3AYIRPrIbhbh2d0MyNFbIzmFwRd2chwgeAYrty5nk0VkpBypmmtEtUmSVliqk2vpzYhuvDsjaiaPQjK1tdGeBVG+rCS0jQST2as+7U88jSoBh1i2rOv3LWzLjiR0UEYkUZKk3VzurDzgXRmjHbMK9iamDQQrWUzmCRfPqeMpJP8HxbGVudwL8FKUNm81c4qNEAAAAASUVORK5CYII=\" y=\"-28.587873\"/>\n   </g>\n   <g id=\"matplotlib.axis_5\">\n    <g id=\"xtick_6\">\n     <g id=\"line2d_15\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"270.642647\" xlink:href=\"#m839a88af9b\" y=\"127.587873\"/>\n      </g>\n     </g>\n     <g id=\"text_17\">\n      <!-- 0 -->\n      <g transform=\"translate(267.461397 142.18631)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_7\">\n     <g id=\"line2d_16\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"311.672059\" xlink:href=\"#m839a88af9b\" y=\"127.587873\"/>\n      </g>\n     </g>\n     <g id=\"text_18\">\n      <!-- 20 -->\n      <g transform=\"translate(305.309559 142.18631)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-50\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_8\">\n     <g id=\"line2d_17\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"352.701471\" xlink:href=\"#m839a88af9b\" y=\"127.587873\"/>\n      </g>\n     </g>\n     <g id=\"text_19\">\n      <!-- 40 -->\n      <g transform=\"translate(346.338971 142.18631)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 37.796875 64.3125 \nL 12.890625 25.390625 \nL 37.796875 25.390625 \nz\nM 35.203125 72.90625 \nL 47.609375 72.90625 \nL 47.609375 25.390625 \nL 58.015625 25.390625 \nL 58.015625 17.1875 \nL 47.609375 17.1875 \nL 47.609375 0 \nL 37.796875 0 \nL 37.796875 17.1875 \nL 4.890625 17.1875 \nL 4.890625 26.703125 \nz\n\" id=\"DejaVuSans-52\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-52\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"matplotlib.axis_6\">\n    <g id=\"ytick_10\">\n     <g id=\"line2d_18\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"269.616912\" xlink:href=\"#me6af93a7b3\" y=\"30.14302\"/>\n      </g>\n     </g>\n     <g id=\"text_20\">\n      <!-- 0 -->\n      <g transform=\"translate(256.254412 33.942239)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_11\">\n     <g id=\"line2d_19\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"269.616912\" xlink:href=\"#me6af93a7b3\" y=\"71.172432\"/>\n      </g>\n     </g>\n     <g id=\"text_21\">\n      <!-- 20 -->\n      <g transform=\"translate(249.891912 74.97165)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-50\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_12\">\n     <g id=\"line2d_20\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"269.616912\" xlink:href=\"#me6af93a7b3\" y=\"112.201843\"/>\n      </g>\n     </g>\n     <g id=\"text_22\">\n      <!-- 40 -->\n      <g transform=\"translate(249.891912 116.001062)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-52\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"patch_13\">\n    <path d=\"M 269.616912 127.587873 \nL 269.616912 29.117285 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_14\">\n    <path d=\"M 368.0875 127.587873 \nL 368.0875 29.117285 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_15\">\n    <path d=\"M 269.616912 127.587873 \nL 368.0875 127.587873 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_16\">\n    <path d=\"M 269.616912 29.117285 \nL 368.0875 29.117285 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_23\">\n    <!-- Resize, gray -->\n    <g transform=\"translate(282.310331 23.117285)scale(0.12 -0.12)\">\n     <defs>\n      <path d=\"M 44.390625 34.1875 \nQ 47.5625 33.109375 50.5625 29.59375 \nQ 53.5625 26.078125 56.59375 19.921875 \nL 66.609375 0 \nL 56 0 \nL 46.6875 18.703125 \nQ 43.0625 26.03125 39.671875 28.421875 \nQ 36.28125 30.8125 30.421875 30.8125 \nL 19.671875 30.8125 \nL 19.671875 0 \nL 9.8125 0 \nL 9.8125 72.90625 \nL 32.078125 72.90625 \nQ 44.578125 72.90625 50.734375 67.671875 \nQ 56.890625 62.453125 56.890625 51.90625 \nQ 56.890625 45.015625 53.6875 40.46875 \nQ 50.484375 35.9375 44.390625 34.1875 \nz\nM 19.671875 64.796875 \nL 19.671875 38.921875 \nL 32.078125 38.921875 \nQ 39.203125 38.921875 42.84375 42.21875 \nQ 46.484375 45.515625 46.484375 51.90625 \nQ 46.484375 58.296875 42.84375 61.546875 \nQ 39.203125 64.796875 32.078125 64.796875 \nz\n\" id=\"DejaVuSans-82\"/>\n      <path d=\"M 5.515625 54.6875 \nL 48.1875 54.6875 \nL 48.1875 46.484375 \nL 14.40625 7.171875 \nL 48.1875 7.171875 \nL 48.1875 0 \nL 4.296875 0 \nL 4.296875 8.203125 \nL 38.09375 47.515625 \nL 5.515625 47.515625 \nz\n\" id=\"DejaVuSans-122\"/>\n      <path d=\"M 11.71875 12.40625 \nL 22.015625 12.40625 \nL 22.015625 4 \nL 14.015625 -11.625 \nL 7.71875 -11.625 \nL 11.71875 4 \nz\n\" id=\"DejaVuSans-44\"/>\n      <path d=\"M 32.171875 -5.078125 \nQ 28.375 -14.84375 24.75 -17.8125 \nQ 21.140625 -20.796875 15.09375 -20.796875 \nL 7.90625 -20.796875 \nL 7.90625 -13.28125 \nL 13.1875 -13.28125 \nQ 16.890625 -13.28125 18.9375 -11.515625 \nQ 21 -9.765625 23.484375 -3.21875 \nL 25.09375 0.875 \nL 2.984375 54.6875 \nL 12.5 54.6875 \nL 29.59375 11.921875 \nL 46.6875 54.6875 \nL 56.203125 54.6875 \nz\n\" id=\"DejaVuSans-121\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-82\"/>\n     <use x=\"64.982422\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"126.505859\" xlink:href=\"#DejaVuSans-115\"/>\n     <use x=\"178.605469\" xlink:href=\"#DejaVuSans-105\"/>\n     <use x=\"206.388672\" xlink:href=\"#DejaVuSans-122\"/>\n     <use x=\"258.878906\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"320.402344\" xlink:href=\"#DejaVuSans-44\"/>\n     <use x=\"352.189453\" xlink:href=\"#DejaVuSans-32\"/>\n     <use x=\"383.976562\" xlink:href=\"#DejaVuSans-103\"/>\n     <use x=\"447.453125\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"488.566406\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"549.845703\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n </g>\n <defs>\n  <clipPath id=\"p4c7a23dddc\">\n   <rect height=\"112.068908\" width=\"98.470588\" x=\"33.2875\" y=\"22.318125\"/>\n  </clipPath>\n  <clipPath id=\"p09d509db69\">\n   <rect height=\"98.470588\" width=\"98.470588\" x=\"151.452206\" y=\"29.117285\"/>\n  </clipPath>\n  <clipPath id=\"p7459b3e2e9\">\n   <rect height=\"98.470588\" width=\"98.470588\" x=\"269.616912\" y=\"29.117285\"/>\n  </clipPath>\n </defs>\n</svg>\n","image/png":"iVBORw0KGgoAAAANSUhEUgAAAXcAAACfCAYAAAACoJmlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADcCklEQVR4nOz9d7itWXbWh/7GnPMLK+28T6rY1bGqU7UiSNiSiRKCR4RrGZkkBDhcYz/XF9tg7sXggC38YNk8YATGYCHAFlwB1wJzQUjQCkgtpG51S91Sq9VqVaviiTut8IU557h/zLnWXvvUPqGqq7qqW2fUs+rstda3vvyNOeY73vEOUVUe2AN7YA/sgX1xmXmjd+CBPbAH9sAe2GtvD5z7A3tgD+yBfRHaA+f+wB7YA3tgX4T2wLk/sAf2wB7YF6E9cO4P7IE9sAf2RWgPnPsDe2AP7IF9EdoD534HE5E/ISL/62u97H2sS0Xkba/Fuh7YA3tgv3JNfqXw3EXkW4A/CrwVOAb+AfCfq+rhG7hbLzMRUeDtqvrpN3pfHtgDe2BfuPYrInIXkT8K/FngPwU2gV8FPAb8MxEpz1nefX738IE9sAf2wF5b+6J37iKyAfyXwH+oqv9EVXtVfQb4JuBx4PeIyJ8Wke8Rkb8lIsfAt+TP/tbaen6fiHxWRG6KyJ8UkWdE5Nfn71bLisjjGVr5/SLyyyJyQ0T+X2vr+QoR+TERORSRF0XkL543wORlKxH5c3k9V0XkL4vI4PU6Vw/sgT2wLx77onfuwFcBNfD31z9U1Snwj4HfkD/6RuB7gC3gb68vKyJPAX8J+N3AZVL0/9A9tvtrgHcCvw74L0Tkyfx5AP5jYA/41fn7//sd1vFtwDuAp4G35W3+F/fY7gN7YA/sgf2KcO57wA1V9ed892L+HuDHVPX/q6pRVRe3Lfd/A/6hqv6IqnYkB3uvZMV/qaoLVf0Y8DHg/QCq+mFV/ZCq+jyD+CvA19z+YxER4N8B/mNVvaWqJ8B/C/yu+znoB/bAHtivbPuVgC3fAPZExJ3j4C/n7wGevcs6rqx/r6pzEbl5j+2+tPb3HBgDiMg7gG8HvgwYkq7Bh8/5/X7+/sPJzwMggL3Hdh/YA3tgD+xXROT+Y0AL/I71D0VkDHw98AP5o7tF4i8CD6/9dgDsvsr9+Q7gkyRGzAbwJ0hO+3a7ASyAd6vqVn5tqur4VW73C9JE5BMi8rVv9H682UxEvlpEfkJEdt7ofXkjTUR+t4h83xu9H29G+6J37qp6REqo/gUR+ToRKUTkceDvAs8Bf/M+VvM9wG8Vka/Kyc8/zfkO+X5sQqJiTkXkXcC/f4f9jsBfBf5HEbkAICIPichvepXbfdOZiPwTEfmvzvn8G0XkpTzbereqfvAN2L1zTUQ+KCJ/6A3eh0dIEN03qOqtN3JfXollEsJCRKb5+n5nDrJetanq31bV3/ha7eMXk33RO3cAVf3vSRHynyM51h8nwSy/TlXb+/j9J4D/EPhuUhQ/Ba6RZgSv1P4T4N8GTkjO++/cZdk/Bnwa+FBm8Xw/KUn7xWJ/g8RWun2g/L3A375DnuRNbZ8PGq2qPquqX6Oq117vbb0O9lvz7PNp4APAf/7G7s5ra28qGrWqPni9whcJP/fAW97offlCfgED4Aj419c+2wYa4P35/TPAr89/fwXwk6QB+irw7Wu/+/+Q8hxHwA+R4Kzld7vAP8y/+wngvwF+ZO37dwH/DLgF/DzwTXfY3z9DYjs1pAH+L+bPFfgPgF8Afil/9odJA/Mt4HuBK/nzx/Pybm29HwT+EFABh8B71r7bJ8FzF/L73wJ8NC/3o8D73ujr+Aqu9+pa5vf/PfB/rb3/VfmYDkkkhK9d++5bgM+QgqJfAn732uc/kv/+z/J1Wb564Dvzd5vAXyMFZ8/ne8De536/Jd9TJ6QA638G/tZt1/MPAr8M/NDd7kfgy/O9a9fW/zuAj73m5/uNvuBfKC/gt5ISnCPgLwM/Ra7wffD6nM7rXwX+17X3/y7w0bX3K4dAyp/83vz3GPhVa8t9KwnyqoD/6bZ1fHd+DYGnSLO2pUMY5fd/gJTc/gAp3/HUHfb3g8Afuu0zJQ0OO6QB69fmdXxJ3p+/sPbQL53By5x7/vuvA39m7bv/APgn+e8PkGaMX0lKrP/+fH6qN/o63ue1Xr+WDwM/A/z5/P4h4Cbwm0mIwm/I7/fzNToG3pmXvbzmLL+FtYF6bVuPAC8AX5/f/wMSM20EXAD+FfDv3ud+/xhp1l+SKM7HvNy5f1de9+A+7sefXe7X2r790df8fL+OF/LrSFHQp4E//kbfWK/B8fyvpIjiiJSEfecbvU9fDK/8sBwCdX7/L0n0z+X36w7hh0j5k717rHMrP3Cb2Qn269eLtcgd+LeAH77t938F+FN3WPfKEa99psCvXXv/14D/fu39OO/D49zbuf964BfXvvuXwO/Lf38H8F/ftu2fB77mjb6O93mtnyFF1Cf5HPwAsJW/+2PA37xt+X9KGsBG+R75nUvnubbMt3CbcycNsB8G/lh+f5EEoQ7Wlvlm4F/cxz4/SpqlD9c++1u83Lk/cT/349qx/u389w6JTXf5tT7frwvmLiKWNHX5elKk9M25EOgL1lT1D+kpY+XXqerPv9H79MVgqvojpCj3t4nIW0nQy/9+h8X/IKmo65OZKfJbIN1vIvJtIvKLOTfxTF5+jxT5Oc5SXdf/fgz4ylwxfCgih6RitUuv8FDW13kF+OzaMU5JUei9Ct8A/gUwFJGvzIn/p0mR3XJf/+ht+/pI3t4Xiv02VZ0AX0uCw5Z1Jo8B/+Ztx/ZrSE5vRhqE/z3gRRH5vzIZ4U7214CfV9U/u7buIv92ue6/Qorg72VXgFuqOl/77Dza9Oqze9yPkAaH3yoiI1Kl/A+r6ov3sS+vyF4v8P8rgE+r6mcAROS7SRWgP/s6be+BfWHbdwG/j5Qs/qeqevW8hVT1F0iBgiHhlN8jIrv5728kRb3PkCL2AxKj6Top8noY+FRe1SNrq30W+EFV/Q3cn92JMrv++QskhwJAfoh3SVjvLH88JE3vYW0gUdUgIn+XFFleBf6RpgK25b7+GVX9M/e5r29aU9UfFJHvJMEdv410bH9TVf/wHZb/p8A/zTTk/4YE5/1rty8nIn+cFACsf/csKXLf01eepH8R2BGR4ZqDf+Sc5dav/7/Nne9HVPV5Efkx0n37e0kzstfcXi+2zEOcHd2e4/6ilgf2K9O+i/Qg/GESg+ZcE5HfIyL7mmiih/njSMI2W1J0PCTRBIHkLEnSE39aRIY54vt9a6v9R8A7ROT3ZppsISJfviYXcbtdBZ64x/H8H8AfEJGnRaTK+/PjqvqMql4nOfnfkyO8byUpla7b/06KVH83Z2cxfxX493JULyIyEpFvEJHJPfbnzWr/E/AbROT9nEazvymfl1pEvlZEHhaRi5keOyJd5ynpup8xEfl64D8CfruuVZnnqPj7gP9BRDZExIjIW0Xka/LvlnpQj9++TlX9LCmJ/6dFpBSRX03Kv93N7ng/rtl3kRLA7+U2aZTXyt4w2o6I/Duk8nqGw+GXvv2tt9/fye4UJt3LFM1E9DvQ0VXTute+ltuW1du3/mp35n5N8wZuZwbq2Q2/mt1YHouc89n6ij/xsz93Q1X3X8UmXrWp6jMi8qMkiYbvvcuiXwd8u4gMSbDH71LVhYh8F/CbSE7zFvAnOVs/8EeA7ySxF36e5Hy/LG/7RER+I6lq+NtJAc/HgP/nHfbhzwN/Q0T+fVKk+R+dczzfLyJ/Evh7JPbPj3JWNuIPk7SK/lsShPCjt/3+x0VkRoIE/n9rn/+kiPxh4C8CbyexaH6ElIv4gjNVvZ6v3X+hqr9TRL6RxKD5P0ispH9Fuo6GdD2+i3T7f5Tz60P+LRIM93Nr7Nq/par/HmlA/zYSejAhMW+WsM0jpPvp+Tvs6u8m3T838z79He5eKX6v+xES1PYdwD+4DfJ5zex10XPPo9ufVtXflN//5wCq+t+dt/zT73ufft8//sfnruv2/Vu+X30unHGG6wkFAYy8fHKyWmb5+9P9ZnlTrCVDXva79Ga56ZcPHuf99n4sxvjK92NtH/Tl7vpsYkcixpwusdze+vG8490f+LCqftkr3vkvIBORPwtcUtXf/0bvywN7401E/t/AdVX9K/e5/N8BPqmqf+pz3O4vkhg73/+5rOdO9npF7j8BvF1E3kIavX4XCYd6VfZKHeXK4Z7zs3s53jt9t/55Gjjuv0D1vHWKyOrz5f6uf/ayQewu6zrzmdx5ubvusbx85vLFYhmKKUnUuy8nJWbf0CrTB/bmMVX9b+72vYh8OSkC/yXgN5Lw9G/7XLYpIr+T5KH++eeynrvZ6+LcVdWLyB8hUZks8Nc1VXnel90eDd/NISci2vnOE+GMg1+PVM9b2+3bMMacR2tK67/XQdzF5LaZxvpn50Xs580O7rjvd1g2nY/bTsivHJuQpvpXSJj5/wD8n2/oHj2wLyS7RMLFd0n5w39fVX/q1a5MRD5IYhH+3pw/el3sdcPcVfUfk/TSX81vz/373Pd3Wc9dMff73I+7DSz343Rf6XL3O0tZHwReq+3f53a/joQ7W1Lx0ecUwXw+TFV/gqSH/8DuYF+I1/XzZar6D0kVzq/V+r72tVrX3exNpy1zp0j5bsvc+fX678uvJJMvwvqFB/bgun6x2pvCuSvLZKDe9rcS9TRNqPmVMpncOyiX09+k38nqd7L2+/Mc+HlJyztFwK/1IHC/67jfwe/UBNScvjAvf393W9UvaGpasqxfeGBf2Pbgun4R2ptGwUxX/94Ou6yxYlhCDKdO9pUADuu/XbJpXitY4/b1vBKI5XPZ7pnt8fKB6uw6bnPeejv1857bO69+4Stv248VxRX40sLK6cB45vynfY1L8tFqn3XFQjpNjCsx05p1xVICYw3O2NVyXdshAtZarLUYY0BBY0zrNSblXfT0Llvft+V6YlyyqfJy6/nqvNwqf6NrX69mi5r2OSrWmtVxWWNwzlIUBUXh0vGHQIwx/R1j3vZpQCKS9zlf3xACMQZAMHb5HRiEqqrY2dlhNB5jrT2Tcvr4J372bhTXe17X2620Ax24zdMAyRpAkBWbTM++Yv5XBMwywiJ9vjyXkv+3XMbexjZcnofCpnOzJB3koE2inrlWyxtFl7ddPqkSFYl65vYX5WXvV1P/M3+v/7uW53IOtYKvDWpB0i2HCcvtLc8JZ89D/kxChJB/tHKGp8uFcUmx3zCyHdt2jpFEf3j2Wc/NW/HcB/dN49wf2BeHqer/AvwvAEVhdatS6rrCFQWK4CMoFsTQ+sh83lAUFcF7gu8RVZwxVIWjcOnhjtFz3E4pHDgrFM5SlgWDQc2wqiEq3aJhMUvfjYYjJsMRVVmiIdAuGkIIOGsZbYzxvqfzgaiKMQZXFBRFCcYSNDJvWhAhhEDTdSzalq7rEZMcaFnVnBzOAMEag0gaRAiB4AOh90TvEWA0KBEi1sJkPOTihR0ee/Rhrjx0idlshometmk5Op5y6/CYw6Mps3lD1wd8FLwa+hBp+x4pLJ33NE1DHz2udLRtS0TZHm/w3ve8h9/xO34HH/jAB9ja2gIjeO/puo6nPvCVn73TNbtfWx+4azvmq/b+TajKs1Rka5KTnS/QtgNrQAz0Hdr1yHCA1PXKaem8QWczpKqQuoKyQKsSnEVLBzEiTZ+cdF2gpaPdrVEDxisSTr15qA1qBNtGxCuxENQIsUz/2i4iAVBFFNxJjz1p0yARYxo0qgLpA9LmbboUEIlPzlfyvaHOZqdu0cLSXhrTbViuP23oNyOmFcQLxVSwHYxeiNQHATcLmDYgISan33mkD8sTDF2PzBYpIMnnK25vcOMrtnnPv/NxvmTyy3zj5BMUwGE0fNNvuX7H6/XAuT+wV2LPc7b0+mHuXPgBQIhK3/sUuK2cewAxeB8J3uOsA40YwIjgrMkvQTQSFAYWqtIwHNaURYFBiN4zWxwSfYQY2NvaonCOuqioq5LSFRgp0bpGAOcsC99BNKhEvCoaI+o9QQRjFWNgUJUYY/EhoKr0XYfXiEbBdx2+7/E+DQxGBGNyRI9NTj4GTDQM6gJrwIqhLCyDyjGqK/a2N7i0v8t8UNH3LW3TISK0XcdstsDkyD/4QNN7xBZ0XYejSAPeoIa2JcSAMSYNigK7u7uMc9Qec7Qskhz8a3Fd1wfuzeJCmmKEmCLQkGs0YnKG2veo94gpTqfXIsnRL6NWEcQa1No0CDiHFg4ti7OTzOxEY+WIpSU6QS1pvVbSYAKE0qAGxAsGUCMZeUzLh9JgvAKCGrALszyw9YM8s11dzh6WMztr03rLYuX8tbCE0hBKwY8UHXtCaSBIChg6qA6EMDeYNmK6NDOQPqRBo/dpvZVFvAFjENW0HRGwaX8Htqcy/Wr3+nSn3NHeNM79bgyZ5Weqelfs+5Vs47z3d2OgvAzmuE/E5V50xlcC+dybGnk2R7C0dQqoMXfG1e8DRnpl9Qt5dd57QlSQFLEHIjF4fFDMapauYAQnQmkNpbMUziABPJEivx8UlqosQJXGd/TtAmcck/GQrdGQ0jlKV1AWBYUrKDI8I3lf2uMWK4I4i42SnKBJM4KqKimqAltUqCrzpiEET9850BIV0Kh0fYdzFcY4nHM4a7GStqEuos6ihWdYFXjfYlAKo5QGhpVlZ3PM3taYtrYcH09pbIHve6bTOYNqRlM4vFdaAuo9iknny0ua0RQFfejxXZ+vs+J7z9bW1sq5h+ARY9Kx3/see1V1KRoitFkqpywQY1K0HgOEcHa7ziHOIcMaravTzwuHGdRo4YhlgRaWWDtMHzCzFq0Kmkc2iYVJEbgV+kGOyIu0ConpVcwjxmtaLiMVasDXQqiEUEEoBddocrAhReSyHAj7iFn0qBXisARjCFWO0A0QFDOp8nrT+k0fic4QqrRf7DVc2jtm1pZ4b1nUNTSG9tBhOoPpLSYopgspYu96pO3RQRrkxAYwZwcd6TwIPDl8kbeWV5lFgxWlIN4VSH3TOPelfb5YKedVeN7+/d0eins9LnfHvu+83dfCzuPK3+t47sdeTf2CAN4riMc6wTqLUcHHCAhVUWBFEoZooTCGqrDUhaWwBgxYHylsipAHVhjXBWVR4gcV7WBAXZZsb29hMVgxGJPWZ1PAh7WChojve0priEaIale4ulhLWdeMR2Oq4QBjC5q2JYSewgqVsxgpQdJApSFhrEYc1lqcsThjMAimAIkWiYHCCJ12iEIhSmWUcV2wNR6xOawIlUVDpHA9IXgWi4Zm0eJ9BOb0QelsTx8DiBJjQGPEWIc1kv52DmOEpm0YDAaMRqMUuYeIydfb3o5dvwbXNf0wzXoAxLk0QGfHjpi0phXGbk8j38KtYfMGNQatHLEuiKUlDB2ms7igxGFBt+WIVoiOlVNXC6FKeLpEkKCYfu3+XiVVkkMPZXLysQJRgZhhG5dyIpKxeGJMWL8xRGdS1CxpMMECNj9bkvILGjUNBi7tV1l7NqsGK0rrHV3nCOrSwJIHF2tzRK66mnWcPjBLLH4tiPUJttlxU7bMgogQVe4Rt78JnfvraeexWW6P1h9QHu9ur7x+QV42kFoxOGsBQ1lWECJqDVagtIa6dNSlw1mBAAFFQqAuS3YmIy5cuMDO9jZlURK9T8nEuqZrmpUT79qOGALOGMqyQFXpRHHDIb3v6XtPiBGsoSwq6sGAejTElRXT6ZTQt6jvsURKZ7BGiBqRKERn8SIIEQKoRmJMUbIxltJZnFg09GAFJ4bCwbBybI6H7GwMqQuDKSu6yZiyaEEV7wMxZNhAoe09nS/pFgsKY+k14vOAs5TVWCaQ23mCdqqqwjm3gmK89/d07q/uut4WtCxhlrpO7wuXds6HFIG67DAnA8KwXEXLpgvIoqPfHXL8WEWzK8weisnZ+uo0ZwmQI3TbpASqH51Nik6DIEEojxLOHcrlIADqlOIY3BTcQnGNoga6rQLTRVwTiNEiVZEStDFiegUfs/M2qDP4gQPV9J2CHxaEyrDYN7RbsDlasFfP2KoW+GhwNjAblpy0Bj+2RGcTdKRQaAospO3SOqeLdK5Ws+u0LY6nmP4il9whF21HBILCXO9+Xd80zv2VOtV7Rd73vZ5z1vnyAeD2X8jp/3WZ9NfTZfVlP1pFziuWjpxG/7czMm7/3cv3+Swr4G5n7nbWzudz8FKUGMGsM2YUrDW4ql6xWvq2AzU4IUXtpWVQOoqMmfZ4nDE8fOkCb33rW3nk0UfZ292lrmpijHRNS9s2xD6ARtq2o2taNEbKsmQ0GCIiNE2DDkccHR9zeHDEomkRI9SDmrKu8VFp+56XXnieEAIYYVRXjOqazvfMFgtC36b9IuP1GvA+XU9jLaYsKUxJ7SyNX1AXCWKqS8P2xogLu1tsb4wpJOKcYXM0TIOYKhoiGpSuD0yn85yDgBg8ZVnhuzRwYU7vLTFQmIKZ7+h7j4jgnENRjLXMZjOqqrrjNfrcLvBt95Ix+SVodu4C4ENKQNqUfFRnzlSWGy3ox47FntDsKeUjM0QUVSF4g29dmi15gSC4E5si8lFE7W3PahCMt6iFWEJ0EEtFLRTTlIQ1PrFY1KToX2KKzMUk2GdlITFiRHNugDRYpJFFUZEEF1WCH6bBpnaegU24eFRhWlUYUabjAT4KYWDzTMLgnEGcgd4kGMuvJVaXr5ChmwC19NQi9JrgzNvcwMvsTePc72XnYe33ghru5chiJjlI8tSoKoV1dE1LVZf0vkGBwiWM14dA3/do1BSNWZeiOYSuWWCtpSoret8jxhC8X7ExUMUYS991adqn6eaQPD1bcflVAXdnnRdZXlDNAwywtux5x7w8d/fi4ZvXQVsmBsWVCZtGTRJqtcJgMEjYcO+JRjAqFAZKZ6isobJQGogINgpX9i/yniffxbvf/W4uXbpEXaWoTkSIvmc2m6dzbewpxTDE1bFPj4+5edPTGUM7n3Pz+lUODw+JqlRVhVjL4fExN24dEEJgNB6zu3+B7d1dqqqiaRqu3bwFvscLRFclWqJPVEaDUFnDqCoYDSqGZUE7u0VhhVHlGNYFW5MRe1sbbIxqNLRYoCwdvrf4wtIPSoZ1Qe0MGgN91xD6DjSm89d1hD5j6YVb3fvLyLztOmKMKwdvrKXrOsqyfM2v68rKAsQgRZGSotnEh7ORe1kQBwVhUBAGllgIsRAWO5bFBaHZVeShOeNRw2NbBzgTcCbliqIKPhrmviSoofWOmEN2BUI0dN5ycHMMc4ebQXms2BZMUPph2lZ00I+FWILv00AgAaLL59FIoiSSYBdIdMvoDH5cEJ3gh+kYY5EexFgI3cgwezggOx079YzKpFlTRNgoG5yJHI0HzBWis5iQ9kt8JDEMNOHui0U6j+s5CVXUe4xXXvJb7NsF+8bQozRq74q6f8E491drd4Rh1gqmICfejaXv06ibMNvENGi6DlVlOp0ym804mU7p5gsODw+5desWt27dwvvAE0+8haeffprJZEIIITn7qsIaoet6vO/x3mNwiDHZgZ/G7/cajJZc9tO9PjtJOKXgnp0yn6dl8/kwQQiqWAVjLNY60EQxPDk6hsz9Lo0QfMtoPGJzUDOqCgZlwXBQMa4LLl++zJe99y2MR0MGgwGlREzsMcYkzLuq2d3aSFF812UaYjrmEAKLxYLtrTEX9rf51C+/yO7mGN9sI6Hn4PCI6dEhRVWyv7PNWx57lP39feaLhuPplOl8xsnhAV3X4bsWR8CHjul0zmQ0oRxUia4Xlbqq2JqMsGJoZ1OuXNzj+NZNSme4dGGXtz3xKI8+dInxoOToaEbsPfV4gAxKCmtwxtG1PVXlMHisQF04rNvg4OSEdtESBAIRowXOmQQtke6izz7zDFevXuXChQu4oiDGyHA4pGma1/7iLm8ju8TSzQpHTt/rmZcaQywdsTTEIvHBfS0sLgizxz3FVsMTF26yUTZcqKY4ExiaDiNKbXqCGo59Tcg0mqjCia9pg6OLlmlfcXQ8JBrFBLAdVCcR20ZsZwml0m4ZfJW0hNUI4lMkH/vkpMXLiqGyTJiqasoDVAlXD0VmusSE94dS8ANgw7MxWTB0PUbSNTFAbXuMKFXR01UJkkmMqnReZFUHkKiPKub0s2UwFiMS4STWNGopBNBIQO5am/Kmd+63R5t3Y3vc6ffrdibS19OiAZGEY4oVrCuIvmd+dMLzL7zAZz/7WT7ykY/w/PPPcXR0RN97mrahbVvm8znD4RBVxVrLeDzmiSee4O1vfzsPP/wwTz31FDs7O4myFtK0K4R0iy735ZUe093sjIzv7cf7BljavEHzwxBjIIT0MiIYjYyGY2IQJoOarcmQ7Y0xO5sT9rY2mYwHPHT5CntbQ6qqpK5rnCswZgk3KaIRok/MmKpI+Gi+b0wAoVpFtA9fusD+zjaXL+xz66Fb3Lhxg1sHB8wWaZZmQs9Lzz9HHzxd52n7nq7vaLuOtm3xTUvsOh7a32NQ1wwHA8qiwhqHoISup53PwC/o5i3DynFxb4dLF/bZ2dygdCYlW61gigJXCIbE6nHWEWNkOp1xfe8mRycLDk9mhD5SVgUjKwSSc+r6nqbvEpxdFQhQluUqihfOn+2+braMePs+OS6Tt+0cFA6tHbG2LPYLFjuGbhP6DaXf79i/fMTOYM5j41sMbM/YtgBYiRSSnDzAMH/exoKghsp4erV00bFZNOhl4Xi34qVqG5lZqusWN7eUJ4ptoJgqxfR0l22bsHfbRNwioEbwQ0eoLd0kFSMto/pl0tY1mgucINTCyaOGblOZbM3ZG88Y2J5CAibTszZcSxsDlycnjMqeF/aGzKcG2zvczCFBER/QQYUULkFYizwYx5SglnxNO3X0aggEAopFEe4crL3pnfsrtfvFl4WcrV7GwiGiJj2c0/mCT3z843zoR36Yj3/849y8dZPpyZT5YkHvA9YIRV1iXZoan5ycEDL169q1azzzzDN85CMf4eLFizz55JM8+eSTvO1tb2M8HrO7u5vogHn5lzt2yePNq89BrH/2Rjp3RRFJMxRVzdWVEe89MQREDGqFrm3QvqWz0FcWGdUMCsv2ZMTWZMT2qGIwrKiqkrIsKVzCc1UjKDhjM35vKMQSo1sNIsakwibNsNqWKZkvFkj0ECY4A3VZcu3GdV68+hLPP3eIK0qsSzzm1vcsmoamaVGFyXjE5MI+ly5dSMcRNTt2oWt7FvMT+kVDYcEQ2Nvd5vFHHubhhy+xt7tFURSpoMo5nDMsZnN8jCgGVCidZTQcsDEeM6xLjqczYvQUxiKlxQNdCHQ+oAGME+q6ppv1jMejhLerEjWuBdf3Tqi+aouaE4R5a96v2DJqJLFoTEpGxsLQjYVuC5q9iO70bG3PeGLrJhPXsl9OsRKpxBMRgppEI5WAyY4eYC6BPicTI0IT08BXWc8iFBhRTpqKEzfBHVtMEEyvuIViu8RuUQNuEXGzgO0jZuEJwwQZ9SNDuymoS/RJ8eTfCmYWV1COWmh3lLDl2R4u2CwXVMZjRDGiWCLRpEh+p5pR255nR/v04zRrUZteYk/zFLJoYZZ7dywFI01K0EUVArLK79l71JR/QTj3u3HEz8Ph72RLzu9qNhADSmRYD2nmc65efYkP/eiP8UM/+EM880u/RN802Sl42rbFOcd4NEoJKmeJGjk5OUFEKMuSxWJBWZaoKgcHB9y8eZNPfepT/MAP/ABf+qVfykMPPcTu7i7ve/ppLj90JT/g7pxjOUXTX8k5WXfmrxh+UYivcEC5n3UaSdUmMSoQ8T4Qgs9TdUXUJmpYEJyAQykMDKuSjdGAjVHNILNd0vGBmOWgmK6nsxbnigR5WYu1inoFjRgxK+nm2MHQFohG1PcQAzblbOm7hqPDWxyhED0aQIyhEJCqpK4KqrJic3OLycYGpY3Mu8TKCUgawHykEE81KpmMRgjw8ENXeOThh7lwYYfhsMIauxrYRSzN4jAxZMQRxQKRQVWwvbnB7vYWTReoh8qs65l3HYuupw8Jx14yZZLUgjCZbFAUp+eKHDy8Ls59/faLiraJ8aNdn5KDVcWqgtNZ1CZnHyqhHytxFBhtNAyrDh9PA5xCwipCX76fmAU2R8JBhZYCJDCxzWqZVSTvLLNxyVExoGkK+rKkbYtVIZPOWdU8dGNDu5GTr0VOvjpJ38f0sgtW8gHRwnzXog66DaGfKPVbj9kZzbk0OmZkO5wJRBUWoaRXwyIU+Gjxmo6x2GxZXBFMsEQ7wDUVrlHK4x53c/Gy2oDVKbbpOC1K8lpQSPzCjtzv5tjvR6jrTtrw6XeRwloWsyn/7Pu+j3/8j/4vnv3lX8ZZm6bH7YKmabDGYEtHVVVpOjyfnnlomqahKApEZPVwAfR9T9/3HB8f88M//MOMRiPG4zGf+vSn+Ybf+lt4+9vfvoILTvf37ufjZdo7awyfNyONU8xpMjfGuEp0GsDkwqTCWEzhqMuSuioZViXjOjn38aCmzjosLzvG5cmSFNkEjZjM/s3PZuYKmoRhWsH45DytjCicwYjiu5aN0YCHLl1iazLhaDpNPHwRXFFS1TX1YEBZVYiYlETvpkhpKNQkPRigMoZROaYqS4aDEZubmzx05TIXLuwxmYzSIKYBHyPWGXyISZpABCQ566qwbEzGXL50gT5ANdogiOPqzVu8eP0mrT8ianq8JZMAui5p6mxubqyCC42KZJbSawn73dG8T0VNfZ954xEwq/OvkvPpBcRKkUFgXLfULicfc4J0GalbYsLbpWMjO/Gghh6bMG011KZdYfAhjzZRDbOqojSBW+MhxwL92KWq1S7j7CFBLH4g6TUEPwREUVHcQihOMrOmZ5VfUAt+KIQamv1ImATes3+VC/V0te82ayAtQkEbHU1wdNHh8qxjNGw53jY0sxrTC6a1uCZBw+6wyXmLzLVfQmw5B2AlYrNjh6Vzv7N9Ts5dRJ4BTkgwoFfVLxORHVKPwcdJnb+/SVUPPpft3M1eiUO73REO6prDw1v8o+/9Xv7h9/5DukWL7zu6RcJaF77HFJayHhBjZNEn5kFhDc1sjvc+Y8COxWLBdDpjNpsDinOOwWCwihpDCJycnNA0DT/4Qz9I07V88zd/M48//jjW2pfnBu58EHekb77RMMx5JmttDhNckG5ka4TSOaoicXkLZxlUZWKa1BXDumRYlwzKgtIK0QomJ+9SPipTEUnrDBoJMUCuTAwaiZkGtWSnYgQNPS5TFjUEuiLtw8ZkzMZkgisLXrp2nc57EKGqB4zGY4bDIRjDdDbj+PiEgVr8ZEjXdXSdJwTFiKUsK+p6SFlUXL58mZ3dbYajIUVhEVFCiIQYMSr0oacqHIJJkTspwjOuxhYVRTVmc2dKhyCf+WUOTqboYcwc9iR/EGOkbVtEhM3NzVVwEVVzDZG8PpH77Y/dWgGQGIOMx2hdomWBOkO/WbDYcXQbicJYD3omVcvIdUyKlpFrqU2PlUibS097tRgZcBIHWBIsEzBENcmZq7ttFwxhGSGbwKjsiArTh6C7YGkam2iHS3OKFBGMrqiXGoTOG6Q1SCe4eYZEbKJUxs0eUwW2NmeMyp7NosGtYewAgRQ0FCasYJqoQkR4bOuA2XjGi8MNTi7VmBsF1U1DOTXIrElSBEW5OqdiDRQF0bHC8oMqVoQCvWsh02sRuf8bqnpj7f0fB35AVb9NRP54fv/HXu3KP5dodPnLJT8mxojN1YshBm7dPOKv/OXv4Ed+6Ifp2o7ZSSqlHg4GWFcwLAvKskJR2ibBMjFGmrbBtz3BB7xPXGpUGI0mDAY1xhi6PrE52rYh+IB1LhWpaI8JgR//0IfY39vlm7/532Y8GmGzEJGxRUqUnyMloNmx3+mcvFr1ytXZes1RGV1F1ZqVFpfJa+scVVEyqEtM9Ayqis2NCVsbG2xMRoyGNcOqpCxM0mcpS4qiSHkOc4rhB430EjBBcK5IiokCKlmbAyGSi12sxZlIDBn39z1WhPFoyHAwoKhKyrrOolsG65bbM0RVvPeMhkN2NrcYyTHRR5q2YzFv6HuPsyWTyQbjyRauSH9XgzpF+kvqck6sR4UQIoUYClcgxuE1FeGIdbiixpYjhpNNbp4sqOqraIx0bYfvPWINZWnxMdDHgDWGjY21yH2NMfW6DfhRVxowumR4WIs4hw4qdJigGRWhH1m6zaS9IgNPXfYMXM+4aBnZ7oxuSq+WXi3zUGJEmUt1Bq6J2YEjp+SBZUQbEYxEDMqw6BBR9kczShtW8E9pAqVNTtdJZO4LZn1FGxxNplmGKCzaksVxjRjFloFB3fP4zi3GRcsjg4M064uGgFnlA+JaVZVB2SrmVMbTRkevls1iQSGBR0cjjvZrfrq+QssQ/5wkvD3GxKlXTed3CW1ZKMRjWcJTmiDDu1ye1wOW+Ubga/PffwP4IJ+Dc7/dXrGzN8vEKaABg6AxoL7nb/5v/xs//MEfpGlSAQhiUYU+GOp6gA8NoU2VfybLtzrn6BcNMcCgHtO2LcGASGLYdG2ALEoVQpeiASxtk6arzgkVkcIIH/qX/5KtyYSv+7qvSw5FElPH690x9ztJGdxvle15kgiavnhl5/ZeppAlnLLDWdZmGIqioKoqBoOa3Y0xe5tjHrtygQvbG2xvDLm4s8Xu9maqMC0sC5uiGLEGMRlmMbliVBIvWaxZ5Q3EGOwSa8/X37qCkZS0TUMMHmsN43GCT2zh0gwgaHKSVYkpSkJUmqZhPm/og2dzc5PBYEB/85eIIdB2nm7coypU5YDJxjYbm1uU1YDpPNU+LNrExLHOgRG6vsuQkiH0PYUrMFawQfAaiaFHjVBYQ1VV9LeOaJs5i2ZB13VoiEnGwTmIQvCpp+9oNFrlcNZncq9rQnXdJCdQnUOrkjAsWVyq6SaGk8eEZj9g9lr2NmfsDWfsV1OMKL2alVO0KIXpKTRkTR5PLWeFz2qTnPwSkrGSBoV5TPzwDdcwsD3OBBahoMiDgDOBQuIqOetM+rdXSxsdM18x8+WqvH/uSw7Hg9V2C3vqwJcJ04WmWUZlPVYi81ASlFWk7kxkaDsChhDTcS5iwuONaKps7iQJmmWhunRwqXhJTZ3YRpZTx05WQuD1de4KfJ+IKPBXNKnGXVTVF/P3LwEXz/vhunzoQw89dPeNfC7Re6bLobrS2ggh8L3f+7188IMfpO97uq6j7zzOFYxGI0JQZrMprkhMhGUptzGG+XyOiDAejZPaYZ4WLxkQfd9TlmWCcRaL7NBd1uqO9N7TzANoQBV+8Ad/kPl8wdd93ddx5cqV7F/fIGjldYrwFEOS6Y6oJPkBaw1lWVJVFQ8/fIUr+7s89tBF9jZGTCrHxrBmOBxB7HDG4H2bHHYWAjPGYMsCS7ouztoUIfo0iBprMRnuivn6FUVBP5simmiDRVEQs/NfBknGKoPhMM2QQsQaw3g8ZrIxQVXpu0jve/b3dhCN+KCELKfivdL1nuvXrxMibG5uA4meap3FOUuIrJKd4izaRqxLCXnvU/KeELPGewpMYghpir52iUIIeG1oOk8XYFylc2mMWVVwfD5tVYPhHFIWxNoRBo7pQ5b5RaV/rOHC3jE7gzk71ZyNomHiGhahYBHK5AzVYCVQS08QQ2WS/MPENgQVTmJytLXpMUQaTfBFLYkq2WeYZtMltsmmTTosvVqCGia2OaOqWEtPvfb+JAy45Uer98sZRBsdJ31NGx2H3YCossoJ+MzaqU2iQDaxIMbk2PtoV1TOJha0OLxa2uBWsw8Ngu0E28eUs1haiGjXpcR0kbR1bJ6RLJcql9PBO9jn6tx/jao+LyIXgH8mIp9c/1JVNTv+l5muyYe+/33vu+OdeDc9mHuZkpsn5OSpiND3HS8+/wLf8z3fs8LAjXF5SluzWDS0bQeZibCc1i6nu3WdyuZjNLQ5qrc5Abvksd86OIAcda1HUt77NDhooOs8s9mC69dv8pM/+RHGowlf/5u/nk1bwFoDis+Xyep/r505qTiYC9V4wGBgKWOHdDNsaBlGz2NbG3z5+x7l0u4Ge1s1WxPPaNBR10JV9bTdMcYYinpI0QRMaKFTjFZYW1AZCzg0KNqnG31Ub6Ki9KHDd56gnuA7ND+MC1dgihTVG5PUHNO1U/q+R7zitUTEYqxJM48oRJ+WCcFDEOZxvCoySXBZJJqALRWrAdWI6oLYCRW5OcRijhVhuzJITA5pOt6mQ9Cuw6GMbKRWz7ydctIpxjsGpaGNytQr02hojMOKI8aeAGyOS972rqe4+MhDuGGdJIljIIQUnPT3lvx95WYEqZJzVc28duOQ0QAdVDQXBrRblmYX+u1IWfeUNkXLRiJtcEBN0BQlt7HgJNQrJ5k2kdxYEwusRLbsfLX5sAZ/LJk0E7tYYe4BQ28sUQ3zWNJrcrTLVyk+/+2JaujUUohnaFv6DKFYiUQVCglUGcaJheBMivYNukqUNrEg5PxSIYGB7SmNTzOAWK7W0+GICF20NCFF/dHlGXfTZIy9BGuSvv3WhPljG7S7CZaJCI0KNvPc72afk3NX1efzv9dE5B+Q2nVdFZHLqvqiiFwGrt3nul7Jds+8vzMdUk/hBlWsM0znc/7+3/97HBwcrKiR1lpCDKm6MaaLtSwo6ft+xc9eJk+n0ymzaUvbdiunX5aJgz2fz1MUpgnXTVzouNpPay2EpLnStT2z6YIDd8j3/bPv58kn3837n97JBTpn4ZNTetvLz8F5Fai3f3an5dfO4v2e/ldk9XickmSLBX3sGFrY3JhwYWvIztZmSmxXFXVVJcaRMSiSItyQoyqbhLCW9EcwuCjETMZADarxtDNR1ldP1zdBIaq6yoecnhcyRXPtfGbGkzEWEXOGyhlCxIZMZeyb3OFpeX5lxV7J2duUyjUJ9ZdVzayusXwyZH3brZ8CEsmDB2xublJXFX3b0SyapC1SCYO6hsJTlm4l9bs8hqUtZ4yvuYlJZfJZ9ApJXO04HhImFbOLjmZXaPcDbrdhMmypnF85wza6FSfdSMRExzRURJVcmRopcozaaEFNzyV3REA4CQMQg9V1zD0yypi8yb+bxyrh4aFO65A0cIxMu4r+rUSaWK5w86HpaFFiTPQeI0pBYGA6SmMY2OUswWaqb4Jn2ujoJZ1/ZyIjaTMv3TAPaRBMlM0U0TehYOGXzp1ERZ7NMXWVoC1rkaLAb484eryguRAoCASEPjoKiVQS7gqlvmrnLiIjwKjqSf77NwL/FfC9wO8Hvi3/+3++2m3cr92pgGeJcCynqW3b8YlPfIIP/uAPrlqbQaIyOlsQraaOO2Lp+w58WLEPltH50dER0+kUIwnC8d6nRJ+1LBYL5vM5xlravsNaS1mWSecjMxvS9DXpbxsxGYc2XL92g+/93n/IO9/5Lmpb3NE5r5gfnF+kdHsi7XYc/vM5I4gxUBYOtMe3nth3aG0ZDGr2d3fY29tjkumhg8GAoihXs6X0++SYpOuS1Gsu4AgxIpIKZWQ9gSV2pdcj2Iz2pyhHJWKw5A+TY9dI0OV9kPIdxoAri9yIwyJiE4cdcmWty/fOAtWwRtGMySGgqJqlh85JP7vaqJy5gjnuyPupeZnTOoyYtXgMVVlRlWXiyce4gvpS85CO3Z3dMzPN5Wt9RvnamuZGHbmxhEaIhjgs6DdLui2h21YYe+pBR+U8RdaLsZJgsIjgJFCZQGFO6Y8hZ2oCBktML4nZaefkpaYKViD/Lq6i9o7kZAOGkCPmJa2ylEBt+uzofcb4A4V6aumZxXI1c1g60pSkTddsVTy1pG6eD0ysLKqkgS/v5/Kz5QtJFEu1gimLLJ2chMS061FnaHeBzX5FhbSSWDL9PTgQn0vkfhH4B/lBdMD/rqr/RER+Avi7IvIHgc8C33SvFSl35mjfDZZ5pXBNDIGf/MmfTOJfqivNDe/9qggmPVMB1YDNZ2cwGOC95+joaEU7GwyGeB/OPEiQcd0ss1qWJSLCcDhcVWZ67/Eso7IUoZ+cTJnP5/yrf/UTfPwTP8v7PvCBFX66LHj5QjWNHms0SeYKKfcBDOqKne0tLlzYZzQaUdcVhUtwybIwBxFiVsoryiJBJSa9xNhldpbksdPfIiZH88KqeWZMhEiJ4IOukqxJ1ZHEUnKCiDu9liKJ0mfyOpc5bkk6H1q41NEpO7b0r033Tmbap8je5KEhvc4qGpEgJbP8RlesIlXQmAa42fwEQajKmros0b7PFbEN0UfKAi5cvLCi1J7OWu6vFuTVXVhN1aipDRXap7/9pKTZsSz2lX7fM9maszuaM3A9te0pTcBJpMfio6E0MLBJQyY5/qUDNJCpj4WEVZSdHH2KeLvbJG+XjrfRYuXoIeHhlpghH5/VFVMUX5I0Wnq1NFowMgWNFljiCtrp1VKZfkW1XMfxl7bOkkl0zRS1sza7iCSYaJmwDTHdq2o1adbUVYrYrUFbTzw5QQvD4iHP/u7JatCp8799nhPeyV61c1fVzwDvP+fzm8Cve2UruzMsc6eo/E7L3s0RPvPZz/L93//9BB+YTlPhQXLsZeqw0/mshR3ofYe2Pc45uu40Ch8Oh4xGI+bzDmMCdV2jqhweHjKdTlfNj5dNf40xTKfTxHLID5ol0TGXD3FK5I6ZTmf8i3/xQd717ndT1/UZPZq1U3Xf5+ledgaqecW/vrcZI2joEDE4k5yYS8wuBnXJ5saYvd0dBqVQFG5FU10WiImxqCRsvKjKzJlPzjzme0ZUU8mhQog9xjoSmSarZq4icMWJxecHQyDlNjgdnI1Jzj0GRWJEJPHRU/i85DLmwiybukql6D3PkNahGTGoCUsaUhoASB57NZvKQU2MSpRUISzZqRM1Sx8p7aLBqCagR4EYib2n7wJVYdjemHDp4qXV7DCde3Pm/WtvsqY7TtJFcQ4/tPQjwY8jxbhjWCaHnrjeJsEtJuDV4NWkqH2NJ95Hy5QagzKP5YrHnTjwCQK53akPTYuVSK8uSRbI2WNex6Z7dWfeW9HkqG97AlJUfzbiJjNrYpZFiGu+Zunsl8lWvyquus3Br0ftkAqnXILqNCRXvVSkNMMhzdhR7y64Mj5eraPKP53f45F/01eowp3x5du/O+/7ECK1s4iHn/nJj9CczJjOpyy1xlXJkEvAOiGqJ6pHNcEtzrmcdDUMBilbv1gsKIqCra0Jx8cnzOdzer+grCyjUU0Iiu0STm8RokJpXYrCjRAkoFbRUmnpUA9d29Frz8988qeZHR8wHlUYcRiTiiwgywNEyZPWl3OYVfXcasQ7FTitnzuFFZvoNTMB0QBBsRoxVhgNSrYmY7YmEyajIaNhTSkh0xZjiqiX+yqSGhezdISRECBGj0ZSKzVNTT8Aoo+Zb26zs5akmS3Z2ZHa0ieRuBTVJ8nlBIuQY2wfPCLJrVhYKXgmCCX9ZyQD5hmCEY2o5ig9O/R0vnO0HvMAsDymPPgsqeKr5P965L4MBoxNXHhIs4GYIvwYoS4te7u7XLh4YQXDrOeSXjfnLqRRuuvTQ5QbXDdblnZbMLsdV3aPGBYdpQkpWkWwogyyEJhBGdiOsWtT9Wlmphz7wZlNLeGbk1An7ZmcdN2yc2rp2TANhXhmsSKKWcEtS4edom3DLFZJaEwspQSCGMLa87Jc3uQoPznxSBSDUc2O+zTvlXRe0u+bWBAl6dwsHffqX+warJMGAM0yxsZEQpFUM+l7NJjUiLsskNGE+Z7jVz3yDO8avbTa5ijDPK3e/dq+aZz7/Ubu98vhXv4dc2Pj+XTKD33wgwhC33WIsxix2MLStu0qWkyRckyt2nLkU5Ylg8EA5xzD4RDvPYvFgrZNESFERqNhfrCExWJBDBn/yzBO33dJB945xEIUJRAJqaMo480xh4eHfPqXfpFnn/0sjzzyEEHTFF8kT//RM459/TjPGwBv//xeM5vXevIeY8ASkJim1aNBycW9bR556AqXLu4zGg7QGDClRTQVJS0doLFJqzrlQDyddERVeh/p+5A0arxCkBw5CxpgOBxSFg5rDIWzlEVqQ1c6h0SYaWoq7VyBczYpgUoKrpaJ8xADIrnwyRhMjsiX5elnC8wMOeZeRexLh25Naj0XNVFAJcaVOuYyatcYMoKU5VuVU8ee+n4zHA4ZDocU1uGMpXAOsRZDx6Cq2dvZYW93jyUja5njsTZJWL8u8gOqKZmaTgK6t42fVCz2hWZHsS7Q56IhI5EuFLTBURqPk8jMl8x9yVFfc6Md49XQhVSuP+9LQoYtllbawN5gmtk2mgeGxGXfLU411K1E9twJtemZZKcf8zPTq6VTSwmQZ3CrqBzScuJz9evZw12HXSBF9gXQ4whIZtbYDCuZFQf/9t/H7NyXcIoxCk6JlpXcADEigwH+yg7tjnC5OmLbzTI1M+kdQRqEviC0ZV4JLHO73UmvPEU9SfP6xRdf5KWXXsqsC5sy+yFFOd6nDja3QyB9369okCJC27YcHx+vMGFVpW3b1fu2Tdl6Zy3zPGBUVZkhmSVjJkXIIYQ0eSurVe/Gwlo0KlevXqVpG1xR4KzFLzFdTpOq68d6JuH6OUTfrzU2GzRCSAU7dWHY39nkLY8+xNueeIzLF/epCkPfNoyr0coxheDpfaDPXO/5oiUoeNfifaBrPW3b03U9fRfxPhKzg6+qilE9wlmTuxilQiAhdX+aDEd0FRRlxXA4YjgY5kRuwnBXUsTGZDhf8r+KMctI/yzUcRpln/07IEm/npgkEUxiKEcCIZzOAAJJ2TLmJKOoEGNmC+VJgLGpKbYrHEXhCKKreoH93T3e++6n2NraQvMAaVczl/tukP0qLm4knkyRukKGQ6bv2GS+Zzh5h6feXVAUnkVXMC46XBGZNyUnbUkfkvb6tKuYdwV9sHhvU8elzqKtxczTTNt0Ky9GLJRnt3cRo6vm1wCIYoqIMUpV9xQ28Jbtm+xWc94xeokdm6rO152tlXb9SLAkxs4y2k/wyqmDDvnvmGcXxZpo2XI20IulyMuynje4zaIKXm2K3gHnIn7oCZVLmHvvUe+JuxvcfO+Yk8cjXzp6holZcBIHmb7ZY0gzlLtd2S94577OCHn5lySeee+5du0a8/kcNHHVG9/S9z0xxhUjZkm3S3owKZlVVeUqUl+yXYqiWLFgllPhpSpk2yaKJMhKhjZR8CQPFtkBR4ikXpFGElHOkJsrkhqHeO8TpmxkFendfjFP2Rr3Nwjex3kuRORfkBLmCvwvqvrnReRPA38YuJ6X+xOa+m7e0YyB2HWUhTAebHBhd5tHrlziyqULbE0GmNCgIU2hoyoxePquS4NeCPR9YDpfEEKg8Sd0vU/l/ouORdPRdj4VFcWIiYatrR0G9SLhod6ntnsxpm5G0SdYbVwzGo/Y3t5me3ubzc1NRqPRSvgtxoi17oxjXP69PE8isoKPTl+gmpqTsIz8Mo0SSfLEaU6YZgQxQ1BRBTFLobN0H8QMEWXoPd1XXU/btqmJdt8hJt1f73rynXzDN3wDo8kEn4OT2xlTr5dJ4ZDBAB3WdCNDPxZk4BnWLbqCJBK+LKJYozTe0QXL8bymXRREn9vMecG0BtsLpgWJqUvSkoyiVpBMHVxB6vnQogU1ymxYQhF5RpSj4YDCBOZlxaZL8M3SgmYHLslpByDGgk4tPTZh92cGg5hol3LarazJ+jdtLM6watqYfttFl4qYTE5+ZmXIpTpkHyyLrqBrHaGxSaCsP2023m0POHkLuItzapNYPlYW1NLT5+rde9Udv2mc+7q9Vpz34AMqqSHEwcEBTdvSdy2msMSY1PSGw+HqAS5y95r0ACtlmUrkl+qOSx7xYDBgMpmkdTYNVVWd4bMPh0Pm8wVidJVgS9z1SIwBI4bCpu0V1lJYh/qA79I0dykd3HRtThrKaSR526m53wf4TrObO9gfVdWPiMgE+LCI/LP8+f+oqn/unhtbbRQmtWVjPGJ7c8zmeMB4ULExrBkNK9ppAxrxISXUyjJpqM8XDYc3j7l1cMTB0THT+YLB0HDt2rUEXYhFxeHKmmowYjFdEIJnfvUa06MTDEL0PpX22yRI1swXjAdDwtCwt7+X+qx2PW3bsbnZsbOzw2g0whhD0yzQNT0YULxPRU5LxtMIVsnYVBVKHs1izo1E5m2DYJMWTk4C+6j0PsNKIdBHGBaJ7913Df0i6Rapknqpzhs6Kg4PDrh+cMisbVJ1b11yYW+Lr/7qr2Y8HoMR6uK0L+2ycvp1M5vEweLeJn6zotkT2l1lsrng8uSEm4shnU+MmCYUqQy/6Ll2PKaZlchBSXlgcjek1DnJLHfXZKGuIjly04PplfJEV4qOwKpbkqRcNt3EEmrH8ePbHGxscHBpwP5oxtM7z/FodXMVSfcaaFQp1FOoZRYr5rFiFitOYr3iwieGjmIJYFixY3q13PCTFXMGkrPv1TLz1YrD79UwcS2FCRx0A+b+tN3htC05mQ7wxyX2xFIdR+J8jlQVMh5x+NaKr/r1H+ftw2tMTEMtPRPpKSVyEklKotydCPGmcO63UyFfK3jAWJOaQsTI8889T991uKKgjz1C6p1ZVdXKKScqpK4c/DJiK8type64vb1NVVUcHR0xn8/Z3NykaRq67JhPu+Gk3w+HQxaLBYumJ6omHrVzKQpInh/fJxEyaww29wDtMiRkncut1DLuu3ZqXqlTv89z26vqR/KyJyLyc8Dd9SHuYMYIk2HFsHJsjYfsb2+yv72RnHxdUjOA3hB9R8jnve99FlgDsY6iqhlguf7iL4HA3v4+9WBI2wVOFi1950EMo/EQ50rKagARQtfTTGfMpyccH92kmc8xly6hwPWXrjM7nnJj4xo7u7tcvHCBdr5gMplgjGGyMc65UnPaS5P0QCVZ4dz4Ow+4y8RojND51Ge380ncq2lOmM8XdH26/mKzVHQ+Xo/l8LAldAuk71If1uGAsqoJ3YLpfE61NeFkMU+MH5sgxY2NDb7q1/xrfOADH6Ac1PRrj/mdci6vuYmkJhzW4GvwQ6UqPKXxFCYm7vZSEVFPI3gy/S+WimSOt5rTFqxqUp48VMm5pwEgM5UCSMjHZ5Njdwtd/Q7AtkJcWGaLCmcjLzYbFJnfvmz8YXXJrumJLCN4c0rBVJOLStJy81jRqOOgH9HmgqsuOg7aYYrI41kIpg2OEA0D1yOinHQVTe8oXcCKEqLB2ATJpV6v6Xdme4v+0T0WF4RHB7e4WByde+rDfVzXN4Vzv50K+ZrdkCsYQjiZnmQedGJKiBisTY2E27ZdFXusV/Qtk1HrCao0NU5smf39fWaz2Qp3T5WNifUxGFRZX2aeueowGBSZOgld16fjDikZ12ZNeJSsz50rZ1/Ph/Oep08eBz4A/Djw1cAfEZHfB/wkKbo/OOc3K80ga8BoSKqPpWVrMmBjPKSwiYVQOpuo0mQmUIY8rEu9Z8cYiqqm6wNXdsc0bUNR1mAdfYQdsdhyQNtH+gB7e/ucHM/wbRLXMgpWYT495uqLL+Gsw1ZxxVoSNYQ+0CxapicnK8iurlPz7Sw+gCyZL5pScyqJtaI5nxMVvA80XctsNmM6mzFv06zr4OCIGwe3mM/nKGnWNxpvUFQloMzbPrmV6JHQ40QZVhWj8Qa2HLG5u8O1kxmzZoGxlno4YLK5ydNPv49f/VW/mrqumS9mWFchetpecD15/ro4eJHciMMQKkO7F5GLDdv1gtp6NqomSwwkSKIPlj4arE1SBL1RupE9xV2CJHhGEySjLqlHAolBAqeBTVjSCNPf9QsO27Eqa7BN0m5v3YAbi4Kf8ZZnh9s8NDpir5qyV1hivgdtLn6yRErxZ5QpmywKNg01n212udUNeeZoh7Z3zJuSvnEUz1aYLjcCsUq/HVGX8iwSBc1MN/GSGFNjjx146rpnY9Rw88aA8kiwTUSqivm7L/Pcry0o33bEk/ULTOwCSPh9L+n8DDMuFdZOyXn25nDufO7Off1GXv/bWKFbtPziZz6zkhlIanqpG2WIAQX6EAmR1BUHUI34riUSqakTVS8CUSisxQq0izk7W5uMR0OOT04wRgghUfesdcTQMZ8tMEJWNyzY2dpEgMW8IYSY9gVhNkuDgA+Bz3zmGTTGxH1e0ufucc7OOxd3O1f3kcsYA38P+H+o6rGIfAfwX5Pup/8a+B+Abz1nn1aaQcPKqsTUEHxUFWyMR4wGFZaIhpD5xkpRFmiMeKtIiIhxmEIp6gRjhAgyvUVf1Uh27IvO00ahLEommxupVLtT9vb3KVyJ+kDfdvi2ZTgcMh5vUpYlfXeSoDFrc0/WNHsTFTRGnLGEPrGUg+QBKrNm0j0TET0NBFTSNW/alpPZjIODQ24dHHAymzKbLbh5cMCNW7eYZuc+HI7Y2NhkmGWemxCYDGuGpYPQ0y9m+K6jcCUb23sMti/SByirijYEmr7n4e0t3v2+93LpymUOp0dsbk7OLWZ53aP2uiRWllgJYRAZ1T3WZJ591jNfqT2arNNiA1qkWWiw8RSbzw5dg6C9SaOykJLRIecwvKSK5Fx2oEWKfNVm3D09SkSrydm6iLFpu32wdNHio6WJBUPTrXjx6xz3FXSTC44ATkLNrW7IQTPkaDag7xzhqMDODfUNwbaaOz0JxltCadZyBWnQWfVdjY7QGuZDS1dbpM3HpoAx9GNLuNxyafNk1XnpdluqQt7L3jTO/XPh494RejAQtOfg+CaHx7eIpLLtIIqPipVUqOKqAU1MDYdDHxjXNVF7Wp3jjDAaO/p5RyWWvfEE3/UYq/S+R9oZ43pArEvmXYuxgrEVfROQ6BgWI0LbUheG3cmQL3nPO9C+4epL17lxa0oTLW2EQT1k3i1QUQ4Ob7FoFgxHo3vSF9d1a15J8uxuDl5ECpJj/9uq+vfzOb269v1fBf7RvbZRGEtllVFdsbU5YXtjwnhQ46xgCDgjRGsprCVmvFrEIJlwkKSZUgm59HNimXjMi66n6QK+65lN53RBaEPk5s2j3Awks2U0raNyltJa+sWC0kBhCwaDmuFwSF1XWJum4EazQLFPAk3RGGLWuhGbK05DevW+z7IEQu8DbdOymM85mU05PjnmeDrj2ede4OjkmMPjE+aLhqCRoqgYjg4TZbMsiUXBbDxgMqhwRPxiwWI+JQZlcLJgOO2w420CShcCriy5cOkijz3xOMPxkBh76uGAeXeWPbW01wua0cLSXZzQ7Ba0m4ZiZ8bDW4cMXYYnjceJrKiLjS/oomVQ2BWEoSq0wdJ0WWNFhcWipD+qoBdoCqQXyqlgF8LgWsLcVRIe3+zahMtnB++HSiyUuOmxdWAyaqgLT5EFy3xMbe+cqZKcgcQVVXLJs+81Of+l2FcbHde7MZ853OVkXtO+NMSdGHZ+Hop5ZHCjQfqI8ek57DZLYmnwA0N00G6k1oLL/KzpBNOnRtx+UFGQBiW16dmdXbT8rvf+GHvFNM0cYi6ouq0wK4UZd7c3hXO/m/zA57TezDSZzWdpWpx573GJd3Y9PsyydGrqt1k7w6AwaIDNqmI8HNDNTtgeDNnd3GJjOMYiLPqWWdOCMdSVYzTc5cbBAbeOjpJEsLoUFVqHKZOTe/jCNl/6nneARj7zS8/yUz/9SWY3pyw6T+kcfXR0vuPK5curXpuucIT42p2b+0ys/jXg51T129d+d1lPpZx/O/Dxe25LoXKGzcmIna0NNsZD6tIlrFrJ/HO74uoKy8Rx/rGyamFXiMGHwHwx43i24Gi24KTpaBUWPvLsS7fo+o6jkykalOFgyHgwpLKOYT1gZ2sT3/dMjKdwSWhLfSoyc4Ma52wqOOtDLqkP4E1uEZcKmFBNjj+EnGNJzt2HSNf3KVcQUzWCiKHtOhRDWdWoGHrvUSTh8U2bGmOrEk4CTTOjQFHf0y8WdF3PUdPjFp7NS4aj6ZSgkcnmBlu7Oxjn6KNnd3sLVzi0y9WN5zj4180EfJ1a1TkXKbPe+ZIRsq67YiSmwVyFKKcVmj5YOm9XtQq+ddiZybBGSqa6ueDmUB0n6YdQpWYabgHRZ+EtkxKzIMTeEK0SgiFYoVgLc1el/7qkNrqVXECv7ozMb6+WLjrmvqTPdE0JsqTIgwi+thgrK+goloZYyKof63JSID7d0sVMcY1iPJg+LacORBVxDhOU55otAC4WRyunvs7eyQ0M72lvCud+O+b+mq1Wk8M4Pj5mNpvm0vLUfi1h7JEYPaZwDMsCA4wKy9aoRvvAhZ0RTz31FKVxFMYmNouPlK7guOs5ns2wZcVoc5PD4xN8O8PoKNH31FIaYVgPqKiQfsaV7SHvfOQCScJKODo8YTZ/hmnTEkJydiJp6u5y39AQ4h1hmdfJxsDvBX5GRD6aP/sTwDeLyNOkCeQzwL97rxWFvsdKxdbGmM3JmLoqQAPRK1F9EobKbKLl7DMlJ9O1afuepk9CYeXBIYum5eqNm1w/OORo3jAPkV4scx/55GeuMZqUzBcLRhn6EOc4OD5hOp0yGo+IIXL9+g2sCMeDQ2YnJ7S7u+zu7rKxkQbt6H2qDtT0wCXxrpCKnDKtMoRA3/WphEQhxJDVQxOZsXAlZRnY379A0JT8Sm0ANVEhMUlOWAytVXzfQd/Qdg2+bWiaOc2iw3Qeh6PuPQdHRyBKNaiYLuZ84ud+lhDewuXLF+iDZ5038brkr24z6QPusKV5b83iglK7QBdSVG5EKdfay61bHy2Nd0ybirZztCcV5shhfOpvOjwSxs9H4jKhqokpU8yV0QstsTQcPV6hDuqb6dj6cY58D9O2Qu2IhWN+uWA+8WzszNgZJbngpVRwcuYJV29jkfTW1TH1FW0sOPYVPtpUaNXVdD7JfKtV/AgO35Uw9eSZEyyEyfK9mfggqgn/76E8BDdT6oNAdaunnzj80BBdcvC2ibC7xcZnPT/1997DD7+75c9+9WdXFE5LXA2MkBx8OH1szrU3h3PPdr834t2UEM/c2FERJ/RdD8hKhCvmxIsilK7EWoezDhN7dic1FzZG7G/u8TW/+v089dRTFM4Rek/oPbH3dG3LczcO+MjHfprjk2MOFycEhSs7mwwLw9W+wSs4AjvDIaVEiljznrc/xt6kIoglXN7nxRd2+eTPf4bCwLxZoEVqRHEynVK4gkXbJHjB3fkyLc/F/UIy51X83qYgOVXV81Z2V077uduKUDjD9uYmW5sblEXC1hNRWdHgMS6xg5zJorgRgoZcjeqZz1vavie88BJVVadO9Kp0bcu87ag2tnjXu97Bo297J5997nmu3rhJaQuq3NBaVdnb3OLylYf45M/+HLt1nbjvPnJ8eEzoPb7rQfexZpuKnEiVXFMQNSe9leD7xGwKAY2JOeO9p+t7Fk3DbDZnPp/RNA1N17Ozt0sUgxhLUeZG2/UQVxYJWghw4Bf0zZx+MaOdHnN86wbXrwamswXadxAC9XBA06UK3YOjQz78kQ/zyU9+gve+90lUPW9762OMxxfPQDCfj4SqFgY/hDBQnA1Zvjdta/n3+vtSPIss+qWQqriDrKJh20miRPaAKqGWFQSTZHGTN1OTXtGlf/txcpDFNE24TJ9uMTcXvLG0Y0df21VjjeX+pMubMPdlc41lFaiPliY4TvqKWVfSNiWhtZg+7S+S9yP7klhpkhSps1xIzLkBbNrXUgheUlRfmNUAYPoUxUtQMIbipGfyrKXdKfmR43dwqTzmseoGE7Ng5A7u2jP1dnvTOPfbb8w72XlO7G7l9qowHo8ZjUbcun4j6a/b7Eg0aYO3iwVBhO1hyZXtCV/2nnfyviffyhOPXWQ4HGJEqMoSzfrufdezsbXBqLR88lO/wLMvvkgfItODazTTKfuj1IezLCra2YLYtLz1iUd46h1PUDtDQNnfGvHYlYvsbI05nDc0GjlumkQa6LqVRsjd7NUWqdzpPL/WBS91UbC5scGFC/vs7+6yORlTWnBGKURxogyqkr5P0UnE0EeIJlDEDmn9SlP/yoULCIbOewpXJMx6ssHOpYd54m1v57jt+eXnX2B7e4vRcEJdVvi+p6prnv6SL+E3/Ppfz8c+8lO88NMfwfd9bmh+wtHREYvFghA6jDFsbk6AyTnyDjFLE8RcBerwfcD7nsVizvF0yuHRMcfHxxzP5izannmGXmxRMJ5ssLO7R1HVjOsaMalrV+zmmMKyUW1S7WwSL13gyuXLvPTiSxweL+htyQsvvMDR8VHqLOU9R8fHXLtxlZeuPscnf/Zn+Ibf/Bv5bb/tdzMYDM+9rq+Hcw8Dx8FTY+YPBcxOx85wwbhoKbN8b2l8ovwtE6pZMqA0gWNb0wdL2xbYkSeWkdBY4mwZyaZBo7mYqVQu4m4VGD9ITlASNHP4zkjc9Hzluz7DyHb88595EnfgsE1ip9TXBfOi5ViHXMuwSW17quqEveJkdSxLtcd16MOIMusrnru5RXdSUv9ySdWDa9LgUZxoomnGlEz1A8EPDMdPKnbUn2rJmJLghX4rrXd+0VKeVJg8iA2vRwbXOtxJ6p9avHjI9vORjU9P+Oi/+gAHb3PUX3uD9+y9yH9y6fsYmVOk/XVThXytbV1f/V52nlM6zzGlLvOGra3TrvAhBHQVxZvkrNuOelBSW9ioHG+5vM+l7QlFYSlLh1lK0GIJRqmrgtIVlI89hIQOR+DawQG7WxPGm2/FWUs3PaRZdEgxYG/3YZ5+//u4sL+bkv7tArzw8KV9vuJLnmZj7yV+8mc/yXGzQETY3dslakzFKK/BuX2jrNoY8BXvfoyHt0pqnSO9xUiFNZYYhTZDGmCwks5xaaAoIgMVhhrZUE9TQNmO6Nqe3c2CUb2fpMRdxXA0YaRj3rI5YfIe5SMf/WkOrh5RjpSHLuzz0CMP8963vJ0qCo9cusyF+WV+5qc/SuXgoUe2aNqOZ597lsNrMx5/ZAejFt+fsLG5y2A0IKL4GIikJit0EYulvjml6HqOb1zj1uEBVw8OePbadQ7mc9xwzK3ZnOPZgtmiS3ICfaRregpb8OTbn+RL3v8BhnXNUCO+bZHQYSwMHIxqx+TCNsejmlm0yHCLX/jkzzP3PUU01KamqFKe4Ob1lu/863+fT3z8Ob7xG7+Rp556itFohLUwGtX40K+krV9Liw6a3UTtq+qOIis/FiZXT2ZnvnRyLuu1D2xPF23qyuQCxijRCb0oITo00/3CUDEbPdZGXBFYRKHdSPCNHwj9CHSnZ7I15wMbzzI0HT84ehthkQI28UoxkxzJC76zdMHSZXrmaUPrUxXJU711Qxctsz7RHWVhV07d9GA6pZzFxLnPzt32CX6R1iTMf+mOlq6qjIiL+IkBA3aRZinxFpguID4mGZK2Q2czzKJhfDRHzQWee8cmHwc+uXORfXfMQ3aa2FznTrBP7Z7OXUT+OvBbgGuq+p782Q7wd4DHSfjrN6nqgSQP++eB3wzMgW9ZFsTczZJCYzwDr9xx2XMGgHXnfqbTToz0PmKsZXt7e6Ufs3TuRhzBB5x1bG9s8NiVPd7zzrfz2OV9NkYDiqokCnRdiy0KxGZuL0pVWGJZ8MQjD/GWxx5JDQbKkrb3hL5BZzc4OVmwsbHH1vYe5SB1Ue9DhxVhMBpgC8NXfeWXI4Of50Mf+xmsTbzpvd1dNCq2SMUubxzT/XOzuq554om3sr+3u+oUFEJIyaNc6o+xq1aEkK9llleGpNMzGo0YS4XvA4u2o2l6ui7gAwSx+L5lGiKPPvoQYlOT6cnmJtt7u2xubbK3t0PXzjm8dYObzz1LURRsbGywvbuDdY6t7S1uHR5weHiIsZbhZEyIIXXlyu34RNIUfNkLoCxLrr50lRs3bnB4csxikSqVr2xtMdrZ5dbHPs5iNqWuR4xGm4Q+cnTriNnxgheefY7FyZSD67d451NXmIxqtscD3Cgl4G0+5mo4ZrsY8tJxy0q9MkZiiARN58pklsVHPvJRnn/+eb7qq76Kr/mar+Fd73oXXdfRtIsz5/e1sjCOLL50ziNZ+dGIMvflqnl0G9M2B7ZfiXoZUSZFw8i1TIqW2bhcYfJzX3Lc1ix6x2xRUQg4lwTcnImwAze/bAhGqbcbBlXH+3evMbA9Hzt+mMNuQDgpkvPf67G1Z/ZoOmdxViDHBceDmmHRsxiWWFJzbGsiRSwoJDANqU/qc+2Qn79+gcW0wl6tUm59CGqUWIKdC9WRYIMSylQ1Xh0GyiPwnyrww5r6huJaZX7B0I+g24mEUUTLSO9yIxMDduEYv5A08bPkadJ0F4EQmXziJu98dsDi0hZ/8unfw+Lxju/4mr/JI+7wnhDN/Vz17wT+IvBda5/9ceAHVPXbROSP5/d/DPh64O359ZXAd+R/726qRO1PHffaPgunGecz30n6LiXm00UUSaNu8vPpdxXJgf+a9z/F9V/+NL987RYaK6yv6Y3iCs/EdLznLRf4N77ifTz1xCPsb08oKkv0Ha4oKYphesCtwdPjY0q6Dbe3qDe36HqPK2qMLQhR6dsG12/S+5gbeoCNPSZX4QUpcE4Y9B0zjagGZl2gC4orHBcuX6LXpDC5bLcGp/Ue59HbzmPB3F7M8vlu+uGs5aGHrjDOZf0p6Zh472caXVubyDFr+L91bqXCqapos0hYbFFiS0PRR7xXgiaVDRUL0jPZrIgK1cAADYt55Pnnj5nOTnju+ecZ+J6trS0GoyFVXefm1xu4F0oOj49WSop91xHqGmctzhjEGqSHRiQJnMXIwfExXd9jjGU4GDDc3GLzwgUuPfYYtw6P2djcYj7vmM8b2tmCuih4+K2Xeedb34EG5SMHH+YXP/0pNiZjLu1u0u9s4CcDBlWBtQ5xqcOXdQViE+PZx0gfAiEmaQubW7tNp1OOjo45OZlyfHzMfD7nS77kS9iYbNL1r70MgbORve0Tduo5pfXMfYmPhmgkN4425zqfQkKinRYLRrZbwQpTX1LbnllfUdhIiIYQU0VrYSMiStg2OBd4eOuISdnw0OAQgJ85vMJhM0g4t4CtPcNhS+WS877abSGNIwZDH08lA6wkBx+yxsxyf7voaJsSbeyK5RLKxJ0P44iKSfx1kxO5GZ4RwHbJEQ1uBYppwNclIPixEMvM5XcKRUSKSCzdSkaBJStu+ZzGiBxPMS9eY3S4h6/3QUs++asuY4hccqfQ0rnX6F4XUVV/KFcqrts3Al+b//4bwAdJzv0bge/S5F0+JCJbt1Ho7rKdeK7Tgpdrlqcy/GUSUNa8Xi44WZ4jFWTRM257LoTABx6+gp+3XD0IWGqCi3Ttgocf3eU9b3+EJx7aYTyw+NARuoCVAt/1OGtRkzsrRU2VrWWZWB8+4mxJVQ1wtiJG6G1JXETEBlzRoxoQlhFr7sgSFKse+p5BVeODglgGdc3u/h4YIazJIKxmeXrWeZ85Uy/DiV+eXLvT8q+P6Upcbam4SD6epdKmyQJrq6g0xqyVblbVwdZajpsjeu3poqeLnl6TzrZYl6R7rcWHwGRc4mNIvLiwwHcdUQOL2YzSRcajEfWgxuROT9ZaBsMhW5ubNF1LURRZPybkjlxu1R1KNTXMiDEync6IGplsbFBGpQkBKUuqwYDNyZi3Pv448098kmADPUIpqWH6xd0d3vLIwwzKGul6fvrTP0HwPfPZjEVtGdeOQXXK+46Z8YWe9nENPhDyeVw608lkQt/33Lx5kx//8Z8AksDd008/TZnXJyKPkIK020Xhzp2J3/XSSsLRI0mXvA9JonnoOsauWznKyvQrjnkb3aoxx9i21EXPQT/kVj/KrJQBjXcsuqS142zEmsig6KmdULoEpSwyZ74JBT4arp5M6LzFTHp0KJRFKku6OD5ho2g4WVTMGVC6SOcdU18yj9VKE74QTxE9U6mZhoqFL4hBkCrSX+5WhVRSBfb2Tjg8GTB/aUwxVYpZakJz+ESBHwon720phz3dx8YMrltMB/UtxQ8kVTTXmoqvgiSnriSJC1W068B7NGvki7VQlbA1gahsfvQ6g+tb/OXiN9M+3PHn/rW/i3L1jpfo1c7XLq457JfyzQJJg+TZteWey5/d1bkrEHL7M2537qLnRKWnUqyKOeWSimCMXTlAI1ALdLeOkOev8Z7JFpe/8iv47u//l5ywwCIUVrmws8E73/YWtjY3cc7iygq1gi1LmuChbxE8XsFaoShs0h0xiisdSBIiU6MYa3E40AExeGJwRE1t+2L0xBjwISIxpkbZPqI+ULmCk/mc/Z0dtra3VvDS/SRW37SmStd22PVjkdNOS5DGZWstRF3py4RlFxVOBym1EXUBDZ5gekJuNizRpwSnBkKMFIXFYbLjBmNimllJx8bQUWjq6OScSzpARQGS2iMuZwmQVRvXoEIjJmm/AxpiTnC65FSBed8TxDCdzTi6eYvdrW0evnSJw4Mjjm1JGCtbky3e+tgTPHr5Mv2iZVJXXLqwx2J+gjUpwCHXfPS+J2JTxWzs8CGdlxj1ZYqUy/zMUhfp6OiIj370Y0CSMX7/0+9fXhHP+aJw38L5M/E72rqOeFxTO7SZBgkJw3YmRcc+67YEUQxh1Yz6SAZJMTFaQjQrKVxIz/cKlsnvl4VPfR5Qggpt7/DeYF0Al+AcayJD17FVLqgKT1MGjElSEVENTSzYtEkT3WIoMwbfxaQJg4LYSFFmZpQ3FJVnbzhDVZiNx6AJZ1eBbkvoJ8r+hWP2hjM+tT3CdMLghmJbxYTE25cA2LOsPln6vRDWXqmoDxG0KpBFB9dvUoXIzs9e4qgp+exX7q3O+3n2OYNxqqoi9+gSe46ta5BcunRxrXfkeZj6me0l/DPrfcS1lKNqaoK9jBJ933Pz5ITis88w7noev3CRZn+HT7zwAv/8Y5+A3vDopR2+6iu+hI3RAIMync2QpmXaNsz7BUeHM+bzgDUlm6MNSiNUzlBtjdnd32d7ewdInXuMS63ick4oXRgxOQotEpXO9/gsXEZIdLhBPaSwlsoV/Oov/3IGg6RUuY6Vvtpk8/3a61VE1rZtGjDzsSwH6pWGT0wCbku9e1VNdMk1SCnGCGXSRy8c4ATT+oS7+yQNrLElhEBVD3KLPiH1OIXoW9Q3GCIqiXM+LMtVK8NF0+BDkgRel/qNUdEQci/UU3RQY+To+BgkFSg5I4gr8CLcPDri5tXrbO9d4C0PP8Jsc4fFvMGoYTLa5MLOPgNraBZzCo3s72xzUggm9tRVmfoPZBkKa9NMoL12koqk4vJuT5Vey6Kl5X2/bNYuAlevXuWHfuiHCcEzmUyW5/ZFcqClZ0Xh7jQTv6OFaDhpKkbFafNrSIJZJ9QrzP1idczQdSwoUvOV6Ohwq+rPXi0D21OYwLho6aJlWle0wTHrSjpveamZnNl2XNNzj9HQzgs0CraMGBvYGDSMi46DdshBO0REGYw6hlVHnfc1IjRaMI/Val292qTmuGwyYpXRoCVEQ9enrmhXp2N8sLTvXNBEYWYVJGnMi8CiK3i22yKMAs0FizrBNkI3yUJpCtIKcRwZb81RW+GO2+S8AcSkJtlZXI6uxxycJMhmMICuZ+vDVxm9sMV3bP0mnjv+xB2v0at17leXcIuIXAau5c+fBx5ZW+7h/NnLbF2D5Kknn9RUL7J07qcj27Kx9FJudTo94fj4hMPDA46PTzhZzJnNZiucses65vM509mUk/mUODvmP/zXv5Ynd7e4cGGHX9aWS1e2KH/BMMTyrscf4sknHmFQeDT2dG3L89ee58Wr1ziZHRKlpA2WGC1+0dNNZ8S2YbK3wRNveytPPfUUl69cThTLGPAx0DcNRYwghqCR1vd0vaftO3wIdD7gQofpGuZt4PD4mOlsziOPXOEbfss3MBgMVrzz8yh5qFlh0+dBK+uD5OcbZz+zH5k2uBRBW8JLMUa6TPdcYu1nuxudDgBLjX1cEhSzlaMaCD6zT5pFx3zR07eeEHvaVtfaBSYc1PuOvmsBpXRDrLFY50CErmuZzqa0fZ9UQusaWxYr5cYQAiYE4rJLVOa9L9ou9dsNaeAvyxJnLcN6QOx7hkWBDAbsTbaS0qeP+MbTzadcPzog9Mqjly/ijxeUBTgNjOqCYZ0ExRSo6wGTjU0W7bMsug7vA4rNXZhAVjOiQNt2q8YzqkmeeD6f8aEPfYjLly+/7NrcJgp3p5n4na+tCj6c4tdLVozXBL80mZVye0eiJcMj6aCnSL0wgYLAyHa00SW6ZF8z7wtUha5zqSDxtltZY6o2Vb+MptIypQ0MXM+tZkjj035URU9pA5XzGHRVodqpxeZ9D1ndcbmPIknlcjWjUGHRlhij7O+crLpDAVydTxLks6gI3kAZ8WMwnU30zjIxjIwnVd+6yKjqmAqYxiM+ZNloAezpwYaAdj1iDRQF9D3x2RuUi5adTzzGi4vXngr5vcDvB74t//t/rn3+R0Tku0mJ1KP7w9uhbT3z+ZzZbMrNmze5efMW169f4/DwiKOjI65du8b169dps9peCEn0K+hymppLucMykldCYTGx5+aioXj4Ep0EPvWpn6MgcmljiGk7nnh4n51JzUBbiD3WWTY2t3FFjV9s06glFCOkHKEewrzh5OYtoKNbdFx/8SoWYX9/l9II1hk09PS90vQ9z73wIs+/9CK/+MxnOZ7N2du/kCpiHdi+Zbh1gaPFnHI44Lf/m7+TvYv7a+flnN6n68nm2xKld4q+3zAHn2dZzrmVVn7wfiW6JSI467JcQ/rJcgBYOuhVkwwDYhzWOASDKwVXRoqyxxUdfZui1pC55zGE1MJOI1I5tiZjUMVpRVQlBM/R8VHezZQbcEXBaDRCjeBMygOEEJCsC79cFtIxtX2g7Tpql5yP94HJYEjne3zXIjHQzk6YTxe08wbtA4WkNnlWUsu8/Z1tVCc4E6mM4FzOJdmCarSFG46ZLRqaztMHBWtWWjjWpNYeMUaK0lLXNdPplKZpKApHXQ+4ceMWP/qjP3rmspwjCrd2ye48E1+fbbu9TUSgsp7a9jSk3qE+O8JJ0TKwPVGFY18TMIn7nqEaS2qU3Ud7ZgCoYmLXFCbgJNBFx2JYrJzrko2zlBBWUuMLgCLLH9yaDbl+MmZruGCzbpj3BZ13jIqOzWrByKWG2o06TO5uVEuKnJcQkHpDLJIuThsM82mVe/Ymx1zYJIr24mwDgFlbEkKaKYpR7CAQy0hXaBI+czFx9quAsYFBnWo7xIPMm9SoYwlV3va8Slmsnqf0vkS7nq1PzXCLO5Ol74cK+X+Qpmx7IvIc8KdITv3visgfBD4LfFNe/B+TaJCfJlEh/8C91g9w48Z1vv3b/0du3Li+ujlPGyPkB1ROe5ouYZcYI14TLrWOUS+doo+KdIGbByeYtz1B088YFBWPljVvG24yLWa89ZHL1BYqDFCg4vCmpnQVTdvy0gvXuNZc5bPXDmmanp3JJvubW4zwbNRDhq5OlKhFSygc4gx909AsemaLhqvXrvHpzzzDM8+9wLRpeOnWEcVowKCA7uiAaD6Dn1xiuL3JpUceohrVK62dz4s+yOtoYk5v0vVZRup2lBLUw3qQOlSRcG1rLUYEu9YeTkRgME5VjVGIQTP2bMAU1LWjKhRnS/quQ0PICb2EQRdWMlunBU0J04ODAxZNQz0csLe3B8B0NkvQTjVYwUgxRNQk+mHK3acK2dFkk/7wMEOlkdl8wa3DA6wrCSEwP5qyvb3NoBpSjoYEVxD7kKpfFfCKGGFYF1hTYAiIBoyBqq4pB2N6KTk6PqFpe7o+Rb0iBmNcfh6A2K3G+ybLRi+TwtPpHIhcu3Zj/Tq8TBSOO8/Ez9j6bLt+60MqojiJlCbQhdSJyKvFaOpvOrItbXS0sVjx3CvjqUwSwjIohQ1nml70We/Q5O+XlaNRZTUbWNp5bey8Gm4ej+iags3hgoHrEzZvIpXzjFx3huPexgIMlLJGoVZJ8rwZ/gnREFub1SkFLdMghodGHapC3yd9nHSOUw9ZY4EyyxZnqGc8ahhVaSBRMgbf9Vk0L8FtS0hGvU+zs9udvU0Kpe7FA6Q72xp03e6HLfPNd/jq152zrAL/wb3WebsdH5/wUx/5KHCKxS6TQ5BOgsZAjH3iH4csuaoxdWAHkk7aaj/S7xFKb5FoGQzHtMdTRq7k8SuPUj9d8pFnPsGVC7tYNDUdTteUbnrCrRs3CTcOuf7CVeoLV9jf3eP5l65hi5J3PPkUt37x57n+wov08xlPvedJtjfGSAj0vqdbNCxmLdduXOfajRt4hf3LV3jX/gX2L15m2je0s1vceO6zvHDtgMOjQw6PD/kLf+l/5vo3/XZ+7b/xdRRFxdkAKjmrZdny52Ivk2l4nQYRjYnRsVgsUNXUB9Q5iKdYetu2uSOVWyVZE5c7NzDOBWTe1GkWswJwFCFmOV5QItaW2LpCNPGFNevCxOjTw2AqGu/BGnb291b4ujEGMYbdul4NKIvFYhXNL2EO5xxWDIvZnKbpsLZgsWgBw2Q0ZnNzk7Ztmc+bpD/TNJgQGFQDRqMaZywaIt2iYdZNaRctvSjlsGQ0HFCVBdZIotPGiBSW0WTEjVs3CdHTdH2SyxCYL+Y4AxujmvmsT2ys5WBo0jUeDlPF6uHh4fK6C+eIwnHnmfhdLUbhpK/warKT96vvFiFFm6XxVKZL0bgkrLvXpQNPg3CxpqGOyVBOTBz5iKzWO8kB7LLJdJ+du49pfUtRsId2juiDZaeeM3QdpfH4aBkXLU4ibSw46IeMXcvYnhZ4tdFx2A4I0SBVwNrErnE2MNmbEaOha5PLbJuCVhSTu60tLYSkSZBTSJS1pyg8zsQV+wdY5SlOLIkdYwQxJt2zXQfGpog9RvCn51VVoSgTfBNSAv5O9qapUPX+rFNfsQGAkB1bgjxTya3mKkeJS0e17GN5erDBQGOVW9rR1wVVV1EZZbRV8Za9J9h5bMD20GEljcRlUTCuLY9sG3adw2/ssLP7CKYa01Pw6cmzPPa2J3jbO9/GZ9qbxLZm3jZMj15CHtmlHG7QRY8NQvPZl/jMpz7F9d7z6WvXODhuaH/607zz8XcwHhse2q159yNXePTCBT70Cy+hrefZz17jL/3F7+RjP/ULfOu3/gEefuQhyrJANUENxgjGZEGNe9i9uO3nQTmvNysnXc/TRODysxgjal4OQZ0ZdNTl+3hF9s+ajHmqCgip2EiwYCIiAcSimY2jGrBV9YrGRiExelKPW1n10Fx23JI8yzAiFMZiqhonCfuez2Zo39P0PS25RWKeeWpIGjuDylGVBWVhKV2u0RDwMVFhfVSOTmZEVawtELGIpI5dks/Zy67bsnJRlkHf6px+NeeLwt1pJn5XUxXmfYJMNssGlzXbIQmEJbkBv2LGFMbTxiJF4pKe4yp3R1qPwoOY7OSXEXaCYirjV4Jfy0bTQQUvcRXhI/DQ6HCFowOMsgzxshI1IixiSRX9ShjdEJOQmC+ICjZrwftgKFxgZzilD5ajLJ2wmJWoCq5IjV5NbsqhIUX8y6jf2kjlAqOyo7KeNjj6aFYJ5JwUAucSbBMC2rRIWSYapDHJ+S/NSIrcScu+jF24Zm8K5x6jrrohwdnIMjUUltNo/JwBAM4mEZemITnEpm0oqpLRxpjxxpiunVMNNnns0UcTtitCURZY4yBGJuMxG5MhR7euE6usj2Ec7508QlEbnv2ln8ZIYO/iBcYbG7x44xpN0yACg6pmenjEbL7gwv4FruzssLl/g4/99M8z2h3zZe9+Nz/6Ex/EnwTGb32EwWgT50o672n71LPxn//zf8GtW7f4T/+z/4RHH32YGJNUwv0WI93t+/uU/H3NbJ2ylz8597tl4lXWrvXZFZmswpd0mRL1O7+JgFGMsaedk1QRHMvmGsuuyuLScHCGSpjvu+W/gbONyCUzU1bvgbKscnSWnasm6KeqKrSqCF3PxmiYKJ7LhGyMaEzQjEjqCDa1DWVVMShLCmeSXw4xz9SVtvfcvHkAGIqyQKxDEYyzSSkwxqSHT8KkE10wn6CsDbs2kP8IcKeb42Uz8fu1dZ25dRXIxIG3tLjEpokpOg8YUjr17DU2EilI+2w1ruQAAmaF0S8trA0GUWWVnF3f/vKztIxZ7VOSRUh4ukWxuVeqEcWaSOkCg2GbBvb8WWV9yi+4nqCGxbDICqbLc5sHtWCIOSmrKmwMGmrnGbie0vjV7KKPlmlfJSplbsmIq9LFUQVjT533chogJrFm7P3l0N4Uzn2JjZ42pz59wFVkFYic59xXaziPIaIRK/DSSy/S+J69jQ3e8a538fFf+gW2J0MW84bJeASqeO8p63LFzLGFUmw5xlXN8WHDYj5P3ZXaOaabUdQFg+GQzndMlqX1vcc6RzNfEEW4fPkyV49OeOfDj/DI1kWK6Cii5b1ve4K2u5UaHVc1sybxmEWE4APGCh/+8Ef4tv/uz/Kn/tSfZHtna0Vxe12vwmvt7EVWs6n1mdhp8J1ZCiGkyHiJO56TSJalBF9egQHUmMQRtoBqiqRJAZBBVzxpyX8D9OTkbY780WXz8vRv3iFUFSuCXRZarf+NpEDAsNpXYtIGqZzDGIs3KQpfCo7FmJ27xrTPS4crUJSOqnBYa4hAJGJyE+227zk4mhMRXFGiufWisTaNazEkLaOwPKeydp+k8/X5ELBYOq3brVcDscDFiDG6ws/XzaJp8NXUpaUgXT9jErS6HAgKCWeaVpjbGlicNsBO4XgTizOR/rqzN6KrfqpLpo8l4iRS2QBVh6oQosGKUttUjDWwp1F0UMmVuanL03qyd3mcoyLBQqVNx9CEgDcmV+CahLlnCDIVO1ikOE2gnvdMvoxkcQd7kzj3ZQGSebnjzg/CeVH6eVH7etSfIq7I1Rs3uTWbcWV7H1vChQsXOJ6dUA0HKzpb4YrMOihT9FdAUW5gS3DOEzsl9j7NBiYjglem8zmDwYDxYEBdVfRdt6q27L3SNz0uKOH4hI2ihr6FXnn00i5FvU1dFfjBFofTD+PVpMFDeySCD5GPfvSn+e7v/rt867f+gdRfNVcq3kUI7mV2+83xSnV7Pne77Zohq6nketRsEMJaYnx9uimSIY0M6qQBPztHk89HVKw1aZAQzfBMitBElGW+bD5vzt4feea2jM5FJEEmJCgmrU9e9ndqbk5iamX+uQZFVLBGUJt66YIiEhOEkgcTXeZPgDpH7M7Z5NyVXHYf8SHSdh2LPqDWYVxqLKGrmZxCzEk3z6r24/T06eooXi9bMliWr6WsrteA0UgXHR5dJVSXzJhVA+o1M2sOftnEermslbjqb3p76zkjkaiGF/tN2ujOSA0vNWSQ5PTXVRStxFXkXkjCwJcBAaSo3AeDs2kGspIvzonemKWBvZqVM3d5wKls0rMf/v/b+/MgybLrvBP8nXvve8+X2HOrrAVVQGEhQHCnSHGRBJJqtUiRBCWTyaRp0zaymelFmtZoxlrLH9Nt0yMzjWxGI421jdrULVqLrZYoTlOUSEriToICQGIpCChsBdSWteSeGRkRHr689+69Z/6497l7REZkZhUyUQkwTllURnh4uL/Nzzv3O9/5PtfkG0aiYO6bxKuvs0mJ8flG312gXVM1HdzFvyKpgpfOxUrvelYfiuSeCp+lO/IShhhJk4vLSWlOj7ttyc+h56VEv9+0fOn1Kzz1+HmMr/FYfBsoQkyJ3Vg0a7k4a4l5gCRIRSSNQZtKsBVIaFFtiSgrGxvpwyqZpZNt2DQoZdmjtAXnTw2YTaeo95hCCdoiJaxvrSPGcNMbtndHqHH4GClQ2jbOJ21/4Rd+kW//9m/n9//+76LIlKjjTuph3vvhG+Dh43Pcc+9fyIFztOiNLLDiLsEbMZjlYaHbKnftXpKF3lDWFlJABOtknspknuDT9x3brmmb1JeW1MDqJma7waXlY7j8c/fVPc8g2dJvabI6J3qNzFcCIaYJUp+nk5XE7rI2vXdZpKTuTGfcLgm/FQg+UDcxf8bzeiS/1QJKl9xk1vnxhuXq/Y6w7FcUskRJTF8LaMRHg8HiSVVyFd0cZjkcyx6miSXTvcEChrEohfgD7k7p8WRy3ahjz/fZ81UaiupuBgZ6pk0QUFywcYC8GvAU4ilzc3f5xgCpOg8xTeC6I1YmPnPjOzomhjmDqMw00SrLIBsUl+UXGm+Z1iWDQHL+WmKWkS0ngYXezHKC5yAt97h4KJL7nWK5SXo4URyJs+vBE+ODste2/MKHPsL5R87y6OYAW/TAlvMx7s75p2lapOiac4KNiXJmi+Sv6USwpsKYyKytk2ogKbfE1uPEJCNsYxn2hkkPYjhkYzjAhyY57hDBQX9QMgvKdNxwazTFlRUxeEyMdNP3GoXppObnfu5f8f73fyOnTp3CmCR18CDiQfDhb4NlRA9U7h3ebiX5lc4T6+Ft08wG0fxbSdO/pnNLUMHa5aSm5NIgJVTt5FxTsjRiEM0I7CEY6HBy7743ubrvbggaAyjY3OBMVN2AbyMhtvT7AxKFP+JbiJJ9mKxgSpP47nSc/q6al/l+Ji37BVkgxkjM2xtJVaeIoLE7nsusOTnisfsbHc7cYc9HaYvPtWeipTQHcfLj4qjKHBYyvR28EjApWWuqyp0JcxXK5STdLlfdS4m7g3i65qvNEM38b01kUKbhp46xMw0FBmXoGoxJcI2XLtmmnkf6+4V8sFfFaDxwUftgaRu3uH+FAD5h7Or9ghZpBHzeZkN6LGpqrN7lxD70yb2r9ODo5H7bs5dx+KCIrWgVvvDya/wP/+x/5Qe/+1s4NbQ89sgpiqjEEJLehCRfTCupehcFqyEPjNjUrDNKard52llDiIozWevdJO0RKwZnbUoeAtEHijIt1ZsYkELoF47CCh7DdNbgg2ZW0+JDuvhX+MxnPssXvvAc3/u930OMqXF4v+NBDTodCZ/poq/SPd71XLok2j3ebZvME3RKEGJYWqam5GitME/oGlEiqh7VnOAh6/rfvr9HSU4fqNqXnisiFK6YS2ZYaxKdMz/mQ5IS1JxZxRmcWCSmmwsmwUktgUJtkjgwkqAdk5M5qRfR+oAVoSGtCgKK14jRiDOJK5+2fXFNLD4D8sAS++K95MCA0e0N1QxdOHNkQo9qiEvJvEuKRhYN1dT4jPNk3A0+pSlXmZttVHlI6nAiDxjCUqpYvO7Sc9NtMyXm3FAvTBpWKkyYM4EmvsRJYKtMtn2da1MHDXXRGYN3+LtBwSxYQT4YQmvyxGpnvJ6lLkJAxSDuiM95t2y7h8bqQ5Lcj4cE5qyZjvO+nLzvULUDicOmLYUzTH3Lf3j5FV64dJF3P7LBX/ozf4whFo0tSrJdU4RGIqasQAtMcq4FC8Yk+CVo6oa7oofpvDRjbs5JsohzpcNVBg0eVxrEKL2ipOo7QvS44ImtMmnTdJ0VQX2q6iMH78jeRybjGf/mF3+Jb/7mb2NtbWWeBOe7+QY+wcdBWA8kjnj9hBWmSrSDNGKMRHOQ/rrYtpxw50v6w9uv84rI2I71ktKjqicSiPPqPVBWg9RkPFwohMXNxR6qQDssfrmSd7bA52rOOUdVVhTOEqInIyMp8TvLwA4QS9a1CbTB431LGzxKyFV6dwNZpgQmTL+qCiZNmr6O0skixLkhRLzL8vxBwTIxyhw18GqWR03m3PMmJh2ZsS9po51X1YWExTDTUmP0cNXeRceY6VgyHZZeAEFSgp/EcvnwUef3Xq7Wo8p8kKqDkWaxmP9+o5ywL4m73wbLqK7oOc9GNZ3DLS5r0yRYJ2KtHvCLXa7cu2jV0AbDqK3Ymfbw3i76Zx0sc/hEdT9bw21h5Nic2cVDktwPQi8HHj/id8sV1jJWf/trBiR4Qq4NaltRe+UcSq0BI2nSS/N/yTotDZY0M4MtBlhnEpYrqRkjaoGS2O4x2R/TZJnYfr8PCnXdJEy1hPH+FOvW8ki9IoGkWOgjjRcmteP1K9s0swYXA9Gki1Q6P9H5Piqf+tRn+PjHnuGH/vAHjsTP38hxvpe/E5ELwIj0kfWq+p3yBqVhI5EYJmk1GQV8C3lgKPqAB2zVw9ISfcPMT9Lqx6RKuCxLTFRiGxA34GDhl3gxy22lptUk1IZDcSgVdPh8rni0nZJuCCmhe9/Seg/ELJPgmEzHFEWBEYiitBrSzd9P8epZ3VplsldjLdTjCeNpzX5jWV9bY2tjA2N6zKYzFJ8nHUHarL9OugaEAkxBpQ0hCk0QZt4wVcteHbh0s2Xl9BP4Wxex0dLTQIgtURJRM2a52MYrSIV1hmPy4gMJVYjBoLlqb4NN/HRyvyMoJjcZQ06UkhuMPZuSa6stheZhtSOq9y66BN2oy79Pz62kPfCciSkPNGHHsWIa8nSsLJg6plAqfNoudbTq5gJi53t7bJshs1BQe8feuIfvNZiVPHXrkja+z16rLtMzOxbNYXpnd4OZhiRTvDPtMdrvE3zunwhJKGxpJUs3l9FJqdg7rNTvcM4fSi3ZA7DL/Sg7dPEVQ5JNda6gKEpUoW3D/DFUaBtPPa0JdY22CQc3qkiMxLYlzGY0swltPUkVZVRKV+Gkh4QKQkpMzrlk9ZfdfCDhy5NZw7TxTBvPf3j2c0zrGukaeuZg4lVNNM3RaMRv/dZvUT8Ay7Q7xA+o6req6nfmnzuTlncBv55/vmMcBWscDD3U0MyP5oree0/s5CZClgGIqTnWFe2pss7TpkvMFuEgZi4ixNAm2eCmpZ7NmE0mtLMp6gPqA/Vkiig4MdiOpRMjGmK6QUVQvwQXLWGfB67bO9w/u1EuESGEZAQeOj+DGAHBFQWT6ZRLly7hNS7xa5aO6+KHg8f6wCqj+3oA0VFNl9gl831cphyaJMG7XEG3amjVUmuSJ5ipyxx4mUMXHfZdSGLalOIpJUEvy1+L17RMQsmu77PTDthp+4x8SvB1cPgsc2CJ9EyLlZgNsdP7zlUh1cxhlW44KXKwp9BZCXZfXXTPS/tnqOPiNaMK1ijWReJ+QXG5pBo9OCPNh6ZyPy6+stR+6MLW9GGKEZwrca5ENbklOUv+XcZJkdSTDp5Qg5iAV6WeNdR1w/aNK5w+tQVqca7CmYpesUp0idfrYxpfjyFgTIU1KbGEEGkVGhVu7o248PqldGcWSR+Wbk2/FGVZoqp85jOf4fLlyzz51BO8RfFB4AP5+3/CXaRhBck6KBa68SJl0TDOPQVni6QIKpopj5JgSB/xGTcX9UvJNE0wYs0Co89DXhHm5lWqCZpMhbuCQggeNJluz2Y1bdvMt7dr7lZVhTEOI27e2Ex0SkP0Stu0qddlFo1UkTQctay/f3ByVA98G7sGr/c0bUwuPwghCKoG6xxXt2/x5edfzKvTBwyhvcEQAWsVa/Q22GN5rzsYo4NpOpemJjrGviLaDoxKSbwwHiQRJjucvVhizaTnpsby8iBTwDAJJeNQsd0MaIJl3FY00bJezui5FpchIGciA9OkidRYpPcgVdkj36ONFieBwiYJAms0qUXmlbXpoKSlwajlCJqkjZd58N0cQGEDvbIl3lhh8zmlf3l2kClzH+OhrNzvLxbc7WJKCs4VFK7Et4EQlOAT3h6DEqKiKlmsDGLwtE3NZDJmf3+P0d4uaOLCjiYTbNWjVRhNZowmNUEcUvTAFIgkO7bpbIbGdPqTdorSRhi3gcs3txlNa7RLSmke97YbWtfs29vb48Mf+ci8oj18rJYbk4eHvA5jxsuve0wo8Csi8owkNUC4B2lYEfnfi8gnReSTe5PpXOo3LTvT1GXMphOpygWTm9JGFiJJqprG772nbf1CTTLEud67aMQoabiogy9JQ6uipIarduYHEQ0BIeLbhqaeEXyTzidK8AHfekQTe8WKzQqUyU9No4Fo0CAEn64nY0ySIc77eHjeQg6wf5aq+6Vz1fqQtNpDJMRsxp0bxVeuXuXll18maqZ1dtX6IUbMWxUmV7epv7fEdc9WdglOibkK7tgjiwnNJCrmmMViXkG30WUs/OjUFFTmiX3+N8tf0aYmriYYqMz4eKfRXuSbhcn/Hsb8u3Am5ptBmlDtqJ7zfZfE3e8Ezg5sX+a9+/zVxGTO3YZkSBJUKMbC4GqLHdVpGlUO7a+RxdebjIemcj9q2Oa+8K5VMrCVcHM0IsbifaI/+qalLEuCjzR1UicMrWcmM5p6kppVYlCxVP0+Zb9MbjJFn8998QV8gL2dERubp3mXh15vSIwtr77yKnU95dFHHmE8nlBVyTosxojHsDetuXpzh2k9w6sjzimCB4cTuoThnCPGyIc//GH+xJ/4IFVV3St2fvyhufPx/X5VvSgiZ4FfFZHnDv3tkdKwuqQc+K4nzqkxCx33Zcqh5ualaqqIWfp5OUmG3Py0dlHup+I+U8UkJn1sk/i/mjYiYZbzaeaQVwuaq/YmebkasDYNh8UYQIWirFJSF4uQk3PnvqKAWgwFSMBamySLrU3VtS4G8BYrCpm/7zLU2G2bDynBGwteFB+UNkDbRi5dvsyNnV2k7OV9hTlVMh1t5gn+q4i3p8O/sMEzorSxmz1J29MGCzYlyTJrwjQhJd20cpE5VGFE8RhaY+mZlgKfhtpyE/VwNJpw7JkWKZHmxD4NBdNQMAsFbbAUNuCy7swsFAxcQ9+29ExLT1pa3AHKYseU6WQOKuepsuiXV0vTDdwt69xggUjsdG5ylZ4SuptbAnZsosZbQjAMriq9//AyOHc8K2b+7Zs7uQ9lcr9/lbss/lUh+GTDFkLCaCfjCcOqJIYkQetbn4aYYmTW1ERpCEEpqh7D1T62V1KHFls5th55gu0XL9D4htYWPP/qq0x8oChLZpMRN177Mu9+19MJV42B8bhJ5thtw2jq2Z3MeO3KddpOCK377B7BAOqOR13XPPfcczz77LP8vt/3+277/f0MVb2Y/70mIj8HfBf3KA07D5EkcCUdJJMq9jSLkf+dg8ky/77TbIlocpyPKSF2x0dibohm37KUL82CQtmtXkJyXYohzP1o26bG+wZBKYoSlyeTZ7MaI0JV9nDOJSorqVdi86ojhKRCWRZKq5OEu2bVSvJuHEjuuZpPv5N5Ao6a4DfVJEsduhtZVFofqX1kPK25eOkSsxDpp6ZCOkb5hiFf7Wx+KETAmph5/932315tL7RdFph1zBf7cVz3jh4ZVWgOpaigCwrkJFRzlck2WnbbPhNfpuTrPGVm5qSVhKEygb5Nkr8BQ2VaSvFp5YCjZ1pWixlNdpFysugV3C6ZkKRN0r4smtkRyUneHIBrOhOQWVNQzwpWG00rSmMfGH7y0CT34+PeLuLj724d7p6O4OnT5/iO7/gm9vZGbKwVVNbR75WZfmdxrgQVjAW1Dkyg6JfY0jGa7KMY2uDZ2zdsnnmUtq2pmxnlcMCla1fo9XtYIk888QRra+s0TYNUJdF72uiZTSds782YNIbLV6+kqlWlmy+c729XgXbemLPZDGMMs9mMj370o3zHd3zHUiV8j0fyLnTT+RETGQJGkxXbEPgjwP+NNygNm5qGFpPpe4lZkSvz2Gm5LOCaDifvsHjR7rxJnt+YgxvpDhAFJRJFE2xiEps9dvMLIY3wdw1ZVWV/bwcRSa5LZYGzBW3rKXIVXjqXqvkoEFM/wBUOjUKtTTLyqAr26uncC9Zka7wOaumS+7yJm7iZ8yu5a5wm6AlUEusnqNKGQN1GdkcjLl2+NvefPXC+Fq+0OB5fZYimcynqDDKSDstCvGw5qfvMUjmQ6NVA5qR3ptkd1XEWiznzBjrOe76B5KTeqp2bgPgM8byyt0ndOt6xeZPNcjp/rzbDPFvlmNPFCIvSquWM2+MRt8tOGHDdr1GZlk035pYfcqneoLaOyiYYNvH1DzpPWYlzeeL0XhmO0bRCmdv15b+vW8d0t4fZdRRTPZ4Fcx+qdrg3s46fBH4UuKaq78+P/TfA/w64np/2t1T13+bf/U3gL5EodP9HVf3lN7pRByR/hQOqkEds37EHQKxHEdQPCLSY0vL7/+CPsTvZ40aYsmktEUMTIitVktY10lKtFhQumW3vj2cEYGd/yvbelCaAK/u06lCJSAXRKgbHULbo99aYjMZMTeTqtGXVWQaasLnoW0b7Y7wt2Z5OuLS9T4MlalIzLHIzqlvmB1U0pEZiwuUTPerChQuMRntsbm0sJfauc2i50wd9mU56h4r/HPBz+fcO+Geq+ksi8gneiDSskPRe5KAS4+HtOCAG11XpS9vWNS6lgyW6v48hN2Lzas8kV64QIcTkQxq9x4dA8On1r1+/xsbGBsPhMA80pZuLtQXOlcQIZVmkvksUrC0oyz4xCm2rWCOUZcmoucEcd7eWkBX8jlqBdufv8H6n61tQ64jG4IPSRKVuWnb2drl+Y4e11VWmAaIYlge26BCx+wFdvpnQBQQDtzNlDkgSLDFglp93WEpg/lpzxkluwiJ0pMeohlrdfJCpWxF4NakqbpO2zNDVqWGLZEbLwqCj+76UQE9aSglJhoBk2lGbYj7Q1E2c6pJuDiymW7v96JQml4/HMu89dBIFtcFNBYkxyfo+wLiXyv1/Av474KcOPf7/VtX/5/IDIvI+4E8D3wg8CvyaiLxbVY+3C7lb6HKl8ob/NF/8FiOBU+fO8J73vJuP/dovE88aJlOltI5alcIaCiIuSpoaFEtVlcxqT9227I33uXz5BrWHja3TFG4FMRDiDJGADZGVsqKyDooKqJk1DW4GxgTwnso6pKhoGnj10jVG+2NqLYjWzHXCZal+P4w/dyyLCxcusLu7y+rqkLIquu7hPeOud6sGVPUl4FuOePwmb0AadpmKeNR7z3H1EJZ+PtQEnvP9u0Ylc/w73fgjpCI+vwbZzCXRJoMP+ODnTeabt3YZrKxiiwKMoW3SisraAnGW2rf0jM1zroIal8wRImAcYoWiGuaqfEHhXN4nVV0waLoG68GDMH9uNGkaOjUJE3xU+8BoOmOi8NjqGrO9EYIQu/fJB0G6RP8WhJJgGD2U1EM0LJ9Fr4YmHBTsCtFAxrUX0rvLDVdLi+UwCydV6dk9iYVgWJvphqP9PmFm6T3Wcr7c5QV/lmkoGNqkpR5VGIUeq3bGICf2DdMQdcLMFpjMzglq6Nsmc+RTM7XOLlAdkwYWDJ+0rRGLzFk0Hb+/EyebtY7ppKS8ZeldE8SDbq0ni73pDI4ptL6S3uO9ODH9tiQz3XuJDwI/rao18LKIvEDCan/nTW3dVxiLXGExruDxJx7DSsBP9hjadUbbO1RYpJ9cj/qlxUaDCzGNBUuJKwpq31AWBac2N7h45TqvX3iJ9cEW586c4dTGKs4Je3t7FMMe1pRMrGN7b8re7jaECmdWKKwjiCUWPfZGE5574QJYg1Ez/9AqSfJ1OakfnkYNMbC9vc0nP/lJnnjiJ1A99rp4yyMxXQIaEwNFo2SGUtI0r6oC30Zc6eYVsMackH3A+4gpzRz2uI1PzkJXKWpiIzVNQ9MGxJhk4zfoIdYxmUyYTCaINdiipOz1KcuKqDVNG2hDxIfUY5lOr7G+vkVZJYqm9wFX9ih7ffb29hiN99nY2GA02mM6SXaQMUZCjOy1LTFG1tbWFnIKJikgdvTJFvC+RVWp6zYZNSjsjPa5vrvPvofXLl7GAPuTCT7GxP/Oq9h00iOdumQqB9xXFZhJbQCdQw8dJNP9LuZEf5hlslxpd5CNjwaPmSfzo7D4hV67WZoODQTR+aBQ93lvomMSy8WNRSvGoWRqi9TcLQRTRGZaMFNLgyWoSVo1CjMtmIYyNWjb7kai8+1OJiFJvfJOGjmQVzFI8lcNgp0Jxb5im3hw1dV9kI/oub3Z+Eow978sIn8O+CTwf86Tio8Bv7v0nNfzY7eFLJnt3vHu9Aau2Nuw465RJwZbOs4++ghFVYEqPec4tXKKyaSmrmvWN1awRQ8XI5VC06ZlvXUWZy2bgwFve9tTPP30O3n11dcZX9/j+qsXuPKypywLzp49R2tatvdG7Ozt4XuGJx57hGHfMpuNKXpDai9MteDV67tcuHyD2ucRcpsw07gk53kYhuq+t9YQYuSZZ57hgx/8MUTssQn+WLjqfjGR7hLWWpwr0BhoWz+fJu7s6iDdAMKSMfCCKpn17UNipbS+yY3YrpW4oBRqFtNqmiYZbVjBOYsrC4xLip/pK1D1h9StZ2dvn8Eg4fxtgMlkSl23xKAJnsHgoybFEWNofWA2bZg1DTFCTxv29/fZ3t6mrmdzo44y2/LVdfJr7TTiU7F9uw8BhcPHxNDqVgpNU7O3N8IIudlqiIt+7G3x1UfcU2K3JlJ7R9SDJtXWJBhilnndB4aXoqX2BydN4WiuODCXCOie4ySyVY4pJLBZTNIkqq/SgJALaCFcn64keV1f0QTL9fGQWVMkzrooT2zs8I6VGwnrJzKJFXuxTx0LJrHkcrPOq5NNtqcDru2s4Fxkc2WCj4bdpsfUJtimkzG+U0x9QRsNbePQxlLdhLVXGqobU2Q8BR8OrO4OXBtZIOzNxptN7v8Q+G9J19V/C/y/gP/tG3mBZcqcNe7I67bDag9f1svJ76hE2D3HGlJTrCgoBo7V02fxtuTMo2/D41kbrjPZv0YTPeO6wZSWsixofMAU6QNtjMFZk8wUiPQcnNlcZauseOKRM9R1Sz2rk2vObIpoy2DgWDl3mrc/+Si+GbGz29IEz6QVru/XfPaF1xi1IGUfS6cxkao7xSJx0ZyDgxLHzjlm0ynPfek5bt68yblHzmJtSm4hRAR3INHfKcHf6ff3IxawS+Kra9Sc8F1yD4qampnGZQ0wgZjNr7Nej5eQYK0DVMKMzCxxyFUMrfdYV1AWBWVVZueiVPVjQJylrAbs7o3ZH9dUVQ9nC5qmZW9vj8lkhjGOtdUN6ibQ+EgbItVsBpqansYajFHqesZoNGJvbw/vW/r9Pv1+P+P4ynQ6zZhtJxOcGuYxG3bMz4MtqJsZbYypuYphMqu5duMGRVXQtC0xN5U5lOCXG/Bf7eggmOWKXVUyNXshBexjEtNbrsoV5g1KL2but3qATXNcSMcxz/xyiXNhL2uVYJW9WS9h3NkQY3/So60dYhQxys1qwMCtMTANq2bGTIs0JRsL9kPFbtvn5nTAaFbhGwdLqLJXi4l5tYDMIZrO8m/5ZgTQRkPjs3m2gq2VYq9Bpk0SCztOPmV5SfomE/ybSu6qerX7XkT+B+AX848XgeXxycfzY2845lDEoQbVG0lGsU0Jvt8f4CVSrJ9iZgdsPPYubtVfxkrJqY1TvHDxZWoJqIWVQZ9Z0zKoBjRNS+EKQNHoCW2NROgXlpHxafgEWD+1RetbqrYkxAofA9X6GjHU1NN9fDslmiGTNvDlVy/z6edeohyup8rQB5x1ObmnJF1P99NNxblUny7fzEOagNzb3ePChVc4/+gjudL1mXJ473Fck/p+RTds1TFJloeourcVEXzG3I2aeXU7t7wLIb+GTwNecQHJYLKzadarMdYk+7kiGVuIFVTSc21R0BNhZX2TGzducuvWLjHuYLNu/mQypakbjHWMZzWD8Zg2KkGh1++jEaxz9KoePniuXXyFGzeuM97fy5o0xVwKuNv3pul8b00ashLmN+E5XVMsjQ/UXrM6aGRvPObm9oiirKhbn4w/lsmPDwEMF6JhNOlhTMwjBwsZguVo8uCONWmYqc3DPJBuBnVwjDMXvbshdIybMptnlDbgJLBezujblnU3PTC1uuEm6ffDKbv0ufHqBremBrWgRrFTQ5E9plXg0l7JtbU1Xt/a4PLG+rx56jXRFZ/bPseNl7bS586AXxFKG+a4fRMdN+tB5vAfbCfOgltM46KM65LZtCT6dHPu34rYFy+m+QcxRyfu+yTp/aaSe8d1zj/+ceBz+fufB/6ZiPw9UkP1XcDHv+KtfJNhDaz0Kpwr8EWkpsCXq2w89k72XnmN4KF0BWfPnePirSu0t1oqZzgzXGE2a4hFRHLCjSHQNjXWGPqlo10puTG6xWS/5cr2LYqyRGkpS6h6JdYK9XQC6imcZTSdcm078NFnnqWVAt8qzhqs69gkBjUWI8La2tqBRHiAPRQbCitMphN+53d+h2/+lvfT7/coioKQSr9j47gVzoMK1SSklhyRsu5LpgYGTYndZnOUKEc3X2M2lMZ4YubJa8zKkdkw3Gbed7/XwzqXoBhD4rZLAnBcYXGFZW3zDNM6MqkDzXSacH1jsWWPwqQZiJs7u4xnNbYokMLRb5u5RlBRFMymU1587jnG432sEdbWVg8cx65/4H0zr9yNkSz8l6v3ENKEasyQTxtoglC3LTt7++zXntXhkNh4FnReWTTP6eCYt656D94gRXp/YxbDdwdkfzvGyKFqvKvq0y8PYvRBZe5p6pZkf92hadA5mybTKXvOMy08tQric7M5yvyQSQQThTA1eOe4VfW5VKyngazcOO1uWnacbg6xv3j/ZY34Jjp8PufL8FLnzNQZfHhvidGgIVEmTavoeJKYMmUB0SDWPJBC616okP8c+ABwWkReB/5r4AMi8q3pkHEB+D8AqOrnReRngC8AHvgv7o0po3PZ0sP44R2ZMh0FbqmaMzl5GGPoDSqKXkl0ebS7CbS+YevUFvu3HuNmc5OVsqDXP816LdzaucoNbjFwBucifSpsAaENuCKi0WOtoywLYrnG4+WA6zf2mEwa6tmU1WGftZUiibrFltlon9g2jGPkxrjmQx//PK9dHdGow/UsUSNGkst9pkygIrTqFyJYHRsjN1usLSkLR9nr8+znvsC/+6Vf433vey9PPvk2irLEZSnQEJL9mjGdQFWYOx7lc3X303Ifoq5rysJlG7lcscWI16TC6JzLcg8dG2bBD19uKmMikbgQ2EIQTVZzYgVxlqpfzVc/PuRSLb+WsTbx23tD1jZO4aNQjseEGLP0gdC0DZPJjL3xmCZ49sb7qE2N2Y7RY8QwmU64dv0aAqyuDBPWXpZJeyb3CpxzNHVY7Edm9KRzE1CfGq+TJtLkKdUmKOPpLPVsIM1AIOjSJ6L7PLzVxbtqahJal7xRrSjGRHxI11c32dk5GXUeooedjqIKZIimM5WOKpiM1Rc2sFbMqIxnzSXu+q12ADDnxxeSYJm3rW6z1at4WZRpXczhoq6ZqbsldmwwrSC3CqZjx5evDRcHU0G8YGaGYir4oSLrDWXPz7fVSdJkH/tEY5zfoPLv6+AI0TBu0pRs0zhia5CJxUwNtk6N9MTqPaZynx/kha3em4l7Ycv8mSMe/sd3eP7fBv72G92QwNEc4TtvHERNB9663LUPAetMwkBXeuCENowxbpXx1Vv0Hp/RYFl7+3fwygv/nrf3VxhI5HQf+hGubV/keX+ZRx87z2ohNBRUzlBEUG07YgPOrLC6uk5/5QzTpkV9iw0zTDNGw4RRs0+YQutXuN5M+OVnnuUTL15kxho+zAh1EhbDWjR/fJPfpyDZjCPCfCx/fpzUMG3TcXr14nX+0T/+p/T7fc6dO8fjjz/Ou975JO973/t47LHzrK2vEmLAZMEVKyYN/twFh79foZoULa0xqO3eU/KE5dHvb7IomC7x10UENWauApbIFwmLFGswhcMWBa50tD7Shg4KAjEWYw0SAlGVWV1ii4q19U2q3gAfQr6Jwmw2QzGcOXeWpq6ZtQ3T64shXOuS/k2MgbW1NaqyZH1tla2tTVZXV3Ed351kCrLMdFIBsll2l9xDCOyPAz43b5vWMxqPubWzM2+uicm1aodS5v+/1ck9zZF1Bui3//ooiMaaJFcg0RxI8N1zl40/gPnNoDJ+Lq0bMExDSqzReIxE2uyEZDOEM6wajInEbiUQDTEK06kjtqmqNwFkJmibe12SKvvud5AhHRdxLhzYLlhM44bsZduxYtqQsPe6LfDezI+R8YJpQXye4VjSjXlQhdbXwITqnUPy6G83su5c0lZfGa5QVpamrdGsxX7z6nXKcsDMW3rDdU6d+2Z2bjxPb3VEr7pO8NucOrPGq9c9O18e8fjpMW2AjdUBPjb0CoNHaVQpK3CmG69XcIbpaEzdNGgM7M9aZmaFS5PIL3/8c3zk88+B62GYJuMPWFTTywJTS7jtcbE8gDSZTJjNUnPvpZde5CMfThOrTzzxON/yLd/E29/xFN/3fd/LysqQu8053++LLGrm/AbFt8lJKY3rF3OpAO9jmmI1LisxGoSYXWZCptxZxOpcokGySqK1CV9PkEuBD4GmaZk19RxGsRaIyWVrNpsxng2wNlEvXVllW8NAjAGxjt5gwHBlyP54n+3tW+xPJ2iMCWoTg0qkqArObz2Os5Z+v2I4GKRGKhC8P9AMn9NZUTQnd+89oWkIITDan1EOhqim5vJof5/d3V2cAR9SA93ntkvs0Jl0dI/Oql/F0CC0jSOYBMs4oFe2WFFq76ijzCv4KvuJdjBNl8g7pyMjCplFo5CSdFEzcElDParhar02pzd25tM+Wi6N1+faNqlIUoZly7Qt0krCRIyBcr0mDC1h36FTCxEkCLGMaJlWztIagmgqMHqBwqXzuF9XlG4xkbuc0NGU1H00TFtHGyyTvR7aGKQKGBexU6HaEUyISK+CqkrQjPdZ5jnHMt7+FVTt8DWe3EUEawqKoqCqKpxLnqdFkVQZY+vTHTokytP1K1dpag/lCnuzyPr6O2hnY27MPs/ZytMrhSiWUxvrXLs15uXXLzNpIqc219lcW6FXOvotVKWy2kzo9SLGlfMKLaoyrlsmkwnXx54L2yNemxT8xudfo4kl/RgpXEuIljYybxw65w7IxN4tyS43lsuynP/sfUBNWgE9//wLXL58Ge8bnn32Wf6z/+w/ZWWwwtE184OpHgSZM3matk2NzcyWscbQti1t21JaN9+vhYJkHgbKj4u1i8SWMj4m67rYIsE7dV0zqWc0TUvURLlEEnV0f3/MaLRHEIcryNdKohp6HxKMZYWV9VVGe3upATvoI1YoyyL1QYxhNBoRo09/4z0hJJ57Xddpv4Cq11ucp6Xj253vRZM4MJ3OcP0BIoYQldmsZjqdUBaGqIqxFvzSh18PDS4dwjEPnMUHmfy7u43mRB2FkG/YZqkS737uvhJUk/Bt0URtdCYmmGeuvihJlTGrSaZmpzDxRRLwysm9G+sfNyWNtzgbMAL9op2vEqICuYIvioAxSigs2mrC5TUlclwEb8BqWmU6RYo43w8fDCL2AAwDi0nUDlbyweK9Rb2AF7QQxCimBTsjKeFZmyA3Ixwww77P8dAk92WctYuuQj08sm2tpSiKjNmWczzXGDuvaEPwRK9YDFZTRbV/a5sLL77AE+/9ToIYXlHhzOPfwPhG5PpeybnejIoRa9UUd1rYnZ7m+vYu27sjzpzaYm1lSL9X0e/3qPuR1TZSFE36wPpA3dTc2q/ZH0devqm80vRwj70HXfsU4dZrCA1tnKHSB+QAK2T5GBx1XJaPyeFjtIxXBx8zQ8MlqdwQ+e0P/XuefsfTfPDHfpzSlQfYK8tx3yt3K1yLyvrqKtZa6hCZIvQVnEass6xtrLK/t0vQhrb18yaz6zt6rpgbeRCnFK6ibVNCbGPE2LS0HU9rorasrW/STCPboynTusW6ksFKSdkb4qsKCUPU9IjOMA0+NdJ6DmcczXSPyWSfYTGANaGdBFQNtjdAbEldlAgWXyqTyYzQTFldWaUoLK2xeFexsjKgJTD2DRPfYAqbrPeaGl+36UMclclkzHg0oldWnH7iMXb3J4ybmpFv2Z61vL7T0OtXiC0zgyMAimQWienyUWLGg0Lr3Hwie96reMBsKKJgrGJspKkTnVFzNV4Vnsr5pG0eLPtNRR0chUmsk5TUFxz4aIVVYBYK9pvkiuSjYaIlE1/SRMeoqZL13Sz9vio81sSk3uj8fLOaYIneJVVIExnXZU7O4FxAXESdQZ0mfegiYstIqJlrFEkRQYV6UmCcYoYzJBhGTYXAYnK1XWD7bTCMxz1iazBVgCoQa0usC6pbwuBaxM48kqejiXogsYsI2IM5MD2WZQ+6Se7OoSmm6+K4eDiS+xEJbDmstdR1jRjJH6hUrVtrmU7TVGHXc+z+XlXAOIJGjMmGD37Cpz72Ic6/492Y/gZ7RQluyMbmNyP2EV7fe4n14ho9dwmtR7QywFrD3t4er168wnDQZ2NjncFwwJ4xrPRKVvp9nEs0xp3RhN1xyyuvb/PaZJNT3/ptjIohvcEG4cYlisIxKytQhzmUlBd86Nsr66OS+zJPffkG0OH1CeJNE6FNM+Xf/btf5g9+/x9ic319fuy6JP+gKJHaVakZfvJti0QlNsnX1gk4kyu8Qxjt4W2as06sItYkUxPt9OGVqPDKq68S1eYVgtA0MybXZ4iz9PtDBoMBoRU0JOGuqJ6YBcwEGPT7lK6gntVoiBgSpl+4JChmTJnZF4YVCorS4n1LM6lpmhmtn6XhKSv0ygJFaZuG6ENqNRiDxgCYJFBnbJIbaFPze2d3j8tXrqaGbOGYNg2tGjrxNOCtx9q76BgoJjVUg092gt6n669fthQ2EHxqMLb5/DpJOuml9XMaYVTBGM1yAoJIxtTV4HNV3EbLzDsab5nlG0lHsVzvz7C5+u8w9hAPDlB19EoAMckYBpu+TBExNhBtpicKKenHhMlHiXNef+Mdnd5Mtw1dco/REL2gXjBF0ruPM4e0gp0qxX5EfEwTyWmj5odz+TN+IAcsJ7blCVZNhcKd+CYPR3K/Q8SYXHOqqmJtbW3BuFDFt8mMOOHuCfsSkzXbScplUQwiLYLHSc3Nyy9y6dUv8Ph7vpVV10PVMCrXCKdWKQdD9m59kUETWBus04t7GFFWVs4zm84Y7Y95/eJl6qZhtTegX5YMeo5eWdD6yH4d2Z15Xr0y4X0f+NPsDVaY1vuc3jxFeClgg6EtBmk1EW832+jiXhPt8opmkeAXwEvISoshRC5duszHP/EJfvSHf3je9FtmpDyI5L5gmEimQpqcUDPO7lIjEU1qjknjUec3vuUvkzH2qIK1LhcxSas9hCxFEAJtSFICrQ+0PiULo5GJTmjbFqSf4DwH1kiWO6jRGAjRc2s0SqvACDZr4ziTXLmMRhyCE2jbNt1oBIpMs7QmeV+2sWUyjfTKEt80aVQ+q0e2PoARXFGBCD4PeEXjuHb9JpcvXcF2bJv9miYKruxzxGVy+7VwTIH0QKr3KJiJJa4YjOlkl2X+b5Px80RvXGDs3Qi/iQa3JLRVmEDftvhocSY9PgsuvVa0TNuC7b0BwVvixIFAGLZYmywID1jd5UGpW/uDeeIV0dTgzMNEOEVcRGzqFxijqa9jdZ7YgXmbynubkrXKXEgs7d/i9QFsEYmdNV/MipFRWL0YWPns5VSxlwVMpuhkCoVbJPvj4k2ev4cjuS8lqcMhIqysrLC+vp6mM2ezQ3or+WTRJbbMxpDEMmgBJx6jEbTGmYLPfPLDnH3ibQzbIbG0TErDNQmUq+sM7XuY3VhjPHqVR+wevWpA3bQMBn2GK0NOnTrFeDJhOg1MJhN2R9sYjRTVgNZUBDfgsXc+zfDsN3C92UVMzdmNNbZDS2gMs7Ji4AzWLqr2u3347vT7g1X8cn2X7uqFK5jNZngf+Nmf/Vl+37d/O5ubm7fRDTtfz/sbkaZuaOommV1nJpCYzu/UZm5++jCLJpx5oXe+wKqtyfxxlxKfDwlPTauDtONN27I3GrM32qeuPcYW9IcrrKyuUhUOYySpRPqQGTeR1teE0FL1CnplQYipUS7G4pwAFmccNl9nVhWnSlmmpnB3s/JtpBWlKC1lHmqKISQsPsswiMnCtWIxpSV4TxsUFcvuaMyNWyPGszQXgZg833D8OYmHzCyOulE/KFhGFKSVzAY5DO+lpJechw7+/rBaJGRWDIqTZMln0KyLvmC7tMHga4e2BqlTdR0Li7oMVZnFEFX3vW8Tx9y6gHMRVUMMHbc+Tasao0g3iGVyNS+L/UjfQIzJ/hAiKoIPRx9X6wKQJlI1ez5KhGLkCZeuYk9voatDCJFY10mewrkjYdIDG3EULq93xuofiuSuLJKc9/5AU3E4HLK2sYEAbXLZSA237u+sohoIGrGmykZ1ERXF5Q9jpCFIy8wHnBty5aXX2X7xEu4dp9FyQIyOnrHY2QwNJc3a25naLWbXoWpu8siwZd3VNLFl1usTBxucbmDWtky1pWfHyGyXSRjy0vQc609/gJthhoRIJX1k43F2B6cpdY/TOsM3grFlquTadr6vnTjW4ZN8+PGj2DTp4uiO52I6wIjFe8UH4ZVXX+Pn/+0v8Of+3J9D5w7TWXcFxcT7K0FqRNjf20ciDIcDyiIlyahJZz1BR57C5v2JMQ0mKRhNUEsqgjRv40Ji1xiTLPc0XQnptVJjtKlrxuMpISqT6YSmqVlb30jyAKS/LUuHsUIIDu8bev2SonDEtknXYASDRYxNlnuZlRWB0hiKsiCENmvF+7TqCC2qBYWt0JBkD5LjU2cfmIbVsEnkK/pIGxUVw/Ub22zv7KEIrrD4GBFjkjzF8nnm8ByIWTrjR/dmHlSCNx78dknjFPoBsZoq65g48B3GnSRvMywTDUFMcp1aak72bUvfttTRYU1M3PelUX4j+bPegp0aJIDslKiFZi2iRaRYqynLwOZgyqBoqIdu3gMwKFdGq0ynJWIzLdMFiiLMYRYRpSFTPH2iDdMYVAxNbcEpxaBJMFQwGBNxdmH8LZIdw4C2dsTWUuxYij3B1AEpXHIgq5MvgBkM0qTl3aJL7N051XjwznNMPBTJHRZTmN0EI8DKygrDlZV5cyjGmJpEHLp4yeYAoiz/J6TptG6Zlm4iaTn+7DMf5weeeg9tO0NNRb9Mk6zOKK0WmN4QNygYX32BK7PXOV/26ZcNKxLpoZS0WCeIFlh6xDBDiiFSbFCdPkvddDcsQ3A9yq1zTK/usKKpgjh8Sg5j6F0cbiofh8vPn89BPL47XiFEytLxod/+bX7sx3+MU6e2FiP9D2jK0YhQT6dITCnIDAeIc2gIaWFRGDT4hGWT57g0OROZ7nyLYAz4ENPKpBvnNwYJKelLPn5VWbC+toZzBb3emNH+mOms5uaNG0wnYwaDIZvD05RliatWGPZ6WDcEAq5I/raxSYJgznTergXOFRjjQIXSWFpn8dIQQkMMAZ9t+0QiGgsKB0Sfj2rC9FXzLIcxiHVJbVINjY/UbeDKtRvs7e3hnMFYR92m+QAxbs5t75K35sGm7rbWNVWVr17lnusC3MSgBnwZwSoxCqI29fpywhQXCDFPJ2doZrmCh6QrkzxNF9Oi8VDVn++PSADTCMW4Q2MNoS/EoQUCg6Jho5rObwydF+qtWZ/prJgnY+cCpevg0QztRSF4S4DUX/ELZEALJfZS9Z6OrcHZeIDTb0w3SS4QBDsRihGYNhemIUDTps+0c/euG7N8HlVzM/bO5/ahSO6J49sesCxbXV2lzGL2HR/8MA57uDK5LTFiIC+l0IizBmJL8COuXHqByxef5/H3fRczq9S+meuQeFEaccxWHqE/XKcZnefCjRc5G0ac73vWmWKqmp4UFG1BXRdMih6XbjVsve+dyEqJ27fYYJjVAeNKNs48wuT6S9S+RY2khiBHf/gOP/aVDBd1PPqmaShcxfVrN3jlwqtsbGwAJjkCpTd90+9xXIgIvaJMYmA+5s9EmpbVEDG2wBrD8gpXcmIPuXoPMQKGENMQkpOl5J6HvgxgrGV1ZYXNspeSY+PZ3Rtx/foNrl+/wf7uLjvbN5n2xvT7PSZrq6ytrrKyMqDXqygkWe5trqxioyLGUjiHc0XSesdm+V9P8JFbsx1m0/Rz09S0zQzVgDV9iH2iJoaWKwqsc/mzGFFjwRnauqWOyrRVbu7uc+XGNrN6his6Sl2SvrDWpt7Jcr0uzH9Oye/o6u9BVu5qoV2N2JlhGZWJsySEZwd+XsXGaFBRQlxY0BkUb7JxdLQMXIOVmKAZCUQjhAw7WIkMioat/iTdGJ4UZt5xbXuN0FjYdykJX6mYacXzZjVJGvQDFMpgfcpqv8aayKn18fwGYk0SHauDY5Z7BNEZgrdpuMkL0nbNTNBSGQxqACbjHjEqg16Ds3EOP82/vEEaw+CKsnI5YCYN9PIEde67iL3HafHl8xgP3bi/FhqqIQScc/T7faqqmif5GEJyIVqSgT2c2I9L7qnSsaAWwSYsr62TIH9zi2d/97d45O3vRgc9ZmroVQXGCVYt1ji8MUypqHqr9NfOMt55hZuzy5zvtRTlLj0MKhX1DF67cQs5/TTF1lOMPQxcGv1vQwBbUK2sUww2mU5v4lzEHYexcfBkv5nEfphN08E/In2stfz6r/8m73//+/NUb8YGO5z+PoY1hlNbp5mMxxgEjUk0q2lqYgwYt0rRr5JMr+SGqrKo3EmNzKjg23Z+jcyFwkxirlibRL1Qod/vMxiuUpQV3gcePX+ea9ducOXKFXZ2dpjdGLOzP+LqpddRjfSqivWNNdbX1zlz+jRnzpxmpepjrcNah+Sq2/sWX9fMZg2+9XhtaNuGmCEZlzWChv0+6xtrlM5y9epVBsMBrigIQfEBxDiwhja21F6Z1oHXLl3h1t6EJgJGEoc+GrzqHXttSgdRSq7aF+f/QUMyGEX7EW1lySkF8AYJgvZTFZu2gTmvvZv0jCxYMLV3NJ3Y1rxyj7QkWeHSBHqu5XQ5Zuhqnu5dYxJLfnf1HVydrHLhlTPIvqPYNdga3CRV982GwQ+USRD8mmVrbcyp/oTS+LkcAsBem1QkgzGLKjwIEhJeDrlGBIZVk+QF8memkz4O0c73VZV0TLzQ21H6lyfIrIGiSDTGGMC4g+yXu8SBxB71rng7PETJfTAYMBwmnQ5Yag6xuECXIYmu0dYlMn9oMjBFao4k7UCTOKwoigcCNy+9wOWXv8ipd69hy1UiqZFWmBJnLWIDrRYErWiKHuJ6jPY3MHGfVblGFZMxxPbuhMadZ+uxb0PKswysgf39dEEYk/D1Yojtr9POxvSKQOLypGGa4xgrb/SDuUythEQhPdx8VhU+/elneemlCzz11NuyIUWytwt30aZ+o1G4grWVFerJjKZugSlilMlsMu8jWCfJtFwNQrYSzNua9qmbW0juSl1Cm+9RXqo7gcH6KlXZoyxd6inEgLOG9bUVBv23ofEJzCTS1DU7Ozvs7u4ynU5pZjUvXvkyn/0Pn2Z1dYX3vve9OJfodt2A0mQyYW9vj/F4TF3XND3LcGWFJ9/2OO9855NsbqwlKl9omUz2uXb9Ct6HRDt1jja0KVkbR1RDHYVGhXETuXTtJtOmJSi0jcdrGo7zPiAu0JEFlvrk877T4ar9bitBEbEkD4aLqvqjIvJ24KeBU8AzwJ9V1eauJ9coUgVUErNIZrnaBdQq2ljqKLgiYGyc94NCTHi7zdCLkwguGVnv+4omujlF0muSKei5hMcPXU3PtExiSR2Tw9JmNeHGqQn1iqPecmgQZOIgpEqbPGHa7JdcnTmu2bV5E5X5tWWIbcbYo2SGC2gvYM80WJskCGxmyajKXG/GmjypmoeY2tYSg0Uag62F3s0Ge3mbTKsCbcDnRN2duizre2xR15EfiAehmLsMPz0Uyb1wjq2trXkjdRmC6eI4/rdzjhCS7nqv10smCfMnRDBNHh7JKV475UTFthM++5Hf4g88+l7c+gCVTMWzHtGI1TbjhoIYhy/XmQwtjZ8xrit6zXWkvkGtgcff+TRsnqZRi/GBJt/yO4/Mor+Cq1bZ95YqxszvPrh/96vKOryq6RqwTdsSvKdpGn7+53+R//w//08xJmCtI0pEggBUIvLppZd7B/B/BTY4xjf3uGjaljNbp5mNZ1y/cZ22bRiuDjl16gxR0tj/aDqj8o5Br0w01iSog5FAgaWNgXZWs7bWx8fIrK4za8ZRKGl8O5t1VM4l60PfQsaiq8KgVcnYt7TRM+wPsIDb2uLMqVPzVc1oNGI0GtG2np3tHZyzB4qFwlo21tYYZs32kY2srq2yubVBr0qeu86mwTEryvrKCliLczbJG2gaTqzrmqZV6qCYqs+laxd5/pUr7IwmDAZ9ev2S6aymCbC2tkbtQ4ZldH7ddgVflEUL1XR6RHmFexR8meO/BL4IrOWf/x8ky8yfFpH/nuR//A/vdo2JUVwRyNA6ZiaokaSiaDRNZ3qbRvklY/GSTbRtSvKd92hlU6KcxpKgQmHCPPGbjhdvPAOToJs6FrRqGbr0WX90bY86uPnrbE8HNN7OdeX3tofI2CKtS6sKo+Q6L+nJqHT3gMTCcYqW6eb19NkbDFzDalEz9iUXdrcIUeiV7UG+exZSi8ESM5xjWih2ZvjLV3FnT8OgD02TG6JJmmN+brqkvaQ3MxcMtMlgXnSZKnH3eCiSe6fY11VzBy5MOMDfPSqSvKpnOp0eZJtISHc7Sc0oUQFNAzAiShVqbl18ldde+DJPf/OZ9KFA08XnChotk1GHDVgU4yCaPnXjSIvxgJtdIVZ7TLiO07OIH2BCSCsO0ZTcxXL+sSfR8Q57Vy+hjB7Ycnn5dW+DsqJiy4IYAx/5yEd56qmn+ON//IM0dU2/3yMkJcVaVb8zHXaxJD3+nwP+Ikf45t45hP3RhNXhGiDsjnYZ7e0znc0Yrq9SVgWtbykqR51VLF2RJHsTtdFjxVD0qtthuKWktbg8FImpKlNJyV002S1bA0Gg9VOKUijKXkqQIQBJXmA4HM6doJyzc5mAGNN1lPRpJoltM+gzHA5YW11lMBhkamQgtJq0cSTSK3vM6praK9gexhbMJjX7kxZMweUr17lw8TpBE7WyKEusK1GTtlvFoJoM0pMWj5mTArq6/WDRc7BYOMy8EpHHgT9GEvb7a5J++YPA/yY/5Z8A/w33kNzp4JXNlugNdsdh60RnVQuxjEmfJZiUSF3MkgEHR/adiRl6E9po55K/hyOqWTLM1mRzB3PlyI4/D7BS1Wgp1MHig2V1a0xYNwn718Vq0Dc2YfZeEL9YAWkZsQPPcDhjo5wu6JlZhiBEg8saM5MmTai2rc0N4LTPw0uG3nVF6oBZGUJVooVDigL1nk43RkTSJB8kDvziZKWvGNG2zQ3UkBRwvU+PZ7TiuHgoknunt5GSkWY9kjv8wdLvQghz95v9/X16vd5Cq0WAbqEvmY42xyXBRNA44blPf4RHn34Xpr9JkGShpURqU2IMWKAUjzFCMOmiFCkYDFYo7YBoLdUpGJwyXHr9KsP+GlNfYmJKNlVZsVYNcG9/F6+/9Dzt9ihxqCUmVc/OKg9FSROMx+76G8Dju0R48IOemRs+8gu/8At893d/F+fPn6NtfaYdHogfAl5U1VfeVFNXDL5uGPQHWGfxwTOeTtjdG+FFWdtIja/Gd/Z7itrkdpTcmxpKV7A2WCX6/fkKDU2TqYsdTWyHdCMLxJiPTUzVTkoAgjqhnc3o9frz5B2iIgYGK0OqMg0WdaJm09mU6WRC3cyIMTkiVVImHvraasL3+xWFS/0cDZ7gW7xv8G2D9Pq0vsV7wZqkgT1rPE1IImFfeP5FLrx2kYhlsNKnrDq7uIji5zLYnWaSdvAM3Q1N5je26WT/QMV+oHpffGD+PvBfAav551PAjqp2s/vH2mIeji5JrmxMiVFobq1hZ9n42SYGi5YR9cnYW0tJipBLlW4MCxPsqIvkDNxmuzdn14jQqs2Mm/R8J5FoAlOfEu1aNaM0nlv1gFqUM8N9Bq6hzHIHs+BoouP6ZMjuuJ/Ez5oF5bSoPBtrEzZ7UzbKJDNcBze/ISV6ZYKVxlNHDEs3joy1r7weWb0wReoGWV1Bu+TuLBg7h2HEuZTUl1kzyxOprUKHRmRpc0JIaEQId8Ts70XP/Qngp4BzpNT4j1T1H4jIFvAvgKdImu5/SlVv5WrgHwA/AkyAv6Cqn7rb+6QL1cybMPPHDj9NF6QwkSQepar0ej1UlfF4TIyRsiypqgrJwyDGSGoCkeiUKLR+SFHN2L32Ya5eeJwn3/0jaHEeYkjqjSFkCQNLMAVkazhXGU5zhbNVzdrmo2w8fY7Tm2f4xV/6NZ595hW+6bv+CIPTTxMCTBWCdYSobJ1/gjNPvZdXr77MsFSiaWg1Iloi0SKMQVqUksWH+PaketzAw3HaNB00M5vVWOMoiiR2NhqN+cxnnuXs2T+cNIxup1b9aeCfL/18lG/uHU6pwUni9lox9HsDhoMVau+TAJeB1fVVpvUMtKQsC4KCj5oken2kdKnX4nMBYO3ig9FV8F2RoxpSr8poNpJO7BsrgjMGrKUVxceW0Cbz7rYNoIJRhxqw1qUGsBF89KhRisoh1lGGghCSZ+4Yh00+jgTf0qiioaZtanxbE0NL0zaAUpQlXqBu2tTXcSWXXr/MS6+8xvbuiKrqYYsKTIHGiCmK1IBWTSJ4GXJJ1d7B60KXlAOXz721B2ElH9p14JqqPiMiH7jjeTvudC75HrvT61gXiDHhzX41EJ2h2JcE0bgkz6sK6g2hDIQiJcYWS1V4es7PNdCNKG1uSs4TOXKgzGk1uToVEvKkaIJteq7FhMikLWmj4eY06b3PWkfM8E9nntFJ9XbDUYVb2E0k1CvdXDtnpr02icDNgmPcVkliIArTJlEqqzLtw2xaEoNBbpYU+0L/WoO7PkJ8SFOokhlyIkhZdJzsRYW+zPLrEr0xKc/l3EZ39rsJ8xCR3YNzEMtxL5W7J32QPyUiq8AzIvKrwF8Afl1V/46I/A3gbwB/HfhhkgPTu4DvJi3xvvtub3Kww398VboghQkHbgP5+VWVlvDT6ZTpdEq/358n/tuokkWgbaeYRvni73yM9zz9h+mvOKIraKOCBnzwCDFbqHUekYnvfOb0KVa04G2bAz7+0d/hmd/9MPv7jo986Jf49h/5M0SxRG2IBERhY/MMjz/5dl5+pqSJbVq+z9nK8Vju+xuN5abz4WPceXh20rOf/vSn+aEf+sFkSXdwWV8CPw78zfzQPfnmLieAU5trOOsIPhAFyqJkbXWNJrZsj3aZTKcU/ZIQPNYIPla03kMImBCwGIxJTWEfAmKSVk66wy9jyfm6idlwfJ4WUgfSCDhrEHHY0lK3NW1O7iEogqWNkdp7Cleyu7tLUSYNEdUkUGZNMu9uQkNoAqa3BmiGbpJWjYaGENr0nsbgfQsqFIWjbZNeu1hH0wS+/OLLbO+NCBiicbTayTV08gqp8i7KcsGC6aawu2aqpIIIoN/vH3vOAW7tzFaAHxeRHwF6JMz9HwAbIuJy9X5HW0xd8j3uv/NRLYqA9ynZ2bWW2DcwqnAziAUJuvEJpglDM4c1VGXOD09WexYn8QBj5rCPakSoY7oJxKXPRSGRoW0wFMQsezCpi2TQsfQaTWEZ1yVta3EuzlUjSxfS9zYSo+C9TeJi+Yaw1/aIKkx9wcy7hKtn2qO1kfVB4tPXtUODpX/N0Lup9F7bRS9eQU5tof0q70RErUnDTM7OsfSc8A7Cz9mXUTN5QI6q0FVh//hV/r2YdVwGLufvRyLyRdLS7YPAB/LT/gnwW6Tk/kHgpzRdVb8rIhty0JbvuPe5je3xRkNE5q45KysrB1778OsqSmtrnDHY1jO5cp1Xn32G933/eWq3gpQrVPV0fsC7UffCQmGEldJSGeGJs+fZff0FLnzpS6z3Hbd29tnaeJwr1y5w5vwTRGmSi5AKdd2yvnGKjTOPsnf9Swz6FkvutKUtPMhnvs/RJfeUOCIahVdffY26rhkOBxkSmscPA5/S7Jerx/vmHn6PeQJ46olHVSEJdUlS8+z1+6zENWbRM/M148kEH1rKsqDXegyCJ2mDD8oKENpMgzTGEGw4cPNSXYydp+coZJGoLEaRsF5rsUYo+yWzdsakntK2IS2jMUzqGmGSTTYUNR0smm7MJipNWzOrJ4gI68P1tBrUZMEoMaAxqTQWmb8YSFZ/hEDjlTZEvBqu3bzFl164QEAoqj4qlrpNAlzOdhx+g2rEuSJp4sBcWqODY3Spku/3B8e2pkSEWzvXLy71Uj4A/F9U9T8Rkf8f8CdJjJk/D/zre7iUUBW873BjcldV8SsRdWnVZJoEU6iAnzimNk+CGp0n+c4ou4mWJrjUQF2S/o0srPfq6CgkHkAtjSSteCPKoEgkn0ldJKgk602NJxVjKdGYehYxmCQepsy3P3nApsEmZyJFTv4+ywV3N5ui8PPqPUZhb9pLN4XGwcwyvKQMryQFULO2mvjsPqA2CcBJXHpTa5JJ9pw/mR83B5O8ukPV+QEmzVeQ3A++pjwFfBvwMeDcUsK+QoJtICX+15b+rMPx7prcD/98eFLzbtH9TccO6b7vJA2WX0dEqP2UEiiCRbTlUx/9FR573/spnvgG2uhYLwtixqgxgm9beiIUohS0PHrmNPs3L/HCF5/j9OYmr5TXeeqpx3jPd30H//OHPst7rKMabGE8CAW2rBiurHH6/BPcvPpCYubgM8av+U5tERZd9KNWHG/25hejZq64nUM4PrNnhsM+4eAx/jMsQTJyvG/usRGiErzH5gs25v0Y9AdsinJrvMv+ZETQwGQ6o3SOWBaUYui7Aop0M6obTwxddRWJJksXHOg/5GMVFlOtXRI0IhibpoXLXombOUxhk76HpmPS1J4QFGssG5ubqBFa39D6BghYm3S5XeWSrV5R5GnZJH8RNSCaPD4LZxEjND4SQ8NsMmbcwKwRdicTXnzpZS5fu8XpM1sU2iMEJcTUhDeZxaGwsFjs9lUWmGQa0FsabjoA2cqR/x4Tfx34aRH5vwP/gTu4rC2HKvjW4QqPMZrgMKuErZbQGsrrDjeRRAcW0CI5FMVewJQhc9xNMrkISd1xFtyc495h7qkdnvD1Jrp041eTBpGyzV5fGkpjWCtnGFFuMkgJ2Sd7vVAXiSVTRqSIi1qqzV32ImKqgCsD/cpTujCXEJ43eWOCSAZlS4iGaZOclmbjXpIqaAxuZNn6wj7mpYuwuY5uriV+e+sRtQs3MhEwJk0rd8m9o0Atn8zu8bJYHHeRLBIqt98IDsU9J3cRWQF+Fvirqrp3KPGqHOWrdefXmy/frbXHXoBvhCKomiYG52Yduam0rCTZJTVFKcoiG+kK0TeMd17lUx//JX7gyXcQiz7Gz1CxqDGE6CkETGwJ9ZjBINCOd/jERz6MqScY1+Opd76H93zH9/Hhz7zAjZt72Bde4Ru+6TTGlimxVD1W1tbZOvcYpujjdR8TI5Y0jRhEwNjE6mGRvJbdmo7D1Y87HgePY4JiqqpAJE2t7u3t8frrrzMY9Cg7uWCRIfAfkb1xc/xdOcI3904Rsu605As3agQBVxQM3ZBaPNN2iq8Dk+k0qe31+5iqIjqHD4FZ01BYCzHkJXFmAHH4ulgk9u79jDEYFj6yiVdvGW6sIWXJdDJjOm2YTmokWiDiVXnxwstJZEzTPEJZOVZXBwwGPYYrA1ZXh4i6vPoJ+NhCbCC0oC1KSiAxpGt7PJqwN/Hc2vdcuLTNF770JQqbvHMDoMbMK/YO6ukKk7ZtF7MbulwEAAidVHJd17n/IEd+Hboufou00kZVXwK+627n8raIQqht8jpd6pOJUdQpoUo3IltLkgtoBZ0ZolUoIiEYZm3Sflm210syIum1OjZNN2wUln4HaUVmSZW+I7Lqaowop1YmTKuC/WmFby3BaErAOX+KTasHKROTztpIUQQKGyhz5d5V602wGU6yRIU2JDGyRHs06NQhtaF33VCMAB+zw1JIVTmANalylwQTpuMXkdwYlbxSnFfk8eB1PU/gGbfv9ISOYkAsxz0ldxEpSIn9f1HVf5kfvtpVcyJyHujMJi8CTyz9+ZE43vLyvSyrN3RjuFN0ibCTmz02NAtDURKNEO0UdWO++JkP8c3f+QOcf/Lb0CLpO6skWQTxgcoJfjpj6AK/8gs/R9gfcXp1nc3TZ3nf93wrN73lY5/9Nzxy7p3sj1t2d2sGaxvMprOEn1nh3ONPsrJ5hno0Thi+duouDxqW6aCZrJoXAnU94yd/8if5K3/lL/P2J9+Wn6djEpNi6W/1z77R9wsxUriCGDw+eNSAsYZoAZ+w5dWVdZrmetLr10hhDP3sLuW9T6YUpjfH2Ofw3VJxo7nC0cwdTtE1sLoVXNbMx7K21mMwWGF/NEZkLzdhI7EA7wO9Xo9+v0evX9HrFQyGFYNBDxElauoPxNDJDXtiWxP8jBhqCC1RwxxS6K2s42+NGI32uXptj+dfeIXLl3c5c/40N7f3aIoCV5QUvT7WCKFtabyfd5S890tHVOcJqkvy3aSi6uLKuVtyvy8RBZlYYmURWXzWUuIMhFUh9gxy01LU4MaCaaBxBu2Bby1TSjpFx67h2WHLHTXywFtmKZGoBithnth7psWgbJVjNnTC6XJMq4Yv7Zxjb5YMPkIw1LOCWFtMFShLz0q/Zr03w2btmQT/pOvHx2TnN5otmqghJGkCSNdL8Aa3ZylGwunPeapbLdIGdHWIjMZo2yamTNdA7c5T0NRo7ap2QLpLt6vW04lMP3dLjVyti+3O/XK1f3vcC1tGSEu1L6rq31v61c+TMLq/w0Gs7udJrIqfJjVSd++Gt9+v6IaaptNkPt1RJI98LokhESkJRmjMBG+mxGabT/7Wr/ATf/LdxK0VTE7uIlCWBfV0j9neLT7xkU/xwmc+wROnz7ExWOPp97yf3rnH+Z9+6l+w+eiTrLl3cenqDa5cvsV7th6ltskYwhWWtc1TnDr/GBeuP8dKXzAxjdyn5faDjK6voXlFkyiHr7zyCv/0n/7P/J/+6l+9r+82CQW/eekG73rb27DG0U5bjLcMiwGhnqI7uzy2uclgcJX9/ZtMdnfY2ZtQr9TUZ4ZsbQ3QylHLHiZsYtXQtwXDso8zwrSesD/ao1+WnD3TpyPQWaMURnEWnAkUrjNCgclkQGjSJPLq2grDtfP4mLxcm2ysHdsWl3srhVEcEYkebWuCV2Lbov191EfacUsz9ZShYFCsE4zhxmiPWBjGTrkxs1yhzxd2bvK5l6/x6rUZTf80V0drRNmCeB3fTBj72VwzJ31ZkrZMLlQyLJM47+Q+w9LKyBa3Hf/cer5jAvhKQ2OHYUeMMJcAji5dY6GXcCRRkCCYqSGYgthLcsYmT3+23jIxBZU1i0SbNd+X6ZIJkwhzLnyHhXfCY0EMRhoqFU7396mspw4u2fEVJU0/MXWqwjMoWvqune9LVIHIPMHHPHma8m26CXldPDe2lv62UO4q5Y7H7jfJ33eOnxvweXYnN0iXMXc1Wd5gnuB1wZTp4gC+vtR0vYdzei+V+/cBfxb4rCwmF/8WKan/jIj8JeAV4E/l3/1bEg3yBRIV8i/ew3scG3OW7j3uU1e1d9xgYxZL+dteWxSkAaMUxmBiWm6/+oWP8sqX388T3/MfIyabRIRAGyOj0T5f/sKXeOXjv8TbeiN62vDYt38/o9Pv4Dd/+8MMy4Jv+6b38crOAB2s8eWXL9LUnvXSUdJCVVAMB2ydfYxXzQBHi+gMKxZvCpCCGNv5jnZQ0nLVesQy+8DPy1hrB02lqc7ENaeToFWTOOHG8NnPPsezn74rjP6GoipLfAvb2/tsbmzQ6w8xMfHBBz1LsTWgme2wMrRY08fYGdNZw3Q6w19vqX3Dxqk1hsM+hSq+adOwcYhUGYfs9XqUVXI1auoWlwsa8li4WkPUkEbIjUmepJJNXcTkJqWybFwXBSxpyd/BSWZJ6sIaQx1aQgw03tPEgARAfcaSoY4gRY9Lly/x7Asv8vyrl7lxc4y1jr6rCC2E6G8baTgwwJcx9mUa3OE+gywv9ZdfZ/GC9/WcHgiB2FpUI/1hi8vc785TNQr4TcVHobiVKtzqlsAtR72p+A3B9JLd4TQYZk0xn/xUFdpoKGyiPAJ4dXM+vCNRLdFIUIOVJAJWECgkDR2trNUENdTRzb+amFLeQjNe8NHSRIuPNg9epRuLD5a2tRijlIUndB87JcscWDa/HOhdbyiu7CJNixY5pRqTBmnaFrxPHsDJlGCe2NO/zPVrDh7bpUR+eOU1h22+QlhGVT8Mx2IFP3TE8xX4L+72um8oZP4/7rRDXTIbDAY0TUPTNHNlye73eRvz8lbB+Oz8IxDL9AG2Ez7+O7/C+W/5Hkx/DUzG8DF88flX+NSnv0h7K7C20vJN79viHe99H7/98Y+xe+kVfuKH/xg/+2ufZL/eYPPcU5yewUuvvMb7334OjQFjetiy4tyjT9DvrdE216mImd1hSUJnets2v5HQQzeG7nU6DLc7ij7ErG0j1I3nX/+rn3/D73WnKKseg95pdm9NqWzDyqkhVSk04z2sjQxWhZuzXaoiaWOLLcBWjCYto/2aqVemoWJjo8+pXkw32DYSYsTHQFU4XJlkC2aNJ/pA6EgIqkSS3oc1gSJavPEYR9JIz8ldxcy1vEVCttyziAY0JFpmjOm9TdewtwWtn+CbiA+abgPimKmhVaF1FdPouXFtmy88/zKf+9IrXL65R8DS61UYDKFuklJmcei6ZMFqOuq83olk8EDgl+PCKQx90jsPFlkBZwONd8TOnaibN4BEh6zAtCABbANxknBsb0irEqAxkSYs4BgfDRPf2e4lF6RWLEGEIrqkIpkNt4s8SVpIwEjELiV+I+nx1vg87Wrw0S4NRC2OXSTdWKKC7Sib5I+lQmwsdrug2hF6N6e43WlqjC5X5svnr2PDxLzaMmYOw0g8xJRZ/puv8Hw+FBOq9ytUNTnekxpZSQlRDjQj7zbh2YltvX7hZT794d/ke37wh9FiiJcCFUtLj2r1EUoL9eSLPHL+CT75oV/lFz/0UT74h/8A9fQGe3s3GNWGHX+NU2cfIbQ1N/ZGrJ1aw7qSshpw/rHHGW6dYXzxRqLOScaHOXpAaXkf7rT/h+Mw7nqYctr1Jqy1vHbx0hs42ncPYy1nzrydK6+/wv5+YHXQUA4LRAIaJhgb6fdr6nqKWKHXN8nA2oDfnzGtob2Zmq3F6YAxia+eKnOTb4ZJtrj1s6TBLoLLmLQKFGmlnUgmKojLxyQ3sFQksVIyf94IWDHEkCrrkJumiVmTZCgwQtt4gtdUPRYlakua1jBDmVJwZW+fTz/3Jb702qtc3x7R+kjRy961rU83i26VccR5PIoafCdywVc1sQP9suHtj1/n5S+cx9QGTkGv8EzrkrZxKS/ZiNYG8UIYRMIAih1DMRKKkeD2hXZNaGNePbmkQbMrUNjAsGpog+XaZHUuM2BlYXVnRTE4vFqcBE6ZMT3TUpmWIvcBLJFR7FGJp/M92Q8V+yGJlM2Cw0c7n4412URkUpdJtCyzY3wwc+68GTnOfzTSu15TfOkitA1sbaJlgdTNASx9HvOmuMwrb1lqlHaJfN5c7f5muYJ/g/HwJ/eueXQP0VXuHdugKAq89zjn5kn/8POXo8M7vU/46id+/d/x9qeeZuuJ99LbfJQboz02zzzBN33nKpdfe4FvHD7Kx373Q/RPn+J7v+lphjLm9Zc+x7uefpxq8gjXmz4Xt2+xurXJdPcKHqEwBbZUqsEaW+ceZe/KSwQjCB7JU3d3Yg7d9XAdUc3dS3J3zjGZTu9+kN9AqMLm6bczHQfq8S129mYQayrbUlDjw5SqapmMd7CUWFdR9QqGDGnp4ceBycwwnnmGMqEqHf1+hZJMLEQ8Ec1ep0pVOmzuW2hO3CrgSP8KQhEVNWkqNd1I07HodE/ECIXJLkAJB8mwXmI2KJp0sdqAj4KPgFgClr02Mm4io8bz+Zcv8skvvMTOdI8mKq4qKcoSUGJsEAOFE9ojILZlKA6Odt46HG+EVXY/QlAKE9BBIFpoaseO9ufc91Ssdk0/6JQT1EEsyTBWMt2wI4s6JVaRCLRFysJNlifoFCRFNMlVRIeTSB1c0n3JcEqrFquRQgMtCVpbxhxsxj/MkuBXB/O0oWOKaWLEZLaMiOZmbEloDLJXUG4bejemFNuTRIkSs6jOu2Qsx5hWLp+jkJ+/fHpz9T/H3r+CCv6hSu5HLU+X8fZ7iQ5fhpSwOoPto+iWy4mue/+ObRNjwE93+cS//w1+4CcepVjZYnd3F1eUPPX2d7K3t82wV/Ojf+KP8/zrr0DhKOOM8c1L3JqMKVa3OLt1jnLzLNevXKa3sZoSaUzen6asOP/kO3nx88/QaqQ0ksSigp8r/C1v571WZkfx4ZdXL5onUzt66HJfQu4wEPFmIoSIG5xh61zk5rULjPav0rZjTq2BqxQfZhSmxZo2sUM0GWmXZY+BWnxU6hCY1pEb21fp9UpW/ZBImjCKJGpa6RyFTdW3FbAqdKLKgfQZsuTPnPcYq0mm1moSusqzwgv7sqTrLd0yXJNpiPpI0ACitEFpA9StEjQybT039xtGM2V7OuWTX3iRC1d3kEKpBiWuLEEMPgYQKFwapPHHwCxHQWvL8WbmQO5nKIIzkaeevM64Kbnx8hY6MfgzDa5Kw2HaaaJ7ycbT4AcR3xfcRLDT5KbUvyb4gdCuGPww0hjFO4v3JsF3VcLhgwo2N1s7c21nAt4k71Ungdo4Wpu0fnqmxUikjS612jNEA6miDyo00VEHx7QtUJJaZd06msZlGEbwtUO2C6qRYe0lZXCjpfjcBXQ6xWxuJIPrGJE2J2KXJDLmFXzXZD3E4FNVJMtipCS/dGPIiV+N3Fna9ythyzyMcfgmcNTvIE0slmXJZDKZV/Ddcw4veZd/TuJUCn7Caxe+zIUXvsg7Bhus9h3XRreoa2Fga25efZn+N7+PH/mxn+C5F19k9PpzlNZw89WX0LPnGAy2WFtdYfjUo4TRTer9PUa3IlQVhS144ul343qr1OMpzib5087FfXm7jtreOx2X48Jkk4sO072tor/PNMwQlZF39DbP0/M142bE3nSPXq30ewYiSEjUwxBy4owJNy2dY9C3tEFBWiaTlrpt85Rnqpj7PlIUln5VMehV+DakroURrM1sGavp+5CToTY4YzE2YoLNbjh5cjEmmqghTZ1qV/mpZBemQPAtUSNNEOoWRtOWqYdRbbi+1zDVgu2J5/MXLhJEqGxBNCUhSppkJVCIwzjQqIjKgc/nclKfn5c7XOd3uwk8qOhEtCrrE2XYKbFQyJOb3WJbTb6zmvR9N4OgNkn/RgvRpaainYE6Icws0RmaTufF6LyCtyYVfDb3SUy08+RemTAXE5vDMhKTJo1mTZqMr4elcrnblw5+aXyiTmqUpPNeW6zPfP2gGefL/r3Lol/L5+kYC7z5uZxL/B44qIufl2Ea+3VQud/v6Crxoiio6/pA9X7UINByE8sYiOrZ27nG1Suv8ti73sfm1jlmY0c73WEQtzm/Lrz22suU55/i277vh9j+4gqvPPcFBurZG21T0lA3I3qDPtXmkFgJ4/2GiY84a1ndOMWpc4/y+vPXqKzQs0mW+Bhj9a84rLVzFlGX3DsNfdWFifH9jCvTlvVhgaydYhAepxnBNN5idzZhYAoGtk+vVySdea8QsqmxiVTOMuwnWmAoNhiP9xlNpvgY8T5QDwY4Z5lWNW07xJXJyNoKWJss6py1SWLCZZ57ELyNGBeT0XZIlMOoCzVFSBTaNCmZdNODCnUItE1L2zY0Ioxr5caoYa/2jBrLXmtwa8n4JZgelAZ1hqCKRo/RiEWzDrummxnVbZDKckP1qNXl8vO+2lh7F0EN+03FSlnTcy0b5/eoW8d0p0ccFVBFxEUYeNBUxROTGxcqhCr1REIf2nVwI6F3U3EzwbSO6JRYOmKp7K84xCmmTBOpKeFH9ovEky9skgpooqNnW3q2pZBI36bKParJakN64GefefS1d0yagqZxtI1LejitQWpDudv1eNJXvWYwHoarq4l5FWNS37pTGAMhpPPYuSjl79Wkns88IiRs8Ygm6xuMhyO56+KfN7Ird8MZl6sbay11XdPr9eaPHa5cu9cTEcSSGrI28PyXPsO3f+8fYlA5Hn3kNK9ceIHv/vZ38Y1rj3Dr4pe4ePkS1fpZvuE938hKWfL5l7a5unuDpPoeCL7GGM/62gqrA8ceiZ4X9lve/q738foLn0XxiII1bj7Ydty+HUeJPLzfhx8zxhyY1l1+rVS13mXw6w2GGMM137I7atgYlKw+8jaqtR77117g6s6EU8M+g7V1gk4R11KaiA1gAuAj0UzxRjGFMjzzGFeuXmF7+yb7k1liPATFOqGcOKazho31pPfijMGatKS3LlBYh/EJlqrwuKi4vFpOrjzmQBL1uREfIyiGiMEjtGqYNpG2VWZYRrXn1jRwq1bGsaAtVjh3+nGGvQFm8xyxmRIloCQRNCsB0UDbtjTZ7Ehsb95ROtxIPaoqvxsh4KsZ3ZYYUaoiqSNOAYlLon4Cc9kEJVNwSdOVJj+cm9smQPQgnqSKaRXxQEg9E41CNOn1IWnSWFFaFtW3F0M0hihKq4YCaNUQ1VCYADmxs7TtwHxQSYMkvaGY3ld8wt1jyTzJx7Q8TIyr5ViGT47rkywl9jQk8ODgtIciuSch3oXa450y/Bu5oLvqx1qbJW9ntG1LVVV474+s3hd/m/A84SrNjTEvfeJDPHnm3Xg3RNYcF/eu8kf/0PeztVEyuXUZu/tldtae5tz7v4knv3SBz/7rTydWxOoA7xS0TQJDDDG9XTQE1tce4bHz76LfK7BxBz8ThtUpGtm/402rM5E4vBI5jk2z/Li1di6d2z2WqvglStZ9iuuvfvHG//evf98YuHFfX/jhitPcYf98/hof++fXj/1NF7P70+d+8r68So7J81du/O5//He/Fs7tHc/PQxJfyTYee14fiuS+HHqYCngo4bzR5uLy851zzGYziqK4jYGw/NxuihNN1YJvA5/8+O/wrb//x6hOn+bs6dN87t/9Bh/tG/7YH/oWmq1TXN7d4cbuDdRM+IN/4P08+5nXePG5z3DqW89QrKwlyVkjQEsILUYckcgTTz3F+sYW45vbOGdofI24xQ3uqCR/HFXuTsfhTr97UCPqqnpGRD6pWY3w6zG+3vfvuPhaObe/l7fx/tIjvkpxOLndKZb54R0lsjP0uFOIpMlUUUv0ys6ta3z8Y7+OxDGDouSRlRVeePaz/Nov/QbV8AxnHn8n0RbsbF/l6qXn+d7v/0bi5Cq6e5OwV1NPhSYAtibNRVpUlOH6Oo+9/RtoYwnWgYkHEu5xDJ973f+77eOd3uskTuIkvnbjoUzuRyWvrsl02Pz3XqPjvXd6M7PZ7EjudxfJnMNiqJBgccbzqY/9KqPt16kQTq05DPtcvnyB3/jQh1Atedvj72WlOktoLEXV8N4nNyj3r+FmNZP9hkkT8HGGMw6DQU2g1sC5J96NmlWCWCj8vGo/Lvne6/4v/767mR3VZ7gT++gkTuIkvjbjoUzuR4VqkkI9DEfcreo8fIMwxlCW5QFGwvLz5lRIyVS1WGClILZjJuNLPPPx38SGQHAR6StiGnauvc4zH/4o9U7Lma13sbbyNnyY8rbTFaNXP0vV7iAi7OzPmEwbjBZY4/DR442wee4peuuP4jFESU4+3T51TdCub/BGq+xuv0IIc8OLzoKtbdt5gu+cmR5A/KMH8aIPUXy979+d4mth33/PbuPXTHK/H7Gsi16WJd77NI16BI4vKAaDUGJxGBqIu3zyd3+LaxcvsfbYezj71PtxtmBIg795kU9/5EPs3Nrj7CNPsb66xWz7Ik+dily58ClcEZL+SC20s8QKUKt4YLhxltW1c9Q+0MT6rvO4x9E5jwrVpHG/LCDWTfF2x6T7uqtM8psITdLOX7fx9b5/d4qvhX3/vbyNv6eSO6Rk1mHvXTV7GJ7oQowgOARH4QSNE/ZuXeHzn/kMDN7Bt3zPn+Btj7+HQWjZsFNMc4NPfuzX2dnfZnPzLD3jGZpdxjsvozpluLpBaEv2d2vquknenFUJrs9w8xG8QuNr7pTdlyv6u1XwXXO4S+4dt30Z2nrQyf0kTuIk3pqQhwFnFZER8KW3ejveZHwtUK2Oi6O2/UlVPfOVvrCI/FGSAbMF/kdV/Ttf6Wu+1SEiF4ARSdXAq+p3isgW8C+Ap0gOVX9KVW+9Vdv41YiH8dyKyBPAT5HsPhX4R6r6Dx7G8yMiFvgkcFFVf1RE3k7ysD0FPAP8WdU8CPGVvM9DktwferrScXGy7Ue+rgW+TLLqex34BPBnVPUL9/u9vpqRk/t3quqNpcf+LrCtqn9HRP4GsKmqf/2t2sYHHQ/ruZXkBndeVT8lIqukJPkTwF/gITs/IvLXgO8E1nJy/xngX6rqT4vIfw98RlX/4Vf6Pr/nYJmT+KrEdwEvqOpLuQL5aeCDb/E2Paj4IPBP8vf/hJRQvp7joTy3qnpZVT+Vvx8BXwQe4yE7PyLyOPDHgP8x/yzADwL/a37KfdvGk+R+Eg8iHgNeW/r59fzY13oo8Csi8owkg3eAc7qwkbxCggW+nuOhP7ci8hTwbcDHePjOz98H/is6j8QExeyoakdVu2/H82GZUH3oO9p3iJNt/70T36+qF0XkLPCrIvLc8i9VVaUTiD+JtyREZAX4WeCvqureIaG1t/T8iMiPAtdU9RkR+cCDfr+HIrl/LdCVjouTbT8yLgJPLP38eH7sazpU9WL+95qI/BwJorgqIudV9XLGfa+9pRv54OOhPbciUpAS+/+iqv8yP/wwnZ/vA35cRH4E6AFrpMb0hoi4XL3ft+N5AsucxIOITwDvEpG3i0gJ/Gng/hq0fpVDRIa5UYeIDIE/AnyOtF9/Pj/tzwP/+q3Zwq9aPJTnNmPX/xj4oqr+vaVfPTTnR1X/pqo+rqpPkY7bb6jqfwL8JvAn89Pu2za+5cldRP6oiHxJRF7I3eyHKkTkJ0Xkmoh8bumxLRH5VRF5Pv+7mR8XEfn/5H15VkS+/a3b8kQPE5HfFJEviMjnReS//Gpsf65A/jLwy6TG1s+o6ufv1369RXEO+LCIfAb4OPBvVPWXgL8D/Eci8jzwh/PPX7fxEJ/b7wP+LPCDIvLp/PUjfG2cn78O/DUReYGEwf/j+/GibykV8mGlVS2HiPxBYB/4KVV9f37sSPpbvpj+CvAjwHcD/0BVv/st3PY3RA972Lb/JE7iJN58vNWV+0NJq1oOVf1tYPvQw8fRqz5Iugmoqv4uCUs7/1XZ0CPiTdDDHqrtP4mTOIk3H291cn/oaVXHxHH0qod2f+6RHvbQbv9JnMRJvLF4q5P713yods4eD28cpoct/+5rYftP4iRO4o3HW53cH1pa1V3iagdXHKJXPXT7cyd6WP79Q739J3ESJ/Hm4q1O7g8lreoe4jh61c8Dfy6zTn4/sLsEf3zV403Qwx6q7T+JkziJNx9vuXBYZmj8fZLC3E+q6t9+SzfoUIjIPwc+QFJQvAr818C/An4GeBvwCklpbjsn0/8O+KPABPiLqvrJt2CzARCR7wf+PfBZFuPOf4uEuz/0238SJ3ESbz7e8uR+EidxEidxEvc/3mpY5iRO4iRO4iQeQJwk95M4iZM4ia/DOEnuJ3ESJ3ESX4dxktxP4iRO4iS+DuMkuZ/ESZzESXwdxklyP4mTOImT+DqMk+R+EidxEifxdRgnyf0kTuIkTuLrMP7/oBDFEnXZ8asAAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}}],"source":["#Comparison on Cagnol test image for test\n","cagnol = plt.imread(\"cagnol.jpg\")\n","cagnolFace = selectFace(cagnol)\n","cagnolFaceForInput = normAndResize(cagnolFace, input_shape)\n","\n","plt.subplot(131)\n","plt.title(\"Originale\")\n","afficher(cagnol)\n","\n","plt.subplot(132)\n","plt.title(\"Visage trouvé\")\n","afficher(cagnolFace)\n","\n","plt.subplot(133)\n","plt.title(\"Resize, gray\")\n","afficher(cagnolFaceForInput)\n"]},{"cell_type":"code","metadata":{"id":"oSf4medy0fgr","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1616664903891,"user_tz":-60,"elapsed":1573,"user":{"displayName":"Boulet Timothé","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GiayvINTDL_0Iuf52iuumxhg4psHVMYz59ow2vJ=s64","userId":"06174172927805952140"}},"outputId":"c6a7c032-e6b9-4057-cb3e-b5a5e82b3e27"},"source":["#Images et labels\n","print('X:', X.shape)\n","print('Y:', Y.shape)"],"execution_count":30,"outputs":[{"output_type":"stream","name":"stdout","text":["X: (35887, 48, 48, 1)\nY: (35887, 7)\n"]}]},{"cell_type":"code","metadata":{"cellView":"form","id":"n4cvkzgQpVL7","executionInfo":{"status":"ok","timestamp":1616664903893,"user_tz":-60,"elapsed":1567,"user":{"displayName":"Boulet Timothé","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GiayvINTDL_0Iuf52iuumxhg4psHVMYz59ow2vJ=s64","userId":"06174172927805952140"}}},"source":["#@title Modèle\n","class MyModel(keras.Model):\n","\n","    def __init__(self, input_shape):\n","        super(MyModel, self).__init__()\n","        self.conv2D1 = keras.layers.Conv2D(32, kernel_size = (3, 3), activation = 'relu', input_shape = input_shape)\n","        self.conv2D2 = keras.layers.Conv2D(64, kernel_size = (3, 3), activation = 'relu')\n","        self.conv2D3 = keras.layers.Conv2D(128, kernel_size = (3, 3), activation = 'relu')\n","        self.maxPooling = keras.layers.MaxPooling2D(pool_size = 2)\n","        self.flatten = keras.layers.Flatten()\n","        self.Dense1 = keras.layers.Dense(64, activation = 'relu')\n","        self.Dense2 = keras.layers.Dense(Na, activation = 'softmax')\n","\n","\n","    def call(self, x):\n","        y = self.conv2D1(x)\n","        y = self.maxPooling(y)\n","        y = self.conv2D2(y)\n","        y = self.maxPooling(y)\n","        y = self.conv2D3(y)\n","        y = self.maxPooling(y)\n","        y = self.flatten(y)\n","        y = self.Dense1(y)\n","        y = self.Dense2(y)\n","        return y\n","    \n","    def predir(self, monImage):\n","        return self.predict(np.array([monImage]))[0,:]\n","\n","    def compile_o(self):\n","        self.compile(optimizer = 'adam', loss=losses.categorical_crossentropy, metrics = ['accuracy'])\n","\n","myModel = MyModel(input_shape)\n","myModel.compile_o()"],"execution_count":22,"outputs":[]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"AcIJ3LVYpVSK","executionInfo":{"status":"ok","timestamp":1616664903894,"user_tz":-60,"elapsed":1562,"user":{"displayName":"Boulet Timothé","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GiayvINTDL_0Iuf52iuumxhg4psHVMYz59ow2vJ=s64","userId":"06174172927805952140"}},"outputId":"155e177e-7b01-4178-ea36-836325f55312"},"source":["theImage = X[1]\n","afficher(theImage)\n","print(predir(myModel, theImage))\n","print(predir(myModel, cagnolFaceForInput))"],"execution_count":43,"outputs":[{"output_type":"stream","name":"stdout","text":["[0.12694494 0.00185027 0.16615286 0.2684518  0.18009424 0.07906247\n 0.17744346]\n[0.05335368 0.00411757 0.06580067 0.1750659  0.11889929 0.00182784\n 0.58093494]\n"]},{"output_type":"display_data","data":{"text/plain":"<Figure size 432x288 with 1 Axes>","image/svg+xml":"<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"250.052344pt\" version=\"1.1\" viewBox=\"0 0 251.565 250.052344\" width=\"251.565pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <metadata>\n  <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n   <cc:Work>\n    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n    <dc:date>2021-04-02T20:16:02.172591</dc:date>\n    <dc:format>image/svg+xml</dc:format>\n    <dc:creator>\n     <cc:Agent>\n      <dc:title>Matplotlib v3.3.4, https://matplotlib.org/</dc:title>\n     </cc:Agent>\n    </dc:creator>\n   </cc:Work>\n  </rdf:RDF>\n </metadata>\n <defs>\n  <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\n </defs>\n <g id=\"figure_1\">\n  <g id=\"patch_1\">\n   <path d=\"M 0 250.052344 \nL 251.565 250.052344 \nL 251.565 0 \nL 0 0 \nz\n\" style=\"fill:none;\"/>\n  </g>\n  <g id=\"axes_1\">\n   <g id=\"patch_2\">\n    <path d=\"M 26.925 226.174219 \nL 244.365 226.174219 \nL 244.365 8.734219 \nL 26.925 8.734219 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pabcf64db41)\">\n    <image height=\"218\" id=\"image8251134993\" transform=\"scale(1 -1)translate(0 -218)\" width=\"218\" x=\"26.925\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAANoAAADaCAYAAADAHVzbAAAlDElEQVR4nO2dSaxk53Xfv7pzzVVv7OH19Lqb3c1uspsUTYkSI8u0E9mIJyCCkQRCEssBvAkCBMgqqwBZJetsnE0CB3DiwF7ETmQ4omXLFMNJEkWR7G6SzR7e635jvZqnO1bW5/yP/BhY+Lg5v913ceoO371f3Xvm0n+6+/LCMNKFS8ZOCUTMU8EeGf/2974FMvUPAzL+1W9+H2TORx0y/oPtF0Fm+6BNxq3mBGQms5CMk8MKyHhDB7blZXptRSMDmdLIo+McRIx7ckbGS8I59sdlMl5rjkGmWJTIeJZ6IHNt+QD3ndB9Bw5eR3deJeOjCc7RdEznsRj5IFOq0AnwohRk8h2679J6DDKrS0MyPuw2cD9TvH6vS7ctPHw+fXav00YBMk5C57p1F0TMl//lO2T8SuM2yDxKVumxSzj3+OQpivIzRxeaolhAF5qiWEAXmqJYwJMUN7dEFccz/hHI/M4b/5SMa7cDkHnlH79Nxl+pfwwy3xncIOPBLAKZpRYaFjhpzBVkVH7TJirNxmfb5vjf44+o0swNKMYY4wrHO+4cDwY1kDnZpgaCrMDz2Z0KRgMm1wrxfEYxvUdxjIaGFpvrc+d6uJ+U3iNuwDHGmIcpNaiFUQIyRwNqnClSvNZSiJanUsHuNUgYkzTp9TspniOndx23/WbrR2T8abIGMrmh+647aBzSN5qiWEAXmqJYQBeaolgAP9KNMY6h37f//LvojK59TB2Zv/HN10DmWnmHjNMFHu7+eIWMqyF+y8cZ/V3Zx2/gRUG/k0sJ/ocsKsL3vk+v1e2FIONkTEdboFZQr8zJOM3x+Ettqv/0h+gwnrNrjTzUofuCHht49Nru7K2DTDqn+3Z91OMaEXUsb1T6INOJqW65NWqDDHd0OzV0WKdjptcLf/uN1hS2jfiGHtoHSkv0eJnkeM/pfb118z7IVBy6n1w4yYpDn9l8gTL6RlMUC+hCUxQL6EJTFAvoQlMUC3hn/S5s/J3/S53R9buoSH71H/6QjH0hpP28f0jG3xtfA5maR5XNw0UVZJYrzIgwL4PMghkf3BgdlIs2nmPBosO9Kf7OpYH5pnBRpjfA8+a0hYh+znBKDR3t6gxlRmhEKTnUsJEzh7ExOEfZDI1T/Sqd27iJMvOcbts7aoJMtErPO0lwP6WAnnNJyBLxXLxnXkANRGmI+64y40upPgeZkBmQ/snJN0BmVND7EQgBHvOCro/C4NzrG01RLKALTVEsoAtNUSzg/asPfgs2nvlv9Jt3/7fBRWguVfbJ+HK4BzJ/MniejP/sv34ZZBpb9Du5JOg/D55hDuML+L1tmPOxCPF7fyFk6xrmjA5RZYWM6jwS9L+tMpPB4x/2mWM1QodxxmSmHupj/FqNMcY49HjuGPUE06L6hVNDx7/n0nPqJXj8RwPqoBb89yZlOlkhnLPn04lNp2gLqAZ4jiOWqS5FFU8GVKbZRv24FlI9bphjIIAUdH8cUkUCfaMpigV0oSmKBXShKYoFdKEpigU859sYeT1vU2Xuq+fugcyXK5+Q8X/c+0WQ2fk3l8j45F+hQ1DUpBmNP6aKdfK1myDz8Dfpf8aCZ04bY5yJYCBgBAP8HddtZ2uo2EcHdNtCMOqYEiuBVhPOkZVAKwKUKdBmYLIKlctrQk28jJ8j/s8eHdHIfMkRv2A2nIWQYe2zEnQLD2XSPWZoqQll2gTDAs9mF5On2e9CH/fdDKhRbTfFtXDapxnmPLPlp50jyBwroSjK3xpdaIpiAV1oimIBr/cMfnNuvEq/Od/4w+dAZvfXaSDpzu9fAJnlv6Q6mVNB5+ciZ7pEIXzvMqXAf/WHINK69BIZ915AR6cRMl9dphMJIqbcoee4uC/oekxP8CfCtzxTE0qCfpr7zDkfCrpNFbfFLRYwXBHKnzMnvqj/Vdm1Vv//HbbGGJOxUubep+gMDllWvDmFWdi1ALc9TpguJTwyJebA9xy8H+2QZm9PC8zUPsqpzlp1sAJAyoKsp4WQpY+nqCjKzxpdaIpiAV1oimIBXWiKYgHvd3/+u7Dx90qvkPGlP8CSX9m362S81v0UZBbM+FEK0NO6GFPlEowjxphSwJRUwWDSfEiV9h62WTNFWTJQUMOGaAzZpdfvj1Bp9gZUaXcPsJQ2Z1HFTPGiSecsjzDjIK3htmBEr4MbVYwxhrW9E53q8yV6j+JlPFbWoPfIHeOkeRO6rbKL92zGKuJ5Ht77h90l2MZLh7sNNHzxbG3JGDLJ6H3kmdLGGLOftsi46R6fJa/90RTlc0IXmqJYQBeaoljA2wgwpfjf/dIfkfFbX9wEmT/9CQ3svfDfsRJScEQrIZXmQn/oLVo23MzRQenUWXuj/PgWSc4QdYuFKwXx0nHcFvSWNapLVT/EbPJ8h2ac544Q6cr0T6eGAbvOgDo7HUFnDTy8tkqbtnJahII+7FMlrfCF/1k2RZIeNz5Dnc+TU1KrKxbUO8S5771Idaslofx5nOJ1OKyUeaWKGfc80NkVdLR5Tvc9y/FY3InNS4RLqMNaUT4ndKEpigV0oSmKBXShKYoFvJR7MQ32d/r5xkcg88rfuUPG//7Vb4JMtE0tDaUxlrcuZnSbu7oCMqZMle+FYGjo3GD9uBIhM3cuRMLXF3/j2BhjCp/tO8PeY8Fai4wlR3OwzXqBS0YdjznQxxgssJjiPC5GYzqOUWlfMEe/4x6fcQ7p1MaY5lusX/bTF0Emq1ODQFoX+pON6Bz1AzQONep4rWGDOo2TDOc6YhnVUp/tzVqHjHmfM2PQiS05o6W+fxx9oymKBXShKYoFdKEpigXEj0uutx1mdZCJHOpsPPo1/JZuv0fXcXGEznFn8xwZZ0tC1SVWran3FAbjTjeoLuGN8Js8GAg6GqtE5Z9AnShlKtnWCmaKe6wfczAEEeNdP03GUmUoJ6Xnkwnlx6WiS+VDev1RDx3d4T69NifGYNy8QfVhSdeMWeBx7zLqenCOUuJ8jepEko8/zQU9km1LhRZVUJkKfcigtx2l+Oy1fGZDECZ/Whyv6+obTVEsoAtNUSygC01RLKALTVEs4LVcVP6382UyDh1Umu/NqYXgG1ffBZlX/8MVMp597xbIVHdYH2PBhzs5Sf8PxmcFIRaZXxIclBlWPAPCEK91ozkg49kyOl/nzGm6t4Plpf1D+rtc6I/GT3vho1HDneH/44glWCyW8HeOSw02+RCV/xIrAbcoC/sJqBGjXEFH77jPDFaJ8J/Oe9r1MHM9E0p51yssm12IzA9Ytnbo4n4yZvQLeT1AY4zLSoBLAR7zhX+sjL7RFMUCutAUxQK60BTFArrQFMUCXiIobryk1uvDyyCzPaHK/q3WY5DZbNFo9Xe/gBEd44vUZV9Kce0vuIFCaDxeYk2ypN5j0Qx/F3bp8eLTaOh4PKBlGp5e3QeZtXBExm8WeB0dj0bYOB1U/gtWyo33NPtpFCGLDCmjUadZpVEOsVC2jkdirNSwvBqPqEiFa80yuq0sGJn6h6xEhXCp0u/KvtBX4RiWQjT6caQ+Z75D74dkPOT0DUYO6RtNUSygC01RLKALTVEs4EllkHnG6Js750HmQptG4u/GWG7u0ZDqcckReoy9FisJLjia85jpkYKOtvDo9/UiQCdmGuPvmrQVtxlU0Ilrnu6TYT9GXfNoTn+XZqj7+hF1iKbLglIyPz4SPK8KDnu2ad7DuXaYY3e5hvrG2TotZX4yGoDMJ6M1Mn4ywnvvuszRK0Xhc31c0Ef7nRpsG4Z0/itVzCavhvS5GmcYvl/3aZm6mov7CVlGdd3BLBVu55DWlL7RFMUCutAUxQK60BTFArrQFMUCntT8+v/0qYN6uI8K6ZVztNzcR0MswdYfM8edVOqdGT94XytjsPH3wj++9n5JqLOf1fF3SZ0qso1P8XeD81SRHoRoaOAp7pLyz3vDL2aCwaRHt0nlFyYXMMqcG5UadTR0XFs+IOOqh8p/UlBD2H6MZSz2JnTbYITGoXRCDQJuXygJN2IN7ss497knzKNH72MmGJ5GQv17zkalT8ZND+esYKUXpdJyvNa+JKNvNEWxgC40RbGALjRFsYC3nWKP4DeYg9ob4Dcn7yW1P0U9Dpymgt7E9RYxstThpawFHY3/TChvVgjZwvEy67V8IJQSv0d1kL0VDAYuMSd6dCDoX0y1EuJlDU9ml0rLeX3cd8b6ePWE4Oz3md6YpHhfl+vH92g+7FIdrRCc7P4B09GEYIFU0Jk5C0eYABawHE/wfvAeao6wH/4Mc33MGGOaLIiYZ1MbIzuo4XyOlVAU5W+NLjRFsYAuNEWxgC40RbGA91edK7Bx1KWR6E4g9AxjimOnh45NiMYOj1d+JbjDWoQ7g3PhP0SwsyRL9JzGG6jYuyxg2xuiTDCkO19/W4gE79Ad8ebtxhhz+Dw1KvVu4Jw5gmGhvEMNG4FgwDKGGqdKLZR4cpbKeFW02Cx49oSQTeFN6LZccEYX0We4rwIlZnyRAhj4ltkUHdi5kCnC+SzN4bmBJCrhnOkbTVEsoAtNUSygC01RLODxAFFjDHzg8gpLxhjTSagelw3RaQgHK2MwLHc+50KAaImrBDzj2hjUEwS9QezRxb7vJxv4u+iA/h/xbG5jjMluUkfv4Agztdf2qMzhi5iZ3P05+n3vROhkL4RrCx9S3Wr9DcyM5n2lxxt4z5ImndtM0I95aXNJZ+R+3bQplD/nz5WkwkuB6OyZ8SJ8rniwutCK2/QTGvQ+LXA+dlNaJWC+QIc+r4zVzTB4Q99oimIBXWiKYgFdaIpiAV1oimIBj5d3NsagIUFQiPcmDSoylUp50995Qq+vJKaOVXCGGmNcZrCoNLHkVzyniqzUa8uVzpFlFIjTwRyrheB8vbp+SMYPv47XevcmnbNgGRXrWkAVe8nRWhWuv/8MyxR/hMYYb0rPqXtDcHxfpEaU+UwwcvFodSHFYL5Gj1WqCL3HmFEpl0rtCffDZ/3YfPG5YucodKJ/MqT3I3JPgMz1+i4Z//6jL4HMSpnex6+tfAQy+kZTFAvoQlMUC+hCUxQLeBWhBU6JZbBKjt7OmOoAUu9pnj2dS6W82bEWBcqUQvy+h/2w48uVsvB/xUno8YR23ShziLrEdr9Fxk+v7aFMmcr4Qu9l3jpoGgjtl6I5bOOtpB6dxR7aMVNAf+sU6hL3Jytk/Oa7T4GMqTK9toI6UilkOppU3Yxtc0Lcj6TXVyKqo80TzHDO5lT3r7WxwlXGMs7nuVQen8r0p1jxa/8ntAJc96a2bVKUzwVdaIpiAV1oimIBXWiKYgFvKUKn6RbT0XkpNWOMmfSpUugnKMP9mq5Qbq7Eei2nHVQ2iy6Lsq6hEcFrUAW5vIrK76wqlInbpw5hb4L/PVGHnnfSxGsdPaKR+O8Lpdz+7oW7ZHy5fAAyXPmWSplFgsVmlNPo/Ws1NMZUWP+vQYZK+9sPz5Mx7w1ujDEFM36UBMOTw+61ZAxxPbqf0MP9+C4aQ0JWt08yhrjMsML7pRljTCzcI04/pXPEe3MbY0zQp3O0/w46vvWNpigW0IWmKBbQhaYoFvAqnuCwTrkTV/hO55/cn2HJSg7r7JDqZGEHncH5VapHliM852vMYdsOUEfzBa/64zMtMu7OUW/ZfrBKxss/FFoJOay9z7o0Z1RmyRuDzGmP9pBedVGHfpihM/r2/DQZHyQNkHk8p79748l5PEcejC0VE2PlxsVA7JjKlIQsfZ5dz3tsG2NMs4zO+WnKqk4JTv16hf5O0sc8dvxJijr8kPW+jgUbQsRUxLCHE6JvNEWxgC40RbGALjRFsYAuNEWxgJcJPaEcVso7OkLlbrxMx8JuzCJgvYYFRbLymBoWJlfQsWh6VCEtZrifn6R0PydaI5CRnKZVnx7vbL0HMhvP9Mn4DfcSyKy9RpXtzhoaVVav0XO6HKBTedOj5xOVpP7MaCBxWYrFk1kLZPoJnbfJPmZhh0f0eEWIc5Zzm0FJyFxnzmc3QMdzxBrEVQSnslQBgBs2yoIxZMqc2JMR9h3npx0LpQ6vt2iGtS/0pvNYwjvMj9E3mqJYQReaolhAF5qiWMDzBCcu3xT28Dt9zDKhc+FbvsRkGh/j9+1sjf0uFoI2u0xvEFoGJ3O6kWeAG2NMkghVlpgOEJVRT8ilFlCM3tN0vPoDlPn+sxfJ+Ov190GmUqLXEZbQ0dp00Inrl6gOtCQ47N/89AIZtz7AfcctOk6bQrulGg3qFYOKWeU0qYz5eEz1pjjB82lU8VphP3OsFMbvdbmK93U6pr/jZcSNwSCDbAPbOEUdeh0L1dEU5fNBF5qiWEAXmqJYQBeaolhAdFjzPlW1J1jurXeNGRaE3fhHdKM/QsV6RgPjTXiACnFaZyck/T0MqREh3kMFmfdVNsZAyenYRUfzgl+q0Hs5XaFO0zxEi83991mE/VnsTVeYLhvjsQYFXhvn22/fgm3NO6x02hfQQPDMxcdkfLKMfdZCJ/sbx8ZgZvIow3N+NKTZBPuH2C/usIvBCUGbGkikkuBShgdnMaPzUVtFQ8d9FpnhClngSYtlkwslE/WNpigW0IWmKBbQhaYoFtCFpigW8JJcikamylzYRSXRH9GG2PEaKsRlZtiYnAYRk2/S0OfwA1R+q0/o+RS+ENG9RMeuEFBQ35YaBNBh0hBq/7NLm57E/6eZT+cxreF+mqzUff+X0fBimDFkXODcG4OGhf9y/4tkvPoWnuPBV6iBoNrCPmvDmEY5jJLjDS/tEKNQeImMcYr7aYb0Jl242AWZDw6xdNv0HjWaOOeEBu4Vem2dIUYK8R4T6xUsLdGP6fOY9THso2jQh6iyo8YQRflc0IWmKBbQhaYoFvCSAh3EecB6T++j09KdUx3NG6Cu175L9YsH/wBleHnn2Sl0PgYj1p/5IeqDnQa9jhwTak3UQSdmtNUn45iVnzPGmLROj++m+P9UMB0tQV+0WfsRPe9vHz0LMr9W3SLjXHBYf5ysw7bke7Sv2eQiiBi/Se+H1J/6ESv1Dv3MjYGe1XtN1CNbNaq3JUL28mqV6la7UyyR9yvn7sC2/9F9gYyLA9R1c3b8VMgMWJTps9YIUGf96GCNjKN9IeNhkxkEHuPDp280RbGALjRFsYAuNEWxgC40RbGAF+dCtHyLOna7XzoJMrOrVAF0PCkynzopw2V0LJa4rt1Eg0X/FlVa4xYq8bVtevxoIDQwF/zVyakmk8HryEL6f5TU0UDgMZ/tfBn344+pMeTtH18GmfdOUCPT0wGWzfu3f/4N2LZySI83voTX7+xQo4E0H+U+vVZeSs0YA07++QpmKhyG1EG8WEeDSZ2Vl2uFeLAPB/jsLa0OyXh4exlkJrFQT4DhRTwLAecsZoaWKj7Cxqmxa3PUGKIonwu60BTFArrQFMUC3izF72tniX475wF+c1Y/oNskB3F1l+px8xD1r793lvZ1frtzDmS29mjE8GwTM4PTBr0Obyo44iN0mvoDwSHLyKosg1Zw4nJ9R9qr36WK3Lk/xXP8Vv2f0Q2o6plLf4i6zO7LVCdq3MF9hwO6MycVyn2zsoFSab/6Y6rbTLt4rPFp+h8+9zCo+KhK9R+p/LfUw/pMgwZQ3ElRR4tjduLCPJZYP7ajGB3f7piVm8PYZOOx0nrSsfSNpigW0IWmKBbQhaYoFtCFpigW8IZC3fJTK30yrr2OP0zO0FJhW1/H/WQVZnz4zhLILP0u9QD+o413QOY/Zy+R8cFHqyCTl1kvtjpqpN5IqL3P9G9J+ee4QtJzwfyj3kgwmIypMST6622QuXaHKvZFtw8yi6vncRs7XLmD3uiFS4WEKnEmY/YA6VqjfWqMiQ7wWhcOdby7Qk+FeEKDBbaXaiDj1tGA1mzQZybq4PFHLZaFUMOLLdgpdWZ4fJ/dx7QmPFdsXEL7jb7RFMUGutAUxQK60BTFAt58jkrJ2TXat/f9X30aZNqf0G/nrIo6wdbfp+vYFUqC/953f5GMl4VKSJfbh2Q8Oove8fhjmp3rzY+vZmUM6mSO0ELbSem+sjJex4LtZ/09nI+iTr2d8eU1kOFttqPbqKMkIeqacZv+MI/wP5Q7o72J8D/Lpm2BvmiTNOhcS6XeeTWxROizxnVEVzifXFCa+wWdx6WhpI/TfaUuzlnBHM39GT5XASsukAqZ8xwpWFvfaIpiAV1oimIBXWiKYgFdaIpiAU/qLfV43CLj5CuY5et8QD207kyIlmdZtS89f+/YE9oet2HbDnNsxoIBJ2c91ErCf0jQExyr/PKFsHvuDK7so1Bth+7InaNG3LvVIuPRGaG0+Abdz+rpCyCz9KMebAuG1NMsGmzY4ZI2nmN0SIWEVl9mcppF+Id4rCKi11FKhbl36e/8IRosnBS3pSybv/4YDUY8C18yDhXMQBILPe2azNAyqON6yVgpvcpMMPzAFkVRfuboQlMUC+hCUxQLeKt1LOvTm9KAzF84/wnIvHn5OTIO+kIrJfYtf+cIW/B849y7ZPytte+DzBWfVj16bY79n/7X0U0y/riHzuDDI6Fn9JzqlpX7QlQxuzSp3Hf3Cv1Onwktqtwxaz8VoI5USqjMvI3zOj2PpbNX3qfe3+411Jl5wLCUKc6DZh1BJuzSbXkk7IedIg/6NsYYhwUaO7HwDJ1E/Svco9c2XUWdaHSV/q71Ht7X8Vl2HVUhooHhtTCiIWHPUF1oGaZvNEWxgC40RbGALjRFsYAuNEWxgCeV86pH1NE8y1GRnHyNGlHKr2N2aubRfU95CTBjzP/euUHG3TWs5/WwvEPGSy72Gv4XJ/6CjH/cwrJ1P1k9A9tee7JJxuMII7jPrFMH8dEEy5JNHlMLycJH5T9bpfPhBDj3iwF1tErlzSbr6MQNxtQgsPwhGhEma1Rpz6pSZvTx5fd4ObVAiJ4vs6zrYHT8f/oEbWWmCNGoc+qvqUFisInlv1vrNMgiK2N2f84zTnq4n4wlarebaDw83GmR8UJI5Nc3mqJYQBeaolhAF5qiWMDb6mAQ75UTB2T86WAFZL56/lMy/v7tmyCTTOg3r1PHkkojVoVLatNzEFP952p1D/cT0I/pq+EOyEjbnqs9gm0cn6Vm/9H+CyDzwZDpdrnwH5awbaHQWqpJ9Y9ZCfUG3i/bGGNGTP31JqgPu8zXKmWcRz2WqY3FzUxWpvqXpNdFPar/yOXH6e+irqDrHcImc/gcPan5Cv6u8pdUJ8uaIGIqp6iuv3gHheas4NrpCL3RvR7VI6VKavpGUxQL6EJTFAvoQlMUC+hCUxQLeMkAtd3REt3WCFEBjAuqkCeXsWeX06H7WfBev8aYnKUvP+qhceaJQ5XUXgsdxjWfhsufjAYg83O1+7DttM+c0Tk63l8f0l7TUh+vjRN0P5MENeI52+a6Ql0y/hsPZeIFOtWbZ+j1Nst4z7YP6Ny6HhpjRix7vdLA/Tisr9h8hgabwRE9x0UFj8V7SGdD3M/S6T5sm/AsDF6jzxhjdtnxhVeKy67D7+B+us9SGbGH25BlZQgl+vSNpigW0IWmKBbQhaYoFtCFpigW8PwGGige7dAeXS9cxOiJbkzDym+efQwy745oqbRCiJaYjKnS6vDG28aYVoP2FQtcDGnwHapsP5m1QKaf3oBtZRYuMcrQ0DDJqJJe8TCdPWCF5ENP6A8Q0Ih6R1DiS2xbGuH9eTJCo8FkSg1P//rqd0Cme5oaeuZCYf0pCwU5F3ZA5unwCRkf5ljbYS9tkfEgRwPWwzl9zmLBivBeB2tCLOYsMkawhfBokeA6GsdGj6iRrS28dqobNAtgFKPx0GX2okSIQtE3mqJYQBeaolhAF5qiWMCrV9Eh2WdpvbcPMPX12XUaCV/3cT9+i+oXaR+/b0usxFchfG/HrOTy9qgFMjlrSLxSwUzYeY46QDOgv6t7eB0rAY3y7qeobwxSqpO5QpMs7viXdL0p0weNEAm+cmULtnE98q3RJsi8UHtAxjcD1L/Oe+xaBb1piemjLwqltNMF1eN+KPTC7qRUZ/wsOqsxxjhVquuGd8sgE1+jARSF4FSv7NB7P7qAx7qxTNMHbu/hWqiw7PbBVS0JriifC7rQFMUCutAUxQK60BTFAt54io7VtWVa677TQ4dkN6YGAckYcm6NNn5/8ASdjwVLizceKpIxK1OXC45v3qNqJFzXuWVsRH+iTB2SNRe19mlBFWnuHDfGmIBt8xw0hkxSup9xgsaheSaEfjOeWd6Fbec9et4h78RujPk0XifjBzH2J7hRpoEHowLn8d6c7qfpTUGmYOHyA163zRizG1PP7o/38fmYztGIUTqg8xavCn3eytTQFD/EZ5jbq+rXj0AmYcaguIPX0RrRZ9Y9gfOhbzRFsYAuNEWxgC40RbGAlwk9ghOm7yy3sAT3g0MaEHqyMgSZjWqfjLfOYPZ0PmRZ2EI/roT1x06FctsllokchKijzDN0rO7N6Lf7UAgG5jqZVCKdO5qlTFyuf4VCOXau23WGWBN8t4L90S7VqWN1kqH+FzvesTIPZ8uwjdNj+jl3lhuDwbeS45lfP3/ujDEmEQKoS0yNXb6Iundnj85RuY/vlOlpOtcXGxh4vD2kemTlMerQvKfcpXUMBNA3mqJYQBeaolhAF5qiWEAXmqJYwJOMBj1WzusUK6VmjDFBQH/3eNICmeeXtsn4+kl0tL7bo1nYJhX6c7lU2ZQMJm5AZYpCaLKeCkYMlgk8ERykASvL1qpgab16QB3GkYv9yWoBVfalCP+cOXpPtEYgw7O5jUHjiyc41bkRh2ccSGTF8f/FkuFnxkrrhT6e8yRn8yGV3xPuNTd+DMZ4HV6XHj8rozHm7HX6PHZmaHgaMGNUew/30/kivbZyjOejbzRFsYAuNEWxgC40RbGAt9pAZ/TjGXUs73awrM/mSeqU64zx+/agSnW9s1XU9e4s04zV+SEGbTosC7skqHE8iFRykEYe6gkh28bLRBtjzILpIHxsjDFD9l1e8TF7mus7vlCS2xP0L84gwTnKWOPk5RAzzD8LB1N6z2qBkBrNiD9DIPRwcrw+KFVJO3EWndHTmOrR+S5mvPszeo+qzwvZ5HW6bymo2XnEqrQJt+f8Ju0n+PDeOsjoG01RLKALTVEsoAtNUSygC01RLOAtRZgNOmlTZ193D40hvMn82RU0dHAndl5BI8Jzp2hG7zvpOZDhxgc/QI20GlLjw1IZr4tnQRtjTML6vK0KZeoaQvY4Z5zSaHVHcEZzJ3YgRO+XmczhHPu1xULZPO40HiRofKh47PjCfHC4kccYLAsnObW5KUpyRk971Khz4jQ+Q02hN9/eA5phEA7x+MUVauS7vrIHMtz40e/gXLee0Hk9eAmfvRPMGBTt4f3RN5qiWEAXmqJYQBeaoljAk7JjG6xV0LQl9LDeo07CToQO2gttWlWIVxQyxpjNCnUk7qwI+uDeEmzjTFkQaytCfbARYDAwr9ZU9dBB2/JZeWnBYZ2G7rEyvC2RKzjVq6wKlxRAPBKCgQvD+igLx/8sREyP687QGcx1ND73xhgzZ72w0zE+ZyFrGfbs8g7IfOfuNdjm91n/9PP4fL587iEZf9JfBRne6irawnPkLZh+6fkPQeYvfsDaga2g7qtvNEWxgC40RbGALjRFsYAuNEWxgCc5G7mye2EFSyXfnbFs3S2hcS8zhjR9NEaMWc/kW8vYC3swo8r/WIgE94UMXk5WYDmzFjOQOEJDZF6WbSiUaauxXmdSn7W2T53oFQcNSDzDuuKiDDfOGIPGD6kf9EFMI/P7MWYBpGyOpJ5l/FhSifZ0Sg0LbhkNBL988Q4Z/8/3boGMvy80iNukQQXc8GGMMU9YsMRohs9MvkevP8QYB3P6V2j/9o/6WEbd79Hrl/pl6xtNUSygC01RLKALTVEsIKbG8m9w6Tu93aZBm91xC2TevUcDhJ+79Ahkaj51Wm5EfZD5yinae/nVB0+BTMiylaVzlgJ0ebUoSf/hutWpEM8xZRnOfgl1klMBDZpNFjj945xlapfQge4KeiQ//rwQdBuG5AwfsuxtKXuab4uFymFRnZ73r196H2T++PZzZBxu437cG6jvvHzmPhnvztA+sD+k+uj0Cd778gF9zyxewmNt1qmd4c9fuwUyxUnq5G+HqFfrG01RLKALTVEsoAtNUSygC01RLCAaQ3LmxJaybJdYWez5Oirfsz2qgL63tQEyr1z+mIy5A9sYYzbLtPfXi2dQ5sMOLVsn9ZCWDCQNFq1/WjB0tD3qII0FQ0PFOb4sGzdQLHlY6m/ZpdsOM+y9LBla6i69H/us1Lkxxkw9amzgJeqMMWbOyobnQhbAeEbn3xOCBb567h4Z/8m9Z0DG7NH9nHl5G0Q261gm7k6P3uujMWYYzLfpvJX3hb7nt+hcf2Edswf+7MfsvBt4rY1l+nyMZvh86htNUSygC01RLKALTVEsIOpoXJeJc/yWrzFHb7uKjt50mf4u38Nv6bdqZ8n4axv3QKaTUl3v+cYWyBywXtQzoV/1yQo6JHlGNQ/qlQgdbMkUsW3cgSwRlXA/vJWTpFdOC9QBOHPBGc7PiQcQ/7TjcXLWSuk3nkJn9A+O6H2N9/Hev/ilj2Eb570Oluk+6jPn8xYGRwesJHj6LFY3e/EMfY5ev3MJT4Cp+k4V9WM+Y9MjISsd96woys8aXWiKYgFdaIpiAV1oimKB/wfzG0J+CAqKpgAAAABJRU5ErkJggg==\" y=\"-8.174219\"/>\n   </g>\n   <g id=\"matplotlib.axis_1\">\n    <g id=\"xtick_1\">\n     <g id=\"line2d_1\">\n      <defs>\n       <path d=\"M 0 0 \nL 0 3.5 \n\" id=\"m30ae3c13a6\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n      </defs>\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"29.19\" xlink:href=\"#m30ae3c13a6\" y=\"226.174219\"/>\n      </g>\n     </g>\n     <g id=\"text_1\">\n      <!-- 0 -->\n      <g transform=\"translate(26.00875 240.772656)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 31.78125 66.40625 \nQ 24.171875 66.40625 20.328125 58.90625 \nQ 16.5 51.421875 16.5 36.375 \nQ 16.5 21.390625 20.328125 13.890625 \nQ 24.171875 6.390625 31.78125 6.390625 \nQ 39.453125 6.390625 43.28125 13.890625 \nQ 47.125 21.390625 47.125 36.375 \nQ 47.125 51.421875 43.28125 58.90625 \nQ 39.453125 66.40625 31.78125 66.40625 \nz\nM 31.78125 74.21875 \nQ 44.046875 74.21875 50.515625 64.515625 \nQ 56.984375 54.828125 56.984375 36.375 \nQ 56.984375 17.96875 50.515625 8.265625 \nQ 44.046875 -1.421875 31.78125 -1.421875 \nQ 19.53125 -1.421875 13.0625 8.265625 \nQ 6.59375 17.96875 6.59375 36.375 \nQ 6.59375 54.828125 13.0625 64.515625 \nQ 19.53125 74.21875 31.78125 74.21875 \nz\n\" id=\"DejaVuSans-48\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_2\">\n     <g id=\"line2d_2\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"74.49\" xlink:href=\"#m30ae3c13a6\" y=\"226.174219\"/>\n      </g>\n     </g>\n     <g id=\"text_2\">\n      <!-- 10 -->\n      <g transform=\"translate(68.1275 240.772656)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 12.40625 8.296875 \nL 28.515625 8.296875 \nL 28.515625 63.921875 \nL 10.984375 60.40625 \nL 10.984375 69.390625 \nL 28.421875 72.90625 \nL 38.28125 72.90625 \nL 38.28125 8.296875 \nL 54.390625 8.296875 \nL 54.390625 0 \nL 12.40625 0 \nz\n\" id=\"DejaVuSans-49\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-49\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_3\">\n     <g id=\"line2d_3\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"119.79\" xlink:href=\"#m30ae3c13a6\" y=\"226.174219\"/>\n      </g>\n     </g>\n     <g id=\"text_3\">\n      <!-- 20 -->\n      <g transform=\"translate(113.4275 240.772656)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 19.1875 8.296875 \nL 53.609375 8.296875 \nL 53.609375 0 \nL 7.328125 0 \nL 7.328125 8.296875 \nQ 12.9375 14.109375 22.625 23.890625 \nQ 32.328125 33.6875 34.8125 36.53125 \nQ 39.546875 41.84375 41.421875 45.53125 \nQ 43.3125 49.21875 43.3125 52.78125 \nQ 43.3125 58.59375 39.234375 62.25 \nQ 35.15625 65.921875 28.609375 65.921875 \nQ 23.96875 65.921875 18.8125 64.3125 \nQ 13.671875 62.703125 7.8125 59.421875 \nL 7.8125 69.390625 \nQ 13.765625 71.78125 18.9375 73 \nQ 24.125 74.21875 28.421875 74.21875 \nQ 39.75 74.21875 46.484375 68.546875 \nQ 53.21875 62.890625 53.21875 53.421875 \nQ 53.21875 48.921875 51.53125 44.890625 \nQ 49.859375 40.875 45.40625 35.40625 \nQ 44.1875 33.984375 37.640625 27.21875 \nQ 31.109375 20.453125 19.1875 8.296875 \nz\n\" id=\"DejaVuSans-50\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-50\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_4\">\n     <g id=\"line2d_4\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"165.09\" xlink:href=\"#m30ae3c13a6\" y=\"226.174219\"/>\n      </g>\n     </g>\n     <g id=\"text_4\">\n      <!-- 30 -->\n      <g transform=\"translate(158.7275 240.772656)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 40.578125 39.3125 \nQ 47.65625 37.796875 51.625 33 \nQ 55.609375 28.21875 55.609375 21.1875 \nQ 55.609375 10.40625 48.1875 4.484375 \nQ 40.765625 -1.421875 27.09375 -1.421875 \nQ 22.515625 -1.421875 17.65625 -0.515625 \nQ 12.796875 0.390625 7.625 2.203125 \nL 7.625 11.71875 \nQ 11.71875 9.328125 16.59375 8.109375 \nQ 21.484375 6.890625 26.8125 6.890625 \nQ 36.078125 6.890625 40.9375 10.546875 \nQ 45.796875 14.203125 45.796875 21.1875 \nQ 45.796875 27.640625 41.28125 31.265625 \nQ 36.765625 34.90625 28.71875 34.90625 \nL 20.21875 34.90625 \nL 20.21875 43.015625 \nL 29.109375 43.015625 \nQ 36.375 43.015625 40.234375 45.921875 \nQ 44.09375 48.828125 44.09375 54.296875 \nQ 44.09375 59.90625 40.109375 62.90625 \nQ 36.140625 65.921875 28.71875 65.921875 \nQ 24.65625 65.921875 20.015625 65.03125 \nQ 15.375 64.15625 9.8125 62.3125 \nL 9.8125 71.09375 \nQ 15.4375 72.65625 20.34375 73.4375 \nQ 25.25 74.21875 29.59375 74.21875 \nQ 40.828125 74.21875 47.359375 69.109375 \nQ 53.90625 64.015625 53.90625 55.328125 \nQ 53.90625 49.265625 50.4375 45.09375 \nQ 46.96875 40.921875 40.578125 39.3125 \nz\n\" id=\"DejaVuSans-51\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-51\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_5\">\n     <g id=\"line2d_5\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"210.39\" xlink:href=\"#m30ae3c13a6\" y=\"226.174219\"/>\n      </g>\n     </g>\n     <g id=\"text_5\">\n      <!-- 40 -->\n      <g transform=\"translate(204.0275 240.772656)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 37.796875 64.3125 \nL 12.890625 25.390625 \nL 37.796875 25.390625 \nz\nM 35.203125 72.90625 \nL 47.609375 72.90625 \nL 47.609375 25.390625 \nL 58.015625 25.390625 \nL 58.015625 17.1875 \nL 47.609375 17.1875 \nL 47.609375 0 \nL 37.796875 0 \nL 37.796875 17.1875 \nL 4.890625 17.1875 \nL 4.890625 26.703125 \nz\n\" id=\"DejaVuSans-52\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-52\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"matplotlib.axis_2\">\n    <g id=\"ytick_1\">\n     <g id=\"line2d_6\">\n      <defs>\n       <path d=\"M 0 0 \nL -3.5 0 \n\" id=\"md5858cd41c\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n      </defs>\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#md5858cd41c\" y=\"10.999219\"/>\n      </g>\n     </g>\n     <g id=\"text_6\">\n      <!-- 0 -->\n      <g transform=\"translate(13.5625 14.798437)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_2\">\n     <g id=\"line2d_7\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#md5858cd41c\" y=\"56.299219\"/>\n      </g>\n     </g>\n     <g id=\"text_7\">\n      <!-- 10 -->\n      <g transform=\"translate(7.2 60.098437)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-49\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_3\">\n     <g id=\"line2d_8\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#md5858cd41c\" y=\"101.599219\"/>\n      </g>\n     </g>\n     <g id=\"text_8\">\n      <!-- 20 -->\n      <g transform=\"translate(7.2 105.398437)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-50\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_4\">\n     <g id=\"line2d_9\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#md5858cd41c\" y=\"146.899219\"/>\n      </g>\n     </g>\n     <g id=\"text_9\">\n      <!-- 30 -->\n      <g transform=\"translate(7.2 150.698437)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-51\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_5\">\n     <g id=\"line2d_10\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#md5858cd41c\" y=\"192.199219\"/>\n      </g>\n     </g>\n     <g id=\"text_10\">\n      <!-- 40 -->\n      <g transform=\"translate(7.2 195.998437)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-52\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"patch_3\">\n    <path d=\"M 26.925 226.174219 \nL 26.925 8.734219 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_4\">\n    <path d=\"M 244.365 226.174219 \nL 244.365 8.734219 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_5\">\n    <path d=\"M 26.925 226.174219 \nL 244.365 226.174219 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_6\">\n    <path d=\"M 26.925 8.734219 \nL 244.365 8.734219 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n  </g>\n </g>\n <defs>\n  <clipPath id=\"pabcf64db41\">\n   <rect height=\"217.44\" width=\"217.44\" x=\"26.925\" y=\"8.734219\"/>\n  </clipPath>\n </defs>\n</svg>\n","image/png":"iVBORw0KGgoAAAANSUhEUgAAAPsAAAD6CAYAAABnLjEDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAvwUlEQVR4nO2deZBl91Xfv+e++/ZeXq8zPdOzarSMJGMJhCzZJrhki3ghllNFAQaCHJRy/kiqTEEKRFKVQBVJmUoVJikSYgU5iAQQBlOR7TIQ2ciWbSTZWsayFsszGs0+3T29vO5+/fpt9/3yx/QInaWnWxrNm5bv+VSpNL/b5977u8vvvT7fPguFEOA4zg8+0ZWegOM4vcEXu+OkBF/sjpMSfLE7Tkrwxe44KcEXu+OkhEta7ET0fiJ6iYiOENG9b9akHMd586E3+nd2IsoA+D6AOwGcAvBtAB8NIbyw3j7ZwWIobB/kG8XpuyC1X0xdNk6CtukkGX7Ytv4ci3IJG/fnmsomI84VU6JsFttFtU2SjfR+2YgfO4OusrHOJ4mI3zT7EfJ7ZB2XxM1vhVjZBON5RGK/jvGd0Qn8eXS62kY+62aiz58kfL9KflXZrCQ5Nm41ssqmXGqobRLr/J2OmHdLXwfJx1jUz7Wca7FxbTW/4XwQ6QcbiW1dMb/O3AKS5RX90ADoq9s8twI4EkI4CgBE9CCAuwCsu9gL2wfxw//9F9i2EOQD5y8JAAwV+ANeahaUzUy1j42TqZKyKe9dZOP3TB5RNn0Z/gEwnltSNn8zfQM/V9AvwERpUW8r8GMNZvSLO5pdVtsk5YjPsR30PZNzGov1dcgPttPtYWXT7OqFUxLnn0/Kyma23c9tWtpmucNf+ONLQ8pmbpHvd9c131U2T87t5sd5abuyufXmw2qb5Niivv458V7hhP6gj1f5O5xct6LPv+c4G3/zxQN6Ah1+nKjcUSblPv6htTzD5zf12/9VH/fC8db9ycbsBHDyNeNTa9scx9mCXHaBjog+TkRPEtGT7Wr9cp/OcZx1uJTFfhrArteMJ9e2MUII94UQbgkh3JKt6F+tHcfpDZfis38bwNVEtA/nF/nPAvi513uQrvDZpYgFAO0u90kXVrTf1Jnj22hUi2/vmDix4XxGszU2fnppt7I5t8L9yJ0D2h+eb2ofdSDmcxqOtW8nsXxmS9iTSD++EYzjCGVPPgtA++cA0C+0hnpXi01ZIQhagqV1PjXHDJ/jF47cqGx+fC/XXqa2DSibJx+/ho333aS+l/D2Ub3txQz3/+fybWXTOMn1icKz+tl/O+Lv0e3XvaxsHnuB+/HdhtZiSEgIpRH+23IUr/9uvOHFHkLoENG/BvC3ADIAPhNCeP6NHs9xnMvLpXyzI4TwJQBfepPm4jjOZcQj6BwnJVzSN/ubQUb46OVsS9mcXeY+UX1a+0Qocp/wpt2nlElT+P5jRlDN0dUxNv7WyT3Kpr/E97MCRqTOAABL4u/Kp5sVZVPv8gCRPOm/tc53+PVL/xgAduQW2Lhq/C28lvB4hUhFhwBtI9BmMeFCa8PQFZY6/Ni1Tk7ZtEQQS4Z0EElfkd/rhUV9HY8e577uhw/ov8V/rnUzG5/8xi5lc+ZG7eu/e9dRNj5bGFQ2R4X0UM/0KZviIb7t2ewOZfOBm/i8//brNymbJeLXv22iysYy6Ib9bN2fOI7zA4UvdsdJCb7YHScl+GJ3nJRwxQU6mcFlBVosLHBxgxJtc9MBnmgwVqgpm3zExS4phgHAN8/sY+Oko4W2pthmzdk6f1/MxceukUAz1+LXKkU96zj9sc7oajb5oy1FWviUyTJNQ4yzxDd5vc2u3m+myUXValMHQkkR0xI6Sbwf+YK+jvoiP/bnXrhZ2fzkdVz8eqh5k7LJfl8LdI+0r2bj2/YcUzbbBvh7NK0sgNUOvx+lxwyhrzLCxjtv0Eea/jYP8lkZ5ufudtcPVPJvdsdJCb7YHScl+GJ3nJTQU5+dEBCLIBrpp70yy/0WAMAi9xsHd+vCEGoXo5rM/tIsG//9uf16v0UeMJIv6sSHzRAbiR9LbR5oUo51UE8ly5NMihnto8okl9VE+9VVcf1WwEpZFOqQgTAAsNzW22SFGUuzyInrHy3opJ/ZBg8QsY4jNZ1MRgf+ZEv8HrVrWov5m5cPsvFP3KjTOB6OD6pt8VE+x280ddGJd1/DE3Hqbf08Wtv5UutUdXDQyS/zAK533vUdZXNqaJyN26e4FtBtaY3pAv7N7jgpwRe746QEX+yOkxJ8sTtOSuipQBdRQFkEhJxc4sEFjaoWhHLjXLQa7dNijxSSJrJaxDtW5+Lf6dmKnmNm49LapRwX7aSIBABLLS0QtkQQiRTsAGDFCKKR1NrcxspWk+QyWjBczXAh6VxDZ2tZ5ZXzGR6clIt0Zp4U6CwaHX7+QqyPY93bjchm9bnrC/x5PDuns86umdRBLC/VeA3V/DH9zB7P72VjK/Cm0eLXWt2tRbzK01xY/PLTNyib7fu5yFx9fBsbG0mSr+Lf7I6TEnyxO05K8MXuOCmhpz57pxthvsGDVmSSS1TUTsfuUV51ZbamAxJu2sYrgw5mdbeVvz3KgyY6VR18EQ1wf7zd0rdoJeb71VuG/1XUySl54ZMuNLRfPxP4/bD8WEnJqO6zKvzhYqyDg2rEfX/LP99MoMtgbuPWSitGpRrJQH7j45jJMmIsW0YBQH6ABxCpTi8AUDHmtIN36Kk1dQJL9iV+rOfLuiONfD8PGf1UVnbyjjjjj+kAmcIB/j40tvNxyHqlGsdJPb7YHScl+GJ3nJTgi91xUkJvBbokg3NLQhgRlTUmxqtqv6klntmzfUC3NR7P822Hl8eUTWNu477q3RVxS2IteDSIi02RkYnVyGphrdHhx15paNEqF/OAkGJWC2uyr7zVe11WgbGENmnTNtplDxvZapOlKhtbgS8yE28F+lrHS/yZmT3cRTUdKXICwDK40DhQ1kKfag1uVCCaOqFbNo/u5MFZmQndnDRpc8F4+bs6c/PYj/JnVs5rUXV5D59394gO4Dl2lGe97dzHg2zm8usLuv7N7jgpwRe746QEX+yOkxJ66rOHALRE1dOhkY39tpYIbJksV5WNrGb6/NkJPQGZ5GIFIAgNgYzEGFnBMzaOUzJ8ben/loa0jWxtbFWhqYsAlYZhU2uJNlJGIoy817NLOlipb1xX05E+esdodVXM8GvrZrUf3TGq60oWmjwIy9IHiiIxSVakBfT1142W2ur9ADD3MvfjR66aVzazosJr8bjWJ048z9/Ht938irJZHeDveX271piGn+Y2A9fw+2pVJLqAf7M7Tkrwxe44KcEXu+OkBF/sjpMSeltKmoBYVBGRQSSzC1xoA4Crtp/j+xiVUY4uj7JxcrKkbGhUCDmxDoaR84tjQ9gyAjIkBSPLbHuRi5GVWAdoyJZUUugCgFhUpqkaVXFktpwMKgG0QFfp05mCE8UltU1ilcQuRHzeQ8a13lg8xcbLXR1EcqTBK7EMGseRgTeLHX0/zopstcVVfa5Ov9Eia5EvkfkjOvCmtIs/1+aiXlal03yOJ6/S2XMT/fw4z09WlE3/cX6cI9P8vW921l/S/s3uOCnBF7vjpIQNFzsRfYaIZojouddsGyaih4no8Nr/hy52DMdxrjyb8dn/CMDvA/jj12y7F8BXQgifJKJ718a/vtGBoqiLvhIPApiZ421yiyXtNw3ntZ8mOT7DfamkrP1xikTAgRF/kM9zX9NKWEiErzta0skiBcPXlgEyMelKsrKt9EpX28gqtVYgUllUrynFRqvjTVSPsSrOHuvwe31wcErZ3CD88b25WWWzN+ZtratG6+f3lY6y8WSs59MOXFd5SksI+Pwib+M8OKn1iSdm9qhtM+P8Xue/p/WAxqhIjJowEnFmuIa0/LxOltnzTl6RKT+q59jq59efTPHjhvb6398bfrOHEB4FIMOG7gLwwNq/HwDwkY2O4zjOleWN+uzbQghn1/49BWDbxYwdx7nyXLJAF0IIMH8hPg8RfZyIniSiJzuLG/867jjO5eGNLvZpIpoAgLX/z6xnGEK4L4RwSwjhlnhQ/+3bcZze8EaDaj4P4G4An1z7/0Ob2anbjbC8woMZQsKDPa4f12KPbJPUMEoet6tcyMpWtEojSwxHUrADkBdBNLv6q8pGtrCySjBLG0D3Wl82+qFPbUI0k4JcYmSP1Zv8OLWWFvpkdphVqeb0CS0kZUXwyccm/17ZzHe4kPREXQeRPJLwOe3JaxHv+jwvwfydlnHP2hU2Xkz0l0pNnKtpiIFW4FF3hYuqq5NGqyvREip3g249trKD2wy9oM91+FpeXcmquLPax4POCjP8OJHWhf/hZ+v/6DxE9GcAHgNwLRGdIqJ7cH6R30lEhwG8b23sOM4WZsNv9hDCR9f50Xvf5Lk4jnMZ8Qg6x0kJva1UkxDaS9x32ruPa3tWoMdwngetfPPlq5RN1BT+uFHxtVDkvqaZHCL8+pbhj8t2xDuLVWXzo31H1baBiPtgc4kOEPnm0tVsfGJFBycuNbn/t2K0n5ItgjPG/VD7rOp7Ty0jYKfE9ZD/efzHlM3JGT7vjJVQ1OBzLA1oHzWK+LytOXbmhA5U0ueKC9zX7iwZ79nOqtpGBXEsoxJM4SX+jjSfrSib/rfzgBl6TtusnOL++PjBs8qmJiSLPD8sjELDr+Lf7I6TEnyxO05K8MXuOCnBF7vjpITeVqrJBOQGubgjWxlVjZ7lslpK7rCRebSHi2+ktTdVZndnpapsxgo8E+u6sg7ymczxvKBd2Tl9MoPDTd23W3Jb/xE2PlW/RdmcmuLiVzD6kUMIa1GfEW0hkwAN0Sp/Tgfa1Kv8/K0VfbPLIqaIjK5EhQU+gSRviG9FfuyyIUAVFriIF7X1nJM8f9WTnJ4zJTqAqDzO7Rqj65dqfvU4hhYqMyU7o/r8hRk+7+h6fa72AN9WPKdM1sW/2R0nJfhid5yU4IvdcVKCL3bHSQk9FehycQe7R3nIz/wqz1C6uqIVh0eP8Yi54oIyQfd6rgjJyCsA6C9wMfCGQR2hdLB4ho2HMzVlsz3mWU2HGrqc0bO1XWrb10/vZ+Pass7g2rWNX9zcipEWvCQi5nKGIpQV2wxdKSyKstVnjJ5t03rHXC2IsVbfVsb5q9Upa0GqWTFUVDVJPqSunk9zkB8nt6xMFI1hYz6G+Db5Zf7OLO7XImL3Q1ywjb+uy02vnBHRkju10lh5TpTEbhjlrof4vY7a/D5fpNWbf7M7Tlrwxe44KcEXu+OkhB73ZydVDWW5wbPgrHZH5a/yXtpNo0p9IloyWVU+PrTjOTZ+R+llZXNtlgfwfL2xU9n8/hRP5f/+wriyOTen21h1G/x2l47qbLUZUarYCtCQIUWreorILPDP8W5OP2oZeBTritgoTxtRLGK/uRv0dXSE1GBlYyU57mBGifajM6KaclLQNu0BfpOSor5pMitSPObzxxnW2sOZf8R99MpL2imenubPuqIrQCOzws8fJvX7GYuWVAuLuod8JLL3SGZlus/uOI4vdsdJCb7YHScl+GJ3nJTQU4Gu041wbpmLDmP9XBV65BgvywQAE4d5wMzJnzACGzpcuDk4orPVnq9NsPHfTF2vbGSpqtOzFWWTLHBRMV7Wn5nFBS0kqYrPm4gpsQJE+s5wtStzSAtSjRF+8OVdeo6rk/w4MgsNAErHtJJ14sM8aKRT1Pt1hWYXYqOc0zkpIioTNIf5ft28ca4Cv35qGyWh810x1jbZeb0cmtu5IFb6hj5///f4xJcO6OfRFel6OaNMl6RT1TekMMbVv0TE3RhVxV/Fv9kdJyX4YneclOCL3XFSQu+DakQVkcm+KhsvfGmH2q8reqZbQROocSfxsa/doEwS4VuOXCU7UQNXD/FEnNmaDmxoLvOwlkzD8BF1nAmCyDOJdIco5cbXt2kfcWWSf0Zve0IfZ+hQlY1LU/o66Ft8XHjhtLJpXaWr67REtZR41dAnMtwmu6C/V5Rfr/NwUD7Nj501NIzWIH+NGyP6nskEkU5Z25jBOEXusy9P6uSUxpjQFQr6OLIkdT6vg8daA/xa42V9Q+IJfhxZyceojv4q/s3uOCnBF7vjpARf7I6TEnyxO05K6G0paQooFLgwcWKZp7Dt/KKuHtPaxW3iFT3tHY9yIWVxvxY3fvZffpmNh4w0r/917HY2Xj2hs9dCmQswnUEt9ljiSq7K1RMriKSbFeJX3RD/RDzG3PX6XANP82vLHz2hbKIxXjq5W9P3I9PUwR95ETDUd0oLUiHDbTJNbSMFKau3+PBzQpEzaoTPvY1XgenGRhUaEZyTlPV8Mv16AoMD/J60BnQZ804/v0dU1PcsEoJlpaiz3mZlC/uNq1a/rkAt/2Z3nJTgi91xUoIvdsdJCT312TNRFwOiwusZkWgy/C4dtLAqWvBYFVXiuvCT7tTRF/MdHlhiJcLMzA6wcXdAVy+JZ3k0iOVXJwWrnCsfWkE1MtAkyWsbWb2m06/PFfp4qZjGQR0cc/znxD0LY8rmwKe1/ykDVFZH9XdGflEEmhhvmqxeY11rYxv3ketj+kArE6JF07j2x8u7eULP9pIuJ5PN6Gvtz/L39cVR3SIqK5JTOi2toUTi2KNFXbX4bP/Geo3ECkRaD/9md5yU4IvdcVKCL3bHSQkbLnYi2kVEjxDRC0T0PBF9Ym37MBE9TESH1/5v1Hx1HGersBmBrgPgV0MITxNRP4CniOhhAB8D8JUQwieJ6F4A9wL49YsdKKKAYpYHLnTneWRJpmVked3IRZLIqHqycoSrO6tNHSDx+SNvY+Pmqk5NC6KvefGYjnzpO8nPX1jUIl52yRC2ZOsiQ3+pj/PzNXQnIbT7+I4dHeeB9jAX6I7/E/25/pl33c/G1xtlcW6r/qraNvo0v45ztxtBJHV+Pqsktgwyio0SzPPX8mdk9UeXVWhopKlsRsp1Nq7k9ck6RpmXk0s80sXKZiyKDLaO0R8+iP7sI/m6skn6+HUUzunjdLsiEEm+Q5cSVBNCOBtCeHrt38sAXgSwE8BdAB5YM3sAwEc2OpbjOFeO1+WzE9FeADcDeALAthDChdjWKQDb1tnn40T0JBE92Vo0Prodx+kJm17sRNQH4HMAfjmEwP5oGUIIWCeSN4RwXwjhlhDCLblB4/dNx3F6wqaCaogoi/ML/U9CCH+1tnmaiCZCCGeJaALAzMbHAfIZ7t9mq/zzZvhx3jIZAJb28v5GLSPxpHiOR6hMzekPlvyI+M1iUTtglZdEG6lj2h+ffRu/bbXd+jZuf8xIIDnFWz03d1WUTSwSRnJG5VoZZJRdNloi9fE53XrTYWXz9hwP7LDqnf7mP/5Lte0/n/xpNs5P6+vvXsuP3U20/7k6LLYZ7Z9kBE9h0PDH+7j/2+rocxVi7lcvtnTw1q2jx9W254/yd4/6jICdPH/3VmpGq2XR+qvZ1XPMj/Pr6MzoJKxmjWtTKp/nUto/EREBuB/AiyGE333Njz4P4O61f98N4KGNjuU4zpVjM9/s7wLwzwB8l4gOrW37twA+CeCzRHQPgOMAftre3XGcrcCGiz2E8A2sL+i/d53tjuNsMTyCznFSQm8r1SAgF3HBK9MSASLbZLkO3eKmM6ilpIXrRJ93XRUZrQF+ucUzRnaSCOpZ2qNvURCbMrroCBqjWvxrjPCsMlmpBQBI6IH1CaPqyii//oHD+jqW9vJJ/tLIs8omS+KzPmjx6ZrctNqW+/FZNi79hc4Em9kuhKQxHUQyOsbTF0mm0xkMGcEoJSG+VVtGNRkR1DJR0m2t/vr4QbUtI1pCZfcY1XzEvLM5Leq2FkWLKGOO2wZ5UNPxbdomWhBBXl6pxnEciS92x0kJvtgdJyX01GePKCCXke1ruL/THNblStr93JeMmlagCT9O/yv6/EmeO/9SCwCA6nWynIxRBUYk4mTqej6dkvE5KvypbsY4towzMVoJBVG9NFvT55r/IVHNNKN9XUlfZJSKMfjYft5v6lPveL+yqXyXaxbVH9b+5/6ROTaeKC4qm7zQeOQYAKptnvTTyer7cXyJJ2V+/5SO7g51vRxyu/h9y2T081hu8PuWN3z2Zsz3m673KZuhAg/6iiu6lFHmCL+PHX7p3rLZcRxf7I6TGnyxO05K8MXuOCmhx0E1QCxLloiPm9pOI4OqjwsetKqDSFoj/LjtWaPGrgh+aI5rISU3x/ezKpMkw1w4ye/QmVgto5ywbJ5dKGoBJkn4DWnPl5RNVpSyzjS10Lf/bTyqaDyjq9BE4uZHRkTGYGREDAk+eOshte1L/TewceUJrYYeeXk/Gz8/psUv9eyzRu9zQ0TVRnyYK+hKRgMj+h412/x9TLqGONzgzyOXM6oUCVG11tBi6I+MnmLj73V0+e+iqO4jBbpLynpzHOcHA1/sjpMSfLE7Tkrwxe44KaGnAl2ALtcrI36aQ0bajhBgMk1t08lx4WbpGi2SlE5y0ay1w+gZLko3Z1b156EUd0b7dCaUlcFVznJBrpLTBTi7QsR7bP6Ashl6gY/P3aJM8IHRl9k4Mmo514Mo6w1ts9g1IhpFmN98S4uI1+2aYuMXVyaVTX6Gv36ZhvHsRZO4kDdKSYvotNjos14qcRG1lNfiaDbS1y8Fur6CFmPrERfoVpa1GCn7s1vvh3xG8Sl972XGpeyXd7HEQf9md5yU4IvdcVKCL3bHSQlXPKimKzLIGrroiQqIsFoJkWjbFG/TWV71wDOGCsd1a6fkOu5/5ye0/3dwjFdvGcrpc2WNSZ6qV9j4xLJuj3fyFV7NZuQpHZxT28lvSGZCawbnWrwM8eGWDtCodxfYeCyjjzPXLattiXggO4tVZVOOuU98Ypu+1noiMr+sUtLC1w1GUI0MJEmMgKZGhvvVlms7bPRsz2d5UI/04QGgIGwyA/o4sciWGyjoYKVqm7+f7YrWnTJNUTlHtnl3n91xHF/sjpMSfLE7Tkrwxe44KaGnAl0SCPWOEEqyXFEwkop0eVxDo5FkjJJPNM6Fk2ZklOo9zbfV+nRgwzOrXNjLGxlUq3Ut/tE0P1ZuQV/s0KwQLIe1aLW6nd+AvHGtMkBjvqPLIE23ednuhpHiV4j0tdUTfh19GR1oMp7jpZq37delmx9c5dFAYUbf664oy0U5/fAjIdpZAStyW9d40RZXdTCMFOgaLX2Plmv8nRkd2jh7TgZYAcBAzO9jflQLfdEpLrw2h4SAaSRbvrrv+j9yHOcHCV/sjpMSfLE7Tkrorc/ejTDfEEEasgORlUBS4b5LY96YtvBbEyNAoyMqisiSzAAQjYgqNFlt0xD++Mo5nQgSL+o5yqSFbk5fa2OUz1smPgBA/x5ecvna0Rll8+1zu9n4UKQTUSJxr+tt7Y8OGsEfIwUefCPLNANAEAk979vxkrK5de8xNn584RplQw3uhFqlkruRTDLRNgA/Trulb2zbeNabIWnyY680tV4j77VFJcuDs+LYSMyp8ONMvJ0nHJ0ta43l1TlsOAPHcX4g8MXuOCnBF7vjpARf7I6TEnoq0HUDKREoGCKERFaCORn1ayMhylhBNYk8lyHiBRVsYZQFFibU3txnphTkEqO1WiwSz9rD+v5cVamy8QszOqNtZYoLobkRLbTlRE+y1bqeUKOsX5EjR/j5dn9R38e4zu/bZ+98t7LJX8uFxsywDs6hYzxgJTKEz+aYOH9JlwiXwl63aZQjN7LlgniNsoaIFxc2vo+DA/zBFjJaSMsKBbdiZOGNvmOWjd8zyoXP40YG5gX8m91xUoIvdsdJCRsudiIqENG3iOg7RPQ8Ef3W2vZ9RPQEER0hoj8nIv3HRcdxtgyb8dmbAO4IIdSIKAvgG0T01wB+BcCnQggPEtH/AHAPgD+46JHICC6QvrXh/24v8ySK46VxfWzh2nba2v+Khb+VkOWjcf+vvqiTZZSvH2t9oNNvBGjI4I+GPr+ssJqsan/48DSvZtP3d7qazK5v8io0M+/UgS/zt3K/MSroOdeM65e914tndF/1Tj/3W4ef0/doNh5g42RI+9qq1XrQ96MwzV/j5oi2UX3uLanI+OpriwCqUDD0ADGnYBx75wB/hw/2TykbmXT0i3seVzY54ufXCU5mRBGATXyzh/NcKH6TXfsvALgDwF+ubX8AwEc2OpbjOFeOTfnsRJQhokMAZgA8DOBlANUQwoWPmVMAdl6WGTqO86awqcUeQkhCCDcBmARwK4DrNnsCIvo4ET1JRE92Ftf/s4DjOJeX16XGhxCqAB4BcDuAChFdcJYmAZxeZ5/7Qgi3hBBuiQd1wojjOL1hQ4GOiMYAtEMIVSIqArgTwO/g/KL/KQAPArgbwEMbHSsbJdhe5lU8pqMKG0dN/fkzmuMBCfGArvLRqXIhpbOqLy3KcwHKyo6SQRSR0WtblusNiZ5z6OqDU50LcuVTer+ubO/TMQJWvsNFmcGXdTAKYn7ssWdkzWEAxI+zcKMWDCOj1VazwsdT7xxUNpJWRW9LBrkgFRe1+NWZ4GpXMETN4gkuGGYX9X1tr69b/cOxrepGokR5x3gesnqOrJwDABUR7FKK9Ds8keWi6kBGB0Ida42K4/BnH12kjNNm1PgJAA8QUQbnfxP4bAjhi0T0AoAHiei3ATwD4P5NHMtxnCvEhos9hPAsgJuN7Udx3n93HOctgEfQOU5K6GkiTH/cUIH7Rxd4j+TV2YraT1ZKtap3TtVEr2XDZ94M0te2KpWqdlQZ7SeFRPuWuXn+2dp3Su+3cJAfvDOgNYOkzG2mbteJF9Th24wisWrbwGE955Ud+vpXd4iKq1drX7t/kCdxBKNt0s5+3W5KcnaW6wGWX90pb9zSO7LaQQuSsj52EIFGZFXyFT56saQ1lMwmKtXURXtsy2cvEH9obVHKKFxKUI3jOD8Y+GJ3nJTgi91xUoIvdsdJCT0V6HKUYFd2nm27fccxNv5/0zeq/Yqiqse2kg4QqQ7x6LzGnM7WkkE0pvgmKtV0jYAZdVwrGGNVi135OT6BthFQmBzgwtZ2Q4yUYk91p75WWXWlvaBbG2UXuE1u0Si/bfQIl0FNA/06DPrgCC9vXY61aNUSEUSJkdHWEc9jflFn+LVFEmS3ql/r7LIIjikaz8wSdUV1o3xJK51RxG3KeR0wI99hKToDwGLCX4i9uVllIzPj2snml7B/sztOSvDF7jgpwRe746SEnleXXenyhJVb+19h48e37VX7vbS0jY2H8tpHrPTxbVPnLJ9dtLc1fESVwGJVjpWJMJH2/6SPCAC5ZW63eEAfWgZkDOZ1YEUiSqWuZHRFsLaowkNGqyuZHNLWxWxMZNLRfE23jXpGtDYe6dPPbHc/T/yYKOiKN0tl/hwTo9VyXVTJpWFlgpVp7uvLBBdAB9AAQCT0mDjWNtJHHy9rTUnqEYsdLdjI5Jgs6WAlmfgi22yTfDlfg3+zO05K8MXuOCnBF7vjpARf7I6TEnoq0BEFFRQgC2vcJoJsAODkCleOJvJayFkd4ELF/IgOvmhVeVaR2bYpv3E7Klk9xjpOdkmLfys7xHGuMqrHCCp53QJoPM8DbR5v7FU27QZ/tNGcFtESmVFnVGHJrOhrS0r8HhWGtIjYX+RC0nJDZ+YdWuE1Sk/1VZRNVwhbccbIAhR9tIp5I8VPVo8xAmgqo/p59Bf4dawaPeylaNhnBBDJQKia0fsrIwJtlrtaZJaZcY3A59P1rDfHcXyxO05K8MXuOCmhpz57hICcaEs7nVTY+Ef6j6v9xnLcl5J+HAAcrY6wce4p2RYHGDrDfSIjFwErE9wHqu02jESgRbZmBOcYH6PNYZkwoX3LyUGuR0zXdXvq40tcwzg3pau7Zs/x60gKRuKHqHYbjKqoFrICcHNV+7GzLZHksqRtZOLJ8aL2UWV132JJJ5k0a9yPbc4bLbtk4JMRe7La1HOMRRWiVseoQCQCbeabOmCmkuPai/UOt7v82NVEH0dua4qgGitQ7AL+ze44KcEXu+OkBF/sjpMSfLE7TkroqUDXCZESGGRmjyVcHChMs/F/euYD2ua3eWBHeOWQsqHJCTZOhnXgTf9x/vm3YIg982/nY0sTiXWcCWSoRdMQhI5M8/Y+3dNapIlrfI79S8oE8YrI8Iv153rU5jadgn4drGI+xXMiqGbBqMozzbPcoqYuG50M8Oo5iXH+5jDPsFu4Wj+PPjlHY86167iwFw1poS+OtUC5KrL32m19rZKmUT0mFsJ0U/b5gq5mkyUdQCRLSXeJP1erpdkF/JvdcVKCL3bHSQm+2B0nJfhid5yU0FOBzkKKEJWMLl8ks4FGvmBESHWFIDSiaxMlR3l0Xrw8qmxQ5KLR2LTOsGuMcKGvMa4Vodbgxj3i2lNafCtO8c/fbU9pISm3wKU+S9jKnZzjGxIjOi4WEXQ1fe/R1BlcIeHPLFg2XX793YwWtqSWFAc9x1gIUH3XX6VsOv08gq7dr4XPlUnREy2vxa+skVEny0Rb5cdlBJ1FJPYbyWrBMh9xsdoqrW2JdpvFv9kdJyX4YneclOCL3XFSQo8r1WifQ46/tnSt2u8Lz/Ioln2zusRut8SDL6JIf45RVZQlnp1XNtGgyDIzfN3R57ivf+L92h9NjPZC2UU+p1xV+2QjL/CgieJL08omOcO3ZSJ9nET41VGfDiBCXlRLMXxmKhn6yNCAOI72kZHl96Sb3URJ7oy+jtourqGs7DCqAokS3fklo896P39nhga1z9w0qtA0avz6S2UdLdUQvecHCtrmaI2/M3vLc8pmMOaZcbL3+qXi3+yOkxJ8sTtOStj0YieiDBE9Q0RfXBvvI6IniOgIEf05Eem2JI7jbBlezzf7JwC8+Jrx7wD4VAjhAIAFAPe8mRNzHOfNZVMKABFNAvgQgP8I4FeIiADcAeDn1kweAPCbAP7gYsdpdzM41eLBLp9+9A42PvCnOkDj4LwIbJFjAGFZlAHOabElrHIBRAaHAEBXHCe0tRio9hkwbJr6c1S0uUN+QQtJhRk+x+a+MWUTD3OBLDOzoGwkoayFtu4gD+qxgnPafUYm2hAX35KsUZYrc/ExADSG+X7NEX0/OqLcdcaovh0P8HttlQQrHOc3vzW0OfGrK8qE11d0n3sZaJOU9QQKIqNNZrgBm+v1JkU72fstkrXZ2c82x+8B+DX8Q5X3EQDVEMKF2ZwCsNPYz3GcLcKGi52IfhLATAjhqTdyAiL6OBE9SURPrizo0E/HcXrDZn6XeReADxPRBwEUAAwA+C8AKkQUr327TwI4be0cQrgPwH0AMHmDFTDuOE4v2HCxhxB+A8BvAAARvQfAvwkh/DwR/QWAnwLwIIC7ATy00bHO1Qbw6a9xH33yy3z9T92mk0P2fniKjc/8sU6GGLn/MTaOoI8DkYxBZPxiI/34rvbrF/eK29bV/le0agT1dC8+BoDVCT7v1WHD2SUeDJNd0WWzRU4FKOjPWelrJ3mjvHFZb2tW+Daj1TiSvEiEyenzd8t8klFZ+6iyAnS3pOfTEaW962T41eJed4yS0FeNzapt31vdzsZWSeyojz//jtFDvhzz32pVGzQA27JVNs4YJXeqogqO9OHDZWr/9Os4L9YdwXkf/v5LOJbjOJeZ1xWPF0L4KoCvrv37KIBb3/wpOY5zOfAIOsdJCb7YHScl9DTrLbMKDH2Xf760ylyEuP1nnlH73TP2KBv//r94r7I5c/SH+Yav6uPAEKkkFAsB5H0/omyqN0q1x/jMNHQSKVrJXmcA0BABK0v7tU1OxBStjlkiHh+2Vb1lIGpxI1NEMxLaOqI/eyhsXD2FjL73MhjFKoO8iUeGOMuFvXCtzmhriapAYUn3R68N6m3ZnKgeQ0awlniOlkC3IPq/XVeeUjYjImLodHtI2STi+zkvhD6y6miv4d/sjpMSfLE7Tkrwxe44KaG31WUHE3Q/yJM2Cp/mlWEePX5A7XawfJaNf2bsW8rm0d/lPZD++n+/U9kMnOC+ZdeojDL3NhFosk9XHQl1UXG0YSS9lA0/tsOP3Ro02i2J3azAG1nN1uq93s2JHQvWgcS8Y8PfSwxHWkS6ZGpGpZ4K93XJaK00XOG+9b6Krt7y8sIIG1cXdcWdjqgU0zXmHI+LKjB17XtbrccSqcdYLrHYr9nWz3WxxQN9JrI6eakR+Jy6xnexnKOsWnsx/JvdcVKCL3bHSQm+2B0nJfhid5yU0FOBbldhHp+68bNs2z0fvZuNy4+LUs4AjuzdxsaLRprVhwefZuPBj60qm+eWd7DxK0u6RdS+PBfkqg1d4WW6WWHjqGlUahkyyl3X+e1u6tMjI6bdNUSzsJsbWZ/YI6JU8oIhbOUGeUDGUFnfs+n5AbWNREukpGQE9Yg+5t2aFsQ6/XzmQzndfmrPILdZXNLXIQNfukawUrvJ732U0wLqSsuIIJICmKFXlgf5fbPaNtWaPGBnIKOFX9l7fTNYouJ6+De746QEX+yOkxJ8sTtOSuipz94KMU60uaP6H370C3zc+Kdqv699liej3PXzX1c2x9q8Cuv1RV0l6/GFfWycMQIS5urcJyxmtR9FGe6zdvOGX900WhSLhJFOybr9IqjHaCM1LPzxxPBRwyZ8uYES9xvjSAe+DPRrP1q2KJ43/Oi2mFPGqMBbKXFfV7YsBoBChm/bPqIrC58+ylsr9U3oErStZV5d1qpA20n0M+u0+DMio2pwvcb98e6y9v1rItDnjwduVzb37voSG7eM9k8yiCYjqsle7Kn7N7vjpARf7I6TEnyxO05K8MXuOCmht1lvBjKz5w/v+Iyy+XjxF9n4of/zY8qm9lGeCXfn4HPKZn8fLxV8sqoz7GIhvq0aPbspkmWSjYwyQ8hRFU36dGBH1BIikaG4LNd5BtWgEQxzbo4HJ2XzhvgV823WtVaKOvgjEZVYDm7XPeRPLg2y8bLRNmmpwYWtU/WKsllu8/3ysVFuup+LqFZQTbaPl3LuNPS1Li/pAKr4tBDfjGo+4Ry3idv6/DJ78buP63evvpMfR4pvALDc5fejkpECqleqcZzU44vdcVKCL3bHSQk99dkDSLWraYtevi+3eNILANx/+wNs/M9bv6Rs/u5Peb+K0i/oJpLXl86w8aHipLI5OcMrelYGdaVS6f+2lnLKJl7Sn6MyQMZq9dwWySGycg1gVE8xkHMcH9SBJm0RRNJO9HEnSktqW7XFfdvIKKfTn+f3v9XRr1q1yoNx5k9WlA2V+A2IC0ayiPCZm/oVwtgwv45ziU7wSep6jlbwjSS3yI3aA0YlXVHJd+h5fZz/+15eIfmOgReUTb3Fr7Uhyv9ervZPjuO8hfDF7jgpwRe746QEX+yOkxIobKa/zpt1MqJzAI4DGAWgm2Fvbd6KcwbemvP2Ob9x9oQQxqwf9HSxv3pSoidDCLf0/MSXwFtxzsBbc94+58uD/xrvOCnBF7vjpIQrtdjvu0LnvRTeinMG3prz9jlfBq6Iz+44Tu/xX+MdJyX0fLET0fuJ6CUiOkJE9/b6/JuBiD5DRDNE9Nxrtg0T0cNEdHjt/0MXO0avIaJdRPQIEb1ARM8T0SfWtm/ZeRNRgYi+RUTfWZvzb61t30dET6y9I39ORDr54ApDRBkieoaIvrg23vJz7uliJ6IMgP8G4AMArgfwUSK6vpdz2CR/BOD9Ytu9AL4SQrgawFfWxluJDoBfDSFcD+A2AP9q7d5u5Xk3AdwRQng7gJsAvJ+IbgPwOwA+FUI4AGABwD1Xborr8gkAL75mvOXn3Otv9lsBHAkhHA0htAA8COCuHs9hQ0IIjwKYF5vvAnAh/e4BAB/p5Zw2IoRwNoTw9Nq/l3H+RdyJLTzvcJ4L6XjZtf8CgDsA/OXa9i01ZwAgokkAHwLwh2tjwhafM9D7xb4TwMnXjE+tbXsrsC2EcHbt31MAjETKrQER7QVwM4AnsMXnvfbr8CEAMwAeBvAygGoI4UKO7lZ8R34PwK8Br9aNGsHWn7MLdG+EcP5PGFvyzxhE1AfgcwB+OYTAkri34rxDCEkI4SYAkzj/m991V3ZGF4eIfhLATAjhqSs9l9dLrwtOngaw6zXjybVtbwWmiWgihHCWiCZw/ptoS0FEWZxf6H8SQvirtc1bft4AEEKoEtEjAG4HUCGieO2bcqu9I+8C8GEi+iCAAoABAP8FW3vOAHr/zf5tAFevKZc5AD8L4PM9nsMb5fMALvSXvhvAQ1dwLoo1v/F+AC+GEH73NT/asvMmojEiqqz9uwjgTpzXGh4B8FNrZltqziGE3wghTIYQ9uL8+/t3IYSfxxae86uEEHr6H4APAvg+zvtm/67X59/kHP8MwFkAbZz3v+7Beb/sKwAOA/gygOErPU8x53fj/K/ozwI4tPbfB7fyvAH8EIBn1ub8HIB/v7Z9P4BvATgC4C8A5K/0XNeZ/3sAfPGtMmePoHOclOACneOkBF/sjpMSfLE7Tkrwxe44KcEXu+OkBF/sjpMSfLE7Tkrwxe44KeH/A3j0wcpD4ShZAAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"PfIugTuzpVOF","executionInfo":{"status":"ok","timestamp":1616665409321,"user_tz":-60,"elapsed":506981,"user":{"displayName":"Boulet Timothé","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GiayvINTDL_0Iuf52iuumxhg4psHVMYz59ow2vJ=s64","userId":"06174172927805952140"}},"outputId":"6b48caa8-e249-4159-f26e-3b0624998944"},"source":["#Entrainement\n","\n","history = myModel.fit(X, Y, epochs=epochs, validation_split=0.05)\n","\n","myModel.save('modelBadFast')"],"execution_count":34,"outputs":[{"output_type":"stream","name":"stdout","text":["Epoch 1/5\n","1066/1066 [==============================] - 23s 21ms/step - loss: 1.6812 - accuracy: 0.3342 - val_loss: 1.4630 - val_accuracy: 0.4373\n","Epoch 2/5\n","1066/1066 [==============================] - 23s 21ms/step - loss: 1.4233 - accuracy: 0.4578 - val_loss: 1.4197 - val_accuracy: 0.4557\n","Epoch 3/5\n","1066/1066 [==============================] - 23s 21ms/step - loss: 1.3201 - accuracy: 0.5002 - val_loss: 1.3840 - val_accuracy: 0.4674\n","Epoch 4/5\n","1066/1066 [==============================] - 23s 21ms/step - loss: 1.2424 - accuracy: 0.5356 - val_loss: 1.3459 - val_accuracy: 0.4858\n","Epoch 5/5\n","1066/1066 [==============================] - 23s 22ms/step - loss: 1.1637 - accuracy: 0.5634 - val_loss: 1.3297 - val_accuracy: 0.5025\n","WARNING:tensorflow:Skipping full serialization of Keras layer <tensorflow.python.keras.layers.convolutional.Conv2D object at 0x7f7044d1d880>, because it is not built.\n","WARNING:tensorflow:Skipping full serialization of Keras layer <tensorflow.python.keras.layers.convolutional.Conv2D object at 0x7f7044d1dd90>, because it is not built.\n","INFO:tensorflow:Assets written to: modelBadFast/assets\n"]}]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/","height":287},"id":"Etye2vRNpVWY","executionInfo":{"status":"ok","timestamp":1616665440369,"user_tz":-60,"elapsed":1700,"user":{"displayName":"Boulet Timothé","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GiayvINTDL_0Iuf52iuumxhg4psHVMYz59ow2vJ=s64","userId":"06174172927805952140"}},"outputId":"2499af31-7138-4953-8bc6-9152b0c43b8e"},"source":["#Affichage de l'historique de l'apprentissage\n","plt.plot(history.history['accuracy'], label='accuracy')\n","plt.plot(history.history['val_accuracy'], label='val_accuracy')\n","plt.legend()\n","plt.ylim([min(history.history['val_accuracy']+history.history['accuracy']), 1])\n","plt.show()"],"execution_count":35,"outputs":[{"output_type":"display_data","data":{"text/plain":"<Figure size 432x288 with 1 Axes>","image/svg+xml":"<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"252.317344pt\" version=\"1.1\" viewBox=\"0 0 372.103125 252.317344\" width=\"372.103125pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <metadata>\n  <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n   <cc:Work>\n    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n    <dc:date>2021-04-02T20:11:43.783614</dc:date>\n    <dc:format>image/svg+xml</dc:format>\n    <dc:creator>\n     <cc:Agent>\n      <dc:title>Matplotlib v3.3.4, https://matplotlib.org/</dc:title>\n     </cc:Agent>\n    </dc:creator>\n   </cc:Work>\n  </rdf:RDF>\n </metadata>\n <defs>\n  <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\n </defs>\n <g id=\"figure_1\">\n  <g id=\"patch_1\">\n   <path d=\"M 0 252.317344 \nL 372.103125 252.317344 \nL 372.103125 0 \nL 0 0 \nz\n\" style=\"fill:none;\"/>\n  </g>\n  <g id=\"axes_1\">\n   <g id=\"patch_2\">\n    <path d=\"M 30.103125 228.439219 \nL 364.903125 228.439219 \nL 364.903125 10.999219 \nL 30.103125 10.999219 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g id=\"matplotlib.axis_1\">\n    <g id=\"xtick_1\">\n     <g id=\"line2d_1\">\n      <defs>\n       <path d=\"M 0 0 \nL 0 3.5 \n\" id=\"med93b20d43\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n      </defs>\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"45.321307\" xlink:href=\"#med93b20d43\" y=\"228.439219\"/>\n      </g>\n     </g>\n     <g id=\"text_1\">\n      <!-- 0.0 -->\n      <g transform=\"translate(37.369744 243.037656)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 31.78125 66.40625 \nQ 24.171875 66.40625 20.328125 58.90625 \nQ 16.5 51.421875 16.5 36.375 \nQ 16.5 21.390625 20.328125 13.890625 \nQ 24.171875 6.390625 31.78125 6.390625 \nQ 39.453125 6.390625 43.28125 13.890625 \nQ 47.125 21.390625 47.125 36.375 \nQ 47.125 51.421875 43.28125 58.90625 \nQ 39.453125 66.40625 31.78125 66.40625 \nz\nM 31.78125 74.21875 \nQ 44.046875 74.21875 50.515625 64.515625 \nQ 56.984375 54.828125 56.984375 36.375 \nQ 56.984375 17.96875 50.515625 8.265625 \nQ 44.046875 -1.421875 31.78125 -1.421875 \nQ 19.53125 -1.421875 13.0625 8.265625 \nQ 6.59375 17.96875 6.59375 36.375 \nQ 6.59375 54.828125 13.0625 64.515625 \nQ 19.53125 74.21875 31.78125 74.21875 \nz\n\" id=\"DejaVuSans-48\"/>\n        <path d=\"M 10.6875 12.40625 \nL 21 12.40625 \nL 21 0 \nL 10.6875 0 \nz\n\" id=\"DejaVuSans-46\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_2\">\n     <g id=\"line2d_2\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"83.366761\" xlink:href=\"#med93b20d43\" y=\"228.439219\"/>\n      </g>\n     </g>\n     <g id=\"text_2\">\n      <!-- 0.5 -->\n      <g transform=\"translate(75.415199 243.037656)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 10.796875 72.90625 \nL 49.515625 72.90625 \nL 49.515625 64.59375 \nL 19.828125 64.59375 \nL 19.828125 46.734375 \nQ 21.96875 47.46875 24.109375 47.828125 \nQ 26.265625 48.1875 28.421875 48.1875 \nQ 40.625 48.1875 47.75 41.5 \nQ 54.890625 34.8125 54.890625 23.390625 \nQ 54.890625 11.625 47.5625 5.09375 \nQ 40.234375 -1.421875 26.90625 -1.421875 \nQ 22.3125 -1.421875 17.546875 -0.640625 \nQ 12.796875 0.140625 7.71875 1.703125 \nL 7.71875 11.625 \nQ 12.109375 9.234375 16.796875 8.0625 \nQ 21.484375 6.890625 26.703125 6.890625 \nQ 35.15625 6.890625 40.078125 11.328125 \nQ 45.015625 15.765625 45.015625 23.390625 \nQ 45.015625 31 40.078125 35.4375 \nQ 35.15625 39.890625 26.703125 39.890625 \nQ 22.75 39.890625 18.8125 39.015625 \nQ 14.890625 38.140625 10.796875 36.28125 \nz\n\" id=\"DejaVuSans-53\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-53\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_3\">\n     <g id=\"line2d_3\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"121.412216\" xlink:href=\"#med93b20d43\" y=\"228.439219\"/>\n      </g>\n     </g>\n     <g id=\"text_3\">\n      <!-- 1.0 -->\n      <g transform=\"translate(113.460653 243.037656)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 12.40625 8.296875 \nL 28.515625 8.296875 \nL 28.515625 63.921875 \nL 10.984375 60.40625 \nL 10.984375 69.390625 \nL 28.421875 72.90625 \nL 38.28125 72.90625 \nL 38.28125 8.296875 \nL 54.390625 8.296875 \nL 54.390625 0 \nL 12.40625 0 \nz\n\" id=\"DejaVuSans-49\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-49\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_4\">\n     <g id=\"line2d_4\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"159.45767\" xlink:href=\"#med93b20d43\" y=\"228.439219\"/>\n      </g>\n     </g>\n     <g id=\"text_4\">\n      <!-- 1.5 -->\n      <g transform=\"translate(151.506108 243.037656)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-49\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-53\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_5\">\n     <g id=\"line2d_5\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"197.503125\" xlink:href=\"#med93b20d43\" y=\"228.439219\"/>\n      </g>\n     </g>\n     <g id=\"text_5\">\n      <!-- 2.0 -->\n      <g transform=\"translate(189.551563 243.037656)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 19.1875 8.296875 \nL 53.609375 8.296875 \nL 53.609375 0 \nL 7.328125 0 \nL 7.328125 8.296875 \nQ 12.9375 14.109375 22.625 23.890625 \nQ 32.328125 33.6875 34.8125 36.53125 \nQ 39.546875 41.84375 41.421875 45.53125 \nQ 43.3125 49.21875 43.3125 52.78125 \nQ 43.3125 58.59375 39.234375 62.25 \nQ 35.15625 65.921875 28.609375 65.921875 \nQ 23.96875 65.921875 18.8125 64.3125 \nQ 13.671875 62.703125 7.8125 59.421875 \nL 7.8125 69.390625 \nQ 13.765625 71.78125 18.9375 73 \nQ 24.125 74.21875 28.421875 74.21875 \nQ 39.75 74.21875 46.484375 68.546875 \nQ 53.21875 62.890625 53.21875 53.421875 \nQ 53.21875 48.921875 51.53125 44.890625 \nQ 49.859375 40.875 45.40625 35.40625 \nQ 44.1875 33.984375 37.640625 27.21875 \nQ 31.109375 20.453125 19.1875 8.296875 \nz\n\" id=\"DejaVuSans-50\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-50\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_6\">\n     <g id=\"line2d_6\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"235.54858\" xlink:href=\"#med93b20d43\" y=\"228.439219\"/>\n      </g>\n     </g>\n     <g id=\"text_6\">\n      <!-- 2.5 -->\n      <g transform=\"translate(227.597017 243.037656)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-50\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-53\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_7\">\n     <g id=\"line2d_7\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"273.594034\" xlink:href=\"#med93b20d43\" y=\"228.439219\"/>\n      </g>\n     </g>\n     <g id=\"text_7\">\n      <!-- 3.0 -->\n      <g transform=\"translate(265.642472 243.037656)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 40.578125 39.3125 \nQ 47.65625 37.796875 51.625 33 \nQ 55.609375 28.21875 55.609375 21.1875 \nQ 55.609375 10.40625 48.1875 4.484375 \nQ 40.765625 -1.421875 27.09375 -1.421875 \nQ 22.515625 -1.421875 17.65625 -0.515625 \nQ 12.796875 0.390625 7.625 2.203125 \nL 7.625 11.71875 \nQ 11.71875 9.328125 16.59375 8.109375 \nQ 21.484375 6.890625 26.8125 6.890625 \nQ 36.078125 6.890625 40.9375 10.546875 \nQ 45.796875 14.203125 45.796875 21.1875 \nQ 45.796875 27.640625 41.28125 31.265625 \nQ 36.765625 34.90625 28.71875 34.90625 \nL 20.21875 34.90625 \nL 20.21875 43.015625 \nL 29.109375 43.015625 \nQ 36.375 43.015625 40.234375 45.921875 \nQ 44.09375 48.828125 44.09375 54.296875 \nQ 44.09375 59.90625 40.109375 62.90625 \nQ 36.140625 65.921875 28.71875 65.921875 \nQ 24.65625 65.921875 20.015625 65.03125 \nQ 15.375 64.15625 9.8125 62.3125 \nL 9.8125 71.09375 \nQ 15.4375 72.65625 20.34375 73.4375 \nQ 25.25 74.21875 29.59375 74.21875 \nQ 40.828125 74.21875 47.359375 69.109375 \nQ 53.90625 64.015625 53.90625 55.328125 \nQ 53.90625 49.265625 50.4375 45.09375 \nQ 46.96875 40.921875 40.578125 39.3125 \nz\n\" id=\"DejaVuSans-51\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-51\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_8\">\n     <g id=\"line2d_8\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"311.639489\" xlink:href=\"#med93b20d43\" y=\"228.439219\"/>\n      </g>\n     </g>\n     <g id=\"text_8\">\n      <!-- 3.5 -->\n      <g transform=\"translate(303.687926 243.037656)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-51\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-53\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_9\">\n     <g id=\"line2d_9\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"349.684943\" xlink:href=\"#med93b20d43\" y=\"228.439219\"/>\n      </g>\n     </g>\n     <g id=\"text_9\">\n      <!-- 4.0 -->\n      <g transform=\"translate(341.733381 243.037656)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 37.796875 64.3125 \nL 12.890625 25.390625 \nL 37.796875 25.390625 \nz\nM 35.203125 72.90625 \nL 47.609375 72.90625 \nL 47.609375 25.390625 \nL 58.015625 25.390625 \nL 58.015625 17.1875 \nL 47.609375 17.1875 \nL 47.609375 0 \nL 37.796875 0 \nL 37.796875 17.1875 \nL 4.890625 17.1875 \nL 4.890625 26.703125 \nz\n\" id=\"DejaVuSans-52\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-52\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"matplotlib.axis_2\">\n    <g id=\"ytick_1\">\n     <g id=\"line2d_10\">\n      <defs>\n       <path d=\"M 0 0 \nL -3.5 0 \n\" id=\"m34a8879d3a\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n      </defs>\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"30.103125\" xlink:href=\"#m34a8879d3a\" y=\"222.496062\"/>\n      </g>\n     </g>\n     <g id=\"text_10\">\n      <!-- 0.4 -->\n      <g transform=\"translate(7.2 226.295281)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-52\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_2\">\n     <g id=\"line2d_11\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"30.103125\" xlink:href=\"#m34a8879d3a\" y=\"187.246588\"/>\n      </g>\n     </g>\n     <g id=\"text_11\">\n      <!-- 0.5 -->\n      <g transform=\"translate(7.2 191.045807)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-53\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_3\">\n     <g id=\"line2d_12\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"30.103125\" xlink:href=\"#m34a8879d3a\" y=\"151.997114\"/>\n      </g>\n     </g>\n     <g id=\"text_12\">\n      <!-- 0.6 -->\n      <g transform=\"translate(7.2 155.796333)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 33.015625 40.375 \nQ 26.375 40.375 22.484375 35.828125 \nQ 18.609375 31.296875 18.609375 23.390625 \nQ 18.609375 15.53125 22.484375 10.953125 \nQ 26.375 6.390625 33.015625 6.390625 \nQ 39.65625 6.390625 43.53125 10.953125 \nQ 47.40625 15.53125 47.40625 23.390625 \nQ 47.40625 31.296875 43.53125 35.828125 \nQ 39.65625 40.375 33.015625 40.375 \nz\nM 52.59375 71.296875 \nL 52.59375 62.3125 \nQ 48.875 64.0625 45.09375 64.984375 \nQ 41.3125 65.921875 37.59375 65.921875 \nQ 27.828125 65.921875 22.671875 59.328125 \nQ 17.53125 52.734375 16.796875 39.40625 \nQ 19.671875 43.65625 24.015625 45.921875 \nQ 28.375 48.1875 33.59375 48.1875 \nQ 44.578125 48.1875 50.953125 41.515625 \nQ 57.328125 34.859375 57.328125 23.390625 \nQ 57.328125 12.15625 50.6875 5.359375 \nQ 44.046875 -1.421875 33.015625 -1.421875 \nQ 20.359375 -1.421875 13.671875 8.265625 \nQ 6.984375 17.96875 6.984375 36.375 \nQ 6.984375 53.65625 15.1875 63.9375 \nQ 23.390625 74.21875 37.203125 74.21875 \nQ 40.921875 74.21875 44.703125 73.484375 \nQ 48.484375 72.75 52.59375 71.296875 \nz\n\" id=\"DejaVuSans-54\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-54\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_4\">\n     <g id=\"line2d_13\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"30.103125\" xlink:href=\"#m34a8879d3a\" y=\"116.74764\"/>\n      </g>\n     </g>\n     <g id=\"text_13\">\n      <!-- 0.7 -->\n      <g transform=\"translate(7.2 120.546859)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 8.203125 72.90625 \nL 55.078125 72.90625 \nL 55.078125 68.703125 \nL 28.609375 0 \nL 18.3125 0 \nL 43.21875 64.59375 \nL 8.203125 64.59375 \nz\n\" id=\"DejaVuSans-55\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-55\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_5\">\n     <g id=\"line2d_14\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"30.103125\" xlink:href=\"#m34a8879d3a\" y=\"81.498167\"/>\n      </g>\n     </g>\n     <g id=\"text_14\">\n      <!-- 0.8 -->\n      <g transform=\"translate(7.2 85.297385)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 31.78125 34.625 \nQ 24.75 34.625 20.71875 30.859375 \nQ 16.703125 27.09375 16.703125 20.515625 \nQ 16.703125 13.921875 20.71875 10.15625 \nQ 24.75 6.390625 31.78125 6.390625 \nQ 38.8125 6.390625 42.859375 10.171875 \nQ 46.921875 13.96875 46.921875 20.515625 \nQ 46.921875 27.09375 42.890625 30.859375 \nQ 38.875 34.625 31.78125 34.625 \nz\nM 21.921875 38.8125 \nQ 15.578125 40.375 12.03125 44.71875 \nQ 8.5 49.078125 8.5 55.328125 \nQ 8.5 64.0625 14.71875 69.140625 \nQ 20.953125 74.21875 31.78125 74.21875 \nQ 42.671875 74.21875 48.875 69.140625 \nQ 55.078125 64.0625 55.078125 55.328125 \nQ 55.078125 49.078125 51.53125 44.71875 \nQ 48 40.375 41.703125 38.8125 \nQ 48.828125 37.15625 52.796875 32.3125 \nQ 56.78125 27.484375 56.78125 20.515625 \nQ 56.78125 9.90625 50.3125 4.234375 \nQ 43.84375 -1.421875 31.78125 -1.421875 \nQ 19.734375 -1.421875 13.25 4.234375 \nQ 6.78125 9.90625 6.78125 20.515625 \nQ 6.78125 27.484375 10.78125 32.3125 \nQ 14.796875 37.15625 21.921875 38.8125 \nz\nM 18.3125 54.390625 \nQ 18.3125 48.734375 21.84375 45.5625 \nQ 25.390625 42.390625 31.78125 42.390625 \nQ 38.140625 42.390625 41.71875 45.5625 \nQ 45.3125 48.734375 45.3125 54.390625 \nQ 45.3125 60.0625 41.71875 63.234375 \nQ 38.140625 66.40625 31.78125 66.40625 \nQ 25.390625 66.40625 21.84375 63.234375 \nQ 18.3125 60.0625 18.3125 54.390625 \nz\n\" id=\"DejaVuSans-56\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-56\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_6\">\n     <g id=\"line2d_15\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"30.103125\" xlink:href=\"#m34a8879d3a\" y=\"46.248693\"/>\n      </g>\n     </g>\n     <g id=\"text_15\">\n      <!-- 0.9 -->\n      <g transform=\"translate(7.2 50.047911)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 10.984375 1.515625 \nL 10.984375 10.5 \nQ 14.703125 8.734375 18.5 7.8125 \nQ 22.3125 6.890625 25.984375 6.890625 \nQ 35.75 6.890625 40.890625 13.453125 \nQ 46.046875 20.015625 46.78125 33.40625 \nQ 43.953125 29.203125 39.59375 26.953125 \nQ 35.25 24.703125 29.984375 24.703125 \nQ 19.046875 24.703125 12.671875 31.3125 \nQ 6.296875 37.9375 6.296875 49.421875 \nQ 6.296875 60.640625 12.9375 67.421875 \nQ 19.578125 74.21875 30.609375 74.21875 \nQ 43.265625 74.21875 49.921875 64.515625 \nQ 56.59375 54.828125 56.59375 36.375 \nQ 56.59375 19.140625 48.40625 8.859375 \nQ 40.234375 -1.421875 26.421875 -1.421875 \nQ 22.703125 -1.421875 18.890625 -0.6875 \nQ 15.09375 0.046875 10.984375 1.515625 \nz\nM 30.609375 32.421875 \nQ 37.25 32.421875 41.125 36.953125 \nQ 45.015625 41.5 45.015625 49.421875 \nQ 45.015625 57.28125 41.125 61.84375 \nQ 37.25 66.40625 30.609375 66.40625 \nQ 23.96875 66.40625 20.09375 61.84375 \nQ 16.21875 57.28125 16.21875 49.421875 \nQ 16.21875 41.5 20.09375 36.953125 \nQ 23.96875 32.421875 30.609375 32.421875 \nz\n\" id=\"DejaVuSans-57\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-57\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_7\">\n     <g id=\"line2d_16\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"30.103125\" xlink:href=\"#m34a8879d3a\" y=\"10.999219\"/>\n      </g>\n     </g>\n     <g id=\"text_16\">\n      <!-- 1.0 -->\n      <g transform=\"translate(7.2 14.798437)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-49\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"line2d_17\">\n    <path clip-path=\"url(#p028aaf89a5)\" d=\"M 45.321307 228.439219 \nL 121.412216 200.977465 \nL 197.503125 187.339643 \nL 273.594034 175.759383 \nL 349.684943 165.564627 \n\" style=\"fill:none;stroke:#1f77b4;stroke-linecap:square;stroke-width:1.5;\"/>\n   </g>\n   <g id=\"line2d_18\">\n    <path clip-path=\"url(#p028aaf89a5)\" d=\"M 45.321307 209.338881 \nL 121.412216 202.858477 \nL 197.503125 198.734581 \nL 273.594034 192.254178 \nL 349.684943 186.362894 \n\" style=\"fill:none;stroke:#ff7f0e;stroke-linecap:square;stroke-width:1.5;\"/>\n   </g>\n   <g id=\"patch_3\">\n    <path d=\"M 30.103125 228.439219 \nL 30.103125 10.999219 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_4\">\n    <path d=\"M 364.903125 228.439219 \nL 364.903125 10.999219 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_5\">\n    <path d=\"M 30.103125 228.439219 \nL 364.903125 228.439219 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_6\">\n    <path d=\"M 30.103125 10.999219 \nL 364.903125 10.999219 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"legend_1\">\n    <g id=\"patch_7\">\n     <path d=\"M 260.959375 48.633594 \nL 357.903125 48.633594 \nQ 359.903125 48.633594 359.903125 46.633594 \nL 359.903125 17.999219 \nQ 359.903125 15.999219 357.903125 15.999219 \nL 260.959375 15.999219 \nQ 258.959375 15.999219 258.959375 17.999219 \nL 258.959375 46.633594 \nQ 258.959375 48.633594 260.959375 48.633594 \nz\n\" style=\"fill:#ffffff;opacity:0.8;stroke:#cccccc;stroke-linejoin:miter;\"/>\n    </g>\n    <g id=\"line2d_19\">\n     <path d=\"M 262.959375 24.097656 \nL 282.959375 24.097656 \n\" style=\"fill:none;stroke:#1f77b4;stroke-linecap:square;stroke-width:1.5;\"/>\n    </g>\n    <g id=\"line2d_20\"/>\n    <g id=\"text_17\">\n     <!-- accuracy -->\n     <g transform=\"translate(290.959375 27.597656)scale(0.1 -0.1)\">\n      <defs>\n       <path d=\"M 34.28125 27.484375 \nQ 23.390625 27.484375 19.1875 25 \nQ 14.984375 22.515625 14.984375 16.5 \nQ 14.984375 11.71875 18.140625 8.90625 \nQ 21.296875 6.109375 26.703125 6.109375 \nQ 34.1875 6.109375 38.703125 11.40625 \nQ 43.21875 16.703125 43.21875 25.484375 \nL 43.21875 27.484375 \nz\nM 52.203125 31.203125 \nL 52.203125 0 \nL 43.21875 0 \nL 43.21875 8.296875 \nQ 40.140625 3.328125 35.546875 0.953125 \nQ 30.953125 -1.421875 24.3125 -1.421875 \nQ 15.921875 -1.421875 10.953125 3.296875 \nQ 6 8.015625 6 15.921875 \nQ 6 25.140625 12.171875 29.828125 \nQ 18.359375 34.515625 30.609375 34.515625 \nL 43.21875 34.515625 \nL 43.21875 35.40625 \nQ 43.21875 41.609375 39.140625 45 \nQ 35.0625 48.390625 27.6875 48.390625 \nQ 23 48.390625 18.546875 47.265625 \nQ 14.109375 46.140625 10.015625 43.890625 \nL 10.015625 52.203125 \nQ 14.9375 54.109375 19.578125 55.046875 \nQ 24.21875 56 28.609375 56 \nQ 40.484375 56 46.34375 49.84375 \nQ 52.203125 43.703125 52.203125 31.203125 \nz\n\" id=\"DejaVuSans-97\"/>\n       <path d=\"M 48.78125 52.59375 \nL 48.78125 44.1875 \nQ 44.96875 46.296875 41.140625 47.34375 \nQ 37.3125 48.390625 33.40625 48.390625 \nQ 24.65625 48.390625 19.8125 42.84375 \nQ 14.984375 37.3125 14.984375 27.296875 \nQ 14.984375 17.28125 19.8125 11.734375 \nQ 24.65625 6.203125 33.40625 6.203125 \nQ 37.3125 6.203125 41.140625 7.25 \nQ 44.96875 8.296875 48.78125 10.40625 \nL 48.78125 2.09375 \nQ 45.015625 0.34375 40.984375 -0.53125 \nQ 36.96875 -1.421875 32.421875 -1.421875 \nQ 20.0625 -1.421875 12.78125 6.34375 \nQ 5.515625 14.109375 5.515625 27.296875 \nQ 5.515625 40.671875 12.859375 48.328125 \nQ 20.21875 56 33.015625 56 \nQ 37.15625 56 41.109375 55.140625 \nQ 45.0625 54.296875 48.78125 52.59375 \nz\n\" id=\"DejaVuSans-99\"/>\n       <path d=\"M 8.5 21.578125 \nL 8.5 54.6875 \nL 17.484375 54.6875 \nL 17.484375 21.921875 \nQ 17.484375 14.15625 20.5 10.265625 \nQ 23.53125 6.390625 29.59375 6.390625 \nQ 36.859375 6.390625 41.078125 11.03125 \nQ 45.3125 15.671875 45.3125 23.6875 \nL 45.3125 54.6875 \nL 54.296875 54.6875 \nL 54.296875 0 \nL 45.3125 0 \nL 45.3125 8.40625 \nQ 42.046875 3.421875 37.71875 1 \nQ 33.40625 -1.421875 27.6875 -1.421875 \nQ 18.265625 -1.421875 13.375 4.4375 \nQ 8.5 10.296875 8.5 21.578125 \nz\nM 31.109375 56 \nz\n\" id=\"DejaVuSans-117\"/>\n       <path d=\"M 41.109375 46.296875 \nQ 39.59375 47.171875 37.8125 47.578125 \nQ 36.03125 48 33.890625 48 \nQ 26.265625 48 22.1875 43.046875 \nQ 18.109375 38.09375 18.109375 28.8125 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.1875 \nQ 20.953125 51.171875 25.484375 53.578125 \nQ 30.03125 56 36.53125 56 \nQ 37.453125 56 38.578125 55.875 \nQ 39.703125 55.765625 41.0625 55.515625 \nz\n\" id=\"DejaVuSans-114\"/>\n       <path d=\"M 32.171875 -5.078125 \nQ 28.375 -14.84375 24.75 -17.8125 \nQ 21.140625 -20.796875 15.09375 -20.796875 \nL 7.90625 -20.796875 \nL 7.90625 -13.28125 \nL 13.1875 -13.28125 \nQ 16.890625 -13.28125 18.9375 -11.515625 \nQ 21 -9.765625 23.484375 -3.21875 \nL 25.09375 0.875 \nL 2.984375 54.6875 \nL 12.5 54.6875 \nL 29.59375 11.921875 \nL 46.6875 54.6875 \nL 56.203125 54.6875 \nz\n\" id=\"DejaVuSans-121\"/>\n      </defs>\n      <use xlink:href=\"#DejaVuSans-97\"/>\n      <use x=\"61.279297\" xlink:href=\"#DejaVuSans-99\"/>\n      <use x=\"116.259766\" xlink:href=\"#DejaVuSans-99\"/>\n      <use x=\"171.240234\" xlink:href=\"#DejaVuSans-117\"/>\n      <use x=\"234.619141\" xlink:href=\"#DejaVuSans-114\"/>\n      <use x=\"275.732422\" xlink:href=\"#DejaVuSans-97\"/>\n      <use x=\"337.011719\" xlink:href=\"#DejaVuSans-99\"/>\n      <use x=\"391.992188\" xlink:href=\"#DejaVuSans-121\"/>\n     </g>\n    </g>\n    <g id=\"line2d_21\">\n     <path d=\"M 262.959375 38.775781 \nL 282.959375 38.775781 \n\" style=\"fill:none;stroke:#ff7f0e;stroke-linecap:square;stroke-width:1.5;\"/>\n    </g>\n    <g id=\"line2d_22\"/>\n    <g id=\"text_18\">\n     <!-- val_accuracy -->\n     <g transform=\"translate(290.959375 42.275781)scale(0.1 -0.1)\">\n      <defs>\n       <path d=\"M 2.984375 54.6875 \nL 12.5 54.6875 \nL 29.59375 8.796875 \nL 46.6875 54.6875 \nL 56.203125 54.6875 \nL 35.6875 0 \nL 23.484375 0 \nz\n\" id=\"DejaVuSans-118\"/>\n       <path d=\"M 9.421875 75.984375 \nL 18.40625 75.984375 \nL 18.40625 0 \nL 9.421875 0 \nz\n\" id=\"DejaVuSans-108\"/>\n       <path d=\"M 50.984375 -16.609375 \nL 50.984375 -23.578125 \nL -0.984375 -23.578125 \nL -0.984375 -16.609375 \nz\n\" id=\"DejaVuSans-95\"/>\n      </defs>\n      <use xlink:href=\"#DejaVuSans-118\"/>\n      <use x=\"59.179688\" xlink:href=\"#DejaVuSans-97\"/>\n      <use x=\"120.458984\" xlink:href=\"#DejaVuSans-108\"/>\n      <use x=\"148.242188\" xlink:href=\"#DejaVuSans-95\"/>\n      <use x=\"198.242188\" xlink:href=\"#DejaVuSans-97\"/>\n      <use x=\"259.521484\" xlink:href=\"#DejaVuSans-99\"/>\n      <use x=\"314.501953\" xlink:href=\"#DejaVuSans-99\"/>\n      <use x=\"369.482422\" xlink:href=\"#DejaVuSans-117\"/>\n      <use x=\"432.861328\" xlink:href=\"#DejaVuSans-114\"/>\n      <use x=\"473.974609\" xlink:href=\"#DejaVuSans-97\"/>\n      <use x=\"535.253906\" xlink:href=\"#DejaVuSans-99\"/>\n      <use x=\"590.234375\" xlink:href=\"#DejaVuSans-121\"/>\n     </g>\n    </g>\n   </g>\n  </g>\n </g>\n <defs>\n  <clipPath id=\"p028aaf89a5\">\n   <rect height=\"217.44\" width=\"334.8\" x=\"30.103125\" y=\"10.999219\"/>\n  </clipPath>\n </defs>\n</svg>\n","image/png":"iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAj50lEQVR4nO3deXgc1Z3u8e9Pm7XbWtqWrMULeBHekK2wZsDB44mTGBuScQyTMDETwuUmwARuwgNMhngIyeQmMNmGS+IwJCGBEMbEjMOQMDCYh2SABBmbzTZgbIglb9osa1/P/aNbrZbUslp2S90qv5/n6cddVaerjsru10enTp0y5xwiIjLxJcS6AiIiEh0KdBERj1Cgi4h4hAJdRMQjFOgiIh6hQBcR8YgRA93MHjCzo2b2xjDbzcy+b2Z7zew1M1sa/WqKiMhIImmh/xRYdYLtHwHmBF7XAvederVERGS0Rgx059zzQP0JiqwFHnR+LwFTzKwwWhUUEZHIJEVhH0XAgZDlqsC6Q4MLmtm1+FvxZGRkLJs/f34UDi8icvrYvn17rXPOF25bNAI9Ys65TcAmgIqKCldZWTmehxcRmfDM7P3htkVjlEs1UBKyXBxYJyIi4ygagb4V+NvAaJfzgEbn3JDuFhERGVsjdrmY2S+B5UC+mVUBXwWSAZxzPwSeBD4K7AVagavHqrIiIjK8EQPdOXflCNsd8IWo1UhEYqKrq4uqqira29tjXRUBUlNTKS4uJjk5OeLPjOtFURGJX1VVVWRlZTFz5kzMLNbVOa0556irq6OqqopZs2ZF/Dnd+i8iALS3t5OXl6cwjwNmRl5e3qh/W1Kgi0iQwjx+nMzfhQJdRMQjFOgiIh6hQBeR0053d3esqzAmFOgiElcuu+wyli1bxoIFC9i0aRMAv/vd71i6dClLlixhxYoVADQ3N3P11VezaNEiFi9ezGOPPQZAZmZmcF+bN29mw4YNAGzYsIHrrruOc889l1tuuYU//elPnH/++ZSXl3PBBRfw1ltvAdDT08OXvvQlFi5cyOLFi/nBD37As88+y2WXXRbc79NPP83ll18+DmdjdDRsUUSG+KffvMmug8ejus+zpmfz1UsXjFjugQceIDc3l7a2Nj7wgQ+wdu1aPve5z/H8888za9Ys6uv9k79+7WtfY/Lkybz++usANDQ0jLjvqqoqXnjhBRITEzl+/Di///3vSUpK4plnnuH222/nscceY9OmTbz33nvs3LmTpKQk6uvrycnJ4fOf/zw1NTX4fD5+8pOf8Hd/93endkLGgAJdROLK97//fbZs2QLAgQMH2LRpExdddFFwPHZubi4AzzzzDI888kjwczk5OSPue926dSQmJgLQ2NjIZz7zGd555x3MjK6uruB+r7vuOpKSkgYc76qrruIXv/gFV199NS+++CIPPvhglH7i6FGgi8gQkbSkx8Jzzz3HM888w4svvkh6ejrLly/n7LPPZs+ePRHvI3S43+Bx3BkZGcH3//iP/8iHPvQhtmzZwnvvvcfy5ctPuN+rr76aSy+9lNTUVNatWxcM/HiiPnQRiRuNjY3k5OSQnp7Onj17eOmll2hvb+f5559n//79AMEul5UrV3LvvfcGP9vX5TJt2jR2795Nb29vsKU/3LGKiooA+OlPfxpcv3LlSn70ox8FL5z2HW/69OlMnz6du+66i6uvjs8pqxToIhI3Vq1aRXd3N2VlZdx6662cd955+Hw+Nm3axMc//nGWLFnC+vXrAfjKV75CQ0MDCxcuZMmSJWzbtg2Ab37zm6xevZoLLriAwsLhH552yy23cNttt1FeXj5g1Ms111xDaWkpixcvZsmSJTz88MPBbZ/61KcoKSmhrKxsjM7AqTH/3FrjTw+4EIkvu3fvjtugihfXX3895eXlfPaznx2X44X7OzGz7c65inDl468TSEQkDi1btoyMjAzuueeeWFdlWAp0EZEIbN++PdZVGJH60EVEPEKBLiLiEQp0ERGPUKCLiHiEAl1ExCMU6CIyIYXOqih+CnQRkVMQT3Oraxy6iAz121vh8OvR3WfBIvjIN4fdfOutt1JSUsIXvvAFADZu3EhSUhLbtm2joaGBrq4u7rrrLtauXTvioZqbm1m7dm3Yzz344IPcfffdmBmLFy/m5z//OUeOHOG6665j3759ANx3331Mnz6d1atX88YbbwBw991309zczMaNG4OThv3hD3/gyiuvZO7cudx11110dnaSl5fHQw89xLRp02hubuaGG26gsrISM+OrX/0qjY2NvPbaa3z3u98F4Mc//jG7du3iO9/5zqmcXUCBLiJxYv369Xzxi18MBvqjjz7KU089xY033kh2dja1tbWcd955rFmzZsQHKKemprJly5Yhn9u1axd33XUXL7zwAvn5+cGJt2688UYuvvhitmzZQk9PD83NzSPOr97Z2Unf9CUNDQ289NJLmBn3338/3/rWt7jnnnvCztmenJzM17/+db797W+TnJzMT37yE370ox+d6ukDFOgiEs4JWtJjpby8nKNHj3Lw4EFqamrIycmhoKCAm266ieeff56EhASqq6s5cuQIBQUFJ9yXc47bb799yOeeffZZ1q1bR35+PtA/1/mzzz4bnN88MTGRyZMnjxjofZOEgf/BGevXr+fQoUN0dnYG524fbs72Sy65hCeeeIKysjK6urpYtGjRKM9WeAp0EYkb69atY/PmzRw+fJj169fz0EMPUVNTw/bt20lOTmbmzJlD5jgP52Q/FyopKYne3t7g8onmVr/hhhu4+eabWbNmDc899xwbN2484b6vueYavvGNbzB//vyoTsUb0UVRM1tlZm+Z2V4zuzXM9hlm9t9m9pqZPWdmxVGroYicNtavX88jjzzC5s2bWbduHY2NjUydOpXk5GS2bdvG+++/H9F+hvvcJZdcwr//+79TV1cH9M91vmLFCu677z7A/0zRxsZGpk2bxtGjR6mrq6Ojo4MnnnjihMfrm1v9Zz/7WXD9cHO2n3vuuRw4cICHH36YK6+8MtLTM6IRA93MEoF7gY8AZwFXmtlZg4rdDTzonFsM3An8c9RqKCKnjQULFtDU1ERRURGFhYV86lOforKykkWLFvHggw8yf/78iPYz3OcWLFjAP/zDP3DxxRezZMkSbr75ZgC+973vsW3bNhYtWsSyZcvYtWsXycnJ3HHHHZxzzjmsXLnyhMfeuHEj69atY9myZcHuHBh+znaAT37yk1x44YURPTovUiPOh25m5wMbnXMfDizfBuCc++eQMm8Cq5xzB8x/taLROZd9ov1qPnSR+KL50MfX6tWruemmm1ixYsWwZUY7H3okXS5FwIGQ5arAulCvAh8PvL8cyDKzvAj2LSJyWjl27Bhz584lLS3thGF+MqJ1UfRLwL+a2QbgeaAa6BlcyMyuBa4FKC0tjdKhReR09frrr3PVVVcNWDdp0iT++Mc/xqhGI5syZQpvv/32mOw7kkCvBkpClosD64KccwcJtNDNLBP4hHPu2OAdOec2AZvA3+VyclUWkbHinBtxjHc8WbRoETt37ox1NcbEyTweNJIul5eBOWY2y8xSgCuAraEFzCzfzPr2dRvwwKhrIiIxlZqaSl1d3UkFiUSXc466ujpSU1NH9bkRW+jOuW4zux54CkgEHnDOvWlmdwKVzrmtwHLgn83M4e9y+cJofwARia3i4mKqqqqoqamJdVUE/3+wxcWjGwE+4iiXsaJRLiIio3eqo1xERGQCUKCLiHiEAl1ExCMU6CIiHqFAFxHxCAW6iIhHKNBFRDxCgS4i4hEKdBERj1Cgi4h4hAJdRMQjFOgiIh6hQBcR8QgFuoiIRyjQRUQ8QoEuIuIRCnQREY9QoIuIeIQCXUTEIxToIiIeoUAXEfEIBbqIiEco0EVEPEKBLiLiEQp0ERGPUKCLiHiEAl1ExCMiCnQzW2Vmb5nZXjO7Ncz2UjPbZmY7zOw1M/to9KsqIiInMmKgm1kicC/wEeAs4EozO2tQsa8AjzrnyoErgP8X7YqKiMiJRdJCPwfY65zb55zrBB4B1g4q44DswPvJwMHoVVFERCIRSaAXAQdClqsC60JtBD5tZlXAk8AN4XZkZteaWaWZVdbU1JxEdUVEZDjRuih6JfBT51wx8FHg52Y2ZN/OuU3OuQrnXIXP54vSoUVEBCIL9GqgJGS5OLAu1GeBRwGccy8CqUB+NCooIiKRiSTQXwbmmNksM0vBf9Fz66AyfwZWAJhZGf5AV5+KiMg4GjHQnXPdwPXAU8Bu/KNZ3jSzO81sTaDY/wE+Z2avAr8ENjjn3FhVWkREhkqKpJBz7kn8FztD190R8n4XcGF0qyYiIqOhO0VFRDxCgS4i4hEKdBERj1Cgi4h4hAJdRMQjFOgiIh6hQBcR8QgFuoiIRyjQRUQ8QoEuIuIRCnQREY9QoIuIeIQCXUTEIxToIiIeoUAXEfEIBbqIiEco0EVEPEKBLiLiEQp0ERGPUKCLiHiEAl1ExCMU6CIiHqFAFxHxCAW6iIhHKNBFRDxCgS4i4hERBbqZrTKzt8xsr5ndGmb7d8xsZ+D1tpkdi3pNRUTkhJJGKmBmicC9wEqgCnjZzLY653b1lXHO3RRS/gagfAzqKiIiJxBJC/0cYK9zbp9zrhN4BFh7gvJXAr+MRuVERCRykQR6EXAgZLkqsG4IM5sBzAKeHWb7tWZWaWaVNTU1o62riIicQLQvil4BbHbO9YTb6Jzb5JyrcM5V+Hy+KB9aROT0FkmgVwMlIcvFgXXhXIG6W0REYiKSQH8ZmGNms8wsBX9obx1cyMzmAznAi9GtooiIRGLEQHfOdQPXA08Bu4FHnXNvmtmdZrYmpOgVwCPOOTc2VRURkRMZcdgigHPuSeDJQevuGLS8MXrVEhGR0dKdoiIiHqFAFxHxCAW6iIhHKNBFRDxCgS4i4hEKdBERj1Cgi4h4hAJdRMQjFOgiIh6hQBcR8QgFuoiIRyjQRUQ8QoEuIuIRCnQREY9QoIuIeIQCXUTEIxToIiIeoUAXEfEIBbqIiEco0EVEPEKBLiLiEQp0ERGPUKCLiHiEAl1ExCMU6CIiHqFAFxHxiIgC3cxWmdlbZrbXzG4dpswnzWyXmb1pZg9Ht5oiIjKSpJEKmFkicC+wEqgCXjazrc65XSFl5gC3ARc65xrMbOpYVVhERMKLpIV+DrDXObfPOdcJPAKsHVTmc8C9zrkGAOfc0ehWU0RERhJJoBcBB0KWqwLrQs0F5prZ/5jZS2a2KtyOzOxaM6s0s8qampqTq7GIiIQVrYuiScAcYDlwJfBjM5syuJBzbpNzrsI5V+Hz+aJ0aBERgcgCvRooCVkuDqwLVQVsdc51Oef2A2/jD3gRERknkQT6y8AcM5tlZinAFcDWQWUex986x8zy8XfB7IteNUVEZCQjBrpzrhu4HngK2A086px708zuNLM1gWJPAXVmtgvYBnzZOVc3VpUWEZGhzDkXkwNXVFS4ysrKmBxbRGSiMrPtzrmKcNt0p6iIiEco0EVEPEKBLiLiEQp0ERGPUKCLiHiEAl1ExCMU6CIiHjHi9LkiIjJ6nd29VB9r48/1rf5XXUvgfRs3XHImH11UGPVjKtBFRE6Cc47Gti7er2sNCe3+94ca2+gNuW8zJSmB0tx0SnPTSU9JHJM6KdBFRIbR1dPLoWPt/Lm+lffr/S3sA/WtwRBvau8eUD4/M4XS3HQ+MDOH0twiSvMygiE+NWsSCQk2pvVVoIvIaa2xrYsDgVZ1X1AfCAT4wWPt9IQ0s1MSEyjOSaM0L51lM3KCYV2al05JTjoZk2IbqQp0EfG0nl7HwWNtwdD2t7Zbg8vHWrsGlM/NSKEkN53ykhzWLvEHdkluOjPy0pmWnUriGLeyT4UCXUQmvOaO7kD/dUt/aNf5Q7uqoY3ukFZ2UoJRnJNGSW46qxcXBlvZJYE/s1KTY/iTnBoFuojEvd5ex+Hj7UMuPPa96ls6B5Sfkp5MaW46C4om85FFhcwICe3CyakkJXpzxLYCXUTiQktHNwcawgd2VX0bnT29wbKJCcb0KanMyM3gwwsKKA10ifSF9uS0idvKPhUKdBEZF729jprmjkHD/PrHZtc2dwwonzUpidK8dOYXZLHyrGnBrpEZuRkUTkkl2aOt7FOhQBeRqGnv6hkwrK9/xIj/z47u/lZ2gkHh5DRKc9P5y7KpwT7svtb25LRkzOL3AmQ8UqCLyKi0d/XwXl0L+2pa2FfTzL7almCIH20a2MrOSEmkNC+DM3wZfGieb8C47KIpaaQkqZUdTQp0ERnCOf9FyL7QfremhX21/vfVx9oIfXJlQXYqM/LSuXiuLzgmuy+0czNS1MoeRwp0kdNYS0c3+2tbeLem2R/egdDeX9tCa2dPsFx6SiKzfRksLc3hr5cVM9uXyez8DGblZ8T8Zhrpp78JEY/r6XVUN7Txbm0z+2ta2FcbCO+aFg4fbw+WM4PinDRm52dyzqxcZvsyOSM/g9m+TKZlT1JLewJQoIt4RGNrF+8Gw7qvxd3Me3WtdIZcjMxOTWK2L5MLzszjjEBLe7Yvkxl56aQmj82kUTI+FOgiE0hXTy9/rm8dEtr7alqoC7m5JinBKM1NZ7Yvg+XzpgZDe7Yvgzz1a3uWAl0kzjjnqGvpHDCKpC+8/1zfOuA29vzMFGbnZ7LyrGnM9mUwO98f2iW56RqnfRpSoIvEyJDhfzUtvFvbwv6aZo6HTMuakpTArLwM5hVk8ZFFBcHQnp2fyeT00/OOSAlPgS4yhkY7/G+2L4M1Z08PhvYZvkymT0mL6xn+JH5EFOhmtgr4HpAI3O+c++ag7RuAbwPVgVX/6py7P4r1FIlroxn+Nys/g/LSHD6xtDgY2hr+J9Ew4r8gM0sE7gVWAlXAy2a21Tm3a1DRXznnrh+DOorEhVMd/jfLl0FBdqouSJ7uujsBB0mTor7rSJoE5wB7nXP7AMzsEWAtMDjQRTxBw/8kYj1d0NYArXWBV3349231/es6jsOl34dln4l6dSIJ9CLgQMhyFXBumHKfMLOLgLeBm5xzB8KUEYkbXT297KtpYc/h4+w+1MSew8fZc6hpQGtbw/9OIz3d0H4sJJAHB3P9wPVt9dDeOPz+kjMgPQ/Sc/1/5p7Rv1y4ZEx+hGh12v0G+KVzrsPM/hfwM+CSwYXM7FrgWoDS0tIoHVrkxJxz1DR1sPtwE3sOHeetw03sPtzE3qNNdPX4r0omJxpn+DI5/4w85hVk+VvcPv9EUhr+NwH19kDbsUGt49BXw9B17ceG319yuj+M03L8f+bMDIRzX2DnhiznQVouJKeO0w/bL5JArwZKQpaL6b/4CYBzri5k8X7gW+F25JzbBGwCqKiocOHKiJyK9q4e3jnSzO5Aa3vP4ePsOdw04Ik2BdmpzC/M4uK5PsoKs5hXkMXs/EzN/BevensDLef6EwR0/aAujgZgmIhJnAQZ+f0hPLl4YBgPDui0XEhJH8+f+KRFEugvA3PMbBb+IL8C+JvQAmZW6Jw7FFhcA+yOai1FBnHOUdXQxp5Aq3vPYX94769toe++m9TkBOYVZLOybBrzC7OYX5DN/IIscjJSYlv505lz/m6KYfuYw/RDt9WD6w2/v8SUgUFcsLA/hAcEdMifyen+K9ceNGKgO+e6zex64Cn8wxYfcM69aWZ3ApXOua3AjWa2BugG6oENY1hnOc00tXfx9pGmAf3cbx1uoqmj/+ab0lz/k20+tng6ZQVZzC/MpjQ3XeO3x5Jz0NkMLbVD+5cHXwgMDWjXE35/CckDg3dq2dBujAEBnQcpGZ4N55NhzsWm56OiosJVVlbG5NgSn3p6He/VtQS7SvoCvKqhLVgmKzWJsoLsYIt7XoG/yyRTY7ijo6sdWmuhpQZa6gJ/9r0C61tr+993t4ffjyUO6sbIGbQcJqAnZSmcI2Bm251zFeG26VsgMVHf0smeQ8f7L1Qe8be6+x5RlphgzM7P4OySKVx5TinzA63u6ZM1jntUerr9LeUBoVw7fEh3HA+/n8RJkOHz9z1n+MA3v/99en6gTzrkomHqZIVzDCjQZUx1dvfybk1zsKukL8BDH1WWl5FCWWE2V503g/mF/n7uM6dmaix3OM71j3se0nquHRjSLTXDXxzsa0H3hfT0pYH3fet8/dvS89V6niAU6BIVzjmOHO8YOLrkUBPv1jQHZwdMSUxgzrRM/mJO/+iS+QXZ+LKif8fchOEcdLb0B3FrmNZzaFi31kJvd/h9peX0t5h982DmB0Na1fkDgzp1CiRoVI/XKNBl1Fo7u3n7SPOA0SV7DjdxrLUrWKZoShrzCrJYUTaV+YXZlBVkMTM/4/QY093dMTCMRwrp7rbw+0nJ7A/iycUw/eyhredgt0ceJGrmxdOdAl2G1dvrHxo4eEz3e3UtwVkC01MS/dO6LiykrO9C5bQsb03r2tvjH50xuIujNUwXR0sddAxz92BiyqB+6Hkh3R6DQjo9f8KMfZb4oUAXABrbunjr8MDRJW8dbgrOFGgGM/MymF+QxWVnFzGvIIuywixKctJJiPehgb090NE09NUZZl3HcWg/PrCPurWe8P3QCf0XBDPyYXr5wH7nASHtUz+0jDkF+mmmu6eX/bUt/V0lh5rYc7iJ6mP9v/ZPTktmfkEWn6woCY4umTstk/SUcfzn4py/66IvZCMK49Cyzf3ruloiO2Zyhj90J2X5Azh/Dsy4YOgFwr7ltBz1Q0tcUaB73P7aFv5795Fgq/udo83BGQOTEvzzl1TMzOHTBTOYX5hFWUH2qT3hvbfXf7NJ2JAdZSD3do18PEuE1GxIyeoP4/R8yJnVvzwpGyZlhiz3rQtZTsmEBI2qkYlNge5Bdc0dPPHaIbbsqGbngWMATM2axPzCbD54Zn5wdMkZUzOYlBQIsWBr+CAcHiGQO5vDh3Tftkgkpw8M00lZMGXGoNAdLpBDwjgpVd0YIgEKdI9o7+rhv19/n+de2cU7+/czxTXyF1O6uHWBY+GULjJp8wduQxMcaYY/DQrkns6RD2IJQwM1LQcml4Rv9Q7XOk7JgkT90xOJNn2r4llPV8jFucF3+NXgWmpprj9MZ+MRUjvr+Zi18zGAvgEmrcC7+O/yS80eGLJ9IZwyTMs3XCB7eFIjES9QoI+nvmlAh73Db9BwuLaGsLtxCUk0J07hUHcmh7uzOJ4wm+y8C5lROoOSklISMqeGjL7waQIjkdOEAv1UOOfvrmipCXMrdh1DbiZprRtmpjnrv8svwwdTzxpy40g9k3n6/R427+mg8kgPCQmJXDzXx+XlRfxl2TTSUnRBT+R0p0AfrKttdHf59XSE38+k7P5hbjkzobgi/B1+GT7/rHNh+pSbO7r53RuHefyFav7n3VqcgyUlU9i4pojViwvJyzyNb5kXkSG8H+g93YNaz6Gzy4W5y6+zKfx+EidB5tT+IJ561tD5MfomNkrPP+nHT3X39PL7vbVseaWa/9p1mPauXkpy07jhQ2dyWXkRs32Zp3AyRMTLJl6gD+iHPsE0oANmmwvDEkMCOdCKTs8fPqRTMsesH9o5x+vVjfz6lWqeeO0gtc2dTE5L5hNLi/n40iKWluZoylgRGdHEC/Q/3APP3hV+W1puSAu6DDIu6p+4aPB8GXEw29yB+lb+Y2c1v95Rzb6aFlISE1hRNpXLyov40LypesaliIzKxAv0My4JzEI3KKjTcyfEbHONrV385+uH2LKjipff8//2cM6sXD73F7P56MJCb01qJSLjauIFetEy/2sC6ejuYdueGrbsqGLbnho6e3o5w5fBlz88jzVLplOSq1n1ROTUTbxAnyCcc1S+38CWHdX852uHaGzrIj9zEp8+bwaXlxexsChb/eIiElUK9Ch7t6aZx3dUs2VHNVUNbaQlJ/LhBdO4rLyID56ZT9Lp8IAHEYkJBXoU1DZ38JtXD7JlRzWvVTWSYHDhmfncvHIuf7WgQE+kF5FxoaQ5SW2dPfzXrsM8vqOa59+ppafXcVZhNl/5WBmXLpnOtOyTG4cuInKyFOij0NPrePHdOrbsqOZ3bxyipbOH6ZNTufai2cGn+IiIxIoCPQK7Dh7n8Z3V/MfOao4c7yBrUhKrF0/nsvIizp2VG/+PYBOR04ICfRiHGtv4j50HeXxHNXsON5GUYCyf5+OO1cWsKJtKarImwxKR+KJAD9HU3sVv3/D3i7+4rw7noLx0CneuXcDqxdPJzUiJdRVFRIYVUaCb2Srge0AicL9z7pvDlPsEsBn4gHOuMmq1HENdPb38/p0afv1KNU/vOkJHdy8z8tK58ZI5XF5exMz8jFhXUUQkIiMGupklAvcCK4Eq4GUz2+qc2zWoXBbw98Afx6Ki0eSc49WqRra8UsVvXjtEfUsnOenJfLKihMuXFlFeMkU3/YjIhBNJC/0cYK9zbh+AmT0CrAV2DSr3NeD/Al+Oag2j6M91rWzZUc3jO6vZX9tCSlICK8v8N/1cPNenybBEZEKLJNCLgAMhy1XAuaEFzGwpUOKc+08zGzbQzexa4FqA0tLS0df2JDS0dAYmw6pm+/v+ybDOm53LdRfPZtXCQianaTIsEfGGU74oamYJwL8AG0Yq65zbBGwCqKiocKd67OG0d/Wwbc9Rfr2jmufeOkpXj2PO1ExuWTWPtWcXUTQlbawOLSISM5EEejVQErJcHFjXJwtYCDwX6HcuALaa2ZrxvDDa2+t4+b16/2RYrx+iqb0bX9YkPnP+TC4rL2LBdE2GJSLeFkmgvwzMMbNZ+IP8CuBv+jY65xqB/L5lM3sO+NJ4hfneo03+fvEdB6k+1kZ6SiKrFhRwWXkRF5yRp8mwROS0MWKgO+e6zex64Cn8wxYfcM69aWZ3ApXOua1jXcnBjja185tX/Q+JeKP6OAkGH5zj48sfnsdfLZhGeoqG14vI6cecG7Ou7BOqqKhwlZWjb8Tf//t9fOPJ3fQ6WFiUzeXlxVy6pJCpWZoMS0S8z8y2O+cqwm6LVaCbWQ3w/kl+PB+ojWJ1okX1Gh3Va/TitW6q1+icSr1mOOd84TbELNBPhZlVDvc/VCypXqOjeo1evNZN9RqdsaqXrhiKiHiEAl1ExCMmaqBvinUFhqF6jY7qNXrxWjfVa3TGpF4Tsg9dRESGmqgtdBERGUSBLiLiEXEd6Ga2yszeMrO9ZnZrmO2TzOxXge1/NLOZcVKvDWZWY2Y7A69rxqleD5jZUTN7Y5jtZmbfD9T7tcAsmfFQr+Vm1hhyvu4YhzqVmNk2M9tlZm+a2d+HKTPu5yvCesXifKWa2Z/M7NVAvf4pTJlx/z5GWK+YfB8Dx040sx1m9kSYbdE/X865uHzhn2bgXWA2kAK8Cpw1qMzngR8G3l8B/CpO6rUB+NcYnLOLgKXAG8Ns/yjwW8CA84A/xkm9lgNPjPO5KgSWBt5nAW+H+Xsc9/MVYb1icb4MyAy8T8b/IJvzBpWJxfcxknrF5PsYOPbNwMPh/r7G4nzFcws9+GAN51wn0PdgjVBrgZ8F3m8GVtjYT6kYSb1iwjn3PFB/giJrgQed30vAFDMrjIN6jTvn3CHn3CuB903Abvxz/4ca9/MVYb3GXeAcNAcWkwOvwSMqxv37GGG9YsLMioGPAfcPUyTq5yueAz3cgzUG/8MOlnHOdQONQF4c1AvgE4Ff0zebWUmY7bEQad1j4fzAr82/NbMF43ngwK+65Qx9fGJMz9cJ6gUxOF+B7oOdwFHgaefcsOdrHL+PkdQLYvN9/C5wC9A7zPaon694DvSJ7DfATOfcYuBp+v8XlvBewT8/xRLgB8Dj43VgM8sEHgO+6Jw7Pl7HHckI9YrJ+XLO9Tjnzsb/TIRzzGzheBx3JBHUa9y/j2a2GjjqnNs+1scKFc+BPtKDNQaUMbMkYDJQF+t6OefqnHMdgcX7gWVjXKdIRXJOx51z7njfr83OuSeBZDPLH+Fjp8zMkvGH5kPOuV+HKRKT8zVSvWJ1vkKOfwzYBqwatCkW38cR6xWj7+OFwBozew9/t+wlZvaLQWWifr7iOdCDD9YwsxT8Fw0Gz72+FfhM4P1fA8+6wBWGWNZrUD/rGvz9oPFgK/C3gdEb5wGNzrlDsa6UmRX09R2a2Tn4/12OaRAEjvdvwG7n3L8MU2zcz1ck9YrR+fKZ2ZTA+zRgJbBnULFx/z5GUq9YfB+dc7c554qdczPxZ8SzzrlPDyoW9fMVt0+CcJE9WOPfgJ+b2V78F92uiJN63Whma4DuQL02jHW9AMzsl/hHQOSbWRXwVfwXiXDO/RB4Ev/Ijb1AK3B1nNTrr4H/bWbdQBtwxTj8x3whcBXweqD/FeB2oDSkXrE4X5HUKxbnqxD4mZkl4v8P5FHn3BOx/j5GWK+YfB/DGevzpVv/RUQ8Ip67XEREZBQU6CIiHqFAFxHxCAW6iIhHKNBFRDxCgS4i4hEKdBERj/j/IOyf+IuhdkoAAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"code","metadata":{"id":"U5S7JROCpVYh"},"source":["# myModel = keras.models.load_model(\"modeleTest\")\r\n","# print(myModel.predict(np.array([theImage]))[0,:])"],"execution_count":38,"outputs":[{"output_type":"stream","name":"stdout","text":["[2.96738029e-01 1.24476401e-05 2.17953697e-01 1.91844806e-01\n"," 1.76624253e-01 1.78373352e-06 1.16824925e-01]\n","[6.6510475e-01 8.1453304e-04 5.7720199e-02 1.3529294e-04 2.1474548e-01\n"," 2.6716415e-03 5.8808159e-02]\n"]}]},{"cell_type":"code","metadata":{"id":"aY5kLCgIpVa_"},"source":[],"execution_count":null,"outputs":[]}]}
\ No newline at end of file
+{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"name":"buildEmotionModelFromFer2013.ipynb","provenance":[],"collapsed_sections":[],"mount_file_id":"12gj_RNUkhCcpPsrHCcnjM-aFz0bHG8Nk","authorship_tag":"ABX9TyP/j4/kXn/SBJc9poEkTWTi"},"kernelspec":{"name":"python3","display_name":"Python 3","language":"python"},"language_info":{"name":"python","version":"3.8.5"}},"cells":[{"cell_type":"code","metadata":{"id":"1321rUeQzURj","cellView":"form","executionInfo":{"status":"ok","timestamp":1616663382789,"user_tz":-60,"elapsed":3339,"user":{"displayName":"Boulet Timothé","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GiayvINTDL_0Iuf52iuumxhg4psHVMYz59ow2vJ=s64","userId":"06174172927805952140"}}},"source":["#@title Imports\n","import tensorflow as tf\n","from tensorflow import keras\n","from tensorflow.keras import datasets, layers, models, losses\n","import tensorflow_datasets as tfds\n","#from google.colab import files\n","\n","from matplotlib import image\n","import os\n","import numpy as np\n","import matplotlib.pyplot as plt\n","import matplotlib\n","import random as rd\n","import cv2\n","import csv"],"execution_count":1,"outputs":[]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"-6y_a77Xmx3X","executionInfo":{"status":"ok","timestamp":1616662751659,"user_tz":-60,"elapsed":5015,"user":{"displayName":"Boulet Timothé","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GiayvINTDL_0Iuf52iuumxhg4psHVMYz59ow2vJ=s64","userId":"06174172927805952140"}},"outputId":"fa99ea9f-0f75-42a2-fba5-c09606d4198d"},"source":["#from google.colab import drive\n","#drive.mount('/content/drive')"],"execution_count":3,"outputs":[]},{"cell_type":"code","metadata":{"id":"a4LizvrK0fes","cellView":"form","executionInfo":{"status":"ok","timestamp":1616664903890,"user_tz":-60,"elapsed":1577,"user":{"displayName":"Boulet Timothé","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GiayvINTDL_0Iuf52iuumxhg4psHVMYz59ow2vJ=s64","userId":"06174172927805952140"}}},"source":["#@title Hyperparamètres\n","classes = [\"Angry\", \"Disgust\", \"Fear\", \"Happy\", \"Sad\", \"Suprise\", \"Neutral\"]\n","Na = len(classes)\n","maxNbrImagesForEachClasses = float('inf')\n","h = 48\n","l = 48\n","p = 1\n","input_shape = (h, l, p)\n","\n","epochs = 5\n","batch_size = 128\n","validation_size = 0.1"],"execution_count":24,"outputs":[]},{"cell_type":"code","metadata":{"cellView":"form","id":"J26HwuSTpVQK","executionInfo":{"status":"ok","timestamp":1616663639205,"user_tz":-60,"elapsed":726,"user":{"displayName":"Boulet Timothé","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GiayvINTDL_0Iuf52iuumxhg4psHVMYz59ow2vJ=s64","userId":"06174172927805952140"}}},"source":["#@title Fonction utils\n","import numpy as np\n","import cv2\n","import matplotlib.pyplot as plt\n","\n","def afficher(image):\n","    if len(image.shape) == 3:\n","        if image.shape[2] == 3:  # (h,l,3)\n","            plt.imshow(image)\n","        elif image.shape[2] == 1:  # (h,l,1)->(h,l)\n","            image2 = image\n","            plt.imshow(tf.squeeze(image))\n","    elif len(image.shape) == 2:  # (h,l)\n","        plt.imshow(image)\n","\n","\n","def predir(modele, image):\n","    # Return output of image from modele\n","    return modele.predict(np.array([image]))[0, :]\n","\n","\n","def normAndResize(image, input_shape):\n","    # For an array image of shape (a,b,c) or (a,b), transform it into (h,l,p). Also normalize it.\n","\n","    h, l, p = input_shape\n","    # resize for h and l                                       #\n","    image = cv2.resize(image, dsize=(h, l), interpolation=cv2.INTER_CUBIC)\n","    # if we want (h,l,3) -> (h,l,1) , we first transform it in to (h,l) (grey the image)\n","    if len(image.shape) == 3 and p == 1 and image.shape[2] != 1:\n","        image = image.mean(2)\n","    image = np.reshape(image, (h, l, p))  # restore third dimension\n","    image = image.astype(\"float32\")\n","    image = image/255  # normalisation\n","\n","    return image\n","\n","\n","def selectFace(image):\n","    #Return a face identified on an colored image\n","\n","    #Import cv2 face detector\n","    face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades+'haarcascade_frontalface_default.xml')\n","\n","    #Face detection is made on gray images\n","    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)\n","\n","    faces = face_cascade.detectMultiScale(gray, 1.3, 5) #This return a list of tuple locating faces on image\n","    \n","    #The face returned is the first face detected on the image (if exists)\n","    if faces != []:\n","        x,y,w,h = faces[0]\n","        face = image[y:y+h, x:x+w]\n","        return face"],"execution_count":40,"outputs":[]},{"cell_type":"code","metadata":{"id":"33votd1Y0fcg","colab":{"base_uri":"https://localhost:8080/"},"cellView":"form","executionInfo":{"status":"ok","timestamp":1616664902296,"user_tz":-60,"elapsed":102287,"user":{"displayName":"Boulet Timothé","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GiayvINTDL_0Iuf52iuumxhg4psHVMYz59ow2vJ=s64","userId":"06174172927805952140"}},"outputId":"ec40cf93-99e9-458f-b24b-a9d45934f7db","tags":["outputPrepend"]},"source":["#@title Load data as array\n","nbrImages = 35887\n","maxNbrImages = 10000000000\n","emotions = [\"Angry\", \"Disgust\", \"Fear\", \"Happy\", \"Sad\", \"Suprise\", \"Neutral\"]\n","\n","def traitement(a,b,c):  #For testing\n","\tpass\n","\t# arr = strToArray(b)\n","\t# print(a)\n","\t# plt.imshow(arr)\n","\t# plt.show()\n","\t# pass\n","\n","def strToArray(string):  #Fer2013 provides images as string so it needs to be transformed\n","\tA = []\n","\tlenght = len(string)\n","\ti=0\n","\tnbr = \"\"\n","\n","\twhile i<lenght:\n","\t\tcar = string[i]\n","\n","\t\tif car != \" \":\n","\t\t\tnbr += car\n","\t\telse:\n","\t\t\tA.append(int(nbr))\n","\t\t\tnbr = \"\"\n","\t\ti+=1\n","\tA.append(int(nbr))\n","\t\n","\tA = np.array(A)\n","\tA = np.reshape(A, (48, 48))\n","\n","\treturn A\n","\n","\n","\n","#LOAD DATA AS ARRAY\n","X = []\n","Y = []\n","\n","filename = \"/content/drive/MyDrive/Colab Notebooks/facial emotion recognition/fer2013.csv\"\n","filename = \"data/fer2013.csv\"\n","\n","with open(filename,'r',encoding='utf-8') as file:\n","\t\n","\tcsv_reader = csv.reader(file, delimiter=\",\")\n","\tnext(csv_reader)  \t\t\t\t\t\t\t\t#Passe la ligne de titre\n","\t\n","\ti=0\n","\tfor row in csv_reader:\n","\n","\t\ti+=1\n","\t\tif i>maxNbrImages: break\n","\t\t\n","\t\temotionNbr, stringImage, typeImage = row\n","\t\ttraitement(emotionNbr, stringImage, typeImage)\n","\t\timage = normAndResize(strToArray(stringImage), input_shape)\n","\n","\t\tX.append(image)\n","\t\tY.append(emotionNbr)\n","\n","\t\tprint(f\"Image {i} sur {nbrImages} chargée\", end='\\r')\n","\n","X = np.array(X)\n","N = len(X)\n","\n","Y = np.array(Y)\n","Y = keras.utils.to_categorical(Y)"],"execution_count":27,"outputs":[{"output_type":"stream","name":"stdout","text":["1 sur 35887 chargée\n","Image 35222 sur 35887 chargée\n","Image 35223 sur 35887 chargée\n","Image 35224 sur 35887 chargée\n","Image 35225 sur 35887 chargée\n","Image 35226 sur 35887 chargée\n","Image 35227 sur 35887 chargée\n","Image 35228 sur 35887 chargée\n","Image 35229 sur 35887 chargée\n","Image 35230 sur 35887 chargée\n","Image 35231 sur 35887 chargée\n","Image 35232 sur 35887 chargée\n","Image 35233 sur 35887 chargée\n","Image 35234 sur 35887 chargée\n","Image 35235 sur 35887 chargée\n","Image 35236 sur 35887 chargée\n","Image 35237 sur 35887 chargée\n","Image 35238 sur 35887 chargée\n","Image 35239 sur 35887 chargée\n","Image 35240 sur 35887 chargée\n","Image 35241 sur 35887 chargée\n","Image 35242 sur 35887 chargée\n","Image 35243 sur 35887 chargée\n","Image 35244 sur 35887 chargée\n","Image 35245 sur 35887 chargée\n","Image 35246 sur 35887 chargée\n","Image 35247 sur 35887 chargée\n","Image 35248 sur 35887 chargée\n","Image 35249 sur 35887 chargée\n","Image 35250 sur 35887 chargée\n","Image 35251 sur 35887 chargée\n","Image 35252 sur 35887 chargée\n","Image 35253 sur 35887 chargée\n","Image 35254 sur 35887 chargée\n","Image 35255 sur 35887 chargée\n","Image 35256 sur 35887 chargée\n","Image 35257 sur 35887 chargée\n","Image 35258 sur 35887 chargée\n","Image 35259 sur 35887 chargée\n","Image 35260 sur 35887 chargée\n","Image 35261 sur 35887 chargée\n","Image 35262 sur 35887 chargée\n","Image 35263 sur 35887 chargée\n","Image 35264 sur 35887 chargée\n","Image 35265 sur 35887 chargée\n","Image 35266 sur 35887 chargée\n","Image 35267 sur 35887 chargée\n","Image 35268 sur 35887 chargée\n","Image 35269 sur 35887 chargée\n","Image 35270 sur 35887 chargée\n","Image 35271 sur 35887 chargée\n","Image 35272 sur 35887 chargée\n","Image 35273 sur 35887 chargée\n","Image 35274 sur 35887 chargée\n","Image 35275 sur 35887 chargée\n","Image 35276 sur 35887 chargée\n","Image 35277 sur 35887 chargée\n","Image 35278 sur 35887 chargée\n","Image 35279 sur 35887 chargée\n","Image 35280 sur 35887 chargée\n","Image 35281 sur 35887 chargée\n","Image 35282 sur 35887 chargée\n","Image 35283 sur 35887 chargée\n","Image 35284 sur 35887 chargée\n","Image 35285 sur 35887 chargée\n","Image 35286 sur 35887 chargée\n","Image 35287 sur 35887 chargée\n","Image 35288 sur 35887 chargée\n","Image 35289 sur 35887 chargée\n","Image 35290 sur 35887 chargée\n","Image 35291 sur 35887 chargée\n","Image 35292 sur 35887 chargée\n","Image 35293 sur 35887 chargée\n","Image 35294 sur 35887 chargée\n","Image 35295 sur 35887 chargée\n","Image 35296 sur 35887 chargée\n","Image 35297 sur 35887 chargée\n","Image 35298 sur 35887 chargée\n","Image 35299 sur 35887 chargée\n","Image 35300 sur 35887 chargée\n","Image 35301 sur 35887 chargée\n","Image 35302 sur 35887 chargée\n","Image 35303 sur 35887 chargée\n","Image 35304 sur 35887 chargée\n","Image 35305 sur 35887 chargée\n","Image 35306 sur 35887 chargée\n","Image 35307 sur 35887 chargée\n","Image 35308 sur 35887 chargée\n","Image 35309 sur 35887 chargée\n","Image 35310 sur 35887 chargée\n","Image 35311 sur 35887 chargée\n","Image 35312 sur 35887 chargée\n","Image 35313 sur 35887 chargée\n","Image 35314 sur 35887 chargée\n","Image 35315 sur 35887 chargée\n","Image 35316 sur 35887 chargée\n","Image 35317 sur 35887 chargée\n","Image 35318 sur 35887 chargée\n","Image 35319 sur 35887 chargée\n","Image 35320 sur 35887 chargée\n","Image 35321 sur 35887 chargée\n","Image 35322 sur 35887 chargée\n","Image 35323 sur 35887 chargée\n","Image 35324 sur 35887 chargée\n","Image 35325 sur 35887 chargée\n","Image 35326 sur 35887 chargée\n","Image 35327 sur 35887 chargée\n","Image 35328 sur 35887 chargée\n","Image 35329 sur 35887 chargée\n","Image 35330 sur 35887 chargée\n","Image 35331 sur 35887 chargée\n","Image 35332 sur 35887 chargée\n","Image 35333 sur 35887 chargée\n","Image 35334 sur 35887 chargée\n","Image 35335 sur 35887 chargée\n","Image 35336 sur 35887 chargée\n","Image 35337 sur 35887 chargée\n","Image 35338 sur 35887 chargée\n","Image 35339 sur 35887 chargée\n","Image 35340 sur 35887 chargée\n","Image 35341 sur 35887 chargée\n","Image 35342 sur 35887 chargée\n","Image 35343 sur 35887 chargée\n","Image 35344 sur 35887 chargée\n","Image 35345 sur 35887 chargée\n","Image 35346 sur 35887 chargée\n","Image 35347 sur 35887 chargée\n","Image 35348 sur 35887 chargée\n","Image 35349 sur 35887 chargée\n","Image 35350 sur 35887 chargée\n","Image 35351 sur 35887 chargée\n","Image 35352 sur 35887 chargée\n","Image 35353 sur 35887 chargée\n","Image 35354 sur 35887 chargée\n","Image 35355 sur 35887 chargée\n","Image 35356 sur 35887 chargée\n","Image 35357 sur 35887 chargée\n","Image 35358 sur 35887 chargée\n","Image 35359 sur 35887 chargée\n","Image 35360 sur 35887 chargée\n","Image 35361 sur 35887 chargée\n","Image 35362 sur 35887 chargée\n","Image 35363 sur 35887 chargée\n","Image 35364 sur 35887 chargée\n","Image 35365 sur 35887 chargée\n","Image 35366 sur 35887 chargée\n","Image 35367 sur 35887 chargée\n","Image 35368 sur 35887 chargée\n","Image 35369 sur 35887 chargée\n","Image 35370 sur 35887 chargée\n","Image 35371 sur 35887 chargée\n","Image 35372 sur 35887 chargée\n","Image 35373 sur 35887 chargée\n","Image 35374 sur 35887 chargée\n","Image 35375 sur 35887 chargée\n","Image 35376 sur 35887 chargée\n","Image 35377 sur 35887 chargée\n","Image 35378 sur 35887 chargée\n","Image 35379 sur 35887 chargée\n","Image 35380 sur 35887 chargée\n","Image 35381 sur 35887 chargée\n","Image 35382 sur 35887 chargée\n","Image 35383 sur 35887 chargée\n","Image 35384 sur 35887 chargée\n","Image 35385 sur 35887 chargée\n","Image 35386 sur 35887 chargée\n","Image 35387 sur 35887 chargée\n","Image 35388 sur 35887 chargée\n","Image 35389 sur 35887 chargée\n","Image 35390 sur 35887 chargée\n","Image 35391 sur 35887 chargée\n","Image 35392 sur 35887 chargée\n","Image 35393 sur 35887 chargée\n","Image 35394 sur 35887 chargée\n","Image 35395 sur 35887 chargée\n","Image 35396 sur 35887 chargée\n","Image 35397 sur 35887 chargée\n","Image 35398 sur 35887 chargée\n","Image 35399 sur 35887 chargée\n","Image 35400 sur 35887 chargée\n","Image 35401 sur 35887 chargée\n","Image 35402 sur 35887 chargée\n","Image 35403 sur 35887 chargée\n","Image 35404 sur 35887 chargée\n","Image 35405 sur 35887 chargée\n","Image 35406 sur 35887 chargée\n","Image 35407 sur 35887 chargée\n","Image 35408 sur 35887 chargée\n","Image 35409 sur 35887 chargée\n","Image 35410 sur 35887 chargée\n","Image 35411 sur 35887 chargée\n","Image 35412 sur 35887 chargée\n","Image 35413 sur 35887 chargée\n","Image 35414 sur 35887 chargée\n","Image 35415 sur 35887 chargée\n","Image 35416 sur 35887 chargée\n","Image 35417 sur 35887 chargée\n","Image 35418 sur 35887 chargée\n","Image 35419 sur 35887 chargée\n","Image 35420 sur 35887 chargée\n","Image 35421 sur 35887 chargée\n","Image 35422 sur 35887 chargée\n","Image 35423 sur 35887 chargée\n","Image 35424 sur 35887 chargée\n","Image 35425 sur 35887 chargée\n","Image 35426 sur 35887 chargée\n","Image 35427 sur 35887 chargée\n","Image 35428 sur 35887 chargée\n","Image 35429 sur 35887 chargée\n","Image 35430 sur 35887 chargée\n","Image 35431 sur 35887 chargée\n","Image 35432 sur 35887 chargée\n","Image 35433 sur 35887 chargée\n","Image 35434 sur 35887 chargée\n","Image 35435 sur 35887 chargée\n","Image 35436 sur 35887 chargée\n","Image 35437 sur 35887 chargée\n","Image 35438 sur 35887 chargée\n","Image 35439 sur 35887 chargée\n","Image 35440 sur 35887 chargée\n","Image 35441 sur 35887 chargée\n","Image 35442 sur 35887 chargée\n","Image 35443 sur 35887 chargée\n","Image 35444 sur 35887 chargée\n","Image 35445 sur 35887 chargée\n","Image 35446 sur 35887 chargée\n","Image 35447 sur 35887 chargée\n","Image 35448 sur 35887 chargée\n","Image 35449 sur 35887 chargée\n","Image 35450 sur 35887 chargée\n","Image 35451 sur 35887 chargée\n","Image 35452 sur 35887 chargée\n","Image 35453 sur 35887 chargée\n","Image 35454 sur 35887 chargée\n","Image 35455 sur 35887 chargée\n","Image 35456 sur 35887 chargée\n","Image 35457 sur 35887 chargée\n","Image 35458 sur 35887 chargée\n","Image 35459 sur 35887 chargée\n","Image 35460 sur 35887 chargée\n","Image 35461 sur 35887 chargée\n","Image 35462 sur 35887 chargée\n","Image 35463 sur 35887 chargée\n","Image 35464 sur 35887 chargée\n","Image 35465 sur 35887 chargée\n","Image 35466 sur 35887 chargée\n","Image 35467 sur 35887 chargée\n","Image 35468 sur 35887 chargée\n","Image 35469 sur 35887 chargée\n","Image 35470 sur 35887 chargée\n","Image 35471 sur 35887 chargée\n","Image 35472 sur 35887 chargée\n","Image 35473 sur 35887 chargée\n","Image 35474 sur 35887 chargée\n","Image 35475 sur 35887 chargée\n","Image 35476 sur 35887 chargée\n","Image 35477 sur 35887 chargée\n","Image 35478 sur 35887 chargée\n","Image 35479 sur 35887 chargée\n","Image 35480 sur 35887 chargée\n","Image 35481 sur 35887 chargée\n","Image 35482 sur 35887 chargée\n","Image 35483 sur 35887 chargée\n","Image 35484 sur 35887 chargée\n","Image 35485 sur 35887 chargée\n","Image 35486 sur 35887 chargée\n","Image 35487 sur 35887 chargée\n","Image 35488 sur 35887 chargée\n","Image 35489 sur 35887 chargée\n","Image 35490 sur 35887 chargée\n","Image 35491 sur 35887 chargée\n","Image 35492 sur 35887 chargée\n","Image 35493 sur 35887 chargée\n","Image 35494 sur 35887 chargée\n","Image 35495 sur 35887 chargée\n","Image 35496 sur 35887 chargée\n","Image 35497 sur 35887 chargée\n","Image 35498 sur 35887 chargée\n","Image 35499 sur 35887 chargée\n","Image 35500 sur 35887 chargée\n","Image 35501 sur 35887 chargée\n","Image 35502 sur 35887 chargée\n","Image 35503 sur 35887 chargée\n","Image 35504 sur 35887 chargée\n","Image 35505 sur 35887 chargée\n","Image 35506 sur 35887 chargée\n","Image 35507 sur 35887 chargée\n","Image 35508 sur 35887 chargée\n","Image 35509 sur 35887 chargée\n","Image 35510 sur 35887 chargée\n","Image 35511 sur 35887 chargée\n","Image 35512 sur 35887 chargée\n","Image 35513 sur 35887 chargée\n","Image 35514 sur 35887 chargée\n","Image 35515 sur 35887 chargée\n","Image 35516 sur 35887 chargée\n","Image 35517 sur 35887 chargée\n","Image 35518 sur 35887 chargée\n","Image 35519 sur 35887 chargée\n","Image 35520 sur 35887 chargée\n","Image 35521 sur 35887 chargée\n","Image 35522 sur 35887 chargée\n","Image 35523 sur 35887 chargée\n","Image 35524 sur 35887 chargée\n","Image 35525 sur 35887 chargée\n","Image 35526 sur 35887 chargée\n","Image 35527 sur 35887 chargée\n","Image 35528 sur 35887 chargée\n","Image 35529 sur 35887 chargée\n","Image 35530 sur 35887 chargée\n","Image 35531 sur 35887 chargée\n","Image 35532 sur 35887 chargée\n","Image 35533 sur 35887 chargée\n","Image 35534 sur 35887 chargée\n","Image 35535 sur 35887 chargée\n","Image 35536 sur 35887 chargée\n","Image 35537 sur 35887 chargée\n","Image 35538 sur 35887 chargée\n","Image 35539 sur 35887 chargée\n","Image 35540 sur 35887 chargée\n","Image 35541 sur 35887 chargée\n","Image 35542 sur 35887 chargée\n","Image 35543 sur 35887 chargée\n","Image 35544 sur 35887 chargée\n","Image 35545 sur 35887 chargée\n","Image 35546 sur 35887 chargée\n","Image 35547 sur 35887 chargée\n","Image 35548 sur 35887 chargée\n","Image 35549 sur 35887 chargée\n","Image 35550 sur 35887 chargée\n","Image 35551 sur 35887 chargée\n","Image 35552 sur 35887 chargée\n","Image 35553 sur 35887 chargée\n","Image 35554 sur 35887 chargée\n","Image 35555 sur 35887 chargée\n","Image 35556 sur 35887 chargée\n","Image 35557 sur 35887 chargée\n","Image 35558 sur 35887 chargée\n","Image 35559 sur 35887 chargée\n","Image 35560 sur 35887 chargée\n","Image 35561 sur 35887 chargée\n","Image 35562 sur 35887 chargée\n","Image 35563 sur 35887 chargée\n","Image 35564 sur 35887 chargée\n","Image 35565 sur 35887 chargée\n","Image 35566 sur 35887 chargée\n","Image 35567 sur 35887 chargée\n","Image 35568 sur 35887 chargée\n","Image 35569 sur 35887 chargée\n","Image 35570 sur 35887 chargée\n","Image 35571 sur 35887 chargée\n","Image 35572 sur 35887 chargée\n","Image 35573 sur 35887 chargée\n","Image 35574 sur 35887 chargée\n","Image 35575 sur 35887 chargée\n","Image 35576 sur 35887 chargée\n","Image 35577 sur 35887 chargée\n","Image 35578 sur 35887 chargée\n","Image 35579 sur 35887 chargée\n","Image 35580 sur 35887 chargée\n","Image 35581 sur 35887 chargée\n","Image 35582 sur 35887 chargée\n","Image 35583 sur 35887 chargée\n","Image 35584 sur 35887 chargée\n","Image 35585 sur 35887 chargée\n","Image 35586 sur 35887 chargée\n","Image 35587 sur 35887 chargée\n","Image 35588 sur 35887 chargée\n","Image 35589 sur 35887 chargée\n","Image 35590 sur 35887 chargée\n","Image 35591 sur 35887 chargée\n","Image 35592 sur 35887 chargée\n","Image 35593 sur 35887 chargée\n","Image 35594 sur 35887 chargée\n","Image 35595 sur 35887 chargée\n","Image 35596 sur 35887 chargée\n","Image 35597 sur 35887 chargée\n","Image 35598 sur 35887 chargée\n","Image 35599 sur 35887 chargée\n","Image 35600 sur 35887 chargée\n","Image 35601 sur 35887 chargée\n","Image 35602 sur 35887 chargée\n","Image 35603 sur 35887 chargée\n","Image 35604 sur 35887 chargée\n","Image 35605 sur 35887 chargée\n","Image 35606 sur 35887 chargée\n","Image 35607 sur 35887 chargée\n","Image 35608 sur 35887 chargée\n","Image 35609 sur 35887 chargée\n","Image 35610 sur 35887 chargée\n","Image 35611 sur 35887 chargée\n","Image 35612 sur 35887 chargée\n","Image 35613 sur 35887 chargée\n","Image 35614 sur 35887 chargée\n","Image 35615 sur 35887 chargée\n","Image 35616 sur 35887 chargée\n","Image 35617 sur 35887 chargée\n","Image 35618 sur 35887 chargée\n","Image 35619 sur 35887 chargée\n","Image 35620 sur 35887 chargée\n","Image 35621 sur 35887 chargée\n","Image 35622 sur 35887 chargée\n","Image 35623 sur 35887 chargée\n","Image 35624 sur 35887 chargée\n","Image 35625 sur 35887 chargée\n","Image 35626 sur 35887 chargée\n","Image 35627 sur 35887 chargée\n","Image 35628 sur 35887 chargée\n","Image 35629 sur 35887 chargée\n","Image 35630 sur 35887 chargée\n","Image 35631 sur 35887 chargée\n","Image 35632 sur 35887 chargée\n","Image 35633 sur 35887 chargée\n","Image 35634 sur 35887 chargée\n","Image 35635 sur 35887 chargée\n","Image 35636 sur 35887 chargée\n","Image 35637 sur 35887 chargée\n","Image 35638 sur 35887 chargée\n","Image 35639 sur 35887 chargée\n","Image 35640 sur 35887 chargée\n","Image 35641 sur 35887 chargée\n","Image 35642 sur 35887 chargée\n","Image 35643 sur 35887 chargée\n","Image 35644 sur 35887 chargée\n","Image 35645 sur 35887 chargée\n","Image 35646 sur 35887 chargée\n","Image 35647 sur 35887 chargée\n","Image 35648 sur 35887 chargée\n","Image 35649 sur 35887 chargée\n","Image 35650 sur 35887 chargée\n","Image 35651 sur 35887 chargée\n","Image 35652 sur 35887 chargée\n","Image 35653 sur 35887 chargée\n","Image 35654 sur 35887 chargée\n","Image 35655 sur 35887 chargée\n","Image 35656 sur 35887 chargée\n","Image 35657 sur 35887 chargée\n","Image 35658 sur 35887 chargée\n","Image 35659 sur 35887 chargée\n","Image 35660 sur 35887 chargée\n","Image 35661 sur 35887 chargée\n","Image 35662 sur 35887 chargée\n","Image 35663 sur 35887 chargée\n","Image 35664 sur 35887 chargée\n","Image 35665 sur 35887 chargée\n","Image 35666 sur 35887 chargée\n","Image 35667 sur 35887 chargée\n","Image 35668 sur 35887 chargée\n","Image 35669 sur 35887 chargée\n","Image 35670 sur 35887 chargée\n","Image 35671 sur 35887 chargée\n","Image 35672 sur 35887 chargée\n","Image 35673 sur 35887 chargée\n","Image 35674 sur 35887 chargée\n","Image 35675 sur 35887 chargée\n","Image 35676 sur 35887 chargée\n","Image 35677 sur 35887 chargée\n","Image 35678 sur 35887 chargée\n","Image 35679 sur 35887 chargée\n","Image 35680 sur 35887 chargée\n","Image 35681 sur 35887 chargée\n","Image 35682 sur 35887 chargée\n","Image 35683 sur 35887 chargée\n","Image 35684 sur 35887 chargée\n","Image 35685 sur 35887 chargée\n","Image 35686 sur 35887 chargée\n","Image 35687 sur 35887 chargée\n","Image 35688 sur 35887 chargée\n","Image 35689 sur 35887 chargée\n","Image 35690 sur 35887 chargée\n","Image 35691 sur 35887 chargée\n","Image 35692 sur 35887 chargée\n","Image 35693 sur 35887 chargée\n","Image 35694 sur 35887 chargée\n","Image 35695 sur 35887 chargée\n","Image 35696 sur 35887 chargée\n","Image 35697 sur 35887 chargée\n","Image 35698 sur 35887 chargée\n","Image 35699 sur 35887 chargée\n","Image 35700 sur 35887 chargée\n","Image 35701 sur 35887 chargée\n","Image 35702 sur 35887 chargée\n","Image 35703 sur 35887 chargée\n","Image 35704 sur 35887 chargée\n","Image 35705 sur 35887 chargée\n","Image 35706 sur 35887 chargée\n","Image 35707 sur 35887 chargée\n","Image 35708 sur 35887 chargée\n","Image 35709 sur 35887 chargée\n","Image 35710 sur 35887 chargée\n","Image 35711 sur 35887 chargée\n","Image 35712 sur 35887 chargée\n","Image 35713 sur 35887 chargée\n","Image 35714 sur 35887 chargée\n","Image 35715 sur 35887 chargée\n","Image 35716 sur 35887 chargée\n","Image 35717 sur 35887 chargée\n","Image 35718 sur 35887 chargée\n","Image 35719 sur 35887 chargée\n","Image 35720 sur 35887 chargée\n","Image 35721 sur 35887 chargée\n","Image 35722 sur 35887 chargée\n","Image 35723 sur 35887 chargée\n","Image 35724 sur 35887 chargée\n","Image 35725 sur 35887 chargée\n","Image 35726 sur 35887 chargée\n","Image 35727 sur 35887 chargée\n","Image 35728 sur 35887 chargée\n","Image 35729 sur 35887 chargée\n","Image 35730 sur 35887 chargée\n","Image 35731 sur 35887 chargée\n","Image 35732 sur 35887 chargée\n","Image 35733 sur 35887 chargée\n","Image 35734 sur 35887 chargée\n","Image 35735 sur 35887 chargée\n","Image 35736 sur 35887 chargée\n","Image 35737 sur 35887 chargée\n","Image 35738 sur 35887 chargée\n","Image 35739 sur 35887 chargée\n","Image 35740 sur 35887 chargée\n","Image 35741 sur 35887 chargée\n","Image 35742 sur 35887 chargée\n","Image 35743 sur 35887 chargée\n","Image 35744 sur 35887 chargée\n","Image 35745 sur 35887 chargée\n","Image 35746 sur 35887 chargée\n","Image 35747 sur 35887 chargée\n","Image 35748 sur 35887 chargée\n","Image 35749 sur 35887 chargée\n","Image 35750 sur 35887 chargée\n","Image 35751 sur 35887 chargée\n","Image 35752 sur 35887 chargée\n","Image 35753 sur 35887 chargée\n","Image 35754 sur 35887 chargée\n","Image 35755 sur 35887 chargée\n","Image 35756 sur 35887 chargée\n","Image 35757 sur 35887 chargée\n","Image 35758 sur 35887 chargée\n","Image 35759 sur 35887 chargée\n","Image 35760 sur 35887 chargée\n","Image 35761 sur 35887 chargée\n","Image 35762 sur 35887 chargée\n","Image 35763 sur 35887 chargée\n","Image 35764 sur 35887 chargée\n","Image 35765 sur 35887 chargée\n","Image 35766 sur 35887 chargée\n","Image 35767 sur 35887 chargée\n","Image 35768 sur 35887 chargée\n","Image 35769 sur 35887 chargée\n","Image 35770 sur 35887 chargée\n","Image 35771 sur 35887 chargée\n","Image 35772 sur 35887 chargée\n","Image 35773 sur 35887 chargée\n","Image 35774 sur 35887 chargée\n","Image 35775 sur 35887 chargée\n","Image 35776 sur 35887 chargée\n","Image 35777 sur 35887 chargée\n","Image 35778 sur 35887 chargée\n","Image 35779 sur 35887 chargée\n","Image 35780 sur 35887 chargée\n","Image 35781 sur 35887 chargée\n","Image 35782 sur 35887 chargée\n","Image 35783 sur 35887 chargée\n","Image 35784 sur 35887 chargée\n","Image 35785 sur 35887 chargée\n","Image 35786 sur 35887 chargée\n","Image 35787 sur 35887 chargée\n","Image 35788 sur 35887 chargée\n","Image 35789 sur 35887 chargée\n","Image 35790 sur 35887 chargée\n","Image 35791 sur 35887 chargée\n","Image 35792 sur 35887 chargée\n","Image 35793 sur 35887 chargée\n","Image 35794 sur 35887 chargée\n","Image 35795 sur 35887 chargée\n","Image 35796 sur 35887 chargée\n","Image 35797 sur 35887 chargée\n","Image 35798 sur 35887 chargée\n","Image 35799 sur 35887 chargée\n","Image 35800 sur 35887 chargée\n","Image 35801 sur 35887 chargée\n","Image 35802 sur 35887 chargée\n","Image 35803 sur 35887 chargée\n","Image 35804 sur 35887 chargée\n","Image 35805 sur 35887 chargée\n","Image 35806 sur 35887 chargée\n","Image 35807 sur 35887 chargée\n","Image 35808 sur 35887 chargée\n","Image 35809 sur 35887 chargée\n","Image 35810 sur 35887 chargée\n","Image 35811 sur 35887 chargée\n","Image 35812 sur 35887 chargée\n","Image 35813 sur 35887 chargée\n","Image 35814 sur 35887 chargée\n","Image 35815 sur 35887 chargée\n","Image 35816 sur 35887 chargée\n","Image 35817 sur 35887 chargée\n","Image 35818 sur 35887 chargée\n","Image 35819 sur 35887 chargée\n","Image 35820 sur 35887 chargée\n","Image 35821 sur 35887 chargée\n","Image 35822 sur 35887 chargée\n","Image 35823 sur 35887 chargée\n","Image 35824 sur 35887 chargée\n","Image 35825 sur 35887 chargée\n","Image 35826 sur 35887 chargée\n","Image 35827 sur 35887 chargée\n","Image 35828 sur 35887 chargée\n","Image 35829 sur 35887 chargée\n","Image 35830 sur 35887 chargée\n","Image 35831 sur 35887 chargée\n","Image 35832 sur 35887 chargée\n","Image 35833 sur 35887 chargée\n","Image 35834 sur 35887 chargée\n","Image 35835 sur 35887 chargée\n","Image 35836 sur 35887 chargée\n","Image 35837 sur 35887 chargée\n","Image 35838 sur 35887 chargée\n","Image 35839 sur 35887 chargée\n","Image 35840 sur 35887 chargée\n","Image 35841 sur 35887 chargée\n","Image 35842 sur 35887 chargée\n","Image 35843 sur 35887 chargée\n","Image 35844 sur 35887 chargée\n","Image 35845 sur 35887 chargée\n","Image 35846 sur 35887 chargée\n","Image 35847 sur 35887 chargée\n","Image 35848 sur 35887 chargée\n","Image 35849 sur 35887 chargée\n","Image 35850 sur 35887 chargée\n","Image 35851 sur 35887 chargée\n","Image 35852 sur 35887 chargée\n","Image 35853 sur 35887 chargée\n","Image 35854 sur 35887 chargée\n","Image 35855 sur 35887 chargée\n","Image 35856 sur 35887 chargée\n","Image 35857 sur 35887 chargée\n","Image 35858 sur 35887 chargée\n","Image 35859 sur 35887 chargée\n","Image 35860 sur 35887 chargée\n","Image 35861 sur 35887 chargée\n","Image 35862 sur 35887 chargée\n","Image 35863 sur 35887 chargée\n","Image 35864 sur 35887 chargée\n","Image 35865 sur 35887 chargée\n","Image 35866 sur 35887 chargée\n","Image 35867 sur 35887 chargée\n","Image 35868 sur 35887 chargée\n","Image 35869 sur 35887 chargée\n","Image 35870 sur 35887 chargée\n","Image 35871 sur 35887 chargée\n","Image 35872 sur 35887 chargée\n","Image 35873 sur 35887 chargée\n","Image 35874 sur 35887 chargée\n","Image 35875 sur 35887 chargée\n","Image 35876 sur 35887 chargée\n","Image 35877 sur 35887 chargée\n","Image 35878 sur 35887 chargée\n","Image 35879 sur 35887 chargée\n","Image 35880 sur 35887 chargée\n","Image 35881 sur 35887 chargée\n","Image 35882 sur 35887 chargée\n","Image 35883 sur 35887 chargée\n","Image 35884 sur 35887 chargée\n","Image 35885 sur 35887 chargée\n","Image 35886 sur 35887 chargée\n","Image 35887 sur 35887 chargée\n"]}]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/","height":108},"cellView":"form","id":"9c7SsmqlpVUT","executionInfo":{"status":"ok","timestamp":1616664903889,"user_tz":-60,"elapsed":1586,"user":{"displayName":"Boulet Timothé","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GiayvINTDL_0Iuf52iuumxhg4psHVMYz59ow2vJ=s64","userId":"06174172927805952140"}},"outputId":"6cd175f5-9d89-42cf-80b8-71d4d8eb82a6"},"source":["#@title Visualisation\n","N=5\n","plt.figure()\n","for i in range(N):\n","    k = rd.randrange(X.shape[0])\n","    plt.subplot(1, N, i+1)\n","    plt.xticks([])\n","    plt.yticks([])\n","    plt.grid(False)\n","    \n","    afficher(X[k])\n","    plt.title(classes[np.argmax(Y[k])])\n","plt.show()"],"execution_count":28,"outputs":[{"output_type":"display_data","data":{"text/plain":"<Figure size 432x288 with 5 Axes>","image/svg+xml":"<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"90.742263pt\" version=\"1.1\" viewBox=\"0 0 352.7 90.742263\" width=\"352.7pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <metadata>\n  <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n   <cc:Work>\n    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n    <dc:date>2021-04-02T20:07:40.408573</dc:date>\n    <dc:format>image/svg+xml</dc:format>\n    <dc:creator>\n     <cc:Agent>\n      <dc:title>Matplotlib v3.3.4, https://matplotlib.org/</dc:title>\n     </cc:Agent>\n    </dc:creator>\n   </cc:Work>\n  </rdf:RDF>\n </metadata>\n <defs>\n  <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\n </defs>\n <g id=\"figure_1\">\n  <g id=\"patch_1\">\n   <path d=\"M 0 90.742263 \nL 352.7 90.742263 \nL 352.7 0 \nL 0 0 \nz\n\" style=\"fill:none;\"/>\n  </g>\n  <g id=\"axes_1\">\n   <g id=\"patch_2\">\n    <path d=\"M 10.7 80.042263 \nL 68.424138 80.042263 \nL 68.424138 22.318125 \nL 10.7 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pe605125ad8)\">\n    <image height=\"58\" id=\"image8789de4dd2\" transform=\"scale(1 -1)translate(0 -58)\" width=\"58\" x=\"10.7\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAADoAAAA6CAYAAADhu0ooAAAdh0lEQVR4nHWb2ZNlV3bWf3s60x1zripVlUolWVa3ulvd7W4w2JjoMLaxHRBB8AgvRPBP8MQLwRP8DzzwRBhewIYIjMFTQLsld+OWJVlDqVSqIatyutO5Z9gTD/vkVXUEPhEZeTPz5r1n7bXWt771rXXFr33vX8btnRHNvqKfCHwBUUGUQBwe60jIICgIVUDudUzHDcfjDXdGC6a64YvtPiEKCuWYmJa5aQhREKJAy/AzjxtvkCJihKdSPWPVMpEtlewISAAq2fGmecE3M8P1pYTkr7t8DAQiNnoAjFC7vwUC2k1yXCHxGSBBhPRHESCKZGjQ4PNIKAJ61jMZNxyNavbzLV1QfLI5JkRBpXtKZSmVpZL9S28k2PqMJmR4LyiVJZcOIzy5cBTCUcluuEGPjYptyHnoDthXp9xUJRLx1xr58nVt4PXzAxGJRNuJxhWCqARRJC8Kn4yOevCmgZAH5NhSVR2zsmVkOgKCy26ECxItA1oEbJSsbYELCi09l33F8+2UVZ/TWY2SkXHeMTI9hbIUyjE3DQfZZudZKSKKQB1yHroxddhSiMBECiYyGwyRSMT/18uBQNh5Og4eLQRh8LLwIOLgSZHC99pIikBWOKq8Z5alm9m6jM5rSm0B6IOiDwoXFC5KVl3B6eUUu8hRG4W06QAvsxQdqAg6IjPPaNJyc7Lm3uSCO8UVh3qNiY4zN2UhKj7tbrCvN7yVPeO+aZFAIRQGhRzC3UZPIOCJhBjxRGyMeECLCNIBfUzhqgTBQGQwVEPMA6bq0dozznoKbdm6jMYZRjr9vLE5G5vjo6Sxhqu6pHk6pnqsmF5Esk1EdRHVB6IUuFISZXoPnxnag5JPX5nx+NUZb5+c8q3pE25nFhsVZ27Cv3/wfYSIfPf4Cf/k8H9TCMtMdsyloxi8aom0MeIjWARtVMOXQesmQARXCHwm8HkEneI76ogfedTYIWVEy8BJuWbrDJl0jIsUvluXcdWWADS9oW5y+mVO+VyRX0VUlyLEZwKfKXw2HKb6KnL0NjL5XNKtZrxb5/SvamaHDYW23MkumBYdXzw45n98vscHb55wUq15Z/aE740ecEOtMCKwDYZVKLAo1r7kwo85txNWrkD84Af/OrpS4UuJLQWuEthK4EbQ3PAws+jMI2Tk3uElpbZIESiUQ0vPoq9YDEa2TtP0hmabw7Oc0ROJ7JJBvgQ7gmAivITowUSijqgmeUX2IHtBPw+88c5j/tntP6WQljrk/Ofzd/izT++RPyionkWaYwHfXvG9Vx7xWnXBxuV8tjni0XLOclURNgbZSmQn0Kp1IFLueKNSzEroZ5E49kgViVFQ5j2zvGHVF4xNh4uSbZ/ROY0UMd2kiHStIZ7lVC8k/QTan3PIqSXLHUoGglVMRi2H1ZajcsN+VjPVLStX8Hg7Z5a1fHR1zPPncz7+5BZ/Mn2Tvzf/S4xw/I3ZQ9x9yXv1fQ5/Kjh4v+XqyYQfvvE2f3zsEJ2k+lJRnkVOthHpIkMSomVjiUpCoRjul6DBTTwqTzVJyMC46NAi0HlNjAIxPDlcw3gULOsSu8jJaoHPod8PiMoTnaRzCS2jlVzWGZtxwVk5Ylp0VCaVomerKUVmkSIymjVs+hF//OQ+3xp/yUh27OsNb45f8OHJCUFP0Ocb9gDTlGyPDNJFxk8d+cIi+oCIkSgFUQq0aC0y04igIUZA4DMQlUcOhV6pyNj09EHRWEODQctArt0O0lunaa8KVC1T3Z0Fooyw0chGonqQVkCAkEXcSLPQJVcmIkcWkzu6OoNOIQqPzDyycqyuKj7Y3uKb1WOMcMx0w2sHl5zOpgDoi5qxEJg6IxhBtnSorUNYn+wRqXRK0fUI6xE+eSgqsJOIzh0hCgRgjKPUlquuYt3krJuczmlCFPggMcqzWFWopSYY8Cc9IY8UzxXlE0W2FGQLQfUskl+BnQbC2BNNBBXJCsfNvRWv3LxClI7si5z8/YrQK7LK8u7ZXS79CBs1Rnjuj8/Z3BZgNHiP2nSYjUP4SMgkQcvrIoqwHtk6NF0PLuxKi6sEbs9SZQ7ba7TxjPIeKQLrLqepc6KThIkk144IrLsM/6wkHPZgJdmXGdMHcPFdj64lbhyIJiBHjn/6zT/jNyd/gRwomCKiiBwqy1Ofc/r6jH8x/kfIH86Yv5tR/cNLFtuSL5pDQpEMODA1X//BJzz59A0O3rtArrYYISAWIEDECDHuvgPo6PzAggS2FLT7ETMd6JuIlHnPNOtovWHbZcizDOEEbYQ6s2gVWCxGxIMesciYfSw5fL9BuEiUJYtfbfjV1z/h1fKCNhhey8944vYwwvGgP2bjCw71ml8sH3AkO+4VZ/zbd36HfzX6bdr/eMLVn95g/5dOWdiSkR5RSMvTds4v73/Gv/vHh1xwwMGfXyKv1hjAV4YoBFFKEBERAgiBRg5gYgR2LLD7njJzeC8xxlMaR64dLkhCEOhaIJzAV4ptm6G1JzQatVIc/himD7f4QvHotzJ8GfjB/U/52ugZ53bM+6tbfLC6wdenpzxq9njv6R22ixKhA2/dPeWVaslr5TnfrR7yz+/9Cf/mN3+N6nennC3HHFdruqBxQXLWjpmbGb9x9yN+55e+j7J77P2fBrHtoDTJkzJVD4IAH9DJcwI7UvQzENMeKSMhQKY9I9NT6R4XhjpnBaoDV0v6OsMZj15oZh/D3l8uAbh8a8br33/Ek+WM2mf85eYWH1ydcPr5AWor+fH0HvpKU1wI5htAwOef3+PjceD3Z57Dm+/w2vyC2/MFp6MZ/tGI57MJR8UGJSLLvuDLZo/vTL/k7be+5OPFPYrzI8rPzpEupLD1EQJfhS4hEjNNOxd0+4Gi6pEiImWgyCy5dmTSIVHEKJAOZAdmI4haA5rxQ8Hhj5eITUPz+gGbV+EXJ+d8cbHPjx68mv7vLGP+ucSsIyHTmE1EupC4tRToRqQuqpRsnhzy7tEe+fEW9qF8ITi7mvC8rBmbjsYaTusp61HB395/wPNvTHixOOTukwzRWNAy4Y73ECJIkTzanJRsbwo4ahkVfboxERlnPZl09EEnHuskKoDqI/JSUFwI8kVk791T4ukZ9d/9Gpdf09hJ4Pc+eJvqg4L5IqZuSECUkX6a6F9zKH4G5ePtluAEsUnlSK8l4XJMLFLJc+cFn2SH3Jit6axmtS14Np3x9vgpv3H7Q373b73N+uN9pj96QpxUyZN+6GGkQsdbh1x+TdPe7dmf1xTaYYNknHfMsmaokQbrFd4N4etg9MxRPVwhHj0ldB3y1du0e4lZ5ecSX+fUrzn6ecuo7JkUHfvFloO8pguaHz68h7/MwQvi2HH/5IJv7z1mz2w5NisK0bP0I36yvsOD9QHnmxGbFyMefTrFF5FoAu/qO5SvWN6onvPrdz/iP/z97/P19wRi2xLzDLSCGIlKoK++OaO+6xnvb5kWHblybG3GXr6lUI7Wa1qv6bwmNHrX0WyPFdujPfwv77G9Kejudkz2FtyYbLhZLXmtuuCmWeCRbHzBuR1z3o95VO/x2Ue3mH2gKK4CwkPQmmXxCv/t+DbtSaC4s+btk1N+YfaI39r/C0aHHY/sAX9w/BbvfnEX86BE9pp6O+O9/DbyKHAjW/Hr336f//t33uHgf30JJhCN3hEavbonkQfboZnu0SIQo2BsOpSItP4ar4akblIX0s3BziJ27qmOat6Yr5hlDQd5zVG2IReOSzce1IKMha143kw4XU0QXaKILheYJqK79NqqF+iNYHtR8Yk+IpMeHyXfKL/knjnjHxx23K/O+cP9Nzj78QmTB5LnxSE/kYFfOfmUn6+e899/MbL/5yPobaKAA3nQ7Q3PfNwwLxrGpkMSkSKQS787jRgFMQpQEd1EghYghk4k9wgB6y4f/jcSosRIjw2KXDoCAheTCmGUJxQBn8vU1FvwmaS+KbCTpE3hBOtNyWfZAVPTcmKW3DALjtSKb1WBzWHO75bHVOcR91DxeLzPo+ke+5Oa1956xvbVE6oHV+A8MdOIGNFqP0kjU9MyMS0hSrT0uxu9Ju42SGTmicKgmzg06JIoDbWVbPOcZVVSFRWjzFJqi1GeedZQKosWgUr3aBUQA3oLn7zaHQjq1y0EgfDpEH2juFiMOR1NuCwTUTDCsQolLiqiipg6MHkM3X7GgxuH3CxW/MrRp/ynN29TvMhRVzWQE4VATidbZlnLPGsYq45S9eTSk8lE2F1QdEOfmRWO7a3kZbOJZEswK4loFLFJpP7qYsKzixlPV1MumoqtM4QoWLucz64Oufj4gP2fSPY+cSgL9SuC5ttbxkd1klYiIFPBd53m08tDTrsZbTC0wfCsn/P+5U2yywR8ZhMoLgTPzmZ8tjnkdnbJ6ls93WEJISRmpAR6WnRMs4aJbqlkTxdSThrhcVHu2jAfJN4L+Lktl+OS4kxiNlBcgOokzY1IzCC2CtdL6l7RNhnrpqA+rzDnmmwlyA1sbsPlNwXlKyte279imrVctCOassUFiZKBTPmhyY+c9WMu8xEhSj7bHvLkxZzxFcg+0O0bXJHS67Se8ni6zztvfMnjO/cpH5cI6wm5RmfSY0SgkJZCWpQI2KhSZxIFkkiuHWWWBDDrFPJ2TXNoaFaG/EyhayifKfpZxI8C0aS+04tIvRihVwo3C4y/seDGZM3NckWpLFPdUKnEq6+KiiZk2KAwQ0RVssdIjyRSyZ5PmhM+vLiBOC3IlpF+rlm9KumOAkoHIvC43eOd+WM+vHef+Wcj8s/PYZwnwqClTxqrtBCgUj1XtkKJSKZc8mwmyJRn02X0TkNhsSLSKoNeKbKFIF8I/FbhxhE3TQ23qhUhj5jDhl84eczcbNnTW5QIyRDhsFEzVi02KmzQmEHzLYTFCM825Bjhebydc/5kxt4DyOrI+o6iPYiEkScznkI7Gm/Sa93p2LySkX/iETuu+9JlxLXRDqcskogWgUJZ+pBkk1ULQiiEAKsiThtAo+sEMmYtEE4RtULXSX+SMnKUrdkzNQCFcOTSogYFdl+1GOFog0GJOBjpUCKw9iVf2n0+OjuhemgorgLdTLC9EXEzjywdRWYZmRQBisirty54cecV9osMYX0yNEQ5hKvc9Ylj1SVJQwlsVDTeULucTDqEiDTW0CuF1opOBlzmca1CrTTZQlC+EAlYANUJ6nnBs27GzWyJjWr3PjYqPJKR7DhSK+qQp4OQlkJY2mgweP7n8i2aRxOOvgy4XLB6Hdy+S0YOzGtqWkaqxyP43sEjfufuCe54ij5bo43yhChog6GSPbkIO6+q4WZ8lOQyQ4lIqdSOMfVB03vFus9TryoD8aagbnLsFyNmn6QSElrwjw1/PH6dm19bUqmeNhgKmRRFIzySwEhYlIy7yKqEIyOgZODd53dQW0F9Q1DfCcSpReWequrYrxoOy00yVHeEKHm7esKf3LvP5dePOfmvZ8mjqcgnY4GUq0BO+h6iRA2AZYNCioiNii5oapdzpsa4otm1cnFUU882PDnYp/gyQ3aJH8tHJf+lepv7e5dMs4ajbMNxtmaiWwqRELaP17OTsEP8UzdnkvdsXq/p7sOkSM812nM82jDPmsQDdMtEtUmOFZZfOHzM733nkOM/KpOhRvqXJMv0JAA/SP0IjxzQ2Aq9Q2ZFhjHD9Ep6fBS4oLBR0npDc6y5ZIpaaGQniMBmWVIcWaa6I5duF8IBiR1SCCAj3VOPpI2G16fnVKanccMkTnrGpmM2eLFUlrv5xS4N22i4U1xyeO+S7Rv7aCkimXRflZag8VImMOArGqhIB2CFxiOQMSCJQ75FCmnxURJiyumVK7g5ybBesVEVvpegI3lph/Gh303UPJIXbkIh0msoEZAikIlACBIjHHfLS0plqX3G2uZIEXdG7ukt+7pmIhvamGGiw0fJWLXcn1/w6a1DtCRNriQROaCHIuzyUw6oqERAErAxjfWM8ASR2FMVO4rhsUfs/k4FLkheyID1CqM84zw19i58Nb9MxH/MXG0phEVdo9jwepnwnJglhbQsXYkWE1yUzM2Wseo4NGuO9IpMeFRI9vRRoUTgRrHi/QOBDsONXeeDke6rMN4N3xI4qJeM9lGCgJHsaKPZ1TyPYBtyJrJlphty6ZjnDRubE6JgP99ipKf2GaOQUQQLErpg2IacQtmfMdIjkQTmarsDSSkiXdAcZysmsmVfb5jLLZnwmOHA25DhEcx0Qz+PaBckLip8lBiVhrIJaMzP1Lk0jkunK4VlG9LkrJIdR3KFjXoAlECIKa/aaLidXfJFdsiFHdGEDC38bgThgmQbMvIBfeuQc6RXFMKSXR8qYafnjoZhcSU7Jqplrmp8lExly1w2eARzGupoWJOAbU/X2BOL7q6bai1SIqPwMfEIH8TOk9uQk0tLIeudh+Xw+0x4KtmRkU68GFq8i1CmE87h0KzpguHSjZJnTEoBH1Nj7qPk1ex8FxlGBBQRT8rRQMrdiWoYiX7nOSM8E2GZyMA6SCySAkdNIJAi7cbNK3TnNDZKuqBTeZGpvHTBcB1EFjUIzclbqcZaEEMYI1CE3Q36l8bwBs9c1YxkRx1ypAhsQwKpXYgOAHRd3q4vucvffDjAHkMKz2tqeI0N6yBZDmTDCD+Er8FGzZ3JAu2joA96VxeVCOQk9PNRomQc8iKFUn8NNEMOqeFGPTLl1MCw2mi48Elh6KOijdmQhxk+Si7sCCnijrgrEVADNiRAkyCSwtBGs6uvasCERaiwUdNGs8OS60UPSaCNZndPM9OifUglwQ1ULJWI1J75KFExDJ5Jnr0Oma9OPSG0IoVaGzUXfsylH3PmJmx9TjccZIiCJmRIIqfthEI59rOasepSWryEuB6BRWBRtCHdtI2aha+49CNOuxkrV6ZtFwRahB2Xnsj2pXInyaVDW5dOSg+Idu3y6zAKIbVq191GQj83AIVMpxhhNDCbJ27MXzR3+aI54KKrWNtiV1pKbVl1CYT64XeLosRMPPt6QyF7ehQqisGbgrUvE/AheObmPGr2+OmLWyyeT9ALzfW5hywSTzrunFzx8/Pn3MqXVKqjG+xIbdpL/Pba2Ilq8ddkH0GI6WSlCAMzSqe79iVLX/IH9ut8tDzhs9MjwmmBbgRBD7oSaU0gFgFZOYKV0CkwgRel43w+4pW7C9a+xMdE8I3wBAR9VCx9yXtXd/nw8Q3Uo4LyueDOQ4dZ94RM4kpJP5a0hyWP7uUs7xW8Or/idrXgKFuTS4u+HrzuwEOmEnMNKNc9oo2Kjc/50eY+M92w9RkPtwf89MVN2k9mFC8E+TKy34EIkZRiSUgLJqnxCInPTFrOMuCqiKs0z1cZv1++xW+f/JRVKJmresiLlnUo+XB9gw8f38A8KBh/AdWFw+eS7ZHCTgR2DHYU8ZUHBctlxRMVBvZl02rQNW/MpaNS3a5PtFENfDatrRRYKiX4vDnis80h582Yi03F9qJCh7QK4KphZOEEqgXhBapPyxrSJuPDXCAc5OuIWQl8Iejnggf7B3w4voUUgeNszU2zYK62CXVdxsHehrPbCmJGVINolwlcAW4U8dWwATaysDCcb+eECG9Pn5ELhzbDItR1w3p9hShTSREeA7uy4KOgtjl1b/BeIkuHmwpUrYgmEnugFUnnGrZOpI2oPnlXhIjqQXVQXnqiFGw7yeK45K8OjlEicFmMWBYlN7MlbTA830y4+Gyf8oUkXw6dkAWaiOxBbwUhU0gH3TynfJE2XVarA35PvM1+uU396HXp+AraFW3UP6MCeCT2WjhTHqMCUsY0eHUCsxGIkLZKTA1mnTyo+ki2Ccg+zSmlk4iYwju/sAgfkLagvq14upiiVGDZFaxsQVNlTHXDxeWYo/cEky9bhIu4SqH6gLBJ4YsiSaQiRGylya8Sg9o8rzjvDli8XqG/Iu9xZ/A2DGtoQ9kwwkHUbENqvqem5UUc01yUjB4YJl8GdOtxhUB4MHVANx7VJo+pTY9cb2Fdk19cIqsKcbiflkSEYNR7ylenrI5LELDRJcuqxB1IbpYrxEVG9cKRP7wgrtYY70FIYtcR+54YUiQKpVAxILKM6D3zFzfx2Q3U91doLb/y5stXF0yqp1KSS4kiMFEtj5o9Ni7n7PGcwx9qjv7oGaxr8B6R5+A9od4Sm4boHAKIUhGkAKUQWQZSENc1oshBK2TdsfeJpT1IQCU89CbnozpjeVIQD3pcaYhFhohjkDLNVcpsGPpK/DRjcytHelBdwJWSbiaobwluyIDOpCOXbteW2ajY+pxAUhx8TMT7WT/jDx+/weLZlL2fKN74sCV78IzYdog8AyFAyiQaaw15jihL8B6EQKivKJ8oy/RcJYlVgZuXRCEYP4ZuLvDlUI5aRWUs42nD6l6BqWcUj1dgXTosLQmZwk4z6hPN4i3wRQQh0bUguxIUF/Do6QE6U0PrQ5qZvHzZqPi8OeTDqxOefnrE7APFKy88489XyHVLHJf4m3uEXCOtRwzTZgLI3oF1iLpJxgIoBZkhagVCEEYFbpbTzzR2JAlKEDLop4EwdWSTRA+PxjUPfn4CMWPPzCgfb5CXa6QPMCpQmcJsJfmFon41wNRi5wJ7J5IVlm+cnCWPypc45jX9A6hdzl8tjnl6uodZSkIO/UiyvT1CuoqgBT5PhyP89abWUAJdRNqIWY0QnR+mz6SdYBeIRhFzRVQJSFwusBOw40iYeIpZx8GkZp41uCg5u7Fm3c0gGoKeMIoReblGdT3CjoAKnwlcpWhHnul+zc3pijujRBq0ESGJY4ORPsqdAFb7jLPVmLhV9IeOeL9nVRtEo1CNQnZp1KfatMgs/PAVUkmRFvKpQg/gJDuP2vZpEm0UwnpUI/CZTJ6cRdzcYcY9k6rl1njJYb5h7QpuTVd8cUuzlhW+0PSTOft/HuBigex6st4y8VOkzzkvDe3oq05IijiIY0OXcH1dj/oAZqMGISKzUcN3Dp9wlK2RRDY+Z2Erlrbgoh1xtS3Z1AV2naGWmvxSpCHUViBtQK875HKLaHtwDtEOeb03wd0saI4E9sCS77WMyo5J3jHSPWPVsbAlh0WN35ecak89Lei/49jcPuTkRxPyLy5hucYs1+w9yilfHLN8bcTDu2M+vnfCd+8/Qp91Y3LldkOmSiVddO0Lfq56QSYdz5oZLsjdc4zw7Ouau/klbdScdjOeV1OelDOeyhm2UehWMP+sp3xwiVjXRJu62yhEQucQ8cdTlm9OuPiWwB715NOO6ahlknfs5VtmpmHPpFUALQNT07KXb1lOS+5NLujvad79m3eonxxTPFOMnqahsh0lnl2dRkZPcz758ZvoJ6spU9PulMAQJW1Ioz4jHW9UL7hTXNEGw0S1jFW7Ay0jklw51h1PWsmyKeg3GdlGYNYR1QXCtESMirRLoCV2XrC+k9FPBe0B9IcefbClUJFJ1XJY1UyzlonuGA+U9Ea+pAsmySmqw5ZpwAzwW/c+YH274LSZ8HCxz3KIKmElOIG0iYXp5WrEdmbojWbjcqxMHDeXbujl0kD3eqn/hZ2y9RkrV7C0Jau+4Hw7YlUXdJsceokbRdb3BP2sQPbFVyvrGdhpxJ70VNOWXAUm2lOa5O1p3rKf1+xnWw7Nhj09yDZ4lIzkgyP8AJhrX6AI7Juaud7y2uiCJmScdyNab+i9wobUB2u/NNQ3cpqsHZB3+DiG6PFR7vo5GxVXtmLlSpa24KwZc1lXbLc5vlcIFZCZR5UWpVNNboctFm08uUn7+JWxHBTJmMYbumFHog+KiemY6JZDs+HYrDhQGxa+SnLsMKoIMSmD25Cx9kWqWiJQScdxtkoSS5nt6CqkjkxnV4raZumzKET00I/aoNKycnhZlC5Zu5xVX9BYg3WK4AUy8xztrTmqaubZdvdxj6lumentruO/Hhq9rDx4EutauIpr8jIeFL4kSBsK0mTtOmU8cqddJS3J7vpoRRIIgnA7bckj0cW5YNXmbMsMLQI6eJSInPUTjPToQUdVBOZmy+3iCjPxTFT6QI4amnY16DT9oCAWot+pg2GQaGxUFCJ9JkYRmelrpU/sBr5qGIko4k66mcp2p2pc60ReCdqoUcSvlJHh50p2tCT5hZgO5v8B29hpUnWBnewAAAAASUVORK5CYII=\" y=\"-22.042263\"/>\n   </g>\n   <g id=\"matplotlib.axis_1\"/>\n   <g id=\"matplotlib.axis_2\"/>\n   <g id=\"patch_3\">\n    <path d=\"M 10.7 80.042263 \nL 10.7 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_4\">\n    <path d=\"M 68.424138 80.042263 \nL 68.424138 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_5\">\n    <path d=\"M 10.7 80.042263 \nL 68.424138 80.042263 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_6\">\n    <path d=\"M 10.7 22.318125 \nL 68.424138 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_1\">\n    <!-- Sad -->\n    <g transform=\"translate(28.267069 16.318125)scale(0.12 -0.12)\">\n     <defs>\n      <path d=\"M 53.515625 70.515625 \nL 53.515625 60.890625 \nQ 47.90625 63.578125 42.921875 64.890625 \nQ 37.9375 66.21875 33.296875 66.21875 \nQ 25.25 66.21875 20.875 63.09375 \nQ 16.5 59.96875 16.5 54.203125 \nQ 16.5 49.359375 19.40625 46.890625 \nQ 22.3125 44.4375 30.421875 42.921875 \nL 36.375 41.703125 \nQ 47.40625 39.59375 52.65625 34.296875 \nQ 57.90625 29 57.90625 20.125 \nQ 57.90625 9.515625 50.796875 4.046875 \nQ 43.703125 -1.421875 29.984375 -1.421875 \nQ 24.8125 -1.421875 18.96875 -0.25 \nQ 13.140625 0.921875 6.890625 3.21875 \nL 6.890625 13.375 \nQ 12.890625 10.015625 18.65625 8.296875 \nQ 24.421875 6.59375 29.984375 6.59375 \nQ 38.421875 6.59375 43.015625 9.90625 \nQ 47.609375 13.234375 47.609375 19.390625 \nQ 47.609375 24.75 44.3125 27.78125 \nQ 41.015625 30.8125 33.5 32.328125 \nL 27.484375 33.5 \nQ 16.453125 35.6875 11.515625 40.375 \nQ 6.59375 45.0625 6.59375 53.421875 \nQ 6.59375 63.09375 13.40625 68.65625 \nQ 20.21875 74.21875 32.171875 74.21875 \nQ 37.3125 74.21875 42.625 73.28125 \nQ 47.953125 72.359375 53.515625 70.515625 \nz\n\" id=\"DejaVuSans-83\"/>\n      <path d=\"M 34.28125 27.484375 \nQ 23.390625 27.484375 19.1875 25 \nQ 14.984375 22.515625 14.984375 16.5 \nQ 14.984375 11.71875 18.140625 8.90625 \nQ 21.296875 6.109375 26.703125 6.109375 \nQ 34.1875 6.109375 38.703125 11.40625 \nQ 43.21875 16.703125 43.21875 25.484375 \nL 43.21875 27.484375 \nz\nM 52.203125 31.203125 \nL 52.203125 0 \nL 43.21875 0 \nL 43.21875 8.296875 \nQ 40.140625 3.328125 35.546875 0.953125 \nQ 30.953125 -1.421875 24.3125 -1.421875 \nQ 15.921875 -1.421875 10.953125 3.296875 \nQ 6 8.015625 6 15.921875 \nQ 6 25.140625 12.171875 29.828125 \nQ 18.359375 34.515625 30.609375 34.515625 \nL 43.21875 34.515625 \nL 43.21875 35.40625 \nQ 43.21875 41.609375 39.140625 45 \nQ 35.0625 48.390625 27.6875 48.390625 \nQ 23 48.390625 18.546875 47.265625 \nQ 14.109375 46.140625 10.015625 43.890625 \nL 10.015625 52.203125 \nQ 14.9375 54.109375 19.578125 55.046875 \nQ 24.21875 56 28.609375 56 \nQ 40.484375 56 46.34375 49.84375 \nQ 52.203125 43.703125 52.203125 31.203125 \nz\n\" id=\"DejaVuSans-97\"/>\n      <path d=\"M 45.40625 46.390625 \nL 45.40625 75.984375 \nL 54.390625 75.984375 \nL 54.390625 0 \nL 45.40625 0 \nL 45.40625 8.203125 \nQ 42.578125 3.328125 38.25 0.953125 \nQ 33.9375 -1.421875 27.875 -1.421875 \nQ 17.96875 -1.421875 11.734375 6.484375 \nQ 5.515625 14.40625 5.515625 27.296875 \nQ 5.515625 40.1875 11.734375 48.09375 \nQ 17.96875 56 27.875 56 \nQ 33.9375 56 38.25 53.625 \nQ 42.578125 51.265625 45.40625 46.390625 \nz\nM 14.796875 27.296875 \nQ 14.796875 17.390625 18.875 11.75 \nQ 22.953125 6.109375 30.078125 6.109375 \nQ 37.203125 6.109375 41.296875 11.75 \nQ 45.40625 17.390625 45.40625 27.296875 \nQ 45.40625 37.203125 41.296875 42.84375 \nQ 37.203125 48.484375 30.078125 48.484375 \nQ 22.953125 48.484375 18.875 42.84375 \nQ 14.796875 37.203125 14.796875 27.296875 \nz\n\" id=\"DejaVuSans-100\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-83\"/>\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"124.755859\" xlink:href=\"#DejaVuSans-100\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_2\">\n   <g id=\"patch_7\">\n    <path d=\"M 79.968966 80.042263 \nL 137.693103 80.042263 \nL 137.693103 22.318125 \nL 79.968966 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pd0be011859)\">\n    <image height=\"58\" id=\"image7c4f92e754\" transform=\"scale(1 -1)translate(0 -58)\" width=\"58\" x=\"79.968966\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAADoAAAA6CAYAAADhu0ooAAAZg0lEQVR4nF2bSY8l6XWen/MNMdwhM6uqq6snks1mU6QskqYoi7Ih2xK0kRY2DAiCvZJXhneGl/4B/gVe+E94aQNeeoBNeCGZsEiKY7PZA1ldY+Yd40bENxwvvriRWX2Bi87KvkOcOOe8533f86X8q7/6S31/8Yxn4wU/2b3BL54+JD5e4HcGO4A/gDsqdgQ7Ku2LgN/0PP7jS975Jx/xH9/7T1wZw6fJsMkNWQ3nR6+eY67p1RPUMqojqKXL1fw6I5mshqCWbWzJKjwdLvisu+D5Ycmpq8lZ0GjQ3mIPBn8wtE+UequIggqcvzZVQnXI2KCoEUIrjBeC+013xcoOnHJFVsEYRb0C5QNQMAlMVKpDQgWe/sEl4e/v+Zdv/R8ArnOegwnqSAhBHeP53yoAVBLJKmQ1pOnKkhoyQp/L+7MKtYlcVif6xhGjpe8qMAoukysp1yWgFshTkAq+U3ynqIGwMKRKSBVIBpdVOOWKITkAnEv0TlGnSC9ILh9ig4LC8c2Kze8G/umXf8pXq6dkYJ/9FOid4KZgz0Geg0qYObi7v7/7qG1k4QKNi4go5Om1Atjpx3znmcAkxQQlLA2xFVIN2QkImFFxRpQhOYbsSNmUD3YZNRYTQbIiuWQ0Lgzb94Xf+/qv+KOLn+El8zLXbNKCfW7p1c+BWSlVkbnNXJp+zsgrwZ2DtmQQgyNRm4g3qVRWKheMTkHq3SBL+aKQGmFcC2EpqJuqMZaMOyeZoIYueobkUBWwWu5ELHdLcsnm6YHBf2vDX7z+f/mKf84mNzyPFzwO97iOS4JavCQWdmBtehZmeCXIc9neDfDz2bRkrIAzCWfylPI7GS1vLEErIEK2kLwQWxgvhOzLy0wEIqgV3JgtffLsQ8OurxlHhxiFDBLBDuUNYWHYfE35d1//H3y9esJRPZ+GB3zQP+KX3WtcD0tiNjQ2clGdeFTvebPazsECBHX06qaMZ8KdvgQYssdIpjaR2kQaGxDhtnSNzhlFIPspwIUQVpCaKYuh4IpM/asCbkiOyiS2fcOhq0nBYpxiB5kAKJOd8PKbwp/84Q/4w/aXfBqv+GH/Dp/298lq6JMnZsOQHPux5mm34iPzgHdWG95bvuC+O1KbQFDLTVhiRPGSyCrEXBAX4Jgq1q5nYUdqE7m2S6zJpcJyyayMAgphVdA0tqCuVJ7fF4AysWR96p7So8/2Kx48PNK4iGaD7irkJFTbMlpSLRzeMTz8zhP+8uH3eJJW/GJ4g//62Tf46NevgQq+DTTtSOMjlU0sfABgM7b8XF9n7QbWvmdlB2oT6XLFKfm5Z4EJiYVjrPFy26NG7gQZyxOB2JSs+X3JoB0L4o4rIVdCdhMa5xK4u2h77lUdz08rchbMSfAHgzspamH3juH02z1//ubPeGBOPEkr1vbEZdVjfCZ3jnD0xNFyNIpYxdpMUwfuLU4YUWI2bEODEaUyJYjaRpxMgUyP2iSGbEuGMyQVnC0ZlWCQKJgwtdRY2sp1Wko1TjPVlpLOtmTUpFLO7iuXL3hYHfg5r5NHS3USbF/+5+l14fS1gT/6rV/we4tf0U9g85a74RuXj9kMLY+vLwgnj462oGOGZCAsHDEZwtJgRUkqhGQxolw1J15rjlz4nkoiRpSs4E0iqikEYgre2YT4DCeLJCmjJIAZS0lKAtGSlOgL4mY/IXKYwFTB/f7Fx2XmJYscLdVOMCOEtXD8nZ5/+Fsf8Kf3fsQDe+CoFQAP7JFvLT7h9MCT9Uvc1C1DX7Kqg4UkaOc47Txd02LqhFidJ8S+rgmXltwK96uO1o5gIKvQ2sKWCmAp3mTEFhJwRqFz5mI7IawKaiHVEJfnuTr9N5SMu7/bfsyP+7c5DhV+Z6g3SlgI+98Z+eff+j7fXX7IlT2yzy2jWi5MDwJvuxu+s/qYoJZnqzWHULPpWzZdy6mryMFgDh678YBHHWSvqMDJ1Xy4bXlxf8mX7t3w3upFYWfJU5vCns4ANZe2MlG1EmSqSg/OyOogV4pEwZ3AdWB7xfWKHRQH0OWarq+wnUBWTm8o/+a7/42/t/iQLtf8JtwjqOPKdoxq2ecGL3EO9nmzZhsXXIclTxZrnnVr9n3NwTekzxqqbektRM7XigmW/tLzw0crnn9hyR+8/jFeEpfuRJ89KRVwyirohLYmgkm3n/FKkE4xoYCoOyquBzvo3Lvub05f4sPTQ8ZtzWqAcCEs/841f3HxAz6NC16mFdu0xEgmIVjJjGpJ07Bfm57eeBbVyCO/4616w+P2ih/fvIERZQec1h7TG0wv2EGodrB4mrn6UBmXju27j/hf37X8ydu/YGFGAE7Jz0gMIBNpyFZxScoocRAXoAq2F6ptCVBSoawmlWqIjeD+5/VXOYQaOVnUQfea8q+/8ldcGstH3H5RVkOfPVioJJEQMoZ0h7MCLMzIo2rHcOHIF8L2XsN2bNn1Dce+ou8qhoNjvLRUWzOBClx/esUPFm+zeG3ET2hclI2gWUAUFSlc10CeStcO03gZFDsUSuimTAKkypRA//bJm+WOnArTT28O/IuLv6HLJTg7feGQPb1WBHV4M2CYlIeamfGc6Z2XxJcXL1jZHoAu1RxSzcuw5OWwpIsVN33L5rCgP1TIwWFGw/Pjku1Vy6U7TZ+TS4/Gad5OqiVN48ME8Hst/TgW5DVB8YeMxEyuDaGF7MD1L1vs0VBvhdTA6vLE23bBz0NfSpWCgEWNWI65xpBpTKAxAZNzkWfZ4U0EIKgt2Z+CbkxgYQder3YcmoYuVXS5Ir5mGbLjlDxd9DxsDizMOEs2Z1IRB0mQVHoUILVKtRGalyV7UIKxo7J4MmKGSK4d2ZtJkIAzJ0PzrIjssFbuL05YMXTq8JLKhUqY4N/wJF7yUlZUEklqeBouuYkLahNZS55Hw5ALpw1iMRTK502kNoE+e1Z2AFs4r5eEmaTJoI4uFuZU+vQOodfbXq1vlMWLhBrIXlAj1NuE257AGNLCF+1qS886iYLrCoIh0LjzqD6XbmZtT1zR0avneVwzZE9CeDZe8P3rL9AFz9urLV9ZveDSnssuYSWT1BBUCGKx6jDofBPKa8p3eRMJ2dFnT8yWMU8BBwdGC6qOMrEgqPeK69KcNckZvxuRmEkrT2osqTYkX77AnWHaREUihGznUi360lBJ4r49zIC0zw19qrkel3z64opwqNhcLtjeb3nYHFi6EW8Sa9fPwAJnuVZmo6WolHOmLcpBiy7OCCFbDqEmJAum9B+UIO2p9CJaJGQBooTpI+otuXWk+pbvmgQOoyCCRHAnYdc3BE2Tx1PGiCdTUahGYwK9+nIxahABOVmG45IPrhs+XEaWq54313veWW648t0tQUdnkX3u3XIj8itAlkUwkgnZkpKZ9HExh849p+ZM2hUbMraLoEpuPckb1N6dtxNhKHpNcUdhu2855IGgq9kdOGcYijBuJGBQapN4eHng8ckjNx67ceTOsh8s3iasyQzZcb86cs90NJNUOwd0fkIRKEW0lzlq75B9kXKR86+02CS5MmWMJIWcybUjtQ51pmT77EQkcLabavikNNfKblNznfMcWCOBRsIsqdb2hJFMl2vuV0e+9eAxf/xGGfTb1HKMdQERhE8O9/hg8xpXzZL31i95v31WMpUsdgKt88NL4p47chOLXnWSaV2gcokTt9qSfKtUciVkL2TvicvS9zKVs6jOlNGOivPHIrBdn4tbtrO8zPV8p8PkCExThj5X9NnjJXLfHSd7pDCmd6obgrfsU8PLsGTpR/ZDXTyp5CaX0NKlCoNibKaeULdYKJnBlNFydhiczWgW7CiYQXA9+KNSbSN2yKgR1BXUPZthkrRk3BfUdaeMM+ME21FxKeM6yyYtWJqBY65nH8jajEVnty9MHm1W4WVcckg193xHLWXYRbUMsXhQqlJmZa5IaljYkbXtqacerSRiyAR15Xe5wplENZljjIVB2bGAkA1T5mJGrBArR1yYYpTd9ZOmMrd9xiGTQA2KCQm/9/x4eJvfbz+kz54u19MFRZZmwEtkrw1B7TQ6LPvQsKfMzpUdcCYzJMeYLc6mIrJNImSLN4lLe2JlixY9Z9NIJmeDJ82/ywhjtJPgLoRBzs7kRPHUlKyp3PrPZ0Nbp9hE9c54GRP2FKhvGr6/+yLfaT+iV0+vjpSFSiKVJKq5pO0MLHHyjTLF5atNZMjFi6qqxGV94sIN8zi5tN2EuGWsnPu1J99hYoYxWUK0mGGan4GSzQQm5eIAejP3oe0TkiE1BjWTGMiQvcGVsqXMoX1Pe73kR8/fhEeFMITsyGLY0+IlcWWPr4DIGTiyCmOyDMZiJoZ0r+lY2pH71ZFLV7LoJU2VkSZ0zRhuhXbQMm/PhGEc/BxomZfFqFYRtCp9KQncMWLGBCLEhb0zd5VsBWdH8CdFQkJCpNpFbp6vsRTkHbQY2/vUYCTz0O6mWRrmrK59P3lAmaUbCr0D7rsjK9vTyPjKuGhMYV9pWk3cNcm6XNPlikOs2I816eCoD2cxrfhjRlQZ7hUubfuM3wfsvp+pXwmwBGnHjB0zzg5K+yxgbvYwhpLyJPyw/wJXtqORwDYtuI5LbuKS3vuZ/w5yJu5linu5ZTsLO5AQDqmhkwqL4qeePBP+czbPN+F5XPNsvOD5uOZpd8HT6wuqF45qA81NptpnJCvDlcUEpdolXJ9AlbSqybUlrFxhQ0EnBAa3H0vpqhN02YJ32C5y7/sL/sOv/xn9GxFzEVgsBy7bnm8/+A3faM18wWdv9pTO1jjsY8ORmswFSztMFC9NFmZ4hSRYnWSYFr/okBp+3V/xtLvg8e6CfF3TboTqoJgEYWnIjlvHXqax0jhSY0iNQbJixrPHNG0ZAOePhSfm2iPeYmLm/s8Ghqeezy4MeWHoDjXHbUs3et6qN7zfPKExgX3OEzCZmcJl0VlxVJP/kzAkKWV65rYAlttyTgjb2PKiX/HssOK4bfFbQ7VT7Khky4Sught0WgtCbG2he3YyqrtJ0dSmzFUEdQbX3CTsbiQtb9lF8+SIOwRyvcBUidQ53AvPZnuP/73+Cu+8+ZKlGbHoZFUaohqMGjx5dgfs9HNWIVBmbhALuZrK9ryIKiR+FxuuTwv2hxa2Hr8XbF8yrpZ5q+dOGUll/5n9tDELij9E3DEQV55khGwFg6LW4JrPDpjtke6Lb7B915E9vNEn/Gc70AU5GszB0T4r7OQni7d5+vCSr9WfzSUM3C6Q5t1JoDZxDjQxrR60jKbzGDmPqiE7bsYFm0NL2nmqneAP01y0pQztoPguF9Q1t8skO2TcMeE3fTGQ8DPpVy2c2MlvnqFi2H7Zkf7xli/eu+Gj5l2+9J9PrH9piQuLP0D7ooBB9p5fffshX62fsjBDcRkkkyeq6EyiteNMzufm1VympAoxWyIluGHSnn30PO1WDLsav7X4g5SArEAqtqXrMrbPc2lKgmobcPsB05XvS5ctqZq26dMmMFUGlzdb0j/4JrvfDvzbr32PP1//iH+/+FP++9U3ufdj5d4HEXdMhT96g0THIRYqtzQjtQnzosmIciGlnA+xpjZxHkGzU0AxqDehZTMu2I81fXSM0bI/tJiDw+0Ff7xdWVaHjDtNRKI1xNZge6V50WO3J8iKelfup52CDArjRP694MQ5nn635f33P+XbzSdcGsuf3fsh/CP42Tdf5/HNmrCrkd4gWbCPjnzn4hPW5kTAct8eufIndqFhNzYcQk1lEis/8O7iJa+5w+wh7WLDMdazwwCltIbgOHQ14aam3pWZacZybsL1hSCMF3Za7Bbzy+/DnEWsQb0lrSrUFZGSKXvRNCkcp6rEFgzKk3jJx7YD4FurX/NWs+HXl/f47HTBYazJKrx7cc271YuiLbOlMYGlG3CS2ISW4+gLZ3WJzdjy8rRgCA5rlNaHMo6Cw9vCpmIy9KMnnDxub7H9xILOQUYl1YXSybS+d8eI6Qvp0Kroz1w7Um1mm/MMVNkVAe5ICdfB8+OSD4ZHAHw4vD5vo698R20jSYXWBr5YX7M2p/nAhSWzMCPOZEIuFz0OHhElRMvmNxfYoyUvMu7BictVz26/IPa3WSUJ0hvc8VWqZ8dcVva1YINih9KjthuRUOieVsXt07OrMHFbtZNkmwSL0xhpnysvtgseD1cszMj/271DzAZnMo0NXLiBR/WON6sNr7sdwCzXEsVAc1IYjrUZM2lI7xKmN/h9Wfiah8o3XvuMvw5fYPikxe9kHh1qwB+LH+S7Aj4SS38B2FPGnRK2C5jDAEbQ2k8nVKSY2/Aqzw2KxIkCIsLq8cjzXRHD79XP+Fv3Fs+HVRHbFlo78shv+aJ/SSOBo1ZFgE9HbgzK0o1c1MWwHlxCRHl9eeD55SX55DERhn3N2vXkLDTPhOWTjIllZTCuS2lWB6XaZ+ygpLoQAd9lfBexXUROARkD2lSlZCs7PQtIpUpwfQEvOyQk5GkarFb46x5zWnPhTvxR8wz/2l/z4fCIXh0WZWV73nAb1uZ0e0gq+7KSUENjAle+I7fCwo10sZqWvpGr1w5sxgvq55bFLyv+y/i7NJ857n2cqPZp6iGLrQoR910hBGRF28kWPcSiP7VYJOodWjlS64mLMgJjU3rSdxm/T7guFFJhhVxbnDQNhIQZhV1sMSK85655YI6M2Dvu3NmFd/OqoiKAlDJe2YHBFavyvOVubOTtyy0AG7+i+XXFo+8ZLn7V4a6PpHVD/3pLbCcKd1L8oYyyVJlCEnrFjJk70wm8K25fa8u4mYJ0p0y1idghFUFuBEQwQ8KRE5ISJgjHVBE0szYKDAQMQcsiKathxGIoHk9xAiIZw1pPPOOCTWg5hBojymXV09rAVXXiqjrxdLXm04srXjYrTg8XuGNb1vCuBGl7LdIq5AImTopNeUqYIRZLdowQE3lVk9pin8TaIEqZtcc0+0hnz5dcWJQjK4RYeig5MlDJqxsy4JWtmZ/cBkMu5WtKCe/Glu3YTCAWaW1g7XoeVTu+vnpC/8Dz9EsXfLh/wJPtmm7bYjaO+sZMx3yKoM6uPAvKphIgFKQ1Qmo9YemIjSmHpU5KvQlIyBNBMPMhK1ByZXGyXJRzSalYIkkVL0I1HbSaFYak+fDTWUeW9WHGi+WR3/G8XXGMFS+PC14clizrkS+ub/jC4oZHfsdrbs8jv+NRveOn9SN+Ko849kvUGFQEk8rMzF4QVWyf53lJLjMz1460cLNkK9QwlfJ2ggwJEVBvyI0pJW8Ep5erYuM7iNmwV2GN4gWs6itH0+aMUrwjI5k0Yfl9d+D9xTNaG3hcX/KsW/N8v2TTtfyqvc/DxZF3FhseVvuJH2s5jkexclyv2L4greSJqHehrBmsoM0UZGOJbQnSBHDHQvILPZ1UTWumHhfQAkguLSvS0pOrIrd6tawlEqbgivKQV0r38+YzFKP7Lb9hbXrerm94trjgJ9UbPDuuiMnyvFtyDBVPqjWNjXyyu8epqzGjKe5doFyUMSXIw0Txcgbv5yDPLMnEYoiZNJnVlJ7MlSVVpcdLAFICVWeKeJ2ISq8WiIxagGjkVlSfgyw6NE+WpJkCn5aXtnhC9+2RN6stv1lf8XxcsRtbjrHixWlFUuF6tyAdHW6Q+QjN2dEzY8YMEUkKZmI8Rl5BXhMLHaS0IRIn0t/YiRlNHTflxCEyn4GNaujVY2WcASireWXvYiXP7n2aVvue9Ir5ZckkMSzNDZe247pe8iKsuR6XvBwWPOvWaDaQb4/JqhFSI7eHLKcLVGeKIlGd1xJq7q4oSkbl/BmVQR0z8kLhyy77aYcoEJKlyzWGY7nw6cMShdOegSnAnOU07VBRsCLkyT3spx3qctKs9+2RfdXwol4DcHNsieILBpiysc5O8EPpsznIyqHe3gZpSymSz+UKpGJa59qS6+IsnI0xyUAGN9z3hWrdyWjQcnDJoiTJVHfAaMTOa77zDvVuaRsySxOnfvccc1ld9OoZJkvgXnWiqQKdL15QduUwlD8WFmS7EUmpSK/GkSchHdaWsCgjxY6CCQk7FIcjtpbhvidVpULsqJjJ0VcrzBJCEvTRzVZkI0ovitWi7e6ypM8fJT+D06iWrOX9vfr5s86PpIYhO8L5xkyHi8+V47tcuGmmIKaZQGVyKmFaBI8Zv0vYPqLWkFpLXBiyLRRS0p1TKY1hXBucJEWlrMdPo+dlWk0XxXyC6/O92uurAZyDOJf5+ciOlzR7Rec/EDilii5W8/vmg4mcT3ufV35Kdmb+fTo7B1Exg2JCRr0h1QWJs5WieKYT44VxTcLbginitHzhGB03cUkCwhSUuTNK0nTU5m5gn//5/DATcAFzkEHtK2fpS2PdZvQstTiPC50uPOZik4jMR8vVCtmZmUKapLPdcl4ZpkpI/myFLg2pKd8ZguUmLOj0HKSWJdA0Tu4+7s7Su3PWTozpLgrf3iRLUnnl6OrdR3H75PaZp232dPFQWqy8Vm7F9Xy4MU970nIyO/nJKRQw42U5qo2BlAybsGCf/RygnY7OVKQ5uM8bz+fePb/2fFPKgatXebOdllLlam+Pjevkupc14BTUmZjPbkHpP3RaDQplAx4UM+RpTN1mNPvbPxlx45oJ3hXNwj7WHLXikYyMquX01vmABWn+U49zGefJfT/z36JRy7Qu/W3mM4Tn80TF4D4HyHQsvDjv5yCZ+lS9IU66VCZ1405FhhU01qmclbBw0zwtp8vOfynhe+X/A7GZBydeMmInAAAAAElFTkSuQmCC\" y=\"-22.042263\"/>\n   </g>\n   <g id=\"matplotlib.axis_3\"/>\n   <g id=\"matplotlib.axis_4\"/>\n   <g id=\"patch_8\">\n    <path d=\"M 79.968966 80.042263 \nL 79.968966 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_9\">\n    <path d=\"M 137.693103 80.042263 \nL 137.693103 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_10\">\n    <path d=\"M 79.968966 80.042263 \nL 137.693103 80.042263 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_11\">\n    <path d=\"M 79.968966 22.318125 \nL 137.693103 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_2\">\n    <!-- Happy -->\n    <g transform=\"translate(89.472597 16.318125)scale(0.12 -0.12)\">\n     <defs>\n      <path d=\"M 9.8125 72.90625 \nL 19.671875 72.90625 \nL 19.671875 43.015625 \nL 55.515625 43.015625 \nL 55.515625 72.90625 \nL 65.375 72.90625 \nL 65.375 0 \nL 55.515625 0 \nL 55.515625 34.71875 \nL 19.671875 34.71875 \nL 19.671875 0 \nL 9.8125 0 \nz\n\" id=\"DejaVuSans-72\"/>\n      <path d=\"M 18.109375 8.203125 \nL 18.109375 -20.796875 \nL 9.078125 -20.796875 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.390625 \nQ 20.953125 51.265625 25.265625 53.625 \nQ 29.59375 56 35.59375 56 \nQ 45.5625 56 51.78125 48.09375 \nQ 58.015625 40.1875 58.015625 27.296875 \nQ 58.015625 14.40625 51.78125 6.484375 \nQ 45.5625 -1.421875 35.59375 -1.421875 \nQ 29.59375 -1.421875 25.265625 0.953125 \nQ 20.953125 3.328125 18.109375 8.203125 \nz\nM 48.6875 27.296875 \nQ 48.6875 37.203125 44.609375 42.84375 \nQ 40.53125 48.484375 33.40625 48.484375 \nQ 26.265625 48.484375 22.1875 42.84375 \nQ 18.109375 37.203125 18.109375 27.296875 \nQ 18.109375 17.390625 22.1875 11.75 \nQ 26.265625 6.109375 33.40625 6.109375 \nQ 40.53125 6.109375 44.609375 11.75 \nQ 48.6875 17.390625 48.6875 27.296875 \nz\n\" id=\"DejaVuSans-112\"/>\n      <path d=\"M 32.171875 -5.078125 \nQ 28.375 -14.84375 24.75 -17.8125 \nQ 21.140625 -20.796875 15.09375 -20.796875 \nL 7.90625 -20.796875 \nL 7.90625 -13.28125 \nL 13.1875 -13.28125 \nQ 16.890625 -13.28125 18.9375 -11.515625 \nQ 21 -9.765625 23.484375 -3.21875 \nL 25.09375 0.875 \nL 2.984375 54.6875 \nL 12.5 54.6875 \nL 29.59375 11.921875 \nL 46.6875 54.6875 \nL 56.203125 54.6875 \nz\n\" id=\"DejaVuSans-121\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_3\">\n   <g id=\"patch_12\">\n    <path d=\"M 149.237931 80.042263 \nL 206.962069 80.042263 \nL 206.962069 22.318125 \nL 149.237931 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pc19dba8eaa)\">\n    <image height=\"58\" id=\"imageb9535c68e0\" transform=\"scale(1 -1)translate(0 -58)\" width=\"58\" x=\"149.237931\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAADoAAAA6CAYAAADhu0ooAAAYMElEQVR4nH2a2Y4kyZWev3PMzN1jy8zKrKyupZfppgiSQ1DUMhcjPYAAXem59Ap6AQGSrgQMoAtpoCtBkDQzGoojUk11s5vN7qrurKzKLSJ8MbOjC3P3iOrhyAFHVkQ5POy3s/3nPyZ/8cUHlhC2VrHLNa0FAJRMRrlLDfd5wUNqeNmfcj80/OJf/Ywnf/418cuvEB/AMpYNXS3R8zPS4xP6iwXZC8NKeXjhaC+N4SxjaqAGSvkrlMso/xYDQMZ/y9EzuXO4G8/mM2X9MqGDIWaQwfUZf9+jXSwPJ0NSgiEi3YDn77icZIbsyWgBLpml9ny6f8LiOmH3D2BWQKY0Lk6w4EmLwLBy7C6V3TNh2GRyY5gYkgWTEZmNALOUW2xECKaG+BG4gTjDNYl0IuyfCidfGZIMyYZGQ/uMDBnpY3mHGcSEDBFiLECDZJxlEkKyEdgIECCb0uVA0MS3D2vO3wzYdlcWlG20iEHw5M2S/dOa+/cd7WMjrjMWrFhSwBifz8ygkNG6WSAzboZhybAsiMuzVaVKdJfC9onj5MseTYZEQ7uIDAliAlUwQ1KGbFgezRXIuHEBCSEhB0uSARjMAXBzu8Lfd+R+GHcugyju7BT74CkPP1hz95Fj96y4aq4z5o5cVGy8OVgUwNnsyqaj+0aFTrFBsSQFtBq6Hti+L5jXAnJIxZopITFBzuU2K4BVi0WdTL8Gg3kcmR5wGI0OtDaQTMkm8LpG9vdlIc5h2XDrFfGnH3P90wUPH0B/EUsMZg4AJysi5f8MJEnxYGfgAX+EPAOdQ7sRJCDeMAVRo/2wp/3Us34YkC7N8cgQwR28EadQhQJ0GN31YFWlz+7IdYVswmCOxUtF2g5yAvX4J495/c8+4frvG2mdxpiSg5WyoHvFdYIOxS21g+oeJBnmhNhAXEJcG7kycpXBGRYy5gTpFOkcZhmpSz5oTjruPq5YXDn8XVviNSas6xHvQARzCoua4XKFVzEGU4IkltrRm2Mwz4CjtUBvntYCCeXr/RmX/7PHbu9wP/yE239wydU/VIanQzFElAIyF2tJVKR4Pqkx0gJcW6zaAxoLeL+D+sbwrZGCEJee/hTay0xeZPCGDIKNi5cqkZLQfhhpPw9UNx65b0t8WvlBC568ahjOG/aPR4v2KA7DkakkzfGZ0Dk5Afzm7SVnbeL1v/hj7n4A3YuBsNrjs5L60R8yoMUdbWU0m45l0xFcJmUl5WLtlEsoDEmJURn2Af9dRXMlVPfG4grCg9KdK93jhDlDomCtQkjkrOhqYH+xYPmqorotyREzUCWvGuJZTX/iSbXgsx2CyGEoGSWTjrLu8fXynyzYfhQJj1o2zYCZEGNx8ynSBRDN1HVk3XTULhVQYogcvTcrPkSayuhCYq/Gw6kvrr4X/BbqN6Cdo3ucS3wmIWtA1wPijPYCukeB6psDDqsDeRmIC0eqhVTxt+uok0xFiYPBHG70vZiVVdVz/4/uuVy1AHSDJ5vgXEbmQm+oGsEl6hBxYrTRMyRlSI6UlJyVnEsWZXw+RYc4w5+16Hn5vL+r0C889VvDvBKXRkn+ii0FEejPMvtzZb2okO0e1JGbitQ4UqOkIGRPiVFnZZEqGWdGIrPSSEZJWWfQ66rj4kR5aGuyCWaCGX/wSllp+4CIEXMBF6OSU3nf7ElZSQPkbUCilDBvEmE5cPL0nu1JDX+9ZPGt0Z8I3bmhSHkXGTuJdBcV8aQhvLpG6orceFKlZAfmwJyM5QUjjXUgSJxBKxlHJkgiSOKua3h1dUruDxn5QN0Y6VqphT4kbARjgGUpZSJpieMsSJ1QbzNhsDBSQyB2noekxVv+9IY3r9ZU1w6/FdLCoFcMcItEe27s36vwf/EAHzwnNw7zQvZCdmUB3mFjaTOcCZVktkduXLKwQ8V49XbD4pcLTMed8pCdkSvIVVnoRA4GcQfGYwJJkCil+niDOuPrSF1HvGZWj3sA9oPnYdcwdJ48EoU4OKrzlnyq9NtAeF3iOPtMjoKdJO4+8pyebMjBk10BOeVRMXvXoiqGwwikEp8YlSQcxmCOeL1gdQ+pgVxNpEhKCbGRD0wWPkpyCKXkxNHCdSYse9bLjmU1sAo9q9ARzRFrZREiN7sF29sGTHAhzS6vi8hwAbpzkAWLCnVm9yyz+/kHNK+2mCu/Ixl0rDhe+dtB5jAGCv1TyQSJBEloK0g2xORA36y8UI4+z/5KIQiFv44h2RSqp2qIjEnLj+GC0bgBbQwVI2eh25duSkbq6BRkBSkeNlJ8Jq0zNz+seO/1vpD8WBqIyQiaEZwYSrknoO5oA4Iklq4nV0ecdbKUcuQiI7DJqtNjScr3jHTPhDxmXzMhZqXPnji+qHEDZ82eJycPuFAqgLqMc1Zun6DO7+QH6sTDh0ZaV6WTiYYmmzdc73NFwKimLQeWGmnGpDRda9cSnuwxPapXUkBOnQkTyGkTpMSj+dK9SBb8nUN6nWllzMqQ3ZyFVYw4fj6pW07XLaIZ5zLep/mWkMcFjEBCJj3p2T6r0S7i+jx7EQL6xfCYDASBRjLNGJMqNtfQycofX16TStiM1ju46AE9Mw00P3Ujxap+J/htacF0vI1So7vkiVkLSMomdNEjMlrRZYJLBJdQNXwVZy6NgfOJetXz9keKeUVjnhvzMVaVm1yRDNyRu7ljN5ZSYj7ZXDOsx4w7AciFsx4DFmMuEyaG9oJrBRnG77U8lE1GWlhuMyEf+Xy08p2IlTo8PidihJDwqwGpE6KGjfW+/aCnu6gxESQakkDSuJybvKC1dymfYjQy0Gg/1tHIedjSn5YmWI4tOTXFR0lntq6UuMyVkRojNgY+I1LcdHLX2pVQiUeAJlATMckjP57qsw8JHxLiynvMoNr0PDxz5EpxfS6JaSiEiVfxjHsLpHHxpfGWApACUsXYuJZ8Ekvyye+6r+SjZJQpdXPsN1HIvpSkXBu4knFFDKd5voEZYLQCeIiOOEzUUchZZprpfcL5Er+iGTPB+8T+iRAXOsos4HpDl9pxk5bc54ZhNE1rjsF0dtups6l1oD7pZpd9p7yMLiJji6ZxzLZD8RRzRg6FVKjPc3lxYnjJs3UzQrTCi/eDZ7uriZ0jRkceM7cby5LXQ4Jys1WF7iITF1pit8v4LuN/Vn1HRhnMc58DZ9rTmqOiaEiDeRLCSjtaC5yt99zUG1wLOsacGWQvkA0ZFRFzxbITMZqCN48lwvtEcAVgRhiSK5ayEpttLAwpvVpAkzGfkQCVL80CwJAUtdKnQqGZ0ZS8TgwLj5gRtpHBPNoIXLo7gsRZF3IY9Zh9gRGsstE9z9e3pZ4yso5RFvF70EHmOJ2TwDDe6SikR4s4zWNP6uizm5NRysq+D/RvGvxWoMr4qlhucu8S20c5RTPqSslxy0iuQPpMeL0rsfomO27ykqt4wk1eAkUVzMhMDZOV24nx89OvGR5HUg1a6CnZjyUnHXQgiaPFGRPXqO7N5J9DBzPF5xSXbfT0vS+c+Syj1WGXpnZwAjvFt45sCzGqeqA/EdLSwxDRPqOtOZIpvTm2ueYmV2QTWnP0o8IwuTbAud9y9uSe1EDYGuEBNDJnYkmgvaBJStn5A7XWuYzTEp+TVW0kEG30tIPHDGQZsVVExzqqckhiE2in5R0qE60s748rGNZuVgK1kcSFewDgKm74Kp4TpMRnnjXePLp04b0/vLgiLg2/N5bfptFtD4lJY7GoxKMaO5YZXFnQTBiOyoWZ0MeSYaGUD1cnnE/j5uQZ2B8CO30HMKyMYVXeI9nQjSY+8EVveTmc8Xn3hKWM/FIyjQystGelHWH8/iebV6SzCALrL3fUb43qtqTy2cWmDBxB06S+g4TDgiYaOC04ZiUmN5IERvUhF3Iwgpw2SI9AyfcsnbOQNonuRMA7JGY0AN/EBfd5AUCtA60pK4mzrnvmtpy7B9xYBp6FG55/cM3tJ4rb9jz61T3L17kofN9jSJpAxoQkCdDDgo4XnLKyHzxDLECnmPO+UD8/WvQdyeadu/ymamFR4bQr9fTREm0H/Odxyat4xlN/y4vwFoBv0obn7p4gmTNpx5j17FLNSju2ueafPvkt/+lPA18NF1z8cmDz67eEhxPuPgrs3itN75RtXaZ0/MHwIdGEiNM8JzmAITnaPhQtaaR93wd5bMUppie3n9TFyaKhirTnmYcPFjz6bzf4hLLSbp67ZJRX8YyNtlxoV14iJakspaOl9IeP/I7nJ3f8n8fnvP1xoD85Z/Wq4/RzIzwEts+U/sxgX1SFHAxbJkIVCznXzDCyoCEp3RDoujBbeqJ1Ewizg3xz7BF5BA1jwyQlIagaeR3ZvVfxaIh4N8qbOj7Z5sBV3BAksqlestIywwiSaXRAc0lMS9fxXnPP35xH0pvA9qmS6ga/P5Dd7MEBORQVPmy6udgfQCh99PS9I3WujHP8WG6AvndFVQypxOEI0LviEdkK0EknPra4VJnuDGxRF81obsfGTRzM8dvuCU/9LZU8jA2HUZFGaaXQwrOwY/Foj2lgWENqBL9z6GDkME4nFIa1kTeRdTMUNxw7F4BsEKMjdh46h2mZoJkTkCKXaFWyrh51PYchXgFpxwDFio7tM3Fl2KIqhnQYQVLRdCXRSORlf8qvu+dcpcW8S5OsUpJSZuEGXjy6JS2K3hqX0F3A/omQmpJ8ho0RLwaak47Kp0NPKQdumrNge19mLL1Cq9jOlzvKXCNVDrXXTN5hRpNLl3tcr+ZRtHP4hNDIwNYqtrkmmbJxe5ba87vugjO3pZHvmDZkoy2tVvTm2biWTzav+Xz9guZKiJWRwhgsVjoVO+9ZLHuaasC7ROMjQRNeMuBpxYiDw9272QNyEKzOSJPQqowf+t5T1wPBF+rYj9MBp4bIQVrNqqQkZWShxrDIpGWFH8yzNcfO6nfmLFDkzjYHthY413b+fjcS/ME5nte35HWi/lRIjZDXZSZKyEjINCPIOkSCZoIm0kj14thsYxC2QlyUsSC+aD36OtBc1YQtdKewvcjcn0XCYmCx6GcCoWPNLUlrzA9jO0fIDBuPV8lkCzQyoGOs3ueGtetYupJ1Wws42dOIMeR8NHVz3MqS5x9e8+rhCVZlLIzTr5CpF8MMsh5d1mvG0kEfqnyiamLpajporhS/A9/aeBeSsvxOsM8gNoH9k4q7j2tW722pwzCHgB2RDyikQ3xmWAV8IwM3thwT0oHynfsHltpRSaK1wC57GjcUrXdMSo0MBI08W93xzaNHELUQAp9Rnwkh4l0mjMR7ctmsgh97X2/Csul486wmXAVyVV4TV4KpkOoijrtWqG6heZs5+cLIzrOtFuRToQ7xiEhMA7XCqkTLDNZXI4/d5npkQj2VJFb+niBxJvTXecmp3gJFgZg036X2PKr2hCYy7EYNdvwRr4dCPzXXKpnqe4M6FUOf3nG9f4SJYt7IC8MWiXrdsawHtrua9rph+Nqx/r2x+M7oHnu6OszC2YEGHlQI0dJZ+ampvupPSCgf6jVnbleyK0ZvZSB8k1bc6m7elNYCDuPCPXBZ3eNDYsjVPHtxo1yiYu+Q7Sl7ey3MRtWIY396+7glWoN5Q9aRxbInjI22rjNx0dNeBq6eLzj/heJaoR+UlHSsrdPpGHvnL4AO5rh0WzZuz0Nq+E33lOf+lo22ozg20MiAk8zv4iOu85KVdpy53Uz0n1R3LOq+yAkc+k37HmkH6LM/dEXjJkzWvjh7AIXmlaf+vGF/16Bi3G4XdEMYeTDoec/Nj4y4KrJMzkIcBfGpvEwlxka+rWFUEl74tzz2d7yOa/7L7gespIjYpXvp2Oh+noRfuj0v3AOX7p6pPJ0tWmRkNJa/V+COrjyqCDG/C1YxTuuWxx+/oX0e0R5O/6ri5mrNshmp6AgmdY60KoezLOms+ieTUfc9atkMNBq+kTRKm5En/p7WKj5rn3DuH/hBuKLicMZny8FllwJJB850xxUns1w5CcpmzFqtWeHROs1hR4H8+22ambCpO9qn99yzYfmlZ/1pxe1ixfnZA9TQDp7eJzpqSA4blOQUUZv72GkDjXLaLNzFw/GbQGaje574O167Db/av2ClHZfuHoeRR523tUBrjqUkNmI89fe0FkonkbRMuI5SfTZhGF1KKazGayrSpckMeALryZw0HelS2ac1zTcO+arhjRinmx0nTUcfIluX2UkDUUerGhOLnpr0ITmkc1S3uyMKSGYlxULvV9dc9Rt+0z3lKm3mIfFq7Ga25hmARpSnLvGz6ju65MdTKcVdLJezQRMXnTSeabf/f39rH3m02rN5ccf+RaS6Ffh6wc3Nij45NnXH5WbL+mw/H8fJuQyu4hFjSknRnaI328PYcJqoBYmstOdpfcvfPLxgl2p+vvySC93OYO9zw0YGzr2ylsCFCtu+KjzVwJISB4jBlUFXeDfrtinMMTpdpdnO5NGqGoYSby+M2+GM5TdKul9w9TwQ/ug1ToyL1Y7gEtt9TRyKXGpZSElx1UCMSnUncHOPOjGKQCYzuW+058PqNefVls92l/znu5+MLhvY5prrtOY217RWdvPfPlzwsK/nkf1k2Rj1SJo8yCf7GN4BmbLOSqCOpaZ2kdpFzpZ7Nh/dsns/oQOc/Mpz9VfvMYwUclkNnK73LJZ9idHxdyqXiG1g9XvDdjv0N8PF4QcRKjIbbakk8X71lk1oedOv+LPbn4+WLwv6Lm34y+6Mf799xL/77h+zqHtslQoFzDJOoQ6i15DLabTpqN1x7yhjnMYjF/eSqVyi0sSm6Tj98Jb9jzq27xv+QXj1xQV9KkcOlmFgs2ip6giT3gRw5zn9osNiRP/lZ/+cq7Sap1gqJelMg6XH4YGV73jZnvK/2/dZSc/JSPDv84LrtOZRteek6QjLYSbkZszi1vevY+sez0WPE1g0pU8l3oJLLOue9dkOe9rSXWaqN47Xvz3n1dsNuyEQNLOoe2Q8+tNGT7hTqm8fkKpCf/9/n/Af73/KdV4QyAymZNN5VHjq9jwKOxZu4BcP73OTlyh5JhGVRN6r7zitWtarFmnSPBSedjZlmUsNlPJi9nfX2gns8cYEzazqnvWmRS47htOMDMJw03D9ds3b3WKcpWbqENm2FdWtIG/vkKZBq2vlz778Kb/ungNFXehxBYwO1DrwyG953tzw1faMv959yM7qccEF8ONwz0W95WK1o1n24PMI9MCQ5kVzGCYdfz8RiT90TXHb+Mim6Tg/e+D0g1vsoi8nye4Du4e6qH8+sap69g819RvD9nukrvDDxki/fsSfP/4xP372zfzylXblQJVJaWo8nFQt/+GbnzA8c3xcX81nkpba8/7iLfsUuF/W9L0nbYuiJ0DwaSb4TvM7peb7m5AR8tHJUigzUxWj0hKzwTksCOerHV30bLuKtg8kE5bVQNAENxWLt+VgMsGjeZHRAT69vuR/7D4pLRjlANW5e+DCP7DSDofx0fIND23Nv/5ff8K/+eZPaK3iqb/l6/4Rj/yWD5ZvebJ6YLEoVp3lj7GT8WMim0b3fXbzAY3vE/8pfvP3XFzE8Eez1FXoeXZyx0cXb7hY7ahc4qZdsHyp1G8GZLPGmqp4Ug7QR8/vunO+jo/ocZxIx0r6cmtHrQODOR6vt9ibms9eXfLL7Qsu3JbH/oFdqjn3W54tbjlZtOUMvMt49+7s81itm1jRnI05JKPpGsaEdKwxTQwLoEuefQy0MdAnR3CJ765OWHxr+PsOgsecQyUK5o1qPOtzk5bsconBiRGVWOxZu45V6LFFIm09f/n6AwZz/LB+xanfESSxcAPr0Jex+3gYctJbp/ic+lMvxdIzM8LeAXm8Kcc08dj6E0eerN9Fj/+mprnJSJcw78ArXpKQK2NRDSy1H3vP5dyPJqSoCVqSTqURt4rkm4qXr0/59I/e48f1S6jgOq35djgpI0ef8aPaN92z8GyHUaGYoONRAhGbJddp4fo9l56sOgGf4n36fLtvWH4jhPuR+TpHWgRUIlgwGh+pxynRdVrzRX/JXW6K6iADlSQu/T2VSzSLvhyveVvxX+//Hg7jj6trfly9ZKk9uyH87ZHeEZ+dGnI/xu7xdQxMxah9PHQ6Y6aeTquUM0rlhkJjH66XrF8mXJvKubgmMJwE1G8PtKmc/8ustOP3/TlOMudux5nu6c0VHux6FtWAOcPtlf/+7Yecac+pOj7yA0vXse8DZkI1jh6c5rk1mwBUGqk0vtOPTvF37AFd9HOcAvP5BoBkQkzunSze/K6iuktIMnLlSOuaYe34fz4c4NhGzeaXAAAAAElFTkSuQmCC\" y=\"-22.042263\"/>\n   </g>\n   <g id=\"matplotlib.axis_5\"/>\n   <g id=\"matplotlib.axis_6\"/>\n   <g id=\"patch_13\">\n    <path d=\"M 149.237931 80.042263 \nL 149.237931 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_14\">\n    <path d=\"M 206.962069 80.042263 \nL 206.962069 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_15\">\n    <path d=\"M 149.237931 80.042263 \nL 206.962069 80.042263 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_16\">\n    <path d=\"M 149.237931 22.318125 \nL 206.962069 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_3\">\n    <!-- Sad -->\n    <g transform=\"translate(166.805 16.318125)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-83\"/>\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"124.755859\" xlink:href=\"#DejaVuSans-100\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_4\">\n   <g id=\"patch_17\">\n    <path d=\"M 218.506897 80.042263 \nL 276.231034 80.042263 \nL 276.231034 22.318125 \nL 218.506897 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p8b240d9d25)\">\n    <image height=\"58\" id=\"imagef6b759184d\" transform=\"scale(1 -1)translate(0 -58)\" width=\"58\" x=\"218.506897\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAADoAAAA6CAYAAADhu0ooAAAZF0lEQVR4nF2bWY9t23XXf2M2q9l9VZ3+Hl1yb2LZcRODEImIgoSElEeE4AEkHvkGfBA+Ak+8geANRZFAQkGWEImToDiO7djXOff0XXW7Wc2cc/Aw59q7zt1SqdY+u6n1n6P7j/8YR77/7/+D2oNiezARJCkmgETFREABQFQxY36SnGC7RP3+gPz0K3QMYARSefOdhzQ1Zj4D78Ga/I8xQSo/AMacfjuLtjVpXhMbR/XVW7Tr8sd+6zNuvpzRbQySFHVC8pAcqM2/EVADySnq8jWAQ08vqgIIySpGBU2KaAaJghpBgiIJzKiYw0jsesQ7iBFNCpoQa5G2xWzW6HKGiuQvDxEJMf/luyBF8rU1qDX5IEIi1ob9958w++lrdN9BUlQAA4rke5Zy/+UrtGChvKZWQSUDVREwiqb8IaG8efoSBEFJTjDFaKkypHmNaWp0DGhSTOWRqoK2QWYtadlmIKpIKMBU888EUCR7gzFola2uxcJuHxhXFelsibGWVDvUCiog5gRqAolmgNO1TA4pisunmt88HSx3TmcCPlk+eUGSkrwQFp5quSC9fYepa2S5ROYtWlekxqPeZoBRTwC1nJQRSOW3tah3aO1Qa8EKaiTfbFLGswbTesalQw1IOrnk3fsVPUZavtACQhSHyX9PLGgqXyLZgncfWk4hOTBBUAuhtdTzGahmNz1bkSqXLWIlA6S4fiwWnayYUo5ZY9Dao5VDnSHVjlTZ7DFOSJUQK0dyEBohNMVl3TcsOV0nwGbQJJCY3+uSBVPiT62SdHo+3dTdY/r0BE1QOHSIr9DVgtRU2XUSJ1cNCUKEGJF4cl+tPHiHVo7UOMLMExvDOC8/C2FcQGwgNEpcJlgO+Dowdg49OPylpboSTCjJyIIJGau64r4KqlJcd8pUVjCqEDLw5BQTciI5xi35C7PlQRcz9PUbJEREFRUDFlQMMkYkfgpSnc2uPfOk1hFrS6wMw9LQr4VhLQxrJawjZjPQtAOLauS83XPR7Fj6jqQGbyKH6Plff/pd2hcWMwIl+wJIElSKRyVwakuoFPQUQHevQVCdMnA+KRMVRIgXC+zVvewRUmKrxMvRmgXgZMGwqAhzR2wMoTHEWhhncHggDGeJtIjY+chqceDBYsumPvCgvuXC75jZPgOVyEN/zZ89fcpht6H5IKTqGJKo0VPmdYo7Jh5TLGVBIxDuxicIpUQUsBKze8oYkbo6Zsrs0wKTNaVkVO/Q2pIaT5g7wswSayHUQqwhtkKYKWkWMU3AmMQQHB8PM2ZuoLUj9/wtF3YLgJfIhd3ynXtv+b9vFqQrn8GpoEZRW6xrMjZ3PP2pPhk5mZPTCR3Ds1hUomK7iL3cQQgF0JQQSjlJmsuFt2jliI0jzhyxNYRGiLUQK0iVEBpIlYLLfywGy7537G8aDoNnHyp2y5ov23c88Zc0ZsBI4ndWL/iri8ekV/6YnSaQanIdzUD1DphP3PUELL+mR+AmKbZL+MsD+v4jOgzIapGTUI7+DPQbIMPcZTdtDeOssJpKCG1OOlpAptHCKJidxe2F/lXFL+oVP1s+YXl/y+89fsY/Wn3FI3fFbzcv+fLeB366WVBdmsyIJpe9QyTcEVTKQJPLaGKlMJTkNPm9gDrBDkr1YQ8vXqPDANYiY8AMIQOzQmocGENyBq0MoXWEmSF6YVwI0QuphtDAuFTG84i0AWJJEDZ7me0Ft8+/bSeo2fAnTzfc/rOaf3r2M574S75cvOdv7j+Cj+2p7EhJPCZby6m947qSM5QkLeQgu7IJih0FiUpyZBrYjaRDpmWmqnLS6QeECnWeNAGuLLE2qMv1L/mcC9RBrLIlY6NQR1wVGbcW/8HjbzIDijPl8OXAk8eXnDUHxmgZb5d0weMlJ7pH1Q0PL65575tPicQdL3WnZHPHbSfqV8pIfkFzph3A7wMyjIgIqhGshZSQmNA7zCeV0qFWSC7fOApmLHWucFF1p/ipVj1ha2k6YfY2//H+Rc3H+494+TCwfHLLP37ya749e8Obcc3z4ZxRLQ9nt7ytHh4xyMSKyv24b1IqlVyDJOoJJORko4rtFbsd4NChMWXSCegwQluj7kTS1Z5OUFQRFUzMXVK8mw8siE1UVaT2IzcPDVtXMy4stofmg7L+W2X2yrJ/fcb/2Nf85Pwxbz6u+Nbjt/xg85JH7S1/WSlmkELk77owmQJORXbiu1pSstxp047tziFiugDWYtZLpGnyh8YxlxBrP00Eha8SBZkOVU5MRi2oS/gqMqsHZn5k03Z0546rJy37bU38qmH+IntCfQXhWcuLmwp/abk+b5iZgaYa0ZJX1HIkC5PXuCMQOWVY0VOZyfE5WRqqDwfUW8Ln94kzx7B2+JtA/XaXQfrSaokcM7lSwKqQbI7LcQ5hrsRZQtrIYt6xbjq8iRhRnKRchoKF792y/75yttjzxeKae/WO14clXfT8/sWv+K36DV+P52iVCs/W0rqVZGSn7uUbj+TAlrZRErh9oroeMWOkv9dmlyyuqQbC3GIuZsiYMqDJ22PpHyXHaPLCOM80b1wq4yZiNwNnqz3n7Z51fcCI0gXPTWi42rYMlw3u2hJnidcbT1Lhi/kH/u3THxFL4bYkdqnGzkd0a4sHFtJeQLtj8indCwI2nFzVDorfBmwXGJdVbrpDIrkMtn0zYMZIbO6cWekLJSpamWyZWgitMKwylx03keq843y14/5sx8p3PKxviBie7zd82M5Iv1xw8Stwey2H1XD7sOV//hPLP1//mH2q8RKoJLKxe+aznl1qjp3g0VVRHKKQpt6PTxJQtVXatwPutiesa9SA7RPJGySB7SP2MKJGsF1ASoZRm5u8VBlSnVursRXCPHck4zriN/0R5EW9Y+0PPKhuMZI4RE+MhtkrYfFyxB4SpjQF9XXF2+UFP/nNp3zuP2BRvESW5sDZ7MCO9YmhQSHxYI6ZiRNQ0SyVtO9G3PUBFWGcOWwXcbc9ZojYQ8DuhwLMYA4j0o+ZyJNjPNYms6A2k4RhmcmBLALLxYF13bHyHWt/4MztWds953bHhd9RVZlsdxvL/qFnXDjUCH4XWXwN/+nZ7/E6rPESWJqRlem4125LEtRjiQQQUxpvTXdUhPLjDlC/3kJKxGVDqgX7esR8uMGlRbZeeU1iQobMd9VakjPE2jLODONcjr3luFLiMjKb9yzrgYXvM1B3YGk7GjPiJXLmd2zajndnMKwN41xp33qajw47KKEVnr865+XjM35QP2djIGrPo+Y2V5C7SklhSLmOFmqU1bOcxtsPEdnuSZsFYe4wg5Jah7m9RboeaWq0rTF9yCCB1HriomKcO8aFZViUxLOAcZmIq4hfDqxmHYuqZ+l75rZnYTtmpmdpstrXSODB7Javn9xDRsO9Lz7y8WrB7Y0Hq/z2t57xLx79BRd2SyORWgwbE3lSX6F1ApfuANViUTJBMIFjnPqd0r7a5feGhN0HdOE5PGxYfrgPHy7R/R4ZR2TvsmKwWRIXFf3GMywzaR8XQnehhEVCZxG/GFgvOu7PdjydXXHudyxtx8wMzExPREhqiAgPmi2PPv/Imzcb3r1dIUZ59Bsf+MMnf8O/Wv8Zj2wkHrOOxYowsz0YRdydbFTUPGdGMqEnMxbbQfMxYa73YAxy6HEiYAUzGLTxmPkM7Xp0HKEfitA1Ly6bM2xshDDPrZdWiqkjziWcjSQVDtHzJq34aOZUJnDm9tzztwBchxl9dMz8yHKz53Co8FXg4WzLPbfFokRVYi4Wx4ctRVu1kDPR0k2BO0qHk4Y8KtV1QPoRrT0SE2Z3wKeUScDugHY9DGPWclURa5BuyKKynAh78iUpJEi9pUtCCIar7Yyfhwe5q3CJeTOwaQ88nV/xuL5mnyoOMdfMRdNjRGmqkYftDQ/9FY1EIlAVqmkRoiofw/yOYnYnTpkooCoiciTcbh8ySQ8xH09S5GaXgQ0DxJjFZM0JSSGT/EIWjrVZBTOCjBZJNotYUh+lm3GhjOsc3zEJIeXTHpPlamgZosWK4mxiVfU8qm94YIvVky3xCbUoe4Xn3VlGpZKtaijmLZqRBDlKg3YA0xcdpetPBD1EGIdM3u1dhyGDDSEzo0lTGsljjkGwPdTXSn2t2D7HybA03HxhOMwMMRq6wVO5yK9vz4nJcBg9fbDULhKTcNbseeyvWJqOd7HlWTjngb3lod1SSeI2eX69PT/dk4LGzOjFpixcHDluymzG7IdcKkKAYTy1XrHwwnE8ecGkuMeI6QO2T9g+N7lqCsirRLVNuF3Mr+8H6kWFSkN15RBdEBpo/nDLr796AEEydTOwrSIXF1v+weprvlW/5iq1/PHND3jfL/jO4hXfbV6QuORtXPDqenVS+b7hwc7EzAtTJaRQWqsx5ESjCkaObOk4QzHm0+9RhWHE3ByorutMFEovaAeK7ioMa0esBNE6a06jsnyRqK4D/cZx898e89nbRGiFfm0IM9g9tfy9Lz8W4n7Bzw+PsCQ+bz/yoj/j2/Ur3sU5f7r/kt272TFkjqJ26WKygE2hfimL0jKGMrMoblti8VMSybFHnaxvtnvcdYtbOGJlsrZa2kAtLV/yQr/JtfU4BfMGUVg8g1jluK6vc5OsdeIHq5eMavkvr/8hP/nqCc1iYHg+x+2EP/7Od/j8/JI+ugwkSlYw7R39dopR1Zwh1ZZ6GmJWDyAreRPI4qLHMd/kysV9NURMN+B3NWFWEeoMZJzn7sXvEs1lRFJO88lDrCFVIKNgRsUOubnXMoKgSjRm5OV4xsubFe5tRXhT0VwLfgtDv+Jnn81o7+0zUUiTglCMMdXRKZYoVrZ9OgEoroua07/dTUDFwpJSkVNirru3NW7hCLXNmm2RNUNjcF3Rj2P+agTkSrAd+L3i9jmhjbUhVoJrAkYSr4Y1212DvxXcAYZV7me19JvWTmRg8rZsFzF3mBGSs6PbQnVTOGtKx8Hu0brTuO8T750UcM2H0fWY6z3V3BPrnPViDcMahg3EWcJ02T3VgBmg+SjYvkidlTDODd2Z4fBQudhkgnA1zgijpQo5m/cPA/eeXvHZ8pqF7/nYz/jp2/lRFz7SPwFjUua6toPNzxPrX+6xH7bQ1MihQ52DFIGpCxfE2mxJEcSYfAgx11uNqSiB4N85xrnL0y+bxwVxnlg/veY3z99TmYgzEStKVKGLnpfbNZeHhhgNzkUezQ78/v1fUZuRp80lf/Ctv+XPl0/pf7xh8/8c79OGzbcPJISvrzZIMKjL9youYVzCmGxppxbMKFTbiL3ti8WKsncc9Rmk8oVCpTyeKAAn0FP86lRTQ6CZ1/Sb+WnUbpVu8Lw/LDhvdsxEqc1IayMP61v+/up55qvlYVGW9kAjI/fdDT+cPeNf3vsxw/csP7r9Fj96/QXvt3OGYOm7Cq0SUgi9iGJEsVZJSXBTsOaxoSBD2S0QyeCiKVlXs3XLHsOxtk7kYRrVTxl6GLEvP7D0BpU2c+C5YRwct31VOqY93kTmpmdhex76a+amx0jColhJeAl4IpVEjCQqIo0Evnfxmn9z9n+ICP/58nf577/4LlEsxt+VLk+FwiHTaX/jlSJw4SwSYmZE6Rsgi+vmg5pmiqXxjhH2B/yLj6zkAhMaTDDsqDnUI60PJDU4SczMcOxHc08asCiGVMBGGhlpJNJIxKMsjfDUDXyMkSE5xn31ibJgSnuWnW2apn2DRUx7B+psnmtKyt25nk5Lpt2D6fmxnZdT3TWC3mzxLw2rYYXrWszguJ619E1WJ7yJ1CYwMz2WlMEVkJMV5zLQSGQmkUbAipTBtvCrsOYXN/eRvcWcDaee2+RMbIzmZAQTH9WsGoig1nwynT4xZDJTorQ808qN/UYmjvlQxPvs2mPAvrtmcXOgeTdH3ZzL5Yz78+0nn4t3TGIlYSR9YslGwE8rBkAtnv+9/TbP3p8hozCfd3S9L+edWzRrEpWLOLXK7I1SXQ4whhPbSQm504plR3cn4iAGsSbvD00JaLKmtdni1ubZaFvnUb4z2P3I4z+54ZWu+MXvPuDeF1seVnwC0EsoACcXVnwxVQKiKo0Yvgod//WrHxJezJAE+32NdZF52xOiRaEADRjTGerrYs27lonpmE1FJPeczoGxiPcZ5Dcf5b13n2tToY1Ha5uF70UFIiy/jphftfzVu8c0ZmRpOzZ2V9w0a0deEnUZJEWFERjKof9dsPzrv/h3HP56Q/PO4LeGcF0RRkc/Zqt6G6l97sSM6fIYUGL6dPdnAnJ34akAnq4BCCFbs6qg8idr+rKMUVf5O0wWzOLMERYetUJ9KVy+W/J2WDI3p7LiJWJROrX0akkInRp2yXCbDG+i5z9++AO2PzvD9nlSPmwSdj2A5HJiRLEmlxhvEm7aAsMI6kxelUkFdNJTFp5c8W7dnNgQgCtp2+jRkngHLg+D80qNJVkhOUu/yoNgBsMvt/f54fwZD1xuqlOZfCU17LB0ydOpp0sVu1TxfLjgj37xXdrXuWmIdR5mjdLAesTPemofsCZhS5y6ab0qL1qYLC59s0uZrGrNKfnctXJKOYHdeU1np8larAtIL2AgtHm9JswUScJXl+e8uVhz4bYMaokIMRn2WvO6jAYP0XMTWi6Hlr+7Pkd+OaO+ytLNNDl3O2G/FNZthy/alKrgJOGSK7PKIyhO1prctFyrd1kXsmXtLWm2WjkMNWQC6x1h1eRzSHoEqWUjrFubsgEmmL3h5u2Crz67z313iyHRacXbccXPdw/4yzefsd3m79Jg0M7iriztx2yh9jKPRw4XmU+vznd8vrxkHzy7sSaoKRaF47A2L2tYZMz0T00hDKm4qHdZUoF8fczQxfW9PU7UwsyiRnBdxMSEqBAaS3dmia3g9opEwQzCEB1/9JPv8eMHT1nXHc+v1hxeLpg9t9RXyqqk3OQ4bnMOG+XwKPe3aRXY3Nvye/df8xuzD8zMwF9vH7Mb66P9XGoTsRJiY48WMF3Ie0FwYjqT5aqc0dRmVT5/pozrDMRZxbh0eQmjNpiY28DkywxmDrZXhlVu3UyA5a/B/rzi+vMHXAk0H2D5MWHGrDagisRTY6IW+rUQWiXVmd9GFd53c+auZ+MPzF1PVzm2Y53HkNpEhoWnbmxeeVMlLmvMwaCVQw4jdH1xwVMdVW9zDAJJ8h7ftEOrRhgWhmEhJOewI8fPVTdl6DMWMW5UXJcwo6LiMBHcITfgoooagx1O02sVQSNUt2XxcrCMQdgZ5bbp2YWaQ/SEZEkqx1mrkyoxbIT4XvA7SNYQvaEaI8kbjLrcWHfDJ0tTeUHRkqwhVebO1DwvKk5W7M4F1ylmzEsfUtRGEzJA2+lRJm0v00kZEPL6rAIJ7OQZtqzTjlDdgolZGBhtxTu/oHEBJwlvy0DZJCobcGKUYaNlazIvVKTKnBJJnadYdtr1cwaioiJEbwjzvHUSfY6XabMslYWmMMvp33W5yZYI1U4/WSSe1nvsIZHqvJqjJq/LTjsWJkyfkbwiBJghk/VcsgyBlldFEF81Ha0baexYLGrybGRYGFpv8mjwMOZljRgYNw3aWEyXR4Ja2Vx+hJyAbI617szkEcS0bVLcM+WQziu7IkiE1OU19lgZ1OTlLNMl4twe9SUU7JjX2l2XD/a4aS2nVYTjhCEAO8PhY0vzaAJXmm4TcdYm0iIwbGqGlaUZE4wgY8z9acyuEpcN7uqA2Y+kRUWqclaNXtg9Ngwr/aRNCm0RpfaCHaSI48r8TUQlC2FmzLGJwOG+p1/L8cYl5TI3zjLoqQKGRugusognZTKvjrL/BNW658nqBjPJnCbhJWWgWgcODzz+1tB8gFhbTOWQGDFjJFWGYeMZl57m+S1mOxyn294J1bVggnC4r8Q2KwkSJYPsBAl5QtdcJsyg2D4eLZK8EGaW0OZ4jFUOHxMB8m5TrLJlYw3jUhhWSnUrmB5CS16WrBW3F4xRNtWBUE5sbgfmrsd5F4nRkNaB/SNPfe2ZvxzR2kI/nW52nXFlkCcLqsv8goSE3wVWz5TtE0dyQuiFVOkpjgK4fc6kJmTrxcqUJKNF2ciyZ2jzXqAWlbC6zZYPs+kQijzqod8ofptLTGyV1EbGyvBgfsBIJghGErUN1CbgnI0Y47BNZLgw3H7usL1j3gXEnjqR6b9b7B75TAR2ITfnRrB9xHWW+irv7MVmuuE7SccIscqaU3KCidnqsRKGuWFY51gfVyeXT4eTJSGDjMV6qUmEuUGbiJkHKp+JzNPlFUlNBmkirRmY2QFnSyceRJFZZP85SHLUlw4f0nHZOLk8mug3ghpH+0Fw+8iwdse48jvFDBA7sF1etVELYZ7jLVmoNK+vmpCfh1lW7g/386qcXgzo3iEh08ZxMZUzJcyz5TDgFwNtO3BvscObiKpQu8B3lm94djjDS6K1ec93Ybsy8Z4Gpkahjuy+HXlLzf0/zxRu2kJBM6vpLvLyRrW1RA9hLtRXijskqtuEBCXMDLuHlv6suJsr5UcMKESf4+1wXxkejGCVzf0tIsplXBAbw+FRtp45GNIsIeuB1aKjcpHWj3z//BUPqxtGzeTgd2Zf8zqs2RYXWNiec7djZnr+P/QYUueB4pkjAAAAAElFTkSuQmCC\" y=\"-22.042263\"/>\n   </g>\n   <g id=\"matplotlib.axis_7\"/>\n   <g id=\"matplotlib.axis_8\"/>\n   <g id=\"patch_18\">\n    <path d=\"M 218.506897 80.042263 \nL 218.506897 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_19\">\n    <path d=\"M 276.231034 80.042263 \nL 276.231034 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_20\">\n    <path d=\"M 218.506897 80.042263 \nL 276.231034 80.042263 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_21\">\n    <path d=\"M 218.506897 22.318125 \nL 276.231034 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_4\">\n    <!-- Neutral -->\n    <g transform=\"translate(225.223341 16.318125)scale(0.12 -0.12)\">\n     <defs>\n      <path d=\"M 9.8125 72.90625 \nL 23.09375 72.90625 \nL 55.421875 11.921875 \nL 55.421875 72.90625 \nL 64.984375 72.90625 \nL 64.984375 0 \nL 51.703125 0 \nL 19.390625 60.984375 \nL 19.390625 0 \nL 9.8125 0 \nz\n\" id=\"DejaVuSans-78\"/>\n      <path d=\"M 56.203125 29.59375 \nL 56.203125 25.203125 \nL 14.890625 25.203125 \nQ 15.484375 15.921875 20.484375 11.0625 \nQ 25.484375 6.203125 34.421875 6.203125 \nQ 39.59375 6.203125 44.453125 7.46875 \nQ 49.3125 8.734375 54.109375 11.28125 \nL 54.109375 2.78125 \nQ 49.265625 0.734375 44.1875 -0.34375 \nQ 39.109375 -1.421875 33.890625 -1.421875 \nQ 20.796875 -1.421875 13.15625 6.1875 \nQ 5.515625 13.8125 5.515625 26.8125 \nQ 5.515625 40.234375 12.765625 48.109375 \nQ 20.015625 56 32.328125 56 \nQ 43.359375 56 49.78125 48.890625 \nQ 56.203125 41.796875 56.203125 29.59375 \nz\nM 47.21875 32.234375 \nQ 47.125 39.59375 43.09375 43.984375 \nQ 39.0625 48.390625 32.421875 48.390625 \nQ 24.90625 48.390625 20.390625 44.140625 \nQ 15.875 39.890625 15.1875 32.171875 \nz\n\" id=\"DejaVuSans-101\"/>\n      <path d=\"M 8.5 21.578125 \nL 8.5 54.6875 \nL 17.484375 54.6875 \nL 17.484375 21.921875 \nQ 17.484375 14.15625 20.5 10.265625 \nQ 23.53125 6.390625 29.59375 6.390625 \nQ 36.859375 6.390625 41.078125 11.03125 \nQ 45.3125 15.671875 45.3125 23.6875 \nL 45.3125 54.6875 \nL 54.296875 54.6875 \nL 54.296875 0 \nL 45.3125 0 \nL 45.3125 8.40625 \nQ 42.046875 3.421875 37.71875 1 \nQ 33.40625 -1.421875 27.6875 -1.421875 \nQ 18.265625 -1.421875 13.375 4.4375 \nQ 8.5 10.296875 8.5 21.578125 \nz\nM 31.109375 56 \nz\n\" id=\"DejaVuSans-117\"/>\n      <path d=\"M 18.3125 70.21875 \nL 18.3125 54.6875 \nL 36.8125 54.6875 \nL 36.8125 47.703125 \nL 18.3125 47.703125 \nL 18.3125 18.015625 \nQ 18.3125 11.328125 20.140625 9.421875 \nQ 21.96875 7.515625 27.59375 7.515625 \nL 36.8125 7.515625 \nL 36.8125 0 \nL 27.59375 0 \nQ 17.1875 0 13.234375 3.875 \nQ 9.28125 7.765625 9.28125 18.015625 \nL 9.28125 47.703125 \nL 2.6875 47.703125 \nL 2.6875 54.6875 \nL 9.28125 54.6875 \nL 9.28125 70.21875 \nz\n\" id=\"DejaVuSans-116\"/>\n      <path d=\"M 41.109375 46.296875 \nQ 39.59375 47.171875 37.8125 47.578125 \nQ 36.03125 48 33.890625 48 \nQ 26.265625 48 22.1875 43.046875 \nQ 18.109375 38.09375 18.109375 28.8125 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.1875 \nQ 20.953125 51.171875 25.484375 53.578125 \nQ 30.03125 56 36.53125 56 \nQ 37.453125 56 38.578125 55.875 \nQ 39.703125 55.765625 41.0625 55.515625 \nz\n\" id=\"DejaVuSans-114\"/>\n      <path d=\"M 9.421875 75.984375 \nL 18.40625 75.984375 \nL 18.40625 0 \nL 9.421875 0 \nz\n\" id=\"DejaVuSans-108\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-78\"/>\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-108\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_5\">\n   <g id=\"patch_22\">\n    <path d=\"M 287.775862 80.042263 \nL 345.5 80.042263 \nL 345.5 22.318125 \nL 287.775862 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pe15e666baa)\">\n    <image height=\"58\" id=\"image9881fc3420\" transform=\"scale(1 -1)translate(0 -58)\" width=\"58\" x=\"287.775862\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAADoAAAA6CAYAAADhu0ooAAAcVUlEQVR4nF2a6Y5k23Gdv4i995kys7Kmnm73nUhekZRkUaJpC5IFWLABwQIMGH4dw0/h5zD8ywYMW5D9Q4JgwZBomoN1KZJ36u7bXXNl5slzzp78Y5/Kpl1AAjVkVZ3YO2LFirVCvv+f/k3eT45hcMStw9xZzAjLL6C9SnSvBuz1DnJGxol8d4+sVrz81x/g/uSS3330kpSFY9dz5nZ0ZqQRz8oMOAkA+GzZxIZNahiTo48VPht2sebeNwzRkrJwPSxwJmIkMQTH65sj/EVLda24jaATaAD1GcmQBQDsAHbIaMg0b0fcj36JnKzJziLDBDljYxJyhpwEgmBGkChIzLhdwuxGZBhBFWIiDyOX/+o3uf/+yB+dfQ2ASkYl4zTQiKdRD8CQHAllSA6fLYaMk8iJ27GNDT4bag2ErNxPDSEpISkLN9G5ifP1ltejZRJHsorty/OZUZAAkjNkSAaygsSMxEyOEe63YC05JxDFhqTkLJBLgOoFSWDHjE4JGTyME9QVedeTf+ubXP4g8fGLC2qNqKRDsA8fMStOIgllyhafLUO2jMkB0IeWMVlCMoffs5qobcBHc/h7SzfRLUf6JIRoyapkK2QFu4ecBYmQbSY6wYyC+gg5k8cRiRFUwFpsSkpKQk5SbjKAJDATmCEgkyeHgJjyAG9+f835Ny74YHlDyoLKIT5SVny2qGRiFmJWxuTw2eCTLTechSu/YEqWmIUpWYbgmKIhJiVmYYyWhGAksWqHUlaNEoU5UEFD+celOkoGZgPkDKkcfo4RsiIWbM7lZHJQNILkUgdmTJj7sdxmTOQQ4PEZmz/q+Z3VLUq5iSlZ7HyrPht8Nrgc8Fj6VOOzYUiOMVvGVF43U0cfKnw0TMngoyEkZfR2PryMNYnWeWoTUU2kKpE1E52SnKJjyTyxgECKECsB+bWThxK0KDbnUqN4RaKQKjADuE1Ed3vyfDqkzNf/7BE/+PDvaI0vqZf18GC1FuCp1eMkElF8NocDGJJjHyvuQ83d2LL1Ff1Ygk1JSEmIwZCzkGIpJeMSq+W+3E4GsRlpPLkT4qbG7srzIqBBiBXExmJyhhgRAOcQo9iStgqJw0s92G1BK0IAFfKzM+7+cJhrUBiiZYil5qwk7rUmIXQ6sdKBPtUAXPol93NN7qOjD477qWY3Vgz7iuANOShEKek0KTKnZagyd1FAgNGQ60hVBaxNDG1VArXzPdgCSONZxXK5IN1vyTEhJoEIVgRSmvM9lSJ328yh+HxA1kdcfe+ED56+Qsn0oaIPFftQAq000tmJmAWfDZvU0McSaJ8qxlRSstZAMErnPE4TU+XpJ8ewr/B7h/QGHQQJggBphAhQR8QLWZTUKMvlnr5ZogFSLgEmC9nAtFQ4P0WGkTyOJRtSwhqTCuJmKfXpwUyZLAIxQeUIz064/Q683+xQyaQsxKT4aOgnx7oduJ1aahMYkz0EeeUXfLY7Yx8cYX7/bd/ivSFMhhyVPCkyKRrk0BcFkAiaIA9KsmkGHiUGxWoiu4REg/gSYJ5bTHJCOF1gr5oS6JzGVjXx/39oAIkJQkCOVmw/7AgfDlQaD+gasjIGy3bXULvA/VDTGM/CTDiJ3IeWH12/x9W2K7duI85GvC91m0aDjAYzCKYvrcEvM6nKZJiBUWAPqVZIAqn8XswCppAGM5XbRAqByAp+XeHaFtnuSkAxYR8wKksubzSgMZdArWV6/4T7jwynx+WXhmjZB8cQLP3o8L1jUzfsblsqG1m6EZ+Vv714wdXfnZEWEbPyvDi+458++jnbWNOZiR/eveCL+xOubpaEtzXNVenhw6OMRjD7kmFpEhBDsvlwQP1YlWee+2lyhTQ8fM8vlLxskU1Nnny50cpG1GSSAFoCDbVw8YMjVl927J5Y9k8Tz7uStkN0TMlwu2vpb1pkMOxSh7uw3K46fuyfcXOxYv3DivR7E3/6D37Mh80VP+h+yR/Ue67TxEoNP1v+hPtnDddxyY/3L/izV9/m9n8+4vR/C9U2Ibk8x3gspI0wnEPoMlkz+8GBZmIFdpdxIwdQQiA0Qly32NuWPIzknLHWRIyNBJtJNhMrwS+F/ongl45pnYmnHquJkBUriZyF/abBXjuSy5idpb4W0t+scC8z3/xi5O7jzMn5ht/oCk38P+N7fB16/n54wr89/zF/vv0up3bLU3fHB/UVlYmM70+kLyvcNlLdjOgUSZVh90EHGIZzSK2QkiJSAq/uBR0yOkFsStfIRgidwyw7uN+UztDYQFt7psqRrSHbAgRmLCnhjzL1YsJHwyAOlcQQLGws9ZUQW8EMsHid0Ajthcdd9qyBN39xxr+7/ucguTAvgeyV//ziu7z9u0ekOqErj2rGftqxuof6NmKmBCqkxmIuN6ymCKzIYoiVko5KK0puRlspwCVxbjUGYqvkuiqMzlnswk3sbIW6RKwSyQgawO1gWkFqEot2xGhCJaGSEclIENyuvK+gNgwnQv+oRj+pUD8/wJUj6wwuM6Bc3jymuxB0UiRZ1GeWrwN2F7H7iNmOyBRABNn2yH5k0Vii6/BLZYgKmg+llk0BV/IMShZireTWoYuOvFpgj9zAvW1wLhJdLjeawPaZcS1IE1nVE43xVCaWfmgi2RVwaK5TSfdW2H4A/ulI1Xn83s0QXg4mza2EJLhrQ2ih2UN7mUoW3E/I3oOCDB7x4V0bSAlzt6e+rXE7ZR8EbQolzHYmDfmhL5UbTVaItUFXC+LpArtyA8tqZFPVjJUjG0uW0ktTJdg6sKxGrCZWdmQTajo3oScTw1lLcw1ul9ifKdlAs5z43nsv+e3VK87t5jCL3sWWW99y51s+vz/h6m7B7XXD8MYyriuaa4sdMpIyEjJmTOgY0SmQaks2CgpmyBAUkUhyEB0YJ0h6Nz1llYI3jcF2NRISttbAUTVwVzdsXUNy5WiyCNlmqjrQ2WmeNyNrt0fJPDq95+sPDJux4uTTyPLriD+ybE8ark4XbLqGTidq9Zy7DSsz0OnElCx3u5b4uqO9Vty2PFz/uNxyqkAncLuM7cH1CUmlbWQVNIK9MwTJGD8H9pC+ImgsKZ2skI1ASOjosWOytMazrgfumpZeGzRkJJVp4KjyrGzpjdtQkbKikjlp9uzOKrY7g9sY1r/yLF4m/MLx8mTNi8UtjXqWCHeh4814xJe7Y351cYb+dMnpl5n2OmD7RBbwS0P/WIlBMGMJ0o4ZRAhtSc1YC9NKkJxpXroCmlP5WZby/TSncp6ps8QIPmB3oaY1nqUb6eqJXZVIzmDGTFxEFlW5TUOZMUMuKoBKZtWM7E4nhkct1b2l2iWaK7i7adk8qfG14c8uv8uXN8cEb7AuEibDYltKQ33G7CNmCKivCI0jdAXx7ZAhZ0KjhdpVMK0EvwTxhapqnKWVWNSGLGUAyFpwRuKcziLolIqc0RhP5zzUaYZtQbpIYz1pJqHT3JWH6PDRIEDTToynkeFUiE5wm0z11nK5X7KNNa/uj9jfNYTJoJpxdcAv54deGGKtkBLufqS5jdh9xkylVpN7GL1gPC5BJpfRUFJY4gxCD6+ZGUEJ/FC31mBTFqxGWuPp3IRtAtFVQOmfjQkkBCUzhNJHfTSMsSgElY3s157x1OB6we4z3Wvl1fUR3z5+Q1t58smetvI8WmzZTjVfPm9ItkgjkizGV+g+FBCaKFKICrESkoNpLUzHedaFgLk253m/BJeltJtfv1GfimhQOSxAykJrPKd1T9NOJNcRW2G92HNU7Q8KwpQMMTkSQspCzoJqomo906ljPxjat1DdZfqfL/jwN6/5k09+wi5VbFLLNja8ntYAvD1esmmWZGMIdc20aoi10F4m7FiC1QCxUfrnkVyV3q1DURYY5B0QKYiZb1XL6yF1JUQwWgLdx4rTasd5veWk23PVHeOPMt9YbDiteh4O41l7z9W4IMz5EedxzdqEP5nYa0VYFmnS9vDVeEKj/iCg1er5Tvua6dTyqlnzyypwt16yu7bEZUJPJvSvWqovA1mF3VNl+22PtqEQfG+IVsm2tLKibxUZ1PjydUHfErSGVObpnHmgwhgSJ7bno6MrXp09ITWZs3rH2u7xadaCXGTlBkIy7GLFxtfcjN2hf42a8Utl8gpB+ao/5uP2gloiY3KlnwIrO7B0DSEYZNIieURBP29oLxL7U8P2Q8F/sudk1WNNYvQWHwzTZInOAhadBB2LSJAMiD4EWBCXnMF7CAH70B8BjCQeVVvicYAo1CawNnuiEXyyGEm4mVD2qeLGd3R2ojZL7mzD3gZCKrfduMBZvcMny0gmIrMEKoSk3E4t02SRSTB7oboRmuvMcCJsP4L8Qc+T03ucJowmGhvYDDXTZMFrqcV5rEwuI0YOMhDMWq9V8iwHWSsJOz+8kjmyA+3xwP66xSeDk8hSPUmLCNbIhJHMbewOcmaoyjDY2EABt8STdsMn3VvWtidlJWZ7SF+fDTtfkYIeyLgZCkHvn0F4b+TF2R1HddGorCQGtUzR0JtENJlcJ5IW1S9r6aEPqfyORCgiQg4BazUebslIojMjT9YbPrtquZlahmw51S2GRERZ6EjMiiEVNJZEbQq7SrmAVKWRD9prvt28xkjiKiwZosVnQydj0X9noTobSFXGHwn9CsK5Z3W0p7aFkVWzSK6+xlcG3yk7ycRgiJMhOoNMs/AuZSB5YFF51r1yTFhzsBMitXqOTc/zxR2f5SdcDQsu/YpTs+PY9DTiGZLjNnZsUlOyYFbaF2bCzyDVGk9nJi7CilO7JaKHgzTkw/tIpcGHRS4j28nE0WKgrUr+VRo5rXY4idQa6axnXe25aTqGYLnvGwZbFXnFK7pXUqDc8iwkAEjlSurWGlDynGLKJ4u3/KX5hFfXaz7vTnlW3eIkUEnkIhxxHRZcTCuup45tqNn5itoElm5k7QaO3R6fDV+MZ/SpRufaNprpU8XGF58lxyKXZIVcJ3KGVTOyrEaOqoFnzR3P6xvuQnfQjSPKpm141a+LJSEwGUvwhoQlhpIpkinyrTFIU2MfRGg3p7CRxIvqmupoZNpVfHr1iEoD3+wu6cxIpxM+G1QSrfHc+4aL7YJ+15CCULWeZyf3/Nbx1zyqNkTk4WDnlqTUJmB0Vh/j3OyjkKOwGyusJqwmXg9rrqcFKzdgKBfiJLIwI0fVvigeWjTlQRwhQ+618N44MyNVcltjYxb6VFFrwGdDzMrK7Dlfb3l1fc7N5YofJuX1as1132I084PHX9LqdACK025PCIb9VDPeNXy2q7jtW/7gvc94Ud+U8Wp20gYc++gYfEFPMxZVPi7KQfRDRczCZqx4q0sGbzGzRVHZwKoaedxucJI4rvaFuMyHOGQhzdq0HR4EPgOqpUanZOlTNdeC45ieD1c3vI6PYGvYuYZN5emHGv/Fgv9yt2DRFXF48pZxV5EHg3hBB0U9bK4dP+uesDofWFFGNJWE08AUi9+io2J3hemkysymU7FIUqXkDOPoiINFNCM2cekib9slZ4uexQxWSzcRkzLsK8y+TD9mmi1Ea8jOYHWeSsZk6aWiSZ4hO76xuOSv3LfQ3pCT8GJ1y/cffcWf//T7rP6sJVYtfiW4BGefR5IR9udKbN61i8/Pz3i+uOObiwucRBrxJJkF6CyIl4MzYPZCqg39UyG6hNShiGAAkxY5dlSm6Ii7BTerNc3ZnrPVjtZ5jCZ871jdCjqV4b0YTEKqDNZnRXMmJMMo5WY3seFbzRvqk4F4uyRfVLx9uuJPz39M9S8D//G//YAnfw2P/8c9kjN6uyW+fsPxR+8zvXeEX1qygd2XNT87fczz9pZTu2Wle3y2fNhd80V9Qm8z6oXubcRtIlmhf+q4/u2G3api/VPDyUUiVuAXQqyLH9pdJCQKmxcrro5XjKeJ3EaqC4vbZOr7RH0zonc9EiLZzqmbsuCzosnSx4rBOB7pht99/pK/fvsJ9YXhqzcnvH52zHfa1zz/F/+Vv/xH3+J//eJ91n9bcfJpR7PsCEc1fmHZnxm27wuxzlQ2cmp3nJktjXiu4rLYi3GGqFys+uHMHkav45+BJKW5CSz/9ivS1TV6flbqTYS0XvDVnxzTP0uoL8xKeovbFBCyQ9GYZNuDc2QV7BiLwuBmhc9nU3hpavi9oy/5m7P3yVcLzNc1P908449P71mbPf/k7O/5aHnFzz58yqefPaX6+gSJhd3ENpPWHtHMuh4KE0o1qokhu3cG8oOY5YTte0VqtbsCLRqL4j59/Bi3XhIXNdO6Yjx19I+VZMHdK7EuU47bCPVNxo6Z6mZC+sKqctcQO1vai53Zh6EEOyTHkBwndsfZ8ZaLRUt9rfz97Tm/t/6CJ/YOYxKpUq67jlenR2z9Eu3LLWVb7L9sE7dDy9tpxYlds9OKN2HNZ7szBm8Pg3M2gusz00qITZFCkoP9I2H7okOnrkiYVVEaYpWx+1LfOgnGg9uUWdb1uRjYk4e6Ip50+KUp04v5tf0DQ2JMZe+gk5H3V7d8fXKCvqm4vFrx+eNzTFsa/6/6c35y+ZTdfYPZKaaf/RIrZAvhCPaT43JccuKOGI3j63HN9b4r5DyVwdq3QrUpXDVb8F0xeKejTOwSucqHNBcvmF6hLyKaDUUZtMUvxu6KgY0xpNWC8aRmXGlRGMq+gSWJHvrpkC0uBz5eXPGLx2f0X5yjb2p+9OQ9XrVH3E0tr27WjK873Eapr+fFCQOhgek449YjJ92ehHDjyxCwjTXOxNJC6sS0NmRVmqvM4k3ADInYKOPaMJwp/RPFnyayZCQV71TnPQsNYPcZ25d2AlDdjOAD6XjF+N6S/bllWsuDwlBSzs8UqzMT29iw0oFn1S3fPXvLX35wxOLTitdXa27aFquJrhlZfmPk+mZBMg3ZlRvQlefx2T3vr25RySxMIRf72SFvrWfZjWzOlWFpGQZlODeE1rJ4kzBDor6NVJtEfasHKTQ2mewKZdTwzo5ASuBlXWgivHfK+KihP7fFpKrADtGR8kBrihIQkrJ0A3ehDNSdTnzUXfGr56dcf/6U9Lbhk++/5Hvrl3SmkAbzUab/XmlLD+72w+EVOXWaAa9MSad1X+SbyrOfikmcniqbjxw3O4fsFR119mkhm3dpnQxgoH+WcFvF7WbTOGTsPjA9XrB7WjEel3onweJVwi7dOC9bzI5ZUhoJ3GThOiw5tVtO7Y7nyztePTuneW350VfPUcn8/smveGQ3KEUq2aT2sG4Tsx62VB5URIAjOzCmYj02JjBUlt5X+KQsm5FpOW+pBFMEgtEW5QBQLWCZkhJ7S31VlQWrOW3HYzenfKn9snRSHEL7kFbAPGGkogZo5CZ0dGZkaQaeNve445F0bchvG37intHZiT9c/4KVKVC+0LIeVwK0RMpOQx/LGo6RhJHEkd3jsxKSYR/d4YBjVvbqCCkSnRKTEKqAkYyzsbS/qOz2NTG7g3hdZFHBd8K0LkHafalfgLAQbG1CkS7nGaMzE2Ny1BK4iKtDrT6vbzk+6rk4q3G3hvFtxw/dc06rnt/sXtHIRCMeBIbsiEmpJdKnCiPpIJnGXADvyJb+ajUexLYHvTgDIhkwWFPGs8rEIqBHgx8tujPIXKeTLXXol3OQu0IrJRZNONZgrUSiCiEZvBoaPHeh5cTtiFm4Cy1LM/DM3fDR+pr7XcMUOnQvbL864s/5hOVHI8+qW45NfxjFfDaYOaV1nlyUQkjSrB897CFVGstMLJkpGlx+N9iFpNztG0ZvCVEZh4p8X1HfFiXQL4ueG6sSkNtBc51BytexKvuDugs1Z67sJ+xCSTGnEZ8sR3bgPjS8HE8wkvmH6y9YdSN6OhKXCfFC/4s1//7T3+Unu+d8Pp5zHZYM2RULAyVlxUgqgz1CoqzOHfq2ZI7cDIZkjqqBlRtorcdIYoqGKZQgQzAkr8hUQCbWkGoO5pTbFUMaSouLTg4Glb3zDef1lmNXkNAnw+Pqfk7jkV18yuthzdo+4rvNKz5cXyOSubeRcVNjrh3xsyX/Xb/Fdx6/4ePFFSeuLxtkxMP45zTgZ0sjzftIAFYiIRvG+WchaVmfm1fn9pMjJcGYokDkUPYAH8zfUBfiUN1Be5GKL1oV0vKg3MeGInfe+pan9T1OMvehmRlSQeKFGbn3Db/oS6DfWb2hDxVGE3eaGQZDdWkY3iz4VB8zRMf7ixseVdt3asQ8GpflR0OfKvbRHVpQyuWmHz5yFnw0+Hk/0E+WZCMpmqJEmEyqCjkxe8FtoL7Lh9tL1fx3pFBJCRTCsAs13hk6M2E1sY0NJ3ZHysLSjCzsyM3UcRWXfKt5w5vuCDtD/ZvJkm9b7EbZVR1fPbSArBy7vtymie/cHyAkUzAh62xDpsPuUsiGkPUQZAiGGMqqbfLlig42RAC3hWqTMWOpy4cgkV+zKxJFHJuSOez/nNodl37Jud0wZEdnRo7dno1veDmd8I8Xv+DD9updbzyFV7cV9YXF3Bs2tuPlPPqFVjl1O5y+A6Jf3+tNs16V5jQeomMMtvTRWYWIsawDxFh0pYJuGcmC7YXqPh/aSHTF0TM+E9oSKJRbtVYjJLieFjiJfLv7mrfTakZFi5HAqd2xq2q+2J/yO+2XfFBdsokNu1jRLD3yDbi4foLZC/nGcZuX5XkkH9LWajpsgj4sfRRerYflySkWYXuKhhD1sKNYJgUtY52Wz3WC7k3GPQRZCdNRkVHywxLHbAaHdk5dq5Gtr3nDEY+rDe831wewgEIkjl3Pq/0Rv5we8Un9ho/rC0JSLqYlf/D4V/yHD9dUP29pemGaHLfDEcPk2K5rjus9nZ2wGjGSWdlhNp4UR8LZ8VCjOQtWLcOcFcMcrKkjKQo5GtRDcyG4PpG1LF6l4nRiRtg/LmirsQQ5vOfRKVmmZKlM4aGfD2eHfVsngSEXhf2Ju+eT1QWf788ZkuOj6pLvLb7g2O1RyfzxJz9nPI9ogPat0LyxjF93vLw85tX2iOuxLCMX19xgfu1mfVZ8MizsxMKNdG6isYUoiECzmHBVKGs/k+I2SrXJhLpsw8R6biFDZlrLwZeJFUzrzPl7d4UOPdRbyMq9bwqbIdGoJ2VlMy/6v6huUEl8Pp1zFZccm55vtBekLHzQXrP64J7xpIxN1R1U14Z4VXN1s+TNZsXVsGDra8Zo8enXMyYdjK7KRCqNMzOCqvYsmqm0lyToKLjtjKjVO/CRWAKbmwZZIbYQjgOnbf/ONjwEi3LjF5w2u7nOSgO+iy3PqxvO3I5NbLiNHY14nto7Lv0KI4nvPXnJX9y1+KuG+rYsWkg2jKnmLpa5N8//pzHhkMqH9pPModWoFL2prTyLamLwljyZImcOpQZj/bBXPzOhRv6fXSO/TNQnA0ZTkTuRd4GmLNzOI9ou1TiJdDpx5RdsTcMTd8dd7BhnD+Zsnm5eT2t+Y/GWNy+O+PntC9pLwd1nSIJEZQoVm5ndjNFwVI3UNlBpKMq8JIZYymiKBZ2PmoGFm6g08Pr2CNkrZi8H8AlNqUm0yC+xKbZhrIqfE9eRp0e72azWWGB+pmdK5nrquAyrWbUfaNQzJselX/LNpueZu2HIVVknD7A2PT8cX+Cz4dvrN+y+XXH76inLr9IMCoJ6xQ+O/aBMx5ZtW9O4QG0DrfO01pcJJikimdZ6OjvxuN7war9mmizq58uoZhGuKoAT6/I9SfNKaw3TeaQ77annWv+/foPGmt+VzOEAAAAASUVORK5CYII=\" y=\"-22.042263\"/>\n   </g>\n   <g id=\"matplotlib.axis_9\"/>\n   <g id=\"matplotlib.axis_10\"/>\n   <g id=\"patch_23\">\n    <path d=\"M 287.775862 80.042263 \nL 287.775862 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_24\">\n    <path d=\"M 345.5 80.042263 \nL 345.5 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_25\">\n    <path d=\"M 287.775862 80.042263 \nL 345.5 80.042263 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_26\">\n    <path d=\"M 287.775862 22.318125 \nL 345.5 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_5\">\n    <!-- Happy -->\n    <g transform=\"translate(297.279494 16.318125)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n </g>\n <defs>\n  <clipPath id=\"pe605125ad8\">\n   <rect height=\"57.724138\" width=\"57.724138\" x=\"10.7\" y=\"22.318125\"/>\n  </clipPath>\n  <clipPath id=\"pd0be011859\">\n   <rect height=\"57.724138\" width=\"57.724138\" x=\"79.968966\" y=\"22.318125\"/>\n  </clipPath>\n  <clipPath id=\"pc19dba8eaa\">\n   <rect height=\"57.724138\" width=\"57.724138\" x=\"149.237931\" y=\"22.318125\"/>\n  </clipPath>\n  <clipPath id=\"p8b240d9d25\">\n   <rect height=\"57.724138\" width=\"57.724138\" x=\"218.506897\" y=\"22.318125\"/>\n  </clipPath>\n  <clipPath id=\"pe15e666baa\">\n   <rect height=\"57.724138\" width=\"57.724138\" x=\"287.775862\" y=\"22.318125\"/>\n  </clipPath>\n </defs>\n</svg>\n","image/png":"iVBORw0KGgoAAAANSUhEUgAAAWAAAABbCAYAAABNq1+WAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACJDklEQVR4nOz9eaxvS3bfh31WVe3pN5/pzvfNryd2s0mqKVoULSkUI0eWHUuyJTmILDAOIydGIiOQEztAAtmCE8uInRi2YUS2HEuWrISwI9iyRA22KEqc1BSb3U323P3GO98z/uY9VVX+qNr7nPu639M7l00+DncBB2f4Dee3a1etWvVd3/Vd4r3nmT2zZ/bMntmvvqkP+gM8s2f2zJ7Zb1Z75oCf2TN7Zs/sA7JnDviZPbNn9sw+IHvmgJ/ZM3tmz+wDsmcO+Jk9s2f2zD4ge+aAn9kze2bP7AOyX/cOWET+vIj8Wx/053hmv/bt2Vx5ehORnxCRH/mgP8dvNPvAHLCI/ICI/IyIzEXkRER+WkS+94P6PL8aJiJvisgPveNvPywiP/VBfaZfD/abYa7EufFYRIYX/vYjIvIT34b39iLyyi/3fT5I+426dj4QBywiE+CvAf8hsAvcBP5NoPogPs8z+7Vrv8nmigb+lV/tfyoi5lf7fz6zYB9UBPwhAO/9/8d7b733W+/93/be/6KIvCwiPy4ixyJyJCL/pYjMuheKyHeLyC+IyFJEfhTIP6Br+LabiPzrIvJavLYvicgfuPDYD8fI7z+KkeBXROR3X3j8J0Tk3xaRnxORhYj8tyKyGx/76yLyv3vH//rFi+//a9h+M82V/zvwr168hs5E5CMi8t/HE8BXReQPX3jsCXjgYmQoIn8//vnzIrISkT8iIr9LRO6KyL8mIg+B/1xEdkTkr4nIoYicxp9v/cpe7rfPfr2unQ/KAX8NsCLyF0Tk94rIzoXHBPi3gRvAR4HbwL8BICIp8N8Af5EQDf1XwD/7q/exf8XtNeAfB6aEKO8vicj1C49/X3zOPvCngL/STZRofwz4F4HrQAv8B/HvfwH4o92TROSThEjyr//KXMa31X4zzZWfB34C+Fcv/jHCEv898JeBK8A/D/zHIvKxf9Qbeu9/R/zxk977kff+R+Pv1wjj8jzwxwm+4D+Pvz8HbIH/6Jd5Pb+a9utz7XjvP5AvwoL588DdeMF/Fbj6LZ73+4HPxp9/B3AfkAuP/wzwb31Q13HJa34TWAFnF742wE+9y/M/B/wz8ecf/hbX/nPAvxB//gngz1x47GNATTjW5sAp8Gp87N8F/uMPejyezZVvmhs/BHwcmAMHwI/E+/pHgJ98x/P/LPCnLtz7H7nw2A9fnFOAB1658PvvinMjf4/P813A6YXfn/gfH9D4/IZbOx9YEs57/2Xv/Q97728RJt0N4N8Xkasi8v8VkXsisgD+EmHXIj7nno8jEe2tX91P/su23++9n3VfwL/cPSAif0xEPiciZyJyRhiX/Quv/VbXfuPC73fe8VgC7HvvS+BHgT8qIgr4nxEiw18X9ptprnjvv0DAvP/1C39+Hvi+bl7EufE/J0SxT2uHcV4AICIDEfmzIvJWHMu/D8xERP8y/se3237DrZ1fEzQ07/1XCBHOx4H/G2HH/oT3fkII/yU+9QFwU0Tkwsuf+1X8qL9iJiLPA/8p8L8F9uIE+wLn1w7f+trvX/j99jsea4Cj+PtfICza3w1svPc/+229gF8l+00yV/4U8L8iHHUhOIe/d9H5+AAn/G/i42tgcOH178cxv1MG8U8CHwa+L45lB10Iv8bt1/Pa+aBYEB8RkT/Zgfwicpuws/wDYEw4asxF5Cbwf7jw0p8lHEH/hIgkIvIHgd/6q/vpf8VsSFgUhwAi8r8gOJmLdoXza/9DhKP5j114/I+KyMdEZAD8aeC/9t5bgDhpHPDv8eso+v3NOFe8998gRF1/Iv7prwEfEpF/IV5LIiLfKyIfjY9/DviDMYp9BfhfvuMtHwEv/SP+7ZiA+55FbPRPfTuu5VfJft2unQ8qAl4SQPFPi8iasJi+QNiF/03gewg42F8H/kr3Iu99DfxBAqZzQsDG/gq/Acx7/yXCDf5ZwoL5BPDT73jap4FXCTvz/xX457z3xxce/4uE6PAhAbv6E+94/X8R3/cvfZs//q+k/WadK3+a4Fjw3i+B30NIvt0n3N9/B8jic/+fBMzyESFa+y/f8V7/BvAX4vH8D/Ot7d8HCsLc+gfA3/w2XcevuP16XjvyJCzyzH6tmoj8MCEJ8gPv8vhPAH/Je//n3uM9/hjwx9/tPZ7ZM/uNaL+W186vCQz4mf3KWzxa/cvAf/JBf5Zn9sx+Pdmv5Np55oB/E5iI/BMEfOwRgUv6zJ7ZM3sf9iu9dp5BEM/smT2zZ/YB2bMI+Jk9s2f2zD4ge+aAn9kze2bP7AOyS6kg6eHQFzfHpNqi8CgJ8IUWh+DxkffsvdB6hUNoncJ6hXWCd+FxYxyJsmhxKAmv0uLCF+G9lHicF1o0zgue8CV4Wq9QeEQgkZZELAZHQyjakQscc49gvaLxOrxvfB3x5+4zS/zp6F7J6rR53+RzUwx9Mt3FG/CpY5xVHCRLDC5eCfGz01/Hxc/mLvwu/d/ja/z5661XWBTWh5/L1mAbjbSCWBALqgHVOnAe8eBFwpsKOBOv0134JxevMg6ZN4KPr0HO2frbo7tH3vuD9zMmejj0Zn+HNG8ZmxIT/6nCY8SiCb9bwjXN24Jtk+DqcP8mow37ZkWCo0ExtwWLJqd1Ci0eiXNG4vyT7nKEfh6+E1nrx92H11287/3j/nzsLz7W1IZkIajGITb8zSWK1eLe+x4TADMd+ORghnMCXsCBqgWz9oiLn0MJ3ki8Z/G+th4ceB3+7rv71v2swKvws7gnv7ycj49X4DW4JA6a8WBBrCBteKx/XwWoOL46jLnRrh8TJZ5CN9ROI/F3LY7F/TXr0/p9r59slvvh9fET98sox1DV/fpxXtF6RaosCof1ChHQOIxYKp/QOI0Wx7LNqLYpZhOuvbtmr8P1inZo5Z/wPd18cv58nXZzIvg22LYGX2ukBdUS7xWIp19LXj35s088SdqixLP82uNvOVcu5YDN/g6/7c/+IW4M5xS6IY2fZGq2ZNKi40JrvOa0GbBoC+ZNzuF2xMl6wGaTYWuNaAcCWju0iYuxDcG4SSxZ0jLIagZJw16+ZjfdsLUJlQ0ft3aacVIxNiVX0iVXkgV7esWZHdB43W8MzgsWxcalHDVjNMHxZ9Iy0BWJWDYupXHnw/D/+ud/8jJDQjbc5dV/9n/P6jbIy2v+qVe+wL+0H96j9JomOv8aTekSHAobF3jYGEz/e/jMYRws8XXeULmEpc2Z24KzpuC0HvDa6R4nD6ckh4bsVEhWntF9S35Uo9c1eI/LDC4Nq6raS/FKUI1HtR7VOLwWXCJ4JYjz6NJRTwzOBIftjOCSMHk/+5/8yfddxmv2drn+f/xXuP7qIb/z6je4mZ2yp1ccmAUaj0VovGHhcu43O/z941f5xTu3cGcpMq35U5/67/hI9oATO+LYjvjFzW1+4eQ2d09mDPKKRDtSbUm0JVEWCJu+Vq6/796HzU2Lo3H6fD64ML5ahQVoxAWH7IXa6fC6uACdF6wXVmWG/vEZu1+uyB6ukaal3R3yd37m/3Kp0ub0ypTbf+Z/TVMb7DxhcNcw+7pleK9E1RZvFLYw1BNDM1Q4Iwwet5h1G++nRpxnfT2lGQptIdgc2gK89uitkM4hXXlM6dGVwxlBWY9YsKlQjxTbq4JNoZmEdWI2QnoWPqPNzr/bgcdmHpc7pFb43KKGLSYJY/6JG/fJdYsSR6YsE7PlR//o37rMkDC8PuYH/7NzjSQlnpcGR7ycP0aL47AdM28HaHHcTE95UM9ovOZ6esY1M6fxmi9sb5Grhq+tr/BTX3uF4S/lZGeeZizUU6h2HMxqRtMtu4Mtu/maXLcYZdESAjGH0DhN7TSlTVg3KYsyRyvHMK15vByxOhqSPjIMHgi68tg8btRtCHjaQvrNzWmo9hzmuTUvHRzzt37Xf/At58rldEC1Z5hUFLqhUDWZamm8xnqFVo5MNeF5DnaSDSNTMUtSdtIN80HBos452gxZrHOqVYarEmylMCshPxVUHXaONoGzFA4nnm9crRlMSox2pMZSJOF/lFmCzaR3tk3cvhuvcS44OedD9H0xyrResXIZx82QrUs5qoaUNqG2msZp5s3PX2pIxIEuw06YJJadZMNAPJu4kC3Sf5aLZi/8rmNUEZ4botxvGnpxJBImjPsWj0OIlvD+/EsJaAEbnK5NJUQCLX0kh5EYIQhiFeI8qhXEh0kFgn0KoErVwrZO2LiUXBpmesOe2lCj2LiMtQ8b0lEzpnYGuzaQOG7sz/lQ+ogTO+K1+gqVS6icQeGxraK1Gq3CGHSOFgj3ODpXR3hMRcfafybxePEhkn7n2Ek4ddnoyLvXWS9Mi5LHNzzju4bsIWAtettceky8F5wTbKlJjzXjtx35cRuiX+v71RiiXiiOGtLTIHtso/O1mabNhWomtANwqceZ8Py4FMJmWruw0dbhPorzSBvCYTtXtIUgNtz77v+pxodo2IfTlLgQEeqtJlkFh9+ONXVhkVZxdzzjQzuPcV5ROdi69Jvm+fu1bh0bcewkaxofItru/aZ6S+USjpshN7MzZnpDIi13ml0qZ0jE8vlHNzH3M5KVpxkJ1QzqXYvs1EzGW2aDLTvZhp10ixKPiu/fradE2f507bxQt5qmTbFO4b0gqcUWGpsLZgO6CmMfbi7o0oeTpgflIFkpytMcu/fuY3I5CEI7BiZEviNTMVA1ZbdAxNF4TeUSSpcw1iU7Zo0zCrIAFVgUj5sJX11d5WvHB5wejjEnmvGbMPtGiVlWwTF4jzeKZpazvJ1STzLKPVjuW8zeFq095cCEQXKGdZtRZglXk8UTn6FyhsZrshipWxRnTc7D7Zg3z3ZZrXOaZYo0ClpBNdCsk8vNHO9RbTjupKZlx6zRQEIXhV9wtBFisT5Bi+ud8MWfO3Oo/m8qOt9EAvTTm/iA4kv3a7cCJYyhhOgWCcdd8R6vBS8esf78dy3BORcSHbDHu3O4ooMv3rdJWOx1G6bXTG8YqOBIus3GoSh9yspmrJsU2WrUfsX37N8hEcvXq2ssbY4Wx9YmrJqUttG0qSI1EZqJUW63YLqNtltQSkJkoy5sWlq5Jx4nvs9F816CQ47PyUxLe6OinGUMM41aWXzruKx5wDtBzQ2Dh8LwQR2Gq7KItXh0OI14T7qwZPdX4XVFEtbD0LC6oWmHQrXjsYXH6+A0VSs4A+0AdCOYUlB1cMRewlQRCc5WV9EhuwA3KQuq9iBgNj7AF23YlG0G6VJQFeAFbwCvMRthvi5wswAP4BWVdU8EO+/XLjrfSVIyUDUWRekSlDjGuiQRy916B+cVz6dHzPSGx+2Y17cHFLrh7e0uy7cnDE/DxtSMg/PVexU70zW7xYZRUjEwNZmO/iDe98YrnFckylJb3Z+EAOoqOZ8TyuMyTzOC/BikBhz9KVFX4Eto8xiYbcGcGU62g2++6GiXcsCptkySkky1EQN25Kqh8ZrGGd4qd3mwndI6xSdmQeeicxyNN5TesGozjDimRcl6lNGMDM1YYTNFem+LLNf4pkGATIT8Kxkohb0yZf6hMcffOaQ8aHrMqLKGNlMMTcXUGB5WU4xyLNuco2rIvCp4YXxM7Qw//+A263tj8gea4X3PXuVphtLvYuLgwaUDm7BgvBKKtGFPh0WjJUysBAteY8VFkAhyaSL0cG7BCWs0Di1QRugCAtbVOeFC1wxM3b/Ox+MORPxQCV4EEUG1DhcXtbLBGTkjSCa4SqHLFh39iNeKplCYCiA4YVoPXmHTp1hUTdiQnstOuGlOAVj4cL5d+5S1y6hcQiKWo9UQ2a14+dohHx/e49gOOWpH7Jg1D+oZD7ZTFtscbwVrFa1VGB2dKD44VSd9VPxOaOGdTjjR9onniviYpwj3J9Nt76jFGhqruXKwYHX1Cu04Qz88Raz9Flf9jzAvtJVh8FgxOAwDryuLqtsIB+mwkZ81mLMtXgQ3SrG5weaaZqiop0I9CVGt2QSgvi08bREAbNUKzVDwSjFsPTYzAXZqHKrxpIsWmyZUaXDQEJ1FDc1ASDceU3lYg9kSnXtwyGZ7niPwAs4JZ3URosk+4LjcXBE8qWpZNRnGOJ7Pj2m87tdILi0NmkfNhK8vD/htu6+Tq4Y3632+vr3KWVOQqZaf+PqrZEcaZ6De9bQTS36w5ep0ySzbMjB1DzkYsVTO9NFvIg4nnnWbsm4yKmsoY/DgPZTrFGXCXPKpC9DGONxD30DrBJdCmwvp3GOzcIrQNaRz4ej+9F2v/3IYsDh2k3U8CjsqlwT4QRxf31zhyydXWWxypsMtyzYnVw0Kz8pmnDUD5k3OcTnkdFP00aeuhTaHs5dTqtkV8uOG9LREzTdIWUPbgtHo4yXTr4CuR5x8NGV7W1gANib2xkmIyA/rEc4rHm3HPFyMWS9y3sh2ST834uo/rMjeegzLdbj5eUb58hXmL6asnhPqF0ryv/t0nW68hty05BGGKS9AEABpyHZQo1GESDCRlrUL0SBAKhYlTcDSLaDoE4gQnHSmWpIuNI3Jly7oaAaKZKVCVGw9OIe0Hp/KefLIgE0VNlWkcyFZRYzRaWyqaAZhdenah6/SkTeX5Ir7gIV9aO+QTw1ep+YcHlq6goXNKX2KRXhrs8sor/hnXvwlXswOSaTlYTvlZnrKvXqHO5sdHq9HbLcptKp3tNYpWvFopcIGRYzg5DwyfWdk20Va8KSj8D4kiyFEyOsmZV2llHVCkrQM0oZZvuXxdUe1m5AuV0h6yZMSYTGzMqRnIcLt7olPwvh4HRfusgzOd5AgjUUpwaUK3XiGDxy6VLTDcC8RUFU4vbkkJp50wHuXNwzZ3KGsIE6h2nA/i8MGXZsYfIQjs25C5Gsqj2riWJZQHIFNCHPNSJ+Ecik084z7xYSD4ZrCNLTuifPZ+7bWaQam4Wq2YMes+ermGh8b3KfxwT01XnPWDJimJS+lhyxszhvVAffKGc4LP/v4RcxbOS711DOPm7XM9lbcnM65mi+ZJRtM3FCVeLY26Z1v4xWlDfdyUeesmzTAka2mtQpRPmz8le4z0i6B8sCTrIVk40k2HtsK9SRg58nS0w4FF6Pi/P67z5VL94JqvCZXDYlYrFdsnOkn9nxdUB4WbHXB/3A2olknyFajtwpVga4l4KUOCgsDG34OOzQhSksU7ThDpQa9qZGywefhCOYyg9k4ikNFOzBU5Dir0MqzzlNWJkOL5/F2yN2TGdXDAYO7mtE9x+4vHMHxGSKCn45prk5Y38w4+qQgL6158eCY28MzfkxfLgRW1qMrj3jBiCOXhkTCpO6w35oY2eJJsZQ+3BCNJ48O13pFgw4nBZdQ+gRFOGFYFIkLEdfS5pzWBWWdQCPh+NiGG41AMzJI69GrGmkdumwRd454ioW2CFivSxQ206jaoktLfgzNWOO6bLsKR05pL7esxMLoI6f84O5XOFAb5i6jRrN2GWuXUfqUjUs5bYcs6pz/yY0v88nB2wykovQJG5dxYlPubnc4LEcsNjl2E6aqUh4PNG1IthqnsPIkfCMXHK2NmN47E3Qm/l47TWN1v+jm8wEsE7zyqFFDnjZs64RhWsOsZruTMVYCTXupMenMrBTpKkSkzgjtICEvG3yiA8tiY8OcH2QBG3YQU/OI9ehayE8cbhnmmPhwAqon4eitmjAXVB0Sb8oGp2xqh6oC28IbQZcO8YK9kISFLrMfWCJdhl88OLkISYEdOordLVoFVlLrFQb7BMvn/ZgnMKauZQt2kg2n7RAlPuSWEBqvOWmHnNQDXh09Jlc1Xy5vcFSN2LQpx9sB91/fJ7NCO3K4nYbZ7prrkwUH+YpZzEUpfB/IrH2G8xKjYOk37VRbhkmNkuSJTbnHcJyEL+VxqbC5KgweQrIJwUq6gHosYTOzIJGZorfvMR8uN1hhAnfwA9BnoYe65mCy4u46JbmXkn8lYXbiyc8sqm1xRrBZuCCJSaHOQlbekyzqHg/DESI5HV7jE40tDC4Lybp0LnhtaBQsjeO+nmLE0XrF/cWE6v6Q8euK6ZstwzcWyGINeYYbD2n2B6xupsxfVjRXaybZ5RMq54Pi0U04/iXaMlAVDp5IpJ3Tri4mhOIRNFLMOszXdnhUpGutXcaJHXLUjDmphxxXAx5vxgGb8pEn5mISpQ1JAK+77KwD2gABRzaE2A7/jR9fAVqQ1qMqi0oDZu+V9I+/w7/9o4fEwO97/ot8JDuHofAR93UJlUs4bYfcL2fcHp71zhc6bDgk546rIcfrAeUmRL8k58mxi062w4EDxfDCvJK+w8E3WRdFV1azqVLW6xx3miKN4AqHGjUMhhVKOaoqZV2nFKOKajdHigJf1d/yfd/bhPRMMKULDk8Jqg7zwCtBVS1qUyOtxUlInkJwiLpxyDIkfjq6mBfBRWaDOEhWYMoYzLS+d5h9cs6f/2wLFSGL+ICPVC0fMH+vhAv7Ni4NDr4deuzYYfa2XJ8tMOJItEWJp3bmm+h//yjzHlJlGelw/0/aIVOzxaLIpWHeDjhrClqvuJmecthOeGu7x2E14ng74NHJhPRU4zKPnVjGOxtuTudcLxbMks035U6qC4ynsAZVn4zLY/DVekXjFIkTau1wSqG1xzUK3wIRO28HnnoSNiqzDX5AN+f0QVFhLaj3cC+XdMDnFB2NB3E9hWNoKj48e4zzwv3VAYN7mnTtGNxdo5YlaIUd57jMoBobnIP3kQvZQtMi6y102JrWkCZ4o5HWIkohuQEfjknJMkw+l2hKyTh0wiQrqaxh+XDM5A3Fzjcairsr1OkKP8hxw5x2mrE9SFhfV1QHFtGO5dmA5aLgzXyXrb1sEo4+09xFwNYHMqDGP4H91uiQ3Y2TQeOCw0H3lLTSJz2zZG4H3KtmHNYjFnXBuk2pWhOohsqB8j0EEWhkvqeVdSU20jrEOBDT80cvfCSImDHi++y51xq0v/Dcy0U1SdbwQ+Mvsqe2NCgScYHhEeGUuS04bQZsbcL3Td9gpjaUPqGO1117w6NqwrzOWa1zfBmPf8r3C1yrENV2DrejnL2XXcSBnRcap1hXKetlDscZyVpopo5kVjIbb8lNy6pKsVZRNYZhXjOfevzOBH/nwaXGJH5I0rNwn4Lzc6gqrAWlHFK2UIfVKi6uD5GQIAYUFr8VvIknmFTRYELitIF0GRxA9zqbBAfgjGATjc49pgxY8HZHoWx0HHVMyEqYN63p+MaCV+HIXY+hHXmasUMmNQezFdcHC5Q4WqcpraG0yaUjYIChqUhUOFG3TjFKyz4ptrIZ6zZjaGr29IrPbp7n3mbKaVmEJOBphmmFZmYZ7m24NZ1zc3DGQbpioGoqHxg0OpIEAIyyGK9Q3gMxHxDnhhEbNhXlIGmpGhNO2cbSYrCVCs7VEU+cgS0iLmyOqo7QkD93wu9ll3LAATPRMakRkkadJWJ5sTjilcFjHhxM+Xu3X+Hegwk7n5uw9+WU9PVD9NEZJksDrpsk0Lb4ssLXNSiFtxZEEH3hyDwcgFLoukHVLaopEJtSjwVVC+lC0bYJtRWafc3hasjkq4a9L9XkdxfQtPhRgRtmuFSHZMZAUe1FWs5pilkL6amg65xtlV5mSMIgbi0SQftcwgaSSswIe7ASuK9EB9N7QOGCYwrOd2lzli7ncT3hy4trPF6PwpFZWwZJw36xItct1imOrMZtdGQ2hEIBl2hcGuAaaWz4ssG5XggOQzIuJl8QwqKOUIQz5/QuXMD+LmPXszkHOlLH4qbdbSyNNxw1I9ZtxvV8zsfyu31SLpeGsQrntdO6YFFmNJsE2uAYRAj4slPAk0kw56VPfHa/u8hm8BcSc0p7qjYk1jZVyupsgDpMSc+E7a2Wg+dOyU0gz1dWs61SvBMaqxnnFUcTR311hHntKSJgL6Qrjy6D0xXn0csqBB/bOmD2LiR0pW5BRWa/92DDmlDO4ZWK+H+KOE+6cqhGkZ+2IXJNQl6lnihUG+AJm4KyQrIQdA3r2yGKy48DpKEawWbheWLPI2Wvw7G62vXYoUWGLcNxyTitGJqKWbLlrCmo3fCbCo3enwmzZBvXgFxgLAkbl7KOxOSXB4cAfGV59ZzKuszQG4UtPPnVNR/af8yLw2N2kg1ZhEmdlVh0EZLYTgkD6kgMCEVerQ8U1C77I+JJdJhfWdIGjrkOiV6rdUhM1iE56ZPAuECE4jCcOlQdsOCOzmeLd7/6S0fAlTM9PSoRy0BXVC5hoGoGqiZTDftmyfWX5nzxynXOPjrgl75ym/1P3+bg7z/EL9dgbXCy3uPbFl9V+DZiakojSkDr8JztFpI0RMCbEuMc9SxhdStwICViXJJbNk3CalFw801LfmeObKvg2JUKeGhjUdsWs03RdYayoCtHWyiqKaxvCGlyOWxPrCM5LVF1Hlgh0QEnAqWPDuEdx7KQuHzSgZQ+4X4z4161w/3tlMebMYfLISIwLkoOBmtuDc44SJckEviK6ypllSY4rSIBXCK2K7Sj5HyBO4eqzq/LJTH5gqBLCdV0kcmhK4uuQ4VaR2fjkgn/7MK1aTwlmqXLqb3mbr3DssnZTdf8vunn+w0I4Ipe8kpSMlUlzZXP8Kcf/T5krQP9qbBPnKFFPIlypMrGKFg9kWTrCjMuRr1tjLBqp1mWGcs7E4r7GrOB7TXPtReOe5512Ro2VUpdGbSx50frScv8hYz9n7t0+gTihqfLCzxi55DWPnHKkKbFJ+Y8Gjb6wonRI0rwiUavalTVUu9kqCrgyuI8vhKk1bSFop7ESrtWaIewfAHstZorV+ZMs5K7Z1MW90cM7mqyszB3IERxLol4bxE2b1UpXBaqEffzdR9l3tvOWNZ5pKNdbkg6auZZE6hae+mK03ZIJi2n7QDrhev5nBezQ75RXeWt+S6niwF2kaK2CpRH317zu57/BreyU8a67CEFJY6BqnuWVkeR69hJjde0MYjMVMuaFKMcA1PTek2tNNYHOqVzEmh8xuON76sHdRXGqJ6G6sjhAwe14HWAA0VCncC72eUc8LsMbqYaBqqOCaiWxhuWNmdkalqnObh1xiEztgfXGd9xmNLT5qGENlk7zDZEXl5JmFTLDSzXuOMTxBhkPMTr4BDcMOP01YT6Rh2O3saRD2pe2DvherHg4ZevhIi0rPHLVYA0REEVIm3vAr9zqjV4h6Qp3lr0zescf/+1J5pEvS+zDlltUe0Moxxj8SQibNx59NcVY3TWEI7UF2Ptk3bENzZXeH25z/F6gPfCznDLc+NTbg9OuZosGKiKxhseNZMnihC8CRQYmwuq8hGvU0ibnEfBZYtuLNIYvM5o8+C022E4ziYrGyhGWpDGoYlJOOGJyPn9mCecBEISJcAOpUt5u97npB7y8uCQTw7eCnANIbodUjFVFXnsAfmHRsf8P4qKUg3DxDMxM2/cEwk1CAsq1c150oTAZrBOoSLlzLrz0vizTcHyrSmD+wqbweKjLTdeOApVUeJZlBnrbUbbaLSO9bxAbTUmb1jfyjgYDEIzpEuarmM5syPkOlobI1/ARierVYiKnQ/zPv7cj6/RiHWIryExmCws465QwyUBQshPLTbR1FOhmUAz9Nhpy+/9ji/yW8evo3CUN1Ievzrha+srfP7RTVarPPyPVuFLjTnTFI+F7MyTn3mcMWz3dvj08zv80kfO+MSVB2zayzNCOlPiOW6GJOICFCGWjU0ZJSWLNmdiSm5mp1gvfGb+HMtNhjvJ0KXgcs/w1oL/6Qtf4HoaijMASpew9DlJpG9alzyRJ0AcLjpe64V1m5GpFoewqPMnOPmptqSm7SmKNtG4NPDvdUUvAWBTaIawvq4oHntMCTaLfu49kLGn2Ma7SqPzHWYTK2BsRJ0tKlDC/IhFk4e68b0t22HL5mZKdqz7UD1ZK5KlxivQtSdbJKi6ANmnGb7YV/Fkxw1iHdurOdurnsFsi9aOYVZzMFjz3OCUidni92o2VzJ0tYe0u7QDHSZ940B3eGd4z2ZgyGKl0dlzA04/LDQ/dckmsC4mUXTAgLUIDqj7kmLps7mdhQjYU8fEVOdUH20ntE6xN9xwtVgySUrGpuzH+KQd8qia8Ppyj4fzMZt5gSpDAka8x2khqcKGYzOFzRW6StCNDUf4ukXXLS7VJKmiGQWOr1wYI69VjzGqOjiELoF3WbMRBmi8Ye1SHlZTvmN0j1ezhxzoZV+ksnYZ18ycoXI0Hja+ZO08w7TmMHVgBdEOk1iMsaTGPhHtAuS6oSTpoQcIUXK3UbVeUbWGZZmxuD9m8FBR7nv8tZKD3RV5XGTH60HAhJ0gJiT9lHZoHRy6MY564mE2hseXGw/xgU/bm+MCzmv7uYR1CG2Idl2HvXD+HNUxJBy0FrPQeBOeFy49pn0F8rmjGWu88riBY3JlxYvFIQdmQUKgk76QHPLx4i7fP32Nu3XIgyzagtO64K35LovP7ZGdwXYnbNouCSXPi5Mhbxc7Pa+60y65jHkCDa1IAmQAQdqgcQYtnqnZMlYlD5od3pzvUp0UJCtFO3aMbi74wdtf57nsmFzqPtndVY12p08X11+XiLvIiIDAhOlKkMs2oXGBotZa3WtgDNIG64WNdqwc1E1GeqpIVjGfk0IzCoUr5a6QLgMerFWoyns3u2QE/GRJbeCyWvI4qyoXdkIljiRiOY3VNFZFARLwxtOMfKBPJfT4JQKuBHEKXYcjcrkbPrjZnGdmNweKZqfl+dkCLY79fM31fM71dE7pEvZ2Vxz+lpTl7ZxsHip7uixkW8R67TRkf6sZFI8TvIL1bc/sY8dkl4QgECAJ+gmZblFAGZNwFy1oIARrvKHxhkRaHIq1S9HimKRbVBQJ6dglyzbnXjPj0XbMneMZ9vURg0dCvvZkOo7Lhey1+FjJpkMkbHONqky/iKVq0duGJFF4E4pYbCZUOwlmbTEb21cjhi9Q9eWLDixCg2LtE87cgLv1Hgfpsne+Go8jOF+AobQkQOkdh87wZrMbKpZMx4ECUefiKVqdR8LAE8m1b/W9ag2n64LtwxHFfU099XBzy2y8IdWWZZWxLlM2ixxahSQOpTxKO4wJ129dxAIHDjcbXnpMwg0Im6U4FxJt8o7F6S6ES9096KEgi3cO6RLFMWKWTYUkBp8adGXjiUVjlWA2jmSlsLlQHXhe3DnhqpkHSqRYcmlQyjHxJQd6wavZQ0qfULqUtUu5O93jzy//MaqTIV5FjYjC04w9ojzzbU6RNuF+XBA5er/W4fOd89zYlCvpgtN2yFBXjHSJRXGvmnG2GJAea9qhJ7uy4buu3uMjxQOGscqy9Emf6HVesfG6T2h3uZcuwl60Oa3TbG3Cpk170bDWhYKc8CW0TqPjZq/EY7QlyVqqocGbgLGbyuM3IaCsp0Gfo/GC2UYn/B6lBZemoQWKhsZqoTt4dGXIzgcNBh2xCi1BO2KbJpR1QrU1mIUONJlGInWKMCkjxNdhUKG6USKlw7MeamwO9cyT7W758OQxShxX0iXXk3D8uNPscnW0RF7xHI6nuDspw3sRz0qFegzN1NMO4rFy2lDvGHzq2b15xj95+4v8v81lCzEErzUu8Qx1TSKKQ+t77qvr8fK2Zz0EjuN5gcXSFSg8s2SLjhU58zqn0oZFk3NvPuXscER+N2XvG47JG1vMyRo7zimvFGz3NTbrcDsVkm5t5FQXGl0GBoT2gYKmyhadaEwSPltTKOqRwukw1mZrz/EmJYi9fNmtjST3pSt43E6Y24LfMnyDazoI8tRRlKiMZdkddr70wsN2zJ1mL1SpaReSUnJOMVMR/zUXnHDr9Dc5XaCPfhdlxuZwyOCuRlmob5fsTkNBzqLMqGtDtcqQjcZnDtGud746lgtap0JSL7PU08snaz1xfjsfMN1uXDvGw/mHDtBZ53y7v12MhJWE11mLlCGC9koFZTIiQ9GExGy2CDAEqePl0SETXfaQmBLXM5pyHDNVPVHu/p3ZPR6+OuFv3PkUZi0442lHHnUQgM2Oj50YC9peGgO+WLrceB11OjyN0+yYDbk0rGzOw3JCc5aRV4K8uOU7rj3gE+N7gScf73dXXdk53SY64PP5EDjhIbofUFtDaQ2bJqWJeg91G3jhbavxHprK9EwGpRyID0lg8diUUAgTBa6SDehGU+4FJwxCsvSY9bsPyqWTcI3TVM6wsRlowJ3zWy1C4wwbH54z1BXfMztjM055c7THL6nrlGdT0rmQzX1fk+5VqNRyJmRh27wrBAj4ZrUrtANPO/DYkeOjB8d8dHifRCwzvWZPrxirkoftlIGpOT4dkd1NGL3tGRxbbKqoJmCSIPXnUdiBg7WBWcP+7ornpyes2iwkny5jzuEjLjQxW5z3vN7u8np1ldIbNJ6RLrlmztjTKxIJ6lG10zSEHbtySU+3WTYZmzbtj9j35lPO7k/IDjWqhke/3TF/acDeFzPSpUWcx2x9VC4TmpEmWVlU47B5iHxcqnq+KQBNi9oqdCx99SK0xAINb0JF1KZBbNCKcNnlIAhHKP8tveFxO+ZevcOL2SHfkT6k8Yo6bj6lD+pwQ6lC1tt7li5EzBrXq9+hAv4rQk89EzmXFOx0IJ7QgIhHYhEfEm4PxwzeNiQrmH+yZneyZlOlNI3GWoUtDVQqYLNJUOlTyqN14Lk2VvesCpVZmsnlHTCKKIikzp2u99/aEXuPtw4x+vxvxiDO4esaUSo8x3ukaUIkXNV4lYKTPurSlUV2E6odz87BkivpkrXLmEU9hCaq8eRiSWIUmksoh1fADMe/uPdT/OSHX2b9xR2SpaCsUGYpetKgojCSdYJWl4cgbKxIC44zRKilD8Vdu2aFEs9JO+Teakr+wFDvOj556x6fmIRszWE7RuPZuJSlzfviii7wqZyh0DWFblBYFm3OWROEwZZ1xrZOaJ3COUVVJrTrBNkqVBWj26AkELQxDL1sgRaPy+KJoBJU68nOGtJFi2pSqlnIydQToTh69wDmKSCICzuWMzSY80quSFEDGOmKV/KHDGPi6EPFQ37b7HXmLxccNSO+Mr/Kaw8PcA9zzDbKHyaxGsd4fO5QgxbXKKg0JA5TtFydrfihg6+wp1cMVMVQVYxVyVBaxmrLR8cP2dxK+TLXWJicZmSYvtkyfd3iUhUywyNFua9ZvuCYTjfcHM+5li+ZmPLyRHLnaHZzXBF21r9XXuG/O/4uDqsRRiyjpOJqtsTl0h/5hqoK7IBYEVe6hLNmwIPthEWVU7UGEc+V4YqzoxHpicZr2Lxc809/8vP8nbc+xGI1ZfgwnCJsFihEzkQlM6tCdZ4LDrQZGdJFE7KzIqimBa1CJt6HIhizDWNjUwmYoQmMCGkifn6ZMSFsxvfaHY7aCftmxfcPXmPtTV8ZWLqEjc9QcdEf2iJKh2b92Jxtc3yUKRX17jem0yIwyoXF5M/lKFdVxtEbu+SPNS6F+XfXzPZWbMosyKFqF+55ZuHEBLGZGP2qeKxurI7Ut1gAIk8hUAQgnmoqDLWcO10ISbfW9g4V58EHZ+wbB6IQ/Y7AwL+jyMT7ULofhZcwHtMEicvlbY17acPHDx6EBFUIz0BDzjmv3yFkYtECCaBFsN7zvLH86Hf9Z/wh/yOsXp+GDXpao40lSxpaG6LGd5Z+vx/rdMU7Qa8iCRFvx+neuJQ3N3vcv7fLsAJ1peTrxwe8cbqHUg4lcHI6RN3L8YnHDhxq3HBlb8Ht8dmTLBhRrGzGSTXg8WrEclXQlgZKRXKmGb8Nw0cOXTogyLVWM8XmiqItwOYeJYCD/DgyPmIBizNCWxiKOwv0uqE6yNnsG6qZsL7xbVJDgwhBxNAeAhWtu6E6FmboKNLTyUEqHDO9YaY3PI/jufEpas/z5u1dfnH7HG9t9ziuBiybnMZqEm0pTMOiCiLcdfzbTr7lw+NHDFTFWAdwvsOOVMS0pnrL79z/Gt81u8vbL+/wS49vcOfRGHOW9gkQl3r81ZLnrp7y4dkjbmTznk73NETy1Y0UmZQ4hNerKyzbLBC64/F4a1MeNVOUeK6YBWMVSjjpAh+EdZuyqHIWZUZVJb14vZobVCUB9xpXLNscpTzlFY/NVT8BvIJkLT2dKVHBsYoKGhHSGrwErqzEMlppHaq2faIzOGOF1yEadkmokNP15RywAId2yNIWjHTJc8kx99tphGE8dYx+rVe8kBwD8NiOIlc4KNg9rieBk+0CDaMbj042EugXfKdL7eJxs4MdAI7PRuCgvNYio5ZiUOO8MB1uaWyQt7RW4U5Sdr8qLF+AeqpQRUi+KOVo2ycrvER4okrsMiOzuSqM7qckp+c0M5TCFyYUHDUtvm4CV75/mQrXX9XnlaHdY9bhvUPysAZlUyJ1g89S2r0hj75vyPp7N3zo+mNG5knucih/Dy6gqzxLCInQJEbASoQGz4sm5w+++Hn+cvUp2vsDhoOKskpYbfJwGtEh9HoqJ9xV1UZKWocDAzyoZ3z5+Ar52ynlvufG3pz9YsW8Lrh/OqV6MCBZKrKTTl5T0eaGw1nO8a0RN/bmXBsuGJogo7uyGds2YbXJsEcZ+bEmWUJ+7BkctugynByrqabcU2yueppdGxQEnSC1YDYBGjVb+nJtr6AeK9Jhirl/gtqMUc0IcQnVzrcpCdcdMNrogBOxwdFGLmenERG+WmqvSXx3g6XXPVj7hJyWPb3iO4u3uZWecNiO2disl5B0XtgOUhSeh+WYXLfspmv2knWfJNhT6x7D0uIZ6y0DO8Ci2M3WvJgd8onxPR7emrJoi/6oasRxkC7ZSdaMVRlxJMWcd5eNe49BYXsgTKcbbmRn3EhO+a5JoL2ULmFrE7Yu5X415bQdsMpyPlkEClYt50mC1sduF1bhbMAam1bj8qC+5AYOccIXjq5TblPaKw3NlfgZrCBllPhRxCgYEt91WpBQehpxdbEOaULEJZ5wjI0exmzCSaGDNHymwmsvOU/WLmOst70A+9IW/bzoxIdmes1UNWy8DokUFxIpx3bEYT2mbXTflQEP1kp/CnvnQnddAuVCImXbJLRHOXqj8MbjfMK2VbhRhRLPepPRHucU9zSzuwHTs7lHJSEyvqgL/M7vT2suDWpZQXjHB3z9ooyoSIh+w0WFeyO+p8JxUQbTdRGzA91AVSOzCXZ/wuZGweI5w+IjDfuTDal6MpHaBS4QWTl4SpK+SlNhAY+OuHPlG35g9FV+av9lXjssWK/zc0xeh3GyTj1xQn5/5nuFsqTn0IfEfiKWN9Z7nDyeMNpA9XLFd+7e56XikI1LeWO0z+fyG5yejLB5it6EsmBngmNs5hmnRcGN4ZydZMNUb9nahMZqRAKvOZ1DcehQFtZXwwmoGQTOdD0JEbWPVaFePJiOEBD+T1tEdbgY+NQ7GebQoM6WZIDTY7x6dzd7uQg4Vhp1bWW6CpNwjLC98+2qTt5pjhCx2ZiAScRyRS+ZqJKxKmMHCE3pUyoXxLxtpLsp8QxU2MGrKFZjkXNlMQK5OiiwhZYmQ1XxQnpImSdR2q7pj7ydE1C4UIHmCpbOPcUECjXy14drXske8bHsAYlY7jc7vYrTg+2EVR0EQI4mI17KHrOrVwG6iR07WqdIlCNPG1JjSYzlynBFnjZUjUErT5E0OC9MxhuSmYtUGUVZJ2yXGe1GodpY0VSDsgpdO3QdS5Ql1v83aRA6aixStyincBgkifSzxuFFRYbKeWL0/Vp3iuigFoDaa87sgIGqSMUy1lv21AYtgO+OwEEHY+NSTuuCpjS9+Il3oQKudQrjFE4F3Q/tA+m+dqGaqXWKxmq2jeHk0YRkpQJu2UYWjtLYLGWTekwpDOaQnzp0DatbCjtrKPKmP734i3xrHwTVvbs8N/rC4DxpkfUgEYIIybZOgKPr9uHBekTk/PcLrw0/e2Qyormxw+pWzuqWYn3LUextyUzEe7v8jcsY6zJ2Zwl6CLUPuiRrUixNZLFYEu8ZK8HiecnMeXVyyDcGV7GVRufhfb0LjQS890+1QVkvdIhOR2Ht9MPvLGfoU4NLYH9vyfPFEftmEVhEQ0vjFZ9tb7HamjC/AZ94fOLBOIq0YT9bcSUJJ0+LsFtsmG9ztsqjGiHZerZ7inocOLtdKXG6EHTMvXgTuL4uBZtGGCoNzCqdh8ILs4V2qHHDAnV8hlquyU7T9wxgLh0BpyrsTFn8Dpw74ljz35XZpu+oiOqe2ymDJeJALAMalDhKl/SKYGuXoeyAjUvZiwr5QI8zd5nP/n3ie4diEEuu6qAmJg1jVYZJp0oGEYeYR/pTIpZjO2RDwB6/VTeK9x6TcBRxCNfMnOeN5+s1/OLqFl89u8LD0zHNIkNKhTjh8dUxn5q+ySCL1BmXsG4zWq8ZJDWjtAriJEnFC4NjxntlLGRIWLQ56zbrBUUWTc6iCkfPtlA0Y42uNLqMJaVOEBeoSD4eXV0itMOgH6CjA5Ym4IZaq77suNMX6F5zGXNIf+8vbngn7YhSJ+zqFbk0DC6UndboHpponOHBeoI6TfCpxycOj8IJNI3BKEejQuVbIyELb9155Ns6xabMSB8koYKrDlRGU/r+C84jmTYX1jeEzXMtw50tWey6cu5443W5wDHw7lze81Lmz08nYZA7r+POaWYX2CdYgnpfjHK9Ut0HeSJqFq2RQUFzc5fFC8H5bq855EpFkdVRLCdsWF2yaqo3aBy16HiCdCS0ISkmilIcKSES3XjH0gX50FS1JIOaZnWehHReUC5GiJc0kcBgScRhxaO8J1cNuWp41Ew5Phth1op65vnk7Iip3lL6lLkteFBPebSZsDoJ9DSxsXJPwA8tojyzfMuVdMk1Mw/Qn3heGB7zYDlho4kMLB9kWCV0tdAEFbl04RneK0lONrhhRj1NqXYTNlcU9SQ4X5t5bBsS2d372EmGWiZQ1ejTDcl7JGwv54Al4DSZanu4IfRgO+/YoHFRbFz1DrnxButjEko3T1Cw8gtOukFzZoc9neSkHX5TJN0l/PJ3SAw5Ymm0qvriBoReUzTsqGHCj5UDKhoUTSeSrkIVX+0udyjweK7+3JZvfOgan7v2HC8lX+Bvnn6Cv/uTn2DnS8KNRy1mbRHb4hLF8XcM+YUXnuP23gkAJ3bIWRPgkUlasp+tGZuyTyYdNaMnqDRDUzGk4qwp4j3xZEmLDD1LLzR1gaoEXQs2dj1QjZAuwjgGpoTCmZTcOvR8G4j/jcXMt9hxSFx6HSLGkMy71JAER4Nj47MnqopWNqPypnfA1gvrSFfbuIylK1i7jMZr7r+9x87XhM11RTMVXBaSZZVPnlRC86HW/2I3jLrV1KUhtUGsvLnh8JnHK49eK/JDTbKGahr6drlZQ1I0TIo6li/HNxff58ouOmPfKpL15al5nUmUlkSp8NXagPs6e56AE0X3QcTFwDlqpZy/kYTXpwn2xh7LFwq2B4pm7HGFI09bxlnNTrZhYBqMOGpnWNmMR82UwQWCqiZAeLmEYKjbQGuv+Znlq/zMwxdpWk3dapwN5eGuuZAgNZ53Uprfj3WUt8YrlI89G1UImv7m4uO0xzmZA3ut4mPjBzgvLF3OTx+/wudfu830sykvfK0mv3eKnWRUuxnbfc3qdko98cyv5iRiGcaTV7g+j4vYbTgRhn6KykKbhe4w4kKVbvrGY9zxCXp/j+JQU4gwmQ65+3tmlAdBQ8OZQI9FwuZa76SY0xypamRTojfvXltwKW+j8KHYQHzvdLNYd52ppseVOhigq5brcM6uj9PGZThpqNEsXZAfLH3C2mW8Ve33/dqMWCYmlCQmYhmZQMxuvGZpC0q9Crt3jII75x9uqObYBec11iUzvQ76xaqk8uEoErLtBofqoYi2uVx2RbQm+cpdJl9+lT938Nv52zsf482/8wKv/tUT7v+PdtlcTUhWCcWRI106vIGRqUMHWZtTxbYruW5Ile2rx0aRj5xge6pO54grlzAxFZmyzNINtTOUbcIjY3m4TmjLBBVbLHkV5ApdEiJhvXWoymELTbmfk+QGs6xQmzp2yI0RaxJxSudR1eUiGxHPRJVo76JDPZ9m3eY5lIYqar52Yjxrl7GyOferKWqlqXbC0U5VgqpDa1uXecqLCz1paZwmUTZoBUeqGBJKb0OCEXwrkHncfkN5w1J6QRvLMGvIk9ABo25173xDTrJL/MX536mxNYpk+RQSph5c4qlHCjvO0Mexlvlidw3vgjOOkW2P8SoVouGOH6x1KNPPUvzulPIgp9N5ClG2kKdBvClV5xFw1WqOqiE/u3qR+TbHWoUxlt3Blu8/eJ2b2SlHzZjXNvt89uEt7C/MyI7h7OMtr3z4AYVpeONkl/VZiu/w+SRCd/byHtgTed0xsBvoIGmwdDmfu3cTvVY0Y8etq6dcT874pc0t/trf/RRXfw4+/PUl4jeosxX2wSPMC7cDZVIgP4NHnwobxkk75NiOeqGnRCxJ1womQmz5cYtX0FxLOPsotGPH9EuGdvAcNn2OZhigPbEwOHRMX7OoSlPPoNp1+MIizpCdQJsr7LRAN21IrLp3Xz+XjIAj/isudBJWMFVbUlX1R00IHDmNo/YaF7PdQBTaHvUwQVA8yihd0ksvPq7GrJqAl+5mG5ZtOGJfyZY9Buy8Yqiq0J6d4MAGBPyoc/BrlzG3A07aIZUzXEkXjFVJaVbUXpOKZe3D0aCMx6vTdhiO45exJEGGBdM3WuZ+yp1kys1/uEXKhuXLFmYN5UmKSxTlnmLxsYYXi8MQIcZrDxtVTHA6zdamuKgM1dFoOn6yEh9aq3DeBLXxmioxpLrldDKgahTSaJK1ICsXOrbmEQPuiOON7yvg2qHGrDOSsxK1bdCFweahMEMh6KeohCt90kceS6dY2oKNS/nY4D7PmROmqqH0iqVPWLqgABc21pzXl/skq9BVQ6xgWsIRR8BXYMuM7b7CTwWtPGVMjlinekK9SSz12CKVAh2iXzz4UmNbIRk2pGmLEIoJ2o5tLx7rQkKpWzauY6QoR9PowKHePI0ecMANzz6kqKYj9r5syL5yPzjZtg2Rb7dYo1BV/ADh5/OdANEqON/xkOZgSDtQ8RgcIBe9VszvTPnc12eoJkAtqob8RNDboOuws3U0Q0W5o3h4dcaPf8rwh5/7Be6WO/zU119h8KWcbAVn39myf+uMoakZJRW3Z2d8+fF5JaBvVfjYT0HNEwILwqgAaw5UzViXfHl7g+o0R6Uev1tzZbDkM6sX+PEf+x523vJsd2HxQ4ESN3lrjNM32O4rbB6KunTpaW5XfHTvMblqAvylgtj/W5td1lWKtGGOba5omhcMLoPNNQdXSobDiuqqYlUb2kV6DvpbYbnW2LEj31uyN15TJA2bJuG+3qU5SVGNwmwy8sailmXU5f7Wdmka2kVx48YZnArYSRdFAhfU7E1f9eXiMbOMfZ6AXiPhtBly3Ax5a7XL49Wop6Kt6owbozn76bpXWksk6Bp0TR47C5FwqDQ7swPmdsC8LUI2vdsAdCy0MAGfXrvsfKNAMW8L5JK+xiUKuzMmO67ZLcP1m7MSNx0EZ2ccdtSyvZJgC89HX7nHVTPvy5E7KKY7VQCRCXLucLvvXX17RttT/iDWukde1Gy05agxNLWiWQvJUjClx0ssAlCaZOOiMDuxvFTFLG6OWXd6tN2Xf7KI431aUDnr9H01pTdcT+d8JLvPwYUWAS5KcXZC9FubcO90it4Gp6GrgN+qxveiMslSQBJKgTRpY1HGeZQh4lHKI0WLxwQmhQlVdQjQ9Y9zgWvlIXQ00ZZ3BitdEu4cB1aoWgKL5GnMByZEOxLqiSHzIbnmI+brLzIirI2SlN1niYk4kaCXnWe46YB6ktAUqm8pn84hPwJThk20LUJnE5eERBIuZD5V7ckri64Cl/H4bIR9TkILn8QGPDWD7JFhcbTHXO3RHLSM9teQuiCSD2F8vcQk3OWHRIvvnW+mGnJpeH29jzQqNB1VnrvLGV98eJ125Dj9oZLhoEIBdWO4/4kUX2qk8ahShfZMmef5G8fcLM56qDSctA1tV9GYeNoiRLZBbtPhBy2Jsf1JygOkLpTBm6BHMrxVsTfcMIy0vm2bYJ0iGTRUs4RkFaoQicUy71XKf2kHbFF9pVPQez3v3ttFaecJM9M72SbSyzYu7Wlf3bF60ebc28y4v5iwOhvgawXGsxlVXBsuMBcoNIlYxmrLRJVBwPsCb7fjmD5qphzWY9Y2Zdlkkbkx6D+X84qpXlP6NDblC22CHpaTJ8VS3oc5I9hJil7UmGWFTw3NbkE1S1CV4GqNyiz2mme2u+IH9l4jV03P4gh9qhyGgK/3lV1eY7UCH0puz+l9ttfZ0JzPdqvDWO4WG6rGMG8UzSrFnoKp4jE89goTH9gRqvaxw0LQk2hGJjb2jI7XxhLxpypFjnOBc774jfSIA7UhEWh82Di65FvHjDlrBmxPC4YuON781GO2XfueqM7mCBFyZtgOk6B8poVEOawXlIAxFpsJTS8jGKhlKuq6KhWdtPgYhflz+AHfq6l5gkN3TgX+b6vI1hL0e5/Cuo3NS9j40Poc2+0Edt5pSgXdiPhz+K7xRUY7TmMBDb2gla4CfqlrTzVVNCOJvQChmfigo70UVBMKdpQNouxtGQplrqdzRsOS5XhAMyL2DhTqGTSxMWocqLChRfIG7ukgiDQ63zw6X4vw1nIn0L8GjtG4ZJxVNFahP1LyqSt3KFTNWTPguBpyVhU8XozYLrNQ/Wkcs901H509Yqq3/XpxXtE4Q6ptEBDKHO0w5DraUdA6TvOWLGtItA2i/9qhhyVGO1LTMk4rrhRLEnFUznBSDVg1KZs6FFXZwgchrDRCeK2F99isL12KXLvQs0wpT6ariLvqJ0p4u0KNoGgUHt/YtKdlJRHrbJ3um+I9WI5ZHg/RZ6HwwCuodXBIbaTPNLFr8BWzZKxKzlzRD2zd482Gt7e7PNhO2LZJL2zTqWQ5H4SeVeZi9KXZNStWbc7rZ3uhvdBlxkSBzTRJ1UDdYAcTTj6csb0i2EGLMo7BsGJalHzX3j0+VtwLEWGEHoDIBnF919auy8i5w7WReXLOs4auW3KMgr1QmYT9fNUzAdYrQz3RmG1gAHgHzsQadi8h41tZvEgsW1Y0RqNq3x9npdMtuOQ8cdGhWq9IxXJglryQHJFKIPp3UpUXx2FjMx6VY8yJQdcwfOgYPqxwRrG5EoWeOtnoBsxKqJcZVWIp0nNMVquwWAJt7PwkEbQdYgudi8k2eEJnQvqI14FTvYiSiMfXiuyMoDV9WYt4tGqkz9hj9AUt7Mgg6lgOF6Jfon52J8wjRmPzlGZogvPVcWOK/ckAyh1NNROaUfhfnWiTNz5GwxL53uFn6nA/ns+PuDFZ8MUrI/JRTXl3SDsU9EeWfHj3lMoa3jwtOO93Hz/jUzhggUg7s32z36UtOJqPIHPs7C/5+MEDXh4cMdCh8e6DesYiQpOtV5xsCuoqQZQnnZZc31nwHbOHQTv7AlurC8AKHXB/Ehc2QS99B5lBXjMtSkZpxSzdkqmWcVJGyK/tq/YeVWPO6oJFlbMsM8oyoa01oqLoVx5Lzi+q3H0Lu3xTzidET1RfTttZx+Nsosp812CvcoZ1m3FYjnphbAhHvHWTcvJ4Qn4nRXXNJSee0XRL2SYsVEYWK+sgZNiTC1xjFbPgaaSdvbbY58HpBO+hyEPW88QMuDJcMUsNk6TkbfYY67I/8twpdzl6cxdVXv5oKa0P7ZTqBvv8Lqff0/Kv/cCPhUg34tsn7TCIReNofNZvUko8hW5ovOo1UQeq7jPUGt8XmyRyPpmgqzx0/fG79Am38jOyeGJ4bZtSzwvMWkJL8mUQ7K5mXVMxH+lmFl2CyzTNyJy3NRLes5/Vu45HLMToPiPANXPGWBrWMSEXumSYwJSIs/+0HXB/MSE/Ena+0jB4a055a8Li+YTN1QhJbEMjUoiObBM+c5OfJ087pTQdk2bWqm/ip3YtjS7KWnaFBBef6zlPxjknqJVh8MhBcnklV4FziEtFGlxioKx6WplEeKFPtvUf5BwbFmPwowHtNKMdqJ5Op1r6djk+Yv2Dxx55EE45uvak85ZqZthcUSHqLYRqqmgHIJXilxY3+Hhxl3/u2mf4zuk9ALIPBXH0H5x8iYkq+Zn1q/ynr1/poZ0wSPLU5OjOR3TJ+rv1LvUiI51UfGjvkO+ZvM2uXpGK5bCdhM4WEa5S4jkYrcmmc0ZJxTQp2U3X5KqhcobxO9TQtQSNEetCPiT4ZA/aI9ozzGpy0zAwNdfzOTezU+btoKd+Nl6zthmLuuBoM2RVZtSVoW00fmtCB2pPOFVGwaT32qwvPYu61s65ashU00tQdruL7biGbU4T5d5Ka6idobaaZZ2xqVJUrDJabzPcW0P2vh74eC6BzVXBPbfln3r+iwx0jSL8PyWuZ0w4L6HVO9FJxeP4NXPGskrxrw3JToTlbYefNOjMUjaG1SBjv1hBLIfv4IfPHN1i97OK0/fYrb6lKdheSUhPxqj5OmQ8tecT+R3+4fYlTtsh1ocmmztmTS4NJ74ru+2gGkXtDE4cxoVIYN4O2DVrRroMWqcXJncnv3eR4gVwYJbRYXsqp1ntptxfJph1EjuDQDZ3ZPMgUNQONF4J6aJBL0v0RqGqhGo3w2bnfOB2fDnhmQzHTXPKZ8oXeNxMuJIs+MHB46jLqlj7tF9sEFSsnBd+5vGLVP9gj+d/7BhXJCw/ssPypo59t+gV87wKpcBeB65y22jKxkRh9nOtYC0em0poKxSHr42t7btWRZ24j4oCPwouOBLVF54p5WlqQ3qiGN1Z48bv0WfmXcwTuNmqDgkxsR4SgyRJcLjugr7DhWKLHvtVURs4TXCTgnpqqIdBeastAoykq8BzTtYWXTn0psaOUhbP5WwOFHJD0+aw93vu89abB6Hdk4560anlrfku35hd5VOD17mdHPO3F5/g7e0uHxk9QIvjQK/51OB1/vLBp1gfDZ6MgJ/SKmcCPCShuOvr6ytghRu7c54fnAStFxWYQwdmQSItA12xl+bM24J5U0SNX0XlNGdNwe285Hp2xq5ZcWaHzG1B5RKmess4KTHKIdrTKzFWChnAssz6ispUWSpnSMSyaIsoXZlwWg0oW8Nym1FuU1yloVEhORt9rQ+U8cDtLt+9JcalO2J0zvdiWN853Q7T3dpQXFBaw3E5ZNskvcxbVRnayuBLjV4Y0jMhX0PsSIItoLzV8Lteeo3r6ZzG6/P+TpEN4KLObBdlhdbtEkuUEz519Q7/w2u7DL/kKQ6Fs4+mNHstaxdLfb2Q6xaFZz9Z8sXNTR6+ucerX9rw2iUbUHqBpggtYnxiqCeGnYM5llDemUmgOA1UzUxvaKIQTeWS+N2wbHIWTU6qWiqn2epQwvwNd8BQ1+yma6Zmy0iXPdf6iSKYmPwsfcJAhQh6ZGrGaYUetTQjg2oEXQkqcliz0wavQ6fqZpzgEhWSBTHT7gzYRHBGXZqG5oEbZsvX1JbHTKhcQi6Ow3i/ShcqD7tydueFB82M+3f2uP66ww5Tzj48igIoPLHAfTyl+yQklbwG3HnUelERTStHkbRBLKbVMRIOkWyjNT6W/OooM/hOsSnX+0DBGEs5Lxg99pjTDXacX2pMiJcR1OfiNWjBDVL0Yo0YExg1gG8tNHWgo8W/xQ8SvmuNy0zAGrMoxpR3eteKdi5kc4WuHOwm1GPF8gVhe7Ml3SnR2lG2hhdefNyXbFetJjMW64TPLm4z1Ru+t3iDPzD9DG+3u1zRS67qFXva0/gV16cLvvF4SN+ZG/pGrpcxT7hnoUov4YwB99ZTEM9evmY/WZKrpk+iDVXFgSyhhZXN+/u1jswhF6HNTZJykC/7wi8IAUuowO121RC9m7WgzhTNJmexr/G7a8ZZRe00J/UQJY5VkzGvC862Oetthm01ttYh+VcHrr004Ts+7uEdh7x+92PkpSPgjv/b9V2CQLBf24zKGrY2iQrzpheX6fQ1m0Zj1wnmxISLbsMC2l7xeBMGoh168p2S69mcsj+uKuiwTx8iptrvULoELZ7chSKKDj96ZfCYn35uyfLRlOkbjslrwlwM7VQogaWxLPKcRFk0np8/fo7B2wbz+PBJ3O19mjcBB2acs93VfPzgwflYRQxqrLe9MtxFc1E4poveMmVJxLH2itNywCkDlm3GlWzFQapinXzTF450VYfAeXWguJDYMDVp1lBnGS6JJcoZ6DrqENRRbjIRmrFBb6VnPogFknBMVpes+rIId9qwo15PzriWzNlcSIAGzndK400fzX95eQ19ZsB7Vs8PqHak1zjux7nHMMFd6NrsmnOIQb1DrMcoh9GWNjpf4iJtGg0JUdpSkHc433P2Q0dB8+ilJlv4UDhhLj9Pwgf2oCQmRMFlJqQp8yxEOM6HXohGnyfoLkbGSgUIIlEhypLIbshC5r8ZQ7UbuMA+tncSD83IQdS4yNOGIml4YXxC4zQn1YB5laPFs20STssBD5oZyyzntlkwVg/JxZIJZKIZq4YXRid8g+vxmkIxhuhLnh4J+YLGa7JYhTdvBzyaj0FgJ92SS9ufkJSESlUtIfmv8DivqKxhUedUNkhRmggtjXTF1Gwu5FouFI7FppuBtidBkOcINmXCyhTMipKNTtkQOt2U1rCuU1abnHqRBf2VGNSEnoogFyAgcb7n/36Tkt0Fe6qWRJ11uE3lTIx6UzZtyrYNgherKqVuDW2raCqDWyWYhSY9Cx/YpqHVdTuxkDi8JCFB4ITDekzjgyizk3NR88YbDttxn+TrHFzHLd64jKne8pGDR3zmhQHZmaE49gweBoX8VnvKLGHdpEySIEz91v09rtxxoY/cUxynvCK07RGh2hG+Z/I2OuLRTlTsmVeRxMkUruU8mWbEMTIV46RkpCuMcv1GVnbdlnUT9IaVMLcDLCWphAhSexdxcNXjqRoXsr3GUmY+tpIhtCrX4LRCWdt3UrZpAMRU62OyyAMRW7ykHKVDOLYjIMAit80JTRR86crqOi0OG6sWv358gNkIbQHNKMj/dV1jgjg/UWk8JBK77LvYUADg3HmSVV/QcRDxpCbo+TaNDlidlcB8UOfQA6hz6pGXcy7whQmRrIVkHfUZLnlSCi8KEETAIsL9aAeGRKm+zxsKfJGFQoz1Fr8toW4QGwXXdah88xeq5CKPDpd4bOECbSpxmKxFa49tQwuszDiGec2s2HJreMb1bN6fXLdtQm01rVUs6oyH1YTHxZjbZsFUWdJ4MtIIA4Fb+Wm4JokVcE8JRXhP3xjTISzanO1ZDh4SFelj1vQJ/UTCyWPjQleLRZtxVhfMq7zX9gWYlyHAenXw+Imq2cpFfnpSo4yLJ5Fw0ko2MLgPLs14YKbY3cCs0cqF03tjAgPEClIFOqJqIvbuBNw5xt+xh7z3YL5dYjwQmQu6V57f2DQUVXihtoYq7hTbOglqXk6oywQWCfmhxqzDxKtmkXeXRADcOOww9Ldqjgo+U9zi2njJ9WJBEZ3PQAfqz2kzYOvSvgKqo7Ekyvawwq3BGW/dnHO62EOXwviOxRnNJte0w+DYgjxdTnInY3SvClHHU9RTdoI1LjU0Y/hYFpIXuWr6/lSdME1oRXSe8U3EMk5KMtWGdtrShohAt6TKhvJda0K9vApVcfPY57qDZlJpUf5ck7ljpSiC8wlZ7yDa7k1wHt4I1OfRbkgcgJMgQSlRcMYpQsuoS1gnSZrG656pmrU3UepQ9bBJx3s+aYecPR4zKKEZxqx9zOp3C8Ql/vyo+y0CCmtDCxmrBOVUoBkRIbPY762qEvzGBAK+cViroh6wXMhxnTvfjivcJfLMGpJVhGmepu4WwiLtxM4SoZ4a8iwJzlcEN8hp9wqcVqTHCuUjF7UNVYkowedpULWLUZeuwTYSMUJQmSUrGqbDLXvFhoN8hRHXr5Uds2E/WQJw1IxZ6tC3cVVmbLcpdat5NJjwaDijTB8yEEvtg0aClaCQtmvW35x0e6oc3DmH3XrFYT1Cnxlc7qmsYW4LGnfe2cKiaJ3uKaan1YBFGZxvVSbYRuEbxbJVHI+WfGzU9rmq7hRmlGOWbknTljL12MJT7Qae+f7nPboSVuWAR68G4SujHVVjaNoYESQuaLv4GEE3oUNyJ00JQUtCWhew++Tdm5ZeviNGpA4pAh2jcoZMtUEhHqFqDds6YVsm4AX7oKA4VCQrArthBNtrFp92n9SHDgSJI7u2Zm0GJEeG+s4ebyZ7vG6g3rEUN1c8v3vKJC17XLl1KlCOon6wEs9utmYwrriezvno3kN++tqQ+l7B+E7L5C3BpopyN7RuuZWf8tmz24zfhPTxGj+4PK5HPAZ6IzGx5ZnpTY9XhQRcSxIThrk0WBGSGL0q8ewlAePtW2hbjRFLZtq++0Ohm/7xeVtEDrb01YGdOl1lk9jaJTQaBCB1uFSHI28i2MTHljWhAEOcx2wC17a7nj6aEYLu8CXM4Jmp0E5mKOHzNXEcuhLwLqlovfD5+U2SIxNafMd8X9eqqku2dRlrL2Fyd0mOvsKtq1br3jeS7Y04nAi5admmLbWH5ExRFxrSTm0shNMd97f76vBivFBXCdOFD3X9icGlTwFBdIkZ4nUVUO4qRtMB+mgRmA2znLYwtIUiu9fg15vAfEiSEEl5j1cK1Tp05TBp0G82RkK/w1pwRtMmltaes2x2kzVjXTLSJWO17fW6w2Y/YdMkLM8GISKtNY8GI47aUbhfXU+6C2YJc6Xfhy5sYk9jFsVpO+DNxR7ZsaKZeI6rIeMkJLCcD92Lj6thKKm2hk2TUHf+ZpPi5ynJWVC/8wK3fstZDHoC7DCNLY5+cX2bVZNhjMWnQegJ7XHPV2zvB1+Rnwlnq4LTDxtU0YaTV6OhVqhSBbjuQuQbHG4MFkycn53zNe8ub3ApB2ydsKiL0G5eqZhwS2Ohw3llllYOrT3+y0OmbwJ46olQ7UA9c8H5Ko+kDp1a8qJmlFdcHy7YubFlbVNeO93n5Ou77HxJGHzWU00mvPHClOYjG4qiZnU0RCqFTxwkoVpmNNvw4duP2NVrEmkpBwlvXtnj8U6BSxVm4zBlWJjXhgtupSf8+W98Py/caZD1FjcdftNE+0eZj3SiNlc0A0U7seypijcjTzGRtsdsIRQmWIS5HXLSDlnbjN1kHek3O6zbjK0NesLrJoxtplsy3fbY+0DrEF13GFhfNefYuLRP7pU2obUKUR6XhhYqbS6ooaAbE4TWPag29JBTje+DGhV/9yK0l9QDdsChnQRYKNbfW6TXfujGxXnFmRtxfzVF1TGJdiHybYvoYPukVTxtROrmE/fBS6ygdCSmDVxfIrPBhzlZpA31bklbDqBWtLVGKY9JL7a6v3AdLmgzIx67MUGWMFU0+wPs0zhgwvU4c66I1gyF7fUho6MF3ijswOAVFI9KeHQISYoUGb7I8EWK1C04h17VZIBqDLoOSmCI0FSapg4FKPO+uk/Y5gn76SpSGl1kFYQcyONyxMO3d5FGcfDiCSdnIx6+ucd/cef7+YevPs/vv/Y59vSKj6SPGCiw3oeWZE6Cxgb0kNDTWKFrKmc4qkacbgrMJuQpHq7HTNJtT6t8sJ2Ek0kM9MIpJTBb/GlKcV9TPA486LMPwa3slOfTI9YuZekKVjbnzXqfL5xc5/F8RPvWiOkdIT921GOFzQqyU9er/w0fOlSbsHxJ4VOPtIIqBV0K6aLTWqHnd3fJN5eE8XBGoRODz75NEbC1inmdMzB1yJBH2kcSMyVGhajNemE+HzANbZtoRkI9hWYSRSsySzZoGOQVw7ShMKHyZBCj2LGpeHnnCPmQ5yjdpXrTkJ14hvc8VTlg9UpC1ykXFyqITNHyyu4R17J5n6C6np7x8d0H/M3dKzH6VpR7nusHc14eHXG33mXyiynZ0TzStJ4iARdf0hahi3Myq9hVijucc3MBhoRk09IGxa+lzTmph3z59Cr3H+4gpwmqluAoJy27VxZcHa24Pluwm67ZSTZPdCLpqG2dBTio6I9qrVcB14vHpt5hdfxTCaWoqg1Rnd42eK2wwwSb6b5TNUSS/iVs6xPuNTt8JLvPOG48eWQ7dHxmjWcZlc/OVkVP34msxtAaSMKROmDWBF1gTdcko88yixWclZDo1ZZUhyrNvpcbcg5FDEqW1wRXGkQHnnA3Rh3+6y5EcxKroexKk2zjhjTQuEuOSW+dwI87LyrZ7mmGowFSt5h1S3mQorYtMh7jdkZgPTiHywxkBr0Mmh04gk6wIyTcJIyFWEXjghNepC2ZDiqEHeQWxr7p+6893ozJ7yeIg9PVPoPHQn4SHNm9L73An/mu6/zI9/wULyRHVL7hzCnuV7MQAEU8G91hwJcfFyWerU04qQaU25RRA3rjma8LFsOCnWwT4DRlUbphHatbuwrFepuQnmiKI4+pPNVM4V9d8Va5y39z5zvZVClF2nAwXLGqM+68tU/6yDB+KAwfWYrDGrVtqXcy6qnpo1dnQrHS4J6mnnkiF6APFsLcO/9CxSnZQ2eCNxqvv00RMFYx3+YMk7ovRS6t6XcoCPhfohyu1kEEpgiYXjMJsn/Dackor5hmJdNsyzQpA9juNJlqcch5q2ir8OL7Kp5k49EPwUsSJPfSUEKoC8vebMW1YsmuXjPTaxICWduIRazQDDXLW4r2RsVL0yOuJgv++sOPs/O1BrWqAiGep+OSiw8ydu0QpuMtI5WF5ps4iKW4XdmwRcVmlELlNIfzESxD1NPOWtSwZTwq2R9suF4smCUbsrhSS5f03UcaNDrSqDostcPkK2ee0DUOBVT+HMuVGOF2Gg86cExV1YISnBYQdYEudbnxcAgzvWGsShJC+/lcLA2KOuo+WAKeV7mEapExjJO2W799xKu7n4PzDU7YI7UKzsbFPTjye70PWtGdWDvQ9x1DQ5EIblCximpoSp1DIT4mcNqYu+gKz0Q82bHCbNsAycRS00ubvzC/LkA9bQHVtRHp4Rq1aVBVgh0miJ/QjtLQybpuEedxicanpj+pBSjCkmwkBBBdUYQPLIjtIGOZNuQmI9ctqQr0y4GqsKI4bYacbXOyU8iPHeIgW7ShM0qiqMcJt66fcCM9pfSGM9cwdxkPy3HQEukcsL/wdclB6dvDNyltadCNR5dQrVNKa/rK0NyEzbx2wd+0ToXNc56QnQT93mYgbK57buwuyFTLtk5YnxZsTGzA2SryewnFY09x7EjPWvQq9NLzsSmwakOTTV2D00J2FmRd2yLmIi7M0YusB48ELf3OAScKtEIuqt29wy6nhtbAYlUwiGWfRhzbNmGUVD2m17cPtwGTOtfcFGwVWj2Ps4pxWrKTbjhIVz2O2WlFXOxsoMpAbu6yjap1jO4Km2uKaseD8YxHW16eHnMrOw1EbSyHdsIXNzf5zNFt9FbY7AvrFyy3rp/wXBEyuG985Tofees0UH2y9Lze/rIWqVFt4ZnkZcR3G1KxNFHusmtRX8bkpYoSmt6DLyz5tOLW7hkH+YqhCQnFsSn7KDc4Lfpx6ihTVhSJansH33hN68P/SlRsqW4j+VQ6yKSbNBG7jl2PTWODGlqmaW0oyYXLZ/w90le+6XBAia2JYsVTFN13XljaHLUInZjpoIUOV4+/exUi4V7VTAi4WxtwN3yIgDvaWI/jRvZMBy/gwCpHYiwmCeXInYPtul04p7BtSMAJoIylbXXg/24dXnW6Ck8bAcdv6vz6XCJsDxJUXWCWFcmmxeYaJMMlsWLUhCaqYh2uSJ4QhBfn0ZUj0dD1UBcftAjKoWGZFKTGBlZMDJa6wqbjZkhdG3IgP7NBrjRqfzRDzeo2/EvPfZprUUBq6RIWLudoOwpJqCjC87TwgxJ6uGzTJFCpuNY9fqMpo5yA80EMvnaGXEfB/AbKbUp2okPE3ng2Y0V9JchwjnTFjcmCO1bRNmFTbSrDcAXp8rxYBaVoxinlTNMWEru1h0pCrQXfQuZ8CORGoXmw06Ebj3R6GF1s03F/O4ElCOXI72KXcsC6AnecMS9yEm3JdBsa3DUZA3NO9eioO20B2ZknXQIPA1d2c33KN57LGe9suDou2A4SXhwccz05w6J6cnVbKBqneS0bB0WsKtzkNhPaXHoK22Bvw6t7offbK9kjUrG82Rzw4ycf4effeg79eoGuheVLjqsvH/Fde3cZqJqvbq5y5R8IslgHfE0kHPWewjoc2BvfT3CNJ5eGUhJqrzlsJ7H1UR6dY+hxd3v/jM004eYowCJTvcUhgV2izrWAlfheAa1yBoeOUgXBcWSqIZOWTLU9Y2KUVIHv6M4xR2eAIiz64OQCD9glgqoselGitm2QpMxAkm/GW9+PzdSW/B1K7q4vloml6t5w0gxJ5yFye6Kw7x2OqrcL9DNVx6oyG3FAf16I4bxQWUOm2769EID2rqebheIydwG+FNpGY9uQJxAdnlMtUkYPLKp2tIXu9ROeyrrNhSevqx4J6kpKrgWzbnDjIGEqzkchoqia11hsbkKG3Z07PlU7lBZMTEqKj0JRc00jGScXuko3LmiqWBTH1RCtHZvrHrM1mI2P+GVoIDr5riO+I7vL0hW9sNbSFZxuiu6mnrNSOordJazTKV41oUJWaoWKeix6rVnXgSbXneiMOIx2bNqUZZnhT1LyQyiOW8odTbkHxc6WcVKRKMsPXf0y870Bj6oJd9Yz3jjcoxmBPQ1z3haadqBpRpp6ct5d3Itgot+xKahNRzETyiuxCCjivzhQLnDrvZcL7J0uVH73QbmUAzZby/BtzWowIDUtwzTor55WA5SsAch1EEFRRYu4BNXC4LFl8OYCefs+rqpQz9/i+Puu8PDqDvey23y68NT7lmRWMixqxnnFbr7hueEpV797yad3XmB+EsjPftTy0vOP+Z07d9lJNlxJFuRSM7dDfuzkO3l9ucfRasjq8RBzZmjGHp9YJjeW/Jb9u7xUHPKgnvG3P/dxPvaT90KGslObepo0rkA7CJsTHsr2fGWq2L1jaYtYPq2iuE5NKi27es3OlQ2n7SCIfugSJa6n+CkfW8VEKcpO1an5FphAE3H4XDVUypD6loERiqQFF3uiQc8HrsaC2YYmnkH7QaGaFLWpUbVFlxadhUo4e8mWRIJnpmr0O/a0LgHXifQ0XvP6ci8wZOJRVlz8jB3XN5qPUS86RF0uDd0qxIcsNC48qauA63Qe5IK4EYQF3EW8Sp13ru55wut4/1KLJDFavJOSHa9D8YORHhq5tEXaUkdF65C7bp+yqdCMDGI9ZtPQjJLzCFgL26tp0PRYXOyYHN7Pp4HNorcubE5WRX56oI/UPucwdoGuCkMddVpap9kbbXj8suJ4p8DMNXbgkFnFlf0Fv+Paa8C5/KtFOLMD1pvsCcgofJbLrx8BtjZhXuVUZRJ7sgUnpmvY1gnLNmC+u+kG64Vlk3NaFiyPhwzva0YPLC4V1jcV1Y2GV3bmXMmWTPWWTDVMsy1XkwW38lOuDxZ8Wj/PyWxEdmJIVmA2cZMrAgvHmW5LFpKNw2zptTa8hu1VKG826KUmPQ0Ru/jgtFUbcCvx8fSm9Xui4pfDgJuW3S+3tIOUs3SI3l3hvXBWJxjlmKZbctME/M3ErLKBxXOG5e0dsrMZOz//GP/gMfnpHptrhmrf4Xdrhl/Kyc6GiB2yEVgreDMNkUYadU69hqZMeCvf4417+0H8YqtCNUoDPgFdCtWeZXBjxbWXl5ysB1SN4VPX7vBScchRM+Zvv/0Rbv1NFSqMxkVwvN0x4bJOWDzlFUd2pFCNcLIpsN4xkJazWG5b+tBgdKDqvjdVx4oY6y13671A7bsQMV5s+9SxH+C8/DI08jwvgtm0CQf5ir1k3WPGcE7L6hycj+Ip1Y4gToeTBWGyVFON3haoqo24o0dy8Jdk56XSogiSk7VXUdnNxUjmPOyzCG8c7jEo48QXvnlRE3+PCTlppXfUXnvaATHiOy/EEALXM1G2F7Bvo8MxUSXNWkGp80IL54S2jg3FkqAbbFtNWyqufdUhrcMWUahI5Mmo/JdhquWJaL8dKJphRrJxDO6Ejhm2SLCDIJJv1pbkeIPXOmwI+txBd5ww1QaoJomc+4D9a1qbcdwq7CzIyXbjU5iG2WjLqRfUnicRz85ow83RnGWb8+/d/ScobcL3773OK9kjTuwQu07QreCTgI92VYaXNQ8s6pxNlWIbhY4NEcR7pFXUlWHTpgxMTeM0yzZjUeccnkzI304Zv+1wGrZXNOW+J5+V7OWBcjeIladH7YC5LThrgp7DdLjl+Lpim+X4RwazCUGiKX1U/wuQjqosqm5xmcFrRTMxlDuGdmrRoxZXxuRtl4jrbqSLzCLrwShc/m0sxCgebRk8GFFPM9aDGqMdrVWs6pTCNAzMhkni0bHKxKZCM449k4By5xpXP10w/MohqtnjwTjhh37gi/ydwYc4K02ITA5Txm8o0kVItCUPQrY+CLEI9VfzAEMUhNLLA0t2ZQNfHGPWYD9c8ur+EaOkYl2nTIuS6/mc0iX8rbsfpfnZXcZfPsRNR2AUtDE+eo/WIe9mYjzm9pq6GWE2wmpecM9umCl4ZP2FyjTfF2R0zreTYkzEYpVcUHsLehujqOS0sRkrm3HcDDmuhmzalNOy4Gw1oFylyMogVpi+dMrvuPkaU7Pte2dZLwE71SEKFBdkHF0C5Z6QLom0n9A5eXMtJV2GIy7qHDO+jGk8DfJEInDjTF9a3tnK5jSPi77qDs7ZDWFRB7pi75BjPkHsefmnV6GgB+P7MuSLzheI5akW54RFlTNf5XinsNb38grOCb4JlLPu/7lGYQ5Thg/KoL2QqnPH+zRoVYcTdg43QvMqQgld5KWiUH69V5A9XJEcnmGqijzPg5NtGvzOBEcgTXfdqzv8vFeys6BLSNbhb14r2lSzSnKMdgySBq1cLyzTlIbsjZzBPU/djvna+BqfveFpZ5bkVDP/7pzfcz1sqFKrELnbQEmRyAu+7LhYr1jVGWWd4COdLlTJBniprgyrOiNVLcs2lCRvmhR3mpIfh/dohjEKtVCuUj579xY/t30xPBg1n71VQWfcCclJaFw7PIHiyFEcNiSLGtk2YZMvG6TpKColWgQ/G9OMZthcwITcjWpANwErDjRAYnDgUS3o0iKbCrc7/FaXDjyFA5a6JT/zZCeK8iBlMKpwLrRGr1JDbS4ozhtwGTQjj91tUYll5XJ0PeHg5z35ow2jt6Z8Y7mPMZZPvnSPoa750sFVHhZ76I3CTizm1JAfK0ws5igPQm27nVr2r8/5xOyYRZ3z8GTM6rbn6s6Sq8UCLaGV+9XBkrEu+cnjV5h/YY9bP18hZY3bn4D3/bwR3h0sfzcrkoYX9k/42oMh2ZmgH2T86OKT/PHZFyIEIb2TzaXu+a+WoJkbtDXaXluj64D89nYXhzCvc+Z1waLMWZcp5SbFrwzZkSadC1kdIJD18y0Hw1DQcS6UFPBjTDy7Rwemm6DGFSKu4Ix1Fb68BLpeB1koe06XuoxZL/2xHyLscOH3jrGh6nfghr0Djr92Sbh3LG6v/RM0NJ8EsXUV1c2McpgoWwhQ2oRFlXO0HGIbjdK+5/gCodFkpS7IKwKVZvS2oFc1zSzHm44hcvnx6K7tPGt+fp3vlshpC02SG7S1uPkS5kvUaBgKMpoWSTSYWJHVHXmjzkSHnffVWl2U1gb+86ZKA69/OcAeZ2SHmkEF+bHHbD3NUKhm4J/bcnN3waPJhGlW9kqHEqlYwWHKefL0koNjvaJsTdDmiBVl3bwUB77ULKuUQRIS9Uo8ldV967ByN+QP8lPH6G3B3c8ClNZAuS+UV0IgqCx90YQ3sZO5hs2BopyljB5ozDrFbG0oPNFBeU62JajQ462aaZphCLq8k4D7tpEcYCNVkm7NBK1tWa55L7Tq8loQPmQP07miXKS4Qd1zKddNSmbavh7bJQEXsUNHOqwxxrKZGc4+ojHbCZM3S6Zv1rz2D5/DFo7h9bf5jtF9rmYLvjBYY8TysclD3t7u8Jn7tzk7KxDj+MhzD7k5mPNiccT3DN7kYTvl3/3S/5h87dHPrbk6WFLo0CR0mpbcLk45akZ88Su3uf45T/GNQ3ya4IxCvA9O2MHTCEqPTckr4yO+WtxAWsXgkfCXX/te/sh3fz5Wp0W6kLg+8q29PtfyfUfIsHEpj+oJry32mW9zFssCt0pCq5VSSCshXcDgkSPZOOqhop4Ju7fP+M6de0z1tq/v73rNSWwZ0y1GXHTAJjjvtghOLJ17TCk0StCN749R5t3V9N7V3AWHq2PVXvi76tsQNV7j8lDZdZH9cJEB8U2VeUTnawjNg1tBasGn0tPQGqupWhPa6iDU0fmebQq2yyyc1HVoO0PHftgYVK1wJlbHtQq9Usy+XiNtqBLsdHe/JUzyfs1zLq3Z0p/snng/HzYcmwl2lKKLHNGqF26XNAmt7FvXV5SK9YFOSMzAS3AITvOkY7fgraKuA+btHuWM7igGj4PXryaK9U2hvNoyvrHkd9x4kw8PHlHeSHoe+sPtuOfCStS/DZWKl2dDOC9BsqBRqFqhbEiCNcOIOpUqqI8NNjilgFg6Hp9jixDlZ2ehe0pxWJM+WtPsD3i0l+P2GhAfJUjBN4prt054/NUDXOZQ4walPNuvDUgWhvEdS3Gk0NvYdaZu8KOC9a2CzZXQcVq0C5WX3X2MmyqGfpPVlUO2sZKxfvfuKU8lxqMaT7LyJCeKZteQpC1No9k2hioxIQGiPPXQhx1tYBnkAa4oixaXWR7/1pRqNmD/C1te/KtbTj5S8Pf2X0G97Hm+OOY7p/d4JX/EWJX81uFrfM/kbVY2Z98s+ceK15mqhqESfqHa5c+9+QPkf2PC5oZwMF0xME2PoR7kK66nc/78N76PKz+tmf3SCXiPH2QxGy19NPI0SbhC1bxUHJJOK2yWkD30LL60w3/98nfyqcHr7OkV1of+eBrfd4hIpKXB9A0p5+2Ak2bIw+2Yx5sxyzJjtcqRBznFPFTdEI+ZNoX1NUU99dRXW67dPuH7rrwF0FfC2RhddxuA1x5aQdkQIdXT8Pm9Co7YFR5bCOkczDokEroqOVNeflx6hxsj4b6ABOlbSSViMXtbmvHonPcblc5cCi4Nfbu6UuQeHogbClZ6gR6s0GxSVoSE2rpKGWbhiL5tDKtNTlPF6S5BoCbJWpxVuK0hOTbYPEAeYhx+bRg8UAw+fwe3v9PTvnot4l+GGFr/cyek4y/8DCCCi+2jmoEhSZMAx4jq+8T5GKHFQUZVQSnQZio01oiR+sVsfQfd+Bgu18uUpApSlovnFXbgqW9U3Lh+yk6+pbGan73/Ao92JvzTVz7PgVnwhe1tHm3GqDrg9ufR+5NJ0/drzgvbKsAPHa3Q66DulqwhWQjVNCW5YslNQ9km5KaFcUu1p3CJRxWCtCp29kgZW8/8xYzkB475Ey9/GgjiVzO94RvlVf7P+1/g37n5UXbNimvJnMfthL+0933cub9LukxJFwq9Dr3c7O6I9XMDVjc01Z7Hjh1KB0ijF+LpE25xU7WEZGhVf7Ow/jvscg44Zlyl9SRbT36iWCxSkv0WfBC+XhjL9eGCQVazOajxrSIfVwyzGg/MZmvOvr6L22k4+6Ricy1n8jqcfJfDvF3wd04+Ho6Tw5Y/+omf4/eOfxEljmtm3reg39cN923GL9VT/k+/+AdQn55iEtj57Q852xTM9rZBLISg9/BTJy9T/P9m7H3mGNlWuJ0xzSwHAb1tEedCJPyUAisDVTHIazaDkCgqHgr/4c/9IH/4uyf81uHr3ExOabzpuzGPVUnpDffaHX5h9XzfCfqsLEKUtklxjUIfJ+gKbO5pR92JIiTS/Mgy2V3z4Z1TXhodMdJVyCa3xbkqWMRERXt86nE2CO0YLz0NShzQgiIwC6pZpKVtQmRhyiDyfRnzEIVT5LwnoDc9KySNiUXnhWs7S+59XONq/eQbdHhaxPAQMIntk2Ye8E7wVvA2liC1QlsZnA1887NH4/BERXCs2qOiJGOWN6wejkiPNcVWsIXHFQH3VsYjC83kLYtbLJHpGGXjicCdR5mXtV6sJX6FaFrA+577KjEQ6OADbwSfJ6gix5cV3lrEaMhSfBLaFKm6DUwe61FW0cZkoWqibkYU7OkYL67StMqD9jRXa5p9QS0N2Yli/IWMzWeuUZXhM9S3IP/dj/oN9GE94dHxlKQJUei7nVIuM1lsq0Nw0Aq6hmTlGQDjOy3rq4Z2mNA+rzCRsibiKcYlm1aQUtOOLJU16FdXNL+t5rXDMdPPCfOjMV+7fo3n82M+MbjDb8u2nBRvsfKaHxx9iYXLObEj3q72qK0mu5OiamhGmnY4oM2kXw/lvqcdhOSmUg7rNWYjfRMJ10W/ip7FIqtNcMDvUWF7SQeswKhYAeIxG485NTSTQKpvasPapLiBYpxVrIchAhnEJnfeC4PBluX1LXJ3gEs9ze2a45khf6hjgkijK026MPy3n/6d/MVXfwBfxGICHbKc12YLGqu5/2hG+mYOBs4+VbOZjziYrni+OGJXr0Or+2bGl/7uq7z0C8dQN7jJgGYnp54YzNahypA99iJPNX+2Lg3CO1nNfOKoZhpVw/iLKf+V/h4efGjCP7n7S9xOjp/om9c5388d3+J0U1DFnlK+0jGxAS732FmLymzgpMbX5lnDtemSq8WS3XRDIkE1rROjNhdKlHuN2y5KIXCCTU2McMP3EHWEaj4bBXGcjkfup3A2T+K9YfPRdL3izlXbJlmJPZizKrO+HdBFZTKg73LcJdlEPK1TOKdCh4vYJLK/Vh9xZSc9a8LnFpO1FEUdKFT/YMbuadQo2Q35ClIXVPm2mtGJUDyqkfEIWW9R5RDJg1ynsoJ9SgiiSzJ1pchdxZWyvsdyIT6nCdV/9d6ArL2G3HmAr2t8YnCpCZCD96iyDTBaovGtidi4QbJYHTfoYA8JHTkaQ70jMIyZIysxeg6sEpt53NgyPljxj19/m++dvME1c0bjDa+v9vGH4fQoLQEKimP9NDQ0F4toeuzfBu7t7CtL9OM5yfqAcr/geDNkN9uQ64bGambDoDGyOSsY7mxZ64K90YZXZ4cU197ms9duob66x9/4hU+gxw0/fvXD/M6Dr7OyGQNd87n5Ld5e7HB8OoLHGaO3FSaDk084dKUwqwCtOA3t2AdaJAFHLvKGZp2GTc3I/7+9c/uRLLvK/G/fziVuea2qri764qJb7jFyu5nx2AIGaSQQEjNP8ziCP4L3+TPmBYk3eOGBB3gGWRpAIMA2mgYzPb50u2/u6srMyszIiBPntvfmYe1zIsp2N86ipRYilpRVqbxERuw4Z+21v/Wt76Mr5efcSiAYW0fM9Ya42cjG+Cn3z+0SsE7OD2YLwLsbRd1YbN4noWvLpncc5RXrUu7kQSAZFWXxFhVnBxlmaVAfZ0QTqe+JLYreaEyLuJUGcEtN79NuC7S15aPLBc06g8bQvtSgM48OirZyfPWV90Yxni4a3l6dMvsgQteDMfhZLu6/Rgl5ffCcMYqoBnv2nz3WPuO8m8sGM/W0C41bK9Gu+E7BX8ZXMa9F/sfJt3hgr1jHjAs/5c3qRb518SKPLud0GycW316NxHY16SmnDYfTjQhQJ2xTq8hhseG0WLNwNTZppvbBjGPcUxPHBmAXNHF43KF6HDrkjTjoDoLr3ilqVKIukWQgFaF/NghiEAsaGo51cgEZqimnPKs252I5ZTEVoLnpkl8XP3lyMzqQO1Hek0lJjdbidBGCFuZEUKAD2kW8EexvGDn2vWH5aM70h5bsOrK5p6SqSXKXyqbj5dKSX0Tsshbx86ZF1z2mFT1Ywf2ehQaxk6N+rOEGW8xbIYlVjrZimNodlWSbY1S1kQ1xqJ5RRKulc5/6GWbsa9j0d7TgySFRxhKdLwLaechkg+qOFdODDQ8Ornllfs7D8ozn3SVzs2Gua/589Rpvn5+QXaUiLOmwjA3SZ1uStC7bHkUwg6FlT/b+JYu7GY++MoWjMwrT0yeq6yTv6CaWeVmTu4770yUL27CwG7529z3etD0XKzEGeLya8cf161yvZICkvclQjRFxnSrJJcziCDH5UnCFkEW6A49q0zWZeyZ5y5IpKkj/JNidjTOII7VabQh1I9XvZ6YFoRQhM4nmkhosLcTKEJxcSd4rVl3GSbGmdB2Z9qPj7DBOW9ie4qim9iXZE4NZaZoT8W4Ls7G5LbQgHclmLdOyYVE0Yzf0o3xBkYl4z3JTsDqbsri74kuTH40WJtd9yTsXxxxey9/vT6asXhBvLGkw2eQMIc24qBXcMgE33nLWivi4zjy+FGM+FJSPI8Hk/B/9Ki9+5Qk/f/BNroLhR/0R/3j9PO8/PiJUNinD+eQqIOIvRd5xNNkwyxqZ30/VX6Y9uRZ1tKHSHSq/Lphky761LOq9IXZiqS56CpJghzFS3aeObh9xfcSvwRdqbN4MCmT/mvBR0yYYwqNHLrDVgXWbYb895+ylEndUUxSdVLh9Ek9Pj6GARge63DArGgrbkxlFF/yYsHsvI8hDldx0ls0qp1sVsrFvFOVaYSvhQbeHYcRyQyl9C1Qku9KUT7xYzysFwaPrFlM7TK4xmcL3z7YoUbHDgHi6afXjBWSaHhfrqMLgj6aYtpOdaZAZ0SkBawU+TccFMGMCt3K6i+kBkUarbhWhV5CBsZ5sIonl5+ZXvDo/48X8ghMjPOQ6ZExVy5vLB2wuSibNNkHtHLZ49s7k0yHaLxqsJS5vmL07x747o33JiJWYClgVyG3PbFpT2J6jYsNBVlOallz33MlueOPkA35YnLDp3Sht4Jyn6ww6F51s7zQh1/S9Skamw5pDVKIVjAvinadFa9kkqYWhHyNefNuTjbtuiZsNse9RWSaMik+I2+kBayU6qHp7U+oe7I2hLwI688SgWdU5/UyTm56Za9Aq0nqpjEGoJAfTDb7X9E1Jdq3InmjqzKAXHVneo3Wg6wzzqQjT3ClXHGdrFrZm2RcUpuMgq3nr8i7r6xKC4lcfvM1du6SNho+7A767ukv18ZTjPtKfzrj84oTlK9De7VCNpl1YyjODqwTfAwj/dLvuig+ay3YiN76WN6wj0JcaW0UW7wa0L/izu1/k1+bfAUQR7botCJ3QnlzZUZQthevFlshKBzY3Yis033HLENePTIwDf0yZvAlmdIseNJr7pOAftTAHghNRdk+qcI1ghaYVsSMRmGbEYbf0omeLofoNfPK63v/rDdcfFSx/fsrNgw43bYWn25pUvauxwupcRj83TIoGZwb9XjW+F0NXve813cZhH2cUZ4rsJo4VS3MMzanfYrE2oqcdSkeiVxQXkF92T5XgqunQVYfNND4l4WeNYQpu7J7vPJQkyqGcSk/RINrNzhCbFoodk9QQU1POoJIFugoBFWSibkSggtA3VJRrwVaKkBuCBmUimW04Lisy49l4x3k3T2waoVDWzvHW+V3slRXKVVBpMxnK3/TvLavgOGiUqJh0MaT5qGKUxNV22I8uOXxrxsXXptyfLMdpR2c8B6Un014E1rWM4k9MQ+VzTtwaPYusE38YYD3PONvM6Lyh9YaqddSbjG7jUJVQ4SJAYpCEIoxed9EGrA1Cs+1Ehzk6RubDoB9hn6zFyQRkA//MKmCt6AuDz7WAzqkpl13LTHU8CCgTqBvHdVNS2i6JaHiKTDQOhiQcoiIvOjZ3NJs+Z/qhpji3RGNlwGIKuMiNnnITT3g7HROjjZhNGlhoRRpOHQZe/coH/JfFdwHBHP/2+mW+/faLFB9bqtPIxZem8MaSrz94jy9MLlj1OT/48h3euz7kyXIyUr26v7rVimBNoPWWurcoHVCLFg6hvRGJxcnjyPzdwNm37/EHR7/C79z7M7r8Ef/t/j/y/tExIWoeN7PR06r1hqpzOB24V97wcHrOsV2Pqv7n3QynPBPbjoL4ATMyHqa2YWZFCL4LSbRHA6QGnpfKxdbSlOnmwjxQXmHXwpDQPU9xcW87iAGQEUbFszYZt+66dQzx6tEZHxULTv/knzi9c8L1G3c4+8Up/XOd3Mx92gUGDLNSdJeWa6YjHcwkjVbdyHN3HeStDJfYOuKd8ErbA6jvBEIZRkZAyAIUMvmmdaBbFpQXAbtqt80TpSAE9LoWppFW+OwZxCDiNvGOHOYd9oPgtMPA0XbzCyhMDJiLFf78HDufSoIaBoeUkoEib4Qf3HuZ7Ox6bB/QrSOUFpsbfKbRXRoOajTtgaJvNcuoaHvLRTblspzINJmrR1Gnf1g9YPXBgvJKbWmMZqjShVmhNLdOwABai2LeoAHdzdT2tTlLrCqO/+8l3310zL2HN0zslhMMSR9CS2XqUpN7ODs1wdLr7cTocH+tm4x6k8kpK8F/sfB4raVvAMRMNmZhk0TIhGu+qnN0rUbh9YErrzxkqwDnT8SIcxBG+qyacMOopIjhbI+puoPsStNYS7ARa3oer2b8wp1HVL0bnRkmtoUCLjYTnPH0RtNaT7vwdFeach2xN6DP41Pz8YP77agwpGRqqDmB5pWa11/6kF87fUveL9Xze+/+Ou++fRfVKo5/6RH3Jjd85eBDvjp9m+fMEqcCVXAsDwq6B4YbX3LhZ5x3c373d9e3WRLRKTU9B0VN74Wz2NVWGhlW0c40to6c/EPkG8WX+c+/+Q5fK95hPvkeP3R3+H59j2WfU+kM6DnIahbZhnv5Dfez63EGX16b58itacL2JGF1QKeKKSTLpkGSsvYJTx06RokNgZKGgd1EvFP0k4SBzZEk0e1UaJ7Rov424VSgDhlVyLkJgrv5qNAECtUSlMIQeFBe8eYbGS+9taD/3tvM33mPw7844fw3HnLxesTPAqORpY7ETPQn9UZL0u2kCtMNZDeSwKJR9BMh4vczobOFzG81a4OCNEZLwn4BjIm49yzFeSPC5zaZYw43UtejbyrypkP3nzzd9KkxNOB83PqHpckpFeLIlJBR6x29iAhqVaGsE43ZwaUigEqym9GYJIsIygdU71FdhWosZmWxmSUUFls58mtNN00fM0M3K/FFyVURuZgf8b15h8t7utoSNxZ3aZhcbY10h6pPLK52KGi3vVRUROmQmCryERz0swx7pmTopO1QH11w8FevwEPEiDeJLA1CVQvbMLUNk3RKnJlaaKtuRa57qpCx7nO0CiyyJolbSU9KVPAUvjfEctsUtC4wn21YVTkhFxivay1trXAbeaG63yo1qgD5RUtYrSEGcbrW+iebGTtxawiinekkWMHINQQB9c3a4E1EH3j6oPl4M+ekWFP1GddtydS2TGxLKBR90ExcxyTruLSeTTNDd3IBmU6qF9OK/F9f6pEA7zNFfaJYPwgUL93w1XuPeH3xIXMjXdH32xOWdc7xgyv+490P+a3Tv6ZQHQe64VAHinQzdaamjht8hM4p6mioo+EPbXW760dFCtMxdzVdIXZCbeUEprHCZ9S97IyH/9/wv7/wX/lfX9rwWvaIF9wFheo4tmue9NPRpn1iGuZaZtlDwkw9GodAEw0OH8VbTZ6E/PeUEliS+IsR4c3u/FyCAhP0IJTCbCliJO1CNrxg5NeGEc/bxmD9vR3GCGJwmIYy6ihuHw7P5n4gFjlo2aj7x+ec/PGGgx885OIXSlYvQHsiTdqB+xsmgTBh2zDQUCFVsrA6oky17VqlB1CNTFFFG4m5R9nt9+tlznPvBEztk4i2B2tQeUa0w9x/gPWGrP5kcv2nRmT04dO7U3GfJOmYoKBgFZQFsWtRyxXaaGJmZYjFahFmt4lMjRQrqhf/OtV2UhnXGtU49KYjWk2WW0JmCJmWQZNMbLXE4SWnL4qRmy1Tdum+18NzGv/cFq66ZShSO8kFohGjy2igmxuyaYmuG1kWrXjuG2d881df5PWf+5CjbEOOnA6sCkxtw9zUowXRoKEyfF7oTuA2FahzhzOemWtpg9yzfdA0nR0TujWB0kmPaVXJ8E7sFbF2qEb6CSAnAZHLFQF7U/fCerBWoIcQiD584uu/9eFy0EINlqew4IFWExpNV2UYE1m1GVPbkukeLKz7bHQnmDmp7Ka25bDYsJxVPDpdsL7KMSuD7pSMAGZxi8PYiM4803nNK/MbXp5f8EJxyam9QSPY5/Pukt9++Hcc2xWvZR/x0NVooFAGpxw6HX+76JmogCcSYsTj6WJPfstx5IgIzUxsx9r0oxayzPanyj1V7eVFYP3mIX90+p/4n/f+llezxxSuY6433DhRTNtay6eqNorNvNyIOom8S4jQuB9F2kEE3wc62jCRuK38xl9k5G2m6kt3EbcRrLCbCk48Ho2foeO/qwPhlGwcmRJ5TbFMchgVZHjrtCEmxkxM4tV+tcZ+5x3urh9QPpmzfMmyuZuMXHdJ/5qdFrRgiePXdRQIYwdDBgh5EGPFJLqjlCS/4r2M4rIDpYi5gQaUszJ1tuuL5gO0W/nVnzl2IIithc1Pru1WWSsl6yBKhHFdSSP86hrlA3paEvOMWDjhBPfye8poGNT9dp9zjKgGuahyiw6gW7/ViZg7suseXXvao4zqrqWbKugZdUGeqnDT5TUk52dSiEPWX9mwtZyySfR+kaNXGXSdsFEeXzD/y7t88N8POTipk0vGdk5+K1wlrisTDVXI5XkG8Frw7KOsYmpbMRIOlrp31N5SW0cXNC7hy0YFrpuCEERHQjUa3ShspcbpUDVUwKmY+YlqV2uIn1ECVkGEQoYGzjgNpAYAGnSj8TbSOkvlMq5twVFeSeUbFa03WB3ItMdqj1OB0nTYuefJYsLH1YJlm9N0FqMjs7xh6loK01GYnkO34SRbJXPBWo4SaeT3jl1yR1d8OXvMXCvmOgMyNBqNwqTq18eAUwapy8J4Ufkojq+3iijNMhCaVIwKep1k9ST5Dj5gtgocfF/zree/wPPlNS+fnHOiGzJkTLkK+Q5bQKbnxoSbqtYOEXN/mr8k7JIx+UbBvAa3WTU0EXZoaFudXeHdah8xdSS7kYTsc0aTTvXJ188nRod+ahQZQCcN2qEhN1Qohwdr+vkUmzlCXUslHAP+6hrzvmGmFDBDeUN9qulnaUJu1IgY3rP4dILYaeCpIDhltEFgBxO26+IVsbJMP4ioPojmAwYdIrEzo2QpA+6qFPFZxfsDI8wwPGVgywHe+bruYoL4InbVEW9WKOsIbYe+uYGmgbJAT0rCvEyUp1SKDs7Nw3MemBP4MekrE4Qn7Mxo0Ooua/SyItoj1KndDoSw83x/vNodNvNn4AGDYMAqOZ1EK2vkM/CFxWZOjvLpBHLvb6757n845r284eH84unHSboqQz4IBHLdpeSrKHYuDumfOJrkrhFQY88kN/1oZ3WzKcTdp9aYSmNrhdlsG9XKI2P7w0lRRKbT+pp/kVV1ywQsJOO+YBTgGHfFKDCE7iKx0QTlqIx0KzPtKcya43zNVTsZPctKJUf3o3TsP7IVX5hcUPmMtc/xUVEaGSt2yjPRLXNTc2AEpzUqjpzSqW542a64b8qnku2/FENyBsFUNbdMwErGkYfoeyP6BP3TugHeKayC6Ucth3+f86eHr/HL8+/z9eJ95rqjDZpOJfsiFehG5TC7UxUHacYMis87b8yuRnDjLVXvqHtRlxshiF4xFPi7QueDoLzysovrPuJbEb33GbfH9RAhII9ODshh53XJ97WSm6PqMu7NVqyOD3HTCdQ1SivicDEn3LV85FA+x1aa6r6mmwdCIfijuD/Ep6vhoLbDATpBEjqibMJ8I6NGRmgN+Zlh+lhseKKJyarIorqA8mZMZjGKM8KnNVY+LdSI2+4U7rsjyQmKEIw4Em3iq68bfN2gnBXpzbaDpkFVFaoq0f0BcT55ulIfknAQdoRsIkroajESrUEZQ3SGfiLXm768IVY1upmnhmBqgA5Tkzol4+FENdAVn2k12DroKHmPgpP17XNhXMXCoZpMBhqmE9R3fsDpN3+Rd+Z3ePDFK/KBRrizIwzXmyaQqZ4wUGa15Isjt2blC3yv2Xjpp/RB0/TbdBii0GmrVQ5ri11pbKVG0SqxoY8p70kSHiyjjFJCP7ODYMlnNQnnA7YOmNbg8+2xY1SGJ3XQG4XqDT7kLHcW+oXpFa/OHvNudUwf5MVb7cn1IB6jRoHsUrdYHdh4cfgNSok4ebS4kCetz9Tc0w0v2wsemMmtXk4XJRs5tU1et72QMt3zXH7N43Yh1ilBjUpNg0hJMKCsop0Zyjpw72+u+VF5wO+f/hJff/g+x1qzjp46udTKL7fU0bEOOTWOEBE/taTxMMSgooYmMSIE/71uS27qnK61Ul30GnrB2MZGj99WXVFDN5HmarYSoR9bK7pS0S6eIQP/lBhw66GqD1FThYz75ZI3Twzz+QyeXILSKAMxSMLTnZiGurVl3gSKS83qgaG+E+kOQ6qEd3BuhWw6SdRm+J4aPh+quCBjuWZpKB+J2I6OgJaKCUA7TRxoID4p58WYJDRvGUOhMqqgxYQDb92oZSIzPX7aJINThNKhi5yYBoqEW5/w3rrBP3qMusrR04lYoQ/c0138cUjC6etKKWLmwGpME8jeekSs09laqx1p0ChThcOSDkuYvj/mGH/7TDxgwEoLxOhzGRCKRmQm3TRHNWnSLwRUkXPnG+/THrzI/zt9jjfufDjmji5YauVkgMv4UfzKKc+NL6iTAFTVi053m1hEfdAUpqPSGc7I3ELVZZxfz2DpyJ6I1b1uGeG6Qf8Btlh+NGIDpYxBLWZEZ1F1+6lNOBVvIUCjlDoD3r3dEv+bi5dijHd+1h/+d7ImcIt12a/JT49/J+uyX5OfHj91XW6VgPexj33sYx+fXTwbkLWPfexjH/v4V8c+Ae9jH/vYx+cU+wS8j33sYx+fU+wT8D72sY99fE6xT8D72Mc+9vE5xT4B72Mf+9jH5xT7BLyPfexjH59T7BPwPvaxj318TrFPwPvYxz728TnFPwN5RcHMeOzeQAAAAABJRU5ErkJggg==\n"},"metadata":{}}]},{"cell_type":"code","execution_count":29,"metadata":{},"outputs":[{"output_type":"stream","name":"stderr","text":["<ipython-input-25-ac46f3f204c7>:50: DeprecationWarning: elementwise comparison failed; this will raise an error in the future.\n  if faces != []:\n"]},{"output_type":"display_data","data":{"text/plain":"<Figure size 432x288 with 3 Axes>","image/svg+xml":"<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"158.265158pt\" version=\"1.1\" viewBox=\"0 0 375.2875 158.265158\" width=\"375.2875pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <metadata>\n  <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n   <cc:Work>\n    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n    <dc:date>2021-04-02T20:07:40.816205</dc:date>\n    <dc:format>image/svg+xml</dc:format>\n    <dc:creator>\n     <cc:Agent>\n      <dc:title>Matplotlib v3.3.4, https://matplotlib.org/</dc:title>\n     </cc:Agent>\n    </dc:creator>\n   </cc:Work>\n  </rdf:RDF>\n </metadata>\n <defs>\n  <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\n </defs>\n <g id=\"figure_1\">\n  <g id=\"patch_1\">\n   <path d=\"M 0 158.265158 \nL 375.2875 158.265158 \nL 375.2875 -0 \nL 0 -0 \nz\n\" style=\"fill:none;\"/>\n  </g>\n  <g id=\"axes_1\">\n   <g id=\"patch_2\">\n    <path d=\"M 33.2875 134.387033 \nL 131.758088 134.387033 \nL 131.758088 22.318125 \nL 33.2875 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p4c7a23dddc)\">\n    <image height=\"113\" id=\"imagee64058ad25\" transform=\"scale(1 -1)translate(0 -113)\" width=\"99\" x=\"33.2875\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAAGMAAABxCAYAAADBJR0FAAA5EUlEQVR4nO29aZOk13Xn97vbs+RaS3dX791oNgg0SHS3ABAgAQ4BLqJIiaBGQ4ZGipAUIYUVdtjhd7Y/gz+AP4DfesYejbXMDMOeCEmkKIockiIBkgAB9L7WXrk+y1384snMysrOqu7GwlE4dCKylny2+5xz77nn/M+554qVo6eCEAIhBPuR9x7nHFJKxufOXhNC2Pf66ePja/I8R0qJ1hql1MzJDhEg2DoBjzfbZKJP7tt8+av/HS994cu88vQRNn7wZ/j7b1FrNnHJIrmMufT88/SLHX741/8PO13L929rTn3uj/D14wy3NzFCkrQ0pu6xJXTu9fmbP/+3vPPj/5NE3qemDh/IC2st1lqklEgpJ+80jyfOOcqynLy7UoqiKPDeA0ze3TlHURToAzn4IZOUkrIsJw0bC3dWUADBBwKWgKe0ARHXaLWP8olLl2BwhZ/8/Xfw937JUmIoXEo9OsQLz79IPZHceu8dMq/p+zr1hSMIkdLvbmNMQaPeRkUK64a4vAQ7pL91Dy0g0vGB7Q8hEELAez9p936CGx/TWuOcm3wnpZy871igIYSKHx+Yw49IUkq894QQql6gNVrrPcKYvAgCjydQ4LB4IpBtXvj0axw5cZzO7bdZvfYm1pX0idDLJ7j8yqssLLZYvXeNne4mydIJrm1Ijp59DlsqZLAkccAkIDUIJ9BAf3uVbuc+sVZEMmb/MTFq26itD9MEwEQY407nvUdKOdEEY2GMv3ukkSGEmNxg3BMetTHTvd57T1EUe4b47D1DCAhASIGnxDmQUZOkfpTnX/w8TimUlYShIKiIhSMnef6zLxM3DWt336HTu4FWKTfWOzRPP0tuFgghsNBMMLHAi5LgA1pqvM/Zun+NbOcONemRweAQexg+O2qnv3uU94dKC4QQJlpBSokxZsKfsbp+YGTM031CiAkD5x1/GI0bUpYlQgiSJNnzkrP38iHgvcOTE5TDes1zL/06zaWT5AQ2OhZPg2PHzvKFV19FiIIbt35BL19FRY4yj/jF9W2KxhFsElNrRNQihZYJ1ls8HuEVsVDcv/lLhO+igoNSQ9ht8+xnP/4cJIgx86fvOT4++/9jq6nHEcZYLYUQJhNfvV7fMyrmUQgB5xxBOKQWLCwe4cWXvkiQdQZlwb1ej/MXn+VLX/kCeX+NtVvvIl3JwtIKK8ef5Lvf+RmytoJoL6NaMXEaiBTgYjyBgEMEQX9nh9tX38LIApwFL+cKYN67P05n3O8dZz97uCIQEMLuZ4YedzRMP9RaS5Ikk7ljv3PHLUGAkAFtFC+8+BkWl44S0Kyur3P+4lO8/KWXuXXrl1x7701kmXGofYilhVP87bff5Ma1DT729CVErUYpS6zvE5wFb1DK4INHIrl57Ro725so4QjWEumYwHxBTPPgcQRy0L1mhaElohLC6OcD14m9Fz+qQMZWgrUW7z1aa4wxE0vkoEYLEbBe4VmhfehJzn3qVfLYUw6HhI7lxOElbv74H9i6/TZu4TTnTn+chTjh/ptvcP0XV4hXTqKMRhYDNAakQKqA9n18FhGCY6d3j9t332GYlWiTEieBki7BP9C0PTRtBT4KTVtgzjmiKJrwYFf1S5wHPb7p4w66R/ErxsJzzlGr1SbH5hkBe0aSDyhhcE7x5FOXQKUMcsvde+sIkfAPP/o598I1njqW8LELxzm6cogrv/gHrr/1c3YGQ9L2OSyagELpGO9hq9Oj3ysYiIg4Vqiiz9V3fl75NEiCcFhnISgY9fp57/h+VNS0MKbvMf5IKQjIj860HVsJZVkSx/EDDuL0Z3puqf4PgKa1cISVo6eJ0zZbOxmdvsWkCwzkEnd3AqdOPcGRVo0f/91/5s2f/hdyPAOhUc0lCiJU1CQrBJtbfe5v7JB7gdISgaO7vcHG/TvECrSsnml94NHspMcn5xzW2glfZo0hrcTjO30HjYjpY0qpPV72rPUw715jwfggkKbGqbMf5+z5C6SNRe7fXkNHdeK4ycDFfGzlCYaDnP/wF/8ejGYxspQuYvn0ObLmcayu0xlY1u7dxdgeK0uLNNqLlN4S8h1uvvdLbNYllR4Zqs7ggkCJB0fso6ileZP9NHnvCVPqafZcAbsjY5ZRQgjkYw7HsS8xNmVDCBN7et650y85fmnvPUEodNrmU//iC0S1NsoktNttbFlw7eq79Hc26fe2+Xf/7s9498p11rb7FDKhvnycxWNnKGXE6maHq+/dwJWB7na38pOkRArwRc7d6++i7BCDBV8SAgil51pTj+pX7Dfax3+LsT8x5XmPHUGCf4iaEo9uyo6ZaYyZCGP84HkvM09VjRsmTMynvvhVjp77OKbZIrcFjVrE1tpN3vgv32bt6o/52ff/My99+nmeuHCJ777xHv1Q5+S5T/LOe7e4cu0G29s7LLUX6W5ukWqDJoAvcUVGPuiwef8OyuUoXyCDI4iA50HT9nE97ll+7eejjPk1dghrafrhYVNCiAmA5pzDGDMRzKwpO/1y0411zqGU4vjZJ7j82c+Tq4gA+FCiQokhI+/eo7z/BnFjh3t3b/LqH34TefIi2zffJU4P0WodopO3iJeO8N71++S9HocOryB9SbAFRT7g7u1b9DfXiFRABgsICBD2mbTHneQga3L2+4c5jCGECVAYQuDUieOPMIEHpnwPHvxMPVwIwWAwQClFFEVzJ+3xPQUCvMZ7jRcBJwuCDgRV48XPfBldaxFURBBq5BB5Ljx5hk9dvsCJRcVC07CxscmVX/ycz734EseOn+Hf/8f/l/byYRq1Nlv311i/e5tzZ04RBAipCN7iipz7d24yzDoYIwFJCJrK5QrwGEj0fkKZZvj4PhN1RGW5aiURBIQIxJHmt//l1w8WxtgDGTNesPuZR977CYY18aL36U0iCAgR+ITSewrZZ6gsp595mTMffw2CIXiDswKBxkjJUrPB5Wee4pu//RWWjp7k8OFTqNWbNNev8NXPvUy/KPnxG2+wdneTu1evUFeeKNbsFJYCQ5mXlP0Bm6u38X6AxRJEggspwUsIJXJKxUz/3k9VHxRSGH/nvcdZh5YavB85cx4pQQrPs88+zcXLn/zw1NTYwUvTFOfcJP4x91wCXjgEBcoL4iBApIhkiRde+zKuXif4gBe+Ok9AYUsaaQ3VWuTSM5+jpiyu10UrwXtvv8lJqXn9i5/jf/3f/nc6ItDLS85feJbSDgjOIqWgzBydrQ027t4mShK8z/AVRyvGfljMmEtjYYmRSvdEkeHMmdP8wR/8IY16/cP1M8bW0MOwJwR44QhkSJ+hyoAo61y49CrLT1wgi2OcH1kh3mHLnBACuQ0EndC3ii+//jscWjmKVIHO9ip/862/oNxe46Vnn+Le/Xep1wXtdoyzQ7QWiBAILnD/1nV6W2tIEfABPIIAlcr4yLyMSt5jB6/yKxRxnPAnf/InnDhxHPwIm9oPGHscnSmE2DNhj4foWFWN71cxOFAWJcEXQIHUEa2F0zz34lcY+IhuWVZMCh6cRQlRMU4aVK3NwClMfYEXX/ksrYUm3mZce/dt/u9/839wqN3k0HKL8+fPoITHuwK8o8gzep0dNu/fxpdDtBgFepD4MMLkvHuAD7Pm9zxfad73D6qsyqxlBNFHUUSr1eLkyZOVU4xAztOF8/5/VMh47PZbaymKYvLdrN0diRiQlMqRa8NzL3+Z9tJZhNdEUpIXFeTubAneoY3BSU0pIkoMd9a2aCwvc/7C06xvbZEVlmvXbvO97/6QT1x4lmNHjmFLi7fVyHJFTr/XYf3uTYx0SDwgRiNjNNkGV3WAA977/UzqAFJWMaFp51drTRRFgECJKWF8UFg4hCqCZ62l1+vR6XQm8Yvx8UnvCWBcjC09hRHUjh7m9MXn8aKGsYHQ65EXBdaWEBxSgJASGyRDJ+nljtwHbt69S/vQYc4+9RQ7Q4vTDda3S44eOUtwETJE4CUSQRwbdrY32F67Q81IhHc47/CTmeKjVlNi5FeMoBApOX36FHEcE0LVCj0+ccwwMQMHzM5qYern+IQxk/M8x3tPHMcTPGp6DhmPDgKIUmHilDIqufCZl8hUhMgtUeHQMsdGEVppIqNGcIrE+YALgcI71tY75LKP625w4dlf4/nbGX/3w+s8++KXkekS3UGGFCUSCyKwvbXBretXUbYgisFPoPwKpBMzb/U4CPUe/uwzcnYRB4mUVTLC5cuXq+9GbJ6EtkLweB9Qajz5jkGzqQaNWhzY1f/GGIbDId57arXaxOtGeEKwCFehsHiB8BIZKjvZ6AEDn9I+8hIrZ7+EUnVEGIJSeJXiVQISlADlK7USgiAvLKtuATLLducd3ty6TbzyJM1f+xIXD+9QT1us28BAwUBA31laWrF59yZr136BNhbrSwgBGQRCFAQ5GrmYPe+7H2q7nxCmnbvp67331NIUpSRlWRBFhmazzqVLF1GqYqoPAp0kyUSdaC1GvSWwr2qc6kJKqclk3Wg09qq6AITKsQnjCXLksAgR8AqErvH05VdI60dQSqAIoARCS2JpkULikBRBIx1VKNZ6RF4yyHsUWwN2th1o0Nojaiv0nSNI8FIQpCAvcnaynDtX36G7fo+6GTUuiJFF6xGiCvXyMHToMVT5tI+xK6hK8ygtef311zl+/BhlmZOmCc5bdL/fxxgzccsfmLAe8lDnHEII0jQlz/OpCxUi6NGE6AjCE/CE0e1zGbN44jSnzn8cbxRSjzxSpdFKoFSBExE5BolG2hKVD4ltRi2/TzLcRJQambdIOAxigUIneO0QeQ8RKnNWBMfd29e5ff09fDlAmL3Brfc7Ic+jaSdxrJqttZVgpMA5i1SCV155md/8za8QgiOKDaUtkQj02toaSZJQr9fnxh2mf88eGwdLvPdkWbZXkEGCNxAKELZSgyIQhIAgsKbGZ155DdVoEZRCaIkUHiE1QSmckpTB4ILCeIcudkj792n7Hk2xShwVFLGiIxS33n2PpXgJceQYVknIRrBDCAhnKYc9bN4l1g4t9yYEfBQCmf6McbnIGIxRNJsNvv71r6G1RBtFWRYVtI5GhxAYDAaTaFwcxxMTTIQKq5n2HebZ2eN4xRhMq46PwLcQ8PjKmw6CgCagOXz8PMeeuEBpalgfkITKwXMFhYuwUiJxxKEgyrcw29dpZndZSUqSaAcvJJiYpbZg7c5dtm//mNaCYkBCLRiEB3zlZ/iyjxvuoEKGLT3a6Emvne1ks0x9HCFM03Ti2ohTCBG4fPki586dRWmJc7b6XoJCVmHXMROHwyHD4ZBms0kURUilJmpqNgw5rdLmNzwADoQjBIcnIE1CYQ0manHx06+h0wWsikmExJcDvCtxaJyQSBFIwxDVvUO5/h6LqstyalHFEGcH5MLQLw0Iz6lDJVe2fkG5eYjakaexWWWMGKXAleS9HcrBFm3jCPJgJn8Q8372+vHI0LpS1855vvjFz6P0rpEkJKP5VKCVUpP5Yuwtb21t0Wg0qDcakwD8dAx3XgMecBTxIByEEoTFWkcUtVC6ydHj5zl24kmyQhCEIE4itB1WdnYQqGCJh2tk998lzW5xrG5JVUFRegYIIisZes8g5CgyVLnN8UabK1ff5XDtHLaIcNajlcLbgu21ewhfEmtPGWSlKnmwg30YwpimMd/SNEVIweEjy5w5exqlqlEhRkBxZUGAHkedxrP+eJT0+30AWgsLk4hf8B4/GhFBCLwPYzd+ZJ0IqKC3ym4aQb5ihPiGAM4HLj7/IkrG1UiRksIWOFvibYF3FtffQa39I/Vig6P1krrPKbKSTCUMZUy9iMjKkmEoSVSGKHOC6xOG2+Trq4jGydHI9SibUWzeJ9USK6BKP9hL0wjrPMHMQuLzqAqdihFzdyOlAlBK4p3l1c99jsWFRbzzI0R8LyKmpx9SDacwefBgMMB7T7vdxmiNKyv7fByzdU4ghUQJXXm6SlVZ4yFQAoUAHTwyQKoNTgiOnjvJ0seOE5sUD1hpyYQjSjXRoEu0dZe4e4OjyXuohiYvSrZs5YGX2ZDhYIPNoSMfDCizLjJ4TFyjlIFUe4r3/prjz/03dFVO7oaE7Vu0B+sQSdZEjZqRRGWJc25PB5yGKqYZPA16Ts+de4QgdoMLYxZXE6ZDa4FWgZMnTvH133wd4UCI3YTvyr+pOrUWBwzZEAK9Xo+yLGm1WkyrtEqcnumAx24CmEcEMITKokEShMF6w6UXPktUW2IQxYSgMF7RDpJouAFbb1MrbtJqZBQ96GcDlNZkw4xur0+32yUvCppJjVoUUWsukUSG0np6uWcnG3Dj3Tdon3yLuN1g6EtWtzuUypBEkEiL8HIC8T8KwnyQGbxXKCM2jPu5gNKWKCXQWvGNb3yDlZWVPek6kwjo6JID4xnjzI48z1nfWKfZaE7CqUorSluMBCJBBEJwI5F4JAEZqkCKCxobYpaPfYzjp5/BUqNrPU3taeYd6p1Vos4V2noVLe8zHHTJispv6XTWyPOCei3l5Ilj1Oo16lLSSCIaaYrWEoRkuztgp5/Rite5+bNvsXz506SmzvrWBplWGFViXE4IEc6FfYUx2+sPEtIDmN6UsJQUeF+pqOPHj/Hipz5FWZaTBI2xfzZNetZCmiXn3ER99Xo9lFIYY0Yp/dEI+Brj9bsjLDiLwlN68DIi6BrPvfQqOm6RBUOzFBymj9n6OfXOe6wkGbbo0s1yhtYwGA7odTsoJTl94iitRp00iUnThKU0oZkmGKMnUbRapEiVo3FmidpGwfVrPyY6/hTZYJtSOUossshxQuK9mIskz0vJOXg07IU9gnejhLSAkAqlBEmS8tWv/gaLi20iHU06wWw0MYQwMmDmYPHzQo/jRmdZBuymtsdxPPE1jDFIKZBa4J3HCUnQmsbiEmc/dh4PqOA5haC89Rb1/Bccju8Tii55mdLJG6xu9XHFOitHDrO82Gax1SCJNGlsiCNDM0qqvF29myqZ9TtIOySVJUiB2My4efvniM5tlBgQACNjvBeTts8yfRaBOAibmh4VY74oPf7bYkyMEJ7Pvfov+PJv/DpKq4la2s+ved9h1xAC1pVYWzIcDoCAVIo0TWnUG0SxwgJBKrySHD66QhRrMpvRqsfoe1eQvTscamo0mn4RGFrHxvYGUmpOn1zhyKFDLDRrJEaSGEktjkgiTRTX0FGNIDWFteA8UgjqsaFmakjtaCcNDm971j5xir/72U9AJtjCYH0AuTtpj0fDdIbfPObPfieEmKw1qbSEQskKezp16iyXLj3LE+fO8sorL9No1KuY/z40fsYHioGPAzFVLxNYW9LvO7x3pCEBLSh85fAtrxymKAZEpk7Z32Tj/k95YqmBFC2ygSfLJRubt2k3JMdPHKNpUhaadWItaKYRRnhqsSCJBKUA6wPWOYaFJdgSJRVxFBGcpZEYzDDjXC3it1/+JDLO+e4b1ylJ8T5DSLfHGHkcYUyPjFqtRpqmrKyscPLkSZ48f4ZnnnmGEyeO0Wo3CaFKOhgbNAcBkUII9CR5RIxjwbvkJzD6vKtBCk3wHmc9ASqU1XoG/SGEkjRJMbrN0DrqK4tkImEJw/2r3+O5dEjNFVgB68MNtjr3aS8knD62TLuekJqIRq0ypyMJRhqU0AgM1hf0BgPW1jsMBgV5NqRZj2g1DEoBuoFKu4iyx+HI8RsvPEU5sPzgzbs4pdFxSpXBJ0ZekcCHqkNJP1o8KQRC7sY5QghI4YmNBgFHjhzma1/7LZ555gJnzpzGRBFaRkCoHLogkFJPJmvnPFLs76eEMFoSsF9aRGXB7nODMNaz1cuMnTohJN4HskGO9gpTk6jEoyOF0RH9jU1E5zbLx2sIStaHO+wM7hE3FIcOL1KPazRMQmQ8RoI2ColESI0Lkiz39LI+t+7eZ9ArsSWYKKK70yEfQpxENFrLJM0G3vagyDkkEl598TL31npcWR9gnUOP4jZqFAcPsvIzjNg7Z+5Z8OMLhC8ZDAd86Quv8tWvfIk0TdBa4pyf+GBSV7kA1SLRMGr/gwtJZ+ekj2y1q/PQy3KaUQmlJ6ZEF102b7/LshqidI0sK1m9f59aM2FhocnywgJRgCSJMKqCM2yo5iITxQQPw2FG1itoRQ1qTWjU25S2pCwznM+x1uFcIG7WGPYySjsgjescWdK8/PxFbv6nbxNFBus9pXVIVfV0fBXT6Ax7kwk5jCJpY2EYBQRLu93iM5/5DPV6nRD8KB4kD0z1mVWB84yDucKYd+LjwszSiBHzBphIU+5skCwN2L79DuefcLhQsLG9QaNRo9as0aylGCFIjMZ7R5RGSCmxViCkRpmY0jqGpUN4TSw1ULKzsYn3gbzIyPMhuStpBMnywnHitMGwKPFBUjOKj58+xuWnz/GDN98mSI1HUVoHQlZm+Yhp44QKYM8adakktvC02i3Onj0zStqTSKmrkfEYNM8w2HdkhBDmqq+Dwo7T51RrLAK2LGGQ011fRZ8uWLtzA/3EITr9HVAQKU09jqibKjk50gpJwGiFdR7rPHlpiZBk1rG21aW/1mFncwvnLFFkOHJkBZOkZIVlMBjSubuKFJ56qsiygqSeUDOSw42YZ8+f4q2332ZnOMSJGK8MIniEqBY8hyAmE/psCo61liRNefqpp1leXh4JqlJNSqkHVj3t57NMY2HTfNP7XVD9w77zycOE5EeTiAgeX1hW79yj/EQOQpBZy+pWj0NLy9TSuDJXhSCSEiWokhCUIs9LrHP0djpcu3Wf2/fW6PeHtGtLrJw+S3uhgdaCTqeDMQmHF5apDzM2O2vcvH2PViNmYaFBmeXEJsWJktOH25w9doi3btzHjpLYAGTwSDxC6AcYNZk/nEdJyfPPP4+UihBgPzTlIEHsRx/ZnLHbFoe3Jbdu3sYFha616DvBqaUF0kaNWErqSYzBE0mJURKtFQRXjSohKMqCja1thDKcPHsMoxtYCav9LkI48iLHDYbEps6gn6GQtNpLNOoRcWLAWlRwyDKjFUuePn+Wt67exQdPUGPgcyyM6eVdezktlWJpaYkXXnihMleFeuC9PwgdLIwpeONxScBIIg4fPOv313j77V+yuLyMNENqaYJRithoYq1QQaClQgqJCJDnVQ6WiVLarQRHROFARylliAgioISitEOcK+kNMpyMGZQ5TelJahFpkpBEBqktPs8JZU4kI04fP0KzUafIA5kXU1kvYTe5exp58GFkykvOnj1Lu91GG1NZj4+ZoXsQPx8QxvQC8iqFYC89DMuaHHMaGUCEAQqJLRzf+9u/4CsvP8shldJ0jhaeVEmEdRipMcFQdEucAqcqFVWLoNFIiXRlgpbO0ulZfDCUBbhC4DuW/uomLh2g8KSJZCU9TCIlsVDVCNAG3agz7GQspSnHlxp0725TCLBCUIpR3MW5Cs5GVCGBELChylRRSnH27FmazVblY43C0tULT34cKIiDBPIQNTWVl/OQh8wXzDg9pxLp+vp9fvjDgpd//6vEkR3Z5xajFCE4rK2yCAXVWgpcoBwWRNrSrDUq81FKlCh5971rFEXBcJixvb3DieMnMFFENuhy8+YvSZOI1vHjKCmRWqOkxijJkkwY7mQcWznKW7c3gTE4OP7sjuoxspokyWgde8TLL788AyiKqXc9mEd7ODMnyeOBCfzDo908KUa5Qt47lKrggVq9hi8KdFT1B210tchQSpIoRkpT5TIJiR0WKBT1RpNhlrN57yaJKNAarCt58vRpnvzYUyRJHe9LbizE5PmQEEIFk6QJUgTKXNIMlnYpOHX0MEYEZKiy0Ucs2/MG050sjmOefvopLl68uOf4h0l7hPGhp66IsUAgBFcltHmH1lXOqYoNtiyJkoQoNgTnUVKQpAmJMaMlZBAQlM5TDAtc6fDlkE9eOE82LLFloFZb4Mjh40gVMeh1OH3mNBvrawDU6zWMVjhX4kqJxtNKI1aWF0jjhEFe5dsGIZhFK8YT+Thz8rOf/ewoN/ZBhHcePS4fH1BTH2YOEZMZJ4yyIyylLdCmwvqVlIQgkUqgpMD5gNIKIUAqjVQKpTRCamwIDLOCEBzNWg2XZxihSGsJtVqMChZf+tHK1Sp9KE0ShJRVnopzgMBIqBvFseUlmmnMZtavVsBOIVXTNFZJrVaLz77yygNLBPbLkJn2T2Z9sPF9Z0MXB84ZH2wQ7o6K6mYBpQRSMpobQGuF1lVwSilB8AIpKqvGUQlExTFCGQgQK4OKY6Q8yrDfAyHQzhMlCVnZxblAb1iFia21yFH66W46qsQIcCKw3Gpy9uRxrq+/BeOlb9NzxoiKoiBJEi5dusSxY8c+EEceRgeXOPowdOLU3CiVRMoKai/LAiHAGDX5DhEwkSZO40oIRlfZ4kIQpEQag0oSoqSGiWvVokgpKGyODRlB5aDKydIENcp68b4aFUopaklEGmnSSPNrFz9JGseEMRjo92oFIariXc1mk9dee404ST44Pw6gPXPGgzN+lVIynTEyndWwH/pY3UuBVCgBuJLYO5qxpo0YmZsCpEKMPi4I4ijCmJgoSSrXVoALYbROG4KwECzSSGqtOqaIkHJk8QmI44h+r48rIFYpzkKQHmEkQQVK76u0SimoicDJo0tESYQdxfK18HgnK6RVjtdqC5577hIvvvQ8QlSQxPuduB923YHW1Ljk0fTC+v1g4AcEiQChKW1Oyxg+cfo4X3jpEst1RV2ZKqVFmipWrDVKKKIoRioFQuPH5qYDgkDKgMYThCcvM5wPVXRNKXxpqRLYFbaw2NwjRAXqmUiQ5QXDfIAwgtRoIiOpSYFRDhcCQhvwJTLY6v9x5E1LkjTmt772FRqNhBAcUr5/r/uhwnjI5fuGHeEhwXopCC7HhJJnnjjPn/7r3+H4Yg0VMvrdzSqAMwp7SqmITFTF0amS35xQeCvwthoZWgiUrFSaUR4ldpOuq3ojHhc81lUePyEgtcL7gHMB6RQ4T2YtoiaxzpMmUZXxLsNoXd90YgVA4NKlZ3nmmadH6KwaAaAfLk3y1g46qYKV9xfG9I1mv5cCpBK0jOH1V1/h4tkTSNtne2sbXIEUtQr/EZWZG0UGrTTeVek+TlpsCLjSI73AAcKVhFBWEcgREFmpL4ENHus9hXf0sz61Wo2dfp9sOCRYh/QBV5SUkad9qImQkjSOWGym3OlsVSFSPJUTCEIG0lrC7/zOv6TRqOODw7uA/JDxqGk+6nEceDplZaKSRlydPT59zuwNx+R8QMlAIzI8dfIoDSxKQw9XRe+UrHJhfZhEBy0OCThX4FVVXNE6iy8CvrQEVyLxOBvoDQakaYoyhka7hZASlEQoQVFk6NiwvtFBSkVsEigtWMOAnGJzhyQ2iHSBpXYTcXMNpTQEgTES6yxCKF5//WtcvnwJbVQ1XxwwKGbN1Gmap11m4flJdsi0EPaooCkbevzdrD09PaFPn+uDJyBYObTMUr1e5SzZAaurqyyeOIYPVQAnNtEocC8piwIpqhVMZdElG1o62xnDQVn5G0CW9VElLC8u4axlmGXoJKbRbqEiAwKMFpjEYPOMtNmk0yswKsYIxY07d8iLTQ4vNojaOQuNFC08pSuJlEBI0EJy+fJFfu/3frdCfcdd84AY9qMK4aBz9byMujFjK3Wwl9nzHJm5vULIKrf26DESbRh2trl+412ah5fwypBGCeNECK31JInMaI0QnnLL0utkhGBIoia5tZgkxntD2V1jOBjQaLXY2N6mubSIMpoAJLUUGQJ3795FLy3x9q2b/OSnb1M3DV745HO88e4VmqljqVWjyDPqSYRWkqL0qFHu1+XLz/E//y//EytHj+B9taShCjp9NCpqIow4jvB+d2RMB+ArAHy8AnY3QD/OWt81d6vje+YPqQkEkjihzAv6nR69To/myZP0S8/qvds8ceYUhGqBvjCgpKLb6zHo9rHdnO3tDBlrSizv3rjJmfPnOP/URa6s/zWr91e5duMGzaWFUWlWGOYZWmvqtZS3b91k7c4d3rm7ylYnI+9tEETM4pEVTiwnxKmmOxxgbUGkNU5CksS88sor/Mmf/DEnThwf5VVRrS4arQE8yGiB/efQ2WPzSEOo8lUZO0i7GXKjE6qlAN7jRAWrO+8geFBqxmfdO4oiK1gSESYrybOc3Av62zlXb9zjR9d+xje/eYzIRMTKEbyjV8DdrS6b99dwa+u8ee0m8ZHjbOaO2/dW+fnqbT6dD9m8tU7W3WFhocWxJ44SQkQxKCuLqggkh45yDgU3bxGcJD8Ey4ePcHjlGL0yI+9v8rOb17mzusV2qCNizakjS/ze7/4OX/j8V2i12lUav3cjx29c+SFA8A+o6lk6SCD7CcV7j/71L3+Rzc0t1tfX6PV6ZFk2gROsrSoGCK0qFHW0YGacL2qDh6mI2HixTQgBKwUOS5CO4aCHFoK+LVi/c4O/+8c36JV97qxucKhdp7Ql4CnKQBQZlg4tkwXL4aJgNctZ29jGO4crC375i59Tx3Lk+DFOnz5JrdWsPHSlMNrgCHgUR+QKvWHG5vYOt+7e4erVK8RpDVNPSQ0UO1sYmbDYWmChtcP/+N//D7z0wkWCTCb1PXaZNh2z+GA0b2RNTNs//dM/pSxLBoMB/X6PjY0NNjY2WVtbZXt7h52dHVZXV1lbWyPPq4IqzlXVBXQI+FCBgJUQppZHGYU0geXFJj4bkNQUwzLnRj7k3cEOMi947+ZdPn7uNCJUAN8wL+n1CwaDIdYXLKws0zR1zj9TJ1hwg4zuxiZQkFMysBkttYBKY1SSILXECEGkE6IkYWU4xHqHkIJOf8Chw0eQRlPToMpj1BaO8PbqgL/5h59y7+Zt8gsfJ2qmc5MFfhWkK6BOY0yDVqvOsWNHdydw77HWTkZKr9el0+myvb1Fp9OlOxzQ7/fpdDoMBgOKomAwGNDr9+gOevh+h+U0odzuEKXLfPzJC7z39tvc6wyoobhya43NbkbbWGpG4Kyjs7PF3furdPvbeBGRO4X3CjssKXp9fJ7RPNTi3PmPcfjYCkeOHyWKIvQINxLWY/CYyPCxs2c4eeo4v3b5EnlZYJ2jsA7tCmSRsdVz3OtCMRjyZ//2/+KFS5/keHNx0mMfUDFTsbZpaOgg2g+hmCuMEKp6ThUWM/1URhXVNFC96NLSwh7I2Ku9zt+0GrNlie52Mb98l1vf+XZVCeDwEvfubFMMPEWAt67d5hdXbnLp3FHqcUQUe86dPcORYysMyiE7230GA4eSEe16i0gKYi2JFxosHz7M4uLSqC1ylIJfwSph0K8CWSKQGk0t1pRWUdqSLCsxSNCQlwULrRaNeo2bN+/wV3/5V/zBf3tqsgT7AYgcOUF2Z8356fPmHX8U0lKNhDDPjBaz3nb1ZfVwKkdrdFiIcYmjqiEKWFg6TJFb3vr+97i/ep+NzU3e+PlVEtEk04Ib97f47vd/xBMrn2epkdCo1zFxQlstoJMI7wR4g6DKbldKYAwIXUUBBRKEGhUlVoggmZRDHKUJBe/w1iG8RXuHlr4qHlnhmAyzAaVz5Lbk73/wA77xR39UVQq1drI2ZZfBBzPzfSdvjLGwavINIyY+cNoD0Ef170inSrEH/K+g6tHfQZAFgVhqE04c4c2f/pgf/PIqXSvxLsUpT+4GrG52ePvdqywkkkMLLYTIEVrhJKRRHT0Kwca1BOtznHAYoRBuXNob4jhFjBbA2Nzis+HIyChHEcYqyihFQMtRUMuJqiqDVuS2REWatc1Ntre2OXJk5YFtJX4VpHcR2TGjd0nMJkVPGRcCMVrNOh6eIEa4DqNjIdL0Y8OqUvz41h3u9Pp4neBchreByBhu3d/gzXducnhxkSSuczipYyKDVwIdmZEKgtIXWGwFVRSuCiJ6sGW1PqNUBc4HyjxDl11K67F2bJoqpB6b3Q6pDIXQYGTlmygBpWOYZWysrcOTHx9FIUfqRsy890zIdb9lAweFZucmJEhhxksj5954Rjp7/w179aUUuz3JBkuOZaAV3/nJz7lxb6sSrypwukQHjS8d3RB48+oqw/wf2d4e8PLlpzm03CZKalgCthygjEE4MWlAKEqG3T7dfp8gZbWcOIrIS4srM0J/nW53SKt1iIXFQ4jI4AmUvkC6Eis1wxBRiMqrrkeKrBQU1rJ69x5GSIQPeyChIB5837ksmjNnPCrpebHYhz1o9ru530uJ0RLvHFtbW5O4dFAC5T2h9CglKPOSrU6H6z6nFQlOrCwTJRHtRBNpQxLF6FFYNC8LBIK8dPSLkis3b/POe1dY3dpCmYhGu4VWiqK3TTYsEEFxaHmZy5cucuzYMsYIChvo9Ids9izf/+k7vHXjXlXlzXmEFKxvbFS72nhf1Wr7MKKdj0gPCOMgocxj/PR309eq0arL7e2dSQklpdREGGVREEXVHkc2CDIHndxy9e4azYUWtVaNorBI4RBRVKEApaUsSrr9nOs3bvPWe9e5eXeV0nl62Q6dd68SRQkLCwtEJibvD7l57x06vT6ff/UlTh4/jI5TSgG37l3l+z/6R67cWaeXF1ToAWysbyBFlSyHqBbM/KpoTyW22b/n0X7H59nkQgh6vR79fp8kSRBC4ESVcDCqtEKcpmilyXzJna0u3/vJL3jv2jVe/cwlnnnmmVExgB6utPjSUuQ5t9a3+NFPfkqn28OOalLVFo9Q6JT7a+vc7W2iESw1mkTC8NaVm6wcO8yhI8s4oVjb7nH9zn02t3tkhSUvLCaOEcFhomopgi99FXXch/YzXR+Hf7Ngq5530uPQPBsbqKJLIWAiA4Td4sOjuIAgUNoCJySlq4qyb3QznIc7a6vc3bzHM1dvEkmNkQpbFGA9kTZ0ipLOsETVWiy022x3utxZX6fTH9ArAy5AJBUMSmI8osx4853rPHPpIh7J9btr3L6/QRkkpYcoScmDxZclzUZjtJheIQ4QxiwzH4V/D1qmezXKB84o3HdCE5VR0Gq1qNcbZP0hSqtRsL8KBCk9yocqSqSQFKXFBgjOsuNy7v7gJxTDjGZaY7m9QKvWQCEYljn9LAcpSXZ6oAzbg4LNTr8qo+QdwSiybIi0BbEK3Nka8PbNVQieK1dvcuXGbXrDnCAVUml8Ue0UMBj0saVFR6YquPIRhFn3o49MGEIIXHDUa3VqtRqboxBrGNWTNbEhSWt4ESOHJcOsICtydOnxAfJ+Tqf0HF5cYGtQMCi3OdQGW5RIJShtiYkTXG7p9DsMihxUFbotM0eW5ZR5ictzEiNRq1v88M1fEsqM+/fW6PUzVBST6pjtQZ/SVnPEnbt3cd4Rq6QyjT/EOeOhEPq8xekfhKa9VSUjFlvLLLSWuMMtnLWIUaqMt1U2oS2GSGdJpMcbcC4jBI9GI72m37MoqcmDZLU3rJYMV2ubaMV1ekVJLytwrqrn5ENJHEWU3jIo+0gFNkDRDfz9m79EAMNBVq0+HRX9HWYDjK5qay0uLJEm6Z532Y/er1O475KAD9N0m53InPNEJuJj587xxj/+GGP0qFZtACRKKiwWo2S1wonR8rNRdeRx5YUQqvIPSEXpPEhFmtbY3N6Z7Eow2XsWqgpnAmr1qi57lmX4smBze4cQoCiq+HoURaMAkhj9Vpw7dxYxvdnIY8S1H4UO6uwfmTDC+P/gaTaaVSbHFOTunJ8UUxwnRUzXvTLGEEXRLmTv3KSOYr/fZ21tjXa7TRzHkw0Zxwvth8Nqe6FarcZwOKyigMOSPC8xUQRilEOrqk+cJFXATDB5prW2Gjm/Qhj9IxOGcw45SvM/cbJaO1EWOcooCmfJ83xS42m6ANn49/gzhu+VUmxubrKwsEC73cZ7z87ODnEcE0UReZ5TFAVKaQaDDGM0VfpUQCuDFY7gKyYHAcaYKv5uDNoYut0ubhRKjowhK/Kqs0xhd3uQoUcYMR84C/1xbnaQINUo2w8fWFxcJIljpAAbqsozURRRFAXGmD1bPMgRJlQU5QQFHe/vBzAcDic71yRJMknXH+9oMxgMCL5Koh6jzON0oMqKg6IscaHAxDHSWaI4RkcRhECaphRFMVKNFSodRryokjt3aTbd5oGttKfOmwexz9KHYk3t1wBrLYrAkSNHqNVqFGVBNsxAiwkD8zwfgXl66p6M6vhVmwymaYq11Wgqy3JShHE8usYFVdI0RQrJYJCPBFwdy/IcAhgzAkVllYQdRLUQv6qQtZsL5kaF8KVS2FHdDzEVWHrYu+/Hj9mqbrP3+egmcMB6R6QUx44d4+jRo/T6vSrI76vJciyEcYWb6VJ1xphJo0MIxHHM4uIi1lqGwyFpmqK1pt/v79nTyTqH1hEAeT6qXCDGkE/FfKEk0ugqFUkKkJJytJZvZWWFJE4mqaJC7dYqn473fNiYVZVdKfZWFJv9zF6w37Hp47s3r9bg1RsNPvfaawTCCG4Q+OApy4I4jjG6gsqV0lRZKrvFuIqioNvtkmUZnU6HLMswJiKOk1H6kKTfH9DvD/E+EEXJKHlaEMUxCIExEUprEFXVBhkECkllJEt6Oz2CC5x/4mOcOnWGwjqEUFXwKlQRvqrM5MFRvnnHpnlzoDB4hHXgjwIX70dKSUrvEMLz7AvPkfybOtIodna2UdXWdJX+1xFFYatRIgRC7O7zlyTJHl2cpimDQcH62nZVqbrWoiw83W6X4DMQUE72fgp4AYWrdo4MPqAQCFeVdYyjiLqu40RCv9/n2acvUm8tIlUMQuJ9WW3yGUbbY0297izDhditObgvRLQP78Z/PVRN7Ze09bBkrlk6e+YMX/rSl/jWf/qPNBoNsqxKOCsKi5CCKDI4F0b2foTS0WSSttbS7Xbpdrtsb29Tr7Wx1o1GiSFNU0IIoznF4kZYmPeeRqMxSayw1lYY12TnG7C2yoxpNBp8/vOvTUzbedvZzZk2Ju/+uJbTHn6NLn2omtpPNT1MZc2SVIoXXnhhUjBxvB211tWuEVWsmYmvMKbxdhDtdptmszn6bjBhwLRaKMtyYlWNLaJx1sp492UximgKUf1uNhs0GnVefPFTfPITz4x2euGBkqm/CvrAwMs8oYx7HVRhSoEgjiM+8YlP8Nqrr04mbIAkSTCRwZhowohqTognuxeM5492u0273UZKRb/fJ4RqN5s8z0mShFqthlJqcu3YoiuKYlIpxzmHNhqlqhBxCJ7DRw7x9a+/TpImo5VQD74f7B0VD5szp5PEx5/pzjNvJB04Mh6V+XMbNH2erGz9Wq3Gv/pX32BxcXFiNTnnULLaZHG8Ksg6OylGOd5H3FpLlmXEcczC4gJpmk56b1EU9Ho9vPcURTExfccCGltebrSQRkqIYkO9kbK4tMCXf/1LnH3iNIjxjssP6v39tMLsu48FMT2nzNtEay9VOQgHb5r4iAKaey27ghCimgSNMRw/cZxvfvObNJvNCUM7nQ7b21soJUc7c+1NFR1vpJVlWVVoOMsn2NH4vLF6W1pcpF6vUxQF/X6fPM/JsqzyRUb4UxRp6vWUw4eXeeGF5/jsv3iFZrOB1upXrppg7FQ+pjX1fiapscPkQmXJKKX4+te/zp07d/jWt76Fc5V37Kyn1+sRRQn1egPrsolDCEy2Eep2u/T6PZI4RUo5mXDHBXwDTBzASd7vCAOLtSY2gnarTrvd5tVXX+UrX/kKCwsLo3lkxJUPuOj6fdF0pO9RaLbXPFQ4oyFfoRIKT1VVTWjFH/7xHzPIM77zt99G5QX9bh8BGOUpij5OQhTHlXfsq6Vl1pYELZHWMcx6o8rTUBYlUkEUV2sEi7KsskXyDGcdUWJGm/gKpJKUPvDpV17hq197nUa9Xq0DFwI3gk8O5tmD7/w4nXSuaq8OIG5fv/a+YMn3k4oyfV0cC7a3N/nLP/9z/uLP/4JimDPo9/HWkpclA1tZRkmSTtJGK8hbkvUHBB8m2NRwOKTb7Y1edFQdIU33qDIhKghGRYaXPv1pfv/3f5+zZ89OPP1dNWzmrmOE8Wqsve8y/U6zZv/D54rxjapfH6j41+OMlNlzh1lGvd7kG9/4XVrNBf7DX/4VN2/cQCcpsfOEbuVtF64qTp/GMWVRYr1HSVWhv0Ux8TUajfpENY0h9fHGv1pr6vU6jUaDi5cv81uvf40zZ85MsKI9c+JB/Us8bnWpx6MDR8bDHL5ZBs86StPXj3vJRI+7nICnltTIBgPW19b43nf/nr/9m7/l2tWrlFk2Os8y6A8QUpKM9v9DVzWkut3u5N7D4XCPOTu2qBqNBs8//zwnTpxgeXmZi5cvc+zE8VGVZj1TXFhAUOynqiqbZ76ampfu9Lgj46HCmGXo9PfzcJn9roW9wrPBTlohfEBJiStKhoMhP3vzTb73nW/z5ptvsrG5Qa/bYzAcUlqHkgKTRJP1d2PfQQgxcfoWFhZYWVnhwoULXLhwgfPnz9NoNFheXgYlJ2b3tL8TxhN32F9ZjIUxi7hO0N6ZnXceWRiA5CFzxuMKY/ba2ZGy6zwF3KietAhUK1yFJHg/+u3o7Wxz+84drl+/zo9+9CNu377Fzs4OZWnJ8srSGgwG1Gq1iWnbaDQ4d+4cTz75JCdPnuSZZ55haWlp4pUDBFlVWBu3ZfqdKtqdM2aZt58wxudOC2PWHfjAwtiPHlUY+z08EEbJbEy2AJIInLUE50nTGGuzSa8PIUyS4bq9HsVgyPb2Npubm2xubmKt49y5J7h8+TLNZnNkOanJtqZjaMRaW0UfZ+qe723r+xfGPMT2cYTxkVXvnG7IvMZUhyavjfNV9K5wOT5Ue7iiFEmSVA5jktBcaLPiA1pIjNL4UaGZYVZljcRRFQ8XUuKsBUY1rEa1q4QoEEqNMhr3LhV7GNgXwm7cdQwYCtjV9+Pv9jFqHsXyfKSRMTsS5vWMh9Hcqgrja+dMfrs9azcnYCzAcUbimBFuAl0z5sjcmEMIYVKbZNzqMPmx+64H/j0D3U6d8VCz92EO9NyyeA+jDwsymGbIhFkzw3v3jN0rJj/F3vjynpvOae/k92wbJn3iQYPjge+mnjv7DrN0kAEzVxhz7vGR0KyOnj02/v1+ncn/P9AeYTxMb35YNP2ceT7Lw0bew9CjRxm570fVPgrNM3sf9f4PqKl5Q+lxEdt5NO85szp53pw0fe1e1fDw9jxUqI/AqNlRe8CZjJXVLHz+KCTEg5s5/jP9V6R/FsY/IdIzsSpmgovV/2EcAAnsNeb2JyHEHvTzca6dpnnm5ewq3MeG9h/juY8z/wh50LmePW8t/N5/Eei9OOTeqXFs44+r51cPZvoOB7Rw142YbvD4KePr9wvdTl/zOGjwBxXEoxox+523v/BCJYDJv36Gf+JBa2rP5Q972AHC+KD2yUfR2/+p04GJz/AQE/BhHP8A/HuYg/SoJuNBjtdB5z3OPR/pXPFwdh1YC30/vbnHxJzDtFDptj3XTS9xnp2Z5j1jGvGdNnlDeDAb/HFo1sufZ3LvZ2LvR7to9AHPJDy00R96QsI0w2efvp8H/rDjs4De44y4/UbCo2qA/WIXD7SZB6+fnSf3lcVoXv6VwSH/Nen94G+/Wqoy5P9ZGP+E6P8DjnJRqKQFd7oAAAAASUVORK5CYII=\" y=\"-21.387033\"/>\n   </g>\n   <g id=\"matplotlib.axis_1\">\n    <g id=\"xtick_1\">\n     <g id=\"line2d_1\">\n      <defs>\n       <path d=\"M 0 0 \nL 0 3.5 \n\" id=\"m839a88af9b\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n      </defs>\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"33.521954\" xlink:href=\"#m839a88af9b\" y=\"134.387033\"/>\n      </g>\n     </g>\n     <g id=\"text_1\">\n      <!-- 0 -->\n      <g transform=\"translate(30.340704 148.98547)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 31.78125 66.40625 \nQ 24.171875 66.40625 20.328125 58.90625 \nQ 16.5 51.421875 16.5 36.375 \nQ 16.5 21.390625 20.328125 13.890625 \nQ 24.171875 6.390625 31.78125 6.390625 \nQ 39.453125 6.390625 43.28125 13.890625 \nQ 47.125 21.390625 47.125 36.375 \nQ 47.125 51.421875 43.28125 58.90625 \nQ 39.453125 66.40625 31.78125 66.40625 \nz\nM 31.78125 74.21875 \nQ 44.046875 74.21875 50.515625 64.515625 \nQ 56.984375 54.828125 56.984375 36.375 \nQ 56.984375 17.96875 50.515625 8.265625 \nQ 44.046875 -1.421875 31.78125 -1.421875 \nQ 19.53125 -1.421875 13.0625 8.265625 \nQ 6.59375 17.96875 6.59375 36.375 \nQ 6.59375 54.828125 13.0625 64.515625 \nQ 19.53125 74.21875 31.78125 74.21875 \nz\n\" id=\"DejaVuSans-48\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_2\">\n     <g id=\"line2d_2\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"80.41271\" xlink:href=\"#m839a88af9b\" y=\"134.387033\"/>\n      </g>\n     </g>\n     <g id=\"text_2\">\n      <!-- 100 -->\n      <g transform=\"translate(70.86896 148.98547)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 12.40625 8.296875 \nL 28.515625 8.296875 \nL 28.515625 63.921875 \nL 10.984375 60.40625 \nL 10.984375 69.390625 \nL 28.421875 72.90625 \nL 38.28125 72.90625 \nL 38.28125 8.296875 \nL 54.390625 8.296875 \nL 54.390625 0 \nL 12.40625 0 \nz\n\" id=\"DejaVuSans-49\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-49\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_3\">\n     <g id=\"line2d_3\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"127.303466\" xlink:href=\"#m839a88af9b\" y=\"134.387033\"/>\n      </g>\n     </g>\n     <g id=\"text_3\">\n      <!-- 200 -->\n      <g transform=\"translate(117.759716 148.98547)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 19.1875 8.296875 \nL 53.609375 8.296875 \nL 53.609375 0 \nL 7.328125 0 \nL 7.328125 8.296875 \nQ 12.9375 14.109375 22.625 23.890625 \nQ 32.328125 33.6875 34.8125 36.53125 \nQ 39.546875 41.84375 41.421875 45.53125 \nQ 43.3125 49.21875 43.3125 52.78125 \nQ 43.3125 58.59375 39.234375 62.25 \nQ 35.15625 65.921875 28.609375 65.921875 \nQ 23.96875 65.921875 18.8125 64.3125 \nQ 13.671875 62.703125 7.8125 59.421875 \nL 7.8125 69.390625 \nQ 13.765625 71.78125 18.9375 73 \nQ 24.125 74.21875 28.421875 74.21875 \nQ 39.75 74.21875 46.484375 68.546875 \nQ 53.21875 62.890625 53.21875 53.421875 \nQ 53.21875 48.921875 51.53125 44.890625 \nQ 49.859375 40.875 45.40625 35.40625 \nQ 44.1875 33.984375 37.640625 27.21875 \nQ 31.109375 20.453125 19.1875 8.296875 \nz\n\" id=\"DejaVuSans-50\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-50\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"matplotlib.axis_2\">\n    <g id=\"ytick_1\">\n     <g id=\"line2d_4\">\n      <defs>\n       <path d=\"M 0 0 \nL -3.5 0 \n\" id=\"me6af93a7b3\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n      </defs>\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"33.2875\" xlink:href=\"#me6af93a7b3\" y=\"22.552579\"/>\n      </g>\n     </g>\n     <g id=\"text_4\">\n      <!-- 0 -->\n      <g transform=\"translate(19.925 26.351798)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_2\">\n     <g id=\"line2d_5\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"33.2875\" xlink:href=\"#me6af93a7b3\" y=\"45.997957\"/>\n      </g>\n     </g>\n     <g id=\"text_5\">\n      <!-- 50 -->\n      <g transform=\"translate(13.5625 49.797176)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 10.796875 72.90625 \nL 49.515625 72.90625 \nL 49.515625 64.59375 \nL 19.828125 64.59375 \nL 19.828125 46.734375 \nQ 21.96875 47.46875 24.109375 47.828125 \nQ 26.265625 48.1875 28.421875 48.1875 \nQ 40.625 48.1875 47.75 41.5 \nQ 54.890625 34.8125 54.890625 23.390625 \nQ 54.890625 11.625 47.5625 5.09375 \nQ 40.234375 -1.421875 26.90625 -1.421875 \nQ 22.3125 -1.421875 17.546875 -0.640625 \nQ 12.796875 0.140625 7.71875 1.703125 \nL 7.71875 11.625 \nQ 12.109375 9.234375 16.796875 8.0625 \nQ 21.484375 6.890625 26.703125 6.890625 \nQ 35.15625 6.890625 40.078125 11.328125 \nQ 45.015625 15.765625 45.015625 23.390625 \nQ 45.015625 31 40.078125 35.4375 \nQ 35.15625 39.890625 26.703125 39.890625 \nQ 22.75 39.890625 18.8125 39.015625 \nQ 14.890625 38.140625 10.796875 36.28125 \nz\n\" id=\"DejaVuSans-53\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-53\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_3\">\n     <g id=\"line2d_6\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"33.2875\" xlink:href=\"#me6af93a7b3\" y=\"69.443335\"/>\n      </g>\n     </g>\n     <g id=\"text_6\">\n      <!-- 100 -->\n      <g transform=\"translate(7.2 73.242554)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-49\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_4\">\n     <g id=\"line2d_7\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"33.2875\" xlink:href=\"#me6af93a7b3\" y=\"92.888713\"/>\n      </g>\n     </g>\n     <g id=\"text_7\">\n      <!-- 150 -->\n      <g transform=\"translate(7.2 96.687932)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-49\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-53\"/>\n       <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_5\">\n     <g id=\"line2d_8\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"33.2875\" xlink:href=\"#me6af93a7b3\" y=\"116.334091\"/>\n      </g>\n     </g>\n     <g id=\"text_8\">\n      <!-- 200 -->\n      <g transform=\"translate(7.2 120.13331)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-50\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"patch_3\">\n    <path d=\"M 33.2875 134.387033 \nL 33.2875 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_4\">\n    <path d=\"M 131.758088 134.387033 \nL 131.758088 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_5\">\n    <path d=\"M 33.2875 134.387033 \nL 131.758088 134.387033 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_6\">\n    <path d=\"M 33.2875 22.318125 \nL 131.758088 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_9\">\n    <!-- Originale -->\n    <g transform=\"translate(55.352169 16.318125)scale(0.12 -0.12)\">\n     <defs>\n      <path d=\"M 39.40625 66.21875 \nQ 28.65625 66.21875 22.328125 58.203125 \nQ 16.015625 50.203125 16.015625 36.375 \nQ 16.015625 22.609375 22.328125 14.59375 \nQ 28.65625 6.59375 39.40625 6.59375 \nQ 50.140625 6.59375 56.421875 14.59375 \nQ 62.703125 22.609375 62.703125 36.375 \nQ 62.703125 50.203125 56.421875 58.203125 \nQ 50.140625 66.21875 39.40625 66.21875 \nz\nM 39.40625 74.21875 \nQ 54.734375 74.21875 63.90625 63.9375 \nQ 73.09375 53.65625 73.09375 36.375 \nQ 73.09375 19.140625 63.90625 8.859375 \nQ 54.734375 -1.421875 39.40625 -1.421875 \nQ 24.03125 -1.421875 14.8125 8.828125 \nQ 5.609375 19.09375 5.609375 36.375 \nQ 5.609375 53.65625 14.8125 63.9375 \nQ 24.03125 74.21875 39.40625 74.21875 \nz\n\" id=\"DejaVuSans-79\"/>\n      <path d=\"M 41.109375 46.296875 \nQ 39.59375 47.171875 37.8125 47.578125 \nQ 36.03125 48 33.890625 48 \nQ 26.265625 48 22.1875 43.046875 \nQ 18.109375 38.09375 18.109375 28.8125 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.1875 \nQ 20.953125 51.171875 25.484375 53.578125 \nQ 30.03125 56 36.53125 56 \nQ 37.453125 56 38.578125 55.875 \nQ 39.703125 55.765625 41.0625 55.515625 \nz\n\" id=\"DejaVuSans-114\"/>\n      <path d=\"M 9.421875 54.6875 \nL 18.40625 54.6875 \nL 18.40625 0 \nL 9.421875 0 \nz\nM 9.421875 75.984375 \nL 18.40625 75.984375 \nL 18.40625 64.59375 \nL 9.421875 64.59375 \nz\n\" id=\"DejaVuSans-105\"/>\n      <path d=\"M 45.40625 27.984375 \nQ 45.40625 37.75 41.375 43.109375 \nQ 37.359375 48.484375 30.078125 48.484375 \nQ 22.859375 48.484375 18.828125 43.109375 \nQ 14.796875 37.75 14.796875 27.984375 \nQ 14.796875 18.265625 18.828125 12.890625 \nQ 22.859375 7.515625 30.078125 7.515625 \nQ 37.359375 7.515625 41.375 12.890625 \nQ 45.40625 18.265625 45.40625 27.984375 \nz\nM 54.390625 6.78125 \nQ 54.390625 -7.171875 48.1875 -13.984375 \nQ 42 -20.796875 29.203125 -20.796875 \nQ 24.46875 -20.796875 20.265625 -20.09375 \nQ 16.0625 -19.390625 12.109375 -17.921875 \nL 12.109375 -9.1875 \nQ 16.0625 -11.328125 19.921875 -12.34375 \nQ 23.78125 -13.375 27.78125 -13.375 \nQ 36.625 -13.375 41.015625 -8.765625 \nQ 45.40625 -4.15625 45.40625 5.171875 \nL 45.40625 9.625 \nQ 42.625 4.78125 38.28125 2.390625 \nQ 33.9375 0 27.875 0 \nQ 17.828125 0 11.671875 7.65625 \nQ 5.515625 15.328125 5.515625 27.984375 \nQ 5.515625 40.671875 11.671875 48.328125 \nQ 17.828125 56 27.875 56 \nQ 33.9375 56 38.28125 53.609375 \nQ 42.625 51.21875 45.40625 46.390625 \nL 45.40625 54.6875 \nL 54.390625 54.6875 \nz\n\" id=\"DejaVuSans-103\"/>\n      <path d=\"M 54.890625 33.015625 \nL 54.890625 0 \nL 45.90625 0 \nL 45.90625 32.71875 \nQ 45.90625 40.484375 42.875 44.328125 \nQ 39.84375 48.1875 33.796875 48.1875 \nQ 26.515625 48.1875 22.3125 43.546875 \nQ 18.109375 38.921875 18.109375 30.90625 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.1875 \nQ 21.34375 51.125 25.703125 53.5625 \nQ 30.078125 56 35.796875 56 \nQ 45.21875 56 50.046875 50.171875 \nQ 54.890625 44.34375 54.890625 33.015625 \nz\n\" id=\"DejaVuSans-110\"/>\n      <path d=\"M 34.28125 27.484375 \nQ 23.390625 27.484375 19.1875 25 \nQ 14.984375 22.515625 14.984375 16.5 \nQ 14.984375 11.71875 18.140625 8.90625 \nQ 21.296875 6.109375 26.703125 6.109375 \nQ 34.1875 6.109375 38.703125 11.40625 \nQ 43.21875 16.703125 43.21875 25.484375 \nL 43.21875 27.484375 \nz\nM 52.203125 31.203125 \nL 52.203125 0 \nL 43.21875 0 \nL 43.21875 8.296875 \nQ 40.140625 3.328125 35.546875 0.953125 \nQ 30.953125 -1.421875 24.3125 -1.421875 \nQ 15.921875 -1.421875 10.953125 3.296875 \nQ 6 8.015625 6 15.921875 \nQ 6 25.140625 12.171875 29.828125 \nQ 18.359375 34.515625 30.609375 34.515625 \nL 43.21875 34.515625 \nL 43.21875 35.40625 \nQ 43.21875 41.609375 39.140625 45 \nQ 35.0625 48.390625 27.6875 48.390625 \nQ 23 48.390625 18.546875 47.265625 \nQ 14.109375 46.140625 10.015625 43.890625 \nL 10.015625 52.203125 \nQ 14.9375 54.109375 19.578125 55.046875 \nQ 24.21875 56 28.609375 56 \nQ 40.484375 56 46.34375 49.84375 \nQ 52.203125 43.703125 52.203125 31.203125 \nz\n\" id=\"DejaVuSans-97\"/>\n      <path d=\"M 9.421875 75.984375 \nL 18.40625 75.984375 \nL 18.40625 0 \nL 9.421875 0 \nz\n\" id=\"DejaVuSans-108\"/>\n      <path d=\"M 56.203125 29.59375 \nL 56.203125 25.203125 \nL 14.890625 25.203125 \nQ 15.484375 15.921875 20.484375 11.0625 \nQ 25.484375 6.203125 34.421875 6.203125 \nQ 39.59375 6.203125 44.453125 7.46875 \nQ 49.3125 8.734375 54.109375 11.28125 \nL 54.109375 2.78125 \nQ 49.265625 0.734375 44.1875 -0.34375 \nQ 39.109375 -1.421875 33.890625 -1.421875 \nQ 20.796875 -1.421875 13.15625 6.1875 \nQ 5.515625 13.8125 5.515625 26.8125 \nQ 5.515625 40.234375 12.765625 48.109375 \nQ 20.015625 56 32.328125 56 \nQ 43.359375 56 49.78125 48.890625 \nQ 56.203125 41.796875 56.203125 29.59375 \nz\nM 47.21875 32.234375 \nQ 47.125 39.59375 43.09375 43.984375 \nQ 39.0625 48.390625 32.421875 48.390625 \nQ 24.90625 48.390625 20.390625 44.140625 \nQ 15.875 39.890625 15.1875 32.171875 \nz\n\" id=\"DejaVuSans-101\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-79\"/>\n     <use x=\"78.710938\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"119.824219\" xlink:href=\"#DejaVuSans-105\"/>\n     <use x=\"147.607422\" xlink:href=\"#DejaVuSans-103\"/>\n     <use x=\"211.083984\" xlink:href=\"#DejaVuSans-105\"/>\n     <use x=\"238.867188\" xlink:href=\"#DejaVuSans-110\"/>\n     <use x=\"302.246094\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"363.525391\" xlink:href=\"#DejaVuSans-108\"/>\n     <use x=\"391.308594\" xlink:href=\"#DejaVuSans-101\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_2\">\n   <g id=\"patch_7\">\n    <path d=\"M 151.452206 127.587873 \nL 249.922794 127.587873 \nL 249.922794 29.117285 \nL 151.452206 29.117285 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p09d509db69)\">\n    <image height=\"99\" id=\"image5b2022bb5a\" transform=\"scale(1 -1)translate(0 -99)\" width=\"99\" x=\"151.452206\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAAGMAAABjCAYAAACPO76VAABGNklEQVR4nJ29Wa8s2ZXf99tjRORwpjtWVZNFdqnZbFJE0y1ZkgUBgi0LlmUY0pMBw9/A38WG3/xJ9OQnw5YAv1Byj2STIlms6U5nyimGPflh7cg851axm1ZWJc5w82RG7LXX9F//tbb6n//3nxQ2PY0uXCw0axvIhzfs3vyCdPcFT5aJl2ceW3pUDpScSQmmBGMs9CFzGAshFpYXHa9ev+Lm5hooLLoFy8UCYxXeWLqu5eL8HK0VVmuM1hijMVbjjEVrjVKKq9ZjjcFaizFGfq81pRRKKQCY+tqcMylFpmlkGAb6vqff7QkhMGDZjpGv7npuR80+twS34sW3PkG1C/7X/+1/IU89Vicak/AqYUioksgxHD8rmzMKUEoh53y8jofX45xDKYVSCuD4/cPfzff32x429Ac+sp7zpYPpnsO7z5i2n9PkW87OYaF7CHcYHUkxMsVCSJZQGsbsmHLDmBV9iGy+/IL9fofR0LUtZ6sli8UCaw1t41gvllhvMEpjFCIIY2ThtcZYufDWVSFYU4VhUEqT683nnLHO1YXI5JTRZCwFpzJ4jVUKozKgGDqD0ZpmymzCjsO7zzmkQr59DV6jvUZRSERKyRgKzjkMhpQSPQU4LfL8KKWglDp+nR/vC+F3fVhIvOwcrcrcbK45vP2c3L/i4qxw3ipsChh6hqEnpUwqhlhaIp6QNWOEfZ/ZDYl0uMNoWC86zs7OWK9WdG2Dc4auaVi0DUqDAYxWGKNFEEY0xNad0ziH1QZtrAjCaEBTgJwLORecM+SUiDmhAV3AqEJjDNY7Gmc4pKEulmfZOVajxm4m+n5DOvSYPJDGhNIW4zxWK1TRKEBjUcVglIHCUQMeLrjW+pFQ3hfWN/38NwrjbNGy1pHdzWuGm6+w04G2MSwbsGXEKLDasBsGlLZgPGhDToopRg59YNcn+jFz0Tja1rNeLVmvVywXHU3jcdbgrcVpcM6IVrwnDFtNlmiGRxuDVhZljJgoFBkgZVQpGGPlZoNCNm5BayWfZeTnOPR1hzqWpWXZWpy2bIeCxfLD73zEz3/zKSpN6AzGeow2lKxJEVIElRVFP1609xf+m4Txvqb8LoKx5+uO+PZzbl7/kml/y7rTXKzOaMyAKhPWtOScSNlhtEcpTy6GaZo4HBKHPpGSxlnD06tLGm/pukaejadtPN4ZDAqlCt6oKgyw5sFTgzGgFFg7a4RFKQNVGORCUlBXn1IURQEKtFKgNViNQaE1HIKYCo0CpemsxRbNymdWreHv/+ATwnjPXb9hjJEEmKbBakcohRCBpCg+f+NO/5sW/H3/8TsJo7GK23e/4v72c5aN4eLsjPOlIw4JcoM1jl0/YewFyihS1oxjYL8fOOwGYoJFu6JbNDx9spD1MJrGWxpvaJ0VYShQqmB1QSuF1WC1/Ow0aF2w9TVKK5QycvFKUZBnLsgzFyi5OlOgmgytDSix+VorrDOoWNAZyIlM4sJpWq1ZOMcPv/sRYbzjZ5/9mt+8vqMfJ5RSmKZFa0fJiRihuPQ7L/Tf9Jq/TSB2v7ll8/ZXqNKzWl3SdR6lFaUYtFmSKfT9lsZ3hDQxDAe2+4H9YUeKga71nF0ZLi46ztqGnBIaReMdrbd4p7Cm4Iyh8Y4cRvSsGVrhtHxvNDgNShcCovolA6pQVCHlTMyFmDIpZWKNekoBpTRKGzAZnQ0K8SPOWzFuIZPChEqZBi+aQuTlWcvf/9EfolymD4mvrjekmEk2oXWLNoY8ZSiB99dwXuyHfuP9f/tdNeIojE9/+Quuhne8uLxisfaEHEhDQSsPKXN/GCicM4ZI30e2+0A/jCgK61XD2eWCiycNyyW4qCkanHV0bUPjHZREmiZs42l9RygRq6i+SGOtwhqF0QZjFFYbxghZJYlfVCGTSbkQUyHGTEqJnCOGgiGjqZqBoZREyYWUI846tEowBTIJXcBri1WaEEc6p/no+RV9+i5BZZrffMXr6z3jlEgqg27QFnLpKZSvhauijSKMlB5rz/uC+d2E8ekveb6Aq6sVRsPQ79HFsOwWHA4929sDTy4vub19zW7Xc+gHUIVu1XL5bMnV1YJ2YUGN6LTAeEfXdSwXHVYr+sOBYRhQOcOqwzuDZtYEjTVKNMSaYxyex0RWJ8ec0cQMMWamFEUYIWANoMU/aKVRaFCKXMNfYwy6KLAFNCijWThLKpp+AqVhHwY+fPmM0npstyb97DN+8/ktUxhxpsFoS35v0R4JBQWqCqFqx2PNUFV7FXJDD97n9IYijB+dveG/fP6UPG7kRjUUq4j5GtNMqIsdX/S/5vrwlkKmPXdcrFdcrtecdQt8UfjR0jUtmD3eORobsLmgisK5wvpyjdZKwpMCBU2q/iBrRdSGEDVayw0kfcA6R4yF3WbP3d2G3bYnhExOEGNis9nQdS1t19C2jsWyYbFoUaqQS8I6Qx47UooUHchdT4oD+/QGcoBFQhfFEs2T9pxEDxcN5999znrq+ctfvOHZB3B9syHoM6zzdF2H0YoUAtM0knNCGcj5gbhqUJGBoiRwmB86TygehMVHgcrv7MV6QYihmgxLLomUc5VhIaXIdndPKYWmaVguWtqmQddkxzqHc/7obN/fNaLep52jMKddo+oFM2e3skkyic1m4HAY6A8DfT8xjiPTlIhBnPYwDEzTyO1dAhK+sazXCxaLluWqY71eolBobdCqUHQDTkGyUAKFTCoQEwzjiLWW9XrFC9XyB8lyux959fodq4tzAp6CIowDSUuCaLSaFQFr7dFMgRKFrushv9JHjZn/6P28BcBenS2h38k/VnWnZGII7Ic9h/2eFCJKwaLrOFutaL3DKo1GYY2h9R6tNDmaI3yhtbjJXNSDD1YoI3837w6F7KRUCromVykl9ncbNts94xBIqVASlJAgFaw2fPKd72KMJsaJECcgYYyEz+P+ADGxXLUSmWmN0U4+txhK0uSSUDmLPxonlosFxYJpFW5xwW5IfPbl/yOQTUGChpyOuYwxhhACKSWapjlBI0fTpShVCKUapKZpjqbpm6Ivu2otJlhyjBIyGkXJhUN/4Pb+liGOdF1HTIFF17JYLGidw1Iw1d5prWmcZSr6KAh93A0n/Ga2nUprtFISBdXLyzlLdl0y0zARp0gOCXJBF/kM21oUBuccOUSscnjr8FYjaUZhCoJRpSnhmoC1Bo0kmFoZSs5kFCEmQowkFNoYls2SYgtJZYx3fPL73+WDv/hrhnEgZIU2FqMVWiu0Ai2KfcSqTgs7a0S1C0qffMMJVXmwJqe/tU5HsVmm2usUGfqe3XbDYb/HNJblYkFKkdZ7vLO0jccphU6p+iTBclI0gjdp0Q5KoTxwZADGCM6ktRKHi6pCEJOYcmbqJwyGRdMRdCKlUoXg8b7FWc/9/T3O2ipshTYKYxRGKXQpGGNIqaB1AavRRj6zpEyMihAj4zRhXIPRggR4q3AmUrLi+ZNL/vDvfIc//4ufEsaetlvQeF+jJ1VxsgwUYgwnlyFOkZNFykcz1feHbzRR889WxZ6YEs5boDANE5vtht1uj66mqfUNKI+3Dqs1zloaY1AxkkMk5yQ715iKxMoOKvlhqFfVUcsOnR1YBZzIBWLKxBhJU6JxDa1rCSERQoKiaNsFXbfAmGomtSLEiWkaKTkJJFIU3ni8d+xzBgR0tNZhTaFoSDHWTZBprCOGTAgRpWSzjYeAN4bvffJdvvzsC173G3SOOOVFyDkTYqRUJxemSfIcucHTvc7+UJUqjP5raO8MfALYEg7EYvDak1KgHw7sDztyTqzP15ydrUGBb1q81UfE1WoFxqBLPpoZrfXJZyhFnh23UhWCBqUM2phjhp1zTepKIebMlBKqKKx2soA6YYjkVDDKoDLkElm0rdxMzoQ8MU2RnAPjNBLChLMGzs6x1gIaYx3eKUpWpJSwrkGHiHeeIYyEKWC8p3GOPRMlTnz4/Bm///G3eD38hr4fSGHEaFBFkUMgx4jxDSEEjJV7LY8QXtmESs3OnUfCeATHU7AqDNjmksM4sN1v2R/2aK05P1uzPFvjnSOkgLcaZwSaVqmQVcYpMM5jlGYYe1qnHzlwkNrHrBilJmeqakapsXdRilwUIUldxNuWkiCkmmGX6sd2e7ZpU5HbjLUCccco2lnIxCkzDhNBa0LZEmPCGI33Duec2H7rsNZjXaCgcNaRKaDAAq23xBjwzvKDP/iErw6Jn/31X3PYbSh5gXWeFAMpZVzd/THGqgm6RlNzXHXSEO8boFT/mI8Cmb+3qkys1gs+++xz3r57S1GwPluxWC3JKpNTxFmLztB4i9WKkhM5FrAG76WuEIaRztvjhz8MdTlqhUil6DnSkJ1UlJbcIwv25GzH0PeEMByjrhAC2+2W7XZLCJEQxDk/VHPxE4kQAs45tn3PFALaKLzTWLPAGkVGUdBQNMMU8E2H9ZphysQYaL1FK0M/BD56+YTvvHvGL37+c6YpYO0kC50nSlaoko8anquPUFWws1COyeBsyr5BS0op2I8+eMnbL96x3e+w3uMbj1KF6+u3pJS4urpkvV5W6FtjVM2YjcbWN3fa4JdL+v0d3VVH2zTElJjGiRACMUsRyDjLGCONtpjGUVDEKTKGzGGciKWANuwPPdM4cnd3x/39PX3fM00Td3d3HA4H1usVf/RHf4S17rgrx3HkcDiw2WzY7/eSl7SG5f0KrWC1XNB1EjbnVEhFcb/bEabE85cvsc6hVcYoaHxD5zU5bNj1Bz58/ow/+Pgln33xFft+YNgNpKJx1rPZbHBtV6PCugFlqSXCOxotSFk0/aHPeAiX2FdvX7HfKVJJ+MaxWHYYZ/GtJ+fEarWicR4oGCVKqNHHD5Q3FNzG1CKRkmrMMfkvRV4aCwz3W7plYaEszjegDTFl7jc7Xr16xd3dHcO7PTFExjBSSqZtGs4vzvjkD7/Hs6dPefbsKSkljLEYYyuwKZn5NI4Mw0QMkV0Zud/eMw49P/3pX5NzQKnC1cUZLz94zvNnL3n9+jUhBJSyaBAznCO6aBpdmFRh6TUfPn/Cu7fvGIYB4y2xGKasjqXhlB9ESDXsVTXDUEdA5ZT8fVOxyu72B25uekBhnNyYMZqmaQT5tJocg5iqgoByCgkhlZotJFpJHdgY0ZaSs8T0WULAnKDEKFFI3zNMgXGK3G+2vH37jrdv37Hb7ogpctk+YXXRsj5bc7Zes1otaNuGtvNY64hxYnfYobTBWYu1DmMcyjhsa2ltQ4qZYbjDOU8IgRInYsyUktj3Pfd3G6wzGOuYpoBWFqMd3sgOTiniNDRW0TWWb334ks8++4z9bktSBWUMKZZjQvfbHoqCKrUIoIyYrwfFqIelWzvGxBAm2qZFW12FV2oZVGrTJUUpCKlaMq2CMLWoY7QWsE6bI0zy0DGVUgSrSYntbscw3bM/9Gy3e7a7Pf0wUtCszs9ZLJZcLp/ivT9WC401QKJYQyBzt9uyO+yhyGcaI5GX1haKqj4lElUEJbu3lKbmOBnvHWiDVgbljDhjE3GNq0hCgJhwqtBoRecUT85XvHx6xbvre+73I64tWKMJsZBTkhT4oVzK7MCP1ZhvFpY61dDtYQo0XcdqtaJbLrDOHjPWxjmc0RRdk6m6+CKIqhl6BvioNWweC6NCz6WarnEK3G923N7es9v3pFzwTcv67Jyz8wu6rsPRidkpsB0GUgrEONF2Hucsu+FArLA6KaNSxsSMMZKPjGNkmiacr1prDBZfNVfRtg7vBeLPKTFU9EFVjVc5U5Ikw1ZlvJWa+svnT/nNV9dc37/GpIj1C9I0knJEW3NEE44a8eB5Ml+n1zz0G6UUbB8ST87OOD87w3sPOVNSRisttenK0iBX7dD6KBh1/Do7osqyyHPNIR8/rG4WlDYYY/FNwxKDNo5uuWK1XtO0HVprUlTElIjTBGRCHEkpMJVA4x19mE6gZkqQwSpNLhowRGDKGaYo8IU2NSqTiND5mucYIywSY6VsK3G07OIUEbgu47RETc+eXnF1ccavP3tFDImm1UJdKgVtmweCeN9U1XU4ieXxusyagZUIyjcC9sWUyDlhlWSouRaLKPqRZszPWRBzkSXnTIqSSeeUUZXzZEyhYPDOcX5+wWJ1VvGhTC4CL4wh4pyDmgsYK2VtVxpSnig5MeRI1JLVTlnwJYVcrzcWrSApRVSKMgWaxop2aI11Buc9isIUIzpA6331jwVVsqAGACWRp4RSCmcVqiTO10ueXq5ZtpbNUGiKJLoq/3a/od8zT+9TfR5pxur8HCLkmYNU42ZdSWM5JmzjSUqhVREHzntQeX3OiKs8I7kkDMJ7MhRy0WhjcNqgLWgTUToREyhr6LoFi8WCPkgQkHIglihBhW1JecQUxeXZku1uRw6BRA0TswCXRWkikVigtRJQxBiIMVGKUHysNTjjWXQLFBnbanKMkj9V6g+5EINA69ZIeSGhef7sCR98+JLb//glMUa896jy/pJ/80Opr2vGI6Cw65aYwyS4kjFYbTBK0XkvjA1gsViw29x/45u/L+mchVRWUkUzFWIqUFA0H3/729ze77i5vSelgvctF6s1vu2IMTIcBrJuMVbErpXDOgkQDv3Ioe9RRqGNRhlNptRaQkSZiKJwGAYO/UCOPevVCucMTePpuobVakEhkeJ0hLud8yQKcUyCN4mOE+OE1RKgNM6yHyMX52d88PIFf/GLL4gh4rsOXTT9lDiyVvi6qfpdHtbfjzxvNGq/qxfmaJuGRoFRNfN9e4M3Fucc3gm3iFKIfWRIQUhkWqM66PtRNKOCaDkVMIVl1+JsQ5gOeD1xtbbklcVai3OQ8p7duKMcNij1DO083lpBkkMkhoBJijOzxgVH2Ey4YBh2mTQOGB9otHCspmnHSkeetAUVN1g0rWlpY8LuJgzQtC0r6xn6PSUkcazGkVUSqGexZFkz+s8++4L11RXWN6QxcdU6fu/Cc98HSBMog1ECzecarGQlLMeIwDmogorx6MBnHFsfIXewM3dWiGauAmuS1eb6IuccNdc/AVw1WnropEtKNUafnbfY2mSSFKgwNE0DaLQaSTO4qEUrV6sl1hr2gxenqjU5V7NpDVnDFAK7wxarNUMIDIee3W5LyZnt/b2YjRrO2qXFGkPXNSwXC9oKLuYQxGHzAM5Wj9kexhiom6Hr2hqyZ4xWtG1D1y14u7mj7RT5IQAHoB4Yo29Qk0c/PrAstm1bKAPaWKzTWFvZDjmQi1yUc444TuSsyFnqujPhONXFKkXyiJKTfK03mVDoEInaUggsuo7iFUoLelqKRFjaaBrnWS6WNAdPiIlxGIjTSExJggUNJUWGw4H9Yc80juSUpP5+vHmpk4Qx8PntKxrvOT9bU66EoOCde0SonjeSrmE55WR6TTWB65UholEq45xlvVpxfn5O/OoOaxRxDKCtwB+FB/5DwNL3iQi/7WGdc9gcj9TKozhLOdZ4Hz4kgcvknMglU0qmoKsTzRIeFlB5LjcWSsrkIKFinCJKaZy2WG2Pu0MpVaF1RUyGoT+wub9lv9+TZqaHUkxhoj8MvH39BmM0F+cXrGtYPtehtdIc+gNfvvoVChiHnlIjn/Pzc9oHSMHMSBHYH5SSexFUWTbjCsNuGLGp4J1lvVxyeXFB4VPZiDnLRqlacDJEv5sQjsKAUmuzUm0jpSMF3yhdq3/pkbN+v0ByUm99XNyiyrEwr4qipAIkxn7EWIux4i+0kpsued5ShXHYs7m75vbmHX3fQylobaQOHQMpgcoZ7z1nyxVPr57Std3R7DnnGPqeePcl+/0OoBIaJkp9zXxfxpiTMGpJ9aEwcs4sjGMKgWgNWSmWXcvF2RkWqsN/kNgxJ3b//wQBYLVRNI0jxUhOiVzV1BgjJOAarj7sn3ioMvONyE2VCokXiq5AYS2vzmyRaRgwztOgsNpinFT8Ys6C8MbI5vYt++0taTpglZRQSylM00AYJ7SxPLk4Z7FY8eTiiqv1OW3XUTIYa2mblpgiLn2fd+/est9tsNX+z4/Z33nnamKojwnsfM+lhvlOG5w1tGgKhcY5Ls5WrBpLClFymwp9yG6d1aO8567/FmEsFgusEfMi4N7DHc8R8p1DX6UV5JNmKKhlTYnHjxoj/x+pOMIC0ZKkqUTSkawNpfoLBaQQGIaB3f0tVmWeXp7TNC3WCJi32Ww4HAa0tpytL1it1lxeXnF2dk7jGyj6WMDyxvHxxx/TNJ7rd54YQ83ayzEoUErhvXvkMxRzfaSQs2i6jgVv5d5DjhitOVsueXK15subLdZ4chH0+lhS+k+Ib61ESqP4jGKP0VFKEY5qbwXhrCqdU/UVVYuslURKQlEoeVbaUsut5ehXjDIkijTe1ODOe4WWnJMSE9N44PLykqdPn7FYLCkFDvuBi/MzxjGQU8Faz8X5Jev1OcvlmrZt0doy9BP7/Z6coe1a1us1YRoZx+EYnYUQaJqGtm2l+qcflEmPZeQT+aykQGMNVlkOU0SRWbQNz58+5dOvbmjPl8SQSVUI6pEQHvjhv00Y2+2GrhEMynlHTpkQxVxkFE3TfC360FpRaoY+mzStNc66r/sVjlHxMTqbpokpJGJJaBWwR/q/lGTHfk/z/BkXZyu8bxj6EWdgvew4W66E9aEs5+cXdJW14X2D9a10G4UgptNPrFYrKJlh6AVKzwLVtG1L0zQ4+yBwKQL5f63dK0TRfGcxFFSOeG84O1vLPSkFZHQxZPXNy/67KIm9urrCTVuctXUBhQxmjBVzRMI6Lf6g1PyhCMLpqrYYrUDlY4RyouYcUUQxWzU6adtOmCCVUX44DIQUj1pZkrDGp6GHnIkhQkk4I+zFUhTnZ1dMUyTFgG47rDXkGJiGHmc0i8WKL9/+hplGJI4/CUeq6+i67uSoj7mTwDhSDTwFLU3jyPX6L9YrMA69G/nWRx+QgdViQR+3CKFXv2eeOWrb3yqMUk45wVGKR5T1VASZnWg5hrynJLAcv1fVz0geMYesCmGnC+QudltjMCpRVMJQhFUYBTF9cnmOt7LDsQ5nDEULhbKoRNN0kBOafNyphAmyghwpKRLGfb3WU13l4f3NuNDD3z9ahXkxlULnRKoI7oxcN9aw7loWCrbbDSULeFkJrXCsg/9t5acHwpDkLVNsqTv+Ad708IKqvdVaU8hfE3bOmZSToLRqrggqSeiq2hdVG1pAbFaSBLIog9UJpWVjPHv2XPKNWIkHxqEUpBRQKLquk++VRuki8PpUKFmRSyDlSN9PjygxMyqg34uqHjH7HjEDH3wtBZUSOmdBh7X0n1ycnfPs6QWfXm/wbYtGid+Yyc5lDnF/t1DXSgiXyCVVNPZEVJ53+rG4PpN9j5Faqal/ZgaL9ZEGIguNrvxaZSiVwCZ3mCk1H7Emk5NGZdG+1dkFw9ATU2acAsmKsENKFCJTjFjAOQ+6EEsgTpJUSlONsMTfF8TDjaVqieARQ+PBwsw01FIKRks7gqJglJbGH2c5X6/58IPn/PLt3dcW9pRrPPz6twkjx8paEBriXIQ5CUMd13b2FUXNwldHGr+uZmmmc5ZKSFVagzYoXcPiB0V5SfgyFC0E5VwLLb4hRqHcTCEQYmIOGXMpjNNAwWOspdSKn/gyuc5cJqbQg85HYcwCUZyy7oc0n4eaAbVHcAbwtNRHpK9EiM+N0iw7zUcffkj7F7/gGM8qqXk/yDreE9LfJIwkBLCcs8T7j+oTp11SHuyi+XfHhG/m1j54qoc/Vw2ZWdnHy6rlWlXKCXsqhaQ0znlyLoQQKqtDY4wDpQhhwlhNKVJ7LkV6MmQRNahEJkCRjqJYnXK98MfCKDP0c8qij5yvWiuxRhpIlRbHbI3CKYNzmg8/+ICnF+fcHMYjFHQM6Y/3Wt/3b9EO/XDXzDv/mJHqk2bkGY0t+ZFtNbWvwzmBOIypSVzl0halyUoo/7lea0Z8rXSqalBGWl2NRhlDQWOdxzctxnpQhoLCWIN1VmCKUkglkXKkkEBllM6gM8oUpDO5mqn4QDPeh3UeOPfyQBiKk0lztgKMRmO0tLrNrRMvX7zgu9/9bkV1OZm7oyR+d1jECiwQKSUhpaSTqZqbV6AQUzjegK4RktYyasJaEUix9pTxqKMtk90OCNuulujnDL2+VnyRwAjG2GpOLEpb7GSlFFzxLFvNU86RXFTVzAe9dlbhvCMepmNgMQcfs5maH7OAZOdysiOKY1uDsRZUJmIwRVqbVZbE9cnVJd/7g0/4f3/681NC9Z/4sL/NgT1+qEetUqVCk/POsdaijezuoh79WX39/IeStZ+aSHi0i+Ydqo0DCsbKxANjDSFGIKPqLu37PbFkdCmCKWnxO4Us4b59uPu/bl6V+i3Z2fHS63sVMEaBspQk+JrSGkjEEFicd3z44YdYJbHUw7hprnTKfq5QyTdA4fP+tUs6tClkvLRa1d1dSkFZLwNTtCWhcNZKpa/C2bpGHFk7rGtIzH0KM6nxhEuJ1oFzcrkCwSdykU5U0cwMJaHcoqL4BaXEZhvvjqXcnCOLphUtLaBLteG1OLbf77m+uYaxIY3gyoKuO6NtGpwx7O8nco6gC8tlJ8GDUShDZcQnQorEGAg5sqi7RhkxyyudETKk4ze3n2FNJOnEoApJO7Iy5JIoKdJahBg3jYTkZTWOxuNx2drmlNAP/Wp9kWAsp8Rt7kZ6tLMe7CPZ4JpTGFd7+kr99xkSSVJwEY1QKOxRdKJxhsM4StHpwWc8bD2TN3q8w44Y2IMgI6ZwjKagMCooxZ3ut35GiolpmogpiEkrol26Om2FYR6HobTwyObPN0Uir3EMKO0wZmbJzN1SIkn9aL2+/lAK7PuJ3vH7B9Kbvx5bxKrtVQ/+vZRy6u6sAhDAUEsNuC5+UnNWb44CE1s9V8UghIFSTiGoqdHY8bOVIo7To8V/38yWUggxHKHyOWJUCtrWY7Qj5cBcEigxE0Mi5kChoI2MYHJaAgbhXsk15VrBU9RKqNXCnTqaMF0FXVAqHwtb9aMerfNDGVnFKck7PquhKw8EJVHSKZs+2cEHC6DM0SFLxUieeXYOpcbhnKIVVXvelFJQs/NjPyD1379BG98XxPy7fAQnK94kbyQEiTw39Ris0xBhHAMpB1IU/6CLIAwkyJMgvKqxohkPupJOzBddTa86CksXISZoNCjxWadN/WjFHm14q0iPBXGMsR8LyNQWsYdTAciPMZEyR0VlDvNEAGUuA+fC7EH0nOkjzYoodazje+e/5nAfCuAhrvRNz2MjSsWHeHBfVD+ntEGpOaSXBNRqS0Yz9+pRWxYnnXClgFUYVaqgJRw01tB4Uxc5i8Yo87VFn++8HO/p0dLNZioh/TqPVedIKXmQJGlzqmlQHjZPzmZKQMLH9lu6jkgcI4o54tCIg54BNlWlIQjyHF19fbHn23v4Xy5f/z4fbYJEW8K1UnUWSSGlXE2HohRdS7+izWoOtZE+8VQsDXX6AhDnbiOjhZPlDLuYyTGCqYBpzlWwqvYcvsfHVQ8Eo4oIQyn7Ne04htv1gh5qxrwzv26mKt40KwIc2wJOwqC6eVmsCnKgSgZV8SM7+5jHux1O0whSVXHpHy9opC9QVY1IyPyQUuvqM0JQtGKMkZIn0iTN+eRyhM1LhdKPAYNS7M2Azw2lKJyV2nhK0hRqjaVxjsvzBYfrHWOYmMvMKSUUGWc1MSTA1TWd161uyyoU+9AvnGzyKVp+31QdhZGzELYeCkRlioaSi6DZx4U8pd5qJiqUAiWjShKyNamWcxPZPKZBfuNDP37N1xw4ME3jkUzhvccqqWQe+p4wTcQYOez3qDIH41UjagRWar2lXFm6I+4l1cyYReu1VjTO8uTJJV9cbwjTJLV9a8kxgS5o7QgpYUx5L6ytAERNrO37mc9RbR6Elg9N1eOQ9nH4iYo8SOXEec1hLCAjWXz141UIOcssqCwFpFJgGOKjzz1GUb/lGqqbYv60+ROnaaqdqHVxSiHkVFvOhgrvQOMcbdPROo/VhpIyUz+w3+5IcaQfE9qESmoQSCRlEb7RGqsV5+slWilSCpiSKEVLSaHehwyWebhw5Zjylxp5Wdc25Jzpuo62bclZRlWQy5HA1jTSXptTQqt5AoI6TtAEAeRKHurizJo12+5KdEhilsI0UVKqXU9igpyRhY9hxCpHjJGb21v6YaBddDx9+hSA3X4vrW0Lqdah5vkkQk2V0ReZbrmgbbcMw4HVeolvPdv9jpu7W4z1RwLd5eUlTbMg5cJmP5CDmChdQOuWxXJBaHsSsDv07Pc7aS1oW3y3IuXEfrvl6dUTjLa0vlqSAstuUeH3SWas+IeVUGFt9n0PZD766CPsOEy0XXNS9dmu14hpmiZKEmHN4WlKqYJ96tFrR6S1y2grfX9aUVQm5cAwTIRRKP8pJGIM1UbPlJiC0cIEs6Uhl1Jr2x6Aze0dsWSatj3O7XDOSWNkJUFrcyp5FqXYb++PuYUxmtV6SbNccBhGphi4uHpCDIkxJA77nvEwUEKq2bzFKIstisMQKCVidabRCmsVaX9gPwSa5QVn589oG4d3YOJcXYwVClGcAmJo25bdbscwDDhnWa0WTNPE8+dPsdqJ2YgxHuvBczIzV/dSEpCuVAR0RnjnwPboSzJQYtUSRQyZaQgM/cShD4TaUXRsTnmgRzFOjNMIFJZ6gdGG1XrNcrkECpvdljhMmBDY7/cY7/Btg1XCDrTOoa090k3nndc4K2MmKlnOOsP29pZcCk99Q0gjzXLBYn0hid8QmYZJ2g1CIeTM25tb+n6HLYll61i00nAac6Y9G7h0HcuupfWWw5SYqL4GUEZLBUFrGcva98K2sUuZvTv0PH/+jH/8j/8x1rcdOstA3RlmNlqjncZ7Lwt/TFoeJ12PgEKtCUneI8QoCz9GGUsUCzECRabbNE135GCZmpmO00je74BM6iNFCypKKfimYbWU956miVwKrmQWKcGcA9WkNJdyrC52jQclzJdMZpoiUSkOQ89iteYQApu+Z799R38Y0EWzXp7z/OoZZ6s1t2+v+flf/5z7tGO7vUPnwLTugBWNd6SUGIae7eaermmkjcJGhD+R6swpQEu52XlPjLH6HtHWrrvgH/2jf8Q/+Sf/BGucxyOUyIcLPZsfrTWqcNSG2ebJ2CB9JLAZY+j7QgqRMAaGMRBCIkWFUoK0Gt0IBdM8yNQr2qqtRlnRKlt6aUeYJoZhwDpH17bs93vut1uWxhwTO63Vcdzq7MxB8orzszPuN1umcSAAhxBIStO0DU9ePGPbj/zq88+4u71nc7cjxcLF+oJPPg78wSd/gOkWBKVFMw5bGgONNyfurzFkpRn7nsZbqXloXQvQEvqXB/O1msZjjK7WwfDixQt+/OM/5p//8/+a3//k97HGOrw5acGcP8zmSSlpdEl1gs5DjXiYdyilUEmjokGlgsmQi0zQUdpiTIM2DSolxhCIOYFW2DrxJmOJxbM9bDmfpjpLSsxaCgGjJYg4HA6s1mvZLOr0+QC5SOfVbB4uzs65vb3l/v6OMReGlFDe056dcf7kil//+V/x+atX7HY9u+2Bfj/w9vqOMWaaxYrOt2yHkVdv3qFVxq46VIVElFJYY0nGkHOqk3nmNRFg8JRtS4Y/j9ZIKXJ1dcWPf/zH/It/8d/w4x//GN84bDGWGKV4b+qOy9VcTdMEcJyEoMrjMBc4vq6UgsHjlKHoBDqCysRSSFGL6qoExrDd7SWk7Fps02G9DBWOxXF9t2e335NipFsujgHDbrfj7v6eYRgIIdAuZaz33DyZc6ak2ldSk7zlaolWmvvNPftpYsgZfMO5c9xvd/zHX/+aPkyMKREoTCUzjQOvr2/41WefU1LhJ3/6p0Tdc7ZesVgu6RbLR1ZE1xC1UI7Irsx3NzUiPc1R2W63pJT54IMX/MN/+J/zz/7Zf8WPfvQjuq5jCiP2+vaWvHnHs6dPWK1W1f7aY4SUs3TkpJQw6oRLlVJkJMU0CfwcIyvVEEOiHyeGIYi/SJCUQWkHWtEuW7b3I7Fk1njaZUu3OOfp0yuUNbhmzfWfX3N3dyfE5Gpn311fc3N3y2K9EiK2czgvan8kKmcZxz1vLKMTl2dn7PsD20GGXW7v73m72/LV3R2/+vQ3vH73Dt8uWS7PaZZL7m/u+dl//CXvru+4vLhgiJE//MH3WC9bLlcdF8uGZWsxKktH7kx4iIGSJK+wWuOMJHSylpIkr1YrXrwQZ/1P/+k/5fvf/z7eezbbe6lg/uxnP8P0d8Qw8fLlS9brNY1vsFZmgGsto7EfJodz7ThME4e+Z19Dte1omMbAoR8ZxkjKoG3DYrlmebGi7db88tNP+cl/+FNut/d0yyXPnj/jo2/9Hj/+kx/z8Xe/w8XVU7rf+xZ/9qf/gevra4ZpZBgnPvv8M1zj+fG3fo/lcomzrpZbjSR6WRxmTPHo86Zp4urqiiFFkjWM3PJuu+X29hZ7twGt6JYr9v3EYbgm1ejPtY4Pv/V7/Mkf/2cs2pZc7onjHpUmmRiqJK/a7/ds9j37bFCLi1NlT2sZRlaofS+yen/yJz/mX/2rf8UPfvADlsvlERnQRnE4HLC/+D/+jPvLjF6/4OKDBSu3JGvBfpwuWFXoGonrkYl+hAx9SOyHifv9wN124DAMfDgNKDTX9+/46vqG20NPNJarl7/H71/+EZv7W/7PP/93jESWL9YY3/Bpf8OnP73GXC55+cnHfPbqK778xVdEd0Xf93z+2R3jOOD9Jc+ePyOyJKsF1q3p+0QIfTVX0uZFjBASKUaC6xix+KcvuFqssWdXLC+esdls2OwPXPglh24k5oxxjtX6jKsnT3n6/Bnn5+cobQkh8OVWU1xDo1uyhv00srk98OrNLXebnmA8wUT2GKJ1hBgZwsA49XQYvvXhS/67f/nf86//9f9Uh5eZ4zPlCSi0rcf+7MtXdKblzZu3vH3+DGc1q9bhVCaSsbqQwnR03AlFzNQJaUJkmBtUXn3+G5qmpR9HQhRnuxkntlMkWcshSlJ5e3vHfrPn6vKKtmkYh4H/8JOfcH99w0//8q94otMRnrfWcH5+ztXVFS9eyiI1jXsU9R0jvGpGjdZgDGEURoW1jq5bgNIYLY2iTbtgP0688I5cJ0Y77yWpVJphGISFkoQtE4bEpt8z7jZsbt7x9vVrbm5uKdrSnD3lkx/+HX715Vvu9q9RSnF+dsZy8Zwf/eiP+Jf/4p/zdz75uPYznq734UMCgk4TYub2/p67+w1Pry5Qi6YWiGRgSc7C7Ui5yPjRShrTquCsZbEwNDnjP3wpc0D6A0UpfNOwsI6QMz/96U/56S/fsFx7Dn3PcrFk2XboAoftjq92e1rnWK+W9DdvpP25azi7OOPJkyc8efKEs7MVvnHSbEmRyaDiRSW5QhjhpYa2KowYNFp7jJ1Z9NKYE5OgvG/eXZOKoL+pVEKc1Poqj0wzmkIME4SBPA3EoWcaB6HsODl4ZTj0dYqp4vLsnO/90ff5/ve/x/e/913+4T/4exhVOAyPAdmHAlFKYS8/es717pq7zY777Y5hDKAM2ip0URgDOSRhmst2rAUhmUXYaId1MlDLpwu6mPCrJWfPnnG379kOE2OBPmaUXzKFifvtjpIKMQSKdVyu1yzajsZaYilcvXiKs5ZVbWQ8O1vTdS3KaDGf1j4oJKpKlpN6tSmSaZMSLtZaAoqYBMo3ZqRQjrMN3759Qz9O9OPIOE0y9QeZMNT4BucdpWnwztA5RWMsvmlxudBoh/YddrmmcZbL83MoXzD2I6tuwQ//6Ad89OFTpmHkbLXgYevl+4IopWAHpxlj5n675+Zuw2Z34MllxBonqHcuTDHReqHPlGOx5+TTxV4rYpHxFu1qSfGe0jSYIaB8i+uWfPxJ5vr6vrL49OkQEoTV7Y30l3st3UFdHd3qWk/REEpCY9DO1Gn29bwHI3NAlKnNjghJwHt/5GnpKPWK2b8IWzDTeM8wDkzjIHMIS8a5Bm8tXdtI/uUcZ6uOdddgycS+p9eK3Ba61QWLqxeY1Tk3G0lWt/cb7q5vyDHitOX+9o5F4ytK9RgNP9aGAPvV7h5SYT+M3N1vud1sedYPtN5K4pUjMSVCkqEl86T+EDNTLoQkZitlUONAiAFlLCGL6Kx3tKsFzWLNmXNcnj+RsNR6SkyEcSKOI6HvGQ493nvCtCWkQOozIUfG2NA0jcwZVI4MKGvRTobMaGtQVs7ZkOGMslPm5p1Sq5SFQpcWrMeJMAWU1tiPv8317S1dd8PucKAAi8WSs7NzFsslxhqGlFgvWhbeQgoEZ1i1Hmc9Z5dP6S5fcD+BQeGNIU4Tb1695tNf/pqXT69Ydo7h0INd/lYTBWBv+j2X2pMx7MfAZrdn349cnp/JOIhKOg5TIBcBwELKjCEyTJHDGBinwBQSvgwM44DzLcwCUYYpTGzfvSEkePr0Ge/e3gm7I2XRjAKH3YbXX73CGotpavavFV3bcXZ+xtXVFZfNOUprYk4YZzHOYawMgVS1HFzEuVV2e0WUlZhbrQXCkEb9tlKCCre397y7veFQhdF1HcvVGa4RQPAwBjQJnSMqaWznWTQNy9UZxi/pi+WQJqZxpDGG1jnub+/4iz/9Mz7+vQ/4e3/8I8b+gFkveP/xSDOKteRoyNrST4m7bc9mdyCkLBBFrFV5VfHV+scpSpFmt92z3R8YxsDbr35FUfDk2XPabsE4Jbb9KAeghETbLnj35g2H3QEypCkw7PYcdlv6/Z7hcOCDly8pjYyqXiw62q7BOEPbNazWa9brtURvvjbXO4ueGY2IUmSE+zAXo7SWsUwP6zPr9ZopRpTRvHgxcDjIcMlcCqoezDXDQhFDDiNp6lFhojGa5aLD+5brbc/9mxvOLl6wbDuZX3XoGYaBf/+Tn3B5seaHf/gHLJdLwntMl6858GHKbIcRpS13uwNvb+95e7vh+bMerQrjrkfnicuzNVrNU8dkfLVW1C6hgf7Q8+yDF7x584Z31+9AGYqyWN/SdEvGKbDfbSkJdvdbNIocIykEnDWcPX/CcFiwaDxpoXn67CkvXrzg6uqKi4uLY3i7XC7RWjMMffUT8qTC/6kUIVuThQB/ZDVWFooGbw3WatrsCCXTNS1Xl5fVR0pmPfc1ppQICRbNOV4V0jQQ+gNxDKRxwmRpIxumiXW3EN+ZEgbNZrPh3/3f/xd/78c/4h/8vT8Bd5rk8JD9Mv9scyhs+0yIWwqKi/OeXT+yOQx4UyteVBg6Z6ZpYJomtDZcPXnC+uyCJ4de4OS45fnLFwzjRN9P9MPEOEXCOGGNwivDxdMruo+/g6bI/PUgOUUKE+QoRaxVy3K15PLyksvLS87PzyXrdpYQhMzsKs3U1BPL5pqK96ch8Xmz+Tp9J8uwrnkBZFhx7ePImagyVmchT2tDzop+iJQUyKrgtMJ3LclaxnHCJ1gtPTkoLi4veXZ5wbvrG4YwMQ0Tn33xjn/7b/8tP/jD77FcnTMEqYY2TSMVy6ZhGOR3dtxmusYTlWLXT7y5vuWzL19xvl5ieca6kdbjNLMljMV5hB3uPbkRODkVWNq2TtCMjGNgmgJhysSYyUkirqZpWLZLrKnRlJKxrFLQ0qwXS6YGnG9YLJYsuoWMyqvg3NxnIdU0dWSXPyJmF1XH3L3fESF0IFMFkVSBI8e3diZV7lMpuVKJBAzUpX5l7tuTIEFXjeu6jsaLCey6FuWMVBv3B376Vz/j3/ybf8N/+z/8jyxXq69pxPy0q3ZN0rJThhB4e3OPt1/QOotTGf/BU85Xa1IBx2l0qK22N6NwvpEbb4VXFGImhESMiRSLnOhV6jPJ/CrvrNAnrcE7AdO8lTLkrmb11roTMosk5fM0hpNQSuVYqZq0n7Rgrv+rmWHx3veGUs9/E6YKOaNyRueCAELyn0GY7vPCqzoBwlRmhwJykv7DWIdVhhhlwmfJvL1+x5/9xV/yX9zdsao+b3bcJ/ppFmHcTHuUFjbDrp94/e6WVeu4XLU8PV+inlyIr7B1jjlCNHNWNKYgkYpfOUCRkuQnJUPJCor0fQDkKPV0e5zZITUNqYEruuWCEsKj3aNKrvQiOa8DYwiFytQwxxknQrRWx9efNOVUp1H150pXIidhtBSKsFXKAx5XTaZmOo2qLWLqSE6Ubitt4LA9cDgchL1ex/VVoij9OPDu5oZ31+/41re/fayMnkjZ4qtsjoqiJIlKSRNTYd9P3G133G23bPcH9ocBvKpdO/NswgdEtjIP0634kBVPKadB6sriNszNG13bofXMdZKJNDlHihIgciav5Tm55EEjjLbHwo5wueyxpgEzge7kE6hzdY9ki5JP3Uq1t11eXk60ziqIakhOVNT5ebyeU+KWsjj9GYqRfkZpOhqmxLvra968flOrkw+aiI6zqsD2fUAtPUVlYhZVj0WOv+mHifvNjnfXN+jLtRy3aYWZd2xczJkYpSIYxhEZOm+OfX6z4CptDmsszgl0IR1FwqfKRYQQ69cjmzCfzuJTnE4esMbW4x/mcFHXSmSu61koKR13+0kgwkiv9Oj3puKcnsf+Pubq8GlGI0VqFbLgQFY0XUtWSnCtue7tLI5IjInbzT2vXr965OPen25qS5KyqPRPV+afkuGf/TByc3tHZ2QEtdMF1Xiwp7puSieENUwBpZIslAE9H8BXVR8AbeqCzUy5ugC6GgtdO4UqeTorJWdA5UJOhcIk03MWRrpK8/xeUm6VHsXqNyqqfHKSuYKeVQtmTGemlXIyQ8KWrz5Hn+5XkVFaWOaqMgK11izXCwrSiTtMEyFnLDIyNqoBFLx5/eZYyp79xcPKqV0sVrwNO4wqcrCt8iiV6fuBt9c3rBycdZbdbkdj5eRJXQ/1gBNpwXvPGA6ye5SwPk72XEOpA8JKqtTOSuUsSbhVzMzxhM5zS8DcAqzlxAJyHcUEcQrVPGV0Pd04VzLz3DSq4nQcAPlIK8ocRZWT3Z83Sy2hfp2gXH0GJ9OkjiAlQGacBGyUhptSZ5QI98t7y/XNdSXPnSKoef2MzNg1DLsdzUoYejYbmPbcb7akfsd5a/jk2x/QjyPD6OVUSmslDNSgtENrLclamWp3qDAljLEyXBIruz6LJ5TBWtK3IHF/ZIyTuLse1FhR4SN1/zHARil1mPzcNJmqMDIpFWKS2Vk2n/zPNwmjlCxzUXKdSK1n0yTlg7lEl9XctsAjAc0UTaXg/v6eYRxxjaftWogBpQ39OJBiZIVnt9udfMT8/g82tH2Xfs7looPSU3o5lFCGDDu0bvj0TnH3k9/w/U8+5sNnjo8/Oudp8ayT4aw4nlysIU+UKROKzIvFN2RrKUoxIke3aa2xXmLvu3gvoae1aG+gOIyunX/O0+x3lCQ0zVwduTyrKSsZ69di3RMULS3L2ioxXVMmq8CCHarU2kWCVEHNKSTheGU495doZxmmEaMNTetJObHdbmgXHTFF2N3iz9Z4vyDGwmGK9FETzZLUypGj/fSKRitWVrHSGZ0j6EzRigG430387M/+kteffcHlci0TerTBGkueAs6Y2pgh++pRCJgqKDhNE+Oo+fzzLxm2G9KwZ3d5xuXZghdXF3S+1sgdx7bgx9OfZVpOVhzN2Rzt5HTauTMnK4TAyreMw8A0TozTREEK+8bJ5J+c4HA4yJRq50m5MOx2x+k83ssBh2+vb8gpMU6RaQqSdPqO9dklz64u8E3H7tAfs/dSCjGK6Tz2oEThF6dYmNRESuLDoNp6iSgEG9Nzb4qsqTFSfNI2YWKg5MI4jnVSw3uqBlhBOvMxalBKQLZSpIVqHEd6Xfhyv2V76xgPW+6vznnx5JwS5TSZrrF0TQNLLx2pOteLmkPL2jpWCiXlOnEHgeSTmJiZZ5RjYH8IYv+L9EEc+p5+HMm54BqPb1s22x1oXcd0S2Q12+nb+w1hCizVhhyzwDOHgRAi1njW6y2r9QbrPOv1GU3XSrSmJO9I9Ty+OfAwNfuXQ1AApdFWDscLQQBT5zxNu6BrO7z3DDHIIIIoeUfOGZU1+/1eaKdNc/Q7Rwqt1pr6CSenpCQ0TDEyhgmjMq2z9OPI/WYrZ0p4y/4wcBgnjNZ4B3mamBtMlHIcezqozryekWT0PF67DiNGIi/Z9UJ/EYcmI1VTObDbH9ju94DCeserN2+ZohzJ0LQdy9WKxWIBWrPb79lstnTlQAyh0oliHRpm8P6Wtn2Ldw0ffPABV08uWSwXOGck0sq5tlYLRJNDZgoBOWfWEItmypH9cODd7Z53dzsmFOMworTGNx4bRqYUCVMiI0hwzpnNZsM0yVCy9yER0YySJSmrTlIrRVJSF55ixKhC6x0hCidq348chpHDMHEYZHS3b1o5GKtGC8dISAvuNJuwsUw4XemdeU605m4m+Z0yTk4mmyb6aWIIkTFENtsd17d3QvPc7Yh1hIN1QiRouw7fNCilySWzmXb0h55pnAQRQNUIW9F4z6JbsusHPhoGPvjgBev1sobVhfk0TG8t20MUL64yWVliUez6wJvrO37zxRu+fHtLUpbX1zcMw4hSwj+e6pB/bQ2uaRimnvv7+xp8qEeDjnPOVRhZijESYmlKkarYjOeHqAg5QYgM08QwThzGid0wsdn30r3TdizaUzva8XGMSiSHMfXUSjWDbLM5SzXuT9JS048ju92e/eHA/tCzr5/1xatXfPXqtThs88A85Uym0PiG83nWrSkcpsw05TlGIsbMOPRopVkvA9e3d0wh1FA9s1g0OCsz4Sm5jsbQtT9Q8q8xJDbbHV+9esOvfv0pX7y+ZoiF/RQ4TFMlaxgUut6+lID70nN/L5ohIfV7wtBaE0qoLIqHrb7U0XByhFtKEorGAhFFyHAYZ2FoFsvAspqmUjPgVIcQU6DoTI5ZhJ1Sxa6E4Z6TZOCzmTqEzGEY2Q8jm/2BzXbL3d2G282WwziRkDGsap6yE0NlMY6UsmN7GFhv97x8+ZyoHTQWoy0KRRonQh+YDgP9MMlw1FJovKMQefrkgvPzNcZ4Yp3F1XYraahEk7KCMNKPgdv7Dde3d9xtNuyGiSlBRJ6lxr+lcMx7ci5st5ujZsyVyaPPmM3U3P1z7GZFzqGYJeiblmw1vlvi2o5iLH1I3G5lhkezXLNcGMmSsyLZUokKElokU/A1aEqVzzvbypQScQrHjPR+PzFOge1h4OZ+y7t377i5vWXfD3TLM75z+ZSQMiFFpimiQkD7FttODOPI9jBwfbfh9jDStS2LrpNGFm1RyuIXawqaqT9gjeHt9S3WWVKF0xeLFmNWDGMkZ2iW55ggtf80JaaY2B96Nrsdh2EiFxk6E8LIGGMN5gFKPaK6MAwDOcNutz+e6aeVPra8pZQktJX1yigtCKU5+g+x5Epr9sNIjuOx6zVMge1mx9t3N6xax+39jtZ9l9VywZTkBLE5zJVZIxq0JaTMNMnpj3OWK00kIyVnnHN8/uoNt3d3vH79mtev33B7d884TbjGsz6/wHSOly+fcegHNrsd5dDDNIGZKMaR0EQUX7y9Zb1c45tQ4fFC2zRcrNcYv4RQ8J1jc3PN63c3OG9Zny15+cFLijaEVCBEspPjiaYpstuPvL254/W7a96+u2Gz3ck55UUzjYF9P5IUGG8x3slh8IgL6JFg4gj/P3DeUKfqmDmkzXKGHSiMc6zXQkVMIRKmEaM1U8zc9wMhJcYYOQwDb1Li57/6Db/46b/n7/7dH/LDH/6Qly9forVMvUxJMYwDr/c3lbtrjiYpp9MMqN1mx/X1NZPruL7f8erdLXfbPVkbVucXKGN4e3PLX/3il6SUWK5WPHn2nMsnT1hfXjEMA2+ub4iHEYxndXEh5Oy+2nEUU4SUNcuulQmfr77AG8UUM6/eXKO0ZrU+4+ziQk67bDxDTBz6SQ7t2vdsdnvGMZKxpAJDiGz7gW65JtTTeWzToJ1ld9hjvFQiC/Dxd77DixcvZOBxlmmih8OB1WolmqGNIudECFkuoI4Y6vv+ASe01pcLqJgxJqNTHXqQCiEVfvPqNdkY9lPgW9/+Nk+fPKFtpGlzGmTQbw4JSmYcJ6ZBtMF7z7JboJRiGCPFZJrFgifPXrBYX6C0ou1afNsSc2EMgZ/99S9Eo0JkfHsNKKYY2Pc9hynUsXpjHW8EZDCqRm9jIGdFGCNFO0KO7McojZnbPe/uNmz2A10rdZhpyowpMQQRymEIDDFXSmiLiQoGYeLPG9k4e8q1OFUo55OTS82JdCmnYyYENYQYBUFVWvAWOdl3AqSuTKrYTg2UxIRFglGQEimASplPX71hO0W+vL7l6vIS7zw5RjSKpm2ZhkGOgQ5BQs6UsNpIZl4K0zAyWU+IgRDkSAiMxruGtuukL8M3vPzwI/Z9z3a3Y7ffM4yTUDNLJqMJWVrGlBKY3Vh1bGnIyhByEVRX2drSkAkR3GbPm+s7bjc7bHNJior7/YFhGNnsDlzfb3h3c8vd/YZ+nI5MFG0sU5BRAdY5nHVM9WjqkmXCj7cKV1GEGCMpyuvnw90rHDLDxnM0KjcV6xg8mdRsZREpx5i9IPVrsnTkOGNIMZO3e4b8hlfXd8QQGPuR1nsuLy8w6Loo8xFzGmsUUwlVSJHbzf6ERRWpwikz4MeRVYg0iw5tHMZllB1JiPkMKYGq+FNMYCXJw5jjSNdjeBoTU044rZhSIZRMKorDGLnfHbjZHFhfnJOS5DfDGLjbbLm+ueXNuxve3dyz2x8YatOo0pYQR9BGRr9qQy7jMbpPKdG0suHGcaxaJA9rrbTLqVq7sFbJQbD1/IhMHeeTxCw0ujYvziEpCZSM9lE1ax5zwVklucIQoJ8Y+p5+f8Boy812z+X5Bd5aOeHeOZzVOECXIqOQjGdKvYyDqIyNuWlyTJkpFtwwYJzsprGCfmNMgmNV9CDkQpkiWoMtUvnNuUi5O2VKDJQYWTSOmCTnUUUxZsVuCNzt9lwcRsahF17YENhsd9xtdtxttmx3Ow59YIqRmDLKeij1GLqa+6QswU+uIzvaRUvf93ImSEo4fxpXfoRDUpWOjCYVyr9BywjumAk1fMulJohIIqeiVMxUEei6D4mmKWSbCAThRimDajpizNzuDijrcdbSuoa2KXhb+99yqZm6nFGRSiHEVON7MBgR8jjRh4lUDmhtiCnJ0aQhMowTZYZgrGccMlpLx2zJmYiqswWTtDmEVPvx5HROnRVThsOYuLnfsbrbcdjtJGQdJilB9z39ODGFKAgACmXtMQm1dYx5CJEU5Wi8XPE36yx3d3dHKL01nUBPD+EQo1U9CUBOItYZ5HhMTdFyOqTS0qMmI+yKnBqp555rmSnVJ+Q87tTj7IT3jq5rWS5XkAtTP/DubouzhuViybooGg8lJcZexkdYY1ieSZIVHmiosnJ2H1oYF/04Qq00jiEQS6l9Fqqe3tySomBZx0RU7MWjauDuMLLsPIlMKhk7OvbDyLvbDX5xzX6/R+fIOIzcb3bsDwMhJoFWlZLzOownJAlElDNMMUrvYY5YLw03MrAYrq+vj8IQuEgd25EtgPe2dmkajLV4bQUQi1Jd6xbm6EdKknmyWYIoqr8XIXoIGaapoKaIjzJlx/tWjnW2ntdvN3gb0NbRdgu8rswRU4//aVvut9t64Lq8uTYWlyT7N8bJaNachRKTEqlkjLE0rQUl0za11vjGVXbKXMgSDUmZ42L2fU/TOEKYKDmSS6btPK/f3YCtidz2nr4f6fuBvh8ZRhkWllKhaEXjG9IwSh0cOPQ9h8MBbQ1NV52zE6Hc3t4yVo6vzIQXKL5tW9GM1jekuqjOOaxvSUXT9wMmKzrn6fu+Mj3mWbWqDk+Zs0ZdowrQTh/5rcMUeXdzR9c0OGO5uDqr4YelHyfpFa9HvzVNQ2us2Hatj2iAjL2odBYr53X0d/fs+wMhRox1dQautLvtDgdA+ktIMxyRyTHVKQ/i+xQwpkAqME2RaRrJpbBYHPDtBt/KyfZvvviSw6FnnEIlUGhyVsSsUK6hHkuOd46QpJg1xYTTp1EeSimmaTpC6MfW7jruz3vP/wf9ilRYHtFPNwAAAABJRU5ErkJggg==\" y=\"-28.587873\"/>\n   </g>\n   <g id=\"matplotlib.axis_3\">\n    <g id=\"xtick_4\">\n     <g id=\"line2d_9\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"152.011698\" xlink:href=\"#m839a88af9b\" y=\"127.587873\"/>\n      </g>\n     </g>\n     <g id=\"text_10\">\n      <!-- 0 -->\n      <g transform=\"translate(148.830448 142.18631)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_5\">\n     <g id=\"line2d_10\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"207.960896\" xlink:href=\"#m839a88af9b\" y=\"127.587873\"/>\n      </g>\n     </g>\n     <g id=\"text_11\">\n      <!-- 50 -->\n      <g transform=\"translate(201.598396 142.18631)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-53\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"matplotlib.axis_4\">\n    <g id=\"ytick_6\">\n     <g id=\"line2d_11\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"151.452206\" xlink:href=\"#me6af93a7b3\" y=\"29.676777\"/>\n      </g>\n     </g>\n     <g id=\"text_12\">\n      <!-- 0 -->\n      <g transform=\"translate(138.089706 33.475995)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_7\">\n     <g id=\"line2d_12\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"151.452206\" xlink:href=\"#me6af93a7b3\" y=\"57.651376\"/>\n      </g>\n     </g>\n     <g id=\"text_13\">\n      <!-- 25 -->\n      <g transform=\"translate(131.727206 61.450594)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-50\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-53\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_8\">\n     <g id=\"line2d_13\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"151.452206\" xlink:href=\"#me6af93a7b3\" y=\"85.625975\"/>\n      </g>\n     </g>\n     <g id=\"text_14\">\n      <!-- 50 -->\n      <g transform=\"translate(131.727206 89.425193)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-53\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_9\">\n     <g id=\"line2d_14\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"151.452206\" xlink:href=\"#me6af93a7b3\" y=\"113.600573\"/>\n      </g>\n     </g>\n     <g id=\"text_15\">\n      <!-- 75 -->\n      <g transform=\"translate(131.727206 117.399792)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 8.203125 72.90625 \nL 55.078125 72.90625 \nL 55.078125 68.703125 \nL 28.609375 0 \nL 18.3125 0 \nL 43.21875 64.59375 \nL 8.203125 64.59375 \nz\n\" id=\"DejaVuSans-55\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-55\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-53\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"patch_8\">\n    <path d=\"M 151.452206 127.587873 \nL 151.452206 29.117285 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_9\">\n    <path d=\"M 249.922794 127.587873 \nL 249.922794 29.117285 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_10\">\n    <path d=\"M 151.452206 127.587873 \nL 249.922794 127.587873 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_11\">\n    <path d=\"M 151.452206 29.117285 \nL 249.922794 29.117285 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_16\">\n    <!-- Visage trouvé -->\n    <g transform=\"translate(159.440313 23.117285)scale(0.12 -0.12)\">\n     <defs>\n      <path d=\"M 28.609375 0 \nL 0.78125 72.90625 \nL 11.078125 72.90625 \nL 34.1875 11.53125 \nL 57.328125 72.90625 \nL 67.578125 72.90625 \nL 39.796875 0 \nz\n\" id=\"DejaVuSans-86\"/>\n      <path d=\"M 44.28125 53.078125 \nL 44.28125 44.578125 \nQ 40.484375 46.53125 36.375 47.5 \nQ 32.28125 48.484375 27.875 48.484375 \nQ 21.1875 48.484375 17.84375 46.4375 \nQ 14.5 44.390625 14.5 40.28125 \nQ 14.5 37.15625 16.890625 35.375 \nQ 19.28125 33.59375 26.515625 31.984375 \nL 29.59375 31.296875 \nQ 39.15625 29.25 43.1875 25.515625 \nQ 47.21875 21.78125 47.21875 15.09375 \nQ 47.21875 7.46875 41.1875 3.015625 \nQ 35.15625 -1.421875 24.609375 -1.421875 \nQ 20.21875 -1.421875 15.453125 -0.5625 \nQ 10.6875 0.296875 5.421875 2 \nL 5.421875 11.28125 \nQ 10.40625 8.6875 15.234375 7.390625 \nQ 20.0625 6.109375 24.8125 6.109375 \nQ 31.15625 6.109375 34.5625 8.28125 \nQ 37.984375 10.453125 37.984375 14.40625 \nQ 37.984375 18.0625 35.515625 20.015625 \nQ 33.0625 21.96875 24.703125 23.78125 \nL 21.578125 24.515625 \nQ 13.234375 26.265625 9.515625 29.90625 \nQ 5.8125 33.546875 5.8125 39.890625 \nQ 5.8125 47.609375 11.28125 51.796875 \nQ 16.75 56 26.8125 56 \nQ 31.78125 56 36.171875 55.265625 \nQ 40.578125 54.546875 44.28125 53.078125 \nz\n\" id=\"DejaVuSans-115\"/>\n      <path id=\"DejaVuSans-32\"/>\n      <path d=\"M 18.3125 70.21875 \nL 18.3125 54.6875 \nL 36.8125 54.6875 \nL 36.8125 47.703125 \nL 18.3125 47.703125 \nL 18.3125 18.015625 \nQ 18.3125 11.328125 20.140625 9.421875 \nQ 21.96875 7.515625 27.59375 7.515625 \nL 36.8125 7.515625 \nL 36.8125 0 \nL 27.59375 0 \nQ 17.1875 0 13.234375 3.875 \nQ 9.28125 7.765625 9.28125 18.015625 \nL 9.28125 47.703125 \nL 2.6875 47.703125 \nL 2.6875 54.6875 \nL 9.28125 54.6875 \nL 9.28125 70.21875 \nz\n\" id=\"DejaVuSans-116\"/>\n      <path d=\"M 30.609375 48.390625 \nQ 23.390625 48.390625 19.1875 42.75 \nQ 14.984375 37.109375 14.984375 27.296875 \nQ 14.984375 17.484375 19.15625 11.84375 \nQ 23.34375 6.203125 30.609375 6.203125 \nQ 37.796875 6.203125 41.984375 11.859375 \nQ 46.1875 17.53125 46.1875 27.296875 \nQ 46.1875 37.015625 41.984375 42.703125 \nQ 37.796875 48.390625 30.609375 48.390625 \nz\nM 30.609375 56 \nQ 42.328125 56 49.015625 48.375 \nQ 55.71875 40.765625 55.71875 27.296875 \nQ 55.71875 13.875 49.015625 6.21875 \nQ 42.328125 -1.421875 30.609375 -1.421875 \nQ 18.84375 -1.421875 12.171875 6.21875 \nQ 5.515625 13.875 5.515625 27.296875 \nQ 5.515625 40.765625 12.171875 48.375 \nQ 18.84375 56 30.609375 56 \nz\n\" id=\"DejaVuSans-111\"/>\n      <path d=\"M 8.5 21.578125 \nL 8.5 54.6875 \nL 17.484375 54.6875 \nL 17.484375 21.921875 \nQ 17.484375 14.15625 20.5 10.265625 \nQ 23.53125 6.390625 29.59375 6.390625 \nQ 36.859375 6.390625 41.078125 11.03125 \nQ 45.3125 15.671875 45.3125 23.6875 \nL 45.3125 54.6875 \nL 54.296875 54.6875 \nL 54.296875 0 \nL 45.3125 0 \nL 45.3125 8.40625 \nQ 42.046875 3.421875 37.71875 1 \nQ 33.40625 -1.421875 27.6875 -1.421875 \nQ 18.265625 -1.421875 13.375 4.4375 \nQ 8.5 10.296875 8.5 21.578125 \nz\nM 31.109375 56 \nz\n\" id=\"DejaVuSans-117\"/>\n      <path d=\"M 2.984375 54.6875 \nL 12.5 54.6875 \nL 29.59375 8.796875 \nL 46.6875 54.6875 \nL 56.203125 54.6875 \nL 35.6875 0 \nL 23.484375 0 \nz\n\" id=\"DejaVuSans-118\"/>\n      <path d=\"M 56.203125 29.59375 \nL 56.203125 25.203125 \nL 14.890625 25.203125 \nQ 15.484375 15.921875 20.484375 11.0625 \nQ 25.484375 6.203125 34.421875 6.203125 \nQ 39.59375 6.203125 44.453125 7.46875 \nQ 49.3125 8.734375 54.109375 11.28125 \nL 54.109375 2.78125 \nQ 49.265625 0.734375 44.1875 -0.34375 \nQ 39.109375 -1.421875 33.890625 -1.421875 \nQ 20.796875 -1.421875 13.15625 6.1875 \nQ 5.515625 13.8125 5.515625 26.8125 \nQ 5.515625 40.234375 12.765625 48.109375 \nQ 20.015625 56 32.328125 56 \nQ 43.359375 56 49.78125 48.890625 \nQ 56.203125 41.796875 56.203125 29.59375 \nz\nM 47.21875 32.234375 \nQ 47.125 39.59375 43.09375 43.984375 \nQ 39.0625 48.390625 32.421875 48.390625 \nQ 24.90625 48.390625 20.390625 44.140625 \nQ 15.875 39.890625 15.1875 32.171875 \nz\nM 38.53125 79.984375 \nL 48.25 79.984375 \nL 32.34375 61.625 \nL 24.859375 61.625 \nz\n\" id=\"DejaVuSans-233\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-86\"/>\n     <use x=\"66.158203\" xlink:href=\"#DejaVuSans-105\"/>\n     <use x=\"93.941406\" xlink:href=\"#DejaVuSans-115\"/>\n     <use x=\"146.041016\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"207.320312\" xlink:href=\"#DejaVuSans-103\"/>\n     <use x=\"270.796875\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"332.320312\" xlink:href=\"#DejaVuSans-32\"/>\n     <use x=\"364.107422\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"403.316406\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"442.179688\" xlink:href=\"#DejaVuSans-111\"/>\n     <use x=\"503.361328\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"566.740234\" xlink:href=\"#DejaVuSans-118\"/>\n     <use x=\"625.919922\" xlink:href=\"#DejaVuSans-233\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_3\">\n   <g id=\"patch_12\">\n    <path d=\"M 269.616912 127.587873 \nL 368.0875 127.587873 \nL 368.0875 29.117285 \nL 269.616912 29.117285 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p7459b3e2e9)\">\n    <image height=\"99\" id=\"imagef02dc22d8d\" transform=\"scale(1 -1)translate(0 -99)\" width=\"99\" x=\"269.616912\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAAGMAAABjCAYAAACPO76VAAA9cElEQVR4nK29Sa9sW7bf9RuzWEXELk51y3ezeulX2O9JtoVpgJBoICFLNKHHFwA+AX2+DJ8A3KCBkAxuPASysWyn/eyX+TLvzXvvOWcXsSNirTUrN8acKyL2OZdMG5a0tasoVswxR/Uf/zGm/If/839frMlcdzNGCu+PG46L5/HtFpktZUyIy7SrJIEkkPVLgmAWqf+E7t6w+bYQB2G5heIg9YXsC+k6gSuYPiGmYG3GmIL3ESsFYzLWFN5s9gw2sHEBbxKdiXjJhGLIxeBNwlDI6PveLyNPsef9ccP9YWRZLHF2lGQgCDJZunsDUsgdmFkYv4f+LvP6H35N2R8RZ8EY/Rz59HnXv7UrJUopkBKUArlAyeA7pPMgdS1EwJrTzyIU++y1nl1OpNSPBLkIc3CEaHVtTTk9sgClCqGI/g4noRSQrI/LVoVQHGRXKPV3bEFsQUzBSMEYFYAzGZGCtxlbf3cmYyRjKHjRnz2QpWAoGMlQzCqQXKSuXcYYg9gCpVCMgC0UVyhtnQqQwSQgZcgJsD8sgI9dYuqLANmAkd/1jN95udt+Wn+Zouf+mxvM0cBNxFwHShLVhskiQRCjQpIqEDsL9ijYCdxBF31+KcSrwvJKNUH6hHWZzbhgpGCrBnRONWLj9e+dSTiTeNkd6U1ktAteEr2JWMmEYknF4CVhJXNIHYfc4UwCoHeRTWfoXSL2gSVa5tlTRmHZGpgt7tFChv4x0z0kym5HPk7YNwO4M4G0HZ6yakApq8aICMUAWNUMA2LMqgEq0DMNkd9PUK6ziVyEfeg4BI9EwQQhG925KesLSRYkCYWCIJCBIkgCSbrLTITYQRrUNDEkjMv4PmJtZvARacKQQu8iTjKDjTiTVmGMdqE3kY1dMBQGE1RLciGLYChYySpYTibFSMGZXIWtuztGSzFgbSYK5IOhWCFb0V0tBhHRhW47/PmipsLzS9r/rajZOr+evwaohv4uYQw28LgM/NUvP0Fmi3s94b+ISLCUbJBqqoot4ADRL3cwuL0KgwJhC8dP1BzkPkOf6TYB7xOb/qQRAnibcCbTWxXGxi04k+hNwpvEjZsYTGBjFoxkbDVLByBkh5WTABIGK4XORF2Haj9FCk+mJ2az/p66yOwz80vD2xee/p3nq8ef4t/tKd++hWlGXtxQnEVCVK2IUbXiJIWTGauLLevfz4RQ/1fMuWB/h8+I2RCyRQ4WMxu6LyK3myN3TxvCYvR1pFCknF60gEQwi95JEchdddBSViftfcLbRGdT3TDltHsl05mIkUJvo/oGk3CS8PXLSMaLPvdcA5LaCHKRk6+QgpO8mn4jBW/T+p6rbxwWkjcstrCUjulNB6Xgv7eQltNCNtNUCqWUkyacC+WHTNK5IM4f/zsu93//1Y8gC2XIpFE/8BQc1mboIvPkNSoxUFzBPVrsUTABioF4VQhXhTIm7DZC/dBdH7jdHJvs6Gzi9bBfF9FIYbARI5nRBpwkRhuwZDLClD0AQSy5GFIxzMUxZU/MhlD076EYNWU2Ek1mSfr3WAzOZDb9whItx7lTE2mb3S/k68g3/7Gnu9/wB/Yr3N0ReZqQJYC1+tWipnYZU7+qhohQjCC5XDzu30UjVmHw4NV21hC2FIjJ1teoJiqfoidJYOcmbUgdlE3CDBHn47oJOqcaUYoQcl0YtwCwZAdQNUE1xJJXxwyQEUKxmCqEVAxzdutXe40W4hrJmCrkXO9VtS0TxZKSwZiCs7lqO5guUT5PTGPH9LpjyOCPC5LSuqvFmFOo23b9M0FQHfqZ9Txdv6fzxgiOLCAF4xPGFkKw6vSyUIqQZwvB4B4sdtIQNnsIV4W0TTBk3BAxNmNtpnOJoQv0NjG6oGYkel20al40NFWzoj6hOuP6aUK2JAyH0pGL8MvDK3bLwJwcMRv2c8cSLb2P9D6y8YGtX9bPlYsQs4a91mScVZOpG82Qc7P5IKaQN4m7P+7oPht4ZQW3mzHHACFWx15g6MC7dfGlRlk1wj5pxvPFP9eq9vO5UM8E5lYBGjA2k5MhF9HnFSAKEgU7CX4PqYfsC3nMmOuAdRnnE1LzBu8SG9+StUQsRh23lNU86ZcuvJVSN0ZZBaUmSJizJxTD2+MVj1NPSLrD58mTZ8s8RroukkazCtPU92l+pb22MZmcDTkLOcuZuS8Un5hfFbIXlhcOKQWZ08lPlAzOUpw9+YNSkFRWgXxgop5f5dKMnXbDyZy5so1gwFhd0PW5SSjJYHeqESZCdhC3hTQUSp8xBpxPjP1CKapJ1uS640+L7I1GT6fF0dC2CSRhIMOE+on3y5Z96vj66ZZj8Dwde2KwpGAo0Wj4Ygo5GubsWWbPe9libV6Dht5HjdhcpLOJ62FWjUmWXCAkS86GlFRo4SaResPbP3f4neOL/23BvLuHvkOGXpduCatApNrC4qzmJzEhKZ98xfP84iOaUJovMfo3p9CE+ofz55YsEAU7C+6gNrHYqhVDRnyG6hAHHwnJEpNZIxdzJljNpqttp6ggOP0/F1HVzCqYXex5Cj3vnjbMsydHo4nnbDXX6TLiyykhDQaSkHwm9onQ1Y3lYDyL4HIRQv3ubSZlw3Hxal3GSPGGY2cIOwvOUJYFtiN4h0wLpKwJ3zmsYQzFWiRr1HWxiM+jqfO8Q2QVwqoZvo+nRclCAXIS7HuPndRxx7EovCGQrhL2OuiiG/2QvuYPRgqdTWuU5EwmZsNSnPqJmi80rKllzi1EXUpHyJbHZeAQulWzcBmsYAaN1kpWUbZ7uDTFuqnm4ChF6GzVFBvX90nJclj8araMKWxvJnIWjvueCLz/W1dsX/0h479+j9w9Ql99hq3RVI5rVi7nDv4jC7+GyuG01nL++LZp1bEJMZrqJxRrck8Gv4flWsG1UjEms4mM46KCK1Kjk7Kaoc4kOhvXhTz3EWrXC33NL1oOMRdHLoY5OY7Jcwgdx6Amy9is0AuwGRZ6H9nPHSFYnGvZtsIrKUs1P0KMFmMKIau2Ol81o5qXENwqCGszN+Ok/w+WkIT9l47Ue8a/MuTHHeb1K0pvV3Oj4Sy6yA0yeS6IXE7akQsS00f8Buvf3Dw7RMC5hIgh3HnFpkSR19wrtFG8gmLe6aK6iuRakylFkApveKuOu+34c3MF6qDPhZGLMOMIxbBPHUuyqmEu0jkV6hQcORuuh5nRBbbdQsqnxG+KbgU4w+LUABYhmrL6sRuvGNxgAzsZeLAjIoJ3mhg+Tb0GLllBxunTTNwItz+6ZchZfcISKH0Hxmg0FaIusDUf9RPFCCT08SHCcbqETlKq3zOUjEvBIga6LgIZt7O4vZBdIQ9FBdFl8OonbN2NriKsRgoxG3oX6W1UE1SFkYpGLuf+AdAMu8HgIuSo0PgUPUu2iuCazE0/0ZnI3bxhjo6rbmbjFjqjCzglzTe+P2xXQaTlBPYlo5Ghk5MweuN0kxi1/2On4ffjfiAnoxvLFMrrhWVrOX7qcYdr3Pc75DBB5ykiSCmUJejODyDOnZLBekluZksFV6Zp1ZIVhs+ZEiMlF5x1urOf7keIBiuQhkLuKvTts0ZgrmCcOueUDbYmhLZiTufRkxM1CYkPBbGaLVQzQrFrVBWLQjNGCkhht/SUMjAnS0yWX0+3pJonaKSoHzYulrzYGoafnGsIhvfZMG8dr4c9zqQKx6tZTdkQajTVdVET1KBmLkVLcYWnrwyx3/DmcYZv32rdQwRiWqF3sWZdWP2QZw7+HF7pezVdOanDb/8vBbHgnE/EYDF3HruoRqQe8pjBnhZSbMbYc4d7iTW1RW+hbNOKk8tqwjhl2lbyRT0iJEtIlr76nPfThiXaNXfYvd8i+wrlJwFTFMouYBuK3CJogTwLeTY8Zbi/Hdm4hWuvRTRXYZGcDSKFTRcAOIhXgSeL2Mzhy8xyK7z+x5b8tMdtRsRaSggqABHA1J3e3jxdakgViHhffYyhpPrJS31OKbhlceRoEKrvHooitKCFoy4jTs2TqbC6IrCKQdkK+pUizMlx5WdGs3DMGhnFihMZhFgSS3YccsdgAld2ggz72HO3jHz9eMM8O+LiKEmQg4MEpasRFQq9aHR1Kk61qlFKhhTMWvAiA0kos+Uvv3uDtRnnkgYRPmJN4emoUZuz0xpgsG48q6G8F8KLgeGLz3TxW1Qkpn6Jrh/lMpxtgqiL3XzEB5B71RCXjg6yYIqm9WVIiM+Uo0OSIF2i62MNGctZ9JLX/MFIYc6WOao9vnIzKRqWbFmSIySLNZkpaoS0jz042BiFMPap427e8PRug3ly9O8NdtZilSRYXkDcFJbPIt31zKubPa/HA53RhK5p5WMYeJwHpug4Lp7p2BEfO2SypPsNCZgN5E3m85+8Q6SwTApCpEHqhtPozftEMoW5c6QoTK89/otX2PdPcDieIqXzxW941g/hURUBXsGz9Xlq1pwcrELiSdayJAK4TLGCEc0/rC01qjsldVJtvyZUCRwXkVTMqhUZIWeFOKbkuJs2ZIS/KD9mio7v3t+QFotM6nzDbSbUzYGBPCbwhc3tketRUcp3xw32rJjkTWJOjpANqYbdgJZcyxlEUb/t527d3IhGXS1Cqxu1WiAtCUwvDO6LDdvDAg+PYKx+tV3/e15rlbAJM9fyLeD8g8ILxeoHX4U1pFPlMZlKHshVO8rFQjhRkHGwGlGlYojF6lc2xKxRylwcx+C5e9iSJov/zmMWYdirpZlfFtJYkM9nhnHhqxf3vOiPa82iwSy/uPuE+9243qv3Cn/ohy2KBlRHLj5ruunLqW5f4HDotV5uU61oXsLczRKIy5ROOHxuSb1j/KZDphkZh9UHlJR/vxp4c9arQE4CAnBIrUtsMsWV1WkbUxCTV5jE2lx9RLmIiE5JXS0gVaAvVc0oDdaG1bY3ELJYLUotVn9O15niT4FCy8LnpNm0ryZpDgoH5CKaT6whvt5LjCfkWW9KK5Cc7XRz9tlMTVhbvgScAEWjPjRtCiEK2VtsKVrr6DxlmrUaaI3+7fcUyPqzqeuSC65YZXPIqwVfI6uSBesS1mYF3GxeVb/5itVvVNijCQLgmDzH5EkVxm5hb6IyW1J1uKOGzVxFxGW6LtYFUtNydxi5l4Hp2JGzwbqEc0kXuigulaOhZMjJICZjaxkgHd0KkWMK9BmxGT/EtcgkoiXg51cposFA1BzM+ER4YUi9IfcWEyLGGE0ADxP5cMCMw+8WRquNNIcvZ+phBJed4k5SF+G5EK0p9YbtKXLjHOrIl6AfUs2TXcNWKxmDkI0CdK6PJKvxPAK2U8F3XVwhdVC/U1BkuJTL3atwv9UqZRaygMFQTFKNqKEv5mwzCmsE1qLCFuKuxIvmP6IlJ1kDJkTD6HDt6L/8TLPqmn2bvl8F8YPO+7zqd87LAn2DknHpKoPRjHd1WhVskwZLVAZJKXY1BYayakXb+Yr9qImaaiHIGWV/ZASbK0fqtrBEy5MfALX51mRux2mFV3IRjsGTsnB9NWOlsJt65uBwTn1XDJrolWIouShKkOVEtAMw+RTmorCPwi2K7A4NcoludfoZFK4PBjsmjMkkA5jC7g8slC/Y/PoJ8/YBnENurpXc9nyRf0ggH/2fwSn7DEo2ZNEPqdmgop0tGQNq1JLxtfYRi4HkLjCoXHfYkk8fzkjGSaEz+veYldERe020NObXrD2nk6rbClk0QevnOau5NEJdVJub6+ctyVTSHSoI1JEbewrPOxdXpDlX87sKo4BxhVwKJaPOXQrFF9IohCtDcab6ijMmIlyQF87zCU3wSnvQhRCoaIbDqjBy0p3fDwvWZrb9gjeZY/BMyTB0gc6mFR+akleUte7izqjwQrLMVUC5Ol3VjsCr7sCSHb+Va2KxXFVK6ZWfidnw148vWaLF2YQRGH3A1ntosIWrdYgYLSUapFYiJUHuDSkliEY1RKAEg3SJfhOwVotaziqdFTQ4MMDGh3XjiRS224kQLcf7ARYDY8L0gfmlRZJh+2uHCUEXvlFDczOlH+YShY9U+loEZlwVRrWHtGikhq0f241tgdccokZLuQhRCpJVWxpXqcD6uFxBO0Nh4wKxJJzYyhIJRLFsu4XOmdNOQndlyopHNR8SgiVFqzzaWE1QVu0gmjXzlpaB1/uXKoi2QVQYbV3U/Jaisb+ziYJiciWXlT+WvZL0FMRT0yS5fOgH/j0uJ1YjGt8p688ZzSemRbPloQv0rqyh6pycZtzJMUX9WahlzLqzYlu4Ksx96InF0htlDn7WP5IwmolDhdQznw47AB7CyDF5fr17wbHC57kmZTkLy0OP2VtsFExSS1VswQShRBWCRMEkJWWHayFtA84lrvpZay4mkos5mVJqEmsL3urfOpfIN4YYDWFx5GBgLMwFsjWUaa4wyEcuIyftKLlGAb9DGC38+yFKaCmimnN2td1aipA5kQrKmSadBW2agRdhrvQarJLSRqtwiBLWFMVNGFIRlmTZzx3H2a+vm5KWX2UxynwXDctzV2H+dv9FhVEmg1kUyk5RTVtDDtplTb74jiiP2NuEyYbeB4zRvEVEi2zZC8UprVO1QrNpkY9QPf8dLud8WhewlFqDSHaNNnJdmJZXqABO5uqc3dFYIKbt5KLxdNOYxzCcWIQm8rp7UgFUJkcoljkZfrV7xd1hZPebG+yTWRnkdhEkanlAsrDcZvJ1ZPPyyFcvHtaKY9OiX71/SfzLK9Wch445GXip9xqLBgqjC6upPC+ETdETi2F0gVgM30TLUoS0SSSfSb25ZI9ko6brY9fvoRUAzti8hrEaj580oUUa62LLh7nIOdnYSVZicn2eqzmBq1EaVTCxGDynG/eSyKjmhGKZomMJjiJlLfcWUyhBKTbFaqtBHjNuE3m5PfLl9mFFBGJR7bqbRt5uNxd25NzvKfNdWSQNUzstTIIM2ahPck4T4myFkizZC7Ld1NRfi0pNK/59NcTdbLX6FGuVK53Z+vOrq0X9tnuiNSttc3SBwQaGWod43jPx/NpHhdc7E+lN5NYqDfQ+bni/bHjYjyyz482P79l2SwX/DHe7DWF2alZN4ctXj/zo+p4/3Lzl58N3TMUzZ8+UPU+px74u/MImdlPP0+OI84mlhs6dnelM5GV3XDm+ALFCOQCLFJaavG77BW8TD49b0gzHl4bNz/8A+3BE9seP5xnnfuP3EYZfEzohl0KqoV0urESAtvsvuU/quNvfnVHObOZSAO2D5WJW4ZwLK2ZDtko6C1mdf6oUnJth4rNxx1PsWZIlJMPk/Bqivh4PfD488mn3yCfukUPueZTx1L+RO16PBwSYJr/W7QGcVCZ8DSrOidVgK4HiZF68yeBqZCmQeiHcdJglIdO8MkU+uJpAfp+WgCW6lUzQrpwNMVligk2/0Nu08mKbv/AmYbwyyAcbuHYzL/xhFVRb7OdXwlQzochuLoa7sFEiW31uipYSDJ+MT/zR1Xf86viKh2Xg5y+1ADTaQGcir/2el37PT7u3/NS/5z4P+JhWJvqVnYjZcuXm9f3bxrrtJkYbeOEP2ohTKaUhfRxfGl2gR3joIikY5teex5903BhhWCJynJFGMKjY03p9rIfjY8LQxhtZd701tQBSY/rmmBsOlavj05i8rLC2q6zBix3WcppneFNCc4+5Mc2rUNpjGzG5M5GNWZQcbRNbu9DbyNbO9CZybScGiQwSGCTRkSoOptXHQQKjXRitZ6xJXcrmBOVIe7z6mo/0xJw+ihQsFWC0yqoMV0LqzIccqfb9PAP/PfyIa5D4uWNukMHZeq4LkuOpj86ema3VDIm5IDK3Xgtd6MvHH2pp9pA7QAtEow1cXx2Ze8eUPN8stwCrCTwmz7WbuLZTDYWFqXjuc8d93vCYFO/KGB7ShmPqmCsE03pBeqcMllWDK+O9aWyq39vmaGXljDD4SNkI+5cesJRfgrx/uBTER67fSzOeC8JIIXGWLzxDZ1tj43mk9UOOurEIz4Vha2iTRP2EMUXzDzGYqmlDF9awuiWGWicxZ4t0EuxSLFPxLMUSilNzU1TIzay2nEhMWZ01aOPN2oawhu3PSNNSqoAUw/I2QZ+Jo6EYURqoscoc+f9wuTmoz2iVu1bJa/HgBQXHJEyj0qw3e/ogoVhsqWQ3CQwm4CWxMYpBdXLyS6kYLCr4FtqGYgnZ8pObnkPsWLLj2+l6zU00sze8t1tyEd74J65M4D5tOeSeKXtCcTykkbfhiiUrQ3FKjjlZvMk4ny/YLKoNNXDgJGhvEqZkFrFgNNHNRc25dIHxdmLuPWHslWhgPiKIM1P1e5mpVASp/qHt8HME87ToJ6GcGlQuBfb8MrX/ognCn+1IQ6aveJU2jepuDmK59UecZO6XUWEWKxfBw5wtx9QRnMWSmbPnQFcX1zBlzy4MKuCs5d9UkeLn99oCivb9dH8aNTmjbRLrghltymnam7paVPr/o/U4BKd4fa6Vsnaz9bu36uRiNiziVhDQVQhjsJHRhrVDtfkIL0kdHuVZ2Hi6OonrbkRYzctogy6qVexrSZZQLL3TyC0Xozs+e6biV0E2M9jMTciWpbJW5uAqwe6SftogmnzmJ6wUMIlcjHbgtl6SnFeTt1QM7viZMP3dn9H/dg/fvquS/PcTjNP6wwkRtc/8R4s0cjHEfNZ9VHeZN9qn3ZuoLcLVR/gK/p3b9vPLSqkA2ulvzXQ0+mdjnczFsWTLSFijvlDO+/rsCqlYucykV4ZKi6SkcBlInIRwniPpOuSVkLcy5jn5DiuFeVs4fOZx+x73TSO1nZms86TvdwjJKb9Ua9zWXGJN5459qbvs9Lp5RT+3bv5oq/DqrNEGydOC1VJn+RCzsWQ2FUDshkjMlns3smTLYAP+jIUYs0ZkXhKDCet99SZy7SZ2cSCWYe14SlZqp20583Xmg0T1XCCtpVnfz64lgpAs0+JZ3iTe/5nFHweu/3n5YXzq97hcaT7jDAY5t6vnmFKqnaXnQvI1fO0l0puwCqAtTHsuQMbWyOT/HTjzklaBtMcek9dMWQqhcrAS6h+MKSshrj1/tIFj6lY4v1UgW4TXroysKAGctbU9C2By5ekekyeLkCoSbK4CYUjM1x3Xv2Oxf9flGm+o8YS8PdlIYJ1esGRHLnllgfcr+houulRbWGxrQ+W5SWgfrBPlVoWaQIbi1uc2B9z+pzeZ2J61pmktQk494pLxNUAYTGCXBr6ZbngK/Vp/udlODC6uuUoT7pVbTotc/cw5OPrczLo6xeHFqJje02EgJIMUKDEixp8ip5RADGLN6ffzS06sdRHBWdsYgvXNJK+179ObZ0BNxtYtXLvTvJHmtIGL+JwzM3V+NWe+zgKpTrsJogmpJWntPT52WXJFX1VQgwlcmwo6LtpGMNcC2HU/401aUeMlO5wkbipUEoohZsuU3MXn6Co42nxnw7KuvT5vWjxBXK23187YZ9n3+nuj15yzG3NRFjvn3a5yRtl8hi01Cmej+38slP0hZ602ubUcZwKWgWbf1Yn31d7roli+C9cckz811aCRW8vsm4lqkdglCGlO9RZqmTYblmTpbGLjdHTGxulckjlrvf4Qu1UYKx2oakYDQn3VinOf42zG+kx2aB28ktnEqKH73dSd0/9dE0QT1HkecbHYlPWGng9P+aErPXuNVCyWQuCUOOr76WtaySzFEbPlmBS38nJqymkNNtp2Jmeva+p3WX8/r1ukbLT7yQtLdgw2MFqN/FpPyJR08kIjZ6/1GaM1S2W45A+aQ51N+C6yWlVbu19T1gaaXFvMzpHbZ4JojBLXmk5OsEeDPuQMOk/rTbQaxPMkCVgzatDdev5zWyQrmd6I9lR80EiTycVw4470Jqz3o6+tyCqw4kjt0uzdEUpiKfaiErneW8XbfkiznVTkoJro5jeXGkGBRlNtzkms99C5BCwqjGam1hu7YP2xcongovp34tqufygXAnGk9SZbiOdr2NibqOqNvZhws95DFcS5D2iaZkq5wIOaEIC1InfrjuuiA0zZr3DL82y5RWcJqf7HEbL9IDp0jabzDCBs73+q7KW1CpiLrLQjqIFD7cZqyW9vE71NPLjqF86aXz6g5vyQIJ4LY12YNcm73PUqiBPelI18wNxeBVC/h2JXvEn/r4hurpoBl7nG+UJfmKGzxT9P0NRc5DX5a49JaKI3V1KDoGZHmY4eEtzPI6kYjsFfQEFNgKG2q7XK5zJaBhcZndZSQlaIxddaz73lxLVNWSt/IawA4sdYJM/9idM3P/GKVqGc/0yp86AivUS8ieQshJppPvcvTRAtRD2HHIwUeuLFTm+lzsbPbcJrkxTWm60atGqSQF61RVZmSfMTS7QcDz3WJcY+kCrVKCTLw1GTweO+0xZqr+OZTO2QjUudn5JPQlq6QOoMvdV2t1SEjUlc+ZnsUR8hyjQsISiVp+u0h/yizYyPZuOu5RcbHxidRjXxbMd7k9YeuwZL+2p21pCPQsiOLCeWR/tSEpu9SK6ac267OZzZ5CbcXIR30w0hWV4NBzZuYZeVUH3lZ0Yb8DXRbN21+lwdmze4wH7pSNGs5LWUhW93V+RsWGbdINblVQgXbH1bKh+5ogjJMEdLyj3O+hUOCdnyFHrdz86dFtlaHXNh7Kl5/2yyQjnr61AhCk77EwrXfubKzzyFniW7daFHG9jamTk77dMripQ233Exkij7VUtaPTsU+0FCNaVL63iRn9QrFsNv3t+yTJ70qfB6lLVF7NOtln1vTOClP6ygZLt6E3nRH7mfRspsSXUe4tPUs3u7VVJ0EegyVy8P2vlazVEIlVdchw2o74GUhJQ8pW7Uq+3Etl+Yo2PC6XjAzq/RkxgD46jNNDHq7+70uSVGSpjVtA09GKM+o6yJ0MnRNlS27WInid6ENb6fs1t9gDdprSGvi1nLqvvU8bAMWluI/lToOXOSK22z1p9bz0TfRWWcA8foV5bIHB17263Jp6n+zEvCnIXdIgXMiZppTcb0aSVMi6v5g0sMFYDcS6c4VmPL1NaAMlsVotOoa1dG9seOcQhs+hpNdV77vUNQgZzVMi4ceiNGp4z4jvjFS7K3LbRlhQ1WiLxyiXahZxd6vtrcc+MmHuPAMXdqchLrDJBm+4E1mTomz2MY+P6wZQ6O/bHnoyOZcrXzR81k7ZiwLvHlqwduu4n304aHaVh7KPZBK3jXbib5PYNErs3xwr+sswndKVF0NrO5mnUz1FEVvdeWhzfjEwDfyjVLdDwde3IS0tHCYuje63ShcK31b+503MXTF5MKw0HZDNq4P02qEbmANWqGgLIENVXe198XzM0193+8JWzr7JBmktRkNM3IFzDE85pE++C9CfQmaj072TWJWqotnc8yWp3CcLoaeKc/G3IwZw4TlmQ5Rq/TF1zk/WFkDn5tZctInTGV6c6gc1uz5nPa6Rzcyl43JjP2CzFZvn9/TcnC1/aF0v7rLKpxM+NcItz1uCeLf9JxsamH0qyNKZSow8gokAeHaRMacsWizn1I31VydgTnMD/6kuWLF7z/M4jXCXczTgg6E1Ydsb5YbyPXfuK6CsKZvMb9LbrykriyM9d24pvllmPyPIWe+3lcw0orOhCsc4lXdWbh2nDZ+j5qjflBxrUxEuDxOHBcPH/j1Vve9Hv+0f4nNfqB1KkPMhQGCWzMXBM/u6K2rfaRk6hWVqTV95HPrp74fn9F/y9G/A76e6WQHj/T3T/+nSfebPb84l/dMnwnjG8LbirkzjDXKdalK5TZsLvbcJ0g3vT4kJA7oOTqKwS6DjpPvt0ixwW+/R559ZL7/+AzHv7Q8N/+F/+Avz3+EnfJl81reTMVhQ4MhYgFAs0ltFF2cIqwGpfKGe1CMtmceMjVTzwXgq+00K1fFIpYPCKW6dhRkrY7GykcYse9ZObgyIslDwZtwc5rHSOj+c1SN0xntAEH0eaZ5VCb9ZOwZOHtYcvD08D4BH5fsEtFhO/BLML3393wsBnp74T+oUDdANmyzt4qplwUx0pL4GyNoGw+NdOUgswVg/vkNfMfvOD93zLMXy38pHvLJ3aPi8lC7SJ15oTYNkJA04StW1bE8tx8PaWe+6B93aMNa5zvpF/Z6im3apo2vTwdBpxLfPXigetu4mfbWq7kS+6nkcN3W8xkCD7jfeTbp2vemi2H+xGzc6RNoHORK7ewMTNWMvtKSJiKJxXDldUJPMYW0tHi32mTVhEo1vH2yWOfDJtvM3ZWZrlkePGvdcG6XUfqe67/OuKfEo8/6ZhvhHBTSK0zWFhHiiOowxbR3KIOlBTnFKuaF3h/D5+94eHvfMLdn1j+m//qf+Jv9b/hc7fDk3Hv77bak2AyG7+czSHXneI+Anc0jchF2MWBfexWX3OIHY/zwLE67NP4JA0Tp8Wz3A0spvCrbBh7rY+MNvCqP2Ck8K15qTtxchyAfZseGoz2YVhtZ2t+7pzFfg69dCbSDwvHKBSnoy/sLHV8uMEeBEk6Y1BSUWEZ7XhKnRBHOL6yhK1huRHCtrYf+AIZHWSQtfdPWw9KMx3NJNTfDeXmivzVJxw/H7n7U8vxpwt/2n/DH7jH9XO4m/9jJI3w139u2dxM/OTV3ZpUGU4DgM+vXIRdGHgIA7/d33C3H9epZmFylL3DTDoRWsdMzNqI4xPH9yOv/8JiIizX18xX8I/+5IqrFwf+65//BRuz8ItvPiXPBvfWI9EzvFPnufvDTH6zcLOdeNEfGe2ylnRzNkzFcUj9ymZ/3R/4s89+y9fbW77mBTx6+juLCTqX1ywFU2mEdtEh9vMLSxiFhz/O8GJh39Z1qqFtnaUidx1uX+fALzC+zUioCK21YJJCIs6BNez+7DW//vuZN1/e8z/88T/gE/fIH9gnDDDVzeTGd5k4Ck9Pjrnr1sQsZLsW45EzAnOdH6V8JK8siahtXTkYymSxR4M9Ct2jEKMwjZ5sILiMu3f0jzr5MjtV5em9Z5e2/F+f/IitXUh7j5sMdtKml7WB3xdcp/NyuzNUAE6VReCC/9SZxNYv+CGyBEMcLMY2UE4H1mu/hwojjhBHofQJ608WIsw1SloMZTH4ndDtBLOggk2QO52aXYwgfYd4R3p9zeFHW+7/0PLmyzv+/M03/Gn3LddnqIFFAxj34h+/I10PHD6/Zlp63t+MF9TH1kSytgLU+P1hGTkEzxScRil7h31wmKimoHuA7ddadNn8tvZIZ4vfF7a/PpI7y/Six86FV/9EKMbzT//5n5Id3D6BJA0hi4Xjp4V4lek+O/DmZs+r8cBgA3N2vA3XXNvpRIaQS75vLsLWz3z1+p7dVc/78Yo0W8y9DqoxdZa7Ol/IfaFYndqTjk5zmwz2yWIWob8T3AG2v03073WMaxx0TaY3ngHodhPhs2uevhp4+7eFv/+f/wWfd4/8pH/LtTnq1Llc2NZoz1PwUnCEiISMO4A9tlGjJ+j5nMLZfm9Yvu4tMPXmi60N7V3RyMOj0/iL0rBMABOpDSbagUSufwP8U6HUxyPazJi9TtQp20TfxVqjTxeL3bTAlkonNQmfE1kMziQGIHsdpbofFmY6sq87vfUA1vekCBghB6FBrVLQcbJBNcHOBRMKJmTSoLNXshOyQ+8/Z8K1Z/cjQ/hi5j+5+QU3ZsJXkjZ8CK4CuPjZLbkzDO8ykgzzn2p5slEqL4vzZ6wQU6fobJMSgTczhxd+DWMP+47pU6+OLqsg/JOOZaX0SAY365DH6XUVnNOwMW2KztC9TciQGK8nhi4o6bjezzmlyEtikIC3ac03NmZhyp7RLoRiteZtEveHkWAyJQluL9z+K/DHgt8lTMirDwlXWhmMg5CdOu/U6WdJvTC9tMTREDZCHKsgHAx3Bt7d8/iffc7f/S//H74a7gnFMRWPr6S98yTbtB0NuIagu6mQjoV9rPVio8cpLFULTnVx5Q2lclnpczatbcO5CKk3hK1do44cdAcWEeYbs3apZg9x1O8t9MxO/QM+Y7yO9W5j+NrV6i4tA/cSsWd1cS+WJEYJE0XLuhu34J0erBJt1UKAUnBTQkLGxMpy6XS+knHS7Jg+tHIPwlZIHcSN+hlo9y+UGMlW+Gq4541XmGXljJ2XrJ9rhv/2EZxFyhUmed6+H/h194Ifv7yj647rRIMc9WZaPeAYHEt01XmfWnhzFkobCgzgC1xFShbma51ccPiRcrW0DInOQcxC/53DLKj2iJD3nmI9u9eO/SZydT1xPcxrl9SVnbm1R67NxNYsJ6pPUQK0t4mNnVfHPtrA8sJxN2z4FRBeOb5/4bEHw/bXA3ZWJ14szK8gdWVt9C0WitTfS53j2Gdkk3BDIH29YfO10ZHcwPbbxP/4T/4eP/vyLf/dj/9Xtmb+AF1W4ZwJQ6YFnMXMCTM77NEyTf5iVGmDSKC2HZc6TzDoxMy82FN7cpvAXLQjtUD1AeU089DWYYlNYM021xNqShWSWJ3LFKOh1GnSbVSrM2mtOnqpUH45YbatAOXJpFpnubYTrzrtrnrYDsyd4+ASYeuYph6zqCCKLYSXmeJ0k0iW9fwpHQIglKuIHSPDEBi7wLt+1M8hQM74p4T9pue32+uVivT8es5bd8Q6NCtm7Jzp33omM3B3O7L1M4/zwJJ0ekFvVf1Aiy3L5OHB0z0axfOjxu+VDLjCBql3tVFenbV/KuvxQG3XSQF3rBDLRsidcPhCz+bwb47cXh3501ff8uPxbhXClZ3YmpmtWdjIzIG+9mk45uxXWH2QgEE7mTabhWl0/OHmLXN2PCWt39z9dHMx3aFdc1KAcXTKOt8tPVNwdHXW4W7qedwPFFNYbgtpMJR5ZvNPv+Fnuzf85j+95Z/9jS/5cfeO6/63alLJdGfJdBOKazi7xIxJGTepmZiDzowNddxo8xvtq5QaJdUpBG2h7QKmtdAZdJZVPDlxEwrdrmASq0qvZ1VU09zuM/V6SMp2nHk5HPlieOSL7n41O4NcaoYpGtZaThyuU1tZwUrASmZTDBuz1JKwwid5o/fQSsX72K9lgFgM105JcN9NVxxity7kYfHaMiD1BIUG2t7d40Jg/Js/51fHV/QS+aP+tx9qhwipTXzO+wNiDQbwx5Hh7UARYfcw8k09jARYh7G0g7KuxpmbzcTjdmB+rcPjCQaiYGajYeBMPTiLM9sr7H6mP5+G8NYPYAFTSJsEPvPy0x0vN0f+5PY7PuseuXWHlV8FrKFiV1sQXtgDN2bSDia0i2mftfMpFSFXbm5jMVoKb5yOyDjkfp3DmxEsuQ7JH9YEGOBld+Taz+xjx5Q8V72agScpBO+Zbzy3m41+oOPEi7+c+d//lz/nH/6NPX/77/2SLIYdA9dm4jOfMBgeykIC3Nq/fDwiInT72h51dBymHl+PPmjRiw5WFLZdWLGsQ+frXEB15nGxxNliDhaJ5XSootEoKb2MOm7urJ6hB6roUK7toGHqT1+853V/4Gfj97yyekTQeTXRtmiKphEFYwJDZajsc8+kfMQqEFOZJvplz9jrTUC+zhTpKy1nNu4CDupNpEfNF2hVcuwCS6wzTrwH77TiFyP+7sj1v+l5f71hyh3eJA6lrxoNBqMT6gBnbs640zFy9YsHxm96wtWW46dX5J/tub59whptmNn4BWsyL/sDL7sj+77jELv1aLdYDEtyTMlxCFoRPKf0tKraOoa11tmdSbz2+xURtpJ543aVP6sJU6OJTln7954XvBJCWvv6pDIXs0Y/leNlS77gbO1qQ2Z7TmO2aBnhw/7BdrXGm9YPH6MhHRx2RucWAohg3j3y+p84ws01/+f+p/x0eMvPu2/ZykIoGUiEUoVBX+3fUuu237/H73rG7zcUJxx/pL1woDmGoro6OfnGHdcO1a2beekPF8Tl1lrcrozgRBfdntWtX9gDgwQ+dw94iexzX1ke8YKlmCpvt0VH54t0rjGpMgw/1nrwnBN2LoT2Hut7FakHctmL57f3vqiQ1vNG9FTMVHm3lnI84r5+T//+im/mW27dEd+nejxqI3PoPTtiG7hUh1dNEyUlhvtEGiz7dx1fm1te3e657ae1ZSAV4Zi7lV7fMuHm4HsTuXIzenjJCe4eTOAz/4Alr4Ug0I7VxzxUdrqrJmW4WMgWo7fR3erAWx94PLHZMQRYfURGz/DIRduUVQinU87OoYnWBXXR33dGMW1Xm6m+Do/JRseC5wLea63bOUiZ8rhj8zbyj/76p9x9uuE/2v5LLIV9uWyjcM+HqZd6WKA7JPze4J4MYew4jMs6Gc0Y5cSGbFdKzpy1lmAoleimoaelrCxzDTMXPnf3AOyysvr2WbXzkPuVbwushaJ2DSasDlz7MeIaUdmWqBTLidPedv4Zu/GZEM5b0OCyjfrCP3HJ0T2PLHXhZEWYpTHRnaOkhXw44J8i07uRrzc362vMzyiGjs5rkbzxfbyy4txuYfCG8XuPFMeT1wjhZpihZ2WkA2ut+Zi6laX+3JS0Xoos5mRuVvvcPnRahXb+XNUUWSOhpVg6SQTjCOJWc9b6wTWK6phKx1Ma1Gxlx8X5f1Urz7G3j12tbeE5CfvUF19qd7CG+TaUlUlYjNXpntfX5JAZf+N4u7k+cYhLq+FnrIDT8qAyFvTMIO2mMYeAt4bu3pGtEG4dU9/Ru0TwtW+6fZBaS5irknWm2dtL9V4LQbVe3ZplVjstmrl3TZM4+SrEcMi62FmE0DJGoybOSmbKHVM5dcHO2XPI3UnoRVa+1wdCKKfd//H+kw+7di+0oyqmpEJegp683HnVEO+RmOnfwfSpX4na2n2V8aKJn+M4Xb5ryXriwNMBSYnttx1utsStZWZgZzOjD4x1GkBv2sht5cr2JnJl5zVLbkKwNQO2knmXrta3S5XsvP6O4T5tTgLi1NV6qIzGbIwS6rKpaKgmfm3URCNJhOxWc9S4ve30gn2NAD/rdytZL2O5qWMwDln7ARtH7LXZs7ELh1RZlbVfZLAno6jlATDbjZoqMVrtm2fs3Z7bv9KcLKA5zmBae7Ymf67MFbto1MNcKCnB/oiEyPBdj516plc92RmWG89y1eYQGvraVnZMvsbnYZ3r4c/7vFGbn4pwn9Tkbc18wQBsmrZL4wWe00zM+RHUpih16ECnDvyi+0nLr6fXNatQ56QnYD6GQbtnBw06dmVY77EJo1FTQ7Z80j2tsPxKzKZcDA0zFUyV4SzwSFnN1v2OzS89/U9fE+qBYIPo+ED7Qy0B60iFGBXfmyLWW65+4+geDbtl4Lt7z9s3V7y63fNms+eL8fHUZCOnFqvWMD9ljzdxbaRsV7Pfp3awvi6mOtpdGgjFcl8HSPr6ut+bq9OB7XVuVDulZs6OfeyVJFE14hA77qezQfZWS7FGir53yWvBasq+nid7InZ7k07aVu19G8avpG2rk3a6QvJyaqgEZRR2nZIUQsSksmqrPpMTHPJcGFUiSsACZF6wVrj6N4EigpuuOdxZno4jb4MhvLA4o2cavfDH1d6mSoQOxXJIHSZ3HCpssamHw4YKVTThzWdhZyiWxziwjz3fHG+UWWiVitnAvHbyWes1PETPvrIYp3qWR8rCce44Pg6IKdgu0Q+B7av3p5xDzDqs8rx9Qe9N/UHMhgOnVmYN3xc9Pa3oGU65K2SnvCmpAVGxFnqjxOcQkXTeEVyVp36vxKhTOCciWg+uBzOZY50y1nlwBr9PdA+CeyXEo2PaeI717FatnWdm2+z45XHSG7OsB+rqB/ckTo6+JT9wCgoywiF07OaOp8Otzgmc9LzZ9XJFD3Fch9rXEdzRILNBFqE71Bq3hWM38E/vRkyf+Je3b9h2gT+6/Z6tm9eek4s6OsJ92JyI2gh384Z97Pjm4YbD44B56+nfGdycKWOPzOGUidcNrqdcnhJNUBM15aYZz5s2jCj2HYKekvX0BJNDrq9g6PAPAQpMrz3h1jBvPLtZj1VztQFychPGlJpn1LZgWbixGiy06Oad0vJOvmUdLHZaiJAt+6Xj6TAQf7Ohuzf0dwrDN+Q3jlr6jBuIG5QzK+COgt+BiQUTWFuHihXipiMN8PBJz/vrxKd/c6d9KEU3gq2DzFo9p5181szZL+9f8rgbMb8euP5WQVE3FdwhU7aDJn+7XW24dNpEGQImnjhnzVeEyuD80Ew5h9Tij9Sm8lWyKetw6AaHz8rSfpp6pVL2ZxMF2sgi9OSaICderQrk1HLWzNV5GBqK5bv5iod55OFpIOw7+ic97NdNSsdsEag7FuwM3Y61lp6dntBMLfVq/bpgooagfldwR5BkCHvhn7/5jO+213x59cDWLuvcwoabGcl0Oa1zSPaHnnLXMbwXhrcFN2XcVOh2AeoBvHpEalmb8Qt6Dy20NdUahPq7u2iJNYK4UxRCOhNETEg9LFBywc4F/ySkwXLoB4VJrs92dLEcUr8Cbl4S2ZrV6QJrrtEe1xop96nnmDy/ebplN/WEuwH3aOnvhO6h6OIvWsMuBvwx4/YJGzLmGEkbT9xalivL9FIHAqdei1+SC3aB4V5NRv5OCFvh7XjDX7/YYH5SeDM+aWeUTWzdrGOUrFuDiUPsCA89m68tV7/OXP1qwh6DHlv9seHz8USHNYk1UmydfqEYFsyZZtSJxWvzhHPaAtX+DtoKFTMmZLonpeNQDGHuuI/Cv3aJV+MBI6catWpDXjWFGo4Ca2HnKfUrg2NOjl/vX/C49Pz2m5fI3jJ8b3EHcAetEKZeSP3JvBZR4lieMk70qE8zZ7wIxSglNLsadlYqZ7Z6NkZL1vr3wpIcd5+MeJt42R1XGCejRag5O97PWx7nAbs3+CfVUkn1OOraWCkx6Tl+XQVK69l8hGoGpdRhN1pYakDlh2aqHo259p81QUR9MZkixlvG7wPdTglccRCeftTxfXzJ/QsNIW+6iU/7J5xJbMyywiOpGB7jcBbOKl93Tm7t6fhX33xC3nlufuHo7wr9Y8LOmbC1pA7mF4a4OZVxJQomFvxB6J4Ee8z4XcAdNdhoOzV3lnBtyU4pOFKU1mli4fpXmeVauP9cHfVn407Hg9cN/hi1PPvN7prdfqB/a9h8l/GPEbNEJOihiXKcKbsn6HtkO67mvTVcAnUQWsaiwUBCWLBnDjwlitQzS8+PWF7PLM11Z2XMEinOUKzgyJgkjN8J4Jheb/nLbLjaTiwv3NnsEV34mA2HqL6hHSWHbtC1QzUHPXIhW+UqzdcGsxGtjXtZS7l20TJuq6ebqL+bWGeUU1jPz6hmw86m4ok1aotlJaplJ/DoeHQjh5eeF/7U5jwlzyF2zMETZ0dXSRPU87+LVAtiDHT+dNJlXUNpWmrg2kwMkghFCKiWdCTc2uK5qEoWI0g5nVO6HkZe/QZLwKS8vpE96q4bv06YOXL48TXv/2TD05uRf/Fzv4aaKRri7GrIKZAEt7NaO97m00GNZ1fc6qLlrjL2OmUtDm+F7l4dsJtrDb8SGtwhYZasO7WuV4tSbdQAJHuDNI7uVDeKN5hY2P7aMe8H3n+65XV/WDfR4zKwW3oOTz3svB5Wb5UxWZxBnIEglN5fdLWeb2pxjuyEz909rwxMJZOAQbS+4S5MUbsarJ45+ZF6fLLEBLkgISHeqpByqZOPA/4pMr61SBH23Vajrwot27PFkayUSaV5mtMZgbDudLfX3d/mMaYk2heRG52ykKuG2KUgTSOy2vD1AHRbd689nUUoSTeRakXBLJkiBnfQdoApnsgIMRse5oH93FGeHH5nsEd9T7uoHyVm2uFWxTtdq3Y0dSmrxhSryMRUDppXtUSdgmuHL61D1XXutp7Qex7atqPP6mkqBn0leRY9+HcHXu4DubOkjcMsGfcwkzeewxc92VYqpBGyL5XKIysrRFKhfyjYcEJT2xZftobUKwMxXqmJKEadaHcfVg0xIWmXkLcU58nOUDqjbL9qlt1RI5x2grGdI2YxjN9bJAoP+5G3w5anpWeOjrvHDenoGH/jGL8vjO8S3UPEPy6Y/azvFyJl7MnbATMH2B/VqdcePm6uyB5+G1/wwhwZzo7Tg5UZf+rIbDZwHQ2aVBNoM71LXnMQOTv5XSMt1R6TQUJGUsGEhJkWpBS6e0v2htzpLg1jPeQ8tY1QNabafcqJtlOM7kT1X8rRtXNZ/YTEvGopqazFMnLGREhW6lP1/43GudKEUh3vFPVQlGVyqzbEaEmTg1mPObVzdfxrPlE/x7l1afdSjxAV0A4m4H284t6NfGl3az9jRtSBiwgMW13wOlJBalhWnvaUFE5vFKNWA8WoFjXhTTN5f0D6DjOOajtDDwZKr83qw18/gLOkbae9DC86iq1OtPZIAMRNHZ96UCJyC0PdpBojD/U5VUjdQ8Du5hMe5C151BqCOSwqmFj3XQ3P5TirIDqvi+kMpljNn44F3vb8Nr7Q85aS4J4sZoH+odDvMvaYMHOqZulsNoiIJsupmq2UVDO8p3RK1P1nhy/oTeCPtg944PuakbvVJ7TT3lv51epii6+VwHO/0qbHlEprMOjohXYTrcvTGHCW0l0mj2aOak6invZlYlm1A8AuWXOFVP2AQKHWlxG109Xmq09qs0TklGw9u982NF5iPuUDjX4qgmRtirRLxi6C2xuCc5hZy6n+STuU3FGZl01ziwDe1ntxp/fI+lXONITasnZM/oKs4dFzR5QdUoVQrCFfjeAMEurhTl4HWMm0KF7VygbNFlrLyqe2lhIj7BNMVkO8oaeYrQps7PSG9hOyOOzW66IvNSMfNMn0D+HUHweYpEldxCoVNGp/hDto1luMoQwV/2mOu9TvVoMMmaMuWIhr7E8patfrxjLe0xuDPfZc/3IgXFnsUU3hcJc0WjtWtvqSkJTJvSN1FhMckrJq6MMTKx+tfo6yBMxujz+8YB+7Cv3AYIRPrIbhbh2d0MyNFbIzmFwRd2chwgeAYrty5nk0VkpBypmmtEtUmSVliqk2vpzYhuvDsjaiaPQjK1tdGeBVG+rCS0jQST2as+7U88jSoBh1i2rOv3LWzLjiR0UEYkUZKk3VzurDzgXRmjHbMK9iamDQQrWUzmCRfPqeMpJP8HxbGVudwL8FKUNm81c4qNEAAAAASUVORK5CYII=\" y=\"-28.587873\"/>\n   </g>\n   <g id=\"matplotlib.axis_5\">\n    <g id=\"xtick_6\">\n     <g id=\"line2d_15\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"270.642647\" xlink:href=\"#m839a88af9b\" y=\"127.587873\"/>\n      </g>\n     </g>\n     <g id=\"text_17\">\n      <!-- 0 -->\n      <g transform=\"translate(267.461397 142.18631)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_7\">\n     <g id=\"line2d_16\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"311.672059\" xlink:href=\"#m839a88af9b\" y=\"127.587873\"/>\n      </g>\n     </g>\n     <g id=\"text_18\">\n      <!-- 20 -->\n      <g transform=\"translate(305.309559 142.18631)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-50\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_8\">\n     <g id=\"line2d_17\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"352.701471\" xlink:href=\"#m839a88af9b\" y=\"127.587873\"/>\n      </g>\n     </g>\n     <g id=\"text_19\">\n      <!-- 40 -->\n      <g transform=\"translate(346.338971 142.18631)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 37.796875 64.3125 \nL 12.890625 25.390625 \nL 37.796875 25.390625 \nz\nM 35.203125 72.90625 \nL 47.609375 72.90625 \nL 47.609375 25.390625 \nL 58.015625 25.390625 \nL 58.015625 17.1875 \nL 47.609375 17.1875 \nL 47.609375 0 \nL 37.796875 0 \nL 37.796875 17.1875 \nL 4.890625 17.1875 \nL 4.890625 26.703125 \nz\n\" id=\"DejaVuSans-52\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-52\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"matplotlib.axis_6\">\n    <g id=\"ytick_10\">\n     <g id=\"line2d_18\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"269.616912\" xlink:href=\"#me6af93a7b3\" y=\"30.14302\"/>\n      </g>\n     </g>\n     <g id=\"text_20\">\n      <!-- 0 -->\n      <g transform=\"translate(256.254412 33.942239)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_11\">\n     <g id=\"line2d_19\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"269.616912\" xlink:href=\"#me6af93a7b3\" y=\"71.172432\"/>\n      </g>\n     </g>\n     <g id=\"text_21\">\n      <!-- 20 -->\n      <g transform=\"translate(249.891912 74.97165)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-50\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_12\">\n     <g id=\"line2d_20\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"269.616912\" xlink:href=\"#me6af93a7b3\" y=\"112.201843\"/>\n      </g>\n     </g>\n     <g id=\"text_22\">\n      <!-- 40 -->\n      <g transform=\"translate(249.891912 116.001062)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-52\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"patch_13\">\n    <path d=\"M 269.616912 127.587873 \nL 269.616912 29.117285 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_14\">\n    <path d=\"M 368.0875 127.587873 \nL 368.0875 29.117285 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_15\">\n    <path d=\"M 269.616912 127.587873 \nL 368.0875 127.587873 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_16\">\n    <path d=\"M 269.616912 29.117285 \nL 368.0875 29.117285 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_23\">\n    <!-- Resize, gray -->\n    <g transform=\"translate(282.310331 23.117285)scale(0.12 -0.12)\">\n     <defs>\n      <path d=\"M 44.390625 34.1875 \nQ 47.5625 33.109375 50.5625 29.59375 \nQ 53.5625 26.078125 56.59375 19.921875 \nL 66.609375 0 \nL 56 0 \nL 46.6875 18.703125 \nQ 43.0625 26.03125 39.671875 28.421875 \nQ 36.28125 30.8125 30.421875 30.8125 \nL 19.671875 30.8125 \nL 19.671875 0 \nL 9.8125 0 \nL 9.8125 72.90625 \nL 32.078125 72.90625 \nQ 44.578125 72.90625 50.734375 67.671875 \nQ 56.890625 62.453125 56.890625 51.90625 \nQ 56.890625 45.015625 53.6875 40.46875 \nQ 50.484375 35.9375 44.390625 34.1875 \nz\nM 19.671875 64.796875 \nL 19.671875 38.921875 \nL 32.078125 38.921875 \nQ 39.203125 38.921875 42.84375 42.21875 \nQ 46.484375 45.515625 46.484375 51.90625 \nQ 46.484375 58.296875 42.84375 61.546875 \nQ 39.203125 64.796875 32.078125 64.796875 \nz\n\" id=\"DejaVuSans-82\"/>\n      <path d=\"M 5.515625 54.6875 \nL 48.1875 54.6875 \nL 48.1875 46.484375 \nL 14.40625 7.171875 \nL 48.1875 7.171875 \nL 48.1875 0 \nL 4.296875 0 \nL 4.296875 8.203125 \nL 38.09375 47.515625 \nL 5.515625 47.515625 \nz\n\" id=\"DejaVuSans-122\"/>\n      <path d=\"M 11.71875 12.40625 \nL 22.015625 12.40625 \nL 22.015625 4 \nL 14.015625 -11.625 \nL 7.71875 -11.625 \nL 11.71875 4 \nz\n\" id=\"DejaVuSans-44\"/>\n      <path d=\"M 32.171875 -5.078125 \nQ 28.375 -14.84375 24.75 -17.8125 \nQ 21.140625 -20.796875 15.09375 -20.796875 \nL 7.90625 -20.796875 \nL 7.90625 -13.28125 \nL 13.1875 -13.28125 \nQ 16.890625 -13.28125 18.9375 -11.515625 \nQ 21 -9.765625 23.484375 -3.21875 \nL 25.09375 0.875 \nL 2.984375 54.6875 \nL 12.5 54.6875 \nL 29.59375 11.921875 \nL 46.6875 54.6875 \nL 56.203125 54.6875 \nz\n\" id=\"DejaVuSans-121\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-82\"/>\n     <use x=\"64.982422\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"126.505859\" xlink:href=\"#DejaVuSans-115\"/>\n     <use x=\"178.605469\" xlink:href=\"#DejaVuSans-105\"/>\n     <use x=\"206.388672\" xlink:href=\"#DejaVuSans-122\"/>\n     <use x=\"258.878906\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"320.402344\" xlink:href=\"#DejaVuSans-44\"/>\n     <use x=\"352.189453\" xlink:href=\"#DejaVuSans-32\"/>\n     <use x=\"383.976562\" xlink:href=\"#DejaVuSans-103\"/>\n     <use x=\"447.453125\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"488.566406\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"549.845703\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n </g>\n <defs>\n  <clipPath id=\"p4c7a23dddc\">\n   <rect height=\"112.068908\" width=\"98.470588\" x=\"33.2875\" y=\"22.318125\"/>\n  </clipPath>\n  <clipPath id=\"p09d509db69\">\n   <rect height=\"98.470588\" width=\"98.470588\" x=\"151.452206\" y=\"29.117285\"/>\n  </clipPath>\n  <clipPath id=\"p7459b3e2e9\">\n   <rect height=\"98.470588\" width=\"98.470588\" x=\"269.616912\" y=\"29.117285\"/>\n  </clipPath>\n </defs>\n</svg>\n","image/png":"iVBORw0KGgoAAAANSUhEUgAAAXcAAACfCAYAAAACoJmlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADcCklEQVR4nOz9d7itWXbWh/7GnPMLK+28T6rY1bGqU7UiSNiSiRKCR4RrGZkkBDhcYz/XF9tg7sXggC38YNk8YATGYCHAFlwB1wJzQUjQCkgtpG51S91Sq9VqVaviiTut8IU557h/zLnWXvvUPqGqq7qqW2fUs+rstda3vvyNOeY73vEOUVUe2AN7YA/sgX1xmXmjd+CBPbAH9sAe2GtvD5z7A3tgD+yBfRHaA+f+wB7YA3tgX4T2wLk/sAf2wB7YF6E9cO4P7IE9sAf2RWgPnPsDe2AP7IF9EdoD534HE5E/ISL/62u97H2sS0Xkba/Fuh7YA3tgv3JNfqXw3EXkW4A/CrwVOAb+AfCfq+rhG7hbLzMRUeDtqvrpN3pfHtgDe2BfuPYrInIXkT8K/FngPwU2gV8FPAb8MxEpz1nefX738IE9sAf2wF5b+6J37iKyAfyXwH+oqv9EVXtVfQb4JuBx4PeIyJ8Wke8Rkb8lIsfAt+TP/tbaen6fiHxWRG6KyJ8UkWdE5Nfn71bLisjjGVr5/SLyyyJyQ0T+X2vr+QoR+TERORSRF0XkL543wORlKxH5c3k9V0XkL4vI4PU6Vw/sgT2wLx77onfuwFcBNfD31z9U1Snwj4HfkD/6RuB7gC3gb68vKyJPAX8J+N3AZVL0/9A9tvtrgHcCvw74L0Tkyfx5AP5jYA/41fn7//sd1vFtwDuAp4G35W3+F/fY7gN7YA/sgf2KcO57wA1V9ed892L+HuDHVPX/q6pRVRe3Lfd/A/6hqv6IqnYkB3uvZMV/qaoLVf0Y8DHg/QCq+mFV/ZCq+jyD+CvA19z+YxER4N8B/mNVvaWqJ8B/C/yu+znoB/bAHtivbPuVgC3fAPZExJ3j4C/n7wGevcs6rqx/r6pzEbl5j+2+tPb3HBgDiMg7gG8HvgwYkq7Bh8/5/X7+/sPJzwMggL3Hdh/YA3tgD+xXROT+Y0AL/I71D0VkDHw98AP5o7tF4i8CD6/9dgDsvsr9+Q7gkyRGzAbwJ0hO+3a7ASyAd6vqVn5tqur4VW73C9JE5BMi8rVv9H682UxEvlpEfkJEdt7ofXkjTUR+t4h83xu9H29G+6J37qp6REqo/gUR+ToRKUTkceDvAs8Bf/M+VvM9wG8Vka/Kyc8/zfkO+X5sQqJiTkXkXcC/f4f9jsBfBf5HEbkAICIPichvepXbfdOZiPwTEfmvzvn8G0XkpTzbereqfvAN2L1zTUQ+KCJ/6A3eh0dIEN03qOqtN3JfXollEsJCRKb5+n5nDrJetanq31bV3/ha7eMXk33RO3cAVf3vSRHynyM51h8nwSy/TlXb+/j9J4D/EPhuUhQ/Ba6RZgSv1P4T4N8GTkjO++/cZdk/Bnwa+FBm8Xw/KUn7xWJ/g8RWun2g/L3A375DnuRNbZ8PGq2qPquqX6Oq117vbb0O9lvz7PNp4APAf/7G7s5ra28qGrWqPni9whcJP/fAW97offlCfgED4Aj419c+2wYa4P35/TPAr89/fwXwk6QB+irw7Wu/+/+Q8hxHwA+R4Kzld7vAP8y/+wngvwF+ZO37dwH/DLgF/DzwTXfY3z9DYjs1pAH+L+bPFfgPgF8Afil/9odJA/Mt4HuBK/nzx/Pybm29HwT+EFABh8B71r7bJ8FzF/L73wJ8NC/3o8D73ujr+Aqu9+pa5vf/PfB/rb3/VfmYDkkkhK9d++5bgM+QgqJfAn732uc/kv/+z/J1Wb564Dvzd5vAXyMFZ8/ne8De536/Jd9TJ6QA638G/tZt1/MPAr8M/NDd7kfgy/O9a9fW/zuAj73m5/uNvuBfKC/gt5ISnCPgLwM/Ra7wffD6nM7rXwX+17X3/y7w0bX3K4dAyp/83vz3GPhVa8t9KwnyqoD/6bZ1fHd+DYGnSLO2pUMY5fd/gJTc/gAp3/HUHfb3g8Afuu0zJQ0OO6QB69fmdXxJ3p+/sPbQL53By5x7/vuvA39m7bv/APgn+e8PkGaMX0lKrP/+fH6qN/o63ue1Xr+WDwM/A/z5/P4h4Cbwm0mIwm/I7/fzNToG3pmXvbzmLL+FtYF6bVuPAC8AX5/f/wMSM20EXAD+FfDv3ud+/xhp1l+SKM7HvNy5f1de9+A+7sefXe7X2r790df8fL+OF/LrSFHQp4E//kbfWK/B8fyvpIjiiJSEfecbvU9fDK/8sBwCdX7/L0n0z+X36w7hh0j5k717rHMrP3Cb2Qn269eLtcgd+LeAH77t938F+FN3WPfKEa99psCvXXv/14D/fu39OO/D49zbuf964BfXvvuXwO/Lf38H8F/ftu2fB77mjb6O93mtnyFF1Cf5HPwAsJW/+2PA37xt+X9KGsBG+R75nUvnubbMt3CbcycNsB8G/lh+f5EEoQ7Wlvlm4F/cxz4/SpqlD9c++1u83Lk/cT/349qx/u389w6JTXf5tT7frwvmLiKWNHX5elKk9M25EOgL1lT1D+kpY+XXqerPv9H79MVgqvojpCj3t4nIW0nQy/9+h8X/IKmo65OZKfJbIN1vIvJtIvKLOTfxTF5+jxT5Oc5SXdf/fgz4ylwxfCgih6RitUuv8FDW13kF+OzaMU5JUei9Ct8A/gUwFJGvzIn/p0mR3XJf/+ht+/pI3t4Xiv02VZ0AX0uCw5Z1Jo8B/+Ztx/ZrSE5vRhqE/z3gRRH5vzIZ4U7214CfV9U/u7buIv92ue6/Qorg72VXgFuqOl/77Dza9Oqze9yPkAaH3yoiI1Kl/A+r6ov3sS+vyF4v8P8rgE+r6mcAROS7SRWgP/s6be+BfWHbdwG/j5Qs/qeqevW8hVT1F0iBgiHhlN8jIrv5728kRb3PkCL2AxKj6Top8noY+FRe1SNrq30W+EFV/Q3cn92JMrv++QskhwJAfoh3SVjvLH88JE3vYW0gUdUgIn+XFFleBf6RpgK25b7+GVX9M/e5r29aU9UfFJHvJMEdv410bH9TVf/wHZb/p8A/zTTk/4YE5/1rty8nIn+cFACsf/csKXLf01eepH8R2BGR4ZqDf+Sc5dav/7/Nne9HVPV5Efkx0n37e0kzstfcXi+2zEOcHd2e4/6ilgf2K9O+i/Qg/GESg+ZcE5HfIyL7mmiih/njSMI2W1J0PCTRBIHkLEnSE39aRIY54vt9a6v9R8A7ROT3ZppsISJfviYXcbtdBZ64x/H8H8AfEJGnRaTK+/PjqvqMql4nOfnfkyO8byUpla7b/06KVH83Z2cxfxX493JULyIyEpFvEJHJPfbnzWr/E/AbROT9nEazvymfl1pEvlZEHhaRi5keOyJd5ynpup8xEfl64D8CfruuVZnnqPj7gP9BRDZExIjIW0Xka/LvlnpQj9++TlX9LCmJ/6dFpBSRX03Kv93N7ng/rtl3kRLA7+U2aZTXyt4w2o6I/Duk8nqGw+GXvv2tt9/fye4UJt3LFM1E9DvQ0VXTute+ltuW1du3/mp35n5N8wZuZwbq2Q2/mt1YHouc89n6ij/xsz93Q1X3X8UmXrWp6jMi8qMkiYbvvcuiXwd8u4gMSbDH71LVhYh8F/CbSE7zFvAnOVs/8EeA7ySxF36e5Hy/LG/7RER+I6lq+NtJAc/HgP/nHfbhzwN/Q0T+fVKk+R+dczzfLyJ/Evh7JPbPj3JWNuIPk7SK/lsShPCjt/3+x0VkRoIE/n9rn/+kiPxh4C8CbyexaH6ElIv4gjNVvZ6v3X+hqr9TRL6RxKD5P0ispH9Fuo6GdD2+i3T7f5Tz60P+LRIM93Nr7Nq/par/HmlA/zYSejAhMW+WsM0jpPvp+Tvs6u8m3T838z79He5eKX6v+xES1PYdwD+4DfJ5zex10XPPo9ufVtXflN//5wCq+t+dt/zT73ufft8//sfnruv2/Vu+X30unHGG6wkFAYy8fHKyWmb5+9P9ZnlTrCVDXva79Ga56ZcPHuf99n4sxvjK92NtH/Tl7vpsYkcixpwusdze+vG8490f+LCqftkr3vkvIBORPwtcUtXf/0bvywN7401E/t/AdVX9K/e5/N8BPqmqf+pz3O4vkhg73/+5rOdO9npF7j8BvF1E3kIavX4XCYd6VfZKHeXK4Z7zs3s53jt9t/55Gjjuv0D1vHWKyOrz5f6uf/ayQewu6zrzmdx5ubvusbx85vLFYhmKKUnUuy8nJWbf0CrTB/bmMVX9b+72vYh8OSkC/yXgN5Lw9G/7XLYpIr+T5KH++eeynrvZ6+LcVdWLyB8hUZks8Nc1VXnel90eDd/NISci2vnOE+GMg1+PVM9b2+3bMMacR2tK67/XQdzF5LaZxvpn50Xs580O7rjvd1g2nY/bTsivHJuQpvpXSJj5/wD8n2/oHj2wLyS7RMLFd0n5w39fVX/q1a5MRD5IYhH+3pw/el3sdcPcVfUfk/TSX81vz/373Pd3Wc9dMff73I+7DSz343Rf6XL3O0tZHwReq+3f53a/joQ7W1Lx0ecUwXw+TFV/gqSH/8DuYF+I1/XzZar6D0kVzq/V+r72tVrX3exNpy1zp0j5bsvc+fX678uvJJMvwvqFB/bgun6x2pvCuSvLZKDe9rcS9TRNqPmVMpncOyiX09+k38nqd7L2+/Mc+HlJyztFwK/1IHC/67jfwe/UBNScvjAvf393W9UvaGpasqxfeGBf2Pbgun4R2ptGwUxX/94Ou6yxYlhCDKdO9pUADuu/XbJpXitY4/b1vBKI5XPZ7pnt8fKB6uw6bnPeejv1857bO69+4Stv248VxRX40sLK6cB45vynfY1L8tFqn3XFQjpNjCsx05p1xVICYw3O2NVyXdshAtZarLUYY0BBY0zrNSblXfT0Llvft+V6YlyyqfJy6/nqvNwqf6NrX69mi5r2OSrWmtVxWWNwzlIUBUXh0vGHQIwx/R1j3vZpQCKS9zlf3xACMQZAMHb5HRiEqqrY2dlhNB5jrT2Tcvr4J372bhTXe17X2620Ax24zdMAyRpAkBWbTM++Yv5XBMwywiJ9vjyXkv+3XMbexjZcnofCpnOzJB3koE2inrlWyxtFl7ddPqkSFYl65vYX5WXvV1P/M3+v/7uW53IOtYKvDWpB0i2HCcvtLc8JZ89D/kxChJB/tHKGp8uFcUmx3zCyHdt2jpFEf3j2Wc/NW/HcB/dN49wf2BeHqer/AvwvAEVhdatS6rrCFQWK4CMoFsTQ+sh83lAUFcF7gu8RVZwxVIWjcOnhjtFz3E4pHDgrFM5SlgWDQc2wqiEq3aJhMUvfjYYjJsMRVVmiIdAuGkIIOGsZbYzxvqfzgaiKMQZXFBRFCcYSNDJvWhAhhEDTdSzalq7rEZMcaFnVnBzOAMEag0gaRAiB4AOh90TvEWA0KBEi1sJkPOTihR0ee/Rhrjx0idlshometmk5Op5y6/CYw6Mps3lD1wd8FLwa+hBp+x4pLJ33NE1DHz2udLRtS0TZHm/w3ve8h9/xO34HH/jAB9ja2gIjeO/puo6nPvCVn73TNbtfWx+4azvmq/b+TajKs1Rka5KTnS/QtgNrQAz0Hdr1yHCA1PXKaem8QWczpKqQuoKyQKsSnEVLBzEiTZ+cdF2gpaPdrVEDxisSTr15qA1qBNtGxCuxENQIsUz/2i4iAVBFFNxJjz1p0yARYxo0qgLpA9LmbboUEIlPzlfyvaHOZqdu0cLSXhrTbViuP23oNyOmFcQLxVSwHYxeiNQHATcLmDYgISan33mkD8sTDF2PzBYpIMnnK25vcOMrtnnPv/NxvmTyy3zj5BMUwGE0fNNvuX7H6/XAuT+wV2LPc7b0+mHuXPgBQIhK3/sUuK2cewAxeB8J3uOsA40YwIjgrMkvQTQSFAYWqtIwHNaURYFBiN4zWxwSfYQY2NvaonCOuqioq5LSFRgp0bpGAOcsC99BNKhEvCoaI+o9QQRjFWNgUJUYY/EhoKr0XYfXiEbBdx2+7/E+DQxGBGNyRI9NTj4GTDQM6gJrwIqhLCyDyjGqK/a2N7i0v8t8UNH3LW3TISK0XcdstsDkyD/4QNN7xBZ0XYejSAPeoIa2JcSAMSYNigK7u7uMc9Qec7Qskhz8a3Fd1wfuzeJCmmKEmCLQkGs0YnKG2veo94gpTqfXIsnRL6NWEcQa1No0CDiHFg4ti7OTzOxEY+WIpSU6QS1pvVbSYAKE0qAGxAsGUCMZeUzLh9JgvAKCGrALszyw9YM8s11dzh6WMztr03rLYuX8tbCE0hBKwY8UHXtCaSBIChg6qA6EMDeYNmK6NDOQPqRBo/dpvZVFvAFjENW0HRGwaX8Htqcy/Wr3+nSn3NHeNM79bgyZ5Weqelfs+5Vs47z3d2OgvAzmuE/E5V50xlcC+dybGnk2R7C0dQqoMXfG1e8DRnpl9Qt5dd57QlSQFLEHIjF4fFDMapauYAQnQmkNpbMUziABPJEivx8UlqosQJXGd/TtAmcck/GQrdGQ0jlKV1AWBYUrKDI8I3lf2uMWK4I4i42SnKBJM4KqKimqAltUqCrzpiEET9850BIV0Kh0fYdzFcY4nHM4a7GStqEuos6ihWdYFXjfYlAKo5QGhpVlZ3PM3taYtrYcH09pbIHve6bTOYNqRlM4vFdaAuo9iknny0ua0RQFfejxXZ+vs+J7z9bW1sq5h+ARY9Kx3/see1V1KRoitFkqpywQY1K0HgOEcHa7ziHOIcMaravTzwuHGdRo4YhlgRaWWDtMHzCzFq0Kmkc2iYVJEbgV+kGOyIu0ConpVcwjxmtaLiMVasDXQqiEUEEoBddocrAhReSyHAj7iFn0qBXisARjCFWO0A0QFDOp8nrT+k0fic4QqrRf7DVc2jtm1pZ4b1nUNTSG9tBhOoPpLSYopgspYu96pO3RQRrkxAYwZwcd6TwIPDl8kbeWV5lFgxWlIN4VSH3TOPelfb5YKedVeN7+/d0eins9LnfHvu+83dfCzuPK3+t47sdeTf2CAN4riMc6wTqLUcHHCAhVUWBFEoZooTCGqrDUhaWwBgxYHylsipAHVhjXBWVR4gcV7WBAXZZsb29hMVgxGJPWZ1PAh7WChojve0priEaIale4ulhLWdeMR2Oq4QBjC5q2JYSewgqVsxgpQdJApSFhrEYc1lqcsThjMAimAIkWiYHCCJ12iEIhSmWUcV2wNR6xOawIlUVDpHA9IXgWi4Zm0eJ9BOb0QelsTx8DiBJjQGPEWIc1kv52DmOEpm0YDAaMRqMUuYeIydfb3o5dvwbXNf0wzXoAxLk0QGfHjpi0phXGbk8j38KtYfMGNQatHLEuiKUlDB2ms7igxGFBt+WIVoiOlVNXC6FKeLpEkKCYfu3+XiVVkkMPZXLysQJRgZhhG5dyIpKxeGJMWL8xRGdS1CxpMMECNj9bkvILGjUNBi7tV1l7NqsGK0rrHV3nCOrSwJIHF2tzRK66mnWcPjBLLH4tiPUJttlxU7bMgogQVe4Rt78JnfvraeexWW6P1h9QHu9ur7x+QV42kFoxOGsBQ1lWECJqDVagtIa6dNSlw1mBAAFFQqAuS3YmIy5cuMDO9jZlURK9T8nEuqZrmpUT79qOGALOGMqyQFXpRHHDIb3v6XtPiBGsoSwq6sGAejTElRXT6ZTQt6jvsURKZ7BGiBqRKERn8SIIEQKoRmJMUbIxltJZnFg09GAFJ4bCwbBybI6H7GwMqQuDKSu6yZiyaEEV7wMxZNhAoe09nS/pFgsKY+k14vOAs5TVWCaQ23mCdqqqwjm3gmK89/d07q/uut4WtCxhlrpO7wuXds6HFIG67DAnA8KwXEXLpgvIoqPfHXL8WEWzK8weisnZ+uo0ZwmQI3TbpASqH51Nik6DIEEojxLOHcrlIADqlOIY3BTcQnGNoga6rQLTRVwTiNEiVZEStDFiegUfs/M2qDP4gQPV9J2CHxaEyrDYN7RbsDlasFfP2KoW+GhwNjAblpy0Bj+2RGcTdKRQaAospO3SOqeLdK5Ws+u0LY6nmP4il9whF21HBILCXO9+Xd80zv2VOtV7Rd73vZ5z1vnyAeD2X8jp/3WZ9NfTZfVlP1pFziuWjpxG/7czMm7/3cv3+Swr4G5n7nbWzudz8FKUGMGsM2YUrDW4ql6xWvq2AzU4IUXtpWVQOoqMmfZ4nDE8fOkCb33rW3nk0UfZ292lrmpijHRNS9s2xD6ARtq2o2taNEbKsmQ0GCIiNE2DDkccHR9zeHDEomkRI9SDmrKu8VFp+56XXnieEAIYYVRXjOqazvfMFgtC36b9IuP1GvA+XU9jLaYsKUxJ7SyNX1AXCWKqS8P2xogLu1tsb4wpJOKcYXM0TIOYKhoiGpSuD0yn85yDgBg8ZVnhuzRwYU7vLTFQmIKZ7+h7j4jgnENRjLXMZjOqqrrjNfrcLvBt95Ix+SVodu4C4ENKQNqUfFRnzlSWGy3ox47FntDsKeUjM0QUVSF4g29dmi15gSC4E5si8lFE7W3PahCMt6iFWEJ0EEtFLRTTlIQ1PrFY1KToX2KKzMUk2GdlITFiRHNugDRYpJFFUZEEF1WCH6bBpnaegU24eFRhWlUYUabjAT4KYWDzTMLgnEGcgd4kGMuvJVaXr5ChmwC19NQi9JrgzNvcwMvsTePc72XnYe33ghru5chiJjlI8tSoKoV1dE1LVZf0vkGBwiWM14dA3/do1BSNWZeiOYSuWWCtpSoret8jxhC8X7ExUMUYS991adqn6eaQPD1bcflVAXdnnRdZXlDNAwywtux5x7w8d/fi4ZvXQVsmBsWVCZtGTRJqtcJgMEjYcO+JRjAqFAZKZ6isobJQGogINgpX9i/yniffxbvf/W4uXbpEXaWoTkSIvmc2m6dzbewpxTDE1bFPj4+5edPTGUM7n3Pz+lUODw+JqlRVhVjL4fExN24dEEJgNB6zu3+B7d1dqqqiaRqu3bwFvscLRFclWqJPVEaDUFnDqCoYDSqGZUE7u0VhhVHlGNYFW5MRe1sbbIxqNLRYoCwdvrf4wtIPSoZ1Qe0MGgN91xD6DjSm89d1hD5j6YVb3fvLyLztOmKMKwdvrKXrOsqyfM2v68rKAsQgRZGSotnEh7ORe1kQBwVhUBAGllgIsRAWO5bFBaHZVeShOeNRw2NbBzgTcCbliqIKPhrmviSoofWOmEN2BUI0dN5ycHMMc4ebQXms2BZMUPph2lZ00I+FWILv00AgAaLL59FIoiSSYBdIdMvoDH5cEJ3gh+kYY5EexFgI3cgwezggOx079YzKpFlTRNgoG5yJHI0HzBWis5iQ9kt8JDEMNOHui0U6j+s5CVXUe4xXXvJb7NsF+8bQozRq74q6f8E491drd4Rh1gqmICfejaXv06ibMNvENGi6DlVlOp0ym804mU7p5gsODw+5desWt27dwvvAE0+8haeffprJZEIIITn7qsIaoet6vO/x3mNwiDHZgZ/G7/cajJZc9tO9PjtJOKXgnp0yn6dl8/kwQQiqWAVjLNY60EQxPDk6hsz9Lo0QfMtoPGJzUDOqCgZlwXBQMa4LLl++zJe99y2MR0MGgwGlREzsMcYkzLuq2d3aSFF812UaYjrmEAKLxYLtrTEX9rf51C+/yO7mGN9sI6Hn4PCI6dEhRVWyv7PNWx57lP39feaLhuPplOl8xsnhAV3X4bsWR8CHjul0zmQ0oRxUia4Xlbqq2JqMsGJoZ1OuXNzj+NZNSme4dGGXtz3xKI8+dInxoOToaEbsPfV4gAxKCmtwxtG1PVXlMHisQF04rNvg4OSEdtESBAIRowXOmQQtke6izz7zDFevXuXChQu4oiDGyHA4pGma1/7iLm8ju8TSzQpHTt/rmZcaQywdsTTEIvHBfS0sLgizxz3FVsMTF26yUTZcqKY4ExiaDiNKbXqCGo59Tcg0mqjCia9pg6OLlmlfcXQ8JBrFBLAdVCcR20ZsZwml0m4ZfJW0hNUI4lMkH/vkpMXLiqGyTJiqasoDVAlXD0VmusSE94dS8ANgw7MxWTB0PUbSNTFAbXuMKFXR01UJkkmMqnReZFUHkKiPKub0s2UwFiMS4STWNGopBNBIQO5am/Kmd+63R5t3Y3vc6ffrdibS19OiAZGEY4oVrCuIvmd+dMLzL7zAZz/7WT7ykY/w/PPPcXR0RN97mrahbVvm8znD4RBVxVrLeDzmiSee4O1vfzsPP/wwTz31FDs7O4myFtK0K4R0iy735ZUe093sjIzv7cf7BljavEHzwxBjIIT0MiIYjYyGY2IQJoOarcmQ7Y0xO5sT9rY2mYwHPHT5CntbQ6qqpK5rnCswZgk3KaIRok/MmKpI+Gi+b0wAoVpFtA9fusD+zjaXL+xz66Fb3Lhxg1sHB8wWaZZmQs9Lzz9HHzxd52n7nq7vaLuOtm3xTUvsOh7a32NQ1wwHA8qiwhqHoISup53PwC/o5i3DynFxb4dLF/bZ2dygdCYlW61gigJXCIbE6nHWEWNkOp1xfe8mRycLDk9mhD5SVgUjKwSSc+r6nqbvEpxdFQhQluUqihfOn+2+braMePs+OS6Tt+0cFA6tHbG2LPYLFjuGbhP6DaXf79i/fMTOYM5j41sMbM/YtgBYiRSSnDzAMH/exoKghsp4erV00bFZNOhl4Xi34qVqG5lZqusWN7eUJ4ptoJgqxfR0l22bsHfbRNwioEbwQ0eoLd0kFSMto/pl0tY1mgucINTCyaOGblOZbM3ZG88Y2J5CAibTszZcSxsDlycnjMqeF/aGzKcG2zvczCFBER/QQYUULkFYizwYx5SglnxNO3X0aggEAopFEe4crL3pnfsrtfvFl4WcrV7GwiGiJj2c0/mCT3z843zoR36Yj3/849y8dZPpyZT5YkHvA9YIRV1iXZoan5ycEDL169q1azzzzDN85CMf4eLFizz55JM8+eSTvO1tb2M8HrO7u5vogHn5lzt2yePNq89BrH/2Rjp3RRFJMxRVzdWVEe89MQREDGqFrm3QvqWz0FcWGdUMCsv2ZMTWZMT2qGIwrKiqkrIsKVzCc1UjKDhjM35vKMQSo1sNIsakwibNsNqWKZkvFkj0ECY4A3VZcu3GdV68+hLPP3eIK0qsSzzm1vcsmoamaVGFyXjE5MI+ly5dSMcRNTt2oWt7FvMT+kVDYcEQ2Nvd5vFHHubhhy+xt7tFURSpoMo5nDMsZnN8jCgGVCidZTQcsDEeM6xLjqczYvQUxiKlxQNdCHQ+oAGME+q6ppv1jMejhLerEjWuBdf3Tqi+aouaE4R5a96v2DJqJLFoTEpGxsLQjYVuC5q9iO70bG3PeGLrJhPXsl9OsRKpxBMRgppEI5WAyY4eYC6BPicTI0IT08BXWc8iFBhRTpqKEzfBHVtMEEyvuIViu8RuUQNuEXGzgO0jZuEJwwQZ9SNDuymoS/RJ8eTfCmYWV1COWmh3lLDl2R4u2CwXVMZjRDGiWCLRpEh+p5pR255nR/v04zRrUZteYk/zFLJoYZZ7dywFI01K0EUVArLK79l71JR/QTj3u3HEz8Ph72RLzu9qNhADSmRYD2nmc65efYkP/eiP8UM/+EM880u/RN802Sl42rbFOcd4NEoJKmeJGjk5OUFEKMuSxWJBWZaoKgcHB9y8eZNPfepT/MAP/ABf+qVfykMPPcTu7i7ve/ppLj90JT/g7pxjOUXTX8k5WXfmrxh+UYivcEC5n3UaSdUmMSoQ8T4Qgs9TdUXUJmpYEJyAQykMDKuSjdGAjVHNILNd0vGBmOWgmK6nsxbnigR5WYu1inoFjRgxK+nm2MHQFohG1PcQAzblbOm7hqPDWxyhED0aQIyhEJCqpK4KqrJic3OLycYGpY3Mu8TKCUgawHykEE81KpmMRgjw8ENXeOThh7lwYYfhsMIauxrYRSzN4jAxZMQRxQKRQVWwvbnB7vYWTReoh8qs65l3HYuupw8Jx14yZZLUgjCZbFAUp+eKHDy8Ls59/faLiraJ8aNdn5KDVcWqgtNZ1CZnHyqhHytxFBhtNAyrDh9PA5xCwipCX76fmAU2R8JBhZYCJDCxzWqZVSTvLLNxyVExoGkK+rKkbYtVIZPOWdU8dGNDu5GTr0VOvjpJ38f0sgtW8gHRwnzXog66DaGfKPVbj9kZzbk0OmZkO5wJRBUWoaRXwyIU+Gjxmo6x2GxZXBFMsEQ7wDUVrlHK4x53c/Gy2oDVKbbpOC1K8lpQSPzCjtzv5tjvR6jrTtrw6XeRwloWsyn/7Pu+j3/8j/4vnv3lX8ZZm6bH7YKmabDGYEtHVVVpOjyfnnlomqahKApEZPVwAfR9T9/3HB8f88M//MOMRiPG4zGf+vSn+Ybf+lt4+9vfvoILTvf37ufjZdo7awyfNyONU8xpMjfGuEp0GsDkwqTCWEzhqMuSuioZViXjOjn38aCmzjosLzvG5cmSFNkEjZjM/s3PZuYKmoRhWsH45DytjCicwYjiu5aN0YCHLl1iazLhaDpNPHwRXFFS1TX1YEBZVYiYlETvpkhpKNQkPRigMoZROaYqS4aDEZubmzx05TIXLuwxmYzSIKYBHyPWGXyISZpABCQ566qwbEzGXL50gT5ANdogiOPqzVu8eP0mrT8ianq8JZMAui5p6mxubqyCC42KZJbSawn73dG8T0VNfZ954xEwq/OvkvPpBcRKkUFgXLfULicfc4J0GalbYsLbpWMjO/Gghh6bMG011KZdYfAhjzZRDbOqojSBW+MhxwL92KWq1S7j7CFBLH4g6TUEPwREUVHcQihOMrOmZ5VfUAt+KIQamv1ImATes3+VC/V0te82ayAtQkEbHU1wdNHh8qxjNGw53jY0sxrTC6a1uCZBw+6wyXmLzLVfQmw5B2AlYrNjh6Vzv7N9Ts5dRJ4BTkgwoFfVLxORHVKPwcdJnb+/SVUPPpft3M1eiUO73REO6prDw1v8o+/9Xv7h9/5DukWL7zu6RcJaF77HFJayHhBjZNEn5kFhDc1sjvc+Y8COxWLBdDpjNpsDinOOwWCwihpDCJycnNA0DT/4Qz9I07V88zd/M48//jjW2pfnBu58EHekb77RMMx5JmttDhNckG5ka4TSOaoicXkLZxlUZWKa1BXDumRYlwzKgtIK0QomJ+9SPipTEUnrDBoJMUCuTAwaiZkGtWSnYgQNPS5TFjUEuiLtw8ZkzMZkgisLXrp2nc57EKGqB4zGY4bDIRjDdDbj+PiEgVr8ZEjXdXSdJwTFiKUsK+p6SFlUXL58mZ3dbYajIUVhEVFCiIQYMSr0oacqHIJJkTspwjOuxhYVRTVmc2dKhyCf+WUOTqboYcwc9iR/EGOkbVtEhM3NzVVwEVVzDZG8PpH77Y/dWgGQGIOMx2hdomWBOkO/WbDYcXQbicJYD3omVcvIdUyKlpFrqU2PlUibS097tRgZcBIHWBIsEzBENcmZq7ttFwxhGSGbwKjsiArTh6C7YGkam2iHS3OKFBGMrqiXGoTOG6Q1SCe4eYZEbKJUxs0eUwW2NmeMyp7NosGtYewAgRQ0FCasYJqoQkR4bOuA2XjGi8MNTi7VmBsF1U1DOTXIrElSBEW5OqdiDRQF0bHC8oMqVoQCvWsh02sRuf8bqnpj7f0fB35AVb9NRP54fv/HXu3KP5dodPnLJT8mxojN1YshBm7dPOKv/OXv4Ed+6Ifp2o7ZSSqlHg4GWFcwLAvKskJR2ibBMjFGmrbBtz3BB7xPXGpUGI0mDAY1xhi6PrE52rYh+IB1LhWpaI8JgR//0IfY39vlm7/532Y8GmGzEJGxRUqUnyMloNmx3+mcvFr1ytXZes1RGV1F1ZqVFpfJa+scVVEyqEtM9Ayqis2NCVsbG2xMRoyGNcOqpCxM0mcpS4qiSHkOc4rhB430EjBBcK5IiokCKlmbAyGSi12sxZlIDBn39z1WhPFoyHAwoKhKyrrOolsG65bbM0RVvPeMhkN2NrcYyTHRR5q2YzFv6HuPsyWTyQbjyRauSH9XgzpF+kvqck6sR4UQIoUYClcgxuE1FeGIdbiixpYjhpNNbp4sqOqraIx0bYfvPWINZWnxMdDHgDWGjY21yH2NMfW6DfhRVxowumR4WIs4hw4qdJigGRWhH1m6zaS9IgNPXfYMXM+4aBnZ7oxuSq+WXi3zUGJEmUt1Bq6J2YEjp+SBZUQbEYxEDMqw6BBR9kczShtW8E9pAqVNTtdJZO4LZn1FGxxNplmGKCzaksVxjRjFloFB3fP4zi3GRcsjg4M064uGgFnlA+JaVZVB2SrmVMbTRkevls1iQSGBR0cjjvZrfrq+QssQ/5wkvD3GxKlXTed3CW1ZKMRjWcJTmiDDu1ye1wOW+Ubga/PffwP4IJ+Dc7/dXrGzN8vEKaABg6AxoL7nb/5v/xs//MEfpGlSAQhiUYU+GOp6gA8NoU2VfybLtzrn6BcNMcCgHtO2LcGASGLYdG2ALEoVQpeiASxtk6arzgkVkcIIH/qX/5KtyYSv+7qvSw5FElPH690x9ztJGdxvle15kgiavnhl5/ZeppAlnLLDWdZmGIqioKoqBoOa3Y0xe5tjHrtygQvbG2xvDLm4s8Xu9maqMC0sC5uiGLEGMRlmMbliVBIvWaxZ5Q3EGOwSa8/X37qCkZS0TUMMHmsN43GCT2zh0gwgaHKSVYkpSkJUmqZhPm/og2dzc5PBYEB/85eIIdB2nm7coypU5YDJxjYbm1uU1YDpPNU+LNrExLHOgRG6vsuQkiH0PYUrMFawQfAaiaFHjVBYQ1VV9LeOaJs5i2ZB13VoiEnGwTmIQvCpp+9oNFrlcNZncq9rQnXdJCdQnUOrkjAsWVyq6SaGk8eEZj9g9lr2NmfsDWfsV1OMKL2alVO0KIXpKTRkTR5PLWeFz2qTnPwSkrGSBoV5TPzwDdcwsD3OBBahoMiDgDOBQuIqOetM+rdXSxsdM18x8+WqvH/uSw7Hg9V2C3vqwJcJ04WmWUZlPVYi81ASlFWk7kxkaDsChhDTcS5iwuONaKps7iQJmmWhunRwqXhJTZ3YRpZTx05WQuD1de4KfJ+IKPBXNKnGXVTVF/P3LwEXz/vhunzoQw89dPeNfC7Re6bLobrS2ggh8L3f+7188IMfpO97uq6j7zzOFYxGI0JQZrMprkhMhGUptzGG+XyOiDAejZPaYZ4WLxkQfd9TlmWCcRaL7NBd1uqO9N7TzANoQBV+8Ad/kPl8wdd93ddx5cqV7F/fIGjldYrwFEOS6Y6oJPkBaw1lWVJVFQ8/fIUr+7s89tBF9jZGTCrHxrBmOBxB7HDG4H2bHHYWAjPGYMsCS7ouztoUIfo0iBprMRnuivn6FUVBP5simmiDRVEQs/NfBknGKoPhMM2QQsQaw3g8ZrIxQVXpu0jve/b3dhCN+KCELKfivdL1nuvXrxMibG5uA4meap3FOUuIrJKd4izaRqxLCXnvU/KeELPGewpMYghpir52iUIIeG1oOk8XYFylc2mMWVVwfD5tVYPhHFIWxNoRBo7pQ5b5RaV/rOHC3jE7gzk71ZyNomHiGhahYBHK5AzVYCVQS08QQ2WS/MPENgQVTmJytLXpMUQaTfBFLYkq2WeYZtMltsmmTTosvVqCGia2OaOqWEtPvfb+JAy45Uer98sZRBsdJ31NGx2H3YCossoJ+MzaqU2iQDaxIMbk2PtoV1TOJha0OLxa2uBWsw8Ngu0E28eUs1haiGjXpcR0kbR1bJ6RLJcql9PBO9jn6tx/jao+LyIXgH8mIp9c/1JVNTv+l5muyYe+/33vu+OdeDc9mHuZkpsn5OSpiND3HS8+/wLf8z3fs8LAjXF5SluzWDS0bQeZibCc1i6nu3WdyuZjNLQ5qrc5Abvksd86OIAcda1HUt77NDhooOs8s9mC69dv8pM/+RHGowlf/5u/nk1bwFoDis+Xyep/r505qTiYC9V4wGBgKWOHdDNsaBlGz2NbG3z5+x7l0u4Ge1s1WxPPaNBR10JV9bTdMcYYinpI0QRMaKFTjFZYW1AZCzg0KNqnG31Ub6Ki9KHDd56gnuA7ND+MC1dgihTVG5PUHNO1U/q+R7zitUTEYqxJM48oRJ+WCcFDEOZxvCoySXBZJJqALRWrAdWI6oLYCRW5OcRijhVhuzJITA5pOt6mQ9Cuw6GMbKRWz7ydctIpxjsGpaGNytQr02hojMOKI8aeAGyOS972rqe4+MhDuGGdJIljIIQUnPT3lvx95WYEqZJzVc28duOQ0QAdVDQXBrRblmYX+u1IWfeUNkXLRiJtcEBN0BQlt7HgJNQrJ5k2kdxYEwusRLbsfLX5sAZ/LJk0E7tYYe4BQ28sUQ3zWNJrcrTLVyk+/+2JaujUUohnaFv6DKFYiUQVCglUGcaJheBMivYNukqUNrEg5PxSIYGB7SmNTzOAWK7W0+GICF20NCFF/dHlGXfTZIy9BGuSvv3WhPljG7S7CZaJCI0KNvPc72afk3NX1efzv9dE5B+Q2nVdFZHLqvqiiFwGrt3nul7Jds+8vzMdUk/hBlWsM0znc/7+3/97HBwcrKiR1lpCDKm6MaaLtSwo6ft+xc9eJk+n0ymzaUvbdiunX5aJgz2fz1MUpgnXTVzouNpPay2EpLnStT2z6YIDd8j3/bPv58kn3837n97JBTpn4ZNTetvLz8F5Fai3f3an5dfO4v2e/ldk9XickmSLBX3sGFrY3JhwYWvIztZmSmxXFXVVJcaRMSiSItyQoyqbhLCW9EcwuCjETMZADarxtDNR1ldP1zdBIaq6yoecnhcyRXPtfGbGkzEWEXOGyhlCxIZMZeyb3OFpeX5lxV7J2duUyjUJ9ZdVzayusXwyZH3brZ8CEsmDB2xublJXFX3b0SyapC1SCYO6hsJTlm4l9bs8hqUtZ4yvuYlJZfJZ9ApJXO04HhImFbOLjmZXaPcDbrdhMmypnF85wza6FSfdSMRExzRURJVcmRopcozaaEFNzyV3REA4CQMQg9V1zD0yypi8yb+bxyrh4aFO65A0cIxMu4r+rUSaWK5w86HpaFFiTPQeI0pBYGA6SmMY2OUswWaqb4Jn2ujoJZ1/ZyIjaTMv3TAPaRBMlM0U0TehYOGXzp1ERZ7NMXWVoC1rkaLAb484eryguRAoCASEPjoKiVQS7gqlvmrnLiIjwKjqSf77NwL/FfC9wO8Hvi3/+3++2m3cr92pgGeJcCynqW3b8YlPfIIP/uAPrlqbQaIyOlsQraaOO2Lp+w58WLEPltH50dER0+kUIwnC8d6nRJ+1LBYL5vM5xlravsNaS1mWSecjMxvS9DXpbxsxGYc2XL92g+/93n/IO9/5Lmpb3NE5r5gfnF+kdHsi7XYc/vM5I4gxUBYOtMe3nth3aG0ZDGr2d3fY29tjkumhg8GAoihXs6X0++SYpOuS1Gsu4AgxIpIKZWQ9gSV2pdcj2Iz2pyhHJWKw5A+TY9dI0OV9kPIdxoAri9yIwyJiE4cdcmWty/fOAtWwRtGMySGgqJqlh85JP7vaqJy5gjnuyPupeZnTOoyYtXgMVVlRlWXiyce4gvpS85CO3Z3dMzPN5Wt9RvnamuZGHbmxhEaIhjgs6DdLui2h21YYe+pBR+U8RdaLsZJgsIjgJFCZQGFO6Y8hZ2oCBktML4nZaefkpaYKViD/Lq6i9o7kZAOGkCPmJa2ylEBt+uzofcb4A4V6aumZxXI1c1g60pSkTddsVTy1pG6eD0ysLKqkgS/v5/Kz5QtJFEu1gimLLJ2chMS061FnaHeBzX5FhbSSWDL9PTgQn0vkfhH4B/lBdMD/rqr/RER+Avi7IvIHgc8C33SvFSl35mjfDZZ5pXBNDIGf/MmfTOJfqivNDe/9qggmPVMB1YDNZ2cwGOC95+joaEU7GwyGeB/OPEiQcd0ss1qWJSLCcDhcVWZ67/Eso7IUoZ+cTJnP5/yrf/UTfPwTP8v7PvCBFX66LHj5QjWNHms0SeYKKfcBDOqKne0tLlzYZzQaUdcVhUtwybIwBxFiVsoryiJBJSa9xNhldpbksdPfIiZH88KqeWZMhEiJ4IOukqxJ1ZHEUnKCiDu9liKJ0mfyOpc5bkk6H1q41NEpO7b0r033Tmbap8je5KEhvc4qGpEgJbP8RlesIlXQmAa42fwEQajKmros0b7PFbEN0UfKAi5cvLCi1J7OWu6vFuTVXVhN1aipDRXap7/9pKTZsSz2lX7fM9maszuaM3A9te0pTcBJpMfio6E0MLBJQyY5/qUDNJCpj4WEVZSdHH2KeLvbJG+XjrfRYuXoIeHhlpghH5/VFVMUX5I0Wnq1NFowMgWNFljiCtrp1VKZfkW1XMfxl7bOkkl0zRS1sza7iCSYaJmwDTHdq2o1adbUVYrYrUFbTzw5QQvD4iHP/u7JatCp8799nhPeyV61c1fVzwDvP+fzm8Cve2UruzMsc6eo/E7L3s0RPvPZz/L93//9BB+YTlPhQXLsZeqw0/mshR3ofYe2Pc45uu40Ch8Oh4xGI+bzDmMCdV2jqhweHjKdTlfNj5dNf40xTKfTxHLID5ol0TGXD3FK5I6ZTmf8i3/xQd717ndT1/UZPZq1U3Xf5+ledgaqecW/vrcZI2joEDE4k5yYS8wuBnXJ5saYvd0dBqVQFG5FU10WiImxqCRsvKjKzJlPzjzme0ZUU8mhQog9xjoSmSarZq4icMWJxecHQyDlNjgdnI1Jzj0GRWJEJPHRU/i85DLmwiybukql6D3PkNahGTGoCUsaUhoASB57NZvKQU2MSpRUISzZqRM1Sx8p7aLBqCagR4EYib2n7wJVYdjemHDp4qXV7DCde3Pm/WtvsqY7TtJFcQ4/tPQjwY8jxbhjWCaHnrjeJsEtJuDV4NWkqH2NJ95Hy5QagzKP5YrHnTjwCQK53akPTYuVSK8uSRbI2WNex6Z7dWfeW9HkqG97AlJUfzbiJjNrYpZFiGu+Zunsl8lWvyquus3Br0ftkAqnXILqNCRXvVSkNMMhzdhR7y64Mj5eraPKP53f45F/01eowp3x5du/O+/7ECK1s4iHn/nJj9CczJjOpyy1xlXJkEvAOiGqJ6pHNcEtzrmcdDUMBilbv1gsKIqCra0Jx8cnzOdzer+grCyjUU0Iiu0STm8RokJpXYrCjRAkoFbRUmnpUA9d29Frz8988qeZHR8wHlUYcRiTiiwgywNEyZPWl3OYVfXcasQ7FTitnzuFFZvoNTMB0QBBsRoxVhgNSrYmY7YmEyajIaNhTSkh0xZjiqiX+yqSGhezdISRECBGj0ZSKzVNTT8Aoo+Zb26zs5akmS3Z2ZHa0ieRuBTVJ8nlBIuQY2wfPCLJrVhYKXgmCCX9ZyQD5hmCEY2o5ig9O/R0vnO0HvMAsDymPPgsqeKr5P965L4MBoxNXHhIs4GYIvwYoS4te7u7XLh4YQXDrOeSXjfnLqRRuuvTQ5QbXDdblnZbMLsdV3aPGBYdpQkpWkWwogyyEJhBGdiOsWtT9Wlmphz7wZlNLeGbk1An7ZmcdN2yc2rp2TANhXhmsSKKWcEtS4edom3DLFZJaEwspQSCGMLa87Jc3uQoPznxSBSDUc2O+zTvlXRe0u+bWBAl6dwsHffqX+warJMGAM0yxsZEQpFUM+l7NJjUiLsskNGE+Z7jVz3yDO8avbTa5ijDPK3e/dq+aZz7/Ubu98vhXv4dc2Pj+XTKD33wgwhC33WIsxix2MLStu0qWkyRckyt2nLkU5Ylg8EA5xzD4RDvPYvFgrZNESFERqNhfrCExWJBDBn/yzBO33dJB945xEIUJRAJqaMo480xh4eHfPqXfpFnn/0sjzzyEEHTFF8kT//RM459/TjPGwBv//xeM5vXevIeY8ASkJim1aNBycW9bR556AqXLu4zGg7QGDClRTQVJS0doLFJqzrlQDyddERVeh/p+5A0arxCkBw5CxpgOBxSFg5rDIWzlEVqQ1c6h0SYaWoq7VyBczYpgUoKrpaJ8xADIrnwyRhMjsiX5elnC8wMOeZeRexLh25Naj0XNVFAJcaVOuYyatcYMoKU5VuVU8ee+n4zHA4ZDocU1uGMpXAOsRZDx6Cq2dvZYW93jyUja5njsTZJWL8u8gOqKZmaTgK6t42fVCz2hWZHsS7Q56IhI5EuFLTBURqPk8jMl8x9yVFfc6Md49XQhVSuP+9LQoYtllbawN5gmtk2mgeGxGXfLU411K1E9twJtemZZKcf8zPTq6VTSwmQZ3CrqBzScuJz9evZw12HXSBF9gXQ4whIZtbYDCuZFQf/9t/H7NyXcIoxCk6JlpXcADEigwH+yg7tjnC5OmLbzTI1M+kdQRqEviC0ZV4JLHO73UmvPEU9SfP6xRdf5KWXXsqsC5sy+yFFOd6nDja3QyB9369okCJC27YcHx+vMGFVpW3b1fu2Tdl6Zy3zPGBUVZkhmSVjJkXIIYQ0eSurVe/Gwlo0KlevXqVpG1xR4KzFLzFdTpOq68d6JuH6OUTfrzU2GzRCSAU7dWHY39nkLY8+xNueeIzLF/epCkPfNoyr0coxheDpfaDPXO/5oiUoeNfifaBrPW3b03U9fRfxPhKzg6+qilE9wlmTuxilQiAhdX+aDEd0FRRlxXA4YjgY5kRuwnBXUsTGZDhf8r+KMctI/yzUcRpln/07IEm/npgkEUxiKEcCIZzOAAJJ2TLmJKOoEGNmC+VJgLGpKbYrHEXhCKKreoH93T3e++6n2NraQvMAaVczl/tukP0qLm4knkyRukKGQ6bv2GS+Zzh5h6feXVAUnkVXMC46XBGZNyUnbUkfkvb6tKuYdwV9sHhvU8elzqKtxczTTNt0Ky9GLJRnt3cRo6vm1wCIYoqIMUpV9xQ28Jbtm+xWc94xeokdm6rO152tlXb9SLAkxs4y2k/wyqmDDvnvmGcXxZpo2XI20IulyMuynje4zaIKXm2K3gHnIn7oCZVLmHvvUe+JuxvcfO+Yk8cjXzp6holZcBIHmb7ZY0gzlLtd2S94577OCHn5lySeee+5du0a8/kcNHHVG9/S9z0xxhUjZkm3S3owKZlVVeUqUl+yXYqiWLFgllPhpSpk2yaKJMhKhjZR8CQPFtkBR4ikXpFGElHOkJsrkhqHeO8TpmxkFendfjFP2Rr3Nwjex3kuRORfkBLmCvwvqvrnReRPA38YuJ6X+xOa+m7e0YyB2HWUhTAebHBhd5tHrlziyqULbE0GmNCgIU2hoyoxePquS4NeCPR9YDpfEEKg8Sd0vU/l/ouORdPRdj4VFcWIiYatrR0G9SLhod6ntnsxpm5G0SdYbVwzGo/Y3t5me3ubzc1NRqPRSvgtxoi17oxjXP69PE8isoKPTl+gmpqTsIz8Mo0SSfLEaU6YZgQxQ1BRBTFLobN0H8QMEWXoPd1XXU/btqmJdt8hJt1f73rynXzDN3wDo8kEn4OT2xlTr5dJ4ZDBAB3WdCNDPxZk4BnWLbqCJBK+LKJYozTe0QXL8bymXRREn9vMecG0BtsLpgWJqUvSkoyiVpBMHVxB6vnQogU1ymxYQhF5RpSj4YDCBOZlxaZL8M3SgmYHLslpByDGgk4tPTZh92cGg5hol3LarazJ+jdtLM6watqYfttFl4qYTE5+ZmXIpTpkHyyLrqBrHaGxSaCsP2023m0POHkLuItzapNYPlYW1NLT5+rde9Udv2mc+7q9Vpz34AMqqSHEwcEBTdvSdy2msMSY1PSGw+HqAS5y95r0ACtlmUrkl+qOSx7xYDBgMpmkdTYNVVWd4bMPh0Pm8wVidJVgS9z1SIwBI4bCpu0V1lJYh/qA79I0dykd3HRtThrKaSR526m53wf4TrObO9gfVdWPiMgE+LCI/LP8+f+oqn/unhtbbRQmtWVjPGJ7c8zmeMB4ULExrBkNK9ppAxrxISXUyjJpqM8XDYc3j7l1cMTB0THT+YLB0HDt2rUEXYhFxeHKmmowYjFdEIJnfvUa06MTDEL0PpX22yRI1swXjAdDwtCwt7+X+qx2PW3bsbnZsbOzw2g0whhD0yzQNT0YULxPRU5LxtMIVsnYVBVKHs1izo1E5m2DYJMWTk4C+6j0PsNKIdBHGBaJ7913Df0i6Rapknqpzhs6Kg4PDrh+cMisbVJ1b11yYW+Lr/7qr2Y8HoMR6uK0L+2ycvp1M5vEweLeJn6zotkT2l1lsrng8uSEm4shnU+MmCYUqQy/6Ll2PKaZlchBSXlgcjek1DnJLHfXZKGuIjly04PplfJEV4qOwKpbkqRcNt3EEmrH8ePbHGxscHBpwP5oxtM7z/FodXMVSfcaaFQp1FOoZRYr5rFiFitOYr3iwieGjmIJYFixY3q13PCTFXMGkrPv1TLz1YrD79UwcS2FCRx0A+b+tN3htC05mQ7wxyX2xFIdR+J8jlQVMh5x+NaKr/r1H+ftw2tMTEMtPRPpKSVyEklKotydCPGmcO63UyFfK3jAWJOaQsTI8889T991uKKgjz1C6p1ZVdXKKScqpK4c/DJiK8type64vb1NVVUcHR0xn8/Z3NykaRq67JhPu+Gk3w+HQxaLBYumJ6omHrVzKQpInh/fJxEyaww29wDtMiRkncut1DLuu3ZqXqlTv89z26vqR/KyJyLyc8Dd9SHuYMYIk2HFsHJsjYfsb2+yv72RnHxdUjOA3hB9R8jnve99FlgDsY6iqhlguf7iL4HA3v4+9WBI2wVOFi1950EMo/EQ50rKagARQtfTTGfMpyccH92kmc8xly6hwPWXrjM7nnJj4xo7u7tcvHCBdr5gMplgjGGyMc65UnPaS5P0QCVZ4dz4Ow+4y8RojND51Ge380ncq2lOmM8XdH26/mKzVHQ+Xo/l8LAldAuk71If1uGAsqoJ3YLpfE61NeFkMU+MH5sgxY2NDb7q1/xrfOADH6Ac1PRrj/mdci6vuYmkJhzW4GvwQ6UqPKXxFCYm7vZSEVFPI3gy/S+WimSOt5rTFqxqUp48VMm5pwEgM5UCSMjHZ5Njdwtd/Q7AtkJcWGaLCmcjLzYbFJnfvmz8YXXJrumJLCN4c0rBVJOLStJy81jRqOOgH9HmgqsuOg7aYYrI41kIpg2OEA0D1yOinHQVTe8oXcCKEqLB2ATJpV6v6Xdme4v+0T0WF4RHB7e4WByde+rDfVzXN4Vzv50K+ZrdkCsYQjiZnmQedGJKiBisTY2E27ZdFXusV/Qtk1HrCao0NU5smf39fWaz2Qp3T5WNifUxGFRZX2aeueowGBSZOgld16fjDikZ12ZNeJSsz50rZ1/Ph/Oep08eBz4A/Djw1cAfEZHfB/wkKbo/OOc3K80ga8BoSKqPpWVrMmBjPKSwiYVQOpuo0mQmUIY8rEu9Z8cYiqqm6wNXdsc0bUNR1mAdfYQdsdhyQNtH+gB7e/ucHM/wbRLXMgpWYT495uqLL+Gsw1ZxxVoSNYQ+0CxapicnK8iurlPz7Sw+gCyZL5pScyqJtaI5nxMVvA80XctsNmM6mzFv06zr4OCIGwe3mM/nKGnWNxpvUFQloMzbPrmV6JHQ40QZVhWj8Qa2HLG5u8O1kxmzZoGxlno4YLK5ydNPv49f/VW/mrqumS9mWFchetpecD15/ro4eJHciMMQKkO7F5GLDdv1gtp6NqomSwwkSKIPlj4arE1SBL1RupE9xV2CJHhGEySjLqlHAolBAqeBTVjSCNPf9QsO27Eqa7BN0m5v3YAbi4Kf8ZZnh9s8NDpir5qyV1hivgdtLn6yRErxZ5QpmywKNg01n212udUNeeZoh7Z3zJuSvnEUz1aYLjcCsUq/HVGX8iwSBc1MN/GSGFNjjx146rpnY9Rw88aA8kiwTUSqivm7L/Pcry0o33bEk/ULTOwCSPh9L+n8DDMuFdZOyXn25nDufO7Off1GXv/bWKFbtPziZz6zkhlIanqpG2WIAQX6EAmR1BUHUI34riUSqakTVS8CUSisxQq0izk7W5uMR0OOT04wRgghUfesdcTQMZ8tMEJWNyzY2dpEgMW8IYSY9gVhNkuDgA+Bz3zmGTTGxH1e0ufucc7OOxd3O1f3kcsYA38P+H+o6rGIfAfwX5Pup/8a+B+Abz1nn1aaQcPKqsTUEHxUFWyMR4wGFZaIhpD5xkpRFmiMeKtIiIhxmEIp6gRjhAgyvUVf1Uh27IvO00ahLEommxupVLtT9vb3KVyJ+kDfdvi2ZTgcMh5vUpYlfXeSoDFrc0/WNHsTFTRGnLGEPrGUg+QBKrNm0j0TET0NBFTSNW/alpPZjIODQ24dHHAymzKbLbh5cMCNW7eYZuc+HI7Y2NhkmGWemxCYDGuGpYPQ0y9m+K6jcCUb23sMti/SByirijYEmr7n4e0t3v2+93LpymUOp0dsbk7OLWZ53aP2uiRWllgJYRAZ1T3WZJ591jNfqT2arNNiA1qkWWiw8RSbzw5dg6C9SaOykJLRIecwvKSK5Fx2oEWKfNVm3D09SkSrydm6iLFpu32wdNHio6WJBUPTrXjx6xz3FXSTC44ATkLNrW7IQTPkaDag7xzhqMDODfUNwbaaOz0JxltCadZyBWnQWfVdjY7QGuZDS1dbpM3HpoAx9GNLuNxyafNk1XnpdluqQt7L3jTO/XPh494RejAQtOfg+CaHx7eIpLLtIIqPipVUqOKqAU1MDYdDHxjXNVF7Wp3jjDAaO/p5RyWWvfEE3/UYq/S+R9oZ43pArEvmXYuxgrEVfROQ6BgWI0LbUheG3cmQL3nPO9C+4epL17lxa0oTLW2EQT1k3i1QUQ4Ob7FoFgxHo3vSF9d1a15J8uxuDl5ECpJj/9uq+vfzOb269v1fBf7RvbZRGEtllVFdsbU5YXtjwnhQ46xgCDgjRGsprCVmvFrEIJlwkKSZUgm59HNimXjMi66n6QK+65lN53RBaEPk5s2j3Awks2U0raNyltJa+sWC0kBhCwaDmuFwSF1XWJum4EazQLFPAk3RGGLWuhGbK05DevW+z7IEQu8DbdOymM85mU05PjnmeDrj2ede4OjkmMPjE+aLhqCRoqgYjg4TZbMsiUXBbDxgMqhwRPxiwWI+JQZlcLJgOO2w420CShcCriy5cOkijz3xOMPxkBh76uGAeXeWPbW01wua0cLSXZzQ7Ba0m4ZiZ8bDW4cMXYYnjceJrKiLjS/oomVQ2BWEoSq0wdJ0WWNFhcWipD+qoBdoCqQXyqlgF8LgWsLcVRIe3+zahMtnB++HSiyUuOmxdWAyaqgLT5EFy3xMbe+cqZKcgcQVVXLJs+81Of+l2FcbHde7MZ853OVkXtO+NMSdGHZ+Hop5ZHCjQfqI8ek57DZLYmnwA0N00G6k1oLL/KzpBNOnRtx+UFGQBiW16dmdXbT8rvf+GHvFNM0cYi6ouq0wK4UZd7c3hXO/m/zA57TezDSZzWdpWpx573GJd3Y9PsyydGrqt1k7w6AwaIDNqmI8HNDNTtgeDNnd3GJjOMYiLPqWWdOCMdSVYzTc5cbBAbeOjpJEsLoUFVqHKZOTe/jCNl/6nneARj7zS8/yUz/9SWY3pyw6T+kcfXR0vuPK5curXpuucIT42p2b+0ys/jXg51T129d+d1lPpZx/O/Dxe25LoXKGzcmIna0NNsZD6tIlrFrJ/HO74uoKy8Rx/rGyamFXiMGHwHwx43i24Gi24KTpaBUWPvLsS7fo+o6jkykalOFgyHgwpLKOYT1gZ2sT3/dMjKdwSWhLfSoyc4Ma52wqOOtDLqkP4E1uEZcKmFBNjj+EnGNJzt2HSNf3KVcQUzWCiKHtOhRDWdWoGHrvUSTh8U2bGmOrEk4CTTOjQFHf0y8WdF3PUdPjFp7NS4aj6ZSgkcnmBlu7Oxjn6KNnd3sLVzi0y9WN5zj4180EfJ1a1TkXKbPe+ZIRsq67YiSmwVyFKKcVmj5YOm9XtQq+ddiZybBGSqa6ueDmUB0n6YdQpWYabgHRZ+EtkxKzIMTeEK0SgiFYoVgLc1el/7qkNrqVXECv7ozMb6+WLjrmvqTPdE0JsqTIgwi+thgrK+goloZYyKof63JSID7d0sVMcY1iPJg+LacORBVxDhOU55otAC4WRyunvs7eyQ0M72lvCud+O+b+mq1Wk8M4Pj5mNpvm0vLUfi1h7JEYPaZwDMsCA4wKy9aoRvvAhZ0RTz31FKVxFMYmNouPlK7guOs5ns2wZcVoc5PD4xN8O8PoKNH31FIaYVgPqKiQfsaV7SHvfOQCScJKODo8YTZ/hmnTEkJydiJp6u5y39AQ4h1hmdfJxsDvBX5GRD6aP/sTwDeLyNOkCeQzwL97rxWFvsdKxdbGmM3JmLoqQAPRK1F9EobKbKLl7DMlJ9O1afuepk9CYeXBIYum5eqNm1w/OORo3jAPkV4scx/55GeuMZqUzBcLRhn6EOc4OD5hOp0yGo+IIXL9+g2sCMeDQ2YnJ7S7u+zu7rKxkQbt6H2qDtT0wCXxrpCKnDKtMoRA3/WphEQhxJDVQxOZsXAlZRnY379A0JT8Sm0ANVEhMUlOWAytVXzfQd/Qdg2+bWiaOc2iw3Qeh6PuPQdHRyBKNaiYLuZ84ud+lhDewuXLF+iDZ5038brkr24z6QPusKV5b83iglK7QBdSVG5EKdfay61bHy2Nd0ybirZztCcV5shhfOpvOjwSxs9H4jKhqokpU8yV0QstsTQcPV6hDuqb6dj6cY58D9O2Qu2IhWN+uWA+8WzszNgZJbngpVRwcuYJV29jkfTW1TH1FW0sOPYVPtpUaNXVdD7JfKtV/AgO35Uw9eSZEyyEyfK9mfggqgn/76E8BDdT6oNAdaunnzj80BBdcvC2ibC7xcZnPT/1997DD7+75c9+9WdXFE5LXA2MkBx8OH1szrU3h3PPdr834t2UEM/c2FERJ/RdD8hKhCvmxIsilK7EWoezDhN7dic1FzZG7G/u8TW/+v089dRTFM4Rek/oPbH3dG3LczcO+MjHfprjk2MOFycEhSs7mwwLw9W+wSs4AjvDIaVEiljznrc/xt6kIoglXN7nxRd2+eTPf4bCwLxZoEVqRHEynVK4gkXbJHjB3fkyLc/F/UIy51X83qYgOVXV81Z2V077uduKUDjD9uYmW5sblEXC1hNRWdHgMS6xg5zJorgRgoZcjeqZz1vavie88BJVVadO9Kp0bcu87ag2tnjXu97Bo297J5997nmu3rhJaQuq3NBaVdnb3OLylYf45M/+HLt1nbjvPnJ8eEzoPb7rQfexZpuKnEiVXFMQNSe9leD7xGwKAY2JOeO9p+t7Fk3DbDZnPp/RNA1N17Ozt0sUgxhLUeZG2/UQVxYJWghw4Bf0zZx+MaOdHnN86wbXrwamswXadxAC9XBA06UK3YOjQz78kQ/zyU9+gve+90lUPW9762OMxxfPQDCfj4SqFgY/hDBQnA1Zvjdta/n3+vtSPIss+qWQqriDrKJh20miRPaAKqGWFQSTZHGTN1OTXtGlf/txcpDFNE24TJ9uMTcXvLG0Y0df21VjjeX+pMubMPdlc41lFaiPliY4TvqKWVfSNiWhtZg+7S+S9yP7klhpkhSps1xIzLkBbNrXUgheUlRfmNUAYPoUxUtQMIbipGfyrKXdKfmR43dwqTzmseoGE7Ng5A7u2jP1dnvTOPfbb8w72XlO7G7l9qowHo8ZjUbcun4j6a/b7Eg0aYO3iwVBhO1hyZXtCV/2nnfyviffyhOPXWQ4HGJEqMoSzfrufdezsbXBqLR88lO/wLMvvkgfItODazTTKfuj1IezLCra2YLYtLz1iUd46h1PUDtDQNnfGvHYlYvsbI05nDc0GjlumkQa6LqVRsjd7NUWqdzpPL/WBS91UbC5scGFC/vs7+6yORlTWnBGKURxogyqkr5P0UnE0EeIJlDEDmn9SlP/yoULCIbOewpXJMx6ssHOpYd54m1v57jt+eXnX2B7e4vRcEJdVvi+p6prnv6SL+E3/Ppfz8c+8lO88NMfwfd9bmh+wtHREYvFghA6jDFsbk6AyTnyDjFLE8RcBerwfcD7nsVizvF0yuHRMcfHxxzP5izannmGXmxRMJ5ssLO7R1HVjOsaMalrV+zmmMKyUW1S7WwSL13gyuXLvPTiSxweL+htyQsvvMDR8VHqLOU9R8fHXLtxlZeuPscnf/Zn+Ibf/Bv5bb/tdzMYDM+9rq+Hcw8Dx8FTY+YPBcxOx85wwbhoKbN8b2l8ovwtE6pZMqA0gWNb0wdL2xbYkSeWkdBY4mwZyaZBo7mYqVQu4m4VGD9ITlASNHP4zkjc9Hzluz7DyHb88595EnfgsE1ip9TXBfOi5ViHXMuwSW17quqEveJkdSxLtcd16MOIMusrnru5RXdSUv9ySdWDa9LgUZxoomnGlEz1A8EPDMdPKnbUn2rJmJLghX4rrXd+0VKeVJg8iA2vRwbXOtxJ6p9avHjI9vORjU9P+Oi/+gAHb3PUX3uD9+y9yH9y6fsYmVOk/XVThXytbV1f/V52nlM6zzGlLvOGra3TrvAhBHQVxZvkrNuOelBSW9ioHG+5vM+l7QlFYSlLh1lK0GIJRqmrgtIVlI89hIQOR+DawQG7WxPGm2/FWUs3PaRZdEgxYG/3YZ5+//u4sL+bkv7tArzw8KV9vuJLnmZj7yV+8mc/yXGzQETY3dslakzFKK/BuX2jrNoY8BXvfoyHt0pqnSO9xUiFNZYYhTZDGmCwks5xaaAoIgMVhhrZUE9TQNmO6Nqe3c2CUb2fpMRdxXA0YaRj3rI5YfIe5SMf/WkOrh5RjpSHLuzz0CMP8963vJ0qCo9cusyF+WV+5qc/SuXgoUe2aNqOZ597lsNrMx5/ZAejFt+fsLG5y2A0IKL4GIikJit0EYulvjml6HqOb1zj1uEBVw8OePbadQ7mc9xwzK3ZnOPZgtmiS3ICfaRregpb8OTbn+RL3v8BhnXNUCO+bZHQYSwMHIxqx+TCNsejmlm0yHCLX/jkzzP3PUU01KamqFKe4Ob1lu/863+fT3z8Ob7xG7+Rp556itFohLUwGtX40K+krV9Liw6a3UTtq+qOIis/FiZXT2ZnvnRyLuu1D2xPF23qyuQCxijRCb0oITo00/3CUDEbPdZGXBFYRKHdSPCNHwj9CHSnZ7I15wMbzzI0HT84ehthkQI28UoxkxzJC76zdMHSZXrmaUPrUxXJU711Qxctsz7RHWVhV07d9GA6pZzFxLnPzt32CX6R1iTMf+mOlq6qjIiL+IkBA3aRZinxFpguID4mGZK2Q2czzKJhfDRHzQWee8cmHwc+uXORfXfMQ3aa2FznTrBP7Z7OXUT+OvBbgGuq+p782Q7wd4DHSfjrN6nqgSQP++eB3wzMgW9ZFsTczZJCYzwDr9xx2XMGgHXnfqbTToz0PmKsZXt7e6Ufs3TuRhzBB5x1bG9s8NiVPd7zzrfz2OV9NkYDiqokCnRdiy0KxGZuL0pVWGJZ8MQjD/GWxx5JDQbKkrb3hL5BZzc4OVmwsbHH1vYe5SB1Ue9DhxVhMBpgC8NXfeWXI4Of50Mf+xmsTbzpvd1dNCq2SMUubxzT/XOzuq554om3sr+3u+oUFEJIyaNc6o+xq1aEkK9llleGpNMzGo0YS4XvA4u2o2l6ui7gAwSx+L5lGiKPPvoQYlOT6cnmJtt7u2xubbK3t0PXzjm8dYObzz1LURRsbGywvbuDdY6t7S1uHR5weHiIsZbhZEyIIXXlyu34RNIUfNkLoCxLrr50lRs3bnB4csxikSqVr2xtMdrZ5dbHPs5iNqWuR4xGm4Q+cnTriNnxgheefY7FyZSD67d451NXmIxqtscD3Cgl4G0+5mo4ZrsY8tJxy0q9MkZiiARN58pklsVHPvJRnn/+eb7qq76Kr/mar+Fd73oXXdfRtIsz5/e1sjCOLL50ziNZ+dGIMvflqnl0G9M2B7ZfiXoZUSZFw8i1TIqW2bhcYfJzX3Lc1ix6x2xRUQg4lwTcnImwAze/bAhGqbcbBlXH+3evMbA9Hzt+mMNuQDgpkvPf67G1Z/ZoOmdxViDHBceDmmHRsxiWWFJzbGsiRSwoJDANqU/qc+2Qn79+gcW0wl6tUm59CGqUWIKdC9WRYIMSylQ1Xh0GyiPwnyrww5r6huJaZX7B0I+g24mEUUTLSO9yIxMDduEYv5A08bPkadJ0F4EQmXziJu98dsDi0hZ/8unfw+Lxju/4mr/JI+7wnhDN/Vz17wT+IvBda5/9ceAHVPXbROSP5/d/DPh64O359ZXAd+R/726qRO1PHffaPgunGecz30n6LiXm00UUSaNu8vPpdxXJgf+a9z/F9V/+NL987RYaK6yv6Y3iCs/EdLznLRf4N77ifTz1xCPsb08oKkv0Ha4oKYphesCtwdPjY0q6Dbe3qDe36HqPK2qMLQhR6dsG12/S+5gbeoCNPSZX4QUpcE4Y9B0zjagGZl2gC4orHBcuX6LXpDC5bLcGp/Ue59HbzmPB3F7M8vlu+uGs5aGHrjDOZf0p6Zh472caXVubyDFr+L91bqXCqapos0hYbFFiS0PRR7xXgiaVDRUL0jPZrIgK1cAADYt55Pnnj5nOTnju+ecZ+J6trS0GoyFVXefm1xu4F0oOj49WSop91xHqGmctzhjEGqSHRiQJnMXIwfExXd9jjGU4GDDc3GLzwgUuPfYYtw6P2djcYj7vmM8b2tmCuih4+K2Xeedb34EG5SMHH+YXP/0pNiZjLu1u0u9s4CcDBlWBtQ5xqcOXdQViE+PZx0gfAiEmaQubW7tNp1OOjo45OZlyfHzMfD7nS77kS9iYbNL1r70MgbORve0Tduo5pfXMfYmPhmgkN4425zqfQkKinRYLRrZbwQpTX1LbnllfUdhIiIYQU0VrYSMiStg2OBd4eOuISdnw0OAQgJ85vMJhM0g4t4CtPcNhS+WS877abSGNIwZDH08lA6wkBx+yxsxyf7voaJsSbeyK5RLKxJ0P44iKSfx1kxO5GZ4RwHbJEQ1uBYppwNclIPixEMvM5XcKRUSKSCzdSkaBJStu+ZzGiBxPMS9eY3S4h6/3QUs++asuY4hccqfQ0rnX6F4XUVV/KFcqrts3Al+b//4bwAdJzv0bge/S5F0+JCJbt1Ho7rKdeK7Tgpdrlqcy/GUSUNa8Xi44WZ4jFWTRM257LoTABx6+gp+3XD0IWGqCi3Ttgocf3eU9b3+EJx7aYTyw+NARuoCVAt/1OGtRkzsrRU2VrWWZWB8+4mxJVQ1wtiJG6G1JXETEBlzRoxoQlhFr7sgSFKse+p5BVeODglgGdc3u/h4YIazJIKxmeXrWeZ85Uy/DiV+eXLvT8q+P6Upcbam4SD6epdKmyQJrq6g0xqyVblbVwdZajpsjeu3poqeLnl6TzrZYl6R7rcWHwGRc4mNIvLiwwHcdUQOL2YzSRcajEfWgxuROT9ZaBsMhW5ubNF1LURRZPybkjlxu1R1KNTXMiDEync6IGplsbFBGpQkBKUuqwYDNyZi3Pv448098kmADPUIpqWH6xd0d3vLIwwzKGul6fvrTP0HwPfPZjEVtGdeOQXXK+46Z8YWe9nENPhDyeVw608lkQt/33Lx5kx//8Z8AksDd008/TZnXJyKPkIK020Xhzp2J3/XSSsLRI0mXvA9JonnoOsauWznKyvQrjnkb3aoxx9i21EXPQT/kVj/KrJQBjXcsuqS142zEmsig6KmdULoEpSwyZ74JBT4arp5M6LzFTHp0KJRFKku6OD5ho2g4WVTMGVC6SOcdU18yj9VKE74QTxE9U6mZhoqFL4hBkCrSX+5WhVRSBfb2Tjg8GTB/aUwxVYpZakJz+ESBHwon720phz3dx8YMrltMB/UtxQ8kVTTXmoqvgiSnriSJC1W068B7NGvki7VQlbA1gahsfvQ6g+tb/OXiN9M+3PHn/rW/i3L1jpfo1c7XLq457JfyzQJJg+TZteWey5/d1bkrEHL7M2537qLnRKWnUqyKOeWSimCMXTlAI1ALdLeOkOev8Z7JFpe/8iv47u//l5ywwCIUVrmws8E73/YWtjY3cc7iygq1gi1LmuChbxE8XsFaoShs0h0xiisdSBIiU6MYa3E40AExeGJwRE1t+2L0xBjwISIxpkbZPqI+ULmCk/mc/Z0dtra3VvDS/SRW37SmStd22PVjkdNOS5DGZWstRF3py4RlFxVOBym1EXUBDZ5gekJuNizRpwSnBkKMFIXFYbLjBmNimllJx8bQUWjq6OScSzpARQGS2iMuZwmQVRvXoEIjJmm/AxpiTnC65FSBed8TxDCdzTi6eYvdrW0evnSJw4Mjjm1JGCtbky3e+tgTPHr5Mv2iZVJXXLqwx2J+gjUpwCHXfPS+J2JTxWzs8CGdlxj1ZYqUy/zMUhfp6OiIj370Y0CSMX7/0+9fXhHP+aJw38L5M/E72rqOeFxTO7SZBgkJw3YmRcc+67YEUQxh1Yz6SAZJMTFaQjQrKVxIz/cKlsnvl4VPfR5Qggpt7/DeYF0Al+AcayJD17FVLqgKT1MGjElSEVENTSzYtEkT3WIoMwbfxaQJg4LYSFFmZpQ3FJVnbzhDVZiNx6AJZ1eBbkvoJ8r+hWP2hjM+tT3CdMLghmJbxYTE25cA2LOsPln6vRDWXqmoDxG0KpBFB9dvUoXIzs9e4qgp+exX7q3O+3n2OYNxqqoi9+gSe46ta5BcunRxrXfkeZj6me0l/DPrfcS1lKNqaoK9jBJ933Pz5ITis88w7noev3CRZn+HT7zwAv/8Y5+A3vDopR2+6iu+hI3RAIMync2QpmXaNsz7BUeHM+bzgDUlm6MNSiNUzlBtjdnd32d7ewdInXuMS63ick4oXRgxOQotEpXO9/gsXEZIdLhBPaSwlsoV/Oov/3IGg6RUuY6Vvtpk8/3a61VE1rZtGjDzsSwH6pWGT0wCbku9e1VNdMk1SCnGCGXSRy8c4ATT+oS7+yQNrLElhEBVD3KLPiH1OIXoW9Q3GCIqiXM+LMtVK8NF0+BDkgRel/qNUdEQci/UU3RQY+To+BgkFSg5I4gr8CLcPDri5tXrbO9d4C0PP8Jsc4fFvMGoYTLa5MLOPgNraBZzCo3s72xzUggm9tRVmfoPZBkKa9NMoL12koqk4vJuT5Vey6Kl5X2/bNYuAlevXuWHfuiHCcEzmUyW5/ZFcqClZ0Xh7jQTv6OFaDhpKkbFafNrSIJZJ9QrzP1idczQdSwoUvOV6Ohwq+rPXi0D21OYwLho6aJlWle0wTHrSjpveamZnNl2XNNzj9HQzgs0CraMGBvYGDSMi46DdshBO0REGYw6hlVHnfc1IjRaMI/Val292qTmuGwyYpXRoCVEQ9enrmhXp2N8sLTvXNBEYWYVJGnMi8CiK3i22yKMAs0FizrBNkI3yUJpCtIKcRwZb81RW+GO2+S8AcSkJtlZXI6uxxycJMhmMICuZ+vDVxm9sMV3bP0mnjv+xB2v0at17leXcIuIXAau5c+fBx5ZW+7h/NnLbF2D5Kknn9RUL7J07qcj27Kx9FJudTo94fj4hMPDA46PTzhZzJnNZiucses65vM509mUk/mUODvmP/zXv5Ynd7e4cGGHX9aWS1e2KH/BMMTyrscf4sknHmFQeDT2dG3L89ee58Wr1ziZHRKlpA2WGC1+0dNNZ8S2YbK3wRNveytPPfUUl69cThTLGPAx0DcNRYwghqCR1vd0vaftO3wIdD7gQofpGuZt4PD4mOlsziOPXOEbfss3MBgMVrzz8yh5qFlh0+dBK+uD5OcbZz+zH5k2uBRBW8JLMUa6TPdcYu1nuxudDgBLjX1cEhSzlaMaCD6zT5pFx3zR07eeEHvaVtfaBSYc1PuOvmsBpXRDrLFY50CErmuZzqa0fZ9UQusaWxYr5cYQAiYE4rJLVOa9L9ou9dsNaeAvyxJnLcN6QOx7hkWBDAbsTbaS0qeP+MbTzadcPzog9Mqjly/ijxeUBTgNjOqCYZ0ExRSo6wGTjU0W7bMsug7vA4rNXZhAVjOiQNt2q8YzqkmeeD6f8aEPfYjLly+/7NrcJgp3p5n4na+tCj6c4tdLVozXBL80mZVye0eiJcMj6aCnSL0wgYLAyHa00SW6ZF8z7wtUha5zqSDxtltZY6o2Vb+MptIypQ0MXM+tZkjj035URU9pA5XzGHRVodqpxeZ9D1ndcbmPIknlcjWjUGHRlhij7O+crLpDAVydTxLks6gI3kAZ8WMwnU30zjIxjIwnVd+6yKjqmAqYxiM+ZNloAezpwYaAdj1iDRQF9D3x2RuUi5adTzzGi4vXngr5vcDvB74t//t/rn3+R0Tku0mJ1KP7w9uhbT3z+ZzZbMrNmze5efMW169f4/DwiKOjI65du8b169dps9peCEn0K+hymppLucMykldCYTGx5+aioXj4Ep0EPvWpn6MgcmljiGk7nnh4n51JzUBbiD3WWTY2t3FFjV9s06glFCOkHKEewrzh5OYtoKNbdFx/8SoWYX9/l9II1hk09PS90vQ9z73wIs+/9CK/+MxnOZ7N2du/kCpiHdi+Zbh1gaPFnHI44Lf/m7+TvYv7a+flnN6n68nm2xKld4q+3zAHn2dZzrmVVn7wfiW6JSI467JcQ/rJcgBYOuhVkwwDYhzWOASDKwVXRoqyxxUdfZui1pC55zGE1MJOI1I5tiZjUMVpRVQlBM/R8VHezZQbcEXBaDRCjeBMygOEEJCsC79cFtIxtX2g7Tpql5yP94HJYEjne3zXIjHQzk6YTxe08wbtA4WkNnlWUsu8/Z1tVCc4E6mM4FzOJdmCarSFG46ZLRqaztMHBWtWWjjWpNYeMUaK0lLXNdPplKZpKApHXQ+4ceMWP/qjP3rmspwjCrd2ye48E1+fbbu9TUSgsp7a9jSk3qE+O8JJ0TKwPVGFY18TMIn7nqEaS2qU3Ud7ZgCoYmLXFCbgJNBFx2JYrJzrko2zlBBWUuMLgCLLH9yaDbl+MmZruGCzbpj3BZ13jIqOzWrByKWG2o06TO5uVEuKnJcQkHpDLJIuThsM82mVe/Ymx1zYJIr24mwDgFlbEkKaKYpR7CAQy0hXaBI+czFx9quAsYFBnWo7xIPMm9SoYwlV3va8Slmsnqf0vkS7nq1PzXCLO5Ol74cK+X+Qpmx7IvIc8KdITv3visgfBD4LfFNe/B+TaJCfJlEh/8C91g9w48Z1vv3b/0du3Li+ujlPGyPkB1ROe5ouYZcYI14TLrWOUS+doo+KdIGbByeYtz1B088YFBWPljVvG24yLWa89ZHL1BYqDFCg4vCmpnQVTdvy0gvXuNZc5bPXDmmanp3JJvubW4zwbNRDhq5OlKhFSygc4gx909AsemaLhqvXrvHpzzzDM8+9wLRpeOnWEcVowKCA7uiAaD6Dn1xiuL3JpUceohrVK62dz4s+yOtoYk5v0vVZRup2lBLUw3qQOlSRcG1rLUYEu9YeTkRgME5VjVGIQTP2bMAU1LWjKhRnS/quQ0PICb2EQRdWMlunBU0J04ODAxZNQz0csLe3B8B0NkvQTjVYwUgxRNQk+mHK3acK2dFkk/7wMEOlkdl8wa3DA6wrCSEwP5qyvb3NoBpSjoYEVxD7kKpfFfCKGGFYF1hTYAiIBoyBqq4pB2N6KTk6PqFpe7o+Rb0iBmNcfh6A2K3G+ybLRi+TwtPpHIhcu3Zj/Tq8TBSOO8/Ez9j6bLt+60MqojiJlCbQhdSJyKvFaOpvOrItbXS0sVjx3CvjqUwSwjIohQ1nml70We/Q5O+XlaNRZTUbWNp5bey8Gm4ej+iags3hgoHrEzZvIpXzjFx3huPexgIMlLJGoVZJ8rwZ/gnREFub1SkFLdMghodGHapC3yd9nHSOUw9ZY4EyyxZnqGc8ahhVaSBRMgbf9Vk0L8FtS0hGvU+zs9udvU0Kpe7FA6Q72xp03e6HLfPNd/jq152zrAL/wb3WebsdH5/wUx/5KHCKxS6TQ5BOgsZAjH3iH4csuaoxdWAHkk7aaj/S7xFKb5FoGQzHtMdTRq7k8SuPUj9d8pFnPsGVC7tYNDUdTteUbnrCrRs3CTcOuf7CVeoLV9jf3eP5l65hi5J3PPkUt37x57n+wov08xlPvedJtjfGSAj0vqdbNCxmLdduXOfajRt4hf3LV3jX/gX2L15m2je0s1vceO6zvHDtgMOjQw6PD/kLf+l/5vo3/XZ+7b/xdRRFxdkAKjmrZdny52Ivk2l4nQYRjYnRsVgsUNXUB9Q5iKdYetu2uSOVWyVZE5c7NzDOBWTe1GkWswJwFCFmOV5QItaW2LpCNPGFNevCxOjTw2AqGu/BGnb291b4ujEGMYbdul4NKIvFYhXNL2EO5xxWDIvZnKbpsLZgsWgBw2Q0ZnNzk7Ztmc+bpD/TNJgQGFQDRqMaZywaIt2iYdZNaRctvSjlsGQ0HFCVBdZIotPGiBSW0WTEjVs3CdHTdH2SyxCYL+Y4AxujmvmsT2ys5WBo0jUeDlPF6uHh4fK6C+eIwnHnmfhdLUbhpK/warKT96vvFiFFm6XxVKZL0bgkrLvXpQNPg3CxpqGOyVBOTBz5iKzWO8kB7LLJdJ+du49pfUtRsId2juiDZaeeM3QdpfH4aBkXLU4ibSw46IeMXcvYnhZ4tdFx2A4I0SBVwNrErnE2MNmbEaOha5PLbJuCVhSTu60tLYSkSZBTSJS1pyg8zsQV+wdY5SlOLIkdYwQxJt2zXQfGpog9RvCn51VVoSgTfBNSAv5O9qapUPX+rFNfsQGAkB1bgjxTya3mKkeJS0e17GN5erDBQGOVW9rR1wVVV1EZZbRV8Za9J9h5bMD20GEljcRlUTCuLY9sG3adw2/ssLP7CKYa01Pw6cmzPPa2J3jbO9/GZ9qbxLZm3jZMj15CHtmlHG7QRY8NQvPZl/jMpz7F9d7z6WvXODhuaH/607zz8XcwHhse2q159yNXePTCBT70Cy+hrefZz17jL/3F7+RjP/ULfOu3/gEefuQhyrJANUENxgjGZEGNe9i9uO3nQTmvNysnXc/TRODysxgjal4OQZ0ZdNTl+3hF9s+ajHmqCgip2EiwYCIiAcSimY2jGrBV9YrGRiExelKPW1n10Fx23JI8yzAiFMZiqhonCfuez2Zo39P0PS25RWKeeWpIGjuDylGVBWVhKV2u0RDwMVFhfVSOTmZEVawtELGIpI5dks/Zy67bsnJRlkHf6px+NeeLwt1pJn5XUxXmfYJMNssGlzXbIQmEJbkBv2LGFMbTxiJF4pKe4yp3R1qPwoOY7OSXEXaCYirjV4Jfy0bTQQUvcRXhI/DQ6HCFowOMsgzxshI1IixiSRX9ShjdEJOQmC+ICjZrwftgKFxgZzilD5ajLJ2wmJWoCq5IjV5NbsqhIUX8y6jf2kjlAqOyo7KeNjj6aFYJ5JwUAucSbBMC2rRIWSYapDHJ+S/NSIrcScu+jF24Zm8K5x6jrrohwdnIMjUUltNo/JwBAM4mEZemITnEpm0oqpLRxpjxxpiunVMNNnns0UcTtitCURZY4yBGJuMxG5MhR7euE6usj2Ec7508QlEbnv2ln8ZIYO/iBcYbG7x44xpN0yACg6pmenjEbL7gwv4FruzssLl/g4/99M8z2h3zZe9+Nz/6Ex/EnwTGb32EwWgT50o672n71LPxn//zf8GtW7f4T/+z/4RHH32YGJNUwv0WI93t+/uU/H3NbJ2ylz8597tl4lXWrvXZFZmswpd0mRL1O7+JgFGMsaedk1QRHMvmGsuuyuLScHCGSpjvu+W/gbONyCUzU1bvgbKscnSWnasm6KeqKrSqCF3PxmiYKJ7LhGyMaEzQjEjqCDa1DWVVMShLCmeSXw4xz9SVtvfcvHkAGIqyQKxDEYyzSSkwxqSHT8KkE10wn6CsDbs2kP8IcKeb42Uz8fu1dZ25dRXIxIG3tLjEpokpOg8YUjr17DU2EilI+2w1ruQAAmaF0S8trA0GUWWVnF3f/vKztIxZ7VOSRUh4ukWxuVeqEcWaSOkCg2GbBvb8WWV9yi+4nqCGxbDICqbLc5sHtWCIOSmrKmwMGmrnGbie0vjV7KKPlmlfJSplbsmIq9LFUQVjT533chogJrFm7P3l0N4Uzn2JjZ42pz59wFVkFYic59xXaziPIaIRK/DSSy/S+J69jQ3e8a538fFf+gW2J0MW84bJeASqeO8p63LFzLGFUmw5xlXN8WHDYj5P3ZXaOaabUdQFg+GQzndMlqX1vcc6RzNfEEW4fPkyV49OeOfDj/DI1kWK6Cii5b1ve4K2u5UaHVc1sybxmEWE4APGCh/+8Ef4tv/uz/Kn/tSfZHtna0Vxe12vwmvt7EVWs6n1mdhp8J1ZCiGkyHiJO56TSJalBF9egQHUmMQRtoBqiqRJAZBBVzxpyX8D9OTkbY780WXz8vRv3iFUFSuCXRZarf+NpEDAsNpXYtIGqZzDGIs3KQpfCo7FmJ27xrTPS4crUJSOqnBYa4hAJGJyE+227zk4mhMRXFGiufWisTaNazEkLaOwPKeydp+k8/X5ELBYOq3brVcDscDFiDG6ws/XzaJp8NXUpaUgXT9jErS6HAgKCWeaVpjbGlicNsBO4XgTizOR/rqzN6KrfqpLpo8l4iRS2QBVh6oQosGKUttUjDWwp1F0UMmVuanL03qyd3mcoyLBQqVNx9CEgDcmV+CahLlnCDIVO1ikOE2gnvdMvoxkcQd7kzj3ZQGSebnjzg/CeVH6eVH7etSfIq7I1Rs3uTWbcWV7H1vChQsXOJ6dUA0HKzpb4YrMOihT9FdAUW5gS3DOEzsl9j7NBiYjglem8zmDwYDxYEBdVfRdt6q27L3SNz0uKOH4hI2ihr6FXnn00i5FvU1dFfjBFofTD+PVpMFDeySCD5GPfvSn+e7v/rt867f+gdRfNVcq3kUI7mV2+83xSnV7Pne77Zohq6nketRsEMJaYnx9uimSIY0M6qQBPztHk89HVKw1aZAQzfBMitBElGW+bD5vzt4feea2jM5FJEEmJCgmrU9e9ndqbk5iamX+uQZFVLBGUJt66YIiEhOEkgcTXeZPgDpH7M7Z5NyVXHYf8SHSdh2LPqDWYVxqLKGrmZxCzEk3z6r24/T06eooXi9bMliWr6WsrteA0UgXHR5dJVSXzJhVA+o1M2sOftnEermslbjqb3p76zkjkaiGF/tN2ujOSA0vNWSQ5PTXVRStxFXkXkjCwJcBAaSo3AeDs2kGspIvzonemKWBvZqVM3d5wKls0rMf/v/b+/MgybLrvBP8nXvve8+X2HOrrAVVQGEhQHCnSHGRBJJqtUiRBCWTyaRp0zaymelFmtZoxlrLH9Nt0yMzjWxGI421jdrULVqLrZYoTlOUSEriToICQGIpCChsBdSWteSeGRkRHr689+69Z/6497l7REZkZhUyUQkwTllURnh4uL/Nzzv3O9/5PtfkG0aiYO6bxKuvs0mJ8flG312gXVM1HdzFvyKpgpfOxUrvelYfiuSeCp+lO/IShhhJk4vLSWlOj7ttyc+h56VEv9+0fOn1Kzz1+HmMr/FYfBsoQkyJ3Vg0a7k4a4l5gCRIRSSNQZtKsBVIaFFtiSgrGxvpwyqZpZNt2DQoZdmjtAXnTw2YTaeo95hCCdoiJaxvrSPGcNMbtndHqHH4GClQ2jbOJ21/4Rd+kW//9m/n9//+76LIlKjjTuph3vvhG+Dh43Pcc+9fyIFztOiNLLDiLsEbMZjlYaHbKnftXpKF3lDWFlJABOtknspknuDT9x3brmmb1JeW1MDqJma7waXlY7j8c/fVPc8g2dJvabI6J3qNzFcCIaYJUp+nk5XE7rI2vXdZpKTuTGfcLgm/FQg+UDcxf8bzeiS/1QJKl9xk1vnxhuXq/Y6w7FcUskRJTF8LaMRHg8HiSVVyFd0cZjkcyx6miSXTvcEChrEohfgD7k7p8WRy3ahjz/fZ81UaiupuBgZ6pk0QUFywcYC8GvAU4ilzc3f5xgCpOg8xTeC6I1YmPnPjOzomhjmDqMw00SrLIBsUl+UXGm+Z1iWDQHL+WmKWkS0ngYXezHKC5yAt97h4KJL7nWK5SXo4URyJs+vBE+ODste2/MKHPsL5R87y6OYAW/TAlvMx7s75p2lapOiac4KNiXJmi+Sv6USwpsKYyKytk2ogKbfE1uPEJCNsYxn2hkkPYjhkYzjAhyY57hDBQX9QMgvKdNxwazTFlRUxeEyMdNP3GoXppObnfu5f8f73fyOnTp3CmCR18CDiQfDhb4NlRA9U7h3ebiX5lc4T6+Ft08wG0fxbSdO/pnNLUMHa5aSm5NIgJVTt5FxTsjRiEM0I7CEY6HBy7743ubrvbggaAyjY3OBMVN2AbyMhtvT7AxKFP+JbiJJ9mKxgSpP47nSc/q6al/l+Ji37BVkgxkjM2xtJVaeIoLE7nsusOTnisfsbHc7cYc9HaYvPtWeipTQHcfLj4qjKHBYyvR28EjApWWuqyp0JcxXK5STdLlfdS4m7g3i65qvNEM38b01kUKbhp46xMw0FBmXoGoxJcI2XLtmmnkf6+4V8sFfFaDxwUftgaRu3uH+FAD5h7Or9ghZpBHzeZkN6LGpqrN7lxD70yb2r9ODo5H7bs5dx+KCIrWgVvvDya/wP/+x/5Qe/+1s4NbQ89sgpiqjEEJLehCRfTCupehcFqyEPjNjUrDNKard52llDiIozWevdJO0RKwZnbUoeAtEHijIt1ZsYkELoF47CCh7DdNbgg2ZW0+JDuvhX+MxnPssXvvAc3/u930OMqXF4v+NBDTodCZ/poq/SPd71XLok2j3ebZvME3RKEGJYWqam5GitME/oGlEiqh7VnOAh6/rfvr9HSU4fqNqXnisiFK6YS2ZYaxKdMz/mQ5IS1JxZxRmcWCSmmwsmwUktgUJtkjgwkqAdk5M5qRfR+oAVoSGtCgKK14jRiDOJK5+2fXFNLD4D8sAS++K95MCA0e0N1QxdOHNkQo9qiEvJvEuKRhYN1dT4jPNk3A0+pSlXmZttVHlI6nAiDxjCUqpYvO7Sc9NtMyXm3FAvTBpWKkyYM4EmvsRJYKtMtn2da1MHDXXRGYN3+LtBwSxYQT4YQmvyxGpnvJ6lLkJAxSDuiM95t2y7h8bqQ5Lcj4cE5qyZjvO+nLzvULUDicOmLYUzTH3Lf3j5FV64dJF3P7LBX/ozf4whFo0tSrJdU4RGIqasQAtMcq4FC8Yk+CVo6oa7oofpvDRjbs5JsohzpcNVBg0eVxrEKL2ipOo7QvS44ImtMmnTdJ0VQX2q6iMH78jeRybjGf/mF3+Jb/7mb2NtbWWeBOe7+QY+wcdBWA8kjnj9hBWmSrSDNGKMRHOQ/rrYtpxw50v6w9uv84rI2I71ktKjqicSiPPqPVBWg9RkPFwohMXNxR6qQDssfrmSd7bA52rOOUdVVhTOEqInIyMp8TvLwA4QS9a1CbTB431LGzxKyFV6dwNZpgQmTL+qCiZNmr6O0skixLkhRLzL8vxBwTIxyhw18GqWR03m3PMmJh2ZsS9po51X1YWExTDTUmP0cNXeRceY6VgyHZZeAEFSgp/EcvnwUef3Xq7Wo8p8kKqDkWaxmP9+o5ywL4m73wbLqK7oOc9GNZ3DLS5r0yRYJ2KtHvCLXa7cu2jV0AbDqK3Ymfbw3i76Zx0sc/hEdT9bw21h5Nic2cVDktwPQi8HHj/id8sV1jJWf/trBiR4Qq4NaltRe+UcSq0BI2nSS/N/yTotDZY0M4MtBlhnEpYrqRkjaoGS2O4x2R/TZJnYfr8PCnXdJEy1hPH+FOvW8ki9IoGkWOgjjRcmteP1K9s0swYXA9Gki1Q6P9H5Piqf+tRn+PjHnuGH/vAHjsTP38hxvpe/E5ELwIj0kfWq+p3yBqVhI5EYJmk1GQV8C3lgKPqAB2zVw9ISfcPMT9Lqx6RKuCxLTFRiGxA34GDhl3gxy22lptUk1IZDcSgVdPh8rni0nZJuCCmhe9/Seg/ELJPgmEzHFEWBEYiitBrSzd9P8epZ3VplsldjLdTjCeNpzX5jWV9bY2tjA2N6zKYzFJ8nHUHarL9OugaEAkxBpQ0hCk0QZt4wVcteHbh0s2Xl9BP4Wxex0dLTQIgtURJRM2a52MYrSIV1hmPy4gMJVYjBoLlqb4NN/HRyvyMoJjcZQ06UkhuMPZuSa6stheZhtSOq9y66BN2oy79Pz62kPfCciSkPNGHHsWIa8nSsLJg6plAqfNoudbTq5gJi53t7bJshs1BQe8feuIfvNZiVPHXrkja+z16rLtMzOxbNYXpnd4OZhiRTvDPtMdrvE3zunwhJKGxpJUs3l9FJqdg7rNTvcM4fSi3ZA7DL/Sg7dPEVQ5JNda6gKEpUoW3D/DFUaBtPPa0JdY22CQc3qkiMxLYlzGY0swltPUkVZVRKV+Gkh4QKQkpMzrlk9ZfdfCDhy5NZw7TxTBvPf3j2c0zrGukaeuZg4lVNNM3RaMRv/dZvUT8Ay7Q7xA+o6req6nfmnzuTlncBv55/vmMcBWscDD3U0MyP5oree0/s5CZClgGIqTnWFe2pss7TpkvMFuEgZi4ixNAm2eCmpZ7NmE0mtLMp6gPqA/Vkiig4MdiOpRMjGmK6QUVQvwQXLWGfB67bO9w/u1EuESGEZAQeOj+DGAHBFQWT6ZRLly7hNS7xa5aO6+KHg8f6wCqj+3oA0VFNl9gl831cphyaJMG7XEG3amjVUmuSJ5ipyxx4mUMXHfZdSGLalOIpJUEvy1+L17RMQsmu77PTDthp+4x8SvB1cPgsc2CJ9EyLlZgNsdP7zlUh1cxhlW44KXKwp9BZCXZfXXTPS/tnqOPiNaMK1ijWReJ+QXG5pBo9OCPNh6ZyPy6+stR+6MLW9GGKEZwrca5ENbklOUv+XcZJkdSTDp5Qg5iAV6WeNdR1w/aNK5w+tQVqca7CmYpesUp0idfrYxpfjyFgTIU1KbGEEGkVGhVu7o248PqldGcWSR+Wbk2/FGVZoqp85jOf4fLlyzz51BO8RfFB4AP5+3/CXaRhBck6KBa68SJl0TDOPQVni6QIKpopj5JgSB/xGTcX9UvJNE0wYs0Co89DXhHm5lWqCZpMhbuCQggeNJluz2Y1bdvMt7dr7lZVhTEOI27e2Ex0SkP0Stu0qddlFo1UkTQctay/f3ByVA98G7sGr/c0bUwuPwghCKoG6xxXt2/x5edfzKvTBwyhvcEQAWsVa/Q22GN5rzsYo4NpOpemJjrGviLaDoxKSbwwHiQRJjucvVhizaTnpsby8iBTwDAJJeNQsd0MaIJl3FY00bJezui5FpchIGciA9OkidRYpPcgVdkj36ONFieBwiYJAms0qUXmlbXpoKSlwajlCJqkjZd58N0cQGEDvbIl3lhh8zmlf3l2kClzH+OhrNzvLxbc7WJKCs4VFK7Et4EQlOAT3h6DEqKiKlmsDGLwtE3NZDJmf3+P0d4uaOLCjiYTbNWjVRhNZowmNUEcUvTAFIgkO7bpbIbGdPqTdorSRhi3gcs3txlNa7RLSmke97YbWtfs29vb48Mf+ci8oj18rJYbk4eHvA5jxsuve0wo8Csi8owkNUC4B2lYEfnfi8gnReSTe5PpXOo3LTvT1GXMphOpygWTm9JGFiJJqprG772nbf1CTTLEud67aMQoabiogy9JQ6uipIarduYHEQ0BIeLbhqaeEXyTzidK8AHfekQTe8WKzQqUyU9No4Fo0CAEn64nY0ySIc77eHjeQg6wf5aq+6Vz1fqQtNpDJMRsxp0bxVeuXuXll18maqZ1dtX6IUbMWxUmV7epv7fEdc9WdglOibkK7tgjiwnNJCrmmMViXkG30WUs/OjUFFTmiX3+N8tf0aYmriYYqMz4eKfRXuSbhcn/Hsb8u3Am5ptBmlDtqJ7zfZfE3e8Ezg5sX+a9+/zVxGTO3YZkSBJUKMbC4GqLHdVpGlUO7a+RxdebjIemcj9q2Oa+8K5VMrCVcHM0IsbifaI/+qalLEuCjzR1UicMrWcmM5p6kppVYlCxVP0+Zb9MbjJFn8998QV8gL2dERubp3mXh15vSIwtr77yKnU95dFHHmE8nlBVyTosxojHsDetuXpzh2k9w6sjzimCB4cTuoThnCPGyIc//GH+xJ/4IFVV3St2fvyhufPx/X5VvSgiZ4FfFZHnDv3tkdKwuqQc+K4nzqkxCx33Zcqh5ualaqqIWfp5OUmG3Py0dlHup+I+U8UkJn1sk/i/mjYiYZbzaeaQVwuaq/YmebkasDYNh8UYQIWirFJSF4uQk3PnvqKAWgwFSMBamySLrU3VtS4G8BYrCpm/7zLU2G2bDynBGwteFB+UNkDbRi5dvsyNnV2k7OV9hTlVMh1t5gn+q4i3p8O/sMEzorSxmz1J29MGCzYlyTJrwjQhJd20cpE5VGFE8RhaY+mZlgKfhtpyE/VwNJpw7JkWKZHmxD4NBdNQMAsFbbAUNuCy7swsFAxcQ9+29ExLT1pa3AHKYseU6WQOKuepsuiXV0vTDdwt69xggUjsdG5ylZ4SuptbAnZsosZbQjAMriq9//AyOHc8K2b+7Zs7uQ9lcr9/lbss/lUh+GTDFkLCaCfjCcOqJIYkQetbn4aYYmTW1ERpCEEpqh7D1T62V1KHFls5th55gu0XL9D4htYWPP/qq0x8oChLZpMRN177Mu9+19MJV42B8bhJ5thtw2jq2Z3MeO3KddpOCK377B7BAOqOR13XPPfcczz77LP8vt/3+277/f0MVb2Y/70mIj8HfBf3KA07D5EkcCUdJJMq9jSLkf+dg8ky/77TbIlocpyPKSF2x0dibohm37KUL82CQtmtXkJyXYohzP1o26bG+wZBKYoSlyeTZ7MaI0JV9nDOJSorqVdi86ojhKRCWRZKq5OEu2bVSvJuHEjuuZpPv5N5Ao6a4DfVJEsduhtZVFofqX1kPK25eOkSsxDpp6ZCOkb5hiFf7Wx+KETAmph5/932315tL7RdFph1zBf7cVz3jh4ZVWgOpaigCwrkJFRzlck2WnbbPhNfpuTrPGVm5qSVhKEygb5Nkr8BQ2VaSvFp5YCjZ1pWixlNdpFysugV3C6ZkKRN0r4smtkRyUneHIBrOhOQWVNQzwpWG00rSmMfGH7y0CT34+PeLuLj724d7p6O4OnT5/iO7/gm9vZGbKwVVNbR75WZfmdxrgQVjAW1Dkyg6JfY0jGa7KMY2uDZ2zdsnnmUtq2pmxnlcMCla1fo9XtYIk888QRra+s0TYNUJdF72uiZTSds782YNIbLV6+kqlWlmy+c729XgXbemLPZDGMMs9mMj370o3zHd3zHUiV8j0fyLnTT+RETGQJGkxXbEPgjwP+NNygNm5qGFpPpe4lZkSvz2Gm5LOCaDifvsHjR7rxJnt+YgxvpDhAFJRJFE2xiEps9dvMLIY3wdw1ZVWV/bwcRSa5LZYGzBW3rKXIVXjqXqvkoEFM/wBUOjUKtTTLyqAr26uncC9Zka7wOaumS+7yJm7iZ8yu5a5wm6AlUEusnqNKGQN1GdkcjLl2+NvefPXC+Fq+0OB5fZYimcynqDDKSDstCvGw5qfvMUjmQ6NVA5qR3ptkd1XEWiznzBjrOe76B5KTeqp2bgPgM8byyt0ndOt6xeZPNcjp/rzbDPFvlmNPFCIvSquWM2+MRt8tOGHDdr1GZlk035pYfcqneoLaOyiYYNvH1DzpPWYlzeeL0XhmO0bRCmdv15b+vW8d0t4fZdRRTPZ4Fcx+qdrg3s46fBH4UuKaq78+P/TfA/w64np/2t1T13+bf/U3gL5EodP9HVf3lN7pRByR/hQOqkEds37EHQKxHEdQPCLSY0vL7/+CPsTvZ40aYsmktEUMTIitVktY10lKtFhQumW3vj2cEYGd/yvbelCaAK/u06lCJSAXRKgbHULbo99aYjMZMTeTqtGXVWQaasLnoW0b7Y7wt2Z5OuLS9T4MlalIzLHIzqlvmB1U0pEZiwuUTPerChQuMRntsbm0sJfauc2i50wd9mU56h4r/HPBz+fcO+Geq+ksi8gneiDSskPRe5KAS4+HtOCAG11XpS9vWNS6lgyW6v48hN2Lzas8kV64QIcTkQxq9x4dA8On1r1+/xsbGBsPhMA80pZuLtQXOlcQIZVmkvksUrC0oyz4xCm2rWCOUZcmoucEcd7eWkBX8jlqBdufv8H6n61tQ64jG4IPSRKVuWnb2drl+Y4e11VWmAaIYlge26BCx+wFdvpnQBQQDtzNlDkgSLDFglp93WEpg/lpzxkluwiJ0pMeohlrdfJCpWxF4NakqbpO2zNDVqWGLZEbLwqCj+76UQE9aSglJhoBk2lGbYj7Q1E2c6pJuDiymW7v96JQml4/HMu89dBIFtcFNBYkxyfo+wLiXyv1/Av474KcOPf7/VtX/5/IDIvI+4E8D3wg8CvyaiLxbVY+3C7lb6HKl8ob/NF/8FiOBU+fO8J73vJuP/dovE88aJlOltI5alcIaCiIuSpoaFEtVlcxqT9227I33uXz5BrWHja3TFG4FMRDiDJGADZGVsqKyDooKqJk1DW4GxgTwnso6pKhoGnj10jVG+2NqLYjWzHXCZal+P4w/dyyLCxcusLu7y+rqkLIquu7hPeOud6sGVPUl4FuOePwmb0AadpmKeNR7z3H1EJZ+PtQEnvP9u0Ylc/w73fgjpCI+vwbZzCXRJoMP+ODnTeabt3YZrKxiiwKMoW3SisraAnGW2rf0jM1zroIal8wRImAcYoWiGuaqfEHhXN4nVV0waLoG68GDMH9uNGkaOjUJE3xU+8BoOmOi8NjqGrO9EYIQu/fJB0G6RP8WhJJgGD2U1EM0LJ9Fr4YmHBTsCtFAxrUX0rvLDVdLi+UwCydV6dk9iYVgWJvphqP9PmFm6T3Wcr7c5QV/lmkoGNqkpR5VGIUeq3bGICf2DdMQdcLMFpjMzglq6Nsmc+RTM7XOLlAdkwYWDJ+0rRGLzFk0Hb+/EyebtY7ppKS8ZeldE8SDbq0ni73pDI4ptL6S3uO9ODH9tiQz3XuJDwI/rao18LKIvEDCan/nTW3dVxiLXGExruDxJx7DSsBP9hjadUbbO1RYpJ9cj/qlxUaDCzGNBUuJKwpq31AWBac2N7h45TqvX3iJ9cEW586c4dTGKs4Je3t7FMMe1pRMrGN7b8re7jaECmdWKKwjiCUWPfZGE5574QJYg1Ez/9AqSfJ1OakfnkYNMbC9vc0nP/lJnnjiJ1A99rp4yyMxXQIaEwNFo2SGUtI0r6oC30Zc6eYVsMackH3A+4gpzRz2uI1PzkJXKWpiIzVNQ9MGxJhk4zfoIdYxmUyYTCaINdiipOz1KcuKqDVNG2hDxIfUY5lOr7G+vkVZJYqm9wFX9ih7ffb29hiN99nY2GA02mM6SXaQMUZCjOy1LTFG1tbWFnIKJikgdvTJFvC+RVWp6zYZNSjsjPa5vrvPvofXLl7GAPuTCT7GxP/Oq9h00iOdumQqB9xXFZhJbQCdQw8dJNP9LuZEf5hlslxpd5CNjwaPmSfzo7D4hV67WZoODQTR+aBQ93lvomMSy8WNRSvGoWRqi9TcLQRTRGZaMFNLgyWoSVo1CjMtmIYyNWjb7kai8+1OJiFJvfJOGjmQVzFI8lcNgp0Jxb5im3hw1dV9kI/oub3Z+Eow978sIn8O+CTwf86Tio8Bv7v0nNfzY7eFLJnt3vHu9Aau2Nuw465RJwZbOs4++ghFVYEqPec4tXKKyaSmrmvWN1awRQ8XI5VC06ZlvXUWZy2bgwFve9tTPP30O3n11dcZX9/j+qsXuPKypywLzp49R2tatvdG7Ozt4XuGJx57hGHfMpuNKXpDai9MteDV67tcuHyD2ucRcpsw07gk53kYhuq+t9YQYuSZZ57hgx/8MUTssQn+WLjqfjGR7hLWWpwr0BhoWz+fJu7s6iDdAMKSMfCCKpn17UNipbS+yY3YrpW4oBRqFtNqmiYZbVjBOYsrC4xLip/pK1D1h9StZ2dvn8Eg4fxtgMlkSl23xKAJnsHgoybFEWNofWA2bZg1DTFCTxv29/fZ3t6mrmdzo44y2/LVdfJr7TTiU7F9uw8BhcPHxNDqVgpNU7O3N8IIudlqiIt+7G3x1UfcU2K3JlJ7R9SDJtXWJBhilnndB4aXoqX2BydN4WiuODCXCOie4ySyVY4pJLBZTNIkqq/SgJALaCFcn64keV1f0QTL9fGQWVMkzrooT2zs8I6VGwnrJzKJFXuxTx0LJrHkcrPOq5NNtqcDru2s4Fxkc2WCj4bdpsfUJtimkzG+U0x9QRsNbePQxlLdhLVXGqobU2Q8BR8OrO4OXBtZIOzNxptN7v8Q+G9J19V/C/y/gP/tG3mBZcqcNe7I67bDag9f1svJ76hE2D3HGlJTrCgoBo7V02fxtuTMo2/D41kbrjPZv0YTPeO6wZSWsixofMAU6QNtjMFZk8wUiPQcnNlcZauseOKRM9R1Sz2rk2vObIpoy2DgWDl3mrc/+Si+GbGz29IEz6QVru/XfPaF1xi1IGUfS6cxkao7xSJx0ZyDgxLHzjlm0ynPfek5bt68yblHzmJtSm4hRAR3INHfKcHf6ff3IxawS+Kra9Sc8F1yD4qampnGZQ0wgZjNr7Nej5eQYK0DVMKMzCxxyFUMrfdYV1AWBWVVZueiVPVjQJylrAbs7o3ZH9dUVQ9nC5qmZW9vj8lkhjGOtdUN6ibQ+EgbItVsBpqansYajFHqesZoNGJvbw/vW/r9Pv1+P+P4ynQ6zZhtJxOcGuYxG3bMz4MtqJsZbYypuYphMqu5duMGRVXQtC0xN5U5lOCXG/Bf7eggmOWKXVUyNXshBexjEtNbrsoV5g1KL2but3qATXNcSMcxz/xyiXNhL2uVYJW9WS9h3NkQY3/So60dYhQxys1qwMCtMTANq2bGTIs0JRsL9kPFbtvn5nTAaFbhGwdLqLJXi4l5tYDMIZrO8m/5ZgTQRkPjs3m2gq2VYq9Bpk0SCztOPmV5SfomE/ybSu6qerX7XkT+B+AX848XgeXxycfzY2845lDEoQbVG0lGsU0Jvt8f4CVSrJ9iZgdsPPYubtVfxkrJqY1TvHDxZWoJqIWVQZ9Z0zKoBjRNS+EKQNHoCW2NROgXlpHxafgEWD+1RetbqrYkxAofA9X6GjHU1NN9fDslmiGTNvDlVy/z6edeohyup8rQB5x1ObmnJF1P99NNxblUny7fzEOagNzb3ePChVc4/+gjudL1mXJ473Fck/p+RTds1TFJloeourcVEXzG3I2aeXU7t7wLIb+GTwNecQHJYLKzadarMdYk+7kiGVuIFVTSc21R0BNhZX2TGzducuvWLjHuYLNu/mQypakbjHWMZzWD8Zg2KkGh1++jEaxz9KoePniuXXyFGzeuM97fy5o0xVwKuNv3pul8b00ashLmN+E5XVMsjQ/UXrM6aGRvPObm9oiirKhbn4w/lsmPDwEMF6JhNOlhTMwjBwsZguVo8uCONWmYqc3DPJBuBnVwjDMXvbshdIybMptnlDbgJLBezujblnU3PTC1uuEm6ffDKbv0ufHqBremBrWgRrFTQ5E9plXg0l7JtbU1Xt/a4PLG+rx56jXRFZ/bPseNl7bS586AXxFKG+a4fRMdN+tB5vAfbCfOgltM46KM65LZtCT6dHPu34rYFy+m+QcxRyfu+yTp/aaSe8d1zj/+ceBz+fufB/6ZiPw9UkP1XcDHv+KtfJNhDaz0Kpwr8EWkpsCXq2w89k72XnmN4KF0BWfPnePirSu0t1oqZzgzXGE2a4hFRHLCjSHQNjXWGPqlo10puTG6xWS/5cr2LYqyRGkpS6h6JdYK9XQC6imcZTSdcm078NFnnqWVAt8qzhqs69gkBjUWI8La2tqBRHiAPRQbCitMphN+53d+h2/+lvfT7/coioKQSr9j47gVzoMK1SSklhyRsu5LpgYGTYndZnOUKEc3X2M2lMZ4YubJa8zKkdkw3Gbed7/XwzqXoBhD4rZLAnBcYXGFZW3zDNM6MqkDzXSacH1jsWWPwqQZiJs7u4xnNbYokMLRb5u5RlBRFMymU1587jnG432sEdbWVg8cx65/4H0zr9yNkSz8l6v3ENKEasyQTxtoglC3LTt7++zXntXhkNh4FnReWTTP6eCYt656D94gRXp/YxbDdwdkfzvGyKFqvKvq0y8PYvRBZe5p6pZkf92hadA5mybTKXvOMy08tQric7M5yvyQSQQThTA1eOe4VfW5VKyngazcOO1uWnacbg6xv3j/ZY34Jjp8PufL8FLnzNQZfHhvidGgIVEmTavoeJKYMmUB0SDWPJBC616okP8c+ABwWkReB/5r4AMi8q3pkHEB+D8AqOrnReRngC8AHvgv7o0po3PZ0sP44R2ZMh0FbqmaMzl5GGPoDSqKXkl0ebS7CbS+YevUFvu3HuNmc5OVsqDXP816LdzaucoNbjFwBucifSpsAaENuCKi0WOtoywLYrnG4+WA6zf2mEwa6tmU1WGftZUiibrFltlon9g2jGPkxrjmQx//PK9dHdGow/UsUSNGkst9pkygIrTqFyJYHRsjN1usLSkLR9nr8+znvsC/+6Vf433vey9PPvk2irLEZSnQEJL9mjGdQFWYOx7lc3X303Ifoq5rysJlG7lcscWI16TC6JzLcg8dG2bBD19uKmMikbgQ2EIQTVZzYgVxlqpfzVc/PuRSLb+WsTbx23tD1jZO4aNQjseEGLP0gdC0DZPJjL3xmCZ49sb7qE2N2Y7RY8QwmU64dv0aAqyuDBPWXpZJeyb3CpxzNHVY7Edm9KRzE1CfGq+TJtLkKdUmKOPpLPVsIM1AIOjSJ6L7PLzVxbtqahJal7xRrSjGRHxI11c32dk5GXUeooedjqIKZIimM5WOKpiM1Rc2sFbMqIxnzSXu+q12ADDnxxeSYJm3rW6z1at4WZRpXczhoq6ZqbsldmwwrSC3CqZjx5evDRcHU0G8YGaGYir4oSLrDWXPz7fVSdJkH/tEY5zfoPLv6+AI0TBu0pRs0zhia5CJxUwNtk6N9MTqPaZynx/kha3em4l7Ycv8mSMe/sd3eP7fBv72G92QwNEc4TtvHERNB9663LUPAetMwkBXeuCENowxbpXx1Vv0Hp/RYFl7+3fwygv/nrf3VxhI5HQf+hGubV/keX+ZRx87z2ohNBRUzlBEUG07YgPOrLC6uk5/5QzTpkV9iw0zTDNGw4RRs0+YQutXuN5M+OVnnuUTL15kxho+zAh1EhbDWjR/fJPfpyDZjCPCfCx/fpzUMG3TcXr14nX+0T/+p/T7fc6dO8fjjz/Ou975JO973/t47LHzrK2vEmLAZMEVKyYN/twFh79foZoULa0xqO3eU/KE5dHvb7IomC7x10UENWauApbIFwmLFGswhcMWBa50tD7Shg4KAjEWYw0SAlGVWV1ii4q19U2q3gAfQr6Jwmw2QzGcOXeWpq6ZtQ3T64shXOuS/k2MgbW1NaqyZH1tla2tTVZXV3Ed351kCrLMdFIBsll2l9xDCOyPAz43b5vWMxqPubWzM2+uicm1aodS5v+/1ck9zZF1Bui3//ooiMaaJFcg0RxI8N1zl40/gPnNoDJ+Lq0bMExDSqzReIxE2uyEZDOEM6wajInEbiUQDTEK06kjtqmqNwFkJmibe12SKvvud5AhHRdxLhzYLlhM44bsZduxYtqQsPe6LfDezI+R8YJpQXye4VjSjXlQhdbXwITqnUPy6G83su5c0lZfGa5QVpamrdGsxX7z6nXKcsDMW3rDdU6d+2Z2bjxPb3VEr7pO8NucOrPGq9c9O18e8fjpMW2AjdUBPjb0CoNHaVQpK3CmG69XcIbpaEzdNGgM7M9aZmaFS5PIL3/8c3zk88+B62GYJuMPWFTTywJTS7jtcbE8gDSZTJjNUnPvpZde5CMfThOrTzzxON/yLd/E29/xFN/3fd/LysqQu8053++LLGrm/AbFt8lJKY3rF3OpAO9jmmI1LisxGoSYXWZCptxZxOpcokGySqK1CV9PkEuBD4GmaZk19RxGsRaIyWVrNpsxng2wNlEvXVllW8NAjAGxjt5gwHBlyP54n+3tW+xPJ2iMCWoTg0qkqArObz2Os5Z+v2I4GKRGKhC8P9AMn9NZUTQnd+89oWkIITDan1EOhqim5vJof5/d3V2cAR9SA93ntkvs0Jl0dI/Oql/F0CC0jSOYBMs4oFe2WFFq76ijzCv4KvuJdjBNl8g7pyMjCplFo5CSdFEzcElDParhar02pzd25tM+Wi6N1+faNqlIUoZly7Qt0krCRIyBcr0mDC1h36FTCxEkCLGMaJlWztIagmgqMHqBwqXzuF9XlG4xkbuc0NGU1H00TFtHGyyTvR7aGKQKGBexU6HaEUyISK+CqkrQjPdZ5jnHMt7+FVTt8DWe3EUEawqKoqCqKpxLnqdFkVQZY+vTHTokytP1K1dpag/lCnuzyPr6O2hnY27MPs/ZytMrhSiWUxvrXLs15uXXLzNpIqc219lcW6FXOvotVKWy2kzo9SLGlfMKLaoyrlsmkwnXx54L2yNemxT8xudfo4kl/RgpXEuIljYybxw65w7IxN4tyS43lsuynP/sfUBNWgE9//wLXL58Ge8bnn32Wf6z/+w/ZWWwwtE184OpHgSZM3matk2NzcyWscbQti1t21JaN9+vhYJkHgbKj4u1i8SWMj4m67rYIsE7dV0zqWc0TUvURLlEEnV0f3/MaLRHEIcryNdKohp6HxKMZYWV9VVGe3upATvoI1YoyyL1QYxhNBoRo09/4z0hJJ57Xddpv4Cq11ucp6Xj253vRZM4MJ3OcP0BIoYQldmsZjqdUBaGqIqxFvzSh18PDS4dwjEPnMUHmfy7u43mRB2FkG/YZqkS737uvhJUk/Bt0URtdCYmmGeuvihJlTGrSaZmpzDxRRLwysm9G+sfNyWNtzgbMAL9op2vEqICuYIvioAxSigs2mrC5TUlclwEb8BqWmU6RYo43w8fDCL2AAwDi0nUDlbyweK9Rb2AF7QQxCimBTsjKeFZmyA3Ixwww77P8dAk92WctYuuQj08sm2tpSiKjNmWczzXGDuvaEPwRK9YDFZTRbV/a5sLL77AE+/9ToIYXlHhzOPfwPhG5PpeybnejIoRa9UUd1rYnZ7m+vYu27sjzpzaYm1lSL9X0e/3qPuR1TZSFE36wPpA3dTc2q/ZH0devqm80vRwj70HXfsU4dZrCA1tnKHSB+QAK2T5GBx1XJaPyeFjtIxXBx8zQ8MlqdwQ+e0P/XuefsfTfPDHfpzSlQfYK8tx3yt3K1yLyvrqKtZa6hCZIvQVnEass6xtrLK/t0vQhrb18yaz6zt6rpgbeRCnFK6ibVNCbGPE2LS0HU9rorasrW/STCPboynTusW6ksFKSdkb4qsKCUPU9IjOMA0+NdJ6DmcczXSPyWSfYTGANaGdBFQNtjdAbEldlAgWXyqTyYzQTFldWaUoLK2xeFexsjKgJTD2DRPfYAqbrPeaGl+36UMclclkzHg0oldWnH7iMXb3J4ybmpFv2Z61vL7T0OtXiC0zgyMAimQWienyUWLGg0Lr3Hwie96reMBsKKJgrGJspKkTnVFzNV4Vnsr5pG0eLPtNRR0chUmsk5TUFxz4aIVVYBYK9pvkiuSjYaIlE1/SRMeoqZL13Sz9vio81sSk3uj8fLOaYIneJVVIExnXZU7O4FxAXESdQZ0mfegiYstIqJlrFEkRQYV6UmCcYoYzJBhGTYXAYnK1XWD7bTCMxz1iazBVgCoQa0usC6pbwuBaxM48kqejiXogsYsI2IM5MD2WZQ+6Se7OoSmm6+K4eDiS+xEJbDmstdR1jRjJH6hUrVtrmU7TVGHXc+z+XlXAOIJGjMmGD37Cpz72Ic6/492Y/gZ7RQluyMbmNyP2EV7fe4n14ho9dwmtR7QywFrD3t4er168wnDQZ2NjncFwwJ4xrPRKVvp9nEs0xp3RhN1xyyuvb/PaZJNT3/ptjIohvcEG4cYlisIxKytQhzmUlBd86Nsr66OS+zJPffkG0OH1CeJNE6FNM+Xf/btf5g9+/x9ic319fuy6JP+gKJHaVakZfvJti0QlNsnX1gk4kyu8Qxjt4W2as06sItYkUxPt9OGVqPDKq68S1eYVgtA0MybXZ4iz9PtDBoMBoRU0JOGuqJ6YBcwEGPT7lK6gntVoiBgSpl+4JChmTJnZF4YVCorS4n1LM6lpmhmtn6XhKSv0ygJFaZuG6ENqNRiDxgCYJFBnbJIbaFPze2d3j8tXrqaGbOGYNg2tGjrxNOCtx9q76BgoJjVUg092gt6n669fthQ2EHxqMLb5/DpJOuml9XMaYVTBGM1yAoJIxtTV4HNV3EbLzDsab5nlG0lHsVzvz7C5+u8w9hAPDlB19EoAMckYBpu+TBExNhBtpicKKenHhMlHiXNef+Mdnd5Mtw1dco/REL2gXjBF0ruPM4e0gp0qxX5EfEwTyWmj5odz+TN+IAcsJ7blCVZNhcKd+CYPR3K/Q8SYXHOqqmJtbW3BuFDFt8mMOOHuCfsSkzXbScplUQwiLYLHSc3Nyy9y6dUv8Ph7vpVV10PVMCrXCKdWKQdD9m59kUETWBus04t7GFFWVs4zm84Y7Y95/eJl6qZhtTegX5YMeo5eWdD6yH4d2Z15Xr0y4X0f+NPsDVaY1vuc3jxFeClgg6EtBmk1EW832+jiXhPt8opmkeAXwEvISoshRC5duszHP/EJfvSHf3je9FtmpDyI5L5gmEimQpqcUDPO7lIjEU1qjknjUec3vuUvkzH2qIK1LhcxSas9hCxFEAJtSFICrQ+0PiULo5GJTmjbFqSf4DwH1kiWO6jRGAjRc2s0SqvACDZr4ziTXLmMRhyCE2jbNt1oBIpMs7QmeV+2sWUyjfTKEt80aVQ+q0e2PoARXFGBCD4PeEXjuHb9JpcvXcF2bJv9miYKruxzxGVy+7VwTIH0QKr3KJiJJa4YjOlkl2X+b5Px80RvXGDs3Qi/iQa3JLRVmEDftvhocSY9PgsuvVa0TNuC7b0BwVvixIFAGLZYmywID1jd5UGpW/uDeeIV0dTgzMNEOEVcRGzqFxijqa9jdZ7YgXmbynubkrXKXEgs7d/i9QFsEYmdNV/MipFRWL0YWPns5VSxlwVMpuhkCoVbJPvj4k2ev4cjuS8lqcMhIqysrLC+vp6mM2ezQ3or+WTRJbbMxpDEMmgBJx6jEbTGmYLPfPLDnH3ibQzbIbG0TErDNQmUq+sM7XuY3VhjPHqVR+wevWpA3bQMBn2GK0NOnTrFeDJhOg1MJhN2R9sYjRTVgNZUBDfgsXc+zfDsN3C92UVMzdmNNbZDS2gMs7Ji4AzWLqr2u3347vT7g1X8cn2X7uqFK5jNZngf+Nmf/Vl+37d/O5ubm7fRDTtfz/sbkaZuaOommV1nJpCYzu/UZm5++jCLJpx5oXe+wKqtyfxxlxKfDwlPTauDtONN27I3GrM32qeuPcYW9IcrrKyuUhUOYySpRPqQGTeR1teE0FL1CnplQYipUS7G4pwAFmccNl9nVhWnSlmmpnB3s/JtpBWlKC1lHmqKISQsPsswiMnCtWIxpSV4TxsUFcvuaMyNWyPGszQXgZg833D8OYmHzCyOulE/KFhGFKSVzAY5DO+lpJechw7+/rBaJGRWDIqTZMln0KyLvmC7tMHga4e2BqlTdR0Li7oMVZnFEFX3vW8Tx9y6gHMRVUMMHbc+Tasao0g3iGVyNS+L/UjfQIzJ/hAiKoIPRx9X6wKQJlI1ez5KhGLkCZeuYk9voatDCJFY10mewrkjYdIDG3EULq93xuofiuSuLJKc9/5AU3E4HLK2sYEAbXLZSA237u+sohoIGrGmykZ1ERXF5Q9jpCFIy8wHnBty5aXX2X7xEu4dp9FyQIyOnrHY2QwNJc3a25naLWbXoWpu8siwZd3VNLFl1usTBxucbmDWtky1pWfHyGyXSRjy0vQc609/gJthhoRIJX1k43F2B6cpdY/TOsM3grFlquTadr6vnTjW4ZN8+PGj2DTp4uiO52I6wIjFe8UH4ZVXX+Pn/+0v8Of+3J9D5w7TWXcFxcT7K0FqRNjf20ciDIcDyiIlyahJZz1BR57C5v2JMQ0mKRhNUEsqgjRv40Ji1xiTLPc0XQnptVJjtKlrxuMpISqT6YSmqVlb30jyAKS/LUuHsUIIDu8bev2SonDEtknXYASDRYxNlnuZlRWB0hiKsiCENmvF+7TqCC2qBYWt0JBkD5LjU2cfmIbVsEnkK/pIGxUVw/Ub22zv7KEIrrD4GBFjkjzF8nnm8ByIWTrjR/dmHlSCNx78dknjFPoBsZoq65g48B3GnSRvMywTDUFMcp1aak72bUvfttTRYU1M3PelUX4j+bPegp0aJIDslKiFZi2iRaRYqynLwOZgyqBoqIdu3gMwKFdGq0ynJWIzLdMFiiLMYRYRpSFTPH2iDdMYVAxNbcEpxaBJMFQwGBNxdmH8LZIdw4C2dsTWUuxYij3B1AEpXHIgq5MvgBkM0qTl3aJL7N051XjwznNMPBTJHRZTmN0EI8DKygrDlZV5cyjGmJpEHLp4yeYAoiz/J6TptG6Zlm4iaTn+7DMf5weeeg9tO0NNRb9Mk6zOKK0WmN4QNygYX32BK7PXOV/26ZcNKxLpoZS0WCeIFlh6xDBDiiFSbFCdPkvddDcsQ3A9yq1zTK/usKKpgjh8Sg5j6F0cbiofh8vPn89BPL47XiFEytLxod/+bX7sx3+MU6e2FiP9D2jK0YhQT6dITCnIDAeIc2gIaWFRGDT4hGWT57g0OROZ7nyLYAz4ENPKpBvnNwYJKelLPn5VWbC+toZzBb3emNH+mOms5uaNG0wnYwaDIZvD05RliatWGPZ6WDcEAq5I/raxSYJgznTergXOFRjjQIXSWFpn8dIQQkMMAZ9t+0QiGgsKB0Sfj2rC9FXzLIcxiHVJbVINjY/UbeDKtRvs7e3hnMFYR92m+QAxbs5t75K35sGm7rbWNVWVr17lnusC3MSgBnwZwSoxCqI29fpywhQXCDFPJ2doZrmCh6QrkzxNF9Oi8VDVn++PSADTCMW4Q2MNoS/EoQUCg6Jho5rObwydF+qtWZ/prJgnY+cCpevg0QztRSF4S4DUX/ELZEALJfZS9Z6OrcHZeIDTb0w3SS4QBDsRihGYNhemIUDTps+0c/euG7N8HlVzM/bO5/ahSO6J49sesCxbXV2lzGL2HR/8MA57uDK5LTFiIC+l0IizBmJL8COuXHqByxef5/H3fRczq9S+meuQeFEaccxWHqE/XKcZnefCjRc5G0ac73vWmWKqmp4UFG1BXRdMih6XbjVsve+dyEqJ27fYYJjVAeNKNs48wuT6S9S+RY2khiBHf/gOP/aVDBd1PPqmaShcxfVrN3jlwqtsbGwAJjkCpTd90+9xXIgIvaJMYmA+5s9EmpbVEDG2wBrD8gpXcmIPuXoPMQKGENMQkpOl5J6HvgxgrGV1ZYXNspeSY+PZ3Rtx/foNrl+/wf7uLjvbN5n2xvT7PSZrq6ytrrKyMqDXqygkWe5trqxioyLGUjiHc0XSesdm+V9P8JFbsx1m0/Rz09S0zQzVgDV9iH2iJoaWKwqsc/mzGFFjwRnauqWOyrRVbu7uc+XGNrN6his6Sl2SvrDWpt7Jcr0uzH9Oye/o6u9BVu5qoV2N2JlhGZWJsySEZwd+XsXGaFBRQlxY0BkUb7JxdLQMXIOVmKAZCUQjhAw7WIkMioat/iTdGJ4UZt5xbXuN0FjYdykJX6mYacXzZjVJGvQDFMpgfcpqv8aayKn18fwGYk0SHauDY5Z7BNEZgrdpuMkL0nbNTNBSGQxqACbjHjEqg16Ds3EOP82/vEEaw+CKsnI5YCYN9PIEde67iL3HafHl8xgP3bi/FhqqIQScc/T7faqqmif5GEJyIVqSgT2c2I9L7qnSsaAWwSYsr62TIH9zi2d/97d45O3vRgc9ZmroVQXGCVYt1ji8MUypqHqr9NfOMt55hZuzy5zvtRTlLj0MKhX1DF67cQs5/TTF1lOMPQxcGv1vQwBbUK2sUww2mU5v4lzEHYexcfBkv5nEfphN08E/In2stfz6r/8m73//+/NUb8YGO5z+PoY1hlNbp5mMxxgEjUk0q2lqYgwYt0rRr5JMr+SGqrKo3EmNzKjg23Z+jcyFwkxirlibRL1Qod/vMxiuUpQV3gcePX+ea9ducOXKFXZ2dpjdGLOzP+LqpddRjfSqivWNNdbX1zlz+jRnzpxmpepjrcNah+Sq2/sWX9fMZg2+9XhtaNuGmCEZlzWChv0+6xtrlM5y9epVBsMBrigIQfEBxDiwhja21F6Z1oHXLl3h1t6EJgJGEoc+GrzqHXttSgdRSq7aF+f/QUMyGEX7EW1lySkF8AYJgvZTFZu2gTmvvZv0jCxYMLV3NJ3Y1rxyj7QkWeHSBHqu5XQ5Zuhqnu5dYxJLfnf1HVydrHLhlTPIvqPYNdga3CRV982GwQ+USRD8mmVrbcyp/oTS+LkcAsBem1QkgzGLKjwIEhJeDrlGBIZVk+QF8memkz4O0c73VZV0TLzQ21H6lyfIrIGiSDTGGMC4g+yXu8SBxB71rng7PETJfTAYMBwmnQ5Yag6xuECXIYmu0dYlMn9oMjBFao4k7UCTOKwoigcCNy+9wOWXv8ipd69hy1UiqZFWmBJnLWIDrRYErWiKHuJ6jPY3MHGfVblGFZMxxPbuhMadZ+uxb0PKswysgf39dEEYk/D1Yojtr9POxvSKQOLypGGa4xgrb/SDuUythEQhPdx8VhU+/elneemlCzz11NuyIUWytwt30aZ+o1G4grWVFerJjKZugSlilMlsMu8jWCfJtFwNQrYSzNua9qmbW0juSl1Cm+9RXqo7gcH6KlXZoyxd6inEgLOG9bUVBv23ofEJzCTS1DU7Ozvs7u4ynU5pZjUvXvkyn/0Pn2Z1dYX3vve9OJfodt2A0mQyYW9vj/F4TF3XND3LcGWFJ9/2OO9855NsbqwlKl9omUz2uXb9Ct6HRDt1jja0KVkbR1RDHYVGhXETuXTtJtOmJSi0jcdrGo7zPiAu0JEFlvrk877T4ar9bitBEbEkD4aLqvqjIvJ24KeBU8AzwJ9V1eauJ9coUgVUErNIZrnaBdQq2ljqKLgiYGyc94NCTHi7zdCLkwguGVnv+4omujlF0muSKei5hMcPXU3PtExiSR2Tw9JmNeHGqQn1iqPecmgQZOIgpEqbPGHa7JdcnTmu2bV5E5X5tWWIbcbYo2SGC2gvYM80WJskCGxmyajKXG/GmjypmoeY2tYSg0Uag62F3s0Ge3mbTKsCbcDnRN2duizre2xR15EfiAehmLsMPz0Uyb1wjq2trXkjdRmC6eI4/rdzjhCS7nqv10smCfMnRDBNHh7JKV475UTFthM++5Hf4g88+l7c+gCVTMWzHtGI1TbjhoIYhy/XmQwtjZ8xrit6zXWkvkGtgcff+TRsnqZRi/GBJt/yO4/Mor+Cq1bZ95YqxszvPrh/96vKOryq6RqwTdsSvKdpGn7+53+R//w//08xJmCtI0pEggBUIvLppZd7B/B/BTY4xjf3uGjaljNbp5mNZ1y/cZ22bRiuDjl16gxR0tj/aDqj8o5Br0w01iSog5FAgaWNgXZWs7bWx8fIrK4za8ZRKGl8O5t1VM4l60PfQsaiq8KgVcnYt7TRM+wPsIDb2uLMqVPzVc1oNGI0GtG2np3tHZyzB4qFwlo21tYYZs32kY2srq2yubVBr0qeu86mwTEryvrKCliLczbJG2gaTqzrmqZV6qCYqs+laxd5/pUr7IwmDAZ9ev2S6aymCbC2tkbtQ4ZldH7ddgVflEUL1XR6RHmFexR8meO/BL4IrOWf/x8ky8yfFpH/nuR//A/vdo2JUVwRyNA6ZiaokaSiaDRNZ3qbRvklY/GSTbRtSvKd92hlU6KcxpKgQmHCPPGbjhdvPAOToJs6FrRqGbr0WX90bY86uPnrbE8HNN7OdeX3tofI2CKtS6sKo+Q6L+nJqHT3gMTCcYqW6eb19NkbDFzDalEz9iUXdrcIUeiV7UG+exZSi8ESM5xjWih2ZvjLV3FnT8OgD02TG6JJmmN+brqkvaQ3MxcMtMlgXnSZKnH3eCiSe6fY11VzBy5MOMDfPSqSvKpnOp0eZJtISHc7Sc0oUQFNAzAiShVqbl18ldde+DJPf/OZ9KFA08XnChotk1GHDVgU4yCaPnXjSIvxgJtdIVZ7TLiO07OIH2BCSCsO0ZTcxXL+sSfR8Q57Vy+hjB7Ycnn5dW+DsqJiy4IYAx/5yEd56qmn+ON//IM0dU2/3yMkJcVaVb8zHXaxJD3+nwP+Ikf45t45hP3RhNXhGiDsjnYZ7e0znc0Yrq9SVgWtbykqR51VLF2RJHsTtdFjxVD0qtthuKWktbg8FImpKlNJyV002S1bA0Gg9VOKUijKXkqQIQBJXmA4HM6doJyzc5mAGNN1lPRpJoltM+gzHA5YW11lMBhkamQgtJq0cSTSK3vM6praK9gexhbMJjX7kxZMweUr17lw8TpBE7WyKEusK1GTtlvFoJoM0pMWj5mTArq6/WDRc7BYOMy8EpHHgT9GEvb7a5J++YPA/yY/5Z8A/w33kNzp4JXNlugNdsdh60RnVQuxjEmfJZiUSF3MkgEHR/adiRl6E9po55K/hyOqWTLM1mRzB3PlyI4/D7BS1Wgp1MHig2V1a0xYNwn718Vq0Dc2YfZeEL9YAWkZsQPPcDhjo5wu6JlZhiBEg8saM5MmTai2rc0N4LTPw0uG3nVF6oBZGUJVooVDigL1nk43RkTSJB8kDvziZKWvGNG2zQ3UkBRwvU+PZ7TiuHgoknunt5GSkWY9kjv8wdLvQghz95v9/X16vd5Cq0WAbqEvmY42xyXBRNA44blPf4RHn34Xpr9JkGShpURqU2IMWKAUjzFCMOmiFCkYDFYo7YBoLdUpGJwyXHr9KsP+GlNfYmJKNlVZsVYNcG9/F6+/9Dzt9ihxqCUmVc/OKg9FSROMx+76G8Dju0R48IOemRs+8gu/8At893d/F+fPn6NtfaYdHogfAl5U1VfeVFNXDL5uGPQHWGfxwTOeTtjdG+FFWdtIja/Gd/Z7itrkdpTcmxpKV7A2WCX6/fkKDU2TqYsdTWyHdCMLxJiPTUzVTkoAgjqhnc3o9frz5B2iIgYGK0OqMg0WdaJm09mU6WRC3cyIMTkiVVImHvraasL3+xWFS/0cDZ7gW7xv8G2D9Pq0vsV7wZqkgT1rPE1IImFfeP5FLrx2kYhlsNKnrDq7uIji5zLYnWaSdvAM3Q1N5je26WT/QMV+oHpffGD+PvBfAav551PAjqp2s/vH2mIeji5JrmxMiVFobq1hZ9n42SYGi5YR9cnYW0tJipBLlW4MCxPsqIvkDNxmuzdn14jQqs2Mm/R8J5FoAlOfEu1aNaM0nlv1gFqUM8N9Bq6hzHIHs+BoouP6ZMjuuJ/Ez5oF5bSoPBtrEzZ7UzbKJDNcBze/ISV6ZYKVxlNHDEs3joy1r7weWb0wReoGWV1Bu+TuLBg7h2HEuZTUl1kzyxOprUKHRmRpc0JIaEQId8Ts70XP/Qngp4BzpNT4j1T1H4jIFvAvgKdImu5/SlVv5WrgHwA/AkyAv6Cqn7rb+6QL1cybMPPHDj9NF6QwkSQepar0ej1UlfF4TIyRsiypqgrJwyDGSGoCkeiUKLR+SFHN2L32Ya5eeJwn3/0jaHEeYkjqjSFkCQNLMAVkazhXGU5zhbNVzdrmo2w8fY7Tm2f4xV/6NZ595hW+6bv+CIPTTxMCTBWCdYSobJ1/gjNPvZdXr77MsFSiaWg1Iloi0SKMQVqUksWH+PaketzAw3HaNB00M5vVWOMoiiR2NhqN+cxnnuXs2T+cNIxup1b9aeCfL/18lG/uHU6pwUni9lox9HsDhoMVau+TAJeB1fVVpvUMtKQsC4KCj5oken2kdKnX4nMBYO3ig9FV8F2RoxpSr8poNpJO7BsrgjMGrKUVxceW0Cbz7rYNoIJRhxqw1qUGsBF89KhRisoh1lGGghCSZ+4Yh00+jgTf0qiioaZtanxbE0NL0zaAUpQlXqBu2tTXcSWXXr/MS6+8xvbuiKrqYYsKTIHGiCmK1IBWTSJ4GXJJ1d7B60KXlAOXz721B2ElH9p14JqqPiMiH7jjeTvudC75HrvT61gXiDHhzX41EJ2h2JcE0bgkz6sK6g2hDIQiJcYWS1V4es7PNdCNKG1uSs4TOXKgzGk1uToVEvKkaIJteq7FhMikLWmj4eY06b3PWkfM8E9nntFJ9XbDUYVb2E0k1CvdXDtnpr02icDNgmPcVkliIArTJlEqqzLtw2xaEoNBbpYU+0L/WoO7PkJ8SFOokhlyIkhZdJzsRYW+zPLrEr0xKc/l3EZ39rsJ8xCR3YNzEMtxL5W7J32QPyUiq8AzIvKrwF8Afl1V/46I/A3gbwB/HfhhkgPTu4DvJi3xvvtub3Kww398VboghQkHbgP5+VWVlvDT6ZTpdEq/358n/tuokkWgbaeYRvni73yM9zz9h+mvOKIraKOCBnzwCDFbqHUekYnvfOb0KVa04G2bAz7+0d/hmd/9MPv7jo986Jf49h/5M0SxRG2IBERhY/MMjz/5dl5+pqSJbVq+z9nK8Vju+xuN5abz4WPceXh20rOf/vSn+aEf+sFkSXdwWV8CPw78zfzQPfnmLieAU5trOOsIPhAFyqJkbXWNJrZsj3aZTKcU/ZIQPNYIPla03kMImBCwGIxJTWEfAmKSVk66wy9jyfm6idlwfJ4WUgfSCDhrEHHY0lK3NW1O7iEogqWNkdp7Cleyu7tLUSYNEdUkUGZNMu9uQkNoAqa3BmiGbpJWjYaGENr0nsbgfQsqFIWjbZNeu1hH0wS+/OLLbO+NCBiicbTayTV08gqp8i7KcsGC6aawu2aqpIIIoN/vH3vOAW7tzFaAHxeRHwF6JMz9HwAbIuJy9X5HW0xd8j3uv/NRLYqA9ynZ2bWW2DcwqnAziAUJuvEJpglDM4c1VGXOD09WexYn8QBj5rCPakSoY7oJxKXPRSGRoW0wFMQsezCpi2TQsfQaTWEZ1yVta3EuzlUjSxfS9zYSo+C9TeJi+Yaw1/aIKkx9wcy7hKtn2qO1kfVB4tPXtUODpX/N0Lup9F7bRS9eQU5tof0q70RErUnDTM7OsfSc8A7Cz9mXUTN5QI6q0FVh//hV/r2YdVwGLufvRyLyRdLS7YPAB/LT/gnwW6Tk/kHgpzRdVb8rIhty0JbvuPe5je3xRkNE5q45KysrB1778OsqSmtrnDHY1jO5cp1Xn32G933/eWq3gpQrVPV0fsC7UffCQmGEldJSGeGJs+fZff0FLnzpS6z3Hbd29tnaeJwr1y5w5vwTRGmSi5AKdd2yvnGKjTOPsnf9Swz6FkvutKUtPMhnvs/RJfeUOCIahVdffY26rhkOBxkSmscPA5/S7Jerx/vmHn6PeQJ46olHVSEJdUlS8+z1+6zENWbRM/M148kEH1rKsqDXegyCJ2mDD8oKENpMgzTGEGw4cPNSXYydp+coZJGoLEaRsF5rsUYo+yWzdsakntK2IS2jMUzqGmGSTTYUNR0smm7MJipNWzOrJ4gI68P1tBrUZMEoMaAxqTQWmb8YSFZ/hEDjlTZEvBqu3bzFl164QEAoqj4qlrpNAlzOdhx+g2rEuSJp4sBcWqODY3Spku/3B8e2pkSEWzvXLy71Uj4A/F9U9T8Rkf8f8CdJjJk/D/zre7iUUBW873BjcldV8SsRdWnVZJoEU6iAnzimNk+CGp0n+c4ou4mWJrjUQF2S/o0srPfq6CgkHkAtjSSteCPKoEgkn0ldJKgk602NJxVjKdGYehYxmCQepsy3P3nApsEmZyJFTv4+ywV3N5ui8PPqPUZhb9pLN4XGwcwyvKQMryQFULO2mvjsPqA2CcBJXHpTa5JJ9pw/mR83B5O8ukPV+QEmzVeQ3A++pjwFfBvwMeDcUsK+QoJtICX+15b+rMPx7prcD/98eFLzbtH9TccO6b7vJA2WX0dEqP2UEiiCRbTlUx/9FR573/spnvgG2uhYLwtixqgxgm9beiIUohS0PHrmNPs3L/HCF5/j9OYmr5TXeeqpx3jPd30H//OHPst7rKMabGE8CAW2rBiurHH6/BPcvPpCYubgM8av+U5tERZd9KNWHG/25hejZq64nUM4PrNnhsM+4eAx/jMsQTJyvG/usRGiErzH5gs25v0Y9AdsinJrvMv+ZETQwGQ6o3SOWBaUYui7Aop0M6obTwxddRWJJksXHOg/5GMVFlOtXRI0IhibpoXLXombOUxhk76HpmPS1J4QFGssG5ubqBFa39D6BghYm3S5XeWSrV5R5GnZJH8RNSCaPD4LZxEjND4SQ8NsMmbcwKwRdicTXnzpZS5fu8XpM1sU2iMEJcTUhDeZxaGwsFjs9lUWmGQa0FsabjoA2cqR/x4Tfx34aRH5vwP/gTu4rC2HKvjW4QqPMZrgMKuErZbQGsrrDjeRRAcW0CI5FMVewJQhc9xNMrkISd1xFtyc495h7qkdnvD1Jrp041eTBpGyzV5fGkpjWCtnGFFuMkgJ2Sd7vVAXiSVTRqSIi1qqzV32ImKqgCsD/cpTujCXEJ43eWOCSAZlS4iGaZOclmbjXpIqaAxuZNn6wj7mpYuwuY5uriV+e+sRtQs3MhEwJk0rd8m9o0Atn8zu8bJYHHeRLBIqt98IDsU9J3cRWQF+Fvirqrp3KPGqHOWrdefXmy/frbXHXoBvhCKomiYG52Yduam0rCTZJTVFKcoiG+kK0TeMd17lUx//JX7gyXcQiz7Gz1CxqDGE6CkETGwJ9ZjBINCOd/jERz6MqScY1+Opd76H93zH9/Hhz7zAjZt72Bde4Ru+6TTGlimxVD1W1tbZOvcYpujjdR8TI5Y0jRhEwNjE6mGRvJbdmo7D1Y87HgePY4JiqqpAJE2t7u3t8frrrzMY9Cg7uWCRIfAfkb1xc/xdOcI3904Rsu605As3agQBVxQM3ZBaPNN2iq8Dk+k0qe31+5iqIjqHD4FZ01BYCzHkJXFmAHH4ulgk9u79jDEYFj6yiVdvGW6sIWXJdDJjOm2YTmokWiDiVXnxwstJZEzTPEJZOVZXBwwGPYYrA1ZXh4i6vPoJ+NhCbCC0oC1KSiAxpGt7PJqwN/Hc2vdcuLTNF770JQqbvHMDoMbMK/YO6ukKk7ZtF7MbulwEAAidVHJd17n/IEd+Hboufou00kZVXwK+627n8raIQqht8jpd6pOJUdQpoUo3IltLkgtoBZ0ZolUoIiEYZm3Sflm210syIum1OjZNN2wUln4HaUVmSZW+I7Lqaowop1YmTKuC/WmFby3BaErAOX+KTasHKROTztpIUQQKGyhz5d5V602wGU6yRIU2JDGyRHs06NQhtaF33VCMAB+zw1JIVTmANalylwQTpuMXkdwYlbxSnFfk8eB1PU/gGbfv9ISOYkAsxz0ldxEpSIn9f1HVf5kfvtpVcyJyHujMJi8CTyz9+ZE43vLyvSyrN3RjuFN0ibCTmz02NAtDURKNEO0UdWO++JkP8c3f+QOcf/Lb0CLpO6skWQTxgcoJfjpj6AK/8gs/R9gfcXp1nc3TZ3nf93wrN73lY5/9Nzxy7p3sj1t2d2sGaxvMprOEn1nh3ONPsrJ5hno0Thi+duouDxqW6aCZrJoXAnU94yd/8if5K3/lL/P2J9+Wn6djEpNi6W/1z77R9wsxUriCGDw+eNSAsYZoAZ+w5dWVdZrmetLr10hhDP3sLuW9T6YUpjfH2Ofw3VJxo7nC0cwdTtE1sLoVXNbMx7K21mMwWGF/NEZkLzdhI7EA7wO9Xo9+v0evX9HrFQyGFYNBDxElauoPxNDJDXtiWxP8jBhqCC1RwxxS6K2s42+NGI32uXptj+dfeIXLl3c5c/40N7f3aIoCV5QUvT7WCKFtabyfd5S890tHVOcJqkvy3aSi6uLKuVtyvy8RBZlYYmURWXzWUuIMhFUh9gxy01LU4MaCaaBxBu2Bby1TSjpFx67h2WHLHTXywFtmKZGoBithnth7psWgbJVjNnTC6XJMq4Yv7Zxjb5YMPkIw1LOCWFtMFShLz0q/Zr03w2btmQT/pOvHx2TnN5otmqghJGkCSNdL8Aa3ZylGwunPeapbLdIGdHWIjMZo2yamTNdA7c5T0NRo7ap2QLpLt6vW04lMP3dLjVyti+3O/XK1f3vcC1tGSEu1L6rq31v61c+TMLq/w0Gs7udJrIqfJjVSd++Gt9+v6IaaptNkPt1RJI98LokhESkJRmjMBG+mxGabT/7Wr/ATf/LdxK0VTE7uIlCWBfV0j9neLT7xkU/xwmc+wROnz7ExWOPp97yf3rnH+Z9+6l+w+eiTrLl3cenqDa5cvsV7th6ltskYwhWWtc1TnDr/GBeuP8dKXzAxjdyn5faDjK6voXlFkyiHr7zyCv/0n/7P/J/+6l+9r+82CQW/eekG73rb27DG0U5bjLcMiwGhnqI7uzy2uclgcJX9/ZtMdnfY2ZtQr9TUZ4ZsbQ3QylHLHiZsYtXQtwXDso8zwrSesD/ao1+WnD3TpyPQWaMURnEWnAkUrjNCgclkQGjSJPLq2grDtfP4mLxcm2ysHdsWl3srhVEcEYkebWuCV2Lbov191EfacUsz9ZShYFCsE4zhxmiPWBjGTrkxs1yhzxd2bvK5l6/x6rUZTf80V0drRNmCeB3fTBj72VwzJ31ZkrZMLlQyLJM47+Q+w9LKyBa3Hf/cer5jAvhKQ2OHYUeMMJcAji5dY6GXcCRRkCCYqSGYgthLcsYmT3+23jIxBZU1i0SbNd+X6ZIJkwhzLnyHhXfCY0EMRhoqFU7396mspw4u2fEVJU0/MXWqwjMoWvqune9LVIHIPMHHPHma8m26CXldPDe2lv62UO4q5Y7H7jfJ33eOnxvweXYnN0iXMXc1Wd5gnuB1wZTp4gC+vtR0vYdzei+V+/cBfxb4rCwmF/8WKan/jIj8JeAV4E/l3/1bEg3yBRIV8i/ew3scG3OW7j3uU1e1d9xgYxZL+dteWxSkAaMUxmBiWm6/+oWP8sqX388T3/MfIyabRIRAGyOj0T5f/sKXeOXjv8TbeiN62vDYt38/o9Pv4Dd/+8MMy4Jv+6b38crOAB2s8eWXL9LUnvXSUdJCVVAMB2ydfYxXzQBHi+gMKxZvCpCCGNv5jnZQ0nLVesQy+8DPy1hrB02lqc7ENaeToFWTOOHG8NnPPsezn74rjP6GoipLfAvb2/tsbmzQ6w8xMfHBBz1LsTWgme2wMrRY08fYGdNZw3Q6w19vqX3Dxqk1hsM+hSq+adOwcYhUGYfs9XqUVXI1auoWlwsa8li4WkPUkEbIjUmepJJNXcTkJqWybFwXBSxpyd/BSWZJ6sIaQx1aQgw03tPEgARAfcaSoY4gRY9Lly/x7Asv8vyrl7lxc4y1jr6rCC2E6G8baTgwwJcx9mUa3OE+gywv9ZdfZ/GC9/WcHgiB2FpUI/1hi8vc785TNQr4TcVHobiVKtzqlsAtR72p+A3B9JLd4TQYZk0xn/xUFdpoKGyiPAJ4dXM+vCNRLdFIUIOVJAJWECgkDR2trNUENdTRzb+amFLeQjNe8NHSRIuPNg9epRuLD5a2tRijlIUndB87JcscWDa/HOhdbyiu7CJNixY5pRqTBmnaFrxPHsDJlGCe2NO/zPVrDh7bpUR+eOU1h22+QlhGVT8Mx2IFP3TE8xX4L+72um8oZP4/7rRDXTIbDAY0TUPTNHNlye73eRvz8lbB+Oz8IxDL9AG2Ez7+O7/C+W/5Hkx/DUzG8DF88flX+NSnv0h7K7C20vJN79viHe99H7/98Y+xe+kVfuKH/xg/+2ufZL/eYPPcU5yewUuvvMb7334OjQFjetiy4tyjT9DvrdE216mImd1hSUJnets2v5HQQzeG7nU6DLc7ij7ErG0j1I3nX/+rn3/D73WnKKseg95pdm9NqWzDyqkhVSk04z2sjQxWhZuzXaoiaWOLLcBWjCYto/2aqVemoWJjo8+pXkw32DYSYsTHQFU4XJlkC2aNJ/pA6EgIqkSS3oc1gSJavPEYR9JIz8ldxcy1vEVCttyziAY0JFpmjOm9TdewtwWtn+CbiA+abgPimKmhVaF1FdPouXFtmy88/zKf+9IrXL65R8DS61UYDKFuklJmcei6ZMFqOuq83olk8EDgl+PCKQx90jsPFlkBZwONd8TOnaibN4BEh6zAtCABbANxknBsb0irEqAxkSYs4BgfDRPf2e4lF6RWLEGEIrqkIpkNt4s8SVpIwEjELiV+I+nx1vg87Wrw0S4NRC2OXSTdWKKC7Sib5I+lQmwsdrug2hF6N6e43WlqjC5X5svnr2PDxLzaMmYOw0g8xJRZ/puv8Hw+FBOq9ytUNTnekxpZSQlRDjQj7zbh2YltvX7hZT794d/ke37wh9FiiJcCFUtLj2r1EUoL9eSLPHL+CT75oV/lFz/0UT74h/8A9fQGe3s3GNWGHX+NU2cfIbQ1N/ZGrJ1aw7qSshpw/rHHGW6dYXzxRqLOScaHOXpAaXkf7rT/h+Mw7nqYctr1Jqy1vHbx0hs42ncPYy1nzrydK6+/wv5+YHXQUA4LRAIaJhgb6fdr6nqKWKHXN8nA2oDfnzGtob2Zmq3F6YAxia+eKnOTb4ZJtrj1s6TBLoLLmLQKFGmlnUgmKojLxyQ3sFQksVIyf94IWDHEkCrrkJumiVmTZCgwQtt4gtdUPRYlakua1jBDmVJwZW+fTz/3Jb702qtc3x7R+kjRy961rU83i26VccR5PIoafCdywVc1sQP9suHtj1/n5S+cx9QGTkGv8EzrkrZxKS/ZiNYG8UIYRMIAih1DMRKKkeD2hXZNaGNePbmkQbMrUNjAsGpog+XaZHUuM2BlYXVnRTE4vFqcBE6ZMT3TUpmWIvcBLJFR7FGJp/M92Q8V+yGJlM2Cw0c7n4412URkUpdJtCyzY3wwc+68GTnOfzTSu15TfOkitA1sbaJlgdTNASx9HvOmuMwrb1lqlHaJfN5c7f5muYJ/g/HwJ/eueXQP0VXuHdugKAq89zjn5kn/8POXo8M7vU/46id+/d/x9qeeZuuJ99LbfJQboz02zzzBN33nKpdfe4FvHD7Kx373Q/RPn+J7v+lphjLm9Zc+x7uefpxq8gjXmz4Xt2+xurXJdPcKHqEwBbZUqsEaW+ceZe/KSwQjCB7JU3d3Yg7d9XAdUc3dS3J3zjGZTu9+kN9AqMLm6bczHQfq8S129mYQayrbUlDjw5SqapmMd7CUWFdR9QqGDGnp4ceBycwwnnmGMqEqHf1+hZJMLEQ8Ec1ep0pVOmzuW2hO3CrgSP8KQhEVNWkqNd1I07HodE/ECIXJLkAJB8mwXmI2KJp0sdqAj4KPgFgClr02Mm4io8bz+Zcv8skvvMTOdI8mKq4qKcoSUGJsEAOFE9ojILZlKA6Odt46HG+EVXY/QlAKE9BBIFpoaseO9ufc91Ssdk0/6JQT1EEsyTBWMt2wI4s6JVaRCLRFysJNlifoFCRFNMlVRIeTSB1c0n3JcEqrFquRQgMtCVpbxhxsxj/MkuBXB/O0oWOKaWLEZLaMiOZmbEloDLJXUG4bejemFNuTRIkSs6jOu2Qsx5hWLp+jkJ+/fHpz9T/H3r+CCv6hSu5HLU+X8fZ7iQ5fhpSwOoPto+iWy4mue/+ObRNjwE93+cS//w1+4CcepVjZYnd3F1eUPPX2d7K3t82wV/Ojf+KP8/zrr0DhKOOM8c1L3JqMKVa3OLt1jnLzLNevXKa3sZoSaUzen6asOP/kO3nx88/QaqQ0ksSigp8r/C1v571WZkfx4ZdXL5onUzt66HJfQu4wEPFmIoSIG5xh61zk5rULjPav0rZjTq2BqxQfZhSmxZo2sUM0GWmXZY+BWnxU6hCY1pEb21fp9UpW/ZBImjCKJGpa6RyFTdW3FbAqdKLKgfQZsuTPnPcYq0mm1moSusqzwgv7sqTrLd0yXJNpiPpI0ACitEFpA9StEjQybT039xtGM2V7OuWTX3iRC1d3kEKpBiWuLEEMPgYQKFwapPHHwCxHQWvL8WbmQO5nKIIzkaeevM64Kbnx8hY6MfgzDa5Kw2HaaaJ7ycbT4AcR3xfcRLDT5KbUvyb4gdCuGPww0hjFO4v3JsF3VcLhgwo2N1s7c21nAt4k71Ungdo4Wpu0fnqmxUikjS612jNEA6miDyo00VEHx7QtUJJaZd06msZlGEbwtUO2C6qRYe0lZXCjpfjcBXQ6xWxuJIPrGJE2J2KXJDLmFXzXZD3E4FNVJMtipCS/dGPIiV+N3Fna9ythyzyMcfgmcNTvIE0slmXJZDKZV/Ddcw4veZd/TuJUCn7Caxe+zIUXvsg7Bhus9h3XRreoa2Fga25efZn+N7+PH/mxn+C5F19k9PpzlNZw89WX0LPnGAy2WFtdYfjUo4TRTer9PUa3IlQVhS144ul343qr1OMpzib5087FfXm7jtreOx2X48Jkk4sO072tor/PNMwQlZF39DbP0/M142bE3nSPXq30ewYiSEjUwxBy4owJNy2dY9C3tEFBWiaTlrpt85Rnqpj7PlIUln5VMehV+DakroURrM1sGavp+5CToTY4YzE2YoLNbjh5cjEmmqghTZ1qV/mpZBemQPAtUSNNEOoWRtOWqYdRbbi+1zDVgu2J5/MXLhJEqGxBNCUhSppkJVCIwzjQqIjKgc/nclKfn5c7XOd3uwk8qOhEtCrrE2XYKbFQyJOb3WJbTb6zmvR9N4OgNkn/RgvRpaainYE6Icws0RmaTufF6LyCtyYVfDb3SUy08+RemTAXE5vDMhKTJo1mTZqMr4elcrnblw5+aXyiTmqUpPNeW6zPfP2gGefL/r3Lol/L5+kYC7z5uZxL/B44qIufl2Ea+3VQud/v6Crxoiio6/pA9X7UINByE8sYiOrZ27nG1Suv8ti73sfm1jlmY0c73WEQtzm/Lrz22suU55/i277vh9j+4gqvPPcFBurZG21T0lA3I3qDPtXmkFgJ4/2GiY84a1ndOMWpc4/y+vPXqKzQs0mW+Bhj9a84rLVzFlGX3DsNfdWFifH9jCvTlvVhgaydYhAepxnBNN5idzZhYAoGtk+vVySdea8QsqmxiVTOMuwnWmAoNhiP9xlNpvgY8T5QDwY4Z5lWNW07xJXJyNoKWJss6py1SWLCZZ57ELyNGBeT0XZIlMOoCzVFSBTaNCmZdNODCnUItE1L2zY0Ioxr5caoYa/2jBrLXmtwa8n4JZgelAZ1hqCKRo/RiEWzDrummxnVbZDKckP1qNXl8vO+2lh7F0EN+03FSlnTcy0b5/eoW8d0p0ccFVBFxEUYeNBUxROTGxcqhCr1REIf2nVwI6F3U3EzwbSO6JRYOmKp7K84xCmmTBOpKeFH9ovEky9skgpooqNnW3q2pZBI36bKParJakN64GefefS1d0yagqZxtI1LejitQWpDudv1eNJXvWYwHoarq4l5FWNS37pTGAMhpPPYuSjl79Wkns88IiRs8Ygm6xuMhyO56+KfN7Ird8MZl6sbay11XdPr9eaPHa5cu9cTEcSSGrI28PyXPsO3f+8fYlA5Hn3kNK9ceIHv/vZ38Y1rj3Dr4pe4ePkS1fpZvuE938hKWfL5l7a5unuDpPoeCL7GGM/62gqrA8ceiZ4X9lve/q738foLn0XxiII1bj7Ydty+HUeJPLzfhx8zxhyY1l1+rVS13mXw6w2GGMM137I7atgYlKw+8jaqtR77117g6s6EU8M+g7V1gk4R11KaiA1gAuAj0UzxRjGFMjzzGFeuXmF7+yb7k1liPATFOqGcOKazho31pPfijMGatKS3LlBYh/EJlqrwuKi4vFpOrjzmQBL1uREfIyiGiMEjtGqYNpG2VWZYRrXn1jRwq1bGsaAtVjh3+nGGvQFm8xyxmRIloCQRNCsB0UDbtjTZ7Ehsb95ROtxIPaoqvxsh4KsZ3ZYYUaoiqSNOAYlLon4Cc9kEJVNwSdOVJj+cm9smQPQgnqSKaRXxQEg9E41CNOn1IWnSWFFaFtW3F0M0hihKq4YCaNUQ1VCYADmxs7TtwHxQSYMkvaGY3ld8wt1jyTzJx7Q8TIyr5ViGT47rkywl9jQk8ODgtIciuSch3oXa450y/Bu5oLvqx1qbJW9ntG1LVVV474+s3hd/m/A84SrNjTEvfeJDPHnm3Xg3RNYcF/eu8kf/0PeztVEyuXUZu/tldtae5tz7v4knv3SBz/7rTydWxOoA7xS0TQJDDDG9XTQE1tce4bHz76LfK7BxBz8ThtUpGtm/402rM5E4vBI5jk2z/Li1di6d2z2WqvglStZ9iuuvfvHG//evf98YuHFfX/jhitPcYf98/hof++fXj/1NF7P70+d+8r68So7J81du/O5//He/Fs7tHc/PQxJfyTYee14fiuS+HHqYCngo4bzR5uLy851zzGYziqK4jYGw/NxuihNN1YJvA5/8+O/wrb//x6hOn+bs6dN87t/9Bh/tG/7YH/oWmq1TXN7d4cbuDdRM+IN/4P08+5nXePG5z3DqW89QrKwlyVkjQEsILUYckcgTTz3F+sYW45vbOGdofI24xQ3uqCR/HFXuTsfhTr97UCPqqnpGRD6pWY3w6zG+3vfvuPhaObe/l7fx/tIjvkpxOLndKZb54R0lsjP0uFOIpMlUUUv0ys6ta3z8Y7+OxDGDouSRlRVeePaz/Nov/QbV8AxnHn8n0RbsbF/l6qXn+d7v/0bi5Cq6e5OwV1NPhSYAtibNRVpUlOH6Oo+9/RtoYwnWgYkHEu5xDJ973f+77eOd3uskTuIkvnbjoUzuRyWvrsl02Pz3XqPjvXd6M7PZ7EjudxfJnMNiqJBgccbzqY/9KqPt16kQTq05DPtcvnyB3/jQh1Atedvj72WlOktoLEXV8N4nNyj3r+FmNZP9hkkT8HGGMw6DQU2g1sC5J96NmlWCWCj8vGo/Lvne6/4v/767mR3VZ7gT++gkTuIkvjbjoUzuR4VqkkI9DEfcreo8fIMwxlCW5QFGwvLz5lRIyVS1WGClILZjJuNLPPPx38SGQHAR6StiGnauvc4zH/4o9U7Lma13sbbyNnyY8rbTFaNXP0vV7iAi7OzPmEwbjBZY4/DR442wee4peuuP4jFESU4+3T51TdCub/BGq+xuv0IIc8OLzoKtbdt5gu+cmR5A/KMH8aIPUXy979+d4mth33/PbuPXTHK/H7Gsi16WJd77NI16BI4vKAaDUGJxGBqIu3zyd3+LaxcvsfbYezj71PtxtmBIg795kU9/5EPs3Nrj7CNPsb66xWz7Ik+dily58ClcEZL+SC20s8QKUKt4YLhxltW1c9Q+0MT6rvO4x9E5jwrVpHG/LCDWTfF2x6T7uqtM8psITdLOX7fx9b5/d4qvhX3/vbyNv6eSO6Rk1mHvXTV7GJ7oQowgOARH4QSNE/ZuXeHzn/kMDN7Bt3zPn+Btj7+HQWjZsFNMc4NPfuzX2dnfZnPzLD3jGZpdxjsvozpluLpBaEv2d2vquknenFUJrs9w8xG8QuNr7pTdlyv6u1XwXXO4S+4dt30Z2nrQyf0kTuIk3pqQhwFnFZER8KW3ejveZHwtUK2Oi6O2/UlVPfOVvrCI/FGSAbMF/kdV/Ttf6Wu+1SEiF4ARSdXAq+p3isgW8C+Ap0gOVX9KVW+9Vdv41YiH8dyKyBPAT5HsPhX4R6r6Dx7G8yMiFvgkcFFVf1RE3k7ysD0FPAP8WdU8CPGVvM9DktwferrScXGy7Ue+rgW+TLLqex34BPBnVPUL9/u9vpqRk/t3quqNpcf+LrCtqn9HRP4GsKmqf/2t2sYHHQ/ruZXkBndeVT8lIqukJPkTwF/gITs/IvLXgO8E1nJy/xngX6rqT4vIfw98RlX/4Vf6Pr/nYJmT+KrEdwEvqOpLuQL5aeCDb/E2Paj4IPBP8vf/hJRQvp7joTy3qnpZVT+Vvx8BXwQe4yE7PyLyOPDHgP8x/yzADwL/a37KfdvGk+R+Eg8iHgNeW/r59fzY13oo8Csi8owkg3eAc7qwkbxCggW+nuOhP7ci8hTwbcDHePjOz98H/is6j8QExeyoakdVu2/H82GZUH3oO9p3iJNt/70T36+qF0XkLPCrIvLc8i9VVaUTiD+JtyREZAX4WeCvqureIaG1t/T8iMiPAtdU9RkR+cCDfr+HIrl/LdCVjouTbT8yLgJPLP38eH7sazpU9WL+95qI/BwJorgqIudV9XLGfa+9pRv54OOhPbciUpAS+/+iqv8yP/wwnZ/vA35cRH4E6AFrpMb0hoi4XL3ft+N5AsucxIOITwDvEpG3i0gJ/Gng/hq0fpVDRIa5UYeIDIE/AnyOtF9/Pj/tzwP/+q3Zwq9aPJTnNmPX/xj4oqr+vaVfPTTnR1X/pqo+rqpPkY7bb6jqfwL8JvAn89Pu2za+5cldRP6oiHxJRF7I3eyHKkTkJ0Xkmoh8bumxLRH5VRF5Pv+7mR8XEfn/5H15VkS+/a3b8kQPE5HfFJEviMjnReS//Gpsf65A/jLwy6TG1s+o6ufv1369RXEO+LCIfAb4OPBvVPWXgL8D/Eci8jzwh/PPX7fxEJ/b7wP+LPCDIvLp/PUjfG2cn78O/DUReYGEwf/j+/GibykV8mGlVS2HiPxBYB/4KVV9f37sSPpbvpj+CvAjwHcD/0BVv/st3PY3RA972Lb/JE7iJN58vNWV+0NJq1oOVf1tYPvQw8fRqz5Iugmoqv4uCUs7/1XZ0CPiTdDDHqrtP4mTOIk3H291cn/oaVXHxHH0qod2f+6RHvbQbv9JnMRJvLF4q5P713yods4eD28cpoct/+5rYftP4iRO4o3HW53cH1pa1V3iagdXHKJXPXT7cyd6WP79Q739J3ESJ/Hm4q1O7g8lreoe4jh61c8Dfy6zTn4/sLsEf3zV403Qwx6q7T+JkziJNx9vuXBYZmj8fZLC3E+q6t9+SzfoUIjIPwc+QFJQvAr818C/An4GeBvwCklpbjsn0/8O+KPABPiLqvrJt2CzARCR7wf+PfBZFuPOf4uEuz/0238SJ3ESbz7e8uR+EidxEidxEvc/3mpY5iRO4iRO4iQeQJwk95M4iZM4ia/DOEnuJ3ESJ3ESX4dxktxP4iRO4iS+DuMkuZ/ESZzESXwdxklyP4mTOImT+DqMk+R+EidxEifxdRgnyf0kTuIkTuLrMP7/oBDFEnXZ8asAAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}}],"source":["#Comparison on Cagnol test image for test\n","cagnol = plt.imread(\"cagnol.jpg\")\n","cagnolFace = selectFace(cagnol)\n","cagnolFaceForInput = normAndResize(cagnolFace, input_shape)\n","\n","plt.subplot(131)\n","plt.title(\"Originale\")\n","afficher(cagnol)\n","\n","plt.subplot(132)\n","plt.title(\"Visage trouvé\")\n","afficher(cagnolFace)\n","\n","plt.subplot(133)\n","plt.title(\"Resize, gray\")\n","afficher(cagnolFaceForInput)\n"]},{"cell_type":"code","metadata":{"id":"oSf4medy0fgr","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1616664903891,"user_tz":-60,"elapsed":1573,"user":{"displayName":"Boulet Timothé","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GiayvINTDL_0Iuf52iuumxhg4psHVMYz59ow2vJ=s64","userId":"06174172927805952140"}},"outputId":"c6a7c032-e6b9-4057-cb3e-b5a5e82b3e27"},"source":["#Images et labels\n","print('X:', X.shape)\n","print('Y:', Y.shape)"],"execution_count":30,"outputs":[{"output_type":"stream","name":"stdout","text":["X: (35887, 48, 48, 1)\nY: (35887, 7)\n"]}]},{"cell_type":"code","metadata":{"cellView":"form","id":"n4cvkzgQpVL7","executionInfo":{"status":"ok","timestamp":1616664903893,"user_tz":-60,"elapsed":1567,"user":{"displayName":"Boulet Timothé","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GiayvINTDL_0Iuf52iuumxhg4psHVMYz59ow2vJ=s64","userId":"06174172927805952140"}}},"source":["#@title Modèle\n","class MyModel(keras.Model):\n","\n","    def __init__(self, input_shape):\n","        super(MyModel, self).__init__()\n","        self.conv2D1 = keras.layers.Conv2D(32, kernel_size = (3, 3), activation = 'relu', input_shape = input_shape)\n","        self.conv2D2 = keras.layers.Conv2D(64, kernel_size = (3, 3), activation = 'relu')\n","        self.conv2D3 = keras.layers.Conv2D(128, kernel_size = (3, 3), activation = 'relu')\n","        self.maxPooling = keras.layers.MaxPooling2D(pool_size = 2)\n","        self.flatten = keras.layers.Flatten()\n","        self.Dense1 = keras.layers.Dense(64, activation = 'relu')\n","        self.Dense2 = keras.layers.Dense(Na, activation = 'softmax')\n","\n","\n","    def call(self, x):\n","        y = self.conv2D1(x)\n","        y = self.maxPooling(y)\n","        y = self.conv2D2(y)\n","        y = self.maxPooling(y)\n","        y = self.conv2D3(y)\n","        y = self.maxPooling(y)\n","        y = self.flatten(y)\n","        y = self.Dense1(y)\n","        y = self.Dense2(y)\n","        return y\n","    \n","    def predir(self, monImage):\n","        return self.predict(np.array([monImage]))[0,:]\n","\n","    def compile_o(self):\n","        self.compile(optimizer = 'adam', loss=losses.categorical_crossentropy, metrics = ['accuracy'])\n","\n","myModel = MyModel(input_shape)\n","myModel.compile_o()"],"execution_count":22,"outputs":[]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"AcIJ3LVYpVSK","executionInfo":{"status":"ok","timestamp":1616664903894,"user_tz":-60,"elapsed":1562,"user":{"displayName":"Boulet Timothé","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GiayvINTDL_0Iuf52iuumxhg4psHVMYz59ow2vJ=s64","userId":"06174172927805952140"}},"outputId":"155e177e-7b01-4178-ea36-836325f55312"},"source":["theImage = X[1]\n","afficher(theImage)\n","print(predir(myModel, theImage))\n","print(predir(myModel, cagnolFaceForInput))"],"execution_count":43,"outputs":[{"output_type":"stream","name":"stdout","text":["[0.12694494 0.00185027 0.16615286 0.2684518  0.18009424 0.07906247\n 0.17744346]\n[0.05335368 0.00411757 0.06580067 0.1750659  0.11889929 0.00182784\n 0.58093494]\n"]},{"output_type":"display_data","data":{"text/plain":"<Figure size 432x288 with 1 Axes>","image/svg+xml":"<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"250.052344pt\" version=\"1.1\" viewBox=\"0 0 251.565 250.052344\" width=\"251.565pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <metadata>\n  <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n   <cc:Work>\n    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n    <dc:date>2021-04-02T20:16:02.172591</dc:date>\n    <dc:format>image/svg+xml</dc:format>\n    <dc:creator>\n     <cc:Agent>\n      <dc:title>Matplotlib v3.3.4, https://matplotlib.org/</dc:title>\n     </cc:Agent>\n    </dc:creator>\n   </cc:Work>\n  </rdf:RDF>\n </metadata>\n <defs>\n  <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\n </defs>\n <g id=\"figure_1\">\n  <g id=\"patch_1\">\n   <path d=\"M 0 250.052344 \nL 251.565 250.052344 \nL 251.565 0 \nL 0 0 \nz\n\" style=\"fill:none;\"/>\n  </g>\n  <g id=\"axes_1\">\n   <g id=\"patch_2\">\n    <path d=\"M 26.925 226.174219 \nL 244.365 226.174219 \nL 244.365 8.734219 \nL 26.925 8.734219 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pabcf64db41)\">\n    <image height=\"218\" id=\"image8251134993\" transform=\"scale(1 -1)translate(0 -218)\" width=\"218\" x=\"26.925\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAANoAAADaCAYAAADAHVzbAAAlDElEQVR4nO2dSaxk53Xfv7pzzVVv7OH19Lqb3c1uspsUTYkSI8u0E9mIJyCCkQRCEssBvAkCBMgqqwBZJetsnE0CB3DiwF7ETmQ4omXLFMNJEkWR7G6SzR7e635jvZqnO1bW5/yP/BhY+Lg5v913ceoO371f3Xvm0n+6+/LCMNKFS8ZOCUTMU8EeGf/2974FMvUPAzL+1W9+H2TORx0y/oPtF0Fm+6BNxq3mBGQms5CMk8MKyHhDB7blZXptRSMDmdLIo+McRIx7ckbGS8I59sdlMl5rjkGmWJTIeJZ6IHNt+QD3ndB9Bw5eR3deJeOjCc7RdEznsRj5IFOq0AnwohRk8h2679J6DDKrS0MyPuw2cD9TvH6vS7ctPHw+fXav00YBMk5C57p1F0TMl//lO2T8SuM2yDxKVumxSzj3+OQpivIzRxeaolhAF5qiWEAXmqJYwJMUN7dEFccz/hHI/M4b/5SMa7cDkHnlH79Nxl+pfwwy3xncIOPBLAKZpRYaFjhpzBVkVH7TJirNxmfb5vjf44+o0swNKMYY4wrHO+4cDwY1kDnZpgaCrMDz2Z0KRgMm1wrxfEYxvUdxjIaGFpvrc+d6uJ+U3iNuwDHGmIcpNaiFUQIyRwNqnClSvNZSiJanUsHuNUgYkzTp9TspniOndx23/WbrR2T8abIGMrmh+647aBzSN5qiWEAXmqJYQBeaolgAP9KNMY6h37f//LvojK59TB2Zv/HN10DmWnmHjNMFHu7+eIWMqyF+y8cZ/V3Zx2/gRUG/k0sJ/ocsKsL3vk+v1e2FIONkTEdboFZQr8zJOM3x+Ettqv/0h+gwnrNrjTzUofuCHht49Nru7K2DTDqn+3Z91OMaEXUsb1T6INOJqW65NWqDDHd0OzV0WKdjptcLf/uN1hS2jfiGHtoHSkv0eJnkeM/pfb118z7IVBy6n1w4yYpDn9l8gTL6RlMUC+hCUxQL6EJTFAvoQlMUC3hn/S5s/J3/S53R9buoSH71H/6QjH0hpP28f0jG3xtfA5maR5XNw0UVZJYrzIgwL4PMghkf3BgdlIs2nmPBosO9Kf7OpYH5pnBRpjfA8+a0hYh+znBKDR3t6gxlRmhEKTnUsJEzh7ExOEfZDI1T/Sqd27iJMvOcbts7aoJMtErPO0lwP6WAnnNJyBLxXLxnXkANRGmI+64y40upPgeZkBmQ/snJN0BmVND7EQgBHvOCro/C4NzrG01RLKALTVEsoAtNUSzg/asPfgs2nvlv9Jt3/7fBRWguVfbJ+HK4BzJ/MniejP/sv34ZZBpb9Du5JOg/D55hDuML+L1tmPOxCPF7fyFk6xrmjA5RZYWM6jwS9L+tMpPB4x/2mWM1QodxxmSmHupj/FqNMcY49HjuGPUE06L6hVNDx7/n0nPqJXj8RwPqoBb89yZlOlkhnLPn04lNp2gLqAZ4jiOWqS5FFU8GVKbZRv24FlI9bphjIIAUdH8cUkUCfaMpigV0oSmKBXShKYoFdKEpigU859sYeT1vU2Xuq+fugcyXK5+Q8X/c+0WQ2fk3l8j45F+hQ1DUpBmNP6aKdfK1myDz8Dfpf8aCZ04bY5yJYCBgBAP8HddtZ2uo2EcHdNtCMOqYEiuBVhPOkZVAKwKUKdBmYLIKlctrQk28jJ8j/s8eHdHIfMkRv2A2nIWQYe2zEnQLD2XSPWZoqQll2gTDAs9mF5On2e9CH/fdDKhRbTfFtXDapxnmPLPlp50jyBwroSjK3xpdaIpiAV1oimIBr/cMfnNuvEq/Od/4w+dAZvfXaSDpzu9fAJnlv6Q6mVNB5+ciZ7pEIXzvMqXAf/WHINK69BIZ915AR6cRMl9dphMJIqbcoee4uC/oekxP8CfCtzxTE0qCfpr7zDkfCrpNFbfFLRYwXBHKnzMnvqj/Vdm1Vv//HbbGGJOxUubep+gMDllWvDmFWdi1ALc9TpguJTwyJebA9xy8H+2QZm9PC8zUPsqpzlp1sAJAyoKsp4WQpY+nqCjKzxpdaIpiAV1oimIBXWiKYgHvd3/+u7Dx90qvkPGlP8CSX9m362S81v0UZBbM+FEK0NO6GFPlEowjxphSwJRUwWDSfEiV9h62WTNFWTJQUMOGaAzZpdfvj1Bp9gZUaXcPsJQ2Z1HFTPGiSecsjzDjIK3htmBEr4MbVYwxhrW9E53q8yV6j+JlPFbWoPfIHeOkeRO6rbKL92zGKuJ5Ht77h90l2MZLh7sNNHzxbG3JGDLJ6H3kmdLGGLOftsi46R6fJa/90RTlc0IXmqJYQBeaoljA2wgwpfjf/dIfkfFbX9wEmT/9CQ3svfDfsRJScEQrIZXmQn/oLVo23MzRQenUWXuj/PgWSc4QdYuFKwXx0nHcFvSWNapLVT/EbPJ8h2ac544Q6cr0T6eGAbvOgDo7HUFnDTy8tkqbtnJahII+7FMlrfCF/1k2RZIeNz5Dnc+TU1KrKxbUO8S5771Idaslofx5nOJ1OKyUeaWKGfc80NkVdLR5Tvc9y/FY3InNS4RLqMNaUT4ndKEpigV0oSmKBXShKYoFvJR7MQ32d/r5xkcg88rfuUPG//7Vb4JMtE0tDaUxlrcuZnSbu7oCMqZMle+FYGjo3GD9uBIhM3cuRMLXF3/j2BhjCp/tO8PeY8Fai4wlR3OwzXqBS0YdjznQxxgssJjiPC5GYzqOUWlfMEe/4x6fcQ7p1MaY5lusX/bTF0Emq1ODQFoX+pON6Bz1AzQONep4rWGDOo2TDOc6YhnVUp/tzVqHjHmfM2PQiS05o6W+fxx9oymKBXShKYoFdKEpigXEj0uutx1mdZCJHOpsPPo1/JZuv0fXcXGEznFn8xwZZ0tC1SVWran3FAbjTjeoLuGN8Js8GAg6GqtE5Z9AnShlKtnWCmaKe6wfczAEEeNdP03GUmUoJ6Xnkwnlx6WiS+VDev1RDx3d4T69NifGYNy8QfVhSdeMWeBx7zLqenCOUuJ8jepEko8/zQU9km1LhRZVUJkKfcigtx2l+Oy1fGZDECZ/Whyv6+obTVEsoAtNUSygC01RLKALTVEs4LVcVP6382UyDh1Umu/NqYXgG1ffBZlX/8MVMp597xbIVHdYH2PBhzs5Sf8PxmcFIRaZXxIclBlWPAPCEK91ozkg49kyOl/nzGm6t4Plpf1D+rtc6I/GT3vho1HDneH/44glWCyW8HeOSw02+RCV/xIrAbcoC/sJqBGjXEFH77jPDFaJ8J/Oe9r1MHM9E0p51yssm12IzA9Ytnbo4n4yZvQLeT1AY4zLSoBLAR7zhX+sjL7RFMUCutAUxQK60BTFArrQFMUCXiIobryk1uvDyyCzPaHK/q3WY5DZbNFo9Xe/gBEd44vUZV9Kce0vuIFCaDxeYk2ypN5j0Qx/F3bp8eLTaOh4PKBlGp5e3QeZtXBExm8WeB0dj0bYOB1U/gtWyo33NPtpFCGLDCmjUadZpVEOsVC2jkdirNSwvBqPqEiFa80yuq0sGJn6h6xEhXCp0u/KvtBX4RiWQjT6caQ+Z75D74dkPOT0DUYO6RtNUSygC01RLKALTVEs4EllkHnG6Js750HmQptG4u/GWG7u0ZDqcckReoy9FisJLjia85jpkYKOtvDo9/UiQCdmGuPvmrQVtxlU0Ilrnu6TYT9GXfNoTn+XZqj7+hF1iKbLglIyPz4SPK8KDnu2ad7DuXaYY3e5hvrG2TotZX4yGoDMJ6M1Mn4ywnvvuszRK0Xhc31c0Ef7nRpsG4Z0/itVzCavhvS5GmcYvl/3aZm6mov7CVlGdd3BLBVu55DWlL7RFMUCutAUxQK60BTFArrQFMUCntT8+v/0qYN6uI8K6ZVztNzcR0MswdYfM8edVOqdGT94XytjsPH3wj++9n5JqLOf1fF3SZ0qso1P8XeD81SRHoRoaOAp7pLyz3vDL2aCwaRHt0nlFyYXMMqcG5UadTR0XFs+IOOqh8p/UlBD2H6MZSz2JnTbYITGoXRCDQJuXygJN2IN7ss497knzKNH72MmGJ5GQv17zkalT8ZND+esYKUXpdJyvNa+JKNvNEWxgC40RbGALjRFsYC3nWKP4DeYg9ob4Dcn7yW1P0U9Dpymgt7E9RYxstThpawFHY3/TChvVgjZwvEy67V8IJQSv0d1kL0VDAYuMSd6dCDoX0y1EuJlDU9ml0rLeX3cd8b6ePWE4Oz3md6YpHhfl+vH92g+7FIdrRCc7P4B09GEYIFU0Jk5C0eYABawHE/wfvAeao6wH/4Mc33MGGOaLIiYZ1MbIzuo4XyOlVAU5W+NLjRFsYAuNEWxgC40RbGA91edK7Bx1KWR6E4g9AxjimOnh45NiMYOj1d+JbjDWoQ7g3PhP0SwsyRL9JzGG6jYuyxg2xuiTDCkO19/W4gE79Ad8ebtxhhz+Dw1KvVu4Jw5gmGhvEMNG4FgwDKGGqdKLZR4cpbKeFW02Cx49oSQTeFN6LZccEYX0We4rwIlZnyRAhj4ltkUHdi5kCnC+SzN4bmBJCrhnOkbTVEsoAtNUSygC01RLODxAFFjDHzg8gpLxhjTSagelw3RaQgHK2MwLHc+50KAaImrBDzj2hjUEwS9QezRxb7vJxv4u+iA/h/xbG5jjMluUkfv4Agztdf2qMzhi5iZ3P05+n3vROhkL4RrCx9S3Wr9DcyM5n2lxxt4z5ImndtM0I95aXNJZ+R+3bQplD/nz5WkwkuB6OyZ8SJ8rniwutCK2/QTGvQ+LXA+dlNaJWC+QIc+r4zVzTB4Q99oimIBXWiKYgFdaIpiAV1oimIBj5d3NsagIUFQiPcmDSoylUp50995Qq+vJKaOVXCGGmNcZrCoNLHkVzyniqzUa8uVzpFlFIjTwRyrheB8vbp+SMYPv47XevcmnbNgGRXrWkAVe8nRWhWuv/8MyxR/hMYYb0rPqXtDcHxfpEaU+UwwcvFodSHFYL5Gj1WqCL3HmFEpl0rtCffDZ/3YfPG5YucodKJ/MqT3I3JPgMz1+i4Z//6jL4HMSpnex6+tfAQy+kZTFAvoQlMUC+hCUxQLeBWhBU6JZbBKjt7OmOoAUu9pnj2dS6W82bEWBcqUQvy+h/2w48uVsvB/xUno8YR23ShziLrEdr9Fxk+v7aFMmcr4Qu9l3jpoGgjtl6I5bOOtpB6dxR7aMVNAf+sU6hL3Jytk/Oa7T4GMqTK9toI6UilkOppU3Yxtc0Lcj6TXVyKqo80TzHDO5lT3r7WxwlXGMs7nuVQen8r0p1jxa/8ntAJc96a2bVKUzwVdaIpiAV1oimIBXWiKYgFvKUKn6RbT0XkpNWOMmfSpUugnKMP9mq5Qbq7Eei2nHVQ2iy6Lsq6hEcFrUAW5vIrK76wqlInbpw5hb4L/PVGHnnfSxGsdPaKR+O8Lpdz+7oW7ZHy5fAAyXPmWSplFgsVmlNPo/Ws1NMZUWP+vQYZK+9sPz5Mx7w1ujDEFM36UBMOTw+61ZAxxPbqf0MP9+C4aQ0JWt08yhrjMsML7pRljTCzcI04/pXPEe3MbY0zQp3O0/w46vvWNpigW0IWmKBbQhaYoFvAqnuCwTrkTV/hO55/cn2HJSg7r7JDqZGEHncH5VapHliM852vMYdsOUEfzBa/64zMtMu7OUW/ZfrBKxss/FFoJOay9z7o0Z1RmyRuDzGmP9pBedVGHfpihM/r2/DQZHyQNkHk8p79748l5PEcejC0VE2PlxsVA7JjKlIQsfZ5dz3tsG2NMs4zO+WnKqk4JTv16hf5O0sc8dvxJijr8kPW+jgUbQsRUxLCHE6JvNEWxgC40RbGALjRFsYAuNEWxgJcJPaEcVso7OkLlbrxMx8JuzCJgvYYFRbLymBoWJlfQsWh6VCEtZrifn6R0PydaI5CRnKZVnx7vbL0HMhvP9Mn4DfcSyKy9RpXtzhoaVVav0XO6HKBTedOj5xOVpP7MaCBxWYrFk1kLZPoJnbfJPmZhh0f0eEWIc5Zzm0FJyFxnzmc3QMdzxBrEVQSnslQBgBs2yoIxZMqc2JMR9h3npx0LpQ6vt2iGtS/0pvNYwjvMj9E3mqJYQReaolhAF5qiWMDzBCcu3xT28Dt9zDKhc+FbvsRkGh/j9+1sjf0uFoI2u0xvEFoGJ3O6kWeAG2NMkghVlpgOEJVRT8ilFlCM3tN0vPoDlPn+sxfJ+Ov190GmUqLXEZbQ0dp00Inrl6gOtCQ47N/89AIZtz7AfcctOk6bQrulGg3qFYOKWeU0qYz5eEz1pjjB82lU8VphP3OsFMbvdbmK93U6pr/jZcSNwSCDbAPbOEUdeh0L1dEU5fNBF5qiWEAXmqJYQBeaolhAdFjzPlW1J1jurXeNGRaE3fhHdKM/QsV6RgPjTXiACnFaZyck/T0MqREh3kMFmfdVNsZAyenYRUfzgl+q0Hs5XaFO0zxEi83991mE/VnsTVeYLhvjsQYFXhvn22/fgm3NO6x02hfQQPDMxcdkfLKMfdZCJ/sbx8ZgZvIow3N+NKTZBPuH2C/usIvBCUGbGkikkuBShgdnMaPzUVtFQ8d9FpnhClngSYtlkwslE/WNpigW0IWmKBbQhaYoFtCFpigW8JJcikamylzYRSXRH9GG2PEaKsRlZtiYnAYRk2/S0OfwA1R+q0/o+RS+ENG9RMeuEFBQ35YaBNBh0hBq/7NLm57E/6eZT+cxreF+mqzUff+X0fBimDFkXODcG4OGhf9y/4tkvPoWnuPBV6iBoNrCPmvDmEY5jJLjDS/tEKNQeImMcYr7aYb0Jl242AWZDw6xdNv0HjWaOOeEBu4Vem2dIUYK8R4T6xUsLdGP6fOY9THso2jQh6iyo8YQRflc0IWmKBbQhaYoFvCSAh3EecB6T++j09KdUx3NG6Cu175L9YsH/wBleHnn2Sl0PgYj1p/5IeqDnQa9jhwTak3UQSdmtNUn45iVnzPGmLROj++m+P9UMB0tQV+0WfsRPe9vHz0LMr9W3SLjXHBYf5ysw7bke7Sv2eQiiBi/Se+H1J/6ESv1Dv3MjYGe1XtN1CNbNaq3JUL28mqV6la7UyyR9yvn7sC2/9F9gYyLA9R1c3b8VMgMWJTps9YIUGf96GCNjKN9IeNhkxkEHuPDp280RbGALjRFsYAuNEWxgC40RbGAF+dCtHyLOna7XzoJMrOrVAF0PCkynzopw2V0LJa4rt1Eg0X/FlVa4xYq8bVtevxoIDQwF/zVyakmk8HryEL6f5TU0UDgMZ/tfBn344+pMeTtH18GmfdOUCPT0wGWzfu3f/4N2LZySI83voTX7+xQo4E0H+U+vVZeSs0YA07++QpmKhyG1EG8WEeDSZ2Vl2uFeLAPB/jsLa0OyXh4exlkJrFQT4DhRTwLAecsZoaWKj7Cxqmxa3PUGKIonwu60BTFArrQFMUC3izF72tniX475wF+c1Y/oNskB3F1l+px8xD1r793lvZ1frtzDmS29mjE8GwTM4PTBr0Obyo44iN0mvoDwSHLyKosg1Zw4nJ9R9qr36WK3Lk/xXP8Vv2f0Q2o6plLf4i6zO7LVCdq3MF9hwO6MycVyn2zsoFSab/6Y6rbTLt4rPFp+h8+9zCo+KhK9R+p/LfUw/pMgwZQ3ElRR4tjduLCPJZYP7ajGB3f7piVm8PYZOOx0nrSsfSNpigW0IWmKBbQhaYoFtCFpigW8IZC3fJTK30yrr2OP0zO0FJhW1/H/WQVZnz4zhLILP0u9QD+o413QOY/Zy+R8cFHqyCTl1kvtjpqpN5IqL3P9G9J+ee4QtJzwfyj3kgwmIypMST6622QuXaHKvZFtw8yi6vncRs7XLmD3uiFS4WEKnEmY/YA6VqjfWqMiQ7wWhcOdby7Qk+FeEKDBbaXaiDj1tGA1mzQZybq4PFHLZaFUMOLLdgpdWZ4fJ/dx7QmPFdsXEL7jb7RFMUGutAUxQK60BTFAt58jkrJ2TXat/f9X30aZNqf0G/nrIo6wdbfp+vYFUqC/953f5GMl4VKSJfbh2Q8Oove8fhjmp3rzY+vZmUM6mSO0ELbSem+sjJex4LtZ/09nI+iTr2d8eU1kOFttqPbqKMkIeqacZv+MI/wP5Q7o72J8D/Lpm2BvmiTNOhcS6XeeTWxROizxnVEVzifXFCa+wWdx6WhpI/TfaUuzlnBHM39GT5XASsukAqZ8xwpWFvfaIpiAV1oimIBXWiKYgFdaIpiAU/qLfV43CLj5CuY5et8QD207kyIlmdZtS89f+/YE9oet2HbDnNsxoIBJ2c91ErCf0jQExyr/PKFsHvuDK7so1Bth+7InaNG3LvVIuPRGaG0+Abdz+rpCyCz9KMebAuG1NMsGmzY4ZI2nmN0SIWEVl9mcppF+Id4rCKi11FKhbl36e/8IRosnBS3pSybv/4YDUY8C18yDhXMQBILPe2azNAyqON6yVgpvcpMMPzAFkVRfuboQlMUC+hCUxQLeKt1LOvTm9KAzF84/wnIvHn5OTIO+kIrJfYtf+cIW/B849y7ZPytte+DzBWfVj16bY79n/7X0U0y/riHzuDDI6Fn9JzqlpX7QlQxuzSp3Hf3Cv1Onwktqtwxaz8VoI5USqjMvI3zOj2PpbNX3qfe3+411Jl5wLCUKc6DZh1BJuzSbXkk7IedIg/6NsYYhwUaO7HwDJ1E/Svco9c2XUWdaHSV/q71Ht7X8Vl2HVUhooHhtTCiIWHPUF1oGaZvNEWxgC40RbGALjRFsYAuNEWxgCeV86pH1NE8y1GRnHyNGlHKr2N2aubRfU95CTBjzP/euUHG3TWs5/WwvEPGSy72Gv4XJ/6CjH/cwrJ1P1k9A9tee7JJxuMII7jPrFMH8dEEy5JNHlMLycJH5T9bpfPhBDj3iwF1tErlzSbr6MQNxtQgsPwhGhEma1Rpz6pSZvTx5fd4ObVAiJ4vs6zrYHT8f/oEbWWmCNGoc+qvqUFisInlv1vrNMgiK2N2f84zTnq4n4wlarebaDw83GmR8UJI5Nc3mqJYQBeaolhAF5qiWMDb6mAQ75UTB2T86WAFZL56/lMy/v7tmyCTTOg3r1PHkkojVoVLatNzEFP952p1D/cT0I/pq+EOyEjbnqs9gm0cn6Vm/9H+CyDzwZDpdrnwH5awbaHQWqpJ9Y9ZCfUG3i/bGGNGTP31JqgPu8zXKmWcRz2WqY3FzUxWpvqXpNdFPar/yOXH6e+irqDrHcImc/gcPan5Cv6u8pdUJ8uaIGIqp6iuv3gHheas4NrpCL3RvR7VI6VKavpGUxQL6EJTFAvoQlMUC+hCUxQLeMkAtd3REt3WCFEBjAuqkCeXsWeX06H7WfBev8aYnKUvP+qhceaJQ5XUXgsdxjWfhsufjAYg83O1+7DttM+c0Tk63l8f0l7TUh+vjRN0P5MENeI52+a6Ql0y/hsPZeIFOtWbZ+j1Nst4z7YP6Ny6HhpjRix7vdLA/Tisr9h8hgabwRE9x0UFj8V7SGdD3M/S6T5sm/AsDF6jzxhjdtnxhVeKy67D7+B+us9SGbGH25BlZQgl+vSNpigW0IWmKBbQhaYoFtCFpigW8PwGGige7dAeXS9cxOiJbkzDym+efQwy745oqbRCiJaYjKnS6vDG28aYVoP2FQtcDGnwHapsP5m1QKaf3oBtZRYuMcrQ0DDJqJJe8TCdPWCF5ENP6A8Q0Ih6R1DiS2xbGuH9eTJCo8FkSg1P//rqd0Cme5oaeuZCYf0pCwU5F3ZA5unwCRkf5ljbYS9tkfEgRwPWwzl9zmLBivBeB2tCLOYsMkawhfBokeA6GsdGj6iRrS28dqobNAtgFKPx0GX2okSIQtE3mqJYQBeaolhAF5qiWMCrV9Eh2WdpvbcPMPX12XUaCV/3cT9+i+oXaR+/b0usxFchfG/HrOTy9qgFMjlrSLxSwUzYeY46QDOgv6t7eB0rAY3y7qeobwxSqpO5QpMs7viXdL0p0weNEAm+cmULtnE98q3RJsi8UHtAxjcD1L/Oe+xaBb1piemjLwqltNMF1eN+KPTC7qRUZ/wsOqsxxjhVquuGd8sgE1+jARSF4FSv7NB7P7qAx7qxTNMHbu/hWqiw7PbBVS0JriifC7rQFMUCutAUxQK60BTFAt54io7VtWVa677TQ4dkN6YGAckYcm6NNn5/8ASdjwVLizceKpIxK1OXC45v3qNqJFzXuWVsRH+iTB2SNRe19mlBFWnuHDfGmIBt8xw0hkxSup9xgsaheSaEfjOeWd6Fbec9et4h78RujPk0XifjBzH2J7hRpoEHowLn8d6c7qfpTUGmYOHyA163zRizG1PP7o/38fmYztGIUTqg8xavCn3eytTQFD/EZ5jbq+rXj0AmYcaguIPX0RrRZ9Y9gfOhbzRFsYAuNEWxgC40RbGAlwk9ghOm7yy3sAT3g0MaEHqyMgSZjWqfjLfOYPZ0PmRZ2EI/roT1x06FctsllokchKijzDN0rO7N6Lf7UAgG5jqZVCKdO5qlTFyuf4VCOXau23WGWBN8t4L90S7VqWN1kqH+FzvesTIPZ8uwjdNj+jl3lhuDwbeS45lfP3/ujDEmEQKoS0yNXb6Iundnj85RuY/vlOlpOtcXGxh4vD2kemTlMerQvKfcpXUMBNA3mqJYQBeaolhAF5qiWEAXmqJYwJOMBj1WzusUK6VmjDFBQH/3eNICmeeXtsn4+kl0tL7bo1nYJhX6c7lU2ZQMJm5AZYpCaLKeCkYMlgk8ERykASvL1qpgab16QB3GkYv9yWoBVfalCP+cOXpPtEYgw7O5jUHjiyc41bkRh2ccSGTF8f/FkuFnxkrrhT6e8yRn8yGV3xPuNTd+DMZ4HV6XHj8rozHm7HX6PHZmaHgaMGNUew/30/kivbZyjOejbzRFsYAuNEWxgC40RbGAt9pAZ/TjGXUs73awrM/mSeqU64zx+/agSnW9s1XU9e4s04zV+SEGbTosC7skqHE8iFRykEYe6gkh28bLRBtjzILpIHxsjDFD9l1e8TF7mus7vlCS2xP0L84gwTnKWOPk5RAzzD8LB1N6z2qBkBrNiD9DIPRwcrw+KFVJO3EWndHTmOrR+S5mvPszeo+qzwvZ5HW6bymo2XnEqrQJt+f8Ju0n+PDeOsjoG01RLKALTVEsoAtNUSygC01RLOAtRZgNOmlTZ193D40hvMn82RU0dHAndl5BI8Jzp2hG7zvpOZDhxgc/QI20GlLjw1IZr4tnQRtjTML6vK0KZeoaQvY4Z5zSaHVHcEZzJ3YgRO+XmczhHPu1xULZPO40HiRofKh47PjCfHC4kccYLAsnObW5KUpyRk971Khz4jQ+Q02hN9/eA5phEA7x+MUVauS7vrIHMtz40e/gXLee0Hk9eAmfvRPMGBTt4f3RN5qiWEAXmqJYQBeaoljAk7JjG6xV0LQl9LDeo07CToQO2gttWlWIVxQyxpjNCnUk7qwI+uDeEmzjTFkQaytCfbARYDAwr9ZU9dBB2/JZeWnBYZ2G7rEyvC2RKzjVq6wKlxRAPBKCgQvD+igLx/8sREyP687QGcx1ND73xhgzZ72w0zE+ZyFrGfbs8g7IfOfuNdjm91n/9PP4fL587iEZf9JfBRne6irawnPkLZh+6fkPQeYvfsDaga2g7qtvNEWxgC40RbGALjRFsYAuNEWxgCc5G7mye2EFSyXfnbFs3S2hcS8zhjR9NEaMWc/kW8vYC3swo8r/WIgE94UMXk5WYDmzFjOQOEJDZF6WbSiUaauxXmdSn7W2T53oFQcNSDzDuuKiDDfOGIPGD6kf9EFMI/P7MWYBpGyOpJ5l/FhSifZ0Sg0LbhkNBL988Q4Z/8/3boGMvy80iNukQQXc8GGMMU9YsMRohs9MvkevP8QYB3P6V2j/9o/6WEbd79Hrl/pl6xtNUSygC01RLKALTVEsIKbG8m9w6Tu93aZBm91xC2TevUcDhJ+79Ahkaj51Wm5EfZD5yinae/nVB0+BTMiylaVzlgJ0ebUoSf/hutWpEM8xZRnOfgl1klMBDZpNFjj945xlapfQge4KeiQ//rwQdBuG5AwfsuxtKXuab4uFymFRnZ73r196H2T++PZzZBxu437cG6jvvHzmPhnvztA+sD+k+uj0Cd778gF9zyxewmNt1qmd4c9fuwUyxUnq5G+HqFfrG01RLKALTVEsoAtNUSygC01RLCAaQ3LmxJaybJdYWez5Oirfsz2qgL63tQEyr1z+mIy5A9sYYzbLtPfXi2dQ5sMOLVsn9ZCWDCQNFq1/WjB0tD3qII0FQ0PFOb4sGzdQLHlY6m/ZpdsOM+y9LBla6i69H/us1Lkxxkw9amzgJeqMMWbOyobnQhbAeEbn3xOCBb567h4Z/8m9Z0DG7NH9nHl5G0Q261gm7k6P3uujMWYYzLfpvJX3hb7nt+hcf2Edswf+7MfsvBt4rY1l+nyMZvh86htNUSygC01RLKALTVEsIOpoXJeJc/yWrzFHb7uKjt50mf4u38Nv6bdqZ8n4axv3QKaTUl3v+cYWyBywXtQzoV/1yQo6JHlGNQ/qlQgdbMkUsW3cgSwRlXA/vJWTpFdOC9QBOHPBGc7PiQcQ/7TjcXLWSuk3nkJn9A+O6H2N9/Hev/ilj2Eb570Oluk+6jPn8xYGRwesJHj6LFY3e/EMfY5ev3MJT4Cp+k4V9WM+Y9MjISsd96woys8aXWiKYgFdaIpiAV1oimKB/wfzG0J+CAqKpgAAAABJRU5ErkJggg==\" y=\"-8.174219\"/>\n   </g>\n   <g id=\"matplotlib.axis_1\">\n    <g id=\"xtick_1\">\n     <g id=\"line2d_1\">\n      <defs>\n       <path d=\"M 0 0 \nL 0 3.5 \n\" id=\"m30ae3c13a6\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n      </defs>\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"29.19\" xlink:href=\"#m30ae3c13a6\" y=\"226.174219\"/>\n      </g>\n     </g>\n     <g id=\"text_1\">\n      <!-- 0 -->\n      <g transform=\"translate(26.00875 240.772656)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 31.78125 66.40625 \nQ 24.171875 66.40625 20.328125 58.90625 \nQ 16.5 51.421875 16.5 36.375 \nQ 16.5 21.390625 20.328125 13.890625 \nQ 24.171875 6.390625 31.78125 6.390625 \nQ 39.453125 6.390625 43.28125 13.890625 \nQ 47.125 21.390625 47.125 36.375 \nQ 47.125 51.421875 43.28125 58.90625 \nQ 39.453125 66.40625 31.78125 66.40625 \nz\nM 31.78125 74.21875 \nQ 44.046875 74.21875 50.515625 64.515625 \nQ 56.984375 54.828125 56.984375 36.375 \nQ 56.984375 17.96875 50.515625 8.265625 \nQ 44.046875 -1.421875 31.78125 -1.421875 \nQ 19.53125 -1.421875 13.0625 8.265625 \nQ 6.59375 17.96875 6.59375 36.375 \nQ 6.59375 54.828125 13.0625 64.515625 \nQ 19.53125 74.21875 31.78125 74.21875 \nz\n\" id=\"DejaVuSans-48\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_2\">\n     <g id=\"line2d_2\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"74.49\" xlink:href=\"#m30ae3c13a6\" y=\"226.174219\"/>\n      </g>\n     </g>\n     <g id=\"text_2\">\n      <!-- 10 -->\n      <g transform=\"translate(68.1275 240.772656)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 12.40625 8.296875 \nL 28.515625 8.296875 \nL 28.515625 63.921875 \nL 10.984375 60.40625 \nL 10.984375 69.390625 \nL 28.421875 72.90625 \nL 38.28125 72.90625 \nL 38.28125 8.296875 \nL 54.390625 8.296875 \nL 54.390625 0 \nL 12.40625 0 \nz\n\" id=\"DejaVuSans-49\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-49\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_3\">\n     <g id=\"line2d_3\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"119.79\" xlink:href=\"#m30ae3c13a6\" y=\"226.174219\"/>\n      </g>\n     </g>\n     <g id=\"text_3\">\n      <!-- 20 -->\n      <g transform=\"translate(113.4275 240.772656)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 19.1875 8.296875 \nL 53.609375 8.296875 \nL 53.609375 0 \nL 7.328125 0 \nL 7.328125 8.296875 \nQ 12.9375 14.109375 22.625 23.890625 \nQ 32.328125 33.6875 34.8125 36.53125 \nQ 39.546875 41.84375 41.421875 45.53125 \nQ 43.3125 49.21875 43.3125 52.78125 \nQ 43.3125 58.59375 39.234375 62.25 \nQ 35.15625 65.921875 28.609375 65.921875 \nQ 23.96875 65.921875 18.8125 64.3125 \nQ 13.671875 62.703125 7.8125 59.421875 \nL 7.8125 69.390625 \nQ 13.765625 71.78125 18.9375 73 \nQ 24.125 74.21875 28.421875 74.21875 \nQ 39.75 74.21875 46.484375 68.546875 \nQ 53.21875 62.890625 53.21875 53.421875 \nQ 53.21875 48.921875 51.53125 44.890625 \nQ 49.859375 40.875 45.40625 35.40625 \nQ 44.1875 33.984375 37.640625 27.21875 \nQ 31.109375 20.453125 19.1875 8.296875 \nz\n\" id=\"DejaVuSans-50\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-50\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_4\">\n     <g id=\"line2d_4\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"165.09\" xlink:href=\"#m30ae3c13a6\" y=\"226.174219\"/>\n      </g>\n     </g>\n     <g id=\"text_4\">\n      <!-- 30 -->\n      <g transform=\"translate(158.7275 240.772656)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 40.578125 39.3125 \nQ 47.65625 37.796875 51.625 33 \nQ 55.609375 28.21875 55.609375 21.1875 \nQ 55.609375 10.40625 48.1875 4.484375 \nQ 40.765625 -1.421875 27.09375 -1.421875 \nQ 22.515625 -1.421875 17.65625 -0.515625 \nQ 12.796875 0.390625 7.625 2.203125 \nL 7.625 11.71875 \nQ 11.71875 9.328125 16.59375 8.109375 \nQ 21.484375 6.890625 26.8125 6.890625 \nQ 36.078125 6.890625 40.9375 10.546875 \nQ 45.796875 14.203125 45.796875 21.1875 \nQ 45.796875 27.640625 41.28125 31.265625 \nQ 36.765625 34.90625 28.71875 34.90625 \nL 20.21875 34.90625 \nL 20.21875 43.015625 \nL 29.109375 43.015625 \nQ 36.375 43.015625 40.234375 45.921875 \nQ 44.09375 48.828125 44.09375 54.296875 \nQ 44.09375 59.90625 40.109375 62.90625 \nQ 36.140625 65.921875 28.71875 65.921875 \nQ 24.65625 65.921875 20.015625 65.03125 \nQ 15.375 64.15625 9.8125 62.3125 \nL 9.8125 71.09375 \nQ 15.4375 72.65625 20.34375 73.4375 \nQ 25.25 74.21875 29.59375 74.21875 \nQ 40.828125 74.21875 47.359375 69.109375 \nQ 53.90625 64.015625 53.90625 55.328125 \nQ 53.90625 49.265625 50.4375 45.09375 \nQ 46.96875 40.921875 40.578125 39.3125 \nz\n\" id=\"DejaVuSans-51\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-51\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_5\">\n     <g id=\"line2d_5\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"210.39\" xlink:href=\"#m30ae3c13a6\" y=\"226.174219\"/>\n      </g>\n     </g>\n     <g id=\"text_5\">\n      <!-- 40 -->\n      <g transform=\"translate(204.0275 240.772656)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 37.796875 64.3125 \nL 12.890625 25.390625 \nL 37.796875 25.390625 \nz\nM 35.203125 72.90625 \nL 47.609375 72.90625 \nL 47.609375 25.390625 \nL 58.015625 25.390625 \nL 58.015625 17.1875 \nL 47.609375 17.1875 \nL 47.609375 0 \nL 37.796875 0 \nL 37.796875 17.1875 \nL 4.890625 17.1875 \nL 4.890625 26.703125 \nz\n\" id=\"DejaVuSans-52\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-52\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"matplotlib.axis_2\">\n    <g id=\"ytick_1\">\n     <g id=\"line2d_6\">\n      <defs>\n       <path d=\"M 0 0 \nL -3.5 0 \n\" id=\"md5858cd41c\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n      </defs>\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#md5858cd41c\" y=\"10.999219\"/>\n      </g>\n     </g>\n     <g id=\"text_6\">\n      <!-- 0 -->\n      <g transform=\"translate(13.5625 14.798437)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_2\">\n     <g id=\"line2d_7\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#md5858cd41c\" y=\"56.299219\"/>\n      </g>\n     </g>\n     <g id=\"text_7\">\n      <!-- 10 -->\n      <g transform=\"translate(7.2 60.098437)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-49\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_3\">\n     <g id=\"line2d_8\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#md5858cd41c\" y=\"101.599219\"/>\n      </g>\n     </g>\n     <g id=\"text_8\">\n      <!-- 20 -->\n      <g transform=\"translate(7.2 105.398437)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-50\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_4\">\n     <g id=\"line2d_9\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#md5858cd41c\" y=\"146.899219\"/>\n      </g>\n     </g>\n     <g id=\"text_9\">\n      <!-- 30 -->\n      <g transform=\"translate(7.2 150.698437)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-51\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_5\">\n     <g id=\"line2d_10\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#md5858cd41c\" y=\"192.199219\"/>\n      </g>\n     </g>\n     <g id=\"text_10\">\n      <!-- 40 -->\n      <g transform=\"translate(7.2 195.998437)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-52\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"patch_3\">\n    <path d=\"M 26.925 226.174219 \nL 26.925 8.734219 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_4\">\n    <path d=\"M 244.365 226.174219 \nL 244.365 8.734219 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_5\">\n    <path d=\"M 26.925 226.174219 \nL 244.365 226.174219 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_6\">\n    <path d=\"M 26.925 8.734219 \nL 244.365 8.734219 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n  </g>\n </g>\n <defs>\n  <clipPath id=\"pabcf64db41\">\n   <rect height=\"217.44\" width=\"217.44\" x=\"26.925\" y=\"8.734219\"/>\n  </clipPath>\n </defs>\n</svg>\n","image/png":"iVBORw0KGgoAAAANSUhEUgAAAPsAAAD6CAYAAABnLjEDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAvwUlEQVR4nO2deZBl91Xfv+e++/ZeXq8zPdOzarSMJGMJhCzZJrhki3ghllNFAQaCHJRy/kiqTEEKRFKVQBVJmUoVJikSYgU5iAQQBlOR7TIQ2ciWbSTZWsayFsszGs0+3T29vO5+/fpt9/3yx/QInaWnWxrNm5bv+VSpNL/b5977u8vvvT7fPguFEOA4zg8+0ZWegOM4vcEXu+OkBF/sjpMSfLE7Tkrwxe44KcEXu+OkhEta7ET0fiJ6iYiOENG9b9akHMd586E3+nd2IsoA+D6AOwGcAvBtAB8NIbyw3j7ZwWIobB/kG8XpuyC1X0xdNk6CtukkGX7Ytv4ci3IJG/fnmsomI84VU6JsFttFtU2SjfR+2YgfO4OusrHOJ4mI3zT7EfJ7ZB2XxM1vhVjZBON5RGK/jvGd0Qn8eXS62kY+62aiz58kfL9KflXZrCQ5Nm41ssqmXGqobRLr/J2OmHdLXwfJx1jUz7Wca7FxbTW/4XwQ6QcbiW1dMb/O3AKS5RX90ADoq9s8twI4EkI4CgBE9CCAuwCsu9gL2wfxw//9F9i2EOQD5y8JAAwV+ANeahaUzUy1j42TqZKyKe9dZOP3TB5RNn0Z/gEwnltSNn8zfQM/V9AvwERpUW8r8GMNZvSLO5pdVtsk5YjPsR30PZNzGov1dcgPttPtYWXT7OqFUxLnn0/Kyma23c9tWtpmucNf+ONLQ8pmbpHvd9c131U2T87t5sd5abuyufXmw2qb5Niivv458V7hhP6gj1f5O5xct6LPv+c4G3/zxQN6Ah1+nKjcUSblPv6htTzD5zf12/9VH/fC8db9ycbsBHDyNeNTa9scx9mCXHaBjog+TkRPEtGT7Wr9cp/OcZx1uJTFfhrArteMJ9e2MUII94UQbgkh3JKt6F+tHcfpDZfis38bwNVEtA/nF/nPAvi513uQrvDZpYgFAO0u90kXVrTf1Jnj22hUi2/vmDix4XxGszU2fnppt7I5t8L9yJ0D2h+eb2ofdSDmcxqOtW8nsXxmS9iTSD++EYzjCGVPPgtA++cA0C+0hnpXi01ZIQhagqV1PjXHDJ/jF47cqGx+fC/XXqa2DSibJx+/ho333aS+l/D2Ub3txQz3/+fybWXTOMn1icKz+tl/O+Lv0e3XvaxsHnuB+/HdhtZiSEgIpRH+23IUr/9uvOHFHkLoENG/BvC3ADIAPhNCeP6NHs9xnMvLpXyzI4TwJQBfepPm4jjOZcQj6BwnJVzSN/ubQUb46OVsS9mcXeY+UX1a+0Qocp/wpt2nlElT+P5jRlDN0dUxNv7WyT3Kpr/E97MCRqTOAABL4u/Kp5sVZVPv8gCRPOm/tc53+PVL/xgAduQW2Lhq/C28lvB4hUhFhwBtI9BmMeFCa8PQFZY6/Ni1Tk7ZtEQQS4Z0EElfkd/rhUV9HY8e577uhw/ov8V/rnUzG5/8xi5lc+ZG7eu/e9dRNj5bGFQ2R4X0UM/0KZviIb7t2ewOZfOBm/i8//brNymbJeLXv22iysYy6Ib9bN2fOI7zA4UvdsdJCb7YHScl+GJ3nJRwxQU6mcFlBVosLHBxgxJtc9MBnmgwVqgpm3zExS4phgHAN8/sY+Oko4W2pthmzdk6f1/MxceukUAz1+LXKkU96zj9sc7oajb5oy1FWviUyTJNQ4yzxDd5vc2u3m+myUXValMHQkkR0xI6Sbwf+YK+jvoiP/bnXrhZ2fzkdVz8eqh5k7LJfl8LdI+0r2bj2/YcUzbbBvh7NK0sgNUOvx+lxwyhrzLCxjtv0Eea/jYP8lkZ5ufudtcPVPJvdsdJCb7YHScl+GJ3nJTQU5+dEBCLIBrpp70yy/0WAMAi9xsHd+vCEGoXo5rM/tIsG//9uf16v0UeMJIv6sSHzRAbiR9LbR5oUo51UE8ly5NMihnto8okl9VE+9VVcf1WwEpZFOqQgTAAsNzW22SFGUuzyInrHy3opJ/ZBg8QsY4jNZ1MRgf+ZEv8HrVrWov5m5cPsvFP3KjTOB6OD6pt8VE+x280ddGJd1/DE3Hqbf08Wtv5UutUdXDQyS/zAK533vUdZXNqaJyN26e4FtBtaY3pAv7N7jgpwRe746QEX+yOkxJ8sTtOSuipQBdRQFkEhJxc4sEFjaoWhHLjXLQa7dNijxSSJrJaxDtW5+Lf6dmKnmNm49LapRwX7aSIBABLLS0QtkQQiRTsAGDFCKKR1NrcxspWk+QyWjBczXAh6VxDZ2tZ5ZXzGR6clIt0Zp4U6CwaHX7+QqyPY93bjchm9bnrC/x5PDuns86umdRBLC/VeA3V/DH9zB7P72VjK/Cm0eLXWt2tRbzK01xY/PLTNyib7fu5yFx9fBsbG0mSr+Lf7I6TEnyxO05K8MXuOCmhpz57pxthvsGDVmSSS1TUTsfuUV51ZbamAxJu2sYrgw5mdbeVvz3KgyY6VR18EQ1wf7zd0rdoJeb71VuG/1XUySl54ZMuNLRfPxP4/bD8WEnJqO6zKvzhYqyDg2rEfX/LP99MoMtgbuPWSitGpRrJQH7j45jJMmIsW0YBQH6ABxCpTi8AUDHmtIN36Kk1dQJL9iV+rOfLuiONfD8PGf1UVnbyjjjjj+kAmcIB/j40tvNxyHqlGsdJPb7YHScl+GJ3nJTgi91xUkJvBbokg3NLQhgRlTUmxqtqv6klntmzfUC3NR7P822Hl8eUTWNu477q3RVxS2IteDSIi02RkYnVyGphrdHhx15paNEqF/OAkGJWC2uyr7zVe11WgbGENmnTNtplDxvZapOlKhtbgS8yE28F+lrHS/yZmT3cRTUdKXICwDK40DhQ1kKfag1uVCCaOqFbNo/u5MFZmQndnDRpc8F4+bs6c/PYj/JnVs5rUXV5D59394gO4Dl2lGe97dzHg2zm8usLuv7N7jgpwRe746QEX+yOkxJ66rOHALRE1dOhkY39tpYIbJksV5WNrGb6/NkJPQGZ5GIFIAgNgYzEGFnBMzaOUzJ8ben/loa0jWxtbFWhqYsAlYZhU2uJNlJGIoy817NLOlipb1xX05E+esdodVXM8GvrZrUf3TGq60oWmjwIy9IHiiIxSVakBfT1142W2ur9ADD3MvfjR66aVzazosJr8bjWJ048z9/Ht938irJZHeDveX271piGn+Y2A9fw+2pVJLqAf7M7Tkrwxe44KcEXu+OkBF/sjpMSeltKmoBYVBGRQSSzC1xoA4Crtp/j+xiVUY4uj7JxcrKkbGhUCDmxDoaR84tjQ9gyAjIkBSPLbHuRi5GVWAdoyJZUUugCgFhUpqkaVXFktpwMKgG0QFfp05mCE8UltU1ilcQuRHzeQ8a13lg8xcbLXR1EcqTBK7EMGseRgTeLHX0/zopstcVVfa5Ov9Eia5EvkfkjOvCmtIs/1+aiXlal03yOJ6/S2XMT/fw4z09WlE3/cX6cI9P8vW921l/S/s3uOCnBF7vjpIQNFzsRfYaIZojouddsGyaih4no8Nr/hy52DMdxrjyb8dn/CMDvA/jj12y7F8BXQgifJKJ718a/vtGBoqiLvhIPApiZ421yiyXtNw3ntZ8mOT7DfamkrP1xikTAgRF/kM9zX9NKWEiErzta0skiBcPXlgEyMelKsrKt9EpX28gqtVYgUllUrynFRqvjTVSPsSrOHuvwe31wcErZ3CD88b25WWWzN+ZtratG6+f3lY6y8WSs59MOXFd5SksI+Pwib+M8OKn1iSdm9qhtM+P8Xue/p/WAxqhIjJowEnFmuIa0/LxOltnzTl6RKT+q59jq59efTPHjhvb6398bfrOHEB4FIMOG7gLwwNq/HwDwkY2O4zjOleWN+uzbQghn1/49BWDbxYwdx7nyXLJAF0IIMH8hPg8RfZyIniSiJzuLG/867jjO5eGNLvZpIpoAgLX/z6xnGEK4L4RwSwjhlnhQ/+3bcZze8EaDaj4P4G4An1z7/0Ob2anbjbC8woMZQsKDPa4f12KPbJPUMEoet6tcyMpWtEojSwxHUrADkBdBNLv6q8pGtrCySjBLG0D3Wl82+qFPbUI0k4JcYmSP1Zv8OLWWFvpkdphVqeb0CS0kZUXwyccm/17ZzHe4kPREXQeRPJLwOe3JaxHv+jwvwfydlnHP2hU2Xkz0l0pNnKtpiIFW4FF3hYuqq5NGqyvREip3g249trKD2wy9oM91+FpeXcmquLPax4POCjP8OJHWhf/hZ+v/6DxE9GcAHgNwLRGdIqJ7cH6R30lEhwG8b23sOM4WZsNv9hDCR9f50Xvf5Lk4jnMZ8Qg6x0kJva1UkxDaS9x32ruPa3tWoMdwngetfPPlq5RN1BT+uFHxtVDkvqaZHCL8+pbhj8t2xDuLVWXzo31H1baBiPtgc4kOEPnm0tVsfGJFBycuNbn/t2K0n5ItgjPG/VD7rOp7Ty0jYKfE9ZD/efzHlM3JGT7vjJVQ1OBzLA1oHzWK+LytOXbmhA5U0ueKC9zX7iwZ79nOqtpGBXEsoxJM4SX+jjSfrSib/rfzgBl6TtusnOL++PjBs8qmJiSLPD8sjELDr+Lf7I6TEnyxO05K8MXuOCnBF7vjpITeVqrJBOQGubgjWxlVjZ7lslpK7rCRebSHi2+ktTdVZndnpapsxgo8E+u6sg7ymczxvKBd2Tl9MoPDTd23W3Jb/xE2PlW/RdmcmuLiVzD6kUMIa1GfEW0hkwAN0Sp/Tgfa1Kv8/K0VfbPLIqaIjK5EhQU+gSRviG9FfuyyIUAVFriIF7X1nJM8f9WTnJ4zJTqAqDzO7Rqj65dqfvU4hhYqMyU7o/r8hRk+7+h6fa72AN9WPKdM1sW/2R0nJfhid5yU4IvdcVKCL3bHSQk9FehycQe7R3nIz/wqz1C6uqIVh0eP8Yi54oIyQfd6rgjJyCsA6C9wMfCGQR2hdLB4ho2HMzVlsz3mWU2HGrqc0bO1XWrb10/vZ+Pass7g2rWNX9zcipEWvCQi5nKGIpQV2wxdKSyKstVnjJ5t03rHXC2IsVbfVsb5q9Upa0GqWTFUVDVJPqSunk9zkB8nt6xMFI1hYz6G+Db5Zf7OLO7XImL3Q1ywjb+uy02vnBHRkju10lh5TpTEbhjlrof4vY7a/D5fpNWbf7M7Tlrwxe44KcEXu+OkhB73ZydVDWW5wbPgrHZH5a/yXtpNo0p9IloyWVU+PrTjOTZ+R+llZXNtlgfwfL2xU9n8/hRP5f/+wriyOTen21h1G/x2l47qbLUZUarYCtCQIUWreorILPDP8W5OP2oZeBTritgoTxtRLGK/uRv0dXSE1GBlYyU57mBGifajM6KaclLQNu0BfpOSor5pMitSPObzxxnW2sOZf8R99MpL2imenubPuqIrQCOzws8fJvX7GYuWVAuLuod8JLL3SGZlus/uOI4vdsdJCb7YHScl+GJ3nJTQU4Gu041wbpmLDmP9XBV65BgvywQAE4d5wMzJnzACGzpcuDk4orPVnq9NsPHfTF2vbGSpqtOzFWWTLHBRMV7Wn5nFBS0kqYrPm4gpsQJE+s5wtStzSAtSjRF+8OVdeo6rk/w4MgsNAErHtJJ14sM8aKRT1Pt1hWYXYqOc0zkpIioTNIf5ft28ca4Cv35qGyWh810x1jbZeb0cmtu5IFb6hj5///f4xJcO6OfRFel6OaNMl6RT1TekMMbVv0TE3RhVxV/Fv9kdJyX4YneclOCL3XFSQu+DakQVkcm+KhsvfGmH2q8reqZbQROocSfxsa/doEwS4VuOXCU7UQNXD/FEnNmaDmxoLvOwlkzD8BF1nAmCyDOJdIco5cbXt2kfcWWSf0Zve0IfZ+hQlY1LU/o66Ft8XHjhtLJpXaWr67REtZR41dAnMtwmu6C/V5Rfr/NwUD7Nj501NIzWIH+NGyP6nskEkU5Z25jBOEXusy9P6uSUxpjQFQr6OLIkdT6vg8daA/xa42V9Q+IJfhxZyceojv4q/s3uOCnBF7vjpARf7I6TEnyxO05K6G0paQooFLgwcWKZp7Dt/KKuHtPaxW3iFT3tHY9yIWVxvxY3fvZffpmNh4w0r/917HY2Xj2hs9dCmQswnUEt9ljiSq7K1RMriKSbFeJX3RD/RDzG3PX6XANP82vLHz2hbKIxXjq5W9P3I9PUwR95ETDUd0oLUiHDbTJNbSMFKau3+PBzQpEzaoTPvY1XgenGRhUaEZyTlPV8Mv16AoMD/J60BnQZ804/v0dU1PcsEoJlpaiz3mZlC/uNq1a/rkAt/2Z3nJTgi91xUoIvdsdJCT312TNRFwOiwusZkWgy/C4dtLAqWvBYFVXiuvCT7tTRF/MdHlhiJcLMzA6wcXdAVy+JZ3k0iOVXJwWrnCsfWkE1MtAkyWsbWb2m06/PFfp4qZjGQR0cc/znxD0LY8rmwKe1/ykDVFZH9XdGflEEmhhvmqxeY11rYxv3ketj+kArE6JF07j2x8u7eULP9pIuJ5PN6Gvtz/L39cVR3SIqK5JTOi2toUTi2KNFXbX4bP/Geo3ECkRaD/9md5yU4IvdcVKCL3bHSQkbLnYi2kVEjxDRC0T0PBF9Ym37MBE9TESH1/5v1Hx1HGersBmBrgPgV0MITxNRP4CniOhhAB8D8JUQwieJ6F4A9wL49YsdKKKAYpYHLnTneWRJpmVked3IRZLIqHqycoSrO6tNHSDx+SNvY+Pmqk5NC6KvefGYjnzpO8nPX1jUIl52yRC2ZOsiQ3+pj/PzNXQnIbT7+I4dHeeB9jAX6I7/E/25/pl33c/G1xtlcW6r/qraNvo0v45ztxtBJHV+Pqsktgwyio0SzPPX8mdk9UeXVWhopKlsRsp1Nq7k9ck6RpmXk0s80sXKZiyKDLaO0R8+iP7sI/m6skn6+HUUzunjdLsiEEm+Q5cSVBNCOBtCeHrt38sAXgSwE8BdAB5YM3sAwEc2OpbjOFeO1+WzE9FeADcDeALAthDChdjWKQDb1tnn40T0JBE92Vo0Prodx+kJm17sRNQH4HMAfjmEwP5oGUIIWCeSN4RwXwjhlhDCLblB4/dNx3F6wqaCaogoi/ML/U9CCH+1tnmaiCZCCGeJaALAzMbHAfIZ7t9mq/zzZvhx3jIZAJb28v5GLSPxpHiOR6hMzekPlvyI+M1iUTtglZdEG6lj2h+ffRu/bbXd+jZuf8xIIDnFWz03d1WUTSwSRnJG5VoZZJRdNloi9fE53XrTYWXz9hwP7LDqnf7mP/5Lte0/n/xpNs5P6+vvXsuP3U20/7k6LLYZ7Z9kBE9h0PDH+7j/2+rocxVi7lcvtnTw1q2jx9W254/yd4/6jICdPH/3VmpGq2XR+qvZ1XPMj/Pr6MzoJKxmjWtTKp/nUto/EREBuB/AiyGE333Njz4P4O61f98N4KGNjuU4zpVjM9/s7wLwzwB8l4gOrW37twA+CeCzRHQPgOMAftre3XGcrcCGiz2E8A2sL+i/d53tjuNsMTyCznFSQm8r1SAgF3HBK9MSASLbZLkO3eKmM6ilpIXrRJ93XRUZrQF+ucUzRnaSCOpZ2qNvURCbMrroCBqjWvxrjPCsMlmpBQBI6IH1CaPqyii//oHD+jqW9vJJ/tLIs8omS+KzPmjx6ZrctNqW+/FZNi79hc4Em9kuhKQxHUQyOsbTF0mm0xkMGcEoJSG+VVtGNRkR1DJR0m2t/vr4QbUtI1pCZfcY1XzEvLM5Leq2FkWLKGOO2wZ5UNPxbdomWhBBXl6pxnEciS92x0kJvtgdJyX01GePKCCXke1ruL/THNblStr93JeMmlagCT9O/yv6/EmeO/9SCwCA6nWynIxRBUYk4mTqej6dkvE5KvypbsY4towzMVoJBVG9NFvT55r/IVHNNKN9XUlfZJSKMfjYft5v6lPveL+yqXyXaxbVH9b+5/6ROTaeKC4qm7zQeOQYAKptnvTTyer7cXyJJ2V+/5SO7g51vRxyu/h9y2T081hu8PuWN3z2Zsz3m673KZuhAg/6iiu6lFHmCL+PHX7p3rLZcRxf7I6TGnyxO05K8MXuOCmhx0E1QCxLloiPm9pOI4OqjwsetKqDSFoj/LjtWaPGrgh+aI5rISU3x/ezKpMkw1w4ye/QmVgto5ywbJ5dKGoBJkn4DWnPl5RNVpSyzjS10Lf/bTyqaDyjq9BE4uZHRkTGYGREDAk+eOshte1L/TewceUJrYYeeXk/Gz8/psUv9eyzRu9zQ0TVRnyYK+hKRgMj+h412/x9TLqGONzgzyOXM6oUCVG11tBi6I+MnmLj73V0+e+iqO4jBbpLynpzHOcHA1/sjpMSfLE7Tkrwxe44KaGnAl2ALtcrI36aQ0bajhBgMk1t08lx4WbpGi2SlE5y0ay1w+gZLko3Z1b156EUd0b7dCaUlcFVznJBrpLTBTi7QsR7bP6Ashl6gY/P3aJM8IHRl9k4Mmo514Mo6w1ts9g1IhpFmN98S4uI1+2aYuMXVyaVTX6Gv36ZhvHsRZO4kDdKSYvotNjos14qcRG1lNfiaDbS1y8Fur6CFmPrERfoVpa1GCn7s1vvh3xG8Sl972XGpeyXd7HEQf9md5yU4IvdcVKCL3bHSQlXPKimKzLIGrroiQqIsFoJkWjbFG/TWV71wDOGCsd1a6fkOu5/5ye0/3dwjFdvGcrpc2WNSZ6qV9j4xLJuj3fyFV7NZuQpHZxT28lvSGZCawbnWrwM8eGWDtCodxfYeCyjjzPXLattiXggO4tVZVOOuU98Ypu+1noiMr+sUtLC1w1GUI0MJEmMgKZGhvvVlms7bPRsz2d5UI/04QGgIGwyA/o4sciWGyjoYKVqm7+f7YrWnTJNUTlHtnl3n91xHF/sjpMSfLE7Tkrwxe44KaGnAl0SCPWOEEqyXFEwkop0eVxDo5FkjJJPNM6Fk2ZklOo9zbfV+nRgwzOrXNjLGxlUq3Ut/tE0P1ZuQV/s0KwQLIe1aLW6nd+AvHGtMkBjvqPLIE23ednuhpHiV4j0tdUTfh19GR1oMp7jpZq37delmx9c5dFAYUbf664oy0U5/fAjIdpZAStyW9d40RZXdTCMFOgaLX2Plmv8nRkd2jh7TgZYAcBAzO9jflQLfdEpLrw2h4SAaSRbvrrv+j9yHOcHCV/sjpMSfLE7Tkrorc/ejTDfEEEasgORlUBS4b5LY96YtvBbEyNAoyMqisiSzAAQjYgqNFlt0xD++Mo5nQgSL+o5yqSFbk5fa2OUz1smPgBA/x5ecvna0Rll8+1zu9n4UKQTUSJxr+tt7Y8OGsEfIwUefCPLNANAEAk979vxkrK5de8xNn584RplQw3uhFqlkruRTDLRNgA/Trulb2zbeNabIWnyY680tV4j77VFJcuDs+LYSMyp8ONMvJ0nHJ0ta43l1TlsOAPHcX4g8MXuOCnBF7vjpARf7I6TEnoq0HUDKREoGCKERFaCORn1ayMhylhBNYk8lyHiBRVsYZQFFibU3txnphTkEqO1WiwSz9rD+v5cVamy8QszOqNtZYoLobkRLbTlRE+y1bqeUKOsX5EjR/j5dn9R38e4zu/bZ+98t7LJX8uFxsywDs6hYzxgJTKEz+aYOH9JlwiXwl63aZQjN7LlgniNsoaIFxc2vo+DA/zBFjJaSMsKBbdiZOGNvmOWjd8zyoXP40YG5gX8m91xUoIvdsdJCRsudiIqENG3iOg7RPQ8Ef3W2vZ9RPQEER0hoj8nIv3HRcdxtgyb8dmbAO4IIdSIKAvgG0T01wB+BcCnQggPEtH/AHAPgD+46JHICC6QvrXh/24v8ySK46VxfWzh2nba2v+Khb+VkOWjcf+vvqiTZZSvH2t9oNNvBGjI4I+GPr+ssJqsan/48DSvZtP3d7qazK5v8io0M+/UgS/zt3K/MSroOdeM65e914tndF/1Tj/3W4ef0/doNh5g42RI+9qq1XrQ96MwzV/j5oi2UX3uLanI+OpriwCqUDD0ADGnYBx75wB/hw/2TykbmXT0i3seVzY54ufXCU5mRBGATXyzh/NcKH6TXfsvALgDwF+ubX8AwEc2OpbjOFeOTfnsRJQhokMAZgA8DOBlANUQwoWPmVMAdl6WGTqO86awqcUeQkhCCDcBmARwK4DrNnsCIvo4ET1JRE92Ftf/s4DjOJeX16XGhxCqAB4BcDuAChFdcJYmAZxeZ5/7Qgi3hBBuiQd1wojjOL1hQ4GOiMYAtEMIVSIqArgTwO/g/KL/KQAPArgbwEMbHSsbJdhe5lU8pqMKG0dN/fkzmuMBCfGArvLRqXIhpbOqLy3KcwHKyo6SQRSR0WtblusNiZ5z6OqDU50LcuVTer+ubO/TMQJWvsNFmcGXdTAKYn7ssWdkzWEAxI+zcKMWDCOj1VazwsdT7xxUNpJWRW9LBrkgFRe1+NWZ4GpXMETN4gkuGGYX9X1tr69b/cOxrepGokR5x3gesnqOrJwDABUR7FKK9Ds8keWi6kBGB0Ida42K4/BnH12kjNNm1PgJAA8QUQbnfxP4bAjhi0T0AoAHiei3ATwD4P5NHMtxnCvEhos9hPAsgJuN7Udx3n93HOctgEfQOU5K6GkiTH/cUIH7Rxd4j+TV2YraT1ZKtap3TtVEr2XDZ94M0te2KpWqdlQZ7SeFRPuWuXn+2dp3Su+3cJAfvDOgNYOkzG2mbteJF9Th24wisWrbwGE955Ud+vpXd4iKq1drX7t/kCdxBKNt0s5+3W5KcnaW6wGWX90pb9zSO7LaQQuSsj52EIFGZFXyFT56saQ1lMwmKtXURXtsy2cvEH9obVHKKFxKUI3jOD8Y+GJ3nJTgi91xUoIvdsdJCT0V6HKUYFd2nm27fccxNv5/0zeq/Yqiqse2kg4QqQ7x6LzGnM7WkkE0pvgmKtV0jYAZdVwrGGNVi135OT6BthFQmBzgwtZ2Q4yUYk91p75WWXWlvaBbG2UXuE1u0Si/bfQIl0FNA/06DPrgCC9vXY61aNUSEUSJkdHWEc9jflFn+LVFEmS3ql/r7LIIjikaz8wSdUV1o3xJK51RxG3KeR0wI99hKToDwGLCX4i9uVllIzPj2snml7B/sztOSvDF7jgpwRe746SEnleXXenyhJVb+19h48e37VX7vbS0jY2H8tpHrPTxbVPnLJ9dtLc1fESVwGJVjpWJMJH2/6SPCAC5ZW63eEAfWgZkDOZ1YEUiSqWuZHRFsLaowkNGqyuZHNLWxWxMZNLRfE23jXpGtDYe6dPPbHc/T/yYKOiKN0tl/hwTo9VyXVTJpWFlgpVp7uvLBBdAB9AAQCT0mDjWNtJHHy9rTUnqEYsdLdjI5Jgs6WAlmfgi22yTfDlfg3+zO05K8MXuOCnBF7vjpARf7I6TEnoq0BEFFRQgC2vcJoJsAODkCleOJvJayFkd4ELF/IgOvmhVeVaR2bYpv3E7Klk9xjpOdkmLfys7xHGuMqrHCCp53QJoPM8DbR5v7FU27QZ/tNGcFtESmVFnVGHJrOhrS0r8HhWGtIjYX+RC0nJDZ+YdWuE1Sk/1VZRNVwhbccbIAhR9tIp5I8VPVo8xAmgqo/p59Bf4dawaPeylaNhnBBDJQKia0fsrIwJtlrtaZJaZcY3A59P1rDfHcXyxO05K8MXuOCmhpz57hICcaEs7nVTY+Ef6j6v9xnLcl5J+HAAcrY6wce4p2RYHGDrDfSIjFwErE9wHqu02jESgRbZmBOcYH6PNYZkwoX3LyUGuR0zXdXvq40tcwzg3pau7Zs/x60gKRuKHqHYbjKqoFrICcHNV+7GzLZHksqRtZOLJ8aL2UWV132JJJ5k0a9yPbc4bLbtk4JMRe7La1HOMRRWiVseoQCQCbeabOmCmkuPai/UOt7v82NVEH0dua4qgGitQ7AL+ze44KcEXu+OkBF/sjpMSfLE7TkroqUDXCZESGGRmjyVcHChMs/F/euYD2ua3eWBHeOWQsqHJCTZOhnXgTf9x/vm3YIg982/nY0sTiXWcCWSoRdMQhI5M8/Y+3dNapIlrfI79S8oE8YrI8Iv153rU5jadgn4drGI+xXMiqGbBqMozzbPcoqYuG50M8Oo5iXH+5jDPsFu4Wj+PPjlHY86167iwFw1poS+OtUC5KrL32m19rZKmUT0mFsJ0U/b5gq5mkyUdQCRLSXeJP1erpdkF/JvdcVKCL3bHSQm+2B0nJfhid5yU0FOBzkKKEJWMLl8ks4FGvmBESHWFIDSiaxMlR3l0Xrw8qmxQ5KLR2LTOsGuMcKGvMa4Vodbgxj3i2lNafCtO8c/fbU9pISm3wKU+S9jKnZzjGxIjOi4WEXQ1fe/R1BlcIeHPLFg2XX793YwWtqSWFAc9x1gIUH3XX6VsOv08gq7dr4XPlUnREy2vxa+skVEny0Rb5cdlBJ1FJPYbyWrBMh9xsdoqrW2JdpvFv9kdJyX4YneclOCL3XFSQo8r1WifQ46/tnSt2u8Lz/Ioln2zusRut8SDL6JIf45RVZQlnp1XNtGgyDIzfN3R57ivf+L92h9NjPZC2UU+p1xV+2QjL/CgieJL08omOcO3ZSJ9nET41VGfDiBCXlRLMXxmKhn6yNCAOI72kZHl96Sb3URJ7oy+jtourqGs7DCqAokS3fklo896P39nhga1z9w0qtA0avz6S2UdLdUQvecHCtrmaI2/M3vLc8pmMOaZcbL3+qXi3+yOkxJ8sTtOStj0YieiDBE9Q0RfXBvvI6IniOgIEf05Eem2JI7jbBlezzf7JwC8+Jrx7wD4VAjhAIAFAPe8mRNzHOfNZVMKABFNAvgQgP8I4FeIiADcAeDn1kweAPCbAP7gYsdpdzM41eLBLp9+9A42PvCnOkDj4LwIbJFjAGFZlAHOabElrHIBRAaHAEBXHCe0tRio9hkwbJr6c1S0uUN+QQtJhRk+x+a+MWUTD3OBLDOzoGwkoayFtu4gD+qxgnPafUYm2hAX35KsUZYrc/ExADSG+X7NEX0/OqLcdcaovh0P8HttlQQrHOc3vzW0OfGrK8qE11d0n3sZaJOU9QQKIqNNZrgBm+v1JkU72fstkrXZ2c82x+8B+DX8Q5X3EQDVEMKF2ZwCsNPYz3GcLcKGi52IfhLATAjhqTdyAiL6OBE9SURPrizo0E/HcXrDZn6XeReADxPRBwEUAAwA+C8AKkQUr327TwI4be0cQrgPwH0AMHmDFTDuOE4v2HCxhxB+A8BvAAARvQfAvwkh/DwR/QWAnwLwIIC7ATy00bHO1Qbw6a9xH33yy3z9T92mk0P2fniKjc/8sU6GGLn/MTaOoI8DkYxBZPxiI/34rvbrF/eK29bV/le0agT1dC8+BoDVCT7v1WHD2SUeDJNd0WWzRU4FKOjPWelrJ3mjvHFZb2tW+Daj1TiSvEiEyenzd8t8klFZ+6iyAnS3pOfTEaW962T41eJed4yS0FeNzapt31vdzsZWSeyojz//jtFDvhzz32pVGzQA27JVNs4YJXeqogqO9OHDZWr/9Os4L9YdwXkf/v5LOJbjOJeZ1xWPF0L4KoCvrv37KIBb3/wpOY5zOfAIOsdJCb7YHScl9DTrLbMKDH2Xf760ylyEuP1nnlH73TP2KBv//r94r7I5c/SH+Yav6uPAEKkkFAsB5H0/omyqN0q1x/jMNHQSKVrJXmcA0BABK0v7tU1OxBStjlkiHh+2Vb1lIGpxI1NEMxLaOqI/eyhsXD2FjL73MhjFKoO8iUeGOMuFvXCtzmhriapAYUn3R68N6m3ZnKgeQ0awlniOlkC3IPq/XVeeUjYjImLodHtI2STi+zkvhD6y6miv4d/sjpMSfLE7Tkrwxe44KaG31WUHE3Q/yJM2Cp/mlWEePX5A7XawfJaNf2bsW8rm0d/lPZD++n+/U9kMnOC+ZdeojDL3NhFosk9XHQl1UXG0YSS9lA0/tsOP3Ro02i2J3azAG1nN1uq93s2JHQvWgcS8Y8PfSwxHWkS6ZGpGpZ4K93XJaK00XOG+9b6Krt7y8sIIG1cXdcWdjqgU0zXmHI+LKjB17XtbrccSqcdYLrHYr9nWz3WxxQN9JrI6eakR+Jy6xnexnKOsWnsx/JvdcVKCL3bHSQm+2B0nJfhid5yU0FOBbldhHp+68bNs2z0fvZuNy4+LUs4AjuzdxsaLRprVhwefZuPBj60qm+eWd7DxK0u6RdS+PBfkqg1d4WW6WWHjqGlUahkyyl3X+e1u6tMjI6bdNUSzsJsbWZ/YI6JU8oIhbOUGeUDGUFnfs+n5AbWNREukpGQE9Yg+5t2aFsQ6/XzmQzndfmrPILdZXNLXIQNfukawUrvJ732U0wLqSsuIIJICmKFXlgf5fbPaNtWaPGBnIKOFX9l7fTNYouJ6+De746QEX+yOkxJ8sTtOSuipz94KMU60uaP6H370C3zc+Kdqv699liej3PXzX1c2x9q8Cuv1RV0l6/GFfWycMQIS5urcJyxmtR9FGe6zdvOGX900WhSLhJFOybr9IqjHaCM1LPzxxPBRwyZ8uYES9xvjSAe+DPRrP1q2KJ43/Oi2mFPGqMBbKXFfV7YsBoBChm/bPqIrC58+ylsr9U3oErStZV5d1qpA20n0M+u0+DMio2pwvcb98e6y9v1rItDnjwduVzb37voSG7eM9k8yiCYjqsle7Kn7N7vjpARf7I6TEnyxO05K8MXuOCmht1lvBjKz5w/v+Iyy+XjxF9n4of/zY8qm9lGeCXfn4HPKZn8fLxV8sqoz7GIhvq0aPbspkmWSjYwyQ8hRFU36dGBH1BIikaG4LNd5BtWgEQxzbo4HJ2XzhvgV823WtVaKOvgjEZVYDm7XPeRPLg2y8bLRNmmpwYWtU/WKsllu8/3ysVFuup+LqFZQTbaPl3LuNPS1Li/pAKr4tBDfjGo+4Ry3idv6/DJ78buP63evvpMfR4pvALDc5fejkpECqleqcZzU44vdcVKCL3bHSQk99dkDSLWraYtevi+3eNILANx/+wNs/M9bv6Rs/u5Peb+K0i/oJpLXl86w8aHipLI5OcMrelYGdaVS6f+2lnLKJl7Sn6MyQMZq9dwWySGycg1gVE8xkHMcH9SBJm0RRNJO9HEnSktqW7XFfdvIKKfTn+f3v9XRr1q1yoNx5k9WlA2V+A2IC0ayiPCZm/oVwtgwv45ziU7wSep6jlbwjSS3yI3aA0YlXVHJd+h5fZz/+15eIfmOgReUTb3Fr7Uhyv9ervZPjuO8hfDF7jgpwRe746QEX+yOkxIobKa/zpt1MqJzAI4DGAWgm2Fvbd6KcwbemvP2Ob9x9oQQxqwf9HSxv3pSoidDCLf0/MSXwFtxzsBbc94+58uD/xrvOCnBF7vjpIQrtdjvu0LnvRTeinMG3prz9jlfBq6Iz+44Tu/xX+MdJyX0fLET0fuJ6CUiOkJE9/b6/JuBiD5DRDNE9Nxrtg0T0cNEdHjt/0MXO0avIaJdRPQIEb1ARM8T0SfWtm/ZeRNRgYi+RUTfWZvzb61t30dET6y9I39ORDr54ApDRBkieoaIvrg23vJz7uliJ6IMgP8G4AMArgfwUSK6vpdz2CR/BOD9Ytu9AL4SQrgawFfWxluJDoBfDSFcD+A2AP9q7d5u5Xk3AdwRQng7gJsAvJ+IbgPwOwA+FUI4AGABwD1Xborr8gkAL75mvOXn3Otv9lsBHAkhHA0htAA8COCuHs9hQ0IIjwKYF5vvAnAh/e4BAB/p5Zw2IoRwNoTw9Nq/l3H+RdyJLTzvcJ4L6XjZtf8CgDsA/OXa9i01ZwAgokkAHwLwh2tjwhafM9D7xb4TwMnXjE+tbXsrsC2EcHbt31MAjETKrQER7QVwM4AnsMXnvfbr8CEAMwAeBvAygGoI4UKO7lZ8R34PwK8Br9aNGsHWn7MLdG+EcP5PGFvyzxhE1AfgcwB+OYTAkri34rxDCEkI4SYAkzj/m991V3ZGF4eIfhLATAjhqSs9l9dLrwtOngaw6zXjybVtbwWmiWgihHCWiCZw/ptoS0FEWZxf6H8SQvirtc1bft4AEEKoEtEjAG4HUCGieO2bcqu9I+8C8GEi+iCAAoABAP8FW3vOAHr/zf5tAFevKZc5AD8L4PM9nsMb5fMALvSXvhvAQ1dwLoo1v/F+AC+GEH73NT/asvMmojEiqqz9uwjgTpzXGh4B8FNrZltqziGE3wghTIYQ9uL8+/t3IYSfxxae86uEEHr6H4APAvg+zvtm/67X59/kHP8MwFkAbZz3v+7Beb/sKwAOA/gygOErPU8x53fj/K/ozwI4tPbfB7fyvAH8EIBn1ub8HIB/v7Z9P4BvATgC4C8A5K/0XNeZ/3sAfPGtMmePoHOclOACneOkBF/sjpMSfLE7Tkrwxe44KcEXu+OkBF/sjpMSfLE7Tkrwxe44KeH/A3j0wcpD4ShZAAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"PfIugTuzpVOF","executionInfo":{"status":"ok","timestamp":1616665409321,"user_tz":-60,"elapsed":506981,"user":{"displayName":"Boulet Timothé","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GiayvINTDL_0Iuf52iuumxhg4psHVMYz59ow2vJ=s64","userId":"06174172927805952140"}},"outputId":"6b48caa8-e249-4159-f26e-3b0624998944"},"source":["#Entrainement\n","\n","history = myModel.fit(X, Y, epochs=epochs, validation_split=0.05)\n","\n","myModel.save('modelBadFast')"],"execution_count":34,"outputs":[{"output_type":"stream","name":"stdout","text":["Epoch 1/5\n","1066/1066 [==============================] - 23s 21ms/step - loss: 1.6812 - accuracy: 0.3342 - val_loss: 1.4630 - val_accuracy: 0.4373\n","Epoch 2/5\n","1066/1066 [==============================] - 23s 21ms/step - loss: 1.4233 - accuracy: 0.4578 - val_loss: 1.4197 - val_accuracy: 0.4557\n","Epoch 3/5\n","1066/1066 [==============================] - 23s 21ms/step - loss: 1.3201 - accuracy: 0.5002 - val_loss: 1.3840 - val_accuracy: 0.4674\n","Epoch 4/5\n","1066/1066 [==============================] - 23s 21ms/step - loss: 1.2424 - accuracy: 0.5356 - val_loss: 1.3459 - val_accuracy: 0.4858\n","Epoch 5/5\n","1066/1066 [==============================] - 23s 22ms/step - loss: 1.1637 - accuracy: 0.5634 - val_loss: 1.3297 - val_accuracy: 0.5025\n","WARNING:tensorflow:Skipping full serialization of Keras layer <tensorflow.python.keras.layers.convolutional.Conv2D object at 0x7f7044d1d880>, because it is not built.\n","WARNING:tensorflow:Skipping full serialization of Keras layer <tensorflow.python.keras.layers.convolutional.Conv2D object at 0x7f7044d1dd90>, because it is not built.\n","INFO:tensorflow:Assets written to: modelBadFast/assets\n"]}]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/","height":287},"id":"Etye2vRNpVWY","executionInfo":{"status":"ok","timestamp":1616665440369,"user_tz":-60,"elapsed":1700,"user":{"displayName":"Boulet Timothé","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GiayvINTDL_0Iuf52iuumxhg4psHVMYz59ow2vJ=s64","userId":"06174172927805952140"}},"outputId":"2499af31-7138-4953-8bc6-9152b0c43b8e"},"source":["#Affichage de l'historique de l'apprentissage\n","plt.plot(history.history['accuracy'], label='accuracy')\n","plt.plot(history.history['val_accuracy'], label='val_accuracy')\n","plt.legend()\n","plt.ylim([min(history.history['val_accuracy']+history.history['accuracy']), 1])\n","plt.show()"],"execution_count":35,"outputs":[{"output_type":"display_data","data":{"text/plain":"<Figure size 432x288 with 1 Axes>","image/svg+xml":"<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"252.317344pt\" version=\"1.1\" viewBox=\"0 0 372.103125 252.317344\" width=\"372.103125pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <metadata>\n  <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n   <cc:Work>\n    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n    <dc:date>2021-04-02T20:11:43.783614</dc:date>\n    <dc:format>image/svg+xml</dc:format>\n    <dc:creator>\n     <cc:Agent>\n      <dc:title>Matplotlib v3.3.4, https://matplotlib.org/</dc:title>\n     </cc:Agent>\n    </dc:creator>\n   </cc:Work>\n  </rdf:RDF>\n </metadata>\n <defs>\n  <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\n </defs>\n <g id=\"figure_1\">\n  <g id=\"patch_1\">\n   <path d=\"M 0 252.317344 \nL 372.103125 252.317344 \nL 372.103125 0 \nL 0 0 \nz\n\" style=\"fill:none;\"/>\n  </g>\n  <g id=\"axes_1\">\n   <g id=\"patch_2\">\n    <path d=\"M 30.103125 228.439219 \nL 364.903125 228.439219 \nL 364.903125 10.999219 \nL 30.103125 10.999219 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g id=\"matplotlib.axis_1\">\n    <g id=\"xtick_1\">\n     <g id=\"line2d_1\">\n      <defs>\n       <path d=\"M 0 0 \nL 0 3.5 \n\" id=\"med93b20d43\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n      </defs>\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"45.321307\" xlink:href=\"#med93b20d43\" y=\"228.439219\"/>\n      </g>\n     </g>\n     <g id=\"text_1\">\n      <!-- 0.0 -->\n      <g transform=\"translate(37.369744 243.037656)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 31.78125 66.40625 \nQ 24.171875 66.40625 20.328125 58.90625 \nQ 16.5 51.421875 16.5 36.375 \nQ 16.5 21.390625 20.328125 13.890625 \nQ 24.171875 6.390625 31.78125 6.390625 \nQ 39.453125 6.390625 43.28125 13.890625 \nQ 47.125 21.390625 47.125 36.375 \nQ 47.125 51.421875 43.28125 58.90625 \nQ 39.453125 66.40625 31.78125 66.40625 \nz\nM 31.78125 74.21875 \nQ 44.046875 74.21875 50.515625 64.515625 \nQ 56.984375 54.828125 56.984375 36.375 \nQ 56.984375 17.96875 50.515625 8.265625 \nQ 44.046875 -1.421875 31.78125 -1.421875 \nQ 19.53125 -1.421875 13.0625 8.265625 \nQ 6.59375 17.96875 6.59375 36.375 \nQ 6.59375 54.828125 13.0625 64.515625 \nQ 19.53125 74.21875 31.78125 74.21875 \nz\n\" id=\"DejaVuSans-48\"/>\n        <path d=\"M 10.6875 12.40625 \nL 21 12.40625 \nL 21 0 \nL 10.6875 0 \nz\n\" id=\"DejaVuSans-46\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_2\">\n     <g id=\"line2d_2\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"83.366761\" xlink:href=\"#med93b20d43\" y=\"228.439219\"/>\n      </g>\n     </g>\n     <g id=\"text_2\">\n      <!-- 0.5 -->\n      <g transform=\"translate(75.415199 243.037656)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 10.796875 72.90625 \nL 49.515625 72.90625 \nL 49.515625 64.59375 \nL 19.828125 64.59375 \nL 19.828125 46.734375 \nQ 21.96875 47.46875 24.109375 47.828125 \nQ 26.265625 48.1875 28.421875 48.1875 \nQ 40.625 48.1875 47.75 41.5 \nQ 54.890625 34.8125 54.890625 23.390625 \nQ 54.890625 11.625 47.5625 5.09375 \nQ 40.234375 -1.421875 26.90625 -1.421875 \nQ 22.3125 -1.421875 17.546875 -0.640625 \nQ 12.796875 0.140625 7.71875 1.703125 \nL 7.71875 11.625 \nQ 12.109375 9.234375 16.796875 8.0625 \nQ 21.484375 6.890625 26.703125 6.890625 \nQ 35.15625 6.890625 40.078125 11.328125 \nQ 45.015625 15.765625 45.015625 23.390625 \nQ 45.015625 31 40.078125 35.4375 \nQ 35.15625 39.890625 26.703125 39.890625 \nQ 22.75 39.890625 18.8125 39.015625 \nQ 14.890625 38.140625 10.796875 36.28125 \nz\n\" id=\"DejaVuSans-53\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-53\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_3\">\n     <g id=\"line2d_3\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"121.412216\" xlink:href=\"#med93b20d43\" y=\"228.439219\"/>\n      </g>\n     </g>\n     <g id=\"text_3\">\n      <!-- 1.0 -->\n      <g transform=\"translate(113.460653 243.037656)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 12.40625 8.296875 \nL 28.515625 8.296875 \nL 28.515625 63.921875 \nL 10.984375 60.40625 \nL 10.984375 69.390625 \nL 28.421875 72.90625 \nL 38.28125 72.90625 \nL 38.28125 8.296875 \nL 54.390625 8.296875 \nL 54.390625 0 \nL 12.40625 0 \nz\n\" id=\"DejaVuSans-49\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-49\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_4\">\n     <g id=\"line2d_4\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"159.45767\" xlink:href=\"#med93b20d43\" y=\"228.439219\"/>\n      </g>\n     </g>\n     <g id=\"text_4\">\n      <!-- 1.5 -->\n      <g transform=\"translate(151.506108 243.037656)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-49\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-53\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_5\">\n     <g id=\"line2d_5\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"197.503125\" xlink:href=\"#med93b20d43\" y=\"228.439219\"/>\n      </g>\n     </g>\n     <g id=\"text_5\">\n      <!-- 2.0 -->\n      <g transform=\"translate(189.551563 243.037656)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 19.1875 8.296875 \nL 53.609375 8.296875 \nL 53.609375 0 \nL 7.328125 0 \nL 7.328125 8.296875 \nQ 12.9375 14.109375 22.625 23.890625 \nQ 32.328125 33.6875 34.8125 36.53125 \nQ 39.546875 41.84375 41.421875 45.53125 \nQ 43.3125 49.21875 43.3125 52.78125 \nQ 43.3125 58.59375 39.234375 62.25 \nQ 35.15625 65.921875 28.609375 65.921875 \nQ 23.96875 65.921875 18.8125 64.3125 \nQ 13.671875 62.703125 7.8125 59.421875 \nL 7.8125 69.390625 \nQ 13.765625 71.78125 18.9375 73 \nQ 24.125 74.21875 28.421875 74.21875 \nQ 39.75 74.21875 46.484375 68.546875 \nQ 53.21875 62.890625 53.21875 53.421875 \nQ 53.21875 48.921875 51.53125 44.890625 \nQ 49.859375 40.875 45.40625 35.40625 \nQ 44.1875 33.984375 37.640625 27.21875 \nQ 31.109375 20.453125 19.1875 8.296875 \nz\n\" id=\"DejaVuSans-50\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-50\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_6\">\n     <g id=\"line2d_6\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"235.54858\" xlink:href=\"#med93b20d43\" y=\"228.439219\"/>\n      </g>\n     </g>\n     <g id=\"text_6\">\n      <!-- 2.5 -->\n      <g transform=\"translate(227.597017 243.037656)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-50\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-53\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_7\">\n     <g id=\"line2d_7\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"273.594034\" xlink:href=\"#med93b20d43\" y=\"228.439219\"/>\n      </g>\n     </g>\n     <g id=\"text_7\">\n      <!-- 3.0 -->\n      <g transform=\"translate(265.642472 243.037656)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 40.578125 39.3125 \nQ 47.65625 37.796875 51.625 33 \nQ 55.609375 28.21875 55.609375 21.1875 \nQ 55.609375 10.40625 48.1875 4.484375 \nQ 40.765625 -1.421875 27.09375 -1.421875 \nQ 22.515625 -1.421875 17.65625 -0.515625 \nQ 12.796875 0.390625 7.625 2.203125 \nL 7.625 11.71875 \nQ 11.71875 9.328125 16.59375 8.109375 \nQ 21.484375 6.890625 26.8125 6.890625 \nQ 36.078125 6.890625 40.9375 10.546875 \nQ 45.796875 14.203125 45.796875 21.1875 \nQ 45.796875 27.640625 41.28125 31.265625 \nQ 36.765625 34.90625 28.71875 34.90625 \nL 20.21875 34.90625 \nL 20.21875 43.015625 \nL 29.109375 43.015625 \nQ 36.375 43.015625 40.234375 45.921875 \nQ 44.09375 48.828125 44.09375 54.296875 \nQ 44.09375 59.90625 40.109375 62.90625 \nQ 36.140625 65.921875 28.71875 65.921875 \nQ 24.65625 65.921875 20.015625 65.03125 \nQ 15.375 64.15625 9.8125 62.3125 \nL 9.8125 71.09375 \nQ 15.4375 72.65625 20.34375 73.4375 \nQ 25.25 74.21875 29.59375 74.21875 \nQ 40.828125 74.21875 47.359375 69.109375 \nQ 53.90625 64.015625 53.90625 55.328125 \nQ 53.90625 49.265625 50.4375 45.09375 \nQ 46.96875 40.921875 40.578125 39.3125 \nz\n\" id=\"DejaVuSans-51\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-51\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_8\">\n     <g id=\"line2d_8\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"311.639489\" xlink:href=\"#med93b20d43\" y=\"228.439219\"/>\n      </g>\n     </g>\n     <g id=\"text_8\">\n      <!-- 3.5 -->\n      <g transform=\"translate(303.687926 243.037656)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-51\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-53\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_9\">\n     <g id=\"line2d_9\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"349.684943\" xlink:href=\"#med93b20d43\" y=\"228.439219\"/>\n      </g>\n     </g>\n     <g id=\"text_9\">\n      <!-- 4.0 -->\n      <g transform=\"translate(341.733381 243.037656)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 37.796875 64.3125 \nL 12.890625 25.390625 \nL 37.796875 25.390625 \nz\nM 35.203125 72.90625 \nL 47.609375 72.90625 \nL 47.609375 25.390625 \nL 58.015625 25.390625 \nL 58.015625 17.1875 \nL 47.609375 17.1875 \nL 47.609375 0 \nL 37.796875 0 \nL 37.796875 17.1875 \nL 4.890625 17.1875 \nL 4.890625 26.703125 \nz\n\" id=\"DejaVuSans-52\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-52\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"matplotlib.axis_2\">\n    <g id=\"ytick_1\">\n     <g id=\"line2d_10\">\n      <defs>\n       <path d=\"M 0 0 \nL -3.5 0 \n\" id=\"m34a8879d3a\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n      </defs>\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"30.103125\" xlink:href=\"#m34a8879d3a\" y=\"222.496062\"/>\n      </g>\n     </g>\n     <g id=\"text_10\">\n      <!-- 0.4 -->\n      <g transform=\"translate(7.2 226.295281)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-52\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_2\">\n     <g id=\"line2d_11\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"30.103125\" xlink:href=\"#m34a8879d3a\" y=\"187.246588\"/>\n      </g>\n     </g>\n     <g id=\"text_11\">\n      <!-- 0.5 -->\n      <g transform=\"translate(7.2 191.045807)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-53\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_3\">\n     <g id=\"line2d_12\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"30.103125\" xlink:href=\"#m34a8879d3a\" y=\"151.997114\"/>\n      </g>\n     </g>\n     <g id=\"text_12\">\n      <!-- 0.6 -->\n      <g transform=\"translate(7.2 155.796333)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 33.015625 40.375 \nQ 26.375 40.375 22.484375 35.828125 \nQ 18.609375 31.296875 18.609375 23.390625 \nQ 18.609375 15.53125 22.484375 10.953125 \nQ 26.375 6.390625 33.015625 6.390625 \nQ 39.65625 6.390625 43.53125 10.953125 \nQ 47.40625 15.53125 47.40625 23.390625 \nQ 47.40625 31.296875 43.53125 35.828125 \nQ 39.65625 40.375 33.015625 40.375 \nz\nM 52.59375 71.296875 \nL 52.59375 62.3125 \nQ 48.875 64.0625 45.09375 64.984375 \nQ 41.3125 65.921875 37.59375 65.921875 \nQ 27.828125 65.921875 22.671875 59.328125 \nQ 17.53125 52.734375 16.796875 39.40625 \nQ 19.671875 43.65625 24.015625 45.921875 \nQ 28.375 48.1875 33.59375 48.1875 \nQ 44.578125 48.1875 50.953125 41.515625 \nQ 57.328125 34.859375 57.328125 23.390625 \nQ 57.328125 12.15625 50.6875 5.359375 \nQ 44.046875 -1.421875 33.015625 -1.421875 \nQ 20.359375 -1.421875 13.671875 8.265625 \nQ 6.984375 17.96875 6.984375 36.375 \nQ 6.984375 53.65625 15.1875 63.9375 \nQ 23.390625 74.21875 37.203125 74.21875 \nQ 40.921875 74.21875 44.703125 73.484375 \nQ 48.484375 72.75 52.59375 71.296875 \nz\n\" id=\"DejaVuSans-54\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-54\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_4\">\n     <g id=\"line2d_13\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"30.103125\" xlink:href=\"#m34a8879d3a\" y=\"116.74764\"/>\n      </g>\n     </g>\n     <g id=\"text_13\">\n      <!-- 0.7 -->\n      <g transform=\"translate(7.2 120.546859)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 8.203125 72.90625 \nL 55.078125 72.90625 \nL 55.078125 68.703125 \nL 28.609375 0 \nL 18.3125 0 \nL 43.21875 64.59375 \nL 8.203125 64.59375 \nz\n\" id=\"DejaVuSans-55\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-55\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_5\">\n     <g id=\"line2d_14\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"30.103125\" xlink:href=\"#m34a8879d3a\" y=\"81.498167\"/>\n      </g>\n     </g>\n     <g id=\"text_14\">\n      <!-- 0.8 -->\n      <g transform=\"translate(7.2 85.297385)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 31.78125 34.625 \nQ 24.75 34.625 20.71875 30.859375 \nQ 16.703125 27.09375 16.703125 20.515625 \nQ 16.703125 13.921875 20.71875 10.15625 \nQ 24.75 6.390625 31.78125 6.390625 \nQ 38.8125 6.390625 42.859375 10.171875 \nQ 46.921875 13.96875 46.921875 20.515625 \nQ 46.921875 27.09375 42.890625 30.859375 \nQ 38.875 34.625 31.78125 34.625 \nz\nM 21.921875 38.8125 \nQ 15.578125 40.375 12.03125 44.71875 \nQ 8.5 49.078125 8.5 55.328125 \nQ 8.5 64.0625 14.71875 69.140625 \nQ 20.953125 74.21875 31.78125 74.21875 \nQ 42.671875 74.21875 48.875 69.140625 \nQ 55.078125 64.0625 55.078125 55.328125 \nQ 55.078125 49.078125 51.53125 44.71875 \nQ 48 40.375 41.703125 38.8125 \nQ 48.828125 37.15625 52.796875 32.3125 \nQ 56.78125 27.484375 56.78125 20.515625 \nQ 56.78125 9.90625 50.3125 4.234375 \nQ 43.84375 -1.421875 31.78125 -1.421875 \nQ 19.734375 -1.421875 13.25 4.234375 \nQ 6.78125 9.90625 6.78125 20.515625 \nQ 6.78125 27.484375 10.78125 32.3125 \nQ 14.796875 37.15625 21.921875 38.8125 \nz\nM 18.3125 54.390625 \nQ 18.3125 48.734375 21.84375 45.5625 \nQ 25.390625 42.390625 31.78125 42.390625 \nQ 38.140625 42.390625 41.71875 45.5625 \nQ 45.3125 48.734375 45.3125 54.390625 \nQ 45.3125 60.0625 41.71875 63.234375 \nQ 38.140625 66.40625 31.78125 66.40625 \nQ 25.390625 66.40625 21.84375 63.234375 \nQ 18.3125 60.0625 18.3125 54.390625 \nz\n\" id=\"DejaVuSans-56\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-56\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_6\">\n     <g id=\"line2d_15\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"30.103125\" xlink:href=\"#m34a8879d3a\" y=\"46.248693\"/>\n      </g>\n     </g>\n     <g id=\"text_15\">\n      <!-- 0.9 -->\n      <g transform=\"translate(7.2 50.047911)scale(0.1 -0.1)\">\n       <defs>\n        <path d=\"M 10.984375 1.515625 \nL 10.984375 10.5 \nQ 14.703125 8.734375 18.5 7.8125 \nQ 22.3125 6.890625 25.984375 6.890625 \nQ 35.75 6.890625 40.890625 13.453125 \nQ 46.046875 20.015625 46.78125 33.40625 \nQ 43.953125 29.203125 39.59375 26.953125 \nQ 35.25 24.703125 29.984375 24.703125 \nQ 19.046875 24.703125 12.671875 31.3125 \nQ 6.296875 37.9375 6.296875 49.421875 \nQ 6.296875 60.640625 12.9375 67.421875 \nQ 19.578125 74.21875 30.609375 74.21875 \nQ 43.265625 74.21875 49.921875 64.515625 \nQ 56.59375 54.828125 56.59375 36.375 \nQ 56.59375 19.140625 48.40625 8.859375 \nQ 40.234375 -1.421875 26.421875 -1.421875 \nQ 22.703125 -1.421875 18.890625 -0.6875 \nQ 15.09375 0.046875 10.984375 1.515625 \nz\nM 30.609375 32.421875 \nQ 37.25 32.421875 41.125 36.953125 \nQ 45.015625 41.5 45.015625 49.421875 \nQ 45.015625 57.28125 41.125 61.84375 \nQ 37.25 66.40625 30.609375 66.40625 \nQ 23.96875 66.40625 20.09375 61.84375 \nQ 16.21875 57.28125 16.21875 49.421875 \nQ 16.21875 41.5 20.09375 36.953125 \nQ 23.96875 32.421875 30.609375 32.421875 \nz\n\" id=\"DejaVuSans-57\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-57\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_7\">\n     <g id=\"line2d_16\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"30.103125\" xlink:href=\"#m34a8879d3a\" y=\"10.999219\"/>\n      </g>\n     </g>\n     <g id=\"text_16\">\n      <!-- 1.0 -->\n      <g transform=\"translate(7.2 14.798437)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-49\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"line2d_17\">\n    <path clip-path=\"url(#p028aaf89a5)\" d=\"M 45.321307 228.439219 \nL 121.412216 200.977465 \nL 197.503125 187.339643 \nL 273.594034 175.759383 \nL 349.684943 165.564627 \n\" style=\"fill:none;stroke:#1f77b4;stroke-linecap:square;stroke-width:1.5;\"/>\n   </g>\n   <g id=\"line2d_18\">\n    <path clip-path=\"url(#p028aaf89a5)\" d=\"M 45.321307 209.338881 \nL 121.412216 202.858477 \nL 197.503125 198.734581 \nL 273.594034 192.254178 \nL 349.684943 186.362894 \n\" style=\"fill:none;stroke:#ff7f0e;stroke-linecap:square;stroke-width:1.5;\"/>\n   </g>\n   <g id=\"patch_3\">\n    <path d=\"M 30.103125 228.439219 \nL 30.103125 10.999219 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_4\">\n    <path d=\"M 364.903125 228.439219 \nL 364.903125 10.999219 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_5\">\n    <path d=\"M 30.103125 228.439219 \nL 364.903125 228.439219 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_6\">\n    <path d=\"M 30.103125 10.999219 \nL 364.903125 10.999219 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"legend_1\">\n    <g id=\"patch_7\">\n     <path d=\"M 260.959375 48.633594 \nL 357.903125 48.633594 \nQ 359.903125 48.633594 359.903125 46.633594 \nL 359.903125 17.999219 \nQ 359.903125 15.999219 357.903125 15.999219 \nL 260.959375 15.999219 \nQ 258.959375 15.999219 258.959375 17.999219 \nL 258.959375 46.633594 \nQ 258.959375 48.633594 260.959375 48.633594 \nz\n\" style=\"fill:#ffffff;opacity:0.8;stroke:#cccccc;stroke-linejoin:miter;\"/>\n    </g>\n    <g id=\"line2d_19\">\n     <path d=\"M 262.959375 24.097656 \nL 282.959375 24.097656 \n\" style=\"fill:none;stroke:#1f77b4;stroke-linecap:square;stroke-width:1.5;\"/>\n    </g>\n    <g id=\"line2d_20\"/>\n    <g id=\"text_17\">\n     <!-- accuracy -->\n     <g transform=\"translate(290.959375 27.597656)scale(0.1 -0.1)\">\n      <defs>\n       <path d=\"M 34.28125 27.484375 \nQ 23.390625 27.484375 19.1875 25 \nQ 14.984375 22.515625 14.984375 16.5 \nQ 14.984375 11.71875 18.140625 8.90625 \nQ 21.296875 6.109375 26.703125 6.109375 \nQ 34.1875 6.109375 38.703125 11.40625 \nQ 43.21875 16.703125 43.21875 25.484375 \nL 43.21875 27.484375 \nz\nM 52.203125 31.203125 \nL 52.203125 0 \nL 43.21875 0 \nL 43.21875 8.296875 \nQ 40.140625 3.328125 35.546875 0.953125 \nQ 30.953125 -1.421875 24.3125 -1.421875 \nQ 15.921875 -1.421875 10.953125 3.296875 \nQ 6 8.015625 6 15.921875 \nQ 6 25.140625 12.171875 29.828125 \nQ 18.359375 34.515625 30.609375 34.515625 \nL 43.21875 34.515625 \nL 43.21875 35.40625 \nQ 43.21875 41.609375 39.140625 45 \nQ 35.0625 48.390625 27.6875 48.390625 \nQ 23 48.390625 18.546875 47.265625 \nQ 14.109375 46.140625 10.015625 43.890625 \nL 10.015625 52.203125 \nQ 14.9375 54.109375 19.578125 55.046875 \nQ 24.21875 56 28.609375 56 \nQ 40.484375 56 46.34375 49.84375 \nQ 52.203125 43.703125 52.203125 31.203125 \nz\n\" id=\"DejaVuSans-97\"/>\n       <path d=\"M 48.78125 52.59375 \nL 48.78125 44.1875 \nQ 44.96875 46.296875 41.140625 47.34375 \nQ 37.3125 48.390625 33.40625 48.390625 \nQ 24.65625 48.390625 19.8125 42.84375 \nQ 14.984375 37.3125 14.984375 27.296875 \nQ 14.984375 17.28125 19.8125 11.734375 \nQ 24.65625 6.203125 33.40625 6.203125 \nQ 37.3125 6.203125 41.140625 7.25 \nQ 44.96875 8.296875 48.78125 10.40625 \nL 48.78125 2.09375 \nQ 45.015625 0.34375 40.984375 -0.53125 \nQ 36.96875 -1.421875 32.421875 -1.421875 \nQ 20.0625 -1.421875 12.78125 6.34375 \nQ 5.515625 14.109375 5.515625 27.296875 \nQ 5.515625 40.671875 12.859375 48.328125 \nQ 20.21875 56 33.015625 56 \nQ 37.15625 56 41.109375 55.140625 \nQ 45.0625 54.296875 48.78125 52.59375 \nz\n\" id=\"DejaVuSans-99\"/>\n       <path d=\"M 8.5 21.578125 \nL 8.5 54.6875 \nL 17.484375 54.6875 \nL 17.484375 21.921875 \nQ 17.484375 14.15625 20.5 10.265625 \nQ 23.53125 6.390625 29.59375 6.390625 \nQ 36.859375 6.390625 41.078125 11.03125 \nQ 45.3125 15.671875 45.3125 23.6875 \nL 45.3125 54.6875 \nL 54.296875 54.6875 \nL 54.296875 0 \nL 45.3125 0 \nL 45.3125 8.40625 \nQ 42.046875 3.421875 37.71875 1 \nQ 33.40625 -1.421875 27.6875 -1.421875 \nQ 18.265625 -1.421875 13.375 4.4375 \nQ 8.5 10.296875 8.5 21.578125 \nz\nM 31.109375 56 \nz\n\" id=\"DejaVuSans-117\"/>\n       <path d=\"M 41.109375 46.296875 \nQ 39.59375 47.171875 37.8125 47.578125 \nQ 36.03125 48 33.890625 48 \nQ 26.265625 48 22.1875 43.046875 \nQ 18.109375 38.09375 18.109375 28.8125 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.1875 \nQ 20.953125 51.171875 25.484375 53.578125 \nQ 30.03125 56 36.53125 56 \nQ 37.453125 56 38.578125 55.875 \nQ 39.703125 55.765625 41.0625 55.515625 \nz\n\" id=\"DejaVuSans-114\"/>\n       <path d=\"M 32.171875 -5.078125 \nQ 28.375 -14.84375 24.75 -17.8125 \nQ 21.140625 -20.796875 15.09375 -20.796875 \nL 7.90625 -20.796875 \nL 7.90625 -13.28125 \nL 13.1875 -13.28125 \nQ 16.890625 -13.28125 18.9375 -11.515625 \nQ 21 -9.765625 23.484375 -3.21875 \nL 25.09375 0.875 \nL 2.984375 54.6875 \nL 12.5 54.6875 \nL 29.59375 11.921875 \nL 46.6875 54.6875 \nL 56.203125 54.6875 \nz\n\" id=\"DejaVuSans-121\"/>\n      </defs>\n      <use xlink:href=\"#DejaVuSans-97\"/>\n      <use x=\"61.279297\" xlink:href=\"#DejaVuSans-99\"/>\n      <use x=\"116.259766\" xlink:href=\"#DejaVuSans-99\"/>\n      <use x=\"171.240234\" xlink:href=\"#DejaVuSans-117\"/>\n      <use x=\"234.619141\" xlink:href=\"#DejaVuSans-114\"/>\n      <use x=\"275.732422\" xlink:href=\"#DejaVuSans-97\"/>\n      <use x=\"337.011719\" xlink:href=\"#DejaVuSans-99\"/>\n      <use x=\"391.992188\" xlink:href=\"#DejaVuSans-121\"/>\n     </g>\n    </g>\n    <g id=\"line2d_21\">\n     <path d=\"M 262.959375 38.775781 \nL 282.959375 38.775781 \n\" style=\"fill:none;stroke:#ff7f0e;stroke-linecap:square;stroke-width:1.5;\"/>\n    </g>\n    <g id=\"line2d_22\"/>\n    <g id=\"text_18\">\n     <!-- val_accuracy -->\n     <g transform=\"translate(290.959375 42.275781)scale(0.1 -0.1)\">\n      <defs>\n       <path d=\"M 2.984375 54.6875 \nL 12.5 54.6875 \nL 29.59375 8.796875 \nL 46.6875 54.6875 \nL 56.203125 54.6875 \nL 35.6875 0 \nL 23.484375 0 \nz\n\" id=\"DejaVuSans-118\"/>\n       <path d=\"M 9.421875 75.984375 \nL 18.40625 75.984375 \nL 18.40625 0 \nL 9.421875 0 \nz\n\" id=\"DejaVuSans-108\"/>\n       <path d=\"M 50.984375 -16.609375 \nL 50.984375 -23.578125 \nL -0.984375 -23.578125 \nL -0.984375 -16.609375 \nz\n\" id=\"DejaVuSans-95\"/>\n      </defs>\n      <use xlink:href=\"#DejaVuSans-118\"/>\n      <use x=\"59.179688\" xlink:href=\"#DejaVuSans-97\"/>\n      <use x=\"120.458984\" xlink:href=\"#DejaVuSans-108\"/>\n      <use x=\"148.242188\" xlink:href=\"#DejaVuSans-95\"/>\n      <use x=\"198.242188\" xlink:href=\"#DejaVuSans-97\"/>\n      <use x=\"259.521484\" xlink:href=\"#DejaVuSans-99\"/>\n      <use x=\"314.501953\" xlink:href=\"#DejaVuSans-99\"/>\n      <use x=\"369.482422\" xlink:href=\"#DejaVuSans-117\"/>\n      <use x=\"432.861328\" xlink:href=\"#DejaVuSans-114\"/>\n      <use x=\"473.974609\" xlink:href=\"#DejaVuSans-97\"/>\n      <use x=\"535.253906\" xlink:href=\"#DejaVuSans-99\"/>\n      <use x=\"590.234375\" xlink:href=\"#DejaVuSans-121\"/>\n     </g>\n    </g>\n   </g>\n  </g>\n </g>\n <defs>\n  <clipPath id=\"p028aaf89a5\">\n   <rect height=\"217.44\" width=\"334.8\" x=\"30.103125\" y=\"10.999219\"/>\n  </clipPath>\n </defs>\n</svg>\n","image/png":"iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAj50lEQVR4nO3deXgc1Z3u8e9Pm7XbWtqWrMULeBHekK2wZsDB44mTGBuScQyTMDETwuUmwARuwgNMhngIyeQmMNmGS+IwJCGBEMbEjMOQMDCYh2SABBmbzTZgbIglb9osa1/P/aNbrZbUslp2S90qv5/n6cddVaerjsru10enTp0y5xwiIjLxJcS6AiIiEh0KdBERj1Cgi4h4hAJdRMQjFOgiIh6hQBcR8YgRA93MHjCzo2b2xjDbzcy+b2Z7zew1M1sa/WqKiMhIImmh/xRYdYLtHwHmBF7XAvederVERGS0Rgx059zzQP0JiqwFHnR+LwFTzKwwWhUUEZHIJEVhH0XAgZDlqsC6Q4MLmtm1+FvxZGRkLJs/f34UDi8icvrYvn17rXPOF25bNAI9Ys65TcAmgIqKCldZWTmehxcRmfDM7P3htkVjlEs1UBKyXBxYJyIi4ygagb4V+NvAaJfzgEbn3JDuFhERGVsjdrmY2S+B5UC+mVUBXwWSAZxzPwSeBD4K7AVagavHqrIiIjK8EQPdOXflCNsd8IWo1UhEYqKrq4uqqira29tjXRUBUlNTKS4uJjk5OeLPjOtFURGJX1VVVWRlZTFz5kzMLNbVOa0556irq6OqqopZs2ZF/Dnd+i8iALS3t5OXl6cwjwNmRl5e3qh/W1Kgi0iQwjx+nMzfhQJdRMQjFOgiIh6hQBeR0053d3esqzAmFOgiElcuu+wyli1bxoIFC9i0aRMAv/vd71i6dClLlixhxYoVADQ3N3P11VezaNEiFi9ezGOPPQZAZmZmcF+bN29mw4YNAGzYsIHrrruOc889l1tuuYU//elPnH/++ZSXl3PBBRfw1ltvAdDT08OXvvQlFi5cyOLFi/nBD37As88+y2WXXRbc79NPP83ll18+DmdjdDRsUUSG+KffvMmug8ejus+zpmfz1UsXjFjugQceIDc3l7a2Nj7wgQ+wdu1aPve5z/H8888za9Ys6uv9k79+7WtfY/Lkybz++usANDQ0jLjvqqoqXnjhBRITEzl+/Di///3vSUpK4plnnuH222/nscceY9OmTbz33nvs3LmTpKQk6uvrycnJ4fOf/zw1NTX4fD5+8pOf8Hd/93endkLGgAJdROLK97//fbZs2QLAgQMH2LRpExdddFFwPHZubi4AzzzzDI888kjwczk5OSPue926dSQmJgLQ2NjIZz7zGd555x3MjK6uruB+r7vuOpKSkgYc76qrruIXv/gFV199NS+++CIPPvhglH7i6FGgi8gQkbSkx8Jzzz3HM888w4svvkh6ejrLly/n7LPPZs+ePRHvI3S43+Bx3BkZGcH3//iP/8iHPvQhtmzZwnvvvcfy5ctPuN+rr76aSy+9lNTUVNatWxcM/HiiPnQRiRuNjY3k5OSQnp7Onj17eOmll2hvb+f5559n//79AMEul5UrV3LvvfcGP9vX5TJt2jR2795Nb29vsKU/3LGKiooA+OlPfxpcv3LlSn70ox8FL5z2HW/69OlMnz6du+66i6uvjs8pqxToIhI3Vq1aRXd3N2VlZdx6662cd955+Hw+Nm3axMc//nGWLFnC+vXrAfjKV75CQ0MDCxcuZMmSJWzbtg2Ab37zm6xevZoLLriAwsLhH552yy23cNttt1FeXj5g1Ms111xDaWkpixcvZsmSJTz88MPBbZ/61KcoKSmhrKxsjM7AqTH/3FrjTw+4EIkvu3fvjtugihfXX3895eXlfPaznx2X44X7OzGz7c65inDl468TSEQkDi1btoyMjAzuueeeWFdlWAp0EZEIbN++PdZVGJH60EVEPEKBLiLiEQp0ERGPUKCLiHiEAl1ExCMU6CIyIYXOqih+CnQRkVMQT3Oraxy6iAz121vh8OvR3WfBIvjIN4fdfOutt1JSUsIXvvAFADZu3EhSUhLbtm2joaGBrq4u7rrrLtauXTvioZqbm1m7dm3Yzz344IPcfffdmBmLFy/m5z//OUeOHOG6665j3759ANx3331Mnz6d1atX88YbbwBw991309zczMaNG4OThv3hD3/gyiuvZO7cudx11110dnaSl5fHQw89xLRp02hubuaGG26gsrISM+OrX/0qjY2NvPbaa3z3u98F4Mc//jG7du3iO9/5zqmcXUCBLiJxYv369Xzxi18MBvqjjz7KU089xY033kh2dja1tbWcd955rFmzZsQHKKemprJly5Yhn9u1axd33XUXL7zwAvn5+cGJt2688UYuvvhitmzZQk9PD83NzSPOr97Z2Unf9CUNDQ289NJLmBn3338/3/rWt7jnnnvCztmenJzM17/+db797W+TnJzMT37yE370ox+d6ukDFOgiEs4JWtJjpby8nKNHj3Lw4EFqamrIycmhoKCAm266ieeff56EhASqq6s5cuQIBQUFJ9yXc47bb799yOeeffZZ1q1bR35+PtA/1/mzzz4bnN88MTGRyZMnjxjofZOEgf/BGevXr+fQoUN0dnYG524fbs72Sy65hCeeeIKysjK6urpYtGjRKM9WeAp0EYkb69atY/PmzRw+fJj169fz0EMPUVNTw/bt20lOTmbmzJlD5jgP52Q/FyopKYne3t7g8onmVr/hhhu4+eabWbNmDc899xwbN2484b6vueYavvGNbzB//vyoTsUb0UVRM1tlZm+Z2V4zuzXM9hlm9t9m9pqZPWdmxVGroYicNtavX88jjzzC5s2bWbduHY2NjUydOpXk5GS2bdvG+++/H9F+hvvcJZdcwr//+79TV1cH9M91vmLFCu677z7A/0zRxsZGpk2bxtGjR6mrq6Ojo4MnnnjihMfrm1v9Zz/7WXD9cHO2n3vuuRw4cICHH36YK6+8MtLTM6IRA93MEoF7gY8AZwFXmtlZg4rdDTzonFsM3An8c9RqKCKnjQULFtDU1ERRURGFhYV86lOforKykkWLFvHggw8yf/78iPYz3OcWLFjAP/zDP3DxxRezZMkSbr75ZgC+973vsW3bNhYtWsSyZcvYtWsXycnJ3HHHHZxzzjmsXLnyhMfeuHEj69atY9myZcHuHBh+znaAT37yk1x44YURPTovUiPOh25m5wMbnXMfDizfBuCc++eQMm8Cq5xzB8x/taLROZd9ov1qPnSR+KL50MfX6tWruemmm1ixYsWwZUY7H3okXS5FwIGQ5arAulCvAh8PvL8cyDKzvAj2LSJyWjl27Bhz584lLS3thGF+MqJ1UfRLwL+a2QbgeaAa6BlcyMyuBa4FKC0tjdKhReR09frrr3PVVVcNWDdp0iT++Mc/xqhGI5syZQpvv/32mOw7kkCvBkpClosD64KccwcJtNDNLBP4hHPu2OAdOec2AZvA3+VyclUWkbHinBtxjHc8WbRoETt37ox1NcbEyTweNJIul5eBOWY2y8xSgCuAraEFzCzfzPr2dRvwwKhrIiIxlZqaSl1d3UkFiUSXc466ujpSU1NH9bkRW+jOuW4zux54CkgEHnDOvWlmdwKVzrmtwHLgn83M4e9y+cJofwARia3i4mKqqqqoqamJdVUE/3+wxcWjGwE+4iiXsaJRLiIio3eqo1xERGQCUKCLiHiEAl1ExCMU6CIiHqFAFxHxCAW6iIhHKNBFRDxCgS4i4hEKdBERj1Cgi4h4hAJdRMQjFOgiIh6hQBcR8QgFuoiIRyjQRUQ8QoEuIuIRCnQREY9QoIuIeIQCXUTEIxToIiIeoUAXEfEIBbqIiEco0EVEPEKBLiLiEQp0ERGPUKCLiHiEAl1ExCMiCnQzW2Vmb5nZXjO7Ncz2UjPbZmY7zOw1M/to9KsqIiInMmKgm1kicC/wEeAs4EozO2tQsa8AjzrnyoErgP8X7YqKiMiJRdJCPwfY65zb55zrBB4B1g4q44DswPvJwMHoVVFERCIRSaAXAQdClqsC60JtBD5tZlXAk8AN4XZkZteaWaWZVdbU1JxEdUVEZDjRuih6JfBT51wx8FHg52Y2ZN/OuU3OuQrnXIXP54vSoUVEBCIL9GqgJGS5OLAu1GeBRwGccy8CqUB+NCooIiKRiSTQXwbmmNksM0vBf9Fz66AyfwZWAJhZGf5AV5+KiMg4GjHQnXPdwPXAU8Bu/KNZ3jSzO81sTaDY/wE+Z2avAr8ENjjn3FhVWkREhkqKpJBz7kn8FztD190R8n4XcGF0qyYiIqOhO0VFRDxCgS4i4hEKdBERj1Cgi4h4hAJdRMQjFOgiIh6hQBcR8QgFuoiIRyjQRUQ8QoEuIuIRCnQREY9QoIuIeIQCXUTEIxToIiIeoUAXEfEIBbqIiEco0EVEPEKBLiLiEQp0ERGPUKCLiHiEAl1ExCMU6CIiHqFAFxHxCAW6iIhHKNBFRDxCgS4i4hERBbqZrTKzt8xsr5ndGmb7d8xsZ+D1tpkdi3pNRUTkhJJGKmBmicC9wEqgCnjZzLY653b1lXHO3RRS/gagfAzqKiIiJxBJC/0cYK9zbp9zrhN4BFh7gvJXAr+MRuVERCRykQR6EXAgZLkqsG4IM5sBzAKeHWb7tWZWaWaVNTU1o62riIicQLQvil4BbHbO9YTb6Jzb5JyrcM5V+Hy+KB9aROT0FkmgVwMlIcvFgXXhXIG6W0REYiKSQH8ZmGNms8wsBX9obx1cyMzmAznAi9GtooiIRGLEQHfOdQPXA08Bu4FHnXNvmtmdZrYmpOgVwCPOOTc2VRURkRMZcdgigHPuSeDJQevuGLS8MXrVEhGR0dKdoiIiHqFAFxHxCAW6iIhHKNBFRDxCgS4i4hEKdBERj1Cgi4h4hAJdRMQjFOgiIh6hQBcR8QgFuoiIRyjQRUQ8QoEuIuIRCnQREY9QoIuIeIQCXUTEIxToIiIeoUAXEfEIBbqIiEco0EVEPEKBLiLiEQp0ERGPUKCLiHiEAl1ExCMU6CIiHqFAFxHxiIgC3cxWmdlbZrbXzG4dpswnzWyXmb1pZg9Ht5oiIjKSpJEKmFkicC+wEqgCXjazrc65XSFl5gC3ARc65xrMbOpYVVhERMKLpIV+DrDXObfPOdcJPAKsHVTmc8C9zrkGAOfc0ehWU0RERhJJoBcBB0KWqwLrQs0F5prZ/5jZS2a2KtyOzOxaM6s0s8qampqTq7GIiIQVrYuiScAcYDlwJfBjM5syuJBzbpNzrsI5V+Hz+aJ0aBERgcgCvRooCVkuDqwLVQVsdc51Oef2A2/jD3gRERknkQT6y8AcM5tlZinAFcDWQWUex986x8zy8XfB7IteNUVEZCQjBrpzrhu4HngK2A086px708zuNLM1gWJPAXVmtgvYBnzZOVc3VpUWEZGhzDkXkwNXVFS4ysrKmBxbRGSiMrPtzrmKcNt0p6iIiEco0EVEPEKBLiLiEQp0ERGPUKCLiHiEAl1ExCMU6CIiHjHi9LkiIjJ6nd29VB9r48/1rf5XXUvgfRs3XHImH11UGPVjKtBFRE6Cc47Gti7er2sNCe3+94ca2+gNuW8zJSmB0tx0SnPTSU9JHJM6KdBFRIbR1dPLoWPt/Lm+lffr/S3sA/WtwRBvau8eUD4/M4XS3HQ+MDOH0twiSvMygiE+NWsSCQk2pvVVoIvIaa2xrYsDgVZ1X1AfCAT4wWPt9IQ0s1MSEyjOSaM0L51lM3KCYV2al05JTjoZk2IbqQp0EfG0nl7HwWNtwdD2t7Zbg8vHWrsGlM/NSKEkN53ykhzWLvEHdkluOjPy0pmWnUriGLeyT4UCXUQmvOaO7kD/dUt/aNf5Q7uqoY3ukFZ2UoJRnJNGSW46qxcXBlvZJYE/s1KTY/iTnBoFuojEvd5ex+Hj7UMuPPa96ls6B5Sfkp5MaW46C4om85FFhcwICe3CyakkJXpzxLYCXUTiQktHNwcawgd2VX0bnT29wbKJCcb0KanMyM3gwwsKKA10ifSF9uS0idvKPhUKdBEZF729jprmjkHD/PrHZtc2dwwonzUpidK8dOYXZLHyrGnBrpEZuRkUTkkl2aOt7FOhQBeRqGnv6hkwrK9/xIj/z47u/lZ2gkHh5DRKc9P5y7KpwT7svtb25LRkzOL3AmQ8UqCLyKi0d/XwXl0L+2pa2FfTzL7almCIH20a2MrOSEmkNC+DM3wZfGieb8C47KIpaaQkqZUdTQp0ERnCOf9FyL7QfremhX21/vfVx9oIfXJlQXYqM/LSuXiuLzgmuy+0czNS1MoeRwp0kdNYS0c3+2tbeLem2R/egdDeX9tCa2dPsFx6SiKzfRksLc3hr5cVM9uXyez8DGblZ8T8Zhrpp78JEY/r6XVUN7Txbm0z+2ta2FcbCO+aFg4fbw+WM4PinDRm52dyzqxcZvsyOSM/g9m+TKZlT1JLewJQoIt4RGNrF+8Gw7qvxd3Me3WtdIZcjMxOTWK2L5MLzszjjEBLe7Yvkxl56aQmj82kUTI+FOgiE0hXTy9/rm8dEtr7alqoC7m5JinBKM1NZ7Yvg+XzpgZDe7Yvgzz1a3uWAl0kzjjnqGvpHDCKpC+8/1zfOuA29vzMFGbnZ7LyrGnM9mUwO98f2iW56RqnfRpSoIvEyJDhfzUtvFvbwv6aZo6HTMuakpTArLwM5hVk8ZFFBcHQnp2fyeT00/OOSAlPgS4yhkY7/G+2L4M1Z08PhvYZvkymT0mL6xn+JH5EFOhmtgr4HpAI3O+c++ag7RuAbwPVgVX/6py7P4r1FIlroxn+Nys/g/LSHD6xtDgY2hr+J9Ew4r8gM0sE7gVWAlXAy2a21Tm3a1DRXznnrh+DOorEhVMd/jfLl0FBdqouSJ7uujsBB0mTor7rSJoE5wB7nXP7AMzsEWAtMDjQRTxBw/8kYj1d0NYArXWBV3349231/es6jsOl34dln4l6dSIJ9CLgQMhyFXBumHKfMLOLgLeBm5xzB8KUEYkbXT297KtpYc/h4+w+1MSew8fZc6hpQGtbw/9OIz3d0H4sJJAHB3P9wPVt9dDeOPz+kjMgPQ/Sc/1/5p7Rv1y4ZEx+hGh12v0G+KVzrsPM/hfwM+CSwYXM7FrgWoDS0tIoHVrkxJxz1DR1sPtwE3sOHeetw03sPtzE3qNNdPX4r0omJxpn+DI5/4w85hVk+VvcPv9EUhr+NwH19kDbsUGt49BXw9B17ceG319yuj+M03L8f+bMDIRzX2DnhiznQVouJKeO0w/bL5JArwZKQpaL6b/4CYBzri5k8X7gW+F25JzbBGwCqKiocOHKiJyK9q4e3jnSzO5Aa3vP4ePsOdw04Ik2BdmpzC/M4uK5PsoKs5hXkMXs/EzN/BevensDLef6EwR0/aAujgZgmIhJnAQZ+f0hPLl4YBgPDui0XEhJH8+f+KRFEugvA3PMbBb+IL8C+JvQAmZW6Jw7FFhcA+yOai1FBnHOUdXQxp5Aq3vPYX94769toe++m9TkBOYVZLOybBrzC7OYX5DN/IIscjJSYlv505lz/m6KYfuYw/RDt9WD6w2/v8SUgUFcsLA/hAcEdMifyen+K9ceNGKgO+e6zex64Cn8wxYfcM69aWZ3ApXOua3AjWa2BugG6oENY1hnOc00tXfx9pGmAf3cbx1uoqmj/+ab0lz/k20+tng6ZQVZzC/MpjQ3XeO3x5Jz0NkMLbVD+5cHXwgMDWjXE35/CckDg3dq2dBujAEBnQcpGZ4N55NhzsWm56OiosJVVlbG5NgSn3p6He/VtQS7SvoCvKqhLVgmKzWJsoLsYIt7XoG/yyRTY7ijo6sdWmuhpQZa6gJ/9r0C61tr+993t4ffjyUO6sbIGbQcJqAnZSmcI2Bm251zFeG26VsgMVHf0smeQ8f7L1Qe8be6+x5RlphgzM7P4OySKVx5TinzA63u6ZM1jntUerr9LeUBoVw7fEh3HA+/n8RJkOHz9z1n+MA3v/99en6gTzrkomHqZIVzDCjQZUx1dvfybk1zsKukL8BDH1WWl5FCWWE2V503g/mF/n7uM6dmaix3OM71j3se0nquHRjSLTXDXxzsa0H3hfT0pYH3fet8/dvS89V6niAU6BIVzjmOHO8YOLrkUBPv1jQHZwdMSUxgzrRM/mJO/+iS+QXZ+LKif8fchOEcdLb0B3FrmNZzaFi31kJvd/h9peX0t5h982DmB0Na1fkDgzp1CiRoVI/XKNBl1Fo7u3n7SPOA0SV7DjdxrLUrWKZoShrzCrJYUTaV+YXZlBVkMTM/4/QY093dMTCMRwrp7rbw+0nJ7A/iycUw/eyhredgt0ceJGrmxdOdAl2G1dvrHxo4eEz3e3UtwVkC01MS/dO6LiykrO9C5bQsb03r2tvjH50xuIujNUwXR0sddAxz92BiyqB+6Hkh3R6DQjo9f8KMfZb4oUAXABrbunjr8MDRJW8dbgrOFGgGM/MymF+QxWVnFzGvIIuywixKctJJiPehgb090NE09NUZZl3HcWg/PrCPurWe8P3QCf0XBDPyYXr5wH7nASHtUz+0jDkF+mmmu6eX/bUt/V0lh5rYc7iJ6mP9v/ZPTktmfkEWn6woCY4umTstk/SUcfzn4py/66IvZCMK49Cyzf3ruloiO2Zyhj90J2X5Azh/Dsy4YOgFwr7ltBz1Q0tcUaB73P7aFv5795Fgq/udo83BGQOTEvzzl1TMzOHTBTOYX5hFWUH2qT3hvbfXf7NJ2JAdZSD3do18PEuE1GxIyeoP4/R8yJnVvzwpGyZlhiz3rQtZTsmEBI2qkYlNge5Bdc0dPPHaIbbsqGbngWMATM2axPzCbD54Zn5wdMkZUzOYlBQIsWBr+CAcHiGQO5vDh3Tftkgkpw8M00lZMGXGoNAdLpBDwjgpVd0YIgEKdI9o7+rhv19/n+de2cU7+/czxTXyF1O6uHWBY+GULjJp8wduQxMcaYY/DQrkns6RD2IJQwM1LQcml4Rv9Q7XOk7JgkT90xOJNn2r4llPV8jFucF3+NXgWmpprj9MZ+MRUjvr+Zi18zGAvgEmrcC7+O/yS80eGLJ9IZwyTMs3XCB7eFIjES9QoI+nvmlAh73Db9BwuLaGsLtxCUk0J07hUHcmh7uzOJ4wm+y8C5lROoOSklISMqeGjL7waQIjkdOEAv1UOOfvrmipCXMrdh1DbiZprRtmpjnrv8svwwdTzxpy40g9k3n6/R427+mg8kgPCQmJXDzXx+XlRfxl2TTSUnRBT+R0p0AfrKttdHf59XSE38+k7P5hbjkzobgi/B1+GT7/rHNh+pSbO7r53RuHefyFav7n3VqcgyUlU9i4pojViwvJyzyNb5kXkSG8H+g93YNaz6Gzy4W5y6+zKfx+EidB5tT+IJ561tD5MfomNkrPP+nHT3X39PL7vbVseaWa/9p1mPauXkpy07jhQ2dyWXkRs32Zp3AyRMTLJl6gD+iHPsE0oANmmwvDEkMCOdCKTs8fPqRTMsesH9o5x+vVjfz6lWqeeO0gtc2dTE5L5hNLi/n40iKWluZoylgRGdHEC/Q/3APP3hV+W1puSAu6DDIu6p+4aPB8GXEw29yB+lb+Y2c1v95Rzb6aFlISE1hRNpXLyov40LypesaliIzKxAv0My4JzEI3KKjTcyfEbHONrV385+uH2LKjipff8//2cM6sXD73F7P56MJCb01qJSLjauIFetEy/2sC6ejuYdueGrbsqGLbnho6e3o5w5fBlz88jzVLplOSq1n1ROTUTbxAnyCcc1S+38CWHdX852uHaGzrIj9zEp8+bwaXlxexsChb/eIiElUK9Ch7t6aZx3dUs2VHNVUNbaQlJ/LhBdO4rLyID56ZT9Lp8IAHEYkJBXoU1DZ38JtXD7JlRzWvVTWSYHDhmfncvHIuf7WgQE+kF5FxoaQ5SW2dPfzXrsM8vqOa59+ppafXcVZhNl/5WBmXLpnOtOyTG4cuInKyFOij0NPrePHdOrbsqOZ3bxyipbOH6ZNTufai2cGn+IiIxIoCPQK7Dh7n8Z3V/MfOao4c7yBrUhKrF0/nsvIizp2VG/+PYBOR04ICfRiHGtv4j50HeXxHNXsON5GUYCyf5+OO1cWsKJtKarImwxKR+KJAD9HU3sVv3/D3i7+4rw7noLx0CneuXcDqxdPJzUiJdRVFRIYVUaCb2Srge0AicL9z7pvDlPsEsBn4gHOuMmq1HENdPb38/p0afv1KNU/vOkJHdy8z8tK58ZI5XF5exMz8jFhXUUQkIiMGupklAvcCK4Eq4GUz2+qc2zWoXBbw98Afx6Ki0eSc49WqRra8UsVvXjtEfUsnOenJfLKihMuXFlFeMkU3/YjIhBNJC/0cYK9zbh+AmT0CrAV2DSr3NeD/Al+Oag2j6M91rWzZUc3jO6vZX9tCSlICK8v8N/1cPNenybBEZEKLJNCLgAMhy1XAuaEFzGwpUOKc+08zGzbQzexa4FqA0tLS0df2JDS0dAYmw6pm+/v+ybDOm53LdRfPZtXCQianaTIsEfGGU74oamYJwL8AG0Yq65zbBGwCqKiocKd67OG0d/Wwbc9Rfr2jmufeOkpXj2PO1ExuWTWPtWcXUTQlbawOLSISM5EEejVQErJcHFjXJwtYCDwX6HcuALaa2ZrxvDDa2+t4+b16/2RYrx+iqb0bX9YkPnP+TC4rL2LBdE2GJSLeFkmgvwzMMbNZ+IP8CuBv+jY65xqB/L5lM3sO+NJ4hfneo03+fvEdB6k+1kZ6SiKrFhRwWXkRF5yRp8mwROS0MWKgO+e6zex64Cn8wxYfcM69aWZ3ApXOua1jXcnBjja185tX/Q+JeKP6OAkGH5zj48sfnsdfLZhGeoqG14vI6cecG7Ou7BOqqKhwlZWjb8Tf//t9fOPJ3fQ6WFiUzeXlxVy6pJCpWZoMS0S8z8y2O+cqwm6LVaCbWQ3w/kl+PB+ojWJ1okX1Gh3Va/TitW6q1+icSr1mOOd84TbELNBPhZlVDvc/VCypXqOjeo1evNZN9RqdsaqXrhiKiHiEAl1ExCMmaqBvinUFhqF6jY7qNXrxWjfVa3TGpF4Tsg9dRESGmqgtdBERGUSBLiLiEXEd6Ga2yszeMrO9ZnZrmO2TzOxXge1/NLOZcVKvDWZWY2Y7A69rxqleD5jZUTN7Y5jtZmbfD9T7tcAsmfFQr+Vm1hhyvu4YhzqVmNk2M9tlZm+a2d+HKTPu5yvCesXifKWa2Z/M7NVAvf4pTJlx/z5GWK+YfB8Dx040sx1m9kSYbdE/X865uHzhn2bgXWA2kAK8Cpw1qMzngR8G3l8B/CpO6rUB+NcYnLOLgKXAG8Ns/yjwW8CA84A/xkm9lgNPjPO5KgSWBt5nAW+H+Xsc9/MVYb1icb4MyAy8T8b/IJvzBpWJxfcxknrF5PsYOPbNwMPh/r7G4nzFcws9+GAN51wn0PdgjVBrgZ8F3m8GVtjYT6kYSb1iwjn3PFB/giJrgQed30vAFDMrjIN6jTvn3CHn3CuB903Abvxz/4ca9/MVYb3GXeAcNAcWkwOvwSMqxv37GGG9YsLMioGPAfcPUyTq5yueAz3cgzUG/8MOlnHOdQONQF4c1AvgE4Ff0zebWUmY7bEQad1j4fzAr82/NbMF43ngwK+65Qx9fGJMz9cJ6gUxOF+B7oOdwFHgaefcsOdrHL+PkdQLYvN9/C5wC9A7zPaon694DvSJ7DfATOfcYuBp+v8XlvBewT8/xRLgB8Dj43VgM8sEHgO+6Jw7Pl7HHckI9YrJ+XLO9Tjnzsb/TIRzzGzheBx3JBHUa9y/j2a2GjjqnNs+1scKFc+BPtKDNQaUMbMkYDJQF+t6OefqnHMdgcX7gWVjXKdIRXJOx51z7njfr83OuSeBZDPLH+Fjp8zMkvGH5kPOuV+HKRKT8zVSvWJ1vkKOfwzYBqwatCkW38cR6xWj7+OFwBozew9/t+wlZvaLQWWifr7iOdCDD9YwsxT8Fw0Gz72+FfhM4P1fA8+6wBWGWNZrUD/rGvz9oPFgK/C3gdEb5wGNzrlDsa6UmRX09R2a2Tn4/12OaRAEjvdvwG7n3L8MU2zcz1ck9YrR+fKZ2ZTA+zRgJbBnULFx/z5GUq9YfB+dc7c554qdczPxZ8SzzrlPDyoW9fMVt0+CcJE9WOPfgJ+b2V78F92uiJN63Whma4DuQL02jHW9AMzsl/hHQOSbWRXwVfwXiXDO/RB4Ev/Ijb1AK3B1nNTrr4H/bWbdQBtwxTj8x3whcBXweqD/FeB2oDSkXrE4X5HUKxbnqxD4mZkl4v8P5FHn3BOx/j5GWK+YfB/DGevzpVv/RUQ8Ip67XEREZBQU6CIiHqFAFxHxCAW6iIhHKNBFRDxCgS4i4hEKdBERj/j/IOyf+IuhdkoAAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"code","metadata":{"id":"U5S7JROCpVYh"},"source":["# myModel = keras.models.load_model(\"modeleTest\")\r\n","# print(myModel.predict(np.array([theImage]))[0,:])"],"execution_count":38,"outputs":[{"output_type":"stream","name":"stdout","text":["[2.96738029e-01 1.24476401e-05 2.17953697e-01 1.91844806e-01\n"," 1.76624253e-01 1.78373352e-06 1.16824925e-01]\n","[6.6510475e-01 8.1453304e-04 5.7720199e-02 1.3529294e-04 2.1474548e-01\n"," 2.6716415e-03 5.8808159e-02]\n"]}]},{"cell_type":"code","metadata":{"id":"aY5kLCgIpVa_"},"source":[],"execution_count":null,"outputs":[]}]}
\ No newline at end of file
diff --git a/buildEmotionModel.ipynb b/buildEmotionModel.ipynb
index c5b961d428e901a5cd982ef5b808ae04d7866d9a..f1e0c444ae69d6baf4ebab0089da5e49212e5275 100644
--- a/buildEmotionModel.ipynb
+++ b/buildEmotionModel.ipynb
@@ -10,7 +10,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.5-final"
+   "version": "3.8.5"
   },
   "orig_nbformat": 2,
   "kernelspec": {
@@ -30,113 +30,7 @@
      "output_type": "stream",
      "name": "stdout",
      "text": [
-      "Model used: firstModel\n",
-      "Image 1 sur 100 chargée\n",
-      "Image 2 sur 100 chargée\n",
-      "Image 3 sur 100 chargée\n",
-      "Image 4 sur 100 chargée\n",
-      "Image 5 sur 100 chargée\n",
-      "Image 6 sur 100 chargée\n",
-      "Image 7 sur 100 chargée\n",
-      "Image 8 sur 100 chargée\n",
-      "Image 9 sur 100 chargée\n",
-      "Image 10 sur 100 chargée\n",
-      "Image 11 sur 100 chargée\n",
-      "Image 12 sur 100 chargée\n",
-      "Image 13 sur 100 chargée\n",
-      "Image 14 sur 100 chargée\n",
-      "Image 15 sur 100 chargée\n",
-      "Image 16 sur 100 chargée\n",
-      "Image 17 sur 100 chargée\n",
-      "Image 18 sur 100 chargée\n",
-      "Image 19 sur 100 chargée\n",
-      "Image 20 sur 100 chargée\n",
-      "Image 21 sur 100 chargée\n",
-      "Image 22 sur 100 chargée\n",
-      "Image 23 sur 100 chargée\n",
-      "Image 24 sur 100 chargée\n",
-      "Image 25 sur 100 chargée\n",
-      "Image 26 sur 100 chargée\n",
-      "Image 27 sur 100 chargée\n",
-      "Image 28 sur 100 chargée\n",
-      "Image 29 sur 100 chargée\n",
-      "Image 30 sur 100 chargée\n",
-      "Image 31 sur 100 chargée\n",
-      "Image 32 sur 100 chargée\n",
-      "Image 33 sur 100 chargée\n",
-      "Image 34 sur 100 chargée\n",
-      "Image 35 sur 100 chargée\n",
-      "Image 36 sur 100 chargée\n",
-      "Image 37 sur 100 chargée\n",
-      "Image 38 sur 100 chargée\n",
-      "Image 39 sur 100 chargée\n",
-      "Image 40 sur 100 chargée\n",
-      "Image 41 sur 100 chargée\n",
-      "Image 42 sur 100 chargée\n",
-      "Image 43 sur 100 chargée\n",
-      "Image 44 sur 100 chargée\n",
-      "Image 45 sur 100 chargée\n",
-      "Image 46 sur 100 chargée\n",
-      "Image 47 sur 100 chargée\n",
-      "Image 48 sur 100 chargée\n",
-      "Image 49 sur 100 chargée\n",
-      "Image 50 sur 100 chargée\n",
-      "Image 51 sur 100 chargée\n",
-      "Image 52 sur 100 chargée\n",
-      "Image 53 sur 100 chargée\n",
-      "Image 54 sur 100 chargée\n",
-      "Image 55 sur 100 chargée\n",
-      "Image 56 sur 100 chargée\n",
-      "Image 57 sur 100 chargée\n",
-      "Image 58 sur 100 chargée\n",
-      "Image 59 sur 100 chargée\n",
-      "Image 60 sur 100 chargée\n",
-      "Image 61 sur 100 chargée\n",
-      "Image 62 sur 100 chargée\n",
-      "Image 63 sur 100 chargée\n",
-      "Image 64 sur 100 chargée\n",
-      "Image 65 sur 100 chargée\n",
-      "Image 66 sur 100 chargée\n",
-      "Image 67 sur 100 chargée\n",
-      "Image 68 sur 100 chargée\n",
-      "Image 69 sur 100 chargée\n",
-      "Image 70 sur 100 chargée\n",
-      "Image 71 sur 100 chargée\n",
-      "Image 72 sur 100 chargée\n",
-      "Image 73 sur 100 chargée\n",
-      "Image 74 sur 100 chargée\n",
-      "Image 75 sur 100 chargée\n",
-      "Image 76 sur 100 chargée\n",
-      "Image 77 sur 100 chargée\n",
-      "Image 78 sur 100 chargée\n",
-      "Image 79 sur 100 chargée\n",
-      "Image 80 sur 100 chargée\n",
-      "Image 81 sur 100 chargée\n",
-      "Image 82 sur 100 chargée\n",
-      "Image 83 sur 100 chargée\n",
-      "Image 84 sur 100 chargée\n",
-      "Image 85 sur 100 chargée\n",
-      "Image 86 sur 100 chargée\n",
-      "Image 87 sur 100 chargée\n",
-      "Image 88 sur 100 chargée\n",
-      "Image 89 sur 100 chargée\n",
-      "Image 90 sur 100 chargée\n",
-      "Image 91 sur 100 chargée\n",
-      "Image 92 sur 100 chargée\n",
-      "Image 93 sur 100 chargée\n",
-      "Image 94 sur 100 chargée\n",
-      "Image 95 sur 100 chargée\n",
-      "Image 96 sur 100 chargée\n",
-      "Image 97 sur 100 chargée\n",
-      "Image 98 sur 100 chargée\n",
-      "Image 99 sur 100 chargée\n",
-      "Image 100 sur 100 chargée\n",
-      "\n",
-      "TRAITEMENT ACTEUR N°14\n",
-      "\n",
-      "Traitement de 01-01-03-02-02-02-01.mp4, video 1/2\n",
-      "Lecture vidéo de 01-01-03-02-02-02-01.mp4\n",
-      "Donnée ajoutée, Images: 1 Labels: 1\n"
+      "Model used: firstModel\n"
      ]
     }
    ],
@@ -144,12 +38,14 @@
     "#@title Imports\n",
     "#%load_ext autoreload  #Need to uncomment for import, dont understand\n",
     "\n",
+    "#Tensorflow :\n",
     "import tensorflow as tf\n",
     "from tensorflow import keras\n",
     "from tensorflow.keras import datasets, layers, models, losses\n",
     "import tensorflow_datasets as tfds\n",
     "#from google.colab import files\n",
     "\n",
+    "#Others :\n",
     "from matplotlib import image\n",
     "import os\n",
     "import numpy as np\n",
@@ -159,47 +55,155 @@
     "import cv2\n",
     "import csv\n",
     "\n",
-    "from loadFer2013ds import *\n",
-    "from loadRavdessDs import *\n",
-    "from utils import *\n",
+    "#Data loaders :\n",
+    "from loadFer2013DS import *\n",
+    "from loadRavdessDS import *\n",
+    "from loadExpWDS import *\n",
+    "from loadAffwildDS import *\n",
     "\n",
-    "X, Y = loadFer2013Data(100)\n",
-    "W, Z = loadRavdessData(100)"
+    "from utils import *\n",
+    "from config import *"
    ]
   },
   {
-   "source": [],
    "cell_type": "code",
+   "execution_count": 2,
    "metadata": {},
-   "execution_count": null,
-   "outputs": []
+   "outputs": [
+    {
+     "output_type": "stream",
+     "name": "stdout",
+     "text": [
+      "\n",
+      "CHARGEMENT DE 100 DONNEES DEPUIS FER2013 ...\n",
+      "100 données chargées depuis fer2013.\n",
+      "\n",
+      "CHARGEMENT DE 100 DONNEES DEPUIS RAVDESS...\n",
+      "TRAITEMENT ACTEUR N°14\n",
+      "Traitement de 01-01-03-02-02-02-01.mp4, video 1/2\n",
+      "Erreur pour la donnée : Aucun ou plusieurs visages détectés\n",
+      "TRAITEMENT RAVDESS: traitement des 100 visages détectés sur les vidéos de Ravdess...\n",
+      "100 données chargées depuis Ravdess.\n",
+      "\n",
+      "CHARGEMENT DE 100 DONNEES DEPUIS EXPW...\n",
+      "100 données chargées depuis expW (sur 100 données traités).\n",
+      "\n",
+      "\n",
+      "CHARGEMENT DE 100 DONNEES DEPUIS AFFWILD...\n",
+      "Traitement de 1-30-1280x720.mp4, video 1/71\n",
+      "TRAITEMENT AFFWILD: traitement des 100 visages détectés sur les vidéos de AffWild...\n",
+      "100 données chargées depuis AffWild.\n"
+     ]
+    }
+   ],
+   "source": [
+    "Xf, Yf = loadFer2013Data(1000)\n",
+    "Xr, Yr = loadRavdessData(1000)\n",
+    "Xe, Ye = loadExpWData(1000)\n",
+    "Xa, Ya = loadAffwildData(1000)"
+   ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 3,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "output_type": "stream",
+     "name": "stdout",
+     "text": [
+      "Dataset: fer2013\nImages: (100, 48, 48, 1) Labels: (100,)\n"
+     ]
+    },
+    {
+     "output_type": "display_data",
+     "data": {
+      "text/plain": "<Figure size 432x288 with 25 Axes>",
+      "image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"250.458125pt\" version=\"1.1\" viewBox=\"0 0 336.092252 250.458125\" width=\"336.092252pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <metadata>\n  <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n   <cc:Work>\n    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n    <dc:date>2021-04-29T02:55:35.586932</dc:date>\n    <dc:format>image/svg+xml</dc:format>\n    <dc:creator>\n     <cc:Agent>\n      <dc:title>Matplotlib v3.3.4, https://matplotlib.org/</dc:title>\n     </cc:Agent>\n    </dc:creator>\n   </cc:Work>\n  </rdf:RDF>\n </metadata>\n <defs>\n  <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\n </defs>\n <g id=\"figure_1\">\n  <g id=\"patch_1\">\n   <path d=\"M 0 250.458125 \nL 336.092252 250.458125 \nL 336.092252 0 \nL 0 0 \nz\n\" style=\"fill:none;\"/>\n  </g>\n  <g id=\"axes_1\">\n   <g id=\"patch_2\">\n    <path d=\"M 10.7 59.80778 \nL 48.189655 59.80778 \nL 48.189655 22.318125 \nL 10.7 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p34c62940dd)\">\n    <image height=\"38\" id=\"image3bea6ba2b0\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.7\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANOklEQVR4nF2Yya8k6VXFf/cbYsrMN7969VxVXVVd3e7Rbg9YNiAZIWRghS1vkLz2Bv4AxMJIbL0AscMSiA0rGwkJyYAMsjdmKNu4ZdO4Zbu7ulxdw6uqN+cQGRHfxOLLem4IKaTIyFTGiXPvPefeK6//w5+ky5MZr2884lPjuwxJ86ff+z1u/XWiuPuU1A+Em5e58/sjrn30gJSEB4eb1E3PYlqhD0rsXKiOE2YJyiWUB+0Saki4kcJXQrSgB9BDQiJISIRSCFZIGpKCUAq+hliAfP67f5CGaOiDAcBHxeOzNbrjmurAMHqUKM8i9aFDDYG7n28oX5zypRf+i++f3uDOyTYAfWdx5yV6ptE9mIVQniWUAxJIzGAlAALBCpIgakj50RlokYGZhSsRSSgSAIUK3Nw5Ru0m3Iua877ivCt5dFKj5gVyacnVjTNeqg7YuTTjnckefTScuZqTfsTTxZjzec2yNyxPC8oTRXkKpk24FZik8qn8L6+fHRJBPBiAlASfFEoSMQk+5F8qSWxUS9bLDr82Y6+e8b0fvES/a9AS+Vh1j20959BPOPFj5lWJW9McdOvcOd/myEzodQloQiWZvQisgISUwT07kmRgyoOJyMUXMQkx5c8pCaiIFhBJ7FUzpq4i6UShAv85f4E9O+V6ccREd1TKceLHPHFrrNmOa5MzlCQOhk2GQQCFiZAKSBqiAUmg3C9PAAk5T40LOt+QlMGsAOaLzCLAfnWeQ73XEhH6aPiXp6/QuoLLoymVdvioUZLogqELFgFs7RhqTVwKbpXkyazyLkA0glYQCjBdfmxm7BmID4BKH2BQJFFqz6ViRkAxqnteXDtEE3l4vk7/03UeTC4xujJjs1lSG8fI9rig8VGhdURGngEQJ/k5OiFeECdISCQNygnOZOZCIZhnjMQkKEkXefbBkBY6oCQy1j0nDzf456MJX/nMP+Kuab4dP0zsLTvjBTcmJ7iosSqgJLFwBaX1lOueRVHg2gIGhV6oHM4i5WLwEMoMyiCkCuQz3/qjZFXMlbkC9f9D+qHxOZ9cv0cfLW/P9rn9ow8jvfDcRw4otUdJwkXNfChISdAq0vYFZ0djVBnY3zmnHSzn04a4MOiZJjQRTIIoEEGCoAbJTAYwbV8wKgdK4zES8SjiB8pESaLWjjaU9NHwhd03+cLn3uRbJx/hOz96FTVycFjSPFIg4BvwoxwFuTQwHndYHQixzP9pEmFrVYrPckZBMolgBdUpiGAWy+KCLWUSRiJRVqFUMYdSeSLCmW+YhZqXy0f84d53+Nxv/oR3+z1c0txZ7LJhlxgV8FHTR8MyWB7MNxiCJiZB64iqE6IiKSqCU6SkEJMQE4lOESOIU5jgNYtludIVYWwHFBnoM/bWTEejBua+4Pb0FqONni0959Cv8Tff/Q2YOH73lbdZM0sASuNpdM9P5/s0dsBFzem8ISahqhxWB4yOtL2l73P1FqUjFIo+lpAEk6IQvKbtVvkhCatDZn0V2k3TcrU44agc8+bJNZbhDW6NDvn6zz7Bpf8QlpcqviWvUFSely495fX1R8Sk2CunABws11gfLQm1IkS5AN/2llHTo1XER0XXFoiNpARGVCIl8F6zXLFWWU9lPGSJo9E9l80ZL9eWfsPw/mKLv/3xp2nervBVYvJ+YP2uJZqCt3/lecaf7VmzWZSMCuzXU9aKjuNuxNJZSuOpjSMBWhIhCbOuxJaelIQhWExZObxXxKjwzmR78hpfKErrsSpSieOynhOswjWal5rHrBVLvtu+jK8Ny0saPcByN6F74fbdm3zi+vu8NjmgjQUnw4iRHoilUOoCI5FCe1SdGIKm8xajIrp0+KgwJmDGdU/vDD4o3GCIQZGisExCiBmckkQlgW29gOIpG7rlY9U9Xvv1A34y38dHzZX6jIfLDX744BoqwQujQ64WJ8xiBcAyWNzKrbtg6YKl94Yh5sIoTGDwmlE5MHiNqUwO2xA0g/W4oIlREMnVnJIwUj1d0liJrKkug1Q9N8undNHys/kedxfbVNqztbbg1voxN6ojJnrJhm6ZqI67/S59NGhJVNpxNjT4pOi8oXcGkYTRkcHrfG11VunSeLxVF1YSYn47owOVOBoJnMTiQnitgm09p9E9pfY8WU7YrhZ8fOchrzQHjFSPJqElMlI9E90xVRUxKQoVGcxAXEVl8BofNJXtsTpgVcwmbnXASKTUnkIFIvJ/bGkRC7TAW/1Vvnn4UU77hi9d+T6frO4xUd1Fd7JuO66Wp6zrBRO1vLhvJbCuW1qbX6xUHisXMk5lHE9mE1zQVMajVcQsBovVmkIHauPQKmI/4J9GRSKKN/vLVOKISTg4W+OrR7/NNz79V2zoFoBZX6LWIhGhjSU/7/Z5b7HDxHa8Mjpg18xwaU4pWaw3TYtRgSMZZxH2mt4ZVJNt0czmNdpECuvprKGxjlJn1NktEmeh4WvvfZYn9zcZX1rw/M4xShL/3V/hOXuCItE5w3E/4tzVFMrTBUvrC467Ee9Odym158b4hInJvVujBjZNy9NuQussAMNgOIs1bjAYNy9wQG8jy9LT1wN14aiMzyFeycXTO9u8+mcHpKbivS/eZHnV89Y7V/n6b/0l+9U57eJFfnh6HaKga8+H95/SuoKXNp4A8IvZNj8+/hBH52PK0vGpy/cZmT7rpHUXwtue1RSPLQYniFNI0rhC4wdNXxtGdU9tPaX2+Q2vzFm+sEv1cMr224HFkabdNzz26+zZKWFQbN0usPOE6TXn6jlGDzu+/YV96kNh+y2HVTC5bFAB/u3WBva1KVujFiWJUeHQKtGmGjMXjPg8IKheUJ0mdop+pIlB4eqB2joUka+89k/c/uotvvnTj1D+RGMWMNzs+J/lNe51WzAoqpNIeR4gJqqHU2JV8PzfJ1KhmF6vmF0TJIJpwa0HShVxUeX0kUhpPEd2ggpgdKuIRU523Qu6F4ITXBD8oLM9Kcfd/hL/+ouXUPcrksD8euTla4+5120xcxVSRto9i/J5DDv4tV2GrUgcBerNJeAYektYaohCtdldWJ8Lmrp0uY0XKM4Sxs4EP2I1dGZLUU5QXuMHxbEaMws1r9f3ub71Ij+7UoANfPzKI15bO6CLllJ59i+f8uT6HmpQFLM8P5r9lv3NKY3NmnWybOhHhsIENuolWiKFDhjJWuqjhnOLHsBUJ4k+Cn6Ue28E1JB7cDUIQyp5f9jmc6N3+Yvn/453rm1z6NfooqVSjkUsmYcKduAHrwuPtzYxRxZIaEmMi57dak6hPFeacyJCWHUxz46QhNYX3DnZpnmoUT5ixgcB0CBCqFbgyOO8BJCoeOv8Q8zWNbNYsKFaOlVkN1A9jerZ0C0hKb58499x1zWzWNGGkojQqAElkUo8VjwPhi36aBjrPg/KvuFsqHkw26C9u8bW00Qxj5jm/oJgx0SjIQlxNfflnAMV4M7JDuq5xLrqOY8lG3pBSIo25QZzW8+xlScmRZcyk0EvCKvJtl1ZWZcsVgJRhEb3WAm8v9zifw4vs7i7zvo7gvJgpwGjHx0zqizRVoDCjVcDqQXTg+4Tp/fXmL1hGYknIFgJaBKRXLFWPBuqxaE5Gxoa1TNgsheiiEnRJ41LmqmvCChsCCgST5YT5vfXWL+jSJLzHAEV5wvsg2NGjwbKs4Rd5IEz6tXWJUDzUPPecAlFYkNlUcwAPZU4QlI4NBPVca04ppCAJtKozIpLmnNfc+oa5qHER00bCqa+Yj4UqF7otiHUUMwjw7rJXMejE8p7x4xX4PQy7xBCBW4slCeJbx6/wWhlUwWZsWfhaVPJIpachYYPHl0qcicigUYP1NqxYZcoiSxCyaZteXXzCTuvHuHrhO7yZB41GCkscTonPj2iNJpot0nK0IsQygxOD3D7FzdorgmzVbcQEBoJjGSgS5ZhlZhdsgTURX4BKIlYCSiVLgqijwZFYq+ccjgac2R38LXgS6GcJYysryFdT1x2qIePqa0h2o1cDJL3Vb4R9J2a93614JruOYu5owVwqPzgFTCdIl2yxFStQCUqHChwSWMlYCVw6kc8W+g0Zsgir/IOjQTK70xQmxuINcTlknT/gObelOYoYBYJPeRiKM6FP3/0O6yrgomKNBKwEiklUElgJA4rgYnq2NZzds2MSjnaWORkl0BMCpc0MSku2TxB9dEwHSr0UmGniWgEBEy3V1PHTXQIhJNT0nKJenRIozVJjWlF4Zsc9+/9/CbvXolcN5pZDJBS7t0SOFFUZBajDFgTqOJAJVmEA4pGDRdFo8nhPRzG3Hm6Q3EqQEJiol9TmMWehtTQuE00EE/PSPMF+uCIkQIY0+5kcM3PS/74xhf52q1vMBHFgkgEKiIksqqv5EQRLxZ0VgJdshTyyy1dSIpSOaZDzXBaUQSIRU6dpMG0+0LSGoljakClRJzNiYsW/fSckQgSG9ptjUTh3dvX+fruG3x5/a1nYyeOPB8+20V0q9zR5F7OqkDFgEuGaaiI5JC2ocSosFqogBoSesg7jP8FkBIfnpWN9EkAAAAASUVORK5CYII=\" y=\"-21.80778\"/>\n   </g>\n   <g id=\"matplotlib.axis_1\"/>\n   <g id=\"matplotlib.axis_2\"/>\n   <g id=\"patch_3\">\n    <path d=\"M 10.7 59.80778 \nL 10.7 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_4\">\n    <path d=\"M 48.189655 59.80778 \nL 48.189655 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_5\">\n    <path d=\"M 10.7 59.80778 \nL 48.189655 59.80778 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_6\">\n    <path d=\"M 10.7 22.318125 \nL 48.189655 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_1\">\n    <!-- Sad -->\n    <g transform=\"translate(18.149828 16.318125)scale(0.12 -0.12)\">\n     <defs>\n      <path d=\"M 53.515625 70.515625 \nL 53.515625 60.890625 \nQ 47.90625 63.578125 42.921875 64.890625 \nQ 37.9375 66.21875 33.296875 66.21875 \nQ 25.25 66.21875 20.875 63.09375 \nQ 16.5 59.96875 16.5 54.203125 \nQ 16.5 49.359375 19.40625 46.890625 \nQ 22.3125 44.4375 30.421875 42.921875 \nL 36.375 41.703125 \nQ 47.40625 39.59375 52.65625 34.296875 \nQ 57.90625 29 57.90625 20.125 \nQ 57.90625 9.515625 50.796875 4.046875 \nQ 43.703125 -1.421875 29.984375 -1.421875 \nQ 24.8125 -1.421875 18.96875 -0.25 \nQ 13.140625 0.921875 6.890625 3.21875 \nL 6.890625 13.375 \nQ 12.890625 10.015625 18.65625 8.296875 \nQ 24.421875 6.59375 29.984375 6.59375 \nQ 38.421875 6.59375 43.015625 9.90625 \nQ 47.609375 13.234375 47.609375 19.390625 \nQ 47.609375 24.75 44.3125 27.78125 \nQ 41.015625 30.8125 33.5 32.328125 \nL 27.484375 33.5 \nQ 16.453125 35.6875 11.515625 40.375 \nQ 6.59375 45.0625 6.59375 53.421875 \nQ 6.59375 63.09375 13.40625 68.65625 \nQ 20.21875 74.21875 32.171875 74.21875 \nQ 37.3125 74.21875 42.625 73.28125 \nQ 47.953125 72.359375 53.515625 70.515625 \nz\n\" id=\"DejaVuSans-83\"/>\n      <path d=\"M 34.28125 27.484375 \nQ 23.390625 27.484375 19.1875 25 \nQ 14.984375 22.515625 14.984375 16.5 \nQ 14.984375 11.71875 18.140625 8.90625 \nQ 21.296875 6.109375 26.703125 6.109375 \nQ 34.1875 6.109375 38.703125 11.40625 \nQ 43.21875 16.703125 43.21875 25.484375 \nL 43.21875 27.484375 \nz\nM 52.203125 31.203125 \nL 52.203125 0 \nL 43.21875 0 \nL 43.21875 8.296875 \nQ 40.140625 3.328125 35.546875 0.953125 \nQ 30.953125 -1.421875 24.3125 -1.421875 \nQ 15.921875 -1.421875 10.953125 3.296875 \nQ 6 8.015625 6 15.921875 \nQ 6 25.140625 12.171875 29.828125 \nQ 18.359375 34.515625 30.609375 34.515625 \nL 43.21875 34.515625 \nL 43.21875 35.40625 \nQ 43.21875 41.609375 39.140625 45 \nQ 35.0625 48.390625 27.6875 48.390625 \nQ 23 48.390625 18.546875 47.265625 \nQ 14.109375 46.140625 10.015625 43.890625 \nL 10.015625 52.203125 \nQ 14.9375 54.109375 19.578125 55.046875 \nQ 24.21875 56 28.609375 56 \nQ 40.484375 56 46.34375 49.84375 \nQ 52.203125 43.703125 52.203125 31.203125 \nz\n\" id=\"DejaVuSans-97\"/>\n      <path d=\"M 45.40625 46.390625 \nL 45.40625 75.984375 \nL 54.390625 75.984375 \nL 54.390625 0 \nL 45.40625 0 \nL 45.40625 8.203125 \nQ 42.578125 3.328125 38.25 0.953125 \nQ 33.9375 -1.421875 27.875 -1.421875 \nQ 17.96875 -1.421875 11.734375 6.484375 \nQ 5.515625 14.40625 5.515625 27.296875 \nQ 5.515625 40.1875 11.734375 48.09375 \nQ 17.96875 56 27.875 56 \nQ 33.9375 56 38.25 53.625 \nQ 42.578125 51.265625 45.40625 46.390625 \nz\nM 14.796875 27.296875 \nQ 14.796875 17.390625 18.875 11.75 \nQ 22.953125 6.109375 30.078125 6.109375 \nQ 37.203125 6.109375 41.296875 11.75 \nQ 45.40625 17.390625 45.40625 27.296875 \nQ 45.40625 37.203125 41.296875 42.84375 \nQ 37.203125 48.484375 30.078125 48.484375 \nQ 22.953125 48.484375 18.875 42.84375 \nQ 14.796875 37.203125 14.796875 27.296875 \nz\n\" id=\"DejaVuSans-100\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-83\"/>\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"124.755859\" xlink:href=\"#DejaVuSans-100\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_2\">\n   <g id=\"patch_7\">\n    <path d=\"M 79.968966 59.80778 \nL 117.458621 59.80778 \nL 117.458621 22.318125 \nL 79.968966 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p8351db06eb)\">\n    <image height=\"38\" id=\"image34a6463817\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"79.968966\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAOTElEQVR4nD2Yy49l11nFf/t1Xvdd7+ru6na77bRJkziJCSjgKEQgCAOEQBkyQAgYgBjyPyAxzAAJhJgwAwEDiBgElEhgMImTOHacB93trnZVdVXdW/fWfZ7HfjE47T6jK92jffZe37e+tdYWf/XjN6NHAvDnb/8GsVL88Zv/ztuzu7x3doMstSxmBerKENJINBG5kbBbszVaUzaGQVFiveJ2f0blDbXXnC96bNYp0QuS3FJPctKdEikj5SJDTwxEEBEAzFzwh7/7dXqywkaFNsJx0Wzzt+9/gegFf/rmN/AIrqoO/U5F4xR4ge8G0AF1rZFOgPGECNYqKqvJjON83QdgWaXUteZob8ZesWRWFzyqDEJAtU5QmcPnCoIAEZGNIL6x5NX0nI+abYzwyCom/M0PfhFXK7762Xd4Ob3ksmk/0Ema9jhWgg4QBHotkbXAO0VZJ6SppawTQhRMVwWTRYflIsduknYN3XBd5kgV8V4AkGUWudUQOw69VyJvbfiD194CQIrYIvYX3/s1sh/mfPY3P+Aznaf85dNf5vxfbmMWkcUr4G7W7eacRDSCdAo+A3+SUXUSYhYgQnmdgRfPUQBROGqvOFkPWawzEBHvFAgwylOLCEGgVGS7t2ZHL7BR8/GjO/9dUO3Avc6Yrz36Mlt/pjj40dsQA7t5zuorn+L0l9uX1UaSzSJNX6AagfCKoBVRQ1Dg84jtRWISibXi4nLApYrEINCJw65T8AKz7ZEqtAjJwFa+4cIN6KuKRDiqaNDrL2zofyvnH//uS2x/YAk/fReZpcSmIVpH/9unXD24TXXgEQGkjQw+dEQpSK4tIkR8prBdRd1X1EOJz8Enimak8H0PAdzcUJwpNrddWwCrEElAqUAiHSufsfAZkoBHov/k9W/yzzuf4fT7h+iNR949QixW+KsZMs9ACswSqv2WQS4TDB5WqJMxcb1p/+/1yLSiW2TYUU5IFcFIXC6pRppyV6Aq2oP1LGXTEiHt1mTG0QTNyqXMdYdC1oQo0UO14fduv4U/knzt5He4cbYgOocc9BD9Hs3NEU0fzFzis8j8vkC6LgMjIYK5mBOlQNQWJjPM2SXROYQQIAU9pYhHB9R7BctbhlArYiHodCoibb/tpiu0DNioUCLgEWhJYBNSAJJfH7P+cIviowTXS2mGhsnPalwnklwLXCei7yyZ3DSMpznZWKLLDlFAMCAtpPOIWUWSZcDlgqYrWd8UBAMhiSDaESOSSIziRbOvXYrViibqFrFMWqa+y8PNPl88eMQ3/+gVnr23jVkKbD/ieh5ZC6IWyEpgtOfwcEHvds0HZwdU4wwERBWRlWR135MNK6xVxCDIi4ZUeZbrjOAkbDQxF3TSBuslmW57TkuPFAFFSwpdBcOTaoeHyx1uFnOkAHvY4G5GopNgJV5GnBUU54LFqEsvq+mYhk5RsxhJwkZDFMQ0QoAQBLujJfvFikxbTpZDGqewUmFXGltprlVOnlrk89FfyIZCNgzVpp1jVUx4+/IO/aRm1uRcLwqIAmk8IQoioYVfQH6hKZ4YZjs5jVdsqoRgFXquMXNBeeQwg5pb29fs50ukiEzrgumqoJzl6JnGOHBe0MiIEHC1LtjPlwx0iREej2hZ+c7yDufPRsgbU2ZVjlsaRBogCoQKCA1ECCJS7SiKM8HqYZ9aRbrHkt4mEgw0Q9ALhS8LHl9nPE726G2tsVZTLVOSSw0RXBFBQqwVdRR4L9g40yqCaF70u353chOsIETB1az7HK0AIiKkIFhJ9AK8wA4DpVPIBmwfOueezlnNxc8XrF9yiFqy9b4gmwrWBwnXDySYiFwqpBU0g0DIw4uG/1gN1jbFRkUVExShbf6yaXe7qRPC0oCMSOXxViFURKcOu0qQawW00x1geHfGWdFHT3PirRItIkJE6kGH/rFn9gmFHja4eYJeC+pRIPYtQkD0Ap07pAp4LxmvOzzq7HKpe1zWPT7dO0Un2iOsZLXKkLUkZIEQJMEqpPCteOtAVBK9kahSIALMFwX3751R3TGkylF7TT+tcAeS2a/kvLl9xg+ubnBxtUOz6xG5Q+nW50gZyDNLWSZIGfBBMm8ySm94+/17vLdziO6mNVMnCCuDrgUhBQGItSJUEjGA3b0F7MFk3CdeJmRjgX6ScdoZ8Ft33+NuOkaJQBUMF3aAjYrH6x3OT7YQACq+KF2SOPK0QcmI8xKtAlp5mqBZ2gy10MSTAVqKiCoFUQri8wXCZYb04PuBGFr7M0gqDrpLyiPDw0cH9D8wLOc5O2bJG9kxO8ryfrPNSbPF4/UO//vkJfRUE0wEKYkBhAmkxpEbR2k1WWKpGkNjNTPjsF6hNwLZgAbQK0EUEl8E1EaSXknK/YCeanymOEsGXKhey5zEojqOck/T+WHK6adHbPUs+yrnTK1QIvB/s12SD3JCGvHdSMw9QgdiFJS1QcqA8wofJCFIbKOprGaYV8xVJCqBtl6RzkE1gk0mSCcSEcAsBFGDbAT+aQe1EAgPpQGZRuzI0znTfP3DT/L7W/+FlZ5lyPnGs/us396hfMny4NUTttI1Xd1QesO46vLR9ZDZVQ9pAnlRkxhHtUzJjWNZp9heRFqBtkGi1xFVQbkP2TQyfd0jK0n/oUT6SLUl6D0N5BNHtaVpeoJVUAQD9eM+089mHMSK96ojxt/fJwwDSb/meDbimBHdrGaUldReczS8xvUX/OSnN2m0J0kcBBhmJT852wcZEQ50jIJmKHAZ+I6H2NLcW8nKpXSPBfk4kl17zMKCEAStSeYCl0PvQ8G/zj/D0fZbfO17Xya/FmyOAmGSE5etDb/sBc77ju72hhv9BYO0JN0qqWcZYhSRmUeLQLjIIIlEBTpEQbkXyc8F2YVG1ZHbe1OM9DzUe8yLhHSs2Bwa9MYQZWutW5bA7rsb/uHffom/v/M5Dv8pYX4XBj9SqDISNegyAoLl7YRVEEyNowmKvcGK07MOrqdQKjBvMlQpsF0PQqFrq4kSdt+tOP1SRpTw+MN9vvrGd6ic4en1PvVWQNWiFWr18dSGfBIxJ1e8+teKuN5QfeoIERSqjkgPLgFVR4rLBp+kEA2z5RaTLYvJHNmFZJMlxI5lvOyiaoEzgXZ8RoG5t2R+t4fPIpM3LabT8B+nr7LbWSP6DfI0w6wExNZzEUHV0DvxrD59yPpAMXjcgBQ0w0i93aKpKkG1I1jczXBFxGcR4QVyZrC5on8ZaYYKpwMlCUUJtYhIB7qTNiTKc/FyD70R0Gn43NEJbwyOuWGu+UbxSd7p3WJ50UWuFdlEIiIID+PXNVGB7QdsJ2X0E0vxDMp9QZRtKT8WbtuPRB1RGwkSkmkbYlQl4MrgtgRR0srgBnRuLKlydF6fUv/PNkLAo9kOA1Oy21/y29vv8KujD/j20V2+dfIKm5ttllw867USYQI4QTOQrA802bRduOm3HwIQQZBfCvQm4nJBuQ/b70dm9yWu09oqtVDYXkTICBH0s1mfO9szXtma8J3DIXGdUBrPD6eHXNUdHvSfcTcd85XBe3y++yHrkPL91W2+5e9RbRJiEKg8UN0Cn2l8CnoDsgGzAle0m0uvwRWtxTZLwdUDQTCR9EpSPSjJ389Zv+Sg1CBA20azaFJ6ScXOy1PGH42wVjFZdCitRorISTniMJuzY5Y8a4ZM6g5Ho2uWnZTKapSM1IVmQZc7d8bsFUs2LsF6xa3ONQHBk+UWUkTWTYIPktVFH7HSbSa1ElVDMqqwlzk+AZ0XDbNlwSCt+MRozGTSo9kYpAm4xDEuu8xlztxmjJI+qXQMTPXCUg3S9rcPkm5Ws5Wt+eLoIUfJFbtqQUdY9pWlivBWdYfvru7wg+ubTEQfVQvCYYU5zSj3I7uDFePHHZpRRIcgSBLHdZVzWCwYba2YngyJKlJWhnPb3mPs9leMkpJctfcZifRIESmdwXqFj4LXRpcMTMmF7TP3OXfT8Qu34aPk0vb40fUBp7MBYqlxw7Z06VqQ/tyUZZWSXglW9y3aWUVqHJvGMKsLXt2a8N1Vjl0m2FrhEo9OPJXTfLQe8kz22yndGhpiFGgZWJcZS5syMCULl3Hqhvx4dUATFIsmY1oWKBlonKJapcSewxQN8WmH8qZjvyh58niProTh3hKd5Q3Ldcagt2Fcdnh9+4y90ZLTxTbo2NLXeABWTdraFeMonrPZKI8SAdUJNEEztzlaBNYuYWXTNsgGhXWKKmq8lyRFQ5I4Vid9yAMv3btgui5Izw2bg4DapOj93orjyrBcZ3RGS842A271rpluFzS1Ic0aRp2SfloRomCYlWTK0gSNJKJ1Q6YtG5dQO82MgkI3aBHY2AQhIo1XhCioKoOUkYPhkuPjXVQtGN2f4oNkMelQ1OBerQhneevHtvobLs6HTHSHvWLJwJS8tnfB+6c3iFEQgX5SkUhHVzfkssE+1yYXFblsKEPCwmaE5+k6IFAysG4SaqspywTvJDf2Zzyb9ZErRXFvzjAvOR6PSE8TNi83GBmweUC7IBmkFeXWmsV5j0m/y8BU3O7MmO/mnE4HAFTO0MtqtPDYqJAiMtAlXdWy0gaNTRR10FzZDuOq+yLMNq5F7HB3zvl1DzvO2fnEFQfdJY8m24TTAjfy3Lk94fjxHtlu2SLWBMWoKFn3U45PdlC3Aw+Gz/iF7Sf8p7+HFJEmKKQI7CVLCtk8j/ORQtYoEViHFCPakGykf4HmdJPjveTO3pTpuqBepdx8ZUw/rXh8tU31tEc0kVv3LzmdDBGFQ+vnt8LWK5QM7I6WCBV48mybSd2e+PM7xxjl6Zqavq5IpaWrKrbUip4qMcKxpVZkwr4o48ePJOK84uXdK6SIzOcFP3P3jNxYHl7sUD3qE1Xk9msXnE2GuFKT5pb1IuP/AYLijWzl/STsAAAAAElFTkSuQmCC\" y=\"-21.80778\"/>\n   </g>\n   <g id=\"matplotlib.axis_3\"/>\n   <g id=\"matplotlib.axis_4\"/>\n   <g id=\"patch_8\">\n    <path d=\"M 79.968966 59.80778 \nL 79.968966 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_9\">\n    <path d=\"M 117.458621 59.80778 \nL 117.458621 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_10\">\n    <path d=\"M 79.968966 59.80778 \nL 117.458621 59.80778 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_11\">\n    <path d=\"M 79.968966 22.318125 \nL 117.458621 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_2\">\n    <!-- Angry -->\n    <g transform=\"translate(80.980043 16.318125)scale(0.12 -0.12)\">\n     <defs>\n      <path d=\"M 34.1875 63.1875 \nL 20.796875 26.90625 \nL 47.609375 26.90625 \nz\nM 28.609375 72.90625 \nL 39.796875 72.90625 \nL 67.578125 0 \nL 57.328125 0 \nL 50.6875 18.703125 \nL 17.828125 18.703125 \nL 11.1875 0 \nL 0.78125 0 \nz\n\" id=\"DejaVuSans-65\"/>\n      <path d=\"M 54.890625 33.015625 \nL 54.890625 0 \nL 45.90625 0 \nL 45.90625 32.71875 \nQ 45.90625 40.484375 42.875 44.328125 \nQ 39.84375 48.1875 33.796875 48.1875 \nQ 26.515625 48.1875 22.3125 43.546875 \nQ 18.109375 38.921875 18.109375 30.90625 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.1875 \nQ 21.34375 51.125 25.703125 53.5625 \nQ 30.078125 56 35.796875 56 \nQ 45.21875 56 50.046875 50.171875 \nQ 54.890625 44.34375 54.890625 33.015625 \nz\n\" id=\"DejaVuSans-110\"/>\n      <path d=\"M 45.40625 27.984375 \nQ 45.40625 37.75 41.375 43.109375 \nQ 37.359375 48.484375 30.078125 48.484375 \nQ 22.859375 48.484375 18.828125 43.109375 \nQ 14.796875 37.75 14.796875 27.984375 \nQ 14.796875 18.265625 18.828125 12.890625 \nQ 22.859375 7.515625 30.078125 7.515625 \nQ 37.359375 7.515625 41.375 12.890625 \nQ 45.40625 18.265625 45.40625 27.984375 \nz\nM 54.390625 6.78125 \nQ 54.390625 -7.171875 48.1875 -13.984375 \nQ 42 -20.796875 29.203125 -20.796875 \nQ 24.46875 -20.796875 20.265625 -20.09375 \nQ 16.0625 -19.390625 12.109375 -17.921875 \nL 12.109375 -9.1875 \nQ 16.0625 -11.328125 19.921875 -12.34375 \nQ 23.78125 -13.375 27.78125 -13.375 \nQ 36.625 -13.375 41.015625 -8.765625 \nQ 45.40625 -4.15625 45.40625 5.171875 \nL 45.40625 9.625 \nQ 42.625 4.78125 38.28125 2.390625 \nQ 33.9375 0 27.875 0 \nQ 17.828125 0 11.671875 7.65625 \nQ 5.515625 15.328125 5.515625 27.984375 \nQ 5.515625 40.671875 11.671875 48.328125 \nQ 17.828125 56 27.875 56 \nQ 33.9375 56 38.28125 53.609375 \nQ 42.625 51.21875 45.40625 46.390625 \nL 45.40625 54.6875 \nL 54.390625 54.6875 \nz\n\" id=\"DejaVuSans-103\"/>\n      <path d=\"M 41.109375 46.296875 \nQ 39.59375 47.171875 37.8125 47.578125 \nQ 36.03125 48 33.890625 48 \nQ 26.265625 48 22.1875 43.046875 \nQ 18.109375 38.09375 18.109375 28.8125 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.1875 \nQ 20.953125 51.171875 25.484375 53.578125 \nQ 30.03125 56 36.53125 56 \nQ 37.453125 56 38.578125 55.875 \nQ 39.703125 55.765625 41.0625 55.515625 \nz\n\" id=\"DejaVuSans-114\"/>\n      <path d=\"M 32.171875 -5.078125 \nQ 28.375 -14.84375 24.75 -17.8125 \nQ 21.140625 -20.796875 15.09375 -20.796875 \nL 7.90625 -20.796875 \nL 7.90625 -13.28125 \nL 13.1875 -13.28125 \nQ 16.890625 -13.28125 18.9375 -11.515625 \nQ 21 -9.765625 23.484375 -3.21875 \nL 25.09375 0.875 \nL 2.984375 54.6875 \nL 12.5 54.6875 \nL 29.59375 11.921875 \nL 46.6875 54.6875 \nL 56.203125 54.6875 \nz\n\" id=\"DejaVuSans-121\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-65\"/>\n     <use x=\"68.408203\" xlink:href=\"#DejaVuSans-110\"/>\n     <use x=\"131.787109\" xlink:href=\"#DejaVuSans-103\"/>\n     <use x=\"195.263672\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"236.376953\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_3\">\n   <g id=\"patch_12\">\n    <path d=\"M 149.237931 59.80778 \nL 186.727586 59.80778 \nL 186.727586 22.318125 \nL 149.237931 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p7c8f74720e)\">\n    <image height=\"38\" id=\"image865353592e\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.237931\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANs0lEQVR4nG2YyZMkyVXGf8899lwqK7PW3qbXWXoWZqTWSEKYdICRwKSLjBOmAwYHjINOuvA3cONfQAeZSQcdhMnAQHCQhGYaWtssPTM9U73U0rVmVVauEeHh7hwiq9QCwiwsIyPTI763fe/zJ3967TvepzHsHbH5Ny/xj3/7D3xUrvOoWObnRzfoxDPeXHjMnewhHZXjvAAQiiMURyaehigsnkMrjHyI84oSzdTFbJQrvDu+xNZkke3TBSbjhPS9lCs/OgTrwHtQCgACjZf6+QEiUFkkiUHAeM1h1WJjusz1Vp/XGlvcTna4qMfEAsaDAyxCiMcBI+8A0AKRd0zQACRieDneQeNoBzndeMp21uHJjYBivU28dVIDco5zHMwxmguLqNKiraNKYeIjdopF1uNTriZHvBg/ZVlNCaUG5OYLrRcMCuU9AJGc/QLGB1iERAyJVLyabAGwGExpBAXJTcOjP77C9e9HyKysF3lfAzwDtn8nA4HuhzHlkmWjXCUUy9XkiCthn7YUROIwvvaS8bXbz2wzXs2vK7R4ShQTH5G7iIYqQM1Y1jOuRwdkqiBUFc4rDl9rMHi/y+K9g9pb3v/uEwg6GxVFR9F/OWLxyhGFC7maHLEWDGipGaG4cxDW18CGPsZ4jfHBPN8qJmIBOLZNhjYh9xGHVYsL4QkNMVwOTjFotHiKNOSw3eT+qz0WHqSoaQnO8+wRiPV0Pp6gqgZXu4eEUtHTY9oqJ5HqmfAoFB4lnqmNOahaTF1MKJZEGawXch+xWfQYVgmjKqGhS8KmpaOnNCjpqCkAK2HMajrkvcs5o+tNwrHDB4LX4EVwAQSzpQBlIiZrihea+yjxtNSsdrs4FP48XApP7jWbpsdOuUimStbDEzQOiyaRklAs7SDn49NVnvQXGVxKubF6wISICEtL5fT0mF44YX35lJ2v9kA8KA/imRclQTRx6MIxuei5FB3T0jMSZdB4QhwGxcAldFTO3fwqPzm+zVI85la6T0dPuREeYBEaYsh9gBaP9cLq2pC3k+u8858v8eD2Mt+5+ROWgyGhWEKpWI9OudA8pfv8lLeWPuTd8SU+OV3mZJrivBA0nozBge1ploMhDVWQiCGcV9nAJexVC/xwdId/2XiJ68t9/qR7n1fjbYzXrOoZDsgEpt4w8QP6tsk7o3XubV1GF6CVQ4lj5FK6eowWR6wMC2FOP2+QqYI/793jXnqNH++8zKSICFwcYJOAMCtJxNCQkgiH84ITwXnFj47e4J23XyTuKx68ohmsZOxUHYwP2Ky67JsOR1WT3IXs5m2OiwYnecra4ogvfv1dvtR8cF4YXT0+z9tYVYyKmF+c3uStxQ9o6pwkqJgWEcHOVxpMb5X82Y0HaKktq2lBAxW5D1HikPWcWZBAP+Z7jz/HYjKjERZkgWE9OWUpHLMYTLgS99E4MlUQiaWrxzRUwV7VmfOaYUpMJBVKHN4LD0c9fqpfoBXkNMKSgaQEf/eXPyBRhuOqeW6JRSjRlF6T+5DXW9t8/vVH3JhzUe5CDBrrFVMXo8Sh8TRUQek1A5vVzK8MiTIYHzCwGS/HO7TEYNSMiYpp6gKtHAfDJl9cesRKNGQ3bvNU2gRfSJ+wZxvkLsTOyRNA45i4uL4/9+BB1WIlqFuNxjHxMUOXcmRajG2MEj+nDkU3mNBQJc4rhi5hLRywrGcooKMKbDBkJRqylE04HmZszrq82XzI42gJrTxBiOfYNonE4lB1NYojwmGVosO0BuhDHIqBzVDicF4xcTGnNuVp0eHprE3pApR4ZlVIrCu+sfIuLTUjEcNaMCKbU4HD0pCSrh6zmozY0EtsjzvsdBbritSW4G5+mYfFCs/FR+Q+xHhNJhWRcoTeEWHJ4jp8A5cxsim7psPTosOHg1WsU3xmaYsbzSOOyib3di/jvfD80gEjl5AoQ0fltJ4h61BqdZIoQyeckiUFm097fLB4kUhVxNoS/GD/Dl9ffg89b89KHJE4QgGLY0EVtZVKaLucd+1ltvJFLsSnbKglWsmEV7NtOnqKRXi1uUNT53T0hMOqTSLmHFTua1AKCKnzMlCO9daI2X8t8c/T13j59hZaOYJrjT6/HF/ltcYWl3WfiN91eAAt/lzeKFVwI9rHNDU3ogO+1nqPUCwaTywWLR6N59NilZOqwbX4gERsvRYwCM77+bVCiyMUy3Iy5pPEs/ZzxQfpBa5eOkJ9pf0R4ypi5BL0vBfWDbtu2swfWHqFQ+ipKZ9NHgOwZxc4tC1yHzD1ASMXztcqFoMJPT3GeMXEB4x8wKFN2ara7NuU3Ou54bUjqswTDyzJk5hhHhP09Jj1ZMjbx9d5YX2X3GtC6nC6Z2QOgPNCSf39rCEPXcLAZWSqmBdERKYLonn4+rbBsW1SzoG4+Xp1ljrULQwP4dCw/Bth61Kb4Icnd7h7eJWjYQOzFjByCU4UmTLnYCY+ZORSSq/R4s7lTiYFjro6z17mUBivKX3AXtU558dYGZyXunDyDoXTrMYjCheQ2xBVCcEwR5yHKib4Zf8KO096SFVb21AFVgzG1y+Y+Ii+rdvNGaDpnCZCsVyKjknEoHBEYs89MbYJm0WPTyfLfHi4ynC3hSoU2bYCgerNEW9d+wjnFWMTowqQokIrBSoi2DpYJHsc4gPYLnvz6lLkPmDgMqxXjGzKbyeX2cvblDagF0+Y2ZAno0Ve6e7y5YUH9GQ8r+haMH48XeX943V29zvEGwlrnzpmS4qyDbw+5I31HZq64OF0CeM0ykgtrZ0DJwTN/07RZZ3w9wZXuJnsMXUxQ5fwbyev8O8fvkjyaYxYyPY8kwtCvuLwzQoqIVSOz7aenOv7qZ7y1CzivCJUjqxVML0J/Zcsz60c81pnh144oaVzHuc9Nk6W6KZTVAVEIYgglRCkfYfJhGjk+fWD5/jW2l1Kr+npMV9a+ITdq20+SZex2xniFFXTg/aEmSGMKlayER09YVnP6lySE8pYo8TRjSYctZvEuuJaesjl8JiOnpKpgi3T44fHr9PvN1m+MiYcgcsi8J6orwmqVAinnqDwZBsRh3/YoqOnTF3MrWiPb1/6DzZXe5zcbnBcNTguG8xsyHGR0Y2n3GockIih9IpEHIk4enrMp34NjSNQFuM0hQvZqxYY2IxQLL84vcnjzWVavQlKPNHQ1xsR6wnHEExXhe5HtYptbQq/Hl/hq50P+MXoJknbcCs8pKVmTMK6X45cynbZZTdeIBSLmauJaRAAFQ3laKmSDyfrvNdf5/C4hZsGEDrwQpBUNBs5w2FKupDz5YsP+U3/IvFoTh95STT0BLPnDOr9etOYDCxvP73KN7u/wnjN33/6Nb5+8QMW9IypizitUu4P13kyWGQ8SUjSkgvtIevrAzKpt28K6KqK59I+78sazWbOsGxAoVFNQ5wYkshw7bk+t9t7FC5g92iBS6XHhRplKtK+I0g6OapIQAAPk4cLbDy/wjc6v+G4bPC9B3eojMaMI4J+gC6h7Dm88sy8cOXCSa2z1Hw3DmgR/mLhHm9kjzms2oRiyV1IKFVNKXO2f1Ss8KuTWwSPEnxgQQlSWVwgBMvtMcpEuFDhYiE5VLw9uMHLqzv81erPuN28yTsn1zicNrAXFEo8V9onLMUTbqYH3MkecvEZuWwA6z2xwGeiI4iOsNSjhZEPGLiE4zkvWq/YOFgiPRCU8aiiAu8pm0LwSneX++ESQW4po4BwAr/cucznFy5zO9nmj5ofcyd7iEORSN0NEjG0VEkilrOGZXw9u1Bzr9n5fcvvxgq1onDz+4q+aVAOYlozT3yYowYTUIrsyKKez/aoGgpVWFTpCSYeu9Hk+1ufZaNcxXlFR09Z00OW9YRVPaarczKxWOT3tMgZKOZgcl8Dtv5s7iFzIVr30f2ijVSKZOAIjkagNYiQ7uWoL6QbnF7XVM0QXTgaB5bmE9h5uMTd0+sMXK3fzza/Z9LmWUBaap2l+f0jnN9PBGI5G13Vvpy4mNwGqFxID0swFVIafKBxsUZdCGaMbxiqVCHOI5UnnEB8pLl/ssrjconch3MANagz74T481CegdIiaBFCIBIhESEUqYsCf34WLuRg2iI5UAQnM/xoBKbCZzGmEaAWlCbp5oRjizIOXTp04YlPhP39Dj/t3+Kj4sJ8rOQJz62vPXGmSJ8NZ0gN5tyj1GCf/d92ucjWTo/2Y4fkBklTiEJkVhIf5aimxHzz5m8ZXY4Q6xDrCQpHdOoJnka8/3Sdu6fX2ata5F6w/n95iP8bwrPDeo/xntw7Sl+Hf+BSfju7wr9uvkjr/Yjmdg5aQZqA94ip0Mfj2ohvLd7l6HOOycUUm2h07klOHOmhYI4TNoZL3C8ucmhTcq8w/v8BMT/PgOTe19+BqYeRU2xVbX58+gd898Gb5L/q0rtvCE6mYB0+DnGNFJ9EyKwg0KJ4MYx58/VPuL/xItm+0NosUKUiPRBMM2Az6/FP6jXGKwlvZI+5qE9xytRVKGfeqSX4sU3qMeg8yUcuoW+bPMjXeef4Gh98fInOeyELDw3poxPEVHhVSx6pLCiFLw1BnbCKv179Gd9efoH0UJDKEc4MDUB8SDCN2dq9yHevLnJwq8XnWw/p6THZfABzNgx+XC7xk5Pb7E4XiHXFxEQcjRuMBynBfkS2J6zvOppbE8KnJ/jRuC6ls0lib7Fmf634H8ef+7g+JWOIAAAAAElFTkSuQmCC\" y=\"-21.80778\"/>\n   </g>\n   <g id=\"matplotlib.axis_5\"/>\n   <g id=\"matplotlib.axis_6\"/>\n   <g id=\"patch_13\">\n    <path d=\"M 149.237931 59.80778 \nL 149.237931 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_14\">\n    <path d=\"M 186.727586 59.80778 \nL 186.727586 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_15\">\n    <path d=\"M 149.237931 59.80778 \nL 186.727586 59.80778 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_16\">\n    <path d=\"M 149.237931 22.318125 \nL 186.727586 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_3\">\n    <!-- Happy -->\n    <g transform=\"translate(148.624321 16.318125)scale(0.12 -0.12)\">\n     <defs>\n      <path d=\"M 9.8125 72.90625 \nL 19.671875 72.90625 \nL 19.671875 43.015625 \nL 55.515625 43.015625 \nL 55.515625 72.90625 \nL 65.375 72.90625 \nL 65.375 0 \nL 55.515625 0 \nL 55.515625 34.71875 \nL 19.671875 34.71875 \nL 19.671875 0 \nL 9.8125 0 \nz\n\" id=\"DejaVuSans-72\"/>\n      <path d=\"M 18.109375 8.203125 \nL 18.109375 -20.796875 \nL 9.078125 -20.796875 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.390625 \nQ 20.953125 51.265625 25.265625 53.625 \nQ 29.59375 56 35.59375 56 \nQ 45.5625 56 51.78125 48.09375 \nQ 58.015625 40.1875 58.015625 27.296875 \nQ 58.015625 14.40625 51.78125 6.484375 \nQ 45.5625 -1.421875 35.59375 -1.421875 \nQ 29.59375 -1.421875 25.265625 0.953125 \nQ 20.953125 3.328125 18.109375 8.203125 \nz\nM 48.6875 27.296875 \nQ 48.6875 37.203125 44.609375 42.84375 \nQ 40.53125 48.484375 33.40625 48.484375 \nQ 26.265625 48.484375 22.1875 42.84375 \nQ 18.109375 37.203125 18.109375 27.296875 \nQ 18.109375 17.390625 22.1875 11.75 \nQ 26.265625 6.109375 33.40625 6.109375 \nQ 40.53125 6.109375 44.609375 11.75 \nQ 48.6875 17.390625 48.6875 27.296875 \nz\n\" id=\"DejaVuSans-112\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_4\">\n   <g id=\"patch_17\">\n    <path d=\"M 218.506897 59.80778 \nL 255.996552 59.80778 \nL 255.996552 22.318125 \nL 218.506897 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pe9780ec97c)\">\n    <image height=\"38\" id=\"image1627881d6a\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.506897\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMCklEQVR4nG2YS48kV1bHf+fce+OVmZVV1dXudrd78AtsD8ZYRgjEZiTEgt3AlxghsWENX4CPwBdgwYYNEiA0s2A5YmAsDSMP9vjR2D3d7erqemRmZETcF4sbVbbxhBTKeGXE//7P//zPuVf+9Dt/lT/8ywesvvuckJTN8wXuqaN5JqiH8Rimw0SqE7ryLJcD63bgsNlzq95xv7ngxG1oxNOox0kEYJdqPhtOeP/iJT78z++w/kiQRNnyvEO5Jny1zdft7u0XyTaTszAMDnNuqZ8L2UB/OxMWiewyuISxEaMJn5R9cOxMxYXvcBIZ1dOnePP+TWy4CB2dnahf2TA+W9OcZbLMOKSAyMo3NwHJYMcjQ6oyISn+qqZ9roR2ZqlL3/gDUJ4bakI09N7xaLvGaaKxnpyFfXAYTdQmoFKGf3u14+ErHXbn0JAh/Rq28tdIE7AaAIUQDObKEJYZfxihSpCkvERBTEK+Rnk/OjZ9TQiGOFgI880koJn6cOBo1dM5j9HEwZ0t/dkhi18JWUFihv/P1nV4M1j1GTKMvUMU/K2A1PFmJCIZ0fJrTMJIRjQRRMlZSF6R3qCDoEGQAGGRSSulsYGVGxmiZd0O7F7eM206bA+iglxr7QbQfJDAmimhoyFOhryMaBcQAdWEmoRqRjUjkm9C01aeykSGYElJ8JrJa9A6oJo5aCYW1URMikoiZsWZyCt3zvjl1lE9tZipJJfEeU8gSSDPjNldRIMlmoxpAs7FG3asJlQTlY0YKTq86hv2o8OPlnxZgUBuI9ViYtWNhKiEqPzqbI183PG4gnDieXD/jN9cn/Li71zy7h99QZ8qnoxrngwrzoYFZ7uO3a4h9hYZFGsvR6BGq0hde4xJNC7gTEQAq4nOTVQaOd0vyFmYvuxYfWwwQ0YSJGeIVcUoS8igAboM2cLV2xN37l5w0m45dD0R5XuLX/CqDTfSUhF8TiRgyBmfwWIEsxewEWvSTZiuw9a5iYNqQMmsKos5yGzrieGuI9vIbtNgPm+oropPhRZCm0lNZvnyJX/x2k9Ym57L2DEkx5lf8IvpRV61n+OvxTVrK+ZMI0IjYLWfimAnS6oDlSlepZJxGqm0eJPVyHHdF5DLzMJMrNxAysInD0747PkxPigvrLectFs663nv4H+5585xEmnUcxpW9Knig/09vtc+pBL5RmLq19Lebt44QhLoacVYBXRRzBb5mrHM28oN1BqoNdCZCScRJbNcj7yzfkRnJi5DC8Bvd48KCyiOSCOeTidWZuDz4Ygf9q/y/cVnePK3XAPAXrxmAHBXyrCuGNcGM4Oykkizb7TGszQjB3bAzJnWx4qIkrLQmYm12dPpRERwEhmSoxF/8zEnkVo9t9yOf3z6Hg9eOuO9akPk2yRYFNRDNkBQhsnR1VPxL8lUGrBS/MtqugF1FRr2qeJiahmiRSVzVO05n1qOqj2+tZz5Ba+2p9y2VwzZUUmg04nROCoN/M3//Dl/99bfc8+Gb7FmZU6ObABb7MFporWepRtZ2ZHWeBZ2pFGPkonAVWj5fHfIJ09P8Nuq+I9XdBDiKmKWnnhR8cabj/izu++XRNLxJqRvrp7y088e8M+bd/jB0X99izGFUkiTy5g2sqg8y2rksNrzQr3luNpx6HpWZqDTiUbnLkIjp7sFKQuyV178keH2jxWdBNkb0llN88TyydMTHvtDGvUsdGKhI2vTc8ddsVgN/OjLN+jzrwmlxAIsLDPrVc9x07N0Iyf1lrXd4yTS6Sx0SRgSEeXQ9iwqz+rkgvpO4MPuLtIb2vtbjtuRxga6tycOqz1HdsdKBxY6MmWDk4iRxO3ljk9/fo+/Xf8JPzj5d176mrdZDRAWkA89R13psY6rHUe2x2nAkL8B6joT13bP3cUVZ8OCO90VR2/1ANxvLljakaUZuG03DMmxMgUUgJFEIqEkFm6ifaL86wffhbfgr+/8kGa2DEVK0W2WI0d1z8KOxQpmUCoJnTs8lUxE8dmgkjipd7TW87Q/AOD1xSkvN2e8Vj/lN6pnHJvtja4iwpQNMStxbsJCUtwW3MOaf/voTb6YrQZAsxSnrl0otVEyOqdvREhZSfOLfDb4bBiTY0wls+40G1bVQB8qrkJDnO0lZeUidiQUIwmf7c1HC2vK1dhg95lqI/C44V827+BnvVkNuXSowBAcU7L4bG7AIAmlOPT19WuAhjKQxgQaE0hZ2caGTieMjDwNa9Zmz5AcV6mw0chEJZGL2HG2WbDeZ6ZQyuLPLu8Rj8ABlgwShZCUIVqufEOl4WZkSr4BkvJXJcNJZEyOkMv/OjtRazFTQ7phdkvm4+EFHg8HpKzUGjiudvhsGM4bDlNpebKWhsFcix8B0wv7vuayabCaSFnY2ZoxGZ72B3y5XTJMDjMX+YNm4KjusZoYgmOIlpAMx1V/MxnZxJbL0PLf+3t8eHabq22LaqJpPKtmpB8rqi8t112iBriaGi6ScsvkwpgZBT8p26EmJuVMO2oT2YwVm11DmCx5NBCFnUtsD2r6pWNZTYSkTNEwqGPfOlQKW8/Ckk93t/jpwwfUH7Ssn2V292F7KxEfGbJCNQKSSRbIwuluwWnquGV2WDuAGUAvHNu9YetKC2nOHe2p0PpC8+Jxoj6P9HccZ+9aTuOC07sjD154Tj9WNNV1GDNDdnza3+Kjs9ssf9Jy5z96tPc0ry95/pbh+IPI+RuGOfJkW8qij0UyJSvnWlmfKdW5QXoDAvEgIBGWjxLVRcb1CdcHmotI90g5+KUQB8PlvmEKpfDXGuh0ZEyOR7tDdn3N/oXMxestV7+1IrRKtYFnv2vYfae8P5nSx814eBIOi8ZCU26UhyB3EdsGjI30v+fZvFbhLgz9XYskS2zK1E5vDywaz8X5AoDKRsZULOF5WLCbKnIU/B3P6R0Ql2gXI9Yk8mThrAUpjWWsYDpKaFR+vHmVP24fYo3PaIBkBQ1AFEQTOQsCmLUnrT1uMfDK0XPudZdYiXzRH/LB07tFe0A/VDzqD2mN54v+kN1YkZNAEsQl6tajmtn1NbG36KhkgdAJ07pYlp8sPzu/xyfHHdbtMtEJbpvJVkjW4GmQNpD3Fu2VtIhMlWXja7ahYkqWh5dHDOcNMim5LpXhWb9g5ytON0v6q4Y8GMQL7JXxyuK9oKMgFnQqNuGXc08aIQblbNfxD8//AJuM3EzLJYLtBfWGbA1mX1icvDBow2PJnG4XDPsKf1mjg5K1JEvOsJ9cmUU9bxGvpTOeBPGC2wl2V74RuqKn6QDCKpM1I1FIvrD/ZDjASiqhhAJCPagXSrYWjzGDEK4c8allqkuKO19m1LHNIJCSMk6WcVMjg5KrjGRBolBdCu1pxkwwrYRUUZYluky2GZ2EtIiYJmAks3YD1vXFR5ITdAI18+QzFLo1QgEv5L6AySI3wiUrKQlxVKKC2RhSm5AukAeDnpdMRGB7X/DrXAZUZzAZ8UI8CohJ5CSIZH7/4FPs/lgJnZDcXNU9mKksG2QDwUGqhFhR2sr5+vW5GQUzCskVsDoJ4yIjSZBBMZPglzAcC36VyaasWUgGGYS4LPrMe4s9HHj79mP+sP0E298tIbR70CkXhmJZcckGYi34A/CrTFjG8lIvmJ1iB8GMc62Pcx1VkCDIhcNuynJWnFsrZi2RikRSO68HSEaXnnvHV3z/1vvcMxEL4DaFJZkL6rUbx1oYXsj4dSoiV9Beqc8ViV9NYpIt7zcjTAcZ0xfQOkJyRYfZXIMCVEjVzF4WxGREM8tq5JbZ4nPGSoJUccMUuZwnC+NR6dVMXzzHjFBdFGaunfqaWTNArMuxBgqoGmI110K+NhtLZb/O6pwtB/cvOdt3/NPFuwzrn2OzLaPKwzwpqb5iDcDui+A1UpYBMjd6TLYwKwliMws6l/OwzDfPydxaXQ9GfGmd4yKRbcasy8pQTMqYHA/sBTZ0hU6kZKXt840jp3m0dl/uRQcyA7lmCubJTPtV6mdTwJcFlwL2+rpOQtZcQtnOyw82UrvASbfjdrVhpRFN14xpCWVshGkthA5ClzGDIL4ch1UmNgX4zfOzH6V6bol3MidDCVeqi7Y0yLzmmgvwLiE2o3Vk0Y4YLWHy2RAz/B9kc6Nsfl0UZQAAAABJRU5ErkJggg==\" y=\"-21.80778\"/>\n   </g>\n   <g id=\"matplotlib.axis_7\"/>\n   <g id=\"matplotlib.axis_8\"/>\n   <g id=\"patch_18\">\n    <path d=\"M 218.506897 59.80778 \nL 218.506897 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_19\">\n    <path d=\"M 255.996552 59.80778 \nL 255.996552 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_20\">\n    <path d=\"M 218.506897 59.80778 \nL 255.996552 59.80778 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_21\">\n    <path d=\"M 218.506897 22.318125 \nL 255.996552 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_4\">\n    <!-- Neutral -->\n    <g transform=\"translate(215.106099 16.318125)scale(0.12 -0.12)\">\n     <defs>\n      <path d=\"M 9.8125 72.90625 \nL 23.09375 72.90625 \nL 55.421875 11.921875 \nL 55.421875 72.90625 \nL 64.984375 72.90625 \nL 64.984375 0 \nL 51.703125 0 \nL 19.390625 60.984375 \nL 19.390625 0 \nL 9.8125 0 \nz\n\" id=\"DejaVuSans-78\"/>\n      <path d=\"M 56.203125 29.59375 \nL 56.203125 25.203125 \nL 14.890625 25.203125 \nQ 15.484375 15.921875 20.484375 11.0625 \nQ 25.484375 6.203125 34.421875 6.203125 \nQ 39.59375 6.203125 44.453125 7.46875 \nQ 49.3125 8.734375 54.109375 11.28125 \nL 54.109375 2.78125 \nQ 49.265625 0.734375 44.1875 -0.34375 \nQ 39.109375 -1.421875 33.890625 -1.421875 \nQ 20.796875 -1.421875 13.15625 6.1875 \nQ 5.515625 13.8125 5.515625 26.8125 \nQ 5.515625 40.234375 12.765625 48.109375 \nQ 20.015625 56 32.328125 56 \nQ 43.359375 56 49.78125 48.890625 \nQ 56.203125 41.796875 56.203125 29.59375 \nz\nM 47.21875 32.234375 \nQ 47.125 39.59375 43.09375 43.984375 \nQ 39.0625 48.390625 32.421875 48.390625 \nQ 24.90625 48.390625 20.390625 44.140625 \nQ 15.875 39.890625 15.1875 32.171875 \nz\n\" id=\"DejaVuSans-101\"/>\n      <path d=\"M 8.5 21.578125 \nL 8.5 54.6875 \nL 17.484375 54.6875 \nL 17.484375 21.921875 \nQ 17.484375 14.15625 20.5 10.265625 \nQ 23.53125 6.390625 29.59375 6.390625 \nQ 36.859375 6.390625 41.078125 11.03125 \nQ 45.3125 15.671875 45.3125 23.6875 \nL 45.3125 54.6875 \nL 54.296875 54.6875 \nL 54.296875 0 \nL 45.3125 0 \nL 45.3125 8.40625 \nQ 42.046875 3.421875 37.71875 1 \nQ 33.40625 -1.421875 27.6875 -1.421875 \nQ 18.265625 -1.421875 13.375 4.4375 \nQ 8.5 10.296875 8.5 21.578125 \nz\nM 31.109375 56 \nz\n\" id=\"DejaVuSans-117\"/>\n      <path d=\"M 18.3125 70.21875 \nL 18.3125 54.6875 \nL 36.8125 54.6875 \nL 36.8125 47.703125 \nL 18.3125 47.703125 \nL 18.3125 18.015625 \nQ 18.3125 11.328125 20.140625 9.421875 \nQ 21.96875 7.515625 27.59375 7.515625 \nL 36.8125 7.515625 \nL 36.8125 0 \nL 27.59375 0 \nQ 17.1875 0 13.234375 3.875 \nQ 9.28125 7.765625 9.28125 18.015625 \nL 9.28125 47.703125 \nL 2.6875 47.703125 \nL 2.6875 54.6875 \nL 9.28125 54.6875 \nL 9.28125 70.21875 \nz\n\" id=\"DejaVuSans-116\"/>\n      <path d=\"M 9.421875 75.984375 \nL 18.40625 75.984375 \nL 18.40625 0 \nL 9.421875 0 \nz\n\" id=\"DejaVuSans-108\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-78\"/>\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-108\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_5\">\n   <g id=\"patch_22\">\n    <path d=\"M 287.775862 59.80778 \nL 325.265517 59.80778 \nL 325.265517 22.318125 \nL 287.775862 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pe8ab745677)\">\n    <image height=\"38\" id=\"imagebe6dc6b3d5\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"287.775862\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALwElEQVR4nE2Yy44lV1aGv7X2jtu5ZGZVVmWly2W7q23cNi2rETQSAiHgARjzDrwB70DPmTEACZ6ACUggBggx8AAJu20jsF2uSmdlZuXtXOJE7L0XgxWZRUpHRyfynIh1+df//2vLL/78VxZ2kFqh1NAfGvNX8Og/t+Q2INkoUTj77QYMFj8UUifMzjLro0CaC7PTwux04OUftYQdzE6MEiF3wuPP16RFxflnNabQnhvtdWH1TuDmo0J7psx+NOYnCQR0KFx9VKPXHxupFeqVMS7AIrRvDMkFKUZcj4Q+owP+sFrINez2lXEhjAvQbAz78f47q2cCAqmD81/MSDPl6PPek5oJ24eKZCP0wvZJYfdA2D6KWBDGvcjtc4iHH19wuXvE7ETYPk34n5LbSOoCOhRKHcgN7B4VNCklghjkDtLcCDtDilFfQ3fhCUmB3YPA+hlsn0Tq60jcGGkGpkLcGmEn6IcrVnGGjoHmFlZPAz/95ffEo/kKPoOL9hC6DMCwCMRdZHMYaBYBTYYFKI8Ghr5BRyFuATNyI0gxwrbQXhaa60zoM9fPG0oEHQSAcQbjXMidEbZCd24svofzZw2f/uYLvpRnrJ8G9n5+zl999PfEWhMPuw2XR3PkVUupjVLB5nHg5kM4+FKoNsbsxNi+UxHXQnUL9aogWWjP/MG7B5EwGNvDwPqdijSHUnlCGAQEySDZqzwshfbK0JvI7z78jp//3gkvtg/44wdfcVYaYjFllyPLxZarI8UGZf1Mya2BQL32VmkuhLWCgRQY5gpA96ZQX42kdxpyJazfVYY9T65Ufg8pjl0pQIG4ElbvG6VWZidwOc74i6N/5otxn78+/UP+8h/+lFjwjIcU4bJGM4RPbnmyXPPy7IDrn3QsXxRKhHSYKG0gDIqtoL3OVDeZeL6iaQLXH9ZQIGwFC1O1gmEFJHi1AEaFai30D/3zl9fH7B/X/O3Z7/PF33zKoxsjxunb201N2E5t2VY8OlrxJ599zVfPn/Afn/8Gh58r1UUk3grda2N+OkIxcquMx0typ4QeajGGPaHUgjTmVQtABhOZhiaTl0K8VUzhdtdwXgb+5Yuf8e5ZYZwpMWrh7HaBnLTErbA7zMwXO970c/7u5S+x72bIuz31n12TvnlMdxK4eS5cf1Sjw9QeKjS9rQjq13UUQL1y0UCNEgzaQmgTP/30jBf/+AFDCnwz7tP9T83YeWJxNTasX89Z/ihYgJ2CilFMKEWpb4X0Q8urMaBJWL9fKI3B9OCwFXRwcgZAwGQCvk6XClj2gFEQNao68dHynOtv3+P0nQP+9YNPaC+M3Dr/xdPVgvo8ENfGuPBW9ruKXJS8juTWGB9kGJS4cXKVAa8CDuqsdh8Qyj2+LPj1u4ApIFkwA1Xjv28f0VxlJAX+6eRnAJQAphAvL5YsLj3jcek3G9Y1AyCD+jQlIayU6lawPaPg3KVJMIVST4Gpt8z0/wWE0wXiLzGBpIxj4MXlAXsHASnw6vtDFktBxymweOJYGfZhXBang02AApi3N66U5kIIOyiVkM2fZAIWzaskU1B1gWAeTBZ/N0GyIKP497OQhsC4iwy/JeRlIl5GxvnU9mDEuBHSDMalYbUho6LjW6yYGnGjNG9cfHe3SuomPB5CaQwTlygDEEPUvFAGJEVGIfSKJEDESTzX1BfK7umI7AIY5Mawym8ULcCwb/eEKneV0omHFEIPuRWuHgdPILislGgTrhzoFotXz0AmvBEMHZ2YxwcZSYL2SrwRDr42tm9qNk9dN3PzViniODdKWzxSwDqbwGp+06tIiXD7vIBwr3+qkGZGmRWI/j8JTgmWFEsCaiBGnhdknNqZXWelCLmC439fsXqvY/UskFohD5BriFbZND2OFWkyGjy4koTQu4WpbhULLjWYt7C0BapCaDOqBTPBTChWsKJQJowFx1XzOtxPJ8D2SNhcdex9dU37Zs7VhzXjUsgNqAur+E1GwQalJKFkwUa9ny4LRq4hzYtP4qSDyIQlQLQgYmg0JE7JTlNpbaY/ToT+7YTmDm4+CIyHM5pXN8xPM2EHcQ1RkriOjU6USHC8AWHEeWxZsHaatp3eA1S36kUJhaKCTsFRFAnFWT9P4mhM7XTM9kcFHYRxIWye1NQvEu3rHZvHAeuEaNNoh16oVk4Jpt4+SbB5WuBg9OlSp4OShO4k0J0b/WFke6zkvQRNJsQMWlCUIgWb6F/6QNwKuYVcG7rzVuTOiNuCtQ1hM9BdtLz5JBBNp3ZEKBXoAHEDOtqkfcrtIhJWSl4UqAuhVx7+OjP/dkV/POP6tmL9rGI8Ap0VNBRMCmbBExqEuBbqGyfkuHFCTzOjPRVmLzeUWYUUozvtie/PiTqRngUjdz51FoXqVgjZqG+M+f9GHnydOfkDJR8UQu/Ly/nv7Lnvn/vvuMOaOLDMQG8D1a0St/Dw1wlT9/w6wuw8Mfv2BgtCftBBNnTI7H+biKEXSuNgTp3BzLBKkSKTQ/DNplRC2AlyXtG9FoYlpLm/7x5lbJHRyu1FzoIVpQyB9kaJawg70MFo3vS0F4HqbA3DCE2NVYFcKaqGFaO+TsRqBamIi2edQY0EhG2YcOAt3R766HevhbiZ6KSC/p1E2B98+IqQxgDFJzq+iXSnRq6FuDbiJmMikI281wItFpyRNftCgwi6y0Qd39LB3RjffbYgmAhxMDbHrga7h0Z/5BUudUG6jBX/kSXFssCoVJeB/W+gu8isnwSqjSFmpHn0qhKwIMQ+QxEkGZKKr41jIXrmkxRMgidZvJXm9mb1TEgzl53cmWNyMn4U58A7fSQJ1VVg/lLY+25HbpTm2iviCXsSOnqgMpZ796GpQClImQKDSSNHH20dBB0cX5IdX3f+yz2ZkBeTXc1eVctuZ2SndKfC4lUmbBPDfku9yuiuUIIShsnBZEN30x6r3l4Z7+5p3srQi09jAYpzmY5MLhVmP3pwkqC9Kowz4frjgImT5fiwYHWhPo0g0LwxmsuR3EYku9utrwdy40cOMkmFDhmrAlYM1BN04Q9EHV3ZLQrJaQuZNE6KEXujPclIMtIs0L4ZSG1gXNbkBqoV9CkwLpT6RmgujLgzTAUL4lt6KlgQdMj3/oDpmk2YLk1AAQtKmkdvpSZneQFyNBfRKdhq44obhoIm83bsCsvvM/2BEneGjsKwJ4Qemlujus1+NrHxm5Y6TJUrUMAqRUvBUAhgVaBExUQotbI9jMQ0dx9vceJHdcMWpsOTsCuEreMibBJihomv+M2Va2CaB9KlOqCLAz30CdllpBSwmhKVsB6nihlWBSQVKAa5kNvKPdtcWb2nxGHfGTvX7h7dr4tPahRyrbSve2/FZvDMJydoUbE6IlYhabI0BpIcQzI6hnTMlCq4JGTDar3/vV+HYRnItbDbFzbHhTguClK816V2GpDBp7BE2D5UutcB3YweVMreEnMbDqA7RZow+XtP6A7IkjMWKwd3HZHBZcmi3mMrN4ESoT8Uhn0oB4lYGsMqPyAxmex1npYCgXFP6B/XzF5m6AvEAAlkGH2z3g6oKqEO5Eb9ZEjAasX6gIzZaaBS0ry65ycpRmkCaRa4/klFmsH2uFBaY36wJSJAXZwsp63GaoGNa2WuYf0kILmj+6GgQ8KaCOGtuZeciesRyZFS65SUULqIBneSOuRp4XBCLHVgOIhsHivbJ8a4NJr3VlQx8+njUw9M1Ah1xkzIg1tomw7npMCwFD/W7JbMXvWE7Yib/oJkn0DGTDAjNw2lUeImTxuRt1hsOqU0Ic0qxr3A5pFy+4EfS8WjLe8+uGbMgeP2ZqqsGDK9iqhDZVrvdXC5GPaF3Alj19Fe1TQXg/NRuVt2BauU3AbSTMmtUqIQN4X6asAQB7/6FPf7gc1TYTxIhP2Rw4MVqSiXm45/G58T7zxUMXm7PN9ZdXWOAxgXvqkPezKBtaGe+MqCkDpltxfYHbgJzA3sHhYW30XiJrif7zOlVnLjlro/TtQPeppm5IO9S862C3ZDpP+vA/4PjWbh9RAo54cAAAAASUVORK5CYII=\" y=\"-21.80778\"/>\n   </g>\n   <g id=\"matplotlib.axis_9\"/>\n   <g id=\"matplotlib.axis_10\"/>\n   <g id=\"patch_23\">\n    <path d=\"M 287.775862 59.80778 \nL 287.775862 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_24\">\n    <path d=\"M 325.265517 59.80778 \nL 325.265517 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_25\">\n    <path d=\"M 287.775862 59.80778 \nL 325.265517 59.80778 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_26\">\n    <path d=\"M 287.775862 22.318125 \nL 325.265517 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_5\">\n    <!-- Sad -->\n    <g transform=\"translate(295.22569 16.318125)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-83\"/>\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"124.755859\" xlink:href=\"#DejaVuSans-100\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_6\">\n   <g id=\"patch_27\">\n    <path d=\"M 10.7 104.795366 \nL 48.189655 104.795366 \nL 48.189655 67.305711 \nL 10.7 67.305711 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pa76ff2407c)\">\n    <image height=\"38\" id=\"imagef7aed10df3\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.7\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALkUlEQVR4nE2YyY5sSVKGPzN3P0OciBzqDtW3qqjqrgIWsGDBDsEbsOFNeAAegA07ngOJLQtAQkLsaAn1oqHVNE3X7TvnFMM5x93NWHhkFiGFlJGZ4ee34f/tN5fv/vpv3L458c9/+rf82T/8JZtfdnR3EI+OB3j4CazPKjpl+jETgjGfOmpWvCpkId5FxABvby0AoIuQ9rB5Zxw/V9YLSHvobxzrYPyLt3y4n/j2r474b9+BGY+vWL5c+PPf/xn/On9J/JBID6C5gVovhdobiONVOd2M6EMgzEK/CPEEUkEKhMWJJ/AAZSOUATwCCmUQxvfG6XNBTBAX0t65+8cf0f/JDTd//ILLv/sNEuMPwLwKvRY+lS1pL8STY+l8+AakCnoK6G2k/9QykHewXjrrtSNZCAvtb0cnHp2wOLoVyihAO6s7OONbYb0CCw1suncOP7vi+Edw9feB//+KFOV/T9f0WuhvwSLkrSAVXFpZwiKEWYhHmJ9BmZw6GfFe6e6E9ABxdmoHLkJcnP6uvWsS6gDrVpjeGKBohtqDmLD7b+fud0G++RL75a9b1tyJVOHff/MV/7V5Tto7x88FV0gLpAP4LNQEYYY6QpwbUG4CZeMc/2BG1PGbDl2UdBDiUQhz6zdxkOKECrUTho9OHVqv1aEFfvkLKNcb1BwA2W2JONRfTxwPW3bulA2EBfLUQMSjk4A6CMvOWV9UdJvph0wQx99OeHQkQDwKFp08CeuuPSQsgmahv3Vq34K1AP3JQQQc0sFJr2+woMh2on7zeQMWFhjetQg8OHhLPwLrhVBHx4JjgyFjQdSZDx0+B4a3jZG1c9IDlEmofetTj419mhtASyDV0Qq1g3hyaicgYBcb5LaH59d4CkQAMQjZWS9abwG4OnkHZTJ8NNJ2RVwQcdwFXwJ6DGiG7ha0tuyeXgq1B+scolOj44uQdw2w1MZIC0KcjSrtmaff2bFZCtZFJFeiuCCllcBSy5h1gnVQdhWZChqc1BVCMNyFZU5QheGdElYoW5AiDDfG+B5chTI5ngzUMQmsNI3KW0GLINXP5HLEoYxKeb4lHFZwiLI2PaqDnNMP5t4i7oxhWhm6TJ8KSY1syunYk24C1sPxxxkZKz4HrEsM753xnVM2yvx1U1qPjg0NfB1a+XQFRNDsWBRigdoHwgEwIz4yqGyaVEhpIumdo31F1eliZYiFPhTulgF/14PA/M3Cj7/6wB9eveFfvv+W/f6S2ivx0FiMgKaKmeDq4IolwSN4EEoPw61Ru8Zg6xQPTftiuj83X0dT+AgWHe+M1FX6lOlCxV2orhyWDgTKFwshGVGNxSJOE2MpTaMQkGCIgg4Fr9omVhFqJyRp/2ex9ZolaQkJimRD054nxFKahlnnEJyUKkMq9LEQ1DjmRCkBG84zzYVjTrydd0Q1rDe0QH/3CMzRUIldpduspN2KbSpl06QDh9o3ydDVcRE8KuKOamlZktrYadGfxoKIE6R91vPPKVYw4D419QTMhT4VfDBcf5i1lrWVJVY2w8q0WdCpUDfGctWe69rIgoC446F9R10bIK0tSo+OmPwATI0gRh8Knw1Hxi7DYI05sWnLJq5c9jOYEFaw1L6PCar+1KfV22cfjXxt7L+CPLUStgIItVc8KtHP6otAHZq4YiDR6GNlSitRjKiVIRR2fcfdbmGeR9Y5kafwBI5zsmt/TnlWzOQpwCEVpuuV/diz/7hhfeYc50iYA/19RQzKNqC1awL7CAyDMEsb0KmylsAhd1x2M5u4Yq4EMYYus0wJHOYcWWtkiLll/By9hdanZYns58QhDPRjZuxXpn7FroX52LE8V7oHRavSPRjrVrn9biBqPaNqtgvrHbaFEI2gjXVdKARxbteB6oqqEbtKLUopgVNJvBj2yFhwja1vElAFfd8h1gR8Th3zrieNmZQaKfJ1Zr7vm4NZBDHIW84j6ew8LYJNlXG7cDmd+HJ7xy4tnGriZtlQTFGcMRX26k02csuquRCSNQKF9g4HRUyoozVNWwQ+JEpIrFeZ0FdiX8gXiXKrrDslHR3NEC3IeQhDuTCmZ0eebw+83DwQxbhZNvz83UvmTwNUgeRcvXwgxkqeI3lN3I89p5oIsaK5MQ2gjta0LbdnSBHSvhFk3XesPyr4ULDeWHeKFCHO3oj12Ft1BN9Unm8PfL37RBLj++Ml399dMj/04M0Se4bbNzvorBFlUQ77gfVZaAxcoQxNCx/nsAewbYUiIIH4Thg+CJYi5aKdizaRL700u9UkAsropM3KVX8iifF+2fL6/oL9uwnsrDNrO8Q2BksAA50V04i5NI2jnedTgSqE68yrZ3e8/nhJ/x+bJ3GdPjY/lg+RPLUsuYIlmH5rRNdG7zoZ2yEzxMz7Zcv/3Fzz8GaHrIJPFUyw/lyaRZFnS3Ou7wb0FPg0T2z6lcMA4QTpfcI6xzaF6sLVP41sX2fWbSBPsHlbCEsgPwj5QrBwJl9q/R5rD3nr+FgR4OM8UUx5uBtJt4H8IvPZy3tKDdx/mIjblXxK+EOC3ujvm0W6OY7EUJmfOS9+6pS3Qu0F+8XA/W7k4rai2ZneLORtBIGwOnF2xhs4vlDyVvAgWHKiRaibxjCAh6Xn0/0G+dS1UvWVeU3ov13yxa8qxxdbjq+c/qY1sa7O4St4uB8Zp4X8MvPwVUd/42zeNzBij2udsu4CZRAsNZsVjw2crjwtQC5CLJNjnSHqlKrc7kf8VxO7122VO6wjp886nn1wQnY++/nC9DaixVm3yuGVsl4afoys0eh2Kw+/pxwWpfsUiadmrTm7ibJp08W1zcr+kzK+b4kJiz+JffQIRMcd5mOHFWU4NpchFa7+09AM6VjQ7OhS6W/g8Cpx/61yelVI1wtladbnYppZ+8yaI+FrIxfFXchzbMw+u2BM4BCJx4ClBl4zTxt9fNQcADskuo+B/raVaL0Q1ktBM1hqsyacEg8/AftiZtrNPI+VLhaOSwfAl7s7rvsjD7nn4zxxP/eclo4wrYg4MRhrjiyHrtn42IS9AWjrnFYnujqYPG5ShLlt4OU5LM8LJG82pzPG3YKmwrfbPSlUVBzFuehOrBZZa+C77QdUnDFkzIVcA2Yt+rUE1hwpOeBZ2xisj7O1bXPk9rsopXW91zYvLTnrlVMvC+PVzMuLPSKOinPZnZohdMFcuO5OfNYd2ISVN8sFJQRUnGJKp4UhNM+fa8t2rUrJ5/REg/zod85jUR5NqxDDCrUILudtKbXUhrESQnOqY8xnQEox6EILcwwZgLsycqoJc+VU0xlcYLVAdcEdzFqvWRVEHY2GRaUO3nx+dTwKBBBzNO2lKXpRdG1NrwXqqUUzl8ipJMwFlQbUXFCcQ+24LwOrRcaQuUgzxQOrRRaLRDWGWJiGFVV7Mp8AbtJWu94p4w89Bo0Asb9xlmuharvksM7x4MgcWJZ2eFSDBOVstqwqGjNRjCBO9dYO2QKH0mE04MfSUU3Rc9PnNbalxIGiEBxL7S4jngQxf7L4MR6dMGvbUIQ2dqz1W5kTdchUF5YaCWKt4c99tFigeLNCfShcxCNjWJ8C6ENhKbEBU6NUpRbF59icigOhDXyLbRF2gTI4UQvEU5tRlgAFHq8JTJ6WkWKKiVBNCWp0WhhDu1jptBAwei0sZ+4rjbGX/Yn3p22TmtB8GWeiQRNa6867rD1WVIhxNtK9UDatjFKak0BA1LFzmdYzs5IaSSub2EDp2ejva0/2wKE8Gn6eAtJzcEMqrF1hCREpCqVlrG1K5xvIs5OOYu1qaFnAd200tK250di8ZQk1qildqK3ngKXGp4eOIXMZT/RaSFKfmv+x9MfQcSqJJUfWZHhu157Udl/iobHXI8gCsV0LOVoEi2dQ55cITyDWEuhiZYyZIWSSVnZpZqMrKk72wEZXeikYQkVb+V3otHIETjm1g/W8IrqANPX3ALKeS6rwfy4G677POeJXAAAAAElFTkSuQmCC\" y=\"-66.795366\"/>\n   </g>\n   <g id=\"matplotlib.axis_11\"/>\n   <g id=\"matplotlib.axis_12\"/>\n   <g id=\"patch_28\">\n    <path d=\"M 10.7 104.795366 \nL 10.7 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_29\">\n    <path d=\"M 48.189655 104.795366 \nL 48.189655 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_30\">\n    <path d=\"M 10.7 104.795366 \nL 48.189655 104.795366 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_31\">\n    <path d=\"M 10.7 67.305711 \nL 48.189655 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_6\">\n    <!-- Angry -->\n    <g transform=\"translate(11.711078 61.305711)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-65\"/>\n     <use x=\"68.408203\" xlink:href=\"#DejaVuSans-110\"/>\n     <use x=\"131.787109\" xlink:href=\"#DejaVuSans-103\"/>\n     <use x=\"195.263672\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"236.376953\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_7\">\n   <g id=\"patch_32\">\n    <path d=\"M 79.968966 104.795366 \nL 117.458621 104.795366 \nL 117.458621 67.305711 \nL 79.968966 67.305711 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p2d9da390e3)\">\n    <image height=\"38\" id=\"image79b33acd24\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"79.968966\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMgklEQVR4nFWYyY5k13GGvzjDvTfvzcyau4qk2E1KFGjZGgxB8kL2E3hjeO0n8Gv5DQx4ZS9seOOFbRAQCcGCTEpNssju6q6qrJzucIbw4mQV5QQSWTncrMiI+P/44sh//OGF/v1nf8fmszPUAALk8qACKKhXUpuhztg6YUwGUbxPGKPsdzXmusFMoB6yhdxm1GdQMDuL3xjsAP1V5vyjW96dr7mcrfm4fc1H9Suu3ANBLdfxhKwGt5DALy6/4l++OMX2gmSebuqUXCtaZaRJNN3EyXzP3E+IKM5kjCj90vNtu2T/9Rz/YHCjkLIhzUGtAmDC4TsXkcomALxk5nagkUBQS1DHsdlTScKNavnL5e/45+WfIn1VrhZItZKbQ+q84pvIUddz0vQs/fAUvBHFSSIvhbfPM5uHGXJb4faCDkL2YCZBEqgF20QUcCZhJNOZkc6MJAwAlZTXHcBzf0e7HIjfVKiF2Ga0UjAKTrFNpG0mvMmEZLlNHWNyjMkSk6VyEW8yp92e2kc2bcO4q5B7j90b7FQyNpwoR4s9APtY4SXRSHgKykgmqyGoxSWEC7vjB+e3/KZalt6wCqLgM7bK1HWg9hGAPno2Q816M0OTgAquCZwd7agPJTImM1sMhCYQX7dUa/NUypgsvQoCOFP6JqjFoiSEpIbGhBJqI4m/vviUdByfegIDYhURxdqMiJJUCNkwBocYLXeXSdGy3jdkFVQFEXA2080m3OWeaamYCLlSFBiDow+OrIKVTFD3FFTGMGSPG9QxaeRX7ecsLrZsvlmAU7CKOQSmKsRkcTaxGyumyZF6B8Fg9gbJMLia2/dhGj1iMvM2oip4nwgv9kwPHWoUbxPT5BiDx0uihFKCe/zbSsYlDA+5pjWBv/3w1/zDza9Kw4uiCsYW5T1sZoSHGjMYuq8M8+vM7E3A3+2QlMAYdh/M2bznePhRQt+f2PUVcfCIy4QXEZmEMfiiL1FqExnU05mRisSkFisZLwlnyUxYWgJ/Nvu6BJUERFArReKAGMXfW97990j321fl9aYidzX9VUtYWKa5MB2VC0KyxMHj6kjOhupkQKRUICcDPuGl9KRF8RJJyJPaXSORoBaAM7vFzCJ563n8TM5CSgZVCFcT3/6qwv/sXcZTJR5HzCyCRIwJqArWJfS+YRg8YjNVHUnJEIPFusR+WyNWScmQERoJGMkkzFPjVyTcTiuWMmJRLuyO9y5WfLW5AClZEgFjisvnbKh/skKAFsgqfHx+w+3QMUTHattiTCYtAlena8bo2I8eYzLNLHE+33G7a+n3NePguQ8t+7qmM2PJnOQnszUAa625zTMGtfzy/CW4ojaR0gvelqCMyeRs6AdPyoblbGDKrpQtWZoqYG2xgM1QM0VLWweaKpCSYTdVhOBQFXIw3IWOXa6/87ODh3USSo/9cTl/Pn/JPy1/TAwWYxNVFZlVgcolnMnEbNhJReUiF7Mdy6onZsO9zuiqiVerBWm05FY4n+84qfc4k7kfW7IKRpTbMEcE7scWKxnLd3PQS2JQhwvq6CTgTSCrcGHXXB5v+Ob2CGuVtgq0PtC5iYywHhu2Q83d2wV3Xx8/KZgqM/uiZvmlsvoY5FSpbSSqZYqOzk1lBPmJh92M2DtW4+xgsK64/mECNBIxk1p26glq2B2k+8vzl7TtyKyemB2CMpJZjw3WFLMlC80rx4t/VE4+cdBbpqPM/kqIi0yMltUwYzXMiNnQR8/NfsFt3+JcgiTspopJHX98G9TTmogb1NMQ8JIJqgzq+bh9xX/OXpBUqEyidRPr0PC9+Yr3Zitezk75rXlG825g/xeGFBynNhUj/shQB0fXTBzVA2fNjvN6yyY2PEwNb/t5sY1gyFoElBA8GS9l7J0acFYyQ/YMEpiwGMksTU/rJzZTjT2gTesmTqsdR7bn/dk9b7o5q76hqwJX8w0X9ZaM8PXumFU/43K+4Z3ZmqXrWYWWkC1GlJkLTJVlm4vXPaSWXa5pbPijPjO4pAYEVql9kmtrRiqbGILjpFG8SWSVoh4TOHF7fnH2Jb/fnRGz4aTq6dzIJjZ0bmKxHHje3WPJbFNNbSNGFCOZIXm6aoIs7DYNN9OCD2tPwmDRg+EKbpVaOjPR2S2NlKiXZuCs3vHGdTjJGJSM0OeKhNCYQEb4qHvDPle8Hee83i4IydJHz8wFNqGhT56MELNh4UeOfc+QPJWJaJXhoeLl/pSfz1+yyU0x20fnzxTvMJJpD2zSaKSzhb+mbHk9LBiTI2bDmByX9Zoj12NEmbIjqqEyJStRDQ9jwzY8o588928WXL6zorKJeTViRJn7EaoMO8vt0PEmLspIEsOZ3ZJQnJcysyz5yWe8ZM6q7dPz1k2MyfG2n7MNNffTjLN6z2m1Yx0aYjZkNUzJMkTH3UOH/7Rj9lp5Z6e8/ZuOF8/u+P2/fsD4g4Effu8G8RmwvFot+eLkggu34dgUiLxLCRfUPpXQiJJVyAjP/JraFZVcb4/49vUxcl+Bwvd/es1X6xNOZ3v66Bmio7KJpMJ2qEmvZ1z9JqIiBad/2/H5m4bv/TpyfVpxf14g0+0Nw7rm1bBk0zaFMjQxqCkZA9jlGovSmkAnkUYCY3S8fH2Gvq45/p1w/HmArPzv8hIZLG/lGLMIiFWaJpQ5mQy5S6yfey4+6QE4zxXN7cT+WflhIVqYDPVKyI3jy/UJD0ctp27LpJaMFOa3kgsXUYZpQvASuf7DOd3vHe0rZXaX2F16poUw+wLUQVhmkndInchZAFPgcDHy8DNlPJmx/EKptpn9Zc3djwx6NjBMHtNb7ABuJ9y8XXJzueBF9ZaAJagppUxq8CY+yXWVK565DdJGwtyiFtwuUVuQbKgfoD83DFeHvdEWys2Hkedcxh0NxD8J3Dz3yGBRn5BmAmD8pqN5U2zKb4Sw8azjjEE9C/oyK70kglqawzjwmrAo77oHjo72bNqK9feF0NVUayV7GE+E/bsZmSUwijEZVZ54X/U74DNVQl2GySK3FX4j2F4IS0WdMLtR+kshamH9oI4Ji/MSCeoYclUsQoo6oSAPCtN7E/GDjEYDolifIQtkQUwRDFkOq/sBMFXQJOTBQRTcxmICZAfTOwl3MTCsK+ZfOiQK7tBOSYvCHUBnRrxEjGSCGhpJGJRdX7P8XNjvK6bjjPoSaLRlWSELKhTpV/9vFqPpsDH5jDqIdamzayJtE/A2MfoELGhuhftpxj7VJC8M6gv2DNlz5raH5VMIaqgl8VcvvuC/mp/i12AmS5opKpD9d6u/1oqKIlVZXDRLebSCHjJqbT6Ig3LecWD/o65nc7nEBIjZ4k18+mHOkhm05jqcArAwA5lEQvj58iX/9v6PMVGIy4RdBIxNGBVyNqTJYFzG+URdR/yBMJ6WjmzKGYfN2MNyqyoFnYDaRd6cZ5afy6H8pYwJwRnJT8MboCLRSGRQxw+rV3Axkh4qzDzQdgNtFZ7+SVbBm9KTj3QL4A8b+WMQtY1Uh7OKIRUsn7LFSSadRCR7VuOMm2nBpX/gmD2ukUAWU+hSpsPGIixMkfZPnn/Drz/7oMxQHzmd7WlswEgppTOZKRUsn3KBvsYWGs5avvdxojx+/vFagNnRQH9eYYN/OsMASvNPakEta2mKxCUDJbAP5rd8On6IJmFRj5zWezo3/r9Gn6wjqZC1ZN2bRJ88hkhGnoLKKhgUBKzJ9NETg8UZWK1b7FV+2s5dJYmlHQosqsdqpmMCKb524vZIBvNtzfXsiJN6z3m9xUthtDF7MJGYLUjGmcPBCvpEGyFb4mHIP74fc8V6qAkPNQ7wVeRZteHRJdx1OGFhexa2Z5U6PPsnxG0kcOp2pNPI8tOKIc357/sP+exk4Op4w/PFHce+p5ZMbWLxH5NKkIeqVI88l/wBFksZx+S4e7vArSyPS1JtAo2EckTQmZFKUtmC5Tu8LdQRObI7js+21G+OSZXBjB7z0nMjC64X7xBPIvXJwDsna96f31ObhD9kJWuJLh/W+sde28eKr2+Pqb6pMKG8d9z1ZDWH0x+LW9iepIalGVjlllVuqSThzYiXzJV74M8vr/mfdMziq8zuyhwOaMHvhHzniY3nejbn5fIKOZo4PtpxOd/SuokpO46rPUNyDMmXTO1a8h86mpWQKoid8mJxz5Hd08pYFl5PIuCYDlyWDj5SsmaoJPHD9oZPLn7CxSc906IhNoIoqAG3BTNCDILbWvRmxnrWcHd2RHM84H1k0bQIsJ88+6Fiet3S3glqQHI5Aj2tSgtVkpgw/B9RtAmFLv82mgAAAABJRU5ErkJggg==\" y=\"-66.795366\"/>\n   </g>\n   <g id=\"matplotlib.axis_13\"/>\n   <g id=\"matplotlib.axis_14\"/>\n   <g id=\"patch_33\">\n    <path d=\"M 79.968966 104.795366 \nL 79.968966 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_34\">\n    <path d=\"M 117.458621 104.795366 \nL 117.458621 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_35\">\n    <path d=\"M 79.968966 104.795366 \nL 117.458621 104.795366 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_36\">\n    <path d=\"M 79.968966 67.305711 \nL 117.458621 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_7\">\n    <!-- Suprise -->\n    <g transform=\"translate(76.342231 61.305711)scale(0.12 -0.12)\">\n     <defs>\n      <path d=\"M 9.421875 54.6875 \nL 18.40625 54.6875 \nL 18.40625 0 \nL 9.421875 0 \nz\nM 9.421875 75.984375 \nL 18.40625 75.984375 \nL 18.40625 64.59375 \nL 9.421875 64.59375 \nz\n\" id=\"DejaVuSans-105\"/>\n      <path d=\"M 44.28125 53.078125 \nL 44.28125 44.578125 \nQ 40.484375 46.53125 36.375 47.5 \nQ 32.28125 48.484375 27.875 48.484375 \nQ 21.1875 48.484375 17.84375 46.4375 \nQ 14.5 44.390625 14.5 40.28125 \nQ 14.5 37.15625 16.890625 35.375 \nQ 19.28125 33.59375 26.515625 31.984375 \nL 29.59375 31.296875 \nQ 39.15625 29.25 43.1875 25.515625 \nQ 47.21875 21.78125 47.21875 15.09375 \nQ 47.21875 7.46875 41.1875 3.015625 \nQ 35.15625 -1.421875 24.609375 -1.421875 \nQ 20.21875 -1.421875 15.453125 -0.5625 \nQ 10.6875 0.296875 5.421875 2 \nL 5.421875 11.28125 \nQ 10.40625 8.6875 15.234375 7.390625 \nQ 20.0625 6.109375 24.8125 6.109375 \nQ 31.15625 6.109375 34.5625 8.28125 \nQ 37.984375 10.453125 37.984375 14.40625 \nQ 37.984375 18.0625 35.515625 20.015625 \nQ 33.0625 21.96875 24.703125 23.78125 \nL 21.578125 24.515625 \nQ 13.234375 26.265625 9.515625 29.90625 \nQ 5.8125 33.546875 5.8125 39.890625 \nQ 5.8125 47.609375 11.28125 51.796875 \nQ 16.75 56 26.8125 56 \nQ 31.78125 56 36.171875 55.265625 \nQ 40.578125 54.546875 44.28125 53.078125 \nz\n\" id=\"DejaVuSans-115\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-83\"/>\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"126.855469\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"190.332031\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"231.445312\" xlink:href=\"#DejaVuSans-105\"/>\n     <use x=\"259.228516\" xlink:href=\"#DejaVuSans-115\"/>\n     <use x=\"311.328125\" xlink:href=\"#DejaVuSans-101\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_8\">\n   <g id=\"patch_37\">\n    <path d=\"M 149.237931 104.795366 \nL 186.727586 104.795366 \nL 186.727586 67.305711 \nL 149.237931 67.305711 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p49e0aef381)\">\n    <image height=\"38\" id=\"image634e7cfa63\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.237931\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMgklEQVR4nFWYyY5k13GGvzjDvTfvzcyau4qk2E1KFGjZGgxB8kL2E3hjeO0n8Gv5DQx4ZS9seOOFbRAQCcGCTEpNssju6q6qrJzucIbw4mQV5QQSWTncrMiI+P/44sh//OGF/v1nf8fmszPUAALk8qACKKhXUpuhztg6YUwGUbxPGKPsdzXmusFMoB6yhdxm1GdQMDuL3xjsAP1V5vyjW96dr7mcrfm4fc1H9Suu3ANBLdfxhKwGt5DALy6/4l++OMX2gmSebuqUXCtaZaRJNN3EyXzP3E+IKM5kjCj90vNtu2T/9Rz/YHCjkLIhzUGtAmDC4TsXkcomALxk5nagkUBQS1DHsdlTScKNavnL5e/45+WfIn1VrhZItZKbQ+q84pvIUddz0vQs/fAUvBHFSSIvhbfPM5uHGXJb4faCDkL2YCZBEqgF20QUcCZhJNOZkc6MJAwAlZTXHcBzf0e7HIjfVKiF2Ga0UjAKTrFNpG0mvMmEZLlNHWNyjMkSk6VyEW8yp92e2kc2bcO4q5B7j90b7FQyNpwoR4s9APtY4SXRSHgKykgmqyGoxSWEC7vjB+e3/KZalt6wCqLgM7bK1HWg9hGAPno2Q816M0OTgAquCZwd7agPJTImM1sMhCYQX7dUa/NUypgsvQoCOFP6JqjFoiSEpIbGhBJqI4m/vviUdByfegIDYhURxdqMiJJUCNkwBocYLXeXSdGy3jdkFVQFEXA2080m3OWeaamYCLlSFBiDow+OrIKVTFD3FFTGMGSPG9QxaeRX7ecsLrZsvlmAU7CKOQSmKsRkcTaxGyumyZF6B8Fg9gbJMLia2/dhGj1iMvM2oip4nwgv9kwPHWoUbxPT5BiDx0uihFKCe/zbSsYlDA+5pjWBv/3w1/zDza9Kw4uiCsYW5T1sZoSHGjMYuq8M8+vM7E3A3+2QlMAYdh/M2bznePhRQt+f2PUVcfCIy4QXEZmEMfiiL1FqExnU05mRisSkFisZLwlnyUxYWgJ/Nvu6BJUERFArReKAGMXfW97990j321fl9aYidzX9VUtYWKa5MB2VC0KyxMHj6kjOhupkQKRUICcDPuGl9KRF8RJJyJPaXSORoBaAM7vFzCJ563n8TM5CSgZVCFcT3/6qwv/sXcZTJR5HzCyCRIwJqArWJfS+YRg8YjNVHUnJEIPFusR+WyNWScmQERoJGMkkzFPjVyTcTiuWMmJRLuyO9y5WfLW5AClZEgFjisvnbKh/skKAFsgqfHx+w+3QMUTHattiTCYtAlena8bo2I8eYzLNLHE+33G7a+n3NePguQ8t+7qmM2PJnOQnszUAa625zTMGtfzy/CW4ojaR0gvelqCMyeRs6AdPyoblbGDKrpQtWZoqYG2xgM1QM0VLWweaKpCSYTdVhOBQFXIw3IWOXa6/87ODh3USSo/9cTl/Pn/JPy1/TAwWYxNVFZlVgcolnMnEbNhJReUiF7Mdy6onZsO9zuiqiVerBWm05FY4n+84qfc4k7kfW7IKRpTbMEcE7scWKxnLd3PQS2JQhwvq6CTgTSCrcGHXXB5v+Ob2CGuVtgq0PtC5iYywHhu2Q83d2wV3Xx8/KZgqM/uiZvmlsvoY5FSpbSSqZYqOzk1lBPmJh92M2DtW4+xgsK64/mECNBIxk1p26glq2B2k+8vzl7TtyKyemB2CMpJZjw3WFLMlC80rx4t/VE4+cdBbpqPM/kqIi0yMltUwYzXMiNnQR8/NfsFt3+JcgiTspopJHX98G9TTmogb1NMQ8JIJqgzq+bh9xX/OXpBUqEyidRPr0PC9+Yr3Zitezk75rXlG825g/xeGFBynNhUj/shQB0fXTBzVA2fNjvN6yyY2PEwNb/t5sY1gyFoElBA8GS9l7J0acFYyQ/YMEpiwGMksTU/rJzZTjT2gTesmTqsdR7bn/dk9b7o5q76hqwJX8w0X9ZaM8PXumFU/43K+4Z3ZmqXrWYWWkC1GlJkLTJVlm4vXPaSWXa5pbPijPjO4pAYEVql9kmtrRiqbGILjpFG8SWSVoh4TOHF7fnH2Jb/fnRGz4aTq6dzIJjZ0bmKxHHje3WPJbFNNbSNGFCOZIXm6aoIs7DYNN9OCD2tPwmDRg+EKbpVaOjPR2S2NlKiXZuCs3vHGdTjJGJSM0OeKhNCYQEb4qHvDPle8Hee83i4IydJHz8wFNqGhT56MELNh4UeOfc+QPJWJaJXhoeLl/pSfz1+yyU0x20fnzxTvMJJpD2zSaKSzhb+mbHk9LBiTI2bDmByX9Zoj12NEmbIjqqEyJStRDQ9jwzY8o588928WXL6zorKJeTViRJn7EaoMO8vt0PEmLspIEsOZ3ZJQnJcysyz5yWe8ZM6q7dPz1k2MyfG2n7MNNffTjLN6z2m1Yx0aYjZkNUzJMkTH3UOH/7Rj9lp5Z6e8/ZuOF8/u+P2/fsD4g4Effu8G8RmwvFot+eLkggu34dgUiLxLCRfUPpXQiJJVyAjP/JraFZVcb4/49vUxcl+Bwvd/es1X6xNOZ3v66Bmio7KJpMJ2qEmvZ1z9JqIiBad/2/H5m4bv/TpyfVpxf14g0+0Nw7rm1bBk0zaFMjQxqCkZA9jlGovSmkAnkUYCY3S8fH2Gvq45/p1w/HmArPzv8hIZLG/lGLMIiFWaJpQ5mQy5S6yfey4+6QE4zxXN7cT+WflhIVqYDPVKyI3jy/UJD0ctp27LpJaMFOa3kgsXUYZpQvASuf7DOd3vHe0rZXaX2F16poUw+wLUQVhmkndInchZAFPgcDHy8DNlPJmx/EKptpn9Zc3djwx6NjBMHtNb7ABuJ9y8XXJzueBF9ZaAJagppUxq8CY+yXWVK565DdJGwtyiFtwuUVuQbKgfoD83DFeHvdEWys2Hkedcxh0NxD8J3Dz3yGBRn5BmAmD8pqN5U2zKb4Sw8azjjEE9C/oyK70kglqawzjwmrAo77oHjo72bNqK9feF0NVUayV7GE+E/bsZmSUwijEZVZ54X/U74DNVQl2GySK3FX4j2F4IS0WdMLtR+kshamH9oI4Ji/MSCeoYclUsQoo6oSAPCtN7E/GDjEYDolifIQtkQUwRDFkOq/sBMFXQJOTBQRTcxmICZAfTOwl3MTCsK+ZfOiQK7tBOSYvCHUBnRrxEjGSCGhpJGJRdX7P8XNjvK6bjjPoSaLRlWSELKhTpV/9vFqPpsDH5jDqIdamzayJtE/A2MfoELGhuhftpxj7VJC8M6gv2DNlz5raH5VMIaqgl8VcvvuC/mp/i12AmS5opKpD9d6u/1oqKIlVZXDRLebSCHjJqbT6Ig3LecWD/o65nc7nEBIjZ4k18+mHOkhm05jqcArAwA5lEQvj58iX/9v6PMVGIy4RdBIxNGBVyNqTJYFzG+URdR/yBMJ6WjmzKGYfN2MNyqyoFnYDaRd6cZ5afy6H8pYwJwRnJT8MboCLRSGRQxw+rV3Axkh4qzDzQdgNtFZ7+SVbBm9KTj3QL4A8b+WMQtY1Uh7OKIRUsn7LFSSadRCR7VuOMm2nBpX/gmD2ukUAWU+hSpsPGIixMkfZPnn/Drz/7oMxQHzmd7WlswEgppTOZKRUsn3KBvsYWGs5avvdxojx+/vFagNnRQH9eYYN/OsMASvNPakEta2mKxCUDJbAP5rd8On6IJmFRj5zWezo3/r9Gn6wjqZC1ZN2bRJ88hkhGnoLKKhgUBKzJ9NETg8UZWK1b7FV+2s5dJYmlHQosqsdqpmMCKb524vZIBvNtzfXsiJN6z3m9xUthtDF7MJGYLUjGmcPBCvpEGyFb4mHIP74fc8V6qAkPNQ7wVeRZteHRJdx1OGFhexa2Z5U6PPsnxG0kcOp2pNPI8tOKIc357/sP+exk4Op4w/PFHce+p5ZMbWLxH5NKkIeqVI88l/wBFksZx+S4e7vArSyPS1JtAo2EckTQmZFKUtmC5Tu8LdQRObI7js+21G+OSZXBjB7z0nMjC64X7xBPIvXJwDsna96f31ObhD9kJWuJLh/W+sde28eKr2+Pqb6pMKG8d9z1ZDWH0x+LW9iepIalGVjlllVuqSThzYiXzJV74M8vr/mfdMziq8zuyhwOaMHvhHzniY3nejbn5fIKOZo4PtpxOd/SuokpO46rPUNyDMmXTO1a8h86mpWQKoid8mJxz5Hd08pYFl5PIuCYDlyWDj5SsmaoJPHD9oZPLn7CxSc906IhNoIoqAG3BTNCDILbWvRmxnrWcHd2RHM84H1k0bQIsJ88+6Fiet3S3glqQHI5Aj2tSgtVkpgw/B9RtAmFLv82mgAAAABJRU5ErkJggg==\" y=\"-66.795366\"/>\n   </g>\n   <g id=\"matplotlib.axis_15\"/>\n   <g id=\"matplotlib.axis_16\"/>\n   <g id=\"patch_38\">\n    <path d=\"M 149.237931 104.795366 \nL 149.237931 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_39\">\n    <path d=\"M 186.727586 104.795366 \nL 186.727586 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_40\">\n    <path d=\"M 149.237931 104.795366 \nL 186.727586 104.795366 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_41\">\n    <path d=\"M 149.237931 67.305711 \nL 186.727586 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_8\">\n    <!-- Suprise -->\n    <g transform=\"translate(145.611196 61.305711)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-83\"/>\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"126.855469\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"190.332031\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"231.445312\" xlink:href=\"#DejaVuSans-105\"/>\n     <use x=\"259.228516\" xlink:href=\"#DejaVuSans-115\"/>\n     <use x=\"311.328125\" xlink:href=\"#DejaVuSans-101\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_9\">\n   <g id=\"patch_42\">\n    <path d=\"M 218.506897 104.795366 \nL 255.996552 104.795366 \nL 255.996552 67.305711 \nL 218.506897 67.305711 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p9d382f6793)\">\n    <image height=\"38\" id=\"imagef8974b8c9a\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.506897\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMUElEQVR4nF2YSY8k13WFv/uGmHKorKyhm+xuTqJIGbKsCdbCNgxoIcA7+6d44T/j3+CVBa9sGNbChBaWTdmWSJEy1d3suau6Kqtyiog3XC8iq7qaD0hkZGRW4cS55547yF+987dKCKgqxAjOIcagMaHrNdr3aIyYqkKKgld/810WH8P8N4paWL9lADARqlMllbC+K4RJJjswAUwQVKC4FO79yxJz/ylSlmhToWUBBtRbABBBjeDImesjgojADqSGiKaEOAfWItMJoYHRY1jdMYQJqFH8WtAEy3eE7b2InfY4lyiLSNt5wtajSYh7htM/GXPr1QQt/fASASuoM6gdHnIABmDtwJbqwFxKaNcNoIoCKQoA+vePSZWwva1kq0gG00N7oKhX8iTiRz0i0G8KutMa0xtsL7iNECvl8lswfnZEddKSCzuQoIAMgFBFsn6DMbOjsw9oiIgRxDlEBDmc8+q7Fat3M2rAr4RUKf1hpJx0qAph64m9Q5MgG0fz2NK8UGynZAfdTOj34eJ9j20zJmVUdlIIGUn5OnIO1d21oAbIivb9cM85xDukqrj44S0uvwW5zpiNoT9IuGnPuO7xNrHtCnRrkSTgFDVKe5xpj8FfGspzsK0yfghqoT30NM86djFDjSBXHGXd3RbZfavQdagqUnjEWrCWdO+YxYeWNAvgMlpHiioiohhRUjZ4H+k7Q/XCYOIQYnWgAraHMILYCLaD5nkmNEK/5/GrOIAyCmlHkioOETAGcoaUyNt2YMnvMI9HvPzxmPUHAVNFjFV8Eel7h7WZlA0xGuoyoPOevi2x3fD03VFCRxEA96LABNi+nVl+qNiVZfLQcfDbyBtnwIajKgdQEYgRqUqk8MO3KbH84Vuc/yDhJgERpap7cjYI4Fyi7y0pWFK0+DKS3skUTceo7InJ0kdLTIbtxjH7lSGOLIsf9Pj3tqzymL37FrvNb2ITwal3SB8GcGWJ7PSGCDjHix9b3HRL03RYk3E2E6JFah0EvyoQp8QIJIdtIqpCaROND7xcjtm8HDF+YOnmIBGqRwVdkdGjwObQM/2645vHYQ3qHQLg3RDWPkDbEe4e0N8dBL5Xt4RsUB30aETZth56Az5ivaJ5uN91jhdxgveR9dMJ/tKweTtz+49e4k3mfFNj0vC/2sOCySNB0OswiiouVwX9UU07d/QjYfQy0TxaIcsV3WGJK3tGZU/tAm1bk7JgTMYJ5CogB0pT9ZQ+klWwJqMqLFY162WFP9zys598QWkCt8sL5nbNszDj315+xPmmZr2vqAHNgtwM5cO/3iPWijqlOBPKSyFXDjubYoIOunKRLjliMhQuUfuAM5mj/RXOJKwoTjJZBSPKs+0UEeXC1OQsPN7M+P7sMV4SE7vlNE7YBE9dBM7niVRZ7DK8GcpunpB0w0OuUI9r2rklBnttC3URECBlw6orOajWjF1PyJZ5sWbPbqlMoLY9TuZ4k0kqRB1M1EviJE759PIeXXCoCm7WszmqKRY779yZrEOvPGyHSASy0s9rnv808eP3vwYgZkvtAutQsOpKYjLEbAjZ0mXLk+2MUzMmIyxDSUZ4Z3IOwKKv+Wp9hB8ngloeXu6zXNUAjEct6zsN+18oGEExSMo4uQY0vFQAIzz6WcHf/fk/8TJMedWP2SZPlx0xG1aUjMqe/WLLyHXkUHERC866hmeXU7adp289k+mWjw9f4iRzsh0zcvuUJnK+bEjnJeoyfm/N4r1+R44iqoheF4QbjAHL9xre/clj/vX0O2Q1VC5Q20BUgxHlaLTisFoxdVtqG7BkRq7j6/UcZzMxWjQYLp9N+M9lxdHBEhHlpB2T1dCd1diNIdeQsmCbiGQdivi1XVyBumLMwtl3hbeLLe82Z3zy4gM+2HuFQVmFksb13G0WjG1HViHvpJDVcFStmBZbTkdj/nByQHw4JkfhRT9DrGJvK84MGkr7AbNynJ1OsKcFsL4hcMWhIDfYCrWg31oz8R0JQ+Ui358+5lE756haMfdrShPpssNLYpMLzvqGL8+POV2MKYrI8XRFuj/m9n9klnctqbKogacyo2wC/twS30rMPhNsVxDrqyKukPVK/DcYU+hnwmyy5cvFEZWLPD2b8uX0FhmhSw5TKEEti9AwdVu2yfPl+TEvnuzjTxx2Ibz0U+ZfK+P7K6rTklQa+j1HqkraY8fsidB86lFRykUkTCxh4iku+usEHMT/OrTEGra953w7wv2uIU8zn5j3hzJTBsyxcqdeMHIdl7HGSGavbLmYtXRtg6jBrQS10B01uG1kc+xpD4XYDGG8+DhhesP0YUAUNkcGNzKUZ921SbirC9kxF8dKbD13j855sPSQhbQuYGvRfcGbhJfEOpesY4ER5Y9nT/nTg4ecvDvm4WqOqvBsOWGxLQgbTzlZYYwyLQIpG0ofWRzVnK0KyMLs1jn55/tDvd611+6mvkQhO0jLgpNyjD9zhMMIrcVuDKH0LEPJ1nuMZGr72q2zCveqc+5V55QmwC0I2bHJBatUctY3+N3fGMmsD0rWqWBebNgmz+8Xe8PMcd32fMMubAtu4+lfTZEP1vCqwrTmOmtPt2P2iy23yku8JGob6HYAEoPpGlEaO+ilMoFDv+TbdaLLnrM4ojE9Td3xpNvHiPJ0s0d2Q7+vRm74WN6lvIPmhXDxk5aD+YpX9/cpLgwopAp807PuCx6s5myTp7aBoJaolqSCJWN25avNHkvG28QqVezZLQBddlQm0GXPNg0ZXdhIGMkNSekNxnanuFBmvyy5vFNSJEGtYpKQVRGBcdkx8S3eJGrbU5rIWAZrsQziDmpZpxLDkMFeEm32VCbQ2J5lqljGikVf0yaHMxkTgQyYq1Dqm8BEFb8SEAjTjCQwq6HIp2gpbWTsO2o7VIPKDDrzJJKaa8M1KFM3sJQwoJnz0BDUYkRxknAm4dSwiQWu1WtQw5T0Bqod2k7JTtD9AOceSWA3Qlg7Xm1GHFbra8EDlBLJCPtufa2jqduy79fkXWdhJNNlj5d0fT11LQC/eP5t/DKh1gwmexVKUa79A8CvErZzZJdBQdLwG3vheFWNOW3WjFyHl0RjBpE3JlBJIIhlz26Z2JZbfkFWg5F8/V5IwsswgDwJcy5SzZNHB3y4ijtgCfKNtuembdg2Y1shKGip1yOYXwld43l6OeWt5pJ9v6aSSEKwKK0OQ8wVqJnZUEiiV0tgGKbbXGAwTE3Lsbvkq/aYye88ksPrgdfwjVBeW0akuChpGXYT6sEthjnRXRqW9YjlQbnTj+BlMN0uexq7xZKxKMUubAVDkW9MhyexyA2FDsz9+4sPmHyd+OZ5E9hOfBIz9WnmEpAsmH4AXZ0okoXsPA+P5/xg7zET19KYjk0uaUzHbb/AkxiZjrlpmey6iWU2XOSSkzylkEQlgd92dzj59S3uveoh6+uo5R2Ua33pMAgANC97OC0hsStVQ0tUXChuC+eXDU+7GTCY6NytmNkNAFPTctturkFl4MgqRjKPwpw2ey5zxd9/+Rcc/yrjlz0mJK7WFQBOMm80ibJrO4qXa/Y/K1l8BxDIdjfit4pfCv1JxWeHt3m7XDCxLQd2hZdIJYHGBHo1vMqeszRmbld8v4CTNOHLzW1O/YR/vP89xv8wZfr50H6rFdTaN33sRkK+Pjlz+OsV3WxCHA27iH4Kthr2D9Wp4eEfjvl58PzZ7fv8aPSAA7eiVc/v+9ssU01Qy9i2fOxf8TAKnyw/4vPFLR6f7HP084rZp6dD4RZB1IIx6K4KuWtQN2xBFMiKudhw9GnBk58W9FPFRCECbjWAK04tp3HOP29LHhwd8M7ojKlr6bKjsT13inM+Kp7zh7jH/7b3+OXp+zz46hbzTy17ny92ujavQ6i6A6mvnV8i2A5cq0hIkIZMqb865W4+5OlflrT3eugNqRLcygwP0gvbRcUXeszTZso703OOqxVeEqdhwrN+xherW/z387dJv9njzv8kJv+3QNrwhqaGBd7wWa+cXzLYTvBLxV9GpNt5iiqESPXZY95/MuH8R4dcfGgI42F6jiNFRxE/7qmKQMrC15f7nHcNTjLb6Hl+PkEfjJh/BvufLzGL9eu11zeP3BxG9HUY/QbcOkIY1p7sDE9VkYsl81+s2P+vMZffO2DxoaV1SlKhrgKTqsOIsgme5xcTtqsSFgWz3wmHv97gTi6vk+tq18rVvvfGfk52rP0/xXihTSzCRj0AAAAASUVORK5CYII=\" y=\"-66.795366\"/>\n   </g>\n   <g id=\"matplotlib.axis_17\"/>\n   <g id=\"matplotlib.axis_18\"/>\n   <g id=\"patch_43\">\n    <path d=\"M 218.506897 104.795366 \nL 218.506897 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_44\">\n    <path d=\"M 255.996552 104.795366 \nL 255.996552 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_45\">\n    <path d=\"M 218.506897 104.795366 \nL 255.996552 104.795366 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_46\">\n    <path d=\"M 218.506897 67.305711 \nL 255.996552 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_9\">\n    <!-- Angry -->\n    <g transform=\"translate(219.517974 61.305711)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-65\"/>\n     <use x=\"68.408203\" xlink:href=\"#DejaVuSans-110\"/>\n     <use x=\"131.787109\" xlink:href=\"#DejaVuSans-103\"/>\n     <use x=\"195.263672\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"236.376953\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_10\">\n   <g id=\"patch_47\">\n    <path d=\"M 287.775862 104.795366 \nL 325.265517 104.795366 \nL 325.265517 67.305711 \nL 287.775862 67.305711 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pabca411ce2)\">\n    <image height=\"38\" id=\"image3966dd2369\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"287.775862\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAOa0lEQVR4nEWYyZMc2V3HP2/Jl1tVdVV1tVqtlloaabTMjMbYBlsDjBeMwxHYAeGLOXBzcOL/gAv8CZwIrhBwAxvHGDMGjAfZlgnNaCRL6um2eu+qrq7KPd97HFIjV0ReqjKzfut3eeLdP/5rn+ycY3shT75r+PN77/Mve2+yt7OKWihUKWgTj4sdyScar6G4XvFb139N7RQfP9gi3ZGEM089EOjSM73X8Ns3t/nF7mVcKwnClnpp0McB7biFwBHsG678oCZ8uIuII2gtvixBSGhqtLAeUbUE5zlv/hX847e+Bt+YImoJTmAjjxu00EgA2tgT9WqkcFR/eZk7H+/iqxraFhEafD9FuHXy1wxSeGwj8QYAvPaISuKdYOvfKsz/fdL9UNWgFEJriELs2kUkAtAKvAfvufj+lOyjEaIWuMhhY0eQ1qAd9chjI08vrvjlT28Q/nKnew5ACrx1MJtz4YcHPPpkgyiuwQmc65LyCnAClUn0soHRSvd9UeCrmvbaOkd/sMn+7/WRsnbQtCAEWIc3GlkJZCPwqUUNa7R2yMjitAcJ1gnW7oNQ3R8KJUFrfJ53QS4y+g9CEtOgkhalHEHSgAAzF6hccPjFPvnNVUSaIOIYEYUcfb7H7E1wIWivZZe1EOA9i+s92p5DWAFWkCQVzkmUcjSpRRaKojJEDnzTQNvy6UfEESKK8E1DsPAo6dBBS2i6e84HAfrA0Nt19F5UBGcl2d2LlEPF4FlBcmwRTrL6UYHu3tgFhXPMbkts2r1IRi1tq1DKoQOL6zdY46gr3bVFa4TsqoVz+LYFaxFRSL4hcHVAEFiSsKasA1TUUo0C0hcCvaiQ84zFvRWWWyBczOjBlGFZ42dztKzdq4zdhRHlBQvCg/II5fFeEJsG7wVaW3If4RpJkwqEEHjnEE0DQiC07oJLIso1Syw8QngGpkIJj/OC8xVDsaZJJjHJ0ZzJg4zBJyHhYQ7HM3xVAaCF94imxS8z2iursNKAFeAEUnSDLoUnNjW9EKyVlN6wuAZr62Pk4fRVYp9WzCUGbzz9sKZxEiUdcdBgvaAaF2RbKS4wbG1HqA+3iaXoYMLaV0ukrZH8+tubLLcc0bFEBxkE4JwkMC1CeOKgQQqPFB6jLUUrqUeWnW+N6O+sEM4dwnnOr2iKdUE1dly6dkSgLMOwQAqH812iWjua1YosCji9t4YXa6SHLfH97ZeJeYQQ6N1vaP7wSz9noEu+t3MH6QXOCbwXryphnUQqi8QTBi3SWKyH6m5NcVuS9CvWBwsuqpahKWi9pHWS2mkGpqB1itYrAulQ0iGVh17D0bueYFBxUmtuZJfR9z9GmACcR3/mC09xXhIIyzgpWFSGxiraViEEtFYyq2Ni0zCOc/phRdOXlGFAmRtM3HBtPGUQlNRO8WZ/n4NqhVjVBMKSO8O8iclbQ+skzguUthjlKJygPYoBWF4RDO+/rESg0fM6RkuHFI6eqRDCs6xCBOB8VzkhPGWjIYa1aEmoWs7KmONW0VSaszLGeYGRltIF3E4OGOsljVec2YRfuXVmJATKdvMaNkSmochChBX4wNNGAjnod7PaNOiq1Tw5XQPgs+svaOwKoW5R0tFYSVaEKOXoxxVaOlJdI4Vn52yIsxKpPEWjqW3K68MTNswZgbAEouUts8dOO2LeJlROUztFbBoaKwmVxUQNYh7htKdYE6DUS8BW6HGcczzvsTWZcS0+pbABaVCRNSF75wOEAK0ckyRjaAqGQY4UEWlYs5zHqMOQWRqSPlfsfaPhSbQOwHdGP2WsGqSYolLHhhnT+hs0TqGEQwpPaFqy1JPuCZqEbitfQpAempy3NvaJVMvr0SGNV+wUI0amYF5FzOoEKTzr0YLKaTIbEgjHZm/Owe6Ym3835ezuCLNo2L10keqDixx8xfHNrz8gEQWlsKSi5oY55EU8YtGE9IOKrDUo6XCRo5xI9FLgvQfb4aqunaYXVDydT/govcRx3cN5ya3ePqmu+Im/Rl4ZnszXiHXDsgm5nJyxGmaMN+YcvbMKAs5uBrhBzdltQ3ph0QE28KheY2p7nNmE0gXc6R+yFZ7y3vQO1kl8r6VOBYP3A4Qx+MWiw7FlEyKF4Wp/xmE1oHKK2immbcq9/jOyNuTD2Toni5RJP2MU5UjhqK1hLc3wf5ZTO0XPC/7k0i+5He1xZlMi2ZAIhRGWvXrE03yNYZDzWnz8CoZaK9GhRWzHDH9VguzmTPZ66FnZrev6qMuydprTMmXnfMSP5XWcFyyKCOcEJ4uUJKiZmIxZlbCsQ1onsU5yY3TCVXNCgGVVLUlFzbFt2a4nHNQDChuwaEe8KIeUbUDRBngvkE9jtr5XUA8NRqlO6RiLPpwOkNLxw4cXmLxxwqXenMYqFkVIkYVI5ZHKstIrqVrF452L5BuGULcEygKQ1wFGtlh+A8qZNzwp1/nx2U0GQUmoWvIqQUvLWdXBi3OC3i4E05z56zHp/LyrGiDV05iv33hMeCo5OeuhpSPULVo5pO5kixAwX8QsTlKCXcP+g4scnPcpmgDrBUp4YtWwqpYMVY7EcdCu8Le7X+I/H9zivec32ctWSHTNyBRM4iVKOrwXqBqy60OGTwp8WSF6PdzqEL31/ZLv9T7L2ieOajWif70ibw1h0KJ6jtU053DRYzmPSZ4ZLtyvQQj2yxWyt+cY3fFpYQOslx2ouoR/Pv48e+9fxgSepkw5ChuE8BwWfRqrmBfRS+aH9INtqCrEaIibrNCMIqQqW1YfCIYfLwlP5CuyLhtNWQc8fbFGYho21s/QGVQjjQsEwv2mbb2wZmxych+i8Bhhud077BTrmWDyM0E/qjjOUnZ/usnu3pjlMup0XuU7DZemuGGfZhRhjUTaSCPbTreHM0/WGoxsKfKQMjOMfxRyuDfEKEubwMGXPNlFhV52EshoS6AsiawZqyWBsLw3f4O//8GXiY7AnHvObsHnJ7u4f50wfAxiobugtEXVHhEE+DgELVFFi5nX6OXlkOWmpL/didnjssd6vMCEDfkiYX4L1v9dU7DBsLJc/J8Wc5ojspLHG+vIt3IC2ZG1wvGiHfJsOWHwK8H6+1N8oEgPUx5+/20Gw5YXX5X4nmVttGBRhsimM0HCOsTpOVIrfBwiw+8eUI88LlTUQ8H+fEDtFKO0QM81XnsWWxJVQ7pXET0/QWQlxY1V9FJyPOuIN2tDtps1fnR+h/1Fn+wy1Ospwlp6H54Q7J9R9ySqEPTHGatxTp6HmFln3WjtK6fmtUS+e+EpogVzkjP62JKfR5Q2YBJntH1LfCiJDz3JftU9FGh8FFJMNMLRyXCgsAEfLF/jv45eY3rSx8wEwnnkbAlSkr2xxvx1SXu15PLKnKINkNsxwWkG8jeGyPUS2pUY/d8nrzF65JHzjPjQoA4T9icD1tIla1szjtWQcqI5uxPR2xXEJzHZhqS+t2B1kDGKCjbic2Z1zLPlBIB0paTYCNj/3Qj71S2qzZrh2jmbvYytdEbjJY9nF9CZQFQvnZYJOmVRN6hCo5+/mLAadJ5Sz3J6OynTzZTVJCM1NSs3DiiagFC3jN7JWTYhG7rmZv+YSbBA4blqTvi43ODD5QbJoEavONp1iZEtN5ITroYnlC7A0sHJw+UmWjp8AF4rcA7RdspC1A3qpEHrvRAb0rlx54lmjrNSdYJON922Rp2dWw0zriZTpPBsmDOuBFP6ssAhGeslk3BJ6xQDXbAZzrgT7nFNzzm2MY/rdRrfLVjlFIGymBmIqu5a+Wk7vcf1U2R7qSLIgaZFVDXpfo2eBsyriMrqV7jmvMB5SeEMgeioqPRd+Y/aPgsXkciaVFckqiYSDasyZ0UKDuwKuQtfXt1BxnkZ0tt3UDddUEri05h2Y8T87hD5nc/8jKMvN9j1IQhBMC0YPYTD6YBQtS8lc4sUnt1syFHZo3KaRNYdT/oQIyxjlXHBnLOiCgJhsUhOXcKhlYzVkr4qCWVDbkOGQUFRGZK9sjPLUmJX+5y/vcrp3ZRiLJG/33vM1+4+4vm3ByzfWsdryfjhAvUsxjpJZTWlDdDCoaWjdYrCGeY27ubGS4YqZzOYcSfc53p4RCibl3o/JRKW63rJpp5hRDcSv86H1Ns99HnZtU9JvJKUQ0nTF3gF8h9OfodQtax/8YDiL2YcvrMC3jN54Hh+tMruybCTN74bZqNaJB6Fp68KGq8IRMtQduS9ps+5GR4wVDlDlREKMEJw7iKslzgEv9i+QrorkcsuMDvqc3a7h40ELgCde/T7D2/Rn2SkYY11gvkdy/ijiP7zjPmDAU3P8+K65ML4nCRoGIV5p61shBGWQFY0XlPi2dTnlF6h6E59UlFzaA2ZN0xtj6lN+eHBLczziPGjupsvoB2GFGsCr8GpDhr18OeGfCNg+IUDDp+tER1LbOQwRy1b/3REc6HP+bWYs8sJUwNPL1j0asGVyZin6YSN6JzCdkvw9ZWHDFWOwbKmFuQuZKcdc9wOOGoG3J9tsft8jeERxE9PwQS4fkx+wSAcqLzT47IB3abgNRzNe+iii3r+WoANVxj87wuCfct4ETP6UCAXJT4JKTZSTm9e5ii6zAcxNAOHTRzvrd/i1uSIt1f2KF3AL6aXOa9DTucp7WHCyseSFQ3xicMNU5xRZJsR2SVJsPDgwSw9unSId/70b/z0TUW50SJqQf+pIjlyqMZTDiVOw/BZQ/TsFPHpAZ8QHTAGGtsLKTbil1II8jXJ7K7DR454OwAB40eW3naGXJRUl1fYezckWEDvhUNajxcQZA4XCMJpg1rW6MHjc8JZws4fBXzzK/cp7hl+8PANxj8JmH7O8rXPfch//Ohtttox0ZND0LI7yO3HiLxC72X0FgleKURVE1wdgTcIJ4mnFp1ZwmmFPMuw4x7TOyHyM3OW+z3GjxzhSYlwHd/KokFkBVjH/wOAMoLcVBmZiwAAAABJRU5ErkJggg==\" y=\"-66.795366\"/>\n   </g>\n   <g id=\"matplotlib.axis_19\"/>\n   <g id=\"matplotlib.axis_20\"/>\n   <g id=\"patch_48\">\n    <path d=\"M 287.775862 104.795366 \nL 287.775862 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_49\">\n    <path d=\"M 325.265517 104.795366 \nL 325.265517 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_50\">\n    <path d=\"M 287.775862 104.795366 \nL 325.265517 104.795366 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_51\">\n    <path d=\"M 287.775862 67.305711 \nL 325.265517 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_10\">\n    <!-- Suprise -->\n    <g transform=\"translate(284.149127 61.305711)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-83\"/>\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"126.855469\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"190.332031\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"231.445312\" xlink:href=\"#DejaVuSans-105\"/>\n     <use x=\"259.228516\" xlink:href=\"#DejaVuSans-115\"/>\n     <use x=\"311.328125\" xlink:href=\"#DejaVuSans-101\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_11\">\n   <g id=\"patch_52\">\n    <path d=\"M 10.7 149.782953 \nL 48.189655 149.782953 \nL 48.189655 112.293297 \nL 10.7 112.293297 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p3f9c2d4358)\">\n    <image height=\"38\" id=\"image4d990a9f8c\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.7\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMtUlEQVR4nF2Y2a9cV1rFf98ezjk13/nmxnbHduKQqRvUpKFbtBtBmiB4a/IAiEkCIfGC+Ev4BwAJCYRALSReICAhNeqBEJqko87gpB0T2zeOfUffW7emM+yBh31u2aGko6qSTtVZ+/vWt/ZaW17+/T+PvgA7jeSnnuJgjppWSOOgccROTuxkuJWCz77eoXp+gVKRazsH7HTO2M7P2LBTRnpOT1UAKAnLzz4qALQELJ7vTZ/j7374Vc5fpt/ws0/tooi8tfsFum/0KE4CRrkIpRAVuK7CdzPEBdAqXTEi84pssuDK359w+vIT7H0Nbtt1Vp5cADDxBU3UlNpixZOJS2CIeCR9jpESuJIf8s2fvsGtsw3u3N7CTS03jzdZvL3OztuOphfwmWAAJEYkQLBCyBS+l6Eqh2SGaBRSOuR0QjybMPzXY0bvbLL/S9sc/2aPS90TjpseSiJd1aGvK6xyDFQCac9BSqSJGo/iZwa79EzFnd1NzJEl++4qWzfG1JsdqpHCzgMm6lTSYARTBqIWQqZRtScKiAtI3UCMkOdI8MS9Q7a/fcxPrl/lpZX7VMHQ1xVTn3Pc9MiVY2hKuqpmoEusOFQLrImauc/ZK4fIXHPhu47O7gS33sF1FaaKSAQTJbURSRWLsmw/4j3iI+J8+p5ZkAxChMzS7Vdc6+wz0CWaAMCeG3Frvs1h3aejG6Y+Z8NOseKXwI6bHu/v7zD4RJOdlPhBTjAKXUZCL+ExUUHUJECZIDFVCUAqR7QGibFFmlBLkXP/N67yR8++zuXsCCsOKwn8pjljoEremT7FpCkIRsiVY6BLPEITNQ/KEdm/D1l/f4GqHb6boecOv5aBgLeCCqYFpSAq8LlKAHwE75egYlWldopw/7Wr/NwfvMO1fA9FoCc1PanRBAppuJwd8nzvPh3dsPAZU59TBksTDD4q3vr0EttvnCIhEjKDntaghChC0ELUnJMf8BAM+EyIWhIgpXCjgo//dETnswtc/oc9dl97gm+89iO+OrhFGTLKVgoKmuUknoPTBG5Xm0xc0Q5HTRUMfNJDFgfEQY4AqnY0awVIKo4EMBKBtlNRg88l3SCCiHDwco8/u/463zl6jo9e2OZbz73BxeyEgOLQDbDiKaNloBYMVUkDeIRCGi5lx1jx7NbrHNYDrPVMfU5x1BJZC3pap4Ezj7guvq3YOdKohabb0ilGMBo7ifz1x1/jxc09fueF/2HbjilUw6nv8tb4Mtv5GUYFNIFVO+NqdsiKni0rt26meBQ+KhbepmmMUD85Ss8IgZgZok6dOn+pYCDYVKmgU/UkxHSjUay/N0H/2wpbxYSn8iOuZges6DnvTS7SMxW/OnqPXxu+yyvDD2iC4c3p09woLwJQSENXKnqqYtueoSTywf4TVCtw75fTJBIg5AZfKIIRJCRqKQSCltTOx6QCEaLV+MJw8iXP08Uhm+aMMlr+4t43+Hi8yasrHzAJHU5Dl00947dHb/Nbq//NkevzXnmJJhqGqmSgFnRVRVfXaB3oPoi4XsR1NeI9Td/g8s9LlVmWzkeCCMqRJrJ91asZF64esVutsd8MAbjUO2FfDfmnoy8ztCWZcny7HABwuXvMhp3yL/svMdko+MX+h2gJaAl0Vc3F0ZiT8YjBbYVeNCBpt4k6VSpoULQ6lsie2pjNAqr2CZyCyUXNS6MjFj7jYd1j4S2vrH2IHTrGvkeuGpqo+XLvDoVqkixEw6tbH/LQ9figukghNWWwKAms5XP2B0J335ONa6LVid9KiCpRCB9buQiRqARdRuy0BeYCKBhfi3xx8BmayJ1ynTc/e4qdYsyqnXNztsWV7jFTl5Mrx042Zs1M2TInlNHSRM3UF1RiKaOhCYZcOYJtOxMjUanEqxAfUer/t1KXYCcNsqiTfFhD5/KEbTOmp2rWzJT7WyPePb3Aq9s3+MOtH7Cm59xp1jh0QwZ6wd16g9vVJmWwvNi5x1CXlMFy6IbMY05HN8x3Imau6N8OhEwjIaIaaLqgfGqniTqRTrmIXUT0pETKCpQiWsOF0RiAnqpY0TO+tfUOt6tNNLGtSvJbTdRk4inEYbXn5e5tuqpCEyiVZRZyHtKjCobtr+xx8Gyf3kGP4qBEVQGdKeq+EADjwCR5AF1BduaRsoGqBq1xX1hjXHqO3JCAQhGYh5yRXiT/1bYL4El7wlCVrBRzrDiK1u54BI+ipyq0BJQEvrR2n0tPPuSvrn+Tp/8xYmaOkKu0L5L4bpRLXswsYrI4i4pY1YRnLjLfypj9YJPyUlpxFRIQK35pAM/d6qnvceAHaGKaQEkOtkHjo6Juf2cl8P7JDvfyFeSpedoAZhUytC2l0jCaKGDKtmqlh5CcxfxCh85RQz1QvHlyhYvdUwAOyj4uaG4ebvLqlY/44/Xvc6NZ5/WjL/Li4AHbdrz0XppAV1UEFHVc0pl77z7B4bHC7XiIU8QFohKCPedY62B1E9NVeVAKlCAOZjsZ5YZw494O780voXsN4ThHrdXIpwXfMdf49dGP+cs7X+fB/grmmcA9s4pVnkw5NuyULRvJxC292NtHF1l/Vwgmoiudnhfj58RdAhjlH2kYofX6xtB/6y7V8xfYe0WRGQ9nOXJi6O8Li0WBcjC9O+JPzn6P4mbBztf3uH22xlPDE966+wWURDqdmm5e85XNXb7/2dOcPhjS3TVc+HjG/EKBWQhSNdBugco/pvziWtvTbkMohYjgT04J+iLXX7jJil2w/tyMqc95UI4oveFK75hfGb4PwN888wv86P5FymnO/v4K3Y9y9ALqUY/ZMPDPnQ3WfqR45icLXC9gzko6Wgi5XgKJKrmKqFKRjMRUMQmJ/NFoRKdreiHjxf4Dbs622SuHhCisZgue6+/xbPGAoSpREvjdrf/ihf5l7pZr3Jmsc6ezxmxuyboN/iyns2vpHTjqlYz8YQUhoEuHmdbJLceYgpBN4JRryd9KUdoOOhlSN0ie0/SErqq5vnITK56eqljTU3pSYyUsV7ui5vxU8QCAdTvj+uYtFJGpz7lxtsN70yvMNzS9fYeeN0StUYtkLHEetMJnj4xEFDDBgkRp/ZAiZAapHUymKBeZ+AIrjq6pkoWRmq44MglJo6IwUhWDbJ9L9phDP+DY9ZmHHC2BSZOjq7YaAaLViTIhLPNr6GY0nWR5zsEpXwhNV/A2+S/fNfhRB4zBLOCgGdBEQ4iKgMIjaHkUZAEC0rpWzwU95unWs300e4JPD1cR94g/zTCjWS2SOTQpX7hBTjQJVNTgM1KuFNc6WKto+hrX0XTna+g6Mm46UIBvlV8T8VEIjwFL6SeBLqPlk3qL/xxf48OH27hGYwyEDGZPGLJpRHxE1R4xyfpUa7YdvvNBkLQlodoUblKvgxHk4oCmK4zrIqkzgUI1S259rmJRlqDuN6v8cHKVj8ebTBY5sdSoSqiHafrrodA5CtSrGdlpg+9a6r7ifGs811VzbjO8TWn8PBj4QtH0hVmT4xGUBDI8uv3B+fs5wCZqTn2Xu/UGu7NVDic95mcFemxQdUpgElNLm66gnMJOhKaf4bNWsh67jPJAANcVfEeh64jLBV0F8rHis/GIaiuZv1nMUDFQiCc85oNn0TIJHQ7dkAf1iLOqYH7awR5a8mNBlylXKNfmi0KI0ySqTf9cEkg8C63yn4cPibBY1fQOHKqbRrdz5Hh4a8jdS+v02zMIH9XyiClVTDEJBYduyG69zkE54GDcJ7tv6X/K0mulIwioW70CUld6Kg1Gq7XnYp/I34pa1ND0NMrBfNPQOfaMbsJ/XLnG9rNnWPGEqCijRbeEmIWch67PfjPi4+kWP957kvBJn+FdsLO4fFAUUA24TtqHdR1puqoVdx5FSNUK7HlcWnItY0nE+ZZOruPtAX9b/zzXn77FTj6mq2ty1aCJzEPG7fkG/3u2we79deynGb0H5ydHYOaxfVik7inMIn2PkiKjxMeAtexISdzHZSwnJLQAdefRCvr3AvnDgu/tv4hstyeF1XmsEWShUQtFcSbkx2DnEW9l+a7r1s+TjiB0HdF1pB6oJRDlUu6ANCjJWrcr0HUkCmTTgLeaalWw00g2DRQnEdUY6rsd7CySn0W8hWpF0QzSn9tJXE6gKWMC0cQUNKzC5ynw9O87yjXNY7taAtWqfjDnYeSxs4uEWOgcOZTTuEJwhUKryMqtEt/RBC2EXHB5ChJ2ImnFLcGVbytTRcwiEIykhy0ixYnHddvU7VlWSGLbgNZPGlU/ZtJiElpZBJSPdI4d5aqh6Ql1X9CVwcw82gVqnc6yzlfpui2pq5S2slkqR9NVy/s6xw7XVVQDhfKRKOkAZ8nx9j6J8H+vVqsAsIfh1gAAAABJRU5ErkJggg==\" y=\"-111.782953\"/>\n   </g>\n   <g id=\"matplotlib.axis_21\"/>\n   <g id=\"matplotlib.axis_22\"/>\n   <g id=\"patch_53\">\n    <path d=\"M 10.7 149.782953 \nL 10.7 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_54\">\n    <path d=\"M 48.189655 149.782953 \nL 48.189655 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_55\">\n    <path d=\"M 10.7 149.782953 \nL 48.189655 149.782953 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_56\">\n    <path d=\"M 10.7 112.293297 \nL 48.189655 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_11\">\n    <!-- Happy -->\n    <g transform=\"translate(10.08639 106.293297)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_12\">\n   <g id=\"patch_57\">\n    <path d=\"M 79.968966 149.782953 \nL 117.458621 149.782953 \nL 117.458621 112.293297 \nL 79.968966 112.293297 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p89d522a9c3)\">\n    <image height=\"38\" id=\"image721be72f51\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"79.968966\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANPElEQVR4nGWYSY8d53WGn2+sqlt3vt3qZjdbpKkBkizJthTbshPDCRBnAJJNgCyyyU/IItv8gPyAbJIfkGUGQAacGEYWdoxAlhMPsixTEqkWSZHs+c41fUMW1X1FJgV8qDvW99Y57znve0r89c/+PP7Tj7/G1k8l3/qrd/jO4H2McCgiTx5nvst3z7/Ef33/VToPodwWFPsO1WuIEWziGPdWjNKCVDVY6dHSY0QgUQ5JJFM1UkQWLuW47PLB8Q7XhzP+Yv8nvJY84E6zzbvLW4Qo0HOXgoRg4Hv/+hY/eus5BmnJtc6MTDW4oHjv7Brnv96i81iQFdB0oRoFAPzCAFBHmMqM2mmsdljl6dmKVDU0UWJE+/u+LrDSMUlWfPvZO3y5e48X7GPOfM5RM6SJCiM8OpGOP/n6/3D46oT3bh9g/32bTw4i928M6eclvaTi5LMhw0NBlBAVVJNI1BHhBVFGEMBZQnFhWdsINmDzmm6nZNwpGNiCjq7RUbIOFkULctsueNE+JhcNUzp4xOY7PW0yrqdT/nD7fb42OuTO69s8kywYqIJbyTFSBP529cfU/THJNFLsCFweiCYigkAtFYOPwKwiywOFt4AE4S1r2eX8ZsVrtz5jolZtZIPGSkeIkrO6y7HvMZQFBr+hTRMV2gXFOlgAXs0e8Kw9pYmaRUj555M3ePe95zAzReKgGgmqsSfaCBHUStI9FIgYuXhZ0Aw8MfcgIgSBOjfktxN+tbiBe+0+z/dOqIKm8IYqKApveL+4zq6eEZAASBEhBvQvvvsy8c05q4OEyXDJRC85c13+4/QlPnjnC+gAUYDLoOl9nkJzLsmOBXYRkT4y/FBw8qZAJR5fKfJRgdlaMl9kxJXmzvEWW+mSTDVc1B1K33LzYTnkbvIM23r+VMHp7DTS/KjPL/5gj9e7D+jICiUid88mRBkRCKIA34lEFZGVpHsoSS8iJ28GOgcLnh1dYKXnhnKM7Jof3H6J1TSDWiIqiS4ENXA4nPDc4JR5ndIEhRSRWZPysB4xVsunUxlFS+Y/3f8NHsEiZDyox6ymGVIBIhKSSGwEdioZfhgY//CQ6TcPQMJWd8Vrw4d8MXtAEzVfTu/xl1s/ZlsV/Mv8y/zDz76FWCcM3jc8yEaM0zXrxlI6Tcc0LJuEsyZnnSQAhCiQIqKlg4PvF/zj9jf4/TfeZyeZ8+7ZDagk0UaCiqADamkwC2hyweytA8w6cO2HktkHe3wv2+PtDvgkUm95zKDij174NW90P+Xfvv13TIPlb+7+GfHtAz7ubmG1o6gsad/hg6QKhjoqpAhIEfERdO9Bg/7ZRzyvXuQnt7/Eaj/ihw5UJJqATDxCRUKiiUqw2hPMXpS4bgQZIThUITFziV4JzFIja80P3v8qbz/3Ojevn/La6CG3eqc8zA7g3QGzVwpiFISewEVJE+WG/FdR09mHxwTA3n7ITrPL/FbG8VsSNa5Q2mOMx2rHLAqKkGDmEp8FZL+h3yvQKrAqLeXKEte67W06gmqJ/OlnWxx+uo0+M+z/ssGe19w3OeWeY1EmkELhDT7KDSgAHYsSYS3RB9SqJsoOYlgxGS7JTEOiHABKRqbKU6sOspT4WrFYpfhSIwoFAaRvCwUdMb2K/cmM/XyGi5KPzrf4dNLHPu4gQkQtFMs8pZe2xdaCkngkIUq0SBMiIKQk+sh6RzAertjNF3R0TaIcPgq0DKTacaoD5eMcUSi8E4hGYk8VIkJ5vW5VQMCgWxKjoPQaKz3b+YqwLZnpHHFh0GtBEwRGefSlXJVRE6IgINAohTBtTwldy+p64CBfMklWZKpBS7+5GysdiXZ8BpRHOSL1vPLiAy7KjNk6Yzup8UEgBQyzgnunI5ogscozXWdMT7qomSaYSHNQMxyuyE2NvAS29gmFty3HKErIUqIUnL+Sk+4vGNqCTDUksqGrKwBcUPRNySRZk+uaj0SkaRRdUzG0BXIQcEGRKEdPl1RBU7k2AuerDvOTLvpC4/qebGvNuLuma6s2K9Jx6npcuA59XXBU9dFYA1VN8eoep1/13By0wHJd0ZE1qWzoyJpEOJqoUCIwtiu20yWPij7TKmOYFOwnc6SIdFVFKhvOXc5zg1MOF2PmR11EqfC7FcPBml5a0TE1HV2T65qRWXNc97iZnvJGdsjfP/q9NpUxscxvGrq7M3Y6C8ZmxUCvSYXDCNf2FgQhSqQIGOFRBBLpCIhNmQ90QUfWrIOl8IZH6z4PTkaI1NPbWTLO1yTKoWVAi0BHN2SqQRLZTWYY4flNtYeLEl3cmhASSTUSDLKSsV0z0GvGl27ACEcTNU1UNEFjZBu5VnA/7z5aBjqy5cvaW0KU9G3JrZ1TjPJ0TUWuarT0hMvWYKQneyIrAEuftteb37AgoRpFerYiVxVG+I1mnfuc++WYjxfb+CCZpCuupTMS2Uay8AYlIh25wghPE9WlpHj2shm76RwjPIl0JPKy9YiAf8KbJbJhHSxGeDyXkqSriKoiIOnomsJbHtVDPry0v7M6Y1ElNF7ivOLwdEwn3eFgOGWSrKi8JlEOIzxSBEqfsvQJIQqM8BgZN8CM8KSyQYpAE9VTNGiC5r3VPtfSeVuVo19OEWXD9PkdFk3KYxFZuwkfP95G3c4hQDMIqFIQFPjdmuksYTbtcGPvjEQ5+rZs7zg4LlyHwhtClBR8fuS6YqALVAzIK77Sgu7Imv88f54Pjnf4zs3bbSqr3S72pCC04k7pDZXXKB2wFzC866i7kmTmiFJw8pUEAqjK8LjTp5tVxCiYJh2aqDitu/gomNYdjlddFkWCEDDoFFzL5+xlM56xrUPuqhIjPFY4PjzbRohWkkIU6NlNg93SVKNAiILCGSqnGfdWHH1dEZIO+WeBaqio+gI7A59AuRXxK4sQEa08p3XOcdVlXqdUXnPvV9faGaHryAYlRgbSS3nzUdJTRZtq4fi03sI5xVZv9blRXO8KmpUgJo7KaSJQO80wKzjYvqD43SVn0y5ubiGCcIJoYmufncA5iRSRZZMwr1LOVx1W04zBJxJvwacWO7c83O0xfzXhxckJXVVRBoNRHkXkR2cvUJxnZKMpQDv6Nb2IzwATcEGS2xofJIsqIbc1ua0RowWLNKVpFK5WEAVCRpQK5FlNqt3GFTSNgkaw3otkRwJ7HNElgGApxnxwNOGdV2u+8fIdfnv0MYrAxydbmFPN3e4WRvl2ovJdjweEDjRekijHrckZ95Yj7p2PKJcWCoVaS4QXYCKx5+lM1vSyko5pyHTTNkzTjmzTRtHYQNNXmJnCzAW6gOzosgpVpA6KECXHrk9xlpGtBMXccjHOIAUtcoe8mjguw5hIx1tbn/Bc/5THRY/jdY+LVdZeUwU6tmGQlCTakapm46Msgtw2NN2SutaILrANjZNUQRIj9HsFL/fn7KYLxnrJzxcH2BONyyNfeeUTJsmaw+UYbdOGPKsoKouSl77osr/sJVO+kJ2gxpF1sCx8iguSIlh8bEv+yqYAFD7grGRZWdZO4ZcG2XH0ewXjfM3AFljlyVXNxC7xUXB3MUGvBPzWjN8Z3+GnsxtUTqPzrMKoQH+wwIfL2Y5IExRIKJ1BidC+v5SeniwBqIJuo0jAI8lUq30dXfPI9nnkhoSFYVoq1qUl22kY2NZ5NEFRRsvpMqfpRd7au8/t9Q5HRa/1f9d6C45XXQa2JCBIdduZPXIDtNXFSCLqS/30LdioNpa4iYoga3pasmWXvNQ7gl2Yu5TTqstZmeOCxEfBs9k5N9NTTpsey/MOYhDo6pomKIz0lGj0drpkXrXCObRrjAgbkb2KxtVIFRDIy6E0kQ0JzaUdFpth9cnXiWx4NvGk3RolIj4KrPB0ZMWJ6/OwGiIXmpB5Kq8ZmjVa9jEyINvnCILTImds15sUhSg2Kboit9+4gksxvpSU1h55EtlsXssnbvDKg1zp5CJkNFHxYD0kykg6LtlKliSyLaaurdp/dG3FxSrjuOwxNGvcJamliCjaWc/Izx96KOJTUZWidQhX4MxT4AR11PgoKIPZrJnvcFLk0HdcH08Z6xUeSc9U9E2JXLmEcbKmrgwfT7eogiFTDU1UpLIhkY6OrC/lwz9hTcJm/d/DI1GEjX1qOag3q4yGdbD4IJEmtI+pLvfIVU3PlGgjPT4KunnJ2UWXn6t9Xh4d4UXbAnqqfGrTKyBPbnrFQ4/cuFuPhBg2UTfCEZD42IJeutY1aOPomarlpgj0ddF6ui27pPSGFyYnhFJxdN7ncDnGBcX9ckQTVUv0y9VyqkERNlG58llXAK/APnl+spqvjsw0GOMZmAJFZKAKtsyS/eQCvfIJpTdsJ0vyccHqOOeeGjFJV+Dhv+tn+eboDkO1po76qY08Eisckv8fRWid6tVnm/8JKGnHxVVtkSLySuchE7VEiYAkYIVHSiJdXXFRZ3xj/xBMoJ4l3J1OyFXN/cWQtx+9zonrYYW73Kw9PwnqCsiT6yqtbQGFjc0BWPqEqtG8vH3EF5MHHJgzbuozbppzDvSU/wU/ZAPEQZJUtwAAAABJRU5ErkJggg==\" y=\"-111.782953\"/>\n   </g>\n   <g id=\"matplotlib.axis_23\"/>\n   <g id=\"matplotlib.axis_24\"/>\n   <g id=\"patch_58\">\n    <path d=\"M 79.968966 149.782953 \nL 79.968966 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_59\">\n    <path d=\"M 117.458621 149.782953 \nL 117.458621 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_60\">\n    <path d=\"M 79.968966 149.782953 \nL 117.458621 149.782953 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_61\">\n    <path d=\"M 79.968966 112.293297 \nL 117.458621 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_12\">\n    <!-- Happy -->\n    <g transform=\"translate(79.355356 106.293297)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_13\">\n   <g id=\"patch_62\">\n    <path d=\"M 149.237931 149.782953 \nL 186.727586 149.782953 \nL 186.727586 112.293297 \nL 149.237931 112.293297 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p141c02be63)\">\n    <image height=\"38\" id=\"imagefe9ed7a9b9\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.237931\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAL0ElEQVR4nGWYSY8tV1aFv32aaG6bebPz83suP4qiVKagEBYTZoAYwAB+ABP+EGJe/4QREhNEIySQULlsypbl7tVr8+btojnNZnAiM11wpNS9eRURZ53drLV2yG/9/d+p3xtu/j1wv7IT1AqLz+7gi6/gx895+cdruhshLDN6M6BZEKM07Yi1mVkVqGyijw6AbvSMoyMnQ3pTc/MvQqyF/kpQA5LBBEABKd/dX7yh9QH9+TVm8aVhXGdSZR6ASQZJiqQEwHDZEhaCGcCeBHlZoydHPjlCsDiTySp0waMqVDZxMT8xbwfqJiCbkXc/FXyn2O5hG1TuIwFq4G7fctkeQMHMXmUkwbA2BX0GyVpuCBFzfsbueUWqyqnsKPidwfQG6Q3hWHHsamIyWJOpXATAT+CerHfMFz3xw579M4M/KDIBUVOihYBaCLuKZ7MtsRWM6zOzF4b+Qh7CCmCCkjYLXvzVhxyfysPNZvzeKZ1CMKRoqVx6iMR9BGsbqW1kM+to2pHj84RasP0ULZlSOcXB7hzn/kR/bjAmKMuvM2EJmMcLY2v49s+WHD58PF323zthpbizkdV7e642O9Z1z7waaaaIpWzYDQ0xGxbVwKwO6DzSXwquU76/ZMqUPwpJDf0VGNtn6m1EEnQXDpMUBLoLQ5grkqYbp9OlBlKtkISchBAtRpTMY4RqG4nZ0AVPZRMr33Oz2OObyHimj1FnOqSUPcwIL4cVYa44kzKahfm3yuGpsPhGSXNLWAqSYbiO+FuLPwjZQbY6pRrS3tMNlm7XYOtEVQeaKrBqBoboGKNliI6V7wGom8CxVUQFkx4zIXkCl+BFt0ISODWCGmH9xcDhBw1hacleSBXkSqHOxIXgjra0dC+4I7iOUnRiUYFUV8RFSzeD25tItemZtwMZobWB3joqFzm0iXHhMSPEdgIkExMovNgvqbeCM31iPK+o3/ScfVZxurT4k6KuhFlsRhsBLHaA9o1igqIWxqUwnAm5foxkXCr4jLWZq/mx0E22LP3Aqhm4rROiDtdBnEmpa7nnT3j3Ys3FW8W5N3tgiXrL+n+OHD6cMS7MQ6foqRDmcJVJR2E8A8mG2CjqlTSfutEq1WqgcYmzeceyGqhswknCiuIks6wGXB2pdhWSeWACldJ440pxW0dsBCcx4V7voPKot8xeDPQ/aZFcOsXtLdmXJsgW8ABKdoooSBJ0FqGzpGRQhe2xJWXDuu7BQciW1gcqE2mbQL3LhSvVPDRAdpDmmfUnlrPPRxyApAynHjGG7tmC7Ms9dhCCV3KTsSeDSUAqgG1nyJWSK6WejwxUVFUkJUOMlm4sHXkMFQs30JoRZzJP13e8vjxj/eWAZD+lBXINT/8Rlr94hYRIOaKWvGnt6S4c6qQUPqUoaRL5IoCWzjFRMAEkTrWRhbPNkevVgdW8xxglRMu2a9ieWqIaDqlmbkeetDvefpwf6ULBdcqTf+5Z/eevIWfUWR4FEkjLhjAr3SJRHoW2t/g2MN5EVECtEhZKahV7MsS3Lae+ImbDk+WOs8UJEeV0bGirgBFlzG4SDOHmR2/Yf1BjAiy+zVz9x4Hqm1vUWe4DVYBJaYs08yVarrSuHUAdmM4QOs9sc2K8SoXPasUfDO0roX5tGbc1r26XvNivCuHm8uh5NbIdWu7GBgAnmZ9dfMft78Lmk8DZL+6wd90DhvtP8/CDKnkCBZC9YgJThICdo9s31JsOybD63NC+LCxuu6JzMVh2x4bvvt3Q3zacr4+IKCFbTrHimCqMZC78EfPDA6n5XsLucUzLAKizpMsV49qVmgIkC2Ex1ZhVsMDBMdw2ZHcP+NFbAYhRrM1Ui5HV9QERpY+OU/AMyT1sGtTye09esPvbHb/6mzPUu/8HzqmzvPzTG1Itpf1z+Uu1lpS1ZVcVBQN2b8FAf1kawfXlE8D5xLwZebq8425s2PU13ipZBVWhj57WBobsWPue2kfGHx7oPlgy+9VbMOa+mzB50ZKaYmuynbJqCq/kJqNVRq0iWaYUM3k2MLGAUgPqFecS1mS+3a85jhWVS2QVUjbUNuJMokueY6yZu4Efn7/m2WbLm595/u8y3bM5kiHOykYqhVPUKxIFsiBtQtsEVtE6E1eJ1OrDIdQWbxZGR8qGeTUyr0ZiKic9bzqezbc8m21xkumSx09hfrlfMGwUndUPtAVg+jNLnP2m1zJDiYpahaqk0jYJ00ZwGUlC9veaNXFbL4TOc+wrXu/nvN4v2J9qhuDICG+HOV3ybKojzqTCa27gR5s3pPcG+vfmj8BEcKkqjvKhoKc0myAkCwwGNUoKBvEZgsEeDa6XyW1MvJcnUwUMfUXqLDJYhqamHz3nixMZ4aw6MWbHwo2EbPnJ8iXHZzXbmw9ovyigJCbcg07Vk+WdnOoDuY62FPdkFCUX3y+RB5OXXYmubyJtPVL7yHacI0GQ4IivlrySJd9dRC6f3PE75695v97y+emK1+OSj85+zT+tfgDeQSwpNiY8Rin7qaAne207wXXF8lZbYfGNsPga/A7qLYxLJSwgLJW0Slyf77maHzme6qIWd+XBthfa18LyE8/tpxtqGzl3RwzKkC1Pqju2H4+EzWyqW8GFeXGTtudhekEnkyglpbaHOFeat1AdlHqrpEpwq6lTa6U56/mjq6+wZF7sVmQV4tFgBkGtkr0Qlop9dmLjjxxSgxGllsQTf0s1H0EsWAOqOJMKz5gwRWtKoYkCuQAKFxGS0A0OO5b0xZkQZ0qcK3kVqU1mZkZOueL3r1/w6btr3uw9butQge46I+/1XC5PfH64Yph5vEm00wBwvjwxnm1wdxZJGXdPqCZN0sM0FR+E7KG+FWInxFUizspcoK4AjheBmydbPtq85Je31/z37n2cJN5vd/z2+RueLHe862ZsTy02C/NmZAiOr3drFn5gUx258EfmZuT9xR2//INr3hsWVO96XGzloRtTdV/c4E6lIVKrmATVbWmCsFLieaQ571nW5YGtDVy0J952MxoXMaI4k7lp9lQmsqr7Ms6NNZWLWClZuvBHNu6AlcxfX/8XzV9G/u2j5/BigUvN46ie64nVld8YsdQWp52W+YG7UjREb7gbW8bscJKxogzR8c14xrIeoIGlH2hs5BBqjqHC20TrAkvfs3YnABoJPPdv+JPNp/zh+iv+4eanuFQXJ3EPTkx5qQJM2ll44p7dqcqsFUdLcI5d39A79zDoKmXY3Q81tY20NpQpKTmcyTiTWfiBleuxKEEdx1xz5ffMzcCQPR9vvp6sdRZyM82L/fetT5l+JE1D+mjIBjCKcUrOwhAtKQuNiyQVxmmeNGIYkuO745p13dHYyKIaiNmUwp5WQujVszSBPnvexTnvxjlGIsRWyXYiS1tcRHaQnRZwvgi8JJAwTTbfm/JVhVPwzHxg1fSczzrm9UhWoXWBrII3iavmwMIPAHSp4pvxHICl6dhnT6+eXWzoksf5QxHwsNIHP08qaVNXxPy+W9FJP60iAs6l+5GQMVpsnWldwqDEibUrG6lM+c2IsvY9QQ3HVJER1rbGSubLcEmYNnrabnGuU2wvpFaLHNl7BFPRT6O72smb+YxtEnVTpMeaErqU5cEMNjYycyViALUptZYp11hRDIqTVAQ+LgjqOKUaZ0qaHTIJcRRSVdKoGWwooixZyG5qDqsQBWMylUtYo6Qs1D5SuxKRyiYqO1GGZOZupDYRM8mKMwkvmV2sAfCSeBNX5UCmgL8NM5wZwe+VsJRSZ0YRU8BAGdFEymtNTZMEZVOK2E4ARUmTIYzZsEsNlS3pywideFa+J2RLbYphXLiRrIa72JIwLG3PZ8drPr+75Ko9FroQLR7M1EVA70d2NY+CLml6sVdlcipWOeVyochjJ6Rc/j+Gquilli68/16Z4mpbG5i7ASPKzPTsU8Nnt9e8frskXwouV/JAqpInWZrqS/IEqug5OQo6ueCUDLiptmKFFcXWCjhiNigwRkdIlk174vnsLUN2fN2d891hTe0iT2Y7ntZbzt0RL4k/f/9T/rV+jkH5Xz2VjjlaKfD2AAAAAElFTkSuQmCC\" y=\"-111.782953\"/>\n   </g>\n   <g id=\"matplotlib.axis_25\"/>\n   <g id=\"matplotlib.axis_26\"/>\n   <g id=\"patch_63\">\n    <path d=\"M 149.237931 149.782953 \nL 149.237931 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_64\">\n    <path d=\"M 186.727586 149.782953 \nL 186.727586 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_65\">\n    <path d=\"M 149.237931 149.782953 \nL 186.727586 149.782953 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_66\">\n    <path d=\"M 149.237931 112.293297 \nL 186.727586 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_13\">\n    <!-- Fear -->\n    <g transform=\"translate(155.026509 106.293297)scale(0.12 -0.12)\">\n     <defs>\n      <path d=\"M 9.8125 72.90625 \nL 51.703125 72.90625 \nL 51.703125 64.59375 \nL 19.671875 64.59375 \nL 19.671875 43.109375 \nL 48.578125 43.109375 \nL 48.578125 34.8125 \nL 19.671875 34.8125 \nL 19.671875 0 \nL 9.8125 0 \nz\n\" id=\"DejaVuSans-70\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-70\"/>\n     <use x=\"52.019531\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"113.542969\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"174.822266\" xlink:href=\"#DejaVuSans-114\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_14\">\n   <g id=\"patch_67\">\n    <path d=\"M 218.506897 149.782953 \nL 255.996552 149.782953 \nL 255.996552 112.293297 \nL 218.506897 112.293297 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p91617d95ac)\">\n    <image height=\"38\" id=\"image4e10a4742b\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.506897\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAOcklEQVR4nG2YS4wcx33Gf1XV3dPT07MzO7OzO/siaT5EURJFhhJlyZJBJ/EjMQwH8CUJkpx8CZBLDgGC3H0ycg0QBHAOUQ5BnKcNI7EVI7YlwZYtW5QovkRyueRyyd3l7s67p7urqyqH3qWEJDUozADV6P76//i+/zfiyF9/0wW7CgQUNQcOqjuSmbuWrCkIho7+1yb83lO/RAnLtdEi90azGCv56soVnqtuMK9G5ChGNsQ4iRKWkamyls1zY7LAzzeOonOPOE5ZnBlyYXaDY+EuTTXhK9FjEqd5+R/+jFOv97j59Sbx0QHesZPbrKt5KlselX1JETm8BLzUkqFQ2qHerROdybg3neNxGqON4uWFdT5f/5CmzFE4Js4jwGAQ1IQmVyO63oDjlR0A3rp5ilx7DLKQB2mTE+EOCofG8I2dSyz/2DD51AxIh3MC+Ycr7/D5c9cwJ6fomiMYCLzEoTJHMHJM25KZe5ZvXfsMW2mdvUlENx5xaeYmXZWhcIysT+oUqfMxSACaMmfJG3HM3+UzjTssdXsA5IXi/qjFg7xFXU55UMD3v/sSOpZM2wpRCAC8UGp+s3mN58894PXGS+xfmyMYgPUFtUc5TgZkDUE+9bk3aKGk41S8Q9frM7KKy9kKt9MF9nSNUREicTT9hGeihzxdeUhd5qwGe5xvb/KBWMI4wTCtcHW0yCu1W/zl1hdp3LZYBU4ADgKvwAuFBuCZ8AF/fqrHt5sv8k79JNb3mLkP8YOcacfHack09znZ3uVUdZu6zLmj21yfLnF70mEvraGNIi08AmV4FDdIZ33Oh/cIhaYiNa0woZ9VIdDc3J3nR7UzvPn2s8xrmLYl6TyoxYQvrdzAC2WOj0E7j5rM+OPuj3i1eYfvnHqeO9eXmLkZYqogAk3gFRyp7dNUCdYJ+iYilJrj0S7dcIh1gqkJsE4ghWNX19nzYwJhmPUTlqIBgzzEWIl1gv/cOEPQk/RPwvREzlNHt3h57i5Hgj3E9+4863xRkDofHwOARuFj6NuIf3n8Au89WCGOUp6d2+Lp2jYXonUimfG4mCGUOY+LGR7mswBkzqMiCpaCHk2VYJykLqds6DbbusEHo2XW+m2kcCS5TxRoXuxscKb2kK43QAlb1ljqfCa2ghIWXxj2TUwkM0KpWfZ6tIKE2XpCq5oQezmRypBYtFP8oP8sA11F4mgFCQ+SJoEq8ITljeRpLrQ2uBDfIyTHFwW+LFit9thO6hgrIYAXOxt8sXkFJSzGlY2jnYfXlAkTF6CdB0BLjVHCEgrNxFZYH7dohlOkcASyQOHo24hvbXyWzUGD4+09Xppd56szl3lYNPBFwYZu81HUZS2ZY2M6y6XWR9TllMRUkMKxGA3ZntbxlWEni0mdT01kBMIwtCGPixm8srUTDtfIVrFOEgrNhm4TKk3klQ0y0iGX9Spvrl8ieC/mua/e4NXmHTrekJENGNqQY/4uXW9AM044Utnjmz//LX6RH+f3L75DZj20U3jSUPNzAKwTT55nnKQmM0ZC4xkExvnURHlhJLOSwZHsFnW61RE1lfEobfDu1ipp5qNHFfQJzQePlvjVxgpSOmrVDOcEFb9gkgVkmY9SFsYe1W3FP9ZeoNseEAcZ89URzSDBOkluFX0T0fUGmIM0aqfwRraKLwoAjJM0VUIgDet6js2sSScYYQ5uMB6HKM/wubM3+ErrfdpqzLqe48pkhauDRRIdMFNJeW1hjWNhGTn/XMGH01Xe2jvB9fVFqvWMo0f26VaGaKvYzma4k86z5PeoyYyuHCCxeB01xBeGUBgS6xMKg8VyO1tgPhjhi7JTu+GQ7tyAQVJF25LlQ6EZmSrvPD7Gw486qKlk6+iEhXDExXiNU8EOG0WTHV3nfq/s2uXZAbHKiFWK7xky63FrNE+sMn69fg0pLIEweIcdaUVOKAq0k6TO42RlGwBfGFLnU5Ga6WzATTHPfhZxL5tjYit8+8EFNu+1kVZQtAp84J2HR6moglFc5W7W4e1Hx0lTn9NHt3i6sc2snxCKgorUrIb7jE2Fljdhq2gwI1Nyp0pJsk6Sowgp8IVl4iSPixmOV7ZZVgOkcIz8gKZK8KXhWq/L5eEKgTRMtU9npc9sOKVwkl5SJS88rvcX0Faxl0UAXDiywZn6Fg01ZcnvUVdTtPMYmpDVsMel2k2uZYvsmZhQaDzrJE05xSCoCEPmFO9Pj3Iz6XKxukZDampS0JEJq94aXW+AJ55nfdLmK3Pv8xdLGweRtfRtQN9EzMiU1Pl8b3COzaTBxYX7fK5xnXk1IpIZdaFRwrFvyjGpIjX/PHiBp8ItmmpS8lgkM6RwSByJ80idx0/7xzkdbyOFRQnwEcTSRwlBI+zTbb/Fj6qnORHs0FGWipBEIiRzmtTrY4FIaLZq68Qq41J8g2eCET4CKQQgSKwllZrwYGz6p9vneWFpg9/t/JxIZGXENA6FwxeWjWKGcVHhaGWXutBEQlARHr5QSASRkJz0NXP1D9m3HiPr8KVDCkFVBBgyEmvYdwXnKpt8OtygKSWxDJ9wpcWSCYvCEQpNrFKyzMc6yaZucSLYLnnMB1Ln0RAZa9k8o7xCS40P5MGRUTCwOYkrb9ySkqb0CIRhYkHjsJSHCvEEQFs5KkKhEFgs8mBWk0gioWjIgolLaasx9VpK059yJ50vgfnC4B8Ip0byk71T7E8imipBCUffSm7pOd4cneb6sEtmPBaqI15p3uGFcJ1IakJXID8BSAMTK0mFY98EbBazTGzAst9j1RvSkuALSSgEdaFpqzEVv+CNtdN0GmNejT/CUzisE6TOQ6FJjVeyu1Os6RZ38nnW0zl285gjtR67WY2k8Pnh7tPcqi1wvnafz1bX+OTaNz4f6XmuTle4Mliid9CZ7XDCiXiXl2prnK08IhQOEDTllEYlZXu9xcPM48Ol1RLY0FVKyhCGQRZS5CWBXkuX+e7m8+wMYrJJgEg8avcU046jenLArb0OuwsxnfkhR7wJEkHiDFfzI1yeHOHWaJ7Q09SDDID5cExhJWt5h9T55fSiSp0e6wCU4wtPX2cl2MNLnVfqpChbfrdXx2aKUGh8YdBWYq2g2+2zda+NMFDdFqS2gQkdPx1XqCrNa8v/RSQC1ouA7+8/y3tbK4wf18AKGlc9hIMPzxioa5bm+8xVJ7w4e49XareoyxTrBJVtj9vDDr89ewVPCosvLNYJtJOI9Sq0zJPZaDke0K6Wb/Xcr20xORtw+dEy5lENmQvsIOD+eJab2qOrplxJT3J5e5nxdgwOhBZMuw6rIOgkLM4O2dxtkhUep2dCJrYCwDAJCXcFD3sN/GNFOfZYJ/CF5Ua2RLwBg1CSHKR3lIfsjGOmmc/1rIud+KixRBmBqVqoazLj8Z3BBeb8Ee+PVrFWgmfBCILulKfOPWYl6mOc4Or+IrUoYyEesRL0Sr21VaabMfU9yzj3ME6WNQYQCsMP+88QPzKMVxV7Rcxz4QZJJ+BX/irXtrqI7QrxtkRlkLbBLuUc6e7zVGMHJSyDImJqfKQsQclEkeuI60WXx7M1fGnxpGVxZsj55gM63pBAGNb1DNGmIpgUmLSsb88g0E7hO8vlx8vUMkcwFNzNOlysrvP15rv8QeNdbi3N8v4zR7idzLOZNIn9jOfrm5wOHz1h79wp5vwRVaX58eAU4bp/YAUj+s2IvGFxLc1cZwizIIVFCsuddB5/DF5i8bd9FO4gYsISCsNifcjjZguA+9NZbENggLoUvBZOuFS9gW5exeCwzvG/V+osZ4MdXq7e4UL9PpdPr7I+btGfhgQCFuIRx+NdTkdbB3I2QjvFlf4SJix9ZTA8MLwGQUBJsJ9t3+LvF45TRI7NSZM9G1GXg9LKC1PaMiRg8YVCCYGHOpAZR3wgNwvOcaZxC924gXaWkXVYoCIgFAKFIHWWkRPcyJtsDhpIDcI40rbDF0WplSmS3EouVu/yN4uOcFewO67RNzUq/gBffMzqFeE9+a2ExDh7IDPi4FvhHVxewcMKR0N+rJGJ1aTOkjrQTnIzW2Q8CpmdOkyoMHM5ia0gD/MM0FIJlVNDvCkM92top1AH+neYuieaKCTaGQoM9hNaeXh2uA/F32JJXXFwLvAFpE6xkbZwvQDrQRFJmq1JWXuhMNREQSgMPpZXltdJ2+Dv+NxMF1FCYHCYgwdrVwIxziIpU2uffP5v3X3yZQ6Xj0ABExdwtb+ISsuQJh3Jb6x8RFMmyFInFdpJNJJXG7fQdUu0Kfj3e2cZWYd2ZY2kzpC5gsxpCg6jVUbbOPcEnHbmyc6cxmLRrvQO8qAsNHAtXWb9UZugJ5A5TJYdF+O79G2ENJ+YCkY2KG1UsyDsWcx/t/m7/qcZuU9ODh9H7xCQOUizce4JmMOduuIJKOvKbjY4JlbyVv8U8lFIMAClwT89pK6mtNUYr3ThirYsDYIWmvrchDxuUr9veP0nr1G5VPDl+gc0pCYUoLFYp4mk/3HE/h8KOYxOegCsLAVH6uD13iu8/eEpGg8Ewdixd87xRyffQ7uS+cUP155yAHWZcki2t/Iu3/jVl1n4t5CsIdh7wfC589f5/Ow1lr1eOaZITV0KLLBnBNfyLnsmZkZO6XhD6jIlwCJFCXZNz/EfvbNYJ3nr/nG4Wifog8xheMryJ1/4Ac+Em+SupB/xg7XTTuGIZIZ1spzzcfxi+in+6m9/h8a6IZmTjI7BzLN7HG30kMJxNNrnYnyXupryxuA5ttIZemnEtPCZqaR4wrJQHbJUGaCd4ifbJ8mNYvtei87PFMICAtKW4MTXbvGnK2/QNxGp80szEgqNdh4jGxIKDU5igfPhfea+tEn/X5fxUke4LxjcbHG5MgsOfhkf482FE0S+ZmcYY61A5x42Vai+h6lZVCPHZAqsQEwUQU/RfuAI+wZZOKYtDx3D2cZDRrb0BId/JP4PfVB5kbvGCgEAAAAASUVORK5CYII=\" y=\"-111.782953\"/>\n   </g>\n   <g id=\"matplotlib.axis_27\"/>\n   <g id=\"matplotlib.axis_28\"/>\n   <g id=\"patch_68\">\n    <path d=\"M 218.506897 149.782953 \nL 218.506897 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_69\">\n    <path d=\"M 255.996552 149.782953 \nL 255.996552 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_70\">\n    <path d=\"M 218.506897 149.782953 \nL 255.996552 149.782953 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_71\">\n    <path d=\"M 218.506897 112.293297 \nL 255.996552 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_14\">\n    <!-- Happy -->\n    <g transform=\"translate(217.893287 106.293297)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_15\">\n   <g id=\"patch_72\">\n    <path d=\"M 287.775862 149.782953 \nL 325.265517 149.782953 \nL 325.265517 112.293297 \nL 287.775862 112.293297 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p57eaacdf10)\">\n    <image height=\"38\" id=\"image1ab3972ddf\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"287.775862\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANTUlEQVR4nGWY2Y9l11XGf3s6052qbt2q7q6e3W4njpoI48QO4SEiKEFEkZB44QFeeeedZ/4FnpEA8RApigRSGBTAEcRIWImN7XSn2z25u4auue5w5r0XD+dWdZts6ehIR+fcu/b3fetba21142//Uozz3Nnc4RcPr5E8iWkzIcRCfGXOZLAgczUiinkT4XRgI5vRBs2iiVFKiIwnszWRblmP5vxG7znfzh7xs+Iqf/HjP8bOFO1ACIOWyYUpf377J/zN1jf41b3LYAUUYAPaBpQGAOviltc3Dvh05xLpo5i2J4gGtVFyaWXKKCqwOlB6x7SOqbxhLx/gjMeoAEDtDVWbEduW0ju0En4/e8Rfb32T6FijPLR9QdnAWrbAqZa9eR83LtFaXrkCIooQFPYrF3f57GiCutfHx4KPhRAHrk9OuJRN6dmKNhhK75gVCVXp8LXh2uYh2ghKCWeraB37eY8gigcrfe7/8gppDWJANEirGUYld4vLAIyHOQBGBxTgRVG3hqpx2IdHE4r7K1iB6kKLPbQMX5tye7TP0BZ4NKfBsp/3qGuD0gHtFM54lJJuhyjaoBFRiChGruSvdr5N9swA4BOQKGASz0Y8xynPMKlwxgOgEQKKxht86Li0s8+HxLmiulGhZpZ2xfPbm0+4EE2pgmXaprwoBpzMM+5s7nBU9sgbh6YLqpXuh0QUlTcEUQxcyXsPbzOcCj5RNANB9VrSrGLaxmzGsBIXAHRYQZDurlvb3aMTTXmpIcpqzELzpTe2uJnuk5mKPER8NpvwaH+NKneU3uGMJ3NNh5JofNAEUQRRaCVoJWS6hp2Y5EhoU2hGgbRXMUxLTuqMU5+S2RqrPZFuscpjl3p9GWAKk8unVNMYdWPBdzfukumaIJqjOmN7OqR53iN+nHD38SanZXL+A1rJOYVBFEYJiW1x2jN4ouk/K0j3BHSHqFomCsA4yrE6nF9aBTTdxpQS9OCNY4KAigJ/+MbHjEyOU548RMybmPlJxvChZvhQ6N+LqBpLbNrznclSvADHeQrAYd1n9V6FPZgz+WjO+BeaYhaTuoZL2ZSJm7EZn/DqOgtIKekCtaZL0a+99pS3e0/o6YpItWiko+55xOhRg8sDwUAadTTW3tB4Q15F5I2jH1WIKA7mPT48vEyyNUXVDWIUkw9npJ/FtEthB9FciQ5JTYNGsOoMtQ4xawK6F9VsDqd8b/IxiW5IdINTXbbszgas3u0MsBppik1PEEXeOBpvUErIy4j94wFeNOuDefesdhTXRoiztD2H7zmu/uuMp/cusr0Y8bRcI1KenqlfIrak0SjBGo++NTzgW5P7bNpjnGpJVIMh0IhhdndMcuSZXrfMboBZq5gXMUXtKBvLSZ7SHKTopynbJ0NW45xhWmK0sPdbEe1kQJsaDt9MsHunXP43uP9gk6M6Q6vAejTrENL+C7QaJdivDx9zIzogoHF0bu7RvH9wk8lHwsFXHeV6QG2WAFSFo6ltJ2YliBF0rZCfj9j+nYpJtmBv0afY9Oy/3aOcdH+Wf2mDbCsn+3zAwysT9leHXI8PeLDYIIg+tw2jA1oU9kZ0gKYTb6IbyuB4Xo/5/OeXia4r8psNKvZYJTSFI+5X1KVjdXVOUUW4ScvwP/sMH5fsNBuo333BalIQ3d7naO8i1c0SKSxPv2+YfNDHlHA6T7gd7ZJLjF7aBEs/PFsWoMGQqAaAUhz/vv8GplDkb1QoI6yN5xyf9oh6XTGXyjDJcuqk4ukvL7H5vGbv7Yz57YaeKO6sbLPmFnzwnRm3+gdM24T3t29wsu64vn7Mn139KSsm5z9O3sQoQSO0yHl2ogRbisOpFoMQRLPbrvBga4Ow3uKSFm0C4zRnXsRsrp6yP+9RN52XWR3obWna1ND0Aa84OB7wP+Y6Xx1v8+7qE95MtlgxOYV3vDt6zG8mT3nSrPOD43dY+JhItwTR5xmpl7XXetE4BR6FQXj/9BZ6J8HdmBNFLbH1GB0QgdQ2NI3F5BpnPEXriI+EcmwQDcmuxR8Znp9ssDVaYbyy4E9uNozNnD9df59H9QY/OnmbwkdoFbDKAwYInWEjGNXZht1uVtl0xzjtQQV++uB1tMAgqzA6EBnPtEoIXtN3FXVpcbmi8pZpmWBLIb+oEQs2h+Z2yahfELuW41nGj3fvcGdlm6j/mIflBo0YUlMTROHRWDxNiL5gtFoJ+icHX+a/57c4CRlP6nV6H6b4fqBqDXVrKBrHwbRrZbbnI9iP0Y3i2eEKRyc9mp6iXBcQCAaCV9gl/TfXD/n62lOeFassQkysWwrvKHxEFRx1sLRiOvS078qSWhrug4MJd3cvwG34l8+/TH8rkF/UzE8ydOQJrUYaDZXmWTUmPdaIgWoRYfcj6oFCEOxiueXjiNMooagd417OVrnCxzubbMRznucrnFRd2WqDZhiXJKbhYjrrkuBVjRU7fZJdww+33uXSfwnTGxo/qdAmkCQNxSJCggInsKyP9Sig5hbVQr0qmEoRIlABzvrGsoigl9MzNWuDBenS5ftRhVbCUZExr2O81fhkfu783T1gdaVYvR9wC8/ssmX4nV2yoIlMJ/pFHNH6roOYzlLKSaB3bYrVgfkioT2IMbnGForggLWKq5MTFnXEOMl5q/+Unq14K3vKyBZsVytEuuVaZs51FVDUS4M905nNbp2S/ShhejNBvn+EF8WL56tsXjvEKaH1+rzbTKIGPREGUUUTuqZwpmLSPUW6L+hW2L1pcLqrqaW3/Oz0dbbyEW+m2/RN2WUegdh2HUojhjaYl4gtDdf+wfW7/PTqN9h/JyAvhtgji7pQM4gqjoqM2d0x/ksnXBpOWc8W1N4wq2P2jwfYT3tc/tST7i4IsUE3gcMXKdvjIXVt0Up4/P41TKH44Xc876w+oRGNRaOl49wQaHmJ3jlqI1Mwva4hwOh/HXK1IMpqnh6OOf35hNf//pTi3gpHRUbtDVoJTgeMDVRrgcOvGBZXEsQopjcSTKGYfz6k3svY2x8iGlbvBx4fjfng+DpBNGZZAp3y5yidif68JP3dg691Pfm4plxPCI1G383ItoXx3Ry1tc9rP1AcPJjw8PcKbl/aIzYtK/2c/Q1LGUUcZBo770Y/EOxC0w4CEhT+asm+JMivRnxyNeZbtx7g0SABvxwiz4OjaxIBbPLPQ/wVMHGLv52jXqRc+8dT9PY+eA8+oB9tc2H3GFtd48H3NnjtwgHDqMKsnXKaJeSjmOY4It0xNH3BJ52vmdiTJA2Trx2zN+3T1JbTJmHgyl9DqCtxnhC6JLCjJw3TWw7ValDCjX9o0A+fdW8aAxIgCFKWrP1slza9xONvr3F94withFFa0raG0jpsAZOPPbMrBh9rpi7CO09sWv7o9Y8IoniUT2iDOR/dzpb5/1Qmz04Z3Z+Qz3usf9gSf/QQtIIgYDTKRshSqDKdsfGewZQbfPbNmGhcIkHRLBy61BQbQnJoWPukpF5xgGX6lYS9qM8ndpML6ZSn01XyLOLOcBtPV7yNdDR+ITA1L7jwT0872uII0hTaFgkB5Rw4i2pacBaKEvKStQ8OiKerzK70OxEvhHgaQAS38LidE9yewRQj0gPH3jsjPlkkPM7GLB6ssL9Z8tadZ+fD7ZnGXkXNIgLWgNZIrysXYjWqbDqklEK1HrEGVoegFLSe/qf79O/q7tvlM0S6dxc5DPugFWvvPaf/fIOT2yn5xQwTCc1JhH8lO8MrdnE2fVkASWIwGtEaFQISWVTbfaTKuqNWpNOaM+i6RGZzpG5Q1oK13TuABEEWC9Swj480aIU7KRk9UiTHluPbhnpNzgNw2kOAQiL8cj7tAlMKSRwqr1CRQ5U12gcwGuqmC0ipLkCjUVXdBVWUy0ACSsLLZAHEe3TTokQQZ6nHKeWaw9SBaApF6IblsyA8enn+YV4JzGhUG1BN29EVAqqsQOtOU851mqtrVJIgddMlhlIoY1CDPniP+NCh1raoKMKvj3CnDZLEVGOLbgTVgvKCxAGnPJXYX7OMrpsNWLRGFRX40F0iUDdI0yBFiTLmJU2LZW/jIqhriGOII2SRo8zycEUb9FqffByTPpvSrmaIAtN282nbU6xszGhkeRIk+hylLhGWBkvTIrFDhdAFuKSHukGqCj1ZQ9oWmS8IdYNOE1Qco9KEcP0C+eWM/i8POrSXSeBHGW7eIloTnEZ7UK1QjwyLK4F3Jy/Ozz7OsvLVpZVgaZqu4bAGKavOIuoGqWt0lkGaIAdHSNuitEJFEayt4PsxPnPoVqivrLC4GGErITptiT98jN5Yo9no077S3hRjjdooGEf5eVk605pfnrMF0UDAighKBJRGaY1UdedpxqB6GTLvTv30aNhpC2jGGQDxkwPU9TVObySMHhboNmCmJe0bV5ndTDG1UA01LheSw5Z65Mh6JbFulqdDLxEKS0oDCg1YgnTmKdKlfVkh3qOyDBn0YHcflSSoXoqcnIKLUF6wj3YQQBctyYnH3XuGimOm715letVwpuvBs0C2U1FOIqqxcCUrzqnzaDT+ixpbjpH/B9mqIowkNTexAAAAAElFTkSuQmCC\" y=\"-111.782953\"/>\n   </g>\n   <g id=\"matplotlib.axis_29\"/>\n   <g id=\"matplotlib.axis_30\"/>\n   <g id=\"patch_73\">\n    <path d=\"M 287.775862 149.782953 \nL 287.775862 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_74\">\n    <path d=\"M 325.265517 149.782953 \nL 325.265517 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_75\">\n    <path d=\"M 287.775862 149.782953 \nL 325.265517 149.782953 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_76\">\n    <path d=\"M 287.775862 112.293297 \nL 325.265517 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_15\">\n    <!-- Sad -->\n    <g transform=\"translate(295.22569 106.293297)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-83\"/>\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"124.755859\" xlink:href=\"#DejaVuSans-100\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_16\">\n   <g id=\"patch_77\">\n    <path d=\"M 10.7 194.770539 \nL 48.189655 194.770539 \nL 48.189655 157.280884 \nL 10.7 157.280884 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p701fff6a6b)\">\n    <image height=\"38\" id=\"image80d56861d8\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.7\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALwklEQVR4nFWYyY9uyVHFf5HDvfeban5zv57cNjIgNwYJJINkLLFBQuxAMkt2/CcsEH8AEgvYIbZskFgYsWCDjUS3Be52Y3f3e6/r1fTqq2+6Q2YGi7hV1ZRUqqqv7s2MjDhx4pyUt//2L3X6WcXTf9uSZgHJSokOUShBcEmRovQLT7fvkAxpCrkR2hOlf5h4990zKpcBWHYNZ784Zva5p7lQQquEneLbgu8Krs/kxhN2GckFGTKSCnla8fM/a/iLH/wLF8OCgIPJuYII6gV1gij2JRZc2BbiOhPXmeZ0w+7ZnN1xoF8IOCUXxyZ76pAQUWS/JzUT4kaZvu6pzjcMR1Ny7ZCiaHDkGlwPPiuIgoBrHdtcEyUTGITmTSFNPYjFo+NPsMyAJ03d+PeCXAmiSnMhhF3FxS+foB4kgySYt1AtFZcVdYIGB872RwRUybWtJ0URL6h3TE+FF+0h700uCOFNIGwTaeop4TZT9jLYYrkW2gOhuVa2Dzz9nqAOhgWkeUEd+E7Q8Xk7oZAaT2qE9bMDJlcJ1xXSLNwFpEHITSCueqhh9qrw8dVjvvX8FDd7KYQ2I2MgiNxn7PZ3Ad9ZJuNGx8xBqZQSoEwKaVFIh8n+jpBrw2JqhLgtUKA7DPQLD2JwKV7u9nVdZvFFy8V/PaSoI8xfZVQEFbFMcZ9yFVBvi/hBGaaCBmiulLSDvBL6faE7UbRSKPZ+aCHeKNVKad5YUwxzR4lC2Ok9XATUCbn2uD7jhoG9zyZcpRkh7AoaxoCyot7KKIqluhJbYFwoRyFHUA9xrUzPlMuJYwgZv3PglL1fFOK20M89/cLj8giLPFZZDXso5NrZ4cemaK6Vz9YnBJfspbjJlCgMU6MKKfYNY1kaIa6te3JtG/RR8IOVNB52cAjDsiY1nlwJJdrmMmIjR6g2EDaQG0cJ4BK4lEnTgBSolon/fXNMsEzYIiXKXVCpEQtuBH9/CKUWfGt4k2IH6ueC34H72QwUYm9YUC/Uy0JqhGEuuMGwpw7S1KP+npKGmSdsDeehzVx/fkAQHctTWadJAW6BKQZuFUgTJTUweyXsfZ7oDhztocN3ypN/TzRnLSqQp5FhHuj2HS4p8xc93XFk+U4gN1CtlVwLkhUpUDz3vAkU73j+z0ow8MkdttSNBxlxkBoDPEA6TuhpZJg5uj3H0X93NF9cUxYN7cOpdW9bmH1yybSKbN/bozuKFC9snyjVjZAmlr2wsz1ELRHWbIoA1XIYS8k9IFMjdw+rhzyBXEHYCSkJJcDkYuDgR1+i2x289ZjlryxojxzqIGyVk2WD+/RLZi9fo28/5vK7B+RFgaVnmAlxo5RkHen7r6Vr7Fa/Gwi5cSMf2mkAcmCclfatHlKjSBJKhM3jSJq+S7fn6PeE1TtQnu2oJwM3L+eUsMfkG786zl1h/UyQwda+g0ZjmbutUNiBuFveFEKJcgfkXNmDolAc5EpIM6VUUGp7pjspgOPGW4aqFaSDxA9//cesc80/rb/DsKjH8WYw6Y4LrhUDfIISTRwURp7M9pk6oybpBgJYStXZwM6NBXfbQepGDtORx+YZOXNMLnQ8qZLrwE++9ZyheMKrism5Uq0LKrB67vG94DrDqg4j3ajgizVXGCww4gih6C2wVAtpYiWzUYFlKagFGIzZtSpQ7OQ52umqG6W6Vn72P8+gKcyvhXqZbTgX+/+wJxRvkyFP7g8uy9spYywQumJZA8Itl+RayLW9AEYbLgl5UshHA828Zxg8pffkOiBFKZUwzKyjq0tPiZ64ugdziVbK3NhnRSxYSYLvrVKS9f+pGXVQmkgoAdygSDFgI6aTpL8tpaNUgXCww/vC5qZCg+J78J2SJlZ+lwWXbawh4JKSgtDvQZoWNCrSO+JaCDsM+AGKCNS2nkUGJTpC8UJoCzaahOoGfKug4AeQr5TUODZXB7TPeygQNjIeRukPhFxZ17psOFUB1xVcEEoFGpWw9DRXQlibQpEydmiwJlNve7qkSCqE0BZSY5I5bKF+U5hcJCQrX32vJm6E6lpRp4TzCALtg0JcOw4+Tfhe2Tz2JijFxGG1yoRdZvvYnp99HmyMZQit4gclbsodtro94wzfWVl9m3C5ElxWfAf1UpmdDkw/OadER/tex/HHPSc/ucH1woe/+ymiMHvhyA30e57mKhHXinrFt0J9rfhdZv1WQ5oYFWy+2aPff0N1o0wuM6+/p7z6PU9z3lNfpzuSVRmbQZVQgtgpiiIduFRID/aI68Q3/l6oXl6TTuacfJT4z5MPOPrEXrz5AIapMBm7SoPhI24KOFi9Y1mYvVS648Bmtc/Tj25Ii5rFzxs2v70lXKzxMZDrBblxJo+K4latDXHEQBtaJU0CVZfJtWP3IHL+4aO7NB/+1IZwPxeac8EPJqv7hTAcDagL5Frg2iikVCZ7HvyHdflw0ODbzNMfXZN+XFOmNZIzri/GkyPRv/mtBwTfK7kSXII8yp3dyZRqVXDZOrM/UNwgTF4r62eO4mH2VWF2OlCCUGogFvK00O07Zl9mZmeZ9WM/Kghh/a5w+Z2KuBRmX02ol4XpkClijOWGQp54/C5z8RtCuGV3U6bGSzYPzWKlhZrhCEr7UIhLx95nMH09IFnpTiJugPhVhWTDSakDvrXOW34Aeaq43pJyy1XqYftkghQl7Mo4kiDsMtNTsYylxkDqe6XfE3DG/LfEKIMQbhyzl8L8VSZuMnni2e45ukNnLK6AM7u3fVzhe2VyVfCdY/22o308an91tFnMY2bMF1z0tCeVzddinRnCptDPHFIwN3Np2SrBSJMEsxcmDqvrgTzx9Hue3ZFjmAv9Pgz7hdIUJAv92oN6JleF+jozOe3Y+9xRgrB8v6I9MdyVIDhspro+37l+vxsIWyXE1UCcmyFQL+x/uqF+07B9GMywihGwetg8rSnRcGhe0nxl2UvEyUApjq1E0syj3hE3hfZhTdhk6quO459m+v3IMPfkCJOLRH22o38wMZwlxV3eUKoDQlh1yKOaYSakWijvzZi+7jj6eIukgjpH3qvYPqrp51bm7SMhT5T+KLF4sgKgDpl2CKQqMewHlicRJFDdKDnaoX1bqC9amjOlVJ5hEdm+MyOPXsO3BVJi9X4huOWGyVlDCbWZjrmQ6gY/1KNTMgzmKPQHwvZpIe8PSFU4OlxTikNEyUUYBk9OnhAT7iBz880JzZkn3gi7YxOk9XWkXhaGmSPXMl66GO1Ulzt0GOC4I5TTM+JsQrUX6JzZrlyZMigB0tRYXgW6I6UcD4gb+eZygSqE2oCdVhG39eRRbMa1lVwDMN4SgbOJUGyQmylRJqct7vwa6ppvPz8l4D1yvaJ605AmDQMymlLzfNVSyZ2BFYTUVXdaTWsFr6TRgbutJ2yEsLlfI27AjSOnvrJgzIGP1OEFSYq/XKFdx/Brb/OHJ/86Kti2JSxbwmFFGMt2675FRwc9mlPf2ofqTF/hFTqHpDG4Xogbu/URNS5zPcTt125/Ru5EobkYaD47Q9cbKMqL70/4o8VHBE0JeodbrgnbGW5htz5l9Ji3gUnmzjxosDK73kEHYS24ZBu6gVEu651HvZU4cO/AfKeEbaF+vaZcXBlfPn3E4nfOmYri3DtvQc7obofr8p2SvDOhCi7bpYphAnKl5EYpTUGPevpHiWFRUKf3mBoZnts7j+reVCO3GExQCtLU4Bynf/CIv/r2P1IA98s/fYTUtV0NJTMQxX/NiHhIzajxGX1BgbgS4huPO6vxS4skNzYt7NJlvEH6mpxRb/7i9stve2S9Q/sBefspD//kC94Pa4PEk99/Qf/he5TlCn+9Zfp6oL7V7SPO3GB4sRJAdWMAD1sb/rfYqq+E+lqI69tgFEncSW3fjXeybSFsMv7NBl0ZD37y54f8zQf/QCXCVIRwulyQf9Bw8NZvkqMN8FIJk/MyXsKNpy5WXykCBTTa5upG6XzjCFubl26w7DBer6obXVBS6mUm3vSEyw3l9AxK4eKH3+Wv//jvcEBWpXae/wO/lcMZ+lRhHQAAAABJRU5ErkJggg==\" y=\"-156.770539\"/>\n   </g>\n   <g id=\"matplotlib.axis_31\"/>\n   <g id=\"matplotlib.axis_32\"/>\n   <g id=\"patch_78\">\n    <path d=\"M 10.7 194.770539 \nL 10.7 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_79\">\n    <path d=\"M 48.189655 194.770539 \nL 48.189655 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_80\">\n    <path d=\"M 10.7 194.770539 \nL 48.189655 194.770539 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_81\">\n    <path d=\"M 10.7 157.280884 \nL 48.189655 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_16\">\n    <!-- Neutral -->\n    <g transform=\"translate(7.299203 151.280884)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-78\"/>\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-108\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_17\">\n   <g id=\"patch_82\">\n    <path d=\"M 79.968966 194.770539 \nL 117.458621 194.770539 \nL 117.458621 157.280884 \nL 79.968966 157.280884 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p42d0f43ee7)\">\n    <image height=\"38\" id=\"image711ad0e5a6\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"79.968966\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANzUlEQVR4nE2YyZJk2VGGvzPdKebIqYasrFR1VUkmtRqZQAJMJhYYLDA27HgEjKVegiUvgfEGrICFWEEjQ6amJfVEV3V1V86ZkTHe8ZzjLG4hYxF2wyLutevnd/9//93V+z/7exEN0cH0y0Bx0dDME5qJpploAGwp7H28gY8+R7oWAF0UqOOHdIcjMApRCt0GEOjGjvLI0RUwehsYfnSOP7uAGDCzGdUfPmf7yNINFCEDU4NY8Bn4ofTvBEBByKCeavIbRbLs8FmCqQUlYGtBly3Bd6AUZn+f6odP2T52iALTgWkEW0fcNmDrQH6n8Lll9czSTI6ZfTwk/voLwmpNdrGlnk2IDsQoUBBND47oPh7rc9ABANqJIlqNWzW4naUrNNoLphMIEQAzGrH56TOufqzp9jwqDRAVUhrMzpDfWMZfRdJFx/A8sDk21HPNzY9nHPCC+PFn6KsF+uUYUQqAaAENYgV5d7UhgxgA6W+o9xxuWeM2HrVvQYEKQIwo62j+4AVv/1yYH98xLypmaUmiA6V3lD7hajPi6mjK5LOE0ZlneBHYPjD4XHH7+zMOF4+It3ckm0g71IS8B0V3PWIhj6ig0NEJYkAJhBzqmSIUCXZdMzxrMY3gdj2k/ifv8/qvLKOHG4wWNk1KGyyp9jzK18zTkofjNeMX99x/EFk/sagAg+uIin1GmudHiPdkF1vSTSRZCipCN+jBMZVGdwobMgHVF5qK4AtFM3e42y1uUdMNBzQTw/LPjticgoxaNosB28qgWsUN+0giSOFJio407fqynbTUBznpWpMu+5qr9jWbJyl70wnq+h79rRE6gG7fZUVDdELMIzZmERU1ot5B2iqiU4RJjtk0lAeG3bHCZ9LDvLPoWpHdatymh78dgx9q2pHBjwxJ6hFRdEOhGStspUlWAZ8q2pGCo33i629Ilp4u19gaxKr+oyDOAlYNPEFblFeIFvIbS7WniaZgezykOhJECaYBaRWmVmQ3Cu1heB7QnfT18wMNRpCoaCqHeI1Yod7XgGZwDdkyEJ2hPRxgP/ckVxtCNqX1/T2iFdEq3KjBDsY1TeLwjcXcOaKD6lBRPlT4QhAtmEaR3itAkd8Id78XefLBBc9Gd3yxOuD89QFuAWZlCVGBi9BpiIp2GgmpIqSGwVUkXUV8ZrAS4eKadJAiOu+Dcr2mddsxVikhST1RFKZK6AY9GVB97hFFcaXIbyOjVzvKxwVubTj/z0ec6UeEXCCL+OOG5HXG6I1lc9ozy5aKZj8SM0GMJjrN4CKSdr30xF2FObsl93P8eyNUUCgFtgK7uR2ABlqNaxXtPKIbhWnAVIpkDdoL5aFm/XREOxP8KCAughF0EqC06OsEW8Ls04bJa832kcXn4AcaPwp004BYg4qa/K7vKOI7wu0CYwzhu2PcTvCZIozAEhQE0KUmWUE7f8cQ6VlqaqGZKZq9XvySpSK9NURnKJ96Dh/ds5eXNMHy5dsD7pqM+acdw3NPPTU0M020mjgI+JmnaSzVviHLc2SzAYnE2zuG3xzSzB1i+lqzGIGg0K1CDIiWnpV5RIwiu+3Fz9QKW74LWkF+IyQry93ykLvTHZNhjXhNtNBMDKbtT99LgQIjmMLTHih2a8v8yUP47QYJAYmC+/gV+uUJ0RWI4V1gvBPYDCQRQtGhXKQtDPXWkd0K9SFsH3nM0JMXDZ0SdruMeJfAVcHtKmX4pSO/Eao9TTuBmPS6hBbQkKYd7RiaPUPzYIT9LShjkChI22GvVxRGs3k8wP4fe2zZp05lgXTQYkxEjYWtKdBdQnvY8Zc/+G+mruSD4mvq6PhOekEnhp998tc0/3wAwOIDIe612NQDELwmlhbtAqnrfyunCdWhY+yS37kVANlscSIUNznWDDxhZ1H+HWICznkOhjucDsh4zZf5Afom5W055W+f/pynVvHLNuPD8jlHbknZJNQnkcF7K56P12TGo1XEi2FZ5yx2Bd5rfNQYE7HjlvKgYHa4jz+/6IMKAaoatGF41mBd4gmN6elrBEQhokiN53S4YGAaTkd3/HrvIUPXEFB0Enlmt3ysIr/YPuN4ukT/8J7vTS6oQkIVHE20QEd811KWVUYIGmsi2kT8AOL+BOssslwRdxVCQL1D0Da7BEL/sBgoJhUv9m44GdwzNA1zu+MwWWOUkOuWV90+nSwwCC+SSw7sGqcChWkpQ0IFWB1IjaeLhugUWglBFFH671XtiAYu/mRGO5kxOH/M3j/+Euk8kfr/GcXYezI/ijjgm/WMi92YunU4G3g5u2HsajoxXPsxc7NlqmvGuuaL9gGp9pQh4etqTqo9I1dT6P7kY2tZdgVRFOsmo+ocwRusgvWLgCRCdSIc/vwh/tVXEBTuZofVSSAqITiHWEEp+Nb0jlWTc78pWF6Mufl6xsHJPbOsYmgaTt0NnWr5vD3i3xYv+ejsMTFoDudr3p9fcJIuSHVHE11/eh25awZUnaNqHbE1IGC3Gu2hPWmpnu/jXr9BosDbS6zE3tp2457W1ZsRv/p8jB9GGHWk84pmk3L7as6NEY5/uOSz5BGdGH5+95Lf/NcpplX4aWCV5bRTy9DUnLobSkkJotEqsiky6mD5pplCq1ER0ntFOxWSosU0FpRGaYWIYJXuHUF0wvBwRwia6rYgvTZMPkzRIaHa0+hO2D2BV5s9Nj7l09tDwoczxhvYPhFGDzYcT1YMTMuvtif8In6Ln04+w6heJ3PdMnQNSoGuNKbphxxfKOSTEc3Mk0tEAmhrsWHnoFPooIhR8WS2ZO/hGfvpFq2EX90dc/n6gOKNo93vuNkMaYNhczFi2EG9D5MvwH48YSET3h6d0o2he1Hx6miP78/OiaLY+RStBKMjdqfIFgICs08j1YHm6keGZ/9SIE0D1mJVqxEtiBPqMkHNhGeDW47cml+sn/L1xRx3bymfdmTzmklR0fp+FqgeRGbfWTD/ackkrXg+uKGJlrXPOUg2fFXukWrPvtvQRct1N+ITOcLUiuF5iwqC9pHly5yQgBoOeiHVCitpgFZjKkXXGN4up3xxdoi6zEjvFZmB6rTl0eMFmfVMkor7pmAx6JA6pWwcf/r4LX88/B80kTKmLEPBVTchNx0+asqQUsaEVPfO1u3ArVvM3Ra/PwLpVUFZC2mKylKschEaQ7JS+McR7zVx69BGqL7dcHS44jSriKKYpyXzpKSwHfW+5XK3R3U25F+Tl7x8fsn30jOugWUoyHSHVsJZPSUtbll2OTf1kLaxDCtBBYHE4UcOFcCtFCgFRhNHA6w0Bt0qTA3aRk73FxQPWgrbcZSuGdqGr6s5ifYYJVTB4XTg/fklWgnnZ3PuX8/4u9Vf8JP3vuQkv6fQLW+bGRufcl8XXJgJVkVuqyHdMsWVgO/NYkg1poXxV4F4e4caFIRRiiUqTKWwZd+OmmBJTKAOwtrnVDHhYbriYbJiEzLe1HPGtibVnuePrykfJvzT19/j/m7Ef7w55dfFQ6yJDJKWh8UaL5qLckxiAlfLEcmdIdlGdOsRq+kKzeRVYPhqjYigtGF7kmPNuMVcFuhOEIEu9I131zrq0YZ5uiPRnoUfAPA0WzCxJVNTsospx3rB3zy/5/rpmM93h2y7lJNBj9pNO2LkGtpouNyO8OcF02+gOK9Q6x2kDp9N++lssSFaiyoyto81NnYaeqlB6b6nWR2ZFxWng17BrY441Q+9hWkoY8LKFxwndxgiURTP0yv+ZPgpl37Cm3afbchwOlDYFhsN22pOutCM3nbYqxWy6hGa/2aA6gLh8rpP7XxMOxWsdJqQCqbthbZwHQPXkpmOB+mKfbtBK2FqdsR3Kl5HRxlTxqZGE3tlDzm/rR8T0DTRsfI5VejXBou6oNqkjEpwW49stsSqb9b6yzPipneyOs+5/cGYdiJYVRv8OOKz3tA5HRjahmlScejW7JktU7NjoFpaDFE0wSgMwlRXBBTLmGN604JBaKJj51M2XUpEcb0aolc9+5QX8B4kopIEjP6dUVRPHrH5FoiLWLt+94cGe2/ZtimFbcl1y2O3YKBaCt2QEMnwFMbjEJwCA3RAoTzLMGAZBjTRsfADnA5oJTTeEoN+x3zpd2jGICGgjIEQe5OoNNXplHYeIY1Y3Sl0B4iQLhRXizHOBBIT2I1SprYkiqZGkylPpoRCKQrlcMqwjQ1LNFOz49JPWIWcTgxbn1D6hMvNiK50JA24ElTTIW3XoxUjhL52deKoDmy/WfEKa2rQvl+YJWuhe53zVWm5mQ/59vCYLrMYIgGNU57vqwucjnQq/I40AEE0TgU6MVzUY852U263AzbrHL2yuK0i2fZBqMQhbQta92iJoAYF1b5G+YjyBhsT+jXQsNeyyecQXzmavYR/WP8RL08uGSc1Wgn7yQ4m8J67YSQdUx1pRajF8VV3wL0fcF5POdtNud4M2S5z9MqR3WiyWyFZeVTje4UHVJog2x0A7Qen7B73jV0FsH4ghLQPTgVFuoqka8FVCt2lvLo4oZsESCPJsGVxXPBieE2hWx66ewA+2p3wppxTB8d9nXO3HtAscuza4FaKdCkMLz2mfodOlqFFUNYSmgazv8f5jzJiEtH9IIWNVtCiiGnvjaJTxACmFfKbiChNdtO7iXrf8e+79/jQnZLmHd89uqSNlk/OHuAbg9rZviG3iqRUJGtFdisMLzzJskF1gTjO0c6irEGWq36c+9EzqgPpS6r3rfwvEVuCRpZHgtwAAAAASUVORK5CYII=\" y=\"-156.770539\"/>\n   </g>\n   <g id=\"matplotlib.axis_33\"/>\n   <g id=\"matplotlib.axis_34\"/>\n   <g id=\"patch_83\">\n    <path d=\"M 79.968966 194.770539 \nL 79.968966 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_84\">\n    <path d=\"M 117.458621 194.770539 \nL 117.458621 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_85\">\n    <path d=\"M 79.968966 194.770539 \nL 117.458621 194.770539 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_86\">\n    <path d=\"M 79.968966 157.280884 \nL 117.458621 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_17\">\n    <!-- Happy -->\n    <g transform=\"translate(79.355356 151.280884)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_18\">\n   <g id=\"patch_87\">\n    <path d=\"M 149.237931 194.770539 \nL 186.727586 194.770539 \nL 186.727586 157.280884 \nL 149.237931 157.280884 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pa1a70a5c6a)\">\n    <image height=\"38\" id=\"imagef8625702cf\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.237931\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAL4UlEQVR4nGWYSY8lV1bHf+fceyPiTZlZlZllu6rtNpbtbqrdYhSNWmpZLGDJF0BCLNn3GiTW7PkWrBCLFkiIFSvUSI2QGzeeyjW4KiunN8SLuMNhcSMz3RBSKl6+F8O55/ynCPmT3/lrIxX04hpyhq6FmLDDJf3bB4jB7L9fQkyQM/nRCd/86JDtO4a907Nc7GlDQsTIRXFaCFpofSJmx1e/fIPv/905cnGNmSGqoEp6+4T9aUd/7NgfC+2Fsfo64tcRMcObV6xx6JWCCEDdi1CCItmwtoG2AaB/uKA0UIIhwBA9Y3LE0WMmhCbRhsQYHAA6CqSM5YK0DTilHC7YvTVjf6TsTwVTKAGufiMgJdBeGb60ntIo3rt6geAREUrjyZ3ge6OsOmSfsM6TZkrxtTBGRxoc9A4UZJZwXihWF7hqB152BmZgBZySTw/Zn87oT5S4rMdJgv5UGI8KkoTZK8Xn1mFeakExAWBdQzpsKb6eGA9ampjJs4AJlAY0CnYecFHIiwLzhIZC2yTeXK05bHsazSw++oLnP36P43+8gjHW660cxUGuQ2A4MUpnWKiL2DyM6PnjljRTbNbUEZphbWA89BQHGCDc/hbnAgbhSvE7Ic8LNs+IL4SQcVpIpjSaCZo57TYs//wp6XtvgyqYodFoNoYUGO8ZeWa1Ic5gFZHXDXr9o57dqSMv21t8pcOWcamE3jAVXJ+QMZE7hzlwI6AQDwvWFRBD1PA+A7CLgctxxpA929Twg6PnfPoXDXa0Ih52mAPJ4Pu6d4MgCWSe8E3m3R8+w/O6JS6EuPT4roEmMK4C5gQppRayGSoZ2oqvuIA0m1qvBibknWezDUgoaChcNnMOFz1HXc8+e37yw1/y73/6Ec0aTKBZG7m5G2c+yJwer3n38Jy/+c4/4A9+pfid1VEFTzyZM64UDFKnNFcZiZm86hhXjuG+kDvDfG2/hIINDnflKrsWIE2mFGE7NOSi2ExQMVY/ecnFz08ZjzOzJ75CRI1yHLl/vOa3Tp7xlw/+hfdDi49LCBumi7ZsHrWkVtAMko2wSZSuIR617E5rx8Tq8fgCgL/wNBeCeeBcMR+Iy8JmWdj4wtVixvHRhpP5lm8eHqK+MD6OyJMOgGY+8rsPnvJXb/2Mt9ysXrN/UGgvBHPC7tGMcSloghwg7KAEhWVDcVU60kIo7VTYJAv5wUj/ACzWTrtFou1GAFJyOFdQMYoJH77zDc/XK8yE4buFdNHigT++9588cnNuNn//w3PGL0+IC2V/T9Cxzl1TZWSaO9y+MnN+lsEcJkJujZwFEcO1GecLKTrUFR7ev6LRjIjhteCldvasX7AII+/dO+fTsxPaLjJ7OKJiPIv3SJzhmYT5px/8E+MR9PeVNK8jzF3tmhikuYIKbiiYCN1VIWzA9bVbzhfUFXJS8uiIZzOevj7kemxvuzQWR58C55s5z9crtqnhaNHTf3YAwP3FrnZpKgpA32teEg8K8QA0QnFgDjQZOhrFQXGCFCO3cjM9NMqkcZUEaXToWaB96eCLBS+e3uO8n7MZW/oU6FMgJWW77nh2eVDdwWDzxSG5KE/299nYcFdYQ6E0tYCwNkqYRNWmA1L9kFs3WZHUWhQkCSU7cnLI64bmUskzwxSkKRy2e+ZhxKbVWFHKzrPfNVxtZ0gRmkvlfDfjfzan/HxY3BWmUqkvBfzeJpUHKXWv1aUoQTAVchAkG7mrx5Yk5NHRXCtuDzrWRTlfKAj7FNjFQDYhR0X2jrIJjEPA7wS3h/XZgmebA/5j/85dYXUptQApdZxSwI3VOm4KZSJhacBEKGFakBqWpQqur9iTDDkp66HlbLNgiJ6YHZYVHQW3VUpUmksIa/DngbNXB/xi/R0S1T383hxu69ARXDSkTI5fqiTYVJhpxV5uppjip2InrACkuWFSjxM1ROofwD56yLVDYsJQBLevv/mtkLeeV8OSbIYX0P8aHhHWghttYt6tPN12y6SO8cbQTcFCAVe7Ra5dkiKUUH8PTaJ1GZ0C5L5vkF5xw0SgUdHMbRPChXI9dBSqtOg/nz/G774F+Jui4Db22MRiMaCAZtBRq3k7A2eIgduD76XeaEoaMTn2+0C8bPFbRTKkpeGvXYXNdF57LuyTJ9pU2C9evkXYGponxuWKM3PcdkmTIcXQZPi94bdGuFJISjuLuHkid1aTwr4uYtZEiglDHyivW5pzhyTIHZRFJqzllvFuqKbej+EO/MPokTwB298Ja3FScXSTtssdKVw0lk+MN/9VGZ8syHuP31Q78ruaq1btQKOZsvN0Lx3tudCsawDQnSNsauTJbW0GBrkocQKsH7YNy1wzt7mKNUym8QmSDAqYr8zNTS2wuygsv9oRl0v604b5CwOD8UAoXcVVGxJkYfHUWDxPIPD1H3maS6W5MooXcgPtlZGbyXdtKgzATaMrvnZEyiSSedKybBSp+uXGCt4ShP2DjuWzRHPtGA6F7SNheBhZnmxpXcJrQVeR7UPP7FzYnTrMGc1lDQT9yUSAUhsTXMZND0T+loIT2yqeamtNgQwUqwlTQYdC8ULqhPPvBzbvFNzpnnuHW94MkXkYmfuaLLwW3n/4ii/be7zyK+KqMH+uzM4KcV5lR2O9d2lh1Y6TsIIn3flf8YKOVtWbqbBpMwdSjBKE4oX+RFl/kFi9uaYLCaeVTZ2L3Gv6qmumpGZPKUK6n2kule51jevm71iOQOrgZLa9A397VGkkuRq4FPCD8e3NnFQS2Lc0DpAs7PuGfgyoGPMw4qcCiwnr2PLp61PiukrF4usKlTSr7M1thQlAaYyDaUEA+v6Ds5ombiTC1ZNvNjfU2G0qd95pk68mIWel8Qkndhtzignr1PLJqze4frXEXTnmz4X22kizmvluMT0FihJg6UfcJAP6mwcvbrXKXAW12xuaqo5JsjtrAtxYkEkWXC9YUsbkqzhmRzGhz4FPX5+yfTXHXTm6M6W5NnKYgD0Y+2NBI/i+sjkvCw/bS1qpXqeP2gtKcze+HAS/y4RducOYVTzkRnF9QaPhB6uRPNebdT5REK7GGZ9enHJ5vsCtHfPnSveqBgLTKg1xLuQOwtbwQ6mOs4qc+DVBqs34t8M5cSksXhgaJ8EzQ/KULBQk1f9LK2gu+L4QVVk+LewfeIZ5YD8p/fW+Zf1qSfPSs3hS9e4mAHSXmXGlDPfqc2R7Wd0izwTfJN5tztCbUX7QvGR/Uu0m7CpjcutqJsuQZlr9bLBJUgS3z7jRaK8Kq8+UdN5xtZnVos4WzD8LHH0CB18mXKxMbi8L5oThQMldhULYFdJM6U/h7ZNLPmpe34H/TZfh3R25VXxfY0tuK9hdNOJMoRgaC1JqkpVU8LsMVm+++NwRX81qp14EFs+M5bMRN1S9CruCGwvDShkP642b6wqd/r4wvJH47Xtfc+paCoYTRQ+14eP3fkV/rGi0CUs140uZMtjMoanghpr7b15X3Zj7wZeZ2VNH842nOxO6q4wOmfHQowma60yaK8NRffTTEZpNIbfTWGeJ781f/PrDiKL82cm/cfVB/cL3pcZokVs2jiuleCVsMyV8S8gmYoRt4fDzwvyZsHheCNeZtAykmdCs6zn7I0dcVnh0r6sE7Y+EeGDMlgMfNi9qp24wpgh/0O557/eeMBwpYVdZYg78voBAnAvjoUeS4QYjrjxSplcEpdK9ucosX2TmL0d0zMSF0qwLkqlFLQQXob2oWri/J/RvCPE48YM3XvC4WZOt4KRKgTpRWvH89Ls/4/xxxVaVCkGj0V7fFRdXDtdncqu3WDNXnznDJtGeR1yfKM1E+W0mLuvzKgLdWc1yaQbDkRBXxux+zx8efc6xzn5tELdu+PFsx4c//oLtG67GZKtscoPRrI3U1tcIpVHcUNnEFCTNC243Ei6rveVO8X2VidzUnL94kWmv63dpLsSlkY4jbx1d8/HiEwr2/wtzongcf/vu33Px2BiOFB2M3Ci5Efy+4PfGcKDVNw3CNhMXDjcUdCxQQGLGXH1vG9aJtHRoNLqLjO/LVLSQ5jCeZNrVwO8ff8X7IfN/t/8Fc+mbBgCfhRIAAAAASUVORK5CYII=\" y=\"-156.770539\"/>\n   </g>\n   <g id=\"matplotlib.axis_35\"/>\n   <g id=\"matplotlib.axis_36\"/>\n   <g id=\"patch_88\">\n    <path d=\"M 149.237931 194.770539 \nL 149.237931 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_89\">\n    <path d=\"M 186.727586 194.770539 \nL 186.727586 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_90\">\n    <path d=\"M 149.237931 194.770539 \nL 186.727586 194.770539 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_91\">\n    <path d=\"M 149.237931 157.280884 \nL 186.727586 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_18\">\n    <!-- Angry -->\n    <g transform=\"translate(150.249009 151.280884)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-65\"/>\n     <use x=\"68.408203\" xlink:href=\"#DejaVuSans-110\"/>\n     <use x=\"131.787109\" xlink:href=\"#DejaVuSans-103\"/>\n     <use x=\"195.263672\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"236.376953\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_19\">\n   <g id=\"patch_92\">\n    <path d=\"M 218.506897 194.770539 \nL 255.996552 194.770539 \nL 255.996552 157.280884 \nL 218.506897 157.280884 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p42545439b1)\">\n    <image height=\"38\" id=\"image73dbe63dbf\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.506897\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAOnElEQVR4nE2Yya9dyV3HPzWd4c7v3vvmwfZz2+2443bLTTp0ICRhgUiQIiQgQmyREEv+CxasgD8AkJCQYEUECyKBos6kOE3H3R232+352W9+9747nXvPVFUszovFkc6qpKqffr/vVCX+5v7v+a6ekTrDs2yZf/vkDtGjCFnA2t2U4OU55++tMt6VLLYLNi4NWI4TlsI5TZ3SUBlGWuY24NF0hRejJUaHLeRcsvwRdD8acvaVHudfAlmAmQmKpkfdmNKIM5phxp9t3uWvP/o2dmrorE+YPuqgD/M2NZnxLFvm/niddmfOtB2yetcRfPqCxbtXmG1Ksp6jszZlOU4IVEmsCpbMnFCUOAQNlXG5MSB3imkSoU5j8iaU7Zju/SlFo0UZgw2h2MlwuWbiBNYJlvUENwoQjYJbKwd8ri0yc5q9rAfA45M+4702/Xuezo+eQ7fD8EsBNgBXt9TDnKQMSK1hYQ0HaYcn82WOsjaneROFoxWkdNsJRdshc8h6IepsQvt5gUk82bLjxvYR/aUp4U+bDI/apN5Ao4BRgBKe725/il4ycwZ5g8xpsmHM0meS3s8O8WnK6Xd2cRq8BpFJTkYNpPQEQcnjss9iEiEDS29pxuX2kLVoQj9IOI9qnPczFis1Gkce165Tez5hfLmHsJ79cZsrS0MOhytMc8nchdSaGTyIOEjafKvzAN1QKXMVcG+wSeOpZvVnI/zwnNk33yTtCVQKWc/jI0eRBCA9+XENNZfQKYnaOdYJDmZtcqu51jzhWuuUWRFwcClgMtLIok70agICvITJYZOjoMApoF5ivURJhyvhPI2ZuxC9ny0xLmL2n/XZ/TBD7J9S3N5lfEmj55B1oFgt6PRmjIZ1zHGAM57WzQHf3n6AEZbMaQqvOMsbJDZkOZhyc+mYvNScJ11kYRBlEzy42CGsIDYFw7ZAhyUA250Rz8wSzTDDItEPRmscTFr07yqip0fYy2ucvRUjS7ARLC4VbG8OMMoyHtVw2sN6ipKef31wh2IcIqzAa4dpZ1xZHtLspmxF55y3Y4YrdaaLCHyACwDAG8cbrTP++401KBRjW+N3+w/5+0vbaOEA0OMsInvYZvPeBF+LOHungQtBpZ6sA6tb51xrn3K4aMHEEB9LwocxpYqpS0Gy43E7CwCKJOAoanKPLQCeHC2jjMXuLlgkNVQO0YEm3Si5FA+48dZLHny+xaezTf64/wu+/e4n/OJ4h+dpH338vMvmLxyuZhjdbJJ2BWYGNhQUbUukS47TJg8ebtH/pcQZT7IhKK4v+MbVR9xpvWBZTzgtW2TOYBE8WyzzcLxCGOVc658B8PFsh849Q/3QcdwXzG3A99Y/5O+mTX7+6hK3Gvt8r3uXQJb8/PQyuvuxIpgWnL0dk3UEwRQQ4ALwxnM8bjLQNUQuGF+DsuGgWRKYkv15m0F2k3EecXje4s7mK9ajMdYL6ibna1vPqeuMUJaMr0TsDzYwc0HzieTHb17lxqUD/uKNH/OPz9/nv45v0t2c8Yedj6jJHNn9LGV01ZBsgspAWI8zlRAiwHuohzm93XPEbgLtAoSnLBUPH23wyb0rvPrlBu5pg73pEjMbMi0ilsMZ1+tHXIuP2QkH3O7uw5WE0Q1Quedk3OAnk2usmTF/ufsBJ7MG//TyfZ4Xff6o8yHSGcnopkO4qjAvBGUMZd1DaKnHGRuNMe8s77PVG9FsLdCBxU4CWp8bNn/oaewJyo2M2BScpg3mZcCd1gt2g1MiUTB3AStmyneufcbKO8dMdqF4VWeQ1fnR5DodNedPd/+X43GT75/c5si20Mm6wQcWM1PgK9bYEIqWRRpHoC2RKukGCaZt0aLPF6frtB5qOo9KsrZkdLvgz9/5KdejQ+4vtipdwpF6wxfpGjWZ09UJXT2jvzHjRybniyfrvBh36YUJ/zm8ze8vfcpfvfU//HD4Jh9Mb6CDmSM40agUhPPYSGAjD8pjghIpqmpLJ4llTukl4YFBWDj4uqJcLlhdG7EVDKnLjC9FBwBI4XiV9xjmdbYa53T1DCNKmirF9iWZ1YwXEQ2VMSzq/GD0Ft/r3eW9jWec2AYyaylMIlCpx0tBUYeyaZG1EiEg0pVhS+HR0mGkxRnP+J2c2197RGNpjpaOx+kqAJdNxcK6zNjLurT0gu1gQFMuqMuMuszYCoa803vFemvCy8USX209xQjHDya3+MniDV4WPeT4WhVHEJWgFi0PkUMZSxzmaOGQwtNQGX0z5bf7T2jeGqCjktQaZqd1FoXm8+kqkSj49bdfdFlYw1ebT+iqGS2ZUhc5RpREsmAnHLLbGOC8YFg2eK/5hCvhKQpH4RWyaPoLXAnKGrjQIwNLGJYo6Yl1QV1nRLKgqxK2giHf3HiMCUoevFpDTRSzecT1xgn7xRKpN0SyIBAl32p/zoqaEmCpyYyazDBYjCgJZUEvmBFIy6P5CgCRLF7/EsBfdMtGHq89QnryXNMIM1bjCQ2VUZM5Sjisl6yFY95eP2CtP8b2CrS2NFTGpjlnr+gCsKbHNNUCKRxSOBSeAIcSjkBYjLCEoqRpUvZmSxyXbSTV/rnXSDx4BfbCx/BgM4VSjl6UsBzMWA9GGFFSkxkAzktWwio0mrgg0JaZDWnKFIDneZ/cK6yXACg8Co8Rjo5c0JFzOiqhb6b0TEJhFT8/v0IgLBZJIEoksooiwoJOBKIQCAHt+qKSCZ3QUXO6evYaP/ICd2eLOvU4p3SS07zJ3IWs6CmHeYeRrRGJAoUj8QEjF3NkGxReUZMZPTWjoxKWTEI/nvHJ/gYTFxOJnO+f3EZ7AcKBLKuRCgdBPcdcMFBeuL3CM3URcxcCcJS20NLRjDLOpnUypxjYBmt6xNXohL28T13mnNoW9+ebPJ33KZ1kIx7zZu2IbTMAoCZzbjSP+eX5FT6bb7AejPnsaA0tbNUxPAgq8HebCd1oTtckFF7xOF3lvKwxzGvkTqOFY5DWSUvNIjfkuWaY1VHC0ZEZO2bAk3SFfzl+j9QaTpIGpZUE2nK2aPDFZIU/WP0VNZnhvGQ9GINxfLB/lRu9Eza7Y7TKRAUtRRWjY4vzAodgWNSZ2ZAPj7cZnrZAVMQA6CwljMc11KsIZeH+YpN/Vr/JnfZLlHDcPbvE81d9hABvBZSC5kNDoiDte/5WbXP93T2+u/oxRlhqSwvGT5f4lZO8u/YKDdX4vISy5hGBI80NR67JKI15+aJPvGeouWodKs2bHoYEqaDz0CEtnKcBD7sr1HTO1doZo3mMPg2oHYoqQgsIxp60L3CBxy8VOC94li1zPTpCCGg8l5TbkluN/QpjF+TBa5DKM08D8rkhOAhYu+8R1lUbTy02lNig6vJ8WZBsSJJNR+/NU271DukGCU2VEpqSq+8/onSK1XjCG7UTHs9XuD9cpwPkVvFq1GEwr7NYM6SLALHm+ZPdT/la7RHaa49XAmEvZCOX2EwRPwnofWZJO5KyJkBAsiopmpAuO+KtKd/YecKlaMCwrFM6ybX4mMJrpHDstgd8uXnAqhlzVja5Ge3zlfgZSTeg8JrEhTxYbHBvtMWoiFHasvT2Kb/V/IKmzCuMyaIqCkCeG/RcUDvyJKsSGwvKCBbrlpU3BtzpHnOjfoQUjkiUSOEIZUEkCq6FRxRek3rD+52nXAuPaMoFR6rDB9MbvFd/Skclr63rN+rP2AkHzGzEbD3kVvuAnkwYuRAdnQiQkLdAlBCOJcEEylrlBnnbU15K+fLOIW82j2moDOsl+1mH0iuuxKdsmBHLasKySnBekCNZU2OMsBjhiMwZquF4nvfpqASFJxIFR2Ub5wUNlXKzdcSV8JTEB/zD8dfR9SNH2hX4jkBlAmmrWJ0ue4rVnKXejFaU0QnmjIoazov/Z+ozLgVnbOrz11qHgMA7cgEWgfUK5yXLakKqDQPbYEVNL9YkhdfgoasTLpszvsjXuLu3g7ZBNUqVVSTw4iIodks218+xXhCqknkZoExlSaEs6ZspTZnSUQk51eGRL0m9xiIovH49MikcEtg2A+5nW5X1XDDOiJKxrZE6w+fZOv9x8jbeSXRZg2DiyQqBDS5ko+4RoWWeGwJtUdKRO01mLZkybEfDKpEgGdl61S3hiETBxEU4JLlXTIher/0a8M4LPltsshUMmLuQuQsYlzGDos6/v7jF+OkSrmbRTgucqbxSWnCmkg2fKiazmH5nxiwPiXWlO1paZjai8IpCKToqeW1TJ2WLs6IJwMyGSOFpqhQj7OuEYUR18/442SFWBcdZi6fTHtZJprOYYCRxiUCn/conZXnBTA04kHOFaBacT2sEQYmNRTUqbXg277OwhpVoysu0y6iI6QZzAKZFRNOkF2OyZK5BKC/CgJ4xtTFKOA7TNrMy5GjW5OysCV7grUBEHpkJdN526LlElhXOnAY9FxQKysQAUMYKITw2qHDxZFE9Ww3rNaZ5SKSrNOu8IFIlsgyRwrHAXBToqvwlC4ZlncxpSi+5v7eOHweIsko13njwoBegw3NJ1vME54L4tBJb6yq5kDOFNx7nNDMbk0WGiYqwVhKGBWlpaJicdrhgKZiTuyrglV6SlQH9cEbpFZMyZGENhVcYYQHYmyzBICQ8l+Rth21aEJ7w1CAcaJlD2fd4CfEJ6Hl1KdELgc8EwkFZkzijyNuSS9tndMIFWlp6YYLzEucFSnguxwNqF2k3c4axjZnbgFkZMC1DwqLOajBhZkPOpzVkLrChx9WqBxl7FIO8mJpeAMJja568rTBTTzDx6ARsXBHDGbD16i6Q5AGZVTSCnNxpAHZq57zdeMmmGZK6gKmLGJc15jZgmNc5WTQJlOXptEfczsmcxhhL0i0w9YJIO4Tw+EKg5xCMPNLLyvnVTFbsdBANHc1XlvjUoWegFgLZzXj3yh7DUZ1xEpOVmtwqOsGc5WBKXWYcFR2e5ss8WGwwtjHPkh7HaZNxFlHTOa0g5TRvsD/vIISn0ZtTr2X8zqXHLIYxOhHouSdIPP8HVhOAdxDqyAAAAAAASUVORK5CYII=\" y=\"-156.770539\"/>\n   </g>\n   <g id=\"matplotlib.axis_37\"/>\n   <g id=\"matplotlib.axis_38\"/>\n   <g id=\"patch_93\">\n    <path d=\"M 218.506897 194.770539 \nL 218.506897 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_94\">\n    <path d=\"M 255.996552 194.770539 \nL 255.996552 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_95\">\n    <path d=\"M 218.506897 194.770539 \nL 255.996552 194.770539 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_96\">\n    <path d=\"M 218.506897 157.280884 \nL 255.996552 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_19\">\n    <!-- Fear -->\n    <g transform=\"translate(224.295474 151.280884)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-70\"/>\n     <use x=\"52.019531\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"113.542969\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"174.822266\" xlink:href=\"#DejaVuSans-114\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_20\">\n   <g id=\"patch_97\">\n    <path d=\"M 287.775862 194.770539 \nL 325.265517 194.770539 \nL 325.265517 157.280884 \nL 287.775862 157.280884 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p6396bf1817)\">\n    <image height=\"38\" id=\"image932fa35b03\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"287.775862\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALqklEQVR4nLWYya8l113HP79Tp6rurfveu/fNr92z2+5O7PaQOMHEDg6y4pAwZIGUhQUrNmyyQUjkL0AoC5ZIREIRLAIRQgKBReQQEwubxLFsY9ptO352T6+n12+6c91bwzk/FnXf5HYnYpEjle49NZ1Pfc9vOkdO/M23FaVqThAn4EG8VOd89WPKqj9zCZb+/iK+3+dX2Qwe8AKlVDC7UL6Ckl1YBRT6JyH90qcxSQIiv0owQcrqwHEArlJJHNUxAVMD608GDJ87j9jw8NtEwAR3jyLy//4IK6WAl2pg2FNp751UYCrV/8nnsP6FgNmZJ5j7l4v4YQreEbRaFA+fJFuIqG3m2HYKN9bxozHqHKirAFX5Zc3iBfGVGuKEXULjJmATxSrCyX0KUgqdTynl8+dZ+cF1ypu3cZ0O4cYc2+eX6B9LSJfr+HiesC+0Vj2ti23Y2MH3emie/0JAa8rJYH5iR0zU83uMqJlAetAAdHLNFMLwmHLr6yc48uME9/6HSDpmZq0knw7IZg1qldGxgvGSYeuxOWrb8zQvO6Y+7MKV6/g0/URAuwd1AATYg0Ogtiks/u8YOywYnEyqGQ+E0YLBWyFvQrYyjX1P0cEAUyq17YK59yzD5YC8F6IWXKQUU9A9HXDjuRminUdZec2R/OfFCvAQGLuK7RLtTmsFbIdw9EfbcHMdqdWY+WBUTYMxtKxFVZFaDR0O8YDr9qi9eRlJEqLlFnZcZzwbMFow1EcgTmk/rFDzzD2xTfSFnNVnH+XB7/XhwodoWYAqcv+3/1KNq2wG0WraFIwTVGDmilLfcoznAsp6dW3p9S6uEWHSAnn/EhhTwQLqK9ntkWV0KkFrIdligh2WuLrlzudjfAjFjOKPjKk3crwXRtt1Zv/HsvyTNqxerWzMlJO4JbJv3BODz6eF4RFL+kBe2aATRsstmpc8WbPOkn0Ql1iia9uVrZQOv72DDoeICDhHvZdS3DfL4FhEckcxhZI1DWleY1yPESdYD/1T4GpzHAkC7F7wnBj37rTKxObUwOyHDh9HyPkeIkoqCXYYIgqDEwn5lKFRXyZ5ew3CEIki/HCECSN0fgYfBqgVor4HARcK0UDhtuCtoAGUjUqMcKCYwQi7C7ELZA70EYg7SmMtpX98ml63Rm0mQ2JH3gyJ2xV4OFJM4dHmNNzeQJ0jWFmiOD5PMV19QNjLCYeOMjFEA08WBCSbigrkU0LcAVNCa3WIjDKslPtR3RT7/8WDt1X/zq9P07/fIYFirSM3lrLhCYeGdDFAvFLUI8Zz84RnZkmu9fAilInF1QzB2JM3I3xYxR0plXDoCQcObwU7NoQDh3gl2B7gVmYnih3wyoPBVDyMFoTB4+MqHY0sg/EUxA5jwAcwXqi810dKvBPgbUD31DytSzllEpAuGcKBobFeUEwJduxRI8Q7BUGa4+oh8XaJjwLs1gBt1EBkH2w3P+6GCxSMVqmotloj3oFa25PPCO3zgimqBOUjRTzkLU/erDw77BvEh9Q6StYSxnNCUITEO0XlsSOHSQuCjTaB9+hohDiPNBJ8M0EKh63i1ceMf9cBnBIOoXXJsX3e0rzimHvlFj48SfdBz+g+j8YevBA2M4o0xPQsLlaGRyfVilTZYjQnxB0hameYNEe6A3y7cyiwSmAwwww1BmvcvkJ7QZZKwWAMC6/eRm1AbSNBvKKNOvk0mMUx9XpOGDhGWcS4XcN2LFKCS5Si5Sk6ASpQTFfS98qQZqnEwwzf7uzFvt3mOl2M88jyAnYvFU2UsqmSbDqKxFDfKkjPLrL9cEg2q5x6Ycjo9Cz5rLI81yMJCwZ5RFZYJPK4hicYGHRiDmUCLlY4PkLeSZi+XhCv92G7c88c6YcpwdbOwSRe3VTfcQyXAppXc+ILa2x8/QHGnxtS/1kDFeH6cwHhiQHdtM5UM2c5GRAHjk0gLes4D1IIdmjwFsoppX4h4eQ/XMetb+CKsqoC7lVZeIfrdLGm2I2uYHK48WXhT599gTd6p3j15fPUNwS9llDbVi5/0/CVs28DsD6aphaUlGpIwpzpuqUoAgofgw9QC2YEspgxTCxr3zjO8X+L0eu38KPRJ0MdaNaUk3LGVFMZbwZsFDN8c/kl/vAbP6Hv6/zJy8+z8bTwtbPv8zuzb9MyKUMf0/EJbw5Pc2U4jzWeKHBsh470TgOTW4qmpzkz5MsPreI/J7zw5HkaLz7G0j++i+v1DpOYALzb75qiil27Uzp1XfnBjYeYMznnwi5DHzO9OKA2P2JQRhRqWQxGPBK1eap2k88k11ip9TiRtFmoD5htjAiaBcWMJzwx5Mh0n59tniIJcr71yIu432szeurc3SW4+sOc4pXdIyiUMFU2r89yyyUUCo/HN2jVx/gPprjUXeCngwf4p+5neWV8lGtlQs/XqQcF89GAsQtRwIYlGijLzT5fW7pId1Tj+y88w7QZszzdZ/3JEFOLPwamHwerymhTTpQrlNY7lu9uPENfLdu+zp3XV4jbwnavwbV0jre6x/nbm0/z6vAcAZ7T8SaxlLSiERsXlmm8NEXz5wHXPloi8yF/8fA/U3u4w9/dfgqA6DNt5NSx/UXKJyxUrCn1ULgQp8yslfx49SzPzb7Ld9aeIW4Lg0czvnTiKk6FhSijYTNCcayEHabNmLEP6bo6rwdK66OC2gfrzP18hb+e+yJ/8Ok3KN6c5Z3jU9x//x16Ow2OSh8Jgski5RNKa1OCqB6oWhU7cjQu1PjzC89z9KUuxzeusrN+gv+unaYYhURJwR899FOWwy41qdLMjBlzJOrg6p50KSTamiFe26H5wxW+//5vYko4fnKLy1eWmfoghI2de0JVYIUirrq4G8vyGcvgbMG576TI6lXKR85UznG5AQslj9x3i5PRFqE4QnHMmxEGJXUxthcQFB61BgktS/9+maUwpDixQLq6xNTpgIWLBW575xevkoK88gZxulcwDu4LiJpDyumYaKqBZI7OGUMxX/CVxy/yxPQ1bhWzLIddUh+zaKp8dyldZOq6MHVlQHBzC9fugFe0LJAbN2meOEbj5izmwkd49fu29YlTuQumWpXXpoppqnDtqzHBs2e4779yWh850jPKr01fYdH26Js6AZ5L+RLfXf8ib79ylqMvFxx560O038epollWjSICYijXbsDaDbzq3jm8Q8JobxFyAGw/qCECpZJsObY7NcKTKV89+y63nm0SGce3Fl/ns/EGqQo7rsbNcpZ/vf0Y6V8d5cx/VCtyrcX4vNgPliJIUMUsdQfUUZ2cqKoKdWavP7GxA3lLBLyntgHRZsKR+7skJuf3F99iLhiwYvtkCokoNTvilfQsl94+xrk3b1IOBtV7vK+8zbv9ICrm3oYugs+yw9dMgJGsQPISKRyUHik9QT9j+Q3HTlqnV9a5nC1xtVjkcrGAQwiAoTd0ywSTCcXROSSKKiHKsqqrkgTTqA4J7Z5qdzXVw8KYAAkCrBT7Gx1yINBNvXYVOzzOj37jCYqmJxgL0dkef3zuVX576l36GrI6WMIOBZO7SqUJmDqHXVmGIIDA4Ld20CKvBg1t5RBFfg9QjxYO+a2zf6Z7tBNyGaS4nTZalNUXxxGa5Zi5FvnxeW4/nfCp313lg60lmt+bZublj9AsP7SZJ3Fcqej9XpUqNkSiEIz5pRt/VlzllWqkimPe43v9PY/ywxQZjVCv6GiEWbvBsdcCrm5/nqlUmfnhe9X01WuHPzzPwbnK88Rg6jU0yypY5+4CuQuMrNqHkIPzbcz+Hd7tJX5VwcQxWpYsv3gdt7GJyzJMkqDjbF91kUqd0EIQIEWBZhlalrh2+940B+Ka0bJE8xwdZ9V0tDvVRtw9HjKtJhLH1cOt5p46cnSFYGlxLz5pWeDHGRQFUq9Xz5hgf/B77TJOzMmSV7kOU92kzh0q2DABJgorlxaDTjcwcYQOU3Q0rgw6jiG0+y9WV9mYtWheoIPh4Xproijq0bK8Cwrg/wBd8UIXQ9g7NwAAAABJRU5ErkJggg==\" y=\"-156.770539\"/>\n   </g>\n   <g id=\"matplotlib.axis_39\"/>\n   <g id=\"matplotlib.axis_40\"/>\n   <g id=\"patch_98\">\n    <path d=\"M 287.775862 194.770539 \nL 287.775862 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_99\">\n    <path d=\"M 325.265517 194.770539 \nL 325.265517 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_100\">\n    <path d=\"M 287.775862 194.770539 \nL 325.265517 194.770539 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_101\">\n    <path d=\"M 287.775862 157.280884 \nL 325.265517 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_20\">\n    <!-- Angry -->\n    <g transform=\"translate(288.78694 151.280884)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-65\"/>\n     <use x=\"68.408203\" xlink:href=\"#DejaVuSans-110\"/>\n     <use x=\"131.787109\" xlink:href=\"#DejaVuSans-103\"/>\n     <use x=\"195.263672\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"236.376953\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_21\">\n   <g id=\"patch_102\">\n    <path d=\"M 10.7 239.758125 \nL 48.189655 239.758125 \nL 48.189655 202.26847 \nL 10.7 202.26847 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p8d696896dc)\">\n    <image height=\"38\" id=\"imagea737b4e654\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.7\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMnElEQVR4nFWYy48kV1bGf+c+IiIjM+td1VXdfrQ97pHNDBqNeM2CxQiBQGIHSIi/gH+ABX8OEhs2DBt2CI3EBkYaM2AetsdyT9tut7urq6ozKx/xuI/D4qbL5kohZSgVcb8453zfd86VP/rOXyk5Q0xoUwGAd2jtIWa++OMj9LeX/MWj9+mz5/HmhF/803s8/MkNca9h/XrD5sIQ9iA7xUShWkK1ULp7wuadkfnJhtWLGfbWUS2EagWSYZzDcKSkWeL+W1eM0QFgTcahCqogAtZCzmjtURHEwOZh5M/e+l8u/IKbNOUXz15j71Pl8keH3L4D+aLHVQljFG8zxmS6rmJ11eCXBnftSYcGO4vkYIjBYKJgIiBQLYQRy4vrfdLagVX8bMSRM2QFZ8EIGEuuLJIy6jw0id+aPaaRwD+8+CHuZ3OGA9g8UOzDNW8cLZn6kazCnu+Javj89pAXq4rYCnYQtq8miFPql5ZqCdlB9mACpAb8WrAfTDABunMlGHBkLVGyHlIuAAEypJnj8GcVf23+FA2G2ccVJsDqrcz3fuMJPz7+JavU4CXhTWRuel6vrrHnyt8f/yb//OG7tO/XdNFjB+Hoo0SqhNgI23uCfL1Pq1RLIczBvLnhwf56l8qcSxp3KTVjgphJtWX2PHHwt0LYswx7ysEnHftPKh5fvs3H87cYjxNmFsgbh1s64lGAYDj8wHKY4d6/vARjGE+nqBXGPcf21AAgCUwCiRDmMBxlfu/hp0zdUIBpziWNSKmtkACIE0O2gkmK22bap1s2b7SsLyySYPJcMMHRv55pvvSEd7f88LUvWYWG/Ej4/PIIO5zQLBJum+kPHdszw3Cs2E7IO67ZXhgPFEnw4at7/M7pE5zGWGpMBDVml8aM+rJ5nAkAzfMNMgTaryyLd1r6X+84P15y7CIPZzf81H8XbzOtC/zn56+h1zUHHwnDvpTIP4P1A8NwqGQPtgelsNPEErlwkFl2DZ+uT5E/PP1LBdDzU7S2mD4W6ZhUDCcT1q9VTK4S08cLGAPa1mjtiVPP5qLC9YoaMEnZHlvGfSF7yBXEieJXgl+DOli/kcmTjOkMbi3YXpBcwMUW8nc3GJsZX7Y4aRq068BArhymCyVizoARwlRQsbjtHL/syY0nTiwmKvVtIlWGYc+wuS+EuRKPAxhl8qRi+lSIU9i8rqRJRg5GJBk0CLkSEMUOgoQduMsJ1cLQRHAvf/8NTv7xl4ynU7b3PAcfDAigRshOkFSE0qQKe+pByktUIDbli1MN8y+UbGH9psf2RQrGfRgPlXgUkCrj60gMDk2CGlBb3vP1MgGmXyquB1ffZuKj17j+Xs1wAAf/I3eSEaYGEyHMlfUDQVRAwQ7gtkq1VmIjZC9sz3fUb3bUnxaW5f2IqRPWFRHOwSAZMAoIogWcmiK4/bEUYPP/esn1j+4RpiUSuXaIt+TaEVpDbAWJkGvIXgl7GdsZbCfoV6Vo0wS29zPVwmB7YThUhtOETCNEAwrGKGF06NYiBlKVkWRRA7KTDrRYVF4JbvX9U7IrYa1vIE8cKkKcWrIvRWl7iFNFLZhBcJtS0LEt1mJG8EtDfxaRYGA/MD/YsrqeYm88aWqgjojJSBTyJIGh1F02ZAeilP9qJVfgUiV0Z4VJk+uMGiFOLMO+JcyFMFVEwW2L7tQboblSYlsKe/I8U78qG63PHd2ZoFc1KdWcPlPsqFx/3zJ5EFjcTMEpfm8kRUMOnuwVowJxZ1ETiK3i1JQ0+JVQL1MBdWDpjg3DQUlhajL+1lDdCm4LzTJjXirTj6/g1RJ97R7Ld/cQLZrUPlWOPliQ2orlo5bUKrerCWbhsRdb5tOebV/TD5acS90a3UU/QmozzkRFK6VaOiQr49wyzoXhEMajhHqFKjPOEravsB1s7hn8Bm7/4BzMOXEC3ZmSjgO+HemzYfsnwslsQR468os93NOGeBq4OFijwBA84jMaTRF3C0SQJEgWXPaCGYTmWlEjOysSUqt3oGwTqevA8F4iPW5K7R1H/HwgrCsQODq75aTdcq+95cntMV9eHvDkxQyMYraWeBq4d7HAiPJqO2HofaGjy6Qp2LVBkkGigoKTvCvoXsm+aJdayLZQWmwuGmOUuhnpH4K+qqguHXrlaG+F7n6iconaRS67Oau+husaMYpOM/Z8y8G0J2XDKjj6riKuPRJM0Uxb3APAjkKwimufj7TPGuyYiY2UNB4papXqpQMcsVU2x4Z2NtC0I6NVxtpjNhbTCNWN5cXLfYYDxxgdfe/JdaY+7shZin5lQwYWz+e4Vw6fufNME4prZK+YINiNwdWf33A4PSU7ITYF9vQLmL5QXJcwIWNipj+qWL7dsL2fyY2CLakeziJ2bdGNI+0ZrMlFl6axiPSqBqsMVxPmnzoOhtJS5xr8rsXOrgDEFD2rbwxOvaNaBPqTCpMUv4FqnQvQiaEKmXHP0x8UoawWhtQoEgXXFWpLEkQt44mj8pGcBPOyQrsaW5fN22dCaqA/VcJBKrW3tlS3BjNAcyOM8wKsWoKJR1PQUvgqBZRfJeyomKi8elRx855j/YaQf3cJP7gl7GVcB/WNcvZ+YnKpSIRh66l9pGpiKeBNMWp/K4Q9GPeV839LzD9x3H/jmtxm9h4rB5/movy75TeKSROH3QbsmIsOjYq/HZh+fE37xRo1wvm/drz1d5dsrlv+/NG/0z61nP18YHJdiDF7lpg/AW49fXCE0RWfAeaPDSf/HTn6MHH6H0r72Ybs4fmHZ0yfOCbXETtmujMFKRY3/2IsciGbHttNSLUpVjH1mMUG83LBxU8D0g1s3ruHbC0/+Zsfc/JRIHvD5sKy/6tA+8kNzcsZ0LJI+9hemLwoDjH9aiRNLM1VwN9sifsTmitl/hmMc2X5pmfch9hmqlvBdlBdbXCTT6+RmLBDAi0+GaYOff0QM+biBEeeYS6c/hwmVwGTlDC17D2JNJc96WjK5kFDagRQ6mth/3EkNobsDXbIbO9VbH7Q0J8p43lgetixXdWYy5pqKfhVqd1qBRISjldLaBokJESLUSNCd1qRHWzPDGqhWirzpwP+eotWjjCbsjm33PzaHH+rmATL9yIYJTvD+sKyvQ/Nlad9kanWCfNUcZ1hrZ6tz+hocV3xyNgqZoT2srT6DhF0DGUyUorAGkAVv1Ga63Jvg9KdVizerlk+Anm4IWdDGizNZzWxUQ4fLHn1fI/uQWI4EXKjxO+MhGZke9NiFwa/FnKl6GiQzpDqYn0oTD+zVIsRcsZ9zQRZd/jVhP7Ekx0kX2Y/FRgOob+fkCYhLrO/t0VE6YaKbuMZThLHD18horhZwPlESoIzSk6G8/0VFxdfklV40c1ZdA3rbUNwnrQHmgVZOSZXil0PyBh2cyUZ6Qbq5ytSvU9/bEkNhGlpQ8JUAdAo6OBYmQkiynzW4U8TbT1y2m54uZ1yuL/B20TjIt4kFv0EI8o2epbjhCE6QrKEYRcTo7C1VAvD/q86ZCjCXCZxFB0Dcrth8pUjVzP6w0J5CeA3gts6cqXEaSY6R7M3ULmEtxlvMl301DaRTSbvGvnWjRztb1nHmpt+yrJrABhHh3FlcEi9LZ6ZwXRxNzo6HOZb00BKyLrDde3d0GEjECBOIFcKB4HZvGfWDBhRRJSkwhAd3iYsu84A2ISaMTtuh4bN6BmjvdtKgJQEQrHB2CrhoC6p7AZ2s7og1pRjAmOwQ8L2WoaLuoBKEyVNM+1sYH/Sc9h0tD5gRLGieJuY+pHjpqRyEyq66Fn0E7rgCckiAimZ3Uwt6Fhs7uuhd3vmyLUHVQwi3xxDeYc2HpLit0UCkBKpVCsYZRzLV3exbAblPMuIklUwojgp92OyxGzICqqCiGJMuUSAaJBcMiZRSJUgOyx3rCwkAEnKeFAR68LI7HfzX6WQhbCtGGblMW8TqKAqdyC/vRoXGZJFdzVnRFGjpGTQDLiMYhAtY5zrtJyb5PxNKu/AxUSYGsJcSHVp4gBkLL05QeiDI6mQsiHtNo15l6IdyIkL1LYwrPaRykVqHzEml7PCZBCfSzNatsANux8p48R7NH7L2lXx24wdhDgp4pqd7k5AyhWCRWv5f6C8TVjJpN3vr1frA04ynfF0wZeGMRk0mCIVxcXKMelYTje1bTBUfoenRAtV3DbhulKUhZ3CLraQ5S41IVmyFoBGlKSGjNxFL2ZTai3bXYSFGE15PgOjgVhaeUlCtQqQMtr4UvxizV20JO16/Kh307EKqNO7KBijVDbtoqTUNt0VP4Az5R2NjVj5hhi1j1ibCzAVJJYLgckl2E0o5MvwfyrFJ5omFSouAAAAAElFTkSuQmCC\" y=\"-201.758125\"/>\n   </g>\n   <g id=\"matplotlib.axis_41\"/>\n   <g id=\"matplotlib.axis_42\"/>\n   <g id=\"patch_103\">\n    <path d=\"M 10.7 239.758125 \nL 10.7 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_104\">\n    <path d=\"M 48.189655 239.758125 \nL 48.189655 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_105\">\n    <path d=\"M 10.7 239.758125 \nL 48.189655 239.758125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_106\">\n    <path d=\"M 10.7 202.26847 \nL 48.189655 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_21\">\n    <!-- Angry -->\n    <g transform=\"translate(11.711078 196.26847)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-65\"/>\n     <use x=\"68.408203\" xlink:href=\"#DejaVuSans-110\"/>\n     <use x=\"131.787109\" xlink:href=\"#DejaVuSans-103\"/>\n     <use x=\"195.263672\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"236.376953\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_22\">\n   <g id=\"patch_107\">\n    <path d=\"M 79.968966 239.758125 \nL 117.458621 239.758125 \nL 117.458621 202.26847 \nL 79.968966 202.26847 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p83fcb50e20)\">\n    <image height=\"38\" id=\"image1975dc2b85\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"79.968966\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAOfElEQVR4nEWYya9l11WHv92d7vavr+ZVlV+1buUklkhCUOJIIUrIAAWkADMmIDEAMULiD4ABDAApo0SIIIGIQBGKQhLAkRMIiS3bSezYjl3lKlfzql53X3O70+6GwXmYKx3p6kj73rXXb+3f+tYW37n9eNjUE+7YJf7wpd/mwvoRv3nuJ2yaQy7oY85ry0AmHPuSn9d9fji/ztd++jHSmzGqgiDBa6hHgfVn9nhu9T6XkjFnzTEnrsM/P/oIx/90nmzfgQBhIWgoh4pqJLApECA5DPTvNaT3J9z5rVV0X5Yc+Iw/f+/zKOX51NotltWcjqyIhUMhmPuKO03C96ZP8sKj68ixwRsIAqIpaA/5BccwKeiqikzW5D4mEpZJmSAbCFKAgBCBcIF46glCEoTAR+C1QAQQecnWP+6jpfB8be+T7BwM+KWtuwx0DoAioESgDIEHLuabkw/xr7efoa41rucAkI1AVQIAM6yQIjB3MbmPSFSNR5JXEXJJABJdBoQHCcg6EC0CLgbfCEweEDaAEITtHfQrxRbfv3WVS2cO2cyO8UFSBkMiGhSBPWf4yv6n+MH7l3GNQkeOaLmgCBl6TyNCK6dUnv1FFy0cR3WGEoEz8YTFYUaaQXO6AdkEvBYo2WZOFwLfBHQZCBKC0QDov/zRZ1k/e8LzazcZqIKr8S6rakYmLIc+5puTD/PCG08AIGKHc7LN6EIi/GnNGBAClPRo6VmPZyxczL+8+yz9t0271geEAxcJXHya7QYQ7eMVeCMJWYwwGm06DZ888x4resZWtM+mnjCUnjzAjxZX+c6Dx4kHJdU0JlhJEIF6mpCeSIICEUA2IEQgUq3ED4oRtVOE+x16Dxx1R7b1pcAl0HTbepMVqDoQhCBIMIXEZREmSZC/euUdrJcMVc45PWUoPQB37YCv/v3nGf5VD/2THjQSRMDPDekDjTeBpuepeyAdOCfpRRU9XbGZHnNUdsgeCgggfCu3TaHptJJ6BS6FcknQ9MFHgiYVNIOIsDRAL1zEx/rvsaEn9OTpjl3M73/j97j21XcIi5zNlxTi3AY7n1mnXIb0IDC5HnADSyU0upCE9ztsXRnjg2Ckc0qrSceeuiepe4KgT2uxoa3+04/rBhrTnkpVCpquRK13kZ8dvclls8+SyjlyhrebAV964Q+4/uWHhLJqV4eAv3OPM19/l9U3bCtJ14EX+MxTD6B7D/7z7nWupvtUQbO3M0TaNjOiFQFhIZoFVBmQtvWvoMDHgWrZt74WC6qRQV8yYxJh8UFw347445e/xI2/nuF39wkhIJRCpAni3AZ2rY+LJItzgAngaYMzgXJJwE8HfEV9nDO9GendCBeHtg59gCBIjkJba7J913ROvU0HcAKv28NhitD6mEPgEHz5/qe59hclwnvcs9ewHYPNFOVQUayeGqGB+mwNAVABLPgoYCWoQlD9fMiDcoTJocnAZq1x4tvsyCagC7CJaLOlA/QaxFGEztuggwC9qSpOvOTl8hLvv7JJ+rxgsenxJoCEIAOyV6KMwztF8GCMo5nG6NTiZhrhRFvMw1azoMHH4FfbzKhKYObtn9Y9gXSnh+BUyjhriAYF85WkXe8Fugxw5BO+dfAMcmtO99kFqZfktcF7yVInJ9UNldNMigStPIeHXWRqcVYirMCOLCJxmNhia0XTKLACZAAvUDMFQRIfgzcCEQIEsNmpjMDF0THPXHrIipmRyRp94GNezq9Qe83W6iF5E2Gk53zvhERZbJD4IJjWCaSwc9wHAUlWU1cGv1bR65YkxgKQVxFCBIQIWKsIQVDVGTYLlMsC2YBXApe0pzOoNrBFE/GwHGKEwxiHfrs6x7/tPkXjFKXVGOVYz2YsxwsKZ5BBUHtFpBx7sx71ImJlbUpqGnxHYJSjF1VIAqXTJNoiRcB6iQutZx15Qa0TVKUJEjoPAyIIXBKQlcRZSd4YdvI+PV3yXOcO+m9uPk9eRmRJTTeuWUnnnE2nrEYzDpsONigqp9leDDkZd1lZnzJMCySBjqkYRQVaOg7KLomyZLqm9hofBJXTlFazOphTdUrGDBFOgJAkB2AmAoOgGGnK2vDEaI93J+t8681n0NNbI8JaRSkDG70Zy3HOZnLEQLWUUXnNnuvz/sESnVHBameODwIpAoOopAmSRRNRe81SvADAesu0SdDCk2hLaTX9pKR/ZZcH4yFNnRGdtPbhlaAaG06aHq+ETZQIxO/H6NVXoRyl1MOUX1yN0Vuea51djHAMdM6x7XB7uoJSgSvLYwprmNYxUgQqp9HCo6Sna6rToBS1V0gR6EUlPgggxQdBx9QY4xC5QPjWbIMIuEeSeiHJT4a4oUV1A3rwzozRvGj71yBj//ol/u6Ly/zREy8ysRn3iyUOZh3OjiaUTlM5jRIBFwQnRYJ1igBkUcNSmpPpGi09Prg2OFOR6YZ5EyOFp5dWHGqIj1vaiHJPkC3X2VQQxoagQFdrKcWTPaqBpBqCSwPirT5fHzzHlf4BN09WEQIGUcGsSehGFX1TUnvFft5jUcOiiMnzmHkZs96fsZ7O0NJTO00kHbG09LOS/bLLIC7ZP1MRvWIwcw8h0HtgmV6MUXXrdU1XoHt/us0vDx6SyZpMVYybHv9zsEXeGA7KLsfzjPXB7HT3JavJnKEpOGlSEmVJVcNe2eMg75BXEcd5ivOSflwSSUt9Kq1HfGALTAxBipbRbEDPKnQVUXQkNgOdg368v8tT6TarekoTNId6RrFkeOPkHO8erBEby1bvkI6uMMLR1RW5ixiago14ykAVXOvswjJMbMbdfJmdvM/+otvSg5f4AJFuyWWaJyS7CjNvkLXHa4GPNbJp/UzaltG0EY6Fj9kUTftDpyfuKE+pK8NHz93jsWxMV5Ws6hmPmtYER3rBpejgg/kAYOFjVsyMu/EK+2WPw7LDOM+Y5wm2UfhSoY8Mw52Azh02U7hE4hKFdAGzCKjjgLQBfSY6YWx73BZrDFXOnh20BGo1H7l4n2udPTJZY4Rlu15i5hIGOscHyYHts6EnSDweycJH+CA5Fx8z0jnHScY47ZIPDLMmYWfSp9k1RPOW+4tljXSBbGKZXowwi0A8cdhUolf1lP2mz54d8E5xlhObUVrDk2u7PNV7hAuSMmgcgu/uPsH2wQhXKy5v7jOKc6yXnE2nXEzHp75nmLmk7Roi0NEVQ1Pg0xlbvTEvyUvMD0YEYZifF8hGEE0Vdb9t3E1XMnlMoS/oI8rYUIaIRFguxIf0dMm6mXK3XCaWlkzVbBcjHrx+hsEtgS7gOD7PzuemNI3iZwdbBB0wg4oQBM5KQiNbNAriFI9a9hKRQ54PBCXJNy2de5rDpzTCwWxTkowDi0sODXAj3qEJiiZoymC4Ee+w73ofBHbcZLz42pM89u2GaqRZrCsmjzv+7Mlv8+LkBsfnMmqnGcX5B8g8qRP28x7Hi5SmUTR5hFgo5FThOg778RzzXo9kHCjWBPl5j14IpBXopRLtTpHSIXEIbtdrXI12mbkUGxRNUPzHnRts/Ldg5+MxT3z2JrXXXJaWFyc3eLAYEZ3OCtuLIUY6EtVwoXPME/22g/xfa5u7mJ+MN3n4YJl+VjKd9zG5J74d8LGkvlywSGPCOGkztu965D4GYNz0GDc9bucr3DpZxTpF+l89ylFg9Ild3tw5Q10Ynrt8j7uzZW7eOoueKnwU8LFn6fwJjw2PGFddJjJFEhiavCWOoDjJU0TsmOYJxTlLMlb0HjrWXvOMn65Rj5UUN4doRaAjK45c6zvb5Yidok9hDZMfrpPtB9ZenzG/1GHy/Q3IAupKwWHZ4c6tDYQVuPWKUCmSUcnHNu6RqpqpTVAiIAlIET7InJSe0Ejqe10YWk6eEDRdzfIvGuIX+gy++IiHmxH6oR2xoU8ovSH3MUY63r57luwXMWderYh3ZtBYzGqC8BJ3pWBlNOP+/hKd9QXXVva50dtjalM2kyMuRmNOXMbtco2dckBHVzQ2oa9LAGLtWESOdCfC3DKoLxxyGJaYP+lJbwvsIkPIgP720TN8aeVlbsQ73Kw3kATEicEswExOiWG1x+SSIX+6II4sx7OM62f3uNA55mJyiBSeZ7IHrOopikAmK5qgKVzEwkVEsp3CCmeYFzG+1CAhPQocvbLC+kf32D/sU10vKE8yusMc+cPvPc2r+RZDWbCs5nz31uP4zDHfDEyvdDn68BLbz3c4+VBN8AIpAx8+t82FzjFaOCY2bXH49OnJEnU6eQ1NjhaehY25PV/ltd3zlJOYaE9T9wN1R9C7F9i7s8KvP/46UgVCqZjfG6BXfub5avd5/uH8c+T7Hbau7jLOOkxDl51Pg0wtIQi6vZJuUnFjtM+SWaClZ8XMWNcTLkVjhrL8oD31Tr8nssEHwbyJeTTvMzvoIueKaNpOVcU6LL9lGb6peOnyJT537S1+sH2lvZzxRmBmAvnjAb/yG2/yheXX+dvtT9BNWhmX05xIWgamZCWeA3wAkUtqwTlzzIZakIlAE2AWND7IU19UdHTFpEmIlCMdFRQhRRUSYdoxL19RDG83PHp5A37tAVlcM0oK9O6nLcmgYn6Y8nTvYTtKdY84rjMi6eibkp4uyWTNipmh8K1kqqAvSxLR4IKgIjDzhl3XxyHoyZKH1QgbFANTUqeaRRXRdBuariGaQtlr2avuKVbecLzw5HV+98aP+drNj6Jl4ijHKUvnT1AEmqA5G09Yjf4/O9np9eVQ5SyrORJPX5YMZIUSgdxrZsEw8wllaO/DMllxJprwsBoiVWA1nrPoRGRxzaNrisF3DaoWLM4IkiNB91GNeK3P/laf37nyKto3EtGxXB4d4hAc2B5Xkj0AmqBIREMdFEOVEwnHUOb0ZM1AOhIhaGdviwwKL2qQMPMpa3pGIluUmrmEVGkWacT2bIhJG4qVmN62ZfqY4vBpQZAxo1uOb7z1LH/y3L/zv3qphIjSXGrtAAAAAElFTkSuQmCC\" y=\"-201.758125\"/>\n   </g>\n   <g id=\"matplotlib.axis_43\"/>\n   <g id=\"matplotlib.axis_44\"/>\n   <g id=\"patch_108\">\n    <path d=\"M 79.968966 239.758125 \nL 79.968966 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_109\">\n    <path d=\"M 117.458621 239.758125 \nL 117.458621 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_110\">\n    <path d=\"M 79.968966 239.758125 \nL 117.458621 239.758125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_111\">\n    <path d=\"M 79.968966 202.26847 \nL 117.458621 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_22\">\n    <!-- Neutral -->\n    <g transform=\"translate(76.568168 196.26847)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-78\"/>\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-108\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_23\">\n   <g id=\"patch_112\">\n    <path d=\"M 149.237931 239.758125 \nL 186.727586 239.758125 \nL 186.727586 202.26847 \nL 149.237931 202.26847 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p4cbbac8237)\">\n    <image height=\"38\" id=\"image2f4518c355\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.237931\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANTUlEQVR4nGWY2Y9l11XGf3s6052qbt2q7q6e3W4njpoI48QO4SEiKEFEkZB44QFeeeedZ/4FnpEA8RApigRSGBTAEcRIWImN7XSn2z25u4auue5w5r0XD+dWdZts6ehIR+fcu/b3fetba21142//Uozz3Nnc4RcPr5E8iWkzIcRCfGXOZLAgczUiinkT4XRgI5vRBs2iiVFKiIwnszWRblmP5vxG7znfzh7xs+Iqf/HjP8bOFO1ACIOWyYUpf377J/zN1jf41b3LYAUUYAPaBpQGAOviltc3Dvh05xLpo5i2J4gGtVFyaWXKKCqwOlB6x7SOqbxhLx/gjMeoAEDtDVWbEduW0ju0En4/e8Rfb32T6FijPLR9QdnAWrbAqZa9eR83LtFaXrkCIooQFPYrF3f57GiCutfHx4KPhRAHrk9OuJRN6dmKNhhK75gVCVXp8LXh2uYh2ghKCWeraB37eY8gigcrfe7/8gppDWJANEirGUYld4vLAIyHOQBGBxTgRVG3hqpx2IdHE4r7K1iB6kKLPbQMX5tye7TP0BZ4NKfBsp/3qGuD0gHtFM54lJJuhyjaoBFRiChGruSvdr5N9swA4BOQKGASz0Y8xynPMKlwxgOgEQKKxht86Li0s8+HxLmiulGhZpZ2xfPbm0+4EE2pgmXaprwoBpzMM+5s7nBU9sgbh6YLqpXuh0QUlTcEUQxcyXsPbzOcCj5RNANB9VrSrGLaxmzGsBIXAHRYQZDurlvb3aMTTXmpIcpqzELzpTe2uJnuk5mKPER8NpvwaH+NKneU3uGMJ3NNh5JofNAEUQRRaCVoJWS6hp2Y5EhoU2hGgbRXMUxLTuqMU5+S2RqrPZFuscpjl3p9GWAKk8unVNMYdWPBdzfukumaIJqjOmN7OqR53iN+nHD38SanZXL+A1rJOYVBFEYJiW1x2jN4ouk/K0j3BHSHqFomCsA4yrE6nF9aBTTdxpQS9OCNY4KAigJ/+MbHjEyOU548RMybmPlJxvChZvhQ6N+LqBpLbNrznclSvADHeQrAYd1n9V6FPZgz+WjO+BeaYhaTuoZL2ZSJm7EZn/DqOgtIKekCtaZL0a+99pS3e0/o6YpItWiko+55xOhRg8sDwUAadTTW3tB4Q15F5I2jH1WIKA7mPT48vEyyNUXVDWIUkw9npJ/FtEthB9FciQ5JTYNGsOoMtQ4xawK6F9VsDqd8b/IxiW5IdINTXbbszgas3u0MsBppik1PEEXeOBpvUErIy4j94wFeNOuDefesdhTXRoiztD2H7zmu/uuMp/cusr0Y8bRcI1KenqlfIrak0SjBGo++NTzgW5P7bNpjnGpJVIMh0IhhdndMcuSZXrfMboBZq5gXMUXtKBvLSZ7SHKTopynbJ0NW45xhWmK0sPdbEe1kQJsaDt9MsHunXP43uP9gk6M6Q6vAejTrENL+C7QaJdivDx9zIzogoHF0bu7RvH9wk8lHwsFXHeV6QG2WAFSFo6ltJ2YliBF0rZCfj9j+nYpJtmBv0afY9Oy/3aOcdH+Wf2mDbCsn+3zAwysT9leHXI8PeLDYIIg+tw2jA1oU9kZ0gKYTb6IbyuB4Xo/5/OeXia4r8psNKvZYJTSFI+5X1KVjdXVOUUW4ScvwP/sMH5fsNBuo333BalIQ3d7naO8i1c0SKSxPv2+YfNDHlHA6T7gd7ZJLjF7aBEs/PFsWoMGQqAaAUhz/vv8GplDkb1QoI6yN5xyf9oh6XTGXyjDJcuqk4ukvL7H5vGbv7Yz57YaeKO6sbLPmFnzwnRm3+gdM24T3t29wsu64vn7Mn139KSsm5z9O3sQoQSO0yHl2ogRbisOpFoMQRLPbrvBga4Ow3uKSFm0C4zRnXsRsrp6yP+9RN52XWR3obWna1ND0Aa84OB7wP+Y6Xx1v8+7qE95MtlgxOYV3vDt6zG8mT3nSrPOD43dY+JhItwTR5xmpl7XXetE4BR6FQXj/9BZ6J8HdmBNFLbH1GB0QgdQ2NI3F5BpnPEXriI+EcmwQDcmuxR8Znp9ssDVaYbyy4E9uNozNnD9df59H9QY/OnmbwkdoFbDKAwYInWEjGNXZht1uVtl0xzjtQQV++uB1tMAgqzA6EBnPtEoIXtN3FXVpcbmi8pZpmWBLIb+oEQs2h+Z2yahfELuW41nGj3fvcGdlm6j/mIflBo0YUlMTROHRWDxNiL5gtFoJ+icHX+a/57c4CRlP6nV6H6b4fqBqDXVrKBrHwbRrZbbnI9iP0Y3i2eEKRyc9mp6iXBcQCAaCV9gl/TfXD/n62lOeFassQkysWwrvKHxEFRx1sLRiOvS078qSWhrug4MJd3cvwG34l8+/TH8rkF/UzE8ydOQJrUYaDZXmWTUmPdaIgWoRYfcj6oFCEOxiueXjiNMooagd417OVrnCxzubbMRznucrnFRd2WqDZhiXJKbhYjrrkuBVjRU7fZJdww+33uXSfwnTGxo/qdAmkCQNxSJCggInsKyP9Sig5hbVQr0qmEoRIlABzvrGsoigl9MzNWuDBenS5ftRhVbCUZExr2O81fhkfu783T1gdaVYvR9wC8/ssmX4nV2yoIlMJ/pFHNH6roOYzlLKSaB3bYrVgfkioT2IMbnGForggLWKq5MTFnXEOMl5q/+Unq14K3vKyBZsVytEuuVaZs51FVDUS4M905nNbp2S/ShhejNBvn+EF8WL56tsXjvEKaH1+rzbTKIGPREGUUUTuqZwpmLSPUW6L+hW2L1pcLqrqaW3/Oz0dbbyEW+m2/RN2WUegdh2HUojhjaYl4gtDdf+wfW7/PTqN9h/JyAvhtgji7pQM4gqjoqM2d0x/ksnXBpOWc8W1N4wq2P2jwfYT3tc/tST7i4IsUE3gcMXKdvjIXVt0Up4/P41TKH44Xc876w+oRGNRaOl49wQaHmJ3jlqI1Mwva4hwOh/HXK1IMpqnh6OOf35hNf//pTi3gpHRUbtDVoJTgeMDVRrgcOvGBZXEsQopjcSTKGYfz6k3svY2x8iGlbvBx4fjfng+DpBNGZZAp3y5yidif68JP3dg691Pfm4plxPCI1G383ItoXx3Ry1tc9rP1AcPJjw8PcKbl/aIzYtK/2c/Q1LGUUcZBo770Y/EOxC0w4CEhT+asm+JMivRnxyNeZbtx7g0SABvxwiz4OjaxIBbPLPQ/wVMHGLv52jXqRc+8dT9PY+eA8+oB9tc2H3GFtd48H3NnjtwgHDqMKsnXKaJeSjmOY4It0xNH3BJ52vmdiTJA2Trx2zN+3T1JbTJmHgyl9DqCtxnhC6JLCjJw3TWw7ValDCjX9o0A+fdW8aAxIgCFKWrP1slza9xONvr3F94withFFa0raG0jpsAZOPPbMrBh9rpi7CO09sWv7o9Y8IoniUT2iDOR/dzpb5/1Qmz04Z3Z+Qz3usf9gSf/QQtIIgYDTKRshSqDKdsfGewZQbfPbNmGhcIkHRLBy61BQbQnJoWPukpF5xgGX6lYS9qM8ndpML6ZSn01XyLOLOcBtPV7yNdDR+ITA1L7jwT0872uII0hTaFgkB5Rw4i2pacBaKEvKStQ8OiKerzK70OxEvhHgaQAS38LidE9yewRQj0gPH3jsjPlkkPM7GLB6ssL9Z8tadZ+fD7ZnGXkXNIgLWgNZIrysXYjWqbDqklEK1HrEGVoegFLSe/qf79O/q7tvlM0S6dxc5DPugFWvvPaf/fIOT2yn5xQwTCc1JhH8lO8MrdnE2fVkASWIwGtEaFQISWVTbfaTKuqNWpNOaM+i6RGZzpG5Q1oK13TuABEEWC9Swj480aIU7KRk9UiTHluPbhnpNzgNw2kOAQiL8cj7tAlMKSRwqr1CRQ5U12gcwGuqmC0ipLkCjUVXdBVWUy0ACSsLLZAHEe3TTokQQZ6nHKeWaw9SBaApF6IblsyA8enn+YV4JzGhUG1BN29EVAqqsQOtOU851mqtrVJIgddMlhlIoY1CDPniP+NCh1raoKMKvj3CnDZLEVGOLbgTVgvKCxAGnPJXYX7OMrpsNWLRGFRX40F0iUDdI0yBFiTLmJU2LZW/jIqhriGOII2SRo8zycEUb9FqffByTPpvSrmaIAtN282nbU6xszGhkeRIk+hylLhGWBkvTIrFDhdAFuKSHukGqCj1ZQ9oWmS8IdYNOE1Qco9KEcP0C+eWM/i8POrSXSeBHGW7eIloTnEZ7UK1QjwyLK4F3Jy/Ozz7OsvLVpZVgaZqu4bAGKavOIuoGqWt0lkGaIAdHSNuitEJFEayt4PsxPnPoVqivrLC4GGErITptiT98jN5Yo9no077S3hRjjdooGEf5eVk605pfnrMF0UDAighKBJRGaY1UdedpxqB6GTLvTv30aNhpC2jGGQDxkwPU9TVObySMHhboNmCmJe0bV5ndTDG1UA01LheSw5Z65Mh6JbFulqdDLxEKS0oDCg1YgnTmKdKlfVkh3qOyDBn0YHcflSSoXoqcnIKLUF6wj3YQQBctyYnH3XuGimOm715letVwpuvBs0C2U1FOIqqxcCUrzqnzaDT+ixpbjpH/B9mqIowkNTexAAAAAElFTkSuQmCC\" y=\"-201.758125\"/>\n   </g>\n   <g id=\"matplotlib.axis_45\"/>\n   <g id=\"matplotlib.axis_46\"/>\n   <g id=\"patch_113\">\n    <path d=\"M 149.237931 239.758125 \nL 149.237931 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_114\">\n    <path d=\"M 186.727586 239.758125 \nL 186.727586 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_115\">\n    <path d=\"M 149.237931 239.758125 \nL 186.727586 239.758125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_116\">\n    <path d=\"M 149.237931 202.26847 \nL 186.727586 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_23\">\n    <!-- Sad -->\n    <g transform=\"translate(156.687759 196.26847)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-83\"/>\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"124.755859\" xlink:href=\"#DejaVuSans-100\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_24\">\n   <g id=\"patch_117\">\n    <path d=\"M 218.506897 239.758125 \nL 255.996552 239.758125 \nL 255.996552 202.26847 \nL 218.506897 202.26847 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p32119d985e)\">\n    <image height=\"38\" id=\"image227d4caa10\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.506897\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAOZklEQVR4nE2YWaxe11XHf2sPZ/jmO19fz2kcu3bS0rQhgRSqDqjQFhX6AgUJUQnxxAMIhHhHPFRCgvIEUoWQKrV9QUWoogi1glAoaVqSJsEZ7Ni1c23f+d5v/s6wBx6OazjS1jlvZ+21/+v/W2vLJ6/8SQzdjOn5NpOzGpdDfhjpbjuynSmIUK3kzE5Zyr7CtSAZRXp3a/afTpg/XpH3C+rKkGY1qa3JrENLZPe4h9/N6d1SrL66wN64D84RZ3PiU5e4+6kuvduRlRf3IEZCt4VvW5QLGKkdalYisU01gOJsxfyCsFi1LOc9zNxT9TQuF6KC9oOARDj4QMLijEdMYHGSg0QAtAokWUnbVuTrNXf1EmNpIz5jkJ8jf3MXAN66w/rGe9n+pFC3N9h84RA1XRBTzXwrx7AokLIiGfZQlQYVkSxQLRlmmwo7VZQDwedAAJcLw8uABKJEZJiQHyjsBIJNKJZy7qx3SPsF3VZJr11wvK6ZTXOiSnD5Ft0f3kPynPZbB+TvO0X+K7vs6E1OfXsffTwjzQwmbCyjhlOyG7usZVvsq5S6E0nGgqojdQcWm5Fqs8buWZQXxEd862GGCiFqWGxE0hOhtSOIs5QB6tLQ6RZkWc1sOQE0dddgFlvkN/aJrZTV1x3xI5Frv/kGr+ZXOfMvxyQ7Y8z0YhddtsnvTWi/vsOZ4QrzUxkuE4IV6rYQVYRKYaeCT8HnkZgFEHDrFeunTmjZmtIZdo76+KMUdCTJHM4rAKTtqIMQEsXuMwlnxwPUvCIZ19w96fI757/Lqd8Y8U/Jz3D6hTmmWFLoSlCuQ2I1IdEARCX4BBDI94TNFyEZF9z5dEJMAubE4LNIemIZvbXJYS9SrTs6qzNWr5wwLlK0itROM1skxCCQe5wN+FSz99MdNv9zxGI1wbyu2bm2xC/2X6P8nOHlG0+jggVvBddSuF6KyzXBNkJ/9AiIh/l6gl92SBDyPaG1o1j5H8/STc/SG5GNf9Nk/9jn/n9vUftmg0VlqacJeCHtlqAjqMj0bGR2rkNUkIzh67c/SFcVPN25y+SMxugSVB0R38QQteATAQFdQdSRciCMHjNU/aYApBSK9YjrBmbnItJ2MLakhxrxYCbgX1qiHoPqAucd2coCYzxlEFQlhDRwdE2z/KYnWJi/M+DlSxd4Jv8x4ysOEzToEojNCokQH2bIFAFdCqqGYKBYjaAj0UScjUgtKC8wT/B9T+tDJ8QolLVhftCGu4ZiI6B7FVtLI2ZVQtFJcBGIwuJcTbFrMPNISCPf2PkAT13chghGwsNMGQiJIgooF5EAySQQFQRjmG0JMfWIaqoxZgE1NGSHgpnD7KwwH6TkaYXWAdsvKa7VRC8MunO6tqT2mjSrUTrgvUKpQLFi2XypwOcZ724scev0OmqhMLqKKBcJRigHhmCaQE0ZUVUgGkFCxLVBKoGsOWYpFclQEA8hAVWDqzWtbk1qHLY35sb2BiZ1bHSmuKhQErHakyc1pdOEoKi7EakDrb3AeJTywvAKZiGodBTQVcQngkuFYAQJje6QJshyoJAAEgQkElseOo7icsHsnEccrLwWMW+3WNTNzm4+WEdU5LH1IxLVCNgFhTWe3NakxiMScZ1IuZJg54Fkz/LK/mmqZY8xc0/d00SBqHmkL58KUWnKnma+FXGtSEwCeIVtV5xeGXG6PcJFxYPLfY5nLXylGU9aHO/1EBN5z9l9Eu2Z1CmTMmVRWZREYhR8EGIUQsuji8hs0yIeprMMMo/xucLbJlNBN9YQjOBD855vCPXA/591OME7TYzCajrFimc5mZOvVtycrvPG/U10y3F+/RgtgUmVcjxrMRnlxEIjaUAnnjSrCUEgNpqOCnwKbpg2GlusmKYabbN+Up0SG/TMzgZoO5gaxAsRCJVGHkJ74RN8FI7rNqUzbK2MyE2N1c1mhoXFB4WoJlOxVrggKB2w1qMWmiiB/MRT7hsKr4kGTLEkmCI+MlVxgIoQwWWCWZ8jKlKVCnNiUB7qnjBaZBxXLapgMBJQEljK5nSDogqGEIVZneBDU32tTkloVYhAVRq8V4hE7FgIVqGqSDKOiBeK1YiJptFTMDQCl4cmGiMSBO8U2npQgAIzFlStWWwmzF2CCxqjPInyJMoBhlFlGS5y5qVtKlwHenmBUY03TWzCaNymWlhac0EizNYNLhdcC3wWMcE2gkeawJSL2EVDAgmRUBhCYVATjV40ZqtLmBWGUZXTNhUuNPg5KDr8eHeVcNLwNB0UDDoL+mlBatyjyhSJLMqExbiFLpr/H39ywXMX7rAz73FndwUTTJMliSBl40fJOCAxUgw05thgx41vdO43R4zAdJjgNhULZxmVGfPKMn+n3+CmH8iWCs4sD9nIJwzsAqM8C2+Z1BkhCv32gsV+i2QUmW8YNpaPyHXNh9du0bYVJiQRcYKuGtGrGlQd0FXAnTLYidC7E9A1dG9OCJmh7ieMxobjWYsITA7bSKlpHSh8CtEoimnCvGshB/UQL7muCVFRBY2SyK5Afuy5/1HFitdszwYAXO7uNUcpEolacDlUA6FYTkiHkbrbBFy3BXMUcP0UnyqmpwziYbzXAQXJvqG1I9hJpOoJ6VAYZ4awKQyrnMIbEuUxD402UR5MhVQKJNA6P8ZqT+kNM5dQBt0cZegE6DpsXlN7xWJiMSODHUF3O2IWDTNnWwllT6g7gi6agFQt2ClkR4F05GnvRnQZiDpjrzdgf7hGNJFsc8apwZildE6iPNM6pb2tWCwLiXGc7oy4dbLCvYPzdNoFxvcc6VLBqaUxK9mMSZVx0s85zLukxxniG476tGkcQyIP8QTpsDFIM2/spupqlI+UAwMB8hspPoVq1VOVluEiI9WOSgVu3NvgwmsVowuW0aTFtvEcH/Swe5bZhYjpbkxZ68w41RqTKkeIgkjkYDEg34+PGsUG9qBc0wKFpCFF1M13TSSKIFEoB40X1YNATAPYQJLWJMZTB82ozOj9ICO7f8R0axl2MnZLTXYnwc4gXqkxW70x0yrlez+8TPtdjaqbwWLlFpiisY2ftEGPmkcF3oJP/l9gXaFcbjgbH3pe1BHVcrQ7BVZ7YhQWtWXvqM/FV+a4ftb43FShz9RUTwRqgdW0wmyfDIgv97n4XyW6LCE0WVIuMN/KCUbQZURXgagaOgQr6LJpf4IGlynEQdUXgm2GFdeKkAW08Y3LA5UzGBVI3srRsxEnT/WICswcsB6tA1lSs3d/CTM/aCPrgeOrKe0dj1kE7MSBC+Q7C0KikRBRdSBYhevYJnvxISZixE4DyUyhS0XVF8QL4gTnLHWlcLl71GCGUnPmumd+vo34SLRC727gYKVH5/IJJ/f69N8ymI/91Bsoidx5cpnbO6ukWY1zinCvjZ0osiNo7QfSoSM5KUlOSqSsIUBMNSE1RCXYuWDmhnqiqDqqsZ6+UFcanyriw86l80CRHheEROEyha4gO3asvGrY32jR3ZowDj3k57/9h3HnpMfj64cYCRwu2nSSkqN5m15WcPudTZZe1UiAuiOoqqFEOgxkxx47rjHTqglWhNBO8S2DyzQ+V9S5wqcNOcRD790Cuz/F93Om51qouumgfSqMz2lan9jn18//ELnwpT+PUgshC6RHGp9FnvvI9WbKlsjN4Rr376wC0NucMJ1mnF0/YbTIGB50sPsWXTQMzfcjy2/MMUdTCAHS5GGlRogRfEDKCnwgdnJCJ4MQmkubTdtcRaQwe6pAfuv7X4insyFf/e7PoheKZ55/ixffuQjDhJX3HPOXV7/OzWqTbx68j7lLWM2mzbzoLavpDB+F7dkSN3fWiTsZ7XsKO4l0HjiynTlqVkCMSO3AP5x8tCIaTWxnVCstlA8s1hJ0EWndGRNTjfzVmx+Nf/Gjj+Onlsffs8vdl87QvQOLNSG8b8LnLr3Kt969ymSWEfeyxj4qwfUDMfV0V2d85vx1TqcnfH90kVd2zzAd5lAr7LGhdxP6dyqSowUyLyEEJEQIgWg0YdCmWMtBQeudE9AK30kxX775PH6UoLo1D75zlsH9SOvAcfx+4ZmtB3z7wWWMDigVsOcmmP/o09oLuFQxekJRdCxTn3JzscGpbIxb3+HChSNuz1d582CDk7RP1AnJusWUkXy3QE9LUKoJsvbUXU1+UEEIhFYKSlCTaY4EIX07Z/BOwOWw/XnHZ599mR/cuMjxqM3FwRHcblNXhvlGxKVCNNB5F1xluNp6wKqdMqxzbp6s8aPhGe5NBlxaOeDckzsUK0Jnu6BqK3Z/ps3o6oCQaGJiCLklO6oZXUipN3q4fsrsTI7xlYLcY8caO/Mslg3vP3+Pb779JK2bCdWSZenxOVee/zE399eozy1YDFvIQzzZ1FFHw5KZMTI5v3ruVT7Uus0b5WnenJ3ij898i+HFFl/8+C9x+PoWrQfNmHjwdIfOjic7rBrZVZHtX2ghHrJDUCb1UCmScQPrZBK59feX6H03RwL4VmDmUp5fvsXffPArfOqJ68izQ6pBg6mLa0ccug511JxLj+nqgu16hQvJIb+//h0SAit6xlI6p3NxxJ/97t8x/eUJ5bJwdM1w9GROOTDYeeT08/fY+PADijWQT//778XrL1/g0ldnzfXQsy0mlxzpnsHMYX61QHTE3Mn44q99hcfsIfNgea08yz8fXOPDy7eaKg2WDTuirUr++u5HOJi0+cxj1/ntpe8B8ML8El+6/jGsdZzpj7jW3+Eb//osq6/AbEuRnkSOnqv5/NMv8bUXn8P83MpNJk+mvP2FDTYvHvFHF7/Jn778GdgzRA0m8bjjjLUfBf5g7fN8+RN/SxEtddRc7e3yD/ffz6yyJMZzZWmftq6499omEoRv6feyaid8tvsaz+W3+RIfo/O1Pothm+88dp6lErp3C3ySMXwCqBUdXdJan/G/mhB2CeikFMYAAAAASUVORK5CYII=\" y=\"-201.758125\"/>\n   </g>\n   <g id=\"matplotlib.axis_47\"/>\n   <g id=\"matplotlib.axis_48\"/>\n   <g id=\"patch_118\">\n    <path d=\"M 218.506897 239.758125 \nL 218.506897 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_119\">\n    <path d=\"M 255.996552 239.758125 \nL 255.996552 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_120\">\n    <path d=\"M 218.506897 239.758125 \nL 255.996552 239.758125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_121\">\n    <path d=\"M 218.506897 202.26847 \nL 255.996552 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_24\">\n    <!-- Sad -->\n    <g transform=\"translate(225.956724 196.26847)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-83\"/>\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"124.755859\" xlink:href=\"#DejaVuSans-100\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_25\">\n   <g id=\"patch_122\">\n    <path d=\"M 287.775862 239.758125 \nL 325.265517 239.758125 \nL 325.265517 202.26847 \nL 287.775862 202.26847 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p2841cd2212)\">\n    <image height=\"38\" id=\"image27d3ec8feb\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"287.775862\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANfElEQVR4nEWYyY8l6VXFf/cbYnrzkJlVWVO7yk0Zut1YAtmysARIIAFL2CKxZcFfwII1C/gD+CuQEBIIsGSELKHGwsjdpu1qut01V2ZWZr75RcQ3sYhX6cXTe1LEU9w495xzz/3kW3/+tykJLD6IlK80uoX+y8jk4zfQtKSmIe1rkveoRw/4/M9mVI8XzPtberYFIFOeka0Z2x1KElbCzXdEqKNl4Uq+XM/5xdmMsLYAIKCXhsFTYfbTGl9oAJIRTDRCNJBsIilIGnSbIEYQgZQgBPTRnF/88ZziVxYMigYjER8VShJtNFy3JduQUWrXfVSLNrErUiWw8P7wAkXiFzLDLXNI3XPboSA+oZuIxEQ0gkkKQnl4gdh96/rww3tS65Cy5OwP7xO+uWFS1ljdIUFUhO5O9lhsCNTK4mxDlntCUgDk4qlUS9TC/f41Iokv0hF+kZFUwvcSyQh670lGYVzEhAJ8CRIE3QIJ7NaDDyTvu4d++xGX33XcGW3oZw0pCRFh4zIEUJJQkohJcFGT6e5/VsJNO13SuKTpmYZ5saWeW57Wc2RpiBZCprAXO2I/Q0LqCgt5QlrBbA+Vbx3JOfAeOT3hxe9apkeX3B0saIOmjYZFXdJ6g1aR494GRaKNHUdiEjSRga7JlWMTCpRKaInsQtYVV27YnVgu6gniNckIEgLEBCmhknQkVI2gAkhISOvhcNPld47QDzfcGy55UF0xyfYoSazqnBCF1a7gcl+x9xYXNZs258V6zJXroSRSiKNSLYVyKDpktSQGtuG0v8JOa5JNhKxrO6rjtblRRwOqBfEgje/Qmk14+63EndGG9wfnTM2Wrc95cnZEe17xV7/39xTiOLXXaCKaxJsw4gerb/CmHvLJ+i7fHLxgoGrWsWATcmISjATA0rcNR+MNr5Y5EgWcR3xE1R4VikTSCdUKdp86RaZEah3rj07I7m25P7imrxvWoeBHF/fI/nNAyiMPs3MGes/7ZoOVwEdZ4DfzN/zl8b/zN/f+gZ5p+OezD9jFnJgUT3dTVr5ESSIkwarASbXGjhqUT0iIpHeISYCkOsR0EyEJ0jrIcy4/MJyM1gD8dH2by7rHxZM5wxaQxF8//SMyFTgpV8Sk+P3Jp9TRoiXxQfaKD3sv+acnH/B3i+/xJ4/+h43rEOuZBqCzldJxNh4QTdFZ1LvClBeQ1LUxgvJA3cB8wu6+x+rAxb7P211FaT2995Yshj1s6Tjb9LE6svUZPdPyr9cfsg8WqwIvelN+ePWI8DZHnlf8o/2AabVn3Rbs8654RaLULSfVmjflMYTYkT9EjETgUFBSnYcl53C3RuTTPYrUeZvqiHsy2HA6XDHMatpgqExLz7TkytMzzQ3JdzFjaGtmD6+5HA7YLXts9znDXs2sKJhmO0rdYiVwVGx41hcIATmo0kjoPIwEEg7tPJ5x9WsFk8E5PdugJOGTYrEvyI2n9pZlU1C3ll7eUlrHrNgytjv6uqYQjxXP7fGCR70LXswn/HxxzJvLEVpFeqZlaPZYFQ6oOVxPOh22nQead46vfAIBSQk/qdjdEqZZS9826IN5rpucvbPsnWG9LSgKR248t6slR9mGhauIB1K7qNmEnPNmwFfLKcttyXyy5sHwmtNiQaVaXNIoEppItJB8QPYt0jpM0ofC3MFG2kjMNfUtT649fdNipHvQIG9Y7AtK61H9mq+NL3lQXTG3nSpfNmNeNyNK7Vi5go3Leb4a4YLmweyKO9WSu+U1t+0CgHUsaKLtCnQgRU4sM1htulYqB9olkgbVeNYP+hTzLUq6Xk/sjpgUC1PiMo1WkXGx5zjfcDtbMjcrCuV4XLxiG3N+srvPV5spr1dDQhIeTq541L/gOFtzYpdM9YY6WYJXNNGy9Tn1PPHkL+7h546j/5hglIcYOomK73q8eF9xNNxQmZa+bji2KyZmi5LIVzLjYtcj1x4lkYCwizkAdbS4ZLhyPc42faq85cHgmsf9M07skoGuGestPWlxwaCJuKRZuoLqo2sez8+JSbh+r8KoFpTuVGk3HkSo7zqOqzXTbMfcbhioPZkEdJlu8td1U7EPGYV4Aoqr0KdSLeduyNumx73hksfDM07sihO7xIqnEEch7jDgPZVqCElRB4s1geu6ojQOFzSG1LVShYTZOmJuKMY1s3zLUbZmajZk0oWbSjXM7BafND5qrAoM9B5FZBdzxnpLTMJvjJ6Rq25GaroIVYhDS5fPNN0MzQ7pw0gkJaGNmreriqu3g4Mq04H4qz3t6ZAy3zI0NVYCr9oJWiL5QR2VbihVS2VaMtVlrko3ZBKoY5dMJ2ZLJt21gCKkzgosAZc0EYVDYyVQKIdRgcx4lCSuzobgVKdK3YDZR2Szox1O6ectK1/wuh5hVYdWT3feE1DkqlMsQEAdQkGkjofECYSk0BLpSWe6hTgK5XBJ0yZNIY4gCiWRyrRoSRiJmCtL9VIwkkC1CbMNXb7Xwq61/PDFQ2IUyrxlXNY8HFyy8iVXbYVRAR812HfZK7EIVZe7JHLtemx8Tt80TMyWqd6Ahix1L/mOGhGFlcA02/FcTbA64GcO+8Ri3o0j5SKS5+g60jhL/PGI/BqW392z/mTGM3OHcKthNt3QeM202vNedclA1/RUw3M3ZR0KXNJcuR4hCUNTo0nUKSMGRR0tA73v0EqK7SF1VKrFqMj5to/sNBLoWnmInaTxALv17FYF6Z4jv7Tkn5b0XyZCBrt1wduHArUmnijmpxuO9Aotnew/29zi6WpC6zXjsub7548Z9vd8ffqWj4YvmZs1z92Uh9kFAFe+jzsU4ILm4vmE0eeafBUwynUzUlIiDHLEJ1KC3/noZ5y9P+Cz/7uD7xuI0B55ssoR88DRYEOlOtK3SXftbEo2dc7mquLa9pl/P8f1Kn70eMJ/5Y8gwq2vXfK9ky+5n1+RK8cuZly6Hts2Q9WKaCDkglGum5FJCRK7zG/OM5aPCr41fsHvfvfnvGlGfL455mevjwlBMRnueG9wxToWbFPGNubUsUuk98YLvmgN6csevgIU5NeKZpYY3V/yB6efMbdreqpBEamUpY2Gy8s+vZfqkAvfRWsgZhrlIiHX9F4IP/70a3x2dAutI7tVAUuLroV4u+He8Jqp3XbzLpRchj5P6ylPLo+oMsev33kJd8BIZJrtOM0XnNglY73jjR/dGHagUyWAeZUz/8Rh1479SY4JpaCbhC81BvClorqI6Fazudenudcwma05ur9lXmwZ2pqebujrhkI87WEtO82X9PKWN2/GbJuM3777BR/2XnAvu6Qn7Q2yVgK7mFMfzHMXM9YupzwX7KrFnK9It48x0UAyEDMhJI3rKVwpmD2U50IyOdfAuKyxKvyyqIMn1SnDSuDELvnTBx/z7NaMny5v8/H5fb7qTXnYf8vQ1ACsfEETDUfZhrvZFfZgG+u2QLUHOjlPEjAh65JrUkLIwe4i7UDjMjC7RPlakFcFL57d4eqjim/ffsrI7LESCAgxCYW4bhYqx6PsnN/qP+GVm/D5/oSzZsibesg833I3v2Zkdt1IUq4bT6HbR3Wb0E0g9UpWDzQmFAnlfnlmEY0wfOpZ3zH4SohZd628EHafTPixCdjjyK18yUh3O2ahHD3VYMXfOP972Vtu2eWNMOrUjat3pO8dguKV7/HVFyfc2iT2JyUhr9jeD90mnnSHWDRC21cMrhqyjQYF0XaHLvUM7Fq4+mzGp9bRjAynxYKR3ndhT+vDctsQUWxjpyuXNAGFJnYZLHWEL1TL0/qUf3v1mNH/GtpBwvU1zVgwR1tMGHl8YcmXCYldIW5gkJhQTlAe3LBDoZklsmvFs1cz+lnT5bFMMdAdh9CHxUYiLpmOg4fBriRRSXdsVaeMH6x+lX959g3Wz4aMXcJXQlKwvxUZVA1G8kDMLFGDxIQE2M8Ndhepp4LZJXwBuoWYJXwP1KXl8qSiMi2l7oZzQGiTQRHRqMOwNrhkyJW7QWwTC/57dZ8f/uzryFZTnGuShmyVWDyGMPEoFTEm9/jiIAARtEtsTxR2C74H0BmvGyZUI7hjh14Y1vuCTZFzpavuDOyw5kWRG7V16aM76WmSZR0KfrK+w8dfvEf+PKM58mRLGDz3LB4Z4ukeayJaJYwI+EFH+qTBbiPJKEIuZAuojxLZStjOPMWZxc8h9A+mO4Gz3fCGS6Nk6OuaSnUta6IlIDTRUkfLta94tRmRdgbfj2RXmv7rQMiE9YcteEXZa1ltC0yKQigSrq/IV0K2dJidph4r+q8DzUxj16C23bDNXlncvZa015xt+gyLhte7UReDihug0IeldxeyQ5GGrzYzzhYD7EIjHsY/B10n3nxHQwwggkiiPasw2kRcGfC9DiXVBMq3kc0djW4SxQUol6jeKFwPirdCe6RB4OrlGO4siFHhgqYOhtNSo7KurZuQsw05IQlrV/BsOaZd5BS1ULyF6rxl+dDihgmcwo4b9ruc8rXGiCRU5WkHhmAFlFC9btjPSnZHmsELz36m6b2MrO8r8mWi/6Vh89CTXWiu8gGiE7s6Y1XmLNuSVS+n1A4fNWufoyRxse+z2eXotUY10H8ZCKVifySgIqhEUbbsn4xRLfw/iEZWwfKPUsIAAAAASUVORK5CYII=\" y=\"-201.758125\"/>\n   </g>\n   <g id=\"matplotlib.axis_49\"/>\n   <g id=\"matplotlib.axis_50\"/>\n   <g id=\"patch_123\">\n    <path d=\"M 287.775862 239.758125 \nL 287.775862 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_124\">\n    <path d=\"M 325.265517 239.758125 \nL 325.265517 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_125\">\n    <path d=\"M 287.775862 239.758125 \nL 325.265517 239.758125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_126\">\n    <path d=\"M 287.775862 202.26847 \nL 325.265517 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_25\">\n    <!-- Happy -->\n    <g transform=\"translate(287.162252 196.26847)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n </g>\n <defs>\n  <clipPath id=\"p34c62940dd\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.7\" y=\"22.318125\"/>\n  </clipPath>\n  <clipPath id=\"p8351db06eb\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"79.968966\" y=\"22.318125\"/>\n  </clipPath>\n  <clipPath id=\"p7c8f74720e\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.237931\" y=\"22.318125\"/>\n  </clipPath>\n  <clipPath id=\"pe9780ec97c\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.506897\" y=\"22.318125\"/>\n  </clipPath>\n  <clipPath id=\"pe8ab745677\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"287.775862\" y=\"22.318125\"/>\n  </clipPath>\n  <clipPath id=\"pa76ff2407c\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.7\" y=\"67.305711\"/>\n  </clipPath>\n  <clipPath id=\"p2d9da390e3\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"79.968966\" y=\"67.305711\"/>\n  </clipPath>\n  <clipPath id=\"p49e0aef381\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.237931\" y=\"67.305711\"/>\n  </clipPath>\n  <clipPath id=\"p9d382f6793\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.506897\" y=\"67.305711\"/>\n  </clipPath>\n  <clipPath id=\"pabca411ce2\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"287.775862\" y=\"67.305711\"/>\n  </clipPath>\n  <clipPath id=\"p3f9c2d4358\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.7\" y=\"112.293297\"/>\n  </clipPath>\n  <clipPath id=\"p89d522a9c3\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"79.968966\" y=\"112.293297\"/>\n  </clipPath>\n  <clipPath id=\"p141c02be63\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.237931\" y=\"112.293297\"/>\n  </clipPath>\n  <clipPath id=\"p91617d95ac\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.506897\" y=\"112.293297\"/>\n  </clipPath>\n  <clipPath id=\"p57eaacdf10\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"287.775862\" y=\"112.293297\"/>\n  </clipPath>\n  <clipPath id=\"p701fff6a6b\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.7\" y=\"157.280884\"/>\n  </clipPath>\n  <clipPath id=\"p42d0f43ee7\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"79.968966\" y=\"157.280884\"/>\n  </clipPath>\n  <clipPath id=\"pa1a70a5c6a\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.237931\" y=\"157.280884\"/>\n  </clipPath>\n  <clipPath id=\"p42545439b1\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.506897\" y=\"157.280884\"/>\n  </clipPath>\n  <clipPath id=\"p6396bf1817\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"287.775862\" y=\"157.280884\"/>\n  </clipPath>\n  <clipPath id=\"p8d696896dc\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.7\" y=\"202.26847\"/>\n  </clipPath>\n  <clipPath id=\"p83fcb50e20\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"79.968966\" y=\"202.26847\"/>\n  </clipPath>\n  <clipPath id=\"p4cbbac8237\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.237931\" y=\"202.26847\"/>\n  </clipPath>\n  <clipPath id=\"p32119d985e\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.506897\" y=\"202.26847\"/>\n  </clipPath>\n  <clipPath id=\"p2841cd2212\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"287.775862\" y=\"202.26847\"/>\n  </clipPath>\n </defs>\n</svg>\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAAD7CAYAAAA8RMxAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d7xsyVnfC3+fqpU6d++8Tw4zZ5JGM9KMJIQESCCCbDACg8jBGHMvtrGNbV5jv75gkrHBNthccOK1MTkZk0FCFsp5pNHkmTMnp51Dx5Wq6v5Ra+/ZM1fAHDEz+8B7fp9Pf3bvXqu716queuqJv0ecc9zETdzETdzE9UPt9wXcxE3cxE38RcVNAXoTN3ETN/Fp4qYAvYmbuImb+DRxU4DexE3cxE18mrgpQG/iJm7iJj5N3BSgN3ETN3ETnyZuWAEqIj8jIj+439dxEzfxlxki8i4R+db9vo6XAi+GTHnBBaiIvF5EPiAi2yKyISLvF5FXvdDfc6OimpCbIhLv97XsJ0TkvIi86TmvfbOIvG+/rmk/UI3Diog09rz2rSLyrhfgs52I3PLn/ZwbHTeyTHlBBaiItIHfBX4CmAIOAt8HZC/k99yoEJFjwGcBDvhrL9J3BC/G597EiwoN/P2X+kv/MsyVG12mvNAa6CkA59wvOeeMc27inHu7c+4hETkpIu8UkXURWRORXxCR7s4bReQVIvJxERmIyK8AyQt8bS8FvhH4EPAzwDftvFiZDj8pIr9X3d+HReTknuNfICJPVjvsT4nIu3fMqkpre7+I/JiIrAPfX+3Cd+95/5yIjEVk9iW70z8nROS7ReRMNR6PiciX7Tm2c8//dzUmT4jI5+05/i4R+WER+YiI9EXkt0Rkqjr2eyLyHc/5rof2fv4+4EeBf7x3vu9ARG4XkT+qftMnReSte449y7zeq8GLyHuqlz8pIkMR+SoReYOIXBaRfyIiS8B/F5GeiPyuiKxWltHvisihF/d2X1Dc0DLlhRagTwFGRP6HiLxZRHp7jgnww8AB4A7gMPAvAEQkAn4T+Dn8LvNrwF9/ga/tpcA3Ar9QPb5QROb3HPtq/M7ZA54GfghARGaAXwf+KTANPAl85nM+9zXAWWAe+AHgl4Gv33P8a4D/7ZxbfYHv58XEGby23sGPy8+LyOKe46+pzpkBvhf4jR0hWeEbgW8BFoES+A/V6/+DPWMjIvfgtZbfe3Fu43nhY8C7gH+898XKrP8j4BeBOfwc+SkRufPP+kDn3GdXT+9xzjWdc79S/b+AX0NHgW/Dr/H/Xv1/BJgA//ef835eStzYMsU594I+qhv5GeAyfmL/NjD/Kc57C/CJ6vlnA1cB2XP8A8APvtDX92I9gNcDBTBT/f8E8J3V858BfnrPuX8FeKJ6/o3AB/ccE+AS8K3V/98MXHzOd70GuLgzXvgF+tb9HoPnXON5YAhs7XmMgff9Cec/CHzpnnt+7nz4CPAN1fN3Af9qz7E7gRxvKifAJnBrdezfAD+1z+PwJuBlwDYwC3xrdQ9fBbz3Oef/Z+B799znt+459s17xw/vKrplz/9vqMYh+VOu515gc8//z/qOG/FxI8uUFzyI5Jx73Dn3zc65Q/hJcwD4cRGZF5FfFpErItIHfh6vXVCdc8VVd1nhwgt9bS8yvgl4u3Nurfr/F9ljxgNLe56PgWb1/ABeYAJQjcHl53z2pb3/OOc+XH3GG0TkduAW/KS60fAW51x35wH87Z0DIvKNIvKgiGyJyBZ+rszsee+nmg8H9vx/6TnHQvzmlQK/Any9iCi8dv5zL+RNfTpwzj2C9+V9956XjwKv2RmDahy+Dq9FfrpYrcYAABGpi8h/FpEL1bp7D9AVEf3n+I6XFDeyTHlR05icc0/gd46XAf8Sv2Pe7Zxr480sqU69BhwUEdnz9iMv5rW9kBCRGvBW4HNEZKnyP30ncE9lQv5puAbs+qSqMXiuj+pTUWbtmKrfAPz63kVzo0NEjgL/Ffi7wHQlXB/hmfkAn3o+XN3z/+HnHCuAnc3rf+AF0ecBY+fcB1/QG/j08b3A38K7FMBvAu/eu8k4b45/e3V8BNT3vP/5CNbnzpV/BNwGvKZadzumv/AXEDeaTHmho/C3i8g/2nFSi8hhvAbwIaCFN+m2ReQg8F173vpBvGr+90QkFJEvB179Ql7bi4y3AAZvSt5bPe4A3os30f80/B5wt4i8RXzU9O/w/BbKzwNfhp80P/vpXPQ+ooGf+KsAIvI38AtiL+Z4Zj58JX48f3/P8a8XkTtFpA58P34TMQCVwLTAv+UG0D534Jx7Gq8d/73qpd8FTonIN1T3GYrIq0Tkjur4g8CXV1rkLcDffM5HLgMn/oyvbeH9nluVD/l7X4h7ealwo8uUF1oDHeD9cx8WkRH+Jh/B74LfB7wS7wf6PeA3dt7knMuBL8f7eDbwvqHf4C8Ovgn47865i865pZ0H3ln/dcCfmE5SmfxfCfwIsI4Xwh/jz0jTcM5dAj6OF0TvfUHu4iWCc+4xvHD7IF4I3A28/zmnfRi4Fa9V/hDwFc659T3Hfw6viSzh/Z5/7znv/9nqc3/+Bb78Py++H7+B4JwbAF+ADx5dxd/LvwZ2coh/DO/TXMZr1b/wnM/6F8D/qMz/t/Kp8eNADT+OHwL+8AW6j5cKN7RMkWe7CG5iv1H57S4DX+ec++M/49z/Blx1zv3zl+TiXiKIyDfjAxuv/xOOvwv4eefcT/8pn/GNwLf9SZ9xEzfxQuAvfKLtXwaIyBfiNa4J3gwR/E77p73nGH6HfcWLfX1/0VCZ9X8b+Kn9vpab+MuNG7YW/v/P8Fp8zuMa8CX46PXkTzpZRH4Ab8b8qHPu3EtziX8xUG1Gq3iz9xf3+XJu4i85bprwN3ETN3ETnyZuaqA3cRM3cROfJm4K0Ju4iZu4iU8T1xVECpKGqyU9VG6hLKE01QGNCwNspLEBOAUoiNo5R+MNlAi2chU4wFa5rg5w1XOLYJ1gUViEZ3sWBIMwKBMmkwiVC2JBLGSDDcp0tG9JwWGn5pKFDjjISw1OiKKSmi7QYhkUMQIocUS6JBKDkmfuXFWjYFFIlQNdOO0fVpMbjbWKMDAYqzClIgxLtDh/LPcFJWFSUJQaEMzaBmV/vG9jMjOl3dHDAefyNpPNBFWAzi1OBBsKJgYXO6KopB2k1FVGKAZd3f/Ohe+MUlm9svO6cUKJJrMhQxOTpiF6IujMoTIDz3VLiUBp6Jera865fSNc0Y2GCztTiF8EiPWvO109BMT513ee78Dt+TWdAvYc3zl35xyx/vhOSr1TgK7GVju0sgTK0ggy0mt9Njbsvs0V3Wy4YLaHqEo+WPEZvFZQJf457N6vGBDjUOXOzT1zHBGcAqfEvy4g1iHm2fPBacEG1TwMHGhHEFiUOEqjKFa3KLef3/q5LgFaS3q89tTfQl9Zw2xsAgbV7WAPLzA63mQ8qyjrgtUwvCvjt974kxwN5hlYQ1HdQ+oUxR7Fd2xDcjQDmzAwNUY2xqDIbIhBSKQgFMNa2eLR4SIfvniM4MEm8aYjGjoe/f0fv55beMGRLHT4jP/0NSwNWvSXWhw9scLJ9hqtMOXhzQNc2egw3R4xWxsxmwyp6RzwArUTTGhqX0BU2IDCaTIbsF40WE2bDIqEQRYzmMRkWcjCVJ+1foN8pc7M8Q0WmgPOrE2TnW9hQ8eR25e5cHaO5X/94/s4InD0cMDP/M4sX/J7/4Db3wnhyK+CsqboH9P0by05essKbzn4IK+qnWVKpSRiSZ4zZavtGf2c/y1QOMidYtk0+b3te/j9c3diH+qw8OGC2sVtv7lrhdMasRbZHvKHl//DvpYHh50pTn7DPyQcOFQBLvDCzgYwmRVs7HDKC4moL4gBG/r3OvHngxeIJvYLSpVe+O6cB88IZgAp/DHTsLjAoTs5jXpGHJa8eu4i7/4bv/oS3f2nRjA9xeL3/R10ZHBOMLmCVBNua6ItPwY4iDcd8cBRv5qiJ4UXiqVFjAGlcKHGBYq8G2MjRTA2qML6zdSBOAfWgRLKekjR1ozmNINjUDYcwdyEo3MbFEbz5N/7/z3/67+em5XSoZc2MRubuDxHNZu4A7OMjzYYz1TCMwQsvObUOW4JFBs2p3BQIBgnFCisE/JKiI5cxJZpMLAJW6ZOKH6ZjG2EEovGocRROM1sNOTk3Bqnew3iTb/TiPlTLvglgODYzhL6Gw1qM2NmakMCZbg46nFptUcQ+gtMgoLMakKlqamcwmk2izqreYuaypnYiH6RYCs1ItIGm1fPA0ORB1xb7XB4fpNrTlh/apr0eMCBbp8LBzXBk00uXJwh7Ka4cv+r9H5h8zXMfFTRuDLCJAF5NyDtKSazjnAq5WR7jTvjK8zqCSGO8FNc8o7gDEXQCAZH4RwaCAVisUTS5692PsnMqSG/HNzH+mCKhUGdYGOEZAXicq+Z1Paf31ocqOIZLVOlYKNnjpc1hyoFG0Dedl6AVAJSmUoxi0CnIFYo617gBkPBxmAihw29VqUz8VptCDZyiPFamdmO0M0JWlliVZC7/S+Jd1YwucZV1yimum9vohFvORorhtrlESovcVqQshKOIjgtuFBjkgBxoNMd1d6hcrN7ng01TgsqN4R9qCsBUYwOCoWtcSXsEAaG4jrG5DoFqMFubuGKElWrIYcXGR1tM57RlA3BRH5HzLqOf3jgbWzbnIFVuyZ74RQ5avcCUxeybppslJ5Xo65yrBNSF6LEEopBiWWlaAMQq5J2lGJqlqKtifv2U1/oS4yNfp2wnjPTGlFazXZR44mVeaxViHgDtJ974bihLIkuyG1Qme9euI7LiKwMqAUF9SBH4TBWUQsLtLJYJ0zSkKWtFou9Phf6MeMzHbZuMyz0Blw6GFE/G5G9rIT9s8gAsDj+19P3cOBSjtMKp4UyVuQdoTyQce+Ba7ymc5aFYECyx041eKH5XM1zL7QICtAIRSVQu2rCPbWLbBxp8Ksvu5/mlYTu6gAmKdQSXBhgOrUX/8b/DDgBlXsN05ucXqB6DQtsLBQdi1MO04Kyrog3lTdb7TMmrI1AZ2Bir73aGFSG/93FC9EdRYbKnWYTv1akXtIf1rj9wDJf0n2Qd0q5X8Ph4YBcgalsdAWSC4jXtIMUGsuG2tIEleagFJKVSF7gAu0FaBxSNkJMrFCl31SUcahJiRQGAoWpexdjMCr871BalLHoLMAGIeFAmNgmaeKYFOGfedk7uL5EemNwrkDVEuTAPJMjHSbTmqLphSdAMHaM75twIshZNprUaVIXEIrBOkXqwt1dL3UhhQsqnyC7wjOzIcYpMqq/NqCpfWXjuPQ+UCyYT6W2vMQoKh9lpzXGOOFAfZuH1g8wWa9B6EhdxIYTcqOJtGFSBCRhST0siHVJZgJSE1BYTSPM6cVjArFsFwn1MCdQllERMZaIJCkwRrG01aI1O2SYtVk/1+Po7Uu0Z0ZkVyLcUoJE+7uxGOdINxKKpiDGYSKFiYWs55if3+Kzp09ze3wVjSN1suv7VHhGEAAtzwhQixfKxjl0xQ1hqv/33umhaJPDB9fZOLZI5/EQViaI1rh2nWzmxuDnLlrgJoLKHcqwa6LqzJGsCDrVFC1H2TTYuiUNHXqkCFLxwrcy+csEVCkUbYNNhGAgKCPoSeUHDLzWhTik9FqdCyzOCE4Jwzxm3TR5NtfGPsBB0Nc48ULeifOas/LyNOw7ktUcSgtKedeMtTitKssiwtYCTOJniw2qjSbfMe/BhV7QBqMCyUtcHHjrtbAEY0P3DExmNKpU5B2w5vnH1q9PgFqHJCFqbob0SI/xXEDW8c5YBPTET4jPOHaesdsbEAlIXcjIxlgUudMk4oMsGv8wlUlvnddQUxtSOM3EhJROU9c5y1mblVETKYRgAkHm9p1Txjmh1UgpjOZwe5uNvM7KZstflxGcEcpCQw2aUUY3mRCIxSKUVlEYTYFme5LQmxrTCSdYJ5ROESlDXgWSwsCQKEteajbXW2TDmHBmgrvY4PyZeY6dXOb8QpPmmRCl9je3N0fRPBMSTHKcElwgFA3IZgx39pY5Fq2RiBeVxnltQ+OFocEL1B1NVOMFMnjhuvN857ipAowGIVYFc/UBV+fmKXs1os0WBBoZZ4Sj/TfhVQHB2GuHNvDuJ51XPjrrhahseyHIWgDOm+8mApTXOAFs6Oe9ysULynpJoQKSVe01WsQLau1282zURDBNASfYYcjVoM1vte4ldw/v02h4iIVgJN6nqwRbTV0x3pqtbVhUbnCxxhk/O7x0FVygcFGAjb0A9oEzQWW28nlWwrPyf0pegnE+sLTHP6oyQ9atkaw7pBS4DhfYdZdyqpkpsqPTDA9EZF3B1LxpEkwgHDrSWeGLpz/JyPpfLkdjKim3s2hC0bRUysA+oxUkkpMSUTjN2ERkNmBoYkKxNHTGZlHnsc151h6bIZwIJsFH4va7DkAcxgn1qKAXj3lodZFiK0YaJUFUovWOmV5yuLFFNxwzMRFbRY2NrI6IozCaJCpohV7Lbgcpc9GA4/Eqy0WHwmmMU6wULR7fWmCSRaRXmhSlQLekdilka7FGa36IO93DFPubnTayMYfPGoJhQd6JGM1phkfh4Ik1XtM5S1eNAe/SCcXuRkxD3K75blxlysuzTfmdYGTBTjDpGZdQQ2UkusQmjslsRHQpwIUBUpQ+Or/PUCU0lgxlTZG3hLLmI8JesDp0vrNByK4WhoPAQFkDU3fYxGEjCwr0QCNWQDlcYjGRIt4UkswxKYSi80zAySUONVHYyCK1ElNqHlldZGT3d2MR4326OxF00YAFVXg/qM4tRStCrMOJIM7/dZHCBgoclA1NWVOowgtHZaosn9AHEE1SmceuchGUFhcopLQowAWKaGD8WE+Uj/4/T1yfANWK4tA0o0p4Fg2/Q+rc+3achvFBw4loBYuwVf043lTzpntDZeBgYBMu5dPUVYZBUVTR91AMnWCyuygMirr2PsFmlLMcO5LzfpDzpvp/pSi81BAgzwMOtPsUVrO50YTEIMpRSwqmGmMiZWhFPto+qTaH3GqsE2pBQS0oMFbx1NYs8/UBb5x+isPROrO6z13RVeZ1QergA+lRNF57fbqfEKyF2MWUshFQPt5j9t5lVqerXXQfkdqQYGSxscZGQtkQ9MkBX3X4AU5GyyixbJk6FrW7qSZS0FI5iZhnJSfvmOgar0yF4gWrBa894DAIRRWino/7uMCSdgMaMy30xhCcY7Kw/ya8U17zdMr7MXci5+Kq/4Gy5gWrqbnKsnOowr/H1CyuYdC1kiAwZGGMjDRuHCClDyTlLail0LziyPtCOuM137JeBZc2A0zLoJoFzgkjcwMI0NyPhQBY0Jl3V+gcTOxnQzA2mHpQaeuOdDok7SqCzFE0hLwt6BQayxaVO0wSoMRbN7u+z1BXWqlCZSVOKW8haYVO7W56lMqf//VflwB1YcDoQMxkWlE0/Y+uCv9wGspYaB3u06oWhRecXnvaEaCRM/RtgnWKRBVYFBoLolAYCtHUxXizbNf/mVLYgPnagOXDffplh85T8qx0jf2CtUKvNaYZZjy1OYubBES9FBFHoA2ztSGtIGMx2WYmHHAt77IyatLPEwZ5TFoEaOXIioD+apPwqOW9m7cwLu+kMJpDjS0swvnBFEocozzCWL/zmtihryUU8znth2LWtpuUTct+xwUmZYgqLGWiQaBowH0HL3F3cgmD8L7hbXxo8zir4wbGKpQ4jrQ3mYlH3FJb4f76WQ7qIXG1Dzz3Z96b1lSgdt0/Gst0OCLqZpS1kGw2IbEOvbrNeGb/o80ImFieCf6E3hwv2qAnPu8x7zjKqZJab0IcGNJJRLEdo9JqW3GglCWOSlTHMTE1pFCVue/IO+ACIRhVZnDuTX09FsqWwwYONdKYwGHqPjNmv2EDn6Ll8H5dnXmtXEpHURcfMIsUZV2TbOSUiWZwRGNiCIdCOg1F01FbFbKW4JRG55ayFXpfZ2lx2kfc0VXOrFK77g0pDCoQVGZQhXomx/R54LoEqI0UkxlF0QKTOMQ+k0ZkYjA1uH1qDYswsBEGYcs0KJymrjJAs26aXMhmmA+3KZzP/xybGItQV7lPXZKSRArWqoTysYnJbEA7THnZ7BJno4JVN8PUI97U2U+IQDvKUOJYOzsFDUMYGrr1CQuNPne0ljger7IQbLNumtRVzqBMeHR5gXQc4aygQ0s5CgnXAi4NFrg2XkTlQjiES3VPoh1v+e/z/jOIm37xhQPBHrCYGPLNBOrmWQnY+4HSaGyoKj+dI521vLZ7htxpfnbldXz86iHKQlMMI4L1AJ3DyvQ0Tjl0u+CNtyzydTMf5JawD/heHVqEgXU8UcywWrYJxZDakFB2ihNsNXcsJ+fWODPXoH1JsHGAFiEa7revh53KAJ/TqaGsO8quQWolxSRAjRW2YUi6KYvdPgcbW+Q24PTGDBvXOkiuwAkiUIu8dbOqHON+gku132hCh6mD6goqE1zghWhtWRAr5D2wkUVV6XWh2mctRLzsKBOHCx1YwakqPUkJZQL9IwE29CZ9WYsp6sJ40eGqzbmYsrjIkmcBeYdKufLuvbKlUOItVRNrb7E6B1qj0tIHmcT7QSUziDI+Rep54voEaChk3T35ZxVfkInAJJB3LXd3rtJShlBSThfTDGxCasPdINLQJCzlbX7nystYutojWPN2jD4+5Ja5NWaTIZEqKa3GVrmja9LcvYZAGQ61thgdj5isdH3VwT4iDAwijqc3Zqhd05T3TKhFBXdNXeO17TNM6SEDW+MPt+/m3ZdvYZxGxHHBeKXhbZbQUqaa5GpI86IjHPsIa972Jl84eCYxOhg7ypqPZk8/4ti8TZFNW2Q5Jp21ROsac/w67I8XCc4INhZU5n1OjRPbnIxW+N2tezmzPc3XnvoYHT1hbCO2yxqP9Re5sNVjOEpIajkXhz0ebR1kXg/R4qiLj7j/0vb9/N6VuxhnEf2NBuQK1Syo1XNatZTFRp8720vc1bnGk8fnkQ+HYB0u0NelVbxo41IFgoqmUDS98Ay7KSJgQ4trCRqIwpJWmNEMcgKZkHc04zQm3Ux2ff4z9RG3tFa5nHR5UuYYSeKLBkJL3MgJAsNkEmHGAWoY4FZ94DWbAjTowDLdGFMGw/0cEpx4ZczGlQCt0vd0ik+/CmG8IJjE3/j4oM/4MU0DymG6QOAXSD5fIhNFNqXJBiG1pZS8G4By5J2oSgWrgnamSqwHUOKDTM473q9HAbk+ARpA0fJpBioHXFXlUHOUDQfTGUeidR7OZ/jJS5/Lk5fn0aHh5Qevclf7GqkNmZiQB9YOs/rIHFOnIRo4tk8ojPOpFdb5ks6NSZ2sCIgCQ7c2QYsl0oagKoU8ObXOQwdb+x6Ft04YFxGjT06hq4Dfyd4at9RXCMXwv9bv44GlQwyWm6iRJllTWAvtSZXSoqFoW6JtaCyV9I8FTOb9LryT/OwCR9F23oc1VtjIsXaP0LzosIHCJN7sS1ZDyn3OAQWfx2cDQRWOtKt57YHzjGxMKIZ/csvbuDVcZcvGjGxM6kLuql/h8tQU1/IOoRhiVdJSE8YuoE6JFceWDbgwmcY5YThMfKQ0Nthck6mQUBs+uXaIJ2rzfO7R0yzObGOjWVRhIAyYTN8AtA/CbrGJDQDtcFahAoMDzHZIuKUpRjVO2x5PVEqJmk1JkgKJvdZYT3IO1re4vXaNWJVcHnQZqxinHM4I2SRENSyNekYWGLJCIU6hJ45oW8hCIYxK7u5dZev/5SDZHzgFLvTXYiPxjxBEvDlvQ39OWffrYBfaIdohymukzsJkXqEKTbQdoFNL3tKomqK26s1/AFU4bBShJ6XflIKqfNxe33hcnw9U+d1CFd4csKH/v2wZpFEyMzWkpSc8MjnMhY0e+kpCMBA+cfUWxq+IONzYZFAkXFvq0bkg1FcNJvZmeHmtzoV+TK3n1do8CzETDVYY9mJa9ZRGlGOsoh2nPne0U7DfLhxrhbVBg/ZZ2D7lKEYRH790iNMbM8w2Rpy+Moe6klAbyjO1yZUJN/tJ76wcLWg6ZzOcFsaLVfqJ9VFbFOiqLNckzzgF8ymDnNV+/KcLVGwQG1Z5fvswEHugCigTQaxicETxiuZFCqd5VfMcs7rPpbLLxWKazbLBRtlgI28wMSEbWZ2peMytjRW6ekxdShKxGAcDG3FH4xqz0YD1mQbWKY7W1mnqdLfc9wPbt/DOR2/nPVdOcKS7xUpL0QBsEpG3b4CNxVWCoqoskrGmVI6yDGk9FdK6ZMlaUF8viTcLsl7I5q0B4RM1Nu8P6M0OyIqARpwTV6HiqWBEI8pZ045wOaT7JASpw8Qx6bQgHWCurCLMPjATbSr0MctrWmd5737ngVJF3I3DuSqjQDu/GYigDDQvO8YLQt52BCOfFmdDh40cxOVuHT0AgaPoGkZOE4wjauuGrCNEA394J+jsfwdBhWrXyW6rQoXrkSnXF4WvqhrABzBs5LANQ9jOSWo5nSQltSFHozU+/9iT/G56N/JojeYFxRMzC7z+3jNcYAqXKerLhnBkCAeO45/sY5MImwS4KKR/NGFw2AeJgjEMTirCIyVaWeph4ZPX2dHOrusOXhQUZ1p0zmUMjyR03hey9pnC5556mI+uHcX1I0zNm7Jh35fpga8eGRzSLP7+ZZqPatxoTHr3YaItIapqpcuaI9lw1Fdytk7GjOeFfMpiewVhUjKZa1B2SlRsqDVyyprPKdvvTUUsFHXvHx+fzJkNBoRS0lAZp/MFfn3pPk4vz2Iu10lWFHnXUbYswXRKGJXk85o7aleIxGLxNe/rpokSny9cWk2sS2JVsBBse2GrMpJewdkj01y4Oo3tbHuhKT4Pqmj+mZf94qOy2LJpi40thN6c1P0Ap2F4UHm3zUShsoC0qxkftD5SnRg6tZQtV8M4IbMBYxsTq4KDjS3W6g1YqdN9eowaFwxuaZK3NDOfNGzeFlRC2z2r/Hkh2NrX4QB2Lcgda2tHyRDjr1Ocw0QQbTuKJsQbQrzlU73SGcXwuEN1dkiNrDfHtaOYcWypAHNeYyKpBKMQjHwpqKr8nE4rcA4b6ypRv5ozzxPXJ37Eq8k29rlo0iiJawWNWkYtLIl1iUXxg49+IXM/lXDqSp/BHRGjOUV0LuFlr71ES6e8PbqTdCrAREKQObKpaRpXUs6+pUZtVZh+uKC2DsOFAGUg3VaekUhZjK0S7csAt8/5juBJQcTC6j1Jxf4CJ44v8/DWAS6v9nyZ3obym8FkR4v3702nhOLQNOe/uIY7OmH+fwaVn6zyyVj/fHA4ZrwgTI4UzBzYphlnGKu4Ml9Dt3OUOGZbQ67E7RtiTGzgtaysK7zi1AUMQkMM66bJ+7dv5bHzB0iejgkM1FYcNhDKulCMQ4p+xEqrxZZpsGpqJFKyZNo8nS3w+GiR09uzrA0bjIcxQWg4OrfBy7tXmA5HtHTKK6cuMcxiP09aoMa5J5mY3v880J3f3nYLml3vK9fKEh8xDLKIwSihzAMGt2tf2hgWJO2MbnNMM8opraIe57uBH4NQl4Lj9XXG0xGfuD+haNSprTlGByGfNmyU2udX7qRMlWBrEGqzyzuxn3CaSsFwPkgmjmCsKm3Z7Za6JluO0SFhMufQeVXJVUByLSArBNc0qNB47glxuEhRasdkEhGMoGwIZV0Tp6VPW9pIIS8g9opbWQ9QgLhKCD9PXKcABVc3EFrCuKRWy6lFBUlQEmrvm0xtyPhKk9rT13D1hPU7NZNDJQSWhWCbj4xOoiPLxmfkYAVdKzm1uMK4iPi87pMAnP/CaYZFxGC7SRwXvH7hEo0gYy1rcnXUYZSHpLlPHNvvKDwCtRWhrEM6X1K/qrm4MoUpFHo5pnPB06w1r5VEGzlFJ2I8GzBe8C6Q1XvqfMUXvY//c/oDvNF+B7VHamzf4Sd2MFCoTChaFtsuaE6PmaqN6cQTHrp6AFszxBXRSCdKuVirJuE+wzYsWddHgO/vXiSRgrrKaKkJb5l+gC953SdYfU2bT44Os5S2yU3AdDxiYkIuDHrc1l2moTKf+oZmy9QxCEoshVWMBzHxmYTu05bVmcP8Qfsw3Nvn3sUrHKuvc7K3xnra8Np+XoCOnu0320eY2KEjSzPJmK6NaYcpjSAns5rlepuVYZM0D9HaUosK2knqy3uVJS1DUhOQaE+XaJ3Pm54JhhxvrBMctzzVnmV7WEMpSzMpaJ3MGGcR44d7cLlyC4ljtjFitipo2E84qSqrgGAiSCGEI5+GpXJAIJ0Rahs+08R0SyZ5SO9xr2DgBDGaPFOYng+Oae1wymAjIW9bnCjPWBUJ4wM1JlMKdSyhvlZSP99HCoMurK9SKi32OmTK9ZGJaEfSTYnCknhPPbeudkRVJczPnVznsX86T3NuxIneOZQ4vmL+Y4xtzLW0Q72RcurIKoGyRKokNSFKHOcH05ROEeuSe6av0ppPSVRBXeWkNmQtazIuvPDMspC4leH2ue4bINpyhBqyaZ+6U25FqFTRPC8o45jMCsFEI2VI2tOUNZ/vl6wLg+OOv9p5kJYovuMVf8xPXX4zKhX0oTHRAe/n6iUZvWRCZgJCbejnCdlGjaiXEoaGrB9TOoWaTzHr+1+yGAWG8bECKRWHonUiMWgsiZRMqxEjF5HqCfc3z1E0/BQc25htU+Oe9mUORRsk4pmCItjlTritvsxsNOTp1iyPd+ZZWmyhMqhfVvDhNp94tTBzfMhMNPLkLaHzZplSsM/lrTswdUe9ntGJU7rRhJl4SFNnPv2qvkYx7VP37B4/TCiGflljpCMGRUw9yNHY3WKTlp7QCSYsdrY5Wt/gWtrGOkWsSqaiEYXT/NbyK+DRZ+rF21FKV9n9jsHuKkEq9yWswchbaqoqOcvbwuh4STqrME1fgWUS7+ftPDEgXaizfSKkbHqlHaoKzSrdy7QMeeCwoWLj9mC3ustGsHlnQO22aQ68p++JR6zDRt7kf764LgGqlKXTmBBpQy3w5sdeIhCL0NVjvvvWPyQ9GfKry/fzxMo8Zal4+ZErPJEvYBGSsGQ6HnE42WQmGHA5n+LsaIZWPfWBgmDARtlkYJIqlUmxWdZR4qiHBaM08mS89ZSrwf6aIYLz5kHNR8vTKaFxIaBoOkaHXeXzdLhAMTga+cBb7Ch6hvpSQHyiz5RKiSXg7uQSs/cus/n+BSbtmFtvXWUqHtEMciYmZDVtcmmry2Crjm4VRFHpx1/BVlqj1xmxtrr/FTf1IOfg0XXW+g0aKieUEo0jFEsolsT5PN+BrZE7jRZL4QIOA3XJsKg9vAlgK8d7U6fMh9vMh31e1z1DfFuBdcK1osvVtEtmNbEqffFFmGFjcHGAqYf7zlC1A6cdgbIkuqQdpjR1RqvihN1hIAvFVELUu6vGNiJWBZn12qd1ni8XfKVeIgWxKmjqlAPhJicTzzyVSE4khqWyQ9JLcarhzXkLpVXsvwFfwXnXwg7VX1kHxOd9jg9YpF5iIuUj7aVgEsvG7ZrJTJt0WpgsWGy7RMe+AtBawVnlo+qBxUXis4RUVXcf+UwiMZBNO8YH6zTO9EELk8MN397xeeL6BKg4GlFOIBYRn69V7DDJVzumwvLKeIl3jk+gxLHY7fO1Bz8CwJapA9CKM6xTKBx1lfHqxhle3fBXXbiA1bLFWtlks6gTq5KJiVjLGwyLmCQoiAJDGBgiba7H3/uiQASyTpXepRzZjCVeVxRth04FGznChTFoi8MnQPcHdcILCWUN/srxx2gou8sP8KbFJ/n91wTwwRmevnaMfNriagYJLEo7grCkNz2gNBpjFXmp0bFneerWUrYHsu+J9L1gxOvmz3K6PksoJS2V0pKCSCyp89VJLclpVfSFOQq7J3WgbxMaKqOuduaJFyyRlCwEW8zqPhum6TVTgePxKsfjVVQVTj2XzbFV1LCBo2wnZDPRbq7gvkJAiooXIiiIVLlL2QhUJCr+xwulomqy/rmpeHRTE5DbgKloVGUgeG10Ptj2pbGqIFHF7lhYFF09Zro1Iq01cYH3Od7dufop6QJfclQ8CCZxu0z7OzmfqvD/sxVCYr27LleoQsimLeks2LovRNChV+acA2cV1gjOqN2N0yWGUhTxukblQjpnn6nQqikkzShn20ym1XVVOF6fCS9eiFqE0mgKo/1OVhGHBNrQUDnGwd3xZW4/eI1ESqZ0wemi8yzykO0i4bLq0dIpWtwuO1PhNNumzmZR360b3y5qDIuYYR4zyCKsE0JtfBnaDWCZlU2HqfsfxDQsqfa+pnKqRCUlB6a26UQpFmFShmwutWmsCIN7Mw7Gm2yYEMWEDTONcYpbe6t85M4GcjlBMgE0LhCkVVCLC2phyQQ/3qkLCaOSJCwZZLGPZu4zSqe5lrZ57dRZIjEkYojEVkkcXhMFz8Rkxf+GKYotWyd1IYkUdNW4EiLQUDmX85h6VaQ8rUcsBD4vZWAjCheQSIESy9Wyh0XQ4hmLinbI6r0BU/NrXNyvAdmDYCJkRUBp1a7VBlTE4XZXmO4GeJQPFuU2YDltURhNLxnTDtJnaADF0lWZ9xU7RaJyTLUhmWoDascpw5qQtxwspry59RDhfmsfUJnwDhc7bAJEFgmtF6S5IloOibYUNlQ+gb5ukUJwocPWrD9fe9J1xFWapxeerhQvQJWrcm695mliCPve3RYOob6cQxiQzsWYRK5LpFxfHqiDrAzIjSYvdcWF6X0NqvKDpi5k7DRhJQw9mzysm6YvyTQBvdgTbHxi7SD9TsJn954i1CU4b7oNTEJmA0qnMFYzLiMmZUhmNM4JgTZeeBt1Q9TymprDRQ6Z+Emr5ipfZCFIHUZ5xCiPWFtto1cimqtCOuNodCasFS0eSI+ixValiYYTjTU4Bh8c34KkChdZJPLJ1lkRoJRFK8cojQi0JYiKXR/pRt3texrTwCQ0g5yWSjGVhYLscHxWGhbO93VyinVb54nsACejFRb09m5/pFiMF4SAFstm2WBdN5nVIxpSooBE+3MVMKhy2naERzAWsq4mPZqxkGT7MRTPhvMm5GQYs9mt0wlTYlUSS1n15lDYSpBaJ7sbiHWKtazBpAx3yzufHs0ySUKaQZOmTpkNBqQ2RIujQYau+CRspYkGylI0oTia8UW3PsGhYMK+V6HArgBFVUxJkbe0wFdn7U1r0rlDnK/7l0IwVdrTzj6wIzxtKV547jaJAkk18Yr2GTCVhqlTaF8whOtjsgNtRvO+vv56Wm1epwAVtieJb7yUB5Wj1vnIl/Jm/cjGJGLYshF9m6DEMrAR57I5zoxnADjeWOfKpMtGv8H6doMjtQ1OJpaBTbiWd5kYX7GUVg+AQKyP9iu7K8CjffZ/gk+kd4FDNQts6nc1B7iGQUUGpQ2rK21kEBCMFbqi4iuPpRzvbPO+lZN8VB8lMwHtOKW0is20xsunr7JwaIPlp2f2eMeFPA8oS0UtKSjygEIctQQiVdIMM55ul0h9f8clswH3Nc/TUBmFC3bbt+zAOKkWt+dMOJPP89DwEGtxiw+snaAVpbx55hG6eoxBuJxP0wtGdPWI1bLNsXCNVsWYsrcdSOgspvIbrqZNdCosvd5w1/GrTMrnzzL+YmGXkX4rZHOqRitskNmAItZ0ggmhGOoqJwR2msIZFNtljaVRGyWO5XGbp84tIGNN7eCQVi0jCUrqYU43mvDq7jkSKWioDOMUxinvUy4iJguWL7rjMb5t5t0kN4L2Cey08HAKMODGQUVj6LVGk3hXWNHyWqkNfMApGAsqVVhVUR+KRipB7MxOgXtFd1n6ZPls1iClEPZ9IVBtxVG/NqF/W4fhIU2ZeGXoRYvCm6qthLX+AnVg0NqSRAVx6IWbZ5XXrJsGZ/M5DIoPbx/nvZ+8nXg5QKfwSA6TWd+3xdwy4enRLLEqGduIjbxR+XpCxmVEIJZI+8UipqLFK70mOsoiX72wj7BOcKGl1UzpD0JPP6YsLvQObZxAqRDjSWN3XH2d9pgnzxwg2Ahwhzx701VxxA80mH0o5333zZPfPcYFjmhVU7QVpl34yKIJfAmgthij0MrSiVJaQcprXnaG98f7m54yFY5YLjocjdcAr0HlTgGWwikGNiLHk2Zv2Toay+Fkk6tZl9xqVsYtHh4f8s0E8yYfu3YY54RTMyu8duosqQsZOENLyt1GdAU7zEyeqPraoEV6MuPNdz1KpEoeXD+0b+Oxi+pag6HQH9TZiHNK5035MtLUdE6qQhJVPCuYtFXWGeUh24M6di1m8f2CiYXNUZuVuhca8arG3DHi1qav4gJPZj6yMWMbszpscPyuq3z3/Duo3yjCk4pQeaB8kCdwSC5IKd6s175QRpXQOufzendKyX2RjVCicKF4UpCgKk4Qh4Su6vAp6JFCSqFse87Psiao0qELx9JnNBkfcOhJVRyUuBdRA7WCKTWifDAjqnxvO3mg4E34JdPkUjHNY+MDXBxN8dCFgzTOBySrjmTLooyjfUFYuV/xGcfP0Q5TlvO294k5YWQiNrM6kyIkDkpqzmtluiIvLq0irzTg66HffzGww/5ej3OGrQI7DLGm2g2dUOYalK/YkkKh+wqnHFvnehx4n6NxdcLyq+v0byuRTNHeduQtTdSH8VYEoecZiDcVuQ293wcoTYjEBtE+p+9kfZW5sI9uWD60zzx/Dcm5s3aF1Ia7ZZYFisxq+s4v6CtFj9SFNFRGQ2WcSq5xS7zMfc3zbJgGFyYzXJz0yG3A8akNJmVIbgNayle7LdkQggFJpYkWzpMrpzZkq6gzTmOOHFjnrsYVnhwvkJkbImTim8kVQj7RjHKfvrfTgaAVZNR0QSPISFRBLOVue+vZxojBsIapWa59HkihUKngagbdLEh1xG3zayyGW6Q2ROEzG7ZNnY2ywWiQ8NUnPn5DCU8AHETbvpzbNKqupOJ8ILTqBWUSSFYdjWVL1lKUNX9+Nl0RLO+ywimcNsiOVLOA8WWf2gjhpq74QR1l27F1SpEdyJFMQxXH2Wmx8nxxnYWQ3t8ZBIZaXNBKsl3BGYildIqxiVkquzwxWeTRrUUW632+4Z4P8yvJKwl+q8HgiGb4yglRUnLn3ArH6uu0dMp2WWM5a3Nt0mYzrfke6FaYFAFZGLA1qhFou5tzWmRegO53EKke5BB6J/Z0b8jqqIstFCq0OAsSWESDLRXhakBtBYZHfIRxtKDJ2jX0xNE4H5BNOTbvdNiagyinNTWiKAJSHWMnIcHILzQX+4i/twJKGqHvq55Ivpvys59wCFN6yHkzg8JW3K56t1XLlqmzYRo+Ao2lq8ckUvjKmopY+0C8RTuYoMSRqALjFFPBiNlgQCSeU/ZS2aURrqGA1GlGLmLDNFlOWxgjHGpucTDc5LTMU94IAlTYbVtM6avrCquYlOFuJktmAx9YCthdW+1gwomWYSoekxrfQ6wXTdjMa/SiCcdra6wXDU7UVpkKhoyrFLDUhYxtxBODeWanB/yV1kO7feZuGKidNifiH4nFavHCzwmq9ExM2ZRQNjR555kovavcHOL21K87wVn/+k6TPReC0VXwKfBkJKpRkLeE4FpM2S1BFDoVZHJ9PMPXKUAdOjDUE1+BVAuK3SM7pshmWUfLFMtZixOtdT6v+xhTesjMXUN+bPWLoJXyRbc/TjfwZsZOGseO8CysZntUI88DkqQg1Ias9Jc5GscIEMUFYVySDeLrq/x/EVBXOQuLmzRD3297s9WgTH1nK2eqVq0CZIpkTcjbEN3Sp5HkbB+ukY8igrWQcBvKtqc3OzazxXxtgBLHRlbnvEwxMUKwGaBToQwdEhviekEtzqlXv0PqIrp6tK/jATCyEUtlh7GN0Xtmo9lJs3FFlRdqmAsG1FXme2BViTVtNaGbjNA4Giojd3o3BU5Xkeq2SjmTzzGtRnRUxpaNWS3brORt1sYNwtBwpLbB+XyGjbyOuRHyQKtaeKeBwLu+BB9bcM5H2gNld60soxRaLO0gJbYlrSDFOqGuc2aCoW/1gnAg3GI+3KahMjQ+o6Vva4xtxNhE5Dbgh277XxwNzI2T+1nBhQ4bQdQHGyqymvXVjniyFTFC2bI4FPGWUNZ811HEt4AWKzjrEAFXCoKq+ESf8z3a4cQhztfKB5EhCAztByNW79OUvZLk6dDnor6YaUyNWkYzzokDbzrZPXmgzgn9MqGuc5pBzn3N8xwO10mkZDbo8y2f9W4KpzkzmkXhCJSvsMhsz5MjFBGFVWjtc7qyNCRXGmcVplC4QiGBI7WCLRRkat81UIXjNXMXeGJ7nl40odses5a1sIXywrPwDuywr8HB+FjBwcaEqdqYotSUuabsCGVbECMU2zGXpcu4HTJfH9KOUqaaYzbFUbQ0xUYCNUNcK0iigunGmFiVbJc1mtqntlxfIsYLj6X1Hv/kfV/Jm+9+hFvjJcBH3yMMiZSMJebBwSE+eO4EZjUB5Zg5sUEvmdAIM+pBUTH4D4krf6DG7graVLzp39VjzhcznIhWGNgaA5swNL4Ofq49ZKusY1BsZI1995WDb0UMnr4wbObElYa5E4DdaXM9qQKnhfOFAXWd77a1GZrYKxmmxnbpE+ZngwG6IloJKxFZOE1mQ9aLBl8+/3FeGQ0oqmyFGwk6MGQ9R+MyhAMhnxbCRk4YGkZlHSkVLvDcqcroagPyftCddic69UqK7yO/x3+q9whS4Zk2z4ElDA2HulukW3Wc0hw4ss7kE/PXLU+usxLJUY+8Vqhwu1onsNuaYaffeTcY09ITrpQ93rZxN+988E5Uo4DVmPrVquSxjnceA2Yup9UdM9UYo8RhjMJm+pkBqFRylwsu9wmyKt9/ASriOJaseYYgVWAdhNciwoFQtD3LkMqEYCSMFxzt+SFxUKJwjMYxbjPyu6d2SCa4yI/z6maLlfU2tXrutfAsxJa+DUGYlHSbEwrzzPiPbcTYRru9hvYT4cBy4ucd7/i2U7yl9wDWKSIp0VL6SiTxddzuWkJtXZG9bMzXHvsoJ6IVChdgEJaLLmtlk42ywbW0zUbW2PWDv3buHK9rPkUopSfsdqHPlXQB1ilEHCda63x2+0mWyg4fKY4+qzRyv6DT0vdDms2pxSXWya5L6rkYFAmbzq+phs5phV77PDuc4fzGFGWpmOsMmakNuZZ2eGX7IgfCTYBd031gEmajIW+qn6VAbjjhCZ4RP58xxJvBrm8hiQs6tZR0EqHTkHBTU8wXlHWf5O4iV6Ui+WolVfWRx7+Ek4ruLpRdIbrTodRpr61aK9zSWuOB7mFc4HjT4pP8DvOoF9MHqsQSVJH2sqqM2LuzWydMTEi9qu39zdVX8qEHTyGZcOzua8S6RB1yFPdohrmPoGtlGWcRW2tNhsOEVpI9M6lKQQ80pm4hcN6nYX3ag6qidftddeOckEjByxqX+W/nPpPmf+kyd2mbshWTd0PWXhaQd31vbps4ilJz/to0biMmWVUkkx1CBe8XjbeFcNggGljKmpA3E0YHhSD0zu9ivkCU281ASENvCZTWl/6ZG2GZOEe4mVKMa6QuRDtvdvuGcT7P8a/NfIKZNwz5wzN3cGp2na4eczDYonCaeT3BxleoC4wdnC87rJsm79q+g3ecOcVvfvS1vOe+k3znyXfsRpx3kNmAVpzxmZ2n6eoxT2fznrlrn4ZiL3yLZwiqEtzc+Fp/V1X1KXEkFJRWs5HVGRcRwywizUOCwDAaJOhLCVFfCC2s1lpcq/nI8cPHFvnakx+jo8dsm/ouefnLW5doiKKo2kbvwDiHlv22VbxMacyNGA/ahEO/vq0TVJXNUrQc9mDKgdltro1maT7t/aA7pO475rYq2aXpcwFVoOmZHvNU3T6xPhhe5AFPD2boH1N0j63z2c0n+LXpz6F1wb14jPQ7otJYhdtbA18J0UBZxqVvIZrakA8+fCvUS/6/n/t7fHJ0mP994RRZFnJ4dpPbeysUVhMqw6CIWYpzRlnkH5MIm2svWQRUrnBVnayUeOdy4as69nsGONgNcuRvm2XmqRVY3yQEonaLaKvH5TfWKJsOMVA+3WLmUeicGYODcHnbczRmBS7PIS9wZYn4si8mTPjk9q/xujd9H8PDMWtzEIae+crt+aUbQbZb7rjfg2IjjWlG6PWQ1bJNqie7yfGhWLoqhQC+Zfp93Nu4yDs27uTB0RFGNq4E4kpFgVeQuoClsotxwh31a2wdrvGBh+b52Fv+HeUn7mE69gTcpqoP3y4SGmHO2Mb8z/X7Ob09y/gGSHfbgak5TKkpjWGch9jQV9UJMC782omUYZDHbAwaZMt1Wmc0OnV0rQ+2mAhfRTOAeNPbru5Cj/+0/jnML25xoLnN8cY6Shy3R9cACKvVq0QonAURUuewbn/nikOYbQ25uBhRXk7QY8V4GHPr9Cqfc+dpnjwyz0c+fiv5O+cJbvO8ru1zjsZyAdZhI0U4KimaAZOpwBP1tKvOp6EjH69z7fv/LYf/zQ8gTqOM+OD8JObsxSO4nqMVGG4Nt5mcyJl6Qu8K4ueD60tjgl1haZ3w8D/+ZUZnV7jvl/4OOgqQale1TjE0MVMHt3jNwkUeGx/gjy/dSvFUG9uyrNV8N8ZaUNAIM0ZFTGkVWRH4RmujwNcMO8HGvk2vyn2qgiorBmtbkQ/sk1dcRF4P/Igo+D/u/zh6aoGXzT4NroUEAWZ9E5UXRMYQ9Q8zuMUSbivaT0PviSH68ipuNPbCs9WCQEO7R9Gr+XbAoaKsKdKe4tTs/WykVQpM7HswjUYJUezJpVezJt3Qlz4ap/atvmRnTBDhPR/4QaLT83z4wGHuf2WDrhqT6IICRYhlWk0wCK9JznPn4hUeTI9yJe8xNAnGCZGYXRamc9kchdN8dP0oF9Z7vP6LL/Gtf/M4SraIMORoChdwLe9wddjhyqVpHj59iIrgcd/5EnahvXWw04Zk6Qd+muzCEqd+5h8SxQqlLJnRPl3PeldENDdm2Alw25E3RWuGqJHTbqSUVQrfaBwjZ+oE6yHL0iU6aOhFEwqnePfodv7ARixlHZbSFutpg/VRnfEowYwDlrZ+Yl+GYneuKOEDX/aThAdn6fzVLyM5dIS4VrA2afLzF19N/cEaC5csNnAU0waTaIJU4VRIsm0I+4ZwaYA92PF92dpV19OKMCTsTnHk3/zQsxpgBn1NOHqGeLwVZ8yoiDfc+SSf/OjLXjwT3vtoHSKOybU+/UcuEzRitj/8NHOfc6qKICpW8hYraYvRJOZ0f5a7utc42Nlm/ErfqTLR3kxR4kgrirZA+aRwNwqINvwuYJ2BWFfVClU5V4YviUur1/Yh5VFE2sDvAt8eHFl87R1v+vtsbZ/DLUfYhy4hYQDOYicputOmaLHr5A5SRzqX4BaOEG0ViHWYRFM0NVlbk3UFU/ON+rJ2ge1Z77bIFbWrGjsIqfWGjEcx6TAmCIyvQgoyOvsYgd87Jo3m4mtfc9u3cKW5zOVynVe6dQa25mntlOc+CMWyU1WQiOFIuE4iXnMsXLBbwpm6iMJp+mXCgcY2J+vL3Ne95E0/yUldwMAmrJsm60WDa6sdDrxdEQ4tLvD5gk58J4AL+zY6Hr4vvAMjZOcHTB6/gKonbL7/DO3X3YlSjqzw60uJ85SRcU6kDelMwOagTpEFlLlmIDFKORpJzoHpbexUn5nakEGRYJ1wcdTj9FOzfHjtLk9AXOysIb9mmlWqz+o+VLjunSvtW6Zfe/ePfS3XPrbKJHDYdol5osXVpIkIdM4bdOb9mcF6QLTt+7+LhaylKROFzppkUwHh0JH1xJdWKyA3SKB9MzlTpSfZipGp5qgveRa1OzpLbNucr5/9AMU3aB7/7ed/L9cZhXeE2mCdsPqOR2jfsUjr9kVW/+gRFt94C1osj/yrt3OxIWxfHbH2iSWWj3c58aOv4AtObHA0WuOj7x3xs99/ge21ktvefISVM0MWP/92os/9DDbf/hDDd3yM2sIRBg9+jO4rXsvmJz7A4W/+OyRzB3xzqa0BT/3XH+T2v/F/Ecb71qfhFIBz7pfq84d/cXIk4hvfssTbrtzB2W+8xGjtIi+TV6NqESt31njy+/8hR378X+GU4rH//R+pHTrK8PJpss0VGodv4cBf/WqkGZOm65z/dz/E1Nd9Jdt/8HaC2R4z3/4VXPkH/4YTv/i9jJM6w/c+wNK/eDvF1hjVaDD39W8g/+sHaeqUj/7GFf7Xf11j6fwEEXkb8G3OuZdKbuyOSat76BcHd3QJ5qZYnlrjt3/il9i8NOKf/tgCoZSsX8548+uXefjsAmjFt751ldteOeSB96dcPJvz8s9o8F0/Ms90D5YuF3z7Z72Hv/GDJ/idn7zC1IGEV/7bRd74hqd58MwiS7T5nV8b8+s/cZb+xgeRpEWz+zkcrN0O1nF565Oc3/gIWTkEuFVEjr6EY/IsOKksqsgwfvcniE4cIb7lEP13PUhy3z2IONb+y6+j4gizvsHk8Qskh2c4+A+/DDU7Sz4JmXzkLJu/8luY/oDmPa8kW1+i/Xl3c8dbb+HC7z/Jud9+nPqpAyz/0WP0Xv6ZXH3gA5z463+HePqAr8IZDXjs536QO7/hnxPUmvvl7dmdK93b536xXhc4dRfJ1YSNX38b8vQ6x9/4dfRPwsBu8shv/xCv+OYfwTQsF37yP9GcPcrk7GnGwxWaB2/hzlNfgbiYYnOdx37xh1n8wrey+sG3E0xNMffWr+Hij/wQt/5fP4pCs/XIh1l/9x9hByPCqE7ry95MLxzz79Y+i/f82jKXfvkXKa+On/f6ue6Iw06qxfIfPcb8593OwptuZ/Nj5yk3n2mPev6PznLPt97LkR/+fuIDPR7/Tx/i9Y0n6W+U/MR3PM0b//6dfMe7vpjesTZLn1xlI62zstGGVJFduEjSnOb2//P7mL/v8+ne9gpGH3uAcOCZUwaPfILmoVsJas1Ku7jeO3hB8BRgROR/FDKGzTFnRrN8x8k/xr45Z3LbNOvf8hmc+b/uYfkLfJDHRZ6xyQaw+eTHmP7ar+LgD38PZUe49OHfYHwyJ5/x56ZnznDgX38nd//Il3NkbgPAl8/KmM1f+S2Ofc/XcPy/fw8L3/23iY4dYGNS58q7zvEb/3GZv/UTd3Ho9gbAe4Ff2o8xyUgZNlOmH83ZvNgjEMOwKrAY2BplpXnqilBExPGO3+jzg/+mw//+6AKNoOSnv/8qs2q8y5p+/mMb/Ps/vJ0f/dkDu7mul8sOV/s1fvYHLvC5P/4F3P1r38XL3vB36dgeGMtK/0nOrn+Qexe/lDee+LsAw5d4TJ4N8Y+4XjD86AO0X3YfjVfex+Th05QrY+w4wJWK4QceovcVb+T2X/gugoUpln7uXZ5zYTJg9ad/js5XfBEH//33oI7NkJ0/jyhHWgZMypDtx5dgZoZj3/19LN7z+XRvfQVbjz2AKhyqdGw/+XFaB28ljJrXXXXzAmJ3ruTDnJUVwa4kmOnCE+dYqK8a2qchyPwFjhcF2gVOw8ZTH+PoZ30Vd33D92JrijOP/jbxZomtSBHsg6e560v/Pxz5ym9DZ/41MWDzjJXf/00Of9W3cf9X/hCn/trfIzg1z0c3jvKz/7nOg//5UXrf9fXccaeG57l+rluAijiGj1wiXR6w+MZbmbljmvrBNsv/+wm20hrjPCK+92U8Pfos1GLBwc8/xbnHJzyYHuXX3xbTOdFFv/ZeHhkdpv+GL0J3W/SHNcxqQjBQhI02i8dfTzhRxHnI9In72X7iEwRDiyocm098jKlT9+12ONwPh59zrg+8HnBufZPT//57+M1vfz/vvzjHqzrnWTyxRuurr3Lgvms0mp4sl8DiEosLoXXv/QT396gfKzjwN17P+IFPMr+wTtLz53a/8nORIKFWVyzW+tWXeu4BlDA6v4bJSvRUi+DAPCtbTd7+S+t8xbfPsHiy7gNQ8C+Be0Xk6Es9JmV/kyf+4/fw+Hv+K+r8mJ4eYRHOpzNcLKYZ4oMloUBS5T9+6ZfXuOM2TbMu/P1/1OQdvzdG22cc3N/yD7ostFJm6hlxlet4Np/jSj6FE8XpR3P6D7SZO2tpxjPgHJe2HuRE7zU0o2mUKIBrL+WYPBeuykXMnzpHubVJ5+S9tKNjBNPTjD70oD/BQe2VdxGfPIRoReez7ya/cI3p9ojw9CdpHp/iFW+d4rZTK9z5N08RTdWZbo7oJRNCZYinm4Sv+lwaKwFaQqZuvZ+tpz/h21VY2HjqAaZO3ufN2n2q+N07V9KlAZ/8mv/A+r//75jlMZSCKiHaKmleK6kveR+DGFBrEaqEzsvuJzywSDmfMPUFX8Ta1YcoE8g6Xpwt3veF1CchgUS+cycQjiFZcwiCuXCNLC7Jbu/QuqPLE48dJv2DD3PsyBuJHrudi/k0PM/1c92EyoGyXHnb40zdfxRaTc6ttQnueRUXf+NRmuZLCc8FdF2Tk7864dyX1tkoewyHwu+v3M3HTz9O2prnQ+ePU2zH6IFG13tE10K6sbC55YjqXcR4X6EY6NWPcFGFjC+cIWi2yLfX6B66yzMe7ZMABXDOPQ588/GXNb/pr/3L+/lP/+A0P/fPLvK6+xskykeGR3kEVE6mUkHsW7bq6Q46MNTinH5nBkqLGYzp1KsWHsci0tJzX46NFzbWCEkzZPZvfzXrv/9esp/4HZLjx+h92ZcQT81z7rzw0z+whPzLZdKRAdjAj85BXiL3386YdOKFb7r7wBfz8JXfJvud3yT6As8ydC3rsFXWOZhlwAUKRyVKYfGA8rywWG45IpQFDDafWeEHDwgihsIFjJxvW3I2nWXZ9jj1z/4aT/3cJylOv5N+fIDbZt9IM5pmUvZ5YvWdPLn2rp2PuRfPO/KSjcleqNKhcmH7XQ9Sf/lJ7KE68RL0Tr2S7fd9nM7nfA4AutMCfFZLowWkOQeb27j0KvFh4Y2zT+3yhV4+oDnZWONgc4NVXaKmujTOhQSppzVszh5F6ZDh1TOEtRZ5f43OkbueoYl7qQehws5ciY8c/qZjn/V1XH7bL9D/2d8lWJgFfM4sAq6oig0yiNcUKoda0CEcOcpESKIpnDNkZkzuh43xPdPImhemdZ+EwMyDKZMDNY5+wTey9vE/5vLqr5AcP073K76EXtZieWuTs5d/G3nkdzFlBs9z/VyXAM3KgHTsWH/Pk4g1PPjV/4FhEaNGJWWZkvzahwi1YeteTfHdWxx025x+d8DYhDx0/iAuWye/eJbme+oEE5DccmVti8aSpaUNg0k1uBqc8YwpYmD+yP1snHmAoNGie+zlKB1idjTQfYZDuOM2x5d9XY3f+JklPrp0HwfTjzGdjLi60cFu+V9QD5XnK9SQD7YwhfbN/7Y2kEBBo8msvgTAbHvEyijg0kqPYslPcTcMcI2c3muPkdx1O+oabP7BH7DxC7/OwW//u4ThNF/6vfO84Ut7/OBff5ALjwy6+zQkADTrcxwIb+Xc2lkadZAs42R9lfetneT0WU+GfNU0mdaedu3CFU8GgliuXbGEIRya1jx8qWJrF5/HmLqQp/Ip4ByPbi9yddRjdPQ4x7/0dRz8zaucXn43jy6/jdcc/XqSsM2Judez2LsbgLc//IMPOufu36chQaUFblKy9b7HwVou/It/4UsRixKbTeDRJU9daDxpj7GKoKpSagQ5M/OKpfeN6OgxiSoIKBkuT+gEY7rBmNwE2EwTb3rpKBVf5tStr2Lj9AOEiV8/WofsthDe5zRAnUKzNkf3zlex/tgHiQ4dpFQFTiucEsZVuxMbVbmezlFubxFvW8pYyLItRGkaacxa6M9tXnG4yPdWaj7uhcrqKxMIFL2121j8jFvpzxouPvH7bP7sr7HwBX+XJGxz9O43sjB7Dx958CcZr1zqPp/rF3cdeWAisgoMgCPAY/Cs3NyTwAgvlHPgavV6CzgOPFQduxs4B2wBs8Bh4CKwBkwDM8CTz/nqELgLMNV7h3uOHXXOzT7vm3gBICK3A38V+BXgE/h7PQlMgE38/T5eXe8xoAs8UL39NiDG+4Hy6rjD31eEH5+dc3nOawHQBPr4sT+AH98nq+84iO/oMg/cAnyBc+7XXsBb/xPxF2BM0upzv/2lGpPn4ub68fgLMFee//pxzl3XA/hD4N9+itffCiwBPw/84J7X3wBc3vP/F1U3vw38FPBB4BuqY98MvO9P+N53AOephP5+PqqB/lXgCn7SXwH+M9Cujv8kfoI/Dfyt6gcOqmPvAn4Y+Ej1Q/4OMFMdO7b33Oe+BiwC767Gbqv6rDv3nPsNwMPV514C/tvNMdm/Mbm5fv7yz5Xr0kBfaIiIAi4DX+ec++M/49z/Blx1zv3zl+TiXiSIyLuAn3fO/fR+X8uNgptj8unh5vrZf1wnnd2fHyLyhcCH8er6d+EdtR/6M95zDPhy4BUv9vXdxE3cyLi5fm4s7EcY5rV4P8Ma8CXAW5xzkz/pZBH5AeAR4Eedc+demku8iZu4YXFz/dxA2FcT/iZu4iZu4i8yboBEoJu4iZu4ib+YuClAb+ImbuImPk1cVxApjBouak9hQ9+f2YvfygWgQFWtOHZ6WivlWWUCsbttJpT4lhNa7C57uHW+WV1pqz7WzvcML43yXTerBlNUX6f2UF4W2xuUk9G+EZa1pwI3dzBC41sqWIQQz9epcBROs1E2mKz49gt2b3tyh2fJluqvBrRFa0uo/Fg6fB8g4xSuGhdjFWaiUWVVTKCg3kpp65RISlau5GxtmJtjsmdMAjE8/nCx5l7inMe90I2GC3tTYP0c1qlDFQZsNZldldmuNWU9wMR7ikUUoByiXdUJ1nl2NOXXk3VCaTQuUwQp6IlFjOFT1hoJIJ7OLc22yMvxvs2VMG44PT2FC53n+c12Eubx/dkFdOZQWVmNjzz7HrTyNfAiuz2nTIIfq7ziKU5BZQaxDhtqiqZnZtL5M9ch1vlW8qUjnWw+7zG5LgEaN3rc8tbvZLIglHVPjrGLZkmrO6Ye516I4un6k6BgJhnRDtPdPkgTExKrklEZP+vzN/Ma23mNrAzIjaY/Ssi2EySrhKgGPVIkK+Kp9y2c+cV/dz238IJj5mDMj/zmqd02si012dPcq+Sh7CA/9uSbiH+ty/CgwsR+gjjxPa7LXkncS1ns9Tnc3CRWhlCZqsWzXz2lU2Qm2G2hMi4jzqzMwNMNz41aQO+zlvjrhx7kRLzCP/uyx26OyXPGZFb3+ezjZ/eV0S7sTXHoO74TKSHqC90zhubZATL0MSAxlvT4DFc/OyY9nEOukEIIhsqTcTc83VvSyWjVU460N5lLhnSDMU2dUTjNk8N5Prl0APNIh5mHDK2n+0haVMKngla4UOO05kNP/Jd9Gg2PYGqKg//gO1EnhtizTXQqJKvQvGpof+wKLg5xzRpOC2qQ4uoxk8UGW7eGmATKmu8xZeqWxvyIUzMr3N25SmpDHtw4RD+PWd9uUC7X6TypcAHUly3tM0NspBkdTBge0oQDBw6ioeORP/yx53/913W3IhRt8ZyGDlzgKuJjT5O/Izgj7bUNYxWF1YzLkEaQ7W4eTe37XwOUTqNwTEy42y4EIC0CijwAI77LXoDnBa1IEKp24PteimadIneahioZ2JAWfjGEYkhdwLZpsLXepD2rKNqOfMYLh4XugCOtDbrh5FmfFShDaX23RVWxPag9JNZKHM0w49D0FmfHIcFyRFgIW6MaqtLK9ps/+EYck3C/mLefC/EtJ0wMZSK4UCNag3NMjk1x5Y0RZc0SrHu1PBh6Dtyi5XCRo9ZNOTW7ypHGBu0gJbMBoTLMhANORUu8vvkkD3cP81vtezg/P8/UTJe5D215IQpekEqlscG+t8QR49fyXGfI5VqDYCh0zhXULg5w9YRirkX/WMLwkGCjDtmcIZiecHhmmYONLRaT/m4Tvjd1HqWrx0T4Tr9vbj/Eimn5bq1FmwfuOcKjTxxGTED3gRHaOtqjHKc6jBYVqoRJLDj9/FfQ9THSi5f4NnqGWWbHXBflMHtae2ixvgdSRQ47MSFaHJkJdl/fgcWbYdtZjZ3WC8ZUDeN0pbYrhxSeTGCXSPkGqOUNpSQSw8DUCKWkqNjREylJXchG2UBvBIznHfrEkPsWr3GovkUopuoDHlI4RWk9+3qwo2FVhNOl85vQTvfTHcS6ZGpmwEbWJRz5nzGzIakL93tIbsgxKdz+94Xf/V2EXSrGnU6Stllj9RUxqoBk5Amgde5JNIom5DOG2cObfObCOV7ZOM904KsxV8s2A1NjaBKeyhf4/PpTHG72WZlpA3C53SPe7tD9xBpYuys4d/7ud6cTU3fEL9uisIreiQ02VQ+dWlwScOmLpyiaDntiwtxUn3pY0IvHtIKMI7UN7qlfJJRyt5XzrB6ROo3GccV0mFYjToarLATbnFVzNGdS+scTVpYXmZycpv7oNdRaTn2lxvBgQll/xm3wfHF9AlT5pvY28qwyKlO73e6CpECL53fcKyC92W6fZYYZJ2wVdUZlhPWdnBmWMZMyJDeaSR5S5AHOKAiqXqTaQeo78KnS+yzE7P8O6hD6JgGgqzIaku9qSYkUbJZ1z0S+mHFkaptEl0xMyIRnHH+5DXbN0x2NYmJCFO5ZbaOhah5X/cLtJGPQyeCK19ZX8haHoo1dM3e/cCOOycjG3Aj4lNNVKdbubTJZsMTrXnGI+t5HWrSEdMZy9MQKb1p4guPxKtN6SCgliRQcTrYIsQxcyIZpsmpj7ongda2n2CrrvG72LL9VuxunZuh9ctNfgxacyA0RQm7WUl5/8ByPbCxilKLzhCbcHjI40SS/ZwTiODjVpxllRMqbnTVd0NIpudOkNmQ26JNIwZWyjRZL6kK2TINECm4LtomkYMsMMU7xxoWn+LnjPTY2EuqnQ8hygq2M2mpM3hHK+vXpZNcnQAMwscOFDle1E3UBmE5JHJfEYUlY9boOKpMpUHa3BbJy1vd7cUKoDN3Im2o72sRAxdgyoDQKUQ7R1vuGlcMVquoBDWLcbofDGwGReJOhrVLqu74+Q+E054fTuNg7/wdZTKzrjMtwd4MJlCU3XjvKrb+hRBeVgFAo8YGT3V5UlfAwVhEpQxAasNBtjzEoCqf3XQOFG29M9rvVM7Cree5s+k7568/nGmze6bwy4kAZCMY+GFu0HGo25c7eEjPBgFBK+jbx46lyNI5ZPeGAyjigMywwsMKsHnCqvsRCsM2rX3aGfy5fis67NC+Mn+0P3Wf0gjGZCVj+yAILHzZMXdsGEdbuURyfW6d0vndaIJbcBlhnfdAQYWBqdPWYwgVsVcJgo2yyVHYIxZBIQRZsA462StmQJgrHvccu8dDKSWwzQeUFenNA90nF+subPiB1HVPlujVQFzlcYLGR8r1FAtA1LyyToKQWFNXk3jPRERo6p6ZzH4HN61inmIpGu5HZTVsjLQNGaeTZ1wHnBBGHKOd9rJkQ7LjHFM+4EPYRFiF1ISGGkYtIXEEkJQMb0bcJD188sLulpUXAxqS+27bZOiGs/L6BspTVfYfas2TutH2OdUmkvEAqrcJYRW41kTJMthOm1hz1sEA/i9xn/3BzTP5k7FpM4qnZAMZzEcxk0PeN44Khd1Nl00JZc/TaYw7EW4Dvdju2MaEYFlRO3yYYhCmV0lJ+m1g1fqM5HG6gq03s/zj1Pv79/V9MvBGhJyWqtDeEIB3ahHc+cju3/WYfvTHEtuus39vFnJiglUVjSXRBakJKq0jCgprK6egJiSrQYtkydUY2ZmATxiZGi6Ue5HQrk/6KqXGl7JFXQvZQfYsnjg0p2wnR5hCMRYwl2aqs3esYluv2gbrAQeBwxqEKHz01E42J/USfVJpEJ5rsLoCdfvE1ndMJJkxMSGk1NV34BaJ8K1dddVDU2uKcQml/J6ZQvkd8KojxfZulcPvZkuBZME6Ru4CuHpHjm+CFYjidL8BqjC6FMggZC6RpCE6wVmFyhQosOjTEsdfedzcNcdiqM2Og7a6A2REgOw3+9GaAU9CNJ8xFAxIp9ncwKtxoY2L2e6d9Liq57gLFZKZSGJTDVi2L01kh7zjMdMHRzgaxKkhdiLE+IDa2MVeKKTTWa2F6yKr1qYGpC6mrjJaasGXrpC7kWLTK7L3LpA/M0rhqfMfwG2DtbI7rvPw9IXr5GgSaYqrG5l0wP9UnMwG1oKg0T+FwY8uz7quSsY1oqIy6ZPRdwoZpsFk0MChaOkVjmVZj5rXldNFkYBIKF1DXGWfGM9TinPGBJtGZEpRCrw9oDzMavbrP8HmeuM4ofPVHO5zy7YWTVaEchUxyxYXNmp8YkaXWyojDkrnmkFAbVrMm61mDdjQhtz5NaSoaESjLpIxIjb+UHReADxaWlIX2bO57rsHBbh7XfrUl2IFDCKVkIRgyqz1RcIQlFsPH+0dpXlJYDaYfYGoaJz5XzWmHAlzsKGKDs4pcW69pa4tzgrOCKIfWFmv94O/0hNfKYpyQrCnKur8Wr/Hvv8Z1I47JjeHY2INqLZkkIO9UL1mfflXWqih929KaGtEKfVcDXeXQWqcwCNumRiIlLT0hd5oIyJ3PVhjYhNRGJFKQSMGWrfP6+bP8wZEFGlc/9SXtB6QQijoQBrgoZLQYUU4VdOKKSLly0/hgtKWm8t2A4I6yMBcM/IZie5RWo7GkQci6rdOy2yzobfomoXAG5fz6aCcZG4uKbhRCXngtdDQhSDP05PlL0Ov3Iiq3q/mbxBFtC9EWxBuBD5YXO4nRMTJxnD3ewx5IabRS4sCwGjQYZ1WbCqfoxWMGRcxmVmdSBGSFvyQRRxR6p7EJNc5odgKpOzmgsP9RRMHRrlizUxfSkNy37AXed+EEjdSRLULetVWyMD4gph1Y8aZc4JPDTdXn25YaZ8RnJFghd+zeqElK4sS7SbZHNRrLjsm8EChDYW8Mp/DNMfnTsXfOmkRhEu/vlEx8AnkIRdNBq+BAu0+kSjaLBp3KfxUrLxQLpxmYBOhCyK7bbOdvJAYtlpGLWCnbzIQDBrcXzH9EQCvE7n9qlwudb1VeGkgi0p5CJVU2hgm8glWExEHJetbgQjFFPfC55kUVcT8arbFRNlnLmpROsVXUODue4cPqOCfraxyN10htuOsPj5WhMJq8By6OIM2QnQwFETDPXwm5vrbGezZx1SjIY4PKYqK+EPUdQepQhSMc+wZwelzSe0ozWozpn6gxWCwJexllFqAiwxXd4dzmFHkRoLWlLH1lSZEG4ASptA7wfZ1V6V0GqvCVUDZg332gACMbk4jygkJZCqdQ4mjUMvon65jpAhVar0mLQ4dee9rRpkQ5lLLPWllWAwZsoaEUgoFGFeAkZNyMCWZTin5EA0inHb1oQl37YI26AbStG21MbhTXxnM3/KKpfcVRqXzAtEpvMp2SmakhM8kIXQmLsY2IpWRoEtBeYG6bGkMTk7pgN/tCiSWzIWEVyMtsSFqVex08vE7RnCZeT1/qW/+UiKISXTjQirJXZ3jEMdX1sZFRHrF6pUuwFeAE1i8JtTXL1UXFY69ZYLrtm+kt1hbZzGvkNmB13GAwSUjPtYjXFR+JITuY050dMtMccaSxWaXIKaQAKQ0oBYHXzlwU4oLnH0W6vu3ZAaUgEST1HGMUZT0i3hKchq1TimzKMP2JgNqmQYwm6wZEQ0v7LOhJwOiwwsUWiQz9UUK+kaAyRbShCCdeOCZSmTB1X97llMMFvn+KKnwwy4bcEP5Ph3hHt/J1YcXOJMZ54S8QXYmoLftNxoaQ9YTxAQu9witf2j5TnlctMA0YUZCUOCuUgUMNNeFAqF3TFKM6SSqYxOECn+WQiHeq7/emciOOyY3g2ngWqrlbxl4xsJshYrwANYlDN0qm66NnCgcq7SWrAiFrRWs3lWtkarsfa1BoLJkNKJzezVbYKmqkJqSbTNhsaZIV6wXHPk+WZpCxebvQe7jBZD7BzOcstvooHKsXezTPBcTrjt5TKWIswdqQbhSyudRl45YWq3cMKecUM8mIQ/UtVscNRtsJzWuK+QdS4qdXcPWE0akprtw7xdlTM9x2aJlWnLHRcLg4RIrSa50iuCgE9SIl0osFlStsYgm0pVXL2DgmDOI6eiKYIxNqtZz0UodoKAxuixkvOuJNQecQ9R3FtpAfK4nigvFmjdbpgHjTUdsoUYVvveo02FCwWigT8c9DCMaWIHVkbYWJhRuhuMRVwRHwPplQLKnTrJYdtrfrhGOhfQ7a5zOKtiZvKIKJQ+WKfqJBO6x26MA3D9sJmOzA5hpJNYQWN52TTwObEcmKIhxD3hFcZAnEkqiCUMpd3oH9wo04JhE3wGR5DpwIRRMfYOtXOdV4BUEHhswEDIsYLY6gKjIIxewKyR1YhH5Zo6bzSut09MIxRZUnOSgTSqspraIe5Kwm4l1ge7ks9gnDIqYRQD5TZ/M2Tb09JNEFV4cdgoFmMm+xgSIexDSupF7YWUttrWTrVLSr0td0waua59BY3lXewrAX4ZRge01kktN4fJW8Oc9GnHC51eFYbxN7bEIx3SDqj/xm4hxqOEbM8x+T69ZA9ViwVfvQVpxRmy64kAVwLcZmmqRTUL5uk6u3NQibE4pJSD6jIbbEl0NsBK32hEAbipU2rcu+u954VnvfT0tonzPE2wadGYpmAA7KmvIBI6kqofSzSUX2CyLPEFvsRHq7KueJrIUbB4RDnzlQNjRZS5O3hKznc2r1WGHaBmu8gFDKYYxQlopiFJFcjOiddURDiw01G3eEZCdT4gMjMtcgPK8oWt5X1g4mu2bqfpvwN+KYJLu1vzcO8o6w/eqU6akh6+d6hNsKqz2phXMwzGICZakHBZOqvfXIxRgnNHW2W+XXCnzUuV6xY3T0hMJpruUdOsGEqWCEYoqNvO65A3aJgPYfdj0k2hRUZoi2HNOdPpEybI5qlJ2SYCugddFiIhgdiEniGaL1MbUz65RfMM98zwcpG0HGsXCVVnvCk4N5rl6eJloe4ULN6M4Z4o2CaGgxNcVgo8F6klGvZ+S9FtHTBqLQ+2FFriu967p9oOFQKNs+pjmdjBiXEa3OhP4kQEaajZW2DwQUQrla85HF6QxRjqLtv65Xn5AZTbIu9I8I2bSvbnJzGQuz22T/c55wbEl7MUVDaFwrMZFQ1Kta/CoZeSelab9hnNpNFoedaGnAwWNrLLU6TOZjOqc13TMFjWuOc18jSKpx4lBJucuwo5T3AxaDhM7DIbOf8EGDdDaivpyBi1jqRiQnxqQ1g0kUZcMxN9NnLhqgxBLeIAk7N9qYhDeKCa+qZPlSGM87onMJ21diwhMjcp2gUoU4KMYRjak+x5obzMf9Kg2w2DXN9+bI1vfQCjV16s1+p4lVicIRq4Kazjlcz3iyP084qjRdgf024XVuaV6xvg88MJsMSU1AnoVIYug8FbD8hpJjR1dZeedBJm+AqQe7ZB0hOtrHOqGwmrrKMSgOBlucaK7xxC1HcTKFKh3Dw/Dmv/Jx3v3fXs3Uw461V2pWN1sktXyXyclphes0sEmAW36xfKD42lw9UqRpSFqGzMZD6Pl2f4PlJuTKR+Mzn5Bq6xY3DD2FlwXbMEwlI85szKBTyKagmC3ACIH2paBbb5wwebhOWXcEE0FsQNYVihYUDf9aMPb+0P2WFjubVUNl1JWvlhk4X38dByW3H1xic7rGteku27dF4OCWY1fYmtSYqo2ZlCFpGRBpX+Y6dDFqpGlfLElnIpyG9ZdpsqmIQ+/0RBBhYCCyZF2HbZUcaW/S0WMiMUQ3gF/jRhyT/dbKn4XdFCYwnYLGzJj8yTbMlFix6JFfOzO1Ie1gQr9MGJUxWwV0wzF1lXuhqX1EHqCwAWMbsVY02cjrhGKp6YK++PeOTMRUNKYXj1kr/ZjdCMoHFmzgByTrCY0gZ5i2qNUzylKz8TkwP9MnN5pgDAvvFcKRYXQwINCWvNSEyjK2ERumSaS3+dzO40y/acQvD95AMBS6Tzk+/urDqC9aY+vhaVyr9PGbUmMiwRUFMlG4JMbUghePTATnmVOCiZCOI7ayGu1owmw8JG9rrjhhuFmHXPmKJXFeVYx8NNUKqIavky9KTYz/PBkFEDjscsLl1QRXM4wPlwQDjd6CrCOMFxxl2yBOCFLt/bEFmPDPuugXF7JnrHeYgTSOlaJNVvpE4IPNbephQbGoSYKCepBzrLnBVDTiyqRLagJKq0lNgBJHNh+yfmeD2rIjGjnMbSNOzm1wee0wrpfSSyas6RambknaGQtJn5ZOqUtGKOW+C4sbcUySG0QD3Ulg99yToFo5s60h56fqUAokBuMgrBe0Qs9alhWh5wHY4ZcQx6W0x4XhFM4J1wYt0klEMQ6JWxlKOZKowFhFHJZsDWoUwwis0J0foLuK5nm3W0q6r1Cwfo9DFU2yGbsbGEvCklJZDva2WR40GW7XqDUg3iy9xqiemePDLGIjr1OXDIOQV7R+OMi7jvFBRzuNmW8N6L46pTCa7UlCmoWUsYDWuNEIJUIYqOvaWD6NPFDQE5CxZm3YAGCuPmAqHpNMlTxZatKNxJsHoaM7NyAvNZNhjIuh0UyJlMFawUZ+MqlcMKGFwCfWqr5GSiEc+uh+1nWU0yUqKbGDSpvNIcjcDaGBFk5jULsTvHCK9by5GwEdl95/NVMb0glT5uM+nWDCwCS0w5TS1bFOiLQhCUqmOiP0Zw+Y5CHXVlvMd0ZkZcDxN57fpW5zhaetW+j2OVFbJayYjhpkBLK/g3IjjsmU3n82Jnh2KWcwEnRScHm1R3IlpGhbgukJri7EcUFhdWWuGxqBJ2R5ZOsAFzd6ZEt1wr4iGAqNa47ppZJgUtI/0iSdEfoHLaZpkULoPaxoXygQ59g62fOxA3VjOEHztuILX/8g7159JSyOGZQxmfH54KNxzDiNcE4IIsP4RM7VWoiNIbl1m0acI+JIc+/e0GIJxdBVY94y+3GWP6vF2dMLxNMT5ppDpuIxjSBnM6+hleVq1gGB0auOEW/m6AdPowApX6Q8UKCqQIKgrxjFdawVMqM52NymF4+558AV0rmQ3GqMVYyKiHHaRLQjiAraid9VTemDRhVjGXqiECOYmvW7c+Z3D6fBdgt07KOLZIpoANHA7XsVEnj57WnYFOMq1y51ISMTUVTkFtPxaNeEOl5bReMY28gLCFUSiGVoYwqjKYymE6ccamwxMSF2epXSKlphRitIWUrbnmgj9yWw08mI2WBAQ2VVyeL+L4wbcUz0fu+0O6jYGQGCCSRRQbuWknz2BpfWurzuyDksPol8Mdn2aUplTDuYMDQx21lCupUQDhTRtmBCXzcfr44pWzH1lYIgC8h6gmlC50lNsmXJugHxVkl91RIOjDdT7f7b8C62vOPMKey0ZaY7pLSKrCIUsqWidILShk5rQlbLGQZ1Di1uEAclpVUURmOqUvF10/QdLVAsBNv8rcPv5Xfr99AOUyYmZDOrk1vN2qRZdcFwmAgaZ7dYe/U0M0/EuOEQyucfcLx+ASp4H2cJaqRJwxjnhKwImG54H0svHrOeNSisZlIEOOvrL4PQ0Ah9FYEpFE5VGqiBomXRQ4WeKGzgg0q0SsJaQRgaikJTTEKiviIYO6KBxcSy75VIWny+404JXSIFfZuwnjXIS+2jnhVlX61iz0ltyMAknBtNU1pFL5pwornGoEzYzOoosbTClG44Zmh8GkthNVtFjXEZMSlDJFfIVMbR+gahlLRUuu80dju4OSZ/Aqq1s/M82nJsDWq87tg5OuEEYxWnGstcSqcA7/6IVUk3HO+mL53qrQCw1mhiopK59pArn1gknDQZHNKYxCs5+dGUpF4wOthk+/6C3gciyiSkrMHM1b1J9PsrRMPAMNsdcufxMwAMyphQG1q1jG5j4v3nk4TBOEYpx6kjS9zSWuPyuMvapEFpFXFgyG3wrHLdhuS8JrnEVrfOY+MDZKZGVNFsduOJ5+xQPsA0NVWntmaQThu3tnFd1//p1blVPWtUJphhgIlLTOiz+3MTkOiCdpiSG421ijKviHEDQy0oGJQxbhI8wy5f4HP/ZvPdCqSkVlCLc0JtGUxiylwjmyHJutc+de4oa7LvWqjgCDF09diTPaAY25jcaJKw3I0Slk7t5uVtlnU+vnGYrUlCIyoo95D9jsqIrYmvqlis9WkHE7aKOpkNSE1AYTSjPALlaLTSXbIMjaVA3wD65405JuYGCSLtJfEIJw4502BwMGYqHJGWAZ/sH6KmC1bTJoMi5lB9i6bOsE6oqxwdWdqzGdl0QGY1a2kTfXzIkmpiE4OrG0Q7DsxvESjLhV4NSmHrToftFOi1iNkHvf/zRtDJtXJM18aMyohGkBOpkulkxP3TF3l5/RLv3LyDx5hne1RjpjWiG09QYunFY1IT4JyQW83SqM2Fzgy3JVfZMg3qKuM2bTlWlXmOyphuOObW2jJKHO/cuJ3L0sGenHDhr9Q4+gcpGAPh9ZU3Xr8A3fnsilxZcqEsNFHLa5cA4zIi0SXGKdI8xI0CpFmShCWRLr255dhNhFdGfBQ+LkmSglaSURiNVpZhGjPerEGuqK0p4k1HOPJSMxpawvE+J40jJKogqUzW1IX0bY1x4X18xj7Ts2cjb1DTBZcmPTZGdZKoIC0DLmz2uKLbOCfeLKn4AAqjmU4iZuIhthTGZcikDBnnIShPvNLRYxoqe8417S9uxDEp3A3g7wG/fqpuCmJg+mHH9mfUOOemWWgMdrszNMOMfp7wVH+OmWTIbDTcbYOjxLKaNrky6LDZr2MmATQNqlkwNz1AxDFXH2Cd4gKgN0NszTI1M2A7rn+KC9o/aLF0ozFntmd448JpVvOmp7oMRnx4cIKH1xcZZxEzrRG1oCAtQ2ykiFTJ6qiB/OY0CIwXhJ84NkNyOUK/fJt/9/JfZexG5E5zINqkrjOu5V0u51McidcBCLRlnGlYKNi6JWHuvPNC1LyYZCI7ZXWpULT+H/b+O0qz7KzvxT977xPfXDl0dZjunp7Yk0dhFBGKmGQJMEkEG4HTvdgYvGwutgHDzwHEvdjG+NqA7UsUOUggJCGN4mjyjGame2a6p3N35ao3vyftvX9/7FNVPQpILTRU26uftWpVvbHOec4+z37i92tACmwhSQvFIA8IVYFX0jH00pCkFyIKQRDl20hLwyLY+Z4U8jrgu9E9WwLjJrnHaBhSDHxEKvE3JZUVS9jVyMJihcDr6ysa/H8pRGKdp1M2jfui4LnhLO1RhCcNgdIMi4BAFlzot1gcNljp1ehvVIjOBcw8lFPs99i4TaOGkmhVki5oxJxDFxoVPhtpBWsFgzxwLCZWYH2DFGxXuB1QgocvNMUuW9CrUScbV4n9BF5ks+pnhpx+aIEf/Ib3spI3WM9qjh9MuIr0+rBKN40Ix1wI38sjOnlEZhSFlniexviS+sSAGyZXyLTHqPCZivqEsuDZ8WkyXcF6BiUteuhh5dWBCwAuWunnIfvrm9wUXwLmGWmf5wczPLMxS6cfU4kyrm+ukhqPhu/SD+tplY3FJjd9eoP2rWPULhWcH/doPWdYmnXFbQncGKxyqUjQvmCzqPJMd46LSQuzBYHY9/C7kuGswGYZ+MEVFdi+rCKSFZQtTcLhg8K24dNSorWkW3iMMh8S1xdaFC4kGxYBnTQC6RK4fr/MqkvrKvNGkBUKJdxjMZL4HUntAvgDu+21CmtRqdn1XjaBpSry8qbNWdE1Hl7bz3AY4vuawNN40lD1MhphQjeN3Dy4tCSzBWe/QbhersAQLHpUlixZU+Lt1bSiEYFyI3yeMFT9lMIqNnpVUJZqkBF81oRNJPJdhxC+GnUyvJpQmdyIv1u7xrL3gxk/O/lW7r7xNOAoSrZYRwEGacBm5ubdcyuJVOE6F+IevTwku8ywDIuAqbjP3miT3CrG6kPWynsvLxTxmQDI2aI13u04XlvJM4tz7Jvc5GQyw8nBFJlWDPKQQRogpevaWE7qtIIRVZXSLSIu9puIUHPiu8fRVUP1tM/eWy9xx+suAK4HeWgtifUY2ICL+TjnRuN0sph+Hm6TXspEEq05SD0hBFwBkAh8GQZUFGDKRLUsBPpyA7pFsVD+nRfKbQPVfHtmVQpLmnuIxI1mGt/NtEvf3fZFodAlH7wZeHhDSdgWiMKWOdOteWGB2GXvExzsnkaQGM+FVrrBcruONQKtBcPMR0lDrxzLK0pA4PHJHnsbHRrBiLWkxmYSE+7RLLXr5P2QsITzqngZnjJspq6tZ5AFFLlCKJcMB0fiBiBL02l2+a64GnWSXC38L7BjtKwFKQg2Rsx+pMFj4T72z60jhSUpPAQQ+zkjHGOtXyL9jgfdbUT2M8kE5wbjnOuNoa1gLBpxqLrKmDcAYH9jkzR3ucL+IKJ1scx/antV3D+FkVSijLV+lTPVCTaTCoM8oDCSwCvIc+dprw2dVxmrnJH2GaQByjewMGKsPkQdsMxXO1wfL+MLzcVijKrIOVeM8fjwABeSMZZHdXppSK4l9TAjzTz8gSCZsPg91w8KvLiR+YvIlSHSKwdirGOHTO/ARdxNkeeKJPdQ5Xxuxc/peRqZSGwMlM/NRD3ObI4hUzeTmzYBC1YLjFBYA1ZLbCaRQ4U3dLSuCFBl36fxhQMeKcyuV+EtgoF1ub0Iw2P9/WTdEBFqjFZkmWUkDaM0QGtBEGiyTGGtYHVUdUAQaUShFUnmEwQFReiaxzcGFfppiLEwSgNqcUpv6Lw1a2EsHJbz5jvgEnlJE72bcjXqpHoVwNkJvcUj9uLrI/ojoo0qnq+3HZFR5hN4mtjPacWjkngxQAnLRlZlzbqe2sVRg/VRhc4gxhjBVOwMZ24V8/4mdzbOc7Y7hhSW9sUGlVUNSoC2WLX7JUch4PqJVcaCIReHLTKjSAuPrFAYK4jDHG3dpltEkkER0M0jGlFKmvoUmSL2CxphwrAIWMxazPhdcunxRLqXtq6wmtVZTWqMCp9R5gYSUq3IEh/RdJi0jVNyJ/d5BfnyKzagWNfEbjznFUojMJmrtKe+j68Mse+aWqthxsCCdykkn81cy4EsHBOyslhP4A1KDEQtsVJjEgceIlKJKByKE9blSmVhKSLnuV4tOyhAQ6T4wqARPLy2H4pytla6GyLXCikNee4jZU4cuePujiLmql38rZHFUegwMIF6lJIWHsPU9VEqZagGGUnuUeQK6RvG/QFVmZJbRY7abiTebQ8Urj6dDOwuj6wBQVuz9y9yknGPrFri5yYFtLsYfwprBUnh0QwTPOWTa0muQ6SApW6dLPOoRBlh2cmgpMPLbfdj8tTDCzQLlTb9IqSmEno6JreKip+zOYwJNhQqybDi6qjAgysiNf2ECX/Ac9kMvTQg14qiUEjpaFyskcSB2wBXkxobw5gkc8bTDwta0ch1/RhFJHOeG85uI1MNTcCgBGLJtTPKaeYMNDg7hAEvsZhuDxFc2Tr5MmiNnRdqAihC14IkMoFJFSZ2+UtR5hcAxHQKZyOisyFnsmnOxhPYRFFdkUSrFllA74DrEzWZAi0QhXAAynk56qktXmodtJ0n8FKLzMwVwU69VCJxeRYpclZ1lYurLReiWbDGeUXGOA9dp4r0hRb+QJCOW4pWweP9vS4FXBbQlKfRPZ8l0cBqQVx1uKtZqljMFXnqIZQljHLG/CEVmW5DxyUlB/puy9Wok6sBzk4YS3R6g/j5Aut7ICUiy8H3Cdcc0PggDQiURkmDFK6/urCCNPHJN0Pyqof0LNaA8owDo1aufat/scEHTt2FjiyzN63gS8PmMKbQDqg83HRtf+IqIJPbktEgRArjyCaHMdaKbaoWa12lvBZm29xYvTSk06ugU4UKNdnI58zGODONHqEqONaboygBkzPjMR4OtmmvPelILnWhHG16ovCnRxSZR+38ZTp5qdCYEI6vJV61Do+zcHlQmYHJJMkgIE18ojgrieGE8zLGNP45j/rzPlb5iAIHYxcJhjOCdNyAdkUEUQhk4hSoEueBytydlPEd+KyVoFK9c1C7KBbIUFTIWdc1zMjbeQFnBBzavsJfCpj7VEH1uVX3lijAVEOSyYi8rshqguGsIJ/TRFHOsBuRpR7GSJTnzrdSS0kT3wEOY0msj7ESXxSociHaazr5HJ1cFS6XxeFZphmMymb2kkbCv7BOcGEvSajplPxOntphKg3Cgjxw5Hs6c21/QlniKGeiOnTe6LygL2vUTnn0LswiCshakB5KsIVkas3uGM9yQ9ttCbqWT//mnfT3GaJVSX7UpSCMkYSRa4vcZmzFbSgmUzBShCdC6ucMYcdDmwpLez1Ol/Zk7oYVKn5ON4uRwtFk5yV7q9ECM/CZ/pTCCo/qcoH/7BmsUtgrjGqvMLPukL63aDWEdsZTeuB3FEUhMLEhV4asHJWyVoCyJNNOQUEbpLYUoWA0JUjH3FUUuXQz7qkg6Eh0aPH7oBL3/4Qt0wba4o8cMrWphLt+Y1jEtnfzzGjhRfw+ogQ8EDjPKx/TnH+LonrzPLWLhng1x99IiC/2iKVkcKBGEXuM5l0/oxflFImP8AzZZoTIBN5CH6l2cnuAA7CzHtpKh0i/y3JNJ19ArC0LRxJGI3ezboWMoxEzj2rOTwUMcYW4KM4wRpImPkGY49cydK5QyiKVQWtXfEu1osgCV3uYHjAwNSYekRRVQbI3I4pzilM1KmtFGb5fBZazFGFh4Q8vYnt98pv28cKNjvsKI8ilhw1zRrlP7DtUr6xQCM/gbwbse98mcrmcHBKCyiMGtMbsn+W5d02y/+AKq3mVZpigreTkz/wpujFO83VfT3VRMvHgCiyuOAR6IV0VXoor2liuyIBmF5cYnHqeuHIDft+SjkH7Mw/T/syDHHjn/4FKFDqWmLaHiQw0HO+NCDXGgvEl6QToAIKOoHCFNZdYLwtSMge/57xPv2/LUU+LUe7ErIL4fA+WV5F7ZnfdgJ56NuXYp7rc8+qYPzh9GxSC/oMPM/jkQ8z/xPe7bgIraNZHeK0+gzRgOB3Su9mDXCGHdYfC70G0t0eWuoqrEJZqnJH5mjzziM56jOY0oZ9TFOX4rPHcrLeV5EgkDsR4tyM0gaUpU3Lktk7wHATRhR/8GXSnD2onD3f4P/8DhndPvqQ6uRqkl62y1j/NZLAAnocd9LiYPMdF/QIvb3wt9ccXGZtdYPNOH1kpGA1D/KBwTDqFIgg0hbTEYU6nU0FdCsnSCrmBdEpjq67zwOtJugchH9OQS/IzNernBd5QY3cZaOazxQLW9xC1Kl43gU7Dobcp177UH4WI0yc49ssfYXRuDYTEn5tm/63fiFwusNY6wwcIz8MCcpghstp2PrXmZ4xyxytvRh7Vc5KJZzLEMKG4+QBZKyRcHiIvrECaXpFNueLeDuNDMg31084DBTeO6Y1Abbo7V0eCZFyS+R5W5UTVDFGzDHUVPIvIJcIoR2ObizKXKVCpM6DeyGJT8BLIKy7nmlfKnaEA2R1ikhSxtnlVhCEehk8ND9Fbrbm2LSscfJ8WCCFKHnMHhlINM4pCkQE2EFBzpxDFGRO1IaPQVQq1cUhGea6wZysEXUhmXPFFKUPoO1ZGgwNP8EWxDaSw27uKAAJh+Ojg+h2dGAHanevMj3wnEy/fSzXMttGZOoPir6yToCwefV6dXAXrBNjJrymFjCMYGPecsdj+gOlH+2TNOoPDYDyDziV+VCDKsF4FjrpZbAQEnZJoMQO/r7BCuXulCggI24rKksH4EK8VLwIyAXZ7mTi57BjkyibRyhijPdYVHbXAFCNO/avfYeb7v5ape2+nGED+wimCpxTW5ggpwfPAGGxRuMfDhGhVYQ84FtduFrqiU6HwkMSrlnBtBJ5i7fYq/X0w/nSdsTRHJBn0X8JRTjmdULl7Dc5M4A1LHWiXl1x85sNsPvlp9KCP12gx/dq3Ub3hNhAxG88+SPvpBwgOzNH/+JN49TozX/MOGrNHUIng1O/+ApXZ/fTPnyDdXKExe5gD930rMqxw7JO/TH3/DcweeQ15VZDPj/HgmV/hkL0DUex+e0qO5E9Xj6LaHqayxbfsWrM23/cxzn/kYXR3QDhVZ//3vJrwnqOkiU/vo4/R/8gjhIdmGHz8Cc5O1Fj4e29B3XiEQkvO/Nj/JJg/SPbMCbL1FaLDh9n3o28jbIac+cnf4omvavCK75P4skBh+YGveYHv+MGpF/EH7ZYkVr1IJ1vVTudyCHRZ2FDSYIcJK7/4frqPvABCUn313Ux+++toVBLSxU1OvPuDDE6tIATEt13P2Nd9M9WewHhw4cd/momvu5POx54mvbjOVz/wDWi7oxPnykJ0tUzfbIXxAGEIQ0chYbOM09lnuPDob5E+lqLGWzTf/hZqN9xGVvEYPf5p+vc/ROXQDJsfeRpZbzD+LX+T6NbDYGH5Z/4L0YEDJM+eIF9doTZ/mAOv+laKSoXT7/1vTFUOs7D/PpcDNfDg4/+J6/Z99e7qYkusA3hGSsaeM2Qth8xWKItpu9x45RV3kHcDvJGicu91VM9WGaaP8Ez/Y/SKdUAwGSxw8+Qb8RJDZdFSnLvACz/7AfLFdWp3H8bkHspzxbyiHiK0pX6hwO8r6mdGdG4ZYzQhsb8afMmHfsWxzeGpVd629zh5TRB0rONoF27Xk/MTLLzrH3D9j/w0M/e+mYvv/Q0GXofhgsYoSE9eoDac5Y5v+0n2HH0Ll37jfxCf6FNZcTTI7WOPsP+1f4uj3/avEFZy+sk/QAeCxh33snHyMYwHncMwXDxNaodMqQUwu5vfEkBbR7ywNoHKXPi0PQiTS9T4JLP/8l3c8ps/wt7vvI/n//37aKbL7J3epFEfkZ46x9iBKq/4vX/A/u96JS/81O+TdxJGvQibSgYPPcL0O/4WR/7ej4OULP/SnxEHOfvfdoRn3ncOcNBxp46PWF8uePUbKldFCL+qqy/WSSa2obxMLklTn7Scbz/1s++jEmle/v/9bW77xe+ieO5Z7AOfIlQagWH2W17Jwf/2w8z9/36IfLFH508+gI4cmydA5+NPc9O/fjtf/d4fwEj3nVuUvn6JSJ/bqwMPFCGwpceJFAjPHa8tCmJb5WWVr+FN+/4hc7e/ifVf+U3yfpdgXWHbPqPnLyEmJ7nul/4ZrXe8kdVf+p/ovIcwApkLhg88wuE7v4XbvvlfgSc5/dQfoEPB/MSdLK88sT0B1e9eIsm6TI5dv/teqIVtHiIhqJ/q4/Xldt5cj82BlCz9wu+TPPI8ejgkDjOsBDzFwebL+KqZ7+XVU9/GKO9yYuMTAKQVzXM/8QdUX3Un1/3KPye+9yjDR57G+LB5o2D9lojRfJXq00tMfPgM/oV1hlOK7iHIay/hKOcD/+zPediDNPszV9gxmnh6AWGhcuftmNCSp4LaHXcSPvIXmOPnCWu3YAJQ9RqVt72GbFMyae5ktf5RNpaO07ztHnQgaN5yD8HsPPGqYeINb+Pkr7+b/G98O819t7D4gd9hvb6KxxSXzn2aGe86pLg6bop/8XcXyey/2x4rtVoTLOwBLajcfgcEhlGWMf7am6n+9gPYF86w57UHSOMBS+Mxt3/HDXRzgfeyu/Bmn6TzwXO0bplGANWX3Y23dw46gulXv40z/+3d2H/6Nva/doFnf+4vOHNaM3u94YN/0OP1f6OOH4grGaR4yeRcPs6wG+GXvcPeUKK1BQur//FXWZWOB71+8xzdJ8/y9g98N145RRR9x42c+MOnUd9wK6PWHjIRI5YCoqGg+brXsfnBD6ADUD5goPamVxFON6hXuw7dyfooDBq5DWe31da02/L4xp9yeRemsYaGHMMay4xaQIgAu7bB4YWbWGlOoU+cR9/WRBhQ1Rq1W9+EXoXKPbfT+/OPkT/7DN6992JCS/zKuxm9bp58KGjMvJULP/9zNBa+mSA6xPPDPyDprFCJJlhaeYKZqaMIb/db3pA4BKQ0AyURWYEJLca3iIHCqgZ7fuL72Pi9T7L+nt9F93p07zlE82u+nZs+1KAaTmCznMD4HKjfxQuDh6FeZb1yEpMbqq97LUYUhLfdSbjv0+jQoiuWmYf6yPYAOxg6/E8/YPqxPt6oyuIV+GRX3Mb0tne/lm97U5f/6/e/nepFQfszD7Jx/EG8IayfeJjOxz9KseFykzbNSG2fSiII2wI/bhKvSVTqmAf9xhgjusR14ZB0Gi28oUX7oA+3QGtsf0BgazRuvoPRxU9yYPHr+Exxmtvj11/Rob+U8oZ//waOmbeiRo5npvvIQ/QefhA1kHSfeJjuRz5GsbHJKSwmyVhfs8RphZH2CSZr9IuY5W6d4YUafjyOXe1i/LJda7LpCPeUIKiNgdYU3RF2PuTQm/Zz/x9ucss/rvDhP+nxL39hnsyqXc/3CeCT3esRXX8n7WZdYVBYmHrXdxPddhgRaeylU3Qe/SX+6Gt/fefDxhJO1Vnu1ukds7R/67cZnTmFyVLAIivxtk4ARGMcgZshN1YyMCEDE1KVKQZJZhVfelD20sqdY29jIlgArRGex4XhcS4MnkFIxcX0ec4lJ0gYwMcFBQXeuQHxjGCYC7xGk3hDIjMo4gDZHCdf79OsZKhQE+yvoKczCi2g1QSt8Z85h19tMdu6heVLj3Fw4fUsr36Gozd9267jSABlXUNvj08uvWac6k0bdM43kSPpMDPG9jDx3d9K5azHYLTEyh/9GrWP/zq9G76FU4/8LpvpRQqTgbD4Kmblq2aZ8Z6iPdZEKJDSoAGvNQYCdNVQ1HyC0x0ARByDUnhnlpleCjnRf6kQ6S08dGE//zF6P8VkTt4N3CK2wIV11n7nd5j+oe8nPjpPVNWc+Se/iJ3ISA8mJOcL8qTNYN4grfvM6ENtwrlbyBsWC+TdNl5iGc5IzFIHIRVxWsFGsOe7D/Lcv/0zjD+Hkh4tNX1Fh/5SiQWeb0/hecIBrWzVcAQUa5us/8bvMvf3/i7ezXsRMSz9+P/DWrdKtjLBoF9lsDzkhUsTqEsxfgZFt4247RZ0zbiL3W4DrnhXLLcdf0u1BvQ59DcO86kf/yj3vmyWKBbccbfPxaJCzu565gbBI8t78YaX6cRchoSYSFRfoY1Ah9MIz2Pff/1RhCfxfY2UluEgJD0R0fm994CEPT/yI4jJiMHTT7H5G3/o/k/pQImRchCJOLCNvo5IPJ+WcEn6FV2/uoCVweU9t3J/QpCohOPZo9zNaxmL5pFhxMfk+0nHLLWLhtGyZb3dgcIirKB+ziLOdwgPHKU4X0Univz0EO9I4GqYpzYRQuEPCoQesKdyI59Z/lPGKgtI6TMWzEFa7PpmiwAbehQTVU58b8DfefmH+bNLN9MODKQClQhs18PEzqhV6rNU7rub7ic/ydmb/pDeTRUOvOKfUU0qrK08zeJHfp/1V+bs7wcUG13w9HZEVmy2UfPjEGrOvSlkrzhA+Mx5CAMoNLYoYGAQafaXHPBnHb69goSZEEIDJ4HeZU9PAJPAWeBm4BkgLZ8/UD6/dtnj88Aq0CoffwbQwA1ACDwPZOVrFjh92f+6FVeK2AQWy+f2W2unvuST+ArLNZ18rgghVnHn+PnkKCWJ62XPHcKd30XcuYSAD/SBgzhdnC2fOwQEOB19oe/7QrLberm2Vj5LvshaAYiAJrAB5OysgRGg+MJrQ+DOdxmnryZuLS0Bl77IYX3pOrHlTvil/OAW6hs/67nvAT5R/v3T5YmuAT8HfBT4vsve90ngPwEd3IV+82Xfcz/wb4CHgC7wJ8DkZ/2vH8MtioNXctwv5c81nXxF9NUEfhG4UOrhceBby9duAR7FGdMngH8CXPjLvu9q/bm2Vr4sne0Bfhu3uQ7K3/8v0PgS1sY95VrqAe8pf37qK3l8V+SB/lVECPE9uMXw6i/w+v3Ar1lrf+kv+Y7vAr7/C33H/2pyTSfX5EuVa2vl6pSrLDH0hUUIUQH+PvBfd/tYrha5ppNr8qXKtbXy0sj/EgZUCPEWXB5jGfiNXT6cq0Ku6eSafKlyba28dPLXFsJfk2tyTa7J/27yv4QHek2uyTW5JlejXDOg1+SaXJNr8mXKFTXSe3HVBo3x7eZbodkmejOeALHFNAiyMFhZIktLsMo1VX+O2LLBeoswbostEEfhYaXgC40xWwFZb4MiGeza8GLUimw028AThkEeYHKJ8CyVwDXjWgs1L0VhsLyYSsFN6ezAH38uELLdbgLewnC0CIwVJMann4cYK5iOenjCbL9n9WJGZ6PYNZ14UdUG9XGsV9K1lM9vYfhuY/kKQJYLQLqJESFKLWytAew2OMqWfqSwCBz3lrU7EI6yfE4JB6zsaIBDikLieYbhiaU1u4s9j81xZWf3OE6ey4GRhiZgZa3lmB48B/eo4oJAaYdsJQuqyq2hbknTURhZ0no4XfhS4wuNRdDLQyyCIlV4l90aRkE4ljITdEuUKsHqxYzeRr5rayWQsY29RjkPb8p5/fK3KmfijXkRTqeN3VyZyDQ2UOhQolL3GaENVkl0KBEl/KXjbjNuxr2qaQSJm3W5bF0VRqKtuxtHSz3S9uhL0skVGdCgMc7hb/shRAEqs/gDS9A3JC1FOubwO+MNjcwtg2mPrCHwB5aw68Yz05Ykr7sT8nsWmQHC8ZFYIVC5xRsZdCjJas6Q1i4VJOMK4+9A54FbDAg4/kf/95WcwldcWvMVXv1Lbwfg4Wevw6sUHJhZZ191E09qDsZr1FTyos9skZ3BFoe5QQlDYj53Nnlrhtuhq1s36218ToxmeGxjL2v9Kl+973kORavbgBk//y0PvFSn+yVJWBvnyDv+McN5QV61ICyycAwGW9bT+GB8u41epeo5cSUl8guHxi4dbFuoNBU/c6jsSiOxRF6OJwwNPyE3ilAWeFKTGQ+JpeGN0EjqKuH5wTQvdCaZigf8yWt/4S9r2H7JZXaPzy/+8X7qMkEjyK3iRDbLTz32NdzxhxFpU7B+t+b1dxznjWPH2ONt0pIjmjKnLiMMsK4Fx7JZ1nWNhhwx5XWpy4QAR1cBcCqf5M82j2Ks5BPnDsIzdQdknkH3esO73vQBbo4uklnFD3/jid1UCbFX5765bwcpsEmK8H3sYIgdjRBBgJgYw6xtYEcjR/NSr8PcFLoWois+RVXhDTWD2QAvtQSdgvCJ0zA9QT5dI6966EiiRobOdT69V41465FjVEunRgpLajy6RUQnj0kKn4+967e/5OO/4lFOmTuE+C1e67wq0aFDjtcBZDVJXhG0b7SIGWc4dKpKSHmBGCnkSKJDQbgO/tCifYE/LHeDknJVpc7g9hc8Kiua0YQzDtvUxl5pUK/oBL7yUlhJpHKeWplHRpqZ8S4HahtIYdgbbeILTXqZYZTCkKO2DaO2bvQxtwqNdKRwVmyzSn42u+Tl4MCj3CfPFZ08RkeCjo7JjSLfZQ50KyCvC3RkHeZrIcqoRGB8W3qm1kUWJcydLI0m4FDHfYvaoraQhkg5nnmJpeplhLJACoOUltw6NoN+EdDyRzS90bZ+76hf4Eh1hc28sosaKUU4pHxVulJD6/Fzz341jY/FCG3YuM3yrvs+ytfUP0NT5kQCfCFQSCrSJ7eaigfz3jLGLr3oq2UZquTWMK+WefXcMrm1JLPw3w7fx28+/HKaT/tMPi74z+bNvPONH+P2yrm/dhV8jgiBDX3EKEUEJWJB4CO0xgyHqEqMCAPIc0yWY7MMsd5GrWjEgTmyZoXgQptgSTkvttCYg3swgcJbH2FFBR25eybeMHRXQjYOVGh4o+0Nx0UttoxgroyS8YrBRMQWpqNw4cYWY+aWjegvSJKjI1576CRzYYeKyghljsIyNAGnh5O80J3k3KUJdBBQWRSEXQf66g/dTSUL9w9UZh2RXeD+Np5z4423E+bv9iyvc/8V/UHExFifOyYuOgKr8gbu6WibKVNbZyB96fDuto1oaTglO4+3dkdjHd0Al/GaayQ1LwWgyD16eYjCoq2kW8SOzmKXpYjAbNH3mi1KFgdBZzzHNCCsw0zFNxgjtwkJlbQUWpEaga80mXZUzYEqHGFYHlH3UmKVY0r9Z3j4YmejmfM3ya3Hct6kp6Nt47ybIrG05AiNILEeifXprVWZ6Vt6+xTvfO1H+abmY7QkSAQG8IUkEl75eVn+ZttzMJdFMxpLJLYwAQxKCHxheefYpzl36zgPtm9CFIKJJ+G3D9zJPbefQrLLehHCOURSYuMQkWYIKbGBj9AhdjhysH9RiIpC9xljsaMEeXaZ+kYVOxhuo9JbbVBZTnrDNN6mQeYGo0B6An9gqF7wOH5whoP71zBW7Nxjl8mVmJQrdlWsKIFTrEOKtxIKDyormsGsQt/d451HHmUuaNOQIyoy3eakGZiQSa/HvniD56ozPFmfZ+A3UCddqK8DdyK6DNeL2IV9wjpOeO071KZtwI6rQKQwbKQVgjDncGuNUOZs5FXG/YzE+BgryIWj193yHiNyjJUY7PZ3XC5bnqe2O+G+vw0y6qQiM5Q0mFzSyWKGJiC3ioEOdp/CQrKN1yk0SA0yF1hpXd5csZ3XliOJMc4TT0vMJE+5zUNKQ6hcLhBgWLjXK15GWnrZW16Eti4HX1hnbCe8PokJ6JmI9by6/b7dlMu5iOoy40Q2i2p7JGMS9VXrfFfrQSqXJYB9BOqyha5KI6GtRQlRGtSdAoHZjlT0tkeKhao0vLp1ggfmriPbjFEp5M816N0aU+wy8AwWZziNcTlPIZwHGoUOK9X3oSic5xlF2Cx38HPg6DcCHyGE45eSAozGrG8SbjTJxyt47QQxF2I8gcwt3sCyuVLHP6BJrefy5ZetjSsFnbniEB6c56kS8AeaZExRWXUn1DkCbzpwgkm/R0sNaMkhVZluf7wuE6oyJZLOc2AWHtOSXl6jdt5Rrsoc5936pVfrOw807GjyqnwR4tFVAvFIPwsZq46Yjnq08wqe2PEeNRKswVi1c7MjXoRPaawktRIpzPYF3Ar1fKkJyvznlhFV1tJUQ6biAYvdKS5stNgYr6Iw9PJw1w2olY72Wmbumm45OaJw9CZCCMdiUBaRhHb0DdY67h9VEsQFnkZbySBXaOOoakOvwBMGYwW+dOmOXh4SSE0jGFL1UioqRVvJAX+NpaIJwMVRa1d08dkSCe2uP4ZPdq7H70mGeyzfsf8p6lJst8VEQiGR+EIhSyNqsBjMtvGUCJS4/ForcqvxBWhbYMoebx+4ObrIgbl1zi3uIWxD9aLg4f51eDz113n6n0cs1pMOE1RK54n6njOmSiK0M6xCKffb97C9vkOzKgpsu4PwSzOmSq73LEOtdkhumcFf6hBuFCSTPsJarBKIVH5BgO3Pdma+mFxxCL9VFa9tFuhQOrI3AaMJj/Bwl/3ROi01ZEL1qcuEqMzpbYmSBuW5cLMTxUw3+5yfD+n5PuG6QCXOcJZRLltMDCox+AND2txZMPYq8EJtGQaMR0M2sgq+MGV+zr4of7lVHQbIjYev3I1krNzJi1n1ohyZX578VpiVGJ9AaOpyRGJ8FiptnjKCZCNiLa3R8ock2t/m1d4tsQK8kcuBAki9lQNlJ3yRzgvVPljfVeIvB4IWwlLxc4a5T1Z4ZIXbgGI/Z1T4NMOC3CjaWUxhJOPhkFhlLASbaAQ9E1OXq0Qip+EltNXu50AtgsFWKkbAAxcPEK1D+66cG6JFtLX4lxnELeOphCS3GoO5LIz//Nd4K/TfkhyLBqoi45bWIqejOUBSWTV8+MIRit3uZLQgkhx8zxHeRQGmEiCHmWMsTTLHdxQFDsrR97aP2Ga581I9z3mfAMYiyvdZIRB5QbDhClDpmEfWACtfHLY7Fi2LJzXSqCsKbq/IgFoACd7QokaGdMxDGNChJG0K9jQ7hDLHFwVVkVEVBRKL2Qo9EFTJQcKUp5gLOjTCKSqtEUNpMSogaJfFoTK3qhLrCkfa4vdLAypAlPzwu21Ec6tICqfGdlah4mVUvR2veyu/CS4HtiWp8V9UFMqt2vZYjRWE5Q7SLZxxXE+qCGGZjnssRG0ORGvMh21MvUAkilAVdAtnTHY/WHWLVOQ7f6vMEaAJAwiB9i1GgQkMeAaswBQCP7CEnibwSm9b2J2/y5B+KurjCcNmFtPPQnylKS7zuhWWSOT0jE8kc8a9Af0g/OtWweeIxUUbUhg2dIX0RAMRQ2N8gC80GpfH3DKiW0ZSW4MvlEtTfJZou2Mut1NCuLzp0OZoa8mt83z3RhuIsQxZRHhDQ3ujutsBPAAiSR3FSd1tciIrHMiytVhPIfKi5EwSCGOwgQ9jzZJQbqd4hLWIQm8bU5UZMJa8FdE5GDCcFejA4aluRYi5UeRWIYVxhSRhuZIs6JdVrlW5K/QIbZGi9A77kqqforAYK8lw3pTrx3vxhfeFpqWG7A/WOFudoJ+FrALDXGKGPt7QGVChXWHJHxiEtgSdDDXlUUSlt3IVeKC5dkyRnSxyrJGRxQTO8/Sl3uYlz41iaF+Mi76Vx9vKeWbGY6R9ennI4qDB4koLO/DANwT1jOtnVlHCcm40DsCBaI3a+JD0eJN+ERCrnNzs/i0hLNv9hzpm2/t0SOrOoELZR1wIKBQ2NHiBxvcLGlFCXLYqbegKAmc862FKzXeb00j7FMb1Qwph6ech3SJCh4JI5FRlSs9EDExIYj0e29i7S9rYEQFEoqAucz46uJHKoiAdt+ypDWipAal1xr8sAZDaYtvrVAi80txtGUqDQZdheo4mt4aesQ5QVUAkBJFwaNY5hhvCRWr1hCKOUYlGrQXs+nYrcMZPa8Rg5DzIosAag/B9F9pvGcbewNFB1yv0b5qgt1DyXw0sYdf1gfoDTXRq3aUDjGX9dQusvMwiJ0dUKynZiRaylbl70n5u26AU9kWR0BeTKw7hMVutTAaVWbyRJb7QI6u3aAZl2xKSxPjkIsMXZjsk3foOZZ2HMO9v8rL6KXLjvLhRFGJCj2DJeZ9B3xnpYDNzrU2jnKBvKOIX50J3U4yR5FrSHdapxe7mNojtxuaaSlwHggjo6YjCSEYmQFsXvhsr2GqcGGmfbhax1KvT7cfYRCHrOY36iPHqkEAWjLRPVWX4UhOJjMnagJVei0cv7eXv3PAAvTzaTXUAzstUiWscsCnbue3LU7NCu0un2q4NrogMynMtS81gxGzc49xgDG0FkVcwGw7xpKHupWxmMcMiQG81P2uXI+0FEZ2iQuR3SKzPUtHk/o0beOjMAVjcfQ8UICsD0I+vX09l2aAjyZ5qmwk5JCzblnwUSghyq9FYcruFHL/DLJpYQ2JhwwR8ang9T/T2cqY/TnsUIQXM1HocrK1xQ2WJQ8EKU6rHtOqxp9nhgj+GVYJoXZDu9g0kJctv3c9wXjD1REH1gRdckchYrNaIwnPYnnkOWkOjxvo9k6zcpwnG+1gjyAc+suehEsHYcYkatchaPu1DHt2bc1ozPfa3NpmJu3wmnGeqMniRo2HKe/HzefhfTK7IgG4Vq4QBkRv8vsYb5IjlDfTtYzR9Rwqmyn1TI1wvH5dVSssv8IEAw/XBElErp7CSjU4VUXoq1aVie7pApRqRFYhcE27kDKfCXW9f2hJrBZ1eBaxAh276aGtXv5S2WBrVWRnW2RzEAChlqAQ5zTAh9Aoi5W4KYwWZ8ehnIYWReJ7GH3Oh/2AY0uvHWAuN+oi5RpdY5RyJljhYX+dSdR77XINPTB1iIhzufsXZ7EykqYxt2uui4vLbwrhQqmho/I7C7wq8oU/R9ticyAk8TTNIWB9VmKoM8IRmNuqxllVZTupsjCq0hzHGCKpRRqElUrrC3XpexReaKa/HH6/czrMfuJ59D2UEG/0XQbPvlhgrSaxisdeg2tb09kv2xZvlQAX0jOWxvMqTyT5ODqe5OGxR81Nuq1/khmiRSGYoLJlVnM8neKR7gI8+dz3xsxFBx+k3a8FGc5xj4/N8euoAb97zLLdVzjHrdTjausRicgBhIWvs/k1kAkXnCIh9AxZvsewdHiB8uGzu1wZbJC689z1Es8Hy66bpvmHI4ekN0sLDWMG6VyXJJbVzHtFmwfqtLhLp3lgQjSVM1/rc2ryEsYL9jU0mg0EZtu8Ueq+s+3NHrswDNS6kVrlFFAY1LFCdERQFRQzTfg9flA3OmLI3URAIsx3GbxmXgfVY1XXWixpDE3JjdYlzU2OcP1vZHr/yuxkUBmEMojBgLV4vRRThdhV+t20FGnQnQFRcni4zitR4fHrtOs5tjJH0Axgp1NBxXRvf0qtr+hND6nFCxc+3w9VMKwaZz6AfYXIJI7VjYNzehCHm+O1VKoczNio1FuJNsqmC+JzP48euY/7A2u6zcoqyEq/YznvqEIqaa5ovqhZb0aAF3lBQu2ixAoqKYJj5rHYnWW60qLRGfNXsCYYmYC2t8cLmJGsXm3htz6UDqpZsNmGy1We22qPljyisYj2vMggCLvWbTD1ZEC71XaHiKpBIFERCc8fURZ4LW2QNy3XhKktFnT8eHuKx9l6OLc1SnKsSL0tUCskEPHxwP/tmNzjSXGE27CKxHO/Pcmx1BpsokmnDaI9FjadMjvXwyw2l4rtN3UU7kkPRCnkNiookn9lt9qyyxzsF4Rl0ITnzdT7Xb+xFXlp1HqcGFIgoYv2+WTpfNeLg9DrgnI7OKCJLPUQhKGJYfKVCxxbrGVQjQylDqj1+/+Tt5JnH7Xsv4MnPbd/5crxP+DI8UJm7sFpog0wLxCjFlrPwdZUQyZzcegxtSGTdos0vqwsOjc/FYoznkjn6OqSiMiSWvg6p+yk6tGXPIIhcOwO6BbmnDXKY4Y8sWc0xPO66J2oEfluRBwa/vFhPrc8BMD/WgTEY5j69UUSeK0ymEFYwGgZkqUdSSRmvDglVwTAP6A8jzMDD3/SIlwXewOIllrQlGM5Z4mUBWhBIx3s+57eJJ0YU6x5eI2MsGu1+czRst6JtbXRbDfSUFXp/2aeoWOJli8qsq8Ya8IYCbyBIjYdpSIYmQGF4amWOwTBE9cqJNAvxiiQfxWweNrxq5hTTQY+Tw2ly47z9zV6Ffe3craOrCLYxsYqvbh3j0bnb0JHrWX062cvHVw+z0q8BYGdS+jUf1Xcbr90MOGsmsFYwNd1nzO+5QQIjQVlMRROOJRyZWWWh0kZbwTMbcyx2GzwhFpjxu4yrPtNel+EeTe2CREX5rudAbVO7+f/Uwz8VUexPOfe1TSqXGowfH+KduITZN83aHQ06Xz3i+rkVtJF0s5DVjQamHeC3JV5fUFRtmT4SFHWLThUjI7j0bMOl/PYmNH2XZtxqor9cHKuruKKlcsVFpK02KaEtYpRBXmDTFH/gJo2e6O2lVziQi7FgxP54nSPRIvs8N97YNhWeS+Y4m4xzpjfBmbVxsqFPUMnJuiHxhqSyVmClQFd8vM0hphoitgxpod0NJwRXhZ3QEK0J8jGJJw1J4aGNpBWPXL4z91lv1yi6gTMShcD6FissRlkGwlIJM2LPbTa+r8l8S+WSQAcwmhYEXRjOWmq3bHDktascrKyxL1x3G5bIOTy1xlMbMUdm1jhYW+PTu+yBCuO8Tx2BGO709spMbEcNVrlCkwkgbbqhCZVBEVu8oUCmgqQd8cjqPmpBymgUoDsB4UCSNw3eUCJzCNcFw6jCxv4qB+NVV1m1ksV8jGwQgC1Am6vGgErhRk+vD5bp7wVTMVREihSGepDgN513NBd3GRQBTyzuIVmsIjOB6fmECwVf33yMWZVSlwmPLi1A4UA3sqUKz524juMK1ME+c2NdBsOQZVXnQnOM/cEqdTki3tMnmWjiB8V2QWq3ZDwc4vcExUZAtCooDhvM0R6D26B3oMbB4RSnvrlB6+gah2LHsppqj3a/gl0JidYkY89roo2CwaxP55AknXQ6FNKizkdMPWHpfluXQ+Pr29gTW78NajsHakpQkSsprFy5AbVlL6gnkWX1zGpN7WLGM/05Wv6IffEGfR2ymDR5orNAp4hpNdzJ/9rKK3ns0gJJ3yX1K8+GRCPImiGqYUhmNYNpxdhzI/K6j9eR6MjDhIpgdeA839xu94futsgcqouG/j7X5A1O/cPcZ3mjQfxEhYmLBmEhbQhMINAhJBMWPZvhea4pvOanVLyMip+R1vuc68y5XbNWQDNhvtFnodZmPBgQyoKoVIBG8JqJE5wcn2RUuKqi3eXeLit2NlqZu8ELW3ZN6NiCFYjAeaNZsyw6Za52EPQEagQgMKFiZbPOqOZRraS0E4+87APWkaWIoZgomJzrkGqPzaKKQRBKzWLWpPVYgL/RBUr8hF0Wi6NdBvCFwR4YwdDb7g++2G+y3qky0RzwzLN7qZ/wUALUlEVHFtHM2Ffb5Aa/oCJijkbnuWPmIo/bBfqrVayAeMlFZp16hbOJz/x0m8l4QF25IZa6TGhUEjYnG+wZ63B+l4tIGknjrGG0Bzq35XjnY7KZjCP7lti4K+FkMEnlhjbj8ZCgHOvNjUQXknBdMnFMEy8lmFDROJOwcWtMbV+XLPNo1UZsXphi84jk8PgG94yd5XwyhkYi0dutg1vF3C9HrqwPVFzWd2mta3C1FjXWQmrLx48dIahl6AsVhBbEy4LRjOWp7Hp+r/5yGMuIno8Ye/USpjpif2OTR4J9rkE6zmiFGfdOnePjC4c4udigcs5jTzdiNBuifUGw6v61MM6DuRqMqMoszeM92keaSGEJlTOilzabVB+s0DpVkNUkYUcTdAWrd3pgnNdaHMqoRhmNIGUyGFD1Ula8OtoK6nelrAxq9EYhQkBuJIku256EoadjpDDbBRPP02wMKo789ioQWbhOCpnvXKui6kJ5G2gHYydB+AY7UtiOwksEpGWqqAChBXniMfIDstQHXXrvkSZcSBirDZmIh7SCIZnxuJS28IRhKujx6MY+gq6FvHAtLVeBSCwDG2CspCJdrnJFN0is6wn2pQNHWVpqubBdwWjKEh/uAHD7zCW+ceJRKiJAIjjgZbxl/Blmwh4nxqeJvJzhTa5V7pWVNrHMmA07zPtt9nibjKvhduiazhQcbqxyZpen1jppRO18inkoIv+mNuFCwdL5cXpZSD1MKW7aoBG5ybLVYYQUlnqQEk0VrN2TcXGmQe10lXjVIgtLPpNzsNFlY1ShFY245auf4uKwydtnHqOtK2VX0GdNCv4V5MrBRLaADKV0oVFR0H/lYbKGpPacZHS7Rjc0qprTj0PkeIY5H1Hb3+Fnb/1dfmL661hcbvGKw6epehlvvv5ZAlkw6feZ9rsEouCG65fYvK7K+/bfQufCNMaDtCVonvQRuUZo14R9NRhQmRvkIEGmbmQwUrm7MIUkG4OVOz3ypkElngtrZ1NsJhGhZn+rS6gKGkFCyx/S9NwC7xYRYdRjJtqhD696KU1vREVmSGEYmoDE+PhCM+n3ODKxyvGVmStuBH4pRFgXvlu1U40HB1+HsBAahLRI3zjoR1+gqwLrC2QmKcrDt9Ju79hhlCFiKApJJcqYqA6pehkzcZdQFrTzGG0FUhie7c1w4sI0+5e3OvktVu2+EbUIGiJlgE+AoRkmbARVIpFzNLpAZW/GmalJ1rIascpZu71ahpSwr7rJHdVz3OivIXEN5xWhuCW4hC8KKirjqc48vcxFdiuyxqHaGgeDVY6Gi0TCMjCSFEXNz0ALPvjsTeT2y2oF/4qJSRXDuZB4vaB47zjq7cvMLGyiSgPnKUM3CbFW0O3F2PWQ7r4unjQMh64bZzRtMYHA+ALpa3LjKuyRKriveZLnw1kikdPXkQP1QZIWOz2gBtdKuOWNXolcsfa07xCRdKhQxnX6Ww+qixlFFHLdwiILlTYAK3trFEbxfDjFG/aeYI/X5V0HPsGf1o5yQ22ZGb9T5oQUCkMkMkw5ueMLzd2TF3j/bVOE65LRnIaPGpf73P1obFuKWNG5fZKsZan7CbNRj6qXcqC2wcpCjU4W00tDci0ptCJJfSpjGXtbbSbCAan2CFVBRWZUZMaYN9wOLXyhkcLiC00oi229OEg8d+FT6zE0AXc1z1MpYd52W2Rh8YZl32dpz02I8zi1wGYSIo1OFGgBRjjYu7xcvMIZXxNZ/DinGmVUg8w1zKchXokLOhEOnKFJay4NEvRZThuc3JhELYVES+2d+dCrKAcaUWzf4FGY4wvNXq/Lfm+TE/46H+/dwPHuLKn2mIl7vLL1AndHZ6jIvAQb2ZFxlXNULHJHeImNesTFYoyBCdjjb7LX6zIuHaJTbg0DoG1iOmlEMJEw1eyzIrNd0cO2SNg8IknHYe6Thu4HZ+ndmiI9Q1zNGA0CTLI1626J1yRD08B6Fq8n8bfqCrJ0qNZDzvstjFYESvN4fz9PrO/BTAtO9KYprBt82RhVXOTr5Ryor7+omPaSojHpyIVXOlLboVHl4ojegQrDGcErxk7T9Iakxmd/tI4vNK+aOMn14TID67HXX+dvTT+8PfOthEuiA+S40ca2rgBVABZuW6IVjjh2adZhB3oSYVwOdBtabxfFSodbCg4tKFYZc0GbI1FCXlX0TMT5ZJyTvSm0kUxMDZiLOoSyYGgCRtLfBko2VhLJnJpK6esQjSQ3YnsUFgm53kF2Soy/g9YkC+5qnCO3atfbmERusBK8oct/Sg0yBZELTGRAWuxIlWGqRWQSNRKoEgR8u1BZCPzAASwPsgAhLF6JzLSZuEp7PUjwpKGqsm2AiJl6n8WNMcQwdWv0KjGeWznQ3CoqouC1EyfoZEdp6wpTckhLGl4TrXFvuMKwTMWMS4kvJEOrGRiHwnR54cfHoS1FQjCjMm4NVsoZegm4oYrU5vSspWcD1nWNNPd408HnqHopf7TLlVjpa/TRPm+//ik+cPBGar/VZDgbYKYyksR3+XxpIZVu5BcIOpJkf4odBYQrgmTS4vdKOLty7Uex2xgGOmC9V2U04VIb/WxnoKIWpEQqRwlLtuWBXmFO+MvyQEUM1ivx+/IcdWmdSsUj/54+kczLZPWIoQldiFAubGMlAxPii4IJ6doJfFEQlShDDifRLz+nyK3k1rFF9kYbPPPAQaCHrobYEkz5KphaRKXWoeZP+PSykIEOt29kX2hmvA7j1QF7ow0HIiILUuMz1MGLZt6HJqBukxKRyWFcrqQ1OmmMrzQ1P6WqMjypt8MMX2pimZEafxv13li56/ZCaOMAtkPBFgyn2AITSSRbWCdbI50yZxum0Hhb+U9ncIvCTRntqXfoZBHdJCTyC5CuZSw2irqfUvVSBkXI85tT9IYRM5+5CvI7X0AiUZAjORiuUA9SNnQN/DV8IQiFR02qEhTEktqctinYMB5VUeAjdmbkLzOk61oQCU1LSkJxeXhqGFpNx7jNfF3X6A0i2nnMbbXzf+3n/tkSegVff/1T3Fs7xY03LPLze96OqWhqLTd5pqSlNwwpYsX8RIeLmzOEm5KwmpH7huCFiHTS5ddlBoxlNGsJU9U+xgr2RG2Ozl3iztpZWv6Q1ay2jRu7ZSy1FeVkoLjiYtKVozEp1xSdNRRR5CPSAKTEWx8xFo2Y9LpMe66hfqlocTqdoiIzIpFvg2pcyscwfofz2QQawY3hosMNxThMS+Mg2YyVfGZzlg91jrDn4w5QoKh66GD381lbIrOCyokNwoVpuqOIjazCuO9yVJEonDdQhuFKOsRrU4JFbLVOABRGMzSBC+VVRl+HdLOIU8uT6FxSb462+0U9afCEcXPhvkNpksJQkdnn0IfsiliY+cgyphHTP1Cjv0dhJahU4A1dHrOoG4R1rWi6rvE2PaK1EnhZOTg8gCJXDJKA44MZojAn9IvtRS6Eo/cIZEEoCy7lTdLcozhVIz6/WaZ7rPvZbbccVzrYAX2WTKkuNS/lbDrJzeFFqjZFsQWiIkhswelccv/wVu6NTzHrO5zPLcO6BZpcF4pPjeZ4LpnjdbVnuTnoOUN7GX7olnPS1xFhmCOFYY+/wW7PQje8hFfUXqAuR0yoPoM7RqhLEaGnUdIQKE3YKFjZrDNf63BxqoXpR+ydaNMexahBSLTqqIKkBqkshZZsjCps9ipYK7i1dYmqTEmNR6zyF7E+OECRoOwBdY8/l5vsC8uVU3oUrlk1jwW6HiHSnZzbxU4T9jjg5J5p8t7V2+hkMW+eOVYa0C1wYE1mFYn1SI3PJ/pHOBIt0lAJiXEeKEAoC5YfnqXxAsQXO5hAYUKJDkrs0KsBD9RaxGBE40zOmaUay7U644HLY1ZkRiRzKjJjWHqmroIesZFVWRw1KIykFY7YE2V0ihitXBgfq5y5Spd0yuPMqWl67Sa9sZhmc0g9Sqn4rpjkS4d2v5Q22RttcDQ6fzXYCkShUWtdgrEIu7fEaZSWoCPIa7jcp7DQKAgrGXa1VgLIOLzQrVy+NQKtJVk/IOuETM53iDyXQ/QvWwC+0Dy9OMfUb1aYP9V2CD5w1YTvwLaHoxFURIHC8srWKZ4bzpaz2JALS2IycuBYNsGftm/jzGCC8Zk+Lek8Rl8ktE1AW9dpyITE+jw6OMAznTmWswavbx5nWvWoyJS6yFFCMDQ+iQnQCL7p8BMciRwlyJc7wviVEl9oN55aYma89vqTfGLxVnrDkCAo0J5kqtpnTVXp5yFBVJBXXLdLI0roRILKkqEbS4oKyLMRnWaAaGaMtwa8bfZpxlWfcdXnULTCC8k0Ix1s434WJRLTlhh7ZTWWL6sEZ5TAxpa87qMGARQGJIzO1Fk+0kRhOZNMcHxlhrceOE5qfH5l5dVcV1mnX4SEsmAucO0VE6rPC9k0z4zctIQvNIn18IVmpH0qi4KorV3uM3dMn5fjhe66rbAWwoD4hXUmH55learOXMWN2hVSYjzB0ASsZzXHfWQUq0mNE2uT5Lnirr0X8IRhNXMFt1AV1L2E1Hi80JnEWEFjpk93tYa3FNIeeqSTQ8Zr7sw9adjMK+wJ25xJJjmfjCP48C4rpRQhkIW9DNvVXbstpC07XhDXE4arVXwJ3UOGoCPxew7FSTcKfF/TqCYEzT4bvSqbnSrVqQxfFQ46UGUYK1nPq5hTNVRyWRHtKjKeAAhXxJGlsZDCcnt8FoB1UyUShctVmoAT2SwP9Q5ybHOW6UqPD2zcyn/ceANCWMaiEYWVbA5jssJjqt7ncGONSOU8vLyPtbTKTfUlmmrEvL9JXY3IrcfABKTG5x3NRzmWztHW1Svytl4albhrtIWX8crmC3xs7jDFWowZS8mUYTweIgSMCh/fL0gqhly7yC4dF9SeKujtl4xmC1Q9Z2GyzW3jl9gbbXAwWKGlhvzS8mt5efM039h6lDP5FE8M9jHQ4TaojxR2m3bnJS0ibZG+6UiQ1yRBoBwfiYTmCcFTr9xDw0sZaZ/bZy9xc8W1WTTViFDm5L6iLkdEMicxPhfzMdKyHaemEiKR4ZuQHhGp8ZC5ddxLQiCMLlGY3I1pvF03n65IkeUIYPzYgPXba7QnYuISJEQXzpVq5zHDwqeXR1zcbJIsV6Ge089DNpOYzjCmEmZoI5ACWvGI5XadyWaf8aoDCGmLGqrjkWRVLrUCWq0BXsOQGo9Jr0difC4kYy+ijtg1KY2XGuaIIkQWgsJ36R9RgGkagjhnuFEhWFVuQCMV5DVDEQt0zRC0UqaafcbjIavDKrJMqA6ygNlqd1vHhZU8uzHL2DHYuMmn2mrSeGGA2ujvhPFXgVtuS+8zKrmvcutgD6e8Lj0d84IJSKzPalHnmf4enmtPUwtS7mhcYNLvca43xvkzk6yPJjBVjV9PCQLNTa1l7q6d4XQ6xfnuGI+d20t3NuLG5jJDE2zfe0MTcD4Z46PqBmb8Ni053PW1svX/t1gaZr021+9Z4czH95PGGqFcxTzPPC6st9yHfPeZwkgGewwzD2n8vg/KMjnW497Js0z4Ax7cPMBarUa3iHhieQ+fPnuA/VObvGvvx/jmsYf4w/bdLKZNh1l8WQ70pQvhgS02TgRkVUkcKFQ55VG/oDnVmeSV06dp+W7y6KHedSyPGtT8lIafEMiClaQOwIHKOpN+nw+s3MRrJ09yS3iBtqlgCklHVxzXUM8ynFGEmwHRpXSblXMLZHnXxVpsniOkRPYzqhdqrB6qEUjt2opUgbaCdhbTTSPWelWSparLJyeKY8/sI1hzBmR1IXMutQCmYW6sy2TcJ5B6u0G/41URmz7e+ZC2hWacbBeVKiolVtk23/XVIKqX4A9rWA/yugXtvFAiTT7yCZa90iMV+H1nYPOWwZsYUYkyPGlY7DXoj0KHUl9NGGWOayqQBYVxHEjLJyc5eD5lMBfR3yNJWzXGj/uEZ9exW6C7uyxSmG2WhqHxqcgcRc7JdAbYIRm8mLY4tjlDZxizr77J/nCNQ/4K37zg8x57N5een8Lb8KCe8vL5s7y+eZwbg2Vm/Tb9uZAPZTfw3NlZ9D7Jba2LhDJHG8H5ZJzlUYP5sMPt8Vkike+6AQXw0duEi5HI+aqp5/mleB+V50OG1+Wsr9fwAk02CAhrKSLUrA0rjNKAaE+f/kKN6UeH6KiCWLA83Z5nkAdsfHKWJw7vxY48RC6YfESyPFHjx172Dfyne36Tl9VO8fvJXY4ZYos25a8rhHfsmIDaWZjBZsbJU5Ps2/soB8NltJX8l83X089C3jnnuMqVMBycWKMuCjZMwB937+RvzDzN0ej8NrOktg5E4kKnidcU9K4zNM4qsBaZGYR2s79Ss+ttTBgLWY71PFCCyrJlrV1FSUPs59uGb2NUod2L0UsVZC7QEzkqKtCJRzaJw1nte27aKzR0+hG1iZSoZKJcHVRpr9YIlnyEccDEQlpyrbbR2CPhcoO7byrY9vxEmhOvF+QVD5m56RorgUQhh3K7MGmFRUixTT4qpaW9USWte2hdnl9YlBuGcEU0lXIxb9HNIiYeuxxs1M3WL94XMT42S/3Y+k5OdBelsIpVXScSOfoyDqzD4TKf6h1mzB+irWQpabC01kR5usR9zUmsT12NePnUGZ4JUoZ5QCNMGA8GrBaNEoi5YNrvsW9sk+OdOS5uNjlYX6OvI0d/kle4vr7CnZUz5FYRoHc9hM+shymngRLjo4RhIdhg310XGf7KPML4JFMKO5/gRQV56qE8Q6frGBqKboC5XtLdX6HxqhUm4iErgxprp8ZpboI97Vq5Zh/ICDaHXHhjnWYt4UQ2S1WmV9w4/9ly5UUkvUMvvPN8CW8HjH0m5oWXT1FXI+a9Tb5/4WP8yfodfKB9C+8Yf4RAaFZ1lfcODrNZVNgXusKHLwq6JqJnYoYmZKgDVzyYE3gD8IYaqxR+v6CoqhdTG++mSInNMmQYUFQDhLHYdsC6rLkbwHf0FJ1uFZZCgq4DO5CBpl5N8BqGQRKQDALM0ENod1J5L+TMaJKzYhJbCLx1n/0fKwg2hpx/UxVdL2jUSwDrUhGyHFO7GsQqCYGP9RVBO0fOOvqXouIojWXiNkGjYGuazngOMwAJ6cDBAGahh5QG39fEgYP+C8si0sgEFEZysdOktaYpKq7a72hDXFvLxTdAc26a1gsZvLCLCsFxW0UipypcpJFYn56JmPc32RO2OZtMUFUpgdTUaglJ6nP/Uzdyv72ReHxEUUiktFTjFGsFuZH8eftG0tRHKUOyVCVaVmQ3jtgzt+lAWLTP6eGEY4kwinsbp2nIhMwqlkyT3K7uqk4GOuSpZIHbo3PkuEq4wvDKydO85/Y97Lk/p3vAYziM0YdHhHFOFOQURqKEpbMZYgKLurXLfK3D8rCOtYL4kmLq0QHpREhvQVF5boXunXMM9xUcHVtjyutyfLTHXRdhkOU9pK+QEufK4OxwPXtClzklsZMTFYVh7a4W+q1tVpI6Z71JkpKT5mj9Ao90DvDnnaOutwvDmD/gFbUXaKkB4BbT0IYMTMhy3sBYwS0zSzz3iSZTj6cOiUmCTAtU4kMkKaLdt6AmcrPt2Q3zrNwZM9hjsaGm6PsU0iMPNSMVYFdCKkuSIgY1khTKp933HejwSBJ2JTIr58AzBz48OpSyf88aR8cukRqPT7TvBHyy60cIK6hHKaFXEKvcAVLYHZrfXRUBxVQDpEBmmuFciCxBlZFQ1EuOqNThXYrMgSwXkSOYs8pCqsC3KGXwPE2rOqIepARK4wnnmeVGORqUxCduyG3DCWxHKGog6R+wWBXA+3dLIU4cpUe+jY07NKEbJsEw6fV4cHSAiuc8pntmXcX942cOEjxe49ZbXuBVrReY8rrs9de5WIxxwF9jQ9cc+n7e5N/338ooMHzbzY+SGo/cKtp5TDtzbXWBLGip4fb/90Wx69FKqj0+unaEqdkeLTUkZ4dHrH7TBslnxmicLVCpx/pYyNjBAb7S5FpRDTKGkwF6TDLf6rKZVuiOInylmX4sw1vroSseE8dziukmF98AR66/xHgwxFjJalYv854vbih/6XOg2hlRf+huVisEotDkdcH3Xv8AH167kV8/di9/88YnWQg2aakhr26dKFsWcupyRENu0X+I7R619aLGxWys5FUfMBt1eVZAcKlDPtcAKR0yvbZl/nO3Lz+YQFDcdD0nv9XnjXc9yUzY5eH1/Tz//Dwil5jCTVB4qYNyq16yRJsGL7HkFclwSqFjZzCLqiWb1PjNlLdef4y7ame5Lz5N2wT8X6fejjcC/doOTa9glAZIYfGEwS8BrLdkt/Na1lNkYwHhWkLn+ip5LNxaKfOQolJgU0W4KvFGEK9ZZG6wCrK6IG15mBCMsrDkkdQtl2oxcSth71ibFK/kRpL0spAi9cgaYnuCaQuzQRgIuoLhgRzvxO7OfG9J21TIrecg7DDbSEx7/XUS7TMsAjxpOFxf5VC0ylvueopfnnoNTy/PMSwCXjZ2hpvDRRoyoWciloomz49mOTWc5J7DZ3jd+PPU5YjT6fQ2EPUgd021UeT6PxPro7AMTLjrbUzGCi51G/ypd5S3Tz0GsD2IMlvv8cJN48x9EsKOIb6kkIdKtlZcUa4SZUSBcyAWew0AKkFOfK6DyAvHmFEYzr2lwf4bLzJf7bA/WiezioHe4SjbmoXXL2UO1MK2zRLaTeG4opJrVp5+ZMDP3/xm4oseh39rife94z5e+47HeEX9JFOeA8ZoqQFRSdeoSsK5tqlwPpvgdDpFr4ioe0lZlU9JJrfAlC069vG6iavAl2Oco94KQojvs9b+0pWcy1dKLHD+zTHf8cpPMOn3mPJ61KcTnj87i+h4SCMwocCElrwuqC5amp8+T/u+vSy+FvbdcImXT53hlvgCufW4IzpHYj2m1Ig/6N7BWx/6P/AuhlQWBb17Em6bWGMjqeCpEtNQGkKZEwj9V4Ll+oqKFKjUoCs+7SOSqccdBbYoAAtWS0RSwtKFMJx1IMreyKISqCw7hHodCoqao0VOQonWLhc8UR0SSs1mFjugiVRhhXAEdlvgJeWykQWMz3VIJiZ3SRk74rjCgm2juaFrVGQKEqrS4Sc8trrAeOzQpTSClhzyTw/8Gb+9/jI6ecyx3hxLaZMLwxaBKvCEYXHY4K7x89xVO0tLDVgvalTKceDFYQNtJJlW3NRc3r73MqteNNyyW2IRCGF55NR+9lc2uDFe3KbYiFROvpDRORgSdC1SwyjzaYaJi0SkoRJmRF5BP3NFxonqkFvHFjm251aic22EtqzdUWd0OMWTWxTjhgvZBCPtJrYur8B/xavwQogzQAW4Lp5cwApYe/7TbD7/GHe87AcQ2joP1Bi8TsLN/66N7fURYcj+Xz/HA/270N8l+Prxx/HRVEW23ev5qutO898/fB29uSmOD+ZJjedQiVTJXyGBgwNsHGxTd5jAQyWaIlaIqyDdl2wskj9+gg/cfSPvPPCQ2/3f+xyr/+NpZt/1gwgjkCOB1JA1DSsvg+H0AaJNC8ay1q/ylD/Pc90ZAlXwUHAdH3ruRkyuIJOIVGIFdG7J2TuzyVg4JNGOV14KS81PmfAH7kbEhfC7XRjAugihczBEpvD0/b9If7DEkX/wE8jIg1Ti9aWbOvJdXjQdc2hNumIgcH3FKtQEYU4c5MxEKYMscPzwWEbaJ9GOM16MFEHfMpx1XugWINUW/OJcvcdzrd3H+RNYWmpAUrJBjqs+OYrvfM0pNtcKjDyHKVlGv+F33sHCgRCDJBI5b249QyQzVosGl7Ix5sM2qfUIRcGbJ55xobmV+Ghy65Ebj/OjMQaZi1SGmc8jq46Z9KbqJWa9DkqYXY9WdKKQAmwm+aPnj/KHP/shFp/r8c/vfwM1P6XWGtI95BN0Jcm+jCm/INUeqjSGApe3BBirOLsxEfTZvDFkalhj4+YKG3ca4nrKKPdZHDaYDnsMiheTDDok+q2fL/34v1QPVAE/KLZamErD5UjfrKvEK+cFCECE4XYVdv73TvGQvZOb/v4iN4aLDGyAz86udzEf5+Jg3rFNeik1lRJJlyfKM8s9e8/z7H03MvF0gkpydC3YRqeXV0EbkwWKWwfcPjliyuuihMFYiPwCYdyoohCghsLB2VU1vSOWZEPSOCkJH2mwqesYT7B6t0VOpphcUW2N8JWm24spBh5BK+VAY51AOvi7pNw9m37CfLC57dXAVRDCC4EJJIM9guCZdTrtM3h+xOjpp/FefzvBukIWZVN9AVIKtGfdgEQ9J4xzxmpDKn6+PW2kjaTw3I0SejvjnGnio/oGK9SLOJhgB/l+Lu7y7FWAmwA4mmvstmF8LpmnW5xj7Pv/FjPiJnQMg1sTTjFgPjtFO6wwq7qcMQHHk3mGOmBoHI7CqMRTOD2aZCHa5M7KGQySxbzFpbTF8rCOMJpB4fKC3U9N82E7zfsOHeXI/iVeMXmawp7cVX0IA2sXm4RjCckjGecfbRPXFM/ev8zE68eZb3Q5s+CRjnxu2rfkeNz1DiGcJw2i5HPXVpSAy4reAUO8GjOa3roHLRbwSpqhjayyDRV4OSL9SzUL/zPAP7XGIEosXGFcmNVP1zj53B/THVwiUBWuH7uPOf8gWMuDq7/HvDrIwu8afvmN93HXsffw4O9e5Md/6yZ+8tuPA/Dj3/AEiCf56n/5MsYnFb/2Yw/xmu9Y4P7/eZ7Dr5zkFT8c8MKD9/P0sUuITNNs7OP6W95OoIPdb2HCtdvcPXeeO+qCSOasFzW0TWn6Q+6873k+9DPnGHzsIUyvj9ds0fzGtxDfeyvZpKbzmUcZfOxBKuN72HjhUeT764x/1zcQ3XKIwWbMyk/9N6oz++ldPIFeW6K4d5pX/4tXMdaEP/3BjzD3ir3c+T3THAxWGJqQf/eND3LPD9y22ypxVfSWh1XQeeohGmP7qLf20n76YebuvYOsaVn8nd9EegFFe4PRuVMEUzOMv+vbiKbq+J5m85EzfOYXP0i6OWDmq2+if3qdmTfezPTbbufM+57j4vueJji0wNqHnmbstvs4+9in2PvOf0BlfN7BLQ56PPvff4rrfuhfMBN28Qe7n9owSHompqUGtHWV/7H6Kh586jB6+BhTj8FkkDCa8ukfkYw6BX/8i0/wqw+9QKgKXveOlEPfN8upZJLzL+Qcf/eH6L+wihCC+VfM8/f/9RwT9T6J9fnZN3+Yha+/nbMfeD+jC5vc/J5/xlsPHOe3T9zH9EMQbgacO7eP0zdMkNqP7qpOrIJo0ScNDd2nP0lw3T4Ovzzm4T9c4u1vOMTh+hrP/NsPMKDGE51l1p5cJNw7yR3/4i1U9rRAwsYjZzjxHz9CtjFg/Ktu4VcXL5DdbWiMv4beIw+xfvzT+Dft4cSnHuPGt1/P/X9wnJf9/DtoHJpwkJCbQz78Lf8f9/3m30HGV0Z//aU2QT0C3J+Pes7rK3NMJs948sn/zuz4UV53249w23Xv4NjaX9DP17FZ7mhJjYE0ZdgPWc4adHXMw/3reOP/+3UA/K3fehs/8umv49VfO8a4P6C3lpJ1U37iw6/kW3/yBsbUgKNv38/8T/8o977xR/G04uTxP0JHrgvgajCiW2hST48W+Ej7JpbyJsZK3j71GN/zhue4/t3fyfU//NPM3vkm1v7nb6FXXT7YhJbhyjmC5gR3vuMnmHnFW1n7D7+Gf7wgPhMgNLSPP8IrfvLVfOf73wFS8el3P+Qojf/GIc7/+fPcEl+gIVLOHB/SWU458Oq53VQF4MLm3l43krly4TGm5u9kas+ddJafY/LPF6mddd5h75nHmbrvzRz5Rz+FPz5J+4/+nKIdsHlS8vxP/RFz3/N67nzPP8Kfn6B37BJCWBph4qayji3B5AQL/+ZfsXDjm2geuZPu049uH8Pm849T23c9drqKEoZod7t1AFeoyK3iWLLAvzvxFh751A2MPamQBXgDTX8hIBmXCN+w/At/wMiEvPOPvpZfeu9env3kJsvvfYKbakscqq9y79++iW//02/mb//Bmwg3Vnnkv3yGuszK9IDg3AdPcsNPfhO3/uY/4caZNV5fP85rXvUMxncFmep5i16M6WTRrupEBpqiYgnPhAweepT60bsZ3fMqTn5yhY3VAk9qYi+n/6mn8L7urez/5R9FTE5z8lc+hRAW0x3wzE+8l+v+zmt45e//Q6KFcRafXGP/xAZZw0V9yYVzeK1J9v7nf85977qJo2+b44U/e4FBETAqfM594AXG7tyLqNev2AO9ki7Sf1mkffKkj9CAgI3l40Rhiz2Td6AQ1Bt7mGneyNLoJKSpy4U1ayx/y80cnl9FCYvEopHUlMvZzQVtFoINZvwONTlCSMG3/OAcrSinWdHMTRbc87ZJREux/NVVJl/9Vtrt03hDQxGK3S/EC/i9f/xpfujeT/LjL/sQv/aa3+TPf+pJVoZ1fu7kG3nylm9kUMwT9iTNm+4ibE6in7uAyN2Bq3oV9d2vYv3lCu+Nt+HNTdHeeAp9ax9Zz9nz1iNMHG5SBBXu/ru3c+qD5xC64MDr9tA91yU75yheP/gHXe542wzKV7uuEoRgOGcojr1AOtpkau426q0FouoEK+ceYe5PzuINLfUbjlKZ2Y+NFPWjd5FdvIgoBKNjxwgWpqi9/GaEksx+4934Y1U3+6w9CiPxx+tU3vAaaucDlPBp3HEv3WOPY411M+fHH6F10z3oRsFmXiHa3P2EubWCv2jfzH948qvYfGqSaF1ssyo89fSv8eh7foynfvn/YvXnfoXeIyeZ+743c0bPk7YmeNf3VTj+Z5f4hsbj/MM7nuKff+0Z/vbCA/zAocf5P39A8cxDQ4bG53w2QWYUtbfchx0bp9U03FJfBOCHZz9A57BEbtGBi93nzwq9gvhIm+G5UxTrm1TuuZ0svoFofoxH/mS5LPRY5l97kMbNcyB8qq+4g97JNawVrD94mtqBceZfd5AgsMx+491EExW+qnmc4V43+u3VGjRe9RpMHrAhWtz6dftZ/vBzdJOAXhpy8QPPMv6Go6Raoc1LE8JjrX3aCyssPvMR4vo0wkA62KDbO89HHvu3l73PMF+/GTE5ThFUWHp9g4k39ZmIBvSweNIwF3S2YdfGvQHjnssLBVLTGPdoRBrQtHWFB1b38oF/9xSrD7wfMxy5XUdnFJcBiuy2jL/re9kzupHhnKD2ilWG9z/K2vuf4M6pCzz73tOs/urzXLjUdV57liFWBtso2qrVdFgCEylxJaOyp0pFLzM/vpcNr2B8PqTiZfjCEM9XMIVh0C7wWjHXvekA7/m9lP3/xOPj7+3wnf/3dX9ljpevhBjfhWabxx6mNXUEP6pipWBy4Q4unX6S/aO9+NogJ1sYH3RgMS0Pm2XYyMBwk2i6jqcM2kg0kmCqjjaS9UGF9ihGjrXwzkbULxiGU5K4uh/pBYzOnsSvNMjaazQO3ELSyLgwbOGNdj9UWc+rfOjJmwmXPGQuyJqOgRTgurd+L9PxYdqHFG+4/T38wref5Ph3/zzHgA8Kg0fB3JyiLnPOrQj+zY+v8eTDCaOBwRioNRVn8kk+1TlEoZ/Em2wSeJp99Q0Wgg16JmbB6/KWr3uIxx+5C2/ENq7ubkqS++xrtfnk6QeoHryBwK9hBhC+/A6ef99T7PvmuxzIzmSFepxQjxOq8yM6IzeynK73iabcaHjs5YyFQy7MhEyrlCM3X+AzHwCv0XJ5cc/QzSK+6eVDfj30ufTAMv5EjdHFNvL2owxSecUbyhW1MfmVJqsnPs3cja9DGIipMh7v4965b3L0xnGIjQOKVsTpV8cU7/UIoiHXTa4Tq5yl9WS7abhaVo1jmVGV7qADCoejLTN8NI8P9/NH714hOdFn9kf/IeGeiEPpY3zwe36fxW9LqD7YuKKTfcnEuAGDt33jp3lT8xk+8vQ67/e7vCH5BP/z35zhZ351gdnbb+JPO3fwW9/w56jEEm6WbTydDqKaEUSuWXxxY5Pp+XnmKl2eFYZirUPNy5BYhittpCeQjQpraZXhva/hI//x97jxnj1UYnjFvZaH+3rXsxo6AG+tYP3Ck1hr+fQH/zUAxmh0PqInNlCpxmaO6kNXLHYsB2GRlYJwskr7sR5SWAKvYJQr0tUe/SzAjkKKXIGWjD9jHayiA6endes9tI89il9t0DxyO0r6NOsd1ka13Y9UgCzxCJY9x2Iw7gYfisrORJ32BfqeHsFYEy+Q/M0/+07OjybQRvL1C09xa3yeVd3j3f9+jQyPn3vfDbTGJB95f8Iv/8QF/nTjKA+d3w+A72maYcJC1EYjHVgHih+b/iiveN29XP+rm2Bau6eMUqyFZ8+1GD74FLqAMz/5484z1gVmNOLs00MyoxBGlhCGhih0jpS1gnC8ytraKcaiYcmt1iNZ7aOJ+J49n+L/rB50cbYAW0jWh1Vy67H3bTew+BfPoFo14rtuYzSqIXODkGCuwAsV9ovU7Ms2pu+z1n5ICLGVSRoDRsAJ4BbgIrBZvhbjsqQJsAeole/zgeuBHHiufO/twGmgWz6uA9cBn7nsEBbK7zyJU8UBoAVsJbxuA/7+bvWBCiF0eWy9y56eACaBs8DNwDNAWj5/oHx+7bLH54FV3HkdwJ2/Bm4AQuB5ICtfszidbcmtOH1vAovlc/uttVNfsZO8QinXSQ/YBxyDF82XHgIGuM07Ay6Vz19+7T3gKO4828AUsBc4x47eJtlZR1vi49ajLj/b/6zXrwa9nP08Lx0FzvDiNXQIp5+LOP2FuPPrAwdx53i2fO4QELBz33y+7/tCcjXo5GpbK1+6Tqy1f+kP7kK88bLHe3HG8f7y8Q3A+3AGYB34MHBH+dok8IFSQZ8Efhz4xGXf9XdxN30b+Bbg9cCFz/r/88D95Qk+D/wAlB0J7vX7cQb+i57LS/Hz2fopn/uerfMEfhrYKC/mzwEf3Tre8n2fBP4T0CnP782Xfc/9wL8BHsJtMn8CTH7W//qxUh8Hd0sHX0Av7wfe/Xme/xZgCfg14Kcue/5F1x54a6mPDvCfgQeAd362fj/P93+ovCZit3XwV1xDTeAXgQulDh4HvrV87RacA9EHngD+yWfp7nO+72r++V95rXxRD/SavHQihPgenDF99Rd4/X7g1+xf4l0LIb4L+P4v9B3/O4gQQuIMyXdYaz/yRd77K8Ala+2P/bUc3DW5quSve61cHQPC1+TLEiFEBfj7uF33fysRQrwFeBCXKvoRXBbz01/kMweAtwN3vtTHd02uHtnNtbL7Jdtr8mVJuWhWgWXgN3b5cF4KeSUOgG4N+DrgG621oy/0ZiHEvwaeBn7GWnv6C73vmvxvKbu2Vq6F8NfkmlyTa/JlyjUP9Jpck2tyTb5MuWZAr8k1uSbX5MuUK2ukb8Y2thPQHyGCABMorOfmTV8kZR+qFWyb6K2/7RbY7RafkS3ffvnfl6HpYB2BnEwLKDRYSzIfc8PYEkIILpwvWN+4wvmrr6CoatX6Y+Pu2IsdNCAry4kcD4ewLkAoSyVwXPESu43FODQBmfEcraoRFFphCwHGgTDLAlTmIOJEbsAYsA7myeYFwlNkk5Eja7NQbGygB7uHnjE5ruz+vR4WeCFtka8HqNxuN4w7lCSBkaW+7GXA3GYnpeRQtxzrwfbUjAHjuxHeLdQlo0peJeUQ7YOwYCHcpLL1/8oF+ehn0jW7iz2PXly1amrc0Y0kvAgA2sqd39YDlMFTBoTjEdtiGgikJpYZgSgwSLQV5NZDW0lR0nZsIRXFKscg6GchppAIVepWWGyqkDnk7Q2KZPfWSiBjG6v6zhOmxM/4AiJ8D7QB5TjSbFG4tRCEoLV7fPn7hXDMudb+pd97uSQMyGz6Jenkigyoqk5yX/o2mJTog/N0D1XJKzugHsK6KRQr3XN5rWRixC1us/XfhANrVAmoRBB2cNM82m7TWrgPgZdaVGapnu2jVjqYdgfRmsf8hz6/dPg9fO3XrF3JKXzFxW+Oc/CdP4TMwRtavJE7z3RCMLg55ci+JRqBA8CYDAa8tvksh/xV6jKnJSGzlks65IlkP5tFlZPDaU71Jljp1ei3Y2THJ1qWxCuW5pmM8EIH1jcxvT6yXsP2B5gkQd98F2e+JsR6lks/+//sqk4O7PV54P17+ItRyD/87e9j7oEdOmqVGYpYkoxJvJEl6Bm8gSave3gjgygMJpCoxJQo9QKVFBQVn3TMI9wsSMc9kjGJDgXe0IF66wiyhiCdsPgHe/ydGz/FD445qDYl3C6u5k5+vib2vzbxW+PM/Mg/QqWC1nEwAeQ1QV5jm8upqFiMbzHNgv1712iFIzypmQgH24DZoSqYCbpUVEpFZqTGp6NjhjpgOa2TaJ/JcMBM0GU9r/LnL9yEOVtFFJCPO8YDvRQTbkjO/tef202VEHsN7pv7dvfAOmB20+1hep9nBkAIpBdiKVBzs+iVVaxOkZUKCIHJh6V3JhCe74ytUpDn2KLA2i8y+10yJjxoPvQlH/8VGdBwo8B6KSKOsJ4DxN3muikpFLykBMYNnPdkpaOqsKFBxI7KQXXVtvFUWxxLW+dQAuHKAlS+87yuBMhajBgOsecusfI7t3LqR2q4wtvuyRZ1hN+3Dr7tCGQzOdXxEe889ARHoiUUpuR5KTgaLNKShopU+ChSCiKhOeC7Ia/5qE1auvRSWHoqJjEBwkjiTY9g1dvx2NLMLRAg+MwZqrffSP/Alhu/e2KxpLbg3We/nvFjFmEsWU3hDw3GF6QNRyjnDy1+T1NUFSo1qFSjQ4XQFh1K9xNLwk2QmQY8iqrC7zsgGR0IkkmBN3T6F8ZiAsFoI+bT7ev4zuZTTMh4d5VxmVgB3kgQbLowrKgIjAdFbDGhdXxQvkFEmiAqWOnWWNQNwjBnvFIjVAXN0qCeGU04PnMEqfaYDPsUJRVG3UsZ9x3XWE2ljNWHrAYVgoFEDyU5IVQ0rF0FGTwpwPcct5qxLrq63FOUyrG1GsfaatIUoRTLb9mLP1xg7L3HsEWBiEIYuHN2nmleRmkSqzUydqhTsl4HrdHd7ucey5dRUL8ySo8sg1Ah4hgT7sTtW2E5woVT2hfbgBKqpLI1VsIowO8LZAmkIYwLe6EMZ8owXuW2DO12UMXzmoe/IbGJm6Gf/dAyP/y134yDKt09sdLRUggD6ZjAXDfkwNQmM5Uet8QX2ONtosrp9EgUVKXBF24u2ReKtNwVlTDkVuELzVzkLm7s5ZwHurkkH/hkNbfgbVZC+BiDUI7z3A6GxGuG3mHrAFt3WR5KI049upf5tiavOPpioSGv7RjPoFNgPYEOBfFyjgnK8ysjmKyhGI1LtC+IV3P8gSEZV4QdTdTWzhi3BHoMVIJD+bdQVDyeWZ7l2Fyd18cGbc22F7qbYhWE6wJZOM+ziHaAV0ytJNqLC6q1hEqQUw0y2iN340de7vif7A4IcKQcoWDgJ6RleNfwUqaCHpN+j7Xchcb7GpusTtRJvQBRCFRPYX1LUdv9dQIlg6sQWGFBSWSj7jzGvEBWK4gwwKYZcrxFtneCxVdVuPFrn+e5tWlUdhON+086Z+IyEUGACAKXEhjmmOEQ4fnOhsmv3Fq4MlZOIRCBj23WKCoK4+0YTysBs5OLMv7Wj8UqiwkM+JYsFIhCILRAaIk/cLkvpN3OHcrChfNbN5IOBTpQqLRG1B/H9gewtknvwZvwd9vdEi7sQkA6bpkZ7zIWDtkTtanKlNx6+DIlKBO7iRVoa0lEhsIBA/hAW1fxhaapRiTGp+ZlJNpntt5jNAowoU9eARv6yMDH9PtugZQeqMly4tUCRx6wu2KBX197Jc0T7nERSxeel/lsYSHoGWRhSBoBMv+sG1lAXpV0rpMUVYsJJF6qCNcyvFiS1RXRRkHU1qRNj2wMkglB2DFEbUi6klE/5PlsltdEFzDYq0ArbgMJutat59DdJ0XFYj2LV82RyhAEBfUoJfIKJqIBB2objLTPdNTDWEE7jxkPhgD08oiq5xyKrXx6KAvqKnGc555kaAI8Ybhl3yJL/Tpra47212qBSnz+irTof3URzgPF2u0Q2o41kMaQHN3LpdeE5E2DSgTBkS4/cMNH+JraM6ybkJ8Vb+XpG1rUzswhjp160Xeq8TF3bygJa2AGA6zWUAgwX2DjEFvFmy/98K94EklEEXkzooh3aIW3eWhwiwJcHlBHjqbBShBWYDUQGmwIouthAkte3cqhitKYugUmixIrsUysyxySSR/jz1A5sYbt9lj46Ijnze6GaFZB0TBgJMVYQS1IiVTByARczMeZUH00gqrIyFC0ixiNQGFpyVFJqufOoaUGKGXJrWI5ddTOoVcglSEPLDqSmEAhtXaep9YQBgilsFoTn2kTbEztOsi0xvLRU4eZWXchuxWuCGZlGXloUCON8VweM2yb7fDJlMWi7n7FaI/GhgbwCDcVfk8RdAoG8z5ZQxF0NWG7DIUDyGqSeEMTbgqGI4/nhrMUjbPIq6TZRBbgjSCvlvdJWVg1FUc0PFYfEigHIOwrTaRyrquskVtFTSXsD9YYGoeYnllv28Ps6xApLHXlyBilMPR0jC8KtI2YizrEKmcmanAqdOhOF9daqCTY9XQPQmC90gOVEmEMaMvgFQdof2+PN+55mvmwzaTfY9rrcnOwTEVAJnKO1FZ4onpk+54AEJ6H8DxMp7vtXGAtwg+weYZNvwiJnpA7hvRLkCszoNZiW3WysQDtv9haG89Bc+nIeaXpuMVMZTvhpBGuKBS6EygKQYEir1uEBa8vMIHA7wtUCmkDvIFj/tzmuNHWhXwTdVSaEZxcplvdXURthMXrSrzEQbHlRtEvXKi1EjojuK5rtJQrAkhhSIzP0ITM+h0kjma2p2Nyq9A4r6HqpRRWspkqppt9zg8CrApdNdrzXG4nLxB6J19kz1+ifnoKdhkkN7fAmQoqLUibCmHddbRlescfGZACUxpUlWqsJykqbsF393kMrtP4kyPCMKcnqgwGAcIExGsF/tCS1aSDBewZ8o4inXBFpHgD4g3LcNnjic0FVqc+xpyqoO3uAyoDyNy6DgSF4+opQESaRs0NztQCxx5Z81IaXrqNm1uRGQpLXSYoYZhVHbp+hEGSXcZr7lJBHgMT0tPu3ri9eo6OrlJXCVNBj/W8SjcJ6bQirLe7u60VAhuUZkgIrAFT8Vi+RzFXGdHwRhwMVxhXfWa9XsnkC1VpaHpDTGjxL25QZC6EF56H1QabJCCdXrYcjM8r216nLX/0FeVCr8yA+j75eIWspjC+Y0CUuctZCgNiw1BEAu0LVCYYSh/dLBCBYWyit804CDD0NLquUJ7GGEG+GhOtKJcTNc54hm1D2DHkVeepWCWwUjCcj6nmLcSFZRJ/l8f5BahUoAMQ0jLMfbSRjJTPUtpkM6/gSbPNNFpRKblV5MajIlMC4YCjW2rIvL/JUtFkaAKa3ojMeKRehlfRrNWrFJWQvOYR1GvILMdaizm0B5FrOPYCNi+YeKLLLjPVklqfeE1gPEFeEXiJRaWOSdUq8EZmm7bYFR8tReyhA0ERC3oHDd54QrM2IlAaJqFnBUXNIz/vEW1aZG5JW5KgZwi7hqIqKSqQVyRB3xCvSs6vtXj6wARz8Rec6vtrFWEgr7r6wFZO2O8L8lRRCXK0FWgjqXgZoSoIZc5aXmfS76EwtNQAv6SvjkQBMnHki9bbpiuWpbeRW8UzZoGb44toK10qqSw4hLLg+w9/gvc2buPSbufLBZig3ACEACNJpkOyKc2l9SbDiYDfX72LQGq+Zeoh7gpXGFrBho44GKxy6I4LdO/eQ22jjRkMQcrLagTafacVrhBlxecaR2uRUYTJcvf+K5Qrsz5K8v9n78+jbNvuuz70M5vV7rZ29XXae+495za6raSrzpJs2UaWWxzZhucHCTwChpjwGCTkQcDwzLAJYQQYvIHfAxJCSHDcEmNjG2MbW7IsWe29un13+r7aXbvfq5tzvj/mqjrXxkY6ArlORu5vjBrn1N619157rrl+69d8f9/vfCWkSvzGDyeOdCtHTQpEZXFSYtohs9UIJyEcCWarISZx9Kea1voYnCDShiAwCAFloTHjgM55RThyNbTFoDKLnhQI64hCRdkKMHXZQDgoFhPirQCqI07PxJ2ut7MCVWPw+rOEK6pHL5rSC2eU9d1wZiI6ekY3GDC1EUrkSOG4kK/yr/uPMSkjTjb2SWVBaRWzKvQSDUnOXs8yPq6J9jroykAUsPe2FjpzLPRXsP19ZP/oHWjhFO2Jw9bNRDV0PtJQft9ga2yn8nLPVkmqROKUYHJMYroFSVwS64ro8Mewq1uYKKC6LQkHDp05sq4imDuifcds3TeVgjmouaMqNFeKJWxyDXnkuap3oDa403SUFcgCgr7mZrDAwuKEXBlWdYGuHWFuNdtFGxtIBqbBMb0PwhAIixQl1gmKN51w6zx58vVyka6a0pUzpi4Ek1I6TSq9rPhD0W3kquPXj3pZpMCGyiNLLKAFsyVF0J3irjT4N+efZuMTBfmC5s9/0wP8wNf8Ast6xNgmKCzfsf48v/FfzXnu6Uc59vGS5NmrSGtxTuNqWSFnjE/NgQO1YITwj1mDMzWu+iuwu+vCK59y6azGZl6fkS3FDE/HvukjBDqzqMISTiQ2gHTTp/fpLc141sEsVGRJibUSMwwI+4rmlqBzpcIGAj01RP0cGyrypZiyqTABJLsV6dUpxXJC0VKYWILW1BnO0ZkRXpIiqOvhytAKc1bSMQvhnEAaUlnQ01PGJuZq1qOt08Ni/027wC9cexv7ey10XNJMc26MuzTCgvV0xLiMCKRhrTlmuJEwmTZIdxJa4wZOy8NzYXst3PYObpahyqNdktJqZIHXrMJnKFWqKFP528HjAlRhMYnEBoIqEuQL7hDwnVWaRJe0wozVZExlJIOixQywgSTd9FFc3hEEU4fKBGVDUEW+6884YLdqUTpDJI6eeMwEYGKfuZnIISqBnkJ6U2D2IqadkOGpjHaU8WBri6bKCYRhs2gzqFIMgswFLKsRqaydJxLrJEHtVEscm1WPzarDY/F1ABQOJSyBqJDCsZW3uVIucX+4RSMsvsRRf3XNCbCh9FDGA5x/LQV+8t/khK/ewG4ss/V0B4zlc+P7eEfrKhMTsxoMuT/c5uuPvw7fC3/nQx/m2X/+OKufGaJu7mL2B2DvQJr0yeNU6wvIFy5g5/M3DaN85Wtwdw5UisOLQM8tw7MNpmuSsonHczmI9xTtqxWNWzkmUYdQlCoFPZE4pSkLiTCC9IYiHELSt8jSEe4XOC0pOiHDMyHZkm8kqQyKdkArlCSbc4pWitUCu9j2zH9HaQJM4qhSCcIRqQotDLGqaOs5TZ1zbd5jr2yghKOyit2iiRaWj+2f5dbNHmKqEL2C95y6wsnER5838gX6RYoWlvV0hBaWQTfh+mLsSyihRhYVwcyyf07jZJvW6wKsQRZHW++b28CnZrqepCodVSKx2qfrTgtk6Q4bjyaUOAFV6tdSaEuoK2JdESiDFI5ElZxd3OEVo5jKlAzQM0m6bTGxd77xnmO26ssACFATya28S+6qe8KBusAPmsgSqgbkixaTCFqX/WOyElTThJf2T7H9QJOHe1s81NjkRNwnFhVSWHaqFmMTH9Y6M+eF5M5Gm7TknM2qy+emZ3hXw3elD5xuV83Ydm0mJuaV0RpKWB4Kb7Mc/C54yN9PE2CVAHVnCi3pG3aHEXo8w02muGiN7kVL2dL8ynOPsvdwg+9eeYZAGFKZYxFIHPenO3zihKOx1aQJyIU2Yn/kS48nlxiuRQzvUyx130b4K89+RSn777S7j0DrckWZSuaLNZi+8mBgF8Dofsd0Q9G4qWneMoQjg8odeVuiCkkwlRQdH5mEI0h3DKpwlE3JdDVhclKQrRnAokeSaF8gK4cwvssahQpZudpx3QswDHChw8RgK8mV3R75XoKcS9xiwerKkIV4jnWCXjSjF84YlAmvDVfYvLqIKAQL9+3z/Q98grdFN9k2LW6VC/4CsQpiWI+G7JUNlpIJm902ZZqCllCAyi0mhP1zis5nF3FZ9tvGIY/C8lIjjE9XhfE/JryTK5pIIAvrj9NxWBOsYgHaopSlqDRxUGGdQArnu8w656HlLc7LZUY0ma0LVCYIZh7NoTK/Fw9T5BImVcjRq0R5c+LOmgDYhZKiK5jNQxZfMWRdiUwF4Vgxv7jCZ1sr/Mby20iOj/nakxc5Fe/RrxpU1m/60mmksHx6cIZxy0dku1WLD7ZeoyEKpi48bCi9Ot/gucFxetGUl2+vc2vS4V3nLh5ilI/KnBDYg1q48U40HFU034i5+aEOx+xp9PVd7JmTcGYK84AXb23wdPcqx8M+pVPs2YQQQ6pyqrbBBBJRWSgrtr/lDJMTAlnA4tfdZnJtCQg48UwPs7v7FYHn32x350DfNH/85kkjWYASgirw0xRlYhm2BLN1SfuipHW9oDmukFXIdMNHG8KAyhzpZkHV0ExXFZMTYFLvOJ2AYCSIdx3RyPoL0TqqhkZWzsNd5FEXcADnoVdFx+EKiW5aymaJmMTEr8cML8Rsni7YONantIrMaPbzlO3dNjKTxCfGfOPxN1jUE7ZN6xCmktkA6wTH4gGRrOgGc7rBnDeiFUxS1xOLEj0ucSr0oGjn/Jzw79Vx/P1aElPj+RSovJ5GiwSqeNPE2UHKdoAjPnitcsRJceg8Z2VIrA4aJI5WkHN2cYcXsoBqLpkel7SuCPQcqsR/nlUCZR2yEIyKe2cSCXfHeQoDKrQobZg/4NhOQ3ovO4KZDw7CsfGTWKEAWvzW8tv5ZAjTY5bFB/cYLKb0winr4ZBLQy9lXNnTrCYjpLBcmK3wcn8dgMIoZnlIEpacae5iKsXeC8t8av0chjeObj3gMFPBgVD1sIXSTB/P+O/e/S/5x9/0QfZ+6TSTx3O+9vRljBO0dU6/8rjpg8bayMbcLrqouSTdLpF7I7Jzaww/POWPPPwFfvJffB3Xry5x5swWl9QKrPQQ+/u+Pvof4ETvDkjPQfHboXJHMPPRRDi2mEgyPi4pCoksBcmWo2oIskVQRUBjsyQaVIxPhZTrBWKqEZclMq8wiz6S7FzwnzI5IQ6nJIT1i5renuOE8A40dzipqBJ1Z77+qMyJwzReRobj3QHvPHON1beP+PzoFJ984wGC2xG3qkXiXkbW0hSVxk4DVAVpVPJc/ziXp4s80Nght5pRlbAcjpmbgKXIkta1sO2yhRCOsgFlO6RqLCArezgB5qrKF86POAI9cIrg94oNPU5TFXduwODPqw19Oo+DZNfizmsmeYf5csZCZwrKkJmA/doRamkZFzFSOqK+omxZskVJ47b1UtFx3S9wfqx4d974/f/+v4cdXD/g4UvWCFrNgk5zTrxRcX15ieRaUM/EHzKhYJX/Lt3XLa3rsN9f5nPvCHhq7QZNlZOXmuc/fZb0tuCigt8SEPUd2ZJgvmZxCyXnTm7yxMJNzsWb/HpyDrWZ8HOXHmN6F3PfXw1zBw4UwPmYaLqm+NC5V3gkus3fuP/n+FML/wXNFyM+nZ7myWM32cxCZtUivaUpm2WX607Rr5pcny0gjGDwQIh98BSDRyv+3KMf45H4Jj/zjid4YGGfwijavemd5hLcaSx9BXbXEegBK5AqPJQkvJ5TNoPD2mjUFx676aB501I0BfNlCSIg3SyROVBK1EwSDS02VExXPKuTkw5VOjqXHOlWicoMalpQtSJEbpDGUDU0NpCouf/y+qgRKnX4JEpBlBY4J7g0XWIUxfTCGSfX+1zNlkmvBsyAobJ00rl3GJuSyWQJd8MxzBzX3Flmq5KyDeXZOadW91iJx1zPekyriHHlAdNF7JhsBLWTcET7nkzDTaZ+VO1esZonwGpxyDZ06ECl8ExVAmzkMw5poPdaSe81KJoxeSdh85gg3yhpLk3ZaI+IdMWFW8tErycsvVQxW1bsP2yRpSTdsh5UH4Cag8xhmoccbUX4t9vBpJ2eCYpCEocly+mUxWjKw09u8oX1E/R32iAcooYYdRemDIcpe1HsS1nrBe9Y2uahxhZKWLrpnMFyg/FKHf1XAvG6d8SyELjdAHnKcV/k+Racg8lpS0NZ5iY4yuUA/A3iYG9YIRg8VvEnVj5BS1QoOWf1XZtsfX6NpfaUU2mfjprzQLzJMb3Py/lxLufLxLJkUCSsPL7F3ukGxWbKqQe2iWTJf/vyf0L2cpc/9j2/yP904wMUX1zAXXnuPzh9h69EE6mmIqsSQTry0Y7KLY3NgoVnhlRLTbLliJsfkvRe8KF5tuwIh777GI4dQV8TDL2jRQmKrr8D6RnsvNN/zNl/nlG1Ira+rsv0XTPO/Y0cF2hsKDGxRBoH1qGnX4Jh5att0iGaFS6TSOm4vt/ljd0Nom1F57wfSe0sSt9IaWiWz0xYTiaM1yPMtQXiXRieheTBIcc7Q97Z3MMiKK3iA53XUcKxU7W4nvUYljHG+vHGrCfRM8f4tMRJWP28wc78iN8dOqujMxPccRa2xu8e1mZd3Tio95IJ/cWjcke8nbH7ZJP5siDddLSuOKJ+wPhsi7wxQ0mLHQc0bjlk7mjerBic0xRdD5uLBr6RRD29VhqFuUdUFw7p/AwoC2Luqeckjl4wZS0asnFyyP5GSr9IKaxGC8vWvEWoDfNWxnQW8baNLf7o2mc4G+xwverSX2qwGE/JTMD2tEllJOEJQ6wrYl3yrasvkcqcmY0onWa2n7BwZp+HFre5etQpnLjDfXBAS7h8Yp8NNSMQ8Fx2nME8Rj444f7OLu9tXuCRcIuW8ID66+WcuQmYVhGxKhkRU5UaYQRbwxa/FD5KJ8n4jm/7BGMbszVusfbZEltzatw5jq8sCr3LSaR6zr1uJlktCXdGTB9a4eofspz+iQWi7Tm7jzV46h1v8EJ2lnhHEA4hmFkOae8qDuedwyG0rlqKtmB6TGBbJa3FKf3HusT7hvEDBnkzoVoCEyuyBeU7rPMaHKvugTooIEvBZLuBnCmCXFD0LDvfWBImJfk4QswUTjnOtPZ4snWd93Qv8/GFc7z8zGlUIRhvtrhmJavJmPd2LnI62GHmIkzdJZvbkEkZ4RzYxJdMnBLY0CHOToh+3U8nCSnAHK3DENJPHfnyywFCgcM69sEIo49O/WucxFPUhQ32H3bYbomJQoKxr2vKTKCkxVgJyjE9JsgXgvpzHEXXUgwl6aZFFZ6pSeWOEl+fvyfsIAKvIVwyF/THHp2xEDU4Efd5IN4iFiVjGzM2CZnTPONOURpFqAxlpehFU4yTDGzEtXKRlsr43tXPkbmAl2fHuDRborKSjWTIg+kmJ4I9MheQuYCb+QKUkg8eu8h6OORnqyNmCRA1f0a9HyYnBH/o+Cv0bcjAJjRkzninCUbQPF0QiIodk3DFRgxsyhdnp9jM2mQmYJAl7E8TzDAgGknKaw1uxznfePwNZibkb7/4TTR+uUnyWy9jfmcHXkg/hXSXdnc10DpyMJGfqJBlgNXLyNISX47YexTCQYANHc9/6iwImB63tC5LwpEh62nKpm8+mdiRdwXxvqJ5I2N0X4xTgsb5EPFSSNEGJxWrv+UIpoZsOfSfHQo/+eSOfGLxjjnf8KraguTUmEdWNhnmCVf3Fsj7CThYOtNnIZ6zGo14MLrFopqypEfE7yp5/uYxtJF00jmhrJiYmPNujdz69GqrbHNr1mFv1vCTZ6HFScgXPGtVMQt9Z9tZnJVHPt8shHegsqproHWqLo07bDwCNUdo3aF3/uLJVw3x4pyyVFRNTTDxEDhhBOM8ohEWyLQiW5EEIwnW0yJWCxVlU9aNK8+ngAAl7dETzrzJ/Pe98/98GlI2JaVVnrEMDz1KZY5xksxo1uIRN8ZdpnmIUpZIGhbVhLFNuJit8LbkBi05Z00OONHZw7blIf+CFJaxjclMwMyGvDZeJVjIeCS9RSwK4uBoQcOOej2Eb0bny4aVYMSPbH0Dn/z4oyTbAr3i6L0Mv9J6GM75123OW8SqonKSSRnRn6f0RynlKEKUEhs6gqFkOGrwU59/muYbAff9/Dbu+kXM/Hep+32FkKa7xIGCzixV6jd1viCpEl+La1/xfIxVLBBWUC0XkEvSG5po35H1FPMVSRV7ELGfQBEULQXWE+viJNNTFXqoiPsHrE1g2zXzk/YXmxrWFwgcfSfeCVymPK9pJXAOLg8W0cqQRCXtExnnFnZoBxlaGE7Hu8SyJBCWc+EWX9t7g7e1bpNbzbV5j8oqruU9UulrmbnVDMqUykmSerPPQ08CUTUtLnRQSJILO1TOIZQAdbR1rTQoKRuCYOLq2e83QZpsPQuufVpvtfDwJQllx4K25PMAV0jCzGc6xgMTmBcBrSgnSkoK5Sh0SDBQ6BHIqedVOGhImMjXXtPwiKcK3mwHNeHABxAucDgHw2lC1tT0qwaRLFFYenoCcEiivJRM2R40aSQFy+GYVOZcy3ushwO6akbmAmJKGqJACUcgLJlTjG3MnmkyMA32ywa78yaPH7tFW84Z2YSunh3tmhzgha3DRHD83zr+ly9+G50rBWdfuMD2dzxA9vSMbLPBmR+x/Mp3P0lwcopSlmOdIYkumZUh43lEOQkRufT7rKoj252Ixqbk5E9fx2xu48r/uCW/u07hrRaHm7Rog6xHK530HIfFgqFxYkzDCabbDU9HFgBOIHPPLqUz/3pZ+UjSRhKrPVZLlIKqY5gmkmAiiPo1KxMcgrKF4Q4A915Iz2TdKR37COJEe5+TjX2aKqenpxgEl+fLBMKwokc0RIF1gpGNWdYjbuYLpKrgZNJnVCXMTUBhNaVVTKuQSRWxnyVYJwh1hdLG37TOK4oONG45zM3bnjxBKc9uc4TWUnOqFIIph2WbA5OVH/E8iEQPpF6swlMe1lRrGM/iZGKoYuf3V6kwVhJog5SOQjiqMkZPFXoiKJYNNlCHrzORo6crgnuACxQ4LGMo548PASoyGCPZyxrsRE0AVoPRIZxNCst23mJn3qCcBxSBoalyxtYThZwOdwmFwdRR9sG/OMnAJoxtwsA02C1b7JUNAmV498JlCqdQWNwRR+dO+MDIOe9H5j1FY9swXwrg8ZO0blYUX2iQLTmEc5z4VcONr2/Se3wLi2Br1mQ0i5mPY0SuUDOJiR1lxxLv+H2RPz7jijjByrOrJNdHsDfAbO/87jVPqRB3QX549yl8IA7p5Q44P52usX4Ni2tVVJWiLBUiNohK+1HH0EckCEHedYdEsgdOWTgPrC878s7CSo/t09RdVeNQ+Zs6uYL/KJ20/xAT0vkrAn9xzIYJ5+UymQk43ezXsKSYl/rr3NfucybY5YSyTJ3lU/M1rmRLvDjYQArH2zq3AaisYloXB0dlzCiPGWcRxki0soi6Y73+iX3kcIobDLHWIQLtmbePOOhKZEne8o1DE/lhizfLtHj5F3dYDzyIzEQpcdIiIs8h62tjzu+1mjchNwrrfD00TgrGSXj4GYQWW1OYOQnlgqUdZfcMnR34dZAZqFBQVQJnBWFSMckjtuZtElXSUiGpzFHCspl3eOH2BnkWoPYCqrRkYiJulgucDPoMbMpm1SEWPvq0dXHZIDDOMzWVTpE7zbiMOdncZ1UPsUiUsIijHjKor/MDjoSyIRg2/CBGmYas/MZtkksK000R1pFc3ifcX2Gr3yZJCgJlsFZ6DPa0jj7rgE7PfFZYXE9wEsYnAmTZIgLkZIrL839HQ0k2Usi/Sg4U/BdVuUdAS+PrF1aC1Q5hBKofkE81LrRgRQ2k9hFHMHWYEIpFA7Gl7IewWR946bGlKhNY5ZBWHIrPWQ267uC+ucEsLEeOeXQOT9IKSOMBkEI4cqO5NF7EOcHFzWXcTsTyU1MUjkBILpUp1kmebl7il648Qna5xc37O6y3R8TKj+1VTjHKY/rTlKqShGHl95mR6CnI3SHVLe90Reh5QQnCI3egAodpGGyoMfUNF+40CsSBE60xvqpwmEDcmSISdwTo9MxHoqVyOOsZdVzN4h0HFWPl6mjOw35MLOpRSQeNiuVocs80kQ5A9Cp36JmgzAVVoci1JlCGeeW7yZkO6JsGuQ34+K0HKAvNw8c3eXl2nE6a8cZkhW9ov0wsSjIbUDjNp0f38w3dV1jTQ2xdOy9RlE6T24C9oklhFY+2bgF+UAM48ggU7tTE36ythvRR+u7714n7hr1HNUvPlzQ29wnHMN+JmcrI88VaQdDJKZVDjjSi8tlgMHbYniAY+zHf9rWSYFyAEMiFLra//9scqOp2YGMVLn35N9y7dqA6d6gS5j1xWNeShff0CK/R4ver9Pou5o62kQ2g6AoefOgmpVVc3zxG3vH0Y054PkcTO2TunaeaczgLL02d7jkfiR5MLxy5WQHWYxpV5isKZanZGnnQ+2QvpfVqyPihkuPpgB8fvIvH02tkNuDd6QVKp0ijAnVNwrUFLpzsYBdLdORPrKkkdqaRaUUaF+SlphqFpDsWs31nFE0ohUhiRBpjjpqhCuraFnfUSetmkSrEYRQKdURW+BuwLAW2jsqEcui5QFRQtX00qrSlFXm29lkZECiDUBYbOlxoUYGl6PrzUPVKlpdHPNa6gb4n+OjrKalaOVVldeOxJTGBYp6HVKkf+Z2YiJkNeX7/GOMXF6nWSmJV0lyekgQVD7W2yFxAQ/g6+bGgzytqg8+O7+cD7TeQ2Duz8jbgWt7j0mSRZpDT0xM+N76fhs45Ge0dvfusU/g3K/G6ukEspCBbgPFJTdSHvKsYf+tJhg8a1EwSDiRVw+PPiyL2pO3KoWeSxk2IRo58wQdvSd/DHotOiA4VMtQo55CdNm4+xxmLiGNMI7qrw797RnpbR5+VQ8zuhMsmFNiIQ20kHKiJwkmYrfooJBwLpqcr3r5wnYmJuLyxzHw/okpk/d5gQofD8yR6bKB3mN5x1tjCN9VBjxzyKABtqVJHMPYNpayKEIHFZYrG5YBw6Ai3Nb/47OOoZsXPpY8hhWM6jbF7oa/7PVLSvBjQe0FQNiKKToQNQQQOkzhM4MhLTZEHBANFsl3gysITyB5E560m5foC9oj7AlA31GQ93147zINUzWovPCJL33iUFkolveNrgNQOISxF2yIqia27tKaSSByx9iG2dQIVWKrYINOKMCopU19cbC1N2WiOeDK+dnSL8DtMGEfZ8NGnLBzBVFCOFZVyuKgiqzRz40d4rfNYYFkKOs+FPL9zlmq5pBEVPBBvAXClXAJgaiNORn1ena5zvVikpycEoqJ0mhtFj+f2jjOcx3z98Tf47OgMoaz4cPtFFuWMfyCOGEdNnZlQT/bWEEd8XAJAdi4jczCY1+4qMtjSEyjIosaXDyRR34v06Rl0LhdUqSIaOIKJI94rybsanVmKQBJIAXIBkwSorPKUersTRGm8xNCXaXfdRDowVQ+8WOVJ54VxmKnAFjU0QTuiXUnrmie8zduSoi3QA8VPvvQOoqSEYUAwdiR9P91kA0HZkOTLFjH0F56syZo9W40/AFk6ZOVqwbmj7sJz2PBQGYhCIMcBTvsLJN5xlE3fIGteCBAmAJEQDB2tUDA96eD0lE4zY1e3wYa0rluatx3znmS+4mFjWMjzADMKae4Jos0xBg65DkUYUK10mB2L4dKXOOav+pL4jS0NlC2BnrrDiwLujO6p3CArr8LpBJ4nVDuk8k0is1hQ2JBgLDGJ5xoY5jGhMijpG05CWmRaEacF7TRjRzYpuo7VdM79zR2eiqbA3UUVXy1zUlCsVITjAFH5PaEyQWUEZaGxdd1CS8u4itHCkm+URIOAjd/0+k9bX7fAjeM9UpnzaraBcZLjYZ/VYMhW2KZf+dHVQFTsVi1+a/cMV68ss7QxZGIitLB8uPsyF4tV/uf+g4zsvzjKJTnsdTgB0t7pi4j6/+m2Q34hZnTWIFoVjc6c2STyPsFAOPRBnZ5DMDMEU0t6dYQTgnytQcMqVGax2uOCbSBQc0veCwhC37zOF0OCicEe6xDeGHA3qe3dNZFq9hycP+Aq9rLEB19YVgdQJ0HV8cX/xmZJ9NJ10tkccXyN6KlFshsJTiakM8fSF0fI89d99/jkGlXcJduoHWWtzKkzd1gr88cB2IPqzVGHoN5s6Go2GV+DkzOJR4i4Q9hKlUI48M/PlwWzUxVrp/ZYTGbkRrOnm8gKoqHxzO2Zlzlxynne0WlAuKNo3La463XtUymE1pSPnSHvBXciviO03GmCkSQYgUn8Rve1bP99pLkjGngg9QFegPBAHwscOjRUSyV5otGLc9Y6UxbiOxg+YyVaW+K4ZLU1YVZ6Gr3m6SFKWk7EfZri3nCeUAcDhaRsOvRU1P0ECEaKMjEUlSeb6RcNLo0X2Z00CJoFowcFoGlfMXSfD/in0fu4/9gOrSDDOsn68oBYlJyLN+mbBmMTs122+MLOSTZfXEUqx6lOn6bK+UD7DV7P1vlfX383D61s0ZJHPQv9pmZyPWggDiSy6oGD1c+McarF6FFDVSmcFQRTiSw8mxtCEO+VRDeGcHvbyxj3FtDtCKd8OTAYFZ4/QkucFrXKhR8hLpoCsaiQFXTnTcTlLx8T+pXNcQmP2wpmPjqsEg87qVUrKLoOtAd5z5cC+t/1AAtv5MTXBnReHxOtpB7CkVnkOMOd3GB2X7tO8y1q7GP6YOqdsCzrNP53QGJ8sfnIqzgQOGxqKQ4QBAqovIMwsSAcO1QhqBIoFhxVy+ICC8qxvdtmc9ZDjRXpjmTxpRwbSSYbmioRHgaWWDACPVRE+4Jkt8LN5xywasulRSYnInDc0ao6QtvK2pwZeJ7XbMHr/6jsDqBezyxYV3fPHfOOomx6QhbgsIartMU5g0xKNnpDQmmwTqCl9Yzt0tBrzmgEBYkuuTVok5zx/Jb9aQpAhblnaqDCObqvSKbHfLNMz32d1ykv6zGdR9xSHa6PFhhNY8pceyfbLhg95BifVr4BdStivhJwprXLuIx5dnSKh5q3SWVBKgvO5wv86/OPwJUG7asw+5Cftf9A+w0GJuUnLr2D1c6Y71h5ntffzO5yJIvypi58XTc/cKI4yLuC6cmUogNJJ/MNxtzzCB9MdhVNQRhIxHAMnTYMR5jNbXSWozaWcIHCNALKhp9iLJo+8swWfMrvlC8dedrFBjz71UrhOZjyeFNH1fo0WliHzjzMCUDvaYSFYGqxAfQfjlBnVmjdrIi3M4/VSwOm5xbJO5JoZIn6JfliQHrbi9Ppea0PX0e+B7USnDvs5B71KKfUlkZ3TpYF2F2FHotD4LiTPupMtwTptqV1acrsWMru4wob+hl2k2iILXaloJrG7D8UMT7tm296BiaxCCM8N2pfkG5Zz3UICB2glnrYpQ4qd2QL8p6oC1eZRmeOYGrRGUxXFKqoA0sBemaQpcUGktmSIlvy7Fs2AJTDOUGVa6ocXOl15K9XPaLY142qSqGUZaE5oxNlGCu5tN9DSkeeBZT7EdHSnI1g/55xnuDlnbsXvZB13gVV1IThOT6LE578ZHq9hZ5KaFpoVWhteODsDrGqGBYxt/fbnGx5nDHA7XkHKdZo6JxIVjzfPwaXG3Rf92z9K50JX9M+z2bZ4Z9deS8rzQnfe+xznA52GZj0KJfEWx0YHUymIYG6aSws7J9VZCcKGMRgBMmNgMamJe8ImtdmmFQTXt2DKITK4IoC2UgQUQjTDGksNlqgaMnDHkrRFMzWfX9BGHHYxNIz4XXqv0y7awd6QGZ8gAflYETPgjtIueeCgwGH0SntGwU1h+ft92pk1fL1zQKaN+sOvRZMjkeUTUE0dFQ13vMgxXPSp4K/DZRt/Az9UVuRa2yhIHHEO/IQ41qlDicds3UwkWRyrEWy4yjblhOP3+ZMa4/zw2WuX15G34ioUsfgUQOBhVLipELmAjUXxLuCxpata8X+BMtGgjm2RLaS+MkeVdeUjnhJZOWdgjCOZDOjTBueD7Sqa12lRU0KTKKoEnE42uhvxv4Eq+2QcN+jG3DgdEDejDBNP60UNMpDsuVXr60itfWKtNdjVODf41f3H+U98S+zru4NTlCTOIqWYumFOaPTMZPjkmDC4QDJamdMM8x5eatJ5zkvWzJbiyjPWY6lQ97evsqyHrFzrE1ug8MBjWkZ8lu7pzm7tAvAlcsrdK8LVGEZ32/51pWLWCT/44X3kxUBf+jks5wOdvnZwdsZlx870jXxJNPuEMXjpE/fJb6vEI4dncuG7GZAlQAOVj43wDRCOrMS8epFtJSYmoXsoKGqF3u4RoKLA7LlFD2taN4o2Ho68r2WtsOuZySNAmsF872EhS9qVn+rz7V5/u854t9uX1EX3ksNe3kPao0kq+tGSu4I9z1o3sR1A0T4ek+y6xgnDrfhvWs2jGjeUAjryDvysCYEPm0X1kcrVaoOL6Rgajz200EVK1R0tF1EayTlMEJUApN4WrVo3xENHJPjkvmqx8rmC87P/y8IGtckg0vHeOPWGrJ0bCSC3SfxCqaxr7/4CR1JuC+Jdx2NbYMwjtmyItktQUhYXyFfSigb0msBJYJ8AVzTIIT4OPCjzrl/8vu9JsLeyVDkNKd5UzPZiGonLyibmmB3QjCQpDuasiUxcZ22VRJCS7VQ4aRHcdiGQbdKlLIkYUUcVPSSGa0w4xM/+ElstUbrez9Mcl37FG3BUcxCnt0+xg/xTfyZlY/xeHj0kaiODNtPS878ZEnvizOqdJGyKVCZn9vOKs397V3sgzd4rTxB45qicctht2Ke/dTj/ObJx7AnfZ3MzDXtxSlrrbFvNmUhr9xexVpJejng2sd/HNnr0Pzgh0lVwU/dfif7Nzt83VOv8mB8i5/qv4vPb52kqX/5aBflIG0/SJsOolHnfcx8WbD0+SGNT24i4hg3m+OKAiWlR6AEASL2U1l2NgMhUL0FkBLbislWE7IFxXwpQs8d8Z5j/20O26lYWxrRDAsuPX+MB//3MbxwHlt5tdsv1+7OgdaRTdnwG/vlj/1DZoPbvPPb/zpID8xVOcjiTr1SZT4a0zM/Fy0LQbkfoeYShZ+tD2aWouk3uKw7sioXh/hRlVmfiB2Cq73TzJYSInU07OtCiCtAGhxfR00kohKMPvcZdj7/LE+++8/QuDGn+1LO9nt7TI8LqthhQ4eN/Y0l3pVMNpTHxrbrBooRCOm48kf+Kht/579G2w3vPLcsKrPMVrz0b7g9xQWaYrVFtuCjuLIpKFv1jLU5WhyoiaBoCR9KlBXB7oywFZD1FDqz2FDQz29y/vKvMX5mF5QkWFml951/EP3oMZ+2K4fp+pBVBBbnBFI6GlFBN56T6oJUF5RbCXEEnZc14diR9QRFRyB3QvpFh+el42+X38zfOP7zR7om4DXboweH7D3ZYeVjN1l6bsLW0y2cFEQD2LqxQPbqVa7+k59mfLmPQBKcWOa+7/8Q5doD/ka9H+G0JejkrLXGPNm7QSoLWmHGF6+cQF+NSbbrAKNpQTquzhd57eUTiHbJY82bvJ5t8EvPPM65s7fYkUcbgBS3bzM7/wbpA+cOS0+jZz7H+POf5fifPHEsPQAAUklJREFU+nMUHbj5jYssP99AT0smp3zJwSrBfMnrbFUNWPtMjv71Z1CdNtk7ztSYT690UXQ81jRb9LpTjeuCcSTpP7NC+BnDuV9/4Q4V5F3aXYvKiRpKNM/2Ge9eRgUx/c1X6J18wpMt17WMKvIOUJZ+HLNserq6qmH8lEFqURPF6D7PqhOOHfG+d4Zlw7PquMwcNqycEqjcInODqCzCWLKuIFJHugGUHU2RpYftqBqTJkuHGs6xcUi6Y4iG/mSPT0uqlQKTCmaJQhQ1jiB0uLQiTEuiyGMcBc5zAYwsKrcUHUXZEoRDh93cRnXaFF3t1SxjQdmg5h1wHDmDsLYEU0cwqRBZgQPCcUnekZ5AZDrni1d+ikfWv4nuQ+9ieEIxGF+GKoCypijUFpWaw3G9KKhYTGa0Ay/DuhRN+Plnn6R5/QvorqF522ACfw5U4WvQaqTYjVsMRin/ZfZ/A/7ekS5LokreuX6dj7+rSfvqMtGL11hKNdtPJqgMwjcML/3Iv+T493+EztueRt9SzK5fxCnHH3r4WQJhyK2mdF6YMFElsSy5kS1wddhDbEe0rngM5CHzfSm5MFqidUExf3dGR834l1tPkV7VVA/cAwMX4HGQkjtT2QclqPrwsmXH9W+MEDbyDVoLwh5wcDiSrRrWJwSi2cRqQdHSDM5JqtRR9ipEIf100gA6lw3HfmUEl69jZzPs75ekhw18J1E4x+7lL9DsnaK5dJKdy19g8cQTiMpx8bM/AUlEOewz2rlMtLTK2nf9UeTaIlXqmF14nf0f/znMaETzqXdQ3dqk88g76T36Hrauf579lz5Dq3WC7VvPsnrfe9i69GmeePpPk3bXPWPLZMjHn//7fM3Tf5HR/aB/80j1f/4HMx7/LTfMkEHCAVlE1C+Z2AGvXPlVRi/dJNQNznXex6mH3sOljwbs/OMfYfnrH2H5m59grTGm/6vPcfFfvcF7/+F38it/5hcBuPVX/gHCCs4+8d3oRps3Pv7j9J56P/uf+w0Wy0Ueetv38PJn/hcm+9ewzpKcvI+l7/ouVK97B4F8RKam0osFTup6jHPoYU7YDSiaknJzBydgbfkJqtyhREBy7kFsAPmlHbZ+4acob94GAY0n7+fUn/0w6YqjG84Znd/mM3/zkwyujVlMX0TmOSqvPDlJ7G/WnsGpvpnPNFUCV17cONI1AQikYSmccOy+Xbbfucbx/jLB85foLDzI/lmNu7rjx5cffi/gMMcdcfcc5Uzyz35+i+FP/BT51S2EgNV3HecP/vVH2KPJK/ur3PqtKcN//L9ybX+H5cb92NWoHmZwzEs/zDHO/eV+fdBFljDOo6OfhaeeVqtHwQ/qoAc8oYNf/zVGn/ss1XSC7nRZ/APfTOvhxwAYvPBZpp/8LIvTDi9PXiEi5hH3LZQnT+K04Or/9v8lvu8U2evnKba3WUxOcjJ6P3pS8Ez2ayyyxknxwOFxfMb9Kmd45K6O/a5uQSbwdUcnBDtXn2Hp1FMsnXw7w83XKeajwxC8f/k5jr/twzz+x36IsLvE3q/9ay8tMJiy+4/+OYvf9C2c/us/RLi4zPz6lVriAFQJ4/514kaP933gr3DfiQ+xvPYEW7e/eKg7v7n3IgsLZ8jvX2Tp8e07d6ujsS/IKGLwyY/5juEB2H884QuXfozOQ+/gqe/5Qc6+54/yytavkn3yU9z3sxUm94QYrSgnVBWVUxRW0c9TTvzwnwDgoY/+Rb7mIz/E0sknybqCcjaG4YyvW/ljPBK9l2w1ZeHhd3HuT/01zn3fX0MRsPOvfgaT2KNeE9TcoecWMS98WCEEIi8JhxXSQNJcQiB48crPsrf/BmIwBeHp7KrYsfDBb+D43/xrbPytv0CxO+L2j/0mWliyHD72//p1Vv/Awzzx3X+T9WKNrflFwDc1i2Y98bbvG2+AvyjHAW7x6KVOrBPMTcjDC1tMzlRsvbeD6C3Q/PjrxHsOvboMQrL3P/4UxRsvod2Q5okRwf1j0JbWt32Ix3/0v+QjP/Y92L0Bv/kPX+P8aJmt7ZTdf/C/sb7yFB969C+y2nmY4cUXwEF7fcxaY+wbsFONEp6U2mlYiOfIe8SBIvH0fge8CfXjemmJY3/6z3Lf//uH6X3jH2Drp3+McjrCRo70Nsy2rhJNBV/Lt/NA42m+ePtnia6NWf7ijGS7ZP7xz/DU9mN8rf02GM94dffXcHnOBqfY5OrhMYzdgJw5S6zf1bHfXQyvPbv49OZFiuk+a4uPsRCuE6eL7F98FvARWG/jUZqLJ2nswdrykxS3bpJsQfWZ14iW1ug88ARhpll67IPotI2e+yZJuG+IdZPTy+9GCkWUCVaPvZ2d289BaVFZxa29F1hbeYrphuTR3qYnljhC040Og89+kmo28QDx0rEzPE/UWGDx3LsQQtFYPMZq+0G2qstEXzhPtA/ZrQYXLq3xhUunuLC5wnQWc+GZk1Sf6gHQul7gpGCyrjxblRA8yruxt7YJFhZxiy3aDz6O1CEqjFn6mm8ku3QJNZdHDqQXziFLiygrDugGRVaghzmycugg5umH/gTCwWuv/0ue+Zc/yI2f+J8p5yP0gx3C998HkUKGHdrf9AEmL15jc9zi1c/NqErH5OE/yPJndliL76cTrQIQjA3S1MJ1DuJdQbQrkXOBmkiaz8dHuSQAVE7R1nN64ZSoN2fwiGXvvWuIOGb5k9sEKubkH/tzoKD/T36Wy//532bnb/9zHk9e45u/fodv/k8c7zl2ixNrhnf80XNc/8Iu+1nC7AtbUBnWz3wAPcpoP/Fu0uUTIOFYZ8jWrEnWE7jQemmPccRs3bLRGFK4o1ZlhJ3/6Z9x9S//gP/5Kz/A3s/8zOFzjcefQC50EFrSePIpgqUlsuvXWPu0ofHZqwREnHT3I4VkZb5IwzSY/uIvIj71HG42Y82doGEbKCT38za2uI5zjiU2mDFh5sYA3OYqqxxH3iX14V03kbIFyfYnv0B36RxB0EBYWFl/ku3rz3DszAcRxhGFDcJhRbw5ZRRrTFWQLcF0c5/G/TGL79kkqgkh1E+3yBcEVgmEc8RB24/0CcA52gunkDJktHOBhJR5tsdy9xxX1xzH433sEYdbUgW07n+E/U/+Gk29gnAwc2PGw+s892N/1f+RA4xhzZ3AjMcoldF9zdDqapzQiFcV+RA2PmkIJoZXABseNJkE4cgSyhTxymUQErvao6Tkxsf/FaMbr2NyXwC3RQ6VPXIcKNahpiVUXjJWlBVUBllUqMzXaNtVi8fWvgWAnfWKV17+Cfb/xb9i8fs+wv6P/jzzV69h5oV/r2bsxfT2JuheC5XLwyGCWLUQs5zk5hgTdxCVJFv28Kdkx5Hs+Lp0NDzqwjBIHCejPS7nyzywssvNqMNutoAqTtP52AV6ry5gH19l+Q9/L+0zA3rDSzz3w7/Cs3//03z7f/sQ//Zvv8DVZ/vkU4OzoJox/WEDbl8naHSI+wVmqc3wdIC+0ENNBa9dX0Npi3rfmF6SE4sSJgF0C4wTDO4B2efl7/9jxA+eRTgBBiaf/gKTT38Wqx2Tzz7D6BO/QdXvA2CLguZLYxoXXmLfGmISxME4t3PEJOTcma6KSQ6LqwkpDkdBTiRiVt0JbnONM+4RtrjOY7z3ro/9rmfhp92S7Z0XcTg+829/yD9sDVU1Z9a/6WEJoWRyLGC61mW2v+trHJFDtduUr45oBD6dshaq3ZEX/2oI8q7G7GjKpkbltm5aWTaWn2Rr8zkilbLaeRglAmzs5X7vBTqu5fd+E5d+9O/ReOCDvt630KM1P8Pp7/4vAI9AWHxxDM+/gSsLZGmR56+zXG1TrrQY3tpHlY54Jz+MHrOuRgnoXKrIX9iBqgJhUAsLzNeb3LrwMbLRDvf9p3+eSLeZ9W9y8Uf/rtdbP2ITDuSs9CfYGNDKb+KDyNSByAsoKzCGxeYSvQefZvf8p9n/yV9BSsdj/+hPELRj9j55gWv/6JdpxTlqLeLG3hgTWNAKoSRZOSKVbeTeiDQNkVWMcIps0YPUWzdK9LhE3APCcoE0xLL06pgdeOXqOvFQMDyjSHZPkVzco7m4iokkg7RFeuo4xz/yMDd+4UV++e+fBxTf9398Pa7Z5BP/esLzf++TmFGIWG5RTYaowYy9dy0xOeEoZvsEvUWCaxHqoTHNJKcV5exUbWS3wIwDXtzeoMqOPgL14HGHM3gnWkcA1aDP7k//FGvf/2dIjp9GSMmt//7vEr5+G5uvg3NkzD3kqXaiGTOWuVPvzt7kTDNmCARhzY2wzile5nN0WUKi6YrFr+DQ72JjCSF2gDFwEnyg9Kan7wemeKdcALfqx1vAfcAL9XOPAZeBAbAMnACuAbvAIrAEvP47PjoA3gaY+rWTNz13yjm3/GV/if9IVsOY/iTw48BV4BSwAMyB8/jjvQns1y9J8OuVAceAZv13AXAWz+J58L2fwH/PUf37m9fwwI7X73kBX4o5DXSBZ+pjeZmjwoH6fXL13/MnMdAB+vjvHeD3zxxP1GTq1x88HuK/uwAeBbaAnfo9zuBZZW/xpe1I9sqB3aPrctRrYvB7ePymhw/8wFXgEfxezuvHT9eP777p9+v4792tf38Bv1YP4plk3sD7pNP4EOXymz7rUfx1uQ/crh/78tfEOXdXP8C/Af7u7/L4H8KfsB8FfvhNj38dcONNv3+k/kJD4P8HfBr4T+vn/jjwyd/jc/8tcIXa6R/1T30s3/im30/gnePH698fBH6xPrF7wK8DT9bPLQG/gt80nwJ+8M3fG/gz9ckc1Ov629aw/psN4OP4m8kbwJ+uN4eun/848CePep1+j7U7BvwU/gYzrf/9x0Abf+N5pv5ezwH/9e/YP+8Evliv3U/WPz98VN/lrXX5D/7Ov+06qh879APA38TfUHbxOLTfONjX9d99CviR2p+8AXz4Te/zceBvAZ/DByM/Dyz9js/6gfq6OfOVHP9dRaD/sU0IIYEbwB9xzv17Z8qEEP8UuOWc+4Hfl4N7y96yt+yeNiHEH8c70/f/Hs9/nC+RhQkh/jPg+36v9/hS9vteABFCfBPwWXxa8t/g04/PfInXnAY+Cjz11T6+t+wte8v+r2FCiBT4fnwm/BXZUYwivBe4iA/Jvx34Tufc70lKKIT4IeAl4H9wzl3+vf7uLXvL3rK37Mu1OpDbwdeNf+wrfp+jTOHfsrfsLXvL/s9s98gw7Fv2lr1lb9n/+ewtB/qWvWVv2Vv2FdpdNZFClbhEtvwvQoAU2FBjQ3FIInzAOn4AhhXaoZQ9pOwHkML9NhIDIe4wsTgEzvm5YWulf9y+SefHeZnScOSZ2eflkKKaHRmaXrUaTvcWUKFhMZqha8acA4C/wCGFQ+JQwqIxCEAKi6r/yqsXCIwT2PqeZpykdOpw1M464d/XednkYOilMmzgKQRV6Sgbgs7ClPHtCdP94sjWJJSJS3S7PrH1uT/4V9WjptZ6OZaD8554VmVRGFyoMJFE5f41wlickrUEiN9nwoIsLGVTQsPQDjO/7ep95xBUVmKcODwXw9d3dt0RYh7DbuJEe4loz4L0rGM28mTCwoKNHQiHyCXHe3uEosIimNuQYZXQ0p6cxTpBIAxSWHbyFpWVdKKMReXh0RMbsTVvI4QjVIZEleyPG+gZXum1AtNw9BpTtq8WmMn06K6ftr9+ZO5ZtGRusaHEBF5C3YSiJtSuOWarep0OXh96eV4lLEpaQmnQwhMMWSfrq81fT1mlMaVClMKTfmcOE3n1C4RDaIdzYDYHVLMvb03uyoEmqsV7F74boSTEES4MmD64yPi4Iu8KypbnvHQSbOq5CKNuRrc59yqKeB8aKEOkKpwTBG/i85xXAVpY5lXAvAyYFwFFriknoae8sgI1VKhMsPYZQ+PSgE9f+Kd38xX+o5teXOD03/0+sr2E73//r3Eq3OXXBo+wX6SE0tAOMlo6I5UFS8EYhSUQhpaa05YZLTmnJzNCYRnbgE3TxiC4Xizy2nydwmpyo9nJm1wfdJlMY8IXU8IRZEsQ9aF5y69h/3un/D8e+jQ/+B0vfImj/upaolu8b/3/DlLgshwRBLjpDDefI8IQsbiA3e3Xuk4gWy1YX8Y0I0waUDUUemaYroXo3BEOK6LnLsPKIuVKk7KhMbFEzS3D+wLGXzPnI+deoaFzFBYpHLnVjKqYYZmQVQFSWH7uA//w3wdi/6qb6PVY+8v/T5Y+q0j6hqIpmS9JVOEo2oLZCcP73v46j7Vu8t7Gef5F/2k+dv0s4csdTm4L1r7zKu9evMKCnqLqO08qcxb1hAeDbXLXxCD4Wze+hfN7y/zQ236Ov/z8RxHPtlkA4j1Hsmu9DPCfvY2xkv3/7CeOckkIlrus//m/QPu8pHnLEO2X9B+OcELQ2DbsPaqId2B0vyXeqenpThS4uaJ3fEA7ztHSshxPWInHdPScpspQOGY2ZFbLHeRWc3GyzKubq7jLDUQF3dch3jdsvltRrJcgoNmbceHPffk+5S5HOZ2PJA4yf+FZ6U1UR1vWE5aayHGgBR4EBiEcSjhMLQhWGoWWlkAaSnOHKXxWelLmolIo6ZDSIpVFBNbTXOVeFEpWXt0RIXwkc4SmxwL7epPmQPDiE8c4tbjL1UmPceHHxRaTGaGs6AQZM+tPZiAMHT2jp6acDiuUmBMJkLJEiiF9kzK2MR09Z79M2S6b9OcpeampJgGNyYEoGQQTRzg23PqakA+ffp2fuf4kofriUS4JCIGLAsQ8R4S1XkcYIIzBzmaotNarKUtsUeKKArE3QG0bxOl1ik5KeGNAuKn8Oa4M9swxbKjQe3OcSDGx34NJ3zLajuifTmnrObKOQGW95yQOKezh40dqTkBoKdqaxrajaAnu/67zvHDjGNGLKWomaeicT/Xv55+99h7KUhG/kBLWareXdxb51tWXkMJyJVtiQc94MLrFK/kxfmn/Mf7z5U8wMCn7ecrkcoe/+qk/TnPbUSWO5m1DvFtgYsV0LWDnU8cRxsuvHLWpzCtYCOsoW5oqFTRuWybrCicdZUtgGwZ2JMVGCZlCJIbV5gRjJavpiF44O3SeqbzDvBXJEuskmQ043dyj30253o1RU8ngQcHyc4KlFyy3juF9TE3g/eXa3eNAD3JtIUArgqklGItDBUqnHS6sGekDRxxUKOF8BGr9ptd1NCqF1wAf5fHhBs9LTWkUUjislZ4zQllsrsCKQ72fqnbaRz0KLxyULYd+eMRvPvcQN8922Z00GG01QcBm0sE5QaOV0YxzHlrYphdMKZ0vhQRlRSAMXemJglV9wQfCEAjDtIqorKIwivl+gpwqTAJW+c9Odw2D+wMW370JwCwPKe0Rl7ZrEmykxCURIi8QUuLCAGEi3GwOUiDiCBXXssPW4eYZ8uoWrX4DN50dzjc7Y1FFSf7gCnrfekE6BVILgqmlcUPz6plVzpzaPdRJsr+Dpet3/n4kJhxirijbXtUB4Pmrx/n2R17k57InUXHFfpHy2qfug/tmiGsJyZbDaS97Ueb6UO99VMV8/NZZPtm4n1Ees9YY8ZcufDfbv36Mjd+csXSfYL7i0+CFV6eelFxLQGFCwYlfneG05OY94ED1WCArL6RYNiWi8tJARdfLgGdLDjlXXu3XgZpI4pUpAKvpiNVozIKekSpPlhLUKXygDDMbEtRqpYEwbDSH3EgX0Fsx+XLFZF3TvlbReilk+tScIteH2fKXdexf0Tc+2NhKEA4K8m5M6Tx5g9MgCoFrWIK0INIVgTIc0M4J4dDSEqmKZpCTVT7qzCp9+Dwc1EAFQjiEBCpZE676G3mVCFygOGoPWqXwJz/0Mb6l9QIXy2X+0hc+ipkE6IFm+YsOqxWjU5LJfZJpEDOexzy+eotuOGduAvZVg75pciLos6xHNETB2HrqtcwGSOFoBjkbzRHZsmYsGhRTv2btizBfVAwetXxo+Qr/6vXHqUYhJj9iggiHd5zW+pqnED4CjSOE1hAEUFU+8oxjXFF6shSAPPd/KwTO1HVSa7B7+0T9DmUvRQ8yxLrXWJKlQ08d+9stgtOG3HnOyzdHnNZJ5FHL9wJKOZx05A/OGZiExk3HiR/X/Ny3vZ2nH7/IlWGPy4NFODMlCAx6S6BzS4VgcgZ0WPHKbAMpHN1gztmFHU6ne1yaLfHqziqTyx26e47JiZhwaul8OvOk1lKCtYhSkJ1M6VzJCbZG2GaCLI52XZwV6Mxnr8I5TCCI930ApqeeiMdJCEZeCC7YDrCRo5VkNIP8MPJMVU4qC2JRoISjdArjJApHIAxKlEhheVfnCvoBy6eqBxBTL/cxPqGJBo75rZhyubwrNsi7v9IOOj5lhchKWEgoU9/Q8EqbAqXAJoIw9HeCRJeUVpFXGmOljzzrKKFyEusEofKa38ZKRB192ppZ3TlAW5yTCHyUqwqHE0cfVTRbc96ZXmJgE/ZMk4+cfZVf+tRTNK8L2hfGyFlB+1LCzqDB6D1zrBU8e/M4D6zscrKxT0fPKZ06/Bm7+PDED8qUyvm0bjUasRDN+Ex5mswJmucDwqml/7Bk9cwuP/vqE77hEhtkeKQs/UAd7QTaX7xS4gLtnamSCOMdq1DK/xto3HgCzuGqCjcYIoJ6ayofqbmiQO0Myd62SrA5JOpXZEsBwjmcEojcN91+N7sXnCd4GRLVKTCTgI1vuM7Vzx3HxJrkluCFpQ0+evZ5funaI1grya6liGOW+bKg6lhcZGjFJU2Vcyza57PD+3hxe51PD85AKQn6moXz0LlSEO7NEbPcO03rwFqcVthug2DsRRpDKZF5edRLcqjOK42XDHIK0u2KsiGJ+742rLNazbUAPRVkGwWLyYyFcEZT5d5B4ghFRVg31w7MCuGzDyEJhCFWJR9ceIP1J4f8yrWHGLs28Z6kaAuSLZhpzd0EZV9RCu+MRQgD1mIihYkFyFpRswQQXpJ1EiHq2qfvvNdNV6OYEjItQ7Swh/R2QZ3OWweZkShlMUYipcOFFlfJmv7fL/K9sAE6ek5D5ryYnWBmIywC1y0pGxFlJyKaFeidMZ0rIVUjIXvSsbQw5vVbq1yJe5xbavFQa4ur8yVOxH1OhV6r+1reY1AmNOrOqxSORJU0k5wi02AD5j1B8+ldtt5YxrVLkosR+p37bB51uurwN9dA+5tcHGLTEDkrIAwgK/xFHYegFC7Qh3g6V5Q+StXaR58A1iHqv3NCIMqKsO8bUPmCpmh7bZw3p+kKi8ShpUHao1fkBJiZkO975Bl+7Dffx5VnjvP0B1/jMxv3wSBkMc351s5znHtwk1/YeZzZeshS7LvqmQlYiqYYJ3hucJyfvv123O2Yxg3J4tjRvFUR3x4hp9kd/lVTOxElcVrhGjFlOyKYVcyXQ6Zne6RXRm8SIjoiMwKd1ciJWrM9GFcUrQgb+Gtd5mBiiPYE2bLl5MYe68mItWhER80Pm7KxKElljsUHILHw/qFwGusEmQtoyYxYFHxd+1XWHxjyU+HbyS6soGe1BMzmncDty7G75gPFOt9DUgrXTKgSD0tx0kNqXHBwtxDYQcCklFRtRbc5w9WRZqQrSuNlLXKniXRFJ5wTq+pOdFrX8ebGiw5I5TwPZC7RM0EwyD2f5BH7ikBUZC4gll7gq7TrPHL6FvPjAbf1cdLtkMXnJ4dKpupCwu4DcHKlz6Xzazx38wzPtU/gckW8kPENp98gUQWjKqYdZEgciSoO6zp5pbCFYr5umXQrxKUFGtcli69KRicdncaMC0e7JACILPd7peVVFEVRHRIsO63usNVLgbAWFwaw0EFI6flD6+YRziEqc+hMVWHBOspuzPBMyGxNYEKHeFPts7Q+mpfC+kbSvdBAAsbThJ/41fdDbNEzwRd+8yHe/7UvA6CE4y+98d3cvLIEQHttzOs3Vzmxss9wHvP5nfsItgNUJghLSLYdvVem6L2Jb6RGoa8xO+ejfWM956qxkES4UBMMM4rFhDKVTDYE/Yd75D99tPVyYb2KhbAOWTnCiaVqaIqmF0t0da0/3oP5iqP38B6PLtxmLRrSUXMiWdKQOQ2ZE4gKhaNwEMuSzAUEwnhIIEGdyvsbS2ZDNoJ9vnHjdf73R3qs/YYkHFvivvCqsF+m3b2ssZKIMMC1G8zXGxQtD8OoUoELoGw4TMuAtv7uklSYSlJUisooROTo6pJJEWKsPIQxzaqQW5MOrSinF09R0vqU3wmKLABby9sGFiclNtGooTz6OygwtdHh3e54vM/xeJ+LsyVm7w+ojGI7WkIYR+frNtkbNTDzgMV4ij53izfOb6C3ImzoyEzCp+NT3NftE6uKQBokjkiWlF7Y2TfWAkt4asJ8J6X7iqR1s8JJQf6NI/amKa446iYS3vkZg5jOfQRZVThrEUHgU/sDxziegta4Vsrk4UXGx/2WDKaOaORxoMHUEF/aq2t5jr2vPc72uxxyaU4jzSnOd5HdAiUspQv+ncO5VxxomJToUxMeWNlFC8vuvMH2vMXerEE7zrh5ZYmF5xXCQtlcoFXA0CVEA8upviEYzdGTApGXIAS2EVGut6lihUkkZfImRIyB9rWMYHuC6SRMTqZeVrxyBDPLfEnR+NA2K784+hJH/VU2V4tVGrDa9zhGp7TXQ5o7T6ruYL7sSB/b56nlG6xFQ1JZkDlN4CoyG2CcIJYl7boZe6VY4vx8la28TWEVS9GU49E+aJ+dWHxK39NTTt+/xfiZDToX5shpzpua+F/SvoIaqO+s5mstypY/2SqDYOqF4bAC0/IAehEbWs05Qjjmech8P2GcS6rTCiEc+8MGOjAY4zW/rZE0lgtSXRKriq15i0BpgqiinHsnSmwpupbhfTGL+78nB8nvq62oMYWaUTrFXtDkbLjJ8bBPUxe0dMbPfTCi9zMN9j+5xqPf9AaF9SnF6dYe6kEP/gWYViGB9LXgpWhyWN8Bj2PTwtBN50z3UtpLGdxsEw0tVSLpPyIpZiHsRkcelSMlWx85xWxDsPxcRePTF32TyDqcMYhKey7GsvSM9e0me+9cYvt9hrA3wVlBOQ2QY43KBAuvStS8S9ENGNyvGT1S0l0dc6q7z2oy4oVog+V0SvmmVN064YHUR13OeJNFsuIDpy5xZdLj1dtLRHHJdtXE3kiZjCXdPUj2LNGgItz3pRuRl17iJlLYSFM1Q+hEVImmbEqKpqRKoOh4HLaJnJf+FTBbT1j9nMCGvvRVNCWNrZK8rZk8kUERsD3uHOmaCHvw41C5I+spRAW6hLwrmK87qvWc+47tcrK5T1tnh0MmfpjAkbnA9w9swjP5fbw8XGd72mSlMeFMc5e29k51s2hzNeuxHE44HvYxwgPtQ2kwocBECrU9R31VHSjgmol3nsZ5SefSEQ8ceVsRjqB7QSIrSd4SDM/GiNNTn5JrS3QzYDBZpPVIn2oSYIoImQuq2CG7BZvDFpcur6IGmmAiqBqOqlciZgo1l5iGB+jPlySmGR0iAo7SpLCoeoro/nCbsK7J6BqK9OEzr/ELH3g79/0fOZuv3s90VTF82PDfffin+BgPsV+kFEZzvDE4fM9r0wW2Zy32pwllqShnIWKqkIWAxDKaxVRNR5kK5iuCfMGir8fEe3eHY/tqmA0Vw3MgTk65/TbHidlpos+f908ai6syn94HGtFps/W1K4y+fsYDK33yyt9c9nSDrJQ0r2ni/Yq9R2NMJBg9VBEvZKw0JzzauYV1glPtfZbCaZ22+zTeII9cL+t32ngW82ufeYzOecn6bYOea4JxhcqmOOHXTVgve2IDSdUMcDI+VDbF+YjMJJKsIyk6girx9cEq9ZmfSCqE9BH3pKnoXggQ1mEVmBCynmbvCUGnO2Nws43KjnhR8NNFsnCozBBMBcJK8o5gvuKd50Jv4jHjVjE10eHrUu277jPbZLdq8W9uPczmZpdmd87XHr/Io40bnAj3aIiCqQuZ2oiBaRxC3UxdeW+FGZuhd+IuuDuXeNcOVIQBJjwAtDuEhSqRlA1BtuhrFuEQuhdz2q/NWHpeMz3ZYN6T5D1BMHJIA3udDkhHclMR7TtmG4L49YR0K2J5Yqhiy3xRMjkJIrQ4J1ADSdRXFB1H2XYU3fCecKCv5etkLiS3AYGouJwvsxr41Ci3moVgxofe8TK/MX+UznlBOHH0XpD88LFv8c5xJ8FpR9DJcU5gKunrMA5fUFYOKoGLLbZtUNsR+rfazB+oyJY0wkHjho8ywoHDVUebwptQoHIQ2mIqyZVvDzjbP4G8teMjTgMoEHHM3vvWGH5ozpmVPcBHjsN5TJFrROUdxO33KkzicNqi2gVKWXKj+ZkLT1AWmidO3EDLfxd5cC9FnwAysMTbkt4rOSo3/iZS23w9wWqByh2q8Hpgvq8gcFJ6rTEFVSwpGz7itAGYxFGlDtupCNLCw5+UxTqBblv23tbj5C8MyR9rIxyMTkmiB4bkpWbh+JDN5GjLGx6+BHpukKVFzy2jk5rhwxXx8pxUWfb3Wuxf6nExE5j1nCdPX+e+xh6pylmug5RbeYdpHrK6OuRke5/tvMkninP0whkb0YDVYEi3zhJbck4oDAYfybaCnPmKo2yHIDqe5O7LtLtzoEr5zmrgteG9A3UkOwWysCTbirwXkLcE4+MRSayQxoNfG5uGpefnOCWYnEjovKoZn7HICj8lsS8JRxXSOLIFzXRNkq04irWSRjNn5nzaIguQpcBGjtnK0QtiFU5zMV+lqTL2ywaDKuXWrMNV3ePR1i0kjkBWPNa6waUnFrmxsYApFPef2GYhmlFZycaZEaeSXQByGzA2MXPjMaBzExAIi61n5T9z6zQ8G9PYtJhIexnp1yoGD2jSbYsqHDI/2jVxHYPVYHJNcCmmOpVz7ds6pLfa9F6doc/fwp5cYffJNsNvmHN2fRtjJaMiYqffxg5CgoFE1xmILxMJqpbD5Iq5Fdx6rY2T4E5kdAIfRh1EFm+2yqp7A0SPR5n0PrDJ5dVlGtciZAnzVUf7IgRzR12twQY+QLHaO1ETCEzoOQBs6G8qToEs8dhooIgkJlTEcYlWhkBZtLSMH5pjPhbQuTBjcC6lSsGViqpUFHmAPnLImzdZmDqNN0yPO5569DIPtbZYCKZs5h3OT1Z47fYK0kqujxbohBlr0ZCWmiOF5VTcZ2+xwawKef7mMdylBs1rHqueLUG+aOicHPKdp1+AABoyR2KxtRB9tZGz+1iMngVegenLtLvyQDbSuEBjIn+ChXME04rg5gAxz9HtBsmFnOnDq1z7iKJ1JWDhtRKVWYb3BwgXk57v05CCbMF3Z/NFx/CMJt71qYtJFOlWQefVGVUnYf/BmGCqiVoCqwVFB8qeJRxJihZHHoFWTpHKglU95MHoNq/n6/SLlJe31wB4qn2dWFQEouIja68wXo7p6BmxqGipOWt66E8kku2qxW7VJpIlMxmxX6VMq4hZFTAuY24P25SvtFm6bYn6JSYMkcah54ZwpBAGgon1cLIjtF40IxgLqn5IvCOoHrDYx8ZMH4fx6SZnZstc+p423cd2uT/xksy50QwmKW47It6VLLxhiPsV07WA4f2SfMlf6EI61PWY5ecco+8dcX9vz49t1jPwvkGgDmugtiYVuRcaSaVRRLrife98nehdFftFwqwKeX1xg6XPalTuMa3gUS0mFFjtnaZVtdOsIBg79NxHbnlXUKXekdqZZlymJK2csDEnCUpWF4fsPLXGxq/vASlV02JmAfHliGDKXUF2vipWYxtFHY2LylGtFHTCjOcGx3n1wjHCbQ0WymVDuJAxGKVciXq8u32JhigO1U4nZcTNYYdiEiKO5ejXIsoG5AsWFzgGN9v8m/Bh3r96iZNR319nNiSUFYuLE/rHQhrXJHdzv71rGJNrxJjEp4tYvP63lNjlLpvv67L04pz00j4uXeCjf/wT/PSPfR0rz+Q0bhusFkweXmS6qth/zNI8MWI2jZkGEVUsKVoRrZseID1f6dI6PyZbSth/myPZEiy9WGIDwVZDgcOPNOqjTVdLp1jSY+4Pt8lcwKoeciLZ57xe4pmrJ2mcKbgv3aWpMo6HfW6VXXIbkOqCZT064GYCoCEL+sJyLVtiO2uxlzXYnaVMZjFVqbCZQodQNAXJtiPZqzCxpEo8OUXWUTipjryJZJC0r1rmx2D4eIm+nlCsFpw7uUn/7RkXwiXSBwf0khmhMhRGUVqJqSTRnmTxFUOymWEjRftKRv/RhObJEUWh6Tbn7N9YZv+c5IFen3cuXOV6toBBIjGU7k3O8x6JPA/MVpKb/Q7WCRbjKdMyYj9LEIlhvhLQvO6zNRP5iNPEBw7UR5sedO4IZn7UURqHygVOSPRcYSJFsWQoQksRFQSxYTEpuf10Ru/1FiYE1jPWFsZsugXMVnA4IXhU5sQBi5tAjzLKpRQh4OMvPET3uYC0A82bDhPCrNDMowAyxU7cZGYjCqdQwmIQdKM5wzgmXKnoJhlXv6lHuznnnb1dHm/fZEmPGduYM6HP0W+VCwAsBlMaYcFubJGV5G7utXflQIV1mDTAhLIuegvKdkS1nh4+v/nehCpJaCwO+cnzbyc7btgWEVHf0dgyTDYUkxNAuyQOKsqwonS+MDw+Y8kXNEioEocqGsgS1h7e5layROOWRmeOZFuQd31NyIZHvAEQNGRedwI1qm5i9NI5WRHw7NZxWIWGzrkuejR1zsyEjE3Mdtmmo+aHlFvDKuXKbJHbszbTwpNwSAHNNCPUPgIbLcRMhx0am56xSBYWPauYrceUDUG+UE+FHaEN85jm9Rz7uZjyuwdExys2r3uClVaUUz3cpx3nGCfZmXkehFaYEy9X7L6z4OZqm+blBsmOh92UqyVn2iP685RuPOdt3/AiN2cdPrr6LAOTEgh7GIEeNJDuSTOCYivl6izkVtLBGkk1DtBDXUeYAlVYZOVQhSCvo1AnIe86ZOm5IqOhJRwbhHGo3DLdiJmfyxGDAByEUUk3yUh1QSgN545vcfPxU8R9R6c140RrQFEpRnGKlEccmR98vBSIwZjyVJu0PcN+sQMS8kfnlK0Yp8GsZSz1JuSVopfO2S2b7ARtFtWEQBgebm7yQGOHftnAOMEHly/Q01MiWRKKiliUnAj3iEWJcZKeDihLj0IIlGH5xD67ZQ93F9vn7hyosYdEEcIJiqb/JKs9n+HC+YIqVcyWFPm4g21AEDuqBOgJpscVwvhRzCgtyUtNkWmPmW44cH7eNb0lkIVg8z2KslsxvraInElGZwQy96Ndh+t/xNdKZjQvzY+TyoJU5eyWLZ7tnyCrNA8ub/Pa9iqXxossxlOsEyzHE7rBnEGZMK26JKpkK2uxM2swy0OUtLTjnJXGhFBWh6lnQxeMywglHLfWmpRN5WvQlUPmFTbwTtje3STaV8VsrpitRyR7FdUv9FAf3WL1+P7hzUUryyiLcE4wGie4vYjRyRFaWmazCJwHTXueWYEMfAdWCkesKt7XucAb0RqxKJmY2NeHkeTVHQyoRfifOhqV4uhrfcJBMJCIfgREBBWkI4gGjrwHszVBOJAke5bGrYJ4TzLZCBjfB8VKBRLstkYVEhMKirbHTY7vM6yuDlg8PSNWpefErJtqlVU0g5zpCcvCBct+pbk56dCOcx7s7fCr+i4wO1+VRfF71gYSl+eYWBIFJflTQ3Ir6EQF3Xftcaa1RyQr+kWKlobKKmbWByKxKGnJDKtkPTxhmVRRvS8EsShoq4yunGEQKBxKGF8HFZaZDamsZKUxYSftfDVTeEfR9ZvUKkHZEBQtRWPLd88AwlGJ1YK8pyi6Fhs7nHIUZT3DPlGYpiENPHmEVA6zXKDjEjOMQTlGLUnroqZxQ1AMNTby41zC+sXOen4aSljf9T9KM7dD/u3f+RryjiTv+q6osHDsfTdZjidsNVvsjJssRDPGZUxhNeMgprCK7VmLaREwnUdUlW8ALDWnrCZjKicpjKYZ5ESyIlIV4zLyY6+dEmED36kNoGpFVJFAlQ45PvqbChL2z0nyHqx/yjL61TXGj+ZIbUkaBfNpiM0OZt0dya5kZts47dBjSeBAVKIe7QP2Iq4HXaxRhMrwxckpnts7hl0RnB+vUDlf4+zPUz/yqktOt/aQb6KFuCfSeecboKrwRBnRwJFul6jCMggiZmuCYOrroHqYI2NNUwhGD2jaqxMcMBYNyq4ivaYwEVRNh2v5G203nNMLp4c3XV8/D5lVIS70Qwmzq22SsyWtMKehC4J7gCfAhoKqoYiiCGEcjbDknavXmVYRQX0jiGRFW88POV9v5z5y9HAkQUvNPXTNCY6F+6jQO9JY+AnBVHhnaZw6TPslltIp+kWKsdLTbO4FX70I1IWa/QcCWjdNXfQVTE/A8JxAz/1bVanDLRakzQmRgyIPqMYBopSE/XqaZrVCSUtRaY/UmWqIS4JWjpSOZLGEYzDYbKH3tZ/MaHjAviw9g7TK667kETfiRWXpfXbbf69OyuDBJuOPjvnDx77A7aJL0dV8bnqSYZEQSMOkiBhkiZ+wqqezwrCi25zTS2akujhsfIT1NFJuNXt5AykswzxG3Y4oGv4mFswss5WAsnmnO3vUEagMDOaxCR89+yK/cuYhmj/RYbYWYpcLsqyuu0kHuccGA4RDSXYqx81Dom1PYRaM64ZK/X3ixEdLUxOyN24wX/RljklxBxvYDHNiVaKEoziIQBH3wF2F2oHW/xd+AscGEqcFeu4oWzA67Y+zTNuHKg5l27LRmBFKQxqWzIqA2byDLASmYYmbBWng3/gg2p6bgGkVMikjhnnso/qeYvE5CB4ynGgM2IgHZEd9ATnPbVslEtdMCUcV/TykrTNOxPuHSg5RvXClU2zmHXKjIfBTReC/dywKZnU5UAmLcZKRSyicQirrezbCEgrD1IWUTmOdZFaFmJrYqOqVv43x/kvZ3XXhA8Fsw5HuCMKxJRw7or7ErEGxXCEigwwsaVJgrSCbhbj9kHDsm04qg/mGYXV5yHI6pTCKrXGL0XZMsZniGoagUXgiZQHdtTGTVkw58Q7YpuCUQ84ksvTYOI64hmNixe0/sEbRhdnZnMfOXOG7Fs+jsHT0jJOJ4HJrkVv7HR5c2cY5QW4iHzEkGbqWImgG/sKvrKKwisoppHMMi5hhkWCdoBEUjOcRsoJ8QaC2HXlbMl/26IQqdZhudeQ3lUhXfMfZF3m6eYmHHrzN/+fYR7GpodmdoaVFScd4FlElio3FITf3V4n2JVGjoAws4cWYfAmqhmfgYaGg08xYbkx8hBEPeGz9Fk81r9INZuwUzcNI6gA8b1wtkVL/3AtdeHHgQMUd7oiiLf0suIOqV1H1QI4VNpQEkxon2S3Q0pLokkSX6JZh2JpweXMJ9kOy/Zjrrsu4GdGJMiLts7vKSnKjGU4TEB47uvB6yY1+m/vafT65cz/z4vNHuyjcuUHadoKalszzkFEVk6qC+6KdwzHpqY24UfSYWx9VF9ZTF2Y2YGYjenrCzEbsVw0iWZLKAoXnQwAoUcSi9KoQTjF2iswG/pqrNKEy9FZHbH7VIlDARo4qFsR9X+AXxlNRGStwRkJgsVaQZyH6Suw3yUpF0MqZTUJ/IitPbbeajpiVIaPFHDcNwAjMZkq/FbK6PiAJSioryQBTKFwlPC9onXWYsL5FH6FVKYzeOydKSh5e7LMaj7H1qNmwSimt4v72Lrf6bS7sLXFyYZ9OlCGFYzUZ+0jUaiZlRKzKw9pVZgLGRUxVa7nEumJeBZSlwqR+IqVoCawSzDYspmNoLU9QwrF1xOW+ts54T/MiLTlnUU2YPjlH3YqJtPG6NcoQtSu291tsNIfcXO5iJzEnFgcM5glqGhHvSMqW31tSOSoj6c9T9scpzgke7d6iIXNyq0mUJ9E9nEBygtKGNQbU/17dC40lB6q4kzVZLSiTWvsnEMi4QgWGkghTCVQusCGEsSfbqaxCS0MoDevpkMXTU/bWGgzmCbM8YDyPmBcBrVrmAmCchxR5gEgrTOyHLnq/nPBS5xHKJnAXxBlfLbOBz6aqRkCwPycbNNlba6CEo6PmLOkRoTDMbMRe2WA7azIuI0qrGJsEKXwqPjANdqsWL4yOURjNg+0tVoMRsRx6wh9Kj9JAkrmAoqaQrJyn0Ayl4UR7yIXgy2eZvrsmkgMbWbJFTeuG9+p67lAzQdUQOCQGzSzTJJdCwqGfVgpe0RTNoO6uw7C/SH+xzeW0h7OStJmztNZnkkfsbrXROwFbdDl2rE87yXBOMCslVAo19cTKTnmm7qM2FVcEUUUclkyKiD2VEskeWRiwVzao6iLtfct93riyxk5Y0k3muDq6XAjnJMGcwihGhd8MB7PyB85TAKMsZvdGF2EE4diTV2e9unG0VNJdmPL21RvcmHZ5LTraaCsQhlh6cg+F44NnL/DJ248ynkWEYYXRkuXGhF3VYFJGhHFFmToiVdGOM4axIN20jBJJlYK8GjPshIhOQa875ZvXXqKnJvTUhPvjbS5mK8xNeMgDWdVMTAd2T9Q/wTvQ3PnavfS/Iz2Ex0lQ2npYs/U/VcNRti3dqCDVBYXVaGEP90hlJYkuiZoV0yhkkkfklWI4j2sycihyDcIRJhVVGuEEpDsVNtSeqOOoS6DSw7SshrKpCfqO+EbA9skWWlp2ddOT6TjFpfkyV6aL7MwadKKMRHlCkZbIaCnPi7EeDLgVdfns5kl25g1OtfZ5sLnFajCkpTKUsDREQek0Mxv5OqkqKSvFQjzDOnFI6v7l2N1FoAJEISk6PgIKphYbCA+1UH7czsSCYCRRhU8/GlsWWTgWP70L+0Pc8VWGD7Up04BsMSTddPReyDFpF3k2Rb7dYY9nyJ2I7UaTViPDGD/aKCpRqzTWx6Nq4aUjtJVozLHekNIoskqzNfNSHaWTzI1PDzLjKfu6SxN2t9uwAklQMi1D9vOUVpgjcWRGMytDpHCHipIA/VGDYj8mvu1Zaho3vdxB2fHkEbp24DdnHR7sbHGluXeEK8Kh4uqB8Nl7Oxf5xPoDVLsJdiGnUJZeMkMILyQYBBVZag+lXPKeoPlixfiUZL5WoVolx5cGPN67xYm4z5lwm66a8U+2Psi7O5f5zu4zXCmXeW56kqmJ6tTdN5b8BJfEHH0GjzSecMdEDhtQp3R49vXMUW0nvkFYSkzTUikHkaWTZPTCGZVVlE5SWM1+ljKvAhJdEihDIyiYlwHWBr5JNw38CLByhI0CrS3zth9WqZqKoi3IFt29URpWnoHead9n6Z637DzapBvPmZiI7bLNXtHkyrTHKI+JdYWWfopI4UhlTlzT2k1tRC+YstqccHvU5qVsjVkVcn8zZiUcUwYKoyaYGrkRCOP1yl5Y4JlwgWqpxOyFX/ax33UEmt7yUUHeUaTbdyAQTksyCSqTfuwuBRxkHUmVCvqPrNG8sUK0bwjHhqKhsRrGpwWTEws0bnmWeTUTNFpzBqXE9mPG9Ww4hUTmAll6WWNXwx844kmKRJZ869pLfHzvHJWVzMqQftY4hNxYvJDerAjpJBmzRshev0nSyCnyAGsFjWZGXKcNszz0MibCUVUK5wTlTkIw8jUxWdYjfsKPN5ZtQ6gtaVCyno5YDKbkvwul2++nHThQg5ffXdMDzh7b5spvniJPDEL5jnlZaG7sdf2LAv+aykqmxyyrnzMEE+8ElhbGPL10lcVgymf3T7PbbDKqYp7bOsZnrp7m1PI+f+rEJ/iehc/xs4N3cDvvIHGH9c97JQKVlUNnno7xoEEkK0/GIxw0rkumWtc1Uu/8ZHhHDidRBdZ4B7GnG1zc8tyhp1b6BNKQBCXzIsBZ4fWXAosKDUFgsFZgE+Op4RaUJ+poHz20y9XNNBP469pGmsbtgs3dBLssqJxiv0wZlAnzKmBaBCRBxVbeItUFiSoOmZlu5l36ZYNElfSiGWHXcH3U4dJ+j8xoBmnKLAnJAn99HIg8NnROvCs4/jPXsAtNPjP88kf57noSKdl2TI8J5ouSxqZDz4zvFKYCE/kLu2r49LpsOqq0LoZXMF+SzFYk+QLkyxWilNApaXZn7Ow1UP0A0zDM84AgKanGmnIUesiSqZ1n5R25Ce9QYR2laSzvTi/wW/tneGNrncX2FGMlb+wtY62k15iR6NIX8+cx7UbGXtb0DTYnELsh45lmEhuCqKIqFLZUUIk7Us65QM8E8Z5XcpTGoTKBie7MQjeCgmPxgI6eHTqwo7QAT2QbCEMsSj60/Ab/JDlJ+kbE7L6Svb0mOjQU05ComSMiw+4sZZ6HxMcmTI43WXlmholTxHHHS4MNpmVI/1NrPPfACdxcI0rB0hckW4tNfuBdf5AfeeeP867mJX4mezumxoGCT+GPeuLGHwio0mEqz67kakIeVTpk6Ui3BMWCpGw6CB1oh9Je1XY3b1I5ya1Jh/40pSiUp12daS7fWOb+E9s+kxGOKKiYF55LIdQGYwVFpQ/n64X1KBbRzUEfMZnIm8jYAWwokbkh3ozJz2kmVYgSzo8z5xFJUDEvNeNpzGvVCnvNBscaA5bDCbkNWI+GBNLQ1TMmYUSsS64Me1zd6zHIEqadEJqQSu94Za2ZZAO8BPc8vKOE8GXYXTlQNS+RlU+h8x7IeeVB9SZALmn0DLLFWnZYOGzDUVmf7qe3PQtTviAoO5Z423+0G4aM5wrRqDCLJTLwd0VnJU57NT4bWtRcouYCWdTM96k9TOmP0iTQkxnftvwCL3zqLJPNFtMTFht4rOpUNpCtEhUYrFE4CzqqKEcRullitEPva5zUVLqWPc5EHWlSb3ZBML0jeSAO0r4ZFJU/2Vf3F3j52joAm9NXj2g1vBVOY+umTWYDlLAcD/ucfPtNZv90A2EDsmWF28jQcUWZa5S2DEcNH3mPQuxZyehUSvtrtllMZmxPm+xe6tHZB3fZi+6tfbog3J9x4xtbdJoZ54s1GjI/JIi456yue4q6DCXEwfn1gYieW4p2yPQ4GCdxaUU5DbmaLXFVLsIgoHVR0d607D8kSd+5S3cl48rmIpduLXH22DatICfRJQOVUBjlm49lgBAOOVOY2BIPDUOlaDYyOOoaKLUD1f5adkKg92ekmymTImQSeMTKsEgwVpDEJVpaQm3IioC80tyedSis5oHGziHPRCB8RrcQdGmogtflCpt7HYRwtHTOcjg+JCw3SE/MohU2uTuGt7tyoCbxrC75QoO8CzKvEIVnQw9mnsPQrYKaCK/1PFKo3CvrhRPfvVdzXwbAQr7kZ9xlocl7EtfxEh3WCoKwwqQKMoma11CP+mQfYB2jvaMvghdIZk7zSHST+56+jvyvWojSYNoxVSOgShVZN2a+7DuqNoD5fQUoR5UrCB2ucMhKoCYSq310GcxAzT3Tv6hrZcJCOK7vGBbynk978llA0W/QvCIJJo6d4dFGW1MT8WJ2nCfia5SoulZlee/SZX7yiWMc+3jJ6LRmNkswD3gEQxx6xIUSjuG+Z+hXj47YaA7ZmrVwTpDcUiw/MyVfjBgfV6SvbzN6ap3ZyYrHFnZZ1iNenR8DPEerrKNOY++NuXirfL9AFc6T62sOKesOAoFoYJmcFD6FdwIx89wG8W1/LTkNe48L7H0zkrrsc3Zjmzeur3Jpe5EHVneRtfLtNPdZTl6XgvREEO0VTE7GFKsl71+5yWvmXpiFryNyBSaSsL1H75Um178hpR36dHqcRzRCD2eKdclKOqYwmlQXNHRBJCtKp5iYmBm+9n1xuszr/RX2dlsIbb1PsZJpFRLJ5FAqZ24CgmmtyxR+FflAnQJ9/gaL6WlmqwEY56UbgGDq+TuDsfD1zNwXhoWtZYhjH1XJ0hENa27Dpk9D9RzEjqSoAqoeuFAgZYkMrC9yl3cA1dLVjtRBvOeQR6xr7fDNEoXjz578df7Cf/OHOfffz5HPvUHgHKFSNJIYel2qlTbTYzEmCig2Sqg3rywEeurH8qKnBqy3xlz/+EnivZrkVXmCCWH8vPQBtZkwdbQ/9tMTVQrhiCOPynOj+Y3dcyyvjT0HIxwW7FsP98leWKB9tULlmr2FiIUzUwJlKI2iERbMlkLMgmSjO2I/TxnNYwJlWHm2QO+OMalm8dWSaqXDza+Hc2dv0QtnWCfZKVp13fO3j6jdE9ygdQodzC16ZihaiioWVJFA16zxTvq9UHV8HRwHLrYUXUm8K1AzfxPWgWFWBIyyiGweIpSjyjVbkyYn2kMP5TKKWRbWwoyWcCxwgWS2Kok7OV/bfY0fuweWBXkn2zKxRAQBweaQvL+EXRz4KNH6WvbWuMm43yBISlrNOYGytCI/VbUcT7wzlIaHGpuMypi9Sws0rivCD+7SS+dIHK0gY2rqRpEq2MmahBPndd6k5xu4i0P/8k2PCnCOcGdK6/Lc635zRxDKKUGy5Wje+P+3dyY/kp9nHf+8y2+rtbfqZbYezz6Ox4odh9gIFFASQBAhgXKBA8mBiFtyBfEPwJUDEjkgAYoQh1gJQgZZjmIjlNVkHDPjZSYez/RMT+/VVV3bb3vfl8Nb3eMQDulRQhmpvtJopD5MVb9T9fye93m+S07jxz1q91OidkFlK6eyWxKOrdZ6pwWdy5CeLBhczP0XvwvxjkC3A+gGFJnGFhKn3KPgqQ8UBhvA4KQvJpNE7jSp00jhOKP3+coLf887X64jlxd9uqS1uFGKfX8N/e59VG6pruMfCuMFmCw8r1Y80+WLF7/N8wvvMzqbe8rLOO4V4WlLXjeMz6A6vBKWvhOXJah88vNP6wQPDxq8tHuN1AakNjiKHF6u99i/6juuqGtJHvrNeyXw22TnBJU4pzXbQwnLTq/mfxYWJGtdRFGiBwVqUHD/M3VWr2xyotplNd4jd+rRFwOOtPDGCUoz+WTOwxruHditpwXqsU1jXZI1vTwz2XaITPplECBSiQsc6aKlv2opZ0sqse/MjJEU3Yj4ZoLYD+n2KvSKiNwosjQg70SYg5DiICLec7QvR/TOG87M7XM+3J64EOXQzs6Gh1d5II5gd5/KmqYwilbS5/zsHpEuGdxtMvPDkGIQsFTrs1ztca6+Syvu85nZG/zG3A0+PfsWv1m7wWcX30QtZLgXunz2zE0CaaiHKYkqPFMDwcBEbA3rXoqupJ9//uK08N5MBAsyP0xVlIjSJyUGA0eya4g2e5AXiCJC5gFlNSBrKHTqg8KSfcdwXpFvB55EG8LglJfuVe8LnFb0z0S4xCJLP/dUqTjqPJ0EvTiCFcuEF84clAnvFYuc1PucCw5YUl3+6dN/zR92vsSlv+jjBkMQAnlulY3PLJHOQ2Vz7AnQLJF9RdiF/ir89tl3uT1aZDk8YGmlg9ULSAOHBvNOQ14XR09sGHehmSDoCaJ9hx7bnE0SDs+le/3OKquVNleSjaOIjVgVFKdyuuciwnE6wSgPaEYpoTJoaalEObEu6ec+Fnu+OuSp2Q3eOvkU8VoHYRy7H60zuvCIMC6F5UE+z8iMvRo+sIG3TlCayc9FDxcmjJscmY+jdBUUVZ9tlM34eXe8KxhVBaIUqFxQ1i02dIhqiTgIGL6+4Ol8DioOwh6AZBiHPAyaaG0o+wGqr7CBI97WxPuGg1WFzAS/t3KdWEz4+gZHt1QT+eu7CcCFAS7LmL9ZsvVMnVO1Dh+pb1DUFINLIcO1RXCCP119iZ6NeTbc5b6JeCpwtG1OKAS5c9wYnOT88g6/s3SDwnlTlUPzbYCRCejmMTudGidKdxRaeBwck4ouQEjfeWZ+4Cuk8PnwsfKZzoMSF2qEc5h6zMNfrZBeG7E8v02oS87W2nzr1iWCKOXjp9f4zp0ncHsRM+/4blLljtpdgxPaW7MFoEdj/ud43mkjR9GNqC31SZLJugdL4fhhfxVVs7TUgDlpOK0y/ub3v8KXd/+Epdcztj4eMVgtIc4gVQij0QMATdgec2afGHCnv0Ar6rMvK8S6ZH9BUn9gEEZ6qkcERVUcOdgIB2okCPoQ9L2oIehbRDFZeopJFVKAyyXfuHWNlae6R9K6WpBRmxlycD4gPJCkZ3JaQUlmNGpcDAV+bgkwW/EE6fmwz/6ViNawRvvJCu1nLEk9Y1QEbAwbLEY9BmX0E+/jcPvunPcWmDQOTZIPpwvCeOpeGYlxAfFOY807JUVVMnoCXOSIH0hsRzHzY4OwAUXi2fYmFHQvQ3yl47m0wxi6EWk3ImpkIB02dMhUMn/TpwTIAuoXOjyb3OW/slPIdG2iZ4Idm0GHjiIZ36qEQIQB9Te3WL+/wlpjlpW4y0LQ57nWfV55PkFsV7iTLxKLgttlDYXlzdyxaZZ59eAKm2mDqsr5raWbVGRGz8asVtp+tOEUSjgKq9ga1im6kacGKnlk7Pyz4pixxsK3uM4hjMEp5TtQ4+d0OvUvni5XCdspw5UIPYDkjYR+mrA3D3dOLxLfCymuDBmWAedWdrHLgrXWHLMvJ8Qdg8ostXWLLCRpyx1tLg9zYawC1Zc0z6bsTngIepDFaGnpmArrZQOpu8xIy1nd5Y//6CX+4Vd+iXKUw0EETiBrBaPTkKxrgp4g7I1/H2Xp5V7OOTAhc/GA9ZOO+rr/4gnrZ8XgKGrCSxwzCHN3FK8SjBxBN/e5QxOEsLC73iSaTTF3ary8eJVPLb6DFNZn1DQOuHtKk40Crp7Z9Dnu5lEgnJbWb42F81JXo7xs76wl2UkYLfpbkBAOB4TjaOx2XjkqlB90pP+w0JiE8zQmPbTogwxcRFmRiOAD723ckVa2c1Q7xFQtoyWHiR0mVqgRPg9ssaS2MOBkbcBB6h8ccVhgaoJiFJD1Ij9jt4LafUF1rU//bI28AZ8/95/0bOwf/MWECyh4Q5HwkSLJRRqhNW5vn4U3TrB9qsbteBHZ8BE3l5Z2uBvO8le3fp00D5itDakF3oQnKzW5UVyd2+Ja/QF1mTK0EdZJaipjaENG5diEpojY6dSQI+WXdoHGaTmeg/5sOH6onJQ463wRlRIXKCi9nV1ZkV7TWpEMlmvM3B4hi5D2Vc1o2ZHPG2RkSE8W6AcJ14erUEhm31Q0LCx8bxekJG9VSXYLVK5xUnk5X+4P2MSO8ECQzTmuzm7x3nF/gZ8znBG8tnGB+qnUu7sgGaoeFVHyy5Xb7J6u89UfPO/PTnsSeTibkg8qBAfyiEjsxoUC4HSyz8BE3DgzoLdRA0CljqDvDVlwDlmAKg7nRs5LakcWNcyPfQ35ecMpiDcCsshC1fLurZOcq++xFB5QkTkX6n5T/P7uPLEqGBYhwyJgVo39Tw9HFsJRjDfoQxvCSkY6F6NHEHQlo2aElI7zzV2aasS75RLAT/A/4cOTCy9KiNuGaLOP3O9jo3nAp2aq3LtpjZYdB5ehcj8m3oVhAOWsZ6ekjYITK/tUgsLTd/aa3HtQxyWGuJkhpSUIDGWmYaBRQ0nQFSx9v48oDMluTnnNsBLs82/dp/nmix9HFq9N+lj8DDRyWCVwSvgbrPL5JfPf26H9ZIv7SUasC3LjEwcacUZWahqVlPlkiMSRW0UQGio6Zy4YYJ3XvA9tiPnAw9Q4Qa+IeNhvULRjVCFQ+WEg1S+0A8XPCYzxfzvno1iFQGWGzrmAzgslrjDU3lVkzQr9VctHPnaHX5u/Rc/EBMIQyJK6TDkd7qFwfO3Z5/jm21cwYYvRoo8pmHvHZzWHPU/lcePO02kI9gAk/373PINyslukpdoBO3t1vhVe4rn5NQqnmNN9roQbtNSIzzVfZ+vpBq+9fx5TKJSyKGXJqxbdl17P75t6jJWUVrKV1VHC8bnLb/CPvU+Q3AuQudf/q9yhs/GyyPmsb9zYdKOwiGHm/7EJQoaGsuKI7kb+Ybmn+c7Dszy3fJ+GHqGlYSnpsV9LuPHQc1etUTSXvVZZ40P0rHBEypA6Qa+Iee7sPW68eQXw1z430IxUREP7MU4nSwjG3agcU1kK8+EJlVOZofrWFpSGwdMn2H42oKj5hiDZ9v+3wgKhpag5kh2BGgmM8Jxo3Q5p311mJ3JE+4LaCEYtyJYteaqp1VOMlbiBJuxIgr7wzIXNDrZRIW8ELM92eLn9FD968UnOvNzmYTlZHuAhz9nULWXVf5ZNNUAFAc4Y3MMtTn1rhruLDR4EJbXQJ9cmQXEo5qKTJj4PS/pUgsPI4p6JSW2ARZDagP44EnlQRuyOauxsNZGZj/AQpRvfqI+3hT++HYeUCGN9fvLhF1WCGpbsfyLnL1/4GrEo+MqFT3LvX56g/r7k7fwJbp1rcXKuSzXI/RMkSCmdZO1glq0Hs8i+YnjCUbQKhHbsqYiw+2jWd/Q6YwWOHkBxr0pRTNZRpCoznr94m1dvX2Qp6bEy0yEWBakLMKQsqYIvLr5KK+zx9feeJs81eSfynM/QX79xYI13xD5T3edsvMuc6mORVOeHyLebBAOHTt142+6QuVd5lYnnEcoxT1YUk18MRLokudQh/9Es4ZamrPpAr9tJi1O1DlXttf+tyoDeKCZLA2zhDW2l8vQdhUNKXwQzo+gWMV86+QpfOH2RZF154nMuMaliO6vRCnscpNFR9ImSvg81TmAmHZx2iLKEoiS9vMLORwNG5zOEdOQyItr3c+xkUxB2Q7A+PM6d8DQ3o/01PugJki2/Gxiu+Kt81EypVzKEcLS7VcK2orIhqD8oSW4+9DPFYcbuNc2ME9z86pOcfmUbnPM3yAnCRxpDpnzukTRQVDWhVv4an+Uk33+P+TNX2Pl0DdfkaNlYCx5JyS2CYOxUFY4dzbzzkiASpW/chKFTVNhNq6zvzkAqx/aYPkrF1COclsfiJh1/iSSF535aB9Yic+OXSUUBacIP+ue4kmzwyYVb/O0nFqj8cw2VwYGscTfT6NAgpUMpi5TWc9gyiR76D0VldkSWhmQtg4kkYdfzR02ET+ZrOIpLKaavQTnEhGkYDvj84n/wbmeR19fOcLm2xbLuerMCJ4il4KIu+N3mdTgPrzy8TPvhPEFPIsqxpM5CvxNhVwQ1lVGR+ZGSpxLl0HZEXXv0YBTGx13kVUFZ8QR9H5UybmXDyVIT0iLgzEyH21cC1I0aToMoFQ92Z1DS0gxHR9vzepJST1IiZQiU+SknnEQXzEZDVittLuo+l558wL2d1UfCCm05yGOuJut8g2u0D3zOz6M/drxImsBB/E9IiWtUyWc0NgSswOWScF9Q3TRejZQqshlJGXuT5dZ16J2RDE87mMkZVRQj4dCVkkol40R1SDXIKYzi3t4sbjumug4z7+Ukb2/i0hSXFww/epXRiiH6+hIrr+34xe98Dbs14YeLg7GRkl8gGc8FBUBrRBjgBkOW/nWN4dIqBx8raSYpoTQ/0XFqYQiVIVEFiSrGPqCWQPigwaENGZiItf4s72/PUx5KxK3n3YrSYRLtede/KCWSp18IT2caLypEVkAUgIXqXc1Li0/SvDgitQHPnHjA9fNXOftim7m3YvqnYwYrkqIBhfbqm6QLYccxWhIMLuQkymL6GjWS6IHwJHvrh8z5rMPUDCfmu+RN/9Z31WSvINZJWnLIn114iS999w94dfsiCyd7VGRGJocYSpoy5lyQ8qnGTSJZ8nc7LyDbESoDE/suW/cUnTShbyKGNmQmGNAxVZpxyn7gubYIP0dzGrKGJJ/x7vw435U6Aa4Sk81Ntit3Dm5ttnjqxAbXh2eI70a4isNux2yEDYq6ohLkuLHRcSAti5WeNxIpPHUpVGYcilbSCvt8pLJOAXzh5Lf589nT6J5nI7hSsjesUjjNYq3P/oOm13cLQFuktojJL+A9hMBWvaVc2AGZhSS7jvr9gnij7+luZYKJAkwoGJyQhF1H63rOtggZXjAksyOKXBON899zozA2ZrPdwGwmNN6TzN8YEdxax5UlbjDEXbvI9sc0re875r+75Udv9QpWS2QxeS2nyhyiEEd8bxOK8YhwTJVUCrOzy9kXq9yuzyMvOyJdEo0XyKEsaQYpM8HQf56E8YUVRzE2Te4UCXd6C7y/NY/pBWM9LYhCEB6A08KroOBYHahwx3g0CyF2gHvHOJv/C6w651qTevHpmfw0PqRnAtNz+d8wPZOfxs98JscqoFNMMcUUUzzCh+VyM8UUU0zx/w7TAjrFFFNM8ZiYFtAppphiisfEtIBOMcUUUzwmpgV0iimmmOIxMS2gU0wxxRSPiWkBnWKKKaZ4TEwL6BRTTDHFY2JaQKeYYoopHhP/DSBWf5XMkENvAAAAAElFTkSuQmCC\n"
+     },
+     "metadata": {}
+    },
+    {
+     "output_type": "stream",
+     "name": "stdout",
+     "text": [
+      "Dataset: ravdess\nImages: (100, 48, 48, 1) Labels: (100,)\n"
+     ]
+    },
+    {
+     "output_type": "display_data",
+     "data": {
+      "text/plain": "<Figure size 432x288 with 25 Axes>",
+      "image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"250.458125pt\" version=\"1.1\" viewBox=\"0 0 333.079127 250.458125\" width=\"333.079127pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <metadata>\n  <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n   <cc:Work>\n    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n    <dc:date>2021-04-29T02:55:37.056381</dc:date>\n    <dc:format>image/svg+xml</dc:format>\n    <dc:creator>\n     <cc:Agent>\n      <dc:title>Matplotlib v3.3.4, https://matplotlib.org/</dc:title>\n     </cc:Agent>\n    </dc:creator>\n   </cc:Work>\n  </rdf:RDF>\n </metadata>\n <defs>\n  <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\n </defs>\n <g id=\"figure_1\">\n  <g id=\"patch_1\">\n   <path d=\"M 0 250.458125 \nL 333.079127 250.458125 \nL 333.079127 0 \nL 0 0 \nz\n\" style=\"fill:none;\"/>\n  </g>\n  <g id=\"axes_1\">\n   <g id=\"patch_2\">\n    <path d=\"M 10.7 59.80778 \nL 48.189655 59.80778 \nL 48.189655 22.318125 \nL 10.7 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pc14d716e93)\">\n    <image height=\"38\" id=\"image2e4f900233\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.7\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALKElEQVR4nIWYTYgmWVaGn3PvjZ/vJ7/MrKqsHvqHap1mmGFABodpcVZuXIgMgojrBhFEcDHgxpUuxq0uBEHcKeJGZBoXjsOA0I0LGXVhYzfTY4/TXdVd09XVVZnfb8T9OcfFjczK6ik0IMibEd8X8cZ73vOeNz4p91+xYooXB8D19Xf2HX/wJ7+FNuAyhIPhR2O46RhPofQGApJBA2hrhJ2AgDmQAhbq+fl9Yf5JYTx25LlgHjYvK//wa3/Kl9sZn90CcAXk+rqYMncjSAXlo+GjYV4oLfgBzIMfBD+CiyAqYBVM6UF9XZsDbUCbel5yvdfsJ46/PX+Vb91+69nAnrV5cbyx/SIAUgwXoTSVDW3r3qyFcAA/GGEwXAGTCqC0kJaCtlCmz6e5AOCyoQj9I+P7n96BZwBzP3Xk2vbX77yKqOFSZceVejPz9anDHtpNBaWNkDsh90LpQLQCRitj6cjQAC6BGPjRkAJR/TPvfcXYpbaua2z2L0vAEKtMjMdCWgAGza5eHCDPhMNZZdNF8CO0a6PdGKJgQVAV0hG4Ylc3F31y78sq/RSwy4PXT5oHv6k6wWA8rRyHPTRbw02inz8sHN0zJCsWHNoI65cCILQbY5ia4XLHwOe6HnJAMRp5mrn/s5SX3YjBeFL14QdoL4zuwpg/yNx8a4s/KNoIzTZhAvMPNjz/jx9y8l6k3Sn9oyqH0ld2Xa6aA3jwgzP+K+b/v5TX/w/7KlzzUGbgIyw+NBb3I2GXiScth8/NONz0uGzsby1wGcpshT8sETWadWa1d2CB4aaQZ7V7XTJE4OQd4c1f/gJf6d5/NrDPgvr+aJX6iWEpEHaQlrB5qcWVFg1Ve6UTfIT+XCmNcLjhKJ2/ahyXq56aba0CgIlgoWruL3/4dX7naz96qpzPLKUXx2v/9hrhUIVfParupRe0mSygqXv1uAre5bp2ycDq+dJV8AjT9QzRatYuQff6CVsdn2bsWSX04sh3F/gRSlNtIuwAgbQAKVLbPUNIFVg4KC4azgtiSmlc7chJ8HlWv99srF63m5hzVSKf3dx1p78O0nztOJcrO1Kq0XaPpxtNzIWD0l4UxmPPx682bF7ymBP6c0UK5IUwnE2f3Vcf07YyZ/6yEkbCngL2lMaeAqeTHhrQIJS+ilamjlIPrgjmhP3twPZFYfz8wHijRd9zdOeGNpDmkGdGOAhxBbKcunsaY2CEATZq3PbPAHa9AUZLdRBP4yUvIJ5UF/dRaDaAr+U4f8UhVs87b5RFZrjZEo+kGug0zDVAPlHMgYtC2An9oyflPL/0j8+K/9J9AfaapsErxGMYT410Uki3MsNzmfGGEQ4T8HbSkTecL6CC2HQ8UEdSgHSklKOCzgvaGqU3cn8JTPhhfO7ZwLw43ol7/uzxHb76+jdZ/berg3dl5JOMzDN+mfDHkfh8ZPeCVa1M0cZlYdY/YdrFCiovjHyk6GmiPR5pjkf0OJMXNoUBoTTwx2//Cm8McC9vny7lX61v8Uf/9BssP3Cc7AyXjWEumDdojH4eWfSRXBx735LOYGgamrUgpepm1ibWRTA3xaPeyM9HfFtwXpn3kWJCyTUPld4oo2AizP/+mN9743fZfW3P3/3iX1TGvr1b8of//OvMPnZg1R60qbowV5/cOWPZjYgYIRR8W7BQEwNSuysVB96edHUD4pW2S3ivqAnBKU2b0VZrNFrUDoXKdPv2nN/819/GFVO+d/5lwtqTZ9VjpFRDtMmlXV9QFXaxZUyBODZXWqgma0gCJ4CvpqydoZ0iDsyEcWgo6kjF471CqyBVTBqmh5hCJv+zILw5BL77vZ+vJroXfKw5qcbjui7JcdjNiJtlbYqZ4o5SZaxXXHGYhzF7xOvUOIYtCoiRk0ej50CLRo9rCtJoTbvO0CCVrYuar/JMCGvtkQLNVnCpBr94JNeOCWNoCBuhvZg6rnGkZTUdKfVYnhkpBSy7msuSoHtPSQ4bHCEK0OAVSh+wThFA8pMuBq6SR9hrnQ3+AKu7hcXdPQ++uqyOXGBxz1j9CHIPFmrwK+3kQ48VzCidsH1RcE5hYrlZC82Fr0k21i7VUENA2AqirnZveWIRzQ7UG50I4f14C5fryFi+e4HNGizUlwYXq4gX9xPdx1vSrTl+G5GsrL+wYvHhwHC7Qwdhc8eTs4fkcKOwvKc0e6P/ZGT3Ys/iwxFtHPE4VJPNxvpOqOlFAYPFTxLmhEdfagjfvvdztOdTIARQrVlJYflRxiUjHgeGW6ccv/UpOAcxcfTjPeONjjRzxCMhnij2aY9YTRGlE8JoaDexNmSa+1v8c8e4IfHwKyususxVxPaHgrausvro32+zWteIIjEhWoev+ZqZwjbioiLFGJ9foUFw2UhLz7jyxJWwe8GwealiztVUSwdxUQNid54xL+TnjgHYvryk3Rr9hRKXjtzXcof1gM4aZg9aQnwhEt5uWNyP8OAhcrwiDEZcCvszTzya0T8uSFbCPtMknZ60JS4dh9tCOsu4PqPZgRPySkhHnvknhXZTCNuEFEM7oTSO7nHGj1Vc5U5PmjtcNiRmwsePWJ7dIfz+L3yXv/nOr9L+54/Rw4CfzaYxI8QZbE4EKY52A2Hf4sfqOYdbwnCm6OmIbxXEcKKoelhkti8bJoGju0LvhLDLqK8ZTcwYT1s2L3q0rfqWC4Oi6G7P8j/uEX5p/i5//rPf4PgwYOOIxVjfuGVKnr2RjwuDM+TgwRsWDLdIdLNEKY62zZTiqpGq4INijbL/UmH3M57mcSBsm6uI7QcYzgyXBH9gsiABVSxGysNPCW/uX+HO6w8hBHAei4nuPLO/7XBxmpUKBMO66ti+K4Qm07eJog7vlDZkxtTQzRIihpkQ5gU5MfItz7BvseRABZLgBkezrT8xGJe/dSgS6vgOF2UO9z+BWY+MNXc3FyMutjCfwmFyYIJ1BfG1bOO6I6dAaDJdm1GrL7VmAJfr+rcURz+P5OwoyaPisSlkmptYHA1iAjOkbQhOFMsZKQUJAfEOhoxPdahKBudBHcguQDBKX/Czgg+Fts10TWZMARcKToysjnEMlOKIY0CTw7dKiRNjKnWcNbX7my3MP07YMIBUDwnPhQvsi1/HffQpUgqWMza7nN5PJr8UQfvq7DhDk8P5Qs6egWlQjwGRmkSm62OlBrQSHaQp/skTt9cWmp3Rf7SBUpC2BVPcNxYf8O5rcyym+p3lAg3uiflNI8N8BYQ3xBsSFFWHTMjNhL5PLOcD837EVIjD5ew0uMYWWeqM1FqRbq3Iowvouqp1NcLK9YQbAzjBUoLTFfmouUqiNT+DG0HFYa2Cr1pqu0wbCl2TCU7pQh0f+9RwdrphfegZh4acPKYVzNU2Zbj2AuYfHTAzUAOtTAQANYHDAE1ANnua8x75XFPLKAYy6aEvtEeREArOGcEpIsYhNnhX54oBuXjWux4zyNHXbvQGWXBj/RnLj0J7Ltz4QSS8/wAWc8wJPL4AJwQvDgHM6tuxDQN+O9I/ngGew636pKU3UuuI+4bSObxXXJeYtwknhgCrbiA4ZRM72pDZjy07IOUWSdV+JAt+gOVdaNeKHwt6dlIlvTlA02ClVMZErJrbOIL3uMdrFu9Bc3vJ0QcwnjZogPHYU9qaCMRqjFnPIa6MslA+uX1gtRjwTonZU+zyHbCmlcuB3WyF7lxp9kp79zEWPJIy1gTYKhZTBdb1Cbc6woaxdmWMyKML2pThfEPXtVjfQtdOnRQQMzBDZw3jaUfpHYebCzYvLYl3Ro5Pd9hlBzm7ijY+Ckcf1LJ3D0eICdlXpph1cHIEmw3/C+n4dNWgNuIgAAAAAElFTkSuQmCC\" y=\"-21.80778\"/>\n   </g>\n   <g id=\"matplotlib.axis_1\"/>\n   <g id=\"matplotlib.axis_2\"/>\n   <g id=\"patch_3\">\n    <path d=\"M 10.7 59.80778 \nL 10.7 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_4\">\n    <path d=\"M 48.189655 59.80778 \nL 48.189655 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_5\">\n    <path d=\"M 10.7 59.80778 \nL 48.189655 59.80778 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_6\">\n    <path d=\"M 10.7 22.318125 \nL 48.189655 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_1\">\n    <!-- Happy -->\n    <g transform=\"translate(10.08639 16.318125)scale(0.12 -0.12)\">\n     <defs>\n      <path d=\"M 9.8125 72.90625 \nL 19.671875 72.90625 \nL 19.671875 43.015625 \nL 55.515625 43.015625 \nL 55.515625 72.90625 \nL 65.375 72.90625 \nL 65.375 0 \nL 55.515625 0 \nL 55.515625 34.71875 \nL 19.671875 34.71875 \nL 19.671875 0 \nL 9.8125 0 \nz\n\" id=\"DejaVuSans-72\"/>\n      <path d=\"M 34.28125 27.484375 \nQ 23.390625 27.484375 19.1875 25 \nQ 14.984375 22.515625 14.984375 16.5 \nQ 14.984375 11.71875 18.140625 8.90625 \nQ 21.296875 6.109375 26.703125 6.109375 \nQ 34.1875 6.109375 38.703125 11.40625 \nQ 43.21875 16.703125 43.21875 25.484375 \nL 43.21875 27.484375 \nz\nM 52.203125 31.203125 \nL 52.203125 0 \nL 43.21875 0 \nL 43.21875 8.296875 \nQ 40.140625 3.328125 35.546875 0.953125 \nQ 30.953125 -1.421875 24.3125 -1.421875 \nQ 15.921875 -1.421875 10.953125 3.296875 \nQ 6 8.015625 6 15.921875 \nQ 6 25.140625 12.171875 29.828125 \nQ 18.359375 34.515625 30.609375 34.515625 \nL 43.21875 34.515625 \nL 43.21875 35.40625 \nQ 43.21875 41.609375 39.140625 45 \nQ 35.0625 48.390625 27.6875 48.390625 \nQ 23 48.390625 18.546875 47.265625 \nQ 14.109375 46.140625 10.015625 43.890625 \nL 10.015625 52.203125 \nQ 14.9375 54.109375 19.578125 55.046875 \nQ 24.21875 56 28.609375 56 \nQ 40.484375 56 46.34375 49.84375 \nQ 52.203125 43.703125 52.203125 31.203125 \nz\n\" id=\"DejaVuSans-97\"/>\n      <path d=\"M 18.109375 8.203125 \nL 18.109375 -20.796875 \nL 9.078125 -20.796875 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.390625 \nQ 20.953125 51.265625 25.265625 53.625 \nQ 29.59375 56 35.59375 56 \nQ 45.5625 56 51.78125 48.09375 \nQ 58.015625 40.1875 58.015625 27.296875 \nQ 58.015625 14.40625 51.78125 6.484375 \nQ 45.5625 -1.421875 35.59375 -1.421875 \nQ 29.59375 -1.421875 25.265625 0.953125 \nQ 20.953125 3.328125 18.109375 8.203125 \nz\nM 48.6875 27.296875 \nQ 48.6875 37.203125 44.609375 42.84375 \nQ 40.53125 48.484375 33.40625 48.484375 \nQ 26.265625 48.484375 22.1875 42.84375 \nQ 18.109375 37.203125 18.109375 27.296875 \nQ 18.109375 17.390625 22.1875 11.75 \nQ 26.265625 6.109375 33.40625 6.109375 \nQ 40.53125 6.109375 44.609375 11.75 \nQ 48.6875 17.390625 48.6875 27.296875 \nz\n\" id=\"DejaVuSans-112\"/>\n      <path d=\"M 32.171875 -5.078125 \nQ 28.375 -14.84375 24.75 -17.8125 \nQ 21.140625 -20.796875 15.09375 -20.796875 \nL 7.90625 -20.796875 \nL 7.90625 -13.28125 \nL 13.1875 -13.28125 \nQ 16.890625 -13.28125 18.9375 -11.515625 \nQ 21 -9.765625 23.484375 -3.21875 \nL 25.09375 0.875 \nL 2.984375 54.6875 \nL 12.5 54.6875 \nL 29.59375 11.921875 \nL 46.6875 54.6875 \nL 56.203125 54.6875 \nz\n\" id=\"DejaVuSans-121\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_2\">\n   <g id=\"patch_7\">\n    <path d=\"M 79.968966 59.80778 \nL 117.458621 59.80778 \nL 117.458621 22.318125 \nL 79.968966 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p4e40bc32df)\">\n    <image height=\"38\" id=\"image00eb652375\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"79.968966\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALP0lEQVR4nH2YS4xl11WGv7Uf59xzH/XqbruIO05sx1aQGSRg8ADCAAmJMWLIiAHJDCHBCDFEYoYygAGIASMmgJBgioKCgEBQFAWCLVvY7bbbbnd1V1fXrXvPYz8Wg3Wrut22c6RSnatbtfd/1v+vf/37SPnoK1q04sUBcHlftPK7H73Ov//pa0z7AoAflWat1CBsj4XcgToFgRpBg4ICKoTefteoLD4QutMKwHAoqBd8rzx4PfMvv/Yn3AxLnr4CcAXqyXsvjt+58R2+V1/DZZCixAtAYTgSatwtsBX8ZPdSBKlQGqgNqAMQagulEdRB2ELulNrA66/+32eCugJ2eT1duShQA7hJ8SO4opQolBbUQ1xDc67ErV6BVyeUVkgLyHMhK+QZpDk0F0ruBFds3SD1M0EBuCc/PF25pAZAKrispIWQ51YNN0J7prZZK4x7wvYZT3/DkeYgBVyy/y0zGA8F1CqHgh/gX3/0yucC+9yKAQzqDVSyBd0E22NbOG7AZUhzYTwQ8gJqVFwSQi/EcyWuFRWjMi+Ucd/hkqIe/AQyySc0/eTenwD25BcA3x++ZDdiehmuC6VRwlYIW0WtJ1jeqaafUckzoUQhzwX1ip/UtOcgL6A9s/6oHlBh1Mxcmk/t/QlgT19/fecXCINtVoMtjLMKugTNprL341M4OSW/chM3FWTIuPsP0b0l65+5znDgkAK1M12pGL0+Kat3HL/30S/zZ8997ydT+TStb7/xHDdEUA9pzygMF0K8UFYfTLhc2b54AC8eAKBOkKK44wUaHPGi0D5MqLTURqgNlJngB2uCZq1859bL3D/+J677xecDK1qvKM0U9t7y1Kgm4Na6sH2oHLzdk5eR9c2GGqG0gp+UuFGq3zVIMJDNWlnezYTRs/6iQ71JowShGZXVPy75m1df4VsHdz4J7EnRPcnzn599BanWlbCjL4MGOHu5M1PdPZbLimRw6bHBIgYgLYXchSvBA1QvhF4pjdE6aPwUY+5p0V1W7ds//BXihRrgEdxk7m4daJoTNVsIW1jcy7SPCmFQwvB4PRVICyEtTBJhq/ikO+oN2H+evXC17xWwp5Feti4fzkCtUmYPakDFNisz01y7VuYnmc0zgXtfb+ivOZp1pT2rqBOmfaF0BqJ9oITe7mu8nAzwH+9+mV6nnwzs8pJiugLIHTuKoHmkpCWmowioMhx5zr4Km5cnzl+Ecc86EYW0UqZ9RRRKt/O8uezmq6AC4d3Zpxj7zK704mwgi1AayAshze0x/GhaKY2NnEcvetRDbauJeq5snnOoE/xgOvSjkJYwHpm5usk4lmIPt3oP0hON95nALpuhtjb30lKYDpS0X1FvZtmeeNqH7Drysdb8rKDntmSZKSC4DLVV8rKijYF3a48bhfYMEAi9fqo4nwL2oPb877RCslAaAzVdK9AWXKg4rwxdoDaR9lQQNc2hMOsmtq5FKjRnRtd4TamrTJhnfCikMVCBNAnxQqyyAf5tPOLn2wdccx1e3GNgRSt/eO9r/O1bX2P+3SWrnUBrAEJledDTNYmUPRfMmI6hNJGwNUrUwbN7a27VFdWbeIdrCjdGYigsuomiQs7mPxqV2gq+t6r9wbd/i+Eba/7ytb/iF2dPiP9bH3yDv/+7X6L5ryVSbcZZvLFOBDic9bQx084SflaondGrQXFZWMXxyvtKa7pzTnFOaWMm+kLbJtwsU6M1RW12tlcg/GDFb/7zb/PGtLWKvZsu+O6tl3B+J9YBcmdhUD24tlCrcH87Z5gi47gzRDEt+UGI58JQAjWawPOyolHRXZUebTpUwfuKD5WMVTnPoAmW9aoXmg8jv/79bxqwP/74V3E/XuKSxRmflGnPYrFkoWwC28EzXKx2naToooC3J3aTMF6v3D49RINSo1LmFWaFWgSqY7iI4HYi94qo+aAGSxphgO6+Mh4K6c0lYdTEg3EBzuZgGMwOXLLY7Aqo9zTnjrDLYADTnqfuKJQKea9SirOIU8BvHNo7RIFqTeImA1JaG11+EiSbn9WiV77mshA+LiM/uvMF2gtoz5XVrZ7Tn55fxZvZA+XwTcitklZGrx+UrofuVJFSSXNHmTnam4nkOuJG8IMB9qNRlvYU3wsarGPVcdU0AJLh4PbE2UsN4zUIt/IS/+aSMoMShXDvHF6dW3m3VqHmUeHg9jnbL+3R3h9wQ+Ls1QNW724YnpmhXqhBGIaIJCFsLHbHbSX0lUcvROIGFh8XmrNMjcLmODJcs+qKWsic3bnAf/GQGoSwrjPi2oZpnoOUemV4q/czkitpFVi/csDqrTPIBUph9V5Pf9wxHHqmlZBXGc5mOGydZn1pnoX9d6D7aAO5IuPE9uVrpJXgR65OW36yPdNCiBcQPMZ32Fh2Ihf8BNMK0sLR3cu4nHBjYfv8nrnyUNg+2zAthLQStl9Q6AokR20r04EgRajBoRJp1pXaeLSLjC/skTtHd79aKu5k5wSK2/QsPyykhcMVLJEu7hUO/vsM7Xua8wIK/XXH+vnWqGo9s5Oe2UmPmyrxouIy9MdKPkqIU4gVvJL37Lvmwo51LhmwvAi4pCxvb1l8NNohJ5pJulTRh2fs//AEl5Tw1Xif058t3PiLDbxzGxUhbDJIIM+E7U8J519uac8gblq6B4Vxz7F91rF5vqJHE94bDTWDxopbZLbHM9ozoTkvuKnicoUkkCqlC5w/35IWu2aaLJZrqXD3hMXdQ8JLcUl71OM+OKEm8wI3ZostWGvno0p/U/EbR40ObSthb6CbJabJE4JZBeKok8e5Sv3iwMkNjz+NLD6MZiGDmW//zO78MFjnqwiuKNSK5kz7g3fMYEUeD3EtBb+ZCIOJ2Aa0gChlYabpQiU2GRG9qlbTZMYxIA2IU5qYcN1EvH7B+XFHHT1UAyTZEU8dNV9+Bt8XUEVCeJwuSnZIjMishb5HtgPNRWU48pbzM5AdZVkQr9RNJN+Z0R8UZJ5pZglwaHWoCiV7crJhnWKh7RLJK7UKdfKoKnmhuN27DpeV+GCD1moYLoGJU7TvkXkHtUKtdrAAXBLKTKkRZHJoEQhKuTkQnNLNR7woIkoMxr8CQ98gTpk2zVX6pYr9wNXoClthflKRRxdojBACeG/AtApURURg1qKNmculO0sWfN0dWOMu9xdBnTJNgWmI6ORs06BQhHZ/MInUnRSe/O3s3iUbSd3HE7rtkSZCzo8rVqtDcwatyP4eZa9D/e7opubMJSh1Xm0QB0uiWgXnlOVeb4u5SvAVJ8rpowV5DJB3M0ftNdUlsMuZOztVmtv30Z22dEpQpt37sVCuRMeUUO9QMf5x5uBymX69Ik5xXq8aIGeP7P5AVRhTwPlKM5+oM6EkT90YC1IESeAHYXFHWdzNIII0ER1HRATN2YD93M33efDyTdwbtyAH/MMN4bDF997Ojw3oDAgVCRUXlBAzTczM24kxBXJ1LNoJVSGGwpAC/bYl9wEZvMlhN9jDVjh6o9DdHWk+OEW7FtoGpgTeg6oB+6Ob/8BvfP33eeZ/CowjnAvtvY5rU2U8iPTXHDUI42FDnisaIUclK6wbRbtKWCSCq1bB4hEgRMtjtQiSvVW+wOo9JXWOsB9p3lfqorWXMcFThwGddlTeDB2lFdiVUcYRf/cB/p6jbSKrrqXOG2ob0CBGc7HIk5eRcd8zLTu2x3O2LybicsL5iqqgap3okvmVm4TZw0y8yLTvnECpuLMNkgva95ASrpsZsCjejmHdDEoFrWYfXYeer9GPT3BNxLWt+UypUMwQ46xl1jZoGyiLlu3bM86fX7B9rlKOkolflNoobhKaNXR3e2RM6HZAgoeHj1Cw/UqFEPh/uEded/5hGJMAAAAASUVORK5CYII=\" y=\"-21.80778\"/>\n   </g>\n   <g id=\"matplotlib.axis_3\"/>\n   <g id=\"matplotlib.axis_4\"/>\n   <g id=\"patch_8\">\n    <path d=\"M 79.968966 59.80778 \nL 79.968966 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_9\">\n    <path d=\"M 117.458621 59.80778 \nL 117.458621 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_10\">\n    <path d=\"M 79.968966 59.80778 \nL 117.458621 59.80778 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_11\">\n    <path d=\"M 79.968966 22.318125 \nL 117.458621 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_2\">\n    <!-- Happy -->\n    <g transform=\"translate(79.355356 16.318125)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_3\">\n   <g id=\"patch_12\">\n    <path d=\"M 149.237931 59.80778 \nL 186.727586 59.80778 \nL 186.727586 22.318125 \nL 149.237931 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pce7d98a326)\">\n    <image height=\"38\" id=\"image794db4e852\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.237931\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALRUlEQVR4nJWYS6il2VXHf2s/vsc555776qrbbXVXEkwqBg1pRDs9CUqIgg6N4MBBwIETe5aB4EQcOFFBzEwQFHGaIOrYIIgKkla6UUN3Ot3VlXrcqrrP8/oee+/lYJ26Vf0K+sEZfPuc8+3/Xuu//uu/Psn3P6tsr6wFL+7JLf81bPj1v/wm03tK8SAKYQ3DrrB+XsmtEpaOUimlUnwnAKgDFEoEnDK945jdK2wO7HtRCBt49OXCd371W7xc13z4Cs/eeHEfAHcrVvz0197ivb/6HE7B97ZpdwilAr8R4hLCWpAMoQMVGGdCbiE1Bm6cQqrF/u8BgVzDKy+//bGgANzHrm6vKJ6f2jnGZQMFMO4I6hXXQ/tQaB4r7UmhvlTcqPhBqc+V+kypLsEPgkboDgSXwI32Sa3wRy/93Sfu/RFgz6Yya2GTI5JBiuKS0u9atOozIS4NSLcnrK871keO7tBRIrgB4lKRBOqUNAE/qKVXQQp8Z/EzPx5Y1vKBxSf3icz9bhdRJVfC5pojTRW/FuJKkQL9vqM/ENLE0mOpFsYdS11cgiRhnCub5xwoIFBdKn/2L7/EqJlR80eAhY+sPBO1ThP/+j8/yXOVoA6GObhkXJJkv40LpX1sxTHOBJ5w0UMJRnSw9I074DtbjyvFLf02OvLxEXs2fc9epzlz8O8RddAfCLlWpAhuAD/Azp2B3Xc2NKeJzTXH+kjIjTB9MHL4xoK9tzdUFxZZdfYp0SKmHmbvO37v+Oc+dv8fS/43h+u4wR6WWnBJcL1FafcHa+rbpzz62QmPXq7orintI6U/gAevVpCVcR45fP2U6V0DlxslTayChx2hfVj4x7ufY12G/x+wP/iTb5AmxpfUKmEN7UNl992BcNmx+sI1wlrxHczfgWqhzG4rzWO4/wu7rI4C65tz5rcHdt41ebFDWsrHqeC/fcjfLD79kb0/lmMA/9n35MpO53qoLoW4UJrzwrAXWLx0QImQK1uvlsX455XUett4JixeCvjBuFYtTNsQcHnLwQzrUn0ysA+r/u/+8Ou40VKAmJCWymRBtkVUKpOM+qIQ1plSObRAe1KsAgVKFEqAUpv4to/U1j1XFfpwmP/fU/nWD17AZaiWiu+UsFHiUlEvlGhVGlbK5DgRF4nHX6p48Kpnfd0TusL0OON7pQTIjT1zclzwg6Jb8qu353zv9OZHJOsqYh+ujHga0A9VsWTTn35XyLUQOiVNHcMssPx0gqpw6SKSPNWyQIFhz6pxct+Inysh1xA2apIS4e07R/SfT0zkaUo/kWMlKogwToRxagLqMoQl+N4iN+wI6yNPftLuvJJrZfWiY1U8vjeF9x30+0Ka2vdhA6ImOyXA7M2a8WsfFNkPAHuWZ6VS1Bmofl8ZdwtSBBnlqkdujoTU2uauc/iDjvK4QrK1rVLAbyDNoD/IaKUQC3oRcINQD4BCc6KMn5TKZ9P5o7QENS71+8p4UNA6Q1UoybHcFcadgN9YT5SyFcxJz0WYAEJYAgKbFwp5nvGThPOZUhw5CUOBuHJIFmSt/NPmBb5Y3+dWnAIfIn+vI6/d/TK/+M+vMX/HmVJXoFWhnvfM5hsmuxv8bKS/MdIdFXKj6Lb1fPbgMW4U1BvhVzczetTjJ4nptGNn2hFjBm/8StuiKB7+8E9/k1/59jf568vn6HX8oFx89c3f4OK7zzNbG4+GuWzlQhGBedOz6itK2aa782gQSgEZhVScVZyARgUHIuC88UdVCCHj6ox23gzBYJUJ0B47fv+7v8bNX/6Lp8C+cfurPHr9iOjAJd0WgFWUVAURpU+BbogMXUC3JZsbNVukcH81R6NSKkgTRWNBFfLoWReH88Yj55UsRvzUQAxPnDFUp57f+offNmAP84rX772IG83M+R5SI5TKXEG+iGyWgXGxAwpOIO1mcHajHnJbOL2cotEqVmtFqoJmQTsPa09h28ynCdcLvhc0PG3w1YUiSZAkBuxbJ6+S3tohJKjPFd+rac3K3ALqkCKEjZ0MIJ0GcmPALbqWphFwgxAWDl1UCOA7Iay2h2yg+Ir+sFwFQZ2gTvE95MrkJQDc73bxvUlAc1bwvdLvB1yC+FiZPCrkyqRDnfmx9pFSLQqSlWHXc4GDzwAF6nNABd8r7YmyOjJjmVq5Okh95kxSgkmGSzB/v+fsVs0430as9SOIKfvu68dcfukIyUrsbK1EYf+NM9Jei1uPuCGxuLVHe7yhP2xAoT8o6LrapoKrA4aNElfC7F6iubcg7zT4Zc+jV/ZIE8FlkxWXlOrOGe3hddZHnpC1cJlqwhJL26Yzfz9Ac15oHw+Mk8D5F/fZe+MU2fSod7QPe1YvTejnjs1zQp4k5LJCxNqQZEd9UYirwv731/jVAAXC8QVnrxyRa2FybLOAOusqkjJj64wyiczd1Z4NFj1oKcRlRo88/dwxuVeohoHqUhiOZoyzPavGSujn5vfXNwo0BS2gQegPwQ0OrvpvBXsVUmDY2QVg/l7CJWVxI0CwQYWuZ3ZvoITKUtmlQFzD7EcDut4QL3okV5QI57cmzO4OlOioz3rCeU9pA+O8YthxrF8olHnCxWyWOQtFAHFUl+bTfF+2k5Ey2SQoILmw/omGUhnHJCs6jjTfv8/m2k1CLZFP7Zzx3nCd5t3H5K5HunRVaZsjWHympnkMYRUIvZJqYfmS0N0YkSYjAuIVLYKODj8bWb/oqM4dfnC4QYmLEY2OXHnUCWe34tXE7kbjGTmTHz5m/9+CRezr177HH/vPk+/cRXPG9QN+gDSFXClpR+mfU2QQSlsgFmszzcg4elRBi8OFjAaHZsEf9Fx+RTi7iEzuRNwYwVn7ya3Nm37YDtKynbqKghbKyZkBG9XblyGgOSPLNfUiM8wDLgmS7d2EThRCwdWZura6z8kTYiJUI10XEV8spSrUzYCfdvSHkWG59VpZkMERFg6wludG8ENBU8JNJhC3EXs+XJi/b2okJXQY8JstLzJQBL82kfWdB63opzV5ZtFzPqMKzhVy8YhASULfVdt1tf6YBc0edbodBaGMYtr3YHllJiRGA/apcPl0MVj7DKtk1bQFp9HaTp6ANhmpCt4r7aTHiVJUaJoRYcSJ0o+BNHrGTbTNnUXLmiVo0KuItScFd7pAQ4DtS5YAsOcc41SQpgHvkbalVB6XzcUKoEWQEUpjqQKLymrRoONWFgRczKgKclKhBwMSCjp6S+EWmIoNzk+a//Rej67W1s1TQtUZsLlrKBHKao2bTtDG+FD89s/JJEnFTosz9yFeCTFT7SRKEaqQicGA9XNP10XGTYQiuN5dzRDirJ9KEnbeL1Q/PEarCEXRzQq8N2BenJk9EbQfYDZBgyC6na+2V2mKyUMw+xJitsY9ekp2OKcMnSdnR0qeMm5PUxfTtq0FZxut+gziqkAMV3s/KcCn1rpgFQlINxBWibCJ2zc4QglmSezEClvTF3yhqUacgIhS+YwCmyHSj4FuXVFWEbc2G+1GiEvh2n+MVBcD8cEFGgNMGjgZwQlSNU+BuRFQRYcBVmvCw0v2gNR6NtciuRJKdPT7tZnHAm5sKRFWMxh3CmWWifOesI2oiFpXCgX1DjdaIU0eKKvnAxqEeHuAaYsGh8xncK6U84unwMavXOL+/jp6eoYOA3J6Tji7IDYN7TsBbWs0ehBBRZCcrY0ER2kj/UFNv+dZ3JyxvpFxh70VzbNsUPC90J4kqotEffvE0jiMSMqoEygZaeqnwP725/+c1174HfyjE6R55r1oSpSLSygFiQFpGjRvRy1nFRtCINx1TNqavf+uGfcbTr4wYfWiorNiURMldOYcXFKqh0v0crGlkSm+tC1lGJG64n8BYPg1itXd0xcAAAAASUVORK5CYII=\" y=\"-21.80778\"/>\n   </g>\n   <g id=\"matplotlib.axis_5\"/>\n   <g id=\"matplotlib.axis_6\"/>\n   <g id=\"patch_13\">\n    <path d=\"M 149.237931 59.80778 \nL 149.237931 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_14\">\n    <path d=\"M 186.727586 59.80778 \nL 186.727586 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_15\">\n    <path d=\"M 149.237931 59.80778 \nL 186.727586 59.80778 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_16\">\n    <path d=\"M 149.237931 22.318125 \nL 186.727586 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_3\">\n    <!-- Happy -->\n    <g transform=\"translate(148.624321 16.318125)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_4\">\n   <g id=\"patch_17\">\n    <path d=\"M 218.506897 59.80778 \nL 255.996552 59.80778 \nL 255.996552 22.318125 \nL 218.506897 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pc8477a6daa)\">\n    <image height=\"38\" id=\"image73c451c199\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.506897\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAKtklEQVR4nH2YS4xdSVKGv4jM87iPuvWw257u1nTTGmimaUBCICRYsmE3O1YgWIAEw5oNGnbskGCLxIYNEixZsEFoBELMoNHAaGhAqGnTzMO0e8p22VV1H+fkyYxgkbfKLts9R7q6r3My/oz8I/4/U8qDH/XiRhDls66r//96s+SP/uDXSEthPBFKC3nplN7x1vHWoEh9yKA5D8xOhfbcwSEOTp4JaSX4PpxmkAxPfzrzv1/6s+uYCvxQUM///+l0iAeYVoI1UGaOGODgjSGDIlmQUYkXgbwy0gFMS0Ec0oEgBs3akQJi4Pt5/Pi7/3cj5mciKm4Utxu//fHffAlXsLj/wUEKhFGITyPtE6U5V+JW8MahgHXOtHg2xngoeID2wtGpggP4uZPvXccrbp8NLIjeyOQ/DnD4IUxzwSKUDkIScEEyNJdC/1CQvF8mr89dZTYdCFJqKvJcsBa6c0McPMDr7dMbsV8C9mKWAL42GL/z57+LFhhu1cBXAyKOZiEMYG397goe9yAOCtPKSat6v0sFa1GwIMStX2ft+UTcAPaqIljbwK9//Tc5vGes3xTKrKZCx7qMkgWLznDbGU+c0oJHx7p9NHVcoPTOtBRCqtl0hTyrY2h2PtrdvZGUGyheVQR/cfEFlv8yY1oKpa+gxEBLDRB3ELdCGASdBM17zp0HMMAE7wt54eQ91zTVjLoKpQOd4FuPPn8jfnwJyQvX/wx36M+c7d26XP1jp7002o0R1wXNjhRHsjHe7jj/kYg1EAbwGBiPIB0bmoW8cMKuZm1cQXsOIOjk3P/oDvzUs7gvAbtazuLG6Jmv3n+XKFcpr7OcPc7gjnXKeKwgQlpW7i1+YIRkuAjteSaMhXTYcP5Ow+ZNp/QQUh3Pmv2YEfoH4QaGl4BdpTOIclYS+R9uIZ2DQBghJGc4DngAC0Lp67uWSuL1G4qr1ntPFC1gAfK8grDWKW2tUItcN9ow3cRwA9iL5N+6MD81xpWCQ+m55pEr5F7Q7GhxNO3bQKzVZy1YI+D181X/06k2Z/FaoS6Vq5Lh3HYc6qzy8FXZurp6qRJizVWJQ1rVDp57IaTawZu1024czTWzHuq9eQZ5Ud/LvgI9+nWWnkcwe+T8/Nd++8WfP/uysA/U1JLPcycd1u9hhP68lnjuhLiD7okTt/WZ8cQZbhvpyEiHdj2GdbWFiNXxxaqO9l9f8leXxz8c2OSFP3zwy3isJZ3nXpenrZ289BBHpzTC5VvK7jUhDs7B/Uz/uPLN5obNDO8cmxfySabMjdLVGFdKYLG+PvfPl/z+3/8KaxuQV7mLr+4CX/7mr9L82xKdIB07pfPae6T2qe5MaJ8604GweX/Eh8DRBxFrYVrULGzfqYyW1nC/mrEik9I+rpoaxkoFTZAOhfVbRjnJL1fladnwlQ9/g/bbS7onznBLKJ1Tls+6chHBNZCOhPHYma8GUhfZvhnA9wTXCghxNDpNmylFsE4pu0heVF0FiJtaDGJ10n4Rb9qe4sbfbd/i/Bt36ve2iu2VJtbFdzw608r3A4E75LHOMeyqtckLI7SFxWpgsRgwE0JwVA3UsaaOcyX2LhAGJwyCB7/JMcP527P3kVxngYBrrbRnBlAg7s2hVq0UYR9s3yb2LUPUWHSJNhZiLDRNpmkKIuDNXlf1WS9DIOygOX/BXWw98U//+t61mbt+wIHWkFmG1iDUqrJQCby97PAx1Hagvq88I0ajmLIdG0pRpileT+KqrZQePO4dS67F4OEVktQ/CDSbvW0BNAk6gW9itSf7JfDGKHMhrgXfRXQx4RrxtrYEWWRCMMypGesmigkizk5bKFLHCZUymNA/NbonMC3kJjBzJySYPTQsCnkGzRrEBGv2AAW8gdx7dQ+AjIqs/NlAwXETdruWnXeUy6YayMYgOpRKfE1VGXzfK/uzwsF3J/qz7hmway/k0J9l8iIwLZRmC/ETZ1zt5aWpUqPLKk06VQ1UNSw6OgqSBCxil5GwVboEYahrNx3s2446Hhy0ylh0EHPi2Qa58xywq8qMW2jWGWuUkGpHnp0mVv898PQnVvT3M1KcdBTpH01sXm8ZbgsOlONMvN8QzhVXOLznjEcCAkf3JtJBoHSyF3VleA2w5wo+GbLeVYDPL2UnkfP3C3e/WWjWmXCoxJ2x/VzLojhH/3mOXmxhGOnunjDemaOlcqprCtYVPDQsv+9059WnuSqzx4XFB5/Qfv42HpXzL/SUvpJdrGYdg7Cd8MtLDv799Cawubb84s98yNlXnPaNu7RHR8w+3dHOI+mwIR01tBc9MhnpuGU8DGzvKmU1kcaGMgYkQp4JmqB/ahx+PBDWifHH7jItIxdvR1xg8cAYjrXuEwzC5IRNwovhDx/fBPakbPnoT9/jePct9PFTcneCRUWS0Z/uCJuEzVtKH7FGGE6U9duGzjLuAkmxxhGruqnZwR3vAqUL5Jly8P1cTedkWGgYTgQt+6zlgqeETy9I0oRz6xunmDmkidIKD392weyhESYnbjpchTxXdreU8y8W9Dihaog6NhOsVcbjltkjaC6qg7VY+ds/msjzQJ4J+aRhPKyW6uryLiIi0MSbwBTIrx0g9wq44QrjMVy+A5IVsUrqsjBYjWg0YiyoOqpOToHYJdJ7mQevt7RnPf3juu90BQTSEZSuen/du1axulPSs0sMEHmxjwHx9AJrIohe7/dcwZZW5akztC00ba687BMxGMWE0msFKo7NEnZX2I4NVgRLAYmGp4Behr1GVpnTXKvfhwFCQF7MWHFH1lt0uQDZO9Qs6CiU4ND43hNDzgHVKjkxGCrQNHuuAU0ohMZpY6G4MO5lqUyK9YZOAY+OlNoPl9/d4ruhJqLYixwDYoRcQIU4Glpq5jQJpEBZVvWnQNuXOiET3IUuFuzqaMCUYQqUorgLpSg2aU1SrC5Wp1q980+NcP8h3rYQ9JpW11cD1cO4wWqJTn69bdP87OjIx4BlJY0RB6YSyKbkopg9G9JMyFMgDRE3QdSRaNWzjVVJmg0c3tvgZtDuKyFNN4EdaOTj33obpO4Vr4BJqZ0dBYJXdwAgThAnqtE3mXmXmHcJFSguTCnWswwTbFK8KJ4VyXptKBefGOHhOdK2SNNAMVC5CWypPe/90kcwjsh2qBKxPwqQ/ZHTlbETdUJwROqrDXVZBZg1E4susZiP+xRLdRNJq7VOQhiFg+85R99+VOlw+xCaiHQtvLivBDhud3ySMmy2tKdr2otuf24B1jvEuhwhGk2TSTmiWskfQ8FdGKfIVALulWteqq2RSdGd0KyV5gLC6Ni8Q2NApgJpwotBeAWwk3bDg9kRvtshD59w8kFDu16yfiOwK8q0EnxeMHVKqRU57xLLNu1J61gnjDkymXK6q94LE2QU2qfK8r7TPy0s/+sM3JExVX6JIMs5/vjJy8DutBf8x1tfRO7/AKyg9085fHLJ8jsHpOOedBTJXSDPI2k1Yzh2Ll7L9CcDR8st82ZiKoHd1HC57Z5lK9UToe5JpcRwGDhYb0Gk9q+14zHCmJD5rG7fngf2qGz4hb/8Pd79k4/xaYIY8e0OSkEOlkjT4H0LIeBNJN+akVYNu1uBzevC+JM7jg83mMPlpmfatpCUsFb6h8riE2f1nYHm0Rq52OCXa9wd3+3Q+Ry6Dtz4f6wFG/ddRWJ0AAAAAElFTkSuQmCC\" y=\"-21.80778\"/>\n   </g>\n   <g id=\"matplotlib.axis_7\"/>\n   <g id=\"matplotlib.axis_8\"/>\n   <g id=\"patch_18\">\n    <path d=\"M 218.506897 59.80778 \nL 218.506897 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_19\">\n    <path d=\"M 255.996552 59.80778 \nL 255.996552 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_20\">\n    <path d=\"M 218.506897 59.80778 \nL 255.996552 59.80778 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_21\">\n    <path d=\"M 218.506897 22.318125 \nL 255.996552 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_4\">\n    <!-- Happy -->\n    <g transform=\"translate(217.893287 16.318125)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_5\">\n   <g id=\"patch_22\">\n    <path d=\"M 287.775862 59.80778 \nL 325.265517 59.80778 \nL 325.265517 22.318125 \nL 287.775862 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p751140e086)\">\n    <image height=\"38\" id=\"imagecf6105899d\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"287.775862\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALUUlEQVR4nJ2YS6zd11XGf2s//q9zzn3acWI3ThwlBUojSgVRUVEREgiQYEQHlRgxaZEYMENCokLMOkRiVgkxhEF5v0KlRpWAAWJQaAERlAKOHTv32r4+9zz+z733YrDPvTZp3QJ/6QzOa+9vrfWt71t7y3jvFbViuHiiJqwY2jTy/X/1y1z9O0eoQUUwUXEdqEAsobsmhEZJRX6hgIAEQZ2y/7alOktELwxHAglMAL9RHnxq4p2f/iJP7/30/uaDX1y8b0zBn/zkbwMgCUxQ7ABmUsY9oX1BGA8SYZaIdQJDfiVBgoCB9gUllIJvE36tmACSFIC3fuK3vgXU04975jfAQgIoSMiRukGJXhj3IcwUCYKbhORztuwgJAeiYFaGWEB/VbCj4DpFEiR/kYBvv+cF2EtgFyn84GOiggiuV2IhDIeCGrA92F6wQy6d3ypmgmkuhCaXOhVKspCcEMscnJlADfT6DGQfzJgV8y3gJgQVwY7KNBPskMFhwLVCca74LdgxZ0N3fzUThFoY9zMH+2OhOU1MM0FiBvh+nPFh/78A9p0eNXmx4cAQ60x+vwa/hXEu9FfyhghIhHKplEslFcJYQqxAjaACsvvNny1/kE89/7Vn7vk/avfBUnoUEzOvQg39FVCbQZlJmWYwLfIqqXjCn2kuJA9uC2gua3+Uy34R6B995RNETf+/jP3SO58hFpkf/XEmuQmC63LUroerX9sQK4cZIuNhgQkKSdleL5Ck+E0OappnXqoRzKjM7gm/s/oQn92/990z9vQz6MTJH98kOYi1EOvMI7eF5jSyd2di/52W04/PufvjFSefmPHgY5733yjACEf/+JiDb/bM3svyECslNJmfoYHysfKFr/zc/z1jv37yRi7XPGdMolCsoHqoFOvEuLC0Vx0I1A/AtUr1CEIFZ99TYG8dUqyVchWZvWfpjwW1ee1Y5EaSSXg3bLjp5t85Y0/X/Et//8PYMZcMzWWQlPmyuulonzOMe1k6XKuUq4RvExIzD2Mh9IeG7fMWtWRxDmB7xQ5K8lCdGv5w/dFvy7Vnkt90hlDtIktgIsQCQiOXsgBQniv1o4hrE7bPAF2nyM6eQpNlwwQwO/KbkIHP7yp/8f7rl/s+DfCZHLuwoWKj+I3iV4od83fTXIiF4LfQnAZMUB78gGf5qsNEqB8m7KBMcxgXOeOuy2slnzOqJgNvpydi9nRinskxtZC8EKqs3OqycCabpSGDV7pjS3fV0N6akMEgyVIuFTPCNFPUg5mEcU+IRbYrt83/jwU8S2OfCSyVCUnCcCAMh0qsMt+qsywXycL2uiF6cscWCTVKf2wZ93aaZTLAcT9PH1oqphcqNRQrJTkwot8dWNTEPwzKN6fnsFtL8sJwpEyHCS0jGNg2luKxZf6usn1RMGMuifGJGO3l+3SZqUTaD5giosGQcIwHSnGes3eyXPBmW3JkN7xRPsmfxPuv6gWoz59+jD/9/R/djTdZb9rrCT2c8PWEMUpKwth67JmnfGRQk81avm9Dvyqp7hS4NtvW9uWAzAJVM1L6QDd4hnWJPfPUJ4JrQTRLUqjhN37h9/jM4jHwFPl/5d6P8KW//uRucti1tAN1irjE3qxnf9Yxb3rqxUA6nhgOFXWQHHgfQADNWjYcKv5goKwnvIuUPlAUAbG5rGEO6sB1OQmi8Gtf/TRvtuUTYHfDhrduv4YZ84+KTZ4i1JIHP4FtX7AdCtq+JASDJkG9EgtFIvRdAUFAcjCpUlIypCR0ved8W6MquaQ+kbxeemu5VEhQ3fO8ef56BhY18Zv3fwr9xh62k9x5LoMK8zx1xtHQtwWbRw39qiQGixjNAHwOT1WQKhILJcyU1EQ0gSpoMoyDY7OsM9l3mY1lbqJhXyjWubneuvMa98MGl1C8iajJyF0H5SoRaoMZMrnV+kvQEoVUKLHM3WT7DCwlQYPhssmCkDqHLgtsZxCrFL0wHlvMYJAooLlJmtPE+iWD38Dw9QP+9fV9nEEYYp6HzQhH/7Lh7CNz1ArVo6w5kmQnAUoqdrOV2U2yQ158elEQlzBTns1ksmCgWOaA1GYdq99zkC4EPHfw/O5ALCr6K3lmW6ca1+nI3e0Bbit5NDldIt87z8PhlO1o7/aIP+8ZDytSYZCopMJQLCeGY097xSKiaBLMAM1J7srFe4HzW45YCuWp4gbFbxLbazafBXp2Z4rE3rsDm5sVfit8eflR3J2Q+Pe3r3O0KyMh4vpE7AzlueLXke6qR1Sp7m9ymVQZr83pniuYZobth4TUZknMGYViraiFw7dHyrtL0l6NjIHuxQWhEfx6N1gGMH3AjIHmXoko1GbEWcmnHb9RZvcndBgo1on+yGSvPB9xXZ5XNq/uU55NSFK2LxSMC6E/Eobj+EQqZnnGBxC12C4Rj2ZISAzPzRj2LLOThCSlvZI5afoRTh+xuNqwveZ4fXYX85IruPWR+8zvjZRf/y+07fDrCUnQXjGsXqlJhUGN0Ly7xfaBWFrsqCQvdM8nWASkSOCVcBhIBfhWcV3KLlBawiIb7PxOT3MyYHu9PCMA6LalefuUaSG8UpziSvF8/taf86svfY6jv12jMWKGQLIQS2F7Q1jdKvArqB4XuC4xHBi6q0J3PWIOR/SiE6OAhe4FoT61+HbHoSkRG4ckmBae9U2HSh4SJCrqLRoC6eQB2+vXedltsld+4fbPcPRPK7LwJKQPmOnJ2XC8kuiuK9uNJTWg9YStAlURiNHgXCQlQ39eYuuIHIw8/qThrHU075aYUGZ99Jl/sQLXkn0VkH5CrUWc45U/WPE3P/9SBvYfp8e8dvqQVBRo12E2LcXmgDATJIFMglZKXEQoEr6eKKuJlDKXChcJSbFNuJwWynrC73UMh56x9TBl9zOtxbaC7fKp3Uwg4wS7q4P+WsOB3WZgxihptUacwzQNDCPFJtJeM1lzIph+t/DSgno2xwE7C4goYWc9xiRQQVVwLtK1JWIStowko2hvs41VkLaCm6BaJnS9wcxqsJbyYc8yzjKwj9+4y9mHb2JOz2G9hrKAvAcmCClCcpo9rgJ8wtaBWZNnZSOKL2L2VxXavqDrCtJo0ejyLZBKBm0VMUIqwKyhPulztnxuDvuf7/MgLLKJ/+7LX+bej+2j5yukrtG6zPYuWaFRnliNKOITKRg2m4rNuuL8vOHhwwXrTc1mWzFs8oSA2V1NTQamfAskUTBDdge/Vvz9JRQeXa/RvocQgN2gaDAZgBFQRQtH8k9demgup6QcMYAYxdpEWU07zRXm1YA1iU1d0vWeODkIBtOZy6ObaA7WtXD4by30A+Ic6j3EiMbIpPYC2G5cGSfwBdKN2G53Ykl5sSSgZcJUAevyh0WRRWiaLGURmKIhJsM4uTyBWEVJpAZMm43bBKhP8iWLCQnqCroeKQsYc5CbWGVgVswToet7zMpQnM+oHzokGdhdiKQEmoSkggGsSTTlCFX+rzeJ2k1Yk2i9p91WxNYjk8GE7KPFeXaZg39eZh5XBXgHD8/QnSBOyT51P1aQr2JiJK03uNvC4eYgt/CNOdPcMuw5Qu1JRS5tLGcsZzDtJWKTqK50eJ+1LYRd7axiOnbXnEL1SPGtYs63mfQpoQcLZD5Dz5aYowMa++AJsB/69Dc4+csb6O33wBi065CTCClSv/+ApqrQpgIR1DskRkhKakqmo4ppYXn86oLt9QTPDcgFRU0+CpoB/Aaq80R9v0c3210iEuId6WyJiDDdOOJ2d/wE2Bdf/Co/u/eLuRmdA7s7DoigbYdutsisQbyHvgebM2KMpTr1VM4yf7siHM1YvVyxetkwHiaMy1elts8lrO/3+DsPoarQ9YbU9UgISFND1+Mebbnf7fHfPjcykmmLYa0AAAAASUVORK5CYII=\" y=\"-21.80778\"/>\n   </g>\n   <g id=\"matplotlib.axis_9\"/>\n   <g id=\"matplotlib.axis_10\"/>\n   <g id=\"patch_23\">\n    <path d=\"M 287.775862 59.80778 \nL 287.775862 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_24\">\n    <path d=\"M 325.265517 59.80778 \nL 325.265517 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_25\">\n    <path d=\"M 287.775862 59.80778 \nL 325.265517 59.80778 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_26\">\n    <path d=\"M 287.775862 22.318125 \nL 325.265517 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_5\">\n    <!-- Happy -->\n    <g transform=\"translate(287.162252 16.318125)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_6\">\n   <g id=\"patch_27\">\n    <path d=\"M 10.7 104.795366 \nL 48.189655 104.795366 \nL 48.189655 67.305711 \nL 10.7 67.305711 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p2786e99333)\">\n    <image height=\"38\" id=\"image4e4aaf1aa8\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.7\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALP0lEQVR4nJWYzaul2VXGf2vt/X6dr3tv162u6urG0qSJBIQgaszAaPsHOFIwEweOdBQcOAxOHGQsOHAiCCKIOBAU0WQkQQ2B0GA6gZCuLpOq/qiqrrof55z3a3+sDPapW92pKsR3crnnPefdz3rW2s/z7FfSh28aL7iSZe7EgT/42p8SFyAZdIbYwXBTCOuMGwW/F3QGTeAGw5wQO0gdpNYwATcKq3sGArk6LGBw+dbAD37rr6nEPbe+T5Zxos/dePqZZENnQWP5fD4SsjfcKDSPhWpn+AE0FRDmwE0QZyENQlxCroz5WGgfP/uOGKSgLwQF4F8E6gochQEXjFQL5goTAM0ToTk33GykSkhNuS8ZJILfG5KFXEFqICyhfQwoaDgscFm9bOmXM0Z5BqZgKmAwnQimhpsENwAGw6kyvWKYK/9jpXXLDw03GN4LqYO4MKYjwY9lcjSWBYKlF7L2UrqSZXpzSIbsYT4WwsowLa3SZOSqAG/OhOaJUG2F7pHQfWzMGwEpADQIkmE+Kt9/+ju3U+7G8cWkvIwtJ8qdcI3sy4PCElJdFvF9aUe9NY7uJtrHRn1hLB4YqYbu48zJjwL11tDwbK7MQ3al5QCLj4S/fPQWyfL/j7E/+a+vkCuInZAaw80gCdxkLB9ETr77CI3G/pawf10IK2F6xbj8eUf7YODkOx+yvh+pt4CUNpsrRcUOmjPj377xq3xr9M+t//wnh+t7c2D9dktclErlICrVDtb3Is2DnodffhUUjt9NpEqIrXD8Q+ieROK6JhydsvzBQ0xukBpPqiEuAUprU2Ns7sD3p9d5q7v3qfVl/uAz9sl2Pt0Mn/2HP+boh2W3xcNOXL1vrH8y4S8m9r+wYjhR4kLQaIe2QVgK81rINfgefG/Uu4wfjP1rjuFU8GPRRAz8YAy/c8l3f/1vaOTZLn1OLpwokwVMINWCH4xclQrDAnZv1OTbDamliOdsuLEsoNEAJVcwV4JkI3ZCrhQ5grAQ3FzAmhRpAWj+fcP4xfhpYD/LFMBoseiRQbUvGuYmI6yk0Jy5enDVG815ZjpWQKh6oz0rbCCQG0iu6JkYtI9LAfNKkMPM+R6yfdqAroB9krmLnECeVlZAuQk0FrmIXWGw3mbaJ4mwUj7+goAa6zuO5cPE4pExnCqxK3LjhzLskiG2ciVDUOQn8RJgn7w+Sg3kUnX2kL2QfWEHDlvfFUaGU09/Q0jXZkSN/VyDONqzXDbE0pBUWjidCKkuGlbtKVKiglgmvIyxT173wjXcWOg3J8xHxVamKNTn4EbDvLB7Qw+WY6VPauTKGK8L43VFJ9BZkATTCcxHmdwYOgmmSnNWRiM7YWvCa/8XsPfm67hRSA3MxzAfZ6w2TIywdrSPhO6hMZ4Wi5IkkATfBSw16FwKQYruzUdGPE5Im7AsZHGETbE2Pxb2/zcc87kqXGF4TmC/Pw/8/d1foX0CYQPTK5l8HJDNTHUykW5M7N4MnH2+LKqhDDEKx+sBc8U3q10ZheGNRDwNtNcGFpuRejljdSYtMql5OirwR9/8Q/5ue43/mUeCpWeMTRb42oMv8k/f+BKre3LITgbOcHVmuRxxmomdMjYVscnk8wrXCxoEZuXmast5PMUEwqowrScTAnif2HQjY/CcB4dNNakrrOVaOP2O4+s//n2GVzO/99vfLsCSZb76/m/yrX/+Zbo9SCozZAcb4fDHqTHODu8zucqkOuMGd/WFlZ+wQw/MG1ZnBFCXSUnZjU15jsuEysg1pLZIkqYiuvWF8o//8aUC7K8ubvPN//4CtYdcg25hWpUZMWc4n4jRMc+eMHnMDnpmQlwYVSzA3ru4hjkjNxCXBt7IWcjZYVkIs0c043wmVBnMFWP3JXyKlSxXXQp+ssB/nr1JtRXcBNVlQW5PNWbvmH2DzIrfKqqlxXmRwZV0+3Ran1wsyR5UC2NSZSwLNivW12gQDIitQZMOWlacxRxUl4ZEIS4F/85sfPvtz9EEoTkzqn1xfp3BTYIGkOzxveCHMvAShdQpYVVmhIO1OJ+JWh7u9gr7umCeob4QNJXdmhoIK8WNghtL2jABDlMhCfyjtKb9yOFGaM6No3f3PPi1NRoLe/XW8IMRFhBWBaibjPYJNNuEqTAvlelUUc1gUF+WxOvmks2GU0Xnw0GlLTt2+f4zkOaBGVYfJFIj9KeKryQ+C24PAuSMZIMkV1Fn8TDQfLRjurGiOhuRkNh/dkPzeGY+rpHOMG9MY13Ymor9uGD4ITOvheVHieXdS/rbG5onM/1rDZe3HdmXAgCqbWRxb2T7xjE+meKmYshuiJAPR7VgLB8kAPobFand0N3fIXOEEGnOA/2tlmktTNcEqyJpWyGVMW8OsWZf2n/69g4JGRlmlu+esfvFE7avO6pt8V7zxR1cH5hf6Yqxb3OHm4phx6WnPe/RUCiWZNSXgWqn5FrZfWaDmCERxlccYQnzRhhuZqjzIaEK84kgSUuLxCGHo5WkBXGpxEZYPsj4MTOtXSkkgk6R5mzP6tVX8cEcvjeqndHeu0CmGT8ZqRH2Nz0aMuYVzFi9d0lcN+TGUe+EsFD6WxnbBMQdDD4JaQ3yUPF9Od4hINGQbNSXiXYuu2U+9lfqLxlIBmcXHL1T49duIHbCte/12P0PYbUsru+VuYOHNxr8vgTC6fiIap+ZjpThurK7ndHrI5hwFQ6y4Ncz46mn/bhEJb9P6JzKIbdxmAr9jYrhuj47qChIStg0w3s/wf9Ge8bl5wOv/+09cozIMFJfJvob7mDiRn+rJEM3CFYpaZ2oNj1dnQjBIWKYCSm6YhRicGvk8YnDnXvaj0txfrCicwn2rx12+GHwswNEIGdwDr+QGr8OSNsi+x5LiWoX0VAhScoPHJjLxAaoM65JVFVCNVPXhoqR8uGVghiWFV9FqjoixyPjaxVp5yEJaNFBHZRqL1dJWRMQIqgiInhFysNivEoY/nzAjR2yOhz5Z8FagzqjVQIx+scLZFZYB6q2/DYnvcqhT63LVwlfRXSTSVGLE0yOnCFFLfIyQ7XPSD+CKwUWE0+KeA9dB5YhxDK0FLrNgQ4Ko2LqyU1GFhG3CiwW01VB2YTaR6ZQMR+AhaGCWcEf7OHgs7gy9ObA76B7FLBpAudAXTkl+SphMSKbFbbvsa5YydP3EZJLzMiNYVVhDsBMmINHxAizJ26rq3tVF3AuE82DK/GJoJDl6h2HpkOHRqO+fwaiQIYw/0yCzYaslmSvV8VpEpJmcl3UvUSAQ8PE8D6hYqgaq+WIdwXYtm+Yr9gqoCQcMlEuuxeKEB/dneBihzgtyWUOBZhZAWW7PXK0Jje+VHOIxhqlvFJKViJ2EqzOmJZYY1IWSSbE4FEx6jrSNYGhq0jREQePRbsC54fywu/kR4nqUY80dZmv3b7syiu2YizzFROuD2AtGg5zAOTayMuENAnnM1WVcC5T+8gcPWbgDmxmE2J09LMnjR4mBS2g3FRa2T586qkR7Uds0RaG1IEehr+uE9LU5H0PISD9RHPWEZZKasr7rtQKcxByo6TKSIcZ7tuE1gnvE4vlQDbBiTEET+UToY6M+xrb+xKZMrheWH2Qac4izQeXWFuTuwrdTaWd02HG/uyX/oW/+PJX2PzrOzCMiAjtjw2Nx/h9IGxqUqPkWjCVqxd5vs+EdcW0rplOhEenK+LNGd8GnCttjsFhQdFZy8ElljOlm41cK7IbsLbGDROEiI0jZCvAfnd5xp/fdhy1DagrN81oUoY54O6X7WPLDpzDGo9MEVIq/1ce6yrG05bxWsX+VsP+5xJsAuoz4q1ITFS0V5YfZtyQWdx5UmLWrsfGCWlqpOuwYeCnD+hzJg5smiAAAAAASUVORK5CYII=\" y=\"-66.795366\"/>\n   </g>\n   <g id=\"matplotlib.axis_11\"/>\n   <g id=\"matplotlib.axis_12\"/>\n   <g id=\"patch_28\">\n    <path d=\"M 10.7 104.795366 \nL 10.7 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_29\">\n    <path d=\"M 48.189655 104.795366 \nL 48.189655 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_30\">\n    <path d=\"M 10.7 104.795366 \nL 48.189655 104.795366 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_31\">\n    <path d=\"M 10.7 67.305711 \nL 48.189655 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_6\">\n    <!-- Happy -->\n    <g transform=\"translate(10.08639 61.305711)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_7\">\n   <g id=\"patch_32\">\n    <path d=\"M 79.968966 104.795366 \nL 117.458621 104.795366 \nL 117.458621 67.305711 \nL 79.968966 67.305711 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pe0d5917bc3)\">\n    <image height=\"38\" id=\"image5b8b8b3a3b\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"79.968966\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAJ6UlEQVR4nI2YXatkWVKGn4i19kdmnqxTH11dXVXC4DjgRaEoCOqFl4PgX/BH6H8QvBdBdPBKvPAHDAheCOKAFzoIyuBoN1Oj02V3l11d55zMPLk/1orwIvbJKrpOtW5IdubOnWu9O+KN941IqZ99x7nlqG4k0Xeu/fHFt/neX/0OaYhrnsAVympZRuMatpwBnaA5CKuXcU/tQGq8ykaw5s1vALSCvr3p28fXQQG8rNf80Q++y+aF0155LF5igzQJ7U5oroR0LQCI3bwEHGoLOoNloawET9DsnTTG9RMah3xbtN4Xwb8fnvLR3yWGe0LtwYV4Wo2FdYZ5DbV3rHNcApgLIIAIWhydnflMKCo0e6fZx2fXWEvsLWC3RejtY+8jf/Dnv0u+C5ZjgdqCN5ECmSNFtXfq2rHOAoyBFAFVpMJ0LrQXkVJL8QJoL51pK9RVpDXfxqXbjl/5/u+xLVDOOPELDUDWOdM2QFp2pIC6BrjkeHKsCmUdaRUTuktn3gjWSOSug+bgWBeRy/8fUH968ZSzTzK1h3wEnRypEu9np3bBl9rBdBescXQSEMVag9bw1qnJEVdcBalC7WL97gJqK0h10hDrnVL5vsjNXvmzj3+Ldhc8aK6cs/8u9P9zZPhwRe0Ua4TaQO2E/hXoJOTRyYNhSdg/bRk+cPJBmLdOWQVwrVB6mDdCmqCsgoNib1Xl14+bKr20gf2hp7ZCGkEcrBOGhyvK+g0o8ahOgNrDtBGGuynAfmVsfxr31C4oUNYe/NIoIDy4pSUq/b3kv/n8l1fP2PzDGqlgbXxXOkWzU/qQAfFYEJx5o3gGO1u0apEKXwpGKzhLNeeo2NpDcyCKhTj/n3LxcrpDc3DKShCLcKfJF9JGaWtdNmhCRmofEcjXnHhUu7imo+DJT0A9OzoE4XXyuGf2bwZW3bgo65CHFDJha3BV8tFp904+Gq5B/jRBGmSRjSXCS9Hhy3txrA03CIEWXAJkmhbde1subjj1dkqvbOCvf/jL3Ft4UNZQO18qSGivCvNZ4vAogDbXTndl5EE4PA2i140hk5yAicUDShHKxsMJWk6VrXOAPqFIou/wbOfG+Y9yqHQfoFxDDqyD4X7i5a8Jl88KhycSgJeNNy+ccqfi6nj2iHhv1LXhnVE2UX1S4iEhJAMhKvqbdGzw4NN0R0LN08KJOcJ/fKCUO4XmfGSsAiTqKiKTBkEHxXrDs0NTI2LZ8ClBciwL+QBunIhvGfKwkP+b1L+sJWymi6f25CBgraAzyCSsVhNX2mFtWI3Mi3QY0FU0G6IgcmNFjjeKlQZrBKmcfNIVLEmk8n3C+tt/8/unso5zgPKFc2Hcwk3f5BnytaAlNrNtpV3PrDYTbTcjanEWcIsQWetYu4jqvDyYf0NV/uGXv8TZfzTh9jXU3DMLXzw6iIMgRehyZSfhk2W1PNjWITk5V7pmjms5UUoK4WPhXFXSIEgB15sS/gbl/4t/+XXycWkEE3gTgKQKKKfU6gzmQDakBnhrQ6e0rajGRlPJlJKYp1BVyWHwthSU5wWNgIvcHrHPyh47xlenaCWARXPeIqpOQqlBZjwq1lvHO2O9mth0E+ZC3xRGSag6pSizZdyDhzd9HRYBc32P8v/t8Vs0rzJSnXyM1lc8QImDDaE9tqj6ftdD0RP5PTvaF0RgP3RMY6YWxV3Q5LiBuyCjgkvwbIxoVxF4H8d+dP2Uu//OySbyMQRQZ8eSgC5gC8xnYIcG3cywi65PZsGOmUNR5Ko5tc0iYUnl7EZCHD3KaV/LIIuR3wrsx7tHbH82sfu5lm5vdBeF6Twz3lFW+3pKZXNtDHcTwyOl+2DmuM3kVxlmwaogc6Z7HbJiDaRxqeZJqTd2xcKrFH1YGiO1twL74nrLZqikyRGH5nKk+3yPPbvH9pMdcj0yf7glXwy43AFTUjK0L0Bm9VLovwQtTnNt7B8nPMH9fxuxVjk8yjRHZzoTjh9K9Gf1TeTS+B5g5oKOhdWrQhorx8dr+i+OnP/zS6RUMCPvRqZHG/ZPEnZWGIcGmxLJw+vy4LS7iqewmUf/uCf/9Av8/jn9Zw2vfvUOwwfB2zRJzAaLA/SXdjuwe/0RkzXtVwNSLCKTlfnJOVIca5XpPHP9ILH7NkhrlDHDqDHOOUxngniivaqc/yQ0Zf6Fx8xnmePDjGv46bQVyuattDo0+3o7sM93Wz56vWf/7CHrF9cA6HFG9yO27rC2YzhPXH0H5vsFTYYvQ0Zwyekvjf7LGR0rOlfqpmHexHabz2Zqq1HhTT4NIC4L8ffzu8D+q+w5/vAB9p//xP67H3H1rTt0FzELptk53leOHwrjA8PWFWnDB8Gx1ij3jV3NYEqzT4g7NSuWFKk3k7gynifGc4l5cpnm8xAPBbdw7Htf/SY//ycfU8uMi3B85ByehpBaK9SN4auKNEZKTm4Kqs54bKAxNBvTE+PVg8TrZ4nudQMGaSbOEwwPYv5s9vJmKFZgiFRKuYVj+9phF5dISqTZkSLYysLEO8f7inZhNbmp5Fxpc0HEKSWdLIgz0IfG/DhTq4aiuyDioXtHpayWJiCFw0QhQLo8vgssYUjbgUd3qWWJVh9eSQ3xtBwdr6oxlYy70DSVWhV3aNtCkypdUwCWe2AcG6SveBVsmapuqhER2p0hl7t3TVzFkVUPZugcU3WaIO8EPSqYQDa0CWAi8RtVR9XIudI0seMwNRQLKwKYpxxFkgzv6olblmOaavbO5sURu7h8N2KjZRCFpiHNnNpfu/mbyYFZMaA9myIKU8aqnlLrLtgiuqUkZn8jnqIeOZOlhbKwqbyH8+cz6ZMXMex8Hdiu9OCGbtbka0OqvgHkRGsjESkzwSzhJidQeUmtqsWA5EKZEyJ+ipwbUN/0+lpg/dLpn38FpSBt8y6wLAYpwaonX1d0zqcJ21bxPwQSvVbOlZyMagF+249UU1btzFwTpWoAFAVx3IJ/bhKUWB642Ql3fnINFzuk7/HrW8i/ySMcEw6ksZ46A9c3UQOwKTEBZRHXlI1hzsw1kdVYtzNJjaTONVBKwh1sVhgTMgn5EK/HPzjQfPoKNisYJ9BbGkVzwacJUSG/vqbdrSibN38huYA0Rm4qiJ+iBrBqCttuYigZFWeqiWHOjEMboMYEk6JHpb1Q8jXc+7hwfNyTL1Z4m5FDgvvn7wJTcVDFhxH54kvu/2um3W853lfGe4n5jmIZyjaEls1MXk2su4msRpdCHm6q0V2iMTSBWdFB2T5X0uih9IOx+nSHdw2YRZNQh3eBPe1e8+Nf/A30+acwF+Rnn7PdH9m2DdY1eJewrNQ+Md3NHD5qGT7YcPV05uGTC7pUTmOaiDPPURw+JKQIOgt5cOZ1NJ6r568hJ2SckasDNBlf9/wvju3ajmMsKLMAAAAASUVORK5CYII=\" y=\"-66.795366\"/>\n   </g>\n   <g id=\"matplotlib.axis_13\"/>\n   <g id=\"matplotlib.axis_14\"/>\n   <g id=\"patch_33\">\n    <path d=\"M 79.968966 104.795366 \nL 79.968966 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_34\">\n    <path d=\"M 117.458621 104.795366 \nL 117.458621 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_35\">\n    <path d=\"M 79.968966 104.795366 \nL 117.458621 104.795366 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_36\">\n    <path d=\"M 79.968966 67.305711 \nL 117.458621 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_7\">\n    <!-- Happy -->\n    <g transform=\"translate(79.355356 61.305711)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_8\">\n   <g id=\"patch_37\">\n    <path d=\"M 149.237931 104.795366 \nL 186.727586 104.795366 \nL 186.727586 67.305711 \nL 149.237931 67.305711 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pdd9252ba9d)\">\n    <image height=\"38\" id=\"imagee89032935c\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.237931\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAKEklEQVR4nIWYy48kWXXGf+c+IiIfldXV3cMwtjXD2xa2RgIhWbwkjMTCa++89dY7r/gjLFlCrEFCYsEKsfPCyAsvLBZmYbAZMTMYhqGnH1Vdj3xExL33HC9uZFbRnQN3k1WZETe+e853vvOdkPLoU8aRVUzx4l76/h9+8xX+63tvohFKC+Ygz40yNzSAKEgBlwUDxCBeC801xI1RWpAMYTCGU0fpQEPdx+V6ryiEY4AAvLiXwD3Ka378s7/gdNrEHJgH3wsuCVD/12i4XB8opd6rDcjNdJATAQdxbYDAdEDkFqA7BmgP5i6oZIVvX3yRV/4jQsWAOShN/dulelJzdogmAhagzIzcQYkVqDaQ5oLGGkU/gJsOIFP+DhHbg/iwFD7Xnh9976u4kyn0HtJySluC0Fcw45mhcdpdABVcAhMY7wnNlYFBmYEfAYP2SkkLIS0E5E4q74K5C2r/fbLCl37wT8ynVLkE4wz8MKUpQr+sYCQJNIYFA2dgguJwI6QFSBGaayMthNIIokZGiGsjd4I2FWzYp/DY2oP81vNPE6/cxCfwo2FOKsgMeV7DU+aGRUOKgIF1BlExZ2TnAMcoAghiULoaaY2QRWhujOFevTcoRhT/oeAAvvv2XxO2lQfNtbF4NOL7QlpFNAoahPHEYQ7iBtqrgjnYfiRw8zFhXCnthaO0RumMpILvJ64t698lgO8r38SM8MdAvZPW3DxesgTC1hAztHVodCCQOzdFziiNMJ4IeRbAamRX70CeCXkBaTVRpDUkCxpq8fi+8tYDUiolfk8ujhH/O8+/yIOfBNKqEthESHMHIqinVp7ckYVYo4CBaE2ZesgduKH+rnGSj6lC9zJhfqpsP3Fsr1kvggTYlYgeylwoyRATZLrc5Qmwh9xJFcymFkZpp73idG0SwLAwgfFTcYR6vckkFwbhbjXeBefFcaU7fvTWmyydHKIxnAm6rlxq1krYKXk2FUYytJHbqMT64L02YWCxfmITEAwNtVJhOqR7IZUvpvFZKZz+2+zQNkpTHygmdM8rqOefjkipQrkXSw3CcN/Iy0m0e0fpFDdOlTxI5ZmB2XSIUCsUajR/D8lR6ZBa1mlZPy0YeQalES7+PHL1ZmL9htE/lJpuD/PHVlM16VlpDWuMslS0VcpCMQeSpUoLULrKWVGrgv2HIlYQSie1ncwMk9uU7F4RxlPw80yJypAahvuVLy7V/pkMcGDzAs6QoNjoK68aI2zl0HOhti/GWs3hw1oQwNMyO4Aq7aTsRQ6/i0GImbHEl5yFNgaNIkERbzhniBjFG9YIZhHzcEjSxEPzgh/1lvwvrmLKN3/5d1ioJ7Gp/1kwijrkQnADFMAFRTujeV73EoX0UInzRIgF54yUPN4rzitjH7FgaGNVGjaVBntwwz33su3Zr/8c4PzfXzs4iT1xTWq1lZngSgUWQiHB4UHm6gFCLCxnA0UF7xQD+l3D3qjluVVQOqXcV3BufIH8d9c//vffEzccgO1PI1Y32NudsY9TijmA0jClUYyiwpAiYwr0uwZVhzgDb1ijaLy9D24/j0YsWeHyYsGpTaZtBEPumL6aBk0C15Hsa2GUfcRapV0OnMyq/TDLmBdKFFQd4+jRwdfDOqN00FxPEbhre15cgyVIDj9Uh6lB8LvpRKHqzn75tcN/JDN0Eb/xaFegLYjA5XpGGgM6epiKxnW5ZmF0uLEKs4bJ44mAVT08Cmxrhe79iB+MuFHiWmopTxVU2qqAkqv9GbOHWAVTisA20BchXERCqve4sRrG4b6nzBWCIbuJIq62MZfAMsye5ePAnhZHc1kdw+y8EHaZ8SQy3HPMP6hPctlwY+Hp5xZkMdxyRK89YePqAZxj9kFtT+ZqLxxX4HdCXAdKZ5MJMIwaMRScF7r318eB/ev6L5k/VfxolE7ofrdDRqV7ZoTHV5Ay+mCFtqH2tVgQMXat0T1xzJ4azdqYPR04/2yHNtBeGifvKc1NwZxw86eB3atCaSt3zdXC8r0h/XAc2EVeELfK/LdbMGP7+oqwLXTvPgXnsHlHXnVs/qRl82eG9hErAno7TOx91erXmbjONP/7W7h/innP+RfOGM4ma1QmUS5ViuLWkKLHgX1u/mt+3H4Z6TNSCot3E4iQP3qPPI/khWf3wHPzMSE/GCuv1hE31DSaVB6W1tM92SFJYbVk/ZkzxhOHKCx/p/Rnrg40ykGW4kZh1x8H9q3/+zqnP7/k6q/usXg0gEI834AarijjSeTmdaF/NSPBEG+YQVkW9CLQXiuzZwm/y4ga1nqGszPiTcH3ihQjrQJ+MPJcpmmqugvfK3YsYo/ymkc/eY1PvP1TNt/4PDevz6oapxmlhbQ00j3FFiOI4ZqaA+0KEpXtG5BOPfP3O5aPysFia6zuwbywebXKhIVbExm3U8dwAvlIVf7L+Vf45D//Ai2KCfT37WB5y1yxWcG1BQF8UNoukXOdG5xTNBi6Grl+zXE1etym9rHaC6W6VvQgH26aqDRAGCDsCvgjvXLQgA0DEkOdkDPkxtBuGs2iYpP/8UFxYnivFKeIM4LPeK80i9omhhQwE8oksGnbQF9HOVHB7NZeu2KEqwE7xrEoBQkByxmXDDcK3oGlelotEZvS1jWJYoKq4INie+tignNKFzPOKal4RDylOFwsqIFlwZxML1SMuBZm54p/fkP+MPITA+SMH6saa6xVUxaGdQXXFHwspOJpQiZZQKR6rr3v6sdIP0ZEIOfamXPyNdrO6qw2LT9I1blfXKFPnuGa+DKwZB6JEWkaXK690o9CEcMNguLRIog3xnGyMRO/qvUQmjbThAo8Z3cn9QVTRy61gVswZBTaSzh9Z0Qen2Peg8jLwDa5xVJC5nOateKyIzdTo20Mi1OfA7w3vK/pCl6ZNamayMnulDGi5RaYiKFFQAXJUtW+wPyx0r3zBDNFvMM44i5al+u8DoSt1mraezKV6hKEw8P2nALYjZHTWc8sJHY54gT6FBiGgBZPye52j6nhr34Fp2/dYP1QuT0m5FjEgitYyrDdEi8HfN+QljXs1kzRampvVJ1S5I3gC00o9DlwueuIvjCkeLhGi2BDtT8yCu2FI64hbhW3HuD0pBrbELD1kSYepSDeY/2Av1izem+GK56dOkaZ0mmg3oiNEkJh3iSCU9qQScUTfaHxhY0zLm9mqDqsCDI64qWjeyL40WiujZN3N+hJh6SCjLkWnhzRsaUfkIdvYB88wR49YTkk2vMHpFXDeOLQIJQmMK4i/cMZ64eF7b2R1cn2sMeYA30K5OIpaXKr2SFJaC/qrBA3sPgg4bYJaz2yHZBcQBXsSEv6m5P/4Yd/+zVe+/5Vna1SIrz1HrFpmLeT0RfBZi3plQXjKrJ9pePqMx2bj294/eFz2pDpc2Cr9Y0QUl/oSZ7ePm7r0Ny9/aRydGzg8ga8w85W2LML/h/DK/lPeK1EvAAAAABJRU5ErkJggg==\" y=\"-66.795366\"/>\n   </g>\n   <g id=\"matplotlib.axis_15\"/>\n   <g id=\"matplotlib.axis_16\"/>\n   <g id=\"patch_38\">\n    <path d=\"M 149.237931 104.795366 \nL 149.237931 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_39\">\n    <path d=\"M 186.727586 104.795366 \nL 186.727586 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_40\">\n    <path d=\"M 149.237931 104.795366 \nL 186.727586 104.795366 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_41\">\n    <path d=\"M 149.237931 67.305711 \nL 186.727586 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_8\">\n    <!-- Happy -->\n    <g transform=\"translate(148.624321 61.305711)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_9\">\n   <g id=\"patch_42\">\n    <path d=\"M 218.506897 104.795366 \nL 255.996552 104.795366 \nL 255.996552 67.305711 \nL 218.506897 67.305711 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p632bbda5f9)\">\n    <image height=\"38\" id=\"image0f73587309\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.506897\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALQUlEQVR4nIWYy49l11XGf2vvfV732V1tV7vjQBw7IGKEYoOCISITlBETxIA/ICMjBBllypwhYwZEDIABg/AaoIhIiAg5JEpEAkocAjHd7Xa7u6vrcZ/nnP1YDNat6tjdCUcqlereund/51vfWt+3juT7n1CecX3+zmf5xt/+EtP7SgngIlR7ZfOiY39Tya3id0JpFBXAgRsFCqgHlwCB5kRY3M4ApM5dfZeocvHbW/7zM3+OF/fU+eFZoAC+9LNf41NvfBS+fA0/govKMBf6I0UB1wthL7AVfAS/Bz8oaSqkDkplwEoN49xR7RSXFBUBIE6EN1/92k86nqeh/tj1l6/9GS4pYV/wo7I/Fvwo+BGaM6E9UeZ3lNndwuJuYvKo0J4o7WOlXoHv7XvGhYFJjSAFpCjqYOLGZ7L1/wKbSEYK5FoYFg5RyK0StkJ7qrRnShhMCePMEaeCqL3u94pkKAFSZwxJMRZ9tFJ/c/Xxp87MWshafnIpAXp1lCAgkDoxfYxCfaHUayV2wv6mMFxTcMaQG4TJA6V7XFDvSZ1pbrguTO8XYiem153y1r2X4Gf+9QOgLhn8qYztNKDeSjEcgQaoNuAHyJUwLu2Q5Q9h/iOY3YZqB7sXjOGwV0RNb6WCcW4lzY0gGfJ3l3y9z1fneXFkLU8Du3zx8vrdf/hD4kTINeROQQ0UGAvX/jtx9HakvSh0jwuhV577zsCL/7zDR1AxFjWYptJErBkWQm6EyXvKH9/9rQ+ce8XYh8FcXl/ZVcx/5MmtaQSgWoPvlclJ5rlvPKZ7f4fvC+qEOHGEQdEgxEVFs8os3xk5ejtRrQxQbp5IYv+cEHr47nde4j/G+NT54VldMWjk9//m9+g8IMZWtRbqlTJ/NyFFOfvUEcNSUC80F4VqVxhnju1NT6mBAtXO4yI050rqhdJYSSVjTVXBc99yfP1zL/Nac++DwH78j0uQf7V+kfrMgUDYQwmC763DdseBcgAsBfyoBzEXRAF1pAmoE1IrSAO5xt4rpkGclVk9SISLPHmKnGeK/y/uvUH7WPE9SFbTlZhG4sSaQD34EdqzQncS8ftC2BpzfrDPgd1Mbg1U2GENkW3Ylsqa4a3Tl5/S9zOBXfQtLkPobRbVKxN+mlhH5UpwIzSrQrVOnP5Cw8NfbtjeCvhRac8LLkKawnCkSLG5VW2V3AAKKkKpjLkfPDym8EFnfOYcc6IUtS/TQ8nqlSJZyAe7qXZmU/vjitUrhTLPjA8Dkv3V0C2VWZL2dlPjQhB9Yl+oNUL4tzm7Xx9ZSvfTgdU+MwYTaamhVHIFkGIHxqkwLANxBlplpCrkGna3hOIFP4A68L115HBdKZOC3zrCRugeGTj1MHuvED9UymcCKyq4bFoargnjNTWxZ6jPhGoL4+Lwv7WVRkIBp6gTNGCMj5CmSpopZZYASE5R5/CDoz01iaiDDw+tZ2osq4myvyGM15W0KMSjxPh8on9eyS24DGliHYnAZDqg3kpfbSBsIS6V8UZGj0bq+Ui7HKDN5EkhTZVcC7kV1Al/dP9z/OOu4fvj7tleeZK3nK6mzJwdHK9laDK+yThRUpvZLANh5QkbATX/fHF5wQ9Z2NxroMwhHkeqLuJ8YdoNlOJIjSf15qHj0m5CBb71p6/x1vJ1Ni9lfucz3/wgY1/de37tX/6A8O8zihfUgWTBN5npZGA27Wm6iJtF0iJTGjNvicKi7lFnJS8BcqOIUxBFBFL2xOwRUQiKBiV11qXqrWMlQ/PI83dffeMJY1/ZVbz5T59n+b1gga+1mKKh4FyhqEBxxOjhMCyLB6mU0AvvbZboNKOnntwouXkCKo6BYVchXvEh47oEW283Udn56k2rLkLYiQE7yzu+8O03mdw54NRDm8sBtQq7bUPZBlOlU/BKaRVRQUV5/3SBbzMlWBQvs4yoEPcVbAOuF6q1I9dKOY74eJk0zBlQoT1Txiik6aEr/+T00+R3ZngOPnYIeKLgNx49m1DvzZbUWbfm1rK+H4VcW9zWYjfkMrD2lMoRNo7m1LIYUhgWjn2sicuC27qrlKseyiGKV2slRM38YHOTsBPqFTTnhXEhuASyFQuGKxuwzUW5spHUCMN1K3ephP3LhYJDElRrM/f2RJndz7QnI66PlLZCnbA5b+ivO0stDjQIRGV2LxJXnmHuCJsy8O76GmEP3aPC/PaOR69PqS9s+NUrZX5nIKx60qJFg1Cd7pH9CMGzfeUa/TXPuq9QhWoUuhNLuM15JuwTcRZYf7JjXNh7lyGAQ4XAqlNtEu29DcOnrxPOS+H+yZKJWkJwuxF0emUdCJx/oiX0DamzxNCd1nQPI+rMO7cfEbQIDA51pjHUUkmcBfrrnt1NY7e/YT7rotKtD85yKfw+IqqkiRAuSoWe1VbjSpBUruxkfmc8CNSRO8c4F1y2g/sbgdQ5+hvC/maBbDMtzpT9se0K9UrMNxXmd5XUmq01F7Z1SYb9c55y2ENlyMj5muU7C8LDPKO776k2EDuBMeKSpVYNQn02EDag3lFfBHLrSJ0jtbY/7l5QyjyDPxi3FNIodMnijhQDp0npHmVcVuqzgVI5ti+2lADqxSjzQlmtmX7vASHiac7UlowIst0T+kJuHOuPVizHgnrB95nm/Q1lUpPbwO6FmtNXhXQ9IU1GnKJZ0CAkIE0C8zuZycMRt08WFIFSe8brDdsXKsaZmPgPP6hCzuR33yP8XPWY818sfOzvM923b6NxpNoU9jccaSq899mW5syawA8t40Loj4T+uKA3e7zTq4GnAuIVtxxZ/7yS64r+qLU8dxB4CbC95ciNle9yuSkBEEFzBnGEj4eW3/iV73P/r1+hrFZQlGqXQAIlQJwq/fMFSXZ4aTMyS4Q6EUIhRQ+uoMUhDsQpJTnCPJJf7zndNMg6WLZztjFJLvi9EHa2xmEmgcSMFsV1LaESz3+dHXN075xSFM0ZvxlxsbXkcLhKVyAork34UKiqTBwDcVvhu4wPmTxWqBiDOTlKEdr5gM4GUvJodGgRdPCgNvMkyVW6ldUWnIC7tKT1hBubB0a3E/zZlnozJ84tcbrBUVxBg7Hh7rXkEeJxRrqEDzaMqs7uJCcPopTRM6TaylzsSRDJcoO6J4twtYHp+wO62SDeWymvPgS4aYf2AwwjfrxccAV1it85tBdK50jHEW0yXpQQMqpCyQ5xxqT3haGvQBTNzkaJUwN1Ge2D+SwCLinV+2tLl94/YQxRynaHWy7QmCBYglDPlQbQw3YkCgXy4BFfGJNDDyy4Kh/YcWb4RaCxbCq9P2jiMhg8+T1/N8PJKdQVMkaIyYC9eusB+0++hNx+gMymaBWQok8AeRNt6crB2S3OhDoTqkwImcobc3roUDff0Y8Vw1CRBw+jg2z5DrGHL34vzO8oLio4jwRvR+57A/all7/Mb/7qF7n1P7YN66TBD7Z2SbalN9f22LC0BZJDg2W0lBwpevYqVHVCD8LP2VF6b2XkkOtGjzvEne6hMHu3sHz7AukjMp+iTuDCWA8AM9dYkhwjMumQPqJioc1VtgOoVwPVZlxV8L7gfKGpE0UFEaXymbZK5OIYYiBOPH1fkfcB2furRwNuEOZ3C+NMSNda6v/dkI8WSCm4IaL9gTHHYZ7ECINDtoH20Z44c+RaGBeCihAXAZVgU9pZN5XqEPZaZTtV5PmBqk6UYsZeDoKXJEi2c/wAkwcD83cS/tEFOIc/36CTFp1PcOmgMS/20Bbv0TECW/wjz2JMuLMN6dZ1Su1xYz5Mb4eLGekT2lXkNpA7T64dm4+0rF6B/MKArwo+FIpTSnRIcviNoz6HcLZHvUcv1kjboCkj/YDO7DnG/wGue2+q3KLWmQAAAABJRU5ErkJggg==\" y=\"-66.795366\"/>\n   </g>\n   <g id=\"matplotlib.axis_17\"/>\n   <g id=\"matplotlib.axis_18\"/>\n   <g id=\"patch_43\">\n    <path d=\"M 218.506897 104.795366 \nL 218.506897 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_44\">\n    <path d=\"M 255.996552 104.795366 \nL 255.996552 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_45\">\n    <path d=\"M 218.506897 104.795366 \nL 255.996552 104.795366 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_46\">\n    <path d=\"M 218.506897 67.305711 \nL 255.996552 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_9\">\n    <!-- Happy -->\n    <g transform=\"translate(217.893287 61.305711)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_10\">\n   <g id=\"patch_47\">\n    <path d=\"M 287.775862 104.795366 \nL 325.265517 104.795366 \nL 325.265517 67.305711 \nL 287.775862 67.305711 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p821e0a01c3)\">\n    <image height=\"38\" id=\"image59b5071cfc\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"287.775862\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALjUlEQVR4nJWYy49l11XGf2vtfV733rpV1Q/bTdQ23XFsExJsJJCwwB4QJBxlAAxAyigTxCAMgL+CGTOEIsSIIYEJIDGyBFFMLIgBO1bAcpp+0M+q7qpbdR/nnP1YDPZ1dUi3CRzp6krnsfa39v7Wt769Jd190fiUK1nmd269yQd/8kUQkAxuNMJEWF0ShosZHYXUZqw2JAnmMyRBgoIY5o29Dz3tUWb9jCIZJEKcwD/+/h8x05ZkGSf6P8bWYOlTQQFkBDHQaGAQOmH5vBB2DFNDMuigkIEoyKhILN9IEvDG5lnDFKrV9v1koKAUMD8KKlnG/+iNH34pY6xijWRDI8QW+vNCnBipMdxa0UFwBhocfi1ogDg1cg0YmDrCzOj3lfr0cTJkyOSnjutE8YoQLFGJewJ5JnPrdA/JsDmvZcbmRmozfqk0xwWI6wtwKDPj10JqIFegozCeSwz7UJ8WsJJADMJ2VZ52eSeKe8oDJ8pJ6nnw/Yvsd4IkY31JSDX4pdI9ENxgmAhxUu5D4WGuwK/L4K4HCUJujNiCuRILg3sJ9t2TSwnw5J0fuu4lmH+spEYY94TUGJqgOpWyHFZApBpSZ8SZEWalllJTQAFUS8EU0jbBXJVn72yufurY/yuwr/ztH2AOcg2ppVRmFNzwePmahbF7LXP+g8zONWgfCdUSNIEbDDeCZAGBcbfEMCf43vjD977MOo//P2Bfv/0L7P+bklowhVyVmZAE9anRHmUu/MsJpy8I937JuPNW4tGrmdNXB/zauPB+QNLjWZMIsTNiV0CmBnb/oeW3Pv61/zuwZJm/e+e18kIoM6aD0D4U2kPY+3hg/h8LDl+b4zdQLRT/sGJ2w+Ee1Bx9MXP7TU+uhN1rAbcB8yVWnICOxjgXdIRbx3scpfWZPH1y+afg4qPQ43ohzIR6UbKsVtAdGN1BxC8Dyxd3aU4NMWgPy6CSM90DIUyVXBc+tYc9l74Tuf1Gx7hrSDbitMQb94T47j7vfmGftybDjwf2jYdvMrkjALgA1QowSBWsn/Wsn5mRKwpfhDJrm1zeqUGjlOfA6ZUp1SrxzHuBk+c9465QnRZZMRF2bmWujxdgcvvHA/vO/Z+kPjEQiF2RgHphDHuFH2w7gRugXhu+z2RfKk+jUa0h+0Lyfh+GXV/0bihJ1ktj2C0FkL2g8mRXfCrHnOai3ED2RaOyh+4wo8GwrfC1R5l6kQgT5eBVZXHVkSvBb4xmYVtpKJRYXRJcMKZ3E2FSksBK3KddT9wOlsgmmEDshFxD2GHLN6FaG7ErgPt9JdVauHJlQ4iKaUN3aJiAeWGcl5ma3TayE5afUcK0CLAJSDYcT3aAM2DJMl+78ct8+19fojl0tLWQWggzI8wNq4zhIrT3HdVp0ajlZSF7AzWaNpTEdmvipKh+dVKkxvWwuSBsnjFSl/EbKdpGAR3syd7jAW7GJb/y7d/FfzhlZ1M4FbvSF8NOxqYJqTIixmbiGBae2S0ldoYGMAciRs6KJM6KQrZ9cfmCEc8FpMpgQqgckhySBY3Cn/7gF/nc5/+Sq37BlWoGgPR3rthXr/0q33v7JSRB+6io+nBOGPaMsJ9wuyNNE2jrQEiO9aolnVTUhyV4rgx9cUlOCv85QWMBFmeGnRupu0DXlG8365q89rgTR3ug+DWkrghu+Kk1f/H6N3itadAPx8h3P7haPNfWKUgqmaLFU6kY03ZkWgd22oG2G6HJpO5xNeUspFSMoGmxPu65Dd1sYGcycGG24tx0jXMZsiCpSIopRYAF5GbHnz96nWQZvR7P0xw6/Lr0t2pVvFSqwW0E80ZVR2JSjtYdR8sJ41CoaQrmSyJhU2FRi5xISSpnxUzwLhGSI1vhVfFpkBo7i+OGcv+v3v9ZPgo9/psHP4cOQnVi1KdG9zAy7lRogmygvdLf2mGIgAm5NmweEJcxb6SmeC71GdsOHCdGniTUIIyeh2F2Bsr7BFVGskNTcbr1whj2hfpY0LHhfprh3/mnV+isiOH+hwsWL89JreA25QMNSuoMyYJfFlUP04ZxrxBfYyG/mWBBz4wgBnlw5KD4Y4cCqTaGvYgMrswQRcdSU35iYGo8SDv47p6WlwT06BSxORq29hfY+0GmXkTixBVXUJfMNRr1cWR1qS4G8komb6tMTwW3KRyqTwSsxK8QQl9t/ZjgN4/d7IXvBY4+V+EG4c9uvYHXBNXSqFYGKePGDLjS/9aZVAvDvmf3+wtkMyIhki7MyV7JrcP3mVQ5qirRDw4JsHOrONT5zZ7+fI0kI7bFcJqUndbmgiCpOBe/MSbXjjn8wkVyBdf++TLe9aW1+I1hIeCXCcyRPUzu9JgK5pXFK7toNOYfHGJO2FxqCRNh3BHGPSM97AqpPWQH7SKTKmXyX2v8nUdYCLAzZXj+HAevNWcVWS2hPs3IZsD1pQjWz4Ffv77i4h8L/r2PsJyplgHJNamGkysd03sBE5jd3GC1snr5PLkSxqky7Avr54w0j8XdjoWPYSa4IIAv8nH5AhoS/bMdw65jejdjWtpcdkLzKMAwsnctsjnv2P3yPfTrP/P31NcPsBDJY0DXxermWjh9Xjl4rWFxteb0SgfJ8KtEtUyYwuonjHS5x+0EpEmYGnFWDIAkqBcR10dQIcwbNBg7N3p2bmxoFgWcZMMtR2y1ZnJriSn89gvfwq9TAzFu9SWXHcy2pcSJsb6cEBP8iXL0SlfkYGqk3YCfRLzL5KSoN1KdkSaxvFJj6hCraA8LubMXEKG/WLO+6MiumATXg6SExYjcuMvxV3d5o7uOD+awYUQqj8WAbAaqZfFJ5oryW5cI+4XQOgs4n6mrsoOvfHEjOQtBPeoy+XxmNfMsX1SqhzVuFHTgbCZzVcylbOdDQsJEsGHgs99c8u6vX37sLqRpkJQgROpVZtjfnjOEQn6cFWF0hrrS0EVAxXCaGc3jq0TlEykrTRuofWSxMyGODkuybc4Ot1RcL+BAzCBESAlpG7amA3WSwSk4ReoaVAr6T/rkKOUsYlRk7UknNWNfYSaoFrFzaqgWsCG6s96Zs6JiaJURnwtF1Mh1oQsURyv9CM5BVfPop2dcrh6iisEYkK5DpxNs2m39+ONGrqNABqsy0iZEjXH0VC4xbUZEDCdGWxcHAqUTLI4npKikUbEskGQLDlJbeuzkfsCWS8Q5UGF2N3KQ5tulVMFOT5HdOWnekqsS4Ky1VMUo4rZNNxc13ww1y3WLqmEGTR3Z9BWWFdn6+Dy4M0CfNHAdZathRnf9eJuIIdsiTKZ490nvyVZ+225fNhM8DviJaxDD+UxVR2bdgJngNNNVARWjbz198PRjRRwdxHIsVeIaEqXs0nth93pAlmusaZBhwPqB7rvXuRP28SoZsmEpQT/gTnrc2KHbHparcpaFM1yTUC2gJk0gbXmUDboKVmPNZqwI0WEmNJNAHxVDkVA8mGShOhEm9wy/iiCCqGLeQ4jIzpRGQ1lKMwMzbLVCvWN2o8GvW5af8WhQwtQI54roag0i4F2i9WXqa000PrJTDxzIlOgdq76mXzZI75Ag6FAOYvxKqI/h4rfuY5MGm0+RzQCbDajCMBLM4T/f3uavv/QlZm//O5YSeblCb2Ym1yKTC+cIz+0QJp5x7hjnDcNu2Tk96uaEvYyeG5lOe3a7nmxCynpGfqQc1LGt8nohtIflMMYmDbIZy/9qA6KIA1LRR/9Wt+b3fjPw0tuAKtLU5aEIPHhIdf+AejZjWlfkSVv45gSrHGG3YfVcw7DXcfeyoVdWTLtitFIspS1B0Fh8W72A3Wsjzb0VcvAI8R45WZaYKWFm3PuNq/x89zfl4E41I9MJ+fAROptiMZVKXW9KtkfHSNeiw4gNAziHeo87cDR3WvKk5sL7NUcvTzl+ZUK+OCK6LaQmY9HhNkL3MNPePIbFaQGy6cE5ZG8O6w3iPfMbkYO0w38Du5l3OqiPVLwAAAAASUVORK5CYII=\" y=\"-66.795366\"/>\n   </g>\n   <g id=\"matplotlib.axis_19\"/>\n   <g id=\"matplotlib.axis_20\"/>\n   <g id=\"patch_48\">\n    <path d=\"M 287.775862 104.795366 \nL 287.775862 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_49\">\n    <path d=\"M 325.265517 104.795366 \nL 325.265517 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_50\">\n    <path d=\"M 287.775862 104.795366 \nL 325.265517 104.795366 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_51\">\n    <path d=\"M 287.775862 67.305711 \nL 325.265517 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_10\">\n    <!-- Happy -->\n    <g transform=\"translate(287.162252 61.305711)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_11\">\n   <g id=\"patch_52\">\n    <path d=\"M 10.7 149.782953 \nL 48.189655 149.782953 \nL 48.189655 112.293297 \nL 10.7 112.293297 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p853b5b7cfd)\">\n    <image height=\"38\" id=\"image3039721778\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.7\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALUklEQVR4nI2Yy69k11XGf2s/zqPqVt2+t19u27QfJE4IJLI8QBESURSBGCHGkSIhEEIZecJ/wBgBf4AnkWAGIxhAkAhKAOVB5CCEEjB27PjGcb/uo17ntfdaDHb17Xa6AzlSqeqeW3vv73zrW2t9q2T84GXz4nj8yqb87ntf4M2/+RSzO0auyn0/gmTYPiuMh0boBI2GOXAJRIVcGQiYA1Fo7woHJ5nh0KERzAkuGaLw4FcT3/itP+P5cPCRs704wk+DAvDi+MoL/8hvfOGQ7V88i0vgJnDJWN92TEsr90aoTwU/GG4CMSO1MB0IuQGN5e/UOuLOyJWg3sBBroXfee3Nj4B6/HoS1WPg3njlLxErbLhk5Loc6EahPhXau8b8jtKcG6Evr/rCqM+N6gJ8L+Qa+iMBCoMugSRQD39+69+eei5AeEjdw/efvkQLG+ahvyqYN+JaqM+MuDOmVpgOBA3gMsS1EbqyJteCVjAtwR5ArgsoURCDwSYC/qnnuoc3n/ZPABNhmgvD0pErcJMQ1+AnYzgUNreF4QpMB5Ar2D4n9McODMIW3AC5MbqrDhQsPNwXTvPwkXOz6f8fSoC1xiLiDLkt3w5b8IOhoYSnvWMcnBjNg8JUe6e8awSXrUhhEtKshBHK/dAb/7B78alhfCqwx1G/m64CMC2E1JZwulTCEDrj+L96qrXhR+P4BwMaBT/CwUli+aOJ0BVm1BsAqS2hNBF8D3/83d/+maQ8Aexx1G/8+NdJLWgErcrmboL2QebK9+4Tf7Jifdtx/gnHvVcbds8Y69uCH5T2P044/vdzFu8rLglaQ24FczAuSsnw7zT83a6+JORxUuRpdQzgP8eOL/3JH2FSwpgriGtY/iiz+MEpm1eO2F331BcKIoWZsM+8DH5UmnsjFoSzjzcMx4IkiBsrzI+F/fjFO3z903/1hMafWseyKV/83u/jrYg810LzoJSC5v7I7qUrDEtfMvXIUa+M0CuTcwyHQm4ENzp21zx+hNAbdg6pFTQIoTc0gO+MD969xn9/sueXqtn/HUoAxdj+8BDJRtwYoQfzQmqE1YsNuxuhiHuEamPEjeImo1or9UURPxQGpxkMVxy5KYW4OVOwwqwG4dq3PP/avfwEhvA0YBsdwEoL0iBIMlyGaS64qVR9P0LcKXGd2TwXmeZSiusq45IwHBYwJqV+tfdKJqam6Ix96OPO6C3+fMBOVRFln/ZC6Es46nNlWLpSiwzCThmuBM4/Cel4pDmpWL7t8aPhR+ivFW3WZ6AVDI2gsTyoWMlY7GkIfgawD/MMyaXKq4c0F8aFUK0MP8FUldTfPBforgm5yUgwxkNl83yhI24LU26E3MBwJKRZkUXYCHFrmAjmjMn8zwdsqzWiRazTTBiOS0PubsDsQyHsrBw0L7UNE1yVMSIWINeGeSHswfXXjDxXLCp5cJh4Ql80Zx4u0uwJDE8F9u50HTfBuBT6q0ZaKlYrJEErT3NfwCBXxfqIQlUlBitdolpJWX8Iw/UMBxOhyqgJ2QdGAd976gypFv7p7sf5vaNv85yfXZaNJ7Jyoz1fee+z1A+EaQ7pQOEg4dqEPxzJN0c2v5jYPatFJ/uWdevKCiiC1gDddaN/YcAfDbQHA207UtcTEhW0NPdcl7Y2vHGLz3/tdf7w/c/xL70+CewkbXj161/m9JvP4Kb9TQfilflBz+FiRzUb8YsJnSnm98CScLNdl+9qEbpGcFERp3ivOCkq93Ef0sZIs70UBA6/0/Dtv/4MX/rql/n+uHsUygvt+NzXXmfxZlOadJRycDBCzABM2TONAXHlkFwBasSN8JPdEp1n7NSRGkNrxQmYOnb7tuPEShLuXa95yI2QO3CjoQuhvuv50zu/WYANNvFr3/oDmrcazJenznUJEYBmz2YVsG2gtAMDZ1g0VAWtjJN7R0iV0SqgjcEyYQqqDhs9ZEGzgBZgkosdss3eyyWoz40B4Rt//5kC7G+3V9ndndMK+A7CDtKsAPQbB9uaMAihk0tPlWt75PMbQwHLe+GOgp5GLBi+d8WWD4JL5YFza/ixOAy0hD30xZKLFWkEgK+e/zLtB4G4hvZUGQ6LKOMGqouHQ8S+6W5L78RKFxAzprmwvQ0SFN8Lfiibx+3e9lT7pKjA91CfFZC6F5JYccqzu0Z37NDjS2tdqJ3dVZZvb7n32kERv8LsvlKfJ0yguhhJ80h3PdLcnwi7RH+jZl0FdPRY74stumf4wagvlN11T+yM+UnPdBgJ24w54fRT9WW/NQf1udL+eMv06pJB9oxtUlXEKOBWHdgBvi+e3hykmaO5OxDevUOIkfqkYbp+QHezYZoJu1uG7fw+rCVcfijiXr43ElcD7v27xOND0tGMB78yQ5JRrSBXpXf6UXHbntwsS7sbLHFnt8QPpdLLlAhdybjZhxO+S0yHFd3NBkk3sOhJrWd3szTu7rowXk0QFUuOaaGAw5yUGXIyoMZ/7FmGo4pxUWySm4o9Hw5LKP0uIcNIe1+R7AinOvLOnWssV4YfgCkRBiM3Qpp7fJeIq5HqvJSI6SCACGEwdjcd/TMZmowIUCVycLgx7hPDyLUrWd44Qpep1hNkY1pE+qseDYIfDcmGXaw4fDPAazcJCqRdoL4wDt7rsH6gukj0VyKrXwj4G57mQgk7pTob8YOS5p6LFz3bFzMsJ5wzTEubkqikQyU1nvrcaO4NZQQcM9OyhmyMVypWL4TLiZ39sGxZ4YM7tM8fEW75llde+hB5+wj3PyfYMBC2CYhMC9g+DxfB4XsHVkrAeC0RFjuqkNHsQAxTR1pVUCnucGT1ac/uVmT10oywg7C1S7s0HAvqS4mQXIbfUrEzljPxu28RonhuH5zxXrgKmy2Y4vuE5LLIHOSZXo5v1mZ8k6ibCVUhJyHGjKqR2zKf6eSIByNuOTBmx3Ybkc6X9WL4zhG2gg0C+5bk+gSqiAjyMCu/f3aT5ekWdYJNhl91xO6AabEf7SdBW4VK8U0ihMz2rMWtA3pYmqrIY47PBM2ePIF4I84ntM3k0cHk0NpIKviuTF1hB261I5vh2gZp2wLswXrO4XCBq2tUDekG/GiX9hoE33t8F8izyHigRfA3eubNhBkEr1hbWlBKjpQ8lj26c+RQ9iK5R45VSj92EzTnGbtYIVUFoVTdAHB1sQXnoK6L3XBSwhhAsiAYWu19WVSkUgRwTjGDoa/YbYuYH/bCaj5CFPLgIElxHlkuSX34OXQw/+EKcka8g5QwcQXY5595i3/+xGeZfWcNMWBxnzFS+qU9zB4FtGxoKqg6RDLtbEDmPdFnnEBWYbNtyKNDeg/Bylr26/dhF4XZPcXdO8diBZqxcUIYC0GvX/0mFy9HMEPaFps3+E5xuYz0oRN8J/jO4bcOVgGSYFnIuYRtHANjClxsGjbbBh+U2E746z0sJiwaaHG7vnf4Xpj9xFi8s4EQkMX8kUSntA+la8kN2DiB85BtT/3+IaOhtZEXGakzPirOKzFmnNM9c1YYa4xxCpd2KW8CbutxWn5cEYXqTECKYfAfnmGLGeQy0UsISFMXYJfTeM6gGbfZES8aqouAH2DMQu6EKQnmArlRNAuTNywYRKVajFgUos94r0SfMQNtBTVBUnn5UVicKKFX2g86yBltKiRnXIxYHtCz80cO1va6tH4A54l311zJBk6YFvFySDUpzjZ0GTcquXYMVwLjItLdEM5vJ/xiIsXENAYsld/FXOdweT+9rzNhlwnv3wPncP2IrHdYymAK3j8CphVI28CUsL5HTpW46wGIKWFZkYMyZpl3yJQK/THQVhFrK3Ib6W41rJ9rWX1MsXavBV+yOuwc1Rra99e4TY+NYykP98+xlJC6QntF2ob/BR8Xb1Cd3AYrAAAAAElFTkSuQmCC\" y=\"-111.782953\"/>\n   </g>\n   <g id=\"matplotlib.axis_21\"/>\n   <g id=\"matplotlib.axis_22\"/>\n   <g id=\"patch_53\">\n    <path d=\"M 10.7 149.782953 \nL 10.7 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_54\">\n    <path d=\"M 48.189655 149.782953 \nL 48.189655 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_55\">\n    <path d=\"M 10.7 149.782953 \nL 48.189655 149.782953 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_56\">\n    <path d=\"M 10.7 112.293297 \nL 48.189655 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_11\">\n    <!-- Happy -->\n    <g transform=\"translate(10.08639 106.293297)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_12\">\n   <g id=\"patch_57\">\n    <path d=\"M 79.968966 149.782953 \nL 117.458621 149.782953 \nL 117.458621 112.293297 \nL 79.968966 112.293297 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p16b5e64dd5)\">\n    <image height=\"38\" id=\"image32dd9028c6\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"79.968966\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALWElEQVR4nH2Yy68l11XGf2vtvavqPO+rXzGdmESWEUEJFkk8YYQiRiQDggQDhsyYMUFiggQD/gJGDJhmgpgQMQhhQBAOBssgCIlix6847Xa3u+/rvKpqPxaDffp2u9txSVf33Dq3an9rfd9a69tb8t0XjKeubIVvvvEN3v3nX6Y9hzgDTeAGaM8KqRO2t4ThpOBGIbcGUp81Vz9rL0gWNMHhT8AUdtfkag03QPn6Gf/61b/lQCdPQ0AfAXnycqL8w4vfIX5xe/USN4DbGWKwuyHkbh+PQbhU3E7wa6E5dfiVXoEqHrY3BDcYYWP4XX0szeCvv/ztK1BPY/DPQH3in04O1/QyRUfwvaERhqVgCpqF5lLwW3A7kCJoNBAjt0KaggmY3/84cD2YN0yF5D6+phN9NmNP33x0Xf7gRqUlGb43pBjjgZAnho7QPoT2zOjOCtP7mWZlhLXRXBphDX4HkqAE6I8Usfq37+v3f/bGtz5x3U+l0oniN/VFGiHOhDgXcguaBL8DvzNcD+NC2N50DIfCcKTEuRDWBgZIzVacg2QozX7haNx96/ozLD36/KkZK6FmyxQo0J9IzeBQwUqB3ICpMC4gLoTi9hQKhHWl/9G74qwGKhnc+MlUZis1Kb8oldkKpvvq8VQK2/pS3+8LocDsXqI9GyjBoTEzHLWYE85f8EweFGISijP8IORur0NqUORn130E0D8J5MkvEhnf1zIvoVaRjqAZ/MaYPsxM399QWs+9l+fkDmZ3Crvrys1XN9z+7zvsvvgZME9xSppBNgjrGqhGcDvlP4bIy214BuDHOHyS0u9sTtChgiqN1KoaoHtgzD/IhFVm87k5m9sTJg8Ksw8KUmD+QWFzu+Pya7eJM8f0XmR+p+A3ld40rVU9LoWjH8Of/OQPntH4xzL2tM7+9NXf43hn5G5P3xbCxnADjAtlOFRSVwFLAj8YLhpxqsSZYFppcwcNvjfaMyMu6z0plQlTOF3NeFh23HCzX5yxJy+7aKrQI7Av87gQxmWtzjSRWhwRmrURtrbXnxE2tercALmF/kgYDwTJj4vG9YYJuNcWvNLf/HQqoz2hxiy1q29qJlzPFbWPqq65NNqLQrPO7E6U7Q0FM8Km4AYQg+Kq6HMLflv7oUn9DoXle4UP48EnU/moRIPUdpyt6sX23dkUxIz2oraHOBdkD1qz0R85Tr9UsK4weyuwfLfQnWfWzzmGk/p891H9PSwVMcNsT6c8g+kxsKf1NViqjVEriDStEccF+DUgkAMMB8ruupImwHJAfaG/5tGkhHWlO3eG2wrjAZRQUbhBCBuQbFfBfyKwp6/TMmJqlEaJM4hLI02qawgroT0Vmo3RXxdMoDQGajifKWKMS2E4hnAJflO1OBwWzNce5leKGwQfa3POnyD1Z/rYz9KWv1v9On6rpCkMx0Y6yOAMCYVhrsS5Y/6eQgFr6oiynaNd9Oykilv7OiXS1IiHBZtkxBesd+SJEBdy1byH8mwfuwKWyPzF/a/w7f96mZN/Cyw87K5BaQ3pMr6LeF/IWYkhsGp9jXwnNWPBOJj09Pngqor764V8lNCQadqECAwCFpXcGrkTMONvfvSb/PTzN3hp/jP+aPnzOpKyFRKZP37/t3jlH7/M8rJak+KE0tTP4gqzycisHdlFT+8zO2lJOSBR67DOwmG3434BFNLMyItMmEScLyymPSkrwy5cDfbUgWRh/k9zvn/8G3z3+ks03/h7/nBxF3Wi/NWDl/j+v3zpSgM6VhcgRm0ZbUK1sIue3dAQo0ND1UxpazGg9VkDSjDStGpS9veHWMmZLXqsqXM4T4zioVkZboTmXPnL7/0u/zcm/P284Xt3fwXJFX13ul/AgamhozBsGoZVi/QOawraJQDEKo2ur9X2/vkhKBSBsky4Scb7TEqO9apD3X6AtxnEI6VOjnEhe0tkNA8db8Xr+NeHY05/cIumh/bccKMxLAVJ4PpaUTxo8Nv6sBRHCYES9otkkCSgxnbbVn1lkN6Rs7DdePy5x+8bbm7BrkUkA6UWiu2pDSuhePjz//0mfjSHaZ36zaWxeHvD7qsLNNZ7k/vQXhqbmzUrUthb6Nrn/A7SxOg/X4vIvNE9VMLKYepwsVrvEiBN98ZzDNWaryo4BCb3C5vPaHUzPzzAn+Z51YoXjv7njHhtCoCLRtlH355GFm8PSCqsXlhQvNCeJdrTgd2tCf2RQ9TIUXFJ6B4YzdqYftCTpx4T8JvE5nZHnArNqtAfKcVXRooTZndH3OhZfdYRPfjvPvw1/Lr2HNkNUKZoNiiwfC+hY2E4DpgTpm8+YP6OUBpPaR2bz04Z58rqc4L11bpKqdYmbIw085SghE2ieec+bjiheGX9/KROk24/1EfDr0eaIOTO4Qbw//76ixyeGZqAnPGXPVK6K2/uNwlNhqTC8PwxuVEkG/1JYFwI/YkwXCvgDMYaYJyD3wrgac9rcOMXbiKpMB43YLB8LxNnwjivwbiLHb71+F3tCt7tlO7cmN0ZsLMLpAlIAhxsbnmGA0d7nnGj4HYJvxrJnceNnjhXdrcKZZFqVxeIB7Wku4/A9wW/zUiuzS1PPa4vzC4TUozySx3mBM2GDCPh3iWL9xtSK/jf+fp/8tqrX6F58wNKSuhuQEoduHEO4wFoDugAzWULAuMCxkMjHUd0klDAiiDOsLYQb2XOfUN5y2EqNBfpaqcOEJeei+cDuh/iOgIpw/kF7ekh2xcb/LeOXuOV+dco5xeUMSLDiBsNKdVR5IkxzjKShP66ULoCXSFMRzpnlCKEkDGDGB2lKALkmwNnx8r51tGcNegguL3pzN0jmchje+UU6wfa139K89yv4t8dr3H45hZCgGGAlGgvMuNS0CyPzySagjXUudkmuq7uy0pRgsuMyWFFUS04Z/iQ8YtMORT6o4YSFaJCFtxW8RvBvEDee7IxgioU4/DHK/ReOsC/8XOkCSCKpUS4rIua1OYpo+4drcA6kB5MWJ9P6XcNKT22LCK16eakOFeugKsars3oJIE3Smu10e5f6QfDxv1G0zn0vQ/xDoNcX6KzKeI9rk+1APbDT/abaqRqQiaJbjYSfKbx1Y57V5BuJCbHbgiUIqToibuANrlmLNWBb1o30cVD6GF+Z4SYkLaFJsDBAj93PTx3A7lYw24H6sidr+cM+9MlyaCjUpoCwVBvjKMnJaWXQIoODFzIlKJYEXzI5KSQhJJ9jezRgdfes5mrA7y5twYVUEFEYLNDf3v6Bm///gnW9+A9HMyxUEcDcJU5CwZtAV9ADO8zXRc5Wmw5PNhweLjhxuGa29fOOT7cXNH6yBKRBLIgSZFYj6g0wfSjjFyskfkcYsJixFLC3/YT4hf2h1bFoAmkztVZuI+sepn6L+pLdTlqlKIM0aNaKEXJJlhRUlbaJqFqJF+ImwBRq1YfzdtRmN0x5j+8B6WAc1jOYIYAXtlX3hgheGQ3EFYRU4+mGqjpPv2h0E7ilbZEDNtvc7p2xImhYnhXGJOrbveyARN0p9WCCzSXwuS+0V4W8vEc96DAMCLTKQwDNka8E0XUsJQQFWy1xp9PmH3Y0F4ou2Mld0KaQdwofdew66rgpcuIM7rJyKwZPwa0DamyOHfky1B3sAZhLSzfKXQPM7MffYjNp+TjJe58DeeX4Bzi9qc9UmsdywUpEX1wxrwUyiSwBEpbh3ZxQp64OkZGI7eBca70xxPuXlsy3kpMjnY4VzAThj6QR61+rVRNNZeQgxAXrnaDlJHgKMspmjLl/ALR8HgzIk0DVqBYBXh6gWsb7OISFYUmIJMOm7TIECFnLPiqjUlDmjf0N1pWt5dcvpDRk5pB9YUSrAo+yv4AJtK9+xBEoBT0YoM1AVutEKfIcsH/A3m8QQvB+I0wAAAAAElFTkSuQmCC\" y=\"-111.782953\"/>\n   </g>\n   <g id=\"matplotlib.axis_23\"/>\n   <g id=\"matplotlib.axis_24\"/>\n   <g id=\"patch_58\">\n    <path d=\"M 79.968966 149.782953 \nL 79.968966 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_59\">\n    <path d=\"M 117.458621 149.782953 \nL 117.458621 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_60\">\n    <path d=\"M 79.968966 149.782953 \nL 117.458621 149.782953 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_61\">\n    <path d=\"M 79.968966 112.293297 \nL 117.458621 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_12\">\n    <!-- Happy -->\n    <g transform=\"translate(79.355356 106.293297)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_13\">\n   <g id=\"patch_62\">\n    <path d=\"M 149.237931 149.782953 \nL 186.727586 149.782953 \nL 186.727586 112.293297 \nL 149.237931 112.293297 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p4debbfb30b)\">\n    <image height=\"38\" id=\"imagecc43ade4c6\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.237931\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAKcElEQVR4nI2YSa8l2VWFv32aiLjNu/mazHRVkTZ22QgbCyEQSAxrgOQhE4bwF5CQYMIEyT/BQgz4Gww8AgaIGUjGGAqboqQs5Kp8lZmvuV00p9kM9r0vDe9VFjGJ28Q5sc7ea6+9zpHy2beU/8e1rQMf/MWfsH9HKJ2iAcJeUAfqFTcJLkOeQelsSjnMHDZCs4awV9JKkAJuUpqtkmdCDVAawSVIv3fL3/3OXxO+DFDRihfHH/7X71M6QSr4QfAjaACpQBXCAOqOo4TaKCioh3Si+CSEHqhQOpBqgPx4eE9j96+dXfPINV8ODOC29nz4D+/TBZvUD/b7cdLjxKWzaNUG1PAZWFFKK6SFLax6qOHNQtwE0tnnxhVaiV8OzIvje//yR7RXQp4bGJctTbmziACgUFulRqhBqa2ltzaKZCHPFHWHlA6Wcj+AekGqEva2oOCKgf3FlP3fq2jlZ2nH5Sfn1MYi4CYDVyOEHsLevksFl4S4FmYvHPHGWUScRUaDAZ5WtqDawHgmAOSZoN7mG0qkaH0TMS/uHjAvjr98+QGn/xrov6KEvRFcMjQ3SrNRml1lXHmmlRD2yrQS0hLiVgh7IZ0opVPKvII6S2XD3V29ZaB0gkvK5faEdR3ensrb2vM3P/4NlnNwk9DcKsvPCu11Yrho8EOluU34PuBSoF0Xlp/CeOpRsQiHQenPHbtnjtIqGhRVi+6xOABU7PP6Jxd8/N3wBtix+n7xuiqFp38fGS64C3l/5smdI3eCPnLcvh9RAT8p/ZOI+sNLnKXGJaUGIW4AhOoVHEixqJXGuCaHMWf/Dv+dz9+eSoDSvvksxVZVGlttbcCPipssOjXY/8f05DkgYlXYGAV8FjS8eV4Eup1V7bGKPx6fvj2VFWyAviEwyl2aXLZISTmUvooNwr7Xw+y1tXGIgbNnAW8vqcHm4SAlf/XD7xEeSuHx+s90gRRF3EF/glUjgE82WdzXQ1osZWkplM6eLZ1JCAp+FPxgv3EEprbYMhPcRnEFXFae/hNfHLGilT/98R8QooUYMe1KKyHsIIyV9rZQWsfuqcNliHvFJ8VlYTiXg9gqfhTUKeO5pbkGpb12d9SwtgZauYu++6JoeXGUHz2ySEXTnulEqcG4UxqhBuH1r3nW34L+qUW1RKFZK2EPZVYtbRXSUkkXmbwqaGMS4pKlthxTfaBMjfJ2joW9gUoLKHObDAdhK6ZXi0D/XsatEvuuoXpv2hQgbE0S1EFeVnRWcV1Gq6CTJy8E31tDP4q3cVPIs7ek8vOys0jNIa0q9aBBWR0uCbUY16UI88XIdhconUP9obEf/isnGekKTZuJsZCSJwFVjVt+OES6EfxgdsQPXwDsVdnxu3/7x5wM0J8odaZoqBCV6pRUIOyc2ZoqdDGzrbZkP9pdPeTzRLsaaZtMGzPRF6YcuC5zShXSo4o6R1wfpOKwKFeUBwn2/csPaJ63VI/1OlGkK0io4JWyqEwrkwk/CLk4m/joGATG84qfFdomM28nnCipeHJxxFgO4JU8V6tUfeM4VOQ+sKSFjzZPcPmgW1hKdPJoEcgOglJb44ZLUFQgmIDVRs1JREVEaUJBVRhTYD829izgYgWnIAauxiPx7Z33gG3ryMvd0oRQuBNGU9uDgCZBvVJaI/jQN+DV9DWqVeO80M0mZjGRisM5A55SICVrkJIceNBwAOblDuA9jiWUUoW4g7Q0+1yjQB9wyZZSWtOn2ihuFNK6wS2yiamAdpU4S+Tseb2d0+9adPRQxKLfVBNFr/i9u+NkjYCYS7kHLGJhP3ldqcE8VYhWPWF3MIgzW5kc2o8MHneSKEGhClQh7SKpCH7jiaPQ3FrPtB7qyTMzkxyKpjZAb/N1t+U+sJ1W9q/mPLkqpKUQt0q5stShkE6sguLm4GSrKXqIhbwouHWA0RkDijC7dCY5S+X838yvIULcCKUzv3YU4eqNsy49ELG9Cs3LQPt6y+7dJS7D4sVEaRzrrwdOP8qgkOeO+eXIcNGw/qatOnQZvQ6EXnDXgbCF9loZHsPZh7D6aIOMheHZCSrw+W9HpJr6uwQHV43v631gpw6mxwW3T/jRSDmeBU7+45bSPWLxsyt01lBmkbyw4S4LtQolOXwW2muLtJugXVf4yDGthP7dBbPLnu7Fjk8/OAW1LgLm3dSBq+DKA8DOXIfMMm6zo7s+sSg+Ddx+95TVxzsIHhWhtp7+SWQ4d6SzhJs8mh21VdJCcJMg2RzH7FVldjngdxPjVxZc/WrDeK7EtRB3Sun+t1FQ90CvrFR08Oh6S+kci+dbQt+y/lrLy99c0mwUURhOhXQi7N+r+GU2u9wWqlOGzlMbT3Mj4ExS+os5pVkwPTJuLp9Duy5MJ8bBGrmTqDzz94H94PrbfOcHa+pmQ5oJtYuE9cjFj3r2Xz1hOPNG5hNhuFDk6Yjzx8apaBWkd9b8VyaCLh+cblFWz5X2piBFSUtPjWav1Zmb9SNIeYD812kBr67RUmi2lVe/PuP8p4541TP/ZE173TGdRq6+HclPE12TqVVo2sQ0BcQpfhAWPzc9am8L7U1G6nFnbpzavRNZv++OabK+K+bHwi7fBzbWAP0AqjTrzP63AtNpR/eyZfF5YTj1bL8q7L+emK0GVAXnlFqFPHmcV9LjzLiPJsgC06OAVGVaOEor5Lmwe6agR08mKFaZca/Eq/19YKswIOfPkP2esJlAWoYLmE5h/SveXOlJYvZoIGdH05S7seKgVsHPM+k7if4bAdl53OAOvkvRpqKxItkhSVBv+0nJQtjA8tMEl68eaEnqIWWkbZHdiBtXuEYpjTVmbSoSK+MQ0SrkMRC7jIhSs+CCUvYBN8ssTnvceSWlgCpIcagKqkIZPBrEVBUhjNC9UrrnN1Af4FhVU2ZZLuyBHmojuFGYHhdr+7eR9tIznlfkHTthURWaWbLUnhREoN83aDGwzhdKdmhxaHIHXTCTiBq3lj+f4GYNzRcdqoggIaC1EndKntteMGystLVR+l9O+HmmZkfZRPDWlMUrOjlw0C5HahVqdWg9gKqCxGr3LEg1cO0NtJ+tD5Rw94G5w2mb5oyUSnujjGdCbvTOBFIBFWqxCpO2Ir7iYyGECnMYh8i4awzoPhjBg4HXbHtVyWLd4Up45x9vkG2Pnj+Czf6+H/vzx//Mh3/2SwdTXoi7akdPox2SaFBozckChCYTZ+kOlHPKopt4cr7h8ZMNs8VIe97DKtmYIsjkcHtPvHXMPhce/2Sif2+BzjvqvEFn7f2IzV2DziqMI5oz7dVI2HmmE2FaHXxOFQgGrBaPHKOstgfrp0i/a9DizKUCmt0h0kARmmtH99rOycIm4Tcj2gZkLPBQKgGkKfaScSR+8orz+JQwdAwXjuFCyPNDhUZHaQu+LcRY6JqEc5VcPPPlSEoeESjZkcajaxX8KLQ3sHhREIWwHpD9gHqH9COUB/wYwDefvYT3nyGfvEC3W5qfZi5enVIWDWURKe2bY6a0jAxnDf1jYf2kEt7ds1oMTNmjKqTJ321mJdvWz00wv6zMXk34XUJuNuiUEO/QYUBT5n8Ay4IDy0Y8XuYAAAAASUVORK5CYII=\" y=\"-111.782953\"/>\n   </g>\n   <g id=\"matplotlib.axis_25\"/>\n   <g id=\"matplotlib.axis_26\"/>\n   <g id=\"patch_63\">\n    <path d=\"M 149.237931 149.782953 \nL 149.237931 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_64\">\n    <path d=\"M 186.727586 149.782953 \nL 186.727586 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_65\">\n    <path d=\"M 149.237931 149.782953 \nL 186.727586 149.782953 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_66\">\n    <path d=\"M 149.237931 112.293297 \nL 186.727586 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_13\">\n    <!-- Happy -->\n    <g transform=\"translate(148.624321 106.293297)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_14\">\n   <g id=\"patch_67\">\n    <path d=\"M 218.506897 149.782953 \nL 255.996552 149.782953 \nL 255.996552 112.293297 \nL 218.506897 112.293297 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pdbf3e0c337)\">\n    <image height=\"38\" id=\"imagef4d668d015\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.506897\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALYUlEQVR4nIWYy49l11XGf2s/zuPeW3Wrq6rb1d22gdhJDMRIDCKCxAwGCAkiZcKAGRMkGESRGDJgEGb8A8AEKUI8hALMAkQgQEJCKIADxCSOLbubflV31+s+zmM/FoN9qtptu8ORrkr3nnNqf3s9vu9bW9KD15UXXN8LG37lt3+T1JTvfg0mKevbhnGpZA8mlnupUchy9V0FEFCrtA8N84cZNcK4EETLkssv3efvf/yvPrZu0ox7EajygKAGTAA7FlCxlgJUy+9uI7geyILrFASyF8ICsofUlM+4KM/ZoGQHKsKy6j9xXSvmBwOzUnYmCUxQYivEmaAW7Cj4Nfi14rbK9CgqlPsdjHsCKmQPcS74jZJbMCOIKm+9/UPw6U9e+wcC69WCgCiEmeA7pbsuZK/4XvAXig0wLA1QIiRaNgEFtBoh1Ups5CpS2SuuBxmFpBkrZspQfhaxD9/46PVeOMTEaSEVtjcMca6YQajOS5TGhbB5RVFTQCklxdW50D5WbAVmLqRWCQvB9eXZyyuj2I+kEcC9CBTAnx1/HkkQ25K+cY8pEiUd2YHfKkf/khjnhvo8M+4YTIJhCakGt9WSUg9xDq4Dyj5pji2/f/7D/Mbe3edAAbwYFfDvf/2jqAUE+v2SAsmCHcB3yu4Hgb13OmyXCXNhfdvSXzPUJ4Hr/3rOwX9umT1NuC2QC9BUlYbKHub3lK+9/1MMGj62trnM6+Xfy+tOXFOfQqogLISwo0gU6qfQnGT2vn1G/aTj/LWWcdcye5KpLpTFw0SuDP3RnNxYFm+fsHMnYULZWGrKRvMEsP/GDf58ffQxYFep/GhKf+6ff53dXgnz0lW2F+b3lcX9SHU2svrskjA3jLtCd93iNorrIDZCeNmSHdje41+tWTwIHHwHzl6z5KrQkO0UteBXylmaAU+fB/ZJKUyaiY9mhavG8puPMO4Ka3WYG47YTMUuE2V04LoMIuQKoBBpmAtnn/LYsdCOKEgEmRIkCm9vbpGWHzwXnBfShWgp7mqlDNcEFFILw7XCR2oEpdx3nVKfJ1AlVwZXW1LN1KKQWiHslu/VaaGS7As4FfjvsyPirYTl/wEWSUgQRMGO+ixqm9KhqZaiBr3SnCZsn1m94tkeCbOHSnuSQUqaY1vq1CRonipuKER9qRAmKHce7sOPPY/hCuKHi99gyO3UFLWgbvpYMFFJNcR2ikZtWN/ynL2h9J/uOf8M9EuDHRRJyrinxLkisXRkv28YlkL2U3dWUL3bss3Pd+YnRmyrI2qUbIVhD8YlxFYxociQ66ZunQn9QWH0XJW8pDazuW1BC62oKHYU4gyGAyV7xfaCXwl+A2pgcefjPuIK2IcL7zynyRnAsA/jXiY3JYJhx1CfGNrHSn8gpZYASYKtI/Hcl3psFESwgxBbJc0zWmWoMnnlMKPFbadmSB8PznMR+9Yw8pXv/TKbrx+xZ4W4mEDtRmxdWio3lm4phF2PvyjyowbUKXu7W548bhCF6qKkqjss71fzEe8T4+AIWRhUcFsDIuigfPX4Z/jitX/jDb/hhp0XYEkzf3hxi9/90y/h1uAm8YotqFdsnZjPe2oficmw6WpGgewdbiOYUQA4nG14mg4KXSgMBxkOBqxV6jpgRUnOECZjkNqyMQT+9o++wN+YL5B/+pxvfv73SvF/bXXE7/zdF0t7UzpRXXlBjaJ6dYshOKzNmCqhvjyntqSyMoXhyZBaJdeKsYoxGWcyxmQqH7FNRJ0SZ0UJ1FAskYf4nV1+6/7P47Z55BtPP4c7LzXm14qkyeRVRRuNUWK0bJJhGDw5GkQu+ah0nO2E87EhewUjxLkW4CpoLlF2LiGFKVBTTGVqysbcFtwMUiP8wz+9ifvHfof/+OYb2AzVReEWO5ZFTSyeKXaOeFbhVhYRoMnkWQKnMAiShHE/cu/J3iTQSpplpC0+W7MwbitGAbJc1bTEYr2zK54NwPYlU44JvV8X0rz2PwNnr1eg4C8EMwix99hBMCPYAcASW0tYaPk9UDgtGiSXLnMXltwbVMFEwQBuK2RXeK1sXAo4U8D4dZkb1AguUYhTMizfC1RPe/SzdbHKGRb/q9hRiS10NwS/VkyA+hTq81z8/UzobkHdBnpf4bYGM4ANgu0gLErKJIJRoT4pEnfJh2qKJi/f7Xj6Zks3B3cv7ONXhSTbe2ty65GsJaQUvVzcCzT3V6TdBrMeEVVWn9mjPR4Y9iuyM2AgBgu5GMn6LOM6xURl9bJD17B4kGieBGJr6fctm5sG103DTlDcakBlhmTFff3BT1JdFKlRZzBdwIylIJfvjYjCcM3RXd/n2lsnaOVQVarzyOZ2U9h/X8BFwkWFAGF+OT0p1UXk2ncT9eMtaV7h750Q3rxJv2+KMkxGVBKQFBuU9pHgzoeG6qJ4I7MeIGdMhOghNZb6dKQ+ARMy/cu7ZF/ooD+whLkwLoXupVxUNxeiDbtFvtQYUE+1SleZ2HzuiLAwtE8z2RapUpnMwpNTlu/N2d7wmF+8/V8A7L3TofcfIf2IScXWbF6yrF9piuA6oX60oTnu8atAtc6YANubmbQXEZfBKKJCWJSRrr7IRcyjklpHWHhMUHbe37K4O+D6Ag4BO2S072m+f4wdFfcLO9/mT67/LPt/+S7aD2g/lGlaYDgQ1q8KdqhwW2gfV7hB6a8ZukOhv5GRGwNmYl+pE+ozYpX1qw1+Y/DrWGpmPRJ3KkjKuFezeckRFsUdXyqHhkh+eMzOO3Pc0gTGPYWU0JQgjFQXiX5PygxYK+NhBoXtLUOaK9oEbBtp6kBKBmOUlAwpGVQFX0XypzYc7zf4U0d77EGbwu6udDcU6jGBK1a44rc7D3B/sfoJXvuDu+isRcYRDRG/ipjkrhymikKlRJ+ROmN9pqoiqoK1GWcztY8MwaFeEFG8T9iDjuoosrrdov0kwFmQUXAbgyQpa1iwQ4KUkKoC53C3/Cnh1UPcd+8irpgNux6R6SRFFExvUFW0Kf4kbRzDcU1eJEwTaWYjKRlyno4EssGYTFZBFaomkH0qzwwWVUOuFB0EDWAHpXq0JqtinEOcm2yPKohB5jOkaUhWyuCQSqcVNCAbizqFKmOPOixQNwEjyu6sZzNUAITgGDqP84kwOjRNNTTYK0nKrmix2wqzxxm52GDaBioPTY35pfkj3vlVDzkh3oMpHkkyqCu5N/GZtcGAOCVnQ86lpvrB8+h4yep0xnbTEIKlmY1kFfLGoYMtqcyF8S/PQ0woAWgfjehmC9bCMKCbDleLw80msU0ZFn6qQKbxrQyqudESLatcHu1Yl6hcZNEMbGtP48v/SVlYbRryaKciBRlMefcSWChnac0Tpbr7FOoKVYUQ0e22DLxiMmSFHJEQiXNfTmY+NANLkALMPT+xj9GRpujFZEi5fOo64n1iqDypcxAFiYWckeJcmsfK7Hg66ROBGEvUYrysMYHLKWkY8acd1bpiXMqVG1UD+IytMtYlnEs4m7FmOjoyGWuUygXC5HLD6MjbAookZSTMRa527ig7d0fqD07Q2VRb5ytIGax95vk1xNIEgDlbs3jf0T72rF6up/lQGPY96jyhyQRbvJTMIlUTmLcDi3qgj47GR7zNbIaKTRZ07Z5N3gmW72biTIgzS5OVVHvEGIwxxSmnVIDNZwNmb0m+WBWA5xfYfsAChx/MSPsLUutRK8TWolYwUTEhM+56usOa7nCH06OMvd5TNwFVyNkU3spyVeiuE6p1Yv4w0Xz/GFLGnq1hDGjXoWNA6hpJD17Xbw0jv/bVL3P9j99C5vOSVjFgpLwQI1JXpWubGrUGGcqAqrVHZzV5VrG92bK+aVn9iJIOAsYX3suDRTYOvxJmD4XDtzpsFzB3jxFj0H4AI0hVkdcbpK74P383bUbeUicJAAAAAElFTkSuQmCC\" y=\"-111.782953\"/>\n   </g>\n   <g id=\"matplotlib.axis_27\"/>\n   <g id=\"matplotlib.axis_28\"/>\n   <g id=\"patch_68\">\n    <path d=\"M 218.506897 149.782953 \nL 218.506897 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_69\">\n    <path d=\"M 255.996552 149.782953 \nL 255.996552 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_70\">\n    <path d=\"M 218.506897 149.782953 \nL 255.996552 149.782953 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_71\">\n    <path d=\"M 218.506897 112.293297 \nL 255.996552 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_14\">\n    <!-- Happy -->\n    <g transform=\"translate(217.893287 106.293297)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_15\">\n   <g id=\"patch_72\">\n    <path d=\"M 287.775862 149.782953 \nL 325.265517 149.782953 \nL 325.265517 112.293297 \nL 287.775862 112.293297 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p72ed7a0f1d)\">\n    <image height=\"38\" id=\"image934fee94fa\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"287.775862\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALg0lEQVR4nHWYy4+k11nGf++5fJeq6urbTM/YHo9jMcJIEAnEJSuDhEKUAJGIxIosWGRDliCF/wCJXWDJEmQJwQIRIcECNgkgBSM7xLFNMDKeGctz8/R0V3dVfZdzeVmc6vJ43Pmklqqqz3fOc57zvs/7vEfS/VvKJU/QxE//wze58role1ABE6E+U4YdYf2c0B8lbGdI04xaBQFJggRBEqgpc+2/I8RWUFfmsT3kCv74m3/D13eOAUiasWK265uLH599DMI/fvnPUAMSwfVgRxh2hNUNIc4UMxYApjMFzGCQQZBYAALkNtMdCc2TjBlB0mYBga/vHG/XtmI+hcNdxtbFwEoyagpTJhRGhn1DapVUKW4l2FFgBRiL7cuCqaKwYyCNljBT4kSwvWIcoBAn8hmWnv7snv7h2YG92sJIhDATshfiDLIvoOoTwQ7gOsVEyA6yh2yFXEGuBMkQpkp3RZg8UEggGdRCJGH5ZL2nn08x9jQogL8+/RUkQ6rLZOO8gLKd0H4suLWiBoZ9IVWbE9Iy1gybkBjBNCWmCpuCHRUTYJFHjqy/lBRzWXxtgb39S5hNEA+7QpwqZPBL2e461YKa8vkiuMlgErgVmAC2F1KjjHPBRAUtp/D9/upnSLnAY55l6eln9kZLqsriYa7EVjFBsD0lXkaYPszsvZ84+O/E4duJ+e1MfapkC3ZQ7AAom7gqrKmF6kz51pu/+5k1L/D8RFTvjB1mhLAj5E0g21EwAfxSqc6Vq//6gNgI914VPvpS5sEXDA9+LZM9XP+PJXYoGY2U402Nkp0UcAbs2zP+6uzKpetfCixo4nf+9o+wYzk6dSX962PBr2B2LzJ9MPDw16+zel6wneBOHM1jwZ9ali/Bna/MGOfCwY8HqpPCEkCYFbDjrrBzR/mL27/KoOFTxwg/QS7eGhPkkol+qQyVUJ3B5EFmdm/ELQOLW1PaJxnJhuYY/EpRUaYPilbFtsiGHRJXf9jz0DeMu0qu2ErHOBMev3vE268ov1g/w9hlwf/t+19i9qFgRnBrxXWUY8kQZo7FrSmxFYZ5IdytFTsori/Zlmoh1SUBVi80pMYyfZDZuQt+Wcabsax15QfCG/3ngEt07ILGi3+8vzjcSkGqBUklptZHhu6qwYyK5MJMtVT8KpcEmRhcX75na0iN0O/BOHOlPClUp2UD406RDYCs8tkYuwDzbHaqAxs2MmBK6alPCzMXEtGeZKpFot+zPPiC4fQVWF812KC0Jxk7KtkLYSqkWnCd0izKJqBsLHtIl4T6pTFmRRkFwhTUCuMOhJmhOdaSZQayL0cZjwzjnpCvDqjNrGyDJItoqQDDfina7eMC8uyqIdXg1gCKKFg+G07uWcUNWqqsGghTIXtK0DZKf0VoHwp+VY5g+aKQKgWjGJ+xLpEFuutC9oo/L6y4NayvC8OBkuqM7QREEBXMqJczdgHqUVrx5nDAH772DZrHkFtILYx7mTTNUJVdLWeG6tgyuV/UvOwCchL2d3tOZVpiZNy4DAOrm0o4iOAzIpCMY1SDCQJZ+K/zm7wzeY+frdotMEn3b+lbY8/vvfkN8hu72KHYmziBsKOMBwk7DzgfsTYToyUlQ1pU+BOLCYI6JdwYeP7aKY/evIbrCmO5gnAUsHViOu2JyTAOnrh2uGNPcyybkqWcvwzf+up3+P35HWrxmKCJP3/wRcK7czCFdn+uxeg9lSxtHbi6s+LG4Sn78zV2dyROlVxdsCYogPAJqGsjk92OybRn1gzUPmJshmC29ihbUCni/af/8lVeO3uxMP76IHzvu58vzjNBvchFpRVcV5AZm8gqrMaKx8spfXAIgNOtS8UoIRV5z44Se0BKBmcyY3RYoxijSC4mIFeKSWxj1p0b/uT13+S9sMK9Px4hCq4r9uZiYt1MbpcW9mG5bNBFBdOI2IyqoKKoU2QQNAnLrkygFvIsYdwmLtc1OVmMTRij6CSiqwpUyJtS1TxR1AjmdsOHcY779v98Eb8QqtPiBNrjxLDrceuS7uoUPpjiEiWbjCW2uq19JmxsdBb6VYWVjX2OQh4sQ7DYE4cZBDsIw1EqEtGXcWajZeNOYVEU/m35Cq5/4wCr5Yerrz/h9PP7Zcce6gXM7yjVMnP+vCss1lAtiljaAZKH1MDwcrHeCPhzwa0dqVHsUELE9qV+uoXB9oIo1E/YvnP1hwOPf64w/pfffRXnerYeXM5WmLC3ncjEYlPqxyOzd4/BO8LBhPObNTt3B1JtSK1ldWTBKJrKrttHil8r8/dXDFcabJ8Z9h3nNy2Th+VU1kcbY7ipIvX9c9ytitQKzccWly34VfFYAK7PiBpsB3v/16NG6K7XLG82HPz7Rzhn2HsvEqee/tATm9I1cebBlSKurhxR3KkwUbFDYv69u+xcOwTgyS/sM86F2EJ1tvFsMREb2cao8yuoFsr0YUS7Dr8ISC7HFmYOv4w0jwMmZNY/c404saiF0BpiC/0Vob8WwSpo8f7jTnEmKp7mJEJWwisvIFlZP9dgkjK/nRnmhuyLa5FhZOejRHdgGOeCG+ew82Gm/cEd8vkSd9YjqSVVwuIlj+sc1TLjOqV+MuDPArmxcOhZvWDpridkFkFBgyHuQuwd7p5SLxJ2HQsLzpCt0D4akZSJE8c4q1AruCGjqzXzHx2Tf/4KcSq4r3zt+/z4tRvkxRkaIqYbNxPBuAPnL4Oowa0Ff+6wfXGhw4ES9wJ2FtELjU1AlelfCJwYx+7/OiaAX4yokWIIdj2xFdZHtvQCmw6flOH+I5qX9tj7g3u4Q79Cux5NGTQjIZY4Eci1kuuM1pk0NQxXQH2pm9Uk4BWsVYwpetXFBuMzxibGKvHomsWfOPzCbyvIRSclWkxj6doVUiItVzR3Tvmtaz/CWcmIMUhTo6uEdj31eWac241CC5qlALKKuIxvIpOmMJtVqFyiDw7fBpxLqArWBsxsQA+FblmjWSCVP3tucV2xToaS/ZoSpm3g+IS7wyEuqUHHEakrTAgQI9UiIs9byJQ7CbO5l9jcO0SpWBx4TJWo64AR3YDJpGTIyeCrSIwWVbBVIudSHbRz5ErJSbblzHWZMtBCyjQm4LwpWYMVpKqQpvnEeuhFZy3kKpeeyiqmifgqMZv0VK6g9TkRoiWrEGIpCzFYcjAYl8mDhVzOUH2GzqJS/H/z0TkqglgDzvHB+hCXLxibTaG16O6M1JhSwy4uqDbg1GXEZ8RAipYxOvrRMw6enAXnEzkZRJSm3XQbwZCjgczWrkiSbb/ZnCjyZAHeoSkjNjF3A85LQpoauh6ZtGRvt2wBGz3a1EyniC3BjQrOZJomkDbx5m1CgLO+Zhg8IpvNZflkc6Lb73aA2e0VmjPUNTIMaNdze3Ww8fy5oNAYQZVUm1KkNx2zuo2LcBmzEVJfFX1aDxVGFGczWYUxWgSo60AwSm4F7S1EgSgIgolQnQk7H2bsokNE0BC2OI67CS4hkBKaEhIFWQ/4ZcKfG1SE1GxuBk15ydhMXQesKHuTjjFZUjZUNlG7WBqOvmGMlhAsOlgklIs9MxammmOhOVb2/vM+6h06n8GTU1QVcqb7p2u4X24/4O9++zfY+/u30H5AFkuaDx1m3CG2lvU1R6qFYd8TZo7UVJzPim4tJhNcFWmawHQ2bvvD1oeSTzaTfUZDaTzIlOurVblP06YCY0AVqWsYA2otz//zx7hXm8jDL4/sfadkpa7XyGOou4HaGCZ3KrRypNaTa0uuTNGfoMTW0R3U9IfC3St76Is9O7MOEWUIjpQMGqUwFssRNsfK5FFk8v4Jsu7BFs3QYSiMGcPqp/ZLl2RdRrxDQ0S8gxjR5aq8cG8F1uLaBmlbtKmQmCBnEGFWV+RZTdhtWN5oWN5oWX8u4OebmzsBnMIoVKdCfZbw5xFZnIMIuhzACPnmc5i79yElTl5x/D+FL2NED+f8gAAAAABJRU5ErkJggg==\" y=\"-111.782953\"/>\n   </g>\n   <g id=\"matplotlib.axis_29\"/>\n   <g id=\"matplotlib.axis_30\"/>\n   <g id=\"patch_73\">\n    <path d=\"M 287.775862 149.782953 \nL 287.775862 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_74\">\n    <path d=\"M 325.265517 149.782953 \nL 325.265517 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_75\">\n    <path d=\"M 287.775862 149.782953 \nL 325.265517 149.782953 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_76\">\n    <path d=\"M 287.775862 112.293297 \nL 325.265517 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_15\">\n    <!-- Happy -->\n    <g transform=\"translate(287.162252 106.293297)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_16\">\n   <g id=\"patch_77\">\n    <path d=\"M 10.7 194.770539 \nL 48.189655 194.770539 \nL 48.189655 157.280884 \nL 10.7 157.280884 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pb670fa853a)\">\n    <image height=\"38\" id=\"image81df888deb\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.7\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALAklEQVR4nJWYy49l11XGf2s/zrmvenS12+0XibEDsoXEBBSBEBKgTIhAGTAKTDKMhMQEGPIHACMQU0aICQLEYxZmSJBBJEIiEoxkbMtu2213u7uq7uOcsx9rMdinqtpxG8GVtqru0b17f3t9a33rW1fSB6+YF8fTXn/4yU/wV3/2FaSCnyBMxvYlR95APjLCQZAK2hl+EsIBzIEGMN+WKKzuG2EwTASNYAJlJfzN7/0Rr8bNU892nwcK4Osn38Uc+ASuGnkl1B7EIAzQXcLyY+P4LTh+W1l/qPTnRreFuAeXQArk1XyBOB9aAYHt1YOnAXvyTTX9zP8aBPXtb94I2reo9I+E7tzotkY8GFLb8zAY3YXhB0MUtIOygtpLi6IDqW29X08+H9iTYJ6MnhdHNfCTYQHKsh2g0Yg72uEJ0pFw+UXHxauOi1cc++cdGmDx2Ij7RqV5mE4EPzZg5sGPxl9+9PP/t4g97RX3hjnIa6FG8Achbg1XIR0L+xe5prvbtvzaviwMtx1xa2C0i63aQlqOuQLf/sGXmCw/9dzwv+WYAmUpba3aTbuLBqKBMW7/h7G5NxAe7dF1jzkhn/acvxIxB3EL6Vb7fFkKYTBqD2GE1duRP338Gr9/9t//v4j9wb1fn4G1ypMC4WD4ydjcSzz7r4/oLyqoUU+WpLMF0+0FYZc5fq+w/qhw+lahu5gvGqF2goVWnYtHxl+8+WUudPhsxKAl+pORq6Y81oHv/8PrSN/C77Kw/sA4fWtEipFOIw++fMZ0JoR9wNVGkQbBQkQU/GD43KrTh3nvBYTDTfT8t27x96/9GL919DFwk+fhyTdXLy+Or37/G8RdS3qs6Vjt4fyVBdBorb20KI6tSDQIZWWUKOCaVtV6o2dXuWXzcSbte1tdfgbD51L58J0zkJZP0PSorATtGiU6RyDuDZcNn4wwKn66+fwVfWV5AyoMhhjXlxODd8ZnPnP+NbCnaRgG/bkRDo3OumhU1V4aVaMR90YYjdoLPjVN6y8MUWug5qIBiDtDvcAcPXOCy/DX3/nZz1TnNbCmWzfgUNrmvlWfH1pu1P5qSZOInXLxiufBz8DFjwfUw+K84icoa0inRlk3LRxvC2XdgLrcLmsO7nw7cNBPAwtPo3Gygvk53gLm5ZqKsgKdKRA19nc9w11Fn0lsuwh4wtAiobHt4bIwnRraG24SwkFYPjAobf8w2mcwfArYVQJOVhAVoFVPOoa6aELbnQuOljuXLzsscn0JC0Y6hnTSisLlJjN5o9SNgjd0IYAnb6RRG6FWYXySLX6kJV0/FMG8YV6YbsF0W0m3lHSnMNw1amzCqV2j3CUhLgrIHOR6kw61N+pxRVaFuEnIqlBOK+lkruJl+9Iv/N3v8ptv/zJv512L2I+WaTXlXgHJTVinM0WPKgTFBaV2yrgK1IUjHAQLgMFqkUihw3yTDxT2X6zIacIJrNYTpXjUhDpAWRnpWIj7lme3v+v49wev81X/Ot/4jX/6NJUXOvDb7/4q//K9n+T0vzzjbbBoSFdZrBMiRk6B4ozkAzz0+ElwFYJXmJ1D7Vt+WTRi18JnJsTYNESXBcuRsjFEpVmorREvhXQCf/6PX7kBlq3ytR9+nU++9QLHVyI4U4OAqrBaZHIKhL6Qi6MuHKItYttDT1xmLERQoS5uLqzVYaFSqyOESu2FHAPmubZRGgQ/GS4LiNzIxa+98TU+/M7zbUOZTZ20FftCCMqYIrU4TB24VmVlCa4I067HB0W7VijluOI2+Tpa46EjTZGUAqoOyVfmseVyja1Y4q5dNADcKzvee3x6nbhxZ0yngoZW3umiJxXBHxwEKMsK0ZoKSqtW8UqaAhIMVwSCokMgZQeTBwO39aiBCNimtmeTzBXd2lbtYfnAGrA/efiLlDeP8FkIY0Mu2iJhGXTwdBdCvGw9sPaO2tt8kXZzK464SOQIfoT4cLbN1iSm9dZ53wR+CPhxLriutbDNh5X1fdg/5xuwfe1Bm9fqzpvaS4X1PcMV0CjkVUtyl1r70Sj054aflHQkjC8JzhmIEbcOMXATrB4o4y1h8UhbPgJhUtJ6drtXtl/AZaW7SGxfXDdgnSvXNuXsBzs++ekNWHOti0fG0f1CvEykWx3h0Cg43O3YvDswPtvTwiiU7BFtFro/b4198bhiApt7E/HjLdYHrI9c/twRYQTNrYtg4IrhhpaXAUCttYm8gfDgkjCuyevml1wxds8HTveF1TuXkAuSC348YTrrmY4945mAKGUXEW/kI3BVkIsW7eXDQvzoEkmZ6cUTLl7tEIPusom1dm1yEjXcJ5ecvLOZqSw9YWjckwv9uZLXwvKRsrw/UTaRw3Md9kKPq83m1K75+nwsDHcV+uYUTZTptmDetQkrerqtYF86QzthOPN0W6N/r4AZ++citRew5khsGFj95/0GbKgRl5uLoFbirgCe6cjRXQb8WFntC1KUfNKR101lXIV0YtRbBUyQoOBBjw3/UYcf7bqQzAl+UI7erbjaCufyCz153UZCn9tnUEMfPmrAgqv40Xj2nz/G9gfCdkJqT94Ij17rOHqvEg6VuFXiRcLlwPBMZHhGyC9OhK4iYqgJpoILlenM6B9DHJT+vOCKQjXKOpA2nvNXAxpmI2rz9O5mRXeuAfuVW2/wQ34KOYxoSrghX8+D4x1j/4Ijbj3dtkMKTGcwvFBY3d0Ssp/3MrR4NDt8p/DSwKNNR7z0dI/7awB10eRB+yuVnyUkC1INTBE/A/v60fv88R3BLreYGW4/EPdGOmk+rC6bkk+TQ5eKLAuLVWbVZ5JXcmnguq6goaLVUYsjnCbktpJehnzZz9EwKA5JQjg4pAiugFQj7DN4DzoLrMO13rhcIKVg40S3rRyqa+O8AibouiKLSuwLiy5zsVuQzxe4TSZ2Ba0ONcE5xUwwgzwFxBlhk1EVrDisGhabJXIJfBL6S8M93s1CF66ANfEU5zARKIUwVLCIT0ItrXWEwRN3EQ1w+Zyim4o/TsRY8V7xXaFUh/fKyHyZHNDBNzdbpS2xRmFtnQNg+bAguwPECCI37kIUWPRIqUgXkdJkAZ1bTjCm28r4vEHUptSzpalVqCVQUqPUqsP3lRBLow4guQZCr/ri/FuBNJlavL+FGLGUkCtgXmYqhxEJHpxDquJmTy5KA6hgNLB4Q4eA9JVuVZotOiosu6bcqXgOhx6bPDLOY9I8t8lV0tfWts7eyMj5FrqIZMFyvomYHxq3NiVYL2cL0L7sk1Cl/dQkWTBnkBwEJXSFPhaqCaV4hhRJU8AHpV80kLooiIM6eGTwSGnA4l5YPrT289Syb8AAtrsbP/Y73/xb6t1T0IpUxUKL0PVwKlCXiq0rblXwx4nuKOG9UdSh6uhjwTtluUyEUMnZU4tDJw/3e2TwuNHhB2F53/Hsv2Vuf2/H8r0tturBZk8k7gbYL63epG46cB5KJT7Ys3xU6S6MsGtC6PcekkOTp46BtOuY9h0pBUpxOKf0sXA1jPV9ZrmecH2lLvWaTamw+MTYvRAoRx1uOyBDQg4j1NqK7wrY875DikFOmClixur9jtUHwnB3yXTqUN96H3hE2zzoslEWHXkD08kR4x1F7yRCV3DOKMVj8ygopSW/n4TVg0J3Xug+vIRSkXHCSkUW/Y1cAKxchwkgDkrBpoR//yH0HZuHl2wAWy0w3xTagkPG3MLvHbro0GUgnXZMJx3bLyw4vFixVQVv8+Bs+MkRBgi7SjwfkXGCnFtum4J3yHrJ/wD2ikZ89FToLAAAAABJRU5ErkJggg==\" y=\"-156.770539\"/>\n   </g>\n   <g id=\"matplotlib.axis_31\"/>\n   <g id=\"matplotlib.axis_32\"/>\n   <g id=\"patch_78\">\n    <path d=\"M 10.7 194.770539 \nL 10.7 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_79\">\n    <path d=\"M 48.189655 194.770539 \nL 48.189655 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_80\">\n    <path d=\"M 10.7 194.770539 \nL 48.189655 194.770539 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_81\">\n    <path d=\"M 10.7 157.280884 \nL 48.189655 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_16\">\n    <!-- Happy -->\n    <g transform=\"translate(10.08639 151.280884)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_17\">\n   <g id=\"patch_82\">\n    <path d=\"M 79.968966 194.770539 \nL 117.458621 194.770539 \nL 117.458621 157.280884 \nL 79.968966 157.280884 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p47679eabe2)\">\n    <image height=\"38\" id=\"image16186f7c33\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"79.968966\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALa0lEQVR4nIWYy69lx1XGf2tV1X6cx3203X7Gju1YhkhGkDgJCjFCihAzJCKQMkBCSAxByoR/AIkpQ08QAyZIDFBklIAEeIANTEIcESkYQbvjdpJud/t29719XvtVVYtBnXvbdneSLR3dc/Y5t/a3v/Wtb321JX3worE/kmUAXt8e8af/+nXmVwNuhFQDBpKgvmfERhiPoHsyQpXBBAzIAmLIpCBgIbN4NxDWxnAkmIIY+C3kAIe/eZM3f+nvcKJ88vjYGSeKE+V3Fyv+/De+SfdEvgDkRvA9ZA/DMYxHGUmCbD1EKaAyaOeQScq5JAyXDJ2gWoObQDIgMH1pzT+//LcPgDonRz/64fx9sszvL+/w5Gc/BAPXgw7gBmOaC3FmmAO3VfxWCKeO5qZncc3TfKiEteC3gl85soPhkuA6w3V7YMBXnn2PmVYPMHUO1CfLZAwsXzB2DvTGlcssOWfMSLUQ52UBvxbCVnA9+J3heyM7iDPBNkJqCrvjoTHNoTkpoHQATfDmf7wMz/77A8DOD+9EL0Clj4ADWFxzaAI3GakqoGJruEGoVuC68t20EIbjvTYi6FhuBlf+pqb8xrSAM4H69oO6ekBjDxPfZIkcgFzuPAeIbblb15cLihnDsRAbyPuqmIA5kLi/wFQAjYdFCpJBJ7uQzU9l7KMfzgGe/4MJaDKyE8ZDiDPDd4IbSvlyJcxvlAYxFXyfiY0yzcvnsO8+MUi1YVq6V1NhNpJw3K/UA4x98nCiZDK+g1QJ0xJybWgsbIWN4UZ47DtrfG+cvAInXzA+/KLSPSYcvTtSrzKuN8TuCz41ILmwJQne6JYfI+TnAgN47fQXkAypLaUxAR0LW/XKOLza88GrS05+WdEo+F2xi+0zmVtfqlk9rxz+cGR2w9CxrBFbMCeMB0LYGH/yxh/81HL689J9EvVrb/wWh1OhPwUIG2F205idJMI6snuyZnEj4ztBUvE4yaXsbsr0x0r/aODw2ojGiu1Tgvli1hIL0HDq+NbugN+Zbx7O2Ce1dZp2mDdSI/id7TVVSpJqYf1szXAo9Ed7zUygsZTIHPTHWoz4QOguB0JnVPe4KGHYGrEVlu/BX13/9Yey5s9PfpSx741Lwj0t/jUUNlxv9I8Iw6FDIwVQNKqNFUuoBE1G2BomkJelG7tH9aKrq7Pih9kX8YvBdqoeqjH/0ZPn7//+9POEVWEr1UVfboRqZUyzYp6ug+bM0MlYPedYfyYRTpXDq1CvDQSGY0EjZLdvmKGslZtSfvsZVuYfdvJ/7z2O74p/md8b60yoTw03GsOsLNw9IqRa2X4qUz++o5/VbHcV1bqwFVswbzS3y+/HAyGHUnrJkFQwk4dq/KHAVmONTkZqhVTDcGzkYIxHQntLyjAP0F+G7MvcVM24OjEtjWkJbpRyga0QW9h+ClKb0L7M0mpV5PBzGTufmf8zTcTkiLOy4HicSUcRcUZUYz0PNCcOHbnQSq7Au8xucLi9jnMwwkrKrLyUkFlE1EibgDnFDYpOEFz62cCuxR1/efdVXv/2l6nPhFRBXBhpkfBtRDTjnJGqSH8Q4F4grATJgmSjrSZWYpgHHUou2z4f0cVE20w4lxlHz1g5bCgNIQmuXr/MNw6+zOcW7/NHhzfvA0uWOc0df3z167z/1qeptqUTcyhCBRDNLGYDbTWRsrJrAhttibnC9aUkR03HrXRUOrQ20jLTPNKhmlm2A14zd9MMJikjqjEkCwf/2fDmD17hH5/+HO+8+h3+4snvAXsfe+3uF7ny/WdIVekcnUqE0QgIOGdUPuHEGKNDAHIReEkMRcSw142AOSMlQQQaH1ExDmY9Oo9l0Ifieb43JEJ1pnzz7Vd4fbsojP33NPLXb/8aoRPcKMUS5lLmm4H0pVtuny1IO49rE2aAGlZlbFJM4WQ7J8wnchWIBwlpEiIQo3LzbElOig8J5zJR7SKOp0ouhny47fm31Uv89uy7+JtxSbgVqFayz/SZ8cDtB7YQ58L0ozk6CqETcjDSzED3nWeQ55luqJi6QIggUbAkjKsaYkmykqBfZKwqeU721SiNAmFdAP7T+5/lG5ffwu+sRmIxzPmtDFK6DYP6DGa3BN8Z3SNC2O4D31kZwq4vs2/9nKJPZUT3sah3mNvf3HA/z0lW3CCkymjuCObKd82JsX26hIDhygHXfmWB/+72edD9ruUHZ6w+e1hCYL7vM+1J5PD/BswpkjKbT89o7kSGS540CZKElBQbFdfD7JYh2WjuJOJc8bvM5mmPTmD7zp3m+zTroD1NaHR0lwtrfQ74v3n7V5mvC3rJGcllhrnOOPzhCED/aGBaOg7eOcWCoz2ZGA89w1KZFkJcZvJZg0zKtIB4D+oVxFkBNbt2j/YnSjxu6S9VnL3oSlXkfKNjzDcj62drXC+8tflF/PxKRVjt08EUqc8im6cduRLi3BE2ifos4bvI7vlDxoUr46YRxiNh97iRDyKkvZj3+V4nCAA9DE8s0SkzLTzDoTL/IJO9XOwDwiYiMeP7GtnAu9vL+FTD8iwzuzUhmx1hNUdijXm495zH98Xlq62j/XDE9ZnUKKn2dI8Z6ckB5w0zyFPpSLvj0QjVKuF3qWS61kGG2a2yGRgPHONB6X7XTei9HQfXGsal8vLyBv4Pf+9f+NaffZXmnetY16HbAbEFKQjDkTHtN7auE3RsEIPxIJOPJnwT8brfH2QltwlXJzYvQGw92XuaM0WjIclIjTLNhO6y7qNSiVSYIZsd7a2B9TMzvjB7D/9y+2P+IRrWD1jKSMroVISfQ0kH1iZypeAMnUWcz8yaqTi0GCkrOWdEMyLgL3WMC8+dzwh6UqGjoqOQa9vHHSOsSyQyAUSwaSJcucH41Rd5IdzFXxmeYPlfN7EqQIzIOBVbWAoCSBLMCdQZ8ZlQR7zPqBjZBHfOmCnOGSGUUtVVpA6RddswDp4YFcsCg+J2iomQHXgDGePFjDx6N/PjeHB/MyKqiFOIiXqViutPIGN5BiGdg7OK4W7LblPT9YGci0M6zagazuWL0TRFR0yKc8XftCprokauimUgpftlSiCKNDXt7cg6t/t0MYzgPdQ1eIeJXMxAyVZYCxnacgFxhqrRVBPtnqGYE1NS2hA527UAnJ3NETXypIjcn6NQZimj0N7NyNkavIOU6R7xzGTA71KNxQQHC8Q78rwl1fLx2Gtl3IvPWFJEM3HybExYZ0G0OLH3iV1f05821Ec96owcBSYtXr0HJ6kk2eY2zK7vwDkwA6ccXtlwIx7jG50Q72C1gabG2sDHDiujQgbFDPxiQl3GucyiHUoZxQh7rTnNrNqBbgzECSxqeSS1zzKSBB0EHYX2JONOt1AF2HWQM9pNJFN04Xrs+GAPwsCsiP2cMTUQw7wRliOhioSQCD5hJsTk6KeiCBFj1Td0Y2CaHM6XsuOLHGQqL52gWsHBezskJsxpkZIZcueMXa7Rr7RXufa1R0s5hxHdDoRNIqyNsKX411QSqZkgYogYi2bgoOk5ajseX2y41GxZVgOX2h2X5juqKpb5OSkyKNorrlP8pjw7e/T7A7ku0kH3LHhfXoB/MXj6l3rEKZYzsuloPqhAZiWqXHJkLwyHgTgPpAqywh2BuMikWUaXE0eHW6o9iwCVj/RUJbcFI+fiXbMPBDcazfUVeVaRljVuDZJSub73qGR8LYGqLWYpIWDjiDtd05oh3Uj7I8W8YnXAnJCDQ2LGvJIrZTz0TLOa3WMtZ89k/FM75u3AlBw57a1mKqPHb4XmNFOtM9KPSOVxw4CMU5ERgCqTuWIXzuUi/G2HVAHM0HtbmCI2TQigIZSWVi3nFy1ko/4JWBM4qjzDpZrTlxbce2EGl4fCnpbNb1gp1Rra25Hm+roQ0U8FVBEoIsL1rz3L59tv8/9OC1UCSeSVjgAAAABJRU5ErkJggg==\" y=\"-156.770539\"/>\n   </g>\n   <g id=\"matplotlib.axis_33\"/>\n   <g id=\"matplotlib.axis_34\"/>\n   <g id=\"patch_83\">\n    <path d=\"M 79.968966 194.770539 \nL 79.968966 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_84\">\n    <path d=\"M 117.458621 194.770539 \nL 117.458621 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_85\">\n    <path d=\"M 79.968966 194.770539 \nL 117.458621 194.770539 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_86\">\n    <path d=\"M 79.968966 157.280884 \nL 117.458621 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_17\">\n    <!-- Happy -->\n    <g transform=\"translate(79.355356 151.280884)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_18\">\n   <g id=\"patch_87\">\n    <path d=\"M 149.237931 194.770539 \nL 186.727586 194.770539 \nL 186.727586 157.280884 \nL 149.237931 157.280884 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p1fd10641c6)\">\n    <image height=\"38\" id=\"imagea36a149f1e\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.237931\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAKEklEQVR4nIWYy48kWXXGf+c+IiIfldXV3cMwtjXD2xa2RgIhWbwkjMTCa++89dY7r/gjLFlCrEFCYsEKsfPCyAsvLBZmYbAZMTMYhqGnH1Vdj3xExL33HC9uZFbRnQN3k1WZETe+e853vvOdkPLoU8aRVUzx4l76/h9+8xX+63tvohFKC+Ygz40yNzSAKEgBlwUDxCBeC801xI1RWpAMYTCGU0fpQEPdx+V6ryiEY4AAvLiXwD3Ka378s7/gdNrEHJgH3wsuCVD/12i4XB8opd6rDcjNdJATAQdxbYDAdEDkFqA7BmgP5i6oZIVvX3yRV/4jQsWAOShN/dulelJzdogmAhagzIzcQYkVqDaQ5oLGGkU/gJsOIFP+DhHbg/iwFD7Xnh9976u4kyn0HtJySluC0Fcw45mhcdpdABVcAhMY7wnNlYFBmYEfAYP2SkkLIS0E5E4q74K5C2r/fbLCl37wT8ynVLkE4wz8MKUpQr+sYCQJNIYFA2dgguJwI6QFSBGaayMthNIIokZGiGsjd4I2FWzYp/DY2oP81vNPE6/cxCfwo2FOKsgMeV7DU+aGRUOKgIF1BlExZ2TnAMcoAghiULoaaY2QRWhujOFevTcoRhT/oeAAvvv2XxO2lQfNtbF4NOL7QlpFNAoahPHEYQ7iBtqrgjnYfiRw8zFhXCnthaO0RumMpILvJ64t698lgO8r38SM8MdAvZPW3DxesgTC1hAztHVodCCQOzdFziiNMJ4IeRbAamRX70CeCXkBaTVRpDUkCxpq8fi+8tYDUiolfk8ujhH/O8+/yIOfBNKqEthESHMHIqinVp7ckYVYo4CBaE2ZesgduKH+rnGSj6lC9zJhfqpsP3Fsr1kvggTYlYgeylwoyRATZLrc5Qmwh9xJFcymFkZpp73idG0SwLAwgfFTcYR6vckkFwbhbjXeBefFcaU7fvTWmyydHKIxnAm6rlxq1krYKXk2FUYytJHbqMT64L02YWCxfmITEAwNtVJhOqR7IZUvpvFZKZz+2+zQNkpTHygmdM8rqOefjkipQrkXSw3CcN/Iy0m0e0fpFDdOlTxI5ZmB2XSIUCsUajR/D8lR6ZBa1mlZPy0YeQalES7+PHL1ZmL9htE/lJpuD/PHVlM16VlpDWuMslS0VcpCMQeSpUoLULrKWVGrgv2HIlYQSie1ncwMk9uU7F4RxlPw80yJypAahvuVLy7V/pkMcGDzAs6QoNjoK68aI2zl0HOhti/GWs3hw1oQwNMyO4Aq7aTsRQ6/i0GImbHEl5yFNgaNIkERbzhniBjFG9YIZhHzcEjSxEPzgh/1lvwvrmLKN3/5d1ioJ7Gp/1kwijrkQnADFMAFRTujeV73EoX0UInzRIgF54yUPN4rzitjH7FgaGNVGjaVBntwwz33su3Zr/8c4PzfXzs4iT1xTWq1lZngSgUWQiHB4UHm6gFCLCxnA0UF7xQD+l3D3qjluVVQOqXcV3BufIH8d9c//vffEzccgO1PI1Y32NudsY9TijmA0jClUYyiwpAiYwr0uwZVhzgDb1ijaLy9D24/j0YsWeHyYsGpTaZtBEPumL6aBk0C15Hsa2GUfcRapV0OnMyq/TDLmBdKFFQd4+jRwdfDOqN00FxPEbhre15cgyVIDj9Uh6lB8LvpRKHqzn75tcN/JDN0Eb/xaFegLYjA5XpGGgM6epiKxnW5ZmF0uLEKs4bJ44mAVT08Cmxrhe79iB+MuFHiWmopTxVU2qqAkqv9GbOHWAVTisA20BchXERCqve4sRrG4b6nzBWCIbuJIq62MZfAMsye5ePAnhZHc1kdw+y8EHaZ8SQy3HPMP6hPctlwY+Hp5xZkMdxyRK89YePqAZxj9kFtT+ZqLxxX4HdCXAdKZ5MJMIwaMRScF7r318eB/ev6L5k/VfxolE7ofrdDRqV7ZoTHV5Ay+mCFtqH2tVgQMXat0T1xzJ4azdqYPR04/2yHNtBeGifvKc1NwZxw86eB3atCaSt3zdXC8r0h/XAc2EVeELfK/LdbMGP7+oqwLXTvPgXnsHlHXnVs/qRl82eG9hErAno7TOx91erXmbjONP/7W7h/innP+RfOGM4ma1QmUS5ViuLWkKLHgX1u/mt+3H4Z6TNSCot3E4iQP3qPPI/khWf3wHPzMSE/GCuv1hE31DSaVB6W1tM92SFJYbVk/ZkzxhOHKCx/p/Rnrg40ykGW4kZh1x8H9q3/+zqnP7/k6q/usXg0gEI834AarijjSeTmdaF/NSPBEG+YQVkW9CLQXiuzZwm/y4ga1nqGszPiTcH3ihQjrQJ+MPJcpmmqugvfK3YsYo/ymkc/eY1PvP1TNt/4PDevz6oapxmlhbQ00j3FFiOI4ZqaA+0KEpXtG5BOPfP3O5aPysFia6zuwbywebXKhIVbExm3U8dwAvlIVf7L+Vf45D//Ai2KCfT37WB5y1yxWcG1BQF8UNoukXOdG5xTNBi6Grl+zXE1etym9rHaC6W6VvQgH26aqDRAGCDsCvgjvXLQgA0DEkOdkDPkxtBuGs2iYpP/8UFxYnivFKeIM4LPeK80i9omhhQwE8oksGnbQF9HOVHB7NZeu2KEqwE7xrEoBQkByxmXDDcK3oGlelotEZvS1jWJYoKq4INie+tignNKFzPOKal4RDylOFwsqIFlwZxML1SMuBZm54p/fkP+MPITA+SMH6saa6xVUxaGdQXXFHwspOJpQiZZQKR6rr3v6sdIP0ZEIOfamXPyNdrO6qw2LT9I1blfXKFPnuGa+DKwZB6JEWkaXK690o9CEcMNguLRIog3xnGyMRO/qvUQmjbThAo8Z3cn9QVTRy61gVswZBTaSzh9Z0Qen2Peg8jLwDa5xVJC5nOateKyIzdTo20Mi1OfA7w3vK/pCl6ZNamayMnulDGi5RaYiKFFQAXJUtW+wPyx0r3zBDNFvMM44i5al+u8DoSt1mraezKV6hKEw8P2nALYjZHTWc8sJHY54gT6FBiGgBZPye52j6nhr34Fp2/dYP1QuT0m5FjEgitYyrDdEi8HfN+QljXs1kzRampvVJ1S5I3gC00o9DlwueuIvjCkeLhGi2BDtT8yCu2FI64hbhW3HuD0pBrbELD1kSYepSDeY/2Av1izem+GK56dOkaZ0mmg3oiNEkJh3iSCU9qQScUTfaHxhY0zLm9mqDqsCDI64qWjeyL40WiujZN3N+hJh6SCjLkWnhzRsaUfkIdvYB88wR49YTkk2vMHpFXDeOLQIJQmMK4i/cMZ64eF7b2R1cn2sMeYA30K5OIpaXKr2SFJaC/qrBA3sPgg4bYJaz2yHZBcQBXsSEv6m5P/4Yd/+zVe+/5Vna1SIrz1HrFpmLeT0RfBZi3plQXjKrJ9pePqMx2bj294/eFz2pDpc2Cr9Y0QUl/oSZ7ePm7r0Ny9/aRydGzg8ga8w85W2LML/h/DK/lPeK1EvAAAAABJRU5ErkJggg==\" y=\"-156.770539\"/>\n   </g>\n   <g id=\"matplotlib.axis_35\"/>\n   <g id=\"matplotlib.axis_36\"/>\n   <g id=\"patch_88\">\n    <path d=\"M 149.237931 194.770539 \nL 149.237931 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_89\">\n    <path d=\"M 186.727586 194.770539 \nL 186.727586 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_90\">\n    <path d=\"M 149.237931 194.770539 \nL 186.727586 194.770539 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_91\">\n    <path d=\"M 149.237931 157.280884 \nL 186.727586 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_18\">\n    <!-- Happy -->\n    <g transform=\"translate(148.624321 151.280884)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_19\">\n   <g id=\"patch_92\">\n    <path d=\"M 218.506897 194.770539 \nL 255.996552 194.770539 \nL 255.996552 157.280884 \nL 218.506897 157.280884 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p1b0e36f864)\">\n    <image height=\"38\" id=\"image0d0b43e821\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.506897\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALK0lEQVR4nH2Yy69f11XHP2vvfR6/572+9rVrxzE0ohRo1LQBCRCDVoIR6iS0ovwDHYAEEgOYdsYMkJi0Egx4DBESCEEHBFCRQLhqKU1UEiU0iRPHdnzt+/w9zjn7sRis3/X1jW3O8Lz2d3/XWt/1XVvy3Z9QnnJ97YNf4t9e/Syzd0EdSAHf27P1ZWF1rZDHBQBJAs6e+YUDBa2U6S3H9MPMMHOkEbgBQq/s/Rzc/PIfcslPnrY0AC5reeqDP33+37nw+T1QcAlchNAVFteF9a6iHqpDjwwOiYJbOfzC4SL4wcB2l5Rh5qgXhbAGBIoXvvqF/+CCGz0TFIDz4p64eQr2Lz/zF7gMflD8oPRbjjRWEPBrISyF8R3H9JZj+02YvQftQ6E6EXwnoEJqIbWCFNscAk703DpPu8KzHmQteBQXFZdBBeJMqJaQM1THEFZKfWKgXTIAcQx5JCCQxhDnQn2ixDFUK5Cs9CXwLEJO74enPfj4R3EslAC5hjhTmoe2WLVUum2HhrM8dFGpjxV1QpwquRGGueAGyA34Tvjuwxv0V75DI9UzwZ1D8HFADlAnxtbUwPlOcNESebXrWF1V1peV7qIybBmrcQL1kVo4gTgxBtmU2f1/fY43hifD+Dgp55B8POYRIdcwbAlxCho2IeyUflsY7xU+cTNz6TVl5w3l0uuJiz+M+B7bRA+5UdIYhrmg3lgb31Ve+dZvP3XNx0k5h/j0xayFV775e6SJkBss4TsesbX7WsfOf95jmDn6ubC86lhc9YxvvsPlb73L7veO2HkzUh8bW6WCUomxB8zfDnynj+ei9DhIeZaO/cGDT/PX3/xl0sR+qgKhg9GeMrkXSSNHv+UZZoIUyynJVrGw2USCNII0NnBuAPVWNAD7nyu8/co3HoE7BebFPbsq/+zbX2RnUPupgk+b0FSwuFZRKisKKRBWEPpCroRhS1BnACQpGuz7UhmggpAbeQSuoPjHIvbUUD5+aaWkkRDWZwJbKsuzXENuZCO6io9KtSyETglrxQ1AsXdyY6uEtbEO9h8p4HrhQV4/NZRPAMtaiJqRbGxUCyWs7KdpBLkWSm07Dp3pWL0o5Frwg9IcFvyglNp0LI0t4d2wYU8AsUpt9xx/t/j0o7X/X8a8OArF2kwyuiUrYaVUC1skje3HzZGBePgzgb2XHcc3PIhpXAkwbCm5VUoFq6tCt2Obk2QrT28X/ubuy0+N2FNzLKuim75Gq6SJlTpqQloqC+0wc+QGut1C2Y6or5HiELUcUw9aYNgq5GnBrRzqHb6zUAOs4pMie46xx+MbyeAUHAwzob+grHeV1XOFPNrkW4DlNWF5TVCvuKqgTolT6LdAFCRDHit5OyFtpowLw3YhTsFHJU6Ej16/wm99+AvcTYtzGJ5gbFE6fjCMcINQKugvKXGeIShUha71VIee5oFQ6o2u9Y5mNNC5xtJh2MjEVsZNI1Uo1E1i5RrIFWmqxM7y9ML/wLf3X+bV+ee5+Ln7/OOLf8UFPzZgp/3pR3HB7773Ff731RfYum8tplQKo4yvC1WdiHUgOqUET/NwQ7gol+cL3mdmoQ6QpkrYGhBRRqOBUR0pRVj33vrnTHC9EJLSHCqIsP+9y3x99wv88dWbZ6E8yCt+7ftf491/eIFm3/Kp+A2wIownHaNmoB0N+EkiTwtxyxJbslC7bBjLRlacUoqAKP0QOF61pOSQJqMeyqZVqbO1fG9W6u9fe4m3YmeMeXH8+ltfpfvhNr6xBqzu9CPBNZlSHAkY+oCIglNyo0iyXLpzPEcrM5B5rORJMRNQHKmYBysqiFO0VlhaqpTa7FCpLFvqOxUfpC0D9t99z637O7gk+M7ayTAX8lhxEXLvWVNTVsFaS5uQuqC9o9QCBdarBmaJfOjIjUJT0Cyk6JBVoBRztVorJHnUukqwVgUm5M2B8Ce3f8WAfWPvi7i3x1QL233olUEEF629lJXH7VVUvWxCFciNVZ4bjNmcBZwx5gbB3a/QSvEroTk0J3t6ldpCLgVUhBKUy/+14sFnR8SJ8M4/f/KsKtXZIqMHBd8rKLT3bRel8qSxMRk6JU43293omjooP24M+Q14CozvQ78l+DWMP7L/lmAOo7soSMZcywDVh/voS9dt424jFyMfkWyTzs739zl6ccdeqK3HzT6IVKvE6nJNu5+Qoiw/UdMcZuLM08+FVRFKsmGkfWApUC83GzwsbH33LmU+Jm2NePiZ1oYTQIpZc4B6ofhoRecA1rmiPrZ+KN2A7wtSzDr7QVlcC0gszN84orl9RHNrn8m9gdw6UiusdwVNDgZHmljzN4FVtt4ZmL9xCCmTJw0HP9miXszh9jYrSFF0uebizT0m97KZA4CiDhWolkqZj2kOI8srnmqpzN5bE+c1q6st+lyLKPhOGeaO7oKj34buqkkFXhkuZErwlEYolUNdII/muDjj+EZFtVKmdxMAJ88Hcxwi4AS9fZfRtOH9X50YsHWuaI6Uyd2M+2gfLxeR0jJMhWGrJqwzYZmQXBi2a9LIUYKV+7Ct6CQhTnFtQYNSeodkmxXUC+psXph9EAldRkU4udGQ6zOjQM5oSrh37vCzL3oL5Zcu/oCTGzB5c4/8YB+37DZJLxx+qqK7WBHnAXVCfTDQ7kdQGLah7A5Uo0ioE94XJBTKNKMCzZHS7iea/YFmv0cU4iSw/1MNy6tmDEoQigdSQkIAJ7z3558yxn5jdsDXBXh4iKaInCzxg1oD34HF84762FOdVLgIcQbLG4nxlSV1dpQiiEAugmYhTCKrlxLd5Zb6oCasa+skNfQ7ujGJVvEIuKRoLuAcOM+Vf7lz1iurhYB3IA7tepqDTLftoIB6ZX010+0K2hakyYwmA3XIxI1ypOQIIROLkLpAM+2RTy5IPyasVhVEO9NABdeZpy+9OeR2P0EpSBUQ7yDls5bkIsh8hlut0ZRoHnbwQvVICCUbKDdKhDqjKhzd2kJHhWo6UIpDRHFOUV9IMaCFRwpv2gBk22gJJt5hrTT3FlDXUFfG3Or4vMDqyRIZteA8ks2dShEkCU5A1gE99gzjAm1B5onxrMM5JbjCkDzBF5wo674iJU9eVsZUkY1uyakhQT20BwU5PEHrCl2tjTEnZ8ByA1JXaNp8mNWOnTanPYpQKmvOp6ovoVCKY31So503c+kVWXtcJ5RLEakKOliVotYvJYNEqJYwvtOhKSFVhbKGoueB/eKXXuPO315H7u0hkzG5DTYnIrgkxFExey1qNsApmoWchdGsQ+bg3JkDzdmRkmdYVcZWkkdp4ddCuy/M3s9U945gPAJVpG0hDmguZ37sj67/E+mivYD3qDfv/oidJGgwUFIVxCu+KnivxOhJyYDEGFitGrpVzXDUwNrjOsthF8VA7ZkjqY8SWgW0rUEE8Q7NBQnhjLGpNJAVHSIsV4QHgXC5oVpsRrDWACIgovhQQJQQMttTO2psfCYVhwJDCqzGFeuTluJAouBX5limdzLTWyvC3rEt3vXodIyI2BnX48C8ONywaS3rDnGOye0RYd0SJ45h6ii1Y5h7C2kxV4DCcjNDDtuFvBPxjR2olejQ0+LpNwPyRh7ypMK/uzrVGogR5jNkvQYt54eRt36z5qd/v4WU0K7H395jdDBiBBbeJpgIgoVcFYkZbSrSrCFOA+vdmsV1odst6KjAZnpSb2Gsj5TqeMAdLJC2QRdL0IKuBxAHVQ1xOH+o8qO44Hd+/stnVTIMSNuiXYeuO6Su7MPTXdY2E4oIeG9hEKFcvkDablk819BdsNkzN+brp3cK268fIMfLRwToem0b9t7akhb+D6lfQhbkwz4RAAAAAElFTkSuQmCC\" y=\"-156.770539\"/>\n   </g>\n   <g id=\"matplotlib.axis_37\"/>\n   <g id=\"matplotlib.axis_38\"/>\n   <g id=\"patch_93\">\n    <path d=\"M 218.506897 194.770539 \nL 218.506897 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_94\">\n    <path d=\"M 255.996552 194.770539 \nL 255.996552 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_95\">\n    <path d=\"M 218.506897 194.770539 \nL 255.996552 194.770539 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_96\">\n    <path d=\"M 218.506897 157.280884 \nL 255.996552 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_19\">\n    <!-- Happy -->\n    <g transform=\"translate(217.893287 151.280884)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_20\">\n   <g id=\"patch_97\">\n    <path d=\"M 287.775862 194.770539 \nL 325.265517 194.770539 \nL 325.265517 157.280884 \nL 287.775862 157.280884 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p595f67ff55)\">\n    <image height=\"38\" id=\"imagee572553273\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"287.775862\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALIUlEQVR4nIWYy49d2VnFf99+ncetW2WX7dhtSEy3WyQSiiAjECgDBojHCCQkYIaUARkwAiT+hiAmiBGCAQNAQmKSIUI0TCASggFJICRpkOl27GqXXVW37uucsx8fg33K1Y7bZEtXt3TuqbPX/r6111r7SH76rvKxkbUAsNeJn/nD3wEFtWAS+I3iBuXygSEulRIUEwU1ULxiJkGAMt8vGdRBdyIcPCls7xrU1Gtq4He/9Df85uEzPmm4KzBWDMDL7wNpUQMmgp0UO4LbK/FAUAtSwA6C2wl2AKjf6iC3UFz9MEHxFYjfKrmBjKABsppPBAXw5l+ok4jO4EYFgfGG1AXshfaF0Jwr7ZmyeFrozgrd80LzQvFrcLtateJgWsorC3U7+KNv/+z/D+yqSlHzKy0tFtBandQJsZdaCQ9uD26nNBeKSUpx9fdpWYH7jWISIFACTIeC3ynFVbB2VNYnyzcCc6+ilJd/j5rqtaRIqQCHW0LxYEewU61I7IW0EFJX/88OtWVXnMytkC2kDuJCMHnmngHKm7v1CrCrygH8w3CISbX0amA6EuKyktptwc188Vvl4EkCATWCqLJ5y7G7K/QfKSZWUGaC1Ap+WxdqEojKK/x+I7CPj7+9+DxhpaC1Fam94geEtdKsC93pBFlZvdthouJ3Fcjd954yPjhmOPbklaH4yq/cgt9UzpkIZhA+SDve9gevzf9G8v/HxVvADKoTSlNBNee1Qu2LSOoccenx29qTaWlInTC8fYviDW5XWH4YaU/nBTqISyGHurMPvyt8+f1f/8Gt/Ph49M373B4gLuYbdxBWiplgPLIUZ8mhcg7ADWCiEnvD/lZArWDHKjNhq5gnMNyuHBZVUi+4nXKyXrIqe45M94MrlrWgTqtQxrorJdXKpW4mfC9VTsq8GUbFjYqdtBK8VN1OHYxH8lJmJF9pYOVa+pebfG248RoGc6X0HweVyEiq5Q4bxcTKnRJA7VwlBWZQ7UUmbDImVmdwM9cqkkr63F3vWJ03fw5w8Fj5IN56vZXfvyOsGJ6lHWYQTOLlQ0ShOdNatYVgJmhWheaikHrD6Y8bJEN/onTnBZNhuFkrpQ7Cqlb1qvVXzzTpFUe8Bvb91bJieG//ALcTclCKncnqoLgKNjVVZMNaGI8M+zuG4cEERilNQLSCrIuYW9YLub1Wf7dTVARnlKLyOrBP8smvnv4EzXkFUnqYbkBu68rChWD31a42PySoFXKjiFVMyOQGtveFEhQ7gImCFBiPleIVSYLbU7+HCi6qe03PXmslwKPVMW6ohj3cVuJRQX3lYm4tzXND/5Fy+XadGANaBGsLOqcRoPIQiEslHSWwigyWrIa0qLamFgZ1r4nsy1ZmLfzblPnz519k8893aGZRjcsChxFjFGOU0if2vSMeOvylVHJ7MD4TQmLUqvJQtW+8ndEu47qEdZnRBjKOPBhKqE7xTy/e5af77/Jpt+Mz7uAa2KYM/Nnqc/zJX/8SfgvtTslBiEtFg+Jcoe0mvM3EbBmskoyi4ufIU4e3mVGrwovCcD/ilxMAXTdRVIi+oFLFNrWgInz4l+/w5cPfZvv5gb/64p/yU62tOvYXlw/547/7BUyaNWnOVTIriZiCM4UuVA3wYfZGq2DqfapCcBmkgiq+qr2qEJqEsxlnCj4k1BfUQerrvWFTta99v+U33vstvjXtcF+fBr7ytV8kbOuOCZc6J9KZI0YJIZOK4WLbEaOlFINYRV01crcTNBpiNiCQg5I7RdqMsYVx8JSZg8Yo0mTUWjBCDpAaqYnDQvO9wDemt3D/E28TnnrcVrBTBZND1S8pgoyG7bMFkgS7qwQtfUH7jMwkVwHTZFbrHgHEQOkzxio5WfLeknYOJgNdzXySpbbUXxfBX9Yq/v57v4b76osvYEchXFab6M4Sqwe+euMl2MFS/JWNzDHIWlJvqyal+tCkYKTamNsKunKUrUWi4Odq2EFQZ1FbzwVS5oTrq29OR7Vy7VOH+8d//xyLqQrera9fsvrssvKk1Lb2p4qdCrE3NUdFrQ8aCm5XGI4d00IYfgyMLRQgnENzVvNY6iAeCONR5ZO9rLpmRsjdtbO4UZGLGt3Vgusf+VlrBHu2waQlaq6JHzuhuSj0j3dIKpjzNeM7dzBjpgSLHZV0x6BZGDcNPkOzUsK6YLJistB/VPCbxHAnEFYJt42cfmFBDoLb1Xm65xm3TZz8ZIdkcFctkjRv+XXGHAvNSln+7x5EyK3l8uEBN75xhvYtdhsZb7UMx5ZpKezvKTpYJBqUumoThbBVmvNEeL5DvvcMd/kp0mHL+WcXqAjti+q9CISLEZVqfSaCE62O73cKU8RvEqKOaSmMxw1hFTGpcPDBnnSjIy49JRhib4gHwv6eMN2JYBTN9awZF0JYCXkSPKDBIXeOyYvA/lOBZl1YPk5Mh47NfYsUxZ7X0vUnPcWBs3voTzMH3zlH1xvc5RGSW3IQLn/EYQdLWCthk3G7Gm2QmhJ294ThXsJ0CdV5l1llKtCfCH5XMGOufnrUod7Qn4wUb8itJTeClDki5QznKxYnN1n/sMPd/eUPkN87Qh+foMOI2Y2zeMJ0BNPNqmtu6zDRU1zVqLzM2OWAN5WMJVtyVswio4vEi4Vne+JZPHa0q/LyiGeSsrlnSX2Vp+KuTmJKmSL9f33EdHgf9/N3/5O/P/lRSoxozkgu1eu6+QRtoXSZqa1ckDZjfKFvJ4xRcq7aZkImeYO1hZwNepzhtnL20MOFx+5sNXtT47kdQa8OxBbUOyiF8uw5fn13NnFj6gdgijTrQlxYJM/qXwScwhxtmiaiKsRocK7gbSarkJOvyi7QtyOqgveJwWdyMpRoIQplqMpsBwGlRvFhRFXBWvp/fYQbikfHEelaDKD7PeEiwT2LaM1NkgSSYAaDqGd302PahHWFphsxAjnZyjMVUrSMxr2sppj6ekFsQbMFpy+PdFLqcZBxArkOjK41EVTBOaRpEO8xsWoQWpVYsqC+8gqr2D7hQ6JrJpbNxJAcfahGb40yecsUHXFyaBbQ6qXYGtB09tniBb+FxdMR3e0R76qfGcFlBIoiix7MAG1DPHC88iJmPnjgFFxBC0yjI2dhu29QhVIM3mecy+z3gTxabJPRLOhccfJckXIdMMOl4p+soGnmuQrkjCtqIGd0dYmEQDlazMZ83X+d33PhFBsKZt6JbRtZNBMpV850PtK4xKYNXO5aptGj2cBkkGjqwq6ATdWWFicJ2Q3QBHS7A+cgpUp+VUUALbMPzdWS+TlqavnFF5yvFtE1ERFljI5cDF2IZBVWQ0tMFhGwLqONkLU+wwymJpFU6bF4ovTfOoFSoAlVy3JNH+a2W8PDT9cLRTGrbRXSrC/fb0GNQFfD+4yIctQNdCHSNxPLZuRmu+dmu8eYQnCpRp6dQwaL2Zv6om8vhAtDcwbNupDu3kCXC4gJuhZMncf93OJ9/uBXf4V3vvIhUkYU8Kcdx0mZjjzbtyzZG1IP8dCQQ8PUF1DhPBRoM75NpOWezkembLFGyaWmDfGlboCrCbfCje8UmotE/+1nlIMevEP7Fs4uoCh4h/uMOyC/s59bKDCOyOkZ4YXBLzr6Rw3a+Wo3naNYgzrBxEIOhvGmZ1oGhpsLXjzI+Nt7QkiIaD0xlSo3Mr8X8xvm84SFlDHbPdoGtG8w+ZDy0SlibeWYMQUJV0fkDCmhziHbPTx7gRgBH3B9iwaPxAS5gLN0zqJNIC8bpm8GLh4esH67oLcmjKu+qlYREfy6Joqj/97hnl1W+qSEpAx9C+OEeIemxP8BSQlTQ9EX8+oAAAAASUVORK5CYII=\" y=\"-156.770539\"/>\n   </g>\n   <g id=\"matplotlib.axis_39\"/>\n   <g id=\"matplotlib.axis_40\"/>\n   <g id=\"patch_98\">\n    <path d=\"M 287.775862 194.770539 \nL 287.775862 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_99\">\n    <path d=\"M 325.265517 194.770539 \nL 325.265517 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_100\">\n    <path d=\"M 287.775862 194.770539 \nL 325.265517 194.770539 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_101\">\n    <path d=\"M 287.775862 157.280884 \nL 325.265517 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_20\">\n    <!-- Happy -->\n    <g transform=\"translate(287.162252 151.280884)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_21\">\n   <g id=\"patch_102\">\n    <path d=\"M 10.7 239.758125 \nL 48.189655 239.758125 \nL 48.189655 202.26847 \nL 10.7 202.26847 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pf2cd6b6412)\">\n    <image height=\"38\" id=\"imagef1907689f1\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.7\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALQUlEQVR4nH2Y26tl2VXGf2Ne1mXvfa5V1VWVrk40xo7aoBhIQBF8SESUIEgUzEue/Af00WchRNAXn8XLgw/RJxEERVCIiU8qMXSnu1NKNVVdna5T57Zva615GT6MfU5Xp6pccJj7rLXXnN8cY3zf+OaW8vgzWrTixXE1Xl3fePqTfPNPv0SNgjoIgxLXynDkGI9hvFGRDDUCXlGvIOC2DhTqrDJ7L7D3oOIKrG87e56htPDt3/sTFq7j2esKg3v25rOgAL568J8AuKyEreISlChMB5AWiiTBJcFNgkxCuPCEC48f7b5fO9JCGQ8cuROaS5tDsiKV50A9iyFc/ZO0EMV/7EtJbZQKfoQaIO0JNdq9eCn2bAI3CS4r6oXcQ2mgzACFvIC4htLbJsHm+tEMPXuFqw8/CgpgUA8CkiDNIWwhz6FGJayFuIa4UsJgEVCxtIYNjIeCVCHPlNJC2QWnesEVA/e0bnnFz18I7MVwsd0sa4Nki47LMO0LpQUNBjIulRpg9apj+UnH6p5jc1sYjyxtYQOikPaUaU/wAyAWRTfBX1787MuWfzkwL47vT3fxycKuDsbjXbRWtkieCcMNYXu7MtyqTEdK2lNqhNwLYVD8YOkunW1IqhEkbJW/vv/5lwILL30C/PFbX6IX+zzcEEqvSLZUSVVKKxzer/g3lbApTAcBKUr3NLF8rb1Oa1rYxqY9Ia7VGL6FswcHnHxuzc0XpPOlEVvVAb5zSOlgOrBaoYIfhGapdGfK3W+vkKKcve754ecbzl53nL3uyTPP0fdX3Pjukv5JpbkQSqekBZRWyL0R6PBNx9d+8NsUrQDX4/8bsd965yuEFaSFkOagEdpToTlXFu9n4mVm/WqPemHxsFJa0zqpsLkVGI7n+An6k0wNEXVCbSH3xuLxQGjPlNPtjFEzM2muGVq0GrAX0fadN+9xqAoquAxsbKK4UoYjz/JeoMaddGToziou24LpSFAvuBH8ccSP0D9RtrcEPwFq8oODJ+/c5Hs/LXyh/Wjta4G9Uv2PXQLqhbBVm2iC8UjY3nJMC7nuBm6yQvajEteVuFL8AC6Bn5QahenQSOIy1yz3o1Ia4fBN4b+H156vsecAPYstK81SiSvwA5QI6qFGY0TY2PP5B4XSCOvbHj+pKfwINZi85N6YHbYWWalGBnUWuaTPa+gLU1m0os5onVtBFNxoupTnQlpYBNtzpT2vTPuOk8+BOmXxwLP/XsFlYfkpR54pUoXmzKI0HjqqB4dQGwPsRJ8H9rKWgEBpBPWQO0srAn5rolkamBbCtOcZD4VyPAKwHRr86JC6azuNtaPpAIZbgJi2xaWlG3nx8i9k5agZnKIexgWkA6W0CqLES0d7anq0uXMlnrbj0BZUYPuKoF5xE9fP00FFuwLJES6t0fvBwFd9Ht3HgN1PK/5p/Vn+6J+/zP59T+7N2tRFQZqKhMo085Q2Mn9ok9WoSBbEKSEWylXjzxbh0it6lAhtRpwybSJZIA0BvwUNwje+9etc/MK/8OW97/J6bIjikfL4MwrwZxd3+MN//Q0W9wNhaw15PILhTiYcTrRdIvrClD3DtqFeRppTj0sWnelTI4dHa1ZvHhOWxsDNqwV3Y6LtJppQqCpMKTCcd8STQHci+NFIkBawuZf5+hf/ht/ZOzNWvpdXfP0/fo3uAwugFGsbNSqY56NvEm3MBF/p+gm3l8gLpQZFBbQKfZPMIDbWuHVWiE1GBGbtxKIbidHKpDZqwu2guTCf1p54/uDff5O3po0V/5+ffQF51KFO8aMgZedKd6mPsVAVhrFhmgKqIA5KU6mtx01AletaqVEpnSJBEVGmMXApHapi78Z6vXF1xk6Xd+3uQcvfLX+OcFLW/MOjn0Gd0lw4SgfdqTIdGiPd4BguWoazDrfy1HlB+gIKokLpKm5yiFeW2w4VwEFdFHxTKMVRq2McA3kKOK/4UKlXzO9MI6s3nQPhL/72Vwjfm/Y4/a9btEshrqw5b49l55lshGButQhy6qhNoLQ2sVSQImgRhm0DHlwBslBWkVIFt3XUCk7tndxXfLa5pZoUtedKWoiVhZ0vImFtIto/rSzur9j84gEuQXOJqf4oDMeW4tJD2O4mLaZpNcIoUIsgQQmXDinelH0QwtoAjMdK2AjqHC7vfN7OOM5OCtPWUaMdWIKjfmSLvSBqvRG1EEuGxcOJw7czpQ/kucdvC9NhYPZ4ZHO3ZVo4lqK4UCEL7dNdZ7hUxn0bXVamE4fUSrOqXH4ymNMYLYrNeaa5gMsfNw8elrW3whvtoCCp4JPiE9bzsrK5E9n/30LzdENzYr7MlRnb2y2pd2zuCCRHKUKoxspmaWayvYT2PNO/9QHp3g3UC5ef7lGxjWsAEoTVRG08zaVlInip+MEcQv/DEaaEmyDPoFkW4jqjTpj2I+V2S3uWUCes70amhZD2hO2dCl6trvrKcMMBgp45+qcFvy3ku0fghOGVFhT2HhbSzDEdCFIVtxxwpTB/3DHuO1yUDAKLR5n49iNkSvjJ5Ht9OzDtRfLMTkvzByskVVQwixyEzScq9SBZZQdF20qN1gftOGcszXsNaREI68L+ewPd6W6dXa2iCueXLB5sLJW/3J1z8fMjr37zIXW5BCc7H+XIM1h/IuCTefftzX3iupLmjuFIWH664m6ORLezxsWhUchNZbpomT0xR2GWvFD2I2EopHng/CfitRlwGfAOpoS//wh547OEhevoFhOquyY3JcK2ouKpEdK+MiwqGir+MlAbQWeZuJhY9BOluI9AqVCBpksMb1Qe32toP4w0FxE/mGmUEhmPoLZ2NnV5x8xcwAk6jLzyjw8IRSslO0QE9R60Ei8TfgzXLlW9glfKfoao+C7TtBlVwTkl+kJyHudM6VPydP2EXwyUO47Lyw7GnRlUE22/tblrsLRLyiggTQMi1pJUBUSQGKAqYTXhx560t3MKo0MV6AouVARYP5mBg7g3Ip1Sq1Cr4BzU6oBCStZ7Y5+gy+Tk0eSoCpL9tUA3a0W3gy3mBII32+N8BeeQxQJypsrOn1fbjUagCCwDNSq1K/i9RAiFeW8GcdYk0i6t1hOFUoQ8RFNhFTTtTKkAYqmNK5g/GqEqxAYJHnIxYKpAKRCj/e2EtgbrCJKxiYOCU8QpWuwkpCqMKXAxNBadJqMKzim1eDQL+N3Giuz6kvk19Wrd5fE50tr75IyuN7tfe7yCCLrdwvEhpQu7Jg0uCaUBbSoaqxlGbzS/qqmuSYjAohsRUTZjwzgFahbIu8NmNv8kyUG1oPlB6E8yMiYIHj2/AO+hibvDSBE0JRCHjJOlw+0K/2qHSUylRdFqjrVWIRdPEwoiSqlWPwB9mwihMgSlTAbGjc4s9+iQDPP3lfnbJxA81AqxAa2mDAAiQKmgGUqD3yaaVcsweOufrVKaCk3Fx4oPhRAqbUx4p6gK83bCu2ouNQeqmtso6wBVcKPDjUayuLTa6k8y9XCOpIK7WIMTRALq1YD97hv/xt//0heZf+tddLvFnzhm3hG2HeOhZ3vTkfvAeMNTozL2ldHBOlTiPBGbzNF8SxsyQw50MSOi5OypWdBNMAYCfiMc/qDSLAuzd0/RLiJFqfszHKBn5xCCAfv9o3f5q5/6Vebf2bFqMxDePyV86OljYP9gRukjpXXU1lEaZw2/CONBz3DkOD0+YLhbaG5taJtMVTF5yA6pAhWoEJdmCkvrkO1o+uUdohENHkIAcR/91KkOpG3RnBHn0JTMWW8H3Ok5fsdY7VvwDhkT6h2z4KmzhjJrmA4ilz+2x+o1pdwZEadmo5NDnBBXwuzDyuxJpvufp5ASOk2QM7KYm/rHCH3H/wFHU07pK2IWDAAAAABJRU5ErkJggg==\" y=\"-201.758125\"/>\n   </g>\n   <g id=\"matplotlib.axis_41\"/>\n   <g id=\"matplotlib.axis_42\"/>\n   <g id=\"patch_103\">\n    <path d=\"M 10.7 239.758125 \nL 10.7 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_104\">\n    <path d=\"M 48.189655 239.758125 \nL 48.189655 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_105\">\n    <path d=\"M 10.7 239.758125 \nL 48.189655 239.758125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_106\">\n    <path d=\"M 10.7 202.26847 \nL 48.189655 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_21\">\n    <!-- Happy -->\n    <g transform=\"translate(10.08639 196.26847)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_22\">\n   <g id=\"patch_107\">\n    <path d=\"M 79.968966 239.758125 \nL 117.458621 239.758125 \nL 117.458621 202.26847 \nL 79.968966 202.26847 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p3c781b2310)\">\n    <image height=\"38\" id=\"image16315fd453\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"79.968966\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAKyElEQVR4nI2Yy6tn2VXHP2vvfR6/931Up7q7utvudKO2HdGBChk4EB04ENGBDlQUlIBk7lDiwKmCCCIZGMjEf8CBoCAEHwQnwSSapFPVUp1KV1fd9+9xHvuxHKxf3aqmbnU8cLj3nN/ZZ3/X67u+60j+6B3l/3F8L2757b/4E4YDyBPFjYIf7Dffw+REKR6GQyFNoDSKOpAC9aXQnijdS4LLUF8oPiq5EhBwEU5/tef7v/QVALIWwrObZy14cTde//rX/5g62EbVlRB2EDpFit3LFaSpIAoISBK0UdJUQYVqDS5DqSDNBP8MOFHl7z7/lU844hPAngX17PUHcYO+P0cUSq20J0LozNFpIpQa1ANlv1D2fxVQoVTKuBRCB6kFdZBrwY9mmDrhzbAB5tf7fgLYi44//N7vMvlYiDMIO0GSbTocCt3tQqnAJXvWjUJ1JYiAqJBmhYIQFxYyF/dGAHFqYK8NeZHHbjpO8pYHJwdUM8gttKfgshLnYvlzbl4VxcIVld2riu+F3CgIlKZA50izp14LO/OaeiXs4HGueeMZND8S2Fcvf5r2P2eMK9u9VIIkob5UDt7vOP3chONvdbhU8Oc7CJ7+lTnrN2riXNh5iKtiuQZIEdRjod1CbgU/KH/18Ff46o997cXAnk34Ten522/+InVtVeZ35qXJaeHgGyfw6JSXHx4Q7xzQH7Y03lH97yMmlxsm3xV0OWP3xpKzdyuGQ0WKUAJIhtxA2ALFCuLr//we/NGnAHu2AM5KYvEvU7rbEDZCfQXNhVJfZbq3DsnvHiEJSi1IUfqXasbVHdQLJRiIYeVQb3mlxQysr4TsodSWmyUIzTlEzVTif3Qoe7XyD1uzqgRQge5WQD0MK6FUGBclyLU9J9koxPeWeyWA7wUcuMEAI3ZKVtRbJP5+fZvfX54A4D4NGECuBJe45it1T08XodoozZnSnCt+tDVPuAwxT5UK/AgS7R3X7957zI1Ke6Z86Wu/yd24uRlY1kJWW32WW9tgb3Wp91aq3Qu9Ejqot0q9KfhekQzF2+9pAuPKwJSwJ9hnYlSCGe5Hq+Zb/xH4vf/+Azalfx6YF3edZ3/6wW8YSQqE3jyUWiG1tkm1U5qrQn2VqdaZagP1eg+kgjRXxlUhLo1I08TuldqA46A0Zog6mH2cWH5pypcvfurTc+zDf32d1lsFPbFYBTQJoVeqTaE79uxe9kwfKqFXVh8kuuPA+nXZh1twEbrbBVFQp6CO9sT6ZKn2heGFOPeEruKv/+2XXwwsayHszFslwHioSLKG/ORed+y5/HEYb0XGw8DBd4RxHogLC8/QKC4JcVHQSTFQWcgqxl/909CqWDQe/kJL+9GnVOWgyXpaC3GllErRmfm/OROGA+uRaVZws0RUYf1mINeKS6Y+cJAWGZkl6iaRs6OMHmXf8LP1IvVc53J9pfS13FyV99OG9/7xi4QdxLlav5sUtCrEg8xwpCZtPEiCyXQEExH40TZMM6XME9XBwHQ+UFWZuk6ENoJT0rwQF4oKlEpQsWJSL7jxBcz/xXu/xfReDW4f/0qRNpt1ONKi4JLDdwaiqSLboJRaCVtrOWlRWNzaUvmMd4p3BVVh0zekqqBZSFPLP9aCBpNOKLRn+rzHvh1Hvn33jvHPvlpQkFAQX8Ap2hbG1V4IZvBOwVnl5dY0mAalFHt9TJ5cHEMMVD4TmgTB1uS9ZHoihaqtsn1VnvfYN/rXmH6/JvRGgICB2ecDReylgAaruourqV07C2dpFOpC5TOlOGL2OFdIxRGjRwQYDXRplFwLFME7ZXk/UXy4qVcq6sGNJk9QkOhQFSRai9LarE0TJXRCPG9wi4hKZdw0yTTzgZg9MXriENgOU0gCXu2sCtIFXLQqt7QRqsvIrUf9zVX5pNVYDgiuc/gRfCeW5AFK0GvBJ1lwXsnTYtUIjF3F0Hv8xtOeO6ot9MdWrblV0qIg2fRYbow6rp3zw9ObgdWXShgUF4X2xKoG9np/Y65PcyNQSRCXYiq6VoiCjA5GR9g52sfCeKCs7irNmYnHOBfy2jOuFESetqxo+2v/Ao+158r8Bz3drSkuKosHhRKEYSksfpAYVp4xCrOPMmkijAcOfIFFxF20+J1xWHMqhJ2yeSfjknDwzQvWP7Fi+hguP+tNamerTCn7tMkKOd/UxGWfY0YPfoA4ERb3NlRbZXLvjOW9LcsPxj0xynX48i7gBqE9Feb3zfPTk8LyOwEflZOfP2R+f0eaCLm2+SFseToGjorkgubyPLA36xO2rzj8yRXVWqm2hTgXrt6es3p/g04bpIuIQpw6+gNhOC6U7CAU4qIQZ/vwi1HA9ONCrh2hVx793JyLdxxxpfjhqaeuwxgc4m+Ykn6m7li/ndD1hnpbmDwegZrNq57+cEHojKHjTOiPhOFYkeMB5wuhgXwEXetJc09zJtdcl1thXMK4spa1vGs6LC5sQHbypJk7CDfQxZcvPsdP/s0VZb2hOUuMi4rZg572LLB+vaY/FqTYJmmq5JdH6jrhfYGQSb4QgShQakecO0plvdYlmD0Qpo8LzXlic6ciN3sxqU/EZ0a7G5L/Mk1xF2tyztRnHafvHXDUZ5rHO44uevrbU8aFx/fCxbvKdNmjCsEXUnaIKHJW0VxalrSnJs3bi0J9lUxATj2Xn60YDuS6eWu1nzt3I+T8PLDWRagrAGQ3EBfw+GcbVh8EJo9G3FhIk8D2DlQv73DO1K4CQ1/biDcphIeO6UfK5CQhxTrFcBhQJ6xfcwxHCqLXhRM6aC4L7mxNqaoXyx6pa2Qw1dB/RhmOHM35hDSxOVFvD8yaSErGsiJKySb03TyyeVvZveppTit8D2n6tI/isyX8YITtkuAGmD3o0a5DbsqxXa4hZ6SuYIzUVxBX1tP6W/ZMXiWaOjEMFbEPiFOaSTQe8krZBdqjHucK5Y6jix4BcnLIvu9qFyhqH1/sa1Gh+vAUDQHddTfInicMEgI6m1BfKcNGcEnYvZbRNiN1Id2fUV84xtcjYTmSkqNqEyKKVpmchf58igwOnSdcVdDBo08mKGwql2KT0uruzrxVVTCd3NDEKZCyPVCUaleQ7ElTJVw5chTKNJMPEv0thdGRzlq0KkhjkiYnj57X1w3fhWKKQhTS3nAFiYIfhaP/SfiTNbKwrz37nv7J4wtH/869L7yJFkvqalsIvQ0NeWI6C2yl+IKfJWQ54meJ6WJgNe9ZLXe0r2yRwxE3izYjZJM2ADI6/NZTrYX6ApqLiORCvrVE2xrG+LzH3qrm9K+PkBLsOqrLEd8FwtY+P7lksjZNldIE8jwjVaFEYTtM2DIBUXyTqZpEKYIWR4rOZtJoA3R7Kkw+Vpb3R6qHa7QKkAoURWc3hBJgfrRDplN0vSY8vmLxoKHUge4lGI6K5dnEKqtq0r4qwfuC94VShBg9pQilOHIfoLfguCj4Xpg9UOLMNJhcbWDS4h+dA1COlzcD+7P3/oG//PzvsPqn78Llhvl/JarNS/THFcPCkaYVua3wg6ncOIe4UMZZpjrqqaqMc/uQq5LF/nejM6XaCe1FYv7DTPNwY2mz3cEY0ZSQm6oS4Ndmp/z5ZxwH85mFdBipv/UhzWJmFk1b8IL0EYInrVrioqLUjou356zfKnvyVXwolCaTk0PVPuiZ6MzUj7cQExICOgzWMHOmdB3/B1+L/b4t3z/GAAAAAElFTkSuQmCC\" y=\"-201.758125\"/>\n   </g>\n   <g id=\"matplotlib.axis_43\"/>\n   <g id=\"matplotlib.axis_44\"/>\n   <g id=\"patch_108\">\n    <path d=\"M 79.968966 239.758125 \nL 79.968966 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_109\">\n    <path d=\"M 117.458621 239.758125 \nL 117.458621 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_110\">\n    <path d=\"M 79.968966 239.758125 \nL 117.458621 239.758125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_111\">\n    <path d=\"M 79.968966 202.26847 \nL 117.458621 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_22\">\n    <!-- Happy -->\n    <g transform=\"translate(79.355356 196.26847)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_23\">\n   <g id=\"patch_112\">\n    <path d=\"M 149.237931 239.758125 \nL 186.727586 239.758125 \nL 186.727586 202.26847 \nL 149.237931 202.26847 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p97659a45d5)\">\n    <image height=\"38\" id=\"image2bd27499fd\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.237931\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALP0lEQVR4nI2Yya9lyVHGf5GZZ7jzfTW7qCrZhekB2AF2LxBCYBAsEBIbW0JiabNGsGbBf8DC4k9gxQIkBAuvWCALTJumB6Pu6ip6qOoa3nCnc8+QmcEi7ntV7u4yXOnoSU/nZH4Z8cUXX6SkR19XXvJ7q2/54+//GeVKQaFolByE5rowzJXswXeCelvCt0IuAFHUYw8wfixMP810M0EDZC+EvXLy2y3/8ZvfZ+FGX9g7vAwUwE2f2H594Mq/BkQBhWEi5BLUQbERyg2EHYROcYOSC3unnwtxBLlShom973vICpKVOBb+6Bd//KWg/k9ggyqjjwtcUnyn5AD9HFKllCuhOlXKjUVTHeTDamFvm0sSBoRcKvsrjnKtqIAkcFF5b30Dbtg3STNe3P8PWKMwv59BoVuKLVCDJKFcKeVaibXQXRKGiX3jBhg/VoqdpTdVQgrQLaE+sfd9a9F/95078Ip99yIoAJc0vxSYO2yUC1usOxIkQ7GBYmf/746MVy6C7yA00NwQuoXgeig3IFlIldLNBRctuqFTpBMGTT+15zme8Hmkn/+lUsjhwJul4vdiXAkGZvRUSTWWogMH62PFd/a9CpBBRIhjcIMVhldAYNBEIf5iv3M8PxNVqw51tkAcW/glg+uVolEuvbVi/lFLDrC/JrSXrdqu/vuay2+esbi3pzpT3ADqlVRZpebCoja77/jzR7/x0mx9eaQ085ef/AGphmEq5ApCI/gO6lNl/t8bVq/N+eybI7Z3IJcGYH9FePTrC568saT84BGX3jxl9PQgHwHiSHAD9DOhPs780zu/xEdx+0VgL+PYo9Tw/t++SqoslSrGrcmnmfmHO7prI9yglCtl9gAWH8DkYWby0CpYBZ797l366xOWH3TM7xlfRS1qohBr4eoPSv5h+/oX9n8px7797p8gURGBHIz8o6eZcpvZ3R7Tzd1FSsIeym3G9QriiGNnvHOw+mqJ740CvjOOIeB6iyDAKo6/COzLUujF8dl711gq+NZOWGyVfibEsUciIAdQDdRnCRcVdUK5zqiDTu3AGqAfCdmD66BcW/cAyPaHH69vMVx+96eK4Avh8uJImpFkJ6zPEn5vVeYioM/JW58q4ycR9cLjXy04eT3QLR3VWWbyJCGqDJPzaoTRidEmF1bVOQjq4N/eu0uj/csj9qL6qjdepdKBg1RBtVJSJfRTO6qK0i88uxuO9tYASUhVYH7fUpeDMEztQJKV/WVHqizafn+o0ADztwv4/Z+RynNQXhwaFPVCuxSGmYlov7Q25DsljYTmmiOOD1IiClUmVZ7NbYd6456Lxqf9dSGOlVwoYS+Up1bhGmD8NJNVXw7sxZ8Wh+jMYZgpqTbSDlNh9EQYPcucvuIQNUx4xZcZyVxoH1hf7C4pw6UEIYMKQ3D41hNay0r2Qvs5dfhS8t+Le2QQUg39QomLBF5xo0g38/RLT3fkkfQCAIFQRFDBJZDe0r+/mdBxohgNtn505FTQz5ViLYgI6pS/277Or9QPuFu0XPMTpH94V89T2OSeP/34W/zLm6+xfDvQL6C7nElHkWrWUZWRfgj0XSDvA27jCTtBstDd7rl6fcX6R1dwg5G6/UokzHsUmE1aRJSmLelORvitozxzFBuozpRhajYpvbHmB9/4m+c6ljTzO29/h+0/32DZmS1BxCKiUJaRad1xGj0+JLQStLWcSQYG4ajes/JAD7nQQ49UvM/EfOCvz7jJgLYVaaS4wQS82ClxIvCfc74l37NUJs383k/+kOMf3iCU4FvTGj3Iih8lUnJs2op2W4FTxCkKtvjGDnDajlAHqVbiVKHO5OzIKgxdwHnF+UwoE/HAP3WAA9cprhNiDenduQG7F/f8z9Mj3OHl0JghzAFcJwybgmZdUKw8XiCNMrlU8IpkdxHVk9UESsX1Qp5FxCl5cGjjca2DKMRSybOIHwTU3HAqxMxmMJs0TMWA/fWT38L/ZIoMpvB+UCvzQWyT0lGuHGHHgfCeVJlMuBd0MYTE4MD1QnhWgIBEKLbmzSRbE8+rklQrrscKJSuSoDoxy40eqnJQB2reqlopqZRDe4HQKIsPjTPDoaW5CPUx1KcJBNqlp73xvIlUZ4Cayw2tsr8iFFtFgx02tNbkTf9AneCSMr/fsvr5mlQfIla5yKG1sfyvE5792mVT585OUp8m6k827O/MGD3cIUNi88qS6rijX5bWJ73SNyW+E/zeZoGiUVw0vs4/aik+25BnNRIzj99YXHBYvUWteLKhvlywuxkISTPPuinFxvy5bBr8cIncQX2aKbaZYeIYXlswf+cEaXtQZfS4Znd7RD8RmhsCIaF7T66V9vJBeLOtsXx/h9v24AS3aTn+xlXUCePPMsPkUGQK0rTkYPY7dBp51MyNWz0QI8Uu089sKCxWPcXGVLT52tLCHpVu6eln5lr3NzI46wyZzDATQitkb3qmroKjCgS6pcdFZfEgHjgXDqOdovs90/tbhtGckMlsu8o81S6jfU91MtBc8bRHDqSmPh6QITP6aIPWgTQqyIXQLj3NzYTOIuIVsqDZkaYZeeSpT7MNHckeF5ViF5GDRdpfL21AVisCYsS9/zGTo18gTF3N7fkpz86WTN95Sl5v8U2P+pochJNXPX7wFGsl7EeMjhP7y57dTWH/cwlZ9qYW2aYRqTJuNrC7U1OujeguKq7P5NKRRchTx9nd4kJmJB2GlqIkn62of/Shkf+bRw/4x/Q19JNHaEr4/WBjWwlprLRThVtKsXEcjx15HPGzgXE90LYFTpQsDlXQKOTokOsdz448bh2YfFyhzjiXyoMo91x4PsfBCAw94h15u3vexHMhqCpoRjYN1fqIOPEXk7NWMCwzWif8KFKWkQunIkpZDfR9AG8uwTmlXuxhAc21grQrbPcsSO8Ia4dvreFrAt9luz9wDvHeHOwPT79K/azHVRWIQ/d7yk260CxJgvSHy5Mk8LBm+GBG83RC2oeDuzigFHtyEoY+0LUlArg6IsGuExBrW7nQi/m0etqi/XO1dgB/defvWd2toSyQIoA4wsZsihsESYd5cu+QzpEWifSVDhlH6nlHWdoh5tM9i3nDfLanHvfk7EidJ65LcufR1myxOkULfW4Q1kp4skLKEqkqpAiWyqve9ETq2vJdFqRxIHtrKecAc1D0cM2EWJT6LpAbi1rjFSky2juk9YTLLVpA7hzSnaupDb8SrfUAzD7p0O0OigBZ0SEasCNX27jV9eA9Oq4vRv7zdKaRkitFywxe0eiQIlGUkWraklWoCzuFd5mmL2jbgjz4CypcjD4ZJApuEBb3M9UHT1Bx4AVt9uCcASvEk0vTEUKAskCDsxQeFJwsqDdQLmRrWSGhKnR9IGchuEw3BFJypOjJ6eAaxubfpHe41lxFaITq1HyfVgWSMxoj4h1kfV6VEiE3DW42RZqWsB/jYsB3QhwdQMGFwotTqipSF5GUheAzTpTFqAXgeDcmRk+nBdoE42e2G0jfClfeiowet/jVHopAHle44zXaD6jGF4BlkBAsndJQPKtZ3Pf0c0+xdqgX4jgwTMLFBJ3SmHWlpne1ovOBetrjXDbzK4ovMrHI6CDmyRSqY2iuetSNmH96gtalUWg5gxjRpnkObPPLPe5oST45RZsGeQKjpqWajJg50Kow7p4PH1lBlVwG0igQJ552WbK9VbG/lQiXLHL5fNxWq27fCuOniWqVqD9e2Vrb5pANh4xqZLVGzi+H3+pb/uI738W/+wC8BydIUUBRkM9WiIjJSV0bFwFVRZwzXqqiszG5Lumvjjh5tWR3S0lTu5FEoTx1lCth8WFiem+FPHxq37WdAaoqSAkdBv4XkFVBh7WaYwcAAAAASUVORK5CYII=\" y=\"-201.758125\"/>\n   </g>\n   <g id=\"matplotlib.axis_45\"/>\n   <g id=\"matplotlib.axis_46\"/>\n   <g id=\"patch_113\">\n    <path d=\"M 149.237931 239.758125 \nL 149.237931 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_114\">\n    <path d=\"M 186.727586 239.758125 \nL 186.727586 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_115\">\n    <path d=\"M 149.237931 239.758125 \nL 186.727586 239.758125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_116\">\n    <path d=\"M 149.237931 202.26847 \nL 186.727586 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_23\">\n    <!-- Happy -->\n    <g transform=\"translate(148.624321 196.26847)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_24\">\n   <g id=\"patch_117\">\n    <path d=\"M 218.506897 239.758125 \nL 255.996552 239.758125 \nL 255.996552 202.26847 \nL 218.506897 202.26847 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p73aa4dd148)\">\n    <image height=\"38\" id=\"image987ce8072f\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.506897\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALHUlEQVR4nJWY36tkV1bHP2vtvc+P+nVv376d7iSdZDI6piUTCAiCDCj44MOMoIiOCD75or4p/geDOC8iCnlQwRcVQUQ04oP4IMIIMswomYhkxkx+zPSPJJ3+cavq1qk65+y9lw+7bt/udDJkCg516tQ5Z3/3d631Xd+9Jb33o8YP+PzBnRf4+1d+lubE0NFYPecYDiFODO1BsoAYbieYgCYwBXPle3rLqNbl2XGiaDIwSL9+l/98+W9xoh877iNXk+XHbvji/HWWLxiSjFQJqQYMwlqoT4TJ+8b8XZhdN+bXjfqeEdagA0iE2Aim0C8UZP9Sga+88E+fCArAP/zDiZIs40QZLRHEceRG0jSTamWYC9mDjlCdQL3KuN6QXAYzAdcLsQXzQg6QWsiunOcAoQPJkB6g/BTAHmYsiNtfA3zGRBmngjkIS2hOMqawes4VFgUkQbWE5n6mOoHYFraGheC3Rqohe8ENxjq1JOs+XSid6GM3fmu4Qn0r0F9QUg2uh7AxTOHkc8r2SiZNjHFmpNbYXYLTq4qmcm92EKegsbzPtDD7Z9//6U8fyo9+ehv5yhtfYvE2nF4tjIRNCWV/oLQfwvR1Y3qzg2zkyhFngfVVzzAX/MYYp0LOlN+dgUCqhJNXn+aNz3X8eDX54YF9d4zYv1wkNvvCFdDBcIMxeTsyfe06ebnCUoKU0GzUzjF54pjupafZXXCMi1IwsS2syb5qJRq/9I3f5I0v/NUPD+xX/uL3mG2M3bEgqZT+7L2RsBqIk8D4mcvE+VVMBbdLxNahyUiVotFo7ifGiTAcClgpAhFDE2QVhutT7qQNx2766YF1eaBalkqSBNUa4gS2x57dkSc2wu6oJgdwO5AcML9nI4PbGm4oeqZj+RYzxMr9Jsb0pvL7t3+GP37ym4+N/4nZ905MsI+gDufXUxDGVsj7AcMpVCujPjHczpBU9AuBVMM4K5UsCUwKc6bl2eau8fXbz33s+A8YO9Ovs/NXVy+jo2FFNcgerBJcX9CaL4O53vC7coBiWkCZK+DNg2Xww/7cCuDqtFR20MdFHcCfAfpo6f7lt3+SWSwJa62hsQyU6vK/ZPA7oznJ6FA6Q9DSovoDJU5hnIF5w2+EqIUpty06liohdMZ6Vz8Q80eAfZKW9OuaqYPkIIei3FgRSzHwHUw+LOG++/lC/MHbmXqVQaA/UnIoORWnRg77XBNBoxAbw2/h5IM5N+KW58PskfE/FpUTRdceyQXUOIXhwOgvFPrzfnLDVDl9yrF5NrJ5fmR9VemOHcM+r3JVAI0zI84ScWLEiZW0UCHVwuG3Av98+iJdHh7B8APlwhRiA+PCyiCNkSulOin9MDZCnO6nV2XGBaS6MIqUirYqgTMImawQTUkbQWPRtsmHmVf+8Yv80XHkM5+9zd9d+xuO3fRxxl7re37iv77Mhf8VchCGQyPOMmmasZCJB4n+qMw6hzOKDVeXsJ61olQbNknIJBIWPfV0QCYRq43h0B7kavaw+C7M3gzc+vpT/Op3fo07afMoY3++fIo/fPUXaN8XnCthMA9WZXQaEYE0KAkYk6M6EXQEMqiUMJMLy3GacdMRFSOEhHOZFB2xymQvjIuSa3kLvjf8ToijcOs/rvLXT754zliXB776tS8RVkXlxdhbFQMFUcOHiKghTSK2ZdYmIIPStAOmZTK53ofXhGxCjI4YHc4npErk1sjBSA2kM9aNBz7uT772c+fAfvnNX6T6wIMVbTKBVJX/pCozVrWCRA0LmdQUnZMoBJeKa/UwTg1rE6qZEBKqRs5CHD3iDPbSlepyfwoPizC0N/x5KL9//wJocQ+pESSfiahgozL0NbJ1BVSTwZWCkFRmu1pPsMpICdI0IT4TB0eKSt4EZJTyrmAPGJJU/JkE48l/u8ftL1wALWbUQ1F6EUNHoVoZoTO6Y0UHcCLkU49fC35bWkpqHKneO9f9OLF3SG34jeI6xfqqMLkW/LZUoBsKI3FiJXflfH2gmy2zmwvufr7IlAeIJHIui4l6malWke5STbUEtzNSs4+48MBah9OSi+bBDUL/RCa3CY0O1wtuK1RLGOelaVcro1oZ2QvDXNgdlwoG9qwb1cmAjh7f2RljRt8HpvdhmCvVck91LhZl/tYIZmwveZr7CR2N7pKnXmb6A6W/oIxq5CS4LTQflmfdULx/cy9z9I0PsbYizWruXWvxXalojXvmx0h4f8nBOzUme8aWeSCtKsLGmNyO+G4kdFWhWWFzxXP4nY72+op40OK6AZiSKsVU6C4XUCQhNVCtwG+hXifm1xPV3S1WBcwr96619BcFf1pAwd52pwS37zK5MePei7MCbK4exPBbIywHtBvQcYIbob430l0O3H1pQr1si54ODTkIuwtCfygMx7GsL4Oxu5TJQanvAeKQBKmekiuhu+ToD4WwNuqllaWdA0kGIZC399HX3+SwulaAzbQhLAYO34joWzeQ+Rw3HjK2wnSbmL4HceLoLjlSU/QpTgo72ycTbjEW4fNGrhKDC5gqqRGGhS/LuKo0/tnNTHt7JLWO3aFHsmFOQMthMRK+ff1cLv7hp/6U321+G9n1IIqORjwSlj/SsvjejvpepL0Z2V2ZEKdKv1BOnxE4GBExfEjY3j7bezXNXSGcGvXK8NtMOI3IPnT9UWBzxRV3nAVTg2GElJCqgpTPgf1792NoH8nDiJjhuwSirJ8R+oOW2a1Ee2fAbxPjTOkuC/1nd4Q6omqoZrabGnVGuhiJy0B9H8I64YZMdkJceIaZ0l1RUlV6KkIxpOMIzpXDHgL22vpZcu1RFchGWI3Fxwc4fdbYXlb8pgWB3aUMl7ZMpz3D4BExzASykLPgJpH+pZHuuYrqjsft9ouRurQhyVa2ELLgemjuJxhGxHvIGfxDyv/Vp/6VL7fXqOsaixG/3KLDBBmLzoxzY5xbsTCzSNsODINn6AKuLi3r7JM6D0lwi4G8gHFULJeqJSrSKx7BtqU3Nre34BwSPLbrsWE4BzaRgO8iOp+RN92DMj47qveV3ROZPMnIymNvHhAvZjiMqGYsC65KqMuk4Iq33wTYtyJRYC+oiGFatg/qZcZ9cIJ5j+12iHOFmDNgQRwWisLrbIpR7AiUF/dHZftIesXazPb5hISMD8XOWFTMQL2grqy4EUOylv5ooKMWN7JfwvkdzG/02HaLNA3WdRAKpEeASTQsZaQq5e76jCQ9X0GHsrgoTViwwZEEnM9IHanqiIgRoyMlIUVFBikbLn1xtmd5FdbC4t1EuHmCtC1WB3Qxx7ZbLKVHjaJ5wXY7GAdk0pQXZh7YFBkFtf0STQ2bJmRvaSw6RI2UlDyUUCJGnu7jZwqDFNG+L4WxLiNjxCYNstkWUGNEHk5+gLd+Q3jhv4FsyHpDdXJItXYgQppAbIw8i8U4+kzdjMVviaFieJdxmhmTshsC/a4i9Q4GRaLgdoLvhIO3E+0HO/ztFYggq1Mww3Z9IaBtkYe3Ov9v3PA7L/881vdIFZDDA4arR/QXK7YXHXEiDPNzqyL7J1NdtqDSLKHTWGx00pJ3oyLd3nHsIKyEy9/cYSrUr78LotD3WEpI2xShDR9hbCIGVUBSod/Wp1TvJqrvCbNJg9UeVEsLAWRMoEqaVgyLwLBwnF4NbJ7J2OFYwgngynpAe6VeGuFkhy430DTY6SmW0p6MCqqAbXePArvsWt555TLP/9ZNUAcxQozYOGJ37xXa2wata2wYQQURQZ0jeMckeA7/JzA8MaO7UnH6tBIbSoVaqcJ6aUjXF2ZyhmygCs6RTzdIU0NK/D/asSrwSzh1SAAAAABJRU5ErkJggg==\" y=\"-201.758125\"/>\n   </g>\n   <g id=\"matplotlib.axis_47\"/>\n   <g id=\"matplotlib.axis_48\"/>\n   <g id=\"patch_118\">\n    <path d=\"M 218.506897 239.758125 \nL 218.506897 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_119\">\n    <path d=\"M 255.996552 239.758125 \nL 255.996552 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_120\">\n    <path d=\"M 218.506897 239.758125 \nL 255.996552 239.758125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_121\">\n    <path d=\"M 218.506897 202.26847 \nL 255.996552 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_24\">\n    <!-- Happy -->\n    <g transform=\"translate(217.893287 196.26847)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_25\">\n   <g id=\"patch_122\">\n    <path d=\"M 287.775862 239.758125 \nL 325.265517 239.758125 \nL 325.265517 202.26847 \nL 287.775862 202.26847 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pb5bcb8dae9)\">\n    <image height=\"38\" id=\"image6daea67b25\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"287.775862\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAK3UlEQVR4nI2Yy49k2VHGf3HOua/MrKysruqmPW7Tnh6PadTIArFAMpI3CIkNQvaGhxAbFogF8gKx4C9gg/8AFizZgFiwYpCQQAJrWPEYDUbzsnse7nJ3VWdV5es+ziO8OLeq6a5uj4+UujdVWedExBfxxRdH4vFXlM9ZURPv+47f/4s/pTsUwlRJDiQBAiSwvaAGRCE5BYFYgu2hfirUp0p/IEiAcj0eKfmxviu8/UffYd80RE1YMbjPM+py/dbbf0xTC6nMhpTngolgO3CtIkFRC7EWhr38O7VKrBU/E4oNSIRUQYhQXSjJghph+iunTKQEwIoBwF1a+JPW36xvUbwzBQPJKm4nlCuwvaIGkgMthVhDKnIkzEA2roJYZePcTgkTIRVCqMD1SkJxNl47032eUVETf/XwG5RrGPZAklCuwQQdowN+T1GjSIJyJbgdhAbcVoi1kgroFyBBsH3eVy0Ms/zdyfVsMpeHv2r99xB49PCIYS9HoLzIUErKhqbi2UEmQL9Q+oP8ngogCeoURAkTUIFY5b/FSvAz+OGnh/Tqn48YZFxfBmmvnm+/9zss3nHsvqCIgqhgQobw6N1At7AgI5wW3E6RpOx+xuC2EGsIe0qMAihILhI1gttCcsLR2w7/G+m6YZfGvbgex571P94m7IM6MF0uI+Ph4P0W+85H1A9e5/RrU9TkKO1/sMU9Pudg2pAmJas3Zjz9BQMCEiVXc8wGu21+V4EfRTiwL0D5qvV9P6fY5RyxnVAtYXqcmH880B+UtN+4T39YUa0U46FaKe0XGla//Brr+wes780YZkJ5IUjMTqUy55OE7CySU+TPP/7mcyn1SrqImviXzQNikUs9FXkDPxHiF0tSAX6aacH47PnqQIi1AQXrc2WakA83Pj8lZAMljXk5ZM774K03sH/yLE6vjJgVw0fbm6Qik6akZ5tdkqsJim2hXCnVRcK14FowERidj1X+SMzGXRp6STOSMgkXG/j7zfyng/Jqad4kVjkf1OXvJkCxVYqdUmx1THxINjsTGvB72Qi1YNv8vHKwyMlvAtRniT9763f5bpc+37C3/+M+JmZvXZuhCdOcwGiuwOZpxLUJBOrzRLVUqot8sJ8r/UEizLLBwyJzXhqpBR2Ns/mM1/8h8Aff/UN2afjJLak+MVc0kMZfSgRthCJm+Pp9w+qewfaw90lichrQpbC662hvKWYQzAD9jUScJcQLag31SW5perW/oFa487cF3/riN3+6XhlLGBYKCuWFYIe8WXfDsrkjtPd6aC3GO0IlDHNBdIQtaoazSsgkoIMhGggbm4tqrEyA9Z2C3W2Bf7573bBLov3XNqMcJjDMlThNaJFQ66iWgorQHYGfKsYlUgPdoaW7MRbGMPLVLBtU1R5jlC5VaFDCRDFBMpwWjMnFUWygO9KXR+xbH/467731Jq6F7qYS97JROCXuBzpraR6bXGUepIio5kNsn59qIe5H7NTTNAOlC5gxMm2qiTPBq6G8ENQJahTrFYmZ864l///6gf/68O5zZa1WMU3A1QEpE2mS6G/oWOpCWUZEFC2e7ePniWq/YzrpKV2gsLnanIu4OqBFGiWRji0q/19yUJ+8pCr/bfcm9SdZGyWb6YEEqoKYkZyKRJwkQgMo7DYVYnMOplKJE71ieGsSqsIQLEPIPce6CFZRl/VacmNTL4ViM4qA/29Ur56//vDrmB7cLleMANh8iCaDRsmKoVBiM8qVVUFV+SvPY61ok7A2EZNh12VHQzR0XUFKAt7kfWzuKKkQYgmL7/c0Jy/kWFTl7HjOhFxNKoJ4kMGgKqTWIFbRcoyOU7QQxAveW1KlgBCbhJ0E/OAYVEhJOFs2iM/5hwDTiNkZzDDmpMmU4dYDh+/GlyR/FIptfpUExgumM7hl7plZPo+6/nIphK5A64R4i6gQN47UG2xnmDzJkRkWiu2FZJUwJvlla7KX2IlQfHzyvGGJRLGyTI8joTbEEqpzJT19NmiYIQ8VxgiuzZ6KN5kmmoDuDNILYNj7yBIm0N9Q5h9BfQqY7NAwN/QLBTMONZp7LyGh2+0LUKIUF0J1EXGt0i8ckmD2KGKHxO7Isf+wozssGaaG+iwyzA2xFPr7CVtEdKgoNpmETcyOdTeVag377y7ZvLnAbSNPH1QYL1dNHBmFgio6+OeTv8DS3onYPlI/aTE+e9feMJRnA7Njjztrqc48i/c2mKBIhGFPEKv4NvOFa6FaKsVGKTbws/8UMEFJ04r6pGf15ZJhP3Og24EdnqUEms98zrBKHF//pfcQn3CfnlCulemPIpJg+WBCrAxqLWqE/qimPbK0h4btlxRUEKOERaQ7VPpFrjLrlTCxJCes3piyfDBheyfPAfUyC8zkgDTKpXE9B6UVw5cnT1meHqJti1rBbSOLlefi9Zrlzzmq2/OsMibQL4T+hqK3O4wotlCS8fgyEWtHrA2hyXCFyagsHEwfweRxZvrNa5ZYjEISUGMQa69X5cPdIfrZMeoDdlDamwV7P9hy8L0Nxd0Ju1uWUGedFWsl3Ryom9wHYzSog37nUKf0h4lUCnacFfY/gGKXqC4iarICCQ3PMb8ZAqltX+SxxMPVDWb+MzRGylXk7KsFrmuoT3r2v3fO9Ic1fl6y/pLj7OeVajpgbcKIogp+cJCE5thSLxXXQr0MlOscklhZhrnl/Cv22TVDRhLXKbLZIWV5Hcp7+6ecFA6NkWrZ42cFp19z1KeW5rTGDjn8F19V3Gs7jEmklNWGHxzBW+zc09+wGD9O343gZxW+EcJEaG/laIvmIedSdperiG538DIoZ27gdLqHSQlZdZgwo18ow76yvWNyT5skzMFAWQa8z/1PVUgqiCgpCuXdDbvbjs22QHqT5bRRtIpXIbKtQSKICJNzpT7eQUzXk/9qfNIERQE+jOO+EA34vYQWCmUCUXbbCp5UpEWgmvXE3mKKhIgyHE/BKuXNFtXcZy8ZIbYOfFbHxmbtVp8l7PEpVCU6DNehdBLBWsQ5KAvcVjH7gmyE+omlP1Js60BK+psRc7ujcpGUhKIOqAoKlK9tCd7iO4fuHJIka7okV6JAIsjIZbMfbNCYwAhmb3YdykIiIgKTBlWlWiudF0ID7e1EqpWwN7oehLgtSIVFU+YxRDFFIgZDigKbgmJlck8sxnsMK5m3vOB2wq3/7DHrDg7mkFJG6sU7izebx/zP/V+k/L/PIKY8O3ZZl+VRTLPHo9e2idRNpm5rEs5GmiKw6ipSMuxU8OKQUeGSQLxgBqF5IlRniu0iEiLh1hy73KK7DvPincVv733Aw98sYfDIZkd5HrC9jnde46gfRz0FxNayPW/YPp2wvmhYrSc8erJgfTpl92iGbjMo6tJVlGwnTD8VypWy95nHnaxRZ7FnO8QHuHlwHcoDOyHuB3TIUaiOV8ybBRemQK2ghRAnCkVCnIJRXBERoxijTOqe0kV2fcngHTEKYXBoZzOMPmu8yUnCTwTbR2S9hbJAd13WP/ZVV51WkaaGEOD0nOn5murkJn5RMcwtvrGoseN9a/70B8KwUJZHNdV+h3OJ4G3mOG8gCuINEgTXCsU2Ui8TxZMNmhJstuADKUbY7l5u2F/+6t/xnV/7PQ7+/RM0BDRE7PufYKuKpizBGtRZJETU5dkrLiaEWcmwcJzf22NzL2DmuVVJHYkhE6nt8i2iJKX++BwZfL4zSwqFgxBImw0/BvKwHGdvERSeAAAAAElFTkSuQmCC\" y=\"-201.758125\"/>\n   </g>\n   <g id=\"matplotlib.axis_49\"/>\n   <g id=\"matplotlib.axis_50\"/>\n   <g id=\"patch_123\">\n    <path d=\"M 287.775862 239.758125 \nL 287.775862 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_124\">\n    <path d=\"M 325.265517 239.758125 \nL 325.265517 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_125\">\n    <path d=\"M 287.775862 239.758125 \nL 325.265517 239.758125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_126\">\n    <path d=\"M 287.775862 202.26847 \nL 325.265517 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_25\">\n    <!-- Happy -->\n    <g transform=\"translate(287.162252 196.26847)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n </g>\n <defs>\n  <clipPath id=\"pc14d716e93\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.7\" y=\"22.318125\"/>\n  </clipPath>\n  <clipPath id=\"p4e40bc32df\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"79.968966\" y=\"22.318125\"/>\n  </clipPath>\n  <clipPath id=\"pce7d98a326\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.237931\" y=\"22.318125\"/>\n  </clipPath>\n  <clipPath id=\"pc8477a6daa\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.506897\" y=\"22.318125\"/>\n  </clipPath>\n  <clipPath id=\"p751140e086\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"287.775862\" y=\"22.318125\"/>\n  </clipPath>\n  <clipPath id=\"p2786e99333\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.7\" y=\"67.305711\"/>\n  </clipPath>\n  <clipPath id=\"pe0d5917bc3\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"79.968966\" y=\"67.305711\"/>\n  </clipPath>\n  <clipPath id=\"pdd9252ba9d\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.237931\" y=\"67.305711\"/>\n  </clipPath>\n  <clipPath id=\"p632bbda5f9\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.506897\" y=\"67.305711\"/>\n  </clipPath>\n  <clipPath id=\"p821e0a01c3\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"287.775862\" y=\"67.305711\"/>\n  </clipPath>\n  <clipPath id=\"p853b5b7cfd\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.7\" y=\"112.293297\"/>\n  </clipPath>\n  <clipPath id=\"p16b5e64dd5\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"79.968966\" y=\"112.293297\"/>\n  </clipPath>\n  <clipPath id=\"p4debbfb30b\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.237931\" y=\"112.293297\"/>\n  </clipPath>\n  <clipPath id=\"pdbf3e0c337\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.506897\" y=\"112.293297\"/>\n  </clipPath>\n  <clipPath id=\"p72ed7a0f1d\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"287.775862\" y=\"112.293297\"/>\n  </clipPath>\n  <clipPath id=\"pb670fa853a\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.7\" y=\"157.280884\"/>\n  </clipPath>\n  <clipPath id=\"p47679eabe2\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"79.968966\" y=\"157.280884\"/>\n  </clipPath>\n  <clipPath id=\"p1fd10641c6\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.237931\" y=\"157.280884\"/>\n  </clipPath>\n  <clipPath id=\"p1b0e36f864\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.506897\" y=\"157.280884\"/>\n  </clipPath>\n  <clipPath id=\"p595f67ff55\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"287.775862\" y=\"157.280884\"/>\n  </clipPath>\n  <clipPath id=\"pf2cd6b6412\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.7\" y=\"202.26847\"/>\n  </clipPath>\n  <clipPath id=\"p3c781b2310\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"79.968966\" y=\"202.26847\"/>\n  </clipPath>\n  <clipPath id=\"p97659a45d5\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.237931\" y=\"202.26847\"/>\n  </clipPath>\n  <clipPath id=\"p73aa4dd148\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.506897\" y=\"202.26847\"/>\n  </clipPath>\n  <clipPath id=\"pb5bcb8dae9\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"287.775862\" y=\"202.26847\"/>\n  </clipPath>\n </defs>\n</svg>\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAU0AAAD7CAYAAADuFMYYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebytWVXfC3/HnPNpVrv7fbo6dU71QEFRUICigigKqBGU2JBEjSb3xkjam8S83ptGE0zy5k00neYmYiI2EDAKMSbmeqNGiYqFFFBANVDdqVN16vS7WXt1TzPnfP8Yz1r7UB2csmBvPtnj81lnt2ev5xnPnKP9jd+UGCMHciAHciAH8vmJ2esLOJADOZAD+VKSA6N5IAdyIAdyFXJgNA/kQA7kQK5CDozmgRzIgRzIVciB0TyQAzmQA7kKOTCaB3IgB3IgVyEHRvNADuRADuQq5KqMpoicEpGve9L3vldEfvf5vawvHTnQydPLgV6eKgc6eap8KerkINI8kAM5kAO5CnlejaaI/JCIPCQiOyJyr4h86xU/+14R+T0R+QkR2RaR+0Xk9Vf8/LdF5B+JyIdFZCAivyIiy83P/quI/KUnvdcnrvz7+1UOdPL0cqCXp8qBTp4q+1Enz3ek+RDwGmAB+HvAL4jIkSt+/mXN76wCPwy8f3YTjXwP8GeAI0AN/Mvm+z8LfNfsl0TkpcAx4L8+z9f/hZADnTy9HOjlqXKgk6fK/tNJjPHzfgGngCGwdcVrDPzuM/z+x4G3NJ9/L/AEIFf8/MPAdzef/zbw/73iZy8CSsACObAJ3NT87J8C//pqrv0L9TrQyYFeDnTyv5ZOnkuk+S0xxsXZC3j77Aci8j0i8nER2RKRLeDFqAeYyZnYXGEjjwJHr/j6sSf9LAFWY4xT4H3Ad4mIAf4E8PPP4dq/UHKgk6eXA708VQ508lT5ktLJ85aei8gJ4J3AXwRWmpv/FCBX/NoxEbny62tRTzGT40/6WQVcar7+WeBPAa8HxjHGDz1f1/6FkgOdPL0c6OWpcqCTp8p+1cnzWdPsABG4CCAi34d6hStlHfjLIpKIyLcDLwR+7Yqff5eIvEhE2sDfB34pxugBmhsKwI+xv7zks8mBTp5eDvTyVDnQyVNlX+rkeTOaMcZ7mzf/EHAeeAnwe0/6tTuBm1BL/w+Ab4sxXr7i5z8PvAs4h9Yc/vKT/v/PNX/3F56v6/5CyoFOnl4O9PJUOdDJU2Xf6uSLWPD9Xp6huHtF0fZ/+xx/43ue7W98qb0OdHKglwOdfOnp5EsG3N6E128Hfmqvr2W/yIFOnl4O9PJUOdDJU+W56uRLwmiKyBvRusZ54D17fDn7Qg508vRyoJenyoFOnip/FJ1IE6IeyIEcyIEcyOchXxKR5oEcyIEcyH6RA6N5IAdyIAdyFeKu5pdXl20cLh0mO1XsftMasJaYWACCFRAIFoWgNrDTCGCa7xuQJGBNAIEYIUbRlxeIAgEkgniwBUiImGnN/D+IgPdM6gFlnAp7JKvLNp447rjv3DrJpYl+UwRMc/PN59HMvtf8PEaIEK3oy0BIIGQRsbslkxgFPBAEiUCAZByRAFJUqlgj+tF7CIEJI8qwtzo5eTzhU6NlsscD1F7vd37/ZldHDS45ij7v2bONRohOCFYIqeoGF3bfJEjzAgngJhHjQYp693dmGvAeQmQQLl+KMa59MXTwdDLTy0zO+YydhztQVc13BIwhOkO0huiEKBANRNu8El0f1gaMxPne8cEQG30QBQlgStUNgBuU+kkMu+8FTPwOZZjs+Vo5VXapTiVQNrqQ2dpo9oIYMKaxKc3+AV0n1hAt+Ex0nSRPXScSQGq1JaYKSDHTB2At1LWaljyjdJeZbj3z/rkqo3nyeMLm//l2bvz+hxDn1GCurzC6YZHpkmWyKlRd8HmkWvKQe2zmsTaQZxXtrMRIRIB+NsWZwE6ZUXrLuEgZTVKqUYpMLWYqSCWYGrqPQTqIdJ8ocJtqmMzOBCZTfv/C+67mFp53OXk84X3/ZYlv+4f/B+s/f7fqpZUTjq5RL2YUiwmTFUNwUCwJdTsSEwiJGs2QRmIr4DoVve4EkUjt1QGVlaOcOsLEIROLLQRTwuJngAitjZrOp87h1xaQaY25vEUYjvjQzq/suU4+/OvHeek/fjtH3/lxMAFptWB1iXq9T92yTNYSfKqLvFhSpyEBTKUGsupC1QuErifpF7jGYIpEimmKn1hk5LBT1Un/EdVJ+5Kn+9HHiZ0WMU+QSQlbO4Stbf57+Z5H94NeZvKD517GPa9fJDJBej3CNesMr+8yPGqZrEeqfiS2PaZVk7dKnA20s5JuqhveEAkIRe2oguHC5T5h7CAIZmzINgzdxyP5lqd73wbEiBQlMU2QSQGJ4/cffdceaUNlppOX/Pjbueb/vhusOk3T7xFWFgGYHutSdS1F31C31ImKB59B3YGqH/DtQL46IUlqvDfUtcXXFj902KFFKsFNhO7pSDKOLP3BGQgRQiAu9pDhmLCxhVle5BPtf/+s13xVRjMSiYA0UYLkOXU3Y7pkGR8Wqm6kbse5tU/bFc55jIkYiRSVwwejESZq5MvaMRjlxAh14TT6SgIhGEyEOoOd64TssqF12ZJe3IJWTrTmCg+9t/K3Hv9mVj82VI+VZdDvUqy32LohpeqheulFQrdCkoBxEZfUZGlNOyspKkcdDFlSE6NgTWRaOerKEkqLVE0VJWq0sXNCWL7Pk2xXusBGBYRIrD3iHJ89VbZ3EhJABElTpNOmWu+zdVOLYlGoOlD1Ir4ToFdjUg9RyHI1Dh3rm0A0klpPBCZlQlE5DZZqg/jdKGx8WFj7WEW6XUKWqoGoAwyGUJWYhV4zV7J/ZKPsECcTdShrS2zc1md0VKh6kXohEFsecQFjNLL0wTAqUmpvcdYTo1BUjspbDdBNVKMDxCxSLgZ2nGE6cFStVRbu38EkjiiCjKfE4Xge6e+12BKNHq3FdNrUJ9bZvrHNdNlQLkDVidRLNZJ7TKJRdqtVspiV87+RmEDLVWwXOeMyYVxb8EJwYD0EF5muCNFCWOg0WYpmQnE4AiBsbBHaz66TqzKaAEYitHKoa2KvTbWY6cIV9J8IpoqEqaUMGVWqeXbWrsjTilZa4Uwgc5pGhSisLgwZTHKIQi0QR3pZIdMFUCcR8YaNW1IODdaxj5xTLwHMw/c9lLseP84NDzwGziHOUi91qNsW34KQQkzUM1KbpvIQqHGIQO0NMQoikVGRYhvnEoJgnUc6AZ9awijBW42+Qxq5+DJD71SLXvcQ7fvPQ1UTY9BUdL+IAbFWyzd5St1x1C2oW+BbEQxEp5lHDLpQ61qj7KJ0BG/I8opRSOfRQ6gM0RtIAwEgQJwafCvyxGsd7ScSFk5ldD95DiYFMUR1KJPpnqnhmWSzbCFpgXTaFOtdyn6TXgqYqeATIUaDj1BVjlZWIhLJXN0EL5E0L6iCYVomVJUl2CZlTwLeqoGIYsg3BDMukKIkLPUgTRDv98P2wcdA1MeO5Dmx36VcSJmsGqoOGoilul6kCcCQiA+G4TSjqixZWuOsZ1IlDCcZZeGItYEsaOnLG6IIhYuYWth68SILD4wwl3dgMlVH0jgQ+RxKuSqj6YnUGzmEiCQJTArcTgUx0XqURDB6gzEN6vVMREykqizGBHwUjSJNILG6wXeGLXxtCKUFo/8nzko/EaTW9K1cgPHRFv1T+rUyPO29+NoS6xqxplmMAYlRrzGgEeK8vqb1uuChLBxZrtE4gDMBZwNZUrOx3aEuHHHa3GPzHKPd1c3omMFUjvZ9kVhWIIb9AiHzMSC1TpyZLNVNXkfikyIbMzUEgZiB2Ehd6f2maU2wAWcCSdpEVbVlOk2oJglMLaZQJxQtumasUCxBddGoE6nVMce61ixgH8kwTLnvt27iuuwBYjsnpFqXoynpzz4HdSjea80foPSWZBZ9V4nqZZI2TYAIFsRFotcegc8iO9cKbrLK0p1PYC9tQ4zEonymy/uiSkBLVZImiDWEVopvNdmV2a13S2EIwWkEbiJlFLK8Ikk8PhhaaYU1gTSxeC9UhYXKYMamqQnr3pkcguAMvUcMdjLVOnJRzgMOI8+j0dz2KTe/a4ykCXgNaU29gMw3tH4UL/PIIRotxNq8mj90kch0mlBIgmmMaprXFEHmUQSzlLTpcUQD0UHRN8TlBXjivBaH2fv0wpigaXGWqk7SBPEdjS6bTWBqgbEhtAPUBow++BCE4aBFLI0WrV0EL2QLU7JOybTO5o2xKKgRNhC83vd0WSivXSX51CktmViz23DZQxmEKaYC02kTqwqZNnU4r8Ytull2gt5TELC60avgKIcpAGMBk6jRlMspcblEbCSaSMgD4meNpMZZO9i51tC5/tCuTrJM6+/7SHZCzfU//ahmBzESEplvbAHVSXNvGPW6PupiqoOhaiJyYwJWIklaU5UOMU0jUUNRohMQQ0gio6OG/toC5vR5/bvWsB9CzUBoAgytZ0pZY6orrqtxItFc0SANgscwHmZqV6IGIQDVJMHmNZIEYoTQQo1yaBprhVC3YfMFbdbPZcTxREt9SaL7+PmMNCsscv8pogjReyRxyKSa3fk8moo2IoUBF4k2YnKPCDjnyZOaonK08gojkToYiuZmxUZiiNg04EE3kt81AKaEqiNMj/bIz18iTgv2g4jRznCMkTgtME0HUELzsF1T5zVxbvSk2RxpWtPKKqRJN0CX8XSSNn+XpqOM/t+Zk5BISCLRCZNDKenDLcJgB8lS9oMj2QqBZBSJ0+n8OZnSK7oiztAUUbvBQWbNUIyLtNoFRiKhKVsI6v2LdkldWY00QY3sFe8Zm2gzCoyOZiw90iYOdiDL1JnsI6mg6RAbGAwJyarW2pzW3mZdb8m8puFZjcC8lmlN3K1QAcZEXOKxLmiaXhlNT0XLXKbSOvL2jR2WHzf6TKzZFzXN7zv1Bo7+zjay0CfuNGt4lqE1cdE8U4tCrAy2VdNpN+tKIonz+KDR+NgGLfMERfKQqHGKTeUqZJE4FaqeUB1ZxN03QHq9z/t6r66mGdHucJoQt7Y1rM0dPtHwOTp96BiILbX0Ngn4sYMWlM0GCFHw3hCCzJEF1gbyVkmdWKwN1NbgK0soLFIYTKV1wboN40MJrTzfN3WqGARptQjbA2JRgDGERJ9ySNTgmRp8NyAtTxw77OM51aJnWBvSvMKYSFW6eTQeI+Ah7ZRYG6hKrXOG0kJpkFowlZYpxmuG/kIXLm/oRtgHKfqjdX/+eax1w9edZrnN0s8IdmKwUyBa6k7AdwPDqSXplCSJp6ocvraIQKgF4yIm9Zhco/TohVhYqAWpZ9kNTFYMC8s92NhUF9JufZE18OySgMJcgjbA6swQrF57SCMxD5AEdRo2UpaWVh6wRmuWRW2JUTASsSaQJzW1MU35S/XgKwO1YAqZO/DxYcPCNWvIvQ/rhYS9XysfPXMN133mimCsKDWwiOpAoo2anpdGUTXRUq0Io8ap5q2ScmqpKqvGMQqtVsmUFDHaVA6VIU4tUhto4FjBweRQTu/TAlUJ1uJvOIYbhWe93qsymlYCHFmDx88RqxpJU6qFjJDSeIVITIKm17VRL+EiWb+gnZfzzrmTSBGTeQPEGJqPkRiF6TglVk26WmnzQxo8HlHxWKTJZ+G19lKsC8SqIk618RDbOWVXI5vQOJKYBWg2uelUuNUxWeMRRbQ7WpsAwWBsUByeiSTWMxi0CEXjOaOWP9xIoTbiITihWungThliVX+Oq/3iyLl6AVtq5B29R9KmTnVFDdK3AhiolwMm8+TtEhGNso2JaiiDmUemxkWyXJ1IUSTUk3T+fhJEIVmFYDxgoDjcJXtQfx73CdJiJlaE2G0TTm9i2m18qiWLkGlNEi/gNFKa1bxnqJPQNIZm36+8paiEskgIXh2rOI2uzFRRBjOHEhwMT7TpP9IEHfsg0gyhgRhtbhEmE8zaCmW3qfU16IiQN/feDyStim5eEYJQ1xZnAjVGeyUSFbZXW1rtgqJI8E1tEwGpRGFqtTqo6aKh3+viz5zDtHKK1Rw3evZm6lUZza4pePSbV7n2XzwOwSNpQrHoCG6GnRJNJ4Noel4LvjTEDkxNxHtDmiqOKkahmCRqcKJQjFLi1JJsWvKh3pQEsFOYrml6QVPnVq9piHW9LxofV16CWIvvpNR58/WsQRbBjgyhNIQsUNmIySu8F5yLlKVTj1haJIuUdYKfWuxGQvcJUZD/NBItTNYblEKtL/HgWxYnMm9+7LUkop3ZeTOm26bo2SYF1fuQIMhUCC3NxgqbkOcV1nlCEIppgjGBukwQGxDTYDS3E9qPOdKK+cCEb0WkFmypWE8i+NQgzhHGY4X17CMxQL3eRx56FGJT06PBqg6NrnFj8R1L2ReMC4yn6kyMiZRTh0+0qeq3UtINS/uyaPOtSWnLRfBZVCMxw4x7qHOFC8bhCMKzR1VfDLl+/TJ+fQnOXwAgdNuU3SuA/Q2m2Q4toS1UaLaaprq2ytqqHsYOWlrOKCYJ08st2qcdab2L/40GfN70rOvme2ky7wPk58fUn6PBfFVGcyfkHH04IK0cmUUPqU6q2ALsVHAjR7oDbhyxhUIoJquO6VpGWKrwtQWJxKC1CR+EOLZ0HnX0HgvkGzVuVBMSXUUSI1XHsXONJTRgaFNFMEbxf/6qUVPPqxTRU2y0CNesITtDEMFnbt4Us4XghpZsC5JRpHXZU/QN40NtRtcG4nJJ8Gp1Q621vRAM8ljO2v3QvlCT7NSYyhMy/aPxfmFwbUbVUX1IjForbHQSkmyPtLErv3zxDowHe/wY/vGzxCzFN6BkWwpmS8gvgRtFXGGoM8vweMroWIXkXksaLhBqS6wFk0b8Rsbipwz5ZiQdVCQ7FTExhMQQjbB5c6IGI+orOpqpI4NZWYLBHivlCgmAu7hDsBZEjWS2qYMLtgq4kScaoW4bJisZm7cF6qVSm45G9081Tmk9krL4QKBzZoqd1gRnqBZSTBmo25a6JdQtQ7Eg+Gw3MwnLPbh0eR+0geCHTvw3/uZLv5/lT2lOHnOnPQDAlEJ+zpIMIN+MuAk6MLKWMjnqMUvlHHEhSdA9NEpYvtvSOe9JBgV2WlO3HRLAZ4ada532VtOmnJM3je265uE/3qf3nmfvlVyVxTk/6nPEQnnbSdKPPaS1TatQknQE7XORfNMjdcCNa0wViAJ1L2V0OGHr5oziaIXJa0KtaRcjR/dRy8LDnnTgccMKUwUwDp9oip5tlmSbsHMiZ7poiFbAGkynTZDkc173F1Km0bH8Ucv4eIdOcS1y7qLW7qKO9rUuRjrnKsRH3FA7yNmGI9tOyS9btl6YUa0q6D0GgcoQxo7eOcFNAz4z2ELrlD7REbt0q2DhVGR0OGOy0jiXELXZsbZCuLS3KVcg8ujOEj4Vptetkl7aIOa61EwV6Z6G7pmSkBiyzQIpPKHl6J5NGR12bLzY4pdqomg9WJKAHyZ0Hrcko4ibBmwZCKlFQsQWHgKsf6RkfDRnvGbmhhNrseurbH75UXhkT9XyWZIgXP6ydZYefRzSBFtG1u4aAyA+YEcloZ3ic4fxCeF+x+DGDL9SIAbixOnUzyYQoeo7iBFTa+Q4XU2wRcBN1MEQE6bLTekCHTcNOoO5RxpQCUTe8cgfo/9ogVnoEccTfOZ0JHYSaT0QaV+okTqSbE7BGfJeSr7pSAeW7ZsyWNAwOjaN49ZZR7oTdtEricF4DSySnYrl+2vKXsLOcatlv8qDc5hDa3SeEKbPZ6QppVDnwvbJjLUzq0RnNdSP0L7oyTYKXcg+4luOqieYOlJ1LdEIrQsQEke1hi7oWnADQ7ITKTtmjn5IBiVSR1ztGR/OCC7B+KhRbYhaI0wd/uQh/IN7X5OpusIIS9VaZHl7SNm3INC6GGhdKIlWMIVnuqYpopt6qq6OVrbOCdEk1Gul1l286iQ4KLtC5iMhMbidEvGRYjVjeG1bGwYObKX6CIlBlhbZun0NfnOPFQLkrmazDYMTKWv3tCgXMqLVNGnxM2ocMKLrZE1rGT7VlKx91jCyjrDAHHpjJlZhJX1BgplDUiRA2dPGWzoIJMOAWTAKabKCJAnTFxyhau39OrlSlmybm37gPjZ+NYeVRVwRMHXAtx1FLwNpkQ4qpAqYKpJvBMKjhkHb4boVpAGzbYlG02031Y6qFB5beNxEGJzQiKp1OVD2tXQWmM3xW83Uyr1FFZQx8si9R1g/KnTkJNknTlH1NGNoXwy0zk0JqRqx8bUdso0KW3h8mmCqSOucYWKc9gwiuG2nKJu2YGqDG3lMoYFcuZgxPJ6rQQ6a8s9hkp0241vWSXYi2+HZzeLVNYI6tdZXaq0DxMw2tSlNEetuQtWxhERY+ORlHbAvK5LFDnaaYWqHqYTNjiUmAYna0LBFJB0Fsq2a6UpCullgL21TH1qge2rIpdv7VF2jHbUaIFL3FRD8Oe7viyMCdUdxdjiLT7Vekow0Uqx6DkjofWZLySu8xxR9ipWMaWUxlbDVtWDAFIZ0S2hdiqTDQH65os4tpvRQV3Qu7TC+aYXt6xOIugFMDT4XQqfF8Kjdc50IcKyzxYXuNVrrNoaqaxEP2SAQU0PVdpQLlsVPbJCdKojWUB9aQGKGREMUwzAzSNRGYHbZkOxAth3INz3pVokdleAjrWnB5qsOMTjpSLcVqxmNGmHyjOHRlOnq/jKa41Dy+x+7hZtvGlN3EsqOQQ63qDqGzpkCN5hiBmOYFtjxMqZqY2rH6JglXRlr57xOcJNIMokEJ2xfn9O6nND9+BnM8VVWtyq2b8gZHTHUraZHUIBPBN9JsdZAsreLJaKQvKprGF6Tkn86o+xpuSI4oVxIKfuW9oWS7oPbzX+KdFKDLRLcxBAyy/SIRthuJOSXI+lOJGkaOnZjROi3yC6MCFmPresT/fsJ2CIS8hROHmHnmEMiTEL6DFerclUaW0rGlIvghs03ZtCaCFvX6wNceLgkOz+kWu9ihyXiDDsn23TOTPEtgy2F0ZYlvmBMuZ1BtNgiIh5M4YkmweeO6tplygVHNBntS55Bx81B7qCNj2hkjmfbKzESqXpqzLMNbVDVLaFqi+pkGumcrWmfHjA+0Se7NMVMK3ZOtFh4cISEHDe1DHcscmKEP9fGjZuxywh1y7J9XcLg5AKd84F0q0Z8JNnROVpp0i3f1GeSUZx7z70SQei7groL6RM6dhuNNgunS4ain5NMIouf3KReamOyBFPWTNYzOo+NcSs5bmKZHDbEQwVcyki31ODaMmr98gVtuk+k5E/sUB9aYPGebS6+apHxIU1BTYmOFDpLMgnUrf01EVTEmoV7LCG1VF2Hz7T22D5X4nYKtm5dIL/cQXykXHTklyqC1b5BVVl8YXEeRkeF4TXCwoORsi+UCw4JRyl7Fp9p5G6nUPUghisMZzvB9Xr4uLdGMxW4+ZYnOPPotdo8dZY6b4g5HJQdR//REjcomB7pElKD+EhIDa0LJWZFyzblDTUxCKZUg1h2hWwbNm9J8bcdItuMuCKSDANuHJmuCW6EBh65I+SW8VFtmIXPgXO+Ko2lpiY47WQPb16g89hYR+Nm3fMhjI4kbF+3THQgIdeUy4DPWnO4kHiwzlMmgZBFhtcoPElubmNLmKy0CE6ZbpCmWy7oZqiAEkaHE4JlPo20V5LhGb9gSPaRLraK1Ot9xYE1mFJTQ7lgGb9imaonhFsS7FRTg53rdFPUmUbvWV4xTCJ1Z5aGWmyhKVjVh2LREp3FVOo8xEPMIBlCnQnTY101nvuguj/xyTz92X75IWyhwPMqUxRANohs3rZE1RGiaeGmWu+cHGohXmuZ2YaB60omLiU6mKwabBFpXY5UHWF41LF1w3Lzju05oiC4Zo7ACeXxJSYrZs/XyZXiG3q2ug1V1xFSwaeaZk/WU7ZuzCBCcV1CSJQ5zFynz923Agawm47gFPsbXeTiK8GODbaEi13VfdWbRd36frZQbC+gY5vdFgz2NgI3CNd0tni0c5z8Evj1xTnjVUgEU0YGJ1LKfqZRYWNP9OWwRdMBj9IA+WHnJPgUtm9xpFtqCMdHpGlamzmdoM91vURnGFyb4cZQLEYW7ORZr/mqjKZpdqNvwfZ1Fp921DikujlG1wjFSsTtQLqttU6l+YpMDgni9Xt1K+KCNnmihXIpUncCMYmYqcGUzbhlUJq5kAWSbYsd70Inqo7WrMIeBxBODLcde4J77r+Zoi/4m9tkO5Fxw+03PipsvSCSDtSzzVLpsg+jY2BqTUWqBQ9FAkEZXXxLZ9eVQ1P1Fo1uAp+p0U0HBmn0ER1s3ZRSfv6DDV9QOZJv47PIdLWpLY2jRgi5UK0Ko2MGCYKbgBvrAq5bgs/N/BkXy4EMFHO52ExyAMMTgp2qHk2l/zdYKFYC2abBFugGcrB9XaZ19/2BxALAyu6I8HR5BtkTpjnU7RlCRAOFmECdR0wFbqzRF0GHG6KFmEZip8ZmzXz+TqI/S8J8JFcmFjvVUVxTN3/XCPVyB87uqSoAyKxeVEgjG7d2yQZBUQNrAqtQ9SN2wnzAJaRR9wBgJzIn8gilJSQRnzcYYBc1u50YolXoVbniMVNDsm1gCkQYXpMxPqJrSnuPzye4nYC3agTdSCh7CrCOXXZp4RYqypZp0mcIrYDpVYRhopx2I234JElN4WZ1OeUNtK0asxCpJgkm9YTSYhKvY3bbluiU8MGUenNlf+8jTYOwko0gKC9kGIGpdWyybkfd0B3PtF9jhk4fehKJHQ+VQUrBDXUTWBsorabXvhMg9zpHHERn02eztzYigwSfRmwUTBWb6DMijcfda/nLK3/A+29+KeGePsWiZhdRhLqj918tBKKN+B1LsYjWhRcU2ymlUQORxTnrUUgjdS9ApwaJVFOLGTcQLAOxU2MGGn1FA8lOnEcTIdGP+0mMaHQ5WTO4iTrIqqsGwmd67TGJRKejt+lmc69ZIHrZfcReEKM0aamrCV2DswEfdHBka7tDrAwhBVPpcxAP02XLznFH/fCeqWAuVdAudrGoOgGjjiTTUeGwUBGXo+4BAZN5HREdKoGBLXWMNLqwO27pIqZVY/ue2BA0l5UhyWuqmCkCR5oodN3gxmpP0tu2sL/47OD2q2qddU3kDV/30V2DkMp8HE6aqNEkgdbKhOUXXiY/sYNbKHW6o96dTjAVZM4TvWmIZwUZ6QiUSzwm9bTaJd2lMXm71Okg0fcwdWMwF4RykT2v3wH80KH/Trh1SMg0AvaJPgxTCdFFTKemvTRh8YYNspM7mNUCm3vEC6bUumx2yXDt8uZ8PNKOjTL5WB0bzJemOlm1NCHJ65lLRGotBfiMhgQ6Qr73gOV12+HlRx/XRe/0+kwdtdaYAAsVrfUxi7dext0wJBydIu1aAe+hwXNODMv9kU6EeZBCnYfYiGnXmENT3NExyeExrl0Ts8bgNIMREpp1sqTckvtNpkc8VYd5FBzShk+gUxOXS2Lb6yhlZbDjhqi5VROmbs7MbqdCHDm8NxhRoPfOOGNSpBRVonhoq/tPvBoYN9GSULG09w5WEH74yK8jLxngW7FpbGqPww0bLsw0kLdLuitj8n6BdV5Hl+sm8ww6URinFls203JjOz8gQEwgzWq6ixNCQ+6BNCzuHrLtSNlTW/K1xx8gkWc3KldlNAXh6xbvoe4rpMFrH0cbOTPejqnFmEgnLcmSmjTbHV+bG5KkGXn1Wqg2hSjNV3PzWa4UT4n1eG+gbOBITXoxS12kBrK93wzXJV1ee/IhdQh1UyvxcTedKFQnq+0xvVZBns9yal30EjTCyG09jwaSgVFjIRHnPAudCZ2Wgm59PcNmgpuqHoLVBkh5tOKGzv5g2/3ZE7/F2svPzzuh0KRYAWKpU2GZq8nTijSvMQ07u53qBo8CRzoDZfAvhWQoSGWUqyDxtNsFnVahNHJ+d0pqppO6jcKUlj3//o/tr+O+25LyVXfc10SYVzQ0BSgNceJ03TclLeN1r7V7BZL5+USVnereqWsdUW5nFdYGkqRWCOZ89FYbQlI3UaxjToqx13KN6/K1Jx6YH2tSdgVbquGkmbXv5CWdrKSdK4u/mKgjkaUGa3mr1HJEpAnQBGN0FLmVVyx09FSEGam3qXZLfcWipvjToxVvWvjk57zeqwZpfUtnyN/7mvczORSYnQVkKuZjjxidJR0WStlU1xZfWr2RGmbMJYkNcwajWfQZvaEsksZrKgNSVTpMqQXuZMQ8/JYI5YvGXL9PDMS/ueZ/8i1v/V3KVwyJRovOtmhGS5uFuTltUVSOYqojkmZitM5bC8FFdqps3uCxhcKPQlAChhlDd1EkhKlCt9Lt3VJFtFC/fIdfeN1P0ZKrfqxfELFi+K2XvI/XfdtdDF891hrkbMwv6vTTYJpR1kq24CdOHUUzHhqTiDNhThNpSq3LxQihORJkNmcciuZIg5HMDTPA5FDg733N+3l1vj8YsWZiEN64fA/R6ZENs2xNAfnNgjERapk71uji3BCaSiPN2RhtbFjdy9pS15aqclRVw+heaYQ5529A38+39kemBvAvjn6Ib3vj7zUlFcE3zVGphVgbBqOc7VGL4ThnspNhLidkm7trparcPIJ0U8g2hWoro5gkVLWlqBxl6ZT7oRTcsHGsraaRJPCPXvdLvKn9udfJc8IbfE//Eq98y4/zG6MX8s/+x5vof9o2D08JNqbjlLLUP+0Li72Ukm3KnAEJ9OgCrNKCiVd8FU+k1P1A3WnmlSPqGUSjD1uAnUTGb93mJ1/6Hq53Q966jwzEPzz0Cf7q6oe49xU9/ux//nN0Txl1FLVhuNVi7DKMjdQTR3ouIdtQXr/YIATOD3pEpdpEamhdEMYuo+rVDIPRtGTmaCrBzJ5vhH/wV/49r8wus2L214x1Jgk/cexOHj/0m7z24t+g/5BRQ18aikFGmSZan6qF7JzDTnbPC4oCD26sEpLYlDKgc9oyKTN83zMix1ivpB6+WUcN8ZXx8EP/x7t5SXaWm5MODa/QnouPASsGK4avb5/mX33ZBYYfXMeWUUs1nt3IoElBk8EMgaIcHi6rgRTfUiSLGxnK0jKqcoxTbk3vdS5dDWzDAHVFwOFzwef7IMxsxIrhHesf583f/zEeqtb54f/8HXQfUydYpY6ybho+Q0u2aemejoyOq+OIFurG3kilnXMJkJ93lH3DZMFQpJ5QGz1/rIZkqMxJw68d8S/ueB/Ldsirss9vjTwno+lj4IVpmxemj/Jdb/ln3PH+v0b/QUMyEIiOOgreaOcu3bDkF2W3rlUpYcNkqk0giWiRum4Mpxh8mVBWmpKbscVOdMOYMmIr+Fsv+m+8NgfoApvP5Ra+YLJiWryupTAQW0bSLQEs1YIobtAL+UVLtrnr4aTxkNNJ2hA1QLUYm1l+IRYJdddSpxrdmx1LsiMNYUfE1JGvyDZYsp29vv2nyMxIXOO6IBFTRbJNAQzVAshQo+bWBSG/FJkc2l304mE4zuYMPXUXTAGts4Z6x1AsG3waIQmYkSXdagyy18bKV7fOsroPdTKTddvhH9zyAX5g8KeId3e1RlmobmYkzbahdUu31HGMDuXEqWXxjML8qg6YptwBEGJgWjbg7MogldEBkrI51TUyJ8LwWdyNaveBWDF8eQ5fnl/mb3c8prJkG3qxPtd+SL6hUXaxJIq6SNBmcmMvtOGlr7oTSYaCLxNC6pAsYqaie1IUiXFocaeJLj9/p/qcjKa9Irprm6Rp5kRNF2vluyMoMUOyoyGwLZmnkuJF0ysTtabZpA7RaYSVlIa6SeNNqenJLIKQELkpPQ88O2p/r2SmmxmHYbqtZ5LYsU78aMqui322kGfHs4apnZOu26lCIKqubpxsYudHIphZqaIhp6j32YjglXLlWpk1vdKBGgA3thivwxKmjpQLu4BjnykdWJgkGKsYT2k2g2+BnUDrrKXuRHxmcRPVCaAOaEVI9kkWcqXYJ13T61uee17zM7z9utfykZ9/KWHYsPs09cZZSau1Ecm2I8Fl2ALalwLpwDNec+yc1FpvNBFGTo86FsALdmiwE01jZ07aVpFDfzBk+0UtXtS/sBdq+JxiCiVhybZi01BtAi6r5QxTQucJHZ2crBnKdYMUhvwyZFtqV8q+GtF0W2ufvjkRxI11GCQZKdH11cpzHgeYAXQz2Y0YbanptpnxX9a6wEGNQ/fxQJ0LUYTpIUFGbn6TdQ6TNS3q2lK7ybP6iy1gBp2SAIumZL8aTZidj6P1KVsCRDUG0GDzpHl4kdalQEiEckEIXbBjoXNGo9Tpkqb3IY3kl5Qvcnb6opsoesFUMLieuYHw83Ot95/M6P2ScWw+7jrSYkHvLduKdM8Gyq5hehjd+IXQeVzHSou+YdTRskb7bKR1STeAb0DzIdGoaviSgmSfnCH1uSQRy9858ut8S32bPmPbpM5RHaad6vBCMgn0TgfFWOZC0XdUXdWbnoPTzOOXFlMIMYm6d9A1M2tUmhrOvbrHP/qa/8CP/+T+cyww63NE3DTiM6AC32qafQ39XzRC+0JNvuWpWwluAr3HPVFgumxIRjLPWtKB6qLq6Nd1ruvkucTZzzk9hyu8ptkFnkqi8b8eLNak1XHWtYu0L3gkOqLLaV2ItC4HBT1bQzIGjHrFdNDwR86usPG60UBvH5yB87lEUQVoYXrSdHJRCEwy1O+bChAh3/As3u+YrKfklyPZIFB1tAaV7OjHKFrPtZVG7rNTPyVCfd0ug/2TI5m9lFlqPpNquUYe/uwlF62SK0hQJxIF3EjHRSfrGeVCpHcKWhteR3YNpFv6/3xLSC8EkmGkzhuavGYt3nT8PJnsB2KCz1+M322KQoOiGDI/49unBjfVccDpksxPrxSPprGy2zcIVstjppgNRqgDnxF8TL9iyNt6m/z4Ht/zM4kS0ghlV9EF8z1QaD0SUQM4Xndk2561uyt1Ji1huqzj3ckQbNKcj94SfKKBHTAnNG8nu+ieJ6/XZ5KrPvccdjfm7E3mUJtEH4xuaqFYbIxfEZtOldK6ZdueQx+OjUcVpouKw3QjRf5XXY0kZl1kxfjNRqeEZK/BZc8ic8UfncI9uZICBOZGcBaVm0IffNET6szRuVDTOxOpOpayZ3SM0kfSbR09jRaKFSHdjvMofsY5+GXXnaIl+zfynsnNN57l4seOU3ZlfpAYNMa/wRPXHWF8yJFtB1bvLrUkYaDODZPVBtxcA5WOzI0PGfLLzXEIHoWiBLhj+fS+ciBPlidv0GkUzR5mehFIdhougcbQKWOY4MsGwjW754ase1bTiwb8AvOMby4zRMGq8OGv/LfA/moaXqmT0Aq4qTRjtnpPbqqOFXa7/sWCEJwlG+jNFX2dW5/pxY2jRuotQZosNjg1nsNrhD9x+JOf1Zz7fOSqcZpXyuxN3PGRhtBmt+ZA1BqTneqGiA6qtmKwigWLz2fEFmZ+oFRsZsndpDGWLU275u8f2POxySdLfFKAP9PJX7n9t9RD0tTnmgJ1thVxo7g7zmY1Ch2tO4oFpdqrr5hekagbJxnF5owkPQ8bmDeNXrX4yL40EE++pn98/S8TEtFpj4ZbwJSR9oVA+1JoiKwjVVsdadm3+ruJMFlRRqsoamSTcSTbjMpVsCaqa8PcMa2ngz25589XnqybtkTG6wZTqzO1Uw02bKGlmmQUG4ifNoBsGeeY5WRHJ6Cy7Ui2oU7D1DSNt8+G6aG9Whb2GcoCPlsn3/Zlf4hvxrMRxT7HpifQP13TvhC0Nh50TxR9M7clSnQdyTcDnXN+HqkHdwWcqYLpeuCtvU9d9d75I+80HwPvesW7qFvSsCEz9wx2qg9tdgSBqZr6U6OM4PTzkMg8XbWFLpbZWeE6oK83GhIo3rJF1+w9M/lMrnQkPoZ56eLPLT44x1yCRoWhaXQtPjCh+0StTaEG+B0dc4My2/hETUW6Z2uSUWxGzBQ4X7ca7J2HXCq+FOT2LNP0qCFWKPuRqqcGMt2qWf3IBp3zHlvq98ueoeoIRU8jTET10Xuspne61GJ/M8lBVIcqMxC42R9nej+bzNaKj4Flk+Jed1lLOnGWjgv5pqd1saZ9qSbfUOcyO86j+0Rg8eGa7hOehUdKXVdna9y4IS0pm7qdvQJHTdNxbuTJTn+/yI8e+nCTYsemWRopFyKTdV0X6Y6n/8ikaQRp2Wt4jTBZF5Y/XbL+oU26ZwqKvmV0TKg7u9mM9l4UB3yt6171tT3nmubMOlsxvDILc4hIbCLGugOdM9A5W+JGNeViqsfNrlhMHSl62uRobQTsJCjzuI8N44hThiOahx3jnIX5f7/p9z/nmNNeyZUey2EZ3OxZu9NQJ+oMqp6m2j5rsfRAycKpKVV39xFEoym5ORuIziAhYqrA1vUZo+NNOtZ0l2fkw8NvGPJtvc8A+xdac6X88N/4Wd7xD/+0RggtLcPotFDK8iSnc99Ftq87gs9hcgg6jwuTQ3rvJ/7zNtMjbdqnB1x81TI71wEorMtNtGGQjCLV2zb4rt4p9nOzEPisPdSWlNdf8xk+GL98nnlJiExWLOko4Iae1sgjPtKpA8VqxvZJR0j0NM94XGf4yyUlLZ6n7DAnf6Yp60yP7M5WPzl73C+SScKhbznN5s8f11r+RPAtZQAbr1uKvsFWCesfHSq7feEpl1KN1ENk4/YlPW1yXe/PTkVr5kahSsWy8EOv/9XndG1XFWl+8r6C3/jg+LOMw7veN+Br3vIEdZt55GMnirUbHRO2b0gZHddUoHVuQudsRbYdWL5vROtSTfehAZ37FfZQ9R2DE47piqYgbqKRxSwN2Xph5DXtzzynG/1CyUwnV8pMJze98Mzc4CcDjbDqrtaldq5JmayltB/eon3nw6SbJa2zY1qnd2h96nFaD29QdS3b12VMDgk+jc2ssW4IN4mUPeFrTj6wL7GI17/y1NPq5Uffdt+8VOEmitkNGVQ9YfvGNsWJZdY+Ombt4yX5RWGyJmQbcPgPSrBCMqi4/PJlRsekyWaazWAh3YlM1g1fe+wB2mb/GcxnWiuvffPjANyQX2C6rDAbn0fGR2HnWsPmzY5zX55x/pU5T3xVi9Nv6nDhDsfkUGS6HhleGxnc6JkeqQltT3BKqOOmmq2lg9n0kK7Ba27aPzCjZ9PJv7nxvdhSI83WpTintaubSaaqA2e+usuZ1+WcflOHc1+WcP6OlIsvy+ZUe1VXI+lk2GSxDeP/6Gjkz/Yff07X/Ly1FxW0DkgDIWoLPtewWQJULcfoSJfWhte6VTdBIoyv7TE4vgToop8uaxpup2oYgmuwjAbWb7nIremXTkf0Txz7MD+RH59j7dyowY4l+ip6hgtfuUoyWtFCd6FdYJ8sUbeV0T4ku+nVjKwkGiUF2bk+8E+PfJD9HlFdKU6Ei6+sWP39hGxDYVMhjXNOyZ3jqeqqiLQuBtxEo8zR4YThMYW31Z3dqSHFCAPSgOGvDfzDQx/BR9mXdd6ZPF2n9rv6D/FPXjFh/b9m2KlRKjzT9G9kNvIX58MgwSpdXshDcxJsRKZWDWYDcQtpM3Me1Pj4HF6++tjn3Sn+YspT0BYIwQq2ihivB/EVy5qxuYmQ7ijawmeKPJgFzckwNgB4/Z4tIN+IVO0GoRDgW1//B8/5/v9I6fmVmEDx8MS9v8nGPXdST4ck3UVWv/Yb6L7oNqquMPjInVy+705aa8fYeOguXLfP4de/lYXDN5MOIp/5tZ+kdfQkg//+AOXlC7SvvZHrvuJtuLzNA7/50/SP3cL17gYMgo+BO17/OD/8N5af001/oeTJD/2V+aOc+/hvcvn+O6knQ9LOIstv/Aa6L7yNui0M7rqTSw/cSXr0GNv33oXt9Tj0jX+c/trNJIPIA7/6r8mvOcHO2QcoL12gd+RGrv3qt+FabR769Z/GDG4m+zY3f+/9qJOZzNaKQXj1Cx/i937iDBce1LVilxZZfd03cGj5JeDh/ON/yOX7/4Ds0DEGn7oL1+5z+A1vZXH9ZtLtyEPv/0nSkycYP/oA1XnVy8mvehshaXPu372Tf72zzdv/7MIcpXn7157ed3p58v4B+MmfnFD+wg/zh+csWWuRla/TtRIy2P7Yh9n+qOpk527dP2tv/lbSF9+MKQxnf+Jfk11/gul9D1Kfu0D3yI0c+aa3YaXDqV95J4uHb2Htxa8hOOGm1vl9vVaulLOf/E0uPXAnVTEkbS+w+rpvpP3y26h6sHnvh9n45J10F49y6dRHSfIex1/9VuS6mykWhUfe95NkJ05QfOYBissX6B67kROveRvGtfm9v/Zf+YnXt/mLf3Zx/l6f7zp5Tqb2ylrMTCZfOSTrr3LzH/sLvPS7f5RjL/l6nviV91APB1QdrVuNLp2m1Vrh9rf9fY69+A08/oF3wdZo3hTaePAjHPqWt3Hd/+eHsd5w5nc/AMDyTa9g46GPzt/zU/dWnDlX801ft7/S0id7rlw82cIqN3/zX+Dl3/kODr/i6zn3/l2dRAujC6dppyu85Lv/PkfueBNPvPddyIVRc7Y7bN2vOrnpL/0I1hse/9AHEK86GX3ko/P33K86mcnsOgUlKE57q7zw69/OHd/2Dla/8g2c+8B7GMcdJXMZRSZnTpN3V3nBD7yDQ1/+Rh5//7uQS4rSCBYGn/gIR9/0Nl7+lr8LxvDYH3yAsi98+/cmvPf9o3nd++57in2rlyevl+tPJtz5K9fwG/ddw+GXfz1nf+U9+MFgzk0wffw0yeoKN/7gOzj0qjdy9j/8LGE4VravCKMP3cXhN38nL/yzP4KI4dxvfQBTNfvnwbuo2xqhn7l/uO908nSRb0Ik761w8zf9BV7x1ndw9LY3cOa/vod6e0DdVpTF6NJp5MgaL/mev8+Rl7+Rh377Z5mkY6oeIDD86Ee47su+k1u/+4cxGB7//Q8QBb7z21Le/cs78/e6mnVy1Ubzrd93luVbHp6//uIPKcvQd7/wwyzcfDt2cQETDIs3voy8v8r0sdPaGc7Atbqs3P5arDesH72dVm+N4cP3zrvtC7e+gnz1CFmRc+SON7F56m5CDHRvejHF9kXqJy4B8Au/tMN3vLlLmu6PIvbT6SQSSQSWTr4U11sgJpb1w7eT9VYpHj1NyBQq4Vpdjtz0GvKR4ejCbbS6a4wfuFdHKwX6t72C9sIRWqOUY7e/ke0H7ybGQPfmW4mXz/PAw9ol3m86gafXiyC0bMXSDS8l6S4SE8vaNS8jWVllMHyUqqtwpCTvcvzYV9G5JBxeeSl5f42ts/fOgc79l76CTvcItHOO3d6sFQJ/680X+MzD1b7VyzOtFR8D3/7NXY4edryuLZhvfJmulcdO65EOLmI7XfqvfS31oiH/yttJ1taY3HvvPC3t3X4H7f5R8mnKkVe9icFn7sYOPUtHb2U6vMR0+yLi4X98YJNvb3SyH7rnb/2+s6y94NRTbArA4vW343oL+JZl7ZrbyXurTB8/jc/BtyO22yV/y1ex/SKDfePLSA6tsXnhXupOnNuUTu8weZly5OVvYuuRu6EOfOMbsue8Tq46PX//zxzh617bnn/9rvcN+Hfv3ua13fv56ft7XPz471ANNhQ2UZeEnaE2hvKIW1igWjL4ZtbcLS0ziQNay01Rf3lxPlvdsovE4CnrMa7fo3fr7cjv3Ul4feS9/2mHX3zn4au99C+YPJ1O/v27B1QRNu//COfu/x3KwYayy9QlcTBU7FgObmGByeGG5syDXV5mZAZkS81I6dIibqojh7KwrDqpRiSdHsdffwPv/uVz/N2/vrzvdAK7eplFEe9634Cffvc29+8c4uLDH+HiJ3+HcmcDUL3U5YjJujbKXG+BcsHMmxmztZL19euku0i+oTVvt7hEDB42h/ydi2/hO978Xt79yzv7Ui/PtFasGH7uFwf885/a4tRjNWX8m0yGET9sTjEUcP0FQg6hW+MLg11bopxs063UkaSdpfn8fdJVnfjRCNb69G++nc1P38XhO97A3b92lh//mcXmz+69M3kmnexEx+WHPsK5e3WdCOCrkuXLQyWyMWCX+oS2DjeEPGJXlqh2BtR9nUtvywK2jBQLBtvR/VMXI1wmfMebu09ZJ5/PGPJVG81wxR+dvYEgnHpMePy3fpGTf/wH6K6dJCmE+97/Y3NS3mChGm4zXQzERIv/02KT7MiLKBbVK5TjzfnBbfX2JmIstttRktHX3cHp9//f/ObXHKLdMrz6FfsHnPt0OolE3vGJV/Ho7/8iJ7/tB2gfOYmrhM/8hx8jGcXds45mOkmV5b0oN0iPvUhnjwWq4SamUGxZOddJF1PA6AVfw8/9h3/LV76qte90MpOnTr5EPv5Lqzz2P9/J9W/+83TXT5JMDZ/6tR9DKj0byedQTrbZvjHgCv2/xX/fJF9/EVVPmXnCpS3cQmTSEYrNLcRYMunw4Y/fxI98S86P/vXNfamX8Ayb8tHHKr7/By/w6+87yle+ssWvTnt89ysuYCex4c4U6sE2kajkHHmg3tykdfsLqfteOVkvbZEc1eYI53WtxNUuWFh88Ss582vvpnvoOrzJ95VOrpQ5dpXIN733uzj7e/+E69/y52kfvg4bhU+/78dwk0j7bGQwFvzmADMWYoY2CTc3ad96a0MYBPVgi6ptFA98SdeJyzp87W/8VX7h2/8l3/eXL37WOvl8jKbE+PmH5yLigQeBnSu+vQKsAo8CLwLuAYrm+yeb71+64uvHgIvAYvP1JwAP3AJkwGeAsvlZBB654r1ejDYTN9k9EupEjHHt876J51kOdPJUEZGLQB84xYFe5nKwVp4qX5I6iTF+3i90E3zdk773vcDvNp//A2CjuaEfB34H+N+u+L3fA34C2G5u5A1X/J3fBv4R8GFgAPwqsPqk9/rbzU1ffzXX/YV8HejkQC8HOvlfSydfTOXMFfEMP//tmTKe5Xe+59n+xpfa60AnB3o50MmXnk72F7r1WURE2sDbgf11QtYeyoFOnl4O9PJUOdDJU+W56uRLwmiKyBvRmsV54D17fDn7Qg508vRyoJenyoFOnip/FJ1cVSPoQA7kQA7kf3X5kog0D+RADuRA9oscGM0DOZADOZCrkKsCt68u29g/lnPhzDJ2e6LjW8aAMcTUgY9EqwzayhYt8xEvaX4WmpMXo1MSUDG75YEYgSDNi/kRBnr0aMRMKhBpCHojhMAk7FCG6Z6NNawu23jy+C6r62NVm+mnjV6fNZAk+MzOmelnTNTRoKw0NiISMSZi0M9jlOYWhRCFEJoDUgIQZX7QnERlMTelV70A+MCk3qb0k32jkyfqnNFDOVR6nj3OEhNHtHqIWGwIhucM/g6wAWsDRprjDa7UyWyNRCDKFaecKhO8qYPOa/vQnJwVwQcG/tKluIeYxNVlG08cd9x7bp304nh37ySWkNk5kz9c8XG2fwLzc3Joxo5xYf7YQXVDYHf/QHPOUGi4NHd5NGfHnk6KLcqwt2tlZ/Ew+elCn9WV53/NTIMx+n2zG+Oprsz82BSfgmQBYxScHoIhBgEvu0fMNNSKpg66FkV23yToWqlWWqT1E2xt+GfUyVUZzZPHE8Z/7wd5zdsvEfwYabdgocf02kWG16T4DMrejBIuErJATOKu4cw9JvU451npjwhRsBKZVI7aW6raMh2lxJHDTA22FOxYWPpMINusaZ3e1sOjWglmWCDbO/z+hfddzS0873LyeMKHf/34/Ou//MQreeCrLJJncPQQl+9YYXxYKJYjdS8QWx5JAi7xIJEk8TirD7qXFzgTmNaO1HqmtWNSJkzGmfqIwkJpMBNDumVwY1h6oCZaoXffBjF1yGjKhx77+b1SB/BUnfzguZdxz+t6xMQjR9YZvXCN4VHLZE0olwIhjcQsYNo1WV7hnKedVjgTyFxN5S0+Cqn1jMqUrZ0WIRh8YZGxI9ky5BdEz5kfRBYeGCmpdeWRskamJXFrwK9vvPPRPVQLJ48n/N7/c5Q7fvwvceynPjnfP+Mbltm+PqFu6xEgdTviux5yj0ka52EDWVoToiASSawnT2p8MBSVo/KW6TTBTxwysZipHqdtCmHlnkDZFRYfmpKeuoRf7iMhYDZ2+P3H93atLB1LecFNf5Xuxv1E78EY1Utdw+oy1eEeVdtR9i1lX/RMoBTqVqRaDJjlkk5nykJrSohC6S0xCsNJRjFOiGOHlAZTCtmmkF9Sft7Vu7aQSUlsZ5jNHeJgCDEgLuee9Z971mu+6jHKsrTEokSsQZKE0M4olpQ4uG5B1Y2EPBI6Hsk81gWSxGNtIHU1Ze2IEcaFckCGKFS1pSwdfuqgMGCjRmVGD3wfHjVMVlJM3Sd/5DKm9hAj0Qc+y9XuAzESkTSFLKNeas+dSBT0XOoIsTLUQbCpp66hKh3WBSbWU3mLMwFnAtYE8qQm5EJdW2ogmEgQKFwk7Bgu3+o49j9GyHCCWANFuRvR7ROpoiV6j+QZfrnL4LhjugpVP+DbAVxEUo8xEe8N3hvq2tLKSnwUfDBMK0diPUWV4FygriFYQ0wD5Yoej5FftPhcML7D4scuNakLqo99crTxMBSaOaUJ1DUxV17Z2XEoiJJWm6nRoLE2BBewmZ9nHDEKdVoznmb4WvUVplajKiAmgVhZYgDfiuwcN3QfD7itKTHPsNsjohHitNhTXQBMYkrnN+9TgwmYbgd/zRrTtZzhMbUrVSdSLQfolrjUk2Y1y60pudN1nhpP1nx+cdyh9haRCFGQoKdxSoCqF/Us9Q2QcUFsZ0hZawQbA9EHxH7uUyGeG6Ovc+oJnMW3E43+EubZuCk1z4ilwUvEpwGTe2JLbZwI+ObhG4k458mSmolL8LmlnjhiEvBNyXW6rqF1cd6Rns8xWztgjZI07LPu/6jOoJUj7Zam5QmaGjXp1exlUk+aVTgb8EHvM09qEqvGsvSW2jdRROl0MwmYJBBNJOKoOxGfRc5+VYfDHxKST59Rw7kPmGuulDpYJHFIu021mOFzwIDUgpSGGAMxWqLTMsX8/3lL7S0LrSlL+YRJnWAEppWjrg3GRkLmIQjRGIplPdY23RZCN8M8fhERIY4ne3fzT5Lve/hbWf/wju4hdPP6rD8/z75uQXSR0GrqL00Krvsk4JwnsV7LFVEgBWMC01ZCUSTz6DvaOCcvnqxD1THUrUU652pad51CnCXuE0ciIkQRpN0mLvUZnmizc9xSdaFY1mw1pgHrZqUaXRuD2hKCwZhAPy+YVAmTMqGqNdrMOiVTL0Srp+CCHtYowXDxNYdYfGBK+sgF8F6fRzWFLEU+x/65aqMpgp5N3lXeOVPUekJknNWkoqZbSdQDz9OgdTvT1O0k4oPBNsYSYGecUU40lMbFpgYh+nnQheQQNm+y5JfbpOcvq3Fwjn1nIKLRhzCZUrftnHkdwEwM0SsxRzCW2gbq2hKD4BLPzjTDmUBZZxgTEJraTFQuGpE4P3QtzoyLqAcdXN9i5XyPePEy7APmmiulCA4aD143Jwbu1quUgAOn9dyZzD5vpRWTKmFaO3yQeXQVmzTVJUG/ttLURSOD6wQ37bF8aUAcjcGIZiX7QO49e4gb7nsEWegTNrcweUY0Mnem4lEW9mgIeQCvbD51aakrS6zVwZrEYxNPDIZ6J9E6Zhbm0SYWYqND34pIMOxcK7QuCwRPrAKU1d4vlaaOKWhJq+7nyubfUCOaSvDNGe6+sAQrc4fRbRUY0SADoJOWWBOYVo5pmTAZZlAZpG7WRpPpVf3IyAjdJxxpjMQQNAgE4s6ImD+7Up772RFGiMMRsqDGU6IeUC9BC/NBICY0lWsNletaw+aqdIx22pDqzSatirRVUdRG/2MSdE8FbSrpKXJay9i+LmPtsS5xe9ikXHv91D9bem7KeckJo/GugYD5pohWnUmMqBMxQdPRqvlFpwZj5kHVMKhzmRsLQ1PCiIhX/snxutC5bpl8c3vfRd8dVyBJF+qasmuaQ8Oas+xLIYghij5z74XgVReVCUymCUQhzWoSq2WeGJumB3qrxkaCiRqpTrUxMD5kaN+wTvbJ02oww/4wmkTBdNrE4VCda+3nxnLWJESaozxiQ3+Waf3bOY0wgzeI0bJXjIHQEXXGXg1qzD1UZo6NkTBrKsDONZbO6jKcvaBjhHtc3oqz/Wtk3gSarQ3x7DrXOHsJvjaE5khN7w3GRLZiiyytmUwTYjC7DtgFouw2pKMo45rPI9snHa1H2nD+oqbmecbkjpMkj13RMHsauSqjGYnUlUWc2y2cTpTEc3ZaZDRRz2+ptcMZmwsXiaSJWvPEeUKrJHU1RZVQFg5fN8e0+iZ/N7tRFUE9j0UPSyqvWSLdGuiO2Wc1zcw09bOqwidal40uKrs26D0lAZME6sqS5Vrg942RnBmDmTF1zmMlajOkbjqCzQKSWpCqiUS6sH1dQjI4Bpf2l9FMxBOrijiZNidPgk+1bh2ySGxpg9CYQJp6UlcwKVJEdpEFIpGyVmOqNU21CHXlVCegxqbWz4tF2L4hZe3CCjx8et8YzRlaJIwmuk6yFJ/qpvazM4FagZgFcAF3PsWWCcW6J7RqkrzGNI3Durb42iImEmujf9tE1YcL0OiIWuaxS3BCdbhHcv4ilPX+SNRCRBb6UJTYwRRTteaZK020GUCziSZrFRNpZSWtpKZsmsjGBLrtQFk7QhDq0mIyT5jrQW1MSCNuIlRdYXJykdZ5LePMSybPd3pubSDWNXEyAau1Kt+wHc9S0ZAHSINuBBvxwwRfJuxUhiRX6xG8YdIcCBa9httJq8J0A8GbuYGIhQW/63nqLkzWErIsI45G+y6qClGIkymYBg7hFA4Rcj0ACxOh1iK/ybx2xWcwGrSoHyOkaU2eVnMjCpCkNaFICKVFCqupXFMvjUbJe0fHWuD24RHHTXNKz7ln3ugzUyGI1U0RhU6rpG4ihRm8SJuquknypGZaOYyx1LXFJZ66tMRglAysEZ9FikVh5wULLAxXqU+f2Zv7fpIs9cbEbhsubxJDxC91KLtq1KKgiBOra9q4gJwYY9OapHRUowTvLNZ5qkmi6V3UAENcIM1qrffVllAZ/TuFnR8+Zyrlth0dzlh6qEu4eGmPtdFImhAnE2JRYrIUCUt6axYIEFoaQEnVBA3tSJZXVF5rms4GfBTKMtE+SeNkFxbHjMYZYiDUovqopTneeJaRJLS7XcLmFhIiwyMO9/jzGGmCLmxxbm6L68WWdocb7FhMmwixMgQBazztlXGTVsm8plmhhhPAZXXTIIqURYIfOo04m4jVFAZbyC5xb8cQ2zlxsMP+cJW74jHEsoIY5h3RkGptVrwQk4DJtFPsEv2YupppSKgq2zxwqCqH94aq1I80KalIJE4tphR9NceazlKZsmfm9cP9IlW0xKZmFBoCap9r3TsmEWnV84RhWiakSY0xkbLQKGoWcYZgGBcpReWIUfBN/S5UFgqtXc1SO6KWLSYrhu5SD3Mxh+EeKaCRSOTmpQucPXYD9rEnECy+m85PJ52Jmei+CJUQu3oEqUu8Hm0vUdNzFxATCbXBuoB1nulOhuw4DTAMWif2gp0KtpT5qahVR4j9Dpy/yF7vnwjQ1JtjWWrUGWNzRlbTH3FN3TtRFIFzfr4erPX4IPPaf+J8k7Vp6StEUQfiZ6m/NI1qff+qAzFPtVRSlSzfM2QzPrtZvCqjGYjUOwlxOlWKJGupum4OMDUeggepDXYixMTge0JlfWMI7DyC8I03dHlFXTn8xGK3HPklgxvtHt9rPIyOqME0TYobLJC4OSB1P0nXFpjFw/hLl/CJNn1M1dR5K8HHBqOehKagrXWZYpIQaoNxQdOJwmLGhmzT4ALYijkb9XSlOT5kIvNDt6LRwMOnCvrdT5KZGsl6hGFzMJpTB2IqwbcD0RlMtlu3DU4URhMMhoAPlrqOTIYZsbSYkdXyhEdrhLPIrJQm+tZNocfcCvVCRtrae6NZxMjv3vVCTuSepN+HqmTadvNrTUZC93FLOojYIlL2LdNlx3Q9UBwqNP1ukBYxCDEIxgXqnYT0VJvlDcWpQtNjcMLoiNEjbuvd/RMFYmK1L1Htjw0Ui0KNZuIoO02QYNCGctKUGqaW6AJB1CjGCMHMDCbUlSUErfnWhWNYGJLLjqQUTKHHGYtXBzUbhogiakusJZYV8nmo46qM5jBY+vcl1Lccx979ILRyyr5GNbaAdEton7HYMpJtRZJRoFiwTNa6DE8E5NC0wZldqS2BJ3JW7od8O5BtFJjSqwHI9G8nw4TJmplPTBhP0wHYX8YB4M8tf4g3vv1vcuIfbiMx0jovZFsRU0VsFZksGybrlmIl4NuekBlM0tTbKkOoDOlFR+9h6J2pcZNCU5RE033Q2k6xYCkWoOrKPNUF9ltfDIC/uvK7vO6v/yDX/+jHkAj5RmPUKn3GVddQLVpiR+tPoclV/cSqQ544ki1L94zQPaswM1tGjVqtTpqNDpn5pFnTI9BGk4O6ZUn3Qfe8iJbFewzjdUP5NTew+D9PUXUNpoZsM7J+V0G0gp163NaE0E7xuWN8OOXiy3Kq1RrJvRrPqIbTj1J6Dzp6pz3tCyVmUs83fkgt7QuO0eGEsivzSSKNOGODSdxboymAZClhqIcbxVY2P1xPm2MRKSxuYDTTvGipO5HJQo1r1+pcvUaZfqI1zLid0nnU0nsskF8q5w4EEXwujNcswerBhtA4kBiRLOPBb+vS+fnyWa/5qoymx+AmkcF1LZYvH0GKkpAIUkfSEfQeK4lORwjzcyPqXoabWJKJw04NWyYn9ivE7uKtqp2UziVBYiQ4oe5YJDM60RHBlIHO2ZJk4hivWqqONKG7RbIUqvTqn9QXUK51XVp3XMacOEb3CU/7zBhAR0BrT7edUS9mDK7N2HqBo1qpiTYQg2IW7dDQO6UOxE49UgZM5cEk+Fwfly0C2RbkmzA86igXtBkULPhs/1nNI67LkVedhRtP0jkb6JxVR5BcHuG7GaHlGB7L2LoxZXqkJgiafk4tsTK0TzsWH/S0LlXYSY3UGp3WbbWOIdFJj6rvmCwbiiVtrAQLrgIJcV7k30sRoGgOzJPNSOy0qHNDNNA/XeFG1Xw8sDjcxeeGumXwmdB7FAbWUS83CAwvUAtu2+LGkemyoc5zXBGJAunAY3wk3Sxww4rRsZxiQf+WYoal6Uns7f4xEnafjTTQsWbs0Y2FbMuR7ETSYaR7ekpILdEJwyMJmy9MqI9NERsJtUBpiFNL9xFL54lA66KuF0Qgs0QH+cWK/EKkWM7YOW6bhpPFOEc8cYTFT8NGyJ71mq9qJQm71nl6fIH8zIC62aSdczVu4glJJKSG4fV9rU3UUHa1a9V+wjAJCWGhnnfF7Y7V7m9bay7JkDkQteoY6sxhPLhpwBbgsyaqsgJLC3i/v+p3AId7O4SlFdpnxkgdIEZC7vDdNlKrw8i3Pf0HLQNx1Iebmo6JTfQlTBcM0aSkA08UyC5PSetI1XWMjiTUuc6g17k0kyT63jrjvv8M5186+Vv82K1/koVPbSHe7045GCFYQ7oT6J0WMI7pNc2kl4AdWkwFRd8QkpR8w5JuTJHCk10eMnzRKmXPEI1g6ojP1IFIAAzUOfjcNKD/vRUnnvERjwRL94kIaTKPqKSOVL0Unxl8yzBe1T2TjDRVj0ZonxOGiSX0PFSCmRrcRJ9/OtBMxif6/HeOOyRAtqCZn5tEqo7iqAHwEdPvEWRvncnFSY/y5BpuYxOxhtBWI27KSO9ypHNOHYkb1cTUUHc0+5AAnSeEccipVuoGpiW4ocGUmpGWC440gp3UJIOC6aEWOyfyeeovQcs3vptiO21Gx7tIgItl91mv+ao0ZglqtERwo5qQaxHbVE3KuJRS9g3Ztqf78EBHlKqa9Ngi40NZQ6xgGLZ0AUslpJuGbDOSjCAbePILE6QKmOEEnGV4yxLbJ5zW7wwaQTgImaNeaeO3n9vD+kLK5rTFQoyUyzm28JT9hPz8hOSJbSVNCIFksUuy0ybalI1lQ9IrqbwQnRI3pMNIMvSERBhc61jfLEgeOotbXiC7kHD5ZX1GxxSKhQFm2DZBwdL7TD42PoErAjF3xGiZHOngxp784Ys4Y4jOkh7q4yYZF1sJ4diU2K0Uj2csEsEWEVt4pustkmFN+sRFup+xRGu5/IolhkfNvKkiXss4EtT50sr3WgVYIrJUIqdbmCoSXVNv9LBzbapGPxHcVOej61wdQX65JhpIxg6fWkaLNdRCMhRaFyL5hpbCJEamS5ad42pU3FTLH6aO2Olusyk4iJklLvbwxd6uFTM0jI9kuK99MZ0/PEXVTRSbWkL/kYmOezrD8NoWpo70P3kJv9yBoy0kal18kDh8zxNtxE6EZBhJxpFkUOOGJe6JDWJV0d7qYK9d5uLtmSI4jAZpxXJCmqVsXe90WGScPOs1X6WbifgMpAbfcphSH+ZsY7tppP9oSXZuSHGoS7I5RaylWExoPzHFLaa4qWF0XDDLJfF8RjqAZAS2KUhfelmXzjlP5xHP+ESf/GJJcMLghDIF2bKphbUT0o3JXpdknlaMRELmmKw4XGHpnB5hJhXbL1un/5kBMi6oexnp+RHdlmVraMnWKoVZSaKEBLkQnCUZa/3q/Cu7LHcTQmoYHXIk40i8BJN1oU4jxoti/WdQjX0my25E1TYMT3YwdaTz8ADfyagPL+LObyPjKW6Q0itqxus9yhsqRCKTnWTO9DOLoAcnHCF1ZCdvIN0JpDuezrmaYB2TQzK//yCanldt2RfNMSvCkdVttqVF1W6iqgZqVLcgHcDig1PcYErdz4lOSDYmioV2Ft9apPNEZPzCSMw9EhymVrSKqSNuUiN1pM4Tyr6QX45au+sIZY/G8QBlJOQJUniNyPdQooHpkiFJI90koe7a5n5gfFSngyTAwn3byKREqhrxkdbZKVlumawmTJct8eSE6TBFas1My44hvxwYX9NGjmgZxGfaOO2cDUxWjTaFUkWcxJaO99btz33NVwluF23CoPimhZ1SPUEz8sQUxusJ2yeXqbqCqTKNDkpAUv1dI0gNWV4yccqMND6kkIjWJU1Nh0csO9csU/bBlo50Wz0lV5Qaqp5jutpDHr+aO/jiyKH2Dtv5Ej5V5p1qIaO8tkPVFnZu7BGlB0CykFAs6OSGki44DDBZj4yOR6QSsk0tgIcELr1UPWTdjnNAtBaAgDJimqgh7r19eIq8sXsPP7v2JlqXAq1hoF5qUfYSikVDu6ue3dRKcyeB+YSUKYRyKVIuAEZoncvnUUKxKOxcawmJwXjB55FgtSAmtZAOdJP4XIj5s9epvhhiEa7pbXG5dZjJmiE43aGzmvR0RZiutEgHOdl2ICTCZC2lzoRiSY1HSMDllbI8pZHJqjA+JOSXhO5ZIb9UsvqxCSFPiEYYHs92Gx5X0M1VXcf4yAI8sVfa2JWqK4RUwBp82gwttKBuGfLNSLpdM7y+rwMADSbc1JF0q6bODbaCSWU1y0pgcJ0QXGTj1px00MCLZPZe2kDMNsFNGux3Sxhfv4gtVL9Z53lsBDkJTA57souWYlHYfGEX4yNVLtQdKBeFuq0FXDfRzmVIhGkLtroWW0gDVvWEoDWbsh8JTS16dEwwZSTdVuMsUamyxoc1jLZTcGMgwvCIndev9pu8oHee3zh+o26ERcN0OcVngqkio7YF06SQtZIShLymmCSYHTuf249ZgCQwSRMtfzSlCVsIdTcodo0G0xfBTkzDO7q39/5MsmYD5SJkW8JkxeJTp7yZAQYnVD+Ky40Uiwr496ME54W6E7Tzm3miSeZ4XV8qFK3qR8q2BxexO3buR0zdpOg+Mj3WhU/u3f0DCMIt3fPc1b6FshKIBjtVaJ1vReqODigUS8J4aptpMoWXRYnYUvCp4hOVwwCqhUhIItP1yPBaS7bRpnNWyTSLvmFyCKqFQLplsFPVLwLDYxqN7vX+CYkC7m0BYamnAP9EDZ0tI1s3GHwraeqV+kyrDpSLEVOlipCwileNXo2lzyO+p+uhXjS4LavDhmkkLNbIxOInhpAKyUCdyKUXJw1iJ7KaPjs27aqMZkvgpS/7DHf9jxdoF7ApVBdL+mY+A79Q4zsGv2Oa1D0S2poDmInBDZsxumbOPDrwnQDdGkykLg3Vgp2DtkMeiZnH1ElTPxXcFAU7wr6E2NzaPsMv3QLd07oAyr4u/igyn9EPKbiG+9V0qnmUCYpNM62aVqeEhel8zDRGaeb70Se9rfUfaaL/p8zr7iNpi2V6rKJ91lH2DVWP+XWqc9Uv7ESoejpn7au06SZHaHnybknsF1SlI5S7VGgmrzECYZDsliZKZcZSAgyYrO599xzgry7/Ie+77uXw8d6clNpoiRLf9ST9ktIbwshprdroFIuZ2HkqDwpeN6U2Rn3PI2mg7kO94JgcEZIdjUSr9Qq7mRBcJLaEdGu33mvKvc9Kup1pQxgd2by1T/tiTbGQUC6q8yiXdaNLHak6OhgR+5UC+7eT+ZCHSIPnlCvGLzOPadXIQlQeUiBzniJk+MzgJqp7WzBvMksQkitHy55GrmolGYSvXHqQP+jdgnih6ivoejZX7TuedKHA2kBYF6rCzRl62El2H1CA5YURl55o6Rhgrah901Icmu1UDTFFILGR6SDT4nAzFSReU5qqvfcP/enka1uP8rdXauKZhLrVeNNWA7NqZl9NpalnSKDbmzKo25jSEVJNLcPUEdslvVZByEpiFIqGCquuDVXhCFlApgZTKtZPavXO+zHazCSBJOAzwbc0evIpu13/NOJGjUPtBmKlRNTRRh2fMxA7sNhVmreyof/yUcHNZWkJqY5j2omZg7lNpeWh/YIoWLJt/uXL38v3b3wfC/dq42HGPA+ARNqdAtOdMhpnGj0ViZIKV7qpV5YHnDmzTNKMBsahJa54krzGJ4FQC+WhiHUeUytLPoWiLWyp/YPJiqFu7339e8mNCFmk6gtVX5Dg5nAxREey22sjsqQho27IbapJgqllN3utzXyqzI2FWizSqUnSmoXOhMx66mC4sNmDZj0FG4kiFIuiBOqLkepwSfdzFHqv2uT8+YVH+fpX360LsmywcFOaCQ2d9HHO02sXZK2KvF1irKYXbqykoAhcv3BZp0IK0c1Sy3y00CWedrsgz7U5QmUaMoam7lU3Uw1u7x/608kR18W0GqopqwZBRwcbJvvZBEvdGAvrG6ISlG17KpiRZTpJGRUpPkjDIWkppomSVMSmptlMAplKP9+PkTdAIpbF5dEu+iFFKfIyfUWjEz3GA/0KlyhI25a6MczYUAwzdiYZlTeUtdJ/TScp00mKn7FECQplm16ResbdCG0/yBvaFT/99f+O4ZdNmC7LvPwidTMFJRHbsBjNnrHxmmXVeeRodxsZKfeAnTSGoxkaSdKa3sKEVrvUUdKJThzNhgmAObnOrDa8l5JKTbHqqdtqS6qOTs/ZsqG0q4WqdDgbWGpPWOqOSTPdW7OAK1plShMX5vdKYM4SVntLYv386JQZi5RtegASNMpE4K23fYz8c5AAXbXKrBj+5bEP8k3f+iEm63HuweWKYqsAPgjOeepap1xMaXbTRoFhnc07d3MyWnQe3dpANy9IrMd7gzRjiHbK/JyhkEK5EFjqja72Fr4o8j233Und2k0PpRKdPbc6R2kLmY90GQHqJqqqm3HAGkJpGyIPSF2tBLSpziLH2kDjdHTx0Mxnsi/Tc4CfeMl7qDp81joAmvRMNwpAmuvujpY5KYmZgZejYE0kSyrSpCZvlcoO1ZwHI6WZZyPz9bX3w0BPkde3PH/w2p+gvn2I8buz1r6wjMYZw1Guo7XDBDew2uQLWroZlPlnjYraQhr2KzWczu4SFVMLUgtuopGm+Gb23EKx5lnc4/3TEuGOlzzc1DKbpt3sLK3Z/HkURtOUUZmwM82YTlIodFR7JsZE5bdo8JduJPhzLSbDjJ1xxqVhh41RW3kcjNIqauQOvqX2K1474buXP4R8jsjjORV6Mkn4J4c/xve+7ff5nk/+acKvr2oN0gu+NAxDjnVB2WemFrfpSEZXdPDSwLlhj+AiLmqB104NE5cRM0+deLbHLarKEsYOQT2qRreRS6/y/OjX/jIvyc7wZ39mfxrN/2v1k7zr5q+k+0AyjzZpaMFmJAo65hcpattsAJnjUZOhMF5QDtJCUKqr2mj0MaOPmxrsVI1vdM3kyz6WL89g5XVn2fgfR4BGJ9BEQQY72YV81A0NnCmviAbaQl1ZhmQYE6kqOz8/B1EIh2YzTQQVroiq9tfgGACrtsNyf0QVOrixELYsdU/wlcEDbtORX9b7L3sRG7Smd2Z7Qf9AAyFyI/B5QrVgkE49Z/qpC11XbgLpNhphRbjjz32cb13+KCfcJt/zU3u7fwThx0/8J77u5r+Au6ej3ARJw6kQNdjwE8ekNkzHKaG0mG1H/zHD+JCOJ2OUfU0EQtyNnjuPG/yFnHIpY2u5QpLQ4Ls0Op8xhKWvucT/70W/zPVum+uSZwe2w3OINK+UW9MWb7vuLqbLkAwg2zCYrYQ4SKk2M+z5jO6DCUv3NWlqoiNeBNjaaSFeN3zVBQRaj1vcpYTp5RbjQU45SnW0cKyd4Vmd6t9+/c/wp3qXuS3NP6dX+GKIf5pjAxKx/Pob/rl6s5rmo0YHM6ouBWLPaViRWuFEwSnXpNmxlOOEySilLJRctSwSpRE1uyQVppQ5Xlb/0Bfpxp9B4jOEulYM/+imX0aa+qtUygdqCjOn6ppNsIXaYKbSNBhVH8m2oRonTEcpk3GqxAyV1eNAourXlDL/W3NSXyDb2ofhJmCblDG/HEk3BTcwJBuO9KIjvygKSrdapwsJEGE8yjSSbtAldQeSbSG9bJGNlHInZbqdwdRixwY3UuibnUYkRN5x5Dd4U7vghWl7X+yfa12X+177M7z8G+9l54aaYik2hl5Itwxmx2lPZCul9UhK91GDG8V5I1U8uwxgzTi9NPYxWug+KvTuTbFnM9hOSAaWZNCcYuoj//sNv8frW/7zMpjwR2Fub+T69CI+j9gLkF8STLXLqpJuaSG+6jUPP9FNgI3UpVPG7VQ7yjNQdrotJCNHuWAImWIPk4Eo1KhJ404mWyhP1v4QK8/se9w4YtsKpwkNocSM9Ug8xDQymaRzyirfisQEokddWmH10KymMyguEEuLFAZTXFEPC7uvvU7Pn20jrtmJTqpMrsD3XiFRlFiY0FCZzWqgLmrUWRpiwxUZGh7JWFqkNMic5Yj5scCgG2NGfrzfxIgC0G1BQ3Kzy1xVtxRekw6aKZ6mZh1roweGNWUZU6rhNLWQbglVlRDaATtStEo60PeYrY992DvFiuEXTv421Ynf5LWf+A6KX1mfM2FJcwxvug3JOOphhZnQfUybieWiKGN7bWhtC61LsWm46svn0LoYyS9DuWCoOlrqm9V4E3n2bvmT5Y9sNI8nl/G50p9JsVtxT8Za3C/7+nX3caWdHx8SyqNanzGVkF+EfDMwXTRMDiv/X34ZkqFRmjOjE0MStdNlfKS3j9rDzxRVAeSiIHRbgIbSyqo9ixJalwPjgaUiIz9v6Z1W9p6yq+Nzlw6HeQRF6YhpIJa7DPemns2a7y6AGf3XfhEfw2c5FYtGPC5rzjy3gGh9qXVRn38xdrgNR7YpdB8PVA0vweaLGgBmACksMQvEymgtN2jUHS14q5sCmlqv7IKi95uU3iryITI/lzs2DRGMPtdkFGld9pQ9Q7GiSBNbQvtsxBWRsiP4llB3IslAaI10mkwi2AkQdWgkGerJrsmzOPm9lkSsnugawU4iNUKyoyxQbqrE0lrjjuSbATsNFANL1clJhkLvsYCbROpcKBYgHWiEPjymP+ueCQ1xye6e8VfpRv7IRvOwLeZdW9N0t23BnK5sXpCP0Lpc46aGyaEETKTzmNC54LUJ0FHISWiYzvMNLY7PDGe0WrOLIiT77IgL2E3RrzQQPTFs31qz9HGrB8UZjbRNpfx++YZn/SOW0SGHm6jBnFF3jY4JbmDxnbCb1k+NToU4LXTPjtLQGo6mYFxR09kP8rRReGyMWmRew3IThUstf7pGQoJ4NRYzKsDxIYEYkabGaQvBi8wN5awhFpuD+UCw04jxEI18FsnvfpLQoCBCwjzCrLpC1YVkp9nYUXXUulDRfyjTSZmNSL7ltRHbafhmy6YJMoZkGKlb+h6zg9tMDfWX7dCWfVjgvUJ8UNKN2Xgook5z0pCYzALD6ZIhGQvJOLB2t8yzlrolFH11yqZSe5Rtgk+EYtHQuqTTVnqUxtVf33MymldGDwtGi811W3DTgM8MoJMNbjxjaGk8p1iyrcDq3RqdJWNPcMJkWW/ANV4xJEqhNfMuGnkxTzvtPqjDzGSWij6dceibnG+44xPc+dGXYSot2JtKcCM1EGXf4iaB3uNqHHwiFH1DubBrGN3Y7nbEpemw5swp+0PSRChNZ3SWwu0XeXKkuWot26+f0P3d9jz9Vt1oVF63DEsPVNQt5cecLhmqjmI73UQwtYEoDXWY6sa3YtMU0YmQGQRrHok3Kf5+lIV8ymWrRtHUum/03pSgxDTz0UVfx4OW7y8aZ2OouoaypyQlbqTroW7rvVYdwU2atRKbTDDCLesXMPtpgTyNfPmhU/yP/joA+WakyHRk1o1jw6XL/MiUoi/4xJJMQhNkCVVbVJ9VJN+MJCMPEQbXuiY11yCkzoV8ouzuVyPPKSa5chPk4jTiEX1QPoeqpzeYDuN8tG9mOCcrFjeJpDsBnwjTJZmPc0mtCyUdKCxHD4pvuu6Nh6nbYPZhpPl0YsWw6MbzSR1Ta/SQbwZcMz5XtU1Dpiv4VPWHaCSWbulmcGPm9Sui1kNnGNXYGIkro/K9rmnOShZPbpD5GOhKxptv+cS8028qTb3SYcT4SN0Syr5VXaSi7PezNHWoqIJkBFLpi9h8hHl3mKhOtm5Jw2T/xbv3q5U/dexOpiv63KNVkDVRa+HJuGmYeX220yXDZDXBtwx1x1C1Nc2cwf5M3UTwRvdJ3dJoKzg1IACvXn74WWvw+0G+f+WDjI/OAgmt64ZUB2na52uW7x3S2ghk24rZDglULdOQ3Hw2VWLvkRHJsObCyxMGN6Cjqj2ddY8Odo4bTqZXd1bSVWnvyfU7HwOZJA0IWRf8LL1OxtB9vGT5EwPaF4MyE6Uyf5h1rhFEnWuUGY16xnwz0DnnScZa5K3buw8eoHjjgHyPOQCvRtbTgRr+xnG4idbv3LSZEDLN8Q9RJzXstJmzb9ITW+hGSEaapoZMjW3kCnDvjBtwRuKxxz7lmaJvKwYrhpatGjpBhZDZsomqmmxCGz/6uZsqF6RtRmftZJZ+NvecxF2QdlP/nZ0T5DOumLT5Iirg85CZQ/kTvTOUS1q7rlu6qX2u19++UNM7U+Emmq3VLc0sqrah7BqqrjKRB6d6SoaRZKQBBwaqnvKJzqjyosCCHe/tjX8ecnOS43O9n6qnEXLVgfFhYfu6hLqb0H1wm6InTFeFwfWw8RIYHzZsvAS2bg2MDyuGfLqac/bLW9RdDeBMKbiRcoumWxH3ZZt8Wbb5tAiYZ5KrMppP7orONsUvv+VfKOGC6Mb2rcj2jXDx9pziUJvOIzoA76aR9sWgMKO2NkQWH6459JEpy/cXrP/2E7hJ5PKLHaMjqqzZiKbxunB+4AUf1JG8fSZPF1UBfFf/HkavHs9njAFcEXAjjTZttZs++kTUcBaRdEuPDGldCuSbgXQ7NqSpzBsE0jQQZvXBvY4wn06eLqr5vqUPcflVtXZ0o6aPyTiQ7HiygZ83ymYRoqm0s5xtRVqXVRduEnHTBqLU6GNGPmtK5rCTecliH+jm6ZqGmST862/5dw2xyO7sfdkXdq5x+MywdPcG6x/ZYfn+Aluq0UyHgaUHSpY+XbHwaM3CQyWty55iUSiXmEfnM2C/reDSHYEvbz38Rb7rqxcrhjd9xccB5uWnkEWmK5HpKmzdmDG4ZYHVjw8UYbAQqFcqhic8fr1k6ZOGYx+sMVVk+/pEwetNROrGGlykA+V/OL64xZJtX1X0fVVG85P3FfzGBz/bU73rfQP+0rdfYOdlU9xYJ1pmJYKqCzvHHdOjbdb/5wU65zxbN1q2bjbUHWHrFti82eF2SvKHLzF60TpbNznKRe2Szg5YE69eYnAD3Jrtj6NYZ/JMOvmatyjn1oLJ6Xam2DI2BM5gikh+cYIbh+bsoF1MGTSp+UgL/bbQowx2Turv2AIIitszngaFwLxAfmVqslcSiVz/ylNPq5fXvvlxbki69A6pI63boqiIIpDsVE10GbDFLkwo3Yl0ztW0L9b4VBjcIGy9QKMF09RybSFzHO9ssmh+kJiVPdcJwKfuK59WJz/6tkfYud4ri5eO1lP1dDpmvGq59KoVJofbykAf1MHUmR4zkwwqir5l+7qUjRc4qn6c17jdRKP31qVIncNtLz3FS9L9FXA80/751A/8EpsvDcrM1CBtQPdI2ROmS4ZLL+vTezRy+HeFo/+PZfluQ+9upcK7dJsOlfiGezo6rYm7yaz+DduvnfKLN/7KVV/z85LnCsI//4r38o7f+dPa7m8LVTdqLSYTRoccRX8NN410ntC029SQbQj9U57poRblDV31kjP2m5kRaLxDsSy86Q1/yGvymv2INHsmT5WI5ftv+p/8ZO8thBSqvjJNbzf8gKZqjmiwzEkDQtKQdmSGkAZIS6SwlIvgxnrEQTLSdM4W2mUOdrfwvw+Cqs8p33vjnbzzo2/CTRWW5vO0IQtuurxtLfP4dpN+W0s0kZjX4CLUwjSJuB0Fxic7aJmn1M5xbLrFs7liO90HVvMKefJ6+Y9/7F/xA3f9FTCiJ7k6vW430n2wdaNTHPNWnJ+WcOmlGVVHoUcS1UDMyhOzAMZNNHMZXG/4oeO/hpXdAu/VpKR7If/1m/4Zf/Kev6FOcaqlhuh0v5haaSSrjjA60uCbLRDifETZZ01NuzmILt1GMxCvkKT/8+X/jba5eiTB82I0I5Ebksuc/9hvcvGBO6mnQ9ziIstf/w2447dhKjj70B9y6TN30lo7xtZ9d+G6fY599VtJD91E3bKceu9P0jp6gp2zD1BcvkDnxI2c/Iq34bI2D/zGT5PccQt/ce1OrCio/favPc0P/43l5+Pyv6Dyj//VJj/97lM8cu5DpJ0l1r76G1i69jZ8Bhv3f5itj/4B2bFj7Hz8Lmy/x8pb30rr5psIaeTsT/xrshuuZXr/g1RnL9K64UaOftPbSH2HR9//Tjo3vIDV216jEWgZue8D/5S1r3rjnkdVzwZun6Wo01/4Qx7+qbsIgyFJb5FDr/4GWi+7DYlw+e4Ps3V3o5ePqV6W3vat5LfeCBHO/6OfIrv2JMX9D1BduEDnmhs58dq3EVc6PPbed7Jw7BbWX/ga3DQyWTU8+HP/hMOveOMX6/afk7Sl5tzHf5NLD9xJVQxxC4usvP4bWF9+CckksvORD3Ph4TtJrlWduG6PQ2/846y1byIbBD75u/+G9LoTTB55gPLSBfrrN3L8dW+jFVrc/8GfJu+e5MvzXYP50q89zY/s8/1z2MLpU7/B+IO7NmXpTd9A90UvwU2EjU9/mMv33kl+uLEpnT6H3/BWWjfdjC3g4V/+SfJjJxieeYDq/AV6R27kmq97GxltHvjNd/LI2hn4/vX5+32+NuV5CdkEoS2erL/KLd/4F3jpd/0oa69+A+f/43soygHBaio5OXsac3SF6/7O32fp69/Ao7/2LoadsXbLI2ze/xHW3/qdnPy/fhjjDWd+9wOYClavfwU7d9/FdU5j7bvvKThzruabvm7/TAU9k1x/MuF3/tM1XHxwldWvegNnfvU9lOOB/jDC9InTpAur3PKX3sH6V7yJC+/6WepiTMh1Amj0oY+y8ie+kxN/94cx0XDxv3yAZBDp3f5KNj99F6ZSGEZx9gnK8TadG1+0tzf8NHJlRDMzqDddl/GHv255wV/+B6y/6g089uvvIWwMmm4wTB8/TStb5ea/8g4W3/RGLr7z5whbE6RUMPvowx9h/Vu/k1v+/I9gguGxD3+AkMLKza9g8zMfxRUK35lcPkO9s03vuv2nlysll0Crs8IL3vB23T9f+QbOvf89jOwOZU+wJUyeOM1iscLL//jf4/gL38jZX3wX9uKIyYrCswaf+AhHvvFtvORtPwzWcOb3P4DxsPSCV+I/9JH5e919T8ET52re9PrWsw5nfLGkfpqINxJpm4TVlya86Ovezq1/7h9w+GVv4MJ738PUbzFZj1q+OH+avLPCbd/99zn6sjfw+PvfhTk/UkQPsP2pj7DyXd/BDX/tRzDRcPa3P4BEWLz1lfz6f9JaiI/hqmzKVRvNt37fWZZveXj++os/dBHQht3yiZeSp33EGNYP3066ssrowqP4BmSb5F2OH34t/dOWI0svI++vUf3hvfN6Xv+2V5AcO0Ja5xx/8ZvYevhuYgj0T95Kff4Spx5RVOsv/NIO3/HmLuk+mfJ4Jp0AfPs3dzl62NG3Of/0x+6l1Vtleub0vMPr2l2WXvlaSCxLN7yMdGWN4mP3YccGPHRffgetxaMkIWP9q76BwafvxttA78ZbKTcuUm5cxFRw4cxd9F9wO5K4fcOnOdPL2gtOPa1eXni0w1u+5/dYP3I72eIq5aOnSXYaDGqny8JXvJaYWRZueRnJ2hrFx+7HDQ3ihf5L76DTO0o+Tjnyqjexff/dmFFg8ditFNsXGcTL1G1h8/676N+ietkP8kxrZRwtSydfSsv1yXegd+vLSJdXGW08ynRZqDq6fw7d8hrysXB47aVk/TUuDO7Dt7Rmu/DiV9DpHSGvUo68/E1snrqb2gZ6N9zK6LEtHnhYi72z/dPK7L6YPf+OP3P+aXViMLz0mw6TdBdob8DasdtJF1epH3hcoUOdiO126Xz9V7NzgyX7ipeTrqyxcfleilVN1ztfdgfZ2hFao4yjL1ebEiTQvelWHnqkfopOPh+bctUr6f0/c4Sve+3u6UPvet+Af//uAR7h8gN/yLn7P0i5swGAr0vCeESxHKnagusuYL3WIqJA1l6imgyoOwqbcUuLzSQIJJ0lYvCUfkTa6tH+8pfw7l9+gL/715d573/a4RffefhqL/0LJu//mSN8zWvyeZ1qphOAn/vFAf/8p7Y49VhN5BHGQyEOhiRDhYbMdBJSNRZJb5mwMWgmXISkv4gtdPY+i4uNTsa42GPp+tvZ/MxduK98I1uf+SjXfOv3KrRpD3VxpczWyizS/PlfHPLv3r0N7OrlkcdOsVP9N+K0xE+Gc2eS9BaIzQKWICQLS4SNwRwlkLaWcFPtCruFJQge2RjiXI+Fm25n48G7WD38Bgb3fZRr3vy9e6SBp8oz7Z8/+fE/w/DUXZy/53cohxs6+lmXVMWIYkmjZru4wOhay3SiEC23vMwkDsj7zbhxf1GzNqCd6lqpqjHW9Lj9TYf4+V8a8CN/Y2Vf7p8n6+TfvXsbg3Du/72XT/2XX1WdoDphc4SdKOOTW1ig7ioBet0xmMNLFNU2rTwSTcSu90mGQr4ZKBbVplTlCJP2+ePf3OHdv7zzFJvyuaLv562meebxmlN/8B+54Zv/PN21k9jacM+v/pgWZPNI3Y1Uk21G62CDwU4i0+kWrbUXzydgytEmphLSrcik2EKMxbU6RIH+627n3T/zUb7yVS3aLcOrX9F6Pi79eZMnF/YjkUcfq/j+H7zAf//FY7z6FTmYyMmvuUCx2MzkG6iH2wSjzTGfqg5aq00qKVBtb2khWwS/qTpJXRsziazc+ApOffA9ZDdcj0lT2kdOzv/ffpKZbmKMCPIUvfy5M6/hvd/0/xKas5PC/5+9P4+37Lrqe9HvbFaz+9NWL1Wp72xJRrJNawwI2Q7YDg4Y85IACZDQp4G8kI7wAiR5N4F3kwskwVxiCHZsB2N6Lk2MjQ225QZk2eqtpkpSdafOObvfa63ZvD/G2vuUGssqWfgcf6jx+ZxPVe2za++1xppzzNH8xm8YqEZ9yq4n1jOu3WALc8MNi46nari9GNfgBqKXPDYp24reTS/lsd99K/lll6FtSuvgMfZyzeP+okv3DyKP/tk7ufLrvpvO8jHSQvEX7/lpFJGQRxldMe4z3u9RRtpHi9/dIj1wvcwQ0uC2tkl7cqOzoi/7J2uhJ5HHbnoNb3/zW/iKlzf35P55qigUjz5W8cF/+6dcddv30Np3DI3m7t/4KbLNSDJUEBVu0MenXmJmG3FbWzRuum5B2OI3+jROK1SITLzoRLfa+ADf8k0NvvsfbPMlL82epJPP5n2rGJ+7X6KU8sCDwPC8l1eBNeBR4HrgU0BRv36sfn3jvH+fAM4CS/W/PwF44Bpk3uT9QFn/LgIPn/ddL0IyAVvAyfq1ozHG9ed8Ey+wXNTJ00UpdRboAo9wUS8LubhWni5fkDqJMT7nH2QT3PaU174d+ED9958ENusb+mngfcB3nve+PwV+BujXN3L7eZ/zXuDfAXcAA+C3gLWnfNe/rG/68gu57r/Mn4s6uaiXizr5q6WTz6dyFor4DL9/71wZz/Keb322z/hC+7mok4t6uaiTLzyd7D2U+GcQpVQT+F7g53f7WvaKXNTJM8tFvTxdLurk6fJ8dfIFYTSVUq9Cchangbft8uXsCbmok2eWi3p5ulzUydPlc9HJBRWCLspFuSgX5a+6fEF4mhflolyUi7JX5KLRvCgX5aJclAuQCwK3r62YeOyShE+dXic9W3NYaQ3GEK1ekAmfjw2dzz1RcU5/phZTGUMawUSUjH+piSWBUHNp+poaLoCazVl5Nfgg/yFGpn5IGXePwmZtxcTh0gHyRwt5QbGjE11flpL5QBGgZrkXfdRja2t9xESmK85vJgQB8FJP45M50MJZqgKYUSn6mDPZew/OM40jyrC7Ojl2yZMpyO4arJEfr6edGUPMhCtyPhhuMaZDxXrmlKwLraUFKNZ8g/G80QTR138Poh9T7szUMTMnQ7AV8ieRQXV2I+4iJnFtxcTJ6n6SR708K5BnN39+RhONBi2vLSZq1l1QQsZd750EsKHWj+glBiW6qPcbYU6tCLqoavawerMF2UN7Ya0Mlw6SPzrbuVet5Uex0E/U9R46TycyO0ztkFanAWN21ktY6EMt+FVlFHhEF150MN9twdfrBCZmSlWOP6NOLshoHrsk4Y7fv4Qbf+p7Ofxf/gLVyFGdNuWRFfpXNPA5lD2hY6o6UVjJ84DyimiiDL1KAmmnJEk8ifFU3pAYz7RIKGcJcWJRTmFGQoG2fF/AzgKNJ6bYE2fxB1ZR3qPPbhNnBR/cetfzeFQvnBy7JGHzn30vV33n/ag0AWuJB9YZX9HFNTTTFY3PZcRq1Y7SvZHLhlG5R5lI3ihZ74xlbnNUjMsUpSKzyjIZ5/hBgq5H9tqxovdQID/nad19ithuElKL2R4Rt6V184ODd++mShbr5Hy57He+i+t+6D4wBnfdpZx7UZPJAUW5FAiNIHRvRg4NbSKqbqC3iccY6XKZjlOi1zA3FE5DJZtClZrsnCY/J5R5B/90jBnWQ/8CqMrx+/f++0c/r4p4ihy7JGH7n38vV3zngxAjKk1QvS5u/xK+lTA8klF2Fa4BxUoUerg8gIFoIqrpSPOKVqOgmxfMnEWriA+acZEyHubEkUUXWmbAV7DyKaFqbJ3ytD91Bt9roSqPPlfvn+1f202VsHo44Yqb/hFLZz4BIaA6HVhbotzfwTUMk/0Wn8nMsPn+8W1ZD6rpsKkjzyvW2+PFZ1beMC4TRpOcapoQJ2axfxpnhbk9mcDqRzbEOMeI6o+IwxHRez7kfv9Zr/mC2ygXjDXGgDaEdpOql1D2hFTAzW+s41GZxyQBbQJJ4tE6EIJGqUhiPD5ovJcfV1ni1KAneuGZhjQyPKJBaaJq0n3CoGcl+ECs6sEwdncHwESijOW1FoxBddpUSznjA4ayqyi7EdeKxDRCtyJvliTWk1q/MJIAVdAYFdG1sSgqS1Ek+JFlPrYWJYfR4LJ62Fh+iNbxEWZjAEUJ1kJRLE7MvSKTUKKmGrIM1cwpVjJcSzgP04Fm1ghiCJ0CC9r4hUM0N56NtKKdF/igmRQJ3ms5ZH09eM5EyuVANLXh7CSUyynNT28R2hmqKHdXCefJnDxE5Tlhqc3oWIvRYU3VhqoVhRuy7TC5J7Eeaz3WBIyWvRejYlRkGB2YOcN4mlGVljiTvRBrJy0a6F+h6RyP2IknaiUep/PEsDf6Sscx47LfvpuoFCrPoNdmdkmPwaUJZVdRrEaqdiTmDtXwJJmjmVUYFVlqTim9wQdN5Q2ZdYSomFYJzhu818RKyyRYBWiY7ovk52Ryq5qVxPpZxKIQ3Kb3VN1nN4sXbDTPhamwKacJKkuFFTucP5qgHnbvLdEYfBJxecA1HGkuVNrzgn1RyKhAY4NslE7ENzxhYglFPa42kREA0xVN68Ay5vQ2JFaAps5JqL7bEoE0EePeyKg6yWLU7nzoWYwQK00xTaiMpUodWsvhoXVgUqTkaYVWEecl1WxMIOmWVOOE0EBmnlN7IVpjZpru5gjKSjzc4XYd2uyt5vN/u3EL1/2HxyXEMoaqJQPBQhYXxLlxvtMBV1rxHmsP09rAeJZSzBJCpVEmLiKSuYcadSQm4nhGo9iwKYffs42azNBaoabFLmrgPFER5jwFWUq13KBs12S5deipgqwVryPBKbw1OOtJEo/RAR80qXWULsEHLa+bQKEjfiq6iwnEAOVyZLuhcHlKN12jdc9pKEriPD2wy6JAnA2QNdzMqNqGqqNwrZ30XgyyOILXzKYpSerYnjQIUS287SpoSmdw3hCBJPGETMveU4pY6326X2L77ZcepHfnBqo/JMaIUoqoNarnnvWaL7gQ9J/PfTG9hyrJM0ynqPEM39CLvJxryEnpGwHfCtAVpm1lIsYErPWkqSO1jl57Rrs1wztNNU3wZ3MYJqhKgZbw3ucBn0cmBxXDy9vgHHG444qzy5MpyxhIHqrJD7SCssLO/CIHucjV1ZoOThORfKXWgSyRB6R1wKhIogPWBIrSioEdpOCEHDAmEsZGEwlpZHxYMXrRfjGUgDJGUgR7jLFjPiJVWUs0mmJJ8lAqCBmH5LEAG9GmDr0LTSgM1TRhNkmZbueE0pC1SmzqMN0Ss1Kgci9hfRogkRRQSGG2Hjn1ZUvEdgM2+zs5xF0UiUrqQ81aYmKx42rBML94X1J7Fe7J2zO1jkZaoes1kiWOLKkoCst0mOMHKVQavCLaSEzkJ1iYrSsm+2ofKUaJFPeAToDFIa+sBaUwhcwRW8x5ckoOVqcJXgoCVSn30swkclN1lNZIHBEoikS876mRnKZC9k4ShByoGxleovG9hniY1i6uw+pnd8Qu2NN876mr6N13Vqx2WaAq9yQDsfCsNIvck9IRrQMxwmya4cfnhZxJJG2VmDTg61wfGiGbrWnqQT5vsq7pri+hjktfvTq/CLJLMgg5173zHCrPidMp9EeoA73FJoi1hlVVn3RJhDTgnCEERVEkuEpCzGHiCUETg8Im80IBood6OFgkgt5Jfk/WDa1eG544DYlFJcmu6+QZZR4ZaEkthLpO5DqBmAbUTJM/ZilWDPrADLMkh8k8hRFTua2qtESv0DaijDD+gIRhKDGaMt5AUSxBcbBLttnfE+FoBNykDs2NhqLa+YWqC6MK9EyoAmNK7X5GvDOUzkooPrMMg8KkksdKU0dIPb6oi7F5PXqy/lwxnDK5sbxkleSTj4iB0Gpx4O6WxAhxVqDaLfH2Kln383pfSJFaiAKceIKhvmQXNINJTlkkhHrPBC/pv7xRMq7Mzv4JO5/JnDUsg9GxFksnNHE6JfqAauRk+tk9zQsPz4cteqEPRUGYzjC9LtEgA9VMFKehVCR9jW9qXDsQc1/nMj1ZXmJbs9rb0jinxYBUtSZsrCuF8ue8iASSIB9f1qX9+BliWaGydNedqoCGJ85IgdM5lI2YmZM1W6/baJBZPyaCVwSnyFvVIrc5F6UilTNMiwStI9Eqgo3o1It+ao9zXjlUXoZMlfvbpI+dEqMR465vhKeKVoJ0iKMxaqWHa9SheRprtATQqyiWS2JQxEpjTECpSDlN0DbiJxbdcDSaJVoHqspKmscGWXdJwM9kvOV8pHE0MDqckj3ehTPndlkLsB0sV/1iBdoQqwpljOhF1/tHQ7B1wRRkozuFzurCh4rkWcVKd8y4kNk2VWWZTVJs4oktt0AUxMIsqsZRyajjaBTT/Snpw03iaARZBuNdXisKVJqK11tWqP4IM+vI0EC1856oo6QdKk00AZt6Uutk/zRnEp47Q4iKykk+E4AkoG0gFEbWWazRGvWI6NmyIq70iI8MJdesDT4+u1G5YKO52hkTs5RQFETviY0MX8/b9mk9l7sRqPYHTC43VQwz4pmccc9gM0+lIq6sk9ZeYzKPMgHd8WgVCUHjy7gINYhSCQSYLRk6vS7h8ZNyWu+yRBDYT4yE8QTdauJzu/AwUeedcFGhvIJhwiwqXOYoTKCRVZTOSMhRY7OsdWR5hbEBVxlU5ok2EGZ2Edbqeizp6HDKyicscTqTdeaf/aT8fEuivOShi4LYymSNGDClglLhvRwOeW+Gc5o03TlInI0STTYdSkXG2w3U2KBnWgbvpVJki0lAOY2q6qFb9Vz12ZpidnSJfGNzFzVwnigFMRDHE+KsgH3Lsonr0cyAVMtrZEUsNf5Ug9D2eKfJmyVbw+YCjhaCFg8rKpJUnnvwGm+iGIpS1xM6pdYwWdd0uy3C2Q200uw20WiMahEWx7KE2Wznd3PHQ0d0Kc8bIA4N1UpF32uyrCK1gsIJQWBGwWuS1MlBYr2kRHJP9Io4tajaQVNRpqHODnfIHo7iaSr3wnua1y2f5tGVK9EPRZRWhG6DqiHhIkgooCoF3uABcmgtTwk9RVVaktTJA6euHKmINh6dRILXVOMENTUoDVFFgdlM6xnOUaYUhm4T9YSSRbfLYVeCx119BHPXQxADylqqbjK/NQkX07BIVdB22ExgEiDe9lxiVCgVMTbgvcbaOeLAiqdZHyK6UJiiToVEZJxrmhKnM/CeuMfGtA5cTtzcJjqH70jFIz8H+dlI64xntmQYXZIyOaZorEwXXoLWgRhAm4gbJzSOJ3TPyOxzFQIqRMqWxmca1zSMj0h0IjPhZSO6HEaHEvLH1oRcbBelipbk+MZOVGIMvp0uiqhRCUSPpEYSmIhpOdIVwUQrFbEmiCNSWWJUWCVFIOcMaeIYDhqLKjpBySFSKpSTteIziUySh5SkS3a5jVoRUWlKGI0JZYXpWcqeFUdDs8jLRhMWkLQkdzRzQUOEqLAm4ILGe1PvGXG8rPXEqJiNEikk1V64LhW63Mkju4YmU0psidESPT6LXJDRjESOj5bRLqDbLWJR4HK7OClVADPRmBkQFdFqyjVFAZg6WeucJgZNnFpIAzr1VKMUu5GQbSuaE7DjuHCfixUBw8/B7kQIuUVrLRXAXUbXpNqxfVWT1Y9XUhW1lqJnCFaue359qhQvKHhFtaiOx/oAqd9TQ7JiAO80sypDTQzplmDMTA3cns9yVnUBQc2r9yGAVvh8d2FYT5VMO2jkMBxSdi3Nk5GV+wqSzSnESLaZ09hM2CwShjdE8k4hOSobsanHVYZkw5Jt7YDX075DhUi6LdVygGwrYXD5vOJW60VB1VRUK83PdHmfN1nSEz79XZdw2b+/kxgiOrFUHStF1Hk9ICooFGai8S3J85cqkmWVQGiiWsD0gtOkeYVzlmo7x28ZOmckJE/GUgCa7qsNhZP9I6NtDYkx4tnt8v6JKGII4gBFySkWHS3AdV3np3UU77CEmCjKMG90kD00R5tU0wSfGLTxuEIgWMmWpdE/ryHCsmgukcMVglVygI3GmCMHSdUL6GlWMXD/wwc4eIWlbS/FPvgEriUfkQwh34C8H7CTQLpVEjKDaxnOXddkfMxDt0LpGtfYqOFH/ZTu/YbWqUDr8SkqRHTpqboZuvSUSymDo7bOa0g3DLCAKcRWfiG38ILLtmuyOgropR4Mhqgsxacy88gUApdKRhZdQDoAlKbsQLmUMFtx6IbDVWbRzRGDPFGzkdL9NLROB9J++aTcrc81/aMJ2ssMaOUBH1B5RvFFVxI/8ezg3M+3LCdjWFtGndukbGvW7pqiZ+JpTy7tMls2uKY8X3smoco82niKWSI5yqDweWR0ieh0NjBoZzCFdIulw0i27WlsOOzMMF3TzFbUk3Kb83W6m+JRpNsCu1LGQJJSdg3RSAecLhSNgcFOoHE2YAuYLSdM11Jm+wJqX7HjGNa57aq0mOM5++5B7n/qsaMS15Gcp3/YMN5vqdpSfFO+LtLOZZejEhe1NMkYTfSamFi5zlofutComcZOZLa9mRmqNhQrKW7JEdpuoZMYFH5m8MGSnbT0HoDmWUfSL/ENS7QKn2pcQzHZZxaojWjkmZh2i9nRJfoPP/sokAteSbbpKHoJ/soma49llD2Zftg94cg2ihpnFiFEfJagPPQe8ahgGF0Goe2kuKslX5P0NXY2h0Vk2GmoDU4Ao0i3S3o+Mls1FN0aeqOU5DP3rxE2drcStD1sERJFedUhkjs/TWxkYtyrSDKG9uORbNthyoCZOnTp8blltp4xOJowOmoIXYeyQZL4pSbZNnQfhOaGJ9us0JUnGr3wIJOBY/3OivHhnMm6VFqxBvatUazYRe5nr8gPLt/Lz/3gV3Pdj3RIphE9q3DdjMGlGT6rjV5/nvtVTLKMcJ6BiF4RGwE7NiQDRdaP6ErQAz5VDI4q9GFNthnJBgFdSUtlSMSTgB1vdDel75scOhvxN16B+cSnUXkmaa0I2blI53gk25K1kmxOiamlccrQXEuZnjZsvjiTtZIEYqlRhSE6Rfs42FkgGmk3dJ2UYCRXmG4X2LFjciBlsm5QtVJVYtFrK/j+7kYl/e0Wgy85SOfPZqjtPrEhxl45yLag9QSko4CdRrLNoo40DbPVhO0rEyaHNCzVLaIBqDT5acvS/YF802NHcjirEMFD2q/INgPZlmV4SYpr1qlFo2HfKrNlS/kX6bNe8wUZTas0l+/f4InupSgfIbG4TMDtdiw7teqmuIam+fiEZORwDYPLDMkokp8yTI9I0h5nMCONKep+Wg2m8OgyYApPsZxSdpLajZZNop1AD6JRqF6X7ZfsI7zngp/TCysKZkuKsp2z/3iP0MwktaCgdcotPG7lAiEzAnz3EZ8qklGkcUozVZbQdmIwB4a0r1Ax4nKNaYruolaYiaNcSZmuJZhShrEpHyVZnqVU+zoMLzGLHNleEY2WltFuGzMLzPY3meyz2Glk5e4xelISUkuzlzE+mGInmu2mRTcdoTTooSXd1GRbYCeRdBQxZaRxeoYZlxT7W2xekzI6CsXAkIzjos94Hvba6e6fJNtVg0PA9lUN1jb2E0MgGBn61TrtybZKfGZQLlLsl8OYAGVbExJontRMg8UvO4lKVCQdaVxTUVQaFQKmVNhBhQGK1YzhsaZU5Y1C12vFZxqV58yu3Ef8+O7qRHsouhr7kqM0PvoQVTcnGjBVpP2EIxk5olLoKlB1ElxT1nfVkEMyasOkbnAgKmzfYEeS5y96BhUidlihXECXkcnBHJ8pdFWjFnyUmkCrSf/FqxS9z364XpDRVMD+5oATmRABxMTiGhICTQ4kqJBIn/jpGfb4GUgSbDPHzNrM1jOSscI3DOWKAJuToaZxJpIOIukoYGaBZFCgT5zBrvTIlpuce1GTqCV88alCu4hvWmKWMl3TC7zfbkmrNaNYlmIVxuC6uXiaddeea1mKlYS072g+sIFfbomBcBFTJZhSExLNtKEWWMxkJDmpbNsREk1INdn9p/CHVkk3S8pOg8FRg88lL2MnEd9r4JoG12DPGc2tMCNOLaHTYrYs2Ll0FOjc22d0VY/O3VNUYtCFp3G2whaW8SUWtVRQBSl8JWOk9S3I4Tld0wwvadF7KKNxesrB90944pVLVG3E2IA8kxpyo/ZAa6lRgbIrazi0MzlIbV0LmHl8biiWLT5RLN+5SUwtxIgpmszWEin+Oc2wJ/elnBLPeyuSDQP5ZiXGcVrhWymtT54ivvgg/cvqVkEj68WnirC2TP/ylPiJ3dVJ1MJXEY2l2WhQ9ZLF/klGjqgVs9UEnypW/vRxwlKbmFpcK2GyP8UUEBJLse6JNmJKiVzScSQ/V0mEoRXJfY8T96/SGRRsvmSZ0WGNa0jKTFeRmKUMDxv8c9g/Fxyet2250xvebQjUKFf4VNHckHxm1UlQx/bjWgnT9YR8o6Jxeobal9E8aamOeOLMYGbiDYDkWgZHU5JpQiu3VL0EO/YsPViyeX1G1WBR8fKpJrRyKTjtsnTNFNeO2IkiNjKoT3UTIoOjFjODzomSdLsgdJuMLmsTrCLbcrROTNAHGoBhdlUN6u0b7CSKdzR2+KbFp5rysn2Mj+RUTUU6DNhJRJeSp4pK4dqSHzOz8yBOe0S2A6QbhtBM8JmSA2HLMb2kw/iARrsViOCamubpggrBKyY6YpJAtJFiGaqOwo4gak3/Sli+J9I4OUYVntmRDsv3VZy5NcG1a/wnCjur8Y97AJ62nEwou3UnlAuERiKpFWD7qhRdQvfRkvyJIb6bo0clKkbKnqX1+IxiJUU7zfBqTdIrcGdzOUwqQQ2UXcvwiCVel9E+6cnTdZSP5JuB8UGBHs1xihiFT3ZQL7spPttJn7hcy3puwua1OaaA3oNTkjNDYruJ6+YML83oHC/Iz1X4hiFYQ3FFJRjoxEhxx4AdlhRrOT4zTF5xOcNLDclQ0BduoEkHgiaIFrAGO4v4hvqsxbEL9DQVPgqd2WSfRoUWUNNURRjv1wyPpHJSuJRkLIWK6WqGrlIxtAkC1taRkFjGh6VFajbWRCW4uv5lTUIKukwEbuRY4DRVgGJJU7U7uMbuWwergjDKONi6cZnup6XF0yfyMHQVKVYSNq/LALl+XUWKXkK8XO7PNSSJbTM5LWdrmsl+xdZVTUwFZgohSRfFkpBotFekfSCA9pHxwYTxQenp3m3A/1OlqSLluqNYzWWuuZUDcu75bF8pTDZmCpP1Ru0Vysp1M4s2NWtW5gXnqqRYMrg8YqcdIXZYrmE1daEjWgiV/OgAvrH7RjNVjqojhBHTw23ykxOirrt/FOSTyHQ9YXjpKtN94kHO133UGSER54Qg7E9OI0WRnl6sk6pNzTZmiMYs2lTn68xGWZuuk0l+c5fXitBFgh1EYldSEtIMAhSKZBwo1lI2btwvrE+ZOFquKQbVJ+K0CVeBhNzTfYqJUWze0MYUUig1M7n/6TqMDxlUhGyzRp8EKA52cHndDPBZrOIFnzO3L32KPzj0YnjCMi016TDimvKwyqUgbWCFwk4VVUvVNxrr/lqpggJEp/G59AkHG5kejJiZltxlIeBknwvhgJ0o8Uqnc7CrYrJPTqPdFoWEjFUbtFMML2+hXcQ1hHBgclAgDXZSQz6ChI+h7i9WXkhOFp/nFMVSxHWD5H4V2G2pvgvODtxaRXImoexI2EqE6T7NnOxBNXY/f3e+tJSmuTZhttKhainKjqLqRsxMYcc7ULKqM8fOiX5cZVBjU+dsg3T/KMV0v8IUirSv6F8uB5ZrCO9ByOICo8kcbaF3QvbdlrlR71+eoMu8zklLpX90ROHaYArBEVbt2vtqwPbVkv/XFaChmApHg2tGoU5La4xqfe8qSsOAa9X7ra8XELWQwtZ1jYUB3k3RLb8AsZ992Qrtk47pitiBogfjw4LpVj5ippLCKpbjeQRB8hO9YJxlHUWqJQ9pAA1my9bYZoXrBVwX0k3NbFWRDsWgnr0pIyTgG7DaGT7rNV+w0fz61jl+dN+Y+HgP3wDnWRRyfDtgOhXOK6qxleRs3TqoJwZ9Hk/vnMEmpJG4VKFMwAclnUK+7pwJNVjeGWE7qhdNqD24qNSun5RN7Wl+ySnOfnw/Ppfcpp2JAZBDIeJXKnxQqJkhpgE9Z3sapKhKkQyAoGg2CyaqIbjX3GMa0nbqegZXmgWZhXJ60UGywPd5qJYlgXeo0d89hTyDVESyxDFbFW7RaMA1I64hhw1aDtZoI8lAMKnSeitRyLyNLmlJh5ReC0zHGeW+nbUS6z5sKo2Z1OD4cqf/etbbG4leFeSw1w42r8tIxlG4VruRqhMJXUdVaOzQ1KmvQGx6cJo41tiRhoB0iulal12Pajq0jYQIYWZwq0gbJUClBIuo5fvFsChczq7vn/3ZgKoXUVF6wU0pxZuqKQ5WsKAvGeOcoeqn0HIoE4SPYGQxU2FDQ0fyVomLmewNG9GZUMmFZknwBown1ZFinOInqURwdbSTDiPTNemaautnz/tdcMySqYQ/e/kvMLtqtjg1TbGTPNXG0+5O6RwcopsO03DndSZAMlQcWd8ilkaQ+TMFA4vSYJKAaVWYboldmaFXC6H9MmBm4mZrJ0azWFL4RqTdnT6PR/XCSYLmtoP31QD/yGwOxveyQEMayVolK/sGLF+6RWN5iknqFjklecm57i5Z2pZw24EeWPzE4pxB60i7M6PTnpI3SukrjmJIlJcHHo0YiXLVk6lqV3XyVElQGB2pWtS5y0jII77rqPZVVF1PyELdqSFGMumWhEoMqHKgZsKEZa1ntT1heXnEyoE+rX1jsn0TTKtC5xK+h3xeGZUNYWa7XwQC6OjAzbfdi88iZVcO/nn+LFiIacQ2HI19E9IrB8QjU1iq0JlfeM/RRJK+4fDadp3qESB8nNZEIDqSdkqaS1NaqxNsS9ZCtMLjoF1c1BF8/hTM5i5IpiuiEm96norQTiBHplT4tkRN7faM1aNbdJYmNNsFxgZUrNmPDCgTaTfkxpQHPTKEmiWq3SxY7o3ptWdCBD+xYmhVXOC+ZyuKqhMpj81I1bO7389LZT3d4E++6j8zftmE6f6dXJJyCl/VWELjpRe2rkrIKAJhXz7YHKDHkm+xMwGwxigdMc1mQac1I0mdHIKV9FlLXiJiqkhIJSQr9nn2J4PncwsvmEQi/3ztL3jFV961WNiSj2XBj1gVlhA0jcTRyIS1PlQ1u3ZBjTGrwypET3ZS51fq1+cUcuNhLt1FQYDz2glph08lPfKjt72bxh5jOWrrjPXWSDZu7fkt6OBMlD+TiPKqroYKSw2+Bn1XSjyKiWE2TZlWCYkJixbUJHEkNStUTALUa1FXAinR1U7L3G6KRvHq1U/ienIxVVst8rqmVEQd604oTysvyTIhrZ57g7oSr9o3Ir10JmmdAHYsTolSwibWahTkaYXRQRzt+TiQmewj15T20qgjnfbuOh0tBa/4yruEdMVIflbVZB2uISdK8AatIq20ZK09Jq/p33Bq57kGRWJkDcx77UE4aV3NP+rr3vRY007qUhycqlWnQTqBf/Gy3yVXz24Wn/c5c8S2+YtX/FdWvvjUDuwnQPSa8SinP2xSTlL8MBE29jqfF23k9LQj762hBbqCUEl7pfd6wb/oK42qtOS+Jju5r/5LZ7zsb3yCX7n9v9L4LDf4ly0KRaYSfu6SP+YbvuEDDG4sUU6KM7qUzRu9ZjxN2Rw1GU1ypsMcRgl2oiUHpQAT2Z415OSvN4IZCp9kObMMxjnTmtmGOhy3M9BlZPS1I17xjR/n//11v8nf7pxC7XbM9RRJlOHKzlmB1yzA5hGViseNDVAfILoGpRsVF3ySupQcuaoUMSpKZ1BKQv5mVsp7kTVETWRhJ2phLPUecrz/ducU/+Krf2NhCH0qTodwRyrOzzhliZP9UBoxivNCl4mUwUheXNeHZyEtuiFoXNCEoCkri58JWfO8LqCCGAldgb1+wOFkd1M5CsU/OPBHJNcPIIhBrzq193hegDAtEs4OWzx2bomtQRPfT7HjOjIBUFH0Vh+yuoTkdMqk32AyzhnNMorKEryGJLCYKeVBxUixGvmR236Lv9U98Vmv+XMCHLR1zrcd/RA/vfp60r7C5xqnLSGTTWAHhnxDTrmyFxctbSe3u0AdhjponFWYMqNY90zbGpsKa0ustHBxlmAK0WD2nSd57zVv5bBpYnbZYJ4vFsOP7/sLvutr/oxffdlNvPm3byfblKKWmxmqSuOSQKw0emhoPyrjDUJaF4IqRX+aCw2ekgJaflZC0mrJUDSMdA3NjHhehRLPu4S/d/2f8o9XHqqvZO/o5Hz50f3v5beP3kh2Z1b3hSshlkgk523GmnQgm8XnQkwhWMQdLzHb1Ew7hqIeUZAljsQIKUNVRzjK7xgIFAuCX7XLxBRzMUrzHb1T3Pxt/yf/6P5vZvxrBwhGcuFlpfCFYUzOWEVCaYheYc8lJIM6PK8f78akRTSyN7STtTK1Gb4rzFlJIqxIc5yqmdZGKMLX/s0P8frlj3NtMubr1e7nem9Mc97z0p/n4zeu8I9+5TuwG9QRR92DrxJ8Wl9noUnPGTonFZNDNY1eHb0UTtjFopF1kG1AtplSrEQGKxaSIIfS1CyiV13ALd/+Cf7h/j/ihrQBfHbg9+eM0jqWnCUkkA6kallUhpCIZ9k8pbCTSLGsMGUNrdBQlnUvuYGyWVdRR6AqQ9XVuJZUjlWhSbcM6VAWhi0ir9z3AJfa9ud62S+4zA34ZUmbb+neyX9p3kbrMUOmFNoZCTWUIR0qsk2FKSJVVy3ozVTD1+M/alhRKvlO8ZgM5ZKwcSvqfvYhC3q4bC+5Up9B1kyLD33Nf+ar7vsnmJkipEpGEYSInmmSUU2gW7fYziq7YIbymRy4dqKwmwlFUJS5Z5ZJWF5VZsEClfQlMpkTvsxbSsMeaKM8X27JUv7kxe/m+HUjvvJ3/jG9uy3ptqbE4vPaw55o8k1N42xktirICZDoZXvQhCiFi7IbBU2wpXGzhKplKNMAaUCNDdk5LVMYK9Hjv9z3AZZNE2gBu0uZF+uk7j7T4tXNgq/5rv+Lr7rrm5j8+n6CUWROU1aKkAvhTeO04HxB7IZPxdvWJjIY5zs54jQSC9FP67ii2k4oViI+kyp82leLyZQ3d47XBvO5yedsNFu6EKKFaazDUkVUSoxolOR/MoqkQ5iuCRlFKIVsQzmwTmAzxbKEZvmGwo0Nrqmxc2PqIz6RtsOenXyul/yXLis6RQWFLiN5USe0M8m/2JHAGsqeIjsnnqZrKKqg8M6goiIdSFdQ1YKiGzETRX5mp/tJHnZdOQ8Rs9u4keco+0xLwsIpgMY3ZQifneyE5vPwczLOUIWuDSwLjyKaiB4b4kxTNgwud0JcXBr0xGCm84NIOojmpB1+d3ldniQ+hsUh29NmYdyzTVBeCCV0pUhG8qzLTg3NqudORRNxRX2oKCmSmkJmR9mZwk6MjKBJ4uJ381zyXusWe2oqKak9XxWkK05A7wq1pcjPRYi1s+GgfSLiciiXFFUl7GAmQuOUNIcEA8WKhPzNU5HmKcF4+wzsRFJbKnLB++dzNpoHzETyUx60FgNpZxHlI0VXChZ2Co1zjnRgKJelVzbra9qPSQ+xzxSuKcWMZATZdj3+NwHlYk2ZJadkstfYKHjyJgDIlGU+3yQZy72YmejBp+CjwpSQ9QPpOFC2NdODlpAHWhuK9mMytnh0yOBqryk7K6disNKXvjCae08dzyquCfk5BF+KQlVg64JWOog0znnKnqUaGbJNGVdcNWR64GSfYprUPcYjjXdKBm/W0CQ7Ph+SxsLrUCFip3vL05xLU9UHrI/iIARFtrXTG13W0UgyibRPRsqWolxSBBUxU03r8UgyEdRGuQw+jWSbivycIhrZU6YuSuoAo0v3ph7OFx9V3REnUUYaFflmwKdKDr+6QSQbBJqnA9OxZbaaYkpoPqFon5L2y+mqJtsSDGzVUmTbge7xQNHV+LReIwr8Baa0PmejuaKF+8415OG6XHIRLtdCtOHkwlxTk207lu5NqFopWT+SDT2+7nJIRmCVhCDpAOxMTpFggblx2KPPe24wq+hJlMEo/SSDpoKEh0UPgdOMdvJrwSjyLc/KXZaoNfmmRwVhqE/GsthDBmUPGmchGwSqptr57L2RqnuSzEOup4qPAXNzn/jHPfE4Z8Cs7hOfiGeoXWT1bs9kTaNdfeBUUeaBN8FMtczS0ZCMFKEQPtdgxasKSd1hMqIGBNc5zT3Qez6X8w/YQEBPa37VIi4KZcpLkUjCagSbWQTa/UA0CZPtnOapSN6XQzcaRboth3K0oks7lSYLwVFLcaS8YkpT7x2S6vlaearjoZx0+0gBua6sL4kxnVMCTpc1aarItz0HPqyomho7C/hE1YZRLWzQ3Eb5VEm7ZCr5c1NcuKf5OVcN2jpjPupCO5lrM+8vTsbn4So7mtmqpXnGs/RQRb7pqRqa2YquK4gRXUXsTELX2bJaEDRIpwNUDUW+xzCI50tyflLdSOhUtaTH1+di/OYM9CqKF1H0NGXb0DgXaJ4JoNRixG1UUoU3s1i3jilcruYTMSDA4KjmwC5XQJ+rGKX5jzf+6g4+sb6PZCD3GPUOM037pKd12uEyxWxZJljCPBRVi2pztqlIhop0IEs5GnYM5RyxYfYG5OiZxGKEmVzVRBqp7J/ZWg32rgugPlfMlg3FkqXzmGP/R0papz1lS3SjXMROIJlQtxqrBQOZVJTlcy49sEfGfjxFzjeYV/TOSeSZS+4/GkWxpGmeCfQedkINWDPRl221oIxMxoGooGrpRXom3xa2JDuT/VguqYXT4VNZU/oCPY/P2WhqFK3L+kSjqNrSZaC8hOjdR2Y0zzgJmVK5waqthX+yoyl6atE/rp088Gw7YGYSss+W6+KAFoO88XLPlzYe+ixXtDdE9YQVO9QTdaOFZCiMTslIvABdye/LtjzIaMDliqol3vq8zzbfiqR9OW1DUndf1cbT3zrkS/PTu327T5JngzxdlZyreR/nz7VuhZt7A7mibGvKtma2ZGRy5ZwJqJQ0R9LfMZwyN52FcUDVwOipbJJghCbszK17NEyhPhxrvG2su3x0CdlWxE5rrKmLlB1FsSSjeMuuwTX0TitxjX0100i+URN4LEnaa35gqAg3LJ3CsncSm8+0Vv7RwT9gdIm0WLumDFT0mayPZOToPTgWfs2B3JhrykHjclV3DoqTEQy0Hp9hZp7xAc3wUulAc021IErZeEnklvwRQLzd5yIXZDSfKewySvM/b/7F2tuU3tDZqmKyrpmtpTQf3iYbeJSHfCugArhMwtesH2k/Eeg84Vi5Z0r30ZlsmqUa9Oukr1Z5IRk4dGyDq5M9lNE/T56q8P/j5e9apCykbbD2OjNIh4HWyYrGuUC+FUmmtTeRSOjQ2Ai0n/A0zwbaj5VEBcWyWqQ+5rATFWClM2ZVP/fK326Lpvae5t5gnb6Zw2GC3QmjQlKDFs+7X+0EWzdvyV2w9mj5HM6LTHxak6Z4+N7X7C02+7kYpbH7J2LgU/mp2pLfbZ90LN0/oXk2iPGMAoivmlA1NWVLjEWwEJVEd0sPVWSDsHPA2h2YUlRwXeuJPQXVeya5MTV1+kXaKVFQdmF8SLPx4pzZek77iYLpima2phhcBhs3KsYHNZsvUpy7STE8Wud0M8PZm3KKVamN6LKmUswV6Shy4PozvCi9sAP1grT3mTyIG9IGh7/xYYE01BCachlGhwyjq5dp37vJvj85Q/9yw+b1Wm7uBkX/ck2+UdH58HHMqGB4Scb4sOSu5v3UUYkh6V8J/+rK38EojY/hOZ8Kn085/5q+vnVuEY7rMtazWYTFaXTIUHUMreMjWo9Nma5pxofkIBkd0rQem9H9yGMkY89kfyLcfy3RiZ3UIx4Gka3r4P93zTv27Cb4TM9o3sYHc0ydhFIo0ZfPFGVX1ZRh8j7la7qvCaTbkbQvRcM5IUxI4sJYasfObPW6IHd5duYv/4Y/i5yfvztf/uhLfw6XCzxPiGoio0sU21ckDI826NzXZ/lTA9JBpHPc0zoTJPTsB5YerFi9u2L1nhlrHzpL0TOcu95QdWp880xSZsoLaHzJ7H30SaIMv/7Gn144YfPx4MWqoHFGhyzjAxn733OK1hMR34i4ZcdsTYg62o/C0d8bkQ4im9dmlMs79YX5mkn7keFRxd8/9idkSnK8z3UfXdBuu+uegj/6kx2l+xh4yzsGvOJ1j/Gdh9+/mBo5R+mHBKarhu2b16gOdukcDyzdF1j/ixnNU4rO8YjPNNMXH2HzpiWGl2iZ811ImDGf/xKswl8+49XNYnFze8VQzHVy/jW95R0Dbnv9KUlV1B0pdixehE/BtRSTVcPmi7uUvZT9d4w48MEpvU9PWL6voljNeOwbjzLZZ5nu05S9+QaA+bRFFPhG4GXZ3knqny+Xv/QR/vj9TyY+eMs7BvzNv7HJma+qhFGmJrNubHlaJwuyQaB12rH+5xOW7y9JB5GlT1es3FPRfiLQfjyQbwWaG2I0qo4YzDl5sxSEJIxfkJkE2LoeLrG7n8v75D3lYq3M5S3vGPC33rBNsSzXnYwiyVAwucUqzFY02zcuUaw16H16SjqQIlnZVYwOGHQZyE+N0TPP6LoVhpdKp5Cu1M56qWsD+avP8I3tU7ungGeQp9oUEJ18zzeeI6SS0po3KPg0EhLxtsuO4uxXHMDOIofeHzn8B5oDHw4ceJ8wJJ16eVsO3RqvKwgW6b2fH6T+RSO+tXvhI0o/p+r5+Q//mD0HyE2GRLzFUE9+cw3F5jUSVpsCNq/N0JWMaxgdsYsFr6LgPEHgOSEFVUVcrvjRW37rc7nUz7soJJc0Ty+kfQkJQiIIA10p1CQyOmTpX54IgUMddqog73d16KV9navZ2kmPRA3PlJraix74+WLRvPbGO3n/x14qBAk9RT+z6ENWpksOpRhSdI1UzBvidVbtmgJMC/WXz2U0shlrGVFb8yI+CbWA/L33onNcbvfWLPinyktedQ+f/q/XgoV8MzLJpEfaZ4qqoSiPJpgyId/2QuLcD1IXWEkYXJYKO33dV05NojPHqepKKNa+79iHF17VF4KMbpmy9gfSJZfU3WIhkX0ks+0j47YwZ815ZFWdI7cziVgW/LJKopQ5JrbsKv7DF/3q077zueyfF4y3uaMrTt35vzn74IdxsxG2t8Tq17yG9bUbsYPAmYc/wtkHP0x+4DCDuz6GbXbZ/5o3sLR+NWk/cu/v/BzZ0aOMTzxAdeYMnQNXcukr34Q2TR78f36BE4ceg+/av/i+m776OD/2wysv1OV/ThI+g6J1BafufA+bn/oQbjYiaS+x8rWvoXPDjYQZbDx4B+fu/jD5/sNs3f8xkmaHQ6/8G3QuuRoV4d7f+znyo0cZP/oA1dkzdPddyZHb3kSSNnnwD38BM7oavkG+y8fALV/zGP/6h1c+I+Tn8y3PpJdI5PvX38uvPL7N5FfuwE9G2M4SB774NbRuvBGfKx4/+1G27vgQ2YHDDD75MWyry4Hb3kB641W4duTkz/4c2dFjFPc9QHnmDM1jV3Lor70Jei0e/x9vpnfoWpZf9hUkI8lj3f8D/433/Is9QFH+LPLGfR/hBz/1OBv3fZhqNiLpLrHyqtfQufpG7BS277qDsw98GHvZYYZ//jFsp8PaX38DraNXk/YVx3/5Z2kcOcrg9x6g3DhD+9CVHPuKN2GaTR78g1/AfPHV/L3eI8xP2r20fz6TfMuLPsov/XTBxv07NmXlVa+hff2LsRPF5j13cO7eD5MdPMz2PfU6edUbaF96NcHAQ+/6WfJLjjI+vmNTDn/tm8h0k4d/8818avVxXvdd+4An75/PJs8rxv1M1jjvrHL913wvX/TNP876l9zOqV97GxM1kG6eCcweP04jX+O6v/fjHHjZq3j8f70Fe3K06FTof/KjHPz6N3HzG34UtOaxP303AMvXvZTffHex+N47P1XwxCnH193Wej6X/4KLfkqqIMZIRHgS05VVrnr993HLN/04h2/4Wk69+22Ukz6uIUWd8cZxmtkqt77uxzhyw6s4/jtvQZ0bCwGtgsEnPsrB176J677jx8BoHn+/6GTpupdSfuKOxXd+8u6Kx2ud7BXCjqfqBcQDvzppsXZdxmXf/P1c9UM/ydorbufEH7wNvzUQvWQwfeI4ycoal/+zf8Pyq27nxG++hVkyWkDQxh/5KOtv+Gau+KEfw3jNmd97N7qEtctvZev+j0mHmofh+AlmGyNee9vea709Xy5PNkiW1rj6676PG7/tJzhy3ddy6lffRln0ZYaOgsnp47T0Gi/69h/nwK2v5vQv/RLZQ5NFA8XWfR9l3xu+mSv/wY9hgubEh95NVLB65a2MP/JxdL0u5vvn1V+ztwqIT7Ur37J0B2lvjWtf/X28+O/+BAduuZ3T73wbRdVnui4R6PjMcRrZKje/8d9w6Kbbeexdb4GN8QLT3b/ro6x98zdz5Q/+GEppTr7v3agAvRtfyq+/eyd9dP7++WxywUbzDX/nJOvXPsLKNQ+xcs1DfP+PnF38bvmymzHLSyg0+/fdTLK6xvjc8UXlN8naXHroy2mdUxxcuYlGd53NM/dQdmVRdG+6lXZ+EGsyjtz0arYfvpNAoHPFDTz4kOOhhyXE+pVfHfLG17VJL7Dq9Zclb/g7Jxf6WLnmIX7gn0mepPslZ+hdeTOmt4RvGFYufwlZd43yoROLKqlttel96VcyO5DSedFLyJbWObdxD1VbQs3ujbfSWD5Ic5Rw8ItEJ1Uaabz4BtTJ0zzwkExw22s6gafrZb5WfAx85Ps+Qri0SzLVtF7yEtLlNaanjmPruVG22Wb9xa/AVpbu9S8hXVun+Pi9wvYTFO0vuoVW7xD5JGP/y19D//47MePA8qEbKLfO4k6dxTUVm/d/jENffdWe0ctn0kmuPMuX3UTS6pFOFb1rX0LWW6N89ETNKK6wjTaHj305jWG9fzrrTO6/W2gIjayVfP0Qacg4fNOr6T94J6oI9I7eQHV242n7p5HtDejRXCdzu3K+Tpauugnb7ZGOFfv33US6tEb10AlcS1jpTatN67avZHyZpfnSLyJdXWdz4x7KJdFJ+5ZbyNcO0hqkHLj11Ww/dCdeBzqXi015PvvngmOWX/vvB7ntFTtzJt7yjgH/91v7fOf9f5ONT3+U03e/j3IoSXfvSlw5oliRjg7b7VEs6wXA2y4tM40D8h6gIW0tkdd5u6SzTAyeyo2xqsuR2y7jre/a5Ed/aIW3//qQd775wJ7J3/3qL+7n9q/c8WTmOjm33aa6+yOcvfN9lP1NFOCrkjAeEUzENSJmqUexLmTFyoPet8JE90lrSn+1r7egBDNropMyjDFJh6/6+jZvfdfwSTrZS/JMa+UX3yr8p7/xqxVn/vu/ZXRcvIJQlrjpaFExt50etlLEmsw56a3g+4MF5tB2lzCFtKmGpWUInjAaY3SblWM3c+6Rj7F6yavYfuDjXPFdr6KIdzzTJX7e5TPpxEfFuQc+ytm7nrx//GiETyNVO2J7PWb7jVAHTiO2t8w0DMjXa4jeat1pNY6o7s5ase0ul952OW991xN7cq18pv1TRs3mvbVORpuCy3UlcXssBEAJ2F6PahlC5iEq9L5lCrctRNcmog/0SEYKOwnYtRXRiZtgVYc3vq7N//jVAT/2w6u8/deHvP3n9z/LVe7I55zoiTFyf7FE790NHv2zd3L5676b1v5jWKe559d+Sijla7qmctpncDRivHgLsz/cJtt/A1W77ojY3Mb2AkVPMx1uo7TBNFvoInL66lfxy2/7b3zZyxo0G5ovubWxZ4zmM4Xnd09XWPmzGY+9551c+i3fIzqpNA/8yn+sO2Bq4tN+n7LjUVr+XY42yfZdV1PEiU6aZ+oBdb4P2mAaLewYPnnT3+CT/+WXn6STLwR57DHP3/8nZ/jNd6zzI7/140wPGR7+hf+Ia0l11CdQjfvMerJWXAOqwRaN3vWL2Cie7WOOIiDukayVxDbRk8jydbfyyB+/jfzo5WibMjh0Pf3wgV29588mpx6vOPH+d3L562X/pBPN3b/1UzIKuk5fVaM+09VAaABBMfvdbbIjN1Asxfr325gZpKPIpN4/Nm+hYmT5tht520/f/7S1shfy38+UxonA7W/9Nk6+///gitd+N80DxzBBc9//+inSzYgdCcLADfr43IslUxHX36L54htk/wD+bJ9GJzJb0cz6OzqJEfZ//RHe9k8f4Cte3qTZUHzZS5/b0DEVL4BnUCnlgQeB8ycPrQJrwKPA9cCngKJ+/Vj9+sZ5/z4BnAWW6n9/AvDANUAG3A+U9e8i8PB53/UiBL68BZysXzsaY1x/zjfxAstFnTxdlFJngS7wCBf1spCLa+Xp8gWpkxjjc/5BNsFtT3nt24EP1H//SYSgbwP4aeB9wHee974/BX4G6Nc3cvt5n/Ne4N8BdwAD4LeAtad817+sb/ryC7nuv8yfizq5qJeLOvmrpZPPp3IWivgMv3/vXBnP8p5vfbbP+EL7uaiTi3q5qJMvPJ3sjbaa5yBKqSbwvcDP7/a17BW5qJNnlot6ebpc1MnT5fnq5AvCaCqlXoXkLE4Db9vly9kTclEnzywX9fJ0uaiTp8vnopMLKgRdlItyUS7KX3X5gvA0L8pFuSgXZa/IRaN5US7KRbkoFyAXBG5fWzHx2CUJgciDD62hpmXNIKKJicwZiImScamqHslA3QYapAtoztg9p/Eiiaiabj5G6qE4O3+quvtBe1CVhxDkjRHQimk1oAy7NzVrbcXE0fIBshM1X1uMMmHO6PqGACUTOudsK3OG8ajUgsU8JDWrUxLQOhCjIgQF8x/mtHsyAkNPnXwHQIgQ/EInrrnFeKvcVZ0cu2SHTecJlzP+dA5VzTRkDTGxcu9GWmjnAO5gazovEzAmLEYRxKhkQsb5eqnXiy53+Fd1GdEu1Kw/oR6uFsEHBn5jI+4iJvF8vdw1WCN/rNxZI1rJugFkOPczPL4YZS0ZRdRC0hyS+XSAuLO2okxr1A7sOKC8l//rw87n1N819QPKMNvVtTJcOkD+aFHfcwSla/JpDVo/ae/M/z4f+RKtImhZMyEFZcN59kQRF3uoVlGtFxXAjEr5Tl3rOwSoHNM4eladXJDRPHZJwh2/fwmfrkZ897d+H8ndj6HyjNhpMrpqSch1W4qqG4WivuMhnT8oUCaSNCqUirQaBaaebx2jQqmI95rZJCUME5RXmKlGF9A5Lh/Re6gkf2iDaA2qlFlBf3bif1zwg3oh5dJLLJs//P1c908fJ8aISlP8Wo/ZoSbKw2zFEKyS0R4t4dNE15R57YBvBnSnYqk3JrWeWJ80ldcMhk3c1EKlUYUmGSqaJ2V20r4PbBCaKSG1mGGBPrdNDAFlLZ/q/fdd1cl8nczln5x6CZ96ZYeYeNTBfYyvW2d0yDBdV5TLQWZUZwHddGR5hbWeZlphdSCzjsobfFSkxjMuU7aHDULQ+MKgJpZkW5OfEb2kg0jvgTEqRFTlUaVDzUri9oDf33zzo7uolifp5VV//W+jNx9BKYVqNfFH1ilWc6qWjPoIqdCXRYMMVSsRZvtU6N/KpYBfqTB1+2CoNDEo1MSgZwozU6QDxb6PFUK598kTchFODlvV7RA3t/jg4Dd2TR8Ah45opm/6IS7//34SpRRkGXH/Km65QdlLGB80+JpqsuoKnaRvBoiKmAbIPUnu6HWmNJKK0htCVPigGE1yqmlCnBlUobFTmVi6dH8g23Y07ztDaDdRMUJZweY2VI4Pjn/zWa/5ebVRvndypVjp4MEaqvUW0xVD2ZMBYj4F3xKDqVOP0lG8Bh2xtWEIQeO8WhyORZFQFZZY6sXEwVh7H7NVxdpdFXZYEjp1q6A1qKJ65hP58yhFjOT350QfUNYQ2w1mB5sMLrVUHUXZFWZp33bYTkWaVWgd6TZm5NahVSTRntxUuGgonGXqEsZFKk5SUKhKoUuZazI5GLFjxexwF1MF7LkpqnJgDMrsDQKGp0oVDdF7VJ7hV9oMLrHM1qDqyqGBjajUo7UcnN5rnDM0shIfFT5oZpUlMZ6iSrA24BwEo4lpoFyNVB1FftYI16JvsfTnGzteXOVgj7TcghCWhNRIbqyRE7ttxkeaDI+Y2iBGXDsQWx6deIwVNynLHO1ciLgz43FBE4HSWSZFwnSYE20kZKDq9tPZiqX96ATVrlsEZwWx3YTRhFju/pDCQci55lf7KKMhSVHtJuV6k62rM1xDUaxEqnYgphG6FWlekSeexHh6jdnCSLbTkszIAbsxaYqN8ZpYaZTfmZPkWpHtqzXJIMW1DtJ8bILZnqAmM6K1MPfKn0Wel9H8z//1DRw5/ShRG6LRqHrU6iIcj/WoVa8ITtxjbwNJuyRPAz4qisqidaQsLMYGksQTvCaoCAc8cSqDNaNVTJuRM0lC85Sl/YSjed8GpMk8nn8+t/CCyShkXPfuDZQ1kKWEVkbVNlQdGZDmG/NRDOJNx6iIEUazjNKK+kOETlaiVGRUZEzLhKoyGBMISSBGFkNGQ83CsnFTxsE/HaHHU6KtjaXbm0S7LhhUYlHNJtVSJrOrNSinUKUmxkCMhmgjWu88T+cNzht6jRnL+ZSpS9AKZpXFOY02UYgagiJqTbEihMVpXxHaGfqxsyiliJPp7t38M8goFmAUKk1QrSbVWhvXEKLlkNYE07U3EaPCVQZjA84ZzvVbaC16ilFRVYboFWFqwSl0qRdzl0ISZeTMoQ6rn0rJT/QhT1GzOi2wBw5ZFzV8+oTsZ60IvRauaQhGvMv5uJOo44LwsKoMVgf6UyE290ETo2KiEypvCEFTeYOxnthU+NpOobRk/ZJIsJpiW9M9vS1eZpbCcPScrvl5GU3fAJwTQ1FUda5FbtCnkWjk7zGp8yxpAK9wpaWwgRAU1gYaaUUjrSidYTLJcOMENTGS8pvnJRajcCPTNUXnBKhpIfmZ6ezZLvPzIgGN2hLmnnkuSvnzrZzk3pSDapgS2xXaBIJRZInD6Cfn7br5zj3NpinRK3BK9KABLTycZRcGlzVZPjeS3J1zku9a6aH3GIysCHaxQV1Ty0aYX6KOMu7Y7uS2Yef5N9KKaZUwcxYfFJNZhnd6kdKxSZB/z/PoJjK4TGFnHVY2BsTxBLQi+r3jaf7jx74We24q68V7lA8Lh0Mml0aUU0SniGjQER81SotzoRRoLfeTJE4889RTThKCBlXoxazw2Trk5xRlz9J4yNX1gCiR0fl5910UVUeLSus6upLXF05YEM85VhpnLFoHxpOMvFHSykqcN/igSY2nmc8YlSnlxOCdwRcGCo2qtNgjkByoiYwPKVrXHaB51+PgvKxRa2H07NHrBRtNH2WiJI2cOJrIjRotRZ1FoScS5x5D/aduOJSOOCcu6WSaMCEjeo3JPDZx+ExLFBUVykvyNtqICjXVfQab1yY0TnRQg7G0Qe1yeB6iIjoPKz1UWaGmTwl5VAQtOTuVenxpiInCO0Pf13moWkfWekLQzLZysiUxnsoGMZxQJ8IjIZNwY7qu6S63sE9s1g/cEBoJTHZ/I5wvLVugkjY4J/m6eiSvdhBLRVCaqAIR8F4RvBjYSgemswSiIs0cifEYE+p9LzqJEfE4dRRPdSZrZbJf07xiH9ldx8Vghr1jND/42zdy2dYjRGOIswI9c2L0QWZkVYowHwpfKUgCKgkYEyUEn5nFYaOmksMMaxVKyd7DRrGFTuEbkdkKgKF5sof99ElUkhBnMzFWu7x/UEhqqdeF6QzdH8NBYWZCKYLZ8TZxCl9qKRQqmM0SiiKRSCxoRonHWs90muILg8k8ygRiyqLYOP/OkEJwMD5gaXw6h+2hGMwYdt73GeR5eZpRI7mRyQRCJhWsREmBw0jYlQ01yUiqodMDgdBWmFaFMRFjPI1GifMaYwKzWULwelElJq0NhZcymdywLKKQwuxwh8a57cUJtZuileQymcyIZVmPqO0ucigA89Gy0Wl06kFJbrfVKGgkElK7oKm8ppE4to1448ErlInEJMiGcKqunsrGqlowOdyke6ImgvaK/lVt0k/4z7canlUS5YlVRZzOCFae2TwiCVkkNjw69WgdSFNPagumRYpS4n1qLX+WTnaP5DSl+usqKxVSqGfEyN+LJehfkbJ+ZhUeOr6njKYpkHxi8KBNPWoW2cxWIjTlFWakJeer6rXTCLR6U+xyoHQGW6MLpkWCcwY/lsr8nBZN/s7OWjmU03vUEqv6YNe7v38USCQwnkBZoWIkGTlUsE9+k6aunmpUGkhSRyMr6eYFMyfvLZ3B6IhWkTKxlIW8rmzdZ26i2BSUpMxCPX/qUI/k9EZdRZ/nRj6zXLDRDESx/nPoj7W4hhHux1RO+9CMuJVAkXuSzNHNS8bTlGo7J7YrktRRekuICq0DrrRoIx6Zbjm0joSgiE4TC8188JosBsV0zZK3m7DV3+2UpkiWQlFCUUCaomKsh3zVuV4TUZWGmSJkGtV0BB2Ylcl51XJDjIrSSfgRgmFpaUzpLLOZbAbv7eJ+lZdwdLqi6Sx1YGMblSY0zjnO7ZFxF0+SGm7k03oet5HDV88UQdX566hoNUpc0Iv8bwgK70HrSCMryRPHrLJobXDOYBOPKw0xaCEDq8VnkWJJMby2R2+0hjv++O7c9zOICqA6LcKpM2Ak3+ZTgZ5FG2s0gUc3HGldICtONplUTZJ2ybTWTwn4SqNtJAaJ5kKloZIDRYbMqcXQtdmyprvUgSfOoJoNSabv8gYKsfZ2nSMWheQ1E70DW5zv+wBmYlARHOIQeid60AoKZ5iMc5LU4SpDmomdgTovbCX3G72RwpBT9bhoGB/MWL6vQRiOdmBfzyLPw2jW4fl0RvQenWeUHbOTx9QSQuqxIQRFFWGmI732jDKvqGpvQWtfe1N64VEkmSdGqAaZfJmuCyiVwhRSQY4aiq4iLLfRW/09kZMBOUTmFfSiK4dITJCqn4nENKBsIGtUWBswOsiCQRLZIQiiIKk9z8R6rAlMCwnho6uxa0H0oBwCP2woYmJQMRBnBdM1i35873hVUFfP6yJVSISl3ueRmMiParhFlDgrE9LE1UVCg6q9TKUiIWgmRUpRw9R8nbYIVZ23cmoR9hNlkud0VdNe7qDP5vDc8vx/qeJjkENjMCTMCkyvS7Gan5faqg/ZmSZgqYIib5X0jvap6rTF3MuuSkv0GtsoapihoqzmLM1Isa1UC1yiayiKA23SRx5DxYDK810vBmkVUVlG2NomzArsyjLlkpilWOd3o5WUg295TO5oZtXiQC2qhMTIaTlfJzbxZIkjWoWPitk0Ff16LfnS2mDO502VHSWOz+C52ZILNpr/c3iYxtmI6nZQGyWx1aBq1cWOCGaqSM5Y0iEopylWLNNDFr0/UFVzgxklnCgMJg1oE3HbKcnAkG4pGjUmbQ5fCpmEo/OHH43CtRJSv/thaK4qhjcfoP2+BwCIaULVktM9Up+SOkKhiU5R6UjwgSyXEMkHvaj+ea8IIUGpSFVahkGhz6aYsoYcZTISI+o6VerrhZXahW+5faUm/cTeMpqZdqisQxiN8ZmEoMordKXwzUC0Gp3Js/ROy5x7rwlBown4YHAuMh1lxNKgx4b5KFaikigF5DCpx2MQxXgGo3C9jLSxN4ymUZqqXQPNY0DlGcWyOB3UnmHjpCUZgq4MVSdhfKlF7R/XOlF1/UgTvcLmjqqw6JM56ZYin7LAcxYrEvHoQvZONAJBSrWWPK8PfNYE3udDwnk55zSh6EjeMkq/jOwfJ+m6oA1FVGR5SZIEvNcUQZA4xvr6cFWMp5l46NMEthPMRKPreosuxQmbj30OBmKeLQpzoZk+6+VesNF8z9a1AMRmjkpTQiNZzJpunFZ0TnjsxJMMKzF8Tct0LaF/eQ93TYFJPaH2DnVSK+qxBiufhsa5QLbl0C6Aj7iWxTc021dYgt0B+EplsM4/7LKnOQ0pwSpUnsE0gNF1h4Z08CinUIXFTGsPMSaU3cBoKcHmDlVXQWPQuDp57Qcp+UlL+3gk3w5oF1A+4nNN1VRM1zXKy4GipE0GlSSUVxwgHcAs7q738FT5h6sf4JU/9E+4/Cf+HBUh36yNWgU+M1RtTbVkiC1PcFo88KjwU0NIFHFqSbYN7ccV7ZOCozNlFK/VyFoY75eqfLQyLgPqQpMF1zCke6R6/vbhspymq0uo0ZjYaeFT2cDZJqzeFbCzQNKvUD4ScsPw8YzBFT3KYwU2r6T4pSLRRNw4oX1fQudEIN+qsGOH8oGqK+tycKml7Mn+VB5Zq0YTKwfBU3V3dw56v8rxB1ZRo7GgCIwA++frQ3nQE4MdyyEbrME3IpOOxXSqBYogeIMv9cKmhGFCfsqy8lgk7we08wSr0C4yOiB4WFPKAS7dho6oNXp1mbj9Auc0XRAA8Zmv3Mf+3x7jOhnRQDKKdB6v0KVscCJUvZSqJfCHxkbEtVPKg+JhKSstbsFpWpuKqCJVQ/qhTBHRlXxO2nfs+7hjcGlG1VKEbN4GtTfC8o2tLodTxez6w+R3P45vZUQl7n++oWg/ptElpONI40whSf9cM1lP2L4mwR0qJCcVganBzwzthy3Nk5HGOYedeKJWRKtgGjBTyM95yq5hsn+n7S62m0z3Z2Tbkc2Q7apOnioHbZuDLzsJVx6jdTLQOllAgOTcGN/OCA3L6HDG9pUps4OOoOp2uJkhVprmccvSg57GRoWZOpQT79Q1ZcOHRJFvRKquZbqiKZYlHxYM2KpeK3ZvzD3/7XM30TkO42vXaY+n+FYuG7eKdB5y2KlH+YgKkXI5xTUkLZNuQ3U2pVqTzjqloxSHRpLnK3oKlCXJtPx/H0nGjpV7PcNLM4qeGAztAWuJ0xkqpGTrxa7qw22nTK5v0Z4dQD1+mtjMFlFEtg3NU4p0GElH9V5QipBqpmuG/hUJs4MO3ZJwnaAIY4sZGlbvUbRPVST9SpwwIGQG5SLptsbnhmLJMFtWdWpEcLOTa/cTPvLs13zBK6lhKvGkogJjqNryEdkwYCYO104oO5qolfRIVxGfCnQg7St8bvErleTovEKPDD4Dn0sbXNSyyH1DM10xJJNItu1pnaoYH0ioUAtvE63A7q5XpSLMljRlO2X/8SZVNyXWkJruCUcy8oREY6eOqm0p22bRCNA4o5ioDLevgnrYnBkLODlYKOvcqJkGzNQTupbJukW7KB5DkFDdNxJC0mFwzKAcTMPueg/PJD9w7D381A3/L3qf3JZe6DncRSuC0aTDQOe4Am2ZHQn178GMDLqCoqsJSUq+aUg3Z6jCk50bMbp+bWe9ORlAJ2sI0OBy8LkWTOIekIapKHqKYAzNx1bw3ZSoZRha2i+puuJozFMwZhbxdXoq3VbMGhbajlBqKDWmFIiV9N6LsdUuMrg0IZlYsm1PY8PhGjtFRIxBWUu4/BCTM88eiv5lS9QwWTdUrVVWBmOqbi4VfxdpP+FJ+1WdmxUUQdVJCIk4Jc1TEZRldqhOgZUaPdOkW+KoVU2NmRlM4dGjGXG5yeRgjoqQ9h2m0EStpZJuDKytMD7w2U3iBRvNli1wDdAGSCzFksbliumKxic5LlcsPTgj2ZxA5VCVw+3vkYwzpqsWXWgGLcGZqUKTndNk25D2I/m2R5eBxsNbqLIiuXyd/hUp07WEdBAlFzYH0muFajQI5e4aiJBFqi5iBRNLUSexdRmxY09UUCxJCNq9e4tGYqiWG5Q9CxiUUwxzS2h6MRIzRTKKJFM5cIiQnRoSrQbdIEs121cawcUqMDOo2hZdBVwuxadM773OoD+fHMUWgZhbYjRMD7awE0/+0Fms1kRrSPd3sdOMs42EcHhGbFcEn4AWb8oUEVN4ZvsaJCNH+sRZ2vcbojGcu3WZ0SG9ILBQvg67AlQtDY18t1UA1BC1CK6p0IMJxdG2TJJsKQaXNXC5YuWeCWZQoOr9UxxdwU4T0qFGBcP0GgdekW4Z8jOKrB9Jh5Layk6PUP0RdrjG5vVNZssJyUis5TyVQ4ioIweZHGphHtn9nGbVUvhUQZpQtS1RQTaIZJtC4uFTw/RAxtJdm9itCb6To1ZzgjU0TkFILOWaQ9VF0mQMpoyYqr7v0sHZTUxqaZzR9C/PGR3IaucDtFf45SZRKSYHFJ8tu3XBRlOriGtGWpvg1ru4XJTuGgo7hfZJyalMjnWxE2HemexPaR+fEhKFCppBBNuuCJOcZAjJUE5HXUWmaxY76ZKcGZJujFkblpz64g5lV7zV+YOPWhFWu/jdI2gBYKU1pupE0i1p5Zt7ka6p2Lomw5SRzvGKdKvA9RooH5iuJ+TnHCFR2EIx3adQh2YU2znJyGBn4mmm/YBraSbHeowOW3Qln51tRym+SeqPkCmmayl2CrNOpKN3v1PqqbJix1RNzehYC+0irYcG+FaGO7CEPd1HTWbYQUqncEz2dSivEGKX6TBZdIbMAeCDo5aQWrJjV5AOA+nQ0zrlCMYy3b+z6IOS8LxqKmmj2wPSMBVlV0LPmKfS0KEFR6kctJ9wxEQzuK5HvulQITI+kJJte2yiaJyF2Q0C8LdjhZ3OORoU/ctT8pUleh+dYsYFy/drzt2QU/ZEb7qSfaNaDTZevr7Ahu62+Lze10DVkTz2bEURbJOooX2yovvpETG16K0h/kCHtF9ip4ZiOSEkhuqIFyTGSJNtR+xMPrBYtvi0TdLNma2npH3H8n1jzr6kxWxVYSdIBX0pk3xw3YL6bHLBRrMMtg4JFZs3tJnTnCUjASsPL7FUzQTtQZcWnwl9VdVqYooo5X0jsIBCR3wO0/0KXYgRKJY0KmSoQ5KXs0Ug3wyMD4oXYQpJEAerpPtll6WlJT+nK+i/aElSDHMMYu3wTdctm9emJONI1VZ1FVNjZoITiwasCag04HMYHBP6L32ZxhQQrKk9qIgpFD6N5OfqKrqD6bJhfFgqxwJ72xv53vPlVe1P8Uvrr6axEWiMgrDYdBKKJU2zLc9Ru4guvcBj5kiLQlEuR8oeoBWNU7lAdjSCw7zUEBIt3kIeCUZgHMoJy09UkvqJ+d7I8059UuMOFZsvWSGZSEpKl+Ih9y9PcM0EM5O9ULVlB0/26wUkSemItgJdmu6vO+fOSF7Tpwb35YcwRawLH5xXCFLCsgWUbUXVqekZd1FCJms1GUb8SnvRLRbrMy6ZRlxTM11rCxKg6oizMQvYScBnCjuJKBNJGwXuXELRU5RdQ/N0wDUU4wOGopfU0YpBhQxd1IWgRPbpdM3gD1n57hfaaLZMAVoeBCiyLTES4yOyaF0jkvYhGShoSqeDzyLFCigvVV+MwAKIiqoTpS0KmB5QpNtQ9jQ+q1vtSo3PJQxdSISQaGbrOTxwoXfwwopGXHzfgOElmqUHPdqJMSyWoFitYR9lpJxKJ4JvzjeK5Gd9K2CC4DFdI+K6gdgQIgqcwg4MyguVXJlGzEgzWwVTKLItmK2rxeGVXTXAsvtQrKfKugmUS5BtK6arBp9aee4BBkdTfKZqEo9IsSSgZz9OsF7hWkG6zTJP1Am6bmjxpeS2qm6kbHqwETOs4UjIZtBecn2zw224a/fu/3xRQSBBk/2a9hOSq5vtkzXj2h4z1jUkpl4vWQ0xK8WYhBqn6bO46OPfXomYCaioGCzveNUhle8zM3mfT6E6vIKqo7Xdlk5jVtPdKTZu7tI+5ZgtyQFRdhWjroDd5/egK3EyXFPvOCY1Rj94ue9yGVwzMjw2r8CLnsxM4Vp1J5qBZKSwY7kOlylhaXsOZ+sFG81/sPZ+fufKG/D3dXC5IqlP/WCFzSc2PEWi5KYshIYXouGpQU8VdqJQNuAqSfBHC9VaHXfaQLUsi97Wi5+WLKRk2whH4FAW0PigkYrhBy/0Dl5Yscoz3l9BTDCloujpGtqBALhNJD0yoaoM1cRiGgLgj0HhxlYKP5USGjSniTaRfnsTSdrCfMSqLIg88bjK4KocXSmoDxJdwazG5L326D38idoboej50lSG2eGK5klL2dVUHRaFiWjFiwbB+VYdaTP1VVqHnhEanrxdErsFVWkJpalb4kDnDq0gDJKdfFQpRmYOtZmu7Y3q+fesv5c/vupqqvtbJCPZrOIE1Pun6QnLJW5iBbaWOwFlDy3C1lL32lc17KwRCT2HMgEfFNWKFcJdp6SxwimS0RzuFtEOznxRU/LhJWTdclf1sWQn+CxSdhUmV0xLKXTOaSbLlTrsdgozqQ+LZiA2/cKmmGmNlogSbfk84noO3XKSKpvWTQGlhoY4FPZsuiBD11XENWUtLYiGnkUueCUdsW0uWd7mETqSwG7LhWqnqLJA2iuE5i0oimmCNRFXmAUbuwqK6DVZs8C7OjnvNLpdYROPT4OQdvRKtBHwqjqXiVIycadUHfZK6Hqhd/DCSkMpvumWP+OX3/MKQE5HU9SnuIKYC9xhbWlEuuoZFSk+aIbbTVS5w/W33hqzdaZDWoLtG2kVyyuSJLDWHhOiovSGs5sd8UClhRZTSsXYFIriYMVXdO/n/XshUfUUyVQCiYRTviEL26cs8kchFZ5QAN8OxMqiZ3rRgho1xBYstYXmrXTSduprbtayNIRU2jHNVIuX6WRDmHInH7rbcnOWcXTfJscfauJzMQy6ipiJompHdOZpNEt0eyYsV1Hhphrt1MLTzJsF48c6mEIREwiFRnU8JgnSfqmiYF2DIvbnbBU1VK+2B8FCsRzZnwx2URuQKsf4YAWnEmJt/EzNxB9ropvW2mQBWq8qgw66PjTlM1SEUBhW9g0Y0pCDZWKIuRcsdDOSpA5T25PZOJV1FSVS0ZXkVauuqOpwd+tZr/l5uSS/fe1vcPClJxcuv65YuMhVIVyHeVphbBDwdpCcpZ2KR5q1C7wT/KKZSfgZRpLXUiqSN0vSrCJNnYx+SOKCeED5iKkkF1G1n8/Vv/DyfSsf4aqbTmBKce9DotC1t0kU5p7S1ezj1ouDpeOiIyHq82jRFDVOTWGM4DdnTvr0B5OcMLYCL6mBvy5XRCtM3m+45WP89dYeaHt5BkmUYWllzJyUIqTUhLnyM09XaA90K2ziJAdVd2/oiaYYZQynGZXX0pNfJsymKbNpiq9zoPNWUzNTi7zYnDBoL4iPgXde/Q7yG7brQ3+nMwUVCYVB64DVgTRzC/zhoo3YwKHuAFWJs2ImAlMDUDpgrccmQn4Sg0KVatFooUuomjX7ewPKQxWJ2t1UTlNp/umX/B6uJfuh7EoeWtfTYwiKshT+zKXWlCxzpKkj1v3jpqghZkkgMYL9NqVEtHFmCF6T5RWNrMRqIcKJhVmwqJkSbCH2RXkoDpc01LOTMz8vo5kow29c/z+56Q13M7jGLXo4Qf7UOlJU4gK6QsY1mJkg+lHQaRZU00S6ZfyT85XaCKOPMUK66gq7WCC6qPOcNR4vJM/3Dl44USjWTIufveIdvO71fyZM7VldkJmHn0EzmmRsDltsDpqMtpuwlWLrsAkF27OG9KgbyVWm5zSzcw1m05TBJKc/zfFeQyLVUtEnDF464yu/6WP8i9t/nZ86+PHdVcZnkZ958duoWuyslXlVXMmCNXWkmNYtpvOFLM9cQSntpkZHsqQiTRx5o1wYCLyQGs87SeZMU09inNoDsmya/NpL3sxlX/cQxQpi1Lw4BejIZJwzLerDYGwxI03SV3U+L1IGOSCirnN2QQl5c1RkqaPbnGFtqI2DFNPsZG6YJXfqG5HX3ngn+R5gCvtb3U/zA1/7/0hKK6ur6W6nGBSDxgXNtIYXVqVdOBbURaMFC1Z9QM5tjVJCdO68ESax0qIqwULbiby3bAsyZ3bljP/51f+NxmdJbz3v4LanG/zS0fdw76Hf47XVP6R1wlBWilAapiGT6p7TqIkl3dRi+a0kYF3dOB8N2LHkscplhSsFzJ2mjqqywko9tehKYUfiqZqZ5IGqLqBhrbe74cVcjtkmP7HvY/zNv/0hvuOT30rxx2vEkSIkBlfnKJ2OsJ2QnzXoUnqDdc16Py2FN1I5FsTLrYctZc8wXUlQTeEjpdR1OkQ2wRWHz/KfDn0QswfzmE+VL85g9ZUn2fzjg4CE5EAdrWjMVObfALg5sUs9H04F8E1hMR8hfcVzdnttAigDsc6Zz6uvQYznnD9xL4hRGh8DVyRt3nbFr/PxS3L+7ru/m9ZjdS/+1OArjS81FIZk25BtKFybmqRFcWYgIdacnMSOFLN+im5XwiUZZNaWKqWglA5BeylYFkuSM169+Qz/n/3v41V7IJXT1jk/sPQQX/p3/hNv2fgK3vvrX0S2DclQ4doK7zSTsTzzULPU220rxWYFriHrqPJmgV0GyJ9IKNY0sSEjdoz1kguueQnsTLC/R/7WQ/yTS36PS+yES+1nD18vyGjGp9BIGaU5UvP/2Slkm5oyQkg1IQ2YgSXdVmTbMN23s4Ans1R48er+aSLkpwyFywgtzzgobCI3CGAninQg/1cF2Lgl8MW33M9PHvktvvldu9sGNhejNAa4MTVY4/ETIU/WTlO4ZAEXapxWixBV150/KDlITF0dBgkxfEO6qNK+pVg1+EbAzGTAmimQdIjfW33m8PR1MhejNP/uqnfx3X/4/SgHqqoNoq/D6ZpoGqRCbGYKX0NSTKlI+pqykeCsQZl65EMQcg9hxxfPfV5hXRA+ANn2HnM3EWNxUzolpBFdQbahUE465GIi7X5miniipXhhIQvMpunCe/apbH7bN4RCU7UdrrAyTMyJs5GM5GDeuh5uf+XH+Vf7/4h9polRTeDcbqpgIUZpXpZpXnb4Q7zsSy8h/PoadqZIhppKJ4QkEAA9NTQ2NM3TkcFl0imlojBdlaVdHJDRRMxUkZ01uJbG9RTOWNTMYCZ15FuK3r9s9UG+LNfAc8v3XZDRVM9wKoUohKnKR7ItAa/7PBK1Jt0WGEnVqeESiXgXfrbT0iWkxYCWsFR5I1VAYwRu0zek/bpvti4A/elf/ykO2nZ9k8+etN0N6aYFpxOFmcpDnaPQBZ4lPI92Cq3HwGeK8SVxMV0xG4pnIDhEGQSVbyiyB5HZKck8JIPPYJt2XZ5pncxl3UyxM/BTMZJPzTVGJcTCBMEYLnKgVthpKGVYVqzZ2pUNxNJIUW3BcsSTmLqVjwvy470g50cFCYb5iNl0KMUJgRHtjHZOxtA4K2mfqiuTJ21QJCNJAVUt2UdmolDO4tsBPdEkNRG4TxTZILD/xWf4ucMf4rkah8+HPNMBe6y3yf35OrqA/KxCVwafi87SbYWZSu4zGcp9+xq76r2W7lv/5AMzGSrAEuZV+JlEuNTvzZXDx/Cco7XnHZ7PvyRTdjHawk4jKEUcqrpVTMJxU0L7RFgMj4pQg4/rmeYVDI/VnYgj4UUMWaxzMXJSzgtOporkezwUvaZ3mscbl5JPIAapCmd9WfQuVZgaDtM4J8QkKMMwa5JuaVonI8kkUnQVPlNoJ4BkXUE6iAuwNkhuV6m4p0Pzpy5GQ8TMIjar53cbQMkaaJyVA7iYWOymJdtStB8LVE0xoFvX1wDMAKowxCwQq5ojMbAolHizE6LNOzx8uneM5vlilKpp/iJmBrFOhIdUnruJcg/pMKAGMFs1VLOUxilF67TMFnK5RG3SU62JQ/G87XyeXK3+ZrL70yefKucfsPO18vr1v+Anlq+heSrWEZUQ1szTUlVbDsb240JMMl3XlIeUOB0FtJ4QCsXZquA1hUGqRu7UeWBTRoJRqBhIlLugPfQ5A3YyZSUhC3VyVgxnSOVh6zAH5Spapz3FsmWqUlonNM3TgWQamC4byedkglXLtlUNT6JeSAoMEOOibXOvSCQuHvbioS9/nN/v3oqdKtJ+JKQSRpVdyVnON/RsSZGOoPVEIN/QaC8Pu+goqrYiGUZhN4oC7RJ6PFkoIVWo3YXYPSd5xsUYzwNb12gDO5V7W7nPoUKC8pCMa9SEh8l+BTFKNRiJSrzaqSjrmh8x2lh74AozE1afqOui4R4THwMaGfgVrMYQF6MvfA5JjUm2k0jR0ySTyOrdDp+oRWqn7Aq8Ku1LzUBXkG3GxdTSkIAqYHRE8+17vFA4Xytf3XiUH2sKVMwUsn+il+fpGpKa0iWoEMn6AVNB2U1RXkg88u2AT2VN+bHoxU5Ej3P2K4li6saTC+yge37TKJ/qymoWrEZlKhfpM0j7EmaaQjB5ZVvTe8jTflyRjGWQ2mxJcjh2LN6nzHmR/mp/3oOfFz7OfLmjqffODlCopxmGL0qHVL1AviH35nKBluTnIukoUDWl4ykYYaE3RQ170AIh8rkYShUg3xCm/MmapliVTqtkHGW8qYJWUl5QaPH5lqde25ox9L9mSvsDzUX4rSuwY3nerqFZfqDCNYQfc7ashdChAXYqOWKiqo2JVEt9QwylKRTBRvHcqp2ccVS7j+d9JpnnwaORZ1+1ZWytdiwOEWpyj3nhNFhhhHK5puwqMaAl2MiCXSukSsZqG1lHyTgyvCLy+vZ9zEPzvbJmnhqe+xhYMRkhl5SKrR2MqKBYkQ4eMxZj5zJFXDZkA8/+jwmFYrCKqqlwjZqecVMcLdeU3HkylnE98898Pmmb56W1J4Vb878rqcy5JgtPQrtYA70lpKxaCper2ojKzRU9JQa3ktNgDhur2mKEqSmyVIiEBL7xpR8VoPQeEh8lKz/XxbJp1rkT6TTwmaQq5gdI53hB1o/k2/XJl+w8POUh3wpoJ0wvjbMVVUPVbassGHHsNDK8DL7z8Pv3xOI/X+YbYa6XufgYaKuM113ziQUfqq4g24qko4j24kmUXYNPhfnGJzshVTKS1rdkXONUa3zwAlY3h3lF8cRcQ0LcPcbJ/DRRlTxP16jzt/O8tWPH20rqAzVRVC1hFnMNiejQcwYoIAgGc+486aru2Msia6ax+M69smaemv82SmMx0hXnazhQIpGCdHjFHQynFudstmQo20L0IQbyvMgigp1FzLQGsLfUQjemhNERxaXJhRXDXhDNrR3bZN7XCtTucESXOyc+yAWHRDaDy/Wiz3Pee64rOWFVlMXjGmpn9nFNRnEs33ghLvkFlWdagN932x/U83DqZH07MrpEsX2lZXIgpXmyYHRIMz4Egyth6zo49yLFuZdEBsc0xQrkGxX9YymDK6DqRAHjFrVH4aFa9ry2uTcgV+fLfCM8VS9GaYzSNEy1qHDrcicMm/cRS+GHxYK3U8n3EcBM5XBNRrVXlcQFgce8gj6H4sx7tuuL2rPynV/5Xomq6uKVT+TaTQXtJyqaZzz5lnhXPhfv2zXqTqIiYseRZCy6RM09bFVjfuPi0NBPyR8+9VDbK2KU1DW0Z/Fso5X6h51CMolC0lFjOYXfQuEyteDunffV2ylk/Ui2LQthTqbjczmM7cu2+JJ8+4Ku74KN5jN5D79741t2unNq8KwpYOmhGcv3T2mfdNiJEHO4vA5DGtSJWFn8diLexnwGztwDWwCUoyimo6d7+oHP5fuW7xPPcsoiSR9SKQYVXUX/ipyDHxiyfmcgWKHbQ0PrhGb/HQXdhwP9y1Mmh2rD6+sDxUfSgbAl/cxtv7xnPIbPJM90fX9n+YOce5lbUP2pGEkmgWToyQZ+oa/FZq8kXZNtRxrnAmlfDKmd1RAlvdPxIoaYRXpjsZ72INJgvob/6eo9lD0WMLJYHxplWzE6mJAOHGsfOEm+GRYtfyg48L/u5+CvP8zan/dpbDrKJYlI5u2p86aBqqN4+9f9zDMeYntVjr3oCVy+s/9dE8qe7IWs72k/UdI+6eiccORbMuUhJIpkElh+oGT5gZL2447mmYqypRgf2mF4ikqYkXwKBzpDerrxmS/kGeSCtHbXPQV//P4nczX+j3eOeMM3bHHj6+5ZPPSQRMaHFJvX5AwvzdFFYP2OTVY/VbF254TVu8b0HqnoPVyx76Njeg9XtE868i2/KJpAXSxQcsJEDf72LV7fPrHwWPaC3HVPwR/9yeRJr/33t/f5mtefwjUkL5UMpVAhJB5yaPgUzrxMSE/WPwbrH1Xs+0igcSayfWVK0dVyGqqdzggz2zlBo4HbGkPg6QfZbkskcvlLH3maXt7yjgGveN1jXJG06eyXdk/XVDIepAiLuVJ2FhbUZiBQnNYpR/Osw6eKwRWK7WsjVavuEvOSz5z3m887i+YRTqzHwe62nL9W5jnFt7xjwFe9/gne/d3/ATuOiz3k8zptk8LZG3M2v/iAEA0PIq2TgfZJz+Tll3PmNZdx9pYem9cmlN0dlImuIslYTorBVY6XZcmT1sle3j9veceA+/7xLwNyANppRBdiF4plxeiQZbaaYKeOZFgJyTSCMLDTSP7wOSHlbmqGlyTCAlZ74Mkw1sVUGFwV+a9Xvv2Cr/kFS4//+JHf4pun19YwEikGuaaq8wYpg8tWSAdRgNmbE5nzohXVUsbgEosppLpc9iRHNYcFzPtQxwcV337lHRd8Knw+Zb4RVN2apuLcm46kfVWjCqQFVAXJ7Y4PaQknLOjSLGAV1JCtOZZRqMIkuR+MeCIWccX2yga4EPn2Kz/Mmz/+auxMnrvP05osWO7fNWWT+GYdfhsjBA65k6qHU8ySiB0KUDkZIt5VWXO7qp3ioc+k7XQvyVOfWYKkKdK+kNK4hhBIqKDItiOTdc3mdbXxj2BK2TPJMGIn8+hOMIxpPYrWFDC6RPHu1/xfQPYFtU6W7ISyJ8VTXQmAv1gCVD1yN2pmSznJONI87VhMc4iR0199kGJJ0TwtbEmuIQ7H3AmbE5eEPHKpbV7wtb1gRlMDZz/yvznz0Idx0xG2t8TaK1/DvtUXY2dw9tMfYeOBD5GvH2bw4MewrS77X/0G8uuupnEa7v+dnyW94ijjRx+gOnuG9qErufSVbyLVTR74w1/AfPlV/ODyvYBkeG/+6uP86x9eeaEu/3OS8AyenkaKW2c+/r/Z/OSHcLMRtrvE8l97Dd2rbsSUcO7ej7D1qQ+RHTjM9r2ik4Nf8wa6B68mpPDor/ws2WVHmT70ANWpM7QuuZIjt70Jm7c48Y4381+aA77/O5YW37lXdPJs4PZ5kWj2Kx/hoZ//GGEwIukssf9LXkPjJTeiIpy78w627/wQ2eHDDP/8Y5huh+U3fQP5DVdChNP/7ufJLj1Gce8DVGfO0DpyJUdf8SbiaosTb38zvcPXsO+6r8DOItM1zYO//B84cOurPl+3/5zkqdXrAJz6xP/mzKc/vFgrK69+DasHbiSkMP7Qhzn9yIfJ98laSVpdDn/FN9BcvppiSfHoW3+WxuGjTB94gGLrDJ1DV3LZF7+JfV+1zT//jg3+2le1nrRWbvrq4/zoDy9//m/8WeR8nfS0Z9vCyU/+b87dvWNTVr/mNfSuuhHtFYOPfZizD35Y9s99sn8OvfINLHMVzdORe//w58iOHWX06ANUG2foHLySS7/yTSRJkwf+6Bcw06sx37DzDJ7r/nlBjx67tsbVr/0+Xvx3f4L1L72dk7/xNiZqKFMBp5HZieOkvTWu/OEfZ/WrX8Xj73oLjfvGNM4FooXBXR/l4Ne/iWu/68fQQfP4B96NirBy9a2oT3xwUTW/81MFj59yfN1trRfy8p+3BJ78wGM9Vnh0zJMsr3LF3/h+bvy2n+DArbdz5u1voyj6FEsR34DxmePkzVVufuO/4dCNt3PiN96CK8aLfN7wzz/K/te9iRe/6V+j0DzxJ6KT5pfdwlvfNVxcw17Tyflyflg4N6hXXZbxkd83XPuDP8m+l93Oid9/G2FzsGCynz12nEa2xtX/4MdZevWrOPvmXyZsT1GlgNnHd3yUfd/wzVzz3bJWTtzxbkIKq1ffytb9H8cWkvednnscN+zTuez63br9Z5Tz18r8IMk6q9zw1d/LLd/44+z/4ts5/c63MVUDyo54S5PTx+moFV72136MI9ffziO/90tM0onkOIHBnR/l8pe9keu/7V+joub4He/m1tXjfPsbu09bK0+ccrz2tr3TGQQQzks8zw1TsrzG1V/3fdz47T/BoZu+llPvfhtFOZAoJIXx2eO0klVu/qZ/w6Gbbuf4b78FN51IMdFA/5Mf5cDr37SzTj74boKFlatuZXzHDm71QvbPBRvNN/ydk6xc89Di5/t/5CyRiFHQuf5m0qxHMtOsHn0J6eoao+3jksC1kORtju37cpYeURxp3kSjs87wkbuZLUslq3PjreSrB2lMUg68/NVsP3QnVIH21S+ieOwcDzwkyapf+dUhb3xdm3SPdHm88e+eZv3aRxY6+YF/JhX+Q1edpXf1zdhuj5AZVo/eTLq0RnHiOK4jxR/TbpO/9hWMrrQ0X/5FpKvrbG7cTbEkhbP2LbfQbh9EZxn7v+Q19O+/E68Dr/pOuP+has/qBHbWylw33/8jZxe/+6bXtrnuUIvXf+ufsu/gzWRLa5SPHhdAdwDTatP70lcQM0PvmpeQrK9T/Pm92JFwkHZvuoVW5xD5JOXgy15N/9470ePA0uEbKPpnGcRzMqfp3o/RveZmVLI3gJpP3T8/8M82UCg8iqUrZa0opVk7dDPJ6hrjs48yW49UHYVttWm/8pUUawntm15CtrLO9hP3CHMUsHzVLTSXD5JXGYe+6NVsPXonSaz4uq9t7Om1MtfJ/msfXawThVTPl666maTTI5kp9h28mXR5jeLR41JIzhS20Wb9xa/ABs3+AzfT6KwzOHG3jAlR0H3xrTSWD5LPUva//NX0P30nQYlNcWfPPi+dXPBK+rX/fpDbXrGTB3jLOwb84lsF9rL9yY+w8efvoxxtShW9KvHjEcWK4BVtu4draUnEBki6y0zjgFYNLUpbS9iJwCSyxjIxeCo3RmVdXv31Dd76riE/+kMrvP3Xh7zzzQcu9NL/0uSZdPLvf3lCdc8+qntEJ1VfYFmhKmFrLOzuWcQsd3ErAaeCtALuX6Ys+jUtfyTpLpFtRnxDYTrLEDx+OubDp6/iDa9tPk0ne6koNNfL/Jr+xztH/N9v7QPwy+8c8H/+/DYPn3iEYfV7xFmJn44WcKGk0yOmc4YjRdJbJmwOmPO2po1lYampwPZEL2pzhLUdelfdzOaDH2PtwO0M7vk4R1737bukgafLZ9o/3/qpb+PsQx/l7F3voxxuAuBdiR+N8Y2ITyN6pcv4WGRSE1fr9WWKsk+ei4eWZ0vYWaRsK+yS7J/xVkl+QPPG17X37P751V/cz+1fueP1znWiHGze+xE2Pv4+qmENa3QlfjLCNyJVO2J7PYpVTUGdt1xeYcqARkcKqLa3JB1Tw0hoik5KP0Evd/jyr196Xjp5wY7fn7vnWh577zu58uu+m27vGEml+Iv3/DQgYFvfgHLap39ZxJYaO4HZbJvG6ovkpFRQjbZl0JQBt72N0gbdbOEjvPGbMv75PxryZS9r0GxovuTWvVcQmhuHj80aHB80ueS+bR79o3dy6bd8D41Dx9BR8/Av/kfsGNJtYSP3/T7RhDpsVbjtLRo3Xi/FDgXxVJ9wGMoOzDa3QRtM3kLfobnjltcz/U/v2NM6gSeHogrFoycq/v4/OcMfvvMwX3Jrzt97/Ct4+9f9AaEmqAgGqlGfsuuJiRgIN9jC3HDDAo5WDbcXTOZuIGslj03KtqJ300t57HffSn7ZZWib0jp4jD10ljxNHii7NN5jOPH+d3LF13837fVj2Erzqd/6KRnv4qUg5vt9gg2oTA4T199G33AD0UqxxG9tU14nGM7qtOjktz7xSv7VNX/Ot76xw7f9wJk9uVb0ebldHwMxRjyBanuTx9/zTo5+4/fQ3neMdKK499d+akH9F6ysk8m+QEyFe6AotkgPXS+zxzSU060Fwc0k9MWmdMQ1/7JvWOdtP3LvBetEzfNvz+nNSnngQWB43surwBrwKHA98CmgqF8/Vr++cd6/TwBngaX6359AiOuvATLgfqCsfxeBh8/7rhchKcQt4GT92tEY4/pzvokXWC7q5OmilDoLdIFHuKiXhVxcK0+XL0idxBif8w+yCW57ymvfDnyg/vtPApv1Df008D7gO897358CPwP06xu5/bzPeS/w74A7gAHwW8DaU77rX9Y3ffmFXPdf5s9FnVzUy0Wd/NXSyedTOQtFfIbfv3eujGd5z7c+22d8of1c1MlFvVzUyReeTr5g0K5KqSbwvcDP7/a17BW5qJNnlot6ebpc1MnT5fnq5AvCaCqlXoXkLE4Db9vly9kTclEnzywX9fJ0uaiTp8vnopMLKgRdlItyUS7KX3X5gvA0L8pFuSgXZa/IRaN5US7KRbkoFyAXBG7//7f35rG2Z9l912ftvX/DGe/4hnqvXlW9GnrudtvGaXdsJzZmaEsmIQQMhAwKjhIrhCSKhYIlsGSBQIQQgRCOrUCAQOQYz3bsgG2QMZGN7Q5p99zVru4aX9Ub73SG37T34o/1O+e+qq6uqtu0650Wd0lXVe+9+949v/3be621v+u7vmt/1+uj1wKfvnmR/O5KIs7Ue+wL1DtwJveFM+066SGA1A/SSgE0AwkJWQ2SSmJT+dSk/UX7GUM9MdUvmv5nYT9LFWJkGWc0afnA+sH2d70+du3VSvIHyXPzpV38cWWf1QlaZCYM61h/ibKWflMPOEWCDUvT+8Y0aj+t0L7ZyM7ZwkSJXRuh6+XuVUGVpc5o0oOT9VmtySeO9ylfaiH2n885+/I92V1WCtP9X1xBRWJq/jgT011JpElIp9/W7xfph6qFqlf1biKkZN/knK1/UmhbjvXeHX2AnMT790qjkec+s4Ox7lf72vWK5P3nhlMR7n5p1NvaqDd5wZRj09eg75aS9bx310I2jxD79ejXRTUhzmaEL7sTGn3we+V++8TxPuWLtT3Pyq/k2amC2v2pnvSPHXpFsKCItzOUUv9YSV61Ni72QyAV2y9dxIRM7feWafaGa3Imp/nYtYx/7ce+nX/4A9/J6B9/Hpwg4xHdpW2a3ZJ627Pct46Ees+GpMVBsnw2JLJRS5Z37IyWFKGj6gJNFxBRThYl9SJDFwFXm9yXXwo7n0vkJ5Hh5++hZYZERYPDHS/Qg0N+8+TnzvIIX3V77FrGb/9v1171e+//rT/Bt/3lY5QT2N9l/u4LHF0PLC8o7VTRMiKDaNqRhYk+ioD3Ce8TKQlta4odKTkbeVzZTvFLW5vtz9ro1u0vtAw+8SIMSqitj/Y37v7E27gCX2qrNfnA3/yLXP3R3wXnkLKEi7tUVyc0U0+1ZTOAuqHYCNp+J0rEBuzl2CjoaUs5bnAumf9LQtsEukVAFh5fOVwDwxuCb0ykePrRl9AyR4vcAvadA9LhEb9S/f3nNmFdAJ5u5/zVD343WtdIniHbWzQP71Lv5Sz3PN1QaCanAXXlNGOh1lY5jrhRh/eJGB3a2WhjWXiTiKtsntSlj1aoE4qPP2tOua7RGJFBCU3Lb85//sEtCK9/fq7/0p/jXX/lM0iew+V9Fo9vc/RYRr0LzXYiDhNkCQkKTglZRJzinDIsa/IQWdQ5TRuIUegamwNPJ3Z+FsLep5R2KGw/U5E//TLkGbqoEO/4jXs/+Yaf+cxtlP/tp76FJ/7x50ETMhgT96csrg45ftTTjqCdKt0kwiASikgRIiEkiqzFO8uguuTQLpBUqFr7CG0T0Nqv9QIVG795+KQjmzlU9hjcXEIbcUdzdLG0g3iyGaID99vs3hBdvIKUJe2FKSdXPc3U/qy4Z2lmNwykQmnHHsmSZZMrE8UXkRAikJCyoxMPnSN1dnrmVx2DmzaZUqdjUCVt7eAWNdzejOKeOtCuw03GyHhIsz/k6HpGNxTqbWgniTSIUEZclhCnDAYNo6wjJiH4hBOlDBZY7s6HqDpi66C1kQjqFESo92D/45HBzQod9+1wDuTuCdq0dgCrL/9Z3277yK/9u7yz+zwSAlKW1I/tc/hUQTMV02oYJdK4s2cIibxsybJIJooTJfiEd4k2Oqomo65yYhK0SCS1tYkl1DsZg5sVbE+RLkLwiCrp0DQANk3R/iAu8EcByXNkOKB6aMrxI4FmC9qRkvLeObQOxbL0tnMQBckjXeuJnUMbh1Qe9f33e5t5DnbLXVxwhEqJhUf7tkrKApp2neV/OTuz01TFrlcSwDviIKMZO1OaLtSGYDWO5JXolNg5Wqe0macsWvIQmdc5ZdaR1MZnOlHKQUMFxMaREoDrp/TZv7089Iw+N7cXnxIkRTWeXuk2xL7YzihfyCEEGA5ot3LiQOhGaplTSGieIFNcFvHObmgug3LQMMhbYhI7CMv+2iIgXtEWG/eqQrVnw+marYKL3YT8+XsQDBrpF/CBmwZwwyGIQ4cl3SCQgg2aQ/R09HN/fdIk1HWgacL6ejUaNBwvSmJ0xM6ToqCdg8LGhEhjV9puqNz6hkB5Z8z45QHTj93CHc/RrrMA/yYH4e22J/5uv2+doJMRzXYwCbjSeu+lFdxJsKuoU+rO0eYGc2jnyAYtMTpS4+0INKsBh4oGXcvFHT3umV0ZsfWFnNGnX0GnY2S+RMoCbbsHfn70NV77x0+e4rFfaCzzGw9ptgOxsP2RcjUnuPoC/CBSDuyG5V0i+Mgg6ziuClJyLGYFOgtI5wzuyRT1ML8Gg5vCycMZYT4he/mQ7uIUf29+Cnd9GTuz0/RekSxD2xYtbC6FJEWSqZGDopn2GaMgPhl24JTgI0lBVewBRemiZ1lnNMsMXQbI7DqfyoQkIZUJFx3zK8LgnfuMf/eGOe22Ae/fNCq83fZ37v1BHv87zxouBf3kQMOXUBtFqzk2kjU60tIhrSNliUUnNIUndh49yM2R5Iobtbg+CBEFzRMxA/DghHo7I3vJ4e/0Q9Y2YE1ajTarJwRz5E1rav3+FMfFmePUKKR+NC8KWdFR5B1JLdsMvsG7xKLJqKqMtsuRhbcZ6P31VZ1J7dU7wvC2IHWLNq05pbgZQeR+k06RskTyjFT079qxLs1qpqQyneKVUdAk+JCQoiPLInne0WWeGIW2LnELhxY2G17UxE/qHZsa0A0dmgVkUaFljsQBsORBUw5fK1j9+eUlis++BCGg3lmQLW38hyRTvEIFWiAKUYVF69AkiFMQ5SizG0rsHJxkZMcmjpMyCyiaKdEry4uOmAvT5zwheHOYKdl+fQM7s9OM0YowMhjAssZXg/UQp5TZh5ZGIDkLYqKIs6xBVajbQF3lVMucLO9QNSzPBSWGBE4hJOgcmiXbLBi+tdz3jIoMqRpkPIbuwUfK11rEQfDovIbRgHZo2F1YCIuHo+GZecLdyskPHctrLWG3snUSEFEki+iFJe1xgdSO1Dlclvq5F31AimIvP4d77w4Mbk7wv/cSkmUbkWkepApfgRQ5WlXIoloXvsCKga7tMwgc6hTJ7XO3TaA+tFRp5tXgi/66FfYqXBZJ3pkUA5jD8YpGG41xdN0xvHmR/BPPQadICGjTPIBVeH1rNaJBEO8gJSQlYuFOi6QeK+Z0YpmV2Br4YHi3dp62CriQcL7P1UJCc/t+HSiudr2DMGdz/JhncGeb7FPP2/X8+ATJwsZl4K16c+SLJWxPqCdWCJQIg1cc9b7il1Ycqi9E/KglhGhFHzUfo4APCVUhjltaF5Ak5k9Sf4aikDKlG8Ktbyi4eljinr9lDvNNfMqZnaYIluGpmtOKaoOxuj5RCFbBIgHJoqPLrEouopR5y2RQ00YLqYuqQFVwPpJCX1IWXhUBNSiydDRTaB/aJvvsi/ZZgl9ndJtintX4vA6ZL2mmQje2opifO5g7ur2W8MiceE2QKhA7RzFoqeY54pW0CJQ7FdnegpQcbestcS8M8NYo6DLYzBxnAs9HTwzZe2lgzmEDnObt6MjmilYV6WSGE4dfdLhYrIs+KdPTSZF9lqkIRdnihw2qUGSGZ6oKTeepq5zUGvatRYRulZr1+653AicPF+x/cYTeOwTvN0aEGMxpSmvvKM3myM6Urpd7U68U94TqoqJFQpaO8qan3kt02x3ZsAGf+jOT7FbSr586Rdo++3Z2flRsXG1X25rsfWGAVrWdm7RhCYcmOvUQI9p1SNPSjfqBhAOl3k9oprQXEn7QmSN8paTe7ijGNfU8s+QCqG+MwCvZhSVadGjqGRtAXAZLOrzhm90QZtfHbL3Ujwd/k5vJmXdSihYddbmEpBa1An362+99rzCK60jYnWREl5GSUJYtVZMRo8M5pW09RdHiveJHTZ/JCp3zaLu6stm8nVjA/GrB9tNiVcC0edfzoTfYQJsW2ZrSTG1tXC0UBza2QEOgLSOjcYX39oJkFSyS4AYd1b0St/QUdx2Dyl6slP2oX6+Imn6g6yxQLfcd7bU9wude2Ig1+Q+f/yNsfaGCpu2xs0Q3MYx2hSupgzSw24U/8kgX6LYjVevIRg1ZFjmeDU6LZGoZBAVI2Rm+GRStHRKdOQzFhm9Nhe7iFu6VW6+i8GyCLbSlGwb8ycycA6ez3lOA5eV+T9QOph1ydUboPM0iIyWH94luGYj0ZyQKftrYBaS/qhIFOofUrr/WQr3liJe2cc+8hOSZOc8NsvXMJHHQtpAFG7BXKOqU7MSRMohDgTIyHNW0D58GVV9ESyhUyB+a09aB5qBcr4E60KJ3iL3Y9WrEc7XjGD+0j3v2xpt+zjM5TcWyRVTRtkOyQDfODdhfUcWKZNfrxpFUEN8xurBY8zGDsyipav+Wc/YQWdYRo6OalVD71Q/E1a7HA+3hmpEggxKta3qA9CyP8LaZNo1hvgLlLWHri5HBrYZYOGYP5xwtSup3RIqiXf8d11/F4lHO+IuB4cvK4E6L9BlBO/GoE04e9tS75mRda84gFTC/WrL9/ADuPfg1+dDOs/zD/cfxdd0zLQY0k55GFfrrdN5jmlmCKxVZ3pGLUtfmXNdc1VXNxCtZboekrjNSFdY3E9QmTrrWAkkKUF8oGea5FYM2yH7gxr9AWEbbw+Lotgak3LIe9ZCdCGFuV9DqglCFxHBkDm4VZFe7xg9ttGI8zsnveLKqhzwKXeOArrH/phyqiwOGT0e06YsdGxRMAGZdjs7npKaFaWljcuZCeQcGdxK+UWZXPEfvKGiurBgmPXU7CZ06S9SeGzO8aRMpQ5VQL7QDoRsGlhcN7hO18yMR6m2hemjI8IU3v7meyWkK0mMFRiwnz2mnGbGwkb2SsEMggj8ONq42Ck1fHY/RUadwWglNQpZ3VMscPcopbnmmR+ArG/wuEeod2wCrMQgpA+2vWpuEU62sSpnRFgAdFmQnsPuZmuL2Ag2OdjIkLJXRS8LhdEh27QRVCD5RlLZGujSu6/HjQrOVEeZKeZgoDjrjdi48J9c89basHUbylkmk3Qm8+OCdJtjsbRFBxaGTIfXUNqRoj9tFyE4c3VCInfESy7J3Byo0dWZ84+jAKSnB4miAOw6MXjBwX1I/6neguMb2jKxH956yCTapGPTByfO8UF9HkyKZ0E4ze5YWxs8L4xuRwZ0GFWF5IePwyQHzdwlZ2dm13Fl27rwSF4HhFzJGN5ThrQ7fJFSgG3masWNx2RHzvhAJVDueYZ6hJ7XRsDbIoia+cLTPuDX4rd4tyGaw9cWO8nZNOKrotkp8neO6wIEOcdfmhBBxchpQ28OC4T0hP7GAGpZKfmK+Ihae0U3P4ZOe1Pss6BOyqWc0GsLdN/6cZ3KakUQ1y+0gAOQZ3cD1HtvItOVdT1h4m3E+V9pRoNrJOHl8gNuv15ll6vHOep4zfLpg+5lEftwS5h2SlGaaEapIN/AcPpEhaodDFAjeoIGyoCs268VvhQVpewK379DsDtj6YkdYdDT7Q06u5VS71sXSTMEvYXFckg9Pnb+qoLst1cDjFw51jnQFDjKH63KGN4Th7cTWF1pmVzPqnR4o7wNKGuYbkT381sFjRsp++CHkuZdIg4yUAQn8QsiPhOxYCUsY3E0s9wLzKxmLqxHZbojY/lhnmSHByyX7nxTKw0R+XOOaRMqdFSELx+Hj2TqISOyLTlmOzpe48cikbDfAvn34ND9XfCc+z5DBgG7oQWHygjJ9rkLahFt2VJeHNnn0ppLykvqJCh8SIYO8bElJkLslYWnvvp14dClks47iXktxD/JZxvyypytt36VMrFgY42mn1oaYF8dj03vc7ZOiZuoZvZwYvLwE4Og92ywuetRBO4FsBvU8R8Y16pSUHM5bQFk+FKkuCtmJMKsCEBi9pGSLRHEUufCxxPGjgWZqHUauha4UdDxE32Q2ypmc5ix5tv5pwfzrH2H40WeRsiDmgmuV7AR2bkfrwFAoby6Ig4y89OQnARc9x6mg3e5DXhLohHAQyI8hZhALISwh5h5JSswd2bxj/5ORxcWc5b7rkdwEeUZ8/Ar6zJnfze+r/fntT/LDf/E7efcPjql3A4PbDfOrJbMrHl8r5V0lVEp+LFS7Qq057bWEZpEUHbHx6MKTHXmKe0J+pNYlUwrNFOZXleUlYfJchmvA1z1mGvsrWObflDLx+22RxAvHO8i2J33wItODI9phjkTwSdn9XKK82yJtIhxWaBnIjzIG9zJODjyH78nRSYd4K7dr7UizwOR5R6gSiLVXqjhcpzhVwjJy4WMdy0s5iwu2T0SBtsENSqpvfBx+5YEuy9r+2G9+H49XLVIWyHhEymzfbz2zJBaebpKxuDA0rqVa15RrgaMM3W2sW0yF1AmME9WeIxZCLIWUOWIeCAsLRoNbLeMbcHwt9NRAIM963L2BBx9fX2WPDe9y7+F3ILfuEHNh/GJDGgSOrpcs94XiSHGN3TrrbcHdzqm91U4AUhTIFJkLxT23nm7aDeHoKUjBMbrhGd5MDG8nUubpBqcZZ8oDIm98RT8jpmmRf3Y1kJ1cJbt5TOwnBo5udmTzDnVCV3rmj44pDlpEoR0J0inDG46FZKRJB50gPV6ZMjsEYg0whJMGzTzLSwWLixnZItnPkf5aJwLbU2aPDmHDnObvNgMmzwRkMqYZOVRyql3H6JXE9JkZ0iXoEs2lEWGZkR8LB8OCdKGiqz3uIKO86yh6mCJbWBAqTpTynm2U5QXh+AmlvCU9rmmZlX2ldXb2oEwQxkXN0QDUOyTPqXczNBguNbxRrR378pEJ6gTXKe3I4SIMb3gWDwk66ikZSfAzhwYD7IujhK+sBzvlUG9bplYcRbJZwm279dxrQiA9epn5Q5txI5mlivY45/DdA6b5Y/h5TcwgWyrdwLO4lNGOzDlkC/CNQVXVjiDRMw8ZMuzQxiMLT37oKO5BeaCUBxGJSsqFxQXP7Kqj3sopjixQq7f+fJJ9SQio34x1AbueP7vYo9sfk53Mkah0I89iP0cD7H6uY/DinHa3JBaO6sSTHzlmWqJXK1JnrJLsXp9wHCvFseJrW0N10EyE+VWo9oXRSzYFd1UzAZC3wDw5s9OMJSDC8lJBdpCRcvP6zcTTDRzdQJh+scLfqK1Ik0DSkHono5k71DvmQ+NK+aWjvCuUd5VsmeiGDt948mdv0z68R3mrpnl8wMnDVkDQYGB/mpSk3DN/yG9cpHy22Wf0ciLuT2knAuLIZsr0mRlHT43Z+Se3SVtDVCBbGHG/uOtIlxN0GdmJI5sbHojaoTl52LP1bEez47n40RlHT404ftQRi74CmCzwsMSc8gMnLMNDw2PujK+SaiAE2pFVMBFot3LakXXyTD91D6kaUCW7ssP84QHSgYpjcd2qwK52ZCdCNlPyY3MO+WGNmzVIjAyTcvcPXODosYziKK0nVsZckMGA2fUxi4c2Y6OcJAsE3UBot6w3PmXWJdWMcyTB3icWhKMl3dYAv2ioL40IC0dYeNqxp3usRVuhvO0Y3DKIoziJhEUkv7uELjF8wXPng1PqPekpgT0FyQu0LW5QEt/1KPH3fu3BLsh9VmvHb/zTd/JEqLbaRwAAH0dJREFU1tBdu2AdUkMPCXY/taAbZ0iMSFKKOxWSSlxrgXn2sKLJEQ495V27obkOYiYUBx3dyDN6YUHKHOiQ+RWh2rWbmm9Op6C+FTsTydGTbGzmqL8eZZ6YCe1QWO47qm3H8JUWktLsDVk8OqW+PKLayxjcrMmWieErClnCD7u+5dKoROqEeirU24Hjb7rK0VNDTh4rKY6j4ZmlZVIA3TgnFdbPnTaHfgeAF7tOp9zeQCwsizh5fEw7EpaP73L8+Ijj63ZdRft+WqwSmgql2lNmj0CzJSz2Hcfv6oiZsP87B8wesUKSb6x1sBvZzwBzEuofPL1GEPaLGe3EZtjrZEjMhFgIyz3H7KFANk9MPnvE4vo2aWuEjgYsL5WMXlgyeqVj+myy28gg4qo+sM4sY0qZcPjUiG5vAElJk5LdTxwhSVlcdrQTIYX+ZjIscZ1uzD7Zcjl+2tCOhMXFQDfMaIemWCQJRq90tNOMe9+wS7ObU18asbhgH16SMrwpdhX1iq8MmukGUG177nyg4OC9U6Tvvtr97JLirhG4u8Gpwhjew8U9Fg8P19fSTbCWyOBFTyw81cUBKbN9PLiXaHZyZg9ldDsD6p2Mw3eOzQd5m2muUcgGBv11A6h3hXYstGN4/l+09l03r6kuFEyfbciPzFF2Q6uVAKwV1N7EzphpnuJnrie19+O6iaVlPbOHc6rdwnC4Abg2gMLJ1eG6tcvwGIcEpd6z7PXYCb4S6m0DrOtdJfSFkBWFBMzJNtuBZuTwm0UzW1u1IyBGl1ARjh4zByoJTh4OxFzoxlDtBaTDlKCiI55kkClp1OMzwVHeFvI7nhSUu9+4QyygHfeyYJn140oUpKOHL2Qjsu86hfWBPHz/rv2/Gm4tUal2PIuLO7RDOH5kC9dZ1Hd7xRqzlCjkw4a2yIgDx7IUYn/VrLeFw1Ci7yjpSiFU2rM3sF79aIG4vTih2vYbs1e8CEXRUu/A9Lm0Pj/qheSVwydO9QaW+wYzILC4ZPBELHoZRa/EATQ74JdCftQ7z13Hze+4SH6sfZ+/0A0tm5Jk9QeyQHt5i6PrfmOCCYBHaLeUesvTlW4toTi74lHnEYV77yypd+yqXe2FddDQ6OiSILlS7ypaKJOnPd3EFJ/qCdz68F6fJno09B2Mzhg/YdnzOFcyl29gZ1oyh9KNlOzEMgZ1E8NQhubRqz0bap8d2weRaNmQCTT0nLHacFHnFToTsminEYLSJsEt3ekBG5i0nJ97fAW+MYew2Pdrx7EJDuK11mzJaUVzx9bAN7a525HRs1IwjMnXQsoVD9Z+qqB5QspIl3uWwZMfOBaXTaTDNUIslW6ScJV1UBkmyOlavAmQ/XZYJuYQlhdsgxfH5tTqHaGZCE3fEx3m9IUu2z9HTwbrWcfWYWX1tnHrFlesvTCb9Q449c5i39YlO7ag7pdK8nD4ZEk3tKaCTbCAxzklaU8RyzJQaLYhXhTarUQ4EcLS9kIsjdy9CgjdSEmtQ5bm8GJhDQ/NllWKTdlIzLGI7T0NrMVRVjWBZjs3+t5bvJK+HeZwtNPI/KGAa41n2mwJ7UQJC3vnOrZnTMFuWa4Tmmmvs7oMuCikYUJD4uQJ8JWjvCVU+9Bsq50335+f1Xnr4ZwUpBe9+SoWggYukX/wNnc+vY9vHM2WMLqRaKd28ONASeOOeii4mSeNTnUjmWXGy+sc4o23WcfSaCFB8ePWtAEnHucjXRNwXgmipLrEhGkNyK63xarFygMveryepcyywdRHszRIxImuO1Y0t//38761yyspCn7h1oBJPmgJk5p221NdCCxr0wNcK7woaGtkbl/zquChG9Ay+Jcv/h/88rveifvcmHbcB5GVoHCmxHFiOUpkR95a/QYJzQ0DDzNPWNgDdZ3vidlKt99aRR1oFx5XOVxney9NOvw9w9g10Qv1mjNZYambYF4cqtb33EyFZipr4vnq/DRDoV16cIqWyWhaM28910AoIno3Q50ShwkZdSjQXFaqeYa00jcN2HpmR0YLXDneNBowu9pn35t2frzSjqA4XHUZmnBJPVHaqVs3RaDg5w43s0QqlC3xMLPOH1H8uMNNrZFmcUVIM1uXboRl9qOIHIR1V92q+xlVNH/j83OmlCTg+K6rn0aS0GwZptIOZa0UncpEuVWz+9ARw+vH5Ns1Ie9wQe1BeiFdjcJkYAIOEjEH23gT7nCJougYjmsje9/XW+yrFTRg2UUslf2d47O9lN9niyo9psn6sGqWkEEH09YOQW7CAWFpgSDbqUmNXT9I4JaeelaQ+ciwbBiOa3YvHzG+PKPYrsjHjekJZvfpCyYLKO1WRjd88JnmE2HAoxcOAHqx4f5dd9as4Cctw4tzyncdEi81sN3ixq0ddqfrdsjdrfmatO5OwlrLwG83cKGGh5eEhxbk46ZX1zJKim/tGi8dNBOI+eZ4h0d2DiBZbcBXaopHnQVPyRL5Vk15dQaTDimiFcMa+0JgOlngGsE3gp97tHOEPJKXHeXekvzSArlQI1t9yt6zTlynuBZe/md36UqhHfJqFfQHbF6EnYfsPKs3pSbN+pvXsMNdqtBRXIvWuE6QXi4xyyKuNmqWXzriIpDlHcNhbcLnV44YXJkRLi4JF5ZQG/QRSz29BXdKN8npBm+8KGdaMkX5szu/jV6tkGQVP/WvLtm3rccJjIqGsjDhVE2mselWkc2ZhiZYG1NYCNr1PaNFx3RQsTVc4n0yNerUtzv1LWGrh20erdnyy7O+m99X+2D5IosnG9rxaeGKJCbB79RUnPqrkhHSle3pwn7ddz25WqBxtNHjXCLzEe+U4BKDorXieH91dbXgGwiVBbHFhWC48QM2L47/9V0/x96HXsE3rCu4qzWJSwuSk7KmHFtwXfWYrzIqFHbKpY07qYQwE6gcziVCiAzHNeWgIYRI1/QMC896BEYKQirsRhLesznB9Sef+lmaS53VAgpzDn4FSTTedDKT2AdPgrSm1i8RNCht9OvOp2wudlXvhV1SEpNhzDo0yvqE+9q+37f2DlZq8JptTjApJON7n/wNUtEH2a53K6vz4pLdNHphkvU+mbbUdbbusfeVIEtHjA7vEsPSFjf4RFm2OKe9BKWthWuMreIbOHy8eNPzcyanKQiPhDE/8A3/iOpy3yjvZe3U6HHtZZNRt4EuOqplTjrJCDOxyKAgTlk21r3hGuu1lYU39XaFRZ0zqwraNkCyCJvNbUGaLbvi1fuR/+Sbf4bBBuB399t7s5z3PvGSvYx4X7bZOWsHTIJUjvzI1k09xH7ejbreOSwE6eS0Lz9EvEsUWUcbPV0d7KqezGFK/3N8o7QjWbfMPShbCct6cfzK+/4BX/c9n+TwfZ1hRitIRaBpArNe5Sp2Hq29QRj0GVCmHFSDdXHHrRR8VOg6T+gDSoyONM/MKSwN+Hed8YNJwNcd86vf9KMPaDW+1IYu5we+7Rdt9EmvL+ra0zOkSehay6q18oSlQTDS493VMu+LOlgikrAMW5QQrB87dh5tPG7ZQzgV+NW+EOuoSTlcnGxOMAH4tuHnqR4xJ7eG4Bw2N6tXKqJ1+IUjLAGB4bi2ACEmYuMXfVYOxOQQUfIQyfs+9dh5U3rvrPjs+llkvlHacX9dfwP7isCv7916hW//rr/Fr8zfyd/437+byTPeXmDl6GYZsfFISKTK4w8ypi8KzTa99HxPaq574dUA0UN521PHguWOoy06xCnNIrvvamI/++h9Ld/34V/juycf5x1Zzt/6Sh7g99G8OH748Z/gDz/+V5l+wmhF0gqKYVR0QjhxuLofsuaVus2gs+fUgPWXnzhO7ozIRi15P0coJaFbzYJpHGEhlpWyyiIwB/2AIc37hWWHLue/f+TXeObKP+Ij8a8xftbb2IHGUR+WtIOOVBtRe3Db9w7AnkGccjwvWalcSYTh84HlFUGHkbkY1+oUwpF1BwjAn/t3foFvLJ/l8azioh+/zavwxvbnt27wB/71/5Lv/eSfQn5+D23tHUrjSJrZXkmCP/FkR9Lr1WIC3Sr4ZP8fKghzRzvISLl5GdN2sD3iOiE7NuqX65Su6NXhM+Xhb36Jg5/aoBkgWNLx9U8+x+d+76m10IhEIS0DKdj5cQtHcc/OTyyUrvGo2lV9Zdmxozoq6UYtg0EDdDgxjLyrwjp7z2ayzlCBVzF1vpx9xWnaE9mY79t+iU/+sf+a4/e0+BqKu45wGKzd615O/krG8GWjg4BFUg3aR1K/FqTV0AO7SyF7Kae7W9Kc5FB5wpEnm2O4Q6f89W/9Jf763ud5bz4gkw0q/d1nj4Qxn/rID9MNIZsJYe6MFdA6skPrVghLi6QaYLkwNSTrrzdJ/zAX3CzQHhYsZgVt62maQFdlhofOjPBtff+m2NKVRue5b5DlRpgXxzuyEZoZhJAfCdmBx8083CkobmRsPe3Z/nzqq7v291Sha03JKHmrJPsahi94slcy2qOCdm5qR9II+bEVCF1r1eZ/ZfwZvrn0XPSjB/r8X84+WBT8k2/8Xzh4r+JaJT+09+rntldC30q7yoQAUyvvZ2klbxQkX9tNTReB9rignufoIiC1kB/Kmm7lOjh+EmZPtVz50A1+/J0/RtjAKd4//eSv8N9874/QDSDMBX9iAYBW8EeB8razukFmX7H160xzNZRPIvgjTzzOmZ+UzJcF8yqnmhXQOHx/frT3K5JYT8t9s6Lh/+ecpBC7QkvEWv9qWXMF/dK4mlUhDG4a4FpvCw3Q1Z5MYXDLPvDygl3JwlxwtSfl1jHiq9Ms03WssdBNt0JCj69gmcIOyNKEKkShODQ8pZ0IzSCQHXomz5pzaHu1amsp9cRWaAZ+jYfK0qrLrrWoKP0EUjAdyU2pFL/WpJW+/97oYymzKF8cWFvfct9RHBie1Q0xB9E4G0mVOA2yHop7gq8D3dAEnsNS8Mv+qqvGIy43DLp5I5NkWWM67keiLGTNIAhLyI+s2l5dAhpHdmzrFgtYXuoz8dqb9mRnXVRhbmuC2r+xuOD4S//yL/K9W59n6HJgxMaomPS20tT89oGlfmEBqNCIkTbzox7DXyjDWzB7WFhccrC0TqDintJMLQGp98HPHKnOqYtg7aedMQvCwiCLlN2v24DVIt6E8H9mPc2o6VQs9PQP8I32zs2yHeOUmSf3DeQzpThMFEeOet+ksAY3hdHNSFcYr8w3diDyA8gWBpInbw91v2bn14J5cXRDe+mug/ygp0l1vfPvoLwX4WnP4jhj+Eov5DGLLNvAyTXpA5DJp7XaVxOd2njjCsNwVrKIasWgy79d88wGgfur/RI1IV0fXI91PfqiOFJiITRjw/OGdw0Yn1921FcEaoevhckLyYLrnqPtE8fBTbX538VpkFZva7y44HAboPb0ZhY1kSYd6jITvplbVZy+EWSVI+TzRD6DdmJHdvJiIiwT9Zaj2jdoZ6UPmTKDy8JC+jZb678+/NaO7x5/iqHbLKjizcw3FiThNEGQaOdHokN9ga9h9LKN+x7cE44fDf33GmQTW0ck9AWkHg/FzuHKr0xebBnedrw0fWPJybMPVusPwMpxenH9sCMItdINhVTYLOtsYfJNq6uj7nrKe5H9/8d61IujSDNyNJOe5NyZAEM7BheF4jBRbzukU1w/UiNt2t3zDezat77AnZ+6Zp0uPbjsatZ9wO3YURyb2opEZXEx4+h6RjNhTYOIpVVNBjet1zwOjOi7ahjIZn0hKCrZLOLnLRfHJw/qkb/E7g+w0gP7vkmQPL4zAQWwNZFkf54dR3yjpiW6hNGNRHGYiKVV4LOZYb/qhMHdRPLWJrjqOHIdHL/vAVfDXsdeO3lxZcWkRmJmKvzOhhQmD/nSvl8SVNuO8jCx98nOhCyGjnpqX742yTcNPazT2a3NL81hBhtBxfalEx4OG8LyfwtWXUhMv+DQXoxG+2k4vrKkrN4y8ZYLH0vWcqmw2A+0E+uCcq3QDRVRUzxKJ45YKmF22lIaFisqnI3DfvF7Wp78G4dv+LnOXD3/cqbBOj3acY899cC9a+3Fd0P78/llj2+U0c1oI2inRgtxneJru0a4ru/y2DkVmjVRWcjWPJ7NtKiJ2Ovx/UfXf5aVvqOB75YNhsrwqHYo1FNHM/W0E087Nk7hSt8vzIT8yJEdG+gdlvZ7rsH+3dQ74f56Mb8UOP6hBfsbRsNaBVntMbhq2xMH5vhXbYKu7Z3DjvVkS1QufbRl9zPdOnjOL3pUhGyuhIWt53LXtrBrVxm8Od9vevcXGMrmKPjA6fmJr9Fr/NPv+u2+u8eoWavhar5mjUd2pbDccTQTRywd7dBRb1szRFhi2plHtjfC3JyBb8y5+MYG8E3KemPrAK9nH/7mz5J8z/MdWLU/zHXd/dYNheWeCQWhFljqXaHeMt+THQvFgTMn6SA/NKaOi6/ed66nYH3xjwb+3rf8d7g3wbfODPp8ueu5RLVoL9YAXxwog9uJfKZrYD7llhHEQmhHzlohe2ey0uXMD01zMgX6bMKyB98oh+9R3l++cNaP/LaaF7den11frek1rjN6FSsCgdhB6AY2wsNmx1sEdD3FxrCs3ol25mjvp0O4nndnfejCnQ93/M/v+R/xGwbur9bj8rtvWWvfwPZItWfq2sNbkfIorYNjNzSF8VjYYWimzubb9EmSdIbx5SdKKgzHjeVpJgLwwemLG+sg7j8/Xhx/dPqx9aQCsPcalnp6Fe16alopdKXtlXbMeiaXRDUH2Z06AOnn3/gausIETNq0WfviLVt/fla0qxXEZeJBJhjUjoRuKGttDO3Pz4pNsdLCWGescRVozddUO47//CM/xreUb75GZ17FL3GYwDve8+JavCMF6z9f9RiXB5HdT1eMXo6MXk6U90wbsxkbeF3eUUY3EuOXE1tfbPuikGWfq97yWAAJLrzjDu97DV735a48m2K+PR08d3/WfAo8i0XHHVmrrWifna6wG9faWmj26g4O3xP9U26Cxj/0h36GJ7IHj1d9uXfy4+/5e2iwApD21fDlBUczdoxeWDB6uaW8l9a3imZsmVXXi3yEuZLPlK1nGyYv1H1AZX01S/08eTAF/a8Vux5OJQ7Tfcmxb5VsqZYZ9UWKZmqiNqsAu6Ko+Rqy2f3E9dNOl5RZgPrQxeceyPN9JRY18cTotkm/yX3np+8qU2fNC3HQr8mWjYjpBr3E232kfl/bmphuL3au0um/YyI48MfHb42z+lVh9P3kO36KD4//GvmRpVEpg3pbTc9QA/nEM3l2wezagNmjfs24lwgXfrelvF2BKofvHLO4bA36vlr1K1uxIGWwO1hYtZ7TjPeNIIMHbaVoP6+FdQVTFAZ3OkShPDR1opTLeniaa6y4kYJd0+otU+VuJ2ogf2Gq79Hbv6m+72d38G9ObgIPPrv6cu/kIT/kqX/jczzzP71j3SZnJGuH60ZMnz6h3pnQbAn1jrX85UeOrjTsNlTK/i9/gbS/w+1v3uH4CbuGWrZlhyKrlFv/fMu/NP4M8OADyFuxoctptvpbhYdmAKMbtk+y44ZumLH9uY5ukqFO8P0YGBdtusEKIz+52neDKX0So724hTC/mvgPLv6fWMV8882L4zvGn+EX2z9Etd/3l9+DbKEMbrV0Q2+BAdPybUbC8LbiaxuiBvbc9cSy89TPf9fM5qavHLA15yhPfeSZ179Fv459VZzm2JXw4UP8z24hnVVD2y21VseJHf7ZlTHjG4mdp00stdky3CosIgfvGpMyixjW026KJr7WvlMC7r0/8ctP/gReRutF3US7f+F3XeDkOxbkvzui2dZeRELwtWf7Y3fg1l3Y26a9uk0zzSjuNWTP3oJenkqnIxaPTGmm2bqI4mp5lUzeCiddXGZjr6Mr8+L4oYd/gT9TfT+S1Pqfp4ZfVDsC75yw9dljRi8X3H1PSbVnm31wR7nw0WOkSzRPPsTx9QHLCz1Lo7/Kpsx0Fas9x0fe+ykeCV8bDnNlP/G9/wV/8m98P2FuMNf8qhCLjPwkUBxGys/cxB8do/1sH58U8R5/cZ/F+69S7XiTWSysAOR6BovdbpT82pz9DeWrfjl7PDum7Ud9tFOl3hUbTjjI2Xl6if/4M6T3Xufk6gh1UE+FvY8vCTcP0dGANMzRJ8acPEafdZ92Cmmwaz7YOfpPH/0ZvAzf0uf6qvWOfP+7f5W//TN/HMAwydyUXLqhcTddC4dPOOq9hGiwXvJOyGYlYW5gdTfEWqaSHYDVtLiYw9ajR18TL/1+Zz52Jd/3/v+L/+F3PmIdQMEc53LP0f7BC2x/fszd9w3Y++SS8naFP1ig2xOqh8acPJLTjoXFQ0q71eEXDlmA78xprvUh+6LRh/65Tz2YBz6jlZLW0n9hAe1Wf9XKTUDi3ge2QO3qNLil63Ept/+Z6VqVp5n2mUPs2wtXoz4SnFxP/M2Hfh3YrCLQm9mTWUA+cpfw07v2G2prEnM4ejzj6InHDeJ6aWnCy7mnG2emz9rDF13ZFxCXrIuFK+rfT3/TjwJvzSk8CHu9LO+SL5h81yvMf/4y3bDvKMTe/d33DRjvvptq21thtS+eHT01Qp4Ysbhkghz1nsnA+YXrqVerdmX7Gase/MtnyDe+Kk4zauJd+cvErAdoxap59a7QjY14nB/2WWPn1hVlOAW925HpIa4eSDrQXNYFpj/5xO98NT7q225/eusT/Mg3fRvZx0dGmWktC2i2hJsfGtKV8NIfNoHm7GSMa00z0ldGl4gDRboVGdechArkxwZ/rOgXf+Xyr7IpjuLNcGbfQxDFoa6r6DGHvlvUMO38FMPylWFyxYFVzVf9yOpOf72Wf9Mvzbjf6rXrQVohGT/47l/k33/8TzG4ZSwKU0GC4ihx+JTj5DHB1yOS70WFoxAWNq3SMm8rguQnJq9moxyU8Z+4wbvzry2HCbYm/9U7/wH/6gf+EsPngu0JsWu3b5U77zM4IpZ207ChjMZvzmZWUEyhF7Wp+u6iyrLMbGYiza5T7ny4IzvD/viq7CQvjolr1tXuFOxQr5RVuoF1ubgOxi8lJs8nxi8mhjeV4sA6HbqhLUh2YhXV1SQ+xMDxP7P18a/GR33bbd+PuLp/SDa3A9ANrV0rm1mAaHYS1cVEvZeYPZaYPXqq8uNXgs21AzUua/LWOeJagy9WPNgL/o0JuW+nvRHOnOi7MHqR2eJA1yNZ25H9fnGg626n2CveDF9Rw7bzFS3Lsobi+PRG0hWCFvolTnMTHeb91LSVfV3+CvWVluIg4eu+QDGyrqntzycGrzj8wvql/VIob8P4xbRup3TR6EYr+GbFe/0Lj/z6l/ysTbI3ej8fzANXHrtDfmLZc7NFHzCx3+vpuNLTiIpDoTjonWWLKRl1YuenD7C+fvX5uXrtLoW8dWmwryjTbDV+ycYsJa4FOLL+xYW50YW6kRWIuoF1O9gITss2VvSTONR1FXDlXFw8zVj23NcOKfe19nff8ff5yKV/j/KOFTjCQqC1VkpfOYugnnXlNw76iJrbC3etUSdcx3p0ARgonvqCyteKDQWOrzsmzynFoTk8X9keWQkG5ydKuKGnTAExIns7MkbGqpBYHK7GYvQsggze897n1z9rkzPMVZMInJ4nL0BngsFZj212I6haa4KYPhdPVbP6NekGQrMta1pafqw2kjaeNlFM/HJj1+FNbyXi+AuP/Tr/2eR7CJUp0TcT0xnwlVI2K8HiU/piN8S40aP+5tra9/jGErSw7Hmci17T4IwNM2d2mlHT6xYcslVfcF/CX73AFTu/2TZSah0MmzBB1dN2Og2Kq4Uww1riKiOvSrS/t6kv/X577SFd/fp6NkaemqF3J7jGuqVUhLBU4+PN6UcTWKdL7DNs+1Jc6+wwjGRNZPeNbTYjwivPdmMe6d/mJtOwMhGW11pGLwZ00HNzj/vmiC0LArEQwlwJfSEwZXZbaaYWZFNhFdDBnUTM+vZSbw703dNX1j9rk/fM/XtldZ7uxQw/d/haKSI9tQjqPYgDR1joOksynq8lJTHHEo6+AOTa030C4Dd4P7wV9su/NbnFf/yBOeH/HuGiwVYguNhfu5cm5Oxr47I2veydjSymv64bnGXiJ7a3ku+dbTxbAfUr3lWvTfd/7OjrAdu43cCyAd8q+ZEp/WhmwgopN7n6bivSbUVTJcmUOEpkM6E4SoRK12C/Bouis/SlElabduV47SG9/9c//6EfWfPCrBJoc22WF41351vDWVYczZXyU1gI+bFl4KkXfA5zOwQxkz7rEP7t3/yzb+ejfsV2I3rGv2djKVY83GyuaxmwdqJUe3ByHQ7eJRw+5Th8yjG/aoE3Dm2zr/RVVwPmYiaEhfLTn/4gR2mzOqJez17Pof/SyQfY+lzPsGh0PcaknSj1trK4LJw8BrNrwsk14/eudDE1sB4uVxyndc0AhR/83B/ZuLNyVvu5D/9tQtXrWzjbC/WOsriiHF+H2SPC7JrNAupG5meS55SJU5kTdbUVIGN2Kiw0/619FmrXt7eyTqJnmJEtIreBTWPIPqqqFx7UDz9fky+1DV0TOF+X17PzNflSe8M1OZPTPLdzO7dz+/+7bS7oc27ndm7ntoF27jTP7dzO7dzOYOdO89zO7dzO7Qx27jTP7dzO7dzOYOdO89zO7dzO7Qx27jTP7dzO7dzOYOdO89zO7dzO7Qx27jTP7dzO7dzOYOdO89zO7dzO7Qz2/wIxGnoL3kYY3gAAAABJRU5ErkJggg==\n"
+     },
+     "metadata": {}
+    },
+    {
+     "output_type": "stream",
+     "name": "stdout",
+     "text": [
+      "Dataset: expW\nImages: (100, 48, 48, 1) Labels: (100,)\n"
+     ]
+    },
+    {
+     "output_type": "display_data",
+     "data": {
+      "text/plain": "<Figure size 432x288 with 25 Axes>",
+      "image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"250.458125pt\" version=\"1.1\" viewBox=\"0 0 335.866315 250.458125\" width=\"335.866315pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <metadata>\n  <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n   <cc:Work>\n    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n    <dc:date>2021-04-29T02:55:38.367672</dc:date>\n    <dc:format>image/svg+xml</dc:format>\n    <dc:creator>\n     <cc:Agent>\n      <dc:title>Matplotlib v3.3.4, https://matplotlib.org/</dc:title>\n     </cc:Agent>\n    </dc:creator>\n   </cc:Work>\n  </rdf:RDF>\n </metadata>\n <defs>\n  <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\n </defs>\n <g id=\"figure_1\">\n  <g id=\"patch_1\">\n   <path d=\"M 0 250.458125 \nL 335.866315 250.458125 \nL 335.866315 0 \nL 0 0 \nz\n\" style=\"fill:none;\"/>\n  </g>\n  <g id=\"axes_1\">\n   <g id=\"patch_2\">\n    <path d=\"M 10.7 59.80778 \nL 48.189655 59.80778 \nL 48.189655 22.318125 \nL 10.7 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p724ac79f8a)\">\n    <image height=\"38\" id=\"imagef41796fc19\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.7\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAKZ0lEQVR4nF2Y244kSVKGPzN3j4g8VHX3HHqGAXYF2gsu9nYFL8FjwCPwBLwUlzwAEhIjxGp3OSzTvdP0obqq8hjhbsaFeWbVrEupPERE+u9mv/32u8vf/NM/+F+9/D82+UyRRkN5XCZ+9/AVv3/7JewzOAC4OqT+UpBkiDqiPA1xhP6IC96fFYlrqsY0LdxOZ0pqNFMWU+aaOJxGzofCuF7I2zLzd6//mb8sJ0ZRzJ3f1MI/nv+W6Xcjq3dO2TuehDbAshXqCqxAWzuWHU8XUOApkEgTZBG09UX1+6rC7uXMNzc7vpz2mAtvdi/YHSbq2zWv/kO4+2UhG8JH27BuC/9bX7KRmZMXjrXgCY6vBf8AbRRsgLqGNjqeoa0Nzw7qIECT+OzgTVA0fnfBE3jxuL8qH3YbFMcQ7nZrlvcrNm+U7dvK/S8S2Vx4s3zB98c/51/uf0Y15c/Wn3n3uAWHZetIE6yADU5bOZYBdbwYXIABqFzTjguujiAglx+BYiCw20+U3DicB453K1Z/SLz6TWXz64/kX70mn2vmX3c/48fjDb9+/5r677f8W4H6ZaWMTjrHaqX19DQQdTABS/xkPAfggjiICRjAU8olGWbC/W7F/DCy+n3h9r+N9Q975HACF7IDH84bPhy3HN9s+fZ7R6vz7q8zrqA1mOwp5tUZdJE++aUoLvzqEfNnGDt+K+CDI8nBBTsr8zGTP2Zu/9O4+Z8T6W6P7w9IgwxwqAP7uTDcJbY/HLBBWb+dOL4OviA9YhV07ny5gOn8cnkCJA0w0Ca0wfGxp10dv/BwUfSoTJ+E6XMl7Rc4z/j5jBjBsd088umHl3z3fZRQ2i+s3g8sN3oFlhZ6Sgjij0RF5oiIZycf5ApIeqQl90rt1UqTKAgJmpRHx1WwKZPMQlcEsruwnwemd5nV+xOY4yWxbAQrEXadQc+gC6BQJ5ASnMv7mM/GILtloHYMK8dK8MxNAtylel2oG+P8MrH9A6TDDDkjJXQzL035fL/h9gOkw4KeFk7f3TDfRhp08ViFBijXzrXlAgjaEADiu9HWAfLCMS4CfIlW1zlMqBtn/zoxvR+Rwxke43o2U/zTwPpdI+3OuCrnF4m2ivSwBKeWTaTQe/W7Om24ylSAWhk+WETnMiwiJlWeOKk9veIsL4Tj14n5ZSHdD+hmgyfIzYXxY4o0zgvt61vqKmRBF0Gb4BqiaqPjAloFXSCfBD1HVNoIzZTmzzh1ibJdJKRHMFvITY5imL8Q7n5RkLplUrDi5NaU4TOUuyP2Yg0qtPFJJkIOQoMuoFwdqUrewfDgWIlonF8JYkpdO64GapG+Z9KCPUupB0VsdOZX8PDzgvgWyz2Vw4MjS+sVJ8w3ESUAS44Nofo2Gl4jLekM+QRWolVJg+EeMMEymAquHUBXe5o8Ae2VKdlxdeYXglRFl0JbOblVpRwcWxU8KfNNoY0hD2mWAFb8KT0uyBJAlk30Ts9+Fdp0jjTbGlBHipFK5NJMsHPqEQtQADo0bC3MDbQqPtWQC8tQb0YsC/tvE8utI58DVFs5tm0hssVwF2yC+aVHylb92tjwc6KetUfekGLksTIMjdaUuiS8GG4pnkkBWJPjo2GLstw4MhpZ1Fg2wv67gToK+z8VbDDqFurKsU1D1xVVR9RoKapuyQmZGrkYmoxhqOzqGl+3K5e0GDkbqtEbr0OfHMnlf7UILTttdCQZWSR4sqzh9KVw/qqFiDrYZMiqkZIxjJWkRhsa51OhXeZIxjguCDBuz8zHgldFBgtaNaU1xU3wHh3rLUQ6KBHCUPYiQyCLOG2KBnx6bXBT8Sp4UmRqDNNCzkZSI6fW/9BAFBGPFV9AXkTVQcRpVWmLPgmdOiIhEaK9q6jjLuFwe1FIAOudX8AylNUSD7swDBUVp5lyPA6YKe7gVfFF8eTUFJOJOPM5osWs8JARvTT0aNwuofjBKacVw1cgySNiKSpUxMnuINaROozjwpgbzYScjP1p4HwaaI8FOT+ZexHHB6daRpOh6tiisChpnxgeLiId/29FnjrEILTRaSvBAF3XJwlJXYPpOieArRolNYZc2Z1GTnPh+GFN+ZQY9kJawvpEJyD0bXSWwdBs+Fkpd4nhszA8OGUH5Whodeqk1CmccJ2EuhYWh3mKNLqFrnmPflb1sM8m6KaiAuZCUuPh05bxXWb9Y2xI0tkRh1agDSGsx6+Eel9og5EeE+VBGO+c6c4oByOdDGlOSUIbFBuFZaUcvlVmDT5aFbz1bGgAzKrOeRtGTgVyaky5sj8PDO8yq/ewfdvI+4a2MI5tVGxQ2ii4Kl4S861QdhpROjjlYOjZEHOkGjo70hJLyr2ZR09k6l3Beur6e1Y1bGXIIsibibtSWU8ztaaI4uKIPVnlNiptUqwIdYq2IxftMK6pWtaKTIq2sE5SwxAuG2XexlbQFdLYcCMcSROkCe4SHEOccp+Y3gsPXw8A1JpgY7RBOd/qFcR8IxGp7uPrCuomnETdevizSVg2wWKtBLAWVd+m2JcuLxybLHZ7XXyldXtEb+LlLnPzXzDsjP3HwiyQhka9bRz+RFi2Sppjhcu2O9NLf8x9r6hgq9Cm5VbQUzhK6RZJe/O21MGvDaaoZtSpNTgmNYQ4t6as3wivfnuE5tx8veZ+lZGxMr48UTeZw6xwTPFQdhgNHRopR+98tmm7Hg/YEmrPrMiiV8NI92ue/dorRWOjIrOQZqhNyK0J0ycj3x0B2Pw48vgXQj1n0tAYpxkblDomWtVwo9nIpTGO4a+9C5R2IjZTalZaTbTkYaGs33cxixfHcdmxL0o6C3knzHMiuynjvSGnmCTvjfFDYW4D9euZaTXj7miyWBm9ZeTQvMtQgdpLXlNDe8OvKVHVo1t0n08VWHoXSY5bbKDTScgHoArZTBjuF+RxD6oMn2dW7zOuQr1NzHPG+34k9S2YqpGTUZKxNKW2RDNF1Xg+UrJrD2zSzePcN6QXZW/9nOOkpBMMj44sSnYT0mnBzZBxQE+V4dFZNsL8mFjWubuAWJmo493eXkDV7iDSH58YXMxqP35y15/w8Yq4CekolD2UfRRMvtwpqqCKnmaGXWM+COkE7RTmTtQx6VZFwNpTdLy7hEuTf/57vEc3uVZHt9VBstCudBLKzhk/V2QpZDzMkNeGLBX7Yks6GeNn4/BNCrLWcBKS7eqr3BTIT5P3+VJuV38VlibQqDiN3pSTh8IvgixKOkUQ0tnJh4a2EgIrpwq1QlphQ8KyPJ1BuECya2lfo2FCXRKaIk1hfYJXV1/Wo9aa4t1K+QXspVAq5IMw3DvTp0r5uEeWKfbI0ho+z1xY7v2ca3gEPehTCv54mEQ7eW70ngEyi5d7fHeXqMy+09JZ0XMcM4z3zvjpjNzvEBMy6tQvNuT6DW27Yn5ZmLeJNvQDkhqe6cKtC2fi87PIWBg6M0XEIkpXQJH6K/96s75uqvtxQ90U+PYVbXLyixcHfvv3a9xexUFLroiGhxdxhqGyTnYVz8uQ/v3CMXl2XcTx/NMQXu6zbedoj2BryrEJ+5Z41wR8ZH3zwP8DkE1xYQogrbIAAAAASUVORK5CYII=\" y=\"-21.80778\"/>\n   </g>\n   <g id=\"matplotlib.axis_1\"/>\n   <g id=\"matplotlib.axis_2\"/>\n   <g id=\"patch_3\">\n    <path d=\"M 10.7 59.80778 \nL 10.7 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_4\">\n    <path d=\"M 48.189655 59.80778 \nL 48.189655 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_5\">\n    <path d=\"M 10.7 59.80778 \nL 48.189655 59.80778 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_6\">\n    <path d=\"M 10.7 22.318125 \nL 48.189655 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_1\">\n    <!-- Neutral -->\n    <g transform=\"translate(7.299203 16.318125)scale(0.12 -0.12)\">\n     <defs>\n      <path d=\"M 9.8125 72.90625 \nL 23.09375 72.90625 \nL 55.421875 11.921875 \nL 55.421875 72.90625 \nL 64.984375 72.90625 \nL 64.984375 0 \nL 51.703125 0 \nL 19.390625 60.984375 \nL 19.390625 0 \nL 9.8125 0 \nz\n\" id=\"DejaVuSans-78\"/>\n      <path d=\"M 56.203125 29.59375 \nL 56.203125 25.203125 \nL 14.890625 25.203125 \nQ 15.484375 15.921875 20.484375 11.0625 \nQ 25.484375 6.203125 34.421875 6.203125 \nQ 39.59375 6.203125 44.453125 7.46875 \nQ 49.3125 8.734375 54.109375 11.28125 \nL 54.109375 2.78125 \nQ 49.265625 0.734375 44.1875 -0.34375 \nQ 39.109375 -1.421875 33.890625 -1.421875 \nQ 20.796875 -1.421875 13.15625 6.1875 \nQ 5.515625 13.8125 5.515625 26.8125 \nQ 5.515625 40.234375 12.765625 48.109375 \nQ 20.015625 56 32.328125 56 \nQ 43.359375 56 49.78125 48.890625 \nQ 56.203125 41.796875 56.203125 29.59375 \nz\nM 47.21875 32.234375 \nQ 47.125 39.59375 43.09375 43.984375 \nQ 39.0625 48.390625 32.421875 48.390625 \nQ 24.90625 48.390625 20.390625 44.140625 \nQ 15.875 39.890625 15.1875 32.171875 \nz\n\" id=\"DejaVuSans-101\"/>\n      <path d=\"M 8.5 21.578125 \nL 8.5 54.6875 \nL 17.484375 54.6875 \nL 17.484375 21.921875 \nQ 17.484375 14.15625 20.5 10.265625 \nQ 23.53125 6.390625 29.59375 6.390625 \nQ 36.859375 6.390625 41.078125 11.03125 \nQ 45.3125 15.671875 45.3125 23.6875 \nL 45.3125 54.6875 \nL 54.296875 54.6875 \nL 54.296875 0 \nL 45.3125 0 \nL 45.3125 8.40625 \nQ 42.046875 3.421875 37.71875 1 \nQ 33.40625 -1.421875 27.6875 -1.421875 \nQ 18.265625 -1.421875 13.375 4.4375 \nQ 8.5 10.296875 8.5 21.578125 \nz\nM 31.109375 56 \nz\n\" id=\"DejaVuSans-117\"/>\n      <path d=\"M 18.3125 70.21875 \nL 18.3125 54.6875 \nL 36.8125 54.6875 \nL 36.8125 47.703125 \nL 18.3125 47.703125 \nL 18.3125 18.015625 \nQ 18.3125 11.328125 20.140625 9.421875 \nQ 21.96875 7.515625 27.59375 7.515625 \nL 36.8125 7.515625 \nL 36.8125 0 \nL 27.59375 0 \nQ 17.1875 0 13.234375 3.875 \nQ 9.28125 7.765625 9.28125 18.015625 \nL 9.28125 47.703125 \nL 2.6875 47.703125 \nL 2.6875 54.6875 \nL 9.28125 54.6875 \nL 9.28125 70.21875 \nz\n\" id=\"DejaVuSans-116\"/>\n      <path d=\"M 41.109375 46.296875 \nQ 39.59375 47.171875 37.8125 47.578125 \nQ 36.03125 48 33.890625 48 \nQ 26.265625 48 22.1875 43.046875 \nQ 18.109375 38.09375 18.109375 28.8125 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.1875 \nQ 20.953125 51.171875 25.484375 53.578125 \nQ 30.03125 56 36.53125 56 \nQ 37.453125 56 38.578125 55.875 \nQ 39.703125 55.765625 41.0625 55.515625 \nz\n\" id=\"DejaVuSans-114\"/>\n      <path d=\"M 34.28125 27.484375 \nQ 23.390625 27.484375 19.1875 25 \nQ 14.984375 22.515625 14.984375 16.5 \nQ 14.984375 11.71875 18.140625 8.90625 \nQ 21.296875 6.109375 26.703125 6.109375 \nQ 34.1875 6.109375 38.703125 11.40625 \nQ 43.21875 16.703125 43.21875 25.484375 \nL 43.21875 27.484375 \nz\nM 52.203125 31.203125 \nL 52.203125 0 \nL 43.21875 0 \nL 43.21875 8.296875 \nQ 40.140625 3.328125 35.546875 0.953125 \nQ 30.953125 -1.421875 24.3125 -1.421875 \nQ 15.921875 -1.421875 10.953125 3.296875 \nQ 6 8.015625 6 15.921875 \nQ 6 25.140625 12.171875 29.828125 \nQ 18.359375 34.515625 30.609375 34.515625 \nL 43.21875 34.515625 \nL 43.21875 35.40625 \nQ 43.21875 41.609375 39.140625 45 \nQ 35.0625 48.390625 27.6875 48.390625 \nQ 23 48.390625 18.546875 47.265625 \nQ 14.109375 46.140625 10.015625 43.890625 \nL 10.015625 52.203125 \nQ 14.9375 54.109375 19.578125 55.046875 \nQ 24.21875 56 28.609375 56 \nQ 40.484375 56 46.34375 49.84375 \nQ 52.203125 43.703125 52.203125 31.203125 \nz\n\" id=\"DejaVuSans-97\"/>\n      <path d=\"M 9.421875 75.984375 \nL 18.40625 75.984375 \nL 18.40625 0 \nL 9.421875 0 \nz\n\" id=\"DejaVuSans-108\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-78\"/>\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-108\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_2\">\n   <g id=\"patch_7\">\n    <path d=\"M 79.968966 59.80778 \nL 117.458621 59.80778 \nL 117.458621 22.318125 \nL 79.968966 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pf3a530116f)\">\n    <image height=\"38\" id=\"image3b70d9fd22\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"79.968966\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMRklEQVR4nH2YXYwk11XHf+feW9VV3TM9H+vZ2Zn9sr1erxPHSXZtgmLs2DhREBsnWAEJk/DACyhCAcETUsQTD0hICCU88ACIyAgRoSi2BQFiiBOJOLGJs0HgOPZuvPba3vXH7Mz0TH9WV9W9h4db3WNLgZJa1V+699z/+Z///5ySf738HrUSAPBqCBg8Mn9fqiWowWPwKlTqqNTy+Fsf5PKzJ0j3BFMRL4HgwFRgS5Aa1IIEKLtgPIgHFOwUbKmYMt5tpbhJ4O27Ek585DUc/89lCICdBxWDNmzXi7y6sxo3AbRZJVgQbWL0gIlBhSQGrQI+awIMEBLBWkWN4FsCCod/WHPpxnXMDK2fdlXqCGqwBApNScQTVLg0Okyxlx2glIBvRXRQMHW8z373rfgfNfEzRGSDA58JPou/lQuGcsGw8Y0EY+crvPuapXR2WQKVWgpNuNI/hEwM4iMKIVGC0wO0QgxSDVQLUC0oIVGQg1Ri4kttRG4WtBpIRuH/TqUhYJtkAlgJlOro1R2uvr2CHRtEmzSqIBo5ZeoYLHKAptrme3Nw19kBkri+T6XhgVB2Da5US2aqmDLxjNS+CzEjgaCGRDxFSNgpF9CRo9UTxDf8mWWtSaNo3Dw0xzaVYOrmvxoDgib1zFADtYI1injBdcyUSh1GAuPQAqAIKR4hkworgT3fYc+3CWp4eXgIO7SYGmwBZqDUbZkTX5rAQnKQKvExSDWKOoG6Qcs0B0jBmlipHsFUiis0YRByipDgMYxCi0ffPIszgY+tvcCfX3gA2U35lfueYdWNeHV3hWQYOVHnkA4g3VfKpRgcAnjwaYOGURBBnUZ+SROsHqCs2gQu4CbxvXuyfztPbZ1i+ndH+K0vPMaXr3wY91c3sH2HJdwvrH2zhU/hq+ZnefjepxnvtslDREFN5IbUStKPyPkMjGk2bMhsqkZK/EFxzF40aZ8XXQLBCeZoq8f+JMMVgURqBpOMaz8Pj/zGl/jU+n/z0d//Lr3blZUfGS4ND+N2HaaKpJ+dWl1Ewo01Bps1QTXiaspmcxWCfYcK6E8P1GdgFs2E2huScWC77jIZpSxetnz26d/kzWqZZ3dPsvkfSv/+CTtFh2xHyLc0BmfA1Bp55SPx3fgAJTUHxaHSBOllrmWiBwGZOrrFrHhMoSnjXs7gqGPf54Sxo70VMK/kbCR7yB+u8uY9wu9+4NtcuXoD6b5iash2op2olXeJp/hIYrWQjMCNYhSmjoVBaO6x9JvUxfXsRCNqAczQZ5ihY3xEeG5/E6kNvYdGfOlX/4Zv7d7G3pk25++7wMXxEfKXW3NumUpJ+zF16mSOirqmMpu0mDqiJyFWqTQ+acr4GYVkGP1SncwRdC+MNgitgM+FrfEidmSw1xb5fPUZbt18m3zH8+SjPwN37pNd17ndhGaRkDSbNIIqAWyl1EiUgWn8vy1kjpS6d5h5CQtv+Lie16hzAu7tYpGTp7awJnC0s8eJn+vxxmiJw+0Bn177IY/+wTnyMuPi5U3yCpKxEhq72b/FYAtIhoorYhpmkmDKKCFqI4JufOCPAUiKhluVUmfCeN2Q7ShVR2Kn8fmjT1JoQqUOjxDUUB6yBAz9kHP3ymVenqxxuXcCWzUkVqhyIRnOqu1APmbVFlJIRsp0SaBphUwZDX3miWqg1VO27lZuOnOVyV9vUi1ER3EdMyWjoggJFTa6gIZ4JzDUjKvjZVo7sdRNg9Z0VVh8NeBbQnBQdg94ZqdRKNVCaz+iEFzz/bghfBKRHh43nHv/JU62d/me2cROI/JzabMS8BobQwCvghWlZSpe3Fon21bcNArPdMlQdaJUtPqedBCi/qQSOwULxutcStL9uFlIG70rZp+F/J5t7ui+QaW2MfJ4cDcKLdKZJANpY9YBQyZT9us2k92cxQrSQWDaNUyXIRlEqfBWkKC44gAJNQe6hcz0TfFZE/TkgF+7l1Z55PJHwCrLWdP5BnDLdsyeb8/TeLHY4G8f+2hDaqg74FYUUynBCWpiteXXFZ/MEAA3CZhaqPLYAgUX7z6FOhPs9EDx61xwE+WmX/8Jm/k+bxVdetM2rw6PsfxC5LAbhAwrsQms1PLGdJmNpyvq3GBqZXTEMl2OzVzV2I2pIgo+FYwHn8R2ubXnEW/nTaJPhZA2Ml81lmUj/67fqQyuHuXC+EZM35HuGSzgW9FVnFdDhcU3A0elBjesgCRaioX6cEX5WooE6J+CVm82cMSNfCpQaqNL2ii9Mty0jYREiZEQU5yMA8e+pVTtHFMrxisqnmLFUHYlFkmFpQgpSaN+dbCIVyQoUivVonD86A5br29Qd5TF03uUz6xG9fcKNdipYqeKzwxhZu6NPEgdg7dlTKudwrVP1Hz89h9jRZl6x860gzMeI8oPXj5J+/kMZ1GW7Yg938GrMPIppg4QYg/vJvC+1Tf5t9NLdBcmWKNUDV2CbVrq5iBqZO4IxinZXsCnMkc16wX6Jy133HyNritIxIOD9VafqlEDc0r5/t5pzB9fPs+e72AlTkKlt1DH3teUAVMp33zpDGv/lNH6ygqDcQs7mbfn+ASqjqHqGOpcGsmYdQ86F+B0EIMEyGxFy9SMQzoviKRRhpvb25y+/Rpm/182GISMvo/jWFCDaNQgddHfwrWcpRcHLL5WYIySjBRbRi2qc2G6PEMuciw4wScRPWgKoSVRXjL4yc4alVqOtnpMgyMxnpapMaIkxvP+lWtRYFftcB75pE4ghKg/U486MLUgqvjMUozSudbYaaBaFAY3BSREVNJhwE10XrVqo3SMjhiKFSG/rtRPrZKI58svfpiVZMwr40PckAyog8GrwYjiBqc8XVOw6xfomClT72g3Lm+qqOgqQB0wUw9qURN5BVC1IXRr6pYjadQ+HfqGb2aOWOetgP/sDsPvrSEBrpcLmB90eeLv72NwzNL/5Zz1vE/XFZFGslLyO//zMH/0zCfxKhS1i4gBPnMEJ4TNgt2zK/RvztEq6ptaYbpkqRa14RPNHClNM6gko0AyDohC/6Th3iOXqReVcklpmZr3PniRa/fFYtn54o089fhZnto+xTQ43NJ3M0QzlrYD33nPGXyIbBWNlWZqJXk559D3tyg3ulxPwSeO0MyCvh2gbCbYJji1MfWuCIREyHqe/vkJR1t787b7cDogqOHcuZcoP+h44ZmbSPdg8hebPPrQDTgJUWMifIGgxDEHUBMHVbWKJg61wsZ6j97mEfLtZhxTwY4PyD+rxjqLa9gyCu1dx17nzXKJpC+4MWyVixxKhwQEJ577P3GJr1y5izeOrHL8HxJcOoipcEVoKgM0sQRnqHPLdFmoVjyjU13Ga5YFEyg2PMbb+JipXUPfxrnQRWOeTT91Jhiv7H7A000KLg7WybeUcllYScZ4NaynfawEdusO548/z5PuDFdXl3DXH5zOjsnH0gGnVrb5z8/dAqJIVrO03Oe9S/tc2VglsZ7Nzj71LYb+sRa3rG7Tm7a5emETFcUn0eTtNEQnSIViydLd3GPZjXl2cII6F5J7dije8WwhIPFJEsL5zef5d3sb7k8/9FWOu10sSonhfflV7rznVdbdPpmpuF53mYaE6lD0017d5vTCFr2qzRNP3MVD55/mKpv4VjT0ICBeMHXUuv1bDLeu7NK2JXztECaHG5d3yUxFFWLjYCUQmplu3+ecW30d9ycv/QLXn19j7QK0+p5i2XLscy/x42/cytGnJphJjSYWOyp55QuWXzr9HPt1ztZ0kc3v1Hx9eDf27IBie5HgYjttKmkeqgjFYc/Z5df52l8+QPd6jfu9t9jM+/SqdpQGjQ3q7DmdJRBEMPLIGhLiCX3LgMCgzPjFTz/D+HDakDrgOyknvmh4ZXSIFTfmeN7j7TsTFq4pVekobojcURttqc6joWdbln/+s/tI95Xpb++yng/ougkLdoqVgGnGea9m3uEYUUzVFuxEcIXixgEVoVbDSjJm/9eGSFmjIthBgRrhhcfP0K8z2rbkrgd/RLkghGFCvVozvK2kWBGqjuCTOAe0dmB4QjCf2eLc2lVu7mzHR6eY2CmrvOtVB0NQwdhpLHs39qiJM6ERpQgJD5y4xOWHl3H9grqb4foFG0+Peey5syTiWUuH7H9oysl/VBZeSrj95muMTgTKrlB2hd4dnvan3uLeT/4Xt61scWW42vixYAlYDhCbXTPE/hc52L2qA1wqfAAAAABJRU5ErkJggg==\" y=\"-21.80778\"/>\n   </g>\n   <g id=\"matplotlib.axis_3\"/>\n   <g id=\"matplotlib.axis_4\"/>\n   <g id=\"patch_8\">\n    <path d=\"M 79.968966 59.80778 \nL 79.968966 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_9\">\n    <path d=\"M 117.458621 59.80778 \nL 117.458621 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_10\">\n    <path d=\"M 79.968966 59.80778 \nL 117.458621 59.80778 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_11\">\n    <path d=\"M 79.968966 22.318125 \nL 117.458621 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_2\">\n    <!-- Neutral -->\n    <g transform=\"translate(76.568168 16.318125)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-78\"/>\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-108\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_3\">\n   <g id=\"patch_12\">\n    <path d=\"M 149.237931 59.80778 \nL 186.727586 59.80778 \nL 186.727586 22.318125 \nL 149.237931 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pd0e7cdade9)\">\n    <image height=\"38\" id=\"imageea5472498e\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.237931\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMoUlEQVR4nIWYy29lV1bGf2s/zjn3fe2yXa5yOamqkMqrktBFdyMU1C0keoIYIITEDCQEEybMmfMvIPWUEYwi1HRLoKghUkOT0E2nO0mlk4qKSrkeLpcf1/d1XvvBYN+yw6DDkSwf29fnrP2t71vrW0ve/vyNmIln4rt8Wl3ioj0F4Ek7wopnGTKO2x5t0Hx4dInDTzboPlT09gPFsUdXHl9o2p4iWMFUAYC2o4gaohLGv5wjP/sUYiCGyNkVA8Qv/fylSy1DjiI97GbnAYVqedKO+HR+kTZq1s2Ci9mUzWzGr40P8WuOdgj1UCg3NMvtDNdVIKBcRFwKxueCz4Sg4fhmH26+CKIQJYiSrwwKQI31kqGqUBIYqBIrnjoYHi1GAGyYKdfyA/q65qcPd8n3MnQJpgRdR4IGIhRHLd1HFXbuCEaICoIBWb378NYQdePaCqhfHdBZYFYcHmGoKjLxbJsJa3bBybLDe8dX6amGn8yv8Q93b6F/MmD8WSA/ibQ9IT/1dJ+0mKUnKqEZZzRjQz0QiBA1Z4EHC9OXx6i1tYTW/3OZKlqseAAGqqIQz63OPd4d3+D2R8/x1wd/QHOaoxaafg0H3wTWauwXOa6XURxGTB1xuRAsRAW+I9h5RLn0EomgWqjWFfnrz5H9x4xQVV8dWBsNbdRs6hlj1dAVqGLJtzc+w7we+OjhJS4/d8TF7oyDVwbsFiW3v7hEd184fcnTjBT9vYSQzyWloU1IqRaUT8EiEAVOr2VcvLNBePDwKzlmnt2MVYMVaIFCPJ8vt/iLnXe5fWGHrmo4cT32OyNy1XJbLiEhIiGhxOr5EhKvzCISVULK51/6e0wBLl+7RH7wlFjXvzIwdeCGDFSFTYeljVBFjZXA909+nevZU+pg8VGx8BmPqxFra3Nmz4OZC9lEEkJZekA0KUCJKchgBInnIkBgdsUgWYbkOWLMl6LRIHKO2Fg1qFVQAE/9gKEp+fsf/RblNyyX8lOe1EPW7YK5yrm19RB1cY8f7V1H/ecI3UZYJIIrB9k8IeYKQbUxpVGnVEoA8VB+62VUHchOG9Ttu4SySmVEZ4jWmAt6TiERvTqNBgaqpK9rYhZ4/x9f5/Lv7vHG+CFDU9HRLU+bPtv5lO9c/ZR//sU30Q2MP55S7vTwhWDngWAFosJnsiq0iW/P1DrdNZgS/AsZ68UNsr0jojVgDdEozECVdEWoYqSNkCmhJy1XsiOuXj/g4IsdHry7S/vbmo3OnJ/vXaH47y5f/6MPeXOwRzMKLLcUwQxwuZDNw4pvEeUScl7L/yXQKjOuC7qC6bWCYVxHYkIVEVRA0cZIJkIh4GNESaSnGq4OjqlfK7ELOHrnMoV2/OErH/DHf/JD/uriO4z1ktAN1GswuaFYXBHqkVoVV0HCuSieFVyfr1LuU9qDBVNF5s8VRLU6QIyoKlqWMQX07Gqjwopj3S64tn3IYjcgDn589xrX8qf8z3KDH8zeYOY76GGDOFBN4k6wUI81rlC4Ir0o6BSo66ZWFTJJXcGDrsEsA52DFtczZyIxVhxNVCgCPZVSqokEFENT0XpNHLfMMo06zPlocYXTtmDdzFk3c4b9klq6hJW42p4QRchPA1EJElM6IXHLZ+leN4L4SP/A03lSgguUO71U20QwmkiLIiOwCJEA5OJRBOY+Z9Fk6bM9x/b1CbvFMb+/9gG7ZsK+73Nz8zHvF+srycVUNiqIOilSefA2lRGfpe/BRqIRdC0EK6hFTTSKbNIQco24iPKcEzMACqijZhY6tFETIugsoGzgUm/K1zr3uJkdAbCpF7zWf4wv0ssSc1cPiudV3+fnDV0cqFrwWcTn0AwUoWOJVtMOLD5Tz0paJERhEQ0DJQyU0KDwUdivhvSylm6vYmM8B6CKlgCsK8+6crxUPMaNXLI97UpxAqZOqvSryv1MCFGle9UKPod6LPiORVzAd9TKOoXkLhbRoomsqQKN0K4Qq5ylcgarU5N3QTPxXaooTEJycQNVgo7kR4JyCSW7iJhlQLURuwzkp5F8EtHleVfQTQLYF9COLNL6lZIjqnKJYx5FVzwKYd/Dx/UV7lUbyaPlqZ/5oJjUHd45eZUnbsSmmbFppjx1Q/DnziKfQzYPZLMWArRDQ3YaCFaha818R6F8Sq2K6X/qoaZjFBJiEoz3mCPfZ8ecoAWmoeJOu8H9+gILn/P18X0K1XK/XufnxzvM65y7pxvcn63z3OCY31v/EIDe5pJ4b4Ruwc4jZhHQixY3yNBVwBeKtqcJRug/SjmtxgrfSYKo1hRqVlIcdZM5qB3m8/oi22YCwF1n+KTaofSWG919Xs0fUkXLw3rM8aLL9PEAVSlUK3wx3KJzq+Wt4R1uXdrj/c4QSkHXEd0EpHIwyIgC2XHD8cs9Ok8j+YlPvVNBrdJc4PoQOzn2pMKNclCC+u5Pv0UhjjaCR9gwM7bzU17OH7NtZgxVxXtPr1LeHjP+0LD+C2HtYxh8ZviXD24C8Kdb/059yaFasMuAnVSoZYU9LrHTBnM0Z/12m6x4JugqJD628Uww5e4Q3EohzqOiEzyCFeiJ44XsgFeLh2zrKQNxfP/0TR59ukXIIpNbDfWaUEw84mFte0qhWl60p1zePSKfRIJZVftugTqeoZYtYdQlO23ITz35UUMzNvhMyGYR8UnNugnI/lOyTx8hTYshCvfaDcbqEVYCu2ZKFTW/bC7y7vQl/um9W+hScCNP9sRi55Gohf4jz8En6/xt8TtceOF7fGPzPv/a3yabC82FDnrp0FajT2Zw4tDeY0YD2u0B4iODvZrqgkW1kSiS+qQPRFdB3WA69yzfvfZt/ub624xUzUBF7GrO/N5/fQ06ns5dTXZHo1voP2hoh5rTFw0hC9z/ZJs/v/dnYAPFEMxS8JlFvKE4ttieBRH0vEk98KhEL1qWO12WG4ooqW0Fq5AiJ5Yl0TmMBLh7f4uD5wdpKAmOWbSM9ZI3X/2Cw7LHyZ1tJCYXICFCBDuH4iOhc5z6xeQFS8hgeVlWLURYLBS6sildrkCvGn0zFFwvpVA8qBpcRxEHPahqIKBMBfrE8PbRb9BGzZ4bcafZZhEyhllJP6vpvnWYnEKM1OuW5YZeERkW24rJi5r5iy31eqAdBKrLjnotECyrdgXNWKjWheUloe2n4hoMZzODKQPiPChBjMGoBrJjxb3ZOtONgkK19GKNj4rPTraYLguqRz3U9cDkzQAmJg+uI+vbpxzvj9ATgx02OFcg7apfqoSsrlJpMMsUTPTJZaQ+lRCTCK6rkoMNEbzHlFuARO7tbbK/O+JqdshAlVxQS/7y+r9x6Ib8cOMlXFCM85L9xZB+VrOeL7ASeHfWhYkh7nXpHgu+gHozouqVOu2qr6+CUP78/sw8aNB1QJqWCMSmweQTKC+CmhqeuBE79oQ2Go5ClwtmzpaZMbq45H5zAR8Vr/T3GegKj/B3d34TXxkkD+RHGteNuG4kZgF9bM5cqqycqnjQbUTXnJnItPNINS2pI01QymdgT4UwajlsB1QxHXHiewAc+T49VXOj2GfDzng+P8QjfL7coq4NUmrMUiUH6yR9lWnJQljNlTwb6+IZt6JOv4sCriPJMTVtWh8oQeUn6QTFvZwf3HuVj8pdmqgpVENPGgppU28LyYFMfJfb88uEqNi5cHqWjmoz4PoxOYdSoRo54xCSeijypfmSc36lQVjAe/ABRKF0A8VxJJvC4rTDYdtn4ru0MXnlQjUUqqWKlmXIeFivMTAVp21B5c6HVV2nMiE+WRtfJEutm6Q68cnVuo7gCzlbGUhIyEYN6JUqtEJ1jjy6SeukrNvwsBzzoLnAxHdpomYRchYhP5vGlUT2qyGNNxTGQc/h8wTDWRABdHU+JSkXU/pWtHIFZyuEZL8jugpE585QU/VQUY0VrgvNMqOjU+qseJYxRxPxUbDiscpRestWPsdFReUMsdKoWjBzQTWC8oIu09rgGal1k/Zpqo1nyoQkCgmQTSN22kCIRO8hBkzbE1x3BeXMsPAZVjkWIUcTsOIJKHLVctj0seJ5XPc5XPY4OBghTRoqlDsnuqzUGFfpIibUsjkQI3a+2nMosMuIqQLqZA5tAzESfcBElWY75aAdCD97cIXr3UO6qkFJYBYKjl2fZch42gyYtgVPygHzKic6QfSKwAFCFlEuLVGUS9w5Z3raQCKCbsIqxWAXHjupkbImNG1CrHUYXaeovYXuI0VT9vjx+jXe2ozUwfJ5ucW0LbDK83g5ZFJ1UjeY56lULFTau672E0FHjF8JYTUppQkpDblqlcoooKuQRrXGJ35pjQCSG/4Xchq6HFnKoqcAAAAASUVORK5CYII=\" y=\"-21.80778\"/>\n   </g>\n   <g id=\"matplotlib.axis_5\"/>\n   <g id=\"matplotlib.axis_6\"/>\n   <g id=\"patch_13\">\n    <path d=\"M 149.237931 59.80778 \nL 149.237931 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_14\">\n    <path d=\"M 186.727586 59.80778 \nL 186.727586 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_15\">\n    <path d=\"M 149.237931 59.80778 \nL 186.727586 59.80778 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_16\">\n    <path d=\"M 149.237931 22.318125 \nL 186.727586 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_3\">\n    <!-- Disgust -->\n    <g transform=\"translate(145.480884 16.318125)scale(0.12 -0.12)\">\n     <defs>\n      <path d=\"M 19.671875 64.796875 \nL 19.671875 8.109375 \nL 31.59375 8.109375 \nQ 46.6875 8.109375 53.6875 14.9375 \nQ 60.6875 21.78125 60.6875 36.53125 \nQ 60.6875 51.171875 53.6875 57.984375 \nQ 46.6875 64.796875 31.59375 64.796875 \nz\nM 9.8125 72.90625 \nL 30.078125 72.90625 \nQ 51.265625 72.90625 61.171875 64.09375 \nQ 71.09375 55.28125 71.09375 36.53125 \nQ 71.09375 17.671875 61.125 8.828125 \nQ 51.171875 0 30.078125 0 \nL 9.8125 0 \nz\n\" id=\"DejaVuSans-68\"/>\n      <path d=\"M 9.421875 54.6875 \nL 18.40625 54.6875 \nL 18.40625 0 \nL 9.421875 0 \nz\nM 9.421875 75.984375 \nL 18.40625 75.984375 \nL 18.40625 64.59375 \nL 9.421875 64.59375 \nz\n\" id=\"DejaVuSans-105\"/>\n      <path d=\"M 44.28125 53.078125 \nL 44.28125 44.578125 \nQ 40.484375 46.53125 36.375 47.5 \nQ 32.28125 48.484375 27.875 48.484375 \nQ 21.1875 48.484375 17.84375 46.4375 \nQ 14.5 44.390625 14.5 40.28125 \nQ 14.5 37.15625 16.890625 35.375 \nQ 19.28125 33.59375 26.515625 31.984375 \nL 29.59375 31.296875 \nQ 39.15625 29.25 43.1875 25.515625 \nQ 47.21875 21.78125 47.21875 15.09375 \nQ 47.21875 7.46875 41.1875 3.015625 \nQ 35.15625 -1.421875 24.609375 -1.421875 \nQ 20.21875 -1.421875 15.453125 -0.5625 \nQ 10.6875 0.296875 5.421875 2 \nL 5.421875 11.28125 \nQ 10.40625 8.6875 15.234375 7.390625 \nQ 20.0625 6.109375 24.8125 6.109375 \nQ 31.15625 6.109375 34.5625 8.28125 \nQ 37.984375 10.453125 37.984375 14.40625 \nQ 37.984375 18.0625 35.515625 20.015625 \nQ 33.0625 21.96875 24.703125 23.78125 \nL 21.578125 24.515625 \nQ 13.234375 26.265625 9.515625 29.90625 \nQ 5.8125 33.546875 5.8125 39.890625 \nQ 5.8125 47.609375 11.28125 51.796875 \nQ 16.75 56 26.8125 56 \nQ 31.78125 56 36.171875 55.265625 \nQ 40.578125 54.546875 44.28125 53.078125 \nz\n\" id=\"DejaVuSans-115\"/>\n      <path d=\"M 45.40625 27.984375 \nQ 45.40625 37.75 41.375 43.109375 \nQ 37.359375 48.484375 30.078125 48.484375 \nQ 22.859375 48.484375 18.828125 43.109375 \nQ 14.796875 37.75 14.796875 27.984375 \nQ 14.796875 18.265625 18.828125 12.890625 \nQ 22.859375 7.515625 30.078125 7.515625 \nQ 37.359375 7.515625 41.375 12.890625 \nQ 45.40625 18.265625 45.40625 27.984375 \nz\nM 54.390625 6.78125 \nQ 54.390625 -7.171875 48.1875 -13.984375 \nQ 42 -20.796875 29.203125 -20.796875 \nQ 24.46875 -20.796875 20.265625 -20.09375 \nQ 16.0625 -19.390625 12.109375 -17.921875 \nL 12.109375 -9.1875 \nQ 16.0625 -11.328125 19.921875 -12.34375 \nQ 23.78125 -13.375 27.78125 -13.375 \nQ 36.625 -13.375 41.015625 -8.765625 \nQ 45.40625 -4.15625 45.40625 5.171875 \nL 45.40625 9.625 \nQ 42.625 4.78125 38.28125 2.390625 \nQ 33.9375 0 27.875 0 \nQ 17.828125 0 11.671875 7.65625 \nQ 5.515625 15.328125 5.515625 27.984375 \nQ 5.515625 40.671875 11.671875 48.328125 \nQ 17.828125 56 27.875 56 \nQ 33.9375 56 38.28125 53.609375 \nQ 42.625 51.21875 45.40625 46.390625 \nL 45.40625 54.6875 \nL 54.390625 54.6875 \nz\n\" id=\"DejaVuSans-103\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-68\"/>\n     <use x=\"77.001953\" xlink:href=\"#DejaVuSans-105\"/>\n     <use x=\"104.785156\" xlink:href=\"#DejaVuSans-115\"/>\n     <use x=\"156.884766\" xlink:href=\"#DejaVuSans-103\"/>\n     <use x=\"220.361328\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"283.740234\" xlink:href=\"#DejaVuSans-115\"/>\n     <use x=\"335.839844\" xlink:href=\"#DejaVuSans-116\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_4\">\n   <g id=\"patch_17\">\n    <path d=\"M 218.506897 59.80778 \nL 255.996552 59.80778 \nL 255.996552 22.318125 \nL 218.506897 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pb966e92108)\">\n    <image height=\"38\" id=\"imagec6c6804c67\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.506897\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMnklEQVR4nEWYy49kyVXGf+dExL03b2ZWZVZVV9d094xHbhsbxsYjYYQEFkKs2PLn8A+wYs8eiQ0bFhZLFpZAAhsGMHjk6Xm53Y+ZqurqeuTrPiLisIjsntplpe7NL875zvd9J+QfP/t9A6gkAfBXv/pLbl5PETXUGyKGaGYx33F1PePx3xqYoWMGoD9uyF7QMaPR2J0E1o+UOIE0MWJrIKCD4LdCfQX1rSHJiI3QHwt+A8tPev74b37Oj6df8vP1t/EZRckkBIex2VXQO0yMZAIGGNw9mfLOLzOpiWjMJBWQAsicIgZuFzn4YmD6wjHOA9tTz+aBEqdGDmACaQKxBx2FVAsmAOC6xN9/9Ef85E+f8A8f/wEeoJGRN385OWQSYf+ARUXvPNMXoNHAYGw940wJ24ypkIMgqQC0bLjdWID2mbALbO8p3Ul5XwoQp0K4M8xDDjDOoHp5Q/vpA+Z/tmP2b5MCbJUnNDqQTEmD4qoMYqTeQRKac8XvDB0MU+iOHGFrNF9viQc1/TLQHzpiq2CgY2l1nDr6g3JCv4FhYVTb8jlOSzfMgSWwzRaAv3v1J/RH4JXMVZpxLJmFbtHbQHbG9Knj9KOeqx8EwsrQaOiQMa9ohDgRutOW9otrJM/ZnNV0C2WcCqbgOyM7wTwMB4BAcyXsqUyqAAVTOHia4XjB9r3IP//sQ7QxfCMj74YrAG5yS64z4drhd7B+VFFfG9mDRhCD5AVNxlgr/dIRzub4m47ZmBnngd2JpztW+kUBIQapNtwgVDeGORgOhdQUsIgx/Wpg9f0lYLge/Ebwl+kAR6bRkX96/SPc2lFfC35nhWMO3FAqFieOHAQdy3exEe7ea6iXgeo2Ul33+G1i+rUyzh3bE8c4FeprIWwMNxq7QyVV5aCpgVxBbB03jx2Egfra055n/F//31+wvZzy5x9+zOP2kl88K63AIDsIOyMFIQVIlSAZqru8Byq43jAV+kWARSB7yEFwg3H08RbdRcSMNAlc/bAtbVVwHWRvZG/cvh/YfNDjv64wKTTw+X8POX5uvPidQz65OaW9yJhAvxCqVSF7nMA4K6DCxnBdImyEsIHqNqJDAhHIxnBUcfutQK5gc3+KGwwTGBZCdpAao74RsqdMZW3c/CAitwEx0BE2pw6vQ2nXJ58+YPpl4Hgdy0RNQhHQQ6FfCOYKJ9KNMHsBzUWPv93B5TXiHTQ1eTohn9aYg3EO49RAQTJIssKdnbylSHYgUWjOC6clvuGy4au7gnL+SeD445FwN2AqmAt0R8o4g/4oY36vc0EYZ54qGrkO6GKOiZDnDfGgJqwSzbWSJkq/NCwYspccsfLD2RXQucmQS+Xnv01oNHIQUhB8WBnVJnPyn3dY5ZEh0p1N6Y6FYWGk2rDKsCahVaJvAquHjv6HnjhpcN0h9XXhhQksn3QcfL5jmLXIKfg7pX0hiBVOphrGuZEmBlkQg34Bs+eFwzns5UYyzJ5ukacv0eWCtJixei8wzo0cDHOG+QwClhR8ZvuOJ6xgfJhJW6U7y9gkIZ1jezZh8XnGDTB9rsxeZsYWuiNhOCzSkWsDVyabQXAdmBaQ7HnmDz/b4p5fYt5jqzUsZnTHgjlDB6F6rSCOcbZ/oRbCuldCfenIwUiLYug2jXTfjXz1nnL8H57588T2nrK7J4xzA90ftjLIICa4QXAD3H5bac8N1xfA3n/6nLzdQc6gynDc4DqYnJeS6gjVrZEr2J0osTX8TsihkNUaQA2tU7GYLITXHlM4/0MlzhPo3oi1tI9cBsm0UGX13YREwZxj/ltINXhihJyxGJG6Zv2oor3IVKtMc77j6kcz2ssIBpNXys13HJKLDrkO4gz8JJKilqh0UWMCNz/pEGfshxkD0s4joyK9lMo3pdK6U/IkE6dGtc5kL/i3scI5dD4jNkWr6qsef3nHyUeZNKvIvhz78EvYnDncWIQ3zjMOsJ3DvMHRCEkQEwRDZc8lE1DD1BD5Jk5hYN6Qofxvt1Q0gZLLg1JV5LPj4m2VINmw4HEXt4SLNZKN9SOP643Jq0x7kUq1jjrMBIla2iSAN6x3pLuKcROIgyNFLeCqjIUi3KjBvb44wU5xvezjkuHNDDNDndKdtm89UJKBd2CGXN9RiVCdVrRP74gHDThhnPoSj9YeHQRzhT/SKzru1R2QJqFqSEjkrCSAXsEbeXA0lw7Xf5M6zAleRJC6hvv3iBNFB9ieCTffm3L0ix3EiKWM3G1YfBRBhLDtyYct5hvS6NCNo7lUzCn1NYR1qcjmkbB7kMmDQ5qIqpW0rFocwRn1FzXLJ5lXHwrNpTC9yKTqDcecIx1OiI0Sp2Xirr8vpOoei0/nVM+usNsVbLZIU0MVMKeQIfeO9pVSrWD2MuH6TKqU/lCZPTNycPSnYEEwEZzPRDXMwF1U1Ndw9YFQvxJcD7tjLUaOc3CyZFzUxEkpv+9gCLD6lnD37YbJxSMWn480Fx3u62usqenvNego+KtAdQuLzwbqq444q4p1OaXf6yFA3nl0NhJHtx8GIMPd9xLNuQOF9jyVxSaBl+Uh/aMFVx9U1K+NsDFSFMhCnIEMQncMX5943G7OwdMpvjP6uVLfQHVXUojrM7rpqVYdejzFHno2jxL1lWP6G09/ZMSQ0b2LSBSmL4Vx6jCFd396yebxktW7Zfq9NRU336kZp2BSnP9N8vSbN0II2ZfUefMdxXf7rLaGwy9jMV8v5GmN3u3wtx2LzzzzZ0quje2JI9VCmnpyGyELB587jn9VGN8vPaRMfdUT2wmY4fMkkGohTg1zgo4FmCnkuoS5VENu89u2yCi4rYIIq4ee+YtI87JDh4i1NWla0R95TOVtoHzzLFkgCu1FJtz2rL81Zf7ZCqsCuXZs7ymSDW/BIal4mOQSdcNK3mqiKfvgDjJNWCyyEGeRuFSGa8/uvmfZzln+4hzdZlIbyE7olkK/LDYmViyIKLiVo75J6N2Og3+5gBiRpkGWE/yu4PDu9YawmZIbI58O6GVFDvuFYAejf7M0gHUOnKFrh996UgXpnZ6YhK/PlNe/d8bDnw1UV92+RYLvAITufkaigAmTc2Xy8hbpB6zvkaMldntHDkpsSpU9IkwuI27jSTMhH4/Y1gGOHCgiKcU2cIYMSm4yw2RfyV2ZKJkkwgdbvnw4YfHRIYvPRo5+bXRLZXu/TCAB3FqZ/zYjmw67vYO6hjEibUuulGplaDI8KdF+/prZ4/vcnAhuEsliRG/F8+KeH3sntjpB1G/8DyAbtvVsBmV6tOP2x8bmQYU5SG0uh5LCTb8Vpi87ZNdjziEiWNfDyaIMWA0JwVMFuLji/r+3bB7NiA8yLmSkSsXfBFQNS4KZYFGhyrCXFDLI6LAqw6j0Tw5gmknvduSdhyxop+Q2IVEJK3DbYe8/6a0SpMMJsvdtjeDl9S22OEA/ecry4w+4nAbsaKCqR6ZtWZuH6IjRkZOidSRFV7bsobTRXEmvrhfiwT5/3VTl+kMgt6kcBJh+ldFVhw37+5JhROYzTARTIU7KNuZt1pYk4RzHP/01/eJ3uXtcM95PiIDTvE+UCQkFqKpBBb2A9a4MRp1JXnA7LfcRzr4JiLHIS/tSOfh8hWw7zMp7pZ1gh7OyE7SK35YJ9ncfnjJ/covmTL665uxfbzE5ZJ1aticDVTPiXKbyCdVMTA7VTEpK1YyMYlhSzAnWK2meS54f9a3mhbWjuRRO/6vDP7vEhgH8Pgo2NWlWMx5UdEsh+xKdfH+g1CdTQuVxqtiq497/1IRtzc33K+xRpA4Rp4bTjArEpIxZS0V9Zl9HmEbUWYlC4mFQ/EqZPYPDLwbqT8+xri9pORuokJZzLDjWDwKmZf/UBD5V0J0Ewm1HPJkzLGvqix0n/z0ye9nw6oczbs9a8kGkPdwxn/SkLKV60YFYAeMKPDPBkpTrq688898Yh190VL+5xNZrcK7sF5aRyQxdbRmPjoomVnthT+B3pyVurN+fUa0SOSjb96Y0Fz2TZyseXNf0RzXdUWD9sOLiLGNNKu3KglQZezuhgiTBbZT5c+Hklx3VV3fIeosNI9I0e161JedNJ2wfL8lVSa5hW7YnAN/fS6CO4dpRrZSwNerrchEiY8JtR9q7nskLx+KJo1/WpEbZ3lPGuRAnxbZ0v967rhj79ItbeHVdAHiP1BUEX3Kcc6RlS7+sGWeupFb9pmIIeBT640R2iuRi4mmiDFLjJh4Zc1nth4SuB9rrLTKMzOYT0rxhWATiRJEM7fMt/vwGqwLx3hwO30F3EXezhmGEmKCpyLOG1fstu2NlnIMOxUSy398wKvw/a8rssgWsK8IAAAAASUVORK5CYII=\" y=\"-21.80778\"/>\n   </g>\n   <g id=\"matplotlib.axis_7\"/>\n   <g id=\"matplotlib.axis_8\"/>\n   <g id=\"patch_18\">\n    <path d=\"M 218.506897 59.80778 \nL 218.506897 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_19\">\n    <path d=\"M 255.996552 59.80778 \nL 255.996552 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_20\">\n    <path d=\"M 218.506897 59.80778 \nL 255.996552 59.80778 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_21\">\n    <path d=\"M 218.506897 22.318125 \nL 255.996552 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_4\">\n    <!-- Neutral -->\n    <g transform=\"translate(215.106099 16.318125)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-78\"/>\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-108\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_5\">\n   <g id=\"patch_22\">\n    <path d=\"M 287.775862 59.80778 \nL 325.265517 59.80778 \nL 325.265517 22.318125 \nL 287.775862 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p5cee9e2c19)\">\n    <image height=\"38\" id=\"image26b6591f5f\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"287.775862\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMn0lEQVR4nFWYS49cSV7Ff/+IuK98VFVW1st2u+3GI9Hd9Hg0zLBgAAmJkRCbEYuR2PAFWLCBNUuWfAG+BItBzAbBBpCmNRLTrcaeMU132+6yy/XMytd9RcSfRWSVu1O6ulWZN/OeOHHinBNX/vTgr/Tqx49oJgZRJV8o3VjotoXyXNl9WrO6V7K4b1g88pBHzNJRnhr2P+kZfHmNZhY1BoDmaEAoDcYr2cLjK8vyrkMtxFzI58r0558Tzs7AWMQIGhUAMcLNyxEDWR0JuZDVSjsWQikUl0pxHVneT6DqA4UqMNxuqI565osp2dIjdYuaCjKhOazSDaLSbhvW+8Xm/3QU84gK6N095OqKDRog8K2XGBxRcetIYYTohJiB6cG24CtDMxH6sRKmPbt7C2bXQ9pnW2w/h+XdAjm6w/rQUB8qKpAthOpMqS4j0abfa6ZCcaVoA7ZX2v0B5WBAWCwQ+22mADCCA3ArT8gN7dggCqZJ1M4fCm4N3SRSjlsuj3cYPHf4oXL5OOL2G45253w4mrH2Of9zfIfmpCS/NpheGZx6MOAHGfWBUFwn8KG0cOcAaVvYTOMNoLdTqRGz7mGSEx1IADWbwyndBGSno2sd0hrquwE7bfnD975gP1/yfL3L2uccL7bxq4ysFdRC+abGXi6R3hOKu5x9z9JMhHIG/Ujw0yH2pUWj//YsSgLnNEQw0A8NEjeALETS391RT1l6usaBUbSMFGXP8WqH/z55hz959xkfDl5x794lx492edFO+fnLD4ifDjHDEjm9YnnHEnOl3RVcDb6CkA/YOzkgvHx1y5aIwGYROckz+q2CmCWB+oEQisRczBVpLE1XIb0gXtBMWL0Z8nVv+dvH/8pfjr+iVY8R4Wt3xT+fPmb5yRTzCHafBNrvvoNasK3QbSm2kUSABX+whTk5RUN4C+qGMSlL2p0MiWBUQQQ1EAqITjFrw/CV0OwpfqBkM8vu4zP+/rf/id8vai5jxy/bI/7us5+wejnGLQ3FtbD1VUt0htVRhlsp/UgIu5F2arC1YFto9kpGW2Pi7BqsBd3oTRWngxLbRdQm8fsK/ABCocRRoDhxjF8GurElC3DvR8f89YN/45P6Af8y2+Fn//sR/ryCcY+OAtoYhq8iJiSraaZCtOAHio49XWYxjUECzFeO4a8HMLu+Edjt2cWdIb4y9ANDtyX4AfhKiYWCUbpJpLj03Pkvz8VHBWfLIX/zn38B1xlaRGTgyQ/W5L8Ys/U8sLyTGF8fFqzupIHaDtRBVvUEF4kuLSQ/BIocyXPU+wTsRmMqEK0Q8s28D5RQRTRTUIHtnvnDgoN/f8UkP+CsmuC2FfHgoyGKxZ/myBAuPrTJAzvoh8L0Sc/q0NFOBNMKLg90QOwsahQJ4LdL3KtvTOOtXbBZhRn4YRI8Amg68rLn4o/h/IeH4BSzjthacCtJmrtwhEoJHy7p13maiWc50888xdma0+9vowaMB2MiwefQG0ybXKDbzsmKDWPftAu5yalNKkgE/GYFBqXvHC4LhLEy3V2yanKaOgcXiPMCtTYBdRE5zhCFfqTMHzhOf7BNc+QZvHD4SunXBZwWZK1gW8HVSiwEHQ2QpkFDfMuYWTRIHN2yZBvBdAIK3U4kzjOigHSGC4F3Dy9pBo5JWfN0eZedXwuT33T4/xhw/l2h/NE5PlhmByOkN+TnlvwaugmYLyqyOhlwcQXFTLF1hCKHqLdsAbjuzhYqID5pAxHcKk0tAFYxa0txbtCLiudxyuMHxzwanfHi84cs7yuz9zN0q2dnd84H01N+d+sF/9j9Ae1lxeAk5WX1RlCBblspL4TBWWT4qsXWPbHKMDdxtJlB9+VPcg5/Adk6aaudSIqlAkShmtZkh4HVQQmvC/IvSz7VezT3HdFBP/UUk4Zh1QLw5PyQz2d7tKscu7DYTjduL8wfRYoLg6uVetcwfA1m3RGrDIoC6uY2L12qJMlY86USijTCUEIslFHV8uf3PyUifPzOQ76+3qafD/j8ZJ94FDArS78aMjND4iBghz6NqLEUl0I+T7q5+EFEq0CTWfK5pdkD+VWE3hMnA8x0B335GiEBM7YW8kXENRHjFdsoMYOYKeqU3ls+vnrIs9UB02LFR/uv+f6DlwC8/zsvGbw3R50mO5g54lVOmOWYNvmR7dLvFaeWrOrJD9fYThk/V0Lp8PtjQmGJRYZY81ZjgzfC8q4jX6SRuVbpQkItXpgvKp42OcFbAEJnIAhY5dnrA8IyI58b0GSidm0Iw0gs4m2rDZkQnWKfDhm/0Fu5hMIQswzbRXAmlUbd4Jg97ileZ2x9YcjqZHquTmGrzhBCQZeni01tyDerKjolWxaUNSDJi/M5dFvQB0OokohXR4bqPCLR0o+Vq/chv4atryKz7yR7KS8io1eaFsDGtsyPv/cEiWxEGpEI+UIxfmOyRpFesEuL6YV+pPRTT9zr6UcxhXuVKlIo0znmiu52NHcDy3dh/sBSnoNmijxc0T9ecfp7sLqv+MFN/xOkLN+uyqhCuxfwLwz5Ml2EpnqNbtjIFA1KdmVwa6ELkL3T0G4ZsgvHzrNIu23otqG5EzCTjo/eec3JcszZqx1smxFzKM4NXIwwXRpEtoD8OgHxpSX3HlVFIriPX7+L7HSsjyoGZ5u8rIToEqXZtUENuKWQL6AbQz4z5C/GbF8q/U8vib/epbyK+KFBrXI0vebh8ILS9qzbnFUYpuYp4BaWbCEMj5PWuh2Ba1AnyKBCF0vUWtzy9QjyiCjki571fokvU0O4yVHbpP40/Sx51ekPC5o9ZX0XHv7DgIsPYf5bhn4cwSmF8xTGs5017I+XqIKq4Fyg33M0q5z6oWBnjuqNwXiImaDOIs5tIqk1mLll96nH1J5srfhKUuj2iXLJFNML8wc5w1PPwS9bFvdzrj6Ar/6sJFSKO1ijnSUvPYX17GVLJm7NyufUfcaiLgjBEIKgUZCVpbgwFBeKaxQJioRIDAGxFjf9RJj+6hrpA/hAvizpB0LMhVAJMSqhULodQZ3gBxl+AN2O4ncCo8Ml7+1esugKXp5NKIue74zPGNmGZSgprMeaSN9bfOfQtcMuk1bz62RPEsF0Cr2/rT9u72e/gRCQyQ7qLMVZQ7s1pNnfZJemBdHuB/qRwYRkvmEcmBzNeXd7xrRY8fT4CGMif3TvC+4VM9qY8byZsvI5IRo0Gphn2EZwayFbbHSsYNtIcdWiy1Wq2IAjBDRE9PwSM51gukBxHVjdMZgOrKSQ8BbCOBCMImWgrHqcjczaik+/uocY5YO7Z5w0Y07bET4arruKRVswX5X4tUMEJCRAvoK83/SEVnEnM2JdI3m+2fBamxpPiNB2SOfJVp584WhtYk0NWISAQYuIBqFZ5rSrHLGR8XYNwPOrCSKKAFHTd9vW4VsH3kAEtYqogCQNS4Rs0X+LLaxlMwyDiKJ1nYSXO6rznOgM7Y5gOwFR1EMYRsQkHdgsYmykbrLbyNIoiFGyPDVS3zk0vM1ANoAlgATFtYo7WyRgWZbaRVQcYsAoBNCuR0JAVg3Vm4xQVKgRmr3Uz6IDvnEPX7uUm0HApc0LRrEuIgIxCsZFVJTYS9psiEIUTA+ugWzukVWNWptC3NrUCcVZNKYvSZ4Rr2ZI1+GcZWgN0RYpbB2EoYIXVE1qvH0Kb4npUZJkiskD1oU0A9GAJntAZbO939TqNVQXgfL5FXG+SNqCtxtenEP6HrX2Nqe06zGLNa7IyJc3Vdbgh4J4SyxiAnRzM9kwKYoGIWAJQOg3wEK6zvSCbcCtYfgmMvy/GZxfJaacS48JjEkbXpxNb4SYPKSq0K4jXs+R8YD82mO8JWZCuysYL7STDdR+U8GtJmEHg/YJK0GQ3qB5vGVVQmJr+8vA1pMreHOedF1VCYNzaV/pbsRvTDpUkbJIW6kYkas5OWAmA7KlR01JNwbTGtRtmkSmxEwIA8CzQfVWi9IYxCfvqk6F3Sct1dPXhDenmMEggbIGqUrwAaxBrcFp5iDGBCxGRBUpS7RpiKs10jRk7QQtc8aFpRtb2u0U7H6Qtnkxh3Zi8cOIeEE2e2XbQXUijE4CwxdL7PE52rTEtgUxqPdI5lLdEUHLPGnMWTaJaRNaAGOQYQUa0bpBAc4vwVrKixnF/i7FwRA/sNRTS1Yr2TLQTCy+FFyTupxrIsVFR/71JVo30LaEukFEUNXbqZOqevvMApKcouJufOPmQ3XJj2Q0RIqCOF+gIUDXQdchbUtx4ijHIwbDCq0ypO6pXoBmFrNuE/OLFXF2TTQbC4gR2ZxNkZ7NUpVomSd9S9K5bjT//68Iw5HMF8zcAAAAAElFTkSuQmCC\" y=\"-21.80778\"/>\n   </g>\n   <g id=\"matplotlib.axis_9\"/>\n   <g id=\"matplotlib.axis_10\"/>\n   <g id=\"patch_23\">\n    <path d=\"M 287.775862 59.80778 \nL 287.775862 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_24\">\n    <path d=\"M 325.265517 59.80778 \nL 325.265517 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_25\">\n    <path d=\"M 287.775862 59.80778 \nL 325.265517 59.80778 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_26\">\n    <path d=\"M 287.775862 22.318125 \nL 325.265517 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_5\">\n    <!-- Happy -->\n    <g transform=\"translate(287.162252 16.318125)scale(0.12 -0.12)\">\n     <defs>\n      <path d=\"M 9.8125 72.90625 \nL 19.671875 72.90625 \nL 19.671875 43.015625 \nL 55.515625 43.015625 \nL 55.515625 72.90625 \nL 65.375 72.90625 \nL 65.375 0 \nL 55.515625 0 \nL 55.515625 34.71875 \nL 19.671875 34.71875 \nL 19.671875 0 \nL 9.8125 0 \nz\n\" id=\"DejaVuSans-72\"/>\n      <path d=\"M 18.109375 8.203125 \nL 18.109375 -20.796875 \nL 9.078125 -20.796875 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.390625 \nQ 20.953125 51.265625 25.265625 53.625 \nQ 29.59375 56 35.59375 56 \nQ 45.5625 56 51.78125 48.09375 \nQ 58.015625 40.1875 58.015625 27.296875 \nQ 58.015625 14.40625 51.78125 6.484375 \nQ 45.5625 -1.421875 35.59375 -1.421875 \nQ 29.59375 -1.421875 25.265625 0.953125 \nQ 20.953125 3.328125 18.109375 8.203125 \nz\nM 48.6875 27.296875 \nQ 48.6875 37.203125 44.609375 42.84375 \nQ 40.53125 48.484375 33.40625 48.484375 \nQ 26.265625 48.484375 22.1875 42.84375 \nQ 18.109375 37.203125 18.109375 27.296875 \nQ 18.109375 17.390625 22.1875 11.75 \nQ 26.265625 6.109375 33.40625 6.109375 \nQ 40.53125 6.109375 44.609375 11.75 \nQ 48.6875 17.390625 48.6875 27.296875 \nz\n\" id=\"DejaVuSans-112\"/>\n      <path d=\"M 32.171875 -5.078125 \nQ 28.375 -14.84375 24.75 -17.8125 \nQ 21.140625 -20.796875 15.09375 -20.796875 \nL 7.90625 -20.796875 \nL 7.90625 -13.28125 \nL 13.1875 -13.28125 \nQ 16.890625 -13.28125 18.9375 -11.515625 \nQ 21 -9.765625 23.484375 -3.21875 \nL 25.09375 0.875 \nL 2.984375 54.6875 \nL 12.5 54.6875 \nL 29.59375 11.921875 \nL 46.6875 54.6875 \nL 56.203125 54.6875 \nz\n\" id=\"DejaVuSans-121\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_6\">\n   <g id=\"patch_27\">\n    <path d=\"M 10.7 104.795366 \nL 48.189655 104.795366 \nL 48.189655 67.305711 \nL 10.7 67.305711 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pb07712df6b)\">\n    <image height=\"38\" id=\"imagedf0d2f6250\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.7\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMYUlEQVR4nH2YS28kV3KFv7iPfFRmPVhkd7OppiRI1sAeQwMtBHhgeOWlf4D3huFf4//jlQHDA8xitDFsWRppMKNHd7O7yW6S9a7MvHlveJFFisIATqCQtyorEydPnIg4ceXX//iv2k4N3VRQAdOD2ysSQS0kL6gBNQAgEUxQTABJd/8BtcP9okACSYqJgA733T0ruWF997soSA+mV9Dhe75UnBrh+vPIv/ztf+JNz3+vzvndDx/Sbz3l0Z7zowVHxY7KdiSEPy1PeHFxjH/jcVuhr5R+mqDqEZdInUX2FrMXTCdgIHklHvV88Owdv5pfcF7ckNQQ1bCMJd+unvBiNaUNnqbxzP6jxAGYxvD9/oR99Hz97gn92kMSAHo1bELOJuSs2oKXb44ov8+onyv1645khVgYYu5JbmDB9JAshBraIyGMISbok2HdF2xiQVRDUEubHJntyVykDZ7UG1AGYBKEt03Nu33F4rZCWgMWUhKa3pFUcCYRVRCjJK+kDLqJpc+FUAvdVOimSj9SUhWRLOGKQD1qOSla6qxl4hucJJZ9iZdIUMs+esaupc461vsCYxXkAGwQBuw6j+4dYoCqx/uIAJXvKGwgtz3x2HDjEtdnHltGqqrhpN4y9i1noyVn+YLaNtiDiHYpY5cy4kGkSQVvIl4iBuWNTuiSo3SB6Wg/6NEUd8AgITSdR3pBneKLQJkFSh+Y+IbKdbRpAHgy2tInwy8mVxz5HV4iUQ1zt+WRWzG2ezyRhKFRT6eWoI6g9h5gZDi36miTY+Q6KMGbxNJOB2BqYBsymk0+ZFTZU5Ud06LhKN/xtFhS2sA+evYuo43Dw3q1PN/PudyPWbYFhet5v77l0/qCE7fi2G2YmR2FBIykQfAIQR2Nehr1tMkTkiWpITM9melZ2EMo1Sq74GHpwSj5KDAtG46LLe8VCz4pLylMYB1L1rHgKoxp25qvb09ZtxmLZUVaexC4mE/Zv+c5L2/5rHrOsd9iJGFRZrYZ2FIhYGjUcncMesvwkh5ozMC2zfAboTtK1GXLJG+Y+j3v5QvGtsFLTyGB3ASuwpi3+5ofL46RnYMIZAou0d6UfHH5CV+Mey4+mfHPp7/h3K4A8ChWBk0HPYA1O7YuZx0LzEHreg8sQdt6TCtglcwNlNa2ZWp3zOyWSjoAihT4llM2IcNee/zG0J5EPvz4kiejNf/18hn2y5p0Y/lqdsqbkxnnboVF8QKZyIE1vWfLS8/4wKblAWMmCGHvGXWAU6woI9fxOFszsztO7YqR9AQMXnrOixt+n5/y5klLM3WcPrvhn85/y/v+hn+v/pp/K3+JqvD56QuO7eYuKNj7s1CIDikgiUICT/wCLzUj26LmAMw2Qlq7oTVkkZHveJRteOpvmdktYxMYidJqIonwSf6G3XHOeXWLl8Tn4+/5dfkjI1Eezb7g7+o/EBE8kZnd3bP18LAih1A2BLU00TO2DXPZDMBEwbSC2xgkgfWRzEZKG5jYhpnZ39ekXKCTyKld4UffceLXzOyWj/1bPEoCpiYy8tc0amjVYkTJBSoxRBQvBotgUAyJID3B7NmmfMhMiTB0sqGF2L0gCbyPPxVC6bEoESHdv6lSSGRiGgrpWMeSRSqxAoUIFtip5W0asVVPJT13uXcH6p61w3pmOmZ2R8TQJP+gJUUwOpxFIDM9I9vhiTTqiEloDikfEZLKfT16HWZYSZy7FWMRGpQX/YxVKji2G7yAFyGg8EDw5h4seKCSDi896VCA3R1jd3YmJSEzkakd2sNVHP9UtTEUEpjZLUEdkaERb1NOcwibVygk4G3P2DQ0KkRVAkJUwYrea84wsHwHsjItTcoOwFRxW8W2YCJsesOuz7gMExp1vGjmLELJohvR9o7c9Twp1nxQXtMkz02oaJJnUbzgIxoWyXAVxxzbDbuUs0s517HmRZiT1DAyLXO34dQtOTZ7xiZSiNy3q0Y9ogfxFwslX0RCbeg7x7bPuGhmfBOe8O27x4QwqCQdrNAPxRG/L55wVi8xomSmH0DolkyUTCIX4YhGM277iqtuzE2ouG1HGElMs4YPy2v+qrzgQ/+OU9sO3UESQe1BYwrFu0DxfIE5n8HSczWpaXvH21VNd1GhAjoJ2DyCCm0Li2RQoPYdUz9kVXfQUKeW79vH3PYjbroRm5ADsO0zdsFz01Rct9Vwvaz5ZXFBUDto+KHG/KqDtze42YjsJmc1qlj7Ehae8tIQS6XNLeoSqoLzQ3cI0dIax7bPh4assE6em77mVTvl9X5KYQMjF1iFgsW+pOsH9q9WNS8WM74ZP+HlfM6JXzM2DZdhiqS7rLzz30nxa4hvPZKguBbKKyXUYDqHCQ7bwe5JzuJpi3HKwkaSCjfTmk4Nb+KEr3dnfLc+4eJ2ytPZig/rG755/Rj5Y0UslVQodm3oE3z7aEwbHU9HKx4Xa17tp5hw7y4ErIGo2I7hwk5wW8XvEvlKKa8N2Sri9j2r9wvWm4KYK+rhIlieP5qzHnmeh2O+vD3j4npKfDPi+03O63qC+7Lm0f/0dGNDNx6KebKwEcfFeMo+eFah4NVqgu300MQBVDFdj9srJghqYf9YCLVldKVIVEJlAIcNSn4j9CMheQgzz7uu5m0c87qbcbWqCYuCfCXEJiOQMb0cnuGaITzRC/1kGKvCLmNplcxGVpuSo3hfYBWSQkq4veK3Ql9AexJp6kjz+OA8EExvh3HODuOWepBRT2U7wsGNqh4GmXIY8UwHuyfC9pkneYUEsVRiHSFLiE30wbIPnrjKhhHyUAcgRqQN+J1im6Hg9htDnHeks0jf2vvJCVGwCr1B8sjTxwvOixsAatvy/vyWH5IQKkdsLQQzuJYqDFXfJM6O1ox8x8vFjN06R1XYtR6/sJj+YSgBYhxYsOC3SvZHaG5K1IFth7/0BYSpEmaR8mTH09mKz45e8hf5JTOz4yy75dPZK6IaLm6n7DuLdAZpQLdDjQqjyLWPrF3ObpOjjSWVkWaXUd7KA2AH80bbYYISKuhLYXSpTH6M5Lc9ftWhztDNMjZPHZsPLNWzjk+PXvH306/5S/8OLzAywxtsY86L6xn2xlO9FKrLRLaKqBG6iaWrJ3QzQU4TWkesS/Q7R3570OI9MGtBBLePSHLszhK79xTpBVGPih9Ge6dQtxzNN/zD+Vf8qnzBJ/6auTEYEQwt5BdsU853J8f8ofHsYk4/MthuGGbVQCyhPU74sy1H4x19tNxczSluE+YOmApgZMjMNmJb0CxRPdkyr3ac1UveKxY8ztZM7Y6xbahMy0f+HYVERqJEwCCMjeUj6RiPvuXj96/40+ljrsKE2zBiHzPaNJhCJ4l5tjuwm/HV9Sl+JeTLnpiZBxoTQfseuw/DpkoQvI2c1Us+GN3wcXHFZ8WPfOQ6LMJaE2MxgBAZvFYhDoMhEDl3iTO34G/yWwJKp0oYEpJGLeuU0ajnm/Yp/7t9RhMcbiu4bU/y/iEwAyliNi3FrZJfW5azES/yGebgYCdmTyWvmJvBTAYU8wCUO1hCL5aEYFRJkjAMLjap0mgaRmFJbFPGLuVsY0bbeooOJETAP2hJOnhUaTtGly3tpKCvct76MSMfmGV73vRTxnZPsEvmNhBVMQ+mnkD3syQ3GLxY/GGdJBFTBwq7lPMmzLgME5ZdQd9ZpAcJ6ScHS0rQBcg8xIS73lPXjvbIs5nkLCcF+8qz7EdcmDlRDR1LTm0LqqTDyFXI8LhG+wO0RFKIB8ZbTXQ6OIitZtzEikUoWYeC1A71C2d+Gt+kT6S2RVRBzOAsrzzVkaUfOa6rmuf5EZXtGNmWTHoShmPz5t6JJlUiihW5X6eDp48ojSo7FRp1rFPGNuU/YxcZenbyD2wPIohziAjaNND32HeWuvIkm7N0Bd/HR4RoSXPBlkohgbexZGw6isPOjZeO7GCVLfKzMFuGSTwc2AvqCMnRJ0ufDPSCREX69ADYwyMltOtgtSZ75ZgwRVLOZp/zojuhi5b93LMuCwDGds/YNBQSKCTel49CuN/OHBJChu2BFAkSqExLYQJGlG2X4W4d5buEXeyQ+WEbqpuX+F98OOyzHuY0NZByh1ohX0XkucFvPKvnj/lt9Yjf5EoapaFnWkVsQowiBkR0+Bj92TurgiZDSkIKBlqLtIZsKYxfDXu//UlN8oJDoD1ytEf1n5H3MP6uUarXkerNEJ7BQJj76//fcb9p/GcXDrfrMNrFQtg9LUDg/wBdXL3lBI8SvwAAAABJRU5ErkJggg==\" y=\"-66.795366\"/>\n   </g>\n   <g id=\"matplotlib.axis_11\"/>\n   <g id=\"matplotlib.axis_12\"/>\n   <g id=\"patch_28\">\n    <path d=\"M 10.7 104.795366 \nL 10.7 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_29\">\n    <path d=\"M 48.189655 104.795366 \nL 48.189655 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_30\">\n    <path d=\"M 10.7 104.795366 \nL 48.189655 104.795366 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_31\">\n    <path d=\"M 10.7 67.305711 \nL 48.189655 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_6\">\n    <!-- Neutral -->\n    <g transform=\"translate(7.299203 61.305711)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-78\"/>\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-108\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_7\">\n   <g id=\"patch_32\">\n    <path d=\"M 79.968966 104.795366 \nL 117.458621 104.795366 \nL 117.458621 67.305711 \nL 79.968966 67.305711 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pfc2880fab5)\">\n    <image height=\"38\" id=\"imaged2d26adc02\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"79.968966\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANKElEQVR4nE2Yya8k2VXGf+cOEZHzG6uqa3JX9eBuGoyN2ki0EUIIFmbBxht27PgDkJds2fo/QEgsWSDkTVsIySAQ2Bg8D43d7arumvNV5auXY0Tc4bC46ddOKZQRmVLcc79zzvd958o7X/2abm5lUFADzAKaBZIgvQGASWA47vA2IaJYoyxejjAPG9K1Hm0tZhTIrUN8xlQJAY4P1pwMN+yiZ74as93UVHVEFazNOJupfcTbhBXF2wTAs+UEpwK5yeAyUmWqJpCzEJY1jCKujlR1pHKRkCxGlPMXQ/zTisFc2JqKNMogcOPWC04GG/5vfoV20dCPLX9549/43vZV/lXfYO0j06blVx8nmdpFhq6nMhErCkBIFre/x9QJY8tDbD3sf1cVchZSNgyqwOLlmOvveyb31mRn0KqgGhtLd3CFT46EUYRxguF8xle/9Be8+Xv3SdkQk8FJxttESJaohppPPyFbsgohGxwAGTQL4hOqgriM7iwaDLEzyCwzqHsaF5lOtjz5Us36lQlupyClBOoLRTJMHiYkKdV5j7//jNd/PuL+xR3CF9aMBh276NlFz7RuGUjASCZmw35/1LYg51QAqxinaDYgikYDCqaJ5J0jJ3u5q9pH5LhjNTMYn8mLColS0D0MyEtPMzeY4Il/chcTIFfQLxpmt3dkFTZdxbjq2CXPwAWyQlZDVFNAAhwGqDLGJlKwiBFUAQO5syVokzFlbTZdRVVHkjWMhh314YqQDJUrhetfyfRvWlI2nF+M0LOaPEjUhy3WFHQAxr7j8XqGNRkjyjrUGMlkU8rGqYBxuaAikJOAClhFnCIugygxGXZ4hlWAKgBQ2cTABaIaPjubc7M+pzGB/754lWvNkvnhhGdXJ9wen/OiG7HsGrbB00e7D0TpksOIYlwANcQMWaUUv2Yht5Zq2tFf1OAz7HOOgjFaWttFxlXH0PWX0BtRJiZyf33ExLV8f3mTx+sZbfQc1xsGLjBxLZtYsTEVMRn6zrPYDTkZblj3NeyRdCaDGlKWgpgYRa3Sb/fdqAKxoIYUzumiRURpbGToCmJRDW30XPQD/vz6d/i7j9/jYtfAfx6waKB+d8Gtg5fsUsWVes18O2Gzq0nRsOkqDpodbXQ0LrLNFbWNiCg5m4JY3jkwCiIgQBCkzhifaQY9xmSsKKpCny21iWxSxbVmyaIfctE3/M13/pTRjxqOPohARJLy1B/yR1/5FhblZ9tXWGwHpGTwdcSIktQQksEagwAiFmdySSVaupIsJW8CUmVcHcnZULmyi1EVyCp0yeFMYmZ2vP+NL+KXgmQ4OVPqi4TbJnannuWrhnBnx4HdMjQdX19+jhAc1maM0bKsZFTlkrgBjOi+KwFCaVOMIMMIQIqG0+MVlU1M65bKRK4PlvxiecouedrkGT2AOILZvcTgScv2RsPDP6zor0YGR2uOmp5/ePIut0bnrPuKykcUiNFeZkBE6UIJYzZoMaKFxwAQRdSgKBoM4jLNqGfbe968OufO8AU3qnPutye8MT1jGWs+Oj9m+RqkWWD1hoCtwCZc0/H61ReMXM/Yd/TZ8mBzSNt7Jk3HtvdkY8j7slCVS45so8PbtE/lnmBVFWkSfhDIyWCM8vrRc6au40ujnwNgySzSiHk/ZTEZcT44ZHC0KykwRYSvTla8M3vCb48+4Qeb2wS1dJUjZcOkanluxqw6vUyhqpR+2weYVYp0oUAWzCggVtEsDIcd46bjuN7y2eFTKkkkhAO7pTGBoenpsuOnk1c4HG9pg2Pb1oybjhvDC96bfMg195In4ZA2e2Zuy6PtAc5kGhewJjNfjemiklRIySBSgmujI0ZbEJM6MRx3DKpAZRNJhcomvEmsUsM8TVjEMYs45sitea2aMw9TXF3qcbOr6VY1R5MNB35LQngQjjl0Gxrpedgf8+UrP2abK+7tTvloeYKIkrJgRRGb92hB23s0C04NTGY7ZoOWkA2L9ZC+dxzNNjzcHpBUCGoJatklz3kc4iXxuD1g0AS2XUW3rBGfGfueoJashlY9B3bDW9Uz3qkf8/32NmttcJLICI2PpFzSmfalszc0pcZUwJpMGx0vFmPyxgPwPBi8TXTRcdaOL/mlMomglrN2zLDuSdngR4HRsCMjRLW8SGOyGj5fP6BVyyKNWeWGRRxxq1mwig1ZD1lshoUmbN7bqyI3mvaStG0rYnBoMsUpJIGu4okeglFGk9LGtY+EaHkynLILnqyCNSUNSYWBCyz6IT/jOl8Yf4wR5aftDX60uclZP+ZlP8TJKbOqZdNXuL2i6L7OKh/JWkjeSYb+bIi7MFiFVCvqoHlmyOc1qVG2TYUEYauQBpmLyQikWKXUG8Qqwbm9r4qcVit+q3nA15ef5/3Hv0FIli+cPmRrSk2uQl3IOtq9Gb2U5dKdCk4SmFaQBIO5oK7cu43Sngr9TMmTyPR4w3rVQDJob7h79xn3fnId6lwQHgQOqh1j15Mpdfm3//EHhWY2ln8eHfL22w/pkuO42XA2n3J0siL+mtfL2aB7U+EAsgPjIUzAbaBZZOqLjEkWSQYeVXRTj6mgPhfqc+Xx45uMV7B+VbEbw/gzHRPfYlDebJ7yj+fv0swdcaDkWnFLywc/vsXo5opVV1M9qji6vePpclK4TNnThoLuuxKrSBRSo7RXlO11QdQyeCK4DUhWpp8oo0ct2RskZg4+LDuNTc3uVuSNwzOu1UsMyl9/8ysc/NBx/GdPWbV10b59LYooF987YfQQRq4vgexTWFJavoskJcFthNRAfSbEsRIOEuGoiDqi7D6p6GYDxg8jfq2kxlCd9xx86OkPigjXEvn7D36XV/9JMX3HRX8VLzB6mjB9pp9alncso6ViEvS5aGbcK0fOn8qTA9A6056CKLi1QSJIb9Bhopp2GKN0p5bqwhLGhlx7wsCwvj4kjIXmOfzXL+/ws9kV4oMR/RTcVjj8YEeYePqZJR1YUgPrO5HTb1kmD3vuvziiqcI+KDCmNIIIe60E8iQhnaGvE25lsJ3AzpGWFlqBSWb5dmT5NpidIU9jcSUuQzSMRx1Xx2suro04+3yD7R3jTyzVKhMbYX1T6A8zN+48R795hfrJiv7+EaO3FogotU/sOn+pmU4N2EkAUXJtqJpAmLkylkVTxromcvP4goNmx9D1OMkMbGCXPPeXR8RsOBluuNqsmL7a8pPhNWK0PL9dQ2+Y/EIYPlPaq8q29xw/61BnmH4ktK+5Sy/mfSrDtri9iFNKqR4EZqMdXe04GW+I2TDyxb4cVVsqE7niV3TqOA9DrtZLahPJCBd9gxHlSr0inwpOMs4kXvZDfn50yur5AAws1wOORJBdz/GPW3755pTZa+eXnj/JHjHbgjxq0Js7BnVfusdH1n3FtOoY+46Z3zFxLY0JPO2nbGKNM4kTv8JKJmTLzO8Y246glmvNEiPKodviR4m74+f8++Aui6cz8nmNW61BFf9ig+kaBlVg1/t9ZwpiFed2yvRDWN7kUlpCMjQ+ctE1nA7WrEJTqCGPOanXDGzgZnUOwND0tPhLofeSGPqemduyTTWfbZ5wt55zeHvL/05v8+G/3MUuSmBaeaqLT32Z27sMMVq0cvwosr43oP6dFX20ND5ydbgq8558OuxOfIuXxMxtadWxTs1+M8WRBrU0LjCxLVkN3kTO4oTGlKlqsRsyvZehD5AzYgzVCtrgsKJkBe/KSZHrJ8Libc/pdxOPb864c+M5s2rH0AUGNjByHZZMwnDFr8gIXfZ4SWxThRHFS2Lq2iJF2fIsT2lM4MSt+eHmFkmFX65OePTxMXcfh8IHgwbdbIkDmDYdq7Zm6CPt3v+7OAD3xXPW4ZDxDyzHr5Wib5MraCWPFWVgera5KnWF4iViJPM8TOhy8epJi23xUu5bdXTJsUkV89UY/8JRzc8hJQgCu7ZM/yoc7P3gJV1g4K2TOf/z7oCr36iI2bCNFW5/pgBgRQnZsowDrGS8FE926DaXxm6dimMAGNhAYwIP2iOetZNykLJpGM0Fs96iRzNk28KVY9wabk1e8tH5cVnLlDVddvDmeI55Tfn277/Os3u3eOv2U8a+w6D02WFQkknUJtFmT22LfXnUHRb7kj1BDVaUeTumTZ5NqADok2XV1qQLz+x+JB1PUG8xVpBHc/qDV/jut9/gvfd+ykcXJ6S9WXTsa+Sk2vCZ1+c8X494uprABKZVy8j2THzL2HaX1LBONUPblxeYzC4Lu1Scb58ded/22+DLxJ1MMX/bjHQJCYlwNKR6LBx9kHj+OcuyH9BHR0ymiL5kocuOa/UFHMLz0YjvfnKL+73n7skLTqoNt+sFM7tlm2uCWlb7bhzanpAthv2QKpnKxF9JMKrC/GyKeeEZvDQ0H8/BGpZvHVIvIpwe0U0M04+U6o8jWbl0G/Kbf/U17Q727K9ABtsDWnyaOlCrqOz/h3Lowq8/l0v23whIOS7DhHJJgmqpqIHUgIllrTQQbKtsr5Wjhl+95/8Bq15C6y1O730AAAAASUVORK5CYII=\" y=\"-66.795366\"/>\n   </g>\n   <g id=\"matplotlib.axis_13\"/>\n   <g id=\"matplotlib.axis_14\"/>\n   <g id=\"patch_33\">\n    <path d=\"M 79.968966 104.795366 \nL 79.968966 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_34\">\n    <path d=\"M 117.458621 104.795366 \nL 117.458621 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_35\">\n    <path d=\"M 79.968966 104.795366 \nL 117.458621 104.795366 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_36\">\n    <path d=\"M 79.968966 67.305711 \nL 117.458621 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_7\">\n    <!-- Sad -->\n    <g transform=\"translate(87.418793 61.305711)scale(0.12 -0.12)\">\n     <defs>\n      <path d=\"M 53.515625 70.515625 \nL 53.515625 60.890625 \nQ 47.90625 63.578125 42.921875 64.890625 \nQ 37.9375 66.21875 33.296875 66.21875 \nQ 25.25 66.21875 20.875 63.09375 \nQ 16.5 59.96875 16.5 54.203125 \nQ 16.5 49.359375 19.40625 46.890625 \nQ 22.3125 44.4375 30.421875 42.921875 \nL 36.375 41.703125 \nQ 47.40625 39.59375 52.65625 34.296875 \nQ 57.90625 29 57.90625 20.125 \nQ 57.90625 9.515625 50.796875 4.046875 \nQ 43.703125 -1.421875 29.984375 -1.421875 \nQ 24.8125 -1.421875 18.96875 -0.25 \nQ 13.140625 0.921875 6.890625 3.21875 \nL 6.890625 13.375 \nQ 12.890625 10.015625 18.65625 8.296875 \nQ 24.421875 6.59375 29.984375 6.59375 \nQ 38.421875 6.59375 43.015625 9.90625 \nQ 47.609375 13.234375 47.609375 19.390625 \nQ 47.609375 24.75 44.3125 27.78125 \nQ 41.015625 30.8125 33.5 32.328125 \nL 27.484375 33.5 \nQ 16.453125 35.6875 11.515625 40.375 \nQ 6.59375 45.0625 6.59375 53.421875 \nQ 6.59375 63.09375 13.40625 68.65625 \nQ 20.21875 74.21875 32.171875 74.21875 \nQ 37.3125 74.21875 42.625 73.28125 \nQ 47.953125 72.359375 53.515625 70.515625 \nz\n\" id=\"DejaVuSans-83\"/>\n      <path d=\"M 45.40625 46.390625 \nL 45.40625 75.984375 \nL 54.390625 75.984375 \nL 54.390625 0 \nL 45.40625 0 \nL 45.40625 8.203125 \nQ 42.578125 3.328125 38.25 0.953125 \nQ 33.9375 -1.421875 27.875 -1.421875 \nQ 17.96875 -1.421875 11.734375 6.484375 \nQ 5.515625 14.40625 5.515625 27.296875 \nQ 5.515625 40.1875 11.734375 48.09375 \nQ 17.96875 56 27.875 56 \nQ 33.9375 56 38.25 53.625 \nQ 42.578125 51.265625 45.40625 46.390625 \nz\nM 14.796875 27.296875 \nQ 14.796875 17.390625 18.875 11.75 \nQ 22.953125 6.109375 30.078125 6.109375 \nQ 37.203125 6.109375 41.296875 11.75 \nQ 45.40625 17.390625 45.40625 27.296875 \nQ 45.40625 37.203125 41.296875 42.84375 \nQ 37.203125 48.484375 30.078125 48.484375 \nQ 22.953125 48.484375 18.875 42.84375 \nQ 14.796875 37.203125 14.796875 27.296875 \nz\n\" id=\"DejaVuSans-100\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-83\"/>\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"124.755859\" xlink:href=\"#DejaVuSans-100\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_8\">\n   <g id=\"patch_37\">\n    <path d=\"M 149.237931 104.795366 \nL 186.727586 104.795366 \nL 186.727586 67.305711 \nL 149.237931 67.305711 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p6012dd6955)\">\n    <image height=\"38\" id=\"imagec99125a985\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.237931\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANHUlEQVR4nE2Y2bIkV3WGv7WHHKvOfE6f7tbUQtACE8FkmwCHX8Lh1/AD+BF84Udx4BtubCLA4bBFEGEcINkII0Sr1cNpnbGmrBz23ssXu9RQV1mVWZkr1/APS979h3/U6vGC9XWDu/H4lSAB1IHbgOuU0Aihge2DwL13bnhjfsfbzQ1GlE0suRtrXmz22YwFIRqmaBl6j/ttQ3OhzJ8FzJCY5o5xZphaGA+E4k5xW/BbRQ2YSekPDAg4BDarCuktfiVMM8WvBLsFgOFQCDNlPIocPFhSuUBS4WZquR5ani32ub2cI53FjAJJQJR4EEiHifoLQUVI3iCqAPQngpnARDBBiQXYQUleQEAtOBQ0GAQIrYLw+mRoIVbKdBhpTjfs1z1JhcVYc7Wd8fnzY9yVp14KJoCE/DLJC6H3hFbZngnlwlAsEygkB8mD24JKvh6FWAqhFJLPxw6AKJDyNWaA0CjaQqwVLRP+oKetRkIyAKyGkqvrOcVLT7HI2R2OILWKHQW/BDsKaL7X4l3DyYcJieAGpVgIbpvLiED0QqiFcR9cl39zokACiUKYJ0wvJK9ooeAStgm09Yg1iZAMSYVVV2FelajA+vHI3vGGt/eWvFzuse09Y7Sk24L6uWXyyniQWN+3zC4iw54QSzCToEaJXtieCqFRTBRkA6rgJIH0NqcrQmwSFAlTRKxLlNVE6XONChvxNrLcVOj9njfPr7lct6wWNcuLOVIHdLSQwB4NdIXHLi2xSazfsbSvhFjnni2WglqIVa5nmCvVF4LtFVFwKoBVUp1ySYuEbyaKMjCrBublwNz3jMkRkqGwkT9/43OSCh98/BXMyoFT/NqQ1ga/NDSvlGJpufwepCL37XQY2B45JIDtcinzcEF/GtE64TqDHUDNLmOmF6LLPeGbibKaaMuRs3bNcbmhthMG5aKf80U356OP3qZ+ZikrSKWSrKACxcLkbA1w+F+XtBf73LxfsvyKEvci2zOh/kIxIU9hLIVQK9rEnJTd0JkARhKggowCZcL5XK7K5fI5SbR2wJnI280NB9WW4rSjP02Ut7kDimUef4kZ//pjoXvviMWjkrv3Fe4PSBUJM8V3ih3y/yTlXjMrh79x+aVGJXpwEiTji9lNSDSoCiLKNniCGu6mBoDTYsU3917w18e/Y/G1hv9bn/H722OWqwZVYRwsTMK0dGzPHOF04uRsSVJYbSpiVTA1AgZiIUgC24PbGiTmoJIVTAQnMUeOAkEY1wWackPu1z23Q0NhQ645c7yJNHbkUXnJd5rP4AzuYsOkln96+V0++fScVCa0UGwVKHaZ3xglVMq0Z/ArRR3IlOHBjopKfqbanHknCskrKMhkYIJJYa2CswlrEvuSGNVhREkqvBgO8BKZ2y13seWDxVf4w/KYzz47xd06VECTEgtHNxTs1z1lERhcoj8xuA7MlAH2yxawU+49tWCiZuSXScABAURBi1xKaxLeRAobgUhQw1W3z8wPnBYrLsMe/3r5DX790Tu4laGI4NaCGsAIofMMe46pNFiTcPOJMQnjnWP+NBFLwYTMk9UiM8PUCMnLbioD6CiIZhyTIlJWE5ULOJOo7URhAiFZKOHz1QHrqeSo7Pjw6QPKS0vzQrEjbE+ge5hITUQmQ3w249WZY2+25XB/w1UwDEeWvSf5etfDOBMkKbZX1BiGYheY7QW1mhHfJ3yRJ9PbSGUnWjty4DusJKZkGaPld9enPI2HpN6Rvr7m5mGZwbSNHD5Y8MP7T1iGkl+9ekjXlZy2G7yNdENBN/N0Z5b584CK4PqsLOwQX3OtU5tJ1UwQa5A64otAXUy0bqRxI0YSjRm55xdEDId+w3HZ8YuXb1GerfjBgycYlEkNpQl8f/4p7xcv+XB4g5kbebo55NsHz7ibGl6t52yaSH9iaS8EE5VykZCQ+9yvpj+WUtKO9YuEc4mqyGUsbMBLLuXc9gBYEkd2w1/s/YFH9RW/XLzJ3VhzUq55UKy45xcc2zVeEkd2TVTh3dkVk1quxpaYBFtFxsNEd2qYP485KMkAKzFR3I6ZkiRCqoEy4YtA5QP7xZaTcsMb5S0nfsWxXWctpZ6bMCMidKngh4efsog1XSwA8BKJCAcmsEo110ObgdoklmPFcdtRuMilwrhfI08zNZkpIUlJpcV2YacuAPWKuISIMvMj5/WKb8+e8pa/5sB0eIn06rgIBzzwt2xSwZA8v1y+xf1qwf1iQZcKFrHh3N/hgcswZzHWzH1PFwrWY4k1iZNmQ0yG5awCBTWSgTRBLA3iDC7ZTJqpVKp2ZF4PHFYdX2suGJLngVvwZDri5+v3uJ5abseG9VRS2YnDYktQwy9v3uTPDhxnxYqZ7XnH3XKTLJ9097jeNNyZmjFY+sFjbWKvyW0xnkauvuU5+dXEuOco7yYwgjqTuTJ5zSQKvDG/4y/3n3DqVjwuX/C78Yx/Xz3m5bDPYqrpQsGULLdDw6t+ztwN3G0rfvLkMaWZaM1AI5FeLf/x4hHLVcPtsmF53TJeV/QXLTfLhjFYms8cJx9OqBPWD+1OggtqJVOS22aNZG2isoEuFfxm+4C2Hfjp4ut8sjphPZZcLmbEYNlJd/b3OqZoufvkiOa54Z9n3+LvHv2USuDzcIT/0SH2PZj2E80Lix3z/7pty7KN7G3BdZHkDa7LQJu8EFqLw+SJlCB065Jfy30++P0j0sbzv98454tuzu2mZpos022FmU+kyVA8L1i+qxQucvr4itXlGTc/P8e8m5gbx/PpkPnnI5fft5jZRFc6qmcegPkTIXmHmcBuJqR0gMcOidDazJWaTQ2uE9Lzins/hruvVoRK+O/0CFHBrQzTQWTv/grzk0Pqy8TVd6D4n4bbumY8n6gtvP3jFX//3t/ws8e/4V/+7ds8/vQl+795yOKbyul/OmYvRrpTh98qoRRCJZgxg6rbKt15QXICknB2zOBqAkgSfv+3Je1z4d4vesKswq8Uv4HunmOz3ufNTyb8ciTUDSpKuUyosdy9B3dfa9n7wPCz336XdgXDO8fUl4npiefw4zXu5S12OGF7muWP65XxqCYVhuomMO47ymVkagzOTNmMYMD2yrs/GrF9QKbIw59OyBiQ7chR4Yn7FagyHhRZjSiMc0PKFeLVXyXefu+CR3vXfHR1n4vyhPalUl0pyVvS4Rx3vaW0hu1RkZt8PeZJNMK4Z5Gg9EcGZwfFb5Tkslt5+YOKMMsmVGLOph2F9plSrBO+S9htor2YmOaW5duW5DPkmNFwuWrxNpIUNl8diWVBdQOrt0p8VyCqbM4sw6EwAPufGPzFgs3jU8a5QRKERnBqYNjPY/qlNA6tYs875m3PvBwpbeCqa7jeloxdAUuHWxtcJ9gRYgXDUaQ47zidb/AmclD32PvK+qDk7qamfOkpbyHU0J8m0v6E9JbteYVdD8TaMLUCaggVuCxlFbVZuMVSSWVirx45aTruNUuOio7maGQdS55ujvj41RnjRYNaw+AVTgfOjlfslz375ZbCRProqN3EWbtms1+wflBy9XIf2Rpkp5DdwuDXE2ot22NDLAGyG3dItvYSdnzJTvurMCbL09URN0WLk0RhA4ux4v7hknUz4GzkuO6o7MTcDwzRcVR0OBNZTDWHxZbWDaymijQXzMkLttFzMzS8XO7RXR+QUUEZ5zmg5He7C0k7tNytB+yQbVzarQPO2yXf2/8MizKzPZNa5mZLZSYsymWYcxNmdCmTeGUmSjNx6DK/ehOghKTmtXxax4pflW/wwXXL9tRRLBzqYDjSP/GVMS8xsivO/SVRsCYvM1o7MiVH4zrO3BJDopDI3GxpZeLYrukLzyaVTGq5iztH5Vb0yXNgu933JddxRiGRjS352J5jysjmvMBvaqYWEMWMhlhrDsxGBYRYsduNKU05Mi+yC7eSsLutSyERL4FKAo0JHNklN9FzwR6jWowkulS+DspIYlLHdZxhUTa7c60dMeaPtlFizlSss3N3JoLrlc0su2k1QBkxohQmUJpAaSYak13q3GypJDCppdfEpMqIISKsdk06Nz1zk18oqgEJu6AKEoZePc5ERJTdbfGbDBPJ7WBKUrbrdtz1mgF6Sz85zqo1SYWkhl4LDInn4RCL0piJm9hwEWevywdwbNdsUsGklmWs2KSCmzBjUru7faI1A5ZE0rxXWz20qM3PTsVuqYKCHROSDG670/2TMAbHlCyzYsBIYkieLpU0ZqBXhydSyUSvnpWWbFLJQ3fLMlXYnfq0orRmoDUjrRnyOZSIcOg7vI+vTW4ssvySlGHLIWD79PoCvxJCbZgmu7t5IqmhMjnAY7tmbka8JHpNzBmpZOJJOuHUbvASOLAdXSqJCFFNnszdpzIjUQ2TWsJkMZMS6gwVdhCS3YmKcS4sHhWEWjIN7ZTG9KzlJ5v3sWVEAGMTVZl3ZWZnhpPK6z1HTOZPjoUQLQqoCkYUJUOQ7LK53RaYz+qdOd49dyN8qXb+H4mRLJYCdaQ4AAAAAElFTkSuQmCC\" y=\"-66.795366\"/>\n   </g>\n   <g id=\"matplotlib.axis_15\"/>\n   <g id=\"matplotlib.axis_16\"/>\n   <g id=\"patch_38\">\n    <path d=\"M 149.237931 104.795366 \nL 149.237931 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_39\">\n    <path d=\"M 186.727586 104.795366 \nL 186.727586 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_40\">\n    <path d=\"M 149.237931 104.795366 \nL 186.727586 104.795366 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_41\">\n    <path d=\"M 149.237931 67.305711 \nL 186.727586 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_8\">\n    <!-- Suprise -->\n    <g transform=\"translate(145.611196 61.305711)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-83\"/>\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"126.855469\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"190.332031\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"231.445312\" xlink:href=\"#DejaVuSans-105\"/>\n     <use x=\"259.228516\" xlink:href=\"#DejaVuSans-115\"/>\n     <use x=\"311.328125\" xlink:href=\"#DejaVuSans-101\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_9\">\n   <g id=\"patch_42\">\n    <path d=\"M 218.506897 104.795366 \nL 255.996552 104.795366 \nL 255.996552 67.305711 \nL 218.506897 67.305711 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p07e316a475)\">\n    <image height=\"38\" id=\"image76d5cd9fd8\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.506897\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANuElEQVR4nEWYSZNk51WGn2+6Q+a9OdTQ6qoeNFgttWxZYCFjg4Mg2MCGn8CONUt+BvwMVmyI8MYsgCAIHBiCwbaQrMFSt7urq7rGnO70DYfFrRZ3l7nIe/I757zv837qwz//Kzn8tysIEeUDtB0YA0ohXc/mD97ixe8r4iyCFdxLR5gmjh+dE0XxePmSTAdK4xmSpY2Oh+UVn2/vcN5VnG0qNtcT9MohywFJCqVAvIagyC4M0xPI1sL2vqa4FFQCCyBKoYxGkkZZC94jIsQ373L6u5pYRXAJvXKEKmEPWrQScht4ul3idGSRt+xlDVYlzoeam6FkmTdohNxGLqihsagyorOIyiKhsYSpptvXZGuhuBBioTj6h3M0AipGiAkVIlJkoBSqyDn9UU1YRPTUY7JEqgJ6OVBNevaKsYjGOwCsSmgEpyNtdDQ+47qfkNvAUb2mXjZgBYkK5yLaJEwZSWUiTIX2QDO5jEzOE2rTjCdGTABjQTFBWbB775DdvYQqIjaLZFlASgVAlQ+0wZHbwIO8BaAJY4FT22NVYpZ3vNxVaIR53rI/bUhJ0zYZMWi0SbgsoOZCGAqGuSLkmvqrHWm1RusIarOD6zWy3iCbHaTE6nVHnEVc6ZlNOw6qHZN8QCnBmYhSwn6+o7Y9r54gml3ISaK4P7kBYNUXbH1OaT1V0ZPlAesi1iaMSRgbYTHga6F5TWNuGtKuwaokyK4BPZ4GSfCPjtk9EPJFRz3pOarXVLbn491dYtTshox2cJysZ9RFj9OJJApnIk5HZllHQrFXNlx3Jau+oLABoxOLqsHpRBSFj4ZWOfxgSUWi3zOkWQkpYkUrKAuU1mNh1rK7V+D3AnUWmBUd+/mOuWv5xb++hxG4+G1H7A2qNTTLnnndULgA0ZBEMUTL1o8nJ6KIoni5qShcwJqIVsIs72iDQyuhazNCkYi5pj2aMJ3NsDGD9PA1VO8hgRJhd9egpwPORErrmbuWpW04+LmneLbhbLMkTBUIbN7J8JMeZxLohAE+Oz+k7xx54fGDRenEvOrovOVu2eJ0pDCeyvXkpqAdHA0QGsP1O5bqv2dYFMSJhYlFBWFYOJpjQWnBmUSmA0kU12FCc8dSPIO7f/sZ7C24+fCQlFm2ccZuPrC/3LJqSrptjj3NUKsS2U+ESeL62QSA5Q/PmLuOXcgojScrAgBP4pLGZXSHCrTCDrXixQ9LlIAeIDlIWUIrwehEYQKV6Vm6HeffTxz84xYRges11dMKlUqqZ4riyrJ5cICzimk5Cub81+NiDHNL/eWa9mjKyftz5suO0ngSCqOEwniKzNMUCdkaZFpifQXy/oYQDJIUae1QQY2FKcHqSK4DhQo8fPeMyz+8z95PvoS+x35+wvx6AUrB2QXTT2cMxwtSbij+9/noICFQTkoQgeMpe2XDzLZsY84u5DgdsToxK3qulACwfbRAA+PamoQkhWk1KJCkKa1n4Vr27I5Du+b7B0+wf/aSz//ybXjtACQR62LUv8kEmhbTR9yqJzw4RLZbJCbCQc3u23e4fscxcx1xfC1BND4ZCuPJdMTkkVBFdq8ZrBLw3pCiQXqDW2m644DSCaMTSTS59hTa86g8Ix0qvvrhhqefvc2dfxLQiuFwyvqjPYpVZPWmpXyZWPxqi7xxj83bNd1Sc/m9yPfe/5xvVy/oxbLxBd2tKFeuvxWESIqKbl9hbQPq5xUImAEQ6JRg7egGCYUXQxTNvtlyJ9twPlRcfhjZvHkX0yjaB4HZ3Rt2P1vS3Uk0R4p+MWP3QCgf37A3bbjrBn6w/JrKdFz4mtwE2uBQSmiDG6VDC2gQC9Y2wuzrhA6CinDxXQu3+rMdcqIo+uToxLEwOyZ64Kqfcvj6NfoN4c50y3uzU66GKT/9SMMu443jC76cHvPo8XMezc65GKbcK254za0YZHTBtS9IKDZdgVJCNziCN4hLJKexKkG2iZCE5DQqATbhXGCIho0v+Lrbx4vBZIlDu2ZiB5ZFy7ObOe/tnfFH9SechjmlGThp52yGgoePzmiDw4vm9ckV7xSn7JktTcq51lNmruOsrTE6EZNG3Q4+gEpqNHEVBRWF7LpB9BwU5DaSmcjaFwTRBDEAHNgNvzN/yt98+RHti4qv6n3+c/IGJ/2CG1+SRPHu/IwvNoes+oKFa/ne5Al7ZkumIglNZTqsGsUbYNUV9N4Sg0YNGtt8w2OgRdCtp98T8ront4HSenw0nPYzztuKZ9mCo3JFrgNl5lnb8V9+1R7QRsfz3Zynp3v8j7rPtOr4k4ef8p3yGYX2dOLYpJJdyvBicCqS6UCLw5mI1oLI6Nf5ldxij1aQIE1zUpGYFANRFDufseszmi4jRo0xidOqZq9siEmjK08fDeddxS5k3DQlWRGoJx2P987IdaBJOVexok/jBnoxNHEsLtMRoxIKGAYLSSFWMD1YURBzTXbVcfaDGcXRmvvzFV9fL9neTFAmIaLIS49SwqYpWG1LYtRIUsSkyUxgFzIWk5as2hJE04SMF92cL3aHJFEkUcxd941gayWUxlOYQG8sMRgkjP47/6K59cpcobpAcyRMM08fLIuyY7sqsU8KTKdo71vKg4a9esfNriQGAytHN7MUxlNaz01XctHlhGjoguXSTGm9w0dN7x0H1Y53F2doJbTR3TYrYXUiLwaavsTdGMQorCiF6QXddMRi7PN1VyKikNay97Fw8VuQLTvsT2ecvFuyvLumLnvOzw/YXE4xd4VMB16uKoK3GBsJUbOYtpTOU1hFSpqzVc1uyFiULbXrmFhPEo1Ribrs6doMFRx2O4wn5rZhhEVgsy1H1jKJ7NLQz0EHqP9+yuUPPPs/swx/qrn59QKZe9TWopFv2MtlAaWEvne0LrA/b9j5jPW6JO0cXSq5KGtc6bmz2LIoWjITSaLQWjC9Qm3bcfj1kFBlgR4UvjXYK4cYYTjy+NowfWYIU6g+c/R7ID9dkpfgO0Wc34aPMC7IsHYQFPUXluqPV3z8myPu/l2G/UBTPxl16vIjePDgnHnWYvXoMBPnWduIDqCSYE0vuJNrJM9uwV0z/Y1i+Xlgc88Rc0VxkyiuImGiKV90hNrx4vcyxMC9B5d00XK2qeGkQDmYvNC4rXDzkyOyCiAyOVMkN8YzVQY2fQ6A0xERRUga5yJqAESwZoB4cop+cMwr8W3uCfmNZfFlT7fv6Baa9pEjlnDx3Snd3cDhw3O0Ej7YP6GNjvWmJM0jqtVUzxLLX65pj6dsHliu3zGIhWEhmLsN80nPts3pvSWzkT4Y6qIfUasV6PoxjChr4eIK3R+BFvxe4OWPFJvnBe3rA1ndUuSeby2vqFzPd+vn3M+uKJTnPNRchJr6cccu5PzXy3u81Av6+YLZ08Dys569T4WL90u6Nzz6yYTGT7CNoq2F7cOOWd1ysytpdzl31oKE+EpgNSTh4JeRk6UhVREVFO1Dj6sGjpZrDsotj+szHuaXzHTLRPcsTINRiWN3zXTa82l/zIezJ1y8XvPPj9/mq5MDuHGULwy2hXs/tqiUWL1l2N1PcNgzrTp8NCgFXGdMX/gRrQH0dAJFTv3JFdkHh/SZIHmCV631ji5znPUz5rYZN0glzsOMiMLLqO5JNE4F3sxfcnTvhi/37/Ck2eOsqXlxPWN7MiVNI8WiIVeCtZHcRpJEdm1OcaHJn92gtMYiICKE4yVhYilPBV8rogVVRpQCHwwhaYJotrGgUIEzv+DQrqlNi5fIyzCjE4tWiU4yDInX3Jqi8mgEqxNnWUBEMQyWIg+3IAqZjVw3GQ//w6P6AYzBilFjhasOKNA+Q3kFRtA2kWUBZyMTO1Dbjsp0aJVwKlKbFoMQSSzMbvTBlH2DL4b/R5lXgbjtM4xJTPIBEcXVaorvLPd+bJl+8gLJHCpErGgIr9/BrDvc6YpqnrF5y6KsYMxoF85EJtaz73YUKuDFUOuWqRqIKBa6YZ0KsHATp3gxJNGsYsk25AzJ3KYuQSlBa2Hb5cSoCecFx/+iqJ7uEGfH0OLD2EqzalHbFkTQUcbZuv0BaxKZiQTRFNrjVECjmZmOiGKqBibaU6jAXbthkzJ2KecmTTjzMyKaJAqjxgzxCm9i1HTbjMmpIZlbjJ+V6E0H8fbEJBu3RfoeXxliPkKaHywxH4hJ0wXHha/QKlGoQJccTgWmahgB0ni8QG0CyTT8JkTmtqFP9htPbPTYgW5wpKQwl47FF4nJWY9uBsK8wFwMSNePXkm8nQUR3DbidoZurtF5IHeBVVuQ28Avbo65N5lSGs8zu+Qou2FjV7zhLnjLwlkcU3UnhohioofxLiOZEXdswGcjRl9fVtigyFYed74jVjm6D6N0ScLqAHrXjqE1RrLzlukzB+Lo7sPpzT4qKnbLgnSV8av8mNmdLd85POXzzSHH5ZpPsmM+zc/pkmPPbpnqnud+j+f9kj45hmjHDBkNRgm5C9AaynOF9kLKHcon4iwjZQus0bdo3bQopSAJ5vSSw39PLL4oae9kaC/0c41KBaEE0Zr1t+b8rMnJssDHv3qbZCAsAySFW3a8eXjFw+qaIJoXzYztkCNATJqYNEYnyMe50jFhLlakZYXZjmOhYkJ98Bd/LdlaEMWYkADRfOObyUDMQUeI2UiYKR+/EwXZGsRAsoC6vftw42cxgg4jto9V8I1oqwC2He84zDC+59WjI/wfwQZ+oZv7iNUAAAAASUVORK5CYII=\" y=\"-66.795366\"/>\n   </g>\n   <g id=\"matplotlib.axis_17\"/>\n   <g id=\"matplotlib.axis_18\"/>\n   <g id=\"patch_43\">\n    <path d=\"M 218.506897 104.795366 \nL 218.506897 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_44\">\n    <path d=\"M 255.996552 104.795366 \nL 255.996552 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_45\">\n    <path d=\"M 218.506897 104.795366 \nL 255.996552 104.795366 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_46\">\n    <path d=\"M 218.506897 67.305711 \nL 255.996552 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_9\">\n    <!-- Neutral -->\n    <g transform=\"translate(215.106099 61.305711)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-78\"/>\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-108\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_10\">\n   <g id=\"patch_47\">\n    <path d=\"M 287.775862 104.795366 \nL 325.265517 104.795366 \nL 325.265517 67.305711 \nL 287.775862 67.305711 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pbdcfa26f5b)\">\n    <image height=\"38\" id=\"image7c2d63d863\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"287.775862\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALLklEQVR4nGWY245dx3GGv6ruddinmdlDihxyQsmSTDlyLgxEAXyRXOUBglznGfIieYFc5DX8DLlQAAOG48iWLSA0RYqUhnPg7ONaq7srF7X2jIxsYDDAzF6r/vrrr7+rWj78j3+zo99X9CeQayMtCtoL7YUyf1XYPFVK4O4T9xC3RuigXhcmFz1h3SPZAJA+gQhWBUodQAULiqkguYAI3bJmmCvDRAAIgxE6QxN0R8r6QyFKm4GKuIb9zwckFCwYeTVhc6Z0S8MULHjgtBdiK8QtpImSq4bpD0rYJhDQqMiQsSAOSgUTQMFQUNBkSDZCD6aCJk86tcL8zUB3UhOPv2zpTiF00L6o2X/cgSdCnkBuDBRKXUABCyCGRaHsBQzEKuqVIsmIe0U7RVKBYhAURChBETEQkFSotgBKrj2WqSAF6uuO+rYiPv3VS+xoxuUXp+weCvZtTf7pDlMjboW4E0oEiwIFNEPYC5IA8793R2ASqLaFUinaBuI2I7lg4t+xKNiYsWRDu0KII6MKuRWqTcGCEHojlqtr5P0tD759Q/n0GW//4Zh+mBI3MP+usHixRbJx+8mM7SNlmDs4RvJyDZiQa9CsmI5MTJS4LUiy+wrUihRDiyEFdDA0GsNUGaZC6IQ8iRy92BNR9adU0JdvOP/Visu/f0qaCNW6sDtr0d6oNoXJJZg6OClgCpqgVPcgcy1IhlwHShTirqBdcaaKg7QgaCoug4IDF392mEWmF7dESoEQQFwLttnRXmWuP6t4+8tAqf3hsBPaK6jWRm6FYWFoEmzwkpYI4GWnAkkgrau+GsUuRbCAx1FBijnYsbymDl4vb/6SMQBZzFh9GN0+Wii1OQOtYUGpVkLooEShNOYBxoxN7zOn8ZLnCrRVQucAShSonHkPOIIZBARKLVjKxDtQxQDDYmCYefD2QnjwVccwj3QnytXfGGnqWccd6MaFWyoPKOLacQCj/hCkKEhxTSUj10puBE0jW8WlgEHcFuzxgxFYMRhNtBxNEIPl15nF19fYi1c0yxPmTc3J/8xIJw0//G3LMIfmGvojMHFwilCqkQWDUolHw0029M6+6Y/+b/fAZID6ak9eNEQR4cef4bhBB++Y/tGc8vRzpEB122FjueevC7tTZVjc+1zYC9r7cxblrjlKPaLE2T2UFPOEDgasCeavE/rn7wkx3JfSug6pKzZnFSXC5nFg+DRSGohbKFVzn20+mC9YHBmLo7vrvVdZJRR1OzEx4t4BizekN001Ntce2nd78uUV4fSEiAqEgEwCiLB54qLcnAt5amjv5ZLiATyok6AJsoy+NhJ/ODNNxdkLcpfMgSkdDM1GapRcuwc2twalICqU9yui5XLXspx9AONLQgdxL6QWrLGx48aWTs6OdkIJEMazzkZ2XDeGHWQyun+u3TLEPLHUCpe/MKwpVFeB9mpK2zSQM1GCQjGs77n9xUMkeXlKdHCltjsbsEOQ2g91U2dLstwzMhqpy8rcVuJoxHfgPIFuKdRP1gx9RJZ7Xk6nfLp6TvjNn+41JnXN+mkgNxB6mF46i/0SQieU6MHyxMiLjPTq2ecDk/+/ZGKgvSFJsFGDpYIyCJKNuDXWr2eUSWHINZz2fPMvDZ/UPyMS3CfK83PyBEoD81fG8g9rKIXZ9zNy46LVZFx9Hlk/GNDbSG4M7cfSVWDdvdbcxQ9HjmF42eMwNunoX/W1kjohnWTYRsKy43//qUUpBsUP6WHhT7Q3mdVPpqSjhvnv3nL0u0vEjO5IiVvQ9xVWGdZmSluchdootZtqqUYdHYDZ+AOU4AARSFNh/1cDs9fC8VdevBgz1fnGS2kpMcyE3Bq5MS5/HtEBumOl/PU53dLL1NxAmoxtPilIm13rWcgIOjhTbqCCmrknjnrLrZ8aFiAfzHUX2J0Zy6+M7XWgPkt0XUXECpRCmgqlLtgk058PDPuIrKKXxkA7RZOQJg5K5wNWBGkzBZBeGVDCHjR6PasM+dA4etCj6wyDamPM/6xsnxi5EWavhLWcUD+/JRKjxxawaMRp4nix4932CCmCdkJ1K6SZd+GwKMg0YUmRUJBghONEv64pNo40gzcUOg6Uh+SSN4cOUO0ME5hceFeDcfQysf8gompEO38EdjhMhTwoN7dTpic7tmmK9hGrXB/d0ihtQQysV2gNwaiqjM16htJglWCDgPjQqIMzZeLdXq2MyVWhfp/ojyIWjPpb2DxS1k8C3YNM2tXE7oPpmKVhaogJ6X0Nx6DTBNfRt6eZ978UwfbhvvuKYAZ1nbHZQNpFDKUk/y7mox4Cltz3qttEXPlmldtAbvxlcQ+LbwKr0hLzxO1i+cee7T/2hN8syA30RWgfb0i0PpKoEXZKnoxzTVWwXjGBTmpUCxoKUhXMoEwA0TvDpoDUMm5cvsrVFxswo388p577UTj/rrD8YyHaOO7kVvns8QWvrufkVtAhkB8qw4NE9S4S1+pZV+Oms43ElY4WUJErL/PBFiSJV2CcWq2CYuYMZiNcrbEqIruOZrMjrk8Yjmq2jyrW55F4mBhKLfz+y4958l1m+yhgKuyuW4jFB8OtUCp3ce2UaqVIhmHmR0xYCXIbHMRdJ7rGshz2I0gzIewz7Dtf7YaBstkiVzc0dUVzekI5moxH0mh88xfC4tevmbc1N3/3mP440H+UKJVBGQ/sjSIFmkuoV8b+1EO2lw6w2hVW54FhHCAp3lSGs1fiOCQ+WqKrnbMrgplh+w65uERv6hGYgGajPwbMkG7g6E8r4m7G5b5l+ywh2QGFXmgv4MFXe3Sfqb59Rz5bkhY13bJif+LzfUriC/LhaDLvzriB3Abi93voeswMqgj7DgkBYoSuu2cMgzQ1ysNjz0SE9qLj5Btl+8xfXq2EagOTd4V400EQVl+cs34S7o4hCqTZqDMDK+Pv4KBmP2Tqyx2y67CUIGcHQ4f1PaRE2XdEOywrZZxGVbF3V+j7W/ThKfFBQ1z5Gjd9Y0wvCrOXa8Kbd+Rnj9DBqNdGiZBa6E+ENDWqldxNqOAj1PT7Qns5IJs9xACbjY9caYcNybMApIrEw1ZjCkffwNf/OuFn//4M6TJE5fajiIm5Ea6MxR+ukJsV+fwht5/OMIXdB8r+9N7rfPxx17fgTj99ayxedlQ/rJD1FttssZSwvsdSQuJYPFFEhDguMehgzL9L/OSzF/z3Pz/n7L8ycZPZPTIsGs21Uq8y/eMF3een3HwS2D/0RSRPMxbvlwxJ3sFqviuGHkJvhN3goIbBv5qzA4nRXVgFCQE9WozThXoHWIDf/udzhrPE219GtI/0J9lHlBbefxzZPQ6kmVGmAxQP7OPDCCorkn2Nk8x4R3FYzzJ2PEduBcsFqWvImbLvwAZ0OkXaBptPiWIGWXzHE5i8EezDgTQN2HFxJoKx/WicROvigLIgWdxwy+hS6iWnQKn90LYf7Y953qB9Jux76CKkhB4tsJzRk+PR6TOIoJTxWmiwuw3ni49eImd75KR3RqriRtsUpPY2ExtBjUxhjAwaVhmlKXfCzw30C79JLNV4uzibIE2NmRHOnyBtg0xal9l6ix42Fim+Jc/eFr787U8pg2K3tRvkKqLrCINgoz8dbhj/Ehj37Mm4yARn7zAgWlBs2oAI0raIKphhm+2YRcGWR65PO7zLjHqVqW4C00WHifmsFPyMlCzQq4OI5R7MCMSXE7kDa8EotU/Fw0LIjSK5oOs99IMDGgbfJ6sKqyvkeAG5/MhgD8kHnyRvljMPooy6AmkK7AIUQZrsw+LIkB02jCx3d14WjNL6KqgDfhlsYDEg1A7uwRLLmburipSRbs3/AfIwZcD/JzHEAAAAAElFTkSuQmCC\" y=\"-66.795366\"/>\n   </g>\n   <g id=\"matplotlib.axis_19\"/>\n   <g id=\"matplotlib.axis_20\"/>\n   <g id=\"patch_48\">\n    <path d=\"M 287.775862 104.795366 \nL 287.775862 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_49\">\n    <path d=\"M 325.265517 104.795366 \nL 325.265517 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_50\">\n    <path d=\"M 287.775862 104.795366 \nL 325.265517 104.795366 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_51\">\n    <path d=\"M 287.775862 67.305711 \nL 325.265517 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_10\">\n    <!-- Sad -->\n    <g transform=\"translate(295.22569 61.305711)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-83\"/>\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"124.755859\" xlink:href=\"#DejaVuSans-100\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_11\">\n   <g id=\"patch_52\">\n    <path d=\"M 10.7 149.782953 \nL 48.189655 149.782953 \nL 48.189655 112.293297 \nL 10.7 112.293297 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p7bb812438c)\">\n    <image height=\"38\" id=\"imageb8c03a50fd\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.7\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAOT0lEQVR4nHWYyY8k2V3HP2+JLSP3yqrKrqWru3pmejxum/aMZ7DBIGMLjIUwHDgiLlwQB/4LfObAhQsWF2MEWAxYwhaWbAMzHs/CbL3M0mtVV3VnVWVWLpEZ63uPQ3a3e4z5SSGFIqTQV7/v8n6/EH917asOQAoLgHUSAIMAoHSKR+UJw7c+/iL8uMOi76h6Jf3NU4yVpIVHchKDEaAtVJLoQOMEhCMommBCh0oF6bMZ3r0AlQnKukMYkKWg6Bh0Iqk2CqRBYBCUTmGd/MR9bj2sk4/BnlYx85stiiZUKxVRO2M4rjNJIpJBHZFLCAxBMwfpsBpqA0fRhLLpwAnyrkOMfIpehQkcwkE0EMgSwmNF2atwRiAVDuskpVOPAT3ZoUdlneTq9AwA2UYF2vIXz/2IL5y7jVKWoJviIoP0LKZSiMCQnymZbwgW2xVVbKlqDus7bGRRU01Vc+i5wPrgJBRNhzfStHsJ8hGAUFSP6XxUpVOYh0AX1uetq7uIMxnBQCMSzbf3X+LV27sYI/E8Q3/jlHP9Ic4J/KhE1Uvy7YLa2hy5kmNDC8IhMwmbKaoQYCHvOMTyFWXbMLvRRj8C84vdeqQxAOMk70820M0CcxrA0wvc2Gf/Tg98i8l8TLMkvdHCxIbe2TFFpTCVIqjnKGVxViC7BSZTOIBMY2OLExIEqBxcIpC5wj21QD8p+F8sKexjim+OephCIRcS77CGuZjhMoU68REWTFzhWhUyqhiNY8KowPMrPG2YTSO0X4ETOB9sJRFzjfMcpmZBQLq+bISpW+SDCJ1b7/8AerJbAK+e7OKA81vH3E7OUJWSSzuHHEyb+NuGvNT42pBkAVnqYxJNoztjcK9DFhqkcnSbC5IsIGqUnE5iTGFR9QqTaPRYYyKLnkuMdNhG9XNXPnk9cmJpNZn1GC0iZsOYWzfXiQ4UTsODpEFpFFI48lIDEPklG70xQSfj6LgJgFtoWs05vjK0aintKMXkCqzAOZC1aqkvK7C+Q84VtU6K/mU0mocuBXhjuMNov039jmblaknWsZzWBOIferg1QfKlU7KFT557mEyzuj6h356xtTXmJIsZzBpsNqfMigBrFGnpUe8smM9CgrAEIO1qRCVhpUAoR7OWLTX2JCCLeOzEYRlza9CDwOJNHSqztG7k5K06010oWhZmIbZQ6KjCqxUAKGkprCIpAjZbEz7bOmAv7XB/0aLhZXjKYK0gTQKieo7fzilGIVGtoFnL2G6Mfw7sSVD2ocZuzFYxpwGd7TFlfYXFukcV+tjfPmUlzBkvIubjCL9e8Lmte6wFM2ZVyDCP0cJy+KDDH7/0MwZli7aXMtY1CqsxVhJ4FakLKUuF7xvoZmy1JyhpCVX5yztWWkVuNR+/voNbK3iuN+CNFwOavRHfOPMuR2WTN0Y7FEYxz2KCbknPn3OUN+j6C0ZpjWvvn+eb3/gOUxsxrUI63gKvbjBIboke88KjtzrFV4bLKwfMjc+sDFgJ5lgn0U+ehfYJN5ZOYdYLdjaGSGG52D9iPZxxUjbYS7s81Thmtz6kXL2HJyy70TGxzvnR4dMcHzX5s9/9IWNTY1C2kMJRWsWojIlUSdPLyGuatPLIKs17ow0utE7IjMf9tMU4i9Dm/8mwvXkXdeQjNh0nWZ2DSQvbFnwqvs+kCHmufsiqnvEvg89ROUmkCuoq53i/w/b5Yzp6zpX5JqnxAej6c7renEiVlFZR2GVDPGWIdEnPT9DCEqmCE13/JJVP1vv7G9i6YbyIMKFkelrjtpF8N7vMPPc5zWt8df1DjtOYwbDFB4frxLWcaF+zr1f4cf0iUjgyo5HCIYVlXgVIYRnlMatRQmE0q2HCrAqYViEAt5Ie5+IR2iKQy0Pik1FxEiB7ObMkwtOG3e1jBj/c4uBcjCgF43rMa17B1zeukfU9EhPw8uvPI9YN7dWEvVmHReFR80sCXXG0aLBWm/FMfchR2qAfTglkRSArZtUqq36y1PVklZFXW1IphXmcW7ldNtHGBkoJRjA8XmE+kDgP1l5VTM8JqpWc0ijem26yFiS8cnie3acfsH/cYZZEzFOfMvEZ+xbtGawTDLwGnIGd+oi+PyUxAQ2VcbE+YC/tMilCal7B3VkHrYR9LHrrBFI4RkWMVy8oUw+xUMhMkPcswghm24KiY/mTT7/OaVXjg8k6kzxist8imXcw/Ry30NgiIJgInIBi1aCaBcYsv78TjrgY3ieWOQdlh5ePLuPL6iHljsO9FR4rXwmLFA5PGN58sI38KCbc83F1gzub4tZynHRkfUO0M+O0qnGUNfj9/nt0wgXRmQQTuuVk2ipAO0QlaH8Mai6RwmEqxZ1Jl+/ff47SKRoypa0WnK2dslUbL0FNm8io4hOWLJ1ikDexTpCvV1SR45mdB1zevkdYKwiGEuc5slsNXn7jef60/58oLJWVNKIc1yzpXnGsfi9k/RVBbeAYX4S116Gc+rSaC0aTmHaY8pfXvs7fDL6MJyouxfeYVwGF0dSDAu92+HNXllbxP6Nt7v1kmyp2qK0MG5fcHXb4yvmPeet4F3ZLsBAdSRb9nLkNuLbYYCOa4EvD7L/XSDZBFZCtQNG2CAeTXcnZf7Ps/1GdqJGRV5rPrN3njX+/xPofzvjutcs8deYYiyAtPc5+f4GUOCQOTxruvrG1nK1Chy0ldu7xexeuMi4i8C1yphClpHZ/6eK7xSrXJ32sk7z7YAMvgSpejsnV0wu+9NI1fuX5m1SxI//zEb0f+RS5h0VQOUl5MeWfXnuR4IOIW29u0/AyAl2Rd4MllY8cufamRXxuQnAqYaaRqeQga3PtO5+i0Z1jGwanHNI4bKH4j5NP8eAH2/zkH19g9W9rrFzJ8RJwCuqv1Xjv7y/xzq2zXPj1u2TfX6N2UqE/rHE4bi717FegHfmK5ewPClbDhLXaDJWZ5ZFkneC9yTaHvwmXekOurNZZf0Uw+FrBg29eIOg6+Oc2qiEwv3PK6bNtKCRX98+wcuSwHqjUEn70gK39AGEspy/1qe+lZL0aHz/YgS2HMB7+BFCWpAzY6Ey4NYxwnZKyqQhkxfuvPUXrHEjrluva9Z+d58KnD7n25jmCgWJ6TlK7HjJf18w3BNMLAqfgixt3yLcLGv0ZYVSQbAq8xJH1PKqNLrYZke6uUIWC+78Wo+cCt51htaN1u6SMod+YcTY+ZT2aEd/WxK2UvKF4Z7hF4zYMv1AiDcukD4aCGzf7PPXtGb33DXoBeg7x/YoqdhRNSzB23E26SM8yn4XkuYeXwPS8JG8ITi7XQUqQgubdnNrAEY4c6naICxy1j06o6o6z9VNW/RltPyU6dqQ3m0wvCAZv9ln/6YSzL0tkbjVHWYPFpmHnZShbIcPnFGnfkexYqprEmwn0QhDMDLcGPepvRdhKYnKFiZb74Oklx+SiY/J0zHzdo6xripZg+tU5vc8PEKVg8vw65WrJi83b/Fb9Oj89PIefODrPjsj6Fd5UYEPNvK+QNVlw5bhPeKzwRwXTHZ8qdshcYD04/AoULUf3qsMfV3C7Rvd6iZhrpGfhpQlV2yyX2Exw9HnI24JFTzE7b+FOzOjVPvU7ktGzknDPpylTxrbG+H4T48FwWOfs9yAcOYp2QHRi0VI48tzDz8BEmnBiGYWC2gNBdCwZv5BTKEXeUlgdACALizfRyPWKLPXBPVwmHi5cOnUUbQHOgYXwBPIu+BOQJRyWHf76rS8TDDSNvZTkekR0f4I/8zGBwkmWAVsVCtNfLr7piqT94fLjAP6hz8PRidFnIDwRTM77iEqQDSNkvUTPFPE9QVkHfyyYb0K+YpCFoOwazFCjXhjDj9uYCP718LPow4De+4ZkO+DMKynpmZjo/hyZSoLD8mFc5IrWXYk/SummFfPtiCIWTC5C/S6Mn3U4KZG5w0mYnYeyZUA4XCWR+cN/Dy2H9QTZekX//JDh22tENzSNPcOoUogGREeOvcMV1q44ilhSNgSDL/iER4qtoWa6G1FFYil+Kklj30Bl0dOM6LhYpvdGTjywhJsJwrnllJBB2bE45WiuJyjfYD0oG8s1P9ssqZ9J8KRFPpVQNiDrSOTbDZyC2S4o32B8AQLqB4ZwoOh+YCibHo17OU6B9IQBbYn35yDBhpq87eEUiKGPSi3pUY1FXyCi6jHF9Tua6WEDIS3eTND50JL3DKKUZKlPL0ooMg+dgqzA/9URVezYfWmPauyDgLIuGH5a4S1AVg5ZOlRSIEuQUjj8RoGJPMpuDRt6COswoSA8kujMEB08POtnHsHYoRKJTqB9bfk8HDkaN2cIJ1CdnCpdPncLTdFyVKFgNg+Jnhnz4UebRAea+aZg8mJGeOKYXc4YX9AEb99i8MUWK+9Ol8n/wtY+e18LEcahkpwqkujU0bplmZwL0ClER9C6rtCZReVgQlh9e4G4GRNMHFUjoPu2pMo0lJL9aQeAYCRIdhxhWDIbxohCkK0b4nuO3W9Bc69CHwSk6w7RbrL61pz7v9FCWyeIVImT4I0WOE9RBYJgbPHmlsbtjPGzdXTmOH5e0L5hiQ8UwiwpXXnP4SeG4XMhCOi+5jE7B6P6EoRTsPFfBvNGnTiSNO9kHD0f4ZTj9JkAVUD3qkMVjuTSOqdPa4R7GBeBqqhalrJbw0SKYGaRhUPlFlPzaN1MkYWhiOt4ScXaKwllr4aaF8QPBJNzIUUL6gcO40NwKnCTCJ1C61ZF1lHMzgriQ0dZ1+QrjtYdAwKm25ru9YLgJOXOH7RZfaeitjdfApM4vF6K9TzUokKlZglwf0x6voOe5chpyuorC7AWxlNkcwuxyNHW0q4c1ovovnPK4myT9o0KE0j80xyV5AStCFVERMdLZlauOOofj3GewnhN9LxCJCm7f5dQnulg6j7/C4Njlrk+ZNOGAAAAAElFTkSuQmCC\" y=\"-111.782953\"/>\n   </g>\n   <g id=\"matplotlib.axis_21\"/>\n   <g id=\"matplotlib.axis_22\"/>\n   <g id=\"patch_53\">\n    <path d=\"M 10.7 149.782953 \nL 10.7 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_54\">\n    <path d=\"M 48.189655 149.782953 \nL 48.189655 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_55\">\n    <path d=\"M 10.7 149.782953 \nL 48.189655 149.782953 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_56\">\n    <path d=\"M 10.7 112.293297 \nL 48.189655 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_11\">\n    <!-- Sad -->\n    <g transform=\"translate(18.149828 106.293297)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-83\"/>\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"124.755859\" xlink:href=\"#DejaVuSans-100\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_12\">\n   <g id=\"patch_57\">\n    <path d=\"M 79.968966 149.782953 \nL 117.458621 149.782953 \nL 117.458621 112.293297 \nL 79.968966 112.293297 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pa920952338)\">\n    <image height=\"38\" id=\"image03cec63059\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"79.968966\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMtElEQVR4nH2Yyc9l11XFf3ufc27z+q+t1i67HBwTFCtREJAAQkKCKRH/Rf4ABsyYMWfAMCNAzBAIhAApCgKBJWKEsUmDYzupKlf/Na+9zekY3FcfDra5k/Manat11m7W2kd+47f+MG9uF8QCUiEUy0x9HkhWuHzNsruZiNMIWSABJkORUJtAIEchewWvSBK0EdQLYZZwxw3H8w0XmxGHfz5m+rfvoYs5pEReTPGnE0JtSU6IhRAqoT1U/ARsde8SjXP82OInitsmJGSaU8vuViIeetQmclRyFMSl/XchJ0E0g0tkk0EglgJLi+6Ufl3wJM5QTWyvG6aq5NkYfzrBjyxXT4asw95YQXJg00f3KZ6dU5wc0t+c4yeWMDJs7gh6a4tmIQZFTMIUGZE8gDHgO0sKiphMNemJQQliiJOI9ApBSUEpRoFYgh4u8IdjdqcFGkH7TCyFbIRuPjBmd5AsWHIiXlwg6zXl6gj70innvzChfblnVnma1iEKxkaq0pOykLPgvSF3ZghvFYlB8Zcl9ccW0w0shAn0r3luHSz5yemU7tUTQm2wTSYVQj9VJDMAajIAq7tw82uPsDllxBVk3xOePscC6c0J1bQDQDWjGnAuUrpwxf7z1Yz6p45UZLJYiqUwbiFUEOshJU0D9l7F/XKBe21N//tbXpmdcd6NsZI4KresQ8mPz4/pg+XWfMm3bn6P35l8gBVjyMHvY53IbUushLrsCUmxNlHYgNHhREYTKpkcBLcGt4FswU+gOc0kB2GUYe4xTwtGD4WdndCd9rx5533+4Pp3cKIAVGLxObK7E9H9gUfiKKXG5hiHX0QQY0CUMIZKM5AwNlLY/2XKaRrWSU9zw6H3hGKT0T4zvZcwPhOdsDspiRWUl3kA/2HBP4y+yLdOvssdK5TiAChFcWKwGAIRnyOr1GLN0SHpckn2PWItFI5+njkqelIWVPLV6kxEyYSsOBfZLSKrSrEbYfRYmDxKVA/WpJHDtjUSMsWyx08dqVAuGsc2WyIBRQBIZCzm6uCKUopimz8b8fQ7P8fpv/fUP7kk1wXhTotIxmnCx2FTaQLOREJSyDAqPd3UE8XSzxP+NmxeLpjcO4QEqy8kRo+Va/8W8VPD+RsGV7f8zeorfOnobT75GFFiTiiKDnix3379T3nyWs1bzWv80du/yex7FTeOH1OaQGUCa0raMPScyniCGHwyFDZQjzo2vUKvyDhQv35Jd9eQknBjtuXspTEfvFojCbIGXBI+2J6wPghMbEXMic977G1bc81Ebtr3eOf1l/hu9wbXi24IIfsQasJoojKBdr9RgHndkrOwfTomrR3lYsvt+ZJZ0XLRjuhqy8ndDWebEbvLmqIMrHzFOgs39kyxB/fic2IoMk0kHkTPn1x+jfcvTxgf7Tit1xxXG86bET4aFmXDrGhJWWijw0dDzEIGDsc73LwDkwlRsZqwkrhoa/pgMJoobGR80HBjvsJK5Fmsr9gyolcsGVEUQRHsMvX89frL/MfqNmfrMaOq4wdn1zk7n1BUnjtHF0xcR8jKylds+pJt79i1JTEoVd3jigCzzPFky0m54Uk7Zb2rWEx2XButKTTiTOSw3GIk88PuJl8t7jGS4lMhfAFU3+1n/PP5azzczOmejMhZWL99zPjdirIIHFVbAC67mq0v6KKhD5YYhZSUrnP0ndu3ksjUtYxsz3zccFA1jE3P7fElt0aXlBoZm553ti/R5fApUD+TY39x/ou89/AG8uMxVSP0Ny2TB5ndqXB9uqE0gSY6ll1FHwyVCxyMGmItNL3DmsS2LWg2Je8/OkUlM7I907KjCY4fXp4yLTqOqy2lDu/yWVnnxCRHnJjPBvYvj16Bj8ZM7sP5r3RwNmLcgZ9mxrbHJ0MfDTEpKSkpC8tdzfa8xj53g6OYJAiCvVD+a3ubmy+dUe2bso+Gy7bmyXrKuOw5rHe8Mj6jkqEvxJx+Js9e5J5dLkcYGbSNzlA/sCSTSdWLqhyq8aBqCFnpgmW3KbHnjupMKM8zfmboFlCeg0TH6rhiNFtz7+khYT2Al07ZHreoZC6LmjbnTyX/zzAmjyvKLy5pNwtO/tUAg6/KmrESqY0nSKIJjmVTkfLgwcJJz2ZqCGOLdpBNpjkFf5CYa+LxakpoLOIV7YTpRwo/GHP/qwWL1xsUrrr/ZwIrL4RJ1fHkWuT43UHzttctuciEPMT/RrUE4PvpGo/vHzL+0FE9yxgPEhPJCt1CaK5nch1RTczLnjAz9KsxZif00yE9tArovlclMp+dYWD7Reb87VNmTwQkoD4RxsNJXh5dcFRs8MlwWGz52vED/lMTD/wpYHArCGOhX2T6g8Do2pajUctBNfS9RdXw/W1B6gqSA/WC+XHN9+111neUG+b/YSxrZv6+UF0GbJPIVimWGd0pl75mbDsMQ0KObcebhw+ZfKnj4m5N2zsKTYzNoAzzsmVWtLTBcdaOOaq2fOXuPZ5en/L4bI58XFGeCX1UFnuX4j+nMu3hu0J1GckqZAE/UYpNonpmeOujV7l2tOSNxVNers8BaMRxWO4A2GiijwYflT4YfDRXTgRg40sWRcObRw958+gh924d8PFyzu3pmggE9pbrMwKq1TISSyUbUJ8xXSZUQv08o/crHj+f82C7YBUqjCRq41FJ+GTY9o5NW7JrS5quwAdDGxwxKU4jVhJ9MoNihILDcsu16Zof/fct/nLz81gMymdXpZbPe0ZPOkybCSOD3UWyAbvL2I2QoxCysoklbXJc+ppVX2Nk0EBnItZGnAtUhUc+If5WIykLu+C47EeEZJgVLZMPLd/+4OtX2viZwOy6wy477C4OE4uAekhOBrvSGrZ9wTaUXPoRS1+z9iVt2DtQFyhswGrCacJqQhnMZUhDiKwmKjPY97SfT5c/PPrcxN8nv9Kf1EjMlJcBiZliFfeDKJCFPhj6ZPZsVXTBEvYqAFwpQh/N4HL3rvcFqEIDpUZCVu6tDzA9lBfD/5/bYLNTJGSSE+r7K4iJwih+ckAYKWgmpmHzeTfivBldbY5pL+TektIQPrNnrjQBlcECORkqUMms25LqMrN+ZSiQ/ytJLz5b3XnKbU9/OiY7gzYdedcwfjiiOhuxORjCddGN2PQFPg72N8QBUAiDhqpk+mBQtYgLlAZCNvQpoZJISemTYbutmG0S9SsbuuzxOTKR6tOMSdcjMWFXlv5ohHMGEyLug0cczV6mPbLkm8LOO0I0qOyZykLwhuDNfjLPxKj0wVLt588+GpSMSkbJrPoKvVcxvrfm40cTnsWOqRq67K+q80UxKIUjVwXaeOzOY87W4D05JsY/esbhe/D83oLlrqb1lqYfHGyIA1M5KKkzhN7ge0uzK1k1Fc2+OKwOvSpk5cl6yuxD0OWO6/8k/PHZNzAIcS/oMMjUMDmlRC4sutphciY9eYaUJTIZk7c7Dn6wJpZTVl+Y4Q8COgrYIpKiEjsDrSJeQTLZQDKZbRSsJg6rHQdFwzqUPNzMWb+/4PaDAKqMP+74uwdv8HvHb+GJkP1VRzMIVi5W0PXkwpHHNTqbkvcnkKLAPDrndNsxfbBgdcfSnDj8JINCvRKK1dCYY6mEEYQ6E2vlMijORrah4Ml6wuanc07eEYqVBxXMpme1HvGP7SkL3V0xppIwJGxuW1LTIr1F6wqcQ0KAnMnjGtk25AePqZ+eUd87xp+MCZUBEWwTMLu9IZwWdAeWUAuhFPy0YD07YS2DT7v1cWT0cIfuepqX56RCkZ8avn3r1/jVww+IWTGS9sAyFru/p8oZ2o48HcOqJ6/W6Cdjv1whvadYTikAYoRyP0ykjHmUqZwlTWvipCSVhiyCaQP22RqeXyCjmnQ0Q2Lm/A2Lv97x60fvc6d4js92H8YBnEUUESH7QNruUGC4AbLkXYOUxRBea0mbLSklxBhkPiMXDp6dDdiaFi1LtGnRTX112FwVyK4lrtdoTnAwozt0dIeZuy89o0uOj7rTT4Qx4yRi46vXsQ8LctsOdxhGyT6gBwty05C2O6RwUDh0XJP7IUdyXSJNR7YWmU5QLomrDdr3aFmAMeSLy2FNGSlLuHGKPxmhIRNL+OaNd/hydZ8+G8wVqCE19MPfnRBPFshsii7mpM0WKQpy1yPOIaN6WIsCyhJEoCzJlQPvkemEcG2OHCwQZ0ldR75Ygg9IVZG3O9Juh9QVqBJLw+qOYXx3yU13QZsdhUQq8VTicRIHxr7522/x94++zu2/2sDJIRrC8KJ9uMQ5sIbsLExquHZIHBVIF8m7BmLCWENebyBltCyhcJASWIse78U6RpIzPPqG5Zd+6z1+ef4RbXYcyQaVxHBDliArKon/AaujyDVsq1ylAAAAAElFTkSuQmCC\" y=\"-111.782953\"/>\n   </g>\n   <g id=\"matplotlib.axis_23\"/>\n   <g id=\"matplotlib.axis_24\"/>\n   <g id=\"patch_58\">\n    <path d=\"M 79.968966 149.782953 \nL 79.968966 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_59\">\n    <path d=\"M 117.458621 149.782953 \nL 117.458621 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_60\">\n    <path d=\"M 79.968966 149.782953 \nL 117.458621 149.782953 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_61\">\n    <path d=\"M 79.968966 112.293297 \nL 117.458621 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_12\">\n    <!-- Happy -->\n    <g transform=\"translate(79.355356 106.293297)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_13\">\n   <g id=\"patch_62\">\n    <path d=\"M 149.237931 149.782953 \nL 186.727586 149.782953 \nL 186.727586 112.293297 \nL 149.237931 112.293297 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p5e2667187e)\">\n    <image height=\"38\" id=\"image12167072f5\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.237931\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAL5UlEQVR4nFWYzY8cR3LFfxGZWVXd08MezoiiSGnNXckUZKwXax8WBnzxv+mz7774thevDQP2cW2sbEHyamVKS4rUcD77syozI3zInqG2gAQa/VH9KuJFvBch//DV3/hZWPM03nCqhU6EjTmX1vGvm8/4l4tPGUvk+YNz/nrxgkfxlvPygG+nM37z+lO+++YRkgWPDr2RZpmuLwCIOOMYKfsEN4m0EoZzYfbWSFtH3Ak7Q4sj5uhk4I6rED/rvudYM4M4Adi7c249/7l/xr9ffcxq6vn4+IIHccdv18+4LT2304zrccZ67Egne/KqR0bFR8UHwR36VIjByDmAOGEndNdCf+30t4ZmByBMBu0lWAPrKsSPY6ECK4Nz63hZTngxPeKL7ROGUPj4+AIV59vdKW92x+QaMBfMBXeh6yo5GrIKkKAfMrMuczbfENVwF25MKPNE7QO1hzJTohuaDSkO3pDdgUIETaJkdwaBgPNdPuOL7RPGGvls8ZqTtOUmD1xPM4IYfSgENaIaQ5dRNdgH0krBhOV8x+PFiveGDYs0EkPFTfHeqINjSZiOhDKTBsKdMFbCLqP70qKnEGfSkcW4NuOr/D4vx4dUFz49ekN1ZV17phoxl3ve3F1+iJqYEEbQDOZCMeV6mpFrYCqBmCqyNCYBNNLdCK6KGGgOSHV0bwBoMUyFeGt7vqvK78af8OvLn7POPb9YvmKuE19uP2BTelQMCFRXiim5BhyYSsBMwGnR6Jzzywe8KUtCMvohk3Nguu2RvaJF0EnQCcIEYXLEQaohtYIIFEOCEH+9/ZC/f/F3fPv6FN8Fnv3sHJbwtiwYLbKvEXNFD5FyF6oLUwlMJZJzQEehDuDJSV/NGC7ABaYlSOccbYW4hbB30tbo1ka6rYSxIrmi24zkAjFAcChC/Ke3f8W3r87wUQnHmZN+x6v9CaMFigUmi/epU/w+pQd6IAI4lOMKyVj+3jj5aoNFZTzr6a4nrAuEsWKdEtcZGTOoghmym5DdCF3CUsRDABHif/zPn6ObgM8qs9mEirEpHZO9q74oBg0PQY3qQlBD1VF1cgJdZB6drTj/1XuU+YKHX+zQ4qyeDdROyMftBmnd098Y/VUhbjOhGJR6X5W448WIH/xzIC+E/Wli7QvK6SXFD0QUPxzDPCDiRG2fVXGmUDETpLYU/8XpG375ty/57fOP+OOHjzj+xkEgHwu7x85wLvS3xnCZ0X1FioEIHgOo4qGlQYCYtgaiaIbpJPwoVQ2UeX2XSnHAWjmrMdVArgGpApcd5/sFv3r4gmc/ueT14wf828tPWH/5kLiF/kIYLh2Lwv4sIZborgupOpoL1AoW8V5bKnVykhhpC2EX7wEBdFruy/8OcFRr2MRbOsURg+F75cWzh/x8+T0fdVfMZyNnP93wu9On/PfrJ6wuB1a/MGQb6S6U4a1w7KBTahVp4LOERQU5BEGzIxWs93swjehKFLuvyqhGp4UhFIaQOe5G5v0EDmkN0+dLfvPqOV9uP2CQjCHM48RiNiKzSuwrLk7YC3Hb9FGcVkHKoZpaMUUXsCiMDwJ5aaymgaM0Hr7IPcf0kMqohrnRab2XnNcPC/YmMftBOP/2IZ+nzKNuRXXlJO14MOy5STPyuqM/j/RXznBtpFVrF41niqVwxxmidYJFYVoK3hu7kpjFzFSV4so8TgyhuQU7lOYQMos4oTidVl4/XrO7OGHxLSz+EHnRvcc/bmfUqnywXKHiuAvhOjJ7A8OVE7eGVsOj3kkl4o4FhSBES02zag/kO+IbxQO7kui0oKGlOIkRtRLEOY57klSiVn728JLPnw2sZWB4C7ILHPVTkyMxzoYN+tj5avWEOksNhIGLQFBMhHfoBAtK1OxYAotNPGcxM4+ZdW6E39d2o1nIHMWRJJVK++w8L+i1sEgjj05vuYyVzWwOi8I8ZT5ZXvAg7VFaQb18tGV6vcTeND7JAYyrgEoDKoBARJp8iAHqpFCZhUxx5WYaWiGIky1QvJ1dTWxKxw/bY4aYGWukmvL09Iab2ch+Smymjrd6hLkwC5l17ilFmzYaaHGojtRGeFdtAAGpTnQ5pC+DblsfK65MtRGxC62PFVd2h+h9ffMeN7sBB/a7JWZKHQPnWUjLka6riDjVlW3piFoxhFICXQWpoGMl7AtUBwW3gIR33iyKO+IHxd8KLy4f0r1XUTGqKWOJzIdG9GyBbUlcbubsdx0aKmWMcBsZLgJpBdMysTs2Nos5H/7ZBQ/7bXO8+xle2//EvRE2Gam1RcwdHyso92oQLQg1NXdQB6dser7WM4ZUeDDsOUrjPUeKKz9sj9ltOmwMVAkwKnGrxA3Mzp2TryuanfXTyKv9I95+cMTxfMQcbJ1IK0irik6t0rGmlVrt/nUDloTaNdKJgW0j27cPWC8Ljz5eH7p9pRxEfZcjNgVkFwhbpb8SZm+co9eZ/mJPuNog+4nu6owwzrl5vuDqkwjiDG8ixy8L/fe3yHqHL2Z3jhPGCS8FEcHdiWUQygzi1ln+rxD2AQ9w8cvIPE73on2nlV2saF/xfTgYxAOZs92XOzmTXl1ydrMjjqd8f9Lh88rxW5j/cYOstge/RLM/h3MHilqJtYPaCWFyhktj9jYDsH088HK95PnJOYs4cZsHphoYYmH5YMsmVXKZU2cOroh3zIOQghJvVnBzC7drjo96bn96TJkHlt9kwtUGSsG3OyRn6LsGLIYWuZwhBKIW0NKanXirFjGnW8Fm7DjtthQLJK1sS2LZ7TkbNqyOBr6uip0PuEJNYJ1ifYDTJZxfIrMZmNFdOzoKUpzp6QlxPUffXOKbLZSCDMPBvSpSW/SilmZ57zjmKnhQpDg5RxZh5NrmAMxj62+Ks+x3fPrkB75JZ4xhzqYGah/p1gF92uFy1h60ND9mETZPEhYT/U3PYojoLrd2YQa5HOx1BDNimBy8/dCi4EnRqdmgm/07Ww3QayEhZAt0Unkyu6V7v7I57RifRy7Wc1ZjujMI1NuO4VWkDs29rGZC7Z20CkzHR3QrI22NtC7E6z3sFWpFciFqeScLLmBBoFNwsFXifGqyc9cylNYQAY7iyHHaUywwWmS16FuHN+XN6piVC9NDxfUQudRMpkVt5tKbKWwNN6GAlICrolIPVVWdO5A6Vrq1EW8Dm9JTPNCH8iczQKfl3lBGrSSt9+9lC8z7ia7P2MzgbhYNNJNZ2vimhcOuooH1LuJRISgaDouMu0sOVZ82lcV3wn+9ecptHlCcqPVgt4V0+OLdJDXWyL4mphqopuymRK0K+qN7T4IUIYxNAVwPmTqsBYAD5xyV0nz4vRWJ74S0vzE23x1zvltwOc0Jh+7fh9K0z8LhXsJokWJ6aGXOrMukVJHO8ORYahY8rQUdQeyQnTshv7ti41kMkyEOpoJFR4ojxdBiLdyTMIuZqJXqQqflHkz2Bmy0QHGleJvWq7UT1NBk1H0bWMJeCLs2/OoEcXTC6O+aMyBTQUol3kVHjMM5bF4mo7sp9Bcd+xr5KI6HMU4ZLTIeUlhMKQdgY43scqIcgKk4iDdQo6DjYcdR3lFGrHFbx9Jsdm3UUmg7hDD9aR/TYvQ/7Fj+wfjy/54wWiRJZVcTowX2NbHOPTeHXdntOLDN6TDSKea06SoruhPiRkibRvq7QODtSPW2v8itVVCN2DZ5jutd26ANnnsjXK148HtYf7jkyw/f5y9Pv7/3ZNvSsZ56xgPZoQ29h4C3HUdVfB+IWyGtIW4OU5EdgpEbvzwIngLsMkwZ3+9bKrU6jO/yTBBsiARV9GbL8psFL794jH0mnAw7AK72M262M/qUscPceTd7AkxTJO8S8TrSXwndtd93Damtg+gdMJVWALnc62i0qK3jB8EDWApYVliA9afETSbujPnLxMvhPX5YjsRUmaZI3STKco8fANUSsNrWUr4P6K5FS8qP7DQQMoTRCLtK3NW24jyQ3re7JuIAOhnWK7VTLAnStaebFgGtiTxvS7buPGDXc6bkbXjpjDxF3AQviuxC61UGYSdoFuKuRccD6B5CbqNb3BXkjvSl8YtScXdkPuP/AZNwcL0tgjlxAAAAAElFTkSuQmCC\" y=\"-111.782953\"/>\n   </g>\n   <g id=\"matplotlib.axis_25\"/>\n   <g id=\"matplotlib.axis_26\"/>\n   <g id=\"patch_63\">\n    <path d=\"M 149.237931 149.782953 \nL 149.237931 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_64\">\n    <path d=\"M 186.727586 149.782953 \nL 186.727586 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_65\">\n    <path d=\"M 149.237931 149.782953 \nL 186.727586 149.782953 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_66\">\n    <path d=\"M 149.237931 112.293297 \nL 186.727586 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_13\">\n    <!-- Angry -->\n    <g transform=\"translate(150.249009 106.293297)scale(0.12 -0.12)\">\n     <defs>\n      <path d=\"M 34.1875 63.1875 \nL 20.796875 26.90625 \nL 47.609375 26.90625 \nz\nM 28.609375 72.90625 \nL 39.796875 72.90625 \nL 67.578125 0 \nL 57.328125 0 \nL 50.6875 18.703125 \nL 17.828125 18.703125 \nL 11.1875 0 \nL 0.78125 0 \nz\n\" id=\"DejaVuSans-65\"/>\n      <path d=\"M 54.890625 33.015625 \nL 54.890625 0 \nL 45.90625 0 \nL 45.90625 32.71875 \nQ 45.90625 40.484375 42.875 44.328125 \nQ 39.84375 48.1875 33.796875 48.1875 \nQ 26.515625 48.1875 22.3125 43.546875 \nQ 18.109375 38.921875 18.109375 30.90625 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.1875 \nQ 21.34375 51.125 25.703125 53.5625 \nQ 30.078125 56 35.796875 56 \nQ 45.21875 56 50.046875 50.171875 \nQ 54.890625 44.34375 54.890625 33.015625 \nz\n\" id=\"DejaVuSans-110\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-65\"/>\n     <use x=\"68.408203\" xlink:href=\"#DejaVuSans-110\"/>\n     <use x=\"131.787109\" xlink:href=\"#DejaVuSans-103\"/>\n     <use x=\"195.263672\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"236.376953\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_14\">\n   <g id=\"patch_67\">\n    <path d=\"M 218.506897 149.782953 \nL 255.996552 149.782953 \nL 255.996552 112.293297 \nL 218.506897 112.293297 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p96d093e22d)\">\n    <image height=\"38\" id=\"image262b3b31dc\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.506897\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANX0lEQVR4nEWYy48k2VXGf/cVERkZ+aqqrKqubvdjPD3jtmc8fsmAhRBCArNBsGDDliUb/hL+CtZI7Ixg4Q0SWMgeYzwDbo/n0V3d9eyqfMbrxr2HRWR35yakCGXmie9833e+c9VHf/cPcvxv56A1KAUh9FelwGhinrB4MmL9NU07EbppgDSgFOirBCXQFQE3a0jSDq0j82LLfrZl4mqaaEh1AOCqLlj7FIDn11MQhXWB1HWUdUIMGgHC2mFVALm4RhkNSiNN0xclghpk+O88otrXNAcRFRS68BgbiKc5bq1oDgMMAijB6MhkUHO/uOWj0XPeSS7xYnnu9wBYZjleDDd+yHyw4XQ9pQ2GEBUne0sq77A6csEYrQTwHvEdSERZ26MXI6oYcvMkpToWwjgQUkGCIpznDC40tgJdadTG4ssEAK0EHw3LLuez5phXoSDXLdd+RBkT9uyW9/JzNIIzARFFFwx1ZzE6AmBswIoCjOlb6CwYg9IKrGXxe3eJBvw0oCoNsxZpDINLjRioDiOy5xlNSx7NbnhYvOLr2RUAp+0MoyIXfszXs0s+XR3zeHRFYWou/RiAWVoydC0AF5sRUWCUtgxSjwVQzvZFQV9gALl/QjNWKAG7NHTTQDbwNAuH20BIQaygXf+WdbAs/YAv2eeiGVN2jtx66mD55c09ThcT/mj/txgiQTR3siUXzZhEAlEU+/mWIJrKO7Zl2hcmvuvbBxD7PyofjYkWxIBpIbQKYyJupZl+5qn2+4ftKmN1V9MFzWfnc0bDGmcDN4sCbQJ+kaFaxfe++zsMwmm7RxkTmugoOwdAZjoOB2uu64J1TEmzHWJvinqN3sEe9dT0istARYUMIkZHqkLYHllsIyhRhEGP2oO9255bddb/2aDF6Mg3nlzyZHzeI4XitsvZdimdaOyOU1YHnIqMk5omWNbVDjGlFCICgISITHJCAtEo/KS/jxGsCcSi4+bbFtlruXd8yx/undEEi1bCveyWI7dkakpehQKnAkPd8FVzQG4aomiiqL4YFZm4mk40VXC0QBc1+9mW681w10oRlOq/ICKIM6ABDdEKYsFmHW1nMXlHiIrZbMuiyvjvVydM0prSJ1zUI74/fcbUlIx0BYAXw0lyy2f1ERfNmIFpOckWXLUjVj4jikIjWB0ASxc1WglWyY7wtu+qMppu6BAF7QiiA8kDRkfqKtn1GxaLIfoyYT0OlEdr2s7QBMOqyFjFwRtknAosQ45Rkau64P7wBh8NQRROBxLd0UVDajp87I14lDVv7UJC6PmVpjQzS0gV3VAQF0ELXe0YTio2ZwX5c4vbOrQXdGcxzQx/R+H+pOSqLUj1AXeSJSfulnXMcCrws1cPSUwg1R0BTao7pq5HtYmWKji0iqS6I4p6y7G3HqYRvWur6bmlk4BERVWm7H9sgJ53yUoIiWLxPnRF5MUnR9TvW1bFgDDWaBVZdjn/ev6Eq/WQD4/P8GI4tGv27BatIk10ZNrgVMCLoYuGytsdx0JAaQu+gyTB5wrUrjAruLTDmEh5kzN4FQmJQhQ0U8XN9zsePLxinNZ8MH7J080hP/+fd/h1+Ygf/sFvKLuE0+sp46JiaFruprcc2SWJCmxjyg1DQugR9MHgRTNw3Q4xY3ruJI5wvE80EG1PfOUiedYySDxt49geDggDxer9Dlzk/Udn/PnRJzxOz/kwuebT0T5/ffhzFiHn5+uHfPzyHloJ7+1fcSdb8iC5ZqpLbkKBUx0jXeOjJaJIdUcbe4XvfEyB6r3s8vfHqABiQUVQRijSltR2vHN0zdNvn2BXhuJog1KCiCJTnu8l1xyYATp5xcuw4SqMOMumDNKWw/0N3598xUfZM4a64UU3w6mAVpFEBZwKPGv3e26pXgD6jXc1DXLvCF/0/IoGRENoDJV3GBWZZSUPH1/QTQObi4K6dlyXOaftHouo2cSGCETRXHVjzpsxH8zP+Nt7/86fDj8lUYFa3K6YjiiaVgxOdUxMRao7qpDgo94h5n1P/LbD1BCT3tElERBYlykD58lMx7em57QPDZe/PMKnjjhoaaLlZRhh1ApQrGLGabtHYRr+Zv9naBVZSUqmPM+6PaJoApogikx76ug4ckvWIWNgWnL3eiTt0sXtR3uYRvAjRUhAdQrxmrZMuFIFAPfyBZntCKOIUrAtU7Yh5bybvvGtWhyP0ivuOMeLbsa+2ZApzyftMbU4mthbg1MBo4REhR1yfVudDrwZkipL2d7R2LpvIYAocLcGaTT1OuX8ZsxpOeXucAGFh6UjnA/4r4v7fNUcUIvjJhTchOINGlOzJdcNv6ge8rQ+BmDPbpjbNZnyeDHU4jht99mEdEd5eavKuK2wlezUCLqD5EKDgGiLGKFLDE/dnB/cfcbhfMXl4gC7UVSt47bLedUVlDGljCl7dkMU+I/NY356/pjcee7kSwyR++krtI6sY7YzWEeknwSLLidEjWXn/CpLyW6Edkf+16psJ4ItFdFBGAfaxvHx+T0GiUe3iphC6jwTW1FLwpmfEkSzDAOeVXs8XcxxOtJFzYvtlOebGb9yd/nx/FMAPq/mLPyAsW0Y2oYgiojCspuVKh8QEoVtBFDYjcKWfeQJKbQHgXy/ZJi11N5ysxwSJh3u2nJ3vHqTJJwKlCFh4XOeLuYstgMOxxtC1Ly4HVHkDT4Y/vHLH3JcrOmiJkSNGy4Y2oaB8f1Q7xlrqb77gGwRWN81oEAFMI2guh5BXWsGPxmznSv4wRK5yMgvezLO0w0AU7NlYgp+ubxHZjqubkeETmOnkedXM47+OQMZUO1pbn/UcPVyyni+IU9btllCU/UCWjbZrpWA9hHVQbrSxERhaiFdCabpR5BbK/Z/vcVeLPnC3iUVmP/Kc/MNx9SVFKYmU565XXGYbfiX//0mLB3FF4bfrU4YnBogElLF7QcR6TTvvXPG1idYHbmqCvazLQBV6/pWqvEId1MTxgm2EmwlmAY2J7pPsQOwJVz+oKCZFkQnqKggwvobnrvpgttuyLmZUkfHTZsjXqMU1IeCu9X4sXDxlw0/eud3TMoxj8dXfLI4pvKWGDV3xitWbcY4qRkkfoeYCHpTEQe2twqBkEA7gXYaMY2ifNwympVUZyOKLyyTzwPbO5Z33zllGQZ8srrDZK/in158l2e/OWJwbrA1NDOhvdsyP1xxkPeIfHv2gp98+U3KFwVSdBTTijuDFbftgDo4fNB9HpPEIXmK9hExCu3fbkGSRIJVFJ+k7H2qOVq1xCSweDdh+ccVP97/kluf00bLMgz46qs5plWkC0iXkfGXQvN5wubunJsnQ55lM7ZXOabo0Hste9MNf3b3//okq4QmGi5N0SdYVTW9RQwzggNfKLKbyOSpQge9K1QoDy3bjxzlg47516753uQGgE4MbTB4McxPFnz44Rn/+fABT45f8quLE8rnI3TbG2e1TfjW+6fcH96iEY7TJTO7ZRMyFl1OEw1l63aq7DqU76NPSBV+BKI1+WW/xVx/R9HdacmKhllR8mS4YuR6ab+bXfCFmnOT5szslh8dfwHA33/zp2Sq5a/mv+CLx4cE0Ry4NV4ML5oZh8mKqSlpxWKIYGBka1Y+I4TXQ5yeZ2Ho8IVCNDQzWD/q84c+rMgzT2I7JmnNvXzBxFYc2A1zu9rFFOHajwCY2RIvhvtujVMdSRbIlKcVwyLkHDhHpjzrMODE3WJUZBtTfGJooqVpHDoahYwLwnxCdZT2Dp8J0QmmVcRxhwBKCeOsoXC9iRam5kFyRR0TNJF7yc2bIT6xJXO7YhFy5mbLsVmSKc/UlOzbDXt2s5uJEac6nOowRAyCU6E/7QFQrcdcNrTfKvDDfnrrCAToSgNpIEbFNK3IjEcr4cguWYScWhLKmGAQNiEliupnn2hGpmIRM+ro8BjqkLCNCU4FXnYzDtyaiGaoGrzum/eb9REosCoKtB7JMxDQHna7b3+6k0RQgjWRqnMUrqEKjjM/I9Wes3ZKpj1BNIZIJ44yJgQ0L/wemWopY8qJuyWgGOoWoyK5afBieNUVBNNPkJHpX5zYKxTpOlCKZBNJ1qDbPvL4cURlgSTpSGyg6hwbn7LwAz6vDtiEfmH10WBU5DBZs59sOLAbFiHnt9URZ35GLY6rbsw6DDCqF9SJu2Wom92zEbX0vHuvuEQPX5/2aE2Y5JhGMJWgWyiPVb/oGsHaQNMZam/xUbPtEmZpSWEarI6UMcFJINctqerQKjLUDQ+zazLlCWiO3QKzW/tqcRiEqSnRRGpJ2MaUTPVpOMm6fiRJjESrSW9b6tkA0dBv6IroNU3Tn8rkWYvsNuiDdEsTHVY3GCJaCde+IDdtv2gQmdsVU10yNSXrmBFEk+yeeWXeKDWRwHk3wejI/fQGawMaRX+KCITMkC0CySZit6A6jQjE0HNAKcHqSG5bfDQMbV9Uqru+cNOiEZroGJuafbPBqEgtDqcCx3bN3GyJaByBdRwQd3E5iqYWxzpkdJ3B+kJx9hcPiK5fcqGP1mIge2kQ08cgFJR6yFbDpe6VszueePtRb6+i5S3y8vre7nF47Z1vf0DtBEcE0yj+H2mWFdbVpMaWAAAAAElFTkSuQmCC\" y=\"-111.782953\"/>\n   </g>\n   <g id=\"matplotlib.axis_27\"/>\n   <g id=\"matplotlib.axis_28\"/>\n   <g id=\"patch_68\">\n    <path d=\"M 218.506897 149.782953 \nL 218.506897 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_69\">\n    <path d=\"M 255.996552 149.782953 \nL 255.996552 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_70\">\n    <path d=\"M 218.506897 149.782953 \nL 255.996552 149.782953 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_71\">\n    <path d=\"M 218.506897 112.293297 \nL 255.996552 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_14\">\n    <!-- Sad -->\n    <g transform=\"translate(225.956724 106.293297)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-83\"/>\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"124.755859\" xlink:href=\"#DejaVuSans-100\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_15\">\n   <g id=\"patch_72\">\n    <path d=\"M 287.775862 149.782953 \nL 325.265517 149.782953 \nL 325.265517 112.293297 \nL 287.775862 112.293297 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pf7c31b153c)\">\n    <image height=\"38\" id=\"imagecce86cad2c\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"287.775862\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAM4UlEQVR4nG2Yy48k2VnFf/cVr8zIrMqsR1f1THdPj9vzMmN7xsAsLCGwsMSODUJCYon/GzYIISE23iLWSIOELQFmBIxHNtjdHqZ7umuqH/WufEdGxI17L4vIzJ6WyE1GZGbcPPGde853vhDf/Yu/DLM7YLc9t+6dcdiZ8NVsmxfPB1BLRNagI4fSnsg0+CDQ0iOlp240QgS09JS1oVoa/FKD8STdmiypkAKU9FRWMxlnCBVIs5qmkdhaE64j0hNF3Q+ou3P2+nOenQzQXkO93/DWmy/4YPspUgQuyi43b15jlONOfs3ALKi84bTMKZ3hVmfEYTxmZDOmTcqiichNydAsyFTNzCVUXrN0hq6qGNuMT09fZzic887wlG92zim94Xi5zeXNLg+L24gAd3ev+OMbv+Tv1ffQQQpU1nB0OeDZeItuUtGJanpxSaIskkDlDdMm5nLZ5fjFkPvl65itkjhuaBrF7eE1TZB8NR9Q2IgbnSl78ZxH012e3D/ETAX10HH49nNupSNKb8hkzW40xwjP5x1PeqJ4dLrL8fYQ6xRaVQF/HaEOa7ayJd2oQktPoizDeIEPEo+gdAajHEm3ojYGO49ozjLUbsnJtMcXk3103DDsL/hyNORR2CEEQfb6jN18Tqwa9tIZ0ybBCEcma6QIxKph+86IcTNg2Cs4q3rUTqG9AXoWrTxGOaQIZLqmb0oAYtlgg6R2mo6uubtzxbyO2Unn7CVzKqepvGbw2oK76QVGOB4vd1n6iN1oRuEili7iRjzBBcm0SejqikxVKOHxQRBph9gv+bM7n/Lx2XssqqilUkeOAIQgiKRrKRQeHyQIjxKBXrRkN5oDYIOi8pqOqtiNZsSiIZEWIxwKz930gsJHWK8x2rFj2uu6qsQIh5ENPsjVOobfv/GQi0HOx2fv8WLaw1qFRoBUHmjVI1dAGq9IlQUg1yVbuiCWDUY4PGIDMBYNNigGcs7EZUyalL5etusJT1+VJKJdp/AxuSqJpcUGRekNWjockg/zIz7M4R/8hzx5ttsCEwKMcnRMy3u74TVaOnq6JJM1X38Z4XBB4oLEokikpfAxpTfEsqGryk1FEmFJVkAyWZFIiwuCyndWVay4th3KyGBEu5WYajSAUh7vJVWj8aqlM1bNSjWORLbUKsJGUVJ4aGDUZMxdvFm08ppclUjh6aqSRLbVkniMdCTC4oSgDC1YgBPXb5mRS4x06IVEE8A5SWwseVSipSdVlty0i2ayJpNVWyUksbQoPGUwPJgf0NEVXVXx2egWD5/t0d8q+PM3/4stVXBm+0SmWV3fVtshsEGj8BjhsKLdr5+M3uSjrSetgc9FWzGAQbakb0o8gtyUbOtiAyqTFUoEAGYuwSE5r3v88vQmi3GKWCqCDCAD80XCX//0D9m+Lxl/v+RH3/kZ7yTP8chXtoMVCilacE2QHE0GvN97TqZrRACJAK0dSnikCLgg2DFzdsyMgZ6Tq5JIOIxoMKK9+1wuiWXDN3fOMaeGt/52Qv5I80cf/Ip7B+e8/+0jpAVfKfbNhEi0FK7XSITdsGCDonaKi9M+34jPKJ3Ba1oqtfR0TUXlFbvRnNKbTamNaKXtg9woVuE5iMa8SPr83g/+hwcf7PNu/jmH8Zh3shNmLuHLHy3ITcmWKqiDQgmPwWFp95VadRSAYVygxhqHZFIliAA6SIi0o3SGvilxSPKV36wXYOVpPrR01EHhgyBVlsYrPto9YtsUfL/zBfVqQ++YGT6IDXWtgjVGNCjhScSSfSN4Vg/xQSBrwUWTMy9jWFOZ6DY1eATbuqCvivYORYND4IOkDIYr16X0Bhv0RupSeOYupqvKjXcp4emsqEqE3XzmgsQGjQsSJTw9WdJXBVo6goJclvggCHpVsW5UIUUgkq2Dl8FgnaYOGh8EmawANkaZSIsJDcCmkpMm49zlKAI2KMYuoyMrpj6h8DESv7khJTwXTQ+Aa9dpheXhF/PbaOlxllaVUgS6piJVFhdaxa29adqkAHR0xZ6ZYWRDn+UGYCwtHkHhIwofM1BzrlyXSZOhtOeiybm0OU+Lba7K1lRvdUe8kV6Sq5JLmzOuU9ILwdimlLUBRev8ibJEq3Zjg2LcZJyX3bYLiIBeNdtFE7NlCiq9cmnakBjRoPCbtlN5gw2Kn43vcbbMVwYbNq3s0XQHIx23kysqrzkpeph54F7nnLNBzrHpvqxY6VqFjJqMy6rDw6tdfBD009Z0Gy857E6QwnNW5Rjh2Ynn+CDoqoqBXmwEM3Ep92cHjKqMWDUcpFOWzuCD4GyZY53iP09v4fYFsWx4ej5g/9pztBxyN7/kmNdeul7pDE8WQ+6PD/js6BbT05z39k55f/iCZxfbAPzp3qd8IzvnIJniETxZDHm63G5vQBUrsUgmTcq0Tnird87d7iU//eS3+M2P3+FsmfMnh59xen+P4rMdni62GdsU+VVC/9fX/OrvvsVP/uU76OXK+RsvmdUxS9vFeYmvFd3Hmp/3biFFoPdvCdfDlPINw7eTY/7m6g/49fMDPrpzRNEYCh+RSEtPlhzbIWdVzuOzHY6vt2kaSeeppDiE2ac3+at7PTpPJbPvlszrGCkCnecCMZ6x96+OeuvGS4P1QeK85HLcRUqPkIHlvid6kNG6QKDe9vz79B6/Ge9zMuohReCTR3fZ353wWjZG4amD4rga8t9nNxn0F1RWUxYZxU1PEKBKwfIqpffDcwbGcj7t4oIgnnjCooDlkt7RLpM3Vnks0RYfBAIIXtLpL9k+uGZUpMzHKeoygiD4j5Pb3MhnpLGl8RJ3knKhc5odxdSnOCRnVY/lMmqFIz2He2PCHuxnM4ZxwW4046TqM6oyJiahbjTJIhCaBryn/4sz6vxgtflpG7RUnji25EnFTjrnXv+C+LWGqU2Y25jLZYejqwFCBIqzDroWCBGonGbiUmxQTGyCLQzF44wgYdT1yEFNPy65qjKaIJEEZjZmvkiI4oZO6RGRwS9L/ItT8uMhOgiIVcNOumBRRQAIYFKnNEFxt3vJzXTMWKdcLDssLzO6X2o6ChZ3Gg63Z3R0tel9fVOyfzDmvBySP1QkDyTVdsqjg9vYQYPp1SjtcU4w3JpzMcpRlUfkOcJ5Ql2j5/XLimW6Zqe7YF5HTJZJ29+c5OH5Lt4L6sKQPIkZvgjUPVjccdy8c8n7wxfcTS8YqDkeyWvJCLPr+DIu+cIc4B4b9ALyI5g7jbUSG3l017KbLTg9GuKNx74+RJcVoayQpUVLC19OdzjsTNhN5qQ6pm4U18+30GNFUIAM6EYgHIy+FejfveYH+894r/ucO9ElRrTtyeA41CNmacrv5AkX+zmXv51zUvZ4PNmhpxwhCKyXvL11zsJF6KnCG7C9CD3oI8oSsazRsgmcTXK24iWZrolkw+/eOGY8uODnT18nSyw38hkAh50Jb3dOOTAjhnqOoTXUaGWs0CbULbUgl0sO9YgyNtiOprNbsfAxM58wcykndZ9/fvEW0UQQFMjC0ww76BMBUqKFg3Ie4ffadpHpmo6qyLOSd989wQhHvIrYW2pBIuwm+K0jkEPgVpFICb8BWQZDGQyKQB1Ue+4NsbQY6aisbiOODejC4o2COAYl0SIAtaTxEi0dsWyHinWW2jcT5KoPrtOBDRonBQaHp52G1sDWmW0Nup3kW5ALH7drBChcRG012rVqs922JUZaEYRoYw+RJ9M1g6ig9m3U2YumWK+5aHIyWbd9MEAkFHI1jBjRvEIjtIFwPXC4IDazggsChSeWlrlL2nAoPXgQTcBMa4KShMaBbVq7UJHfVKmjKvp6SSIajHr1TxUeSRuv16DW1XxJoYYg8XiUAMea4gA0GKAQrQF3khpbgC4cPtUtyCTG5Un7iCBO6tVjgTbmrAdcH16Oawq/SqJhdR6Q+M2gsq6WEoF6levXSl2nYEu7xwD2oimLMqI39gjn8VoRlCCkMa4brVpSZOnpahNbbFAUPiJeDavroSSR9hUgivDKMcJDgES0gDeiCBoP1EFjg27XdzHFKGWwDAQjEdZjZhUIwXInQgsX8F6yG802k3HpzSrHS3JZolZ/9CqtYUOjWz18cUHikcgV5W5F/vrlwzrpRlzVXW5+rMj/dwRC4LMIUTe47QwXi/ZRQVFG2KA2CXbUZJvKlcFQh3a0WituDapVpMaisEFvQFjUZkxbgy+DofAxAH215J9+8gGd4wI77ND0E6phQog0PlZ4JdCqgvC4w4ODG3xv65jGS4xwdFWFRzB3yeZu5UphUnqS9RQVJKyq9HUAUry0GBvUyipaW/nx5x9x5x/LTSWDkehFQ4g04zcTXERrsP0v4PHJPR7G99ptImg7eVhduT7na9+tjwER2mOx/v36nf//s864zXtBRCDE5togYoQHvYT/A9vrBxAhLMJ4AAAAAElFTkSuQmCC\" y=\"-111.782953\"/>\n   </g>\n   <g id=\"matplotlib.axis_29\"/>\n   <g id=\"matplotlib.axis_30\"/>\n   <g id=\"patch_73\">\n    <path d=\"M 287.775862 149.782953 \nL 287.775862 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_74\">\n    <path d=\"M 325.265517 149.782953 \nL 325.265517 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_75\">\n    <path d=\"M 287.775862 149.782953 \nL 325.265517 149.782953 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_76\">\n    <path d=\"M 287.775862 112.293297 \nL 325.265517 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_15\">\n    <!-- Neutral -->\n    <g transform=\"translate(284.375065 106.293297)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-78\"/>\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-108\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_16\">\n   <g id=\"patch_77\">\n    <path d=\"M 10.7 194.770539 \nL 48.189655 194.770539 \nL 48.189655 157.280884 \nL 10.7 157.280884 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p4450376c0a)\">\n    <image height=\"38\" id=\"image6924d9f825\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.7\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAOBUlEQVR4nG2Y2Y9lV3XGf3s6053q1nSrqrvK3dXGjfGIgcQkDhhCFKYk5D1KHsJTnqP8CZGiDFKGBxTlLcoDEVFAIGUUBCMwtgHjbuN2u91zVXV1TXc699wz7b3zcKrtTuBKR7q6L3edb33727+1xK998c989J9vAIB3ICT//yMCw9U/fYo/ePElls2Ur+0+x+3dZZhpNi4cMp5HWCsp5ga1GxEdCuYDDx7U+ZRnz+yyl/b4va1XOKo6PBnf5Ua5yt98+zehV7H43ZBw4kAIbADCgfZSgBSnJaj3ixHive/uiW18u6anM/7+nReoftyHCwUfeuIOg2jKYdxmWoY8tnXA8HzCj949x+p/G8KxY79s8060wmwe8g/1r/JHF77L96YXuZ0tsvGBQ0b/s4bOHXUkUWXzMkVXoB8U4b1HKIW39rRGhS8rkIL0kQST5HRkzubCiBu+D2PDW5e22LmmkJVHFXB5vs7BRwRP/9IN3vzcBgvfiYiOBKPbC3jt+cIHf8TNYoWjss2lvQ3K3NCZQ9kRqBKkBeGbR/8ihd77TUnEhUc4eUJRzQxLOuVMMuKdJ1OCq22iY0gOHHUkaN2v0bOas2PNvcvbLARQ9AXhiWfr3x13Pi+5NV/ikwtXsV5STENa1wJsBLIWOO2pQ4GZe2T5UGHee7D2PfWwFowhfbRHvlaD8twql7mY3Gfp4oy3Nwa8fvUc5SfmSOkpXuqhM03dEkTHnmjkCCcC4Ty7n9AsPXLMh9p73C6W2QqPETOFM+AVBBOPyTx1JBDWI7xA40+LelipU/VEErPzu5YwKU8d6PmV1lVyb1gNzjHbDol1xVv3Bmx8fo/bN1cAmIYOMTK4wIHxrJ09YrMzYli1sEj+4qe/gcolwoIsIRx5zNyhSonOPTq3aMQvbqUIAqrHztBZyAhNjfeCb+0/xebWMR8wh/xW+03e7Q4onGax26Fykscf22VcRFzoHeG8xEhLS5VoabkQHXIpPcuP75+FWwnxkSAYe7wEnXvC4wpnJP40FJpWOo/n/6rms4zbn4uQZU0SlijhKazmnw8+xq8vXmFJp4Sy4qXdbapKo7VlJZ7xmfWrnAmGVF5ROMOiTnl1us2l9CxvHG0wurNAMhaIGlQBCHBGIGqHch4vBV6J9z32IDKEUuAcIm5RrdSsdTK8F3jhqZ3k9rTPv1Yf5tHOId9441nOfbU5Rbe+oHljmNB9fM7NbImteEhPZ3x//AHGVcTlexsUmcFLT7buUHOBCwVm4hEWvDr1F+CMPC1MCnCnigkHSlE+ex4ZNy10XiC8wEhHWgQI4N++/zE2X7NEuxPkOOUca0zPGl69+yT6qTHlQLMaThmWMWkVYkyNDSRON3lQZ5oCAwjqlkCVIclBiSgdwvuHFHvodEqlGG2HBGFKpGsACqswypJmIcO9HtrA0VManbWJipLo9dvEbwWstGJmjy3yyhcv8OlnrpBbQ1YFhNpi2nOck9ROkgNVX+CURpWAV4RDiZnXgPr5wh4cgtkZgRCeo7RFoGt6cU6oahY6c/KoYnF7zlHaYt/1WI6XMWkfWTuqtkbUnvY1w9nnh9xKFzHKIoV/7wUTUzELA+7nTfBaCTYU2FgRjEEW9uc9hlL4cxtUHY+62iHcE6jMs78pkM+MeWZtj9xqXli8Tigr/rr4NCd1i84dyfCDkrrliI4k2ablajog1hUrUcq9rIv1ksSUHM7a1FZikpIql8hC4gzMlxQmNcjc/gLFlOLwo3288Wz/4whR1KAk/asx45tdXv54ixefu8KynvDp5BbfHDzNjV4CAlQO5aLHC/Da4bzgtwdvcKdYavKtCnFe0ApKhlmMdxJUY37hoI6hThThvP75wgBWXjmhe6vN5GKPww9L6rZj5TXJwrUZxUKb+493cAuSnTqmG+TUXYdwgs5dh5kpZhueta0TPrN0hSWVUgWK144fYX/aYZ4bhACtLUJ4kIAXeN20s44lRssm+bH2Pdzx1pKd75FuKMyXDnmyPWYpzBg/F7Eapgz/7jne/tkmO0s3yJ0htwYfOKzRDSUkoEq4/+4yf375d1j+qUcVHuGgC6yMKkTt8UqTDQKKBYENBV6ASRu6cOED8wsJUiCUwj79KPvPK8ITwfCwSysokcLTMQWhrBh9NiO+1OLN6Qab8ZBJESHjmmzN4KVCWOi/7QFBFcNsXVK1oLXnKXsCrxRV29N/2xOOLFWiEdYTpP6UUjxOP8AeJUFKRBxRtzT9K572bsF8EDLsxxS1JgtzAB5bP+D2T85zeX+dxa2MWRngSkW24ZCVYOs/SooFzd6n4MLju7ywfJ1lM+Wrdz/K8GcDwmPJk5+6xsEvd7jzzipmBHouEA7MrPGasA+SX0oQAtHtEIxL8iWDsJ7Ba4699RapsRzKNneDBda6U2QFRamxXqCkg0LiujXL3zXI2jHeVrTPDnl6YZfLkw0Anl3a4eOfusnX33mana88yuf+5CWutMfspT3u3lwhGGuEA0TTQfnAVwDV+gI20bR3clRa0nl3it4NqSYBUnqMsqxEKSr32FoytwYtHbJToYaa3vU5Jxcj6gQ+vnGLti748vr3+P21H/Bc+zZb4TFffuL7VC3BN//2kwAsxyn9jTE2AhuCDQRlSzZ0IZRCGI0LFFVHozOLjRTB8ZzN/yrZfTGgyFuUtsVhK2so8yAkvljRDgq8E2x/o0CWloXrJSfPi4YuhOVfjj/K/bxDaRWBsgyiKeZLhyR/1ePWeBEtHcO9HgvzpigvPLJ+CBQREpU310/V0dhQEBw6zDDn7Leb1PZScHe6ydqdis5dGD8f0zYFwa0Ic3BAvtkjGJesfqfNtbMrvDtZZuewj/cCOzWoqeKKBb+Zcz63jGcxvNlh8K5DWkfRFdSJoEhOC5P9BexqH3la2Gw9QFrwSiHLmmAvR9QWqprzR21EXoH3ZHXAVjLk+gGIqiY8mCHTnKVX5xR7S0y2AtxTHrmWE+9oqrZHVrD4rZBg9x69r68TjSq8FM0Q0lMUi5468U2OueEIWVaIMMBuLmMDgQWqxYhwP8UHBowGoxGVRczmEBiuHawgVz35ErgkQmRFg+dAdP2Q6Kpl6XIfF2pkMWluvJO0KaSsyAZNdkYji55ZurccsjLM1k+xx5clOAcuwewc00k0ZVfjjKTqx5iTDBca8nNdov0MaR2iqln5p5gbFy6wfrlETme4TqtRFvBJhJgXqJMUNc/xziGSGLvYRh1P8XVN565l+JiiGEtWflIiS0swVQSpOEVrpZrxzVrsag/hPPNlyfLrM2RWgveIyqIzS3OfKChKWrdSkh2JOp5SnF8hvHmITyKoGkt4JXELLWabA7wCWXnM1KL2jvHZnN6lY8LxQqNkWuCVwmSO8Lh4yPzOg9a4UDM+F3LyQsHoRYP3Bjcx6IlqIqYKsbHHrZa0OjnpfsL210LC/ZRyaxmVlohAI+YloraoowktIcC55iWPRqTPn+fOlxyP//F14kkKUuJnM7CO5I7BnVt/f+BFCdzmGiqrQICvJK3ejEBbZlGAGHick1SlRpuape6MQTJlaeM2r6xvMZsmmJsRay9rTFpDN0I4jwsko+2Q9l5Ncj2H1UVaN8Zc/EqA3xzgHaAEohUjp7OGnvvRwzwmkWWNNwo991BKilI3WC08GwsTYl0xLUMCaRkkE85GIyZ1zLn+kEkScdxOuH02QZ2EhCcSM22SPH0+Y3g/IjwZ4CU47fEKzFSg82aEi04c0XCROpaEo+r9K0kEpvHSvMSGAllKhIBWWBKbiu3OEStBivMCKTxGWDoqJ5Q1K8GUSR1x2GnzdjBgFCfMlzWZFZikohWX5BsO+YhlNo6QQ4POBPJ0GyFr3yR+V+EFuPemJCEQcYxthchhiskaeKuqJq23O8d8uH2HNTNmZBNmLmRcJ2QuwCFoqxyH4Ew4oqsLroQDilojhadyklkR0GvPmZcNi/nAw6wZ4YKRJ5h5VOGa/2xJ6vYD7LEW306woUJVNfFhSWsnIqtjDo3l2aUdLJLSK0qvMcKybKaMbYx0Hucl1ktO6hYtXfB47z6F04yriP1ZlySoKCqNtRKkB9fsK3Tmm11F1TwICEc1sj6dkrz3CCnR0wKKEp1WtHcDwhPBYTdmZ7BArCpSG9HXMyqvUDgqp4lkBYARlswFTOuIWJY4BJGqUNKhvMB6QVXqhlqtQM+bebS56qDsKFr7RRMds+qUYAExSUF2IAzwShCeVIieRs4lr//sPNfXl3liZZ/FIKOr54SypvKKRZ1ikUxtREflKBwAcxcQSksnKCitwjpJWWpsZUA1qjktGl87CMcWHFRtjZzXDfbgPD4vEOkcVLO8U4XDaYE3nmR1xiwLefWHF3nl/iNcGp9hWCcYYalOWzswY8JT9QqnWQmmSOHomhzrJbGpEAKEapQQDoKpx2SOYFJjxiV6khOMSmxiHlpDlSWCFq4dUbcMNpJExxWDHxiOnunSe+KY1tKYe8c9jo86pBsh57vHXOzfo/SKnAAjLIlqUDytQ+7Pu/TDrFGwMlgrcIUiPlC07jmik2anJkuLLC0+0PhAcvCR6KEVgbX4OMS2Q7JVQ3xcoyqHzj3JvmTY7nOiPYSWpJtjlOXlO+e4Pl7ms+tv8Wi0TyBqFJ5lPeVOscRSOGNuDUWtmc5DqjQguR7Q2vPYUJAvatqZRXjwWlL2Q4qeQs884rk//EufHDaBUkfNxFK2xSl/NyelaolmmonApGADKBablqgcbOJxkcfLB4ZtuB0HshSoXCBLgUlB1OACkFWzsNPzJmwB6lDgAvBC8L/kugbbC4ET/gAAAABJRU5ErkJggg==\" y=\"-156.770539\"/>\n   </g>\n   <g id=\"matplotlib.axis_31\"/>\n   <g id=\"matplotlib.axis_32\"/>\n   <g id=\"patch_78\">\n    <path d=\"M 10.7 194.770539 \nL 10.7 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_79\">\n    <path d=\"M 48.189655 194.770539 \nL 48.189655 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_80\">\n    <path d=\"M 10.7 194.770539 \nL 48.189655 194.770539 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_81\">\n    <path d=\"M 10.7 157.280884 \nL 48.189655 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_16\">\n    <!-- Neutral -->\n    <g transform=\"translate(7.299203 151.280884)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-78\"/>\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-108\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_17\">\n   <g id=\"patch_82\">\n    <path d=\"M 79.968966 194.770539 \nL 117.458621 194.770539 \nL 117.458621 157.280884 \nL 79.968966 157.280884 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pc45a0e49aa)\">\n    <image height=\"38\" id=\"imaged02afa8962\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"79.968966\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAOT0lEQVR4nHWYyY8k2V3HP2+JLSP3yqrKrqWru3pmejxum/aMZ7DBIGMLjIUwHDgiLlwQB/4LfObAhQsWF2MEWAxYwhaWbAMzHs/CbL3M0mtVV3VnVWVWLpEZ63uPQ3a3e4z5SSGFIqTQV7/v8n6/EH917asOQAoLgHUSAIMAoHSKR+UJw7c+/iL8uMOi76h6Jf3NU4yVpIVHchKDEaAtVJLoQOMEhCMommBCh0oF6bMZ3r0AlQnKukMYkKWg6Bh0Iqk2CqRBYBCUTmGd/MR9bj2sk4/BnlYx85stiiZUKxVRO2M4rjNJIpJBHZFLCAxBMwfpsBpqA0fRhLLpwAnyrkOMfIpehQkcwkE0EMgSwmNF2atwRiAVDuskpVOPAT3ZoUdlneTq9AwA2UYF2vIXz/2IL5y7jVKWoJviIoP0LKZSiMCQnymZbwgW2xVVbKlqDus7bGRRU01Vc+i5wPrgJBRNhzfStHsJ8hGAUFSP6XxUpVOYh0AX1uetq7uIMxnBQCMSzbf3X+LV27sYI/E8Q3/jlHP9Ic4J/KhE1Uvy7YLa2hy5kmNDC8IhMwmbKaoQYCHvOMTyFWXbMLvRRj8C84vdeqQxAOMk70820M0CcxrA0wvc2Gf/Tg98i8l8TLMkvdHCxIbe2TFFpTCVIqjnKGVxViC7BSZTOIBMY2OLExIEqBxcIpC5wj21QD8p+F8sKexjim+OephCIRcS77CGuZjhMoU68REWTFzhWhUyqhiNY8KowPMrPG2YTSO0X4ETOB9sJRFzjfMcpmZBQLq+bISpW+SDCJ1b7/8AerJbAK+e7OKA81vH3E7OUJWSSzuHHEyb+NuGvNT42pBkAVnqYxJNoztjcK9DFhqkcnSbC5IsIGqUnE5iTGFR9QqTaPRYYyKLnkuMdNhG9XNXPnk9cmJpNZn1GC0iZsOYWzfXiQ4UTsODpEFpFFI48lIDEPklG70xQSfj6LgJgFtoWs05vjK0aintKMXkCqzAOZC1aqkvK7C+Q84VtU6K/mU0mocuBXhjuMNov039jmblaknWsZzWBOIferg1QfKlU7KFT557mEyzuj6h356xtTXmJIsZzBpsNqfMigBrFGnpUe8smM9CgrAEIO1qRCVhpUAoR7OWLTX2JCCLeOzEYRlza9CDwOJNHSqztG7k5K06010oWhZmIbZQ6KjCqxUAKGkprCIpAjZbEz7bOmAv7XB/0aLhZXjKYK0gTQKieo7fzilGIVGtoFnL2G6Mfw7sSVD2ocZuzFYxpwGd7TFlfYXFukcV+tjfPmUlzBkvIubjCL9e8Lmte6wFM2ZVyDCP0cJy+KDDH7/0MwZli7aXMtY1CqsxVhJ4FakLKUuF7xvoZmy1JyhpCVX5yztWWkVuNR+/voNbK3iuN+CNFwOavRHfOPMuR2WTN0Y7FEYxz2KCbknPn3OUN+j6C0ZpjWvvn+eb3/gOUxsxrUI63gKvbjBIboke88KjtzrFV4bLKwfMjc+sDFgJ5lgn0U+ehfYJN5ZOYdYLdjaGSGG52D9iPZxxUjbYS7s81Thmtz6kXL2HJyy70TGxzvnR4dMcHzX5s9/9IWNTY1C2kMJRWsWojIlUSdPLyGuatPLIKs17ow0utE7IjMf9tMU4i9Dm/8mwvXkXdeQjNh0nWZ2DSQvbFnwqvs+kCHmufsiqnvEvg89ROUmkCuoq53i/w/b5Yzp6zpX5JqnxAej6c7renEiVlFZR2GVDPGWIdEnPT9DCEqmCE13/JJVP1vv7G9i6YbyIMKFkelrjtpF8N7vMPPc5zWt8df1DjtOYwbDFB4frxLWcaF+zr1f4cf0iUjgyo5HCIYVlXgVIYRnlMatRQmE0q2HCrAqYViEAt5Ie5+IR2iKQy0Pik1FxEiB7ObMkwtOG3e1jBj/c4uBcjCgF43rMa17B1zeukfU9EhPw8uvPI9YN7dWEvVmHReFR80sCXXG0aLBWm/FMfchR2qAfTglkRSArZtUqq36y1PVklZFXW1IphXmcW7ldNtHGBkoJRjA8XmE+kDgP1l5VTM8JqpWc0ijem26yFiS8cnie3acfsH/cYZZEzFOfMvEZ+xbtGawTDLwGnIGd+oi+PyUxAQ2VcbE+YC/tMilCal7B3VkHrYR9LHrrBFI4RkWMVy8oUw+xUMhMkPcswghm24KiY/mTT7/OaVXjg8k6kzxist8imXcw/Ry30NgiIJgInIBi1aCaBcYsv78TjrgY3ieWOQdlh5ePLuPL6iHljsO9FR4rXwmLFA5PGN58sI38KCbc83F1gzub4tZynHRkfUO0M+O0qnGUNfj9/nt0wgXRmQQTuuVk2ipAO0QlaH8Mai6RwmEqxZ1Jl+/ff47SKRoypa0WnK2dslUbL0FNm8io4hOWLJ1ikDexTpCvV1SR45mdB1zevkdYKwiGEuc5slsNXn7jef60/58oLJWVNKIc1yzpXnGsfi9k/RVBbeAYX4S116Gc+rSaC0aTmHaY8pfXvs7fDL6MJyouxfeYVwGF0dSDAu92+HNXllbxP6Nt7v1kmyp2qK0MG5fcHXb4yvmPeet4F3ZLsBAdSRb9nLkNuLbYYCOa4EvD7L/XSDZBFZCtQNG2CAeTXcnZf7Ps/1GdqJGRV5rPrN3njX+/xPofzvjutcs8deYYiyAtPc5+f4GUOCQOTxruvrG1nK1Chy0ldu7xexeuMi4i8C1yphClpHZ/6eK7xSrXJ32sk7z7YAMvgSpejsnV0wu+9NI1fuX5m1SxI//zEb0f+RS5h0VQOUl5MeWfXnuR4IOIW29u0/AyAl2Rd4MllY8cufamRXxuQnAqYaaRqeQga3PtO5+i0Z1jGwanHNI4bKH4j5NP8eAH2/zkH19g9W9rrFzJ8RJwCuqv1Xjv7y/xzq2zXPj1u2TfX6N2UqE/rHE4bi717FegHfmK5ewPClbDhLXaDJWZ5ZFkneC9yTaHvwmXekOurNZZf0Uw+FrBg29eIOg6+Oc2qiEwv3PK6bNtKCRX98+wcuSwHqjUEn70gK39AGEspy/1qe+lZL0aHz/YgS2HMB7+BFCWpAzY6Ey4NYxwnZKyqQhkxfuvPUXrHEjrluva9Z+d58KnD7n25jmCgWJ6TlK7HjJf18w3BNMLAqfgixt3yLcLGv0ZYVSQbAq8xJH1PKqNLrYZke6uUIWC+78Wo+cCt51htaN1u6SMod+YcTY+ZT2aEd/WxK2UvKF4Z7hF4zYMv1AiDcukD4aCGzf7PPXtGb33DXoBeg7x/YoqdhRNSzB23E26SM8yn4XkuYeXwPS8JG8ITi7XQUqQgubdnNrAEY4c6naICxy1j06o6o6z9VNW/RltPyU6dqQ3m0wvCAZv9ln/6YSzL0tkbjVHWYPFpmHnZShbIcPnFGnfkexYqprEmwn0QhDMDLcGPepvRdhKYnKFiZb74Oklx+SiY/J0zHzdo6xripZg+tU5vc8PEKVg8vw65WrJi83b/Fb9Oj89PIefODrPjsj6Fd5UYEPNvK+QNVlw5bhPeKzwRwXTHZ8qdshcYD04/AoULUf3qsMfV3C7Rvd6iZhrpGfhpQlV2yyX2Exw9HnI24JFTzE7b+FOzOjVPvU7ktGzknDPpylTxrbG+H4T48FwWOfs9yAcOYp2QHRi0VI48tzDz8BEmnBiGYWC2gNBdCwZv5BTKEXeUlgdACALizfRyPWKLPXBPVwmHi5cOnUUbQHOgYXwBPIu+BOQJRyWHf76rS8TDDSNvZTkekR0f4I/8zGBwkmWAVsVCtNfLr7piqT94fLjAP6hz8PRidFnIDwRTM77iEqQDSNkvUTPFPE9QVkHfyyYb0K+YpCFoOwazFCjXhjDj9uYCP718LPow4De+4ZkO+DMKynpmZjo/hyZSoLD8mFc5IrWXYk/SummFfPtiCIWTC5C/S6Mn3U4KZG5w0mYnYeyZUA4XCWR+cN/Dy2H9QTZekX//JDh22tENzSNPcOoUogGREeOvcMV1q44ilhSNgSDL/iER4qtoWa6G1FFYil+Kklj30Bl0dOM6LhYpvdGTjywhJsJwrnllJBB2bE45WiuJyjfYD0oG8s1P9ssqZ9J8KRFPpVQNiDrSOTbDZyC2S4o32B8AQLqB4ZwoOh+YCibHo17OU6B9IQBbYn35yDBhpq87eEUiKGPSi3pUY1FXyCi6jHF9Tua6WEDIS3eTND50JL3DKKUZKlPL0ooMg+dgqzA/9URVezYfWmPauyDgLIuGH5a4S1AVg5ZOlRSIEuQUjj8RoGJPMpuDRt6COswoSA8kujMEB08POtnHsHYoRKJTqB9bfk8HDkaN2cIJ1CdnCpdPncLTdFyVKFgNg+Jnhnz4UebRAea+aZg8mJGeOKYXc4YX9AEb99i8MUWK+9Ol8n/wtY+e18LEcahkpwqkujU0bplmZwL0ClER9C6rtCZReVgQlh9e4G4GRNMHFUjoPu2pMo0lJL9aQeAYCRIdhxhWDIbxohCkK0b4nuO3W9Bc69CHwSk6w7RbrL61pz7v9FCWyeIVImT4I0WOE9RBYJgbPHmlsbtjPGzdXTmOH5e0L5hiQ8UwiwpXXnP4SeG4XMhCOi+5jE7B6P6EoRTsPFfBvNGnTiSNO9kHD0f4ZTj9JkAVUD3qkMVjuTSOqdPa4R7GBeBqqhalrJbw0SKYGaRhUPlFlPzaN1MkYWhiOt4ScXaKwllr4aaF8QPBJNzIUUL6gcO40NwKnCTCJ1C61ZF1lHMzgriQ0dZ1+QrjtYdAwKm25ru9YLgJOXOH7RZfaeitjdfApM4vF6K9TzUokKlZglwf0x6voOe5chpyuorC7AWxlNkcwuxyNHW0q4c1ovovnPK4myT9o0KE0j80xyV5AStCFVERMdLZlauOOofj3GewnhN9LxCJCm7f5dQnulg6j7/C4Njlrk+ZNOGAAAAAElFTkSuQmCC\" y=\"-156.770539\"/>\n   </g>\n   <g id=\"matplotlib.axis_33\"/>\n   <g id=\"matplotlib.axis_34\"/>\n   <g id=\"patch_83\">\n    <path d=\"M 79.968966 194.770539 \nL 79.968966 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_84\">\n    <path d=\"M 117.458621 194.770539 \nL 117.458621 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_85\">\n    <path d=\"M 79.968966 194.770539 \nL 117.458621 194.770539 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_86\">\n    <path d=\"M 79.968966 157.280884 \nL 117.458621 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_17\">\n    <!-- Sad -->\n    <g transform=\"translate(87.418793 151.280884)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-83\"/>\n     <use x=\"63.476562\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"124.755859\" xlink:href=\"#DejaVuSans-100\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_18\">\n   <g id=\"patch_87\">\n    <path d=\"M 149.237931 194.770539 \nL 186.727586 194.770539 \nL 186.727586 157.280884 \nL 149.237931 157.280884 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p863acf0010)\">\n    <image height=\"38\" id=\"image2b0e4efbff\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.237931\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANAElEQVR4nEWYWc4k13GFv7hDZtZc/9xN/t2iRFKkCEiAJIM2LBiwAb95Dza8CgNahFbgNRjwAuQHQ7ZhQANomBrIpthWkz38Y4053SH8kNXNBPKlcJEVN845ESdCPvqnn+nkeUaNgEJzLqQC1AIC/VxRr6hTJAiuFtxe8DtwtWICSIbsIEyFMIU4VeJYyeMEViEJ0hvIgolgOgEBSWA74fVjwvBKBGc6WP5+ByK0ZxX1A08uIBeKCqTjgJ/0VFVgezshqkMNZC+EieAaMD2og/qhkqrDRcrM9HTP0bihCZ4uWqwoTefp7iuAIdiVwfZCdofA+uHCDoCkgFKfOVIFcaKgkCYZWyVQIUYLSciLCGVCjbKc15yM94Rs6aJjaTJtdDS9RwFvE/f1iP3zGVomji82eJ/oq4RGg5JJY8GkIZPZQ78AyTIEJjmTS0eYCNkrcZqwjUF9JkdBXozRVqh0SH+/UOIskWc1q3ZE3XtitDQ3Y0xjKO4N1R34VWbUKsWxYfU9oV6UAGgWSAIGcqmkoLjtAGmYKZIOgaGKeksaHbhllewVrCJGyYUy/y0c/8+acFQRK0suBFjit4mRF8LM0i7NAEfMIBDGQrc0bN7NFJd7vI+0rYfGIlHQSUKdEscZ0xskDtxLI8UhkCYl7VlBKod0ooIJQq7tANtpz82PCu4/XOB3ggrkAtQp/QlQJuyNIVcZrTJ+2jMZdwDUbcFy3HIx3bHpKpq6RILBdkIcZXCD8OJEsO2AiBpwcQQvfjJBLaQSUpUHiWRBMogB7wPhRHGXgXHVMyl66uB5a7rhJydPyGrYpoomeZzJXPgNT9sT9rFkHSoqGzGS6ZLDukQsMnQDZ6XKiEskIDsLgNsLLo6V/u2Av/KgoF5BdCgBVjGiFEXE+0ThIiMfEFHeWdzxg/nXeEncp4pNrChNJGbDqzAnq2HmW0Y24EyiSZ7SRsoi0lWJaBWpEgDWJRhDfq1Uec2x3kCGOM9QZugM2Q+yNzYzqwZYrCh9soxM5qqe8YU7Y2J7Pl09YOJ73ptdc9NN39Sl03JHaQIAMVuyCs4myklPipYUzXBQBecToTCDMOCgyjgoRIv85qNqAZdxLlHYRGkjhU1s+5JVPaKPln1f0AbH7maCn3W8M7nDm8TE9kzccJnKBO7DmC47pr6jLT05G4LLtK1HAFUBVcRlNFskgzNxkG4c6RBRkkOgivhM4YZ0T32HEeVFN2d1M0VqS9caTj9RHjxtuf9gws/td1lMGm5XU0bjjr++fIKXxDZWzH3L0isz3/HKz7ipJwNYnQNRrFXQTDagwqBKLTPSGThkTpKQq4wvI6WPjFxg4VsAbp8esfydJY5g8iJT3SfC3DN9Hpn9cwmUXEwtYTLiD/9wwd9e/I6dL3lc3pEQdqli4RvGbslX2yWdTXTBEaMZoD2A5mKllMcN8dmEVIKEISgzDRzPay5nK2a+w5nEB+NX/GL1fc5+vac9L3n1saU/H+oeUZj/tuD8Vw2isH7XYvqSXap4u7zn2O1IapiZlnO/YeEaruoZTe/JWdBsEKvgFXXgTIRuV2J1CAplUKVRKhe5HK+Y2o4m+aEyX/a8+KsJuw97fvz+H3l3esO3y2sShn/5zg95+vEx1nUcze55NFtRSuQtv2KfSyrpqUygzR4vieOqBmBNRX/o5ToSdG1xKMjeYqKgDnKVkTLjfcLbgV9eEp042uz5+P0v+WXxmEcna/7x4S/48/KWSizXKXLyaMfPZx9x240pbOJBteGyuGVp93iJBB2+0apnYRs+PnrK827Jk+0pV7spbT9cHgFnO2H0mSVOoD0b2pAtEoWPGJQmeSwVXfYYUT5ePOXl6ZyQzfBHqkBiq463/D1GMm3yZDWUJrK0NRalknA471nHMXUuhjqOMHY986ojJIscMuckDzYD+QZG5xNGlF0o2MeSqR2kf9XN8JJYlg2fXZ/xSf2YSgIz0xDU8TIuWIcR9+2Io6phZlta9TwLJwS1rOOYoJZNrLjppmxCdahxhsqFQ7aG6uCyg+ZC8NtBjahQ+Mi+LtnuRrTB8XW1YOQCIVv2saByAWszn6zf5tvlFa31JDX8X3/KLpRULlKYRFDLk/YB/3n3He7bESFZQrQYkzECbXCkZCh95Hy6w5mMDN3w0MRLGL8c2pD0hrouiXsPLhOTpY0OVSGr8GVzgrMJZzIv9nM+bS55WKyoJPCsPWbTVRhRmuj5dPOQ319f0Dyd4faC6GAS4ngwknYWUIVmW9JHS4yWnIZzznaw+CJRbBKb73gkCHHnkdZgekv9aknXydD17WBJ4lHET3u64Ph0/ZDZcYt3iblrsCbzcjWn3ZZUs47u+QRKxTzaU/jIdjNCW4upLUkcdmcpWqFuLFQZsXkIzO1h8ckNaTnG1QVppBRXDsmDN/d7aB4Mnol5BKPQWkLjQZSr/ZTtosKgHPk9AO3tCOkMrSjmpGMybam/WBCj4CP0J4nZFwbJBtsp6/fAdAZVQcsD+RGQEHE3W2w3w4Rh2Fh8mZGs7B8Y3F4YvbSotey+32FGkcV/VNz/GVyvKj6fnfE3J59R54I+WdzKUt0Kri4pNoprCx798gXqHWk5pr4co5Lw+8ztR57B1jB0Hjv0JCcR8qtrZDLBtkAe7G3ywsl/XzEfl8Rpgb+rkban/+UR+4clkjKzfzW0R5Y/nJ3z9w//Cy+Rf/MfsL0Sjn8XKNY9+8sRqRDWP3pAmBjqc6FfKtM/wc0PLP1Rwq/N4J6ncejV6eAuBs1GJCkmgm2E+gGYH59R3SfcLrB/d0l9alEHfq/Mn+xBBEkVVzdjerU87U/5/NkFZzdKeduSC8v8D2s2Hyy4/66lfhSxe0sulPx3K8JmRPlkhG0hLPJAk3wg/zc+J2PiUDJcDbZTVu8bTDBk7wfurYTz3/SUVzW5cvTLkv0DBxL59/WH/OrmEnPjaU4F960xo+uAGsPsiy22mxAnFv/RhsW4GSapVYHkYbhxZy1iFFXQe3cITATEML5JrN+zmF7w9TDBhA9anI/YT2ec/6anuGvpj0dsHxXsHgvNW5EHj+4Y2Z6L8Y67RxN2Z4767YL5k5JyNVT4WAmTr6DbL7iez5EMXqG9SLjThuN5za4tqbclRfPawRoDzuF2iVwZeqBYC/MnSr0b4RqYvMw0J47Nt2bUF0LzODA5rfnh6RU/Wj7jsrjj++Nn/H7+Ftf9jNJENn85SOzr/RInmRfbGc16BBuPOqU8aXi83HI+3vJsuxx689bj9+BEhxYghcdvekxfkCaZ9fdg8szidxBmcPVjgbcbHhxveG+24oPpK7wkLos73i9e8jIuOXMb3iluALBkJjK0mY2WXMc521zxvD/i8/ocgMJEYrZMXMfnt2dstiP8yuB2rzmWMzqusOsGv50Rlxk7ibQnSuwsYpXTky1/cfGUt8vVIaDbYeCwDTPTsyxesc0FCcFLopKERQlqhiBNR1DLqd+Sx8I2Vdz1E+77EaWNPJxvWK/GlHeCDfoN+SVE1DsmXynNQ0FEKavhxmUVOB7VNKng627Jid8T1GHJtLlglSsm0rPKY1r1jKVjaWuCWva5ZJtHrNKYOg/Qjk3POo647cbUseBP+yNCtmgyg6FQMCoCxqC7PVoWHH3WYOthemnbYQcBsO4qrtspqzDiPo55FRa06kkI21zxdVyyyRX7XNLqYHsACklUpsdKJiG0OuRiajuOioZ50TL3LSFZ7K3H9gc/JqoQAliDdD1oyeQrw2ZaQJnwo4A1GVUhqiEfoGmzZ5tGBz4plempCMzNMBu8hjQcAqkkYFHWqWTwELD0NRnhf28est5VFCvBNZkwPahSVaEPmF2NHZcsnpb0c0f7SCnLCEBIhn0ocJLxZkJpIpUJ7HOJl0SbPG32zGyDPeTZkNnmEdtcsU0jtql6E1RSQ2LI6rcWd/z6y3cZ7cAGJbze9pASOIf2PdL0VK86ps8s7VtC3w+eydp8UFLiYhTxB7/l9bX9jiQRLMrMNFjJBHUkhF4d21RR54Kg9ptmc/B359UOFHytFJtEGJnXBdZASmgfMHWLLTzT557V2pPmBiOKc4mcDRlhGyqmtmNRNhy73QCTZKw5QGrCALkExq5jYjqyCsQpGSEd+HeXJ+xCyS6U2MZgerBNQvRQ+cU7sMNNtOuREClvW2ZPPatxiTkdeFP6yKJoeGd8y+Pylplt8RLxMsBdHdYBbfZMTHfw+pG57VhWNQlDmz1/7M95FRbsY0GXHNuuxNWCSd9sAgaOpTQgnzMKmH2BSYnlFxWpLNjmEem442Ras/AtC9dw5rZvIJtI/6Z2GZRCMgsjtKpYwIvQaiAovGLE2HRYyUQ17PuCm+s5k/1h/5ry4KQ//OnPtFwp+no8GViLyrBXfb0zy16/WRobRe1wZqCCggwyf/MIvKk1r39XIA+rTDKYMFgc2wumY1gch2H39v86oBsm8AfSwAAAAABJRU5ErkJggg==\" y=\"-156.770539\"/>\n   </g>\n   <g id=\"matplotlib.axis_35\"/>\n   <g id=\"matplotlib.axis_36\"/>\n   <g id=\"patch_88\">\n    <path d=\"M 149.237931 194.770539 \nL 149.237931 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_89\">\n    <path d=\"M 186.727586 194.770539 \nL 186.727586 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_90\">\n    <path d=\"M 149.237931 194.770539 \nL 186.727586 194.770539 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_91\">\n    <path d=\"M 149.237931 157.280884 \nL 186.727586 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_18\">\n    <!-- Neutral -->\n    <g transform=\"translate(145.837134 151.280884)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-78\"/>\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-108\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_19\">\n   <g id=\"patch_92\">\n    <path d=\"M 218.506897 194.770539 \nL 255.996552 194.770539 \nL 255.996552 157.280884 \nL 218.506897 157.280884 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p48c76ad82a)\">\n    <image height=\"38\" id=\"image494f676e6d\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.506897\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMRklEQVR4nH2YXYwk11XHf+feW9VV3TM9H+vZ2Zn9sr1erxPHSXZtgmLs2DhREBsnWAEJk/DACyhCAcETUsQTD0hICCU88ACIyAgRoSi2BQFiiBOJOLGJs0HgOPZuvPba3vXH7Mz0TH9WV9W9h4db3WNLgZJa1V+699z/+Z///5ySf738HrUSAPBqCBg8Mn9fqiWowWPwKlTqqNTy+Fsf5PKzJ0j3BFMRL4HgwFRgS5Aa1IIEKLtgPIgHFOwUbKmYMt5tpbhJ4O27Ek585DUc/89lCICdBxWDNmzXi7y6sxo3AbRZJVgQbWL0gIlBhSQGrQI+awIMEBLBWkWN4FsCCod/WHPpxnXMDK2fdlXqCGqwBApNScQTVLg0Okyxlx2glIBvRXRQMHW8z373rfgfNfEzRGSDA58JPou/lQuGcsGw8Y0EY+crvPuapXR2WQKVWgpNuNI/hEwM4iMKIVGC0wO0QgxSDVQLUC0oIVGQg1Ri4kttRG4WtBpIRuH/TqUhYJtkAlgJlOro1R2uvr2CHRtEmzSqIBo5ZeoYLHKAptrme3Nw19kBkri+T6XhgVB2Da5US2aqmDLxjNS+CzEjgaCGRDxFSNgpF9CRo9UTxDf8mWWtSaNo3Dw0xzaVYOrmvxoDgib1zFADtYI1injBdcyUSh1GAuPQAqAIKR4hkworgT3fYc+3CWp4eXgIO7SYGmwBZqDUbZkTX5rAQnKQKvExSDWKOoG6Qcs0B0jBmlipHsFUiis0YRByipDgMYxCi0ffPIszgY+tvcCfX3gA2U35lfueYdWNeHV3hWQYOVHnkA4g3VfKpRgcAnjwaYOGURBBnUZ+SROsHqCs2gQu4CbxvXuyfztPbZ1i+ndH+K0vPMaXr3wY91c3sH2HJdwvrH2zhU/hq+ZnefjepxnvtslDREFN5IbUStKPyPkMjGk2bMhsqkZK/EFxzF40aZ8XXQLBCeZoq8f+JMMVgURqBpOMaz8Pj/zGl/jU+n/z0d//Lr3blZUfGS4ND+N2HaaKpJ+dWl1Ewo01Bps1QTXiaspmcxWCfYcK6E8P1GdgFs2E2huScWC77jIZpSxetnz26d/kzWqZZ3dPsvkfSv/+CTtFh2xHyLc0BmfA1Bp55SPx3fgAJTUHxaHSBOllrmWiBwGZOrrFrHhMoSnjXs7gqGPf54Sxo70VMK/kbCR7yB+u8uY9wu9+4NtcuXoD6b5iash2op2olXeJp/hIYrWQjMCNYhSmjoVBaO6x9JvUxfXsRCNqAczQZ5ihY3xEeG5/E6kNvYdGfOlX/4Zv7d7G3pk25++7wMXxEfKXW3NumUpJ+zF16mSOirqmMpu0mDqiJyFWqTQ+acr4GYVkGP1SncwRdC+MNgitgM+FrfEidmSw1xb5fPUZbt18m3zH8+SjPwN37pNd17ndhGaRkDSbNIIqAWyl1EiUgWn8vy1kjpS6d5h5CQtv+Lie16hzAu7tYpGTp7awJnC0s8eJn+vxxmiJw+0Bn177IY/+wTnyMuPi5U3yCpKxEhq72b/FYAtIhoorYhpmkmDKKCFqI4JufOCPAUiKhluVUmfCeN2Q7ShVR2Kn8fmjT1JoQqUOjxDUUB6yBAz9kHP3ymVenqxxuXcCWzUkVqhyIRnOqu1APmbVFlJIRsp0SaBphUwZDX3miWqg1VO27lZuOnOVyV9vUi1ER3EdMyWjoggJFTa6gIZ4JzDUjKvjZVo7sdRNg9Z0VVh8NeBbQnBQdg94ZqdRKNVCaz+iEFzz/bghfBKRHh43nHv/JU62d/me2cROI/JzabMS8BobQwCvghWlZSpe3Fon21bcNArPdMlQdaJUtPqedBCi/qQSOwULxutcStL9uFlIG70rZp+F/J5t7ui+QaW2MfJ4cDcKLdKZJANpY9YBQyZT9us2k92cxQrSQWDaNUyXIRlEqfBWkKC44gAJNQe6hcz0TfFZE/TkgF+7l1Z55PJHwCrLWdP5BnDLdsyeb8/TeLHY4G8f+2hDaqg74FYUUynBCWpiteXXFZ/MEAA3CZhaqPLYAgUX7z6FOhPs9EDx61xwE+WmX/8Jm/k+bxVdetM2rw6PsfxC5LAbhAwrsQms1PLGdJmNpyvq3GBqZXTEMl2OzVzV2I2pIgo+FYwHn8R2ubXnEW/nTaJPhZA2Ml81lmUj/67fqQyuHuXC+EZM35HuGSzgW9FVnFdDhcU3A0elBjesgCRaioX6cEX5WooE6J+CVm82cMSNfCpQaqNL2ii9Mty0jYREiZEQU5yMA8e+pVTtHFMrxisqnmLFUHYlFkmFpQgpSaN+dbCIVyQoUivVonD86A5br29Qd5TF03uUz6xG9fcKNdipYqeKzwxhZu6NPEgdg7dlTKudwrVP1Hz89h9jRZl6x860gzMeI8oPXj5J+/kMZ1GW7Yg938GrMPIppg4QYg/vJvC+1Tf5t9NLdBcmWKNUDV2CbVrq5iBqZO4IxinZXsCnMkc16wX6Jy133HyNritIxIOD9VafqlEDc0r5/t5pzB9fPs+e72AlTkKlt1DH3teUAVMp33zpDGv/lNH6ygqDcQs7mbfn+ASqjqHqGOpcGsmYdQ86F+B0EIMEyGxFy9SMQzoviKRRhpvb25y+/Rpm/182GISMvo/jWFCDaNQgddHfwrWcpRcHLL5WYIySjBRbRi2qc2G6PEMuciw4wScRPWgKoSVRXjL4yc4alVqOtnpMgyMxnpapMaIkxvP+lWtRYFftcB75pE4ghKg/U486MLUgqvjMUozSudbYaaBaFAY3BSREVNJhwE10XrVqo3SMjhiKFSG/rtRPrZKI58svfpiVZMwr40PckAyog8GrwYjiBqc8XVOw6xfomClT72g3Lm+qqOgqQB0wUw9qURN5BVC1IXRr6pYjadQ+HfqGb2aOWOetgP/sDsPvrSEBrpcLmB90eeLv72NwzNL/5Zz1vE/XFZFGslLyO//zMH/0zCfxKhS1i4gBPnMEJ4TNgt2zK/RvztEq6ptaYbpkqRa14RPNHClNM6gko0AyDohC/6Th3iOXqReVcklpmZr3PniRa/fFYtn54o089fhZnto+xTQ43NJ3M0QzlrYD33nPGXyIbBWNlWZqJXk559D3tyg3ulxPwSeO0MyCvh2gbCbYJji1MfWuCIREyHqe/vkJR1t787b7cDogqOHcuZcoP+h44ZmbSPdg8hebPPrQDTgJUWMifIGgxDEHUBMHVbWKJg61wsZ6j97mEfLtZhxTwY4PyD+rxjqLa9gyCu1dx17nzXKJpC+4MWyVixxKhwQEJ577P3GJr1y5izeOrHL8HxJcOoipcEVoKgM0sQRnqHPLdFmoVjyjU13Ga5YFEyg2PMbb+JipXUPfxrnQRWOeTT91Jhiv7H7A000KLg7WybeUcllYScZ4NaynfawEdusO548/z5PuDFdXl3DXH5zOjsnH0gGnVrb5z8/dAqJIVrO03Oe9S/tc2VglsZ7Nzj71LYb+sRa3rG7Tm7a5emETFcUn0eTtNEQnSIViydLd3GPZjXl2cII6F5J7dije8WwhIPFJEsL5zef5d3sb7k8/9FWOu10sSonhfflV7rznVdbdPpmpuF53mYaE6lD0017d5vTCFr2qzRNP3MVD55/mKpv4VjT0ICBeMHXUuv1bDLeu7NK2JXztECaHG5d3yUxFFWLjYCUQmplu3+ecW30d9ycv/QLXn19j7QK0+p5i2XLscy/x42/cytGnJphJjSYWOyp55QuWXzr9HPt1ztZ0kc3v1Hx9eDf27IBie5HgYjttKmkeqgjFYc/Z5df52l8+QPd6jfu9t9jM+/SqdpQGjQ3q7DmdJRBEMPLIGhLiCX3LgMCgzPjFTz/D+HDakDrgOyknvmh4ZXSIFTfmeN7j7TsTFq4pVekobojcURttqc6joWdbln/+s/tI95Xpb++yng/ougkLdoqVgGnGea9m3uEYUUzVFuxEcIXixgEVoVbDSjJm/9eGSFmjIthBgRrhhcfP0K8z2rbkrgd/RLkghGFCvVozvK2kWBGqjuCTOAe0dmB4QjCf2eLc2lVu7mzHR6eY2CmrvOtVB0NQwdhpLHs39qiJM6ERpQgJD5y4xOWHl3H9grqb4foFG0+Peey5syTiWUuH7H9oysl/VBZeSrj95muMTgTKrlB2hd4dnvan3uLeT/4Xt61scWW42vixYAlYDhCbXTPE/hc52L2qA1wqfAAAAABJRU5ErkJggg==\" y=\"-156.770539\"/>\n   </g>\n   <g id=\"matplotlib.axis_37\"/>\n   <g id=\"matplotlib.axis_38\"/>\n   <g id=\"patch_93\">\n    <path d=\"M 218.506897 194.770539 \nL 218.506897 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_94\">\n    <path d=\"M 255.996552 194.770539 \nL 255.996552 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_95\">\n    <path d=\"M 218.506897 194.770539 \nL 255.996552 194.770539 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_96\">\n    <path d=\"M 218.506897 157.280884 \nL 255.996552 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_19\">\n    <!-- Neutral -->\n    <g transform=\"translate(215.106099 151.280884)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-78\"/>\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-108\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_20\">\n   <g id=\"patch_97\">\n    <path d=\"M 287.775862 194.770539 \nL 325.265517 194.770539 \nL 325.265517 157.280884 \nL 287.775862 157.280884 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p1f2c057e00)\">\n    <image height=\"38\" id=\"imagef7fa2b8a7c\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"287.775862\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMnklEQVR4nEWYy49kyVXGf+dExL03b2ZWZVZVV9d094xHbhsbxsYjYYQEFkKs2PLn8A+wYs8eiQ0bFhZLFpZAAhsGMHjk6Xm53Y+ZqurqeuTrPiLisIjsntplpe7NL875zvd9J+QfP/t9A6gkAfBXv/pLbl5PETXUGyKGaGYx33F1PePx3xqYoWMGoD9uyF7QMaPR2J0E1o+UOIE0MWJrIKCD4LdCfQX1rSHJiI3QHwt+A8tPev74b37Oj6df8vP1t/EZRckkBIex2VXQO0yMZAIGGNw9mfLOLzOpiWjMJBWQAsicIgZuFzn4YmD6wjHOA9tTz+aBEqdGDmACaQKxBx2FVAsmAOC6xN9/9Ef85E+f8A8f/wEeoJGRN385OWQSYf+ARUXvPNMXoNHAYGw940wJ24ypkIMgqQC0bLjdWID2mbALbO8p3Ul5XwoQp0K4M8xDDjDOoHp5Q/vpA+Z/tmP2b5MCbJUnNDqQTEmD4qoMYqTeQRKac8XvDB0MU+iOHGFrNF9viQc1/TLQHzpiq2CgY2l1nDr6g3JCv4FhYVTb8jlOSzfMgSWwzRaAv3v1J/RH4JXMVZpxLJmFbtHbQHbG9Knj9KOeqx8EwsrQaOiQMa9ohDgRutOW9otrJM/ZnNV0C2WcCqbgOyM7wTwMB4BAcyXsqUyqAAVTOHia4XjB9r3IP//sQ7QxfCMj74YrAG5yS64z4drhd7B+VFFfG9mDRhCD5AVNxlgr/dIRzub4m47ZmBnngd2JpztW+kUBIQapNtwgVDeGORgOhdQUsIgx/Wpg9f0lYLge/Ebwl+kAR6bRkX96/SPc2lFfC35nhWMO3FAqFieOHAQdy3exEe7ea6iXgeo2Ul33+G1i+rUyzh3bE8c4FeprIWwMNxq7QyVV5aCpgVxBbB03jx2Egfra055n/F//31+wvZzy5x9+zOP2kl88K63AIDsIOyMFIQVIlSAZqru8Byq43jAV+kWARSB7yEFwg3H08RbdRcSMNAlc/bAtbVVwHWRvZG/cvh/YfNDjv64wKTTw+X8POX5uvPidQz65OaW9yJhAvxCqVSF7nMA4K6DCxnBdImyEsIHqNqJDAhHIxnBUcfutQK5gc3+KGwwTGBZCdpAao74RsqdMZW3c/CAitwEx0BE2pw6vQ2nXJ58+YPpl4Hgdy0RNQhHQQ6FfCOYKJ9KNMHsBzUWPv93B5TXiHTQ1eTohn9aYg3EO49RAQTJIssKdnbylSHYgUWjOC6clvuGy4au7gnL+SeD445FwN2AqmAt0R8o4g/4oY36vc0EYZ54qGrkO6GKOiZDnDfGgJqwSzbWSJkq/NCwYspccsfLD2RXQucmQS+Xnv01oNHIQUhB8WBnVJnPyn3dY5ZEh0p1N6Y6FYWGk2rDKsCahVaJvAquHjv6HnjhpcN0h9XXhhQksn3QcfL5jmLXIKfg7pX0hiBVOphrGuZEmBlkQg34Bs+eFwzns5UYyzJ5ukacv0eWCtJixei8wzo0cDHOG+QwClhR8ZvuOJ6xgfJhJW6U7y9gkIZ1jezZh8XnGDTB9rsxeZsYWuiNhOCzSkWsDVyabQXAdmBaQ7HnmDz/b4p5fYt5jqzUsZnTHgjlDB6F6rSCOcbZ/oRbCuldCfenIwUiLYug2jXTfjXz1nnL8H57588T2nrK7J4xzA90ftjLIICa4QXAD3H5bac8N1xfA3n/6nLzdQc6gynDc4DqYnJeS6gjVrZEr2J0osTX8TsihkNUaQA2tU7GYLITXHlM4/0MlzhPo3oi1tI9cBsm0UGX13YREwZxj/ltINXhihJyxGJG6Zv2oor3IVKtMc77j6kcz2ssIBpNXys13HJKLDrkO4gz8JJKilqh0UWMCNz/pEGfshxkD0s4joyK9lMo3pdK6U/IkE6dGtc5kL/i3scI5dD4jNkWr6qsef3nHyUeZNKvIvhz78EvYnDncWIQ3zjMOsJ3DvMHRCEkQEwRDZc8lE1DD1BD5Jk5hYN6Qofxvt1Q0gZLLg1JV5LPj4m2VINmw4HEXt4SLNZKN9SOP643Jq0x7kUq1jjrMBIla2iSAN6x3pLuKcROIgyNFLeCqjIUi3KjBvb44wU5xvezjkuHNDDNDndKdtm89UJKBd2CGXN9RiVCdVrRP74gHDThhnPoSj9YeHQRzhT/SKzru1R2QJqFqSEjkrCSAXsEbeXA0lw7Xf5M6zAleRJC6hvv3iBNFB9ieCTffm3L0ix3EiKWM3G1YfBRBhLDtyYct5hvS6NCNo7lUzCn1NYR1qcjmkbB7kMmDQ5qIqpW0rFocwRn1FzXLJ5lXHwrNpTC9yKTqDcecIx1OiI0Sp2Xirr8vpOoei0/nVM+usNsVbLZIU0MVMKeQIfeO9pVSrWD2MuH6TKqU/lCZPTNycPSnYEEwEZzPRDXMwF1U1Ndw9YFQvxJcD7tjLUaOc3CyZFzUxEkpv+9gCLD6lnD37YbJxSMWn480Fx3u62usqenvNego+KtAdQuLzwbqq444q4p1OaXf6yFA3nl0NhJHtx8GIMPd9xLNuQOF9jyVxSaBl+Uh/aMFVx9U1K+NsDFSFMhCnIEMQncMX5943G7OwdMpvjP6uVLfQHVXUojrM7rpqVYdejzFHno2jxL1lWP6G09/ZMSQ0b2LSBSmL4Vx6jCFd396yebxktW7Zfq9NRU336kZp2BSnP9N8vSbN0II2ZfUefMdxXf7rLaGwy9jMV8v5GmN3u3wtx2LzzzzZ0quje2JI9VCmnpyGyELB587jn9VGN8vPaRMfdUT2wmY4fMkkGohTg1zgo4FmCnkuoS5VENu89u2yCi4rYIIq4ee+YtI87JDh4i1NWla0R95TOVtoHzzLFkgCu1FJtz2rL81Zf7ZCqsCuXZs7ymSDW/BIal4mOQSdcNK3mqiKfvgDjJNWCyyEGeRuFSGa8/uvmfZzln+4hzdZlIbyE7olkK/LDYmViyIKLiVo75J6N2Og3+5gBiRpkGWE/yu4PDu9YawmZIbI58O6GVFDvuFYAejf7M0gHUOnKFrh996UgXpnZ6YhK/PlNe/d8bDnw1UV92+RYLvAITufkaigAmTc2Xy8hbpB6zvkaMldntHDkpsSpU9IkwuI27jSTMhH4/Y1gGOHCgiKcU2cIYMSm4yw2RfyV2ZKJkkwgdbvnw4YfHRIYvPRo5+bXRLZXu/TCAB3FqZ/zYjmw67vYO6hjEibUuulGplaDI8KdF+/prZ4/vcnAhuEsliRG/F8+KeH3sntjpB1G/8DyAbtvVsBmV6tOP2x8bmQYU5SG0uh5LCTb8Vpi87ZNdjziEiWNfDyaIMWA0JwVMFuLji/r+3bB7NiA8yLmSkSsXfBFQNS4KZYFGhyrCXFDLI6LAqw6j0Tw5gmknvduSdhyxop+Q2IVEJK3DbYe8/6a0SpMMJsvdtjeDl9S22OEA/ecry4w+4nAbsaKCqR6ZtWZuH6IjRkZOidSRFV7bsobTRXEmvrhfiwT5/3VTl+kMgt6kcBJh+ldFVhw37+5JhROYzTARTIU7KNuZt1pYk4RzHP/01/eJ3uXtcM95PiIDTvE+UCQkFqKpBBb2A9a4MRp1JXnA7LfcRzr4JiLHIS/tSOfh8hWw7zMp7pZ1gh7OyE7SK35YJ9ncfnjJ/covmTL665uxfbzE5ZJ1aticDVTPiXKbyCdVMTA7VTEpK1YyMYlhSzAnWK2meS54f9a3mhbWjuRRO/6vDP7vEhgH8Pgo2NWlWMx5UdEsh+xKdfH+g1CdTQuVxqtiq497/1IRtzc33K+xRpA4Rp4bTjArEpIxZS0V9Zl9HmEbUWYlC4mFQ/EqZPYPDLwbqT8+xri9pORuokJZzLDjWDwKmZf/UBD5V0J0Ewm1HPJkzLGvqix0n/z0ye9nw6oczbs9a8kGkPdwxn/SkLKV60YFYAeMKPDPBkpTrq688898Yh190VL+5xNZrcK7sF5aRyQxdbRmPjoomVnthT+B3pyVurN+fUa0SOSjb96Y0Fz2TZyseXNf0RzXdUWD9sOLiLGNNKu3KglQZezuhgiTBbZT5c+Hklx3VV3fIeosNI9I0e161JedNJ2wfL8lVSa5hW7YnAN/fS6CO4dpRrZSwNerrchEiY8JtR9q7nskLx+KJo1/WpEbZ3lPGuRAnxbZ0v967rhj79ItbeHVdAHiP1BUEX3Kcc6RlS7+sGWeupFb9pmIIeBT640R2iuRi4mmiDFLjJh4Zc1nth4SuB9rrLTKMzOYT0rxhWATiRJEM7fMt/vwGqwLx3hwO30F3EXezhmGEmKCpyLOG1fstu2NlnIMOxUSy398wKvw/a8rssgWsK8IAAAAASUVORK5CYII=\" y=\"-156.770539\"/>\n   </g>\n   <g id=\"matplotlib.axis_39\"/>\n   <g id=\"matplotlib.axis_40\"/>\n   <g id=\"patch_98\">\n    <path d=\"M 287.775862 194.770539 \nL 287.775862 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_99\">\n    <path d=\"M 325.265517 194.770539 \nL 325.265517 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_100\">\n    <path d=\"M 287.775862 194.770539 \nL 325.265517 194.770539 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_101\">\n    <path d=\"M 287.775862 157.280884 \nL 325.265517 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_20\">\n    <!-- Neutral -->\n    <g transform=\"translate(284.375065 151.280884)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-78\"/>\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-108\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_21\">\n   <g id=\"patch_102\">\n    <path d=\"M 10.7 239.758125 \nL 48.189655 239.758125 \nL 48.189655 202.26847 \nL 10.7 202.26847 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p0d8af3a6f4)\">\n    <image height=\"38\" id=\"image5377df661c\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.7\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANXElEQVR4nFWYSbMc2VXHf/fcezOzsuY3SG+Q1LJsNW13YEcQ2JgFBAERLM2KjWnWLPkQsOVDwDdg4wg7wisw0caYcHfbxi23epD01NIbq15lZWXmnVhkdbVdm9rUcPKc//kPRz3+p39J3RstKBhPNqyWA+Q8x1YK5cFWYJrE4g8Se29eoyVSdxbnDPf2FjwaX5KLJyYhohhIh5HIwg1YugEAQgKgi5omWDLxjGyLVom1zzAqct2WiOo/t5fXmOlvYdUWNHcDq5UlmUiYecQbTK3wJaweJexRDYBSibrOyTLPcblk364BqGPGJliMRDQRAKMiQ9OSi6eNhi4aStPRBEtMwkC3BK2ofcZxecvrzRgjkctmiLn9iiK/gfJcaOeKqDXtQSTahB+CcoBKuNZw44dEJ6SgmO/dMtAOACuBko4uGgDaaLDbooBtEY5cPD5prIq00RCTMDEtlcvZBMteXrPoBhwUa0zzRkd7oDGVMP4sYWqwa6E5SPgBlBeK6VOhOi1oDyMpj0yOV0zzBqv6zpTS4ZSmjYZ2W9zEbFj4kpAUuThc0uTimUhDqw3rkCMkREUK7Vl0A07LJZXKaYLB/Nk3nlD7jP/95AE3U4u9FsrPYfwJdDNFc5Bw360YDVqM16SkmJcbRrbdFWFVYOkHVCFHq8RQt7ikMSpgFASEua05MBVWea79iJFuqWOGj8Is23DrCtY+47CouGhGmP/41ZsAzO+syA89F/MxixODvrbELDJ6Y0lhPc5rFDArN2iJNMFyJ68odYeouAPuQDpK3VH5nIF2+CgEBKsCLmlc0ljxWHz/QAwIQWFUJKKY2ZpcPEaKQNwYbs7HoBNiIvm4pTOR5IUQBFuEfrtUQssXwA7MbI2QiElwSQPgkqbyOW20bKLajauJllI6APR2SwvdEFFctqN+o7c4tCpg/vLxE87qKS+WU6pFSawNbWVRXsEwMB9utj8DWiJd0FiJ7Of9lmoVWYUCH4WRbtnEjMWWJrpoGJuWoWmJW6yNZcMyDAkoREXmZk1TWD5e7bPqctpgeDw6x5zVUyZZw7ePbrnZG/DJzT7LF1MQyEcto6ylDYbGGUDTOMPJ5BZRkU2waBVxUTPQjtftZIu5yEA7Ih2Z+L4L0ne9SRlWeUhmRysAp8Mlj4fnXHRj3lvcw7xYTtkrMwrjuDNYkVtPUgk9dRzNVkyyhrNqyjBznC9HiCQyHVj7fDfeL3gqJoWRQC6/SxWqH3HUtNFidUBUookGURGrAmPd8NboFVYFHg0uOMkXmPaXM9wft7RtwarL0RK5/9ULlpuC5aYA4G65otCem7ofUesNjfQb2bO+ogo565AxVi0Tu6bUHS7p38NWHTOaaJmaGqsCbbRoiUx1D4tLP2YVCo6zBWb+m8TF10YMBx2LyxF/+tZT9rKaXBwj03JsF1gV+KC+h6gjjA5E1G4E69326Z30iEr9BkaNVYFSt7TRsgrF7nsRhVWBOua4pLn2Q2JStNFw1jzEDC4D8mRI+KZDmchBXnEnW+GSpg4ZT8Md1iEnJLXbSB9l9wcr37P2LNsw0A5RcUcLmkghjkJ5Wiw+St8lenpxSpMrT5sMx9mCj+q75OJ4a/gKSRqGL6BtLfknBW00rELBHXvL3NTMTc1Qt/iod8W4oLlpSyrX42xsG4S008UvSNdK2HYlI6Sez1wSbrdk3EQLwFRvaKPlJF/wjfIluThk8cgyehnoljmjZ4kf/fwP2QTLWTvHimesGx7k1xgJDDJH5w3LTUHtLBFFTIpuC+QDu+I0v+GuvaWUjlx5QhLqmHHlhrvP3vqcmBQrX1CFvP+uWXFg+0kVymGWX/ccvbshez0iGnj8by0/mL7NXz/+DQFhrPtuWBUZ2Y5Vk9NsMgBGWUdZdITUk+OeXjPTNWPZ8Kk7ZCIb1jHn0o9ptGXtc7JtRxdugFWRWwZMzYYjsyQg/HT1qCdYmTj8yLL3f4nqnmBfXnPn30/52d8/4G8evM9IN1gVuPEl03zDeTUiJoVSqd9Ob+mU5lyNAfjO8GP29ZpCHBmBQvktfxme+T3erx/wup1gVSTXnoHuuPZDrApbzBZk4jE287SzkvwmcPlNxfrtI9Ynwu2LGavTAqsCUQltNAxNh49CiooYhcYbll1Brns7E5Li5zxkNSi4b6946ef8SfEcq2BPFCfmjEwFPtTHLP2AKzfsMaobVqHgohv3mpkEUxYdt2+MOXp3g58pzt5xvPP2T5iamncXjxiPG3JxxCQIiZQUsdPIKDItGnwUrjclWiKZeBa+5LP2ACESES5izkPT89hUNI/sJVZ51jHno+aIczfGJc1Ub6h0Ti69x5N5ucEPIInCLDTj0YbjbMHD7BKjIks/4MTecJIvGGjHeNBAJ1TLAfvFmtPhElGJ5XpA5Xqta6PhSXPMOub8uj3l3eaQNnliSgyV58qP+Kw7IKJ47/qUl82MgNqR8rUbIgAxh26aYTaK29/O+byb8V79gD+aPCMmRRMt97IrjvIl98cLpBZm7+a8Wk9ogqHuLMb0UiMqcZwt+Wb5jLFsGEvDHb1inSJWCQHFqb3h19UJ/33zkJQUz6o5l27M3KzxSbMJFnHhS34aPU/sv6f40edvUYWckW6YmIZn3UEPzFDwq9dHFJdCO1P4KHy+ntC2lr1yw9fGF7w5fMWhuWVfV0SEdcxokmWoBEF46cd82h2y7AoelDeUth/zB4sTLt2YPbvGR8FoiWRLKC42uPEIuwp89ukBx/d+QRUKntZ9UULiuhuyWeeog0ja73CLEUXh+PrRa/7i4EOOzHIrSV+6BpcMTbI4Es995CqM0CryleEVLmlK0+Gj5mw15Rfq3k5VjPnnPe66NaEwDM8a7Msb9u6fcPbtGX87/xkj3fCvn32X63bI56sx2kQiIBcZ+Vcb/vz0Y74zfsqpveEqjKhjzkxq1jGnS73jaJLl192YqzBiKC0ftXd7U5g8J4MlH1cHPJ5f9ClJRbqoMfb9T0lvHONHGbpqieeX7H24xw8+fpvRmy0/vXrIy7M9XirAKfRKoxRw0vD2nVcc5UtedPu86PZ3qx+ScGpvGErLIpRbOVI8tJdbCappouVutuT99X2OB7dYCfgk1D5jaFuMyjOagwF+qLE3G7AGX2j2x0tetRM+fHIKCVRQmKpvs/rKmgcHN9zJV9QhIyA9YFXaugZPk3qxtiow02v2pbc2V7Hk0o+5l13ztLnDi3rGYV5xki/YBEsmvcaaFCIxF5qZZmgEOoe9dTy7nDKwDjPpyHKH1hHnDOOyYW9Qc1oud3FtoB13shW5uF68VWC9tTMAZ25OY3rBXsdevAtxtNEgJD64Oubt0UtCUlQuZ57XGERRfrIkW5TIoiJqjXnynMEHb/FRd5ds2JGZwLho0cPINGsY2RaXhFWXY1TcOYo2Wg6z1bY4z1g2aBWxBJ67fbSKvOzmxKT4qLnL0+qQi82QdZPxw9ffYL9Y0wTDJ7f7CDHBi1eYJ2ekdY1SvQmMGRz/0DAZNqhtOjLSA9MnoQmW266g9hlrn3PejRnphi4ZCuUolGOmazSJl35OHXNWYUAdM6qQ87Q+6DHVZjinefLxMS+q2U6LzXa/SU2DMoaUEjQtScPwVYvPW67XJbn2GInctl+60GzrZttokJBY+pJZXnPhx4hKFMoRUBTKITryQX0fgFfNhJu2ZNkUrNYF0QnZueG5O0QNPSs7wJC2nBMCKYS+OBFUAGkDV+uS6mxCZgID67A60AZDiEJpu97vk2MlcNGNqWNGKR17Zs1vuyOOzJLb2GeFqdnwvJlz1Qy5XpcsFyViejseDWRXmk7ANwlDiKQQQWtwDrRGiSLahJtkaNUx+0C4PSjwhTDMO6wOqK38GIn4JCy7Amd6sBeZ4/Nu2heyNX5NslvsRUIUms6SWk1caNLIE/OEeNXn2aQwyffAVUqRRCAECKAbRVIQkuLo/ZrlWyXuQeB3X+YLhlfgk6YJCWeEq27EQHecd/1ZqdhuK/THFqUSIhHVCtIpYmUw6/7/pFWEqUcIAZXZHlta9++iIEEoBAWYxYb5LxVdp6k7S0oKUYnSdBTGkYlHSHTbG9g6ZLikCQg+CpXPuXElTbS00XB/dEOMAgJmA+IhKUD6huiFQS6+/63+obWgMttjrXMkgZAL1apArWoO373BX/ZY8VF2TG1UJJNAaTpK07H2GSuXc9mO6KLBSCTQp6Mq9OFloB1Hs1sIQFLoWqE7BRGSBvEKid+7ZvlXb6KKAmJCGQNKIR7aiSJuDKnrUGevOf0xVHXej0d7fJRd0haVtgeUL3FX+f6OoYm7K04unsOs4lt7Z6h5hy8TCEST0J1iO3HknUc/o/yHM57/3VdRw7IHv9aoCFff9ignpHoDmWXyP2eUPxmx3BSIimTbuJ9rvytwoPvRZuLxUbP2OZuYce2Gv3erANjfqwjj0MMmB/XFSAH5r5tHPJ5c8Oh7T/nwHx+gpmOS95BgfLdi9ktB5RlKhNR1nPz4Ev+fe5zXffjwSXBRb4OFQ0iMTPc7YcPhYn/Eq0JOFXqpsipwb7yg2N/gphEkEW2PMRL8P02oaXinoaYRAAAAAElFTkSuQmCC\" y=\"-201.758125\"/>\n   </g>\n   <g id=\"matplotlib.axis_41\"/>\n   <g id=\"matplotlib.axis_42\"/>\n   <g id=\"patch_103\">\n    <path d=\"M 10.7 239.758125 \nL 10.7 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_104\">\n    <path d=\"M 48.189655 239.758125 \nL 48.189655 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_105\">\n    <path d=\"M 10.7 239.758125 \nL 48.189655 239.758125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_106\">\n    <path d=\"M 10.7 202.26847 \nL 48.189655 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_21\">\n    <!-- Neutral -->\n    <g transform=\"translate(7.299203 196.26847)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-78\"/>\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-108\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_22\">\n   <g id=\"patch_107\">\n    <path d=\"M 79.968966 239.758125 \nL 117.458621 239.758125 \nL 117.458621 202.26847 \nL 79.968966 202.26847 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p296f1851ab)\">\n    <image height=\"38\" id=\"image56fbea3f04\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"79.968966\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANu0lEQVR4nH2YS4xk113Gf+d1X1XVVV1V3dXdM9PzHjt2nDg2xFiWHSsJUUIwkRC2QM6CBUIIEAu2LLJiB0ggJMQuUoTEhg2gKECCE0hsbGxjx3l4PI+esefR04/qete999xzDouqGVuOkyNd1V2U6nzn+/7/7/+dEl88/ieBX7SEWHxWFRhDcW6dm39o+Y1zb1F4zav729zc6VLf0ZhxQBXgDVSpAAF5J+ANuJpHtEqUdjTrOZGuaMY5kzLmxuV1ktsKBKzseFo/HqPxfrGxlD8L5u4KgVCUiDRhtB1zvL1P4TX9MkNLj8gqbF2BF9gayAp8BF6B1+DqnqA9AkgSS1kpjkYZqhPYH9WJ9xVhuf3olKSsr6CRknvgfhFrSkLlCApSbRnbhFGZEqsKBLgEhAMEyBKCAhcHkBBkABOQMiCA0mrcIKJsKYq5IQ6gSnARBA15RyB/hq0lQ/ceAOdASLCW7itH/OjNkzRMjpYOJT0mrqhWHGXLUyVhwZYJBAUEkIUEEQiAFIFiGmEGiv6whtyPUPmCXeGXhxDwIUTL5f0CzN1Ha4RW7H/xDMVWnc3/hreHPU7XDsl0yebqiLg9x9cdruEp2g4XLUARQFgBTqC1QytPqASyArebYoYSb+4qA8ILggb989QLISCEeJ81pUh+Z5edK2usXFKMhk26yZROPF2w4BRHgC00fmqojEOUErGsElEobKnxaYEwHq9BFQKxBA8QlqXtVVgC+1Cxh8oR8hzRXKE8vY6aW9TNA4xyPPrQVa4e7/BgZ49UWWJZsRrNKDON85Ii0pRJRQhQTGKCX+5oBSFXjGQGE4MqBS4KBAnSLb4iAlCBDOIjGAsBoSR7v/1xzCSw+voBvh5jT/d49/UM+8ldIu0Y2YR2NKNjphxVGXVTsJrMKSPFtIyYlwaflXgv8VZCBFIHXKlQE7mQ2EGQ74MKLJpG+A9LGQJ4T3nfFv6ZPru3miC6JIcVqvSoHPaGdZTytJI5sbTYoGjqOaXXVEEiCfRVRp+MWlxSVoqy0pSlwnu5qK9yAUoiFgDvmsLd93vAQljIeVdSD4/2bvAHD32DNz6zzQtH9/PipTM0W0f3zuCCxCHxQWBEoKFzJIFRFVM3xfJnBSMRE2nHXBoqJ5kNIsxU3Ksn7krI++UsHR8yWCFAa6Jr+1wedcl6FY8m13lw4ybna3u8NthGEphWEQ2TM3eGdTNGLY9sjFt8Co8UgdwZ6ggqL6lFJTNryMvGQkL9PlPCLSF8gL2PrDG04r03N3nx+BmMqBi6GkY4nmhfoV/V8MvjGuFIlnIa4chUwcTFFDbFB4EPAiU8aWTZm9bZu9Ih3ZOoAlTB+z5nF+9BgahAVuEjgAkBznPfX+yQPLPY9GS0T0vNsEGxW7W4Y5vMfIQkvA9KltwoV3lntA5A3RREsmLFVFwddsi/tc72JUs0zAlKkncjipWFnUgXcEbgzbLw52E5kj64vAchCHnO1157hr9/7BsARDg6as7Ux1itoKoz8xEEiQ2KWFoujnrcGDZRIiClp53NWUsOuHOtzeaex8wq1MziE40ZV4igkHbRjkEJvBEIH5A2fMD5P+Rlolaj9UJKQ+bkwZAHQyIcKzInkwWZLHBLUC5IjmwNgFaa44NgPElZSybcnjd57JOXKZ7vMziTEIRA5hWq8MSHFjO0qMKjp464b4kGFeLnSqkVCEH9VsV7tsNr01MY6fhS44c0ZM7AZ6zpMVIspJz5CCMcvXSER5Bqyy4NTmWHOCQXkl1+t3fE13/vCd79mws0dqaIyqPmlmDUwsO0wMUKrwXChWVX3pVTiOWc9Mwe3OTmk5o/+8fnqd2E6Zbg089f4YQekImCHEMiSpIl0UfecC7bYy2a8KPhFo9s3MAh6ZoxQ5dxzByxHo957Ss50T8kxPs5QS1sQ1iHLAJqaiEEfKSRd0EFa8FaMJqQJRxdMGR3BOkdgSpg/fWKP/7eV+m7DCU8NmiUCCgRaMg529EBwypjVCWsxjPOZvsAvD3Z5G9f+FX+8voX7oly+IBBlo6gJMIHhPMI68AFqkaMTxQS7yEy0GwQ8hzygoNfWcOMA2YcsPVFTpqtLYLgnmtghMOICoVH4dnQQxJpeXe+ihSBVFkyWdLWUy7U7mAGkpsvnGBaxfTaI6oUfKQQPhC0RLhlxNISFy/GlfadFv1PrRKPHPJsG1V4jj4GbM+pCoUQUCaWjdUxX1i/gg+SCEdLzVDCk/uIPBjW1ZhLgzVWkzmtaE4eG9p6wtevPU40EkxPOl54+ePEW1O2nrqB/14HPSxwiUaGgO1kBCmoskWn6sNHV5EuMDqpqd9ypDfHVG3Jn37yBc7Edzimhuy6Fa6VXTJZMHAZN8UqJ8wh/VDn0NVpqSmzKmazNqKf11iJcoYu5dDWKKxmuu2oXVPk3UAalxzNUlpGosyiycpORlVTVInAa0GVGPT+U5Zjx/rM/7dH2VTkrVVEXHBffItEWozwjHwCwDv5Jn1bY1Cm7Od1ZtbQjHOe23yVflVnamO2akPeuH2MV8ttVldmDA7qCGBytuKhB95lVCTc+f4WTVWC9wQtKFY10gWUXczseVsgv/yJt9h9q4fwgq8++x0+90cv0e2O75lqHhSRcMx8TN/WOJ3u83zvJY7XBjgveax97d4kmNiInx70KOaGlfqcg5tNotuGM/9kkYVkMx1y/foaSR907ig7KVW6YEragJ55pA1kBx59UNZ47vM/4NDWUMLzaG2HT5+/ikfSkCXvVS2ulV3u2BWeWrlIGRQ/GF+gbaY8t/06Rjiu5R12ph0OhnU2V0eMJymjSQphEZNF5Wlckfx79BB6pIiPPLiAtB5bM8RDTzRYWsXSx+Rn228Ty4qNeMTJ6ACA3aqJERWSQBkUisDnGj9mQw/JQ8TExdzOm/x0usmVfI39sg6wAFVEuFzRqOV0jw9QZyfsfCUlGgf0WBEfCdKDCgAXSVTp8ZFA96fYlWhhrrlD/mS2hUfweO0y18su/arO+WiXPBhq0hMJRywtNVlQBsXtssXFYY8bkxY1XRDLapFk4xlCBGZ5TNaa8/jWNTrZlHZjyiceu0z4rUM4MSfbDeRtzbwXE6TARZIqFvhaTLmicIlcjKRnV18hD4aWvJtINbtVk3U9xgAbagRATVgGZJyMD/jYiZskwvLa7DTfvn0fmbE0TM4oj1HK88Txq7ggOJzVFjmsiigrhdtPFvfPIFA24BKJrQlcJMjXU6QNlA2JGSukWl5R9l2D8/EuRlS8W3aRLBJbV1kack68THNb+oiaLPifyTn+a+8cZaXZrh3Rz2v076wwPciYVjFr0YSH127y5a23KJzmiWM7ZCfGDM+BzWB8TFE2JFUqFjem3C8MVwrKpkb21JwtNaYh53TklERaunqMRdH3iqFXJKJiFjQNmdNRU8YuxUjHmcYhsa64Ou5glKPWnpO25wzKlNt5k1hWFN5woblHKks+u/0ObOXMtqDKYHJMUKwKdA4iBGZdxeiUwMUCuaY0DelZU3MyadnSR5yIDkmEZewjrtgO71Vt9l2DlsxpSMuGHvKp7DqbyZDKS3rZIl4faw45t3bAucY+//nGAxReM3MRlVdo6fm11g85sd7HRTA/5ihbAa9AFYG9RxLyNYGesWiA61VgTQkiAWWoyNVs0ZXS4RDYoDl0dS5Euxg8mQj01IQ91+CXajvYzUWCNXXHd3bv48m1ywBsnDxkXMVcHKwzzmMe6d1gN20yymMEEHTAJQEfC0anJLYRiIaCqgY6D8ixj3Ah0JQRLalJxGIORjgckkSWAEjhGfqYIoBF0lET1tSIzzV+zK+vvEFTz/jq9st8OrtCLC1PbVyhpkrONg9oJAXdeMI3Dx7iqF+nqntUwxJiT1j+IZMcCISDou2pEoH+q1tf4GvH/5WmXDTBSR1ouAkWgQ2SFVFwTA1pK4sNYASoEFhTU2yQGOWwQXHC9GnIOZFw9PSQnh5yYFb47uEFNmojHkxv8ObRMeLMUgBxUhLV5wxEAz3QVBm41CO7BWU9RT+5epm/23+aP9/8LonQGKAhPTYE+gHyoGnKAgPIZShsSocHXIC+j4iERQlPTRY4JOt6zKVig6aa0UvGfHH1LRJZ8uXej/hBfJYT6RGF11wer5GXhiI1RIlFeEEUOao0Q/71t77EN196mJfzFWxwzLzFhoADbJDsuQa3XIN9r5kFgQ2gABsgD5I1VdJTloHLaMnFRXfqY87HuyTS8nz3Jc5He7wyPcuZ+A5Pr17k/vQ2e0WD3XGDXnPMendEGlueOLVDPo+YbQbkqX8pkaXgn48eYewr8uAxQqCATFZs6CE2aK7aLj8pe9xyGRbIBCgRyIQgk4otfcQ0aGqixCEYuIzz0S4OwbcnD7AdHWKD5lR0QEPNaeiC3zz1JkIErJM8e/r/eKB+ixPrfbq/fAcpKo+ref7t0sf4j9kpMqnIhKEpI9oSOrJgQ41oyRkA79kOfWcwQpCJgAcMilNmgA+SgU9ZkTn71QotWXJKD8lkQUdPaKsJDsGL4/M83Xqbtycb9KcZz59+lZ4Z4oMk1ZbPb15E9x9MQTi0cdwf36YInrqMATBCkQhLU1Z0w4hZGLPvUsrlXGhIhQ2LCdGWkIg5+86RB80DyQ3yoGjLioeTd3mn7C2ABcm6GZN7w86oze9f+D6fzS5ytWrzk9kWn+le4nbZ5P8BIw75Lb9t9dAAAAAASUVORK5CYII=\" y=\"-201.758125\"/>\n   </g>\n   <g id=\"matplotlib.axis_43\"/>\n   <g id=\"matplotlib.axis_44\"/>\n   <g id=\"patch_108\">\n    <path d=\"M 79.968966 239.758125 \nL 79.968966 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_109\">\n    <path d=\"M 117.458621 239.758125 \nL 117.458621 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_110\">\n    <path d=\"M 79.968966 239.758125 \nL 117.458621 239.758125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_111\">\n    <path d=\"M 79.968966 202.26847 \nL 117.458621 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_22\">\n    <!-- Neutral -->\n    <g transform=\"translate(76.568168 196.26847)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-78\"/>\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-108\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_23\">\n   <g id=\"patch_112\">\n    <path d=\"M 149.237931 239.758125 \nL 186.727586 239.758125 \nL 186.727586 202.26847 \nL 149.237931 202.26847 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#ped51802afa)\">\n    <image height=\"38\" id=\"imageba3926da8a\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.237931\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAL5UlEQVR4nFWYzY8cR3LFfxGZWVXd08MezoiiSGnNXckUZKwXax8WBnzxv+mz7774thevDQP2cW2sbEHyamVKS4rUcD77syozI3zInqG2gAQa/VH9KuJFvBch//DV3/hZWPM03nCqhU6EjTmX1vGvm8/4l4tPGUvk+YNz/nrxgkfxlvPygG+nM37z+lO+++YRkgWPDr2RZpmuLwCIOOMYKfsEN4m0EoZzYfbWSFtH3Ak7Q4sj5uhk4I6rED/rvudYM4M4Adi7c249/7l/xr9ffcxq6vn4+IIHccdv18+4LT2304zrccZ67Egne/KqR0bFR8UHwR36VIjByDmAOGEndNdCf+30t4ZmByBMBu0lWAPrKsSPY6ECK4Nz63hZTngxPeKL7ROGUPj4+AIV59vdKW92x+QaMBfMBXeh6yo5GrIKkKAfMrMuczbfENVwF25MKPNE7QO1hzJTohuaDSkO3pDdgUIETaJkdwaBgPNdPuOL7RPGGvls8ZqTtOUmD1xPM4IYfSgENaIaQ5dRNdgH0krBhOV8x+PFiveGDYs0EkPFTfHeqINjSZiOhDKTBsKdMFbCLqP70qKnEGfSkcW4NuOr/D4vx4dUFz49ekN1ZV17phoxl3ve3F1+iJqYEEbQDOZCMeV6mpFrYCqBmCqyNCYBNNLdCK6KGGgOSHV0bwBoMUyFeGt7vqvK78af8OvLn7POPb9YvmKuE19uP2BTelQMCFRXiim5BhyYSsBMwGnR6Jzzywe8KUtCMvohk3Nguu2RvaJF0EnQCcIEYXLEQaohtYIIFEOCEH+9/ZC/f/F3fPv6FN8Fnv3sHJbwtiwYLbKvEXNFD5FyF6oLUwlMJZJzQEehDuDJSV/NGC7ABaYlSOccbYW4hbB30tbo1ka6rYSxIrmi24zkAjFAcChC/Ke3f8W3r87wUQnHmZN+x6v9CaMFigUmi/epU/w+pQd6IAI4lOMKyVj+3jj5aoNFZTzr6a4nrAuEsWKdEtcZGTOoghmym5DdCF3CUsRDABHif/zPn6ObgM8qs9mEirEpHZO9q74oBg0PQY3qQlBD1VF1cgJdZB6drTj/1XuU+YKHX+zQ4qyeDdROyMftBmnd098Y/VUhbjOhGJR6X5W448WIH/xzIC+E/Wli7QvK6SXFD0QUPxzDPCDiRG2fVXGmUDETpLYU/8XpG375ty/57fOP+OOHjzj+xkEgHwu7x85wLvS3xnCZ0X1FioEIHgOo4qGlQYCYtgaiaIbpJPwoVQ2UeX2XSnHAWjmrMdVArgGpApcd5/sFv3r4gmc/ueT14wf828tPWH/5kLiF/kIYLh2Lwv4sIZborgupOpoL1AoW8V5bKnVykhhpC2EX7wEBdFruy/8OcFRr2MRbOsURg+F75cWzh/x8+T0fdVfMZyNnP93wu9On/PfrJ6wuB1a/MGQb6S6U4a1w7KBTahVp4LOERQU5BEGzIxWs93swjehKFLuvyqhGp4UhFIaQOe5G5v0EDmkN0+dLfvPqOV9uP2CQjCHM48RiNiKzSuwrLk7YC3Hb9FGcVkHKoZpaMUUXsCiMDwJ5aaymgaM0Hr7IPcf0kMqohrnRab2XnNcPC/YmMftBOP/2IZ+nzKNuRXXlJO14MOy5STPyuqM/j/RXznBtpFVrF41niqVwxxmidYJFYVoK3hu7kpjFzFSV4so8TgyhuQU7lOYQMos4oTidVl4/XrO7OGHxLSz+EHnRvcc/bmfUqnywXKHiuAvhOjJ7A8OVE7eGVsOj3kkl4o4FhSBES02zag/kO+IbxQO7kui0oKGlOIkRtRLEOY57klSiVn728JLPnw2sZWB4C7ILHPVTkyMxzoYN+tj5avWEOksNhIGLQFBMhHfoBAtK1OxYAotNPGcxM4+ZdW6E39d2o1nIHMWRJJVK++w8L+i1sEgjj05vuYyVzWwOi8I8ZT5ZXvAg7VFaQb18tGV6vcTeND7JAYyrgEoDKoBARJp8iAHqpFCZhUxx5WYaWiGIky1QvJ1dTWxKxw/bY4aYGWukmvL09Iab2ch+Smymjrd6hLkwC5l17ilFmzYaaHGojtRGeFdtAAGpTnQ5pC+DblsfK65MtRGxC62PFVd2h+h9ffMeN7sBB/a7JWZKHQPnWUjLka6riDjVlW3piFoxhFICXQWpoGMl7AtUBwW3gIR33iyKO+IHxd8KLy4f0r1XUTGqKWOJzIdG9GyBbUlcbubsdx0aKmWMcBsZLgJpBdMysTs2Nos5H/7ZBQ/7bXO8+xle2//EvRE2Gam1RcwdHyso92oQLQg1NXdQB6dser7WM4ZUeDDsOUrjPUeKKz9sj9ltOmwMVAkwKnGrxA3Mzp2TryuanfXTyKv9I95+cMTxfMQcbJ1IK0irik6t0rGmlVrt/nUDloTaNdKJgW0j27cPWC8Ljz5eH7p9pRxEfZcjNgVkFwhbpb8SZm+co9eZ/mJPuNog+4nu6owwzrl5vuDqkwjiDG8ixy8L/fe3yHqHL2Z3jhPGCS8FEcHdiWUQygzi1ln+rxD2AQ9w8cvIPE73on2nlV2saF/xfTgYxAOZs92XOzmTXl1ydrMjjqd8f9Lh88rxW5j/cYOstge/RLM/h3MHilqJtYPaCWFyhktj9jYDsH088HK95PnJOYs4cZsHphoYYmH5YMsmVXKZU2cOroh3zIOQghJvVnBzC7drjo96bn96TJkHlt9kwtUGSsG3OyRn6LsGLIYWuZwhBKIW0NKanXirFjGnW8Fm7DjtthQLJK1sS2LZ7TkbNqyOBr6uip0PuEJNYJ1ifYDTJZxfIrMZmNFdOzoKUpzp6QlxPUffXOKbLZSCDMPBvSpSW/SilmZ57zjmKnhQpDg5RxZh5NrmAMxj62+Ks+x3fPrkB75JZ4xhzqYGah/p1gF92uFy1h60ND9mETZPEhYT/U3PYojoLrd2YQa5HOx1BDNimBy8/dCi4EnRqdmgm/07Ww3QayEhZAt0Unkyu6V7v7I57RifRy7Wc1ZjujMI1NuO4VWkDs29rGZC7Z20CkzHR3QrI22NtC7E6z3sFWpFciFqeScLLmBBoFNwsFXifGqyc9cylNYQAY7iyHHaUywwWmS16FuHN+XN6piVC9NDxfUQudRMpkVt5tKbKWwNN6GAlICrolIPVVWdO5A6Vrq1EW8Dm9JTPNCH8iczQKfl3lBGrSSt9+9lC8z7ia7P2MzgbhYNNJNZ2vimhcOuooH1LuJRISgaDouMu0sOVZ82lcV3wn+9ecptHlCcqPVgt4V0+OLdJDXWyL4mphqopuymRK0K+qN7T4IUIYxNAVwPmTqsBYAD5xyV0nz4vRWJ74S0vzE23x1zvltwOc0Jh+7fh9K0z8LhXsJokWJ6aGXOrMukVJHO8ORYahY8rQUdQeyQnTshv7ti41kMkyEOpoJFR4ojxdBiLdyTMIuZqJXqQqflHkz2Bmy0QHGleJvWq7UT1NBk1H0bWMJeCLs2/OoEcXTC6O+aMyBTQUol3kVHjMM5bF4mo7sp9Bcd+xr5KI6HMU4ZLTIeUlhMKQdgY43scqIcgKk4iDdQo6DjYcdR3lFGrHFbx9Jsdm3UUmg7hDD9aR/TYvQ/7Fj+wfjy/54wWiRJZVcTowX2NbHOPTeHXdntOLDN6TDSKea06SoruhPiRkibRvq7QODtSPW2v8itVVCN2DZ5jutd26ANnnsjXK148HtYf7jkyw/f5y9Pv7/3ZNvSsZ56xgPZoQ29h4C3HUdVfB+IWyGtIW4OU5EdgpEbvzwIngLsMkwZ3+9bKrU6jO/yTBBsiARV9GbL8psFL794jH0mnAw7AK72M262M/qUscPceTd7AkxTJO8S8TrSXwndtd93Damtg+gdMJVWALnc62i0qK3jB8EDWApYVliA9afETSbujPnLxMvhPX5YjsRUmaZI3STKco8fANUSsNrWUr4P6K5FS8qP7DQQMoTRCLtK3NW24jyQ3re7JuIAOhnWK7VTLAnStaebFgGtiTxvS7buPGDXc6bkbXjpjDxF3AQviuxC61UGYSdoFuKuRccD6B5CbqNb3BXkjvSl8YtScXdkPuP/AZNwcL0tgjlxAAAAAElFTkSuQmCC\" y=\"-201.758125\"/>\n   </g>\n   <g id=\"matplotlib.axis_45\"/>\n   <g id=\"matplotlib.axis_46\"/>\n   <g id=\"patch_113\">\n    <path d=\"M 149.237931 239.758125 \nL 149.237931 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_114\">\n    <path d=\"M 186.727586 239.758125 \nL 186.727586 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_115\">\n    <path d=\"M 149.237931 239.758125 \nL 186.727586 239.758125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_116\">\n    <path d=\"M 149.237931 202.26847 \nL 186.727586 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_23\">\n    <!-- Angry -->\n    <g transform=\"translate(150.249009 196.26847)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-65\"/>\n     <use x=\"68.408203\" xlink:href=\"#DejaVuSans-110\"/>\n     <use x=\"131.787109\" xlink:href=\"#DejaVuSans-103\"/>\n     <use x=\"195.263672\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"236.376953\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_24\">\n   <g id=\"patch_117\">\n    <path d=\"M 218.506897 239.758125 \nL 255.996552 239.758125 \nL 255.996552 202.26847 \nL 218.506897 202.26847 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p87f3735e99)\">\n    <image height=\"38\" id=\"image4e59757435\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.506897\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALhUlEQVR4nG2YXY8k2VGGn4hzTmZWVXf1x8zszM6ud8desMeAEFhYRlxx7Qtu+Rn8EX6OJWQhrrgACZBskGx2sQzr3Z3enZmeqa6uj/w4J4KLk91jI0oqdZcqKzPOG2+88UbIn//137oLiIMLiDniADAtlB/9zb/y07/7M/KJo6MgBqEXJNdrxCH0IAXSzlm8NdKuYEGwRvAguIArxKMjpd7/5Z8mxnNHDHDQSdAJ0g5C78SSAAFXqQ+aL7x7/eSffoA/ndBtBJmDyfUG1taApEBz68TemZaCmNbAhfugXAVrIAwOBR78MrP5JDJcOi5gjdNuhObGQSB2b8rvBOZhfnip6K0/S2y/VwO26KgJ4qAFzOr1FuHYCeJC2jqalTA4oTdUHYuChxqgJSEUJ+4Kl79w3j5P9A8qcjrWZ+elEMUcV0HMZ0jfwY1De+PIKGCClpq6vHSsEWSqAZeuntgFSqoH7DYQRghHIwhYFCwpHu8Or+hkXP5i5OsfNRWlo9NtjPa/J+JwEXGtQYjVU2kBKRXSzfdq/sXmNFNTZMlhRrcsnbI0CE45UTwFLAkWYdVbPXB2wCALFgVxA63on/3aOD5Slq8KAON5JEpxQGYezHADosKwrjfXaQ7IQbMQDxWl6cTRDDIJqCOj4tGx5JSFkA/CdBIIQ0VTvNJD83xwFTDn5MsRvKkAzTyOlU+OFEAEt3o6cdh9S9Bcg0XrgaV/xwVLlV9hhPBNBBfGc8NlvtZm7rqhNgdDLYi750K9ZnFdaopndKNYJST+7kTicLxQwijkld8XaZgET7UamxtnuADNkHZSgxVYfSWsvinsnwTC5ITRiIeCDpmyTIg7oFhSwjFjQSt9JqOoIsUJQyGK18hdq96UVhlPheFBRUPHigxAWczIIiyvoNkK47kznjnNjRB3VTbSbeHyeiQMpcpFCtiiyk2JWvmajdLOJJ0Lr/JaKEmJrhUp03rN5jnkhREPghRBTMAdFFwdSzXAw/tK2tZqyydOXlaJ8e3Mo7HU3wW9T92dToY+Y02gtHKfTmYOWgBPSsxd5ZEWuP5DZTot6CT3ImvJ3wllBOsMyUJeQGlg9aIS++a7zvDQGC6V8bSl2TY0u9oFqj4KOll9jwVrQ6WO1+/cZpmaMxfvKuTt88DwZILG8JsEWgX1nqwCdporOfcRHaF/bHhU2mv41j+MHB9EDo+FaVW5N1xEujfK8uuJ9uUBGTNl3VUk7+4bamWiAtkRczwK8fzf33D4+IxmE8iryOJKOHxQc37XBQDySSF0BctVWtqNc/jYGM9heOAcniYe/tx5+B8DoS/IVAg3R3DHu0Q5afGTpqZpqr30jl9icFdiaTsiUyGO752w+f3E/qmz+koYLipSYnKvPR7mdDr4pPiygEfCTikrQ0yYLgpvvh+Jz1oW3ziucPJ1R7OZsKQgoEOB7HiYCS21VckdYl7TGV7eoMNlYlpVQnuA/tsDYayoiHHfYBGwPkBwdJk5PhbOPxX0ZMKDowfFg1NaSAdnPBN2TyIeBXFHcq18nQpllbDmXVG4VuRcIK8SvuzQ138UWF05xFpZ9KGm8bcqCYGwV8JNhCFgWRkeVVLbMUJb8MYZH2fywml2he7aWX8xQXEsKqVVNBuYv5MJrajBnJlYkbVliw6PCjo5rDKHDzNhr1jj9yn04OggSBbCUZChpkHOR4YLYf3LhEhtS+2LRBghd0qYHB2N0gVKo2h29DBSVuk+GzKT/a4QQl/Q0bBlIkqezdyhpsneG/FdJG0DUoTSVoh19mliINEIwdh/YKx/pSw+a2nfOu//9AX5vTWWAuEwoseJctJiTSBuesppiyVFR7s3BD7TDa30sUYRc+LiG2X1YmD9Xy2HHx44WfVsDuv7U3isLiInR/uq2mUIhFTwZPQPlbSH/oHw4sdPK+m/KjQ3ip626FDQsVDOOkob6iHn1uezu6htpcqEGzTbgfjh39/wP391xvDByKOzPdt9Bw5lJry3RjobWC1G9seGadPBqOQxIiaMF4VpXU/bP4J4EPDAujjhaBWBu5TNVf7/vVyqnmq2+ld//YJnP7ll8XnD7thSBwDw5HjjkJyUCuZCCPWuYR/wXcSj48uCLay2o64wPZ6YTmBaKtYoloSy0Hdm1P5PZLMh1eKURnERyiKh9uxp1RmHx2e3lByQ7q6NOIzKcdcy5UCMBZIRRui+jrWXRq/dItVSlkPAFUoj7x5sEIaCDuW3JEjxWEGoxlPJy3oA6wLx+k/WWILj08xXr89xA3bx3UDSFtKXLWPTIgbdvhrFMEK7Cew+klowrSBjZXIYq03WqWpj2ueq8O5oMaZ21rfitaKLM5wFtNQDlC4Qx7WQlxDPR2IqTH2ExpBekVGIm4a0FT765yPX3+9YXBcQIe0KzWbk8j8TL3/QcXxsVQYKhAHC6LTXPZhhTaTMtsdDVYF4KHNHEDzOdnvWuPEsEt/72ZFXf7xgEqfftVVgBbxx9Ki0b4TQQ3/Z8OQf3+CzIPoskt1Nz9Ndx+c/XjI+ysgh1BnzNqOHEU+hBhOFMBQYIRwynhTJhgfBmjukHWuUcDQ0vdoTj04eA6jz5Nl1LZ00a43B4rVhEcppi4wT+nZL+PotMhVchPhySzgKBCf0gk5OczPCOIEZh/db+stI7qq+xW0/T0wzYgrpYKRdpntxy+KLW6KrMq2q4dJUuD12xNOJ3Md5qKgj2erFiLUBe7wGPyXsJ2yZcIF0XSgLJ60m4ucN699MyDBBDGBw9vPX5IcnxM++RBYLypOLe4NYU8i935fjiPQj0duAJfBjoBRhAMoYYG4908qZVpUDzdsBGQrijosQbgveRMYnp8S90F8tWF9Vz+4hVD262YEZ8e0WWS2x0xVynGimwni5gCDoaLPTEGgSHgNx8/yU4xMj7AL2OJO3DcQ6CxIgP5zYnCnjeUv3uqHZzS6gqyfVAseH1QU/+rfajfdPGk5HQ0qBZYeMEyICw4gWgybVMf7Bolp2ETQ76WZArjd4MWIVPsjrQvN5i7WQ18w/MCQZ0hWO3y0cPhHCm4QtDYoTjkrcC9OZ0V4r6ehsPglohv5yyclVS/dqJN4ckSEj/QClNsnpg0vyog7G8WjzQOJ4MXAjLl5n4j5RFvI7jpU6B6PRiSkjLeQp0HznSAzG7WYJx6aqf6jNvT9Xdr83cfpporRw8yyw+c6CeFgQJqfZenUZ+W7agjAakmuhWRMpzz9EihEXL3bE/QVigbiHw/uOFMG1KrqGgqpz3Hak5cg4JA7bBnw2kAjtdd3u5E6gCGGoTbrd1A2QZp9XBrP3mlcQOhmhr4Kqk2FtuP8/4s7FrzKlUcaVYEnYP6sNFxdKDoTgpOXIg7M9b7arysFJsYXRvI33Rm9aQ/uqfp5O677LQ10rSJlTpdwjrOWdHwt9Rjd7JBfIhZjPFnTfDORVRErEkrL/mOr5R4VUKEW4XB94fvGSF80Zv9EL+usF4TbUh+R5XRDq3kwnRychL2pR4E6cuF/i1bltngFm4uv2CK+uKfsjqBDT1QY7XzGedeROaHbO+tPI7tsGBtZHLCtvfMW/9B8R1MhTmIfhOgR7EHyeTdPOiX1d0IXR0VLN4LTS+nmq79AbYTswPVwynkem00vsDx4QBiPdZqLsjyiwioq1gf2TtpK0F/LaoAiUwDQEptBAqTZb+9kZKMhQQbjbClmcp3Ktk1VuhThUrsV5LRWOGV+kmTKVn7sPAxBIt5HoZshxIF5l/GTJ6TFji4jmjlc/lLoDs1k+DHTUWlEudSA2QSMwMc+iQu7u1k1C7J04OM1tmX9XFy3TaSIMhmSv0/pJYHVlxN5oNpkq76p4k2DKTOuGvIicfjHw4GeKz5ZTJiHuAjKvpTzO1Rsgd441M89SXSWUrn4XRmhuCjpY3eL0BVfh6i8aJBt5GeaFClz9pbF7P/Dmecv/Ao1i+/JrRlIjAAAAAElFTkSuQmCC\" y=\"-201.758125\"/>\n   </g>\n   <g id=\"matplotlib.axis_47\"/>\n   <g id=\"matplotlib.axis_48\"/>\n   <g id=\"patch_118\">\n    <path d=\"M 218.506897 239.758125 \nL 218.506897 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_119\">\n    <path d=\"M 255.996552 239.758125 \nL 255.996552 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_120\">\n    <path d=\"M 218.506897 239.758125 \nL 255.996552 239.758125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_121\">\n    <path d=\"M 218.506897 202.26847 \nL 255.996552 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_24\">\n    <!-- Neutral -->\n    <g transform=\"translate(215.106099 196.26847)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-78\"/>\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-108\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_25\">\n   <g id=\"patch_122\">\n    <path d=\"M 287.775862 239.758125 \nL 325.265517 239.758125 \nL 325.265517 202.26847 \nL 287.775862 202.26847 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pd1dc0d0d5c)\">\n    <image height=\"38\" id=\"imageb6dae10b62\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"287.775862\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAOU0lEQVR4nE2Y2a9k11XGf3s4U52a76079+2+3W67O93B2JGjDIggJwohSIAUBIiAFPEGvMIbTzxH/AuRgBeQILwAkjGQkBFPIXbcTrvn6+4711x15r03D+d2O0cqqc6uc3Z9+/vW+vZaWzz3j3/tWq/FTF7NMJniuW9VjK9FACQbAn8GGz+cYX2FWuSItODgKxssdxxVr+L61SdsRjNinfNq5wNuZ5v80ze/xOB7h5hOjPMkap5RbLTwT5Y4LRFFhQ19hDHI8YLHv7vLy7//Hr/SucO9bI23R7voICgpuoKokfPi3gHjgy5ro4SzT68gLHTuV6jRAhkFUBlML0Y4CEYC6yk+PFjnQ9ZR2vCauMblwZDWHz/hKNxm/fsjSAzO0+h5gYl9ZGFqUNYiT8bYjRVmNwtKq9gvVliYgAenfWQrzMFB+W6Xz3bvUW52KQcxVQTeHBofzbHHp7j9A1zoIRx4c4f1wXYrGnFGI84olj5F4nPvBxd5+O4W1W9MuP97K9hGAID1Fc5TYC2iNOAcrtPi9JUOQSsnkBUHWRdPGEyp0IssQGVw6btT/vnzL3H6mQbrb6VUkaD12CKHM6yUAIgHTxA7G8wvtmi8csa1zpiXux+x5s24lWzxP0+uUHYU5Sxkea+DurbgwdfaXPm7U/TEkm+2UAuBKEswBtuNSVcFplLcm63iKUOsC4RyyDT1cQrUyZTpP2zTu11RtDysB97C4NK0XqUQOGM4/LVVwk+NcE4wL0OO8g73sjXen2wC0GukdLoJYjOjmAaENyfc/cYAnMMfpgCgJCLNsb6ibDt2BmN2WyMut87IjCYISqTSlrwPZr3L2neOab69T3iW4S1AFhbKCqTEVRXJqzcovzSlE2U4JyiN4iBtc5K3GIQLBvESKRyNoGC9P2N1a8r8UQf13IL93x4gx3MQApEV2JU2y+2QclBSGsX3fn6VYR5zIZ6w0Zmjd/tjHnpNZFKAVriiQFSW+NgQHi5ACigqqk+9wOHXMy53J0yyiG4jZSVcshIsGfgLZlXIrAxZlj6hroi9gnkRMF7NKR/FZFcLRp/fpvfWKbbd4OylDtKASOB675hL7RGnaZN7o1WSzEcezVtEx/UqsA5W+8ikoHGYw9kYV5RUn3qBB78V8pXnPmBRBBgrKY2isorUeJwWTfaXfRZFQKArjJUMggXb8ZTnt44xscU/8EhXJc73GP1Sh7wvENbhfMePDy6SGU0vTLgxOGJnZYKeP2nTrRym30SdTsFYUBIlJUII2Nnk/tcCBs+fEsgKTxlOxi3K1OM0btaTCMv+qEc2DkE5trZHlE5SOYmWFq+bU1Yhu68XuEAx/CS07zmWGxLVzug1Uk6SFtYJ+lFCx0/RMpHExxaZlmAsLstwGwNkkmGXCae/eZnmpQmXOiNmVcg0DanOagBX9s748totPGF4t7XDm8Eu45MWZ9Mme+0RlZU0dc7N7QN+Mt5jfDWkdwdMbCjbmioE368wTvCZwUMMko5OOS1ayPixoHlvhvMULgpgbQUXalzoI+MGw8+VXOmfIXF4wjJbRLiG4aWbD/jy2i0ueCNimfPF7i3+/Op3efHqRxgj2Z/36PkpmdHsxUO62zOWO4LFdgDKka5ZbODQ2tAJMh4lfawTZNZjVobo7f84w8a1CYrJHLe+QrrRoPnelOSXd9neHrIRzcmN5iBtY2Y+ain5yb1dPpr12OsOOU2bzLKA0ijmoxjpGawTpMZjEC5YmIDrq8e80eqCA5FLrO9wGlbDnIYukMIxr0LO8iaVk0hOx4iiqv2l36EcNPCWFW6xZPSCB8DDRZ8nSYeTpEXQT5HbCXEnI/YLKiu50T1itZFgjMSLStrtlHaQ8WTZYVw0GOYxWhpM26BKR/xYIazA+hbrBJVVxLogVgWRKtkIZ2h6bbLNJlUkkWWETgx6UeAubJCtOsgCPGVwTgDQbaZYJzBWcLaIOZ62eBT2kALajYwqUKw35wCkpcdQxJRG0Q1TVKMi64WsvF+SDjQEUFQKi0ALS1undL2Ejk7QnJwRaYVIMlwjpOpEqEXOvT9coVirCIDNxgyARRUwLwKySnN61EN4lq9ef58fHl5iOI65sn1Kx09p6IJAGppeTmEUZ2mTSRZhMsVyS7D6TkLjqMPygqSoNLM8pKlzYu0TyFo9LZpNnHOQ5bBMKfY66NMZZcsho4pAGy41hmwHY3LrcT8dcGc2YNrJkNJxOTrl3WCLhReihEUKR6RKrseHeMKwn68QqorTrAlGUDUcyU5M925F3lWkqU8e5iSVz7SM8GWFwiJdmiLyEuccySuXKJoK1wjwFrV0kVfyOOvywXKLuQmJdc4gWiClI5mFvDG9hHGCMtPkRrMaLLkQjumrBYn1Ocub9P2kjmHPonJYbCmEhehEYFJNUSnmZUBuNJVVGCQarXGjMaLfI13ReIkl3W6BBZtpjBO8+fgixgi0tlSVxFqJfBTh+hWLMkAAauTxSK0wSSK0svSjhNxojiYtNrpzukGKF1bIMiDrQziStB4bFrseWddjJsA6wXpjjs1baOH7OOuo1tpUEfgLKNqKqukQnuXk/9a58dn7XG2dkBqfSRkRqZLXJzfQU01DFxwUbbyppHN9xqubH5JbTWp9toIJP/b3eP/DHXY/eZsy8ZAa8kFF1VKsveno3YKzVkxjZ4KWlnHWoPBypO23sLtrWC2xnqDxJCHrC0Ql8B77mJZlNx7xzugCd2YDCqsA+LNf/c/aSqZ9kswnX7F849KPOMw7tfN4S27NN2l7GV47JzMeQluccrRva25+7i6ja4pwatl5TTD76QqPTntYBNZJtA00+UpIsqYpW2AjzfR5h8oF298pyP9izO3pOg9ubbJyecyH9ze5dOmEP1j9Mf5EUP77gEblyD9dclh2GeYxP3hwmXIcgACvm8OjBh+8/QLuSoVeCjZ+NOenF68gPpFSPQhoHJds/zeMjps82G1guhU6W48oG5LllsBbQt7zYJCj7kREPz9i+u1dhl9cQLdkeNZCLhSPbm3yV9Xv0Nq3CAMIiG/7/K37LHKm0YmAtQoslInH3usF4cMRthsjkwKRZKy9GbPcjCiajvluwOAnBd17JaLymN5QiE9//ZsOB8stiSwhHFnSFUnjxBIfFgDMLwQkG4J0wyJzgSwFOoFs1fEnv/5fAHzr317FnwqchHzFYtsV/Tc8hAV/7khXJY0TQ/w4Q989wF7aQJQGeTTk5KuXyXuC9iND2ZDMLgvEJ/7yb5z1QCf1ylXu2Pz2fewy4fGffpJs1RE/FlQNUBksdyzB3pwb60f80fqPmNsIheWyf0JiA97Pt3lndpFb43VOxy1acUYrzFHScjDqoN5rsvf3j+uCQcq65lssqV5+nsVOgPEFeVegVQHSgCocVSSQBbhOC6k1rX1LMBYMP1OwvjnBOsELnRE9P6GwmjeWV2jImtXvz55n4M9JrM+4iBg0lgwaSyZZxDiJWM5Dwjsha++U4Fxd83ebSM/DAfrt2/QO18l3+0QjhQYQBqwWCAvhxJLu9ZBFh/bdBaI0eIsOR1/oExxr7hwPWF5wmMDR2JvxhZ177Cc9TpZNlLTc7B8C8P7+Jn5YEQUFySKAqUfjwOFPS8rtPrIwOCmQziE8DYA7PME/PiNsxkhhQBYOp8CpujPSixJZWpyWIASycqy+oahii3CO3ddy+j8TmLe6/OvPbnKaxCxzH+sEx2mbvXiIVI7qQZPKShgGdG9JOg8Lko2AxYWIoh8i8wqXZeD5OGPhvGp2WY6uAYm6hcvqncN/dIYrCrIXdym2I/yZQVgIhorFBYcsAqKRxUlJMA04erGP8A3LWchRskJxTfHihce8d/8qi/02KhcM3l6QbkWYQOAtLSo32ECjfb9ugJQEUfevAPq8mkEYENZhQglVhZASvazIehqnBXlb0r9tOHlJstgVWL/O4ujUEr2uOHlF4RS09iWP9i+RbhuCShAdKUzocFoS351RrMX4wwTna4qOj2o2cAdzhO/XHRmAdXWMSQPCOKqGIF1RNK2tUY8TWsay3I7QmcMJ6N9yVBHgQGcOL7HEH5wizRonL0uCsaN/WCLehqIF0UnBcitAJSXybEw4X0JR4nptZOwhKoMzBrSugRkDzqCtByYCldbBX7QFrPbgbIwYz1CVoVkaTMMH57C+wnoC4UClhtleiL/dpfO/T5hc2SXZgGgoCU8zog9GuMCj97AEWzc6JCn4HmKZ4h9a3HxR20ZZ1OCUAueQwp1npQfGr71seqOH8DzsbI5IMtTxBO9sgTdc4o9SrF/vq0XHIxpWiMqBp9n9lxPaDy2LTUXR8aEsYTzFFQWuqnBZjququkWsDAzHuOT82EDIerwoz6V0ICw4CbKqQRaxAE8jfB83m9cU50Ude76HWmtgfEkwzJFZhcwK3HwJeU6vKCk3u8i8qhlwDqoKpAKv7iEwBpfn9bgQz8aQ4lkCaGFrlmQJTtQgq1hQbnTRkxnOOYT2IM/rCQqI7p7hlEQskjqjfB8nBSiFPRuhxxPQurYAJesO/+OEq+cs6uIU50CI+rtxCFWzJ0Ud58iiftnqWtbx9Qai10GEISIM62TJ83pVSQqTOa6saXdlWUtgDFhbx4lS9amO1ufMWVxRPDs5enYJ8fF7v3DVwBw4KTgvtRAGslXB8toA4Xu4ZVJLq9S5DLWsVOdtX1XVMeTcs2fq7HJP/wWUQpx/kPWRFnB+L+vfxMdSyqdAnD7fMzOHLB0qg/FVj8XLO4jwvCHW+heXVEt17jtCydokn95rDVLhjK0DPH3q3nWc1UlgasBPreKpjzlbB780Ds4X9yzmCofTgsllTRVepPvWEW44Ps8eg0uLWi4pAPVsQveUxST9GLy1NeNBULNsz5kV4uPnS3O+JdVA/h80JJgQ5A3MSQAAAABJRU5ErkJggg==\" y=\"-201.758125\"/>\n   </g>\n   <g id=\"matplotlib.axis_49\"/>\n   <g id=\"matplotlib.axis_50\"/>\n   <g id=\"patch_123\">\n    <path d=\"M 287.775862 239.758125 \nL 287.775862 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_124\">\n    <path d=\"M 325.265517 239.758125 \nL 325.265517 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_125\">\n    <path d=\"M 287.775862 239.758125 \nL 325.265517 239.758125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_126\">\n    <path d=\"M 287.775862 202.26847 \nL 325.265517 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_25\">\n    <!-- Happy -->\n    <g transform=\"translate(287.162252 196.26847)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n </g>\n <defs>\n  <clipPath id=\"p724ac79f8a\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.7\" y=\"22.318125\"/>\n  </clipPath>\n  <clipPath id=\"pf3a530116f\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"79.968966\" y=\"22.318125\"/>\n  </clipPath>\n  <clipPath id=\"pd0e7cdade9\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.237931\" y=\"22.318125\"/>\n  </clipPath>\n  <clipPath id=\"pb966e92108\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.506897\" y=\"22.318125\"/>\n  </clipPath>\n  <clipPath id=\"p5cee9e2c19\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"287.775862\" y=\"22.318125\"/>\n  </clipPath>\n  <clipPath id=\"pb07712df6b\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.7\" y=\"67.305711\"/>\n  </clipPath>\n  <clipPath id=\"pfc2880fab5\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"79.968966\" y=\"67.305711\"/>\n  </clipPath>\n  <clipPath id=\"p6012dd6955\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.237931\" y=\"67.305711\"/>\n  </clipPath>\n  <clipPath id=\"p07e316a475\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.506897\" y=\"67.305711\"/>\n  </clipPath>\n  <clipPath id=\"pbdcfa26f5b\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"287.775862\" y=\"67.305711\"/>\n  </clipPath>\n  <clipPath id=\"p7bb812438c\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.7\" y=\"112.293297\"/>\n  </clipPath>\n  <clipPath id=\"pa920952338\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"79.968966\" y=\"112.293297\"/>\n  </clipPath>\n  <clipPath id=\"p5e2667187e\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.237931\" y=\"112.293297\"/>\n  </clipPath>\n  <clipPath id=\"p96d093e22d\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.506897\" y=\"112.293297\"/>\n  </clipPath>\n  <clipPath id=\"pf7c31b153c\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"287.775862\" y=\"112.293297\"/>\n  </clipPath>\n  <clipPath id=\"p4450376c0a\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.7\" y=\"157.280884\"/>\n  </clipPath>\n  <clipPath id=\"pc45a0e49aa\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"79.968966\" y=\"157.280884\"/>\n  </clipPath>\n  <clipPath id=\"p863acf0010\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.237931\" y=\"157.280884\"/>\n  </clipPath>\n  <clipPath id=\"p48c76ad82a\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.506897\" y=\"157.280884\"/>\n  </clipPath>\n  <clipPath id=\"p1f2c057e00\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"287.775862\" y=\"157.280884\"/>\n  </clipPath>\n  <clipPath id=\"p0d8af3a6f4\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.7\" y=\"202.26847\"/>\n  </clipPath>\n  <clipPath id=\"p296f1851ab\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"79.968966\" y=\"202.26847\"/>\n  </clipPath>\n  <clipPath id=\"ped51802afa\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.237931\" y=\"202.26847\"/>\n  </clipPath>\n  <clipPath id=\"p87f3735e99\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.506897\" y=\"202.26847\"/>\n  </clipPath>\n  <clipPath id=\"pd1dc0d0d5c\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"287.775862\" y=\"202.26847\"/>\n  </clipPath>\n </defs>\n</svg>\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAU8AAAD7CAYAAADq4RYlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d5Rl21Xfi3/mWjudfCp2vt0356ssoQAiWWTZAgPGNtEYsB82tvHD9vMzYJ4ZTj/sZxszMBhjbIIFRgiT/ECAJBBCAcWbc+fuylUn7bTW/P2xdlX3vQip+1pX1XjUHKO665x9ap+9115rrhm+8ztFVTmQAzmQAzmQ6xOz3xdwIAdyIAfyp1EOlOeBHMiBHMgLkAPleSAHciAH8gLkQHkeyIEcyIG8ADlQngdyIAdyIC9ADpTngRzIgRzIC5A/9cpTRN4pIt+639dxo8mNNi4i8qMi8o/2+zoO5Llyo82TP03yKZWniDwrIisi0rnqvW8VkXf+r365iKiI3Pa/ep79kINxea404zETkZGIbInIH4jId4iIAVDV71DV/2efru1zReTcPn33wTz5JNKMzxc+771vEpHf369rula5VsvTAt/1Yl7IJxIRiT7T33mdcjAuz5WvUNUecBL4Z8DfA35ify/phpCDefK/oVyr8vyXwN8VkeHzD4jIXSLyWyKyISKPicjXXHXsOS7B1TuKiLy7efujIjIWka/dtRBE5O+JyCXgJ0VkTkR+VURWRWSz+f34C77jT68cjMsnEFXdVtX/AXwt8I0icp+I/GcR+ScAIrLYXO9WMz6/t2uhisjLReTDjQX7CyLy1qv+7o9ZJFdbXyLypSLycPO350Xk7zYW328AR5vxHIvI0c/keHAwT16wiMjfF5Gnmmf6sIi85apj3yQi7xGRHxaRbRF5VES+4Krj7xSRfyoi7xeRHRH5ZRGZb479moj8jed918euPv+nkmtVnh8E3gn83ed9WQf4LeBngWXgLwA/IiL3fKoTqurnNL++RFW7qvrW5vVhYJ5gvXxbc40/2by+CZgBP3yN1/1iy8G4fBJR1fcD54DPft6h727eXwIOAf8XoCKSAL8E/GfCvf4ccM2TmWDlfntj/d4H/I6qToAvAS4049lV1Qsv/K5ekBzMkxcuTxHmzwD4x8BPi8iRq46/pvnMIvB9wNt2FWQj3wB8C3AEqIF/27z/U8Bf3v2QiLwEOAb82rVe2PUkjL4X+BsisnTVe18OPKuqP6mqtap+GPhF4Kuv47zPFw98n6oWqjpT1XVV/UVVnarqCPhB4I3/C+f/dMvBuHxyuUBYzFdLRZjMJ1W1UtXf00Cy8FlABPzb5v23Ae+/ju+qgHtEpK+qm6r6oU/HDXya5GCe/Mny9sYL2RKRLeBHdg+o6i+o6gVV9c0G8QTw6qv+dgX4f5v58lbgMeDLrjr+X1X1wWYT/UfA14iIBf4HcIeI3N587uuBt6pqea0Xfc3KU1UfBH4V+PtXvX0SeM3zbvwvEXa/FyqrqprvvhCRtoj8BxE5LSI7wLuBYTMA+y4H4/Ip5Riw8bz3/iXwJPCbIvK0iOyO3VHgvD6XrebsdXzXVwFfCpwWkXeJyGtf6EV/uuVgnnxS+XOqOtz9Af767gER+QYR+chV43MfwcrclefPl9OEebQrZ593LAYWmzF6K/CXm5DR1wH/9Xou+nqhSt8H/FXCgti9sHddfeONC/HXmuMToH3V31/LpHg+zdN3A3cCr1HVPrDrrsh1XvuLKQfj8glERF5FGJPnxClVdaSq362qtwBvBv5OE6u6CBwTkavv4cRVvz9n3ETkOeOmqh9Q1T9LcIHfDvz87qFPzx39L8vBPLkOEZGTwI8D3wksNIr1QZ577c+fLzcRvJ1dOfG8YxWw1rz+KcJm9QXAVFXfez3Xd13KU1WfJGjrv9m89asE0/frRSRufl4lInc3xz8CfGWz+90G/JXnnfIycMun+NoeIU6z1cQyvu96rvkzIQfj8lwRkb6IfDnw34CfVtWPP+/4l4vIbc2k3wYcwd18b/P7d4pIJCJ/lue6aB8F7hWRl4pIBnz/VedMROQvichAVStgpzknhPFcEJHBi3LD1ygH8+S6pUPYDFYBROSbCZbn1bIM/M1m7L4auBv49auO/2URuUdE2sAPAP9dVR1Aoyw98ENcp9UJLwwk/wOEm6KJobyJEOi+AFwC/jmQNp/910BJeMg/BfzM8871/cBPNSb51/CJ5f8FWoTd4g+B//kCrvkzIQfjAr8iIiOCRfUPgX8FfPMn+NztwDuAMUFh/oiq/m4Tb/pKgpLYIgT0fxUoAFT1ccI4v4MQ+3o+FvDrgWcb9/Q7CFYFqvooIfn0dDOmn+ls+9VyME+uUVT1YYJiey9hDO4H3vO8j72PMJ/WCPHcP6+q61cd/6+EBOQlIOPKxrUr/6U5709f7/WJHpAhH8gNLCLyPuBHVfUn9/taDuTGEhH5JuBbVfUNf8LxdxI8n//4Sc7xDcC3/Unn+GTyp74880D+9xIReaOIHG7c9m8EHuBPkbV0IH96pHHl/zrwYy/k7w+U54HcaHInIba5RUh2/HlVvbivV3Qg/9uJiHwRIZZ6mYCzvf5zHLjtB3IgB3Ig1y8HlueBHMiBHMgLkAPleSAHciAH8gLkulhXbK+jHYZI5VBr0NigRlADasClQKQgnzwUcDWkVURRfS5edy+S4CWgvDT8Lx6kBlODrRScZ8I2bjLZN8BvlHU0Wpgnnigo+FgwCxX9KGejaJNcADWCeEWtUHUM/fkJVjyFj5itt3AtDbBfATMVjAc8aFMD4iOw3Zp2VBKJR6/CCMvzMNFehZ2LE2abxf6NSaujSX8eBXwCknjmsimxOCJxeBUcFq9CqRavhtJbamfwtQEVpAZxV8ZAPM1cCNNr9/Ufm2oK4hVxipQ1OMduaGqkG2uqusQ+ie12NB7Mhznsd+dzc63O7y0MFUAEtYIawUdhHLQxdXbvWTzYQjGFg9oRBkjCeUSaOSVhrdrmfNKMaTM7yp0N6tn+rZ8kamsrHlxZ9Htr34HfvdHmHxGII3xkwICPJIyhV7wNekh8Mz6qmFqR0oH3oIp6j1z1FWIEjL3q/OH9Wb1DWU8/5Zhcl/KMFud4Xfsb0DMXMIvzVMcXKPsxddswOWLZucXjhzUS+ef+YaMAxXqMVYwNx6PIYUxQnqqgKngvqAqutrjcQi1IZZBasFMh3RC65z2DJyfYC+v8rn/b9dzCp12yzjyH/vbfZvkDHuOgaguDbz7HfcML/OE/exW9hWkzcQ2oMvwX57i3d5GxS/m1X3wtvbPK2ptyzLmMbENoX1JsoYiCi2HnFkP3jIZJ8XWr3DJY51Q7wNhi43D6XOehUst//Yu/vR9DsSdJd56bv/HvUPWgnHe8+uVP8IrBaQZ2Rt/MiMUx8hmlRpwv5xjXKRfzAU9vL7CyMoCdiGTTEk2bDdmAKcKmKQ6iqRLNwNTNpqNhIUFQMPFUiXJP96FVWNtAywqs5Td3fvL0fo5L3J/n3i/+26Q7nmTkcIlBLWQrBXZS4LopxXxKPm8ZHxNmhz2aObAKXpDEo7UEo8IL4gQ7MXTOCYsfy0ku7iDjKVpWiG3mRRxDXaP9LtNb5/CJMF3a3ZXh0bf/6/0bEKAVD3jtTd8AxoD3SFmh0xzNQ4WpWIPMz6FZQn68T9mzFAODGqjbYZP1CRRzUHc8UguiYQOyJbQuCd1Ljs6ZCfb8GpoXaFGgVY3EEdLKkFYL4iisURHee+a/XNO1Xzffn1qLJEnYBVQRHyZw2QPfbpRmswE+R4wiZtfS/OPWZ3O6xgrV8J7VoHdVUaOIM9QdoRgIxXxKa9KFzeu9g0+v6EKNGsVHQjx1VC1LL8n5jbd9FsdWZs1Ob7CTkmf+L8vLOuts1m0u5X0O/VHFysti4qQmXhOSnWCF2DLsmiqGfNnxtX/+93j7j38u/R+Z5/LfKplPphjx9CXHq2BEsRLG3jdW+n6KeIimULeBXk3HllQ+ohMXZKbCqcHgKXxM1+ZsVm3mkyk77Qw5pFzKF3CpYspgWagJ1pIHorqxLCQozLoFaoW6ExSrnYFGoMbg57qY7TFU9RVlso9iakgmSvfZcbAG51LS8zOIDLMTPdbuj5kd9vh+RXswY7lVUNaWooqoaxvWh79yH6qC78P2XEQxl9F7NmXwdE7y7Co6GoG16GgclIS1tB93FCfn0WVL3WoW4H4PiypSO8AFBVBWQXF6j+l10bk+1VwbjQ2j4zFlT6jbu88YfKz4GFzbh3vZtVYNOIVyCDu3CdG0R2ulz/zDBa1HLuIuryBRBF7RPEeiDpKXENmrXN9PLtevPLMofKnzmNJh6ugqV0DBCYp5jvUpRrGRbyzM8COAE921qJ+jPNU3Fmizw+6uFh9B3VbKgZDPR0TTTgC07KMcSbf5ua/6t9ivUkoMF+o5nigO8eav/wjZN1as1n0KH1Op5bPVsFm3GUQzfCp8+LMj/tyX/gFv+/9eS29Diae654aIDwo0W7F8eOsEX/Vtv8Mv/+vPo37bcS78hRn3Dy5QeYvDEEu1dz0Os9+6E+OUbMtTtw3aLpm5GAhWcVsKtrSNFaVSS+UjWrbimckCkXiyqEYyh08NtYKpGjc2BlMIvg6hEVSbxRPcLW/BumZROSj7QtVPSI0g1oLst5YI0zhbq0CEaG2E3ZpSHh2wdXvK1l2KPT5m0CqwRrHG47xpvDGDMYqrDd4J6gwYxdhgYGCV/EiNSy11O2PQPkz7IUUn02DRiUFnM/zSEJs7bAlqQ5gJ/ykv+8UVJbjVrnGt8yK8Ngad61Me6lF3LNOliJ1bwgZUzIWLNhX4GLCKxh5ivXI/LnismnlUoUoMPjGU/ZT54Qn6D3fh8ho6mSKtFjrL9/TatS6g62eaFkEiC3GEmRS4Qy2KocGljQsVecSEbxcTLEpjPHFSh7Fq4ptXXPVwWu9332+sp92BdY3yjBUVjzOCm1pcKtRtiz7fwv0My9nJHF/7B98OonzTfX/Ig6OjvO/jt4EokjkGwynHBts8uzFPbB13L17mzGiOnTzl3s9+kvevnQRC7EqcYhyN1Sm4ROieUZ7ZnOee/kX4qnX8by3y7NY8t/dWAYjFAWBQPMLAzpi6ZN/GA4JF6BLBOCinCcdaWxxP1unbnEQcHVNQqSM1FZWG2OfhbIdLeZ+8jmASYZuQrUvCglEDLtO9930k2FKDshSIGh4hlUahenCZQaIItRZuAMtTHCRrE8zOFL++id5xE6svyRif9OhiSSRKUUUkkcMr1M6ihPXjnMHVBnUmGBUzi2sUJ1W4t7rnGd9kqFsJtjxE+ugFKAWiCJzDbo7QeED3QsX2zXEIdez7sCgUZYhLe0VnM4hjzKCPT2PKQUTZNeTzQt32YBRN/JVQza6yNCDWI3HYVABcZRAV1AnqFLWKS2H7ZouaeQaAXFwF9eG76xoxJry+Brk+5bmr07xHvMdnCWXXUrUFlwVlIUYRoxjRRnkq1nqypKJ2ISngnMHa517grhtf1yE26NhNFu1+sYaBs2ERVV2hGEb7zg0TbRuWfjUl3XGs/OMeT20uctePjikXWtStiM075nn41gHHf1OZLlkufE3OhSeXaJ+zPFHPMb6zwsYhxmkrxVTBInBZCIBn247VCz22jrU50tvh/GyB8vcXyP5ScH9jcVjx5D7GiufXL9xLWX14X8dEBfJ5oepBZzBjMR4ztNO90ELuEyq1ZFLhjeFYuslHRycYxDmrUb13Hpcqppa9ZEk0CW68S8AWwdsRp9giJNVc2sS7TJMrcYBzzcn228QCO60w4xzdHiFRxMXXDxjd4okOTUkShzWe2hnK2rLLGOdc0G5lHqNFE6t0gnjBTEPMVK0GJWigGjh8bFgh48hkiejCRnCD6xryAjsuwAjZZkTRaxJv+ymqQXHuPidAkhjttal7KWXXMD1kKOYUTRrFaYOhpmVIHIlvlGiTV7FNLkXE4r3Bi6CVwccKmVDXMDlkiGZDOlWNXlpFpDHumtzEtch17juKy6Kgnasan0WUPaHqgus54rTGRg5rPTbyGBMUZ2Q9sfVE1hFZTxT58JmrfozxzVgGN0X9J9CKViHxuJZSdaDqyL4rz4AyEOrMUPgIryCVw9SeZLsi3VLiTUPnqR0Gz5RU3pBdtKSbSrqlyDQsCFMHJIHKlXuKckUczH/UslNl3Nm7zGw5BMk3qzZWPJfLPitlj/lowq+fvZcLjy2TbOzvoGgUEj35qYIvPfUw97XOkogj9wkTTcg1uPGZqXAIQzvlnu4FjHjOr18hPspWDdE4ZIhdy+OTsLGoBRSqbthgr/Y+1DbgDCEsgl2r8xqtiRdVvEeNgHOsf8Vd7NzuMIsFceyIrcM0afS6thR5TFVZqjKimDaKs3GzpTDYiQljkjX3tYtGiBTX9kxOeHZu7aDtbC9kodMZsj1GRYimnrot++65oQTFXlbodIaZG8L8kHquzeRYSjE0VL2QFMIJRIpEHrEe4qBI1YTNQ53gCourbQgNmgDH2P0fA4jiUqVuw2zBkp+cw/R7aFmGOXIdRUPX7baXg5i4FxoBlsOE2ZJQDRRSR5LUwb1wBuca98oH5VA1O2hkHUnkqN0Vve1UcM5Q15a6smhtUCfPXRUSXBQxis88LjOUvd146D6KNBnhEXg1GCHEbGggFBGIE6SqEadcvDxk4UKIbfqY8DDbITm0ByGphShvEkCx0Lnk+OC5E3zbPWeo+oprwXIy4lIxYCXvUvqI3/jtV5JsCUcfd1yc3+cxUagGitmOWYxHZFJRacTQTsg1ZsGOOV/NcaZcwKlhu27Tszm3tVf4g/RmqpajdmBnFrWKRoq2PGwHS8M2LrrUAQZmnIas6+5sFohmwZoniaGsriQS9lOsha0d/J0n2bwHGFSIKFUZkU+TgJYxGtxMFeq8uaG9DDshjpd46gSibYvreGRY4mcReMFMLb7toIDJEcOgl2EnM7QqIYnRokCaRG800/23PNG9ZyNJHJJcnYzZoYx8Tij7wTo2VbMpe0I7PSBq1RgbYpquDm/u5Us0JKJ9bdAG/rYHezRh7dUZVP2IrNOC9Q3UmGC3vBgxTxEoBoZ2FiyHumMoFj1+oSJK3B7MyDfxGbzsJY4qe8WyBPZ2WecNdW0CNKk2YYdtTPC9rH3sw27TBMnrQnGZUrf3e9sE1/WUX7zN5naLbxs8xsfXjwASLMgGi1bdMmP91UuNq1FjK8WWUKtgp4Z6qQrWQXM74hoLpB3eK7sG++Ee528dBqVrYaXssVJ0+dCHbmPwhOHwecfG3ZbWX7/A3P8x278BIVh/poRqueZQtL0Xl10wUz5WHGOt7vM7a3dSe8MwnXFp0qebFMynE1595Azvmt0G6zF1R0k3govqW4prKX4qSAREYVGpBddgIWXX89OgSH28FwsKlsV+iyrMD7n8mh7VUomNPK5q5rwTpBb8ngsewlTUVzmHhgBdUoHIk94xYbqTYc9mGBsyzj714AWNlKoHrp0EXWNtiP86j92eoYtZuKT9X0KgHlXFtNpov0M9SJktmuBZCLgkGCE+AmoTwhSAKy3eCt1eDlR4lYDS4UrexHuh1gjddbKb5HMIdwh1KtRLPaKNDjrLr+Bjr0Gu2/LM5w31XAucMjls8ZkjSsMOUOQJrjQws0gdHqCmQq1hR1B9LqR7F7Dqq8ZNLw1SmbDDNgB5tRpuPAoYUTHBXHepIl3CBNtPqQ3/7oH/xrPVIlaULKrBBDpGm9eYWjEXMuY/vEk9zFj9fIuPIqKZJ932xKOIemnXzWywiyZYVFWncbcE+qc9v3fpVqJRiPsVPuLhX72TY487Rsdh4W89yz2tHY6m2zy8z9a4qUJm/NSJVQ5H2wCMfIst1+FHnv5cdqYZ+YUOphRcz4XCisqAVeYPb+MmMRaQE1OmnQypBLWKT6+cXw2YRo/4JiaqhmC9OTA5uNSgSdjoJUkCJfB+igjTW+cZnwhZcl9adGqJxhZTBmvIx4pv+XAfhQ0uqXDFwzIgaU27WzDZajH8UMLwyYq6ZcjnDFt3gE8UTZW6rUyOpsQXU5hM0ChCshTGM0w9xBY3QswTdDcenSZoElF1QjjQx8Gr0xhcS9E0JIzEKmmrotfOaccVZy7OI0a5+8QlMlthRKm9YbtsMUpSdkxGURlwFnGyF+LwcZgzVS8m7nbQ8SR4By+O5alMjymb04xkrIxOeejUqArFVka8FpGOJEAhDCEW2lJ8FOEgKNPoSuwBFaQSTG5CbKKWsPB2XX6r+FRwxgd4RuwDzs0LmuheaGA/xRSw4zMMnolPSW2N2izAZ+JgOYoCkcGnNtynD7setRJPodiJiIoQ31QjVG1zBetpQESYHDbIby7RypWyLywlY/wrd/iiv/hBHp8s85rBMzw9W6JS+5wKpP0QNVDOe071NuibnB2fMfEpToU75lZYyXqsZyX1ry/SXg0Ig9mcacZsgTmg6gnjfoKdXWUJ+MYSyYJlW7cb1z26YkHtKgMViKYeqeoQZ9z19fZTFGZLEa4TlIBZTRAnRBPBFlD1AnpA6qYSKPGYsSWaCi4Bf6gILv3MUp3uc/O7SpL1bXbu6LF9iyHKIdmG/FCA7LiWZ3STZfBohqn66PYOdNro9g6m9JQ94Xk1Fp95kQYIPzdEI4tPLMXAolGIc7pUQ6zbKnZkMQ58bMl7llZaMuzOuPXOx3n307fx+KUl3nTrY5zINojF8eRsmbWiwxmZY70pulEbEBvRjD0l6VKhPjzEbo/QuuZated1W57VXM3o5ohs1eAWCtJ2SV1b7I6lfVHINnyAkBih7AkuDWVhPoa6BXU3uNymDIoymgjRBBDB1GCqANnxUcg41y2ovKEyik8C7IBGaWp0A8SxgA3XxTSYiVZUURgTdrbUNrG4AD2yuSPr1LgkxZbBMopHSu8ZgxpH2Qsz2aWhnNOWiosFo0rnUgDij24S0ldtUKnlm+96L5eKATe311mrekTGh4z2fg+LgJurecvCHxGL40S0zdBOOVstsFO2GJcp0/cs0s4DwDfdKBEXMToeYXOlteED77eP8UlYRHET7zRViHmKC3FNW4bfy34Ayu9WISFQtwwa2T0Yyn6LRoaqAyYX7HYwo+NRUJR164r3gYJkDq0F33WUQw+VIbqYYnNh7lHP3AcuIc5THRkCkG4qxZxQt5V4RyiWgoKeHRJmR7u0ZyWkKbq9g2QZpvIhIbnfjtsgQ286BlUoMS2WMupMMCWhe5OEDTFZtcTj8OzrtlDmwqYfUDmLnxeOL21ydnWO3zt/C2887rmzfYmT2TozF2ONDx5rv8JFEbt58tblZjNODcVcSqfbQdef36vwT5brx3mqUA08PjGknZJ2VpKXMX4SrKV0xxNNHeKVdMvgMoOPhToTikEof3KJEo2FeAzJjpJu+xAUdgGqI3WjfPuWYiCA4BKDDAhwJa4C+e6z2EFFz+QBLlQnGPGoSMAhFh6NwBybsX1XDwDvJ1SdYJ3bUvcUwG6hgbeCqTXU7gMuDm66LTWUnOXC7QurxOI4X8zRNiVVk5TzKlTeMm1A6fslKnDLTSss2xFtqRkaT4eCj+dtPvrwSUg9veae6yzUbyPBU9m5TdkwgrYcxDXZMyntC0qUh1hwtuGIRwFobschjimVQ7OI6bE24yN2j28hmnlkNEFvhEw7BFiObbyrxnjYK0fXxmpWCRnkPDxTqQQ7jUi2hWQLeudr2mcmkCb42AajwymtDeiseEbHLPmSIl7QxON6jmJoyfotxvcv0ntqhNY+xPta+2951m148i8MOPJeR+vijLIbqp9cGjxPNWCLcO/JjtJZqbEzz+hEwubdlnxrwIOtPtHyDF8Z8iLmydESx9ItnBoKF+G8CYiG2FElNVWS4BOLzS02D+vNJwJx9NzSx08h1608zcygsaLHcuZ6U7KopvaGwig+bkhCGk/LFrtZ5war1guTJ5woWBFRrsRTjyl8yJpWPmSpE7tXE171GnxfYUMCqokDPb/Mcz/kSLrN0A7Zch0yKUmsYxqF+/VJ2Di+8LbH+M2vuIt+d0bPKLNWD90CFGwFkvuw0L3BJVe7nrKXFCl7hnjS4CRdTOEj2uZKEqRqGDSeni5SzPYXJK+J8u03vYv5Ji0+VcjVMrRTvuJVH+ZX3/dyZkvK6DZHsmGps4T2mmfwtKOYNxx72UX+0a2/wq9svYzf/eirSXeUbKPGTmvspMJujqBqSD8GParDPYphTLJT046F6ZJBRTCVDxUrEKpH9lnEB96CaCJE0+a9pirK1ICE9eO3LT5urOs8xHTjcVCcplbKhYxkq8DszIgqR5paXGrwqYQM+m44yyhEMF02tFdS0q2a0W09+h9bwxSO9qoP37ufIkq9WLFxd8KRrYiqHZI5IeEX4tqmCp5r/3SY7yuvTCn7Ifx36tdy1u/JmG51kJ4Pte8LEWtVl62qzcVpn9EsRVWIIof3htoo2nEUC4KpDcaBLYOuEXvt4Z3rmlEKRGNBvKEahgqIHIiMZ3SoRnyMOEs8sc8ht3CJ4JMAnC4WHJp4Kg+mMNhCsIUhJigRIoO3wdLUKHxpgCoILjfQaWpY0T33fb9ly3WIpcZKTMeWbEQGjKBeqVvw4MYRoifa7HQyerdv7cXnjLtiPQfmpZAwEg2xvNmS2avrtiXkc4ZsXfn408c4cu82VpTCRawXHSITcIIffPpksGj2WU7Fa2SijLzlgusw0YRb41VevnSB9LU1v/h7r8FODOWhimo9QS4r4xMRvbvX+eunfpfb420+sHoT8Th4I8n6DCkcZnuMH3TRVoyPDVU/IRpXqBVGJ9JgRcS7DDsK1iBRAmnyx7vHf6ZFleGTBVU3I93QJqYn1DHUHa4waYliZ0L/dHCti56hHAjbN0dkG0rvTIGZFCBCPcjYui1h8z5Pum6xBdQdRds1pimJHt3qEE2pOiEe3X/IUCykzBbkCrxrn8TEHpM6VKDsxdhK0bzB8BI2EJcqUgnr96WUvTBG2ZqQbSjr3z0l+sWMuUc94+OGcctT1BGFj9iuMlZHXaarnZAkEohGlmwktC+GMIf4oKiDx+vwdf3iJIxQIR6HKo5iEuEHAXLkvKE1P2PmBR/bEACvpMHhhYyZT8CnCoMqQDSAqgowFLWGemyIZx5TK3VmqLMmTprJFWtMwESKGheoy24Ab0yAzJR77EaRcXtUYhoJ8Ug5e36B4eWAINjROdImjuNt2GVdLNhESbccZGbvxD4JcBtxSp2Fv3EpHPu1iEfefj9V24RsfpN1zucM3b6w4v7k6/2MiIBFqRQmGvFUucyG62Azxcg2Xzb4KO+982ZWPnSI3ocSopmSDy1qYfNSn/yOmCeqARfOLtAdCu3VMJvNNMfP9/BphN2akt86T9kPpbrJVo1LYorBFcvFJQY9vES10CK+sL3PgwLUjuTcFgvxPOOjMVUnGBVlb9fNVlorwvCpmmwlx17aRNsZ9rY5RicDdMtUEqzMTkrdTag7FnHQOWcpB0p+xIFRojRMAlcF1MvkqOK6nuyy5exXLNF/xpFu6b5bnp24RLcS2pd0DykRTUNlGUA18GikuMw0rEdQDjx634SdrYz4oXnmayWfM3uY6kvrA55tTbk07jFZb5NdijDlFTSGKWFyTIhHkGxriP3Wik5nIdv+YkGVpAlom5mlchYjYI0nbdXIklL0EmajGCnMc/5IE4XIk6Q1xig+tVRzDh9ZfCIUc2Aquwce37XOdjNurhUybrqL/VQJdav7HvdUMqnIibF4YvHU3Zi6dUWxRSsxyTgkwoaPC9NDDSwlksZlCJ8LmLbdcsQQE3Np+D2a6V58rGobVl+hRMszqmmM2YlItsJ4ty/uP/B5qT0i10ViKbEoa3WPlbJHLA6DJ9eY1yw9yzvuSdma62Fyg6mEul/zppc+CMBPrbye9GKEj8P9VsMMKRzVfKvZdAwb98S0VpVkJyyuXWynb0K+rbM7aNJM8egGyLajsLZJPNchmouougEEjkDvtDJ8Iic5u45uj8LHsxTJC9LVHB9H1AsV5XbC1u0J3Y7FFh6XBLeztaJU3fBnplWHsugGR4oABvqPWWbLwaqdHgreob8BhiVds3tFIbthqlBAQvA8y4CBrTsh2axtRzlNsDsWH8HWHQZThhBHdtFSFikPuqMwiol3DNE4lPOObvXYw1NQwV1sUXeCgROdV6LchdCOCNeqPa+fVck08BCBoogpywhVIUlqIuuRVklpfCixVEK1UIPhi7Iaaz0iiok9zgmuA4VtalQdAY5iQnJEXMD3aRpYU0yrDhUYuyTJ+21hAVZ0z+qMxXE03eIdr42xeYhT1R1AgusZ5SERFhQngUBZQk27ChRDS9UKlr24EAczDXIBD3WngXBFMPcw3Pzy8xxtbXMp77NZtDn9gePYYh8Ho5HU1NjG97klqrk7O8/I3crj08NMXdqUZRrmO1OSE440qomM56beBp83eJRcYz508QR2FjYXlzZhnCxMV1Eo5xN6Zz11KhRzQQMUfdMkGgJkR2YF5aFucN9vhAojCAQd2zOivEU0EUxPGDytzH9gDdkeoc4jnTbaSkOhhfeBKNmASR35YuDoW7/Hkm5a4nGYO5PjQrFUQ+KRphLP1Q1+WsAtlxTjlIWHlLWXgqwK3Qses88b7WiWMW+C0VC3Qpiq7DXhBKGBJXpc7DAzQzwWdBbhIyUeG+wsfC4kUxsimVLQjYR01ZBtKK01x/p9NuCFn+2QbAsLz3pmi7KXqJOGmi6UCF6bXH/CqGp+aqhmcSBnrQ1V5kjaJVHkabVKIuuonWWWx9QmQkSJYkccBY2naUVeN5Zjr9pjWboSEAz1qL42DaWdEsUBU+rU7pEj7Lc4NSTisHicGO5pnef7/8LPkWtM2xQ8mR/mx//wc/BxhBmHZJgphbIvZFtXFnTdMnvA4GiqxE3M2JbShDKufGc0C1jPp3/2dj58eyBLwSrDZ9ljXt9PiXCUWJxC32bcHq9xKR1S+IgPbt3EdtkCQrVZJym5qbfB/b3zLEUjenZGXsdMVtu0CTHzqivUY4Obxkit1H2LKTyxB28t42PB+vINx6MoZJse32uRL8SkmzWa7n/CCAVfFJjLq0Qnh/jE0lpRho9NQv19FCHUaL/D1v3zDB7Zou5nYIPlZWNH1XHkAr7lmZ1QpAhWu4/CRmwSFww2Hzgidss61Qn5yZJNSUi2gmU3WTZcRQ+6L2JnQu90SBoDeygAl4UafRmWxLEL5Zd9KEsTch1W4agjH8ckK1EoCe43FWcdH4oLMHQuefKhQY0Sj4TeGaWYC/mE4RNVAwn02Gl93Rvsdc8omwf6tGzFME2iUFVYCN5DaWJ87EjSEEhx3gRQu3KFJZ5mQ9lVfBKO2cjvMcyrl4bUVwJfIQRF6mWP9zN88Hqv/tMvRjxGfFDoQKk2vKeeSiMG0ZTW/AwX9yh7BlFIt2C2TENBF7CcddYsfMdeKwE1hAVnA7ZtN16zWxnhY2H+jnW+/MSDrFcd/vCDr7zi7uyjKGDxTNXiUQ5buDc9R6WWJ0bLjIoU54XYeg53Rnzh3MN8Vus0ToWO8TwhFVjdq2eu202Jah7vhTZcE+ssBmHD0WYmexsQDOmOQ2p/VQuUG2BXkVDwoM6Trkzh5kHwRqyENhoiDYdll7IvTE/2qTqGaOaJJ1CoYLt1iPc3dHQau1As4gQiH8gxvDT13CCzYGioVUy7plhy2Ikhmga43H6HeHwE3Qs1LgvwvjqVPQNAI2XQm3FyuEk/mTVenjCtEz5y9jh3HFnh7NaQSd7DzkJ4wrU9KoopzN692UoxtcHdPWHnPk/nt7sBL1x4bF7jsghqz/WSx7wAy7Mh7XXgMks59EQzocbgrcUZpchjxHhcZUNZZm4Dwa0zFEVMktQU46bWTkBLgzZMS1HkqOvAJuNcoJLCBNdVMWB8CEt4uVLLfAOIU4MVT4KjVLv3oAsfc9fyZR5f7CMrEBUB11p3TKh775g9F2UXyynuSjJJo8AeFfBugO5iI4NLP/v9RT7+ZUc52d7AlgFIv9+biiJ0JDAmbfocQwhp9MyMLKrIopqtWRaYtoxjaKdkosSiOEIpJ04oFgKsR1wYg3ga4shVO4DNXSa4ZtOhiZWbOmzw8XaFxrap0hJ8dgNYns2upmWJvbSOymCvoESqGrc8wHUT1AjdczV1xzBbDIiUaAyTjQw7V6C7cD0leGCZw0R+jy9CVaidQBFcVQgGCatpYF1qecSZplfSPg1FI8FNN3sQRpc1ONgqWNtx5Hj13LN4hPdvnuLc9oDtnTZilEcfOhHioYRktG87bCe0GnDbCWACr2wFxbJDZzEysWSJMDkKc4/WRKsjWO5jiiqETK6D9/X6oEoa4nSdCyU+EtQm1G0hGgfXwHmLk6aKLvZBaToh3jHUbUvdciHhkUbhoTdJJY09vjLUxuz1NNqTXQtVwTvBYPC7PY0KueLm75N4NWy5NpVGOCQ0M1OLx1BqhBHP8fYWH19QOhevWJbphjK6KcR40s2Q9NCGSARCxYkoFIMQl9mt53YpwQKtwkTrnvV86GO3snlnu8nGy74vCAgojI7UjBpkWYLHinI42+GJjUWmk4zpNOV4b4tMKgyw4S0O4bH8CNF2tFd/bJta5DoVIoIlUXEF4L3bqsPHSjwR0i3Fzio0MtiZD4m5aL/rEK8S5/CjccBwxkKxkCJ1n/WXdOmeD1AZlxm2bw4J1N01EI0MOgfSanhzL2Zhoz0WPD3fdGhQwt/s8kPQZJlp8gi7tfOtTb/vlieEhKhK2CDrdvCubB74EcazlLc+/XImkwwupkQTg57Kuf3oCmcePsnsREU6l9NphWC/qpBEjsvFgGLeUq6FzXfwsGHnViFdD8U8rcuCxiaQuucVrG8h1wkav25WJVNDNCpQa+hcskwPRQHI6gRmoMaGGnYfHpTJhWQr/NRt05RURnuVAy5R6gFopdREez1avG+szia7rw2FncejhcHmQjzafytrperxr555E9Z4jnW2qL3lwmTAcnvEVy59iHes381OmVHP1bg4CgvGhLjl+IQEerWmumhvIjfKsWwUp9TsJZl8wya0S+pQdYXlP4DVp46TpcEauQGiGXvSGIWkjeUZi8MIuDLEsi9O+nx4dgqP4US0xarr8ND4SBgXbUpvkD0F4G0ATttiF4kRrHMfK7YMNeLJyGMa5RmPqrBIbgQRwAR2e1TpnitZvy9lesigd/QwFUyXInwCs8VQahnNwhyv2+EU9SzCpC5sLMsF0YWU4e9n7NwCdc9dYeg1gTldM33OZupboUlaNBHKrtn3GHm6HYyGqi0U86GyaNfAUIHZeotiaknXwrUWt+U8cPI8t3ZXOVefJF6PKPMORT9hOD/h3qVLvLx/hh8bv56isLgkCrHwCNoXDOVAqVtC55IP3kq7KSgpAkl0iHu+WLXtbQkTM7YkowpbRIFnLwmuvKkkdAx2Eno6NYoh2QnZZ59ccbfLHvgGHIwXtLSBSV4IMZzdFhwqaA0SBSYaM7UkW4bWZb1ime6TROI5/dQy8ZaleFnE5Y8dItkSzt07Y1ylTP7Vcdbuj2i/Yhsf96nasgf87z+t5IuhZcXuhKnbgql0D+caKk+ukGCEMtYrcU9Jhdaap3vek8/LXkO+/ZYYjwE6Rsg1gOU9hq4t6CQl6wI6ibj06DJnF+b5wNZJvnDhEeajMQ+uHsHmuwDups7Z03AeNAiMBvVhywC6sHWI4ZkyIBt8J4XaUw4T0o2iIQfZX9E0wQz6aBWqGJL1HJellMOw40XjkEisuopPfSiQiJv6913KPS/43AZuW4Fqvkaejjj0Ac90yQZ+3Z6CUXzcQAQbljJbCJ1zES6B9uUAndtvrLRULizxKGTKXdagS3b1lxN85smXQRYKTh7a4PK0S+ktk9tK5v4oZu6xirptWbt/nkde5/n4yhGKrQxxwvSw0r4ojI9psGhnDUeoM6Ap6ZaldW70gtAY182qVPYFjS0aGaRWklFoyAaN9Vk2loKa0ELBhL4hdRZqU2n6IxdzoZmbTxSNQ/AbJ4Ga7OqEUMMaDoJWwdVPtg2tFaV3vtr3h9+yVaiUmgnL7REXOku4U1N++OU/z3+69AbWFixf8JUfwKvhd5ZeQftiACaHDHqIx+xiZ2mSRHUWwNOhuiIoCZcpNg/jLLtwJAkTbnzU0lr3V0pf9zuOhZCIJxNwqsSAQzB4duqM2DpkK6Z7xjB5+Yz7OueYuZvZqLtUGrEzbpEqewDueKKk27usU2Fy7FrpAVRNE9oIYztbsEALm7umPfH+K04Irrg7voR54gwyNwQgW294NzMlP+QD7VocoEZaC2YrwaVQLDnM1CC5QVsOmURkFy3DpzxVG0bHLd0LnmgWKvnKgQRGItesL4KB4xJh8LRHmkTkfhOD7PIQ7GaSA09vE7uNFNOvsNbjasPC3JiVnS75LGE96oAXtu5SRicT4ttGuEd6TD68gBoYXhTyRcgP10TTAJL3t8yoL2XYQiiMYEshKgwUZagIdP66XPfr9mfKIVRzLcz2FPyV/jF7RL5NIkc0sAlJQ8xadyFfEMoBzJag6ip114eud/I8C3L3V0NQqtB8JsRBkk3on65IL433/eEbPL5b076k3D+4gEaeubd3+K63fgufP/8ow8em/Pq7XsGd7UvMbin23HMfBytDPEite7e4R7G266ZGV6xMGldmt2Jrt+Ss6oYMtDQUdvvttgtKW8BeNRFjCeiDjarDM5cW6ZwN5bevveUZnimWuLm9xpf2PkbPznA7yR4lmdoQwki3HFEeyhWBvUZ50TTUi5syKE61YXzqtmG2HBNN6v0Oiz9Hxifb6MmjuMU+4j29MxXxSEKCxAmymyW3HmpD+2Io44w3DMmWMHjEsvgHMfMfNhx794zu6Rkugclxz9pLhKodCiqSbUi2JVD67XpxJtD5ideQwNj/lMHexraXYTdBafo0bCRxUlNXFj+KWT0/JD/bw57NiD/aDXR9E8GnSl0bymMVxfGKeCz0T9ec/NVt2meuhAhb7QKWC6o5Rznw1C3BFBp63b+AHlfXzyS/4JgtxSQrMXZUEM1aDeVcaIVgaiGaClrKXshKjVJnimSNG29C7EWTwHodNAJ77sXuLqRXM2nXYXIlG4a5Jyuy82PM5s6+awqDks3N6J0PnStNu2a6HONvnnKxGqL/ZIMjP3yUf3vk8zh1fI21wTFMFax1H4EdB0iONEmR3cVvSkJGuRUoxnbjNkj4Xyr2yFUgbEy759hvy1OAWIK7Xmlw3b0KE5/w7Gie9KEWVQcOveECuYt42yMvJftQm6f+/BIv6Z3FTA3pJmQbAQSfjP1e3X+dNYvN7IKb2bPYd2FaNg/We//p2W7U54awPtUGIP/OF8yx8HBFvFMSTWqy9ZhoKqGp4bxHq0CVn+4IvfOOhYcq7LjEjGcggu9l1P0UHxsmJ1OqfvDwqr5npyNklwMkzrjG5TcN9tEL6RbP4VC4ESSE+yCahBi+axq8IaHx3cI7U5Z/9wKTu5dZfYmhGih1J3ymWqixI4t9uIul2Wg3ldFxi6nbdC6EGvZiDrw32MjhYxtanhtDsl2ixRWCHdVrTxpcZ8xTkfmS6aEW3dMpJq9Itx12ZpCm+kUcxJMr2eHAjh3cU7XBdVAT2Jl8oyx3XbHdMjK1V70mJJ6oQ4KotaokWxVSlOhkAtkfv8rPpDgMkfVUbcNitEOrUzK6NeG/vfbH+dDsFK+aP81bP+cYw3e2WPj6c5xb0D0SEHEhuy5eQ3zYNLHNBnaz27sFruA+1Si2qfu9Gmqyl3m+AeBbDsO0cddpXPeJxpwrF3j26WXaCsffeJYHhufpRzl33XOZ1du6HE53eDZfJNk2tFc8vSdGzI51cHsKM2ABdxEJz5HmrWgarKvhwznJuQ00jiCO0Bsg2767HkZ3VvgkZuHBwPwkLmwUpgqWxW4vq2QL4nGN1B5TVLA1QiKLrWqkcExu7ZPPmWazDWtEfODMjSYhZm4LiCehnFWj0Dhx55RtDB32PWGEBoIcW0oTgglj4FPF92rYjuk/WzK7dZHNO2LsazaZbbVhO0ZTj7Qc0VxO/L4e/dOO8RFLNA2QwPV7YupWiIv7VClLi6vsHhJBLUTbeejc6VyTEX+RoEoiMD+cMF5s4doxakM2M9mJqPqw13fIhx9p3trNFO/CD3walICvAoYtYEY1fC4N5Zi77UWb8UU8RBMT+PzGBZKX+210AoEKbtDKKbIhlUb0Wjlzv9vlG9e+i5s/91nWf/IkcwlsPOD5ou4KfzR/M/E4JppcpfCa2F7dlj2F6TL2FKrfI0bRPZb98IfsWV17b+1aY/sotRpyFYwEy7MgYDfHLkVKw6v/7Mc5km5zuegDMHYpXg2Xij6/f/aWoAATWH9pf8+a3I2N1Zlc2TTkCvpAHPQv1pjCk2yXyMNPU89yxEjo33MDgOR3iyDuvP0C45Mp1bPLqATlZ0uuxHWb0E48CVZQvpzCckqy3MWUzSL3odOAOIhHkG7IHk64HEoorGjp3voyDupMmR2rkTKA5FuX9t8aF+eIZmHCemsCryaC8+A7QrJpKOYj1u8JKJ5j3Qk/cO+v8HSxzPliyK88cR/lSpvygZzRvYZoLZRkti8XeJsyPWxCbLeGchZDbjG5CYp6QugZX5aBEATYbd54LXLd2fZOUrJ2qGa2FNO54JHKEU8U0/QeQsCn7JEz7Mbv1CrVIASpNVKiqewxfkPIgkFDALJriSqhv42HaGJDq14XmlqZlRqtasrJCiLyrar6H6/3Xj4d0jMz/s4tv0X+f8c4DN986r287TtfxsB4vnDpEf7tFx5GNhK++rPfxyCa0Z6f4s8N9trn2jK4T+UgTHhbhAddhwrGPQyjOLj0tp8j7g1Z/LwvfU7Pnr3KpMb9uRF2lS2fkNkC26A/luyInbrFF3/WR/mCwcOcLhdJTc2zswUKF/HYxhI7Dy0EKFwUmKbqjjSYR/Y8FxXI8y0e/5l/zgPf9IOhDXaD6Gi9+9GwEFxDLQYoFlwZ3LF9Fmk51l/peEl7m1sXV/n55cOoCcw+LhbimRLNwpzYZVB3maXqhNLdsmuIZ1fcSh9BthU6N7Qv5JhZjajiWjHr97cDCXm7Yd6vg+HSe9Sy/aoCnSX4GIrN/V0/eMUlAcweyMHDMzel4DJL3YLRCRvimm3l7AeP8c/KL+YH7/wlvmP4KH976d18sDjMP3rwzUzO9pAaJkcNnYuG7tkcH7dwcUD5XPyR/07SnmP5s78UW0D/TB3inbvXcp0EwZ9SeYrIswRC/Js7tx+imxToQ+/ko+9/jNcd/2ZcJ2a2ZKhbQSFCqEfejafsugWmDvyWYgntBSJ4+nu+m5u++x+QzC1iXMPB6JpWG9Gu9RlMK5cqVc+E2vC8Dub1DbAgjChDM8VYz9SnDO2Ev3r893AImVT8u9f9LO97n+dnvukcl56cUMvvYBeOcOz1f47u3E3AFcW5l3U3wRJR25SxerjaDBfH3gLatcJM3Shet38hTxF5A/AvjIE3vWTK7bdZvvf7+7zkpTGZOCo1vHn+wzycH6NtSqY+oWNL5uMJf7h5M8PTsH1n8ECy9QA78vEVakNt7jNrDXngr/zTvfFAoXcudMjU4nnMKH5/4xhXr59T93X4wc/7BX7/Fy7x73+xpPUXP5/Wiuw9v4C+CF0Edu/dpSFMEcJggnhPsh1Iod/xvu/j1a/7bsyhQ2zc0w6VaDZYrPFESXZkbxM2dYD7DZ6tqNsp4ztLZHV/SbMBUE+6VVF1Ery9AuOLpuGaXcezYp5m+8d/nfLiZcQIZw8v8y3f+sX8w698hL/ce5Y3Ziv8/qt+gnMvg39w+i089ns3s3MqYf7hCZ1LFRt3JQ16RbCzAJk0FWRrOX5nhKoizl2Xyw7Xbnla4LsA2lFJEjl8pIyPZ5hamR7VPatzl9A1VMtchTm8erHDc2J1GoFrPiu1IMagxoOtELGhAskq+byQDy3xdoxNEyRNYZ+Jf0Ovdo9XQyYVE03ITEmlEbnGTHcc//rbP843/uNT3POml/KxrSO8/ed76DiibnGlPS5cacXQWJF7pZq7TOMqTVKt+bzfDf6DaUDzttwflLyI9IFfBf7aqbuz1/6bXzjBMx/cwiSemMAkf1t7hR8//0YePH+EQ/M7HGqPWJn2GGazJvwgqGlif1eFJIIFFtAEXh22sHuW9+7x9kMXqW+E9sKfWCzwXTGOeTsmkYqFaMyo6yiq0OAtGTVeVSLYCpLtmhq7F++NcqV7viDaynGdhHIulDdv3Z5gj0R7CJdiqNQdwZyDaKdGbZhn4kISMpo6hk8ZxrcYijnd/2y7V6KdArOc4GKwue6FYUwJZXvC2o/8JPPf9Gbad70CH1XI5Uc5tDjl3z36uTx80+Pc077AsXiD89U8DwzOc/4lfYa/1cHMKlqnV5Dbb8GlgQs1qsJ3xFOIVnZwVeOhGBDvX5SY578EvkedZzGd0ItzTOpYv0/IN1dY+09vo3z2PLbdZfGNX0L/npfiLZz7iR+h86qX03vta1AD4/d9gPF738fhv/WdXPo3/x6Ac//m/wcIi1/3NUStHis/+7P0P/v1bL/73WT33c78N3w56//h5ymeOos65fKxm7ntvq9kedbBlhWMr+9ZfbpF0L0WGE4NFt3DNFoMF54JC/qVX3aIUuFQP6f9qpcgF1Iml1ZZ+YVfoLh8AUTo3nwnR77gq4hNCxSKC+c499tvpdxYo3PHXQEG1r7qu5uwx667bivdT7f9DgBV/bnb72/9bLel3Pr6ZZbsiH/yQ5s8/syE9O/cwcMP3gR6gT/8un/NyR/65/TOxXzoV36Y9K4TXPrw01SrK/QO30b/1V8L/Q7FaJ1HfvYHOfpnvobVP/hNkt48J9/4dTz81h/kpd/yLxCxTN/zXt519n9Sak5Mwq3cxxEJVv15fYbTPE5JDnC7iJxU1dOf4bH5l8D3VA7OVguUOiYSjykMs8klLv3KL1OcP4vpdjn20i9m6dhLUIGPv+dHmb/1FSzd8RrSTcfKo+/h7PQh7vrSv8FDv/sjADzxMz+EAMc//2uxvR5nf/NnGL76DTz13nfTvekOjr7xLZx/288yu3gaVc/K/Cle2v0C+DM37ZX67qtIMAjiiafs2ufMZ/HAQ1so0H39S9B1i/UGe9dd3Hnz08SXP8jPfetH2H5yHY8hvTti+YvfRG+zjZmNGK2f5qG1/8n4R7dp33U3UQ4mVbItpXtmhr+0cuU6vF5RoNfo0V6r8vwg8M5qa/qWl3bPsNLe4FxScuerH+FdX/+zzH/NF9AZfjvT7Qtc+vEfIzl8mPjYIZCws2mkaOLR1AUmmH7FoX/47Zz5lr/P4e//LuKFZaQUioefwo1HuNmU4//PP8RnNVqV9D735dz1vV/BJI84+0O/xlMPvZ3uPd9Ad5Rf55P6zInH4BAO35xhLPzH73mS13zZAgv3C8cPbXJuaxkFFl73BaS334Ivcy79zE+x8t7/yfHXvQVf15z5Hz/J3Ks/h97nvJ7Jow9y6a0/zcJnff4e6xI0sayqIVRuuo8aty/a83HAichPHT0ZMd2uoJcy8hljn7DhEuqtIXfde5av0N/mO4HuzTu41QWSHZj9zoe5+c3fzvJqj0c//lbOvedt3HPv12JdsAxmzzzFPV/5PfiWwTVkwT6G7HLOk4/+Mq/mC+iYHoWfUtH0utELPMujvJTX06LL7/C2MfBzwOs+w2PzQeCdW2v1W4Z2ihVHrYY6m3D5R36Mua/+fOZf/Q1Up1c48y9/gvabDpMmi6DaNLJTspUp9VwL3xB9PPCGv8Yf/OL/ycs/52/RSeapO5aV/Gnq8QgdTTn59/5v4i3F5xXzd72K3hd9A8XQc/mX3sojz/wa82f+Bm94y4f5ic/wQHwi8e2QIDF1g0PdZRarhU60jGDY+LGfJ33gFQyjW9DtFr+/djfq+hz66g6f+9oeOzvw7u/5bdZ/9/+jf/9bmC7FfOij/4Njt72Bmz7/jWxcfJCLb/uvdO76POKxJ1qf4N0fD+mo6jXbHtfj5H9vtTWlu7PCfdl5DifbvOzRX+PkCbjrLbchkaU7OMHg5vuZfeijJNsNB2FJgDJVBlwTuKpNqCSCPb7BPW5OEYZf8kVIHGEkxXY6HP78W1kY1hw/XLD8da9jevYpNm+PmNy5cB2X/+LInzTQwfJU2l3L9/7s3agIP/WPnuT73vAunv2B/0ZdbhMvL9K9+U4ijYnTHnOvfSPTM0+jBmYXTqPecejuzyGZRfTvfCmtIzftJYn2EA2u6b/S4B1Dgukzb06o6g7wBkAvn6958ytO84/+6jkurypjn1H6iLn2jNfMP8usySZ+9c0fwr1yRN0W+g+8kl52mHqhxeFXfwmrlz4OzhHvhLjMyTvfhE1SrMSBdZ+wafQe30IUxrKDU0cqLboyAOA8T3GKu+hIHyMG4CLwUhE5+ZkeH+B7d9Zr3OYIS2BAKh58mGhxSOcNr8IkhuTmo7Redj/r5z8ass4K8dTjI8gPt3Fp8HDSbUe2GjaIbGVGPK5JturAdibC3J/5YqzGaCchanVYOPoAJkmwUcbia7+QjeoCAN+w+J4bAutZdyJ8EhJmKuyFKvrPKrHJOPFXvhNXW7Z+9hd44t98Lxd++ifo/eGEw+8/Tvejr+GxX7qPpx+8l+ErP4/ysaexpbK9cxYvnv7rPhfXtSwvPkBn4QQANndwcSUkF9Vf+dmFLF2jXHO2XVUfjPsZv/YfLvDKO4WBqTGXxjz20SmPvfnf43fLKr1n4ZZXkG6GGI7NZa9pnMkDGN6Mr/QJkcpgSoM0FRa208GaGK0Ida1mytqP/TJPfuAZylGBIvhZyeRITTK69n4jL578yRcQSx2sz9s6fPs/7+K5lTNPlfz4332C0dveTvTGP8/KL72d2dmn8WWBqmKzNj6CerJD3BkgBLILtRD35/a09W7pos1DlZcoJOOQea0G+7MiVPUR4Jtuub/zjf/gXx3mn/6dS/zwD6yxeHMHK56jnW0ANlxowzxxKa84dpbTqcfOD6lbocQ30zlUHaNuiW+F2F6WDELTwPpK3HzhwyPMk+e5376O0/5RHtEPMGCBO3iAjvTJmfI4H+EJ/djuJb6UECU/BnxGXXdVfbA3jPi5H93kpttCosatb1A8dY4z3/YDVz7oPfaBV+xhWW3haF8Mzd5M6fdYz6WpiHFZRNmPmS5HjCuD6XTwgwjJIarAbBWcfc8vs33+MVw5BQXvCya35ox8KyR09zNvIKEarOgFJIGpoGqFQpFs09MpBX/iMOYtfwm3WBKNznHp3/wiz37s7by09yU8+dG3sVlcoPYFKhDFLdqrjm0f1o9RobUS1kPangssZqtT/HQa4Gti0EZhynUaHdcFVYrnu/ziz+3w1NffyYXyMu/r3sbSy57lth/8S5y5sACTaG9xrxuHf29MMZiRnyoR66l1M9TtLl/JiNphiSznoILfLENo/UgRerAYz84v/y7FmS0e+Hd/GTvssfXEKg/9H/+Z5NiYzcUM/vN13e9nVHxj2Fs8iAH1HLsl4/VfucRv/MxFNn7r10GEW7/p/8S2Ouw8+XEuveNt4W96ParxNl60AU9DtbNJMljAlFe56k3/d1spUe65/MqY9NH9zaIZlGO3tvictyzyGz+3yfLdCabY4c7uZWJxPHs5jMtq2ePJ7UWkFvzqFulc6Muer68iYomTDnkZFK5p2vaq5UrriAefAGCBwyyYwzitecp/nEf4I17J55HS5hR378U/36H//SOq+srP+IA0Mr8c8Vtv3eArvzV4TJ0jHaZ33cyhv/ctmEgRUcR4hr0ZFzdLonfE+KrEFmFxF3UI8KuAa4Wlu/aSDHs0xrWU8rwPzEBNZZ+dwdqH3kWxucKdb/6b+BMDqmfP88Rbf4i/+NL3kWtMZNw+51yFqmX26OiSkeJzKOaDwTX/yAzxGeINo46lbp8ge8lnMXn3H/LE1m8h1vK6u76dKOmwsvUoj1z4DdQIHd+l3tmifaFicixGLcyqLRKziFxYC1A2Y5FP2Ifk2owP+VT4twZq8a2q+g4RWW3engNmwBPAvcB5YLM51iI4lTlhh+82n4uB2wn73GPNZ18CPAPsNK97wM3AnqkAHG/O+SQhzHAKGAJ/1Bx/APjr+4VTa8bkk1kxGTAgNL6tCONwK2H8LKEw9fRV7yeE+xfgPuAysNqc4xbgEnDhU1zWSVVdemF39MJERO4Cvgx4K/BhwjXu3ucm4bk+QrjfUzz3Gd4JpIS4adkcV8LcSID7r/osz3svIsyxHcK8O0qYR48133EMeIowH08Bf01Vf+HTd+efXA7WzyeXP9XrR1U/6Q/wLPCFV70+QXiw72xe3wn8WnOB68DvAC9tji0CvwmMgPcA3w/8/lXn+g5CHGoL+Brgc4Fzz/v+o8A7CXn1x4FvZxc+H46/kzA5P+W97McPYQH8PGGBTJr//wPQJyycP2ru7SPAd199/8ArCYpoRFBKbwX+yX7f0/XeZ3P83zfP+Ungr36CZ/hPgfcTFMGvAIvNsVNXf/b57wFHgHcB28353wncc9Vnvx74eHPes8B/+gyPy8H6+d90/XxKy/NADuTFFhF5J/DTul9VLgdyIC9A9p8t4UAO5EAO5E+hHCjPAzmQAzmQFyAHbvuBHMiBHMgLkAPL80AO5EAO5AXIgfI8kAM5kAN5AXJ9IPm0o1k6t1fd8BwRCaw4tmHHiQJ3J01FJkb3CGzD5/XqP/2EshdRaNiEULlCglEqUiuzcouqnOxbnZHtdHT5VIJpCEJqNUzLBERJI0dqalJTY/F4BEVwV/XXDq8NvimbcWpQwPnwXl3bpgUJpJuhrMi1IqRWTOWoO+ERJos5hQu/F5d2cKP9G5Mo62grmcNlV3qr+xgk8XSTgtTUGNFQwiqeRGosuld1KoSGcaVGtKTCNeO2O0aKIA2Q2WGweBRh6hPWZx3sKLCx7zKy77aDKc6fW9PPMP71aomyjnZcpymvbRh8osBy76NQCHF1Lx8IlTbEHjEKuQ13HQXmLImUJKpJmnrV0tvnjNFuS5a6tJhciCceKWuwdq9KK883Kd1s3+ZKnHQ0a809p1Cv6gqSuaZqUZ7LzCZ/nKntinwCCreG1VKadtWm9EjtrnTLVH+F3tJYUGXmdijr6acck+tSnmlnnted+hZ44jRi7ZWypiyFhTnKowNGJ1LGJ4TpqYpDxze5e/4yp1rr3JldpGdn9ExOJhWZODJxtEXJRLDNjbvmxj0w8cq2j3m2XuDpYplHJkf46NpRNj++yPIfeQYfXeM9F3/6em7h0y7xcJ5v+28vZ7Xs8eDmEdbGHZKo5nBvRD/J6diSXpzTtQVWPJUPq6NtS7brFkaUUZ0xrkPJ3lbZpvaGaZUwreJwfJYyXelw8y950gtjMFDNt0kePM3oc25j7QHLnZ/3FOdHA2pnePS7/tN+Dglpd56XvfZvMDoeUbeEYl4ph57OiRGfdfQ0x7NNBtEUi7IU7dA2Bct2RCyOSi25xmz5NhOfcizaZMdnjHwLi8dh6JgCp+H/HZ/tMVk9nh/hZx57Fdk7e/g4NMYrFsJGbwrh6b/33Z9pNqU/Ni6vG3wtVDU6HuNvPs7aK/pMjgn58WqvT5eZK/EbCZp6+stj7l26RO4ijrZ2WEjG3JyukvuY+WhMxxScr+Z5Nl9kp25xbjqkVsO4TKm9walw6ZkFek9FLH24IN4MZDqunyCl5wN/9MP7OSRkrTle/vq/2dALClXHcPFzPdKuYRyjooGm0gs+8ZDsdkG8SrddbcvtGmjKXldbWwity0r3giPdqIi2Z5jRDKo61LJnKToaI90Ouj3ivdNfuaZrv24m+eeIMUgUIf0exdEBOydTtm+D6kTBiSMb3Dd/kdtaKxyNNzkVr9EzJZk4DBALJCIYguI0smt5KZUqucJULRONmfiU3Md4FTpJyepczWwxojtsh3qBfZZKLWtlh9NPLiOdmptu2qSf5BiUiUuYuZgN0yY1jvlkwsDOKDQMfe0NBqVlK6wo0zrBa4yI0klKSmex1oOGGuAktWhsiTemoMrGXZaq5+knM1ajDvY6CV1fLHGJCW0zWk0XzDhYSbFxjF1Kz+a0bU7bFOQak0mwRkc+wyG0pSC2NefrORbsGKeCFXAq7LiMqU+prKVsTDWPYbNqU1WWjMbSKMFUoQXvjUCAgYDvtELjQmspl1pMjgv50Yq4W7IwHDMtEpZ7Y+wRz7H2Ni1b0YkKjiRbHI62ORWvcV9Scblhm8rVkklFpZbCRyS2JlKhsBGFsxRVBC3HbMmGXmJFheum2HGJ3RhDvf9Nr0JTyOC1Tg4bXvPA43zw9E1ov0QnMdqrA0G6ChIpWoRN5vm9zoLi1D2L0zR9kUx5pdOCOI9Mi8BYleehRYsI0mm4Hq25ZnKQ61eeqmgdmNwly5AsxS32GR9PGJ0S6lMzbj6yzt2Dy5xsrTEfjclMxZKd0ZbQVdEipBJhRZj6KlibV01uB1QIrhmVWGpiUxMZR2Q8RIpauSGaeqHw+HiZDz59ksO/bzjyHWeZ1gnjKqUdlWSNUowaBuPMVPjmvo6lm1wsh0BFSxSvwsn2Bi1bkZmKlbLH0+NFBmnO45OM7VMteh8ZoZ0WMs3RuQHJFtz7pU/w0NphIJQ23wjiUsElzcV4IHNkcc1K3uXWbo4RTyYlHsOxaBOHkPuIeRss0olGrDYEIuuuS8c0LEKmwqkhMxUWpVSLxzDxKQ6DEcVH0D/r2L7ZhnbVTSfXfRcF7BX2sKprqTqKJB7vDUUVMWjldKKS23srLCc7ZFKzFO3QszMWzIS2qdjy9V6yIhOHRZn6BCNKYhzjKqWoI/IyJi9jknaFi2LKQUSUd4jXptSDDHsd/XpeNBGa7rtX3PM/On0TeikL/eYjDQxsPrC0qQIqwSKtJHxm99kaDZ+rwmd3myfaItTMp5tlaLjnFZ3M0KLEdNq48xcxw8GVa7pGA+S6ladGBpOmkMRIluIHXfLljMkRQ36kZml+zE3dTZaSEQM7Y96OORxtE1+1jmKRvZ7e5irrEwKpRCyQqKfUmhjPlnleawUFcYqpboCHDzy6tkz/gxmTwxAZTzsqMaJkttqzKFumpGUr5qIJFiWWmpEPrT+NKF1bUOmVmFXuY05kG0zqlIlL6HRyZssZvtvGrG+FRj/rm9TdI5wdDekkFVWzAPdbVKDshMm7x45fhHsrfUThIwofM5WUvg3sPrnUDM2sCecolQvE0j0zI9eYkc/IfczQTjFND3ikpmPKxnKtqL1FNTQYhNC62SehCdr+s28FkfKK4RGPHbYweFHipMaaQIaTRRWL8ZieyXGEjSKTK/Qda64J5/iEiU/Z8m226zaVWqZ1TO4iKm+ovQleC4ZyoWLrthRvUwbTGlPUaJrcELut2tAKWS3Mjij1JCaZCqY0FIsOaqF1wRKPYXbIUHcU33ZXNsSrep6Ja0IfpTTuftPXSwiNIysHZQVNjyu/M0KrGreyimm3QwjyGuX6V5oxkMQhwGoN9UKL8ZGIfEmJBwWDLKdlKwbRlGPxBsfsNvO2IiYozVgMMZZKg2l8RWkarAhx83smnpEvmYrSkZJ5O2EYz/ZY7H2UQL3/ylM88HtzdM87Lry5Yj3vMEhmZLYmNS4ozyZW1zYlYxcUZiyOtaqLESVt+OWseLxaKrXNgqlJbbC4l3tjnlzoUi53yLZGEEfQyoJ7IsrWLKOXBTaqG0FcKvimRU7Qc8K0SBhFNaMqYzke4Rr7adf1zjXCeuWCb5E34ZpKLVsuuFSZqdhybYZ2isWzYMeNVRo214lLrvR8apIv4kNzQde6QcZl0MKKIHkZevYIgVHMC7UzlM4SiSf3MW0T4QhhiqGZMtEEPOz4jC3fZst1mg03KNhZo1SdmpBw9IIxShQ5Wr2C2eGI4ZPNetuZNRnZ/Veeoe2GIjU88Pon+Pg7b+fw+x3RxHH+cxOqnhLlMHimZvHjNcV8zNYtMfmiggHX9mgUnq8aBRvCNbudFnzctLWJLWZtO/S5ci7weXoNVHQSB496ptfcQfP6LU+hoVdzaJowPZQyOSa4wzlH5kYsZWN6UR7iM9Em8w3llb0qpW5FSAkry6N4fBPrdFcSRk3sE4S2KTgcb7Ht2qwkPaLEha6c8f677eJg/pGKi6+POLS8zdYsI68jDrVH5C6iaBJELVuxQo+uLRhEUyAkjSBk2HfqDIdhEM1YtIF6LNeIBzpnyUzF0XSbWRUzObpM9pjCLEc6baIZjPIUK0peRVhzAygJoaGPCw23olioBorz4XlNXEJsagofs1L3qdTSMzN2TEj+rNY9Nuou00b7ZqYiNRWXqwGxuD2L/XS5iBG/tykVLsIXls4lT/vijPj2LnVb8Mlzw0L7KdHpFXR+QHV4wPhoFLrJ1oJzwVKsXLAe16sObVvQNiW5Jkw0waKs+JRcY1br/t74ALRNSRVZEuPwKjgvqArOCYPODFWhXrJc+JKIY7/aZrC6HXraX0e3yBdTfCxMFy2nHz/FnW/fQQoHkaG1klK3oJhTyp6h89SI9LERndML7NzeQw1MD1nyeaXuBBdezRXlqTa0sXaJ4FoxpttGvEfLqkl6l2hdI1EUWn17veY48Avz8dSDCL6bks8JxYJjMJhyorfFifYmt2Yr3JKscMiGPj6VeuJmh6vUAzWZBAuzUheUJxoUJkqpod+3Byo1eDV0pKRtCjq2JE0rXBJ2khtBRscj/M0ziioijWvyKuLytIfzhtuGa8EVtxWjKiM1NWtVj+PJJlk0ZuoTch9TSEQkNU4NI5cxiKbkLmUpGe31SJpvTXnyZsPCe4Llr1lC2YNOXFPVFiNQ1TfGmOyKT8GlYVKbhjvx0qTPu6o7iMST2JrVWReAcZESWcdCa0pmK3pxQeEi5pMpkXFsVy0i8XSiglGV4REMGhJyRZuLO32i9ZjWaoXJa6QO/cwhtHfYd1FQ76kHGXU7wschkYYTfG0oy4jIeKZ1EhAYLiOTmkINI9eiZ2d4DFuuw9QntE1JLA6LZ9tdaW5lRKmaRGNZRkyLBGs8ve6MZOi48BVDoukhOg9fuuZ+PS+WqDQegoOd2+DOH55hnjobPKvFefqna8Y3WcQJZQ9Gd83TOZNgz6/RN4Z8KQsEx5tCnQnlUKjbSjQlED83LdCnhwXxKd1ISLxHkhi2d5AoQuvQxnyXUf5aR+QFKk9F4hjXiqlbIWhbOcuFcQi61t6wWXf4kJ3SszkdU3BLvLYHTQpqMbiqlXpWnXC6nuOpcpmVqs9m1WbmEgpvyV1MJJ75JFhrE5eQxTU7Hd3DOO6nqAkPfXfArSix9XgVBmlOrYZBPGMYz8hMxWbVZlKnbFUt7u5cZOoTKh9c9a4Jcc+dOmOzbjMXTXksP8JK1eP3LtzCxqUBctjh5ruY7TAe5UAZWkftTPjx+2+NQ3DVm7Bk80YYm8Q4DrV3mE+mjcWYUrqIRy8vU15qY2eGlVhhqWBpYbQ3holx5C4id2E1TKqEcZGydnGAzEyAsvRq4no34Ro6UhYmMPHvLqL9FhEhvrBJ1EqZvWEJn/mAhc4tmtTEUUiKRuLp2pxYauajcUii+ZRKIxKpySRghzMJlunlqs/p6TyXpz0ubvapLnTwHUc2zKlqi0aQRo6ytiTtkpVX9jj1VMJ+m+R7LcpNmCviPbI4j5vv4hNL3TLUPUeyGZEvhF7uLunR94CG9sxlNyScRCHeCXFPH7GH8UWgTmB6yBAVMfFmhkxzSFNwDmllMJ6ELLsxUF3bmFy39gm6T4PlmVpcClIapue6zOoeF/QQH2h2EyKFbsXc/Jgvv+khHmid5f70Ip3GVRh5xwWX8oHZLfzKpQd4/Nwh7IWUZDv0PtptPetaAa8XH50w15uiKlR9pRjY/c+iGtBjOQLMioQkchRVxGJ3Qukt4yoEoK0ohYk4nOxQxBGbVZu1qsfFfIBH2C4zFtIpLVtyKe8TiWfDtNkq2zx+eYlirQUGzFxB3UtJdmZUCx18qszKOCQHJLCR7/+gNIvBEXrQF4IpDJNZwpppU7iIy7bP2rTNZJZSThPYiYjGhmgq2FKod1qsbCZsHZ5yeBjRjksKFzEqUsazlNlGi/RiTH8zwKHypWDV1gNP1bWklxytdU+dWeKxUnX3f0wA/GSKTGeMvvBuyoFHE48UBk3D9bfjisxWHEp3GNgZfTMjk4qhnbLhumRS0TEFj/qjOAzPFMu8e/U2nrmwCFsxrYuWdAaLZx3iDdu39Jgc9xRLBXRzvDdEkWe66CmODwNN9I0gAtFUMGvbe6D1fCll6zYD+AB76yg+FcQZ2ispJnf0/ug87cNz1L2EYi4mHxrEQzHXICya9tQI1B2YLFvSzRbpeIbMmq2jSR5JkoREeP4iZdtRDRpalboV+me3Lxjal5V44kk3a+KdEo0M5TBhfCRlfDLl1+Veto+0yEyJjdeIBS65lIeLYzw0Ocaza/OYyynti0LnsifZcagRyr6h7Aq2MEx9h0vdjKhb4bs1+Vx8w8RsFChmMVsKVRGxM2qhtUG9EGU1Rxa2GWYzLkVBMbZsxUbZ4dmdeWpvWGxP8CqsFD0eWT1EXVvyUQqlofdERHdH2XjA0+/OEG2jrYT1+zLap7ZxjeKsmyTBvotCuh0gQ7MlQWqIJoI722HHdRhXYEuhc05ZGHviqcfOanwsVD3LzkmLzSG7bCl8h1XrOTp0bM0yNi73yc4kDDcg3fSh6Zkqk3VLMRdigK1LE8w4x856xBNDuuMphzdIOMN7iCPW7rP4ThUMhEhpnYmZnVQuSp/NaYvaW56NF7i/d57jyQaVRqzWPdbqHitlj0md8uGVY2ydGTJ4xHLiTE08rhBfsnZfi/NfXhNdTjCVkq0YqlnG5Cbo92aUtYW5ksmR5FNf72dCFHwkJNuESsU0Zuf2Hhv3COXJHLORNJWLULeUyXFQk5GMlPy1JwHI1kMTxHTHMzoWLG2VJlEUhUSSQag7oQGcdrKmF5QLLrsJvYyklpDTuQZ5YcoTIE3wsRBPQmtUNbBz0qK3WmwRrK06g2qgVEOHyRM+vnkUiyfvPcmCHfNstchD02M8sbOEMYqbrxglEeNTgNgwqG1He3FKEjl0uw0zi6sNJnV7i2W/xY1isIoUhnInJmrKA/EhpmXymHNrKWeTMHZmZvD9OuDXIg+1YXIowQ+Fxy8cwpzOsKWweEZJRp6qo4yPB/hFO6mYHkoZrE7YuVWZa2KsRpSqClCdfRcD+dCAgWRbGT5ZYPM6wESMQcoamZVoEuMGGahSDhOmS2E6ZuuKj2G2GKpKlnoTjne22Jq16DyR0Lmo1Bn0zhREowJqT7zTYeu2hCgHqT31cp9ku6TqGuKxI5reAOEMISQnjizj04BJjLcscw9B72xO/nBMPuxQt4WnWnPULXjP4TtYumkTI8rLl84xczHvfvI2/CxCZobl9wtzD24xO9ph846U2WIojTZbMXJySrtdUFQRrcgFr6i2DDszIusp++mNkGwHwDhlfEoZveIY02VL2ReK5bBGbCXB63JQDTymEIqFEN+smiRRMdeEa6wJGfcmcRSPJLw2oWuGqYNFalY2A14adlnnA0xpfogW16YWX3jQ0F5pUF91hNmy4m6aAeALG1oKQ9OJSplttnhmmpDXEcvJCJt5LpRzfHzrKGfXh1RFaB6nSYAd2E7AtcXGs9Cd0o7LkInUFGOVNCsp57L991CbvcSMLKIQjcPDq9uKth1Jv8AYhUtt+o9EdC84bOWpWhFVR6i6ES6FaTflctSFSylLH1GiqSPZKql6MWqF3mlwl4Xz7UWWWkJxpEdyaryXVS2qqDHC9z+tHNrH7vbhFp5+S0LnfMah9+dcfnVGPFLiCUwPCbNDnhPvCPc6XY5QCdaDGpgtWg69x7D90FHeN3+UeASHP5ozOZyQHzeYymE2R5SnFinmo6aCRKm7CT5p6pVF0EjINvYf1qYC9uhh9Kra8vZ5ob1asXVrikuFbMvTO19Ttw2tizl1L+bia5coh56PGc9ye0S/N2N0aYiPYXzcUHUGzVyC+Ucc00OW1orgznTYfqllcXFELy2IjUNVmFQJXgVtXbuV9WKOCQKmVO5+zTOce+ZmXCbULUjmcsqdFHFXko4aKS7x+EyJRibQBBioexrix7tFR3WoMrJ52MR3k1LRRHGZhSwN4YE4xswPcctDyn7CdDmm3rg2L+WF4TytRdOYqi24LFiYddejpSVai4kaTLupAzGE2gAV0TjiIkPOLsxzZ3aRsUs5szFHsdHCjiyRD6VUNhc0jvFxSLlfaLVx3VDXKtYjorTTirWhuyF2TikM2aoJCqOEuhs2ARTKnRREyVYt8VSJx554XGN6Eb1nS8Y3tVh5pfDaW57hnu5F/svs1SS/lWFKz+ZdLRDoXHKkpafsW7rPRNQtZfuWhFMLF7m408c3CvSGcNlhL77kI/Cpcut/L9i6PWP9nozxqRpRIRoZqmFN//CIrWfnaK1atu6CaCTs3GooD1e0TluGj0944rsivujOR/jNd72U47+8ztr9x5ieqti8q0O3HyzWeKbEU6XOhGRjhk8sO7d2MLVS9C3xbP+VJwLV0Tni8xvhdeSZnFDGpyxurkLGlvqcZbZocAls3dbZUy7i4PzZBW66Z5NDvRGjoxk6iZmc9JgqYvimi5xfHcIjCdNDSu80mErRWUQvLRgks1CdBxQuoqosUcK+r5890o7c8/jlJeyc4FIoFx2Z9cTrUch7tD12FlqUa6Jou6ZKA07WZg5rPJFRqiJCS4OKweRmj2BFqgBfQgKEzs13MXmNRpbyUJfx0eDF2lKx5YuUMFIroSrBGOqWUHUCyDVds0RnLO0VRZwS5SEGWgwts3lD3Q4Zz2oYBZyfBLahXVB3NAt4LB9D77TSvVDjMkOdCS4Wyn7E9JhSLVdE7YpWXGH75b4/fABswJiJh2JJMYUQb1taF5sqG6+0Njyd8zk+DhaRzT2uFbF1m8H1arwKhUZ83Z1/xH/+c29g+LGUzpsvMcpTNmFv4ieijD+6QOccJMbhGhPmhlGcjagQrO/DOZe/O2cyAj+Jedk9z7Ay7bE5aUFl2bnYw3zWjK3KkJxPKO+dsjgMONfR08uc/rIe//TVP8OXti9z75ee522/8Sa2764xrZrV18HoXIMFXQ9zx1TgE4tPAynJ8ImCYj7GFvtvkQP4xKCzPFQ+tRz1Ioj1JOdSOmdhclzprcP2fTUL748ov3yL6bk+2qmRcUTLVrSjEms98TBHRJkOIqIi4d4TF5l8e0J9cYH1pTiAWlLH2bUhxTBimM0wokyrGFdbzP6DVZryWc/mHQnFukXuKNCZJRqUFLMYQ5N49ILL/JX1Xhkkc4gJXqgIFHmMVgZqg5kZbFMDLw1VlymvAPLVGsqlTsjep0LZE+IpjI8aysG1raUXNnwi+CRMTh8r0VTI1pT2qsfUiksN8cQTzWqmSxHFfDC7NQbTqVhMxizZEUeSLZb7Y85Xlipvo8OKrFswHfXpXG5wW73dEqtgvcbtkkFnRj/NGXeTG4EXBFyIM0U7QroutNY96bZntmCZLQW8xPQorLy8RboppJvK9KgQjyA/7Ii2LE9sLtGLc2Lx/JPP+0U+9KqT/PqvfBZ1S/GpYnLBdTyd4yMGL1tjm0UmdbIX4xRRRLgxKow0uOwaKe1uwQPLF7nrlkvkPuaVnWd4x9a9PJksMi5TVoWwkGNPfSpn0J0xSHOe/Nhx2iUMP+cSXg0jX3Ms3mR0IiFZh6oW2hcsTZ0Bo1OK6zj6j0e4Thw2KcClpqmf3sfxuEqqbkTakFD0ujPiYXCl12YR8w8aRqeE0Zsm9N7fZf3VFXPGs3zLOquPL+J7dcC2NqiKqoywkSNNK1pJxahMURX6/Rl5VtNtFQxboSqvHVWMq5Tchfi494Ew5VrruF8sMbUnuzhm8455xAfLMBqUJGnFdK0dHN28MRBiwXUckjm0CA9UTJj3ZWmpJzG4UNtuKsGUYR6Ka5JHPtBkVv0IUSj70V4VGgQPenSbC3mIa5Drhyo5BefByp6lWPUUWwrVxFB1IV8QTGWwZcz0kOKO5JhIMdZxbG7ETekGPam4KV7n/rkLRMZzPvIcGe5wqrvB79W3cKnVwbVCHMOOAvygWqw5tbDNkfYOy9mIdlTy+A1gcJk6uAXxKGT28nlDnQr5Uojp+X5Nf2HCeJQxPWyYlIZbbrnMMw8dRWPF9TzjWcqoyhgmMx7PD/OVcx/kbcuvBMBOLHXfcffd5yhcxEI24QPH+mxMA6WdF0VEsNbvN+Y5iISsqBpwzpC7iLYpuTldpS0Fnzd4hJa9lbWyy/HeViCycBG1N3TikiOtHdZuazM7kfDnjn8UhyFXOBFtUL1lEzcO9z1tR1AEjGe0OKOTVdRn56jbFjVC3b6y8UaT/WcPgqZstZ1hc0FEmctmzOoYadVs3JsSj4XZZoZ97Q5Hu1O2Ji12Rm3UKr2FCa7hB1gejJmUMbWzdLOCxDpmVUzlQpXSocGIO4eXadlQtll7y1TiUIQxS/Flk5G2+7yAqgo5cxGYR40SxZ5hf8ra5T5mFpLGUgFJAMLn1qBdkMTvGQpVZakmCZKbPcUZzYRo2uCMhSsbupXgCWfxHptTPh8wwe1Vx/RoFHIU1yAvrDyThnuvB/VShcSecTfGJRbXUorlGtOpUBWSrKKXlUTW044rjne3mI/GJOI5bHe4p32Bwke0ooBvK3zEXUdWuNjtB0gFoWomjWsO9Ua8cv4Mi/GInslZjkf82n4rTwGfBVd9dliDhR1Bdtng04BxZBQx2RhiFFzLI72aZ84vYhYLXGmgodbaKltExnEoUWJx/JU3vJvfuHAPlbO8bOkc60WHdlTiVVha3iF/HgmIMYGd50bgXzOVgA07+LnRkPebU3zW8Gk26i5v7DxG3Kv5w/FtrFcdvAai416cM5fMGNUpw1bO6488Q+FDjftULZk4Xn/0Gf7g4imsUcq2JS9irPX02znOG3ZO1qxpzOJHK7rnHaKKqUIo6UYQWyiaRbQvCvldMemg5uKoByrUJ3MqFbJWSJZujDohHCMKg4osrsldzKyOscaz2J5Sq2EunTKI81Db34zlIA68nV6Flq0Y+VADX3tDkYca+Wro9j+/qKBVHWKftVBPI7alBUZRo7i24lqBm1M8xCND0Y4w3Qr1EkpbxzFShhinzcPci6YQT5qyXLlCeae2MfhaAVRfDIXpESV5BHZuiqizax+Q61aeVT/BLs1T9xLKeUd/YcKglbPa6pL7JsCdOsQGDkVVoawjWsmM1NZ0ooJMKlIBTMV8NOZout3gHtuMq5RIHMPWjGkVExtPP825pbvGXa2L3JOdp1IbWHXghoh5JktT6mEUmK/HEThhdtjDoAKjdHp5IABpyiiH7RmzKvCTWuNZ3+oSxzWR8ZQ+YrXs8fH8BG/uf4TjyQYfnxxntexS+ohIHIOkOV8DPdmFugo3iNtOcIVMIeSTBBFlM23z+PQwL+2e4UI9YNmO+KrhB8k14lI9BGDiEy5Wc3x8dIyXz5/lSLLN1CeMXcaz9RwvT9a4rX2ZxzrL9OKcWi1beQtrPJ245PK4R7JqWfxoUD7JTo3UAe0hNwCJDIAtPK4Vc+j9Ix6/q8O5pKKTlvQPF0yKhGmeUFWhtHLQnTHfmrI+7bCx1cEaT9l0C9iatsjLmF4751hniyPZNseTDXKNKZpyqkotU5cwdikz17AtOYuNHD4yaA0uuwEgXMYQTRVTChQRyRMJWQXJToCsFXMh8RyPG3RP3+AJ1roWFjO1SCXE45BjMCUBstZ0nVAT2LV8EjDHpgpWaNkXxic98ViwhbJ9O7Tu2rpmuN91K898MUajeaqugUHFcm/M8c4Wy+0Rj0XLVFVDTtskMNK0op8VHO1uYySQ/nZMQSJCoUoijpvTFY4kCZtJh5Wyx0bVwauhF+cMkpxTrXXubp3nVLzGYVtwyaWsuh5WbowF0c5Kok7O+kYXHwUOQmnVHDm0RTcu6cQFkQklm4lxLGcjnh0vcHna3SPLsKLM6pjj7S3u7lxg6lO8Cvek5zkcbfNocYSL5ZDFeMTD46N0kpKNSXtPYVrr9851o4hUEgoFVBhXCZdmPT7CTaylPRbjEQt7BCgxG3UXhzByGS/vn2HbtbhYDgKRig2lqBWwFI0YJAES17YldWKovGWtUTCtsTTZ6V0MGdjKY24Q5YkPmEMzKTB5l2me0E4qOnFJJy6ZZcGq7CUFR1rbpKbm/flJ/DgmXXYsZWO6LlSUndlpsV50+UgVceimUSDQsdsYAmXfxCdsuC5FPk/p7V6LlySpqYoo8GPeAMaHRBHxRLF5cLkXHq6pM6G1VpE+s4amCeO75yk7BggxbJMbvFikDK66LXbbbDTKsQoJXLUN6iMKbFu7pMi2amBsLUfryZh8Qajmakx57Srx+pXnUKhaEcZBlNR0opJj2RaD7pSjrW22qhZbZZuijkijmkPZiJOtdXIfs1F1SE1N2xS0xbKunlItx+JNLAoJrKddzlbz+K6hbQrmo8AHumBm9IwjE8GrwakhlhskjuUN3bRkeXGH7VaLsoyYH0xYaE050trmaLpNpXaPMuyu1kUmdcozm/MB3D6J2S4ty90xkTgW7JhcYx6vlrkrucySHXHezFFEE87m85ybDBkVKcZ46jrCOYMxuke8cSOI2oZHsTBUZUReRWyXLSLjKVzEdtqiSGLaDZ1c2xR7tH1/sHkLiXEspuM9nlOLsuUjembGQjohNTUtW3GaeR5fX2Jn1Ia1lGQ7QFHEKT42iFfsrMalN0bGaLfu3rdi0g1hOp9StAuMKP00Z5DOWEwnnMzWWYxGrNU9ZuVtAbcI3Nxa40IxhA7MnZxyvL3Fk6Ml/mDlZswh5WXt08zbMX2TY6XNyLeo1FL6sNQrZ/E+xFuVEKPfVxHACP2nJ+zc3MNlkA8tc4+OwXvG9x3GpbJXPTQ5ZvCDCruWIGIx5a61GRJEtgSpda80c+87mk3COMU4QCGaKtm5mMkxpR4GXVLXNmTsr0Gue+jqTsB22lyJokD8eyje4c70AnemF6k0olIbSFylYmgnVBpxplrAimc53mFochzK0HiW7Si0XTAFQ1NyMtrh/vRi03ZBG+LgMA6hbUfgwrTin0MQu58y2m6F2FJSMd+d4lTIoprj7S2Op5vcll1io+6yUf//2fvvMMuys74X/6y1dj6xclVX5+6ZnpwVZiTBSAJJIEvkcDHB9iUaY+AH5how2NgYrhPG2CCDMWAj+0rYCLCRhARIo6xJGk2ens6pcjj57LTWun+sU6dnZCz16Gqo/tn9Pk89VXXqnFN7r7P2u9/wfb/fKpNej0V/mz1Ri2F6hJlmj2E9I+uG9IoAX2jHsk5BS1f4bLqXi/kUDc+RAJdWIXH0c540eNIgd+BeSmOMvComVu2o9CpziS6lYzX3S3LtUYyaGF0djZ1mW8c835/noeX9SGG5d89ZjJUsZQ02iwo1lTKjumzpKkpYTvemuaN5kemgzyk5jU4V0bYkWdeutuUJl7KPpk7yq2QazSoX7aWzievyWshKhZKGup8yHfZYDFscCDYA+ED7ZuZrXcoFyaH6JnclZ9kTNPhM7wCpbnC8PUemPZSwtIqYxwYHuD5aYcbrkBqfno4orWJY+mNNrNAvKTyPIjBjHOSumQW0Rh4/h7rvFqyA4axAB45pq3vY1TDNSPROxwZy6RrJQ+lS81EqvrOecLmDbqW7WYGbULLyhX0byCcMJjYILaBWYLZDwtbL1DAyHtjAMZdIacmNoq1jgLGIly/MWJTLWEHf+igMvtBUZEYkHOdggUvZOiN+xnmVkQgx0nPaOQExvoEMrGWHHKdvQsyuf/K4izNTDHohQ+WkEOLYMckXRlFTKbPKpagtr0JqfU7ls2wXCeVoDKwSZwjhIthWkaCwLPqbfLx/jNQ0aXgD3r92C1U/o5XFlNalwkpaslKitXOYgacJgqvghmLdZi4rrttphorC9xj6Pn0/wJOaupcxMAHn8ykKo3iuO8eJzRm0lgy3Y/48vZ68E6I6Cl0xfHzPYe5bOEunDHl8dZHBIKTQCl9phrmPGCiiDRdZWCHIGpKwrSGHouZTVK6CvQLkNYUsrYPPSKCUFIVHEKfU/JSD0SZzfpuaGnI6m2NQBmynMbU4YzOr8OHujWzlFT516SDDfsDhPRucPzHHdTdcwheGcwPHlXBrxZBbj9T4dAp3fWkjXcR5NeTqLzRjsXlOdUnT3edQAIN5l4pj7eXpIpzf8VoeVtkx2THWRaYvquKNGJVM4BiWZInDlBZujwgDZSLwF3sUuYfna8rlhCP/JeXhfnpFh/1FgORHDtSpdJIbj4EOKFBEoiSRJZGwSGBgBQUSZZ3sxILfYp+/6WQWAB/Y57XYHCkjFhYKLJGQyM9R1NwhRy6Avg0orIfiKkhTBSAtpu8jIo2KCwYDV6/cTBKOy3mOhUsAtHTClq6wltc53ZuGrs/2CPOnlCErPC4NGnzSP8rtlfOs5TUKq1jKGhRaUSpJWvp0swBfaUKvpNQSlMFal4pFXrn7TSMBOnLEIMIIRCEpc0URKQrtaAb7OqCwktIo+jpgdVBjsdFmMhzw4PAg8tkqk0sWlcNw2qM9nOC9y3VEIZ28wmzKer+CpwyDXojXkyRrmjJyXdkyEvgDgQ4VRUVSxLvvMKyE7WMOfqNyV6NjhNmsBhlKWMKR5EZqAgYmYDLs8/Qz+wi2FZ3BLE/u2099vot9pAGzhrPLe2mcE5zp7mPlhhqTlQG9ImQ26FJVzgnU/ZT1YZVm5EiRfen2WlnIq6DbPporDwIaj2/QOTTnoslR2i1z4XgAXIlyTF2HFMhMUNQsQtkXQa6sFGDdTVSYEZTQOKkPNcJ+qsISblu6yxVsaLBbEfs/WqI+e4Irxft9UZGnji22J8bNISkshXWSAQo7jhS1FaRW0TERqQ1oqj5NOURbSEfPS4RGygGZVfStRygu83wi5P8gSdwyAS2dOC5DeXVEWYx0U2yqyLVAeAYTCk5uTVOdy/hE/3oWg+2xPGynDFnu1pBDyXArdjwAynWFe/0IbSWnejNU/WxMa7fWq9IPAwa5T156KGnwlXbg+JHjBMYp/G6b8VyHExwExeSKLPVJQ4/Ic2n7cMTN2cpiFiodbq4vM+t3GOwPeKJzEB25tMzrQbghR1NtFu/6LhPVAcPcZ7tdwfY9wi2BlU50rowYS9mWsRu2uBqWxUoobuthtEIPPKILvoMole6KcfpdriS1VtZZy2v0ipCpzyhmH1hBT9fQkUfnQJNGu6Q99IjXDM3jXcQnDN2jdboTTc7eqQluKbmneR6DINMOCghQ9TPWh9WxXMmur4sQjvgYYKsFZs5xI4SgE4scUVO6lFy48qW+PNYpd6JPRtNDIz12K4UTehuFrGLHcRYj6JpxU5BTjwt0oAg7lnB9gM2yl48M2YTWzbFvKnShyLVrhHR0REvG1GQBWDILmVWs6DqPDw5wLp3EF4ZBLeS++Aw+lrZRXCibaAQ+mqYakFkXX+8IyhoEBZbUOkXF1kjfRiPH2je7biM1PwDhu2g4HQTMTHU525liK6vwpNzDnrjDic4Mc0mHIxObnDw1RVnxaZzRxMsZg8WI9dt9TvbmiSeHVKKcmUqPfZVtttOYbhpicUgGXzli4RdGmZFXjqZPdmMRXmxO1dCCGgU3o3RRG9cdz7XDHVb9jMWkTahKEpkz43X46tknmbh7wJnOFOfOzWB8RxhifYupl1T8El8aekZSdn2CLUXQsRQVMaY3k6UlbcgRMNpFHVeD+b6mFGBCQdFwEBtrnOaQFIbM+KTG58RwjgfXD7L6xBzXfWQVWh2YrBKs95k5tQZFQXJp1kVYUiDPXqJ+KaByaJ7qUsSp568j+eaC6bCHJzWRV+AJgxzltmWpXOpbfoEDftnNjvSECkTgU1k2DGcklUuOg9WE4A1eoEM04onVsZsIwrqpoR2PtxOBuobhiEHpheco3KSS8UfEIbnTRzLKjZxbYxHqZWoY6chCzQ3Um1wxKALW8yrLwQQVmbvIUpQUSPrW50Q2z8c3j3D84hwm9Xh0717kIcN+f4s/697M+87fhLWCe+Yv8A1Tj9CUOYW1vHDwQVuLttAyEf2RNGJXR6TWB1Zf6il86c03LnoUFpsphG9QoWZju0a9NqCf+1SCgrVBjdBzXeJYFfT3Oebr1hFFVk8I24a9D+QMZ3w6B+ts3TzkB48+QCIzTnenafWSsaiXHkWb1gpC3znNHYD0bk8ZWTEq8gcW6xtQFj8pqCQZlSCnNoJuecKthS81e8IW014XhWVK9Xht4wSvqp/m99VdnDw9jxhKbGBRUUkS5k4pNPcQpSTaEKN55dFsu+/8dukJhLWOSX63J2lGpvWoRi2tG5goBUIahqVPq4jZ8isAPLxxgPKds1z3gZOQZRCGqG7q4DWDAaJRR4cKEyqiZy5BtQplibfRxVvvgJ2lU0TMhR0APGHwpaZfBg62lCm8nro6birGIkJ3XVdWCrKJkMqqxj9VYjyXevudzGUWFZ/BXMBwUrqapu+IoXZqmsJYrCecE7Ugd9L1zH2XI5b4Hc5wWTgMqY4gnY5IpiZh+2XCeRrf4scFOgihFGgrGJQBa3mNaa/LiqxTEW7guGUSLqSTtLMIsRoS9SSr2TS/7b2GuaTLYxf3op6sYnx46HbB/c3nOOxvYXDa7Y4S05JaGIxUAlPrs1o06eqIng53v2YjAC2c/KnAcXhmkhIP6Rvy0kNKQzeVeMoB/nfqfF/1lofZyhMu9CY4tzxF5cmIyeccocr0E5qVJKJ1V0JXx1xXX2e1W2UwCGGk/K6tawD4yinc+0pfNWn7Dns3niWo5CRRTjNxzD4T4WCsYz8TdAEIZcGZbIbne7Oc2p5yI4lWoLOR9nomEUMoA4+89DDWReAyFfgdh50UJWChTEDHTgBsB1h9NQxTCAPeozV86/CIxscNU1h3HZVGkRmP1HqcPz7HjR+5iDUawpDyuj3098boAKKtBt19HsYbUbcdOUTjtLvm8oZH7VQXLGwNEzqRQ4L4cgTFMZJOGo5bzirdZbjf52xXv51h/BDjC4K1HvbsReREE8IA3XA3lt6iGwMPtxnrve/IC+/8btUO5tOl6ztsSePodXS5Ulo3MutBb9EjWp/D9q9Ms+WLoKRzwPcstKDd9FBuPHo6pK0TIlnQF64T3jExGknVz1maKjCxU6g7e2qOs94MlBIxp6FWctfMCvNeCwCNoLCWHSmmF7aFCuvR1RFtHdMvr1xj+eU0GZeYQo3CHQG+xWYSAwxtQBTnoAz+SMMnMx6eMKykddLSx5OGn37F+/jt2fvYui+CTzbREcS3b/GhjRuYi7qEsmQyGZJlPkXmEQQlShh8ZfB3GJdGafyup+2jTueOBLAa0QhaK4hH6WPTH1BY5yxO9GZ5fnWG4mKF6nnJcN7i9x1xRTgQGN85wclnC/rzPpu3TyKnM4wW+KlwVHSxQOUuVdMRFHXjQNe5IOgaynC3F8U58YVPO4C/KC1502dp0hupXToOgJ4OGZiAmYclplFFDIcwUae3P6ZzUDLYpxGNkqmJFlkWMOhEZCsB6VRINmUcddu9dQDuqrYBGGqfWBUUVpJqnzT3IXWNtSuV2X1Z7QXa8bIzxIo628cUvYVppp6pUlQ9sqZk62aBGroxS2/o5Fd26p+ycKm6LBx/gIsqneP0hhYvM+OoUwejGvNIK97KyzLF+WQ0rpt+IXvpztNAJczpVS1CC3rDkE4QkXg5l7ImicyIZEFXx3RHkoUzcY9s0aObBbTaFWzXh1ISTg65Y/ES++Jt7qicpyJyWsZJrP7Cj68zt6D4oR+vUyBJraJlErbKKtulE4gbav9qCCiwRoAWBPWcvHD8neOVtS5VS8KCQOkRq41xc8ZWIoWlEQz5/ZW7eM3cac70p1h6Y8p03Gcq7LOa1sa6RkoaKnFGV0sqYY4nDZFXoqQZ6bsb3AzJVRB9CosNLGSSslAUypCWHvUQSivp6xCJ5WLapJXG5OsJ8bokm3Avz+uXJ0RE6djlk5NbeMMGOgzpHAmxdY3XExQJmMB1r6102ZGplZhEEK/56ECgroLeIoAalIisAANJa0hyeIruPkGhJblxjEcT3oBkzRXqVr7xespRLbd/sKQ23yUJCpQ0zNR6rBpBttfgHS0QuYcvDY39Kaf++Xt55DMhN3zPqx0fAoJOHnGp3SDPfEQhidavhqsHN3XlCxACUWr8vmVQE6SHLO1jwdix+R03sy5LKCqu/+INRiD5HfjXqA0iyx1Eg8VLzZiSUIeulCNHnJ1WiXEdVVgoE0l/uIEQ4ruttb/5+Q77i2BVEiR+4ea2Ox7ZwKcdRPjKYTcvPbbOJ3/lOdZPdRFS0DjY5I4fvpebbk8Zap/Vao12FhF5Jfur29xavcS016Gp+qTWJ8KhXTOrGBiPVV0ltT6p9bmQT7GcN2gVCZlRDMrdBz6na8ukz5wgue0oZaEQkab7wGfof+QR5n/m+1wqYYSDFOGYg1o4XGygNLFX0LcBxxprNNSQVzfP8JA4yHzUYS2tMSx9umVEqn20cal/EBZMxgM6WTRO1XccpxRm928oI7IUpCssXfz7v0VxcZnrfvvHgCrD0qfmp+TGrUczGrL/zuOYOwSfeu4IsuthPYvXk+QNg9+R6BC2755h/W4wgXENKQvxmqVMBHl9BP0BvKGgHChs7AiphR41FXbZhAV5fhWxQwPneVRWmrT7HkXVAdmff7jD47/6IGvPfRCkwM9maH7L24gWDqLqOb5yxL9qVJ65fmad3CiMFbRSt6/6I6nhQruehBSWYebTzwMGg5Cy7+MPBBPPl1zQf/lpuxDiLJAAh+pyCoCLg2dZKk7ySvG11M6XlJF/GepmQA0F0RaooSWdFujYSWqMgfGjjvxj/+7HuPH/+EmiyrSrdRaOO1doi/Xk2MnK3IyaRg6lYfyd8U47ZmH6QvbSnaeBip8TVTPSnocdevTDAN/TlP2MT/3wJ7jv/3oVX/aGI/RTj6XH1unYCp7Q7I+7HEnW0VYy6fWZ8TrU1BAf7fSoTUI+Iv1omwFCR5zKZ9Ej8NNGWWWzqNAtQwZlQCeLroogy2qJVBpdKKTaafuBLQV2pJ/tKUPsF7SGEUXhoUtJJcnIfUWhJY8VizzGIr405FpxanvawXDWQ07Hc4QTKRO1AVJYAk9T9TM6WUSoXLNox3F68gWEsbtpWiD7iqK1Sfb8WWQSsfWxU5SvuZl+FNANQ1evlYbCaJe25x6HD6yx3qvQa8cUnoeIS9KGIl0EVSvQPd8B5z2Lv+0RbxnaVdCJI+f2hpZwG0SpSOcEZeK6tVdFKdgCw9ThEAGMpXJpCn8rIZ/w2N4SPP1jf8Y9P/4apm67jzwFcfokplYQLnaoRRn+iCPBVxpfagJVMhEOWB3WEMIihWW21mNtRKtmrGA7jSm0Ypj7bjQzdUTB8fIAq3ctbVfAD1/+dYTlrMSkkwq/b2me0k6PKbdjMcjBjMR4TlBwHDGanUhzBNfLQAXgpRZv6BwncqRqYTTCurFdK+X4s7BqBG2SYgQo/cIn8EUIwDk8WhQUDD3raKRSn2FYkl/oYoHJ199Mq/TZyCts7z1A0fe5+NE1tn/rPWRnVxASDtw7zzf+zDFmJjQKy8Vnuvznn3mOjXN9jrx2HkSALRPO51NuZBHLdpE4UH4ZsDlMaA/il3z4L4sVAqOd43xhzVGGmu33fIz+xx/CdHuEMzUWv+vLKG+4B1tKlj78Wbp/+gjBnkV6j3wGNVFj6uu+nomJY8gCVt79q8R7DtA/d4J8a436Hfu57sfeAmGDj/zYB5i85yDT33wz4PB77/v293Drd9+FuAruKDbSiIGi98ijhAcOEBzaR/eBzxLfcQfGCpZ/5Q/xE0W22qH71AWCxRmmv/E7uXB+kWKuQJx/go1//z7SzSHV19xGfmGd5K57mD14H5snHqTz8IPU6vs59+wjTN5yLxvPfpIjX/+D1IMFVGopZY9zP/7zHPrRn8GPqrs/hgiOsKSSYEsNIxyzv7RN5UKF1lTEcGPJ0Ti+9i6i3GClz+y9i/hSU916hk/91CfYOrENQjD/qr284sfvpZYoQlVy4ckOZ3/53WRLW8y8+iBGe6SFz0a3MuanLEuJ1QKZSsItV1/cRftnwE9YuzNHaSEKuPS2vXTLVdb/+A9IVy4QyoQji28gecWrGE5JTr3nV2nedDcTt78aa2D7yYdoPfEgN775b/Hcn/wqAM/+0T8HBMdu/gYCr8qzT7+bxf33cfH8x5mYvo6j172Np558N53uRaw1VGcPsvAV30RU1PH7V47deulbatSlS4ICEZeuKdB3mijh4iQIyaf+4Uc4/bFlVs57yBMJUw/6TH/QZ3H2Tdz0rT/Hoe/8KS4+J/nVnxzwrz7xlfzSp+7nl7//ONz3Sl7x+3+b8DW38dyfLTHQAe0ypl3GrBU1MuMhcexD7UFMOgyuisgTIzAjyImQo3QVMKmHPz3F4s/9DW5994+x79vv4/Q//WOK0xm1x0Li4x7ZmQvU7DR3f93PcfDQm9n4jf9A86E2Cx/vEy0P6T/8EHu++ls59Bt/B4Tk3Dv+jFqUsffNN7D258+Mok1N++Q6w/U+B163Z5cXY/SRjLSr+p96lPqtd9G4+W7Sp5/HLA/RnYBSSzY/8iz7vv0+Xvn7f5tkb4OtD/8xwkL0WM6Ff/z7NO79Wg79X/+ISC6SPn+eaENSJi6tys6dp2YneNWbfob9138FjWN30nr2UdfRTi3ppz9DdfE6Aq861gG6GszWKjBRR9RriFoFpKRxrkB1FGJiHiskj//jP2Xtk+couymFdoqo21nM0W+/m6/+o+/gDb/7rQzXejz3Ww8jheV8u8bJf/QeFt90jLf/yXcx8bob2PrEcXTp6s3laIRXlwpaAX5XkKwadDO5XEL4y7dHgAcykcG+BXp37CFregwaKRfe9Q4qd9/J9T/8D5n67u/k6eX3cv7oCp1jLhI1nivD7IDkhXWd9Nte8wMA3H3fD3P/a/4+e2o3IQtNkfcoiyGv/rK/y/U3fj3CGOYX7+GeN/0kd779p5HSZ/nDv+/S/GF5xTfal7xy1rfMRD0O1rdoTvTdaJO0SGmpNhT3/ptvQEnLmV/+Ey78wC+w9Lu/hW53aZgJ5sIjVDclExsJew98GfrJUyx8SJG8awkGlvrMV7H62F629n45lesXMAga3pBQlmMWnW4Z0stdrdPoq+OKWP/1/8D57/+HnPnrv8Dpv/YLbP3OfwMcYL7++huJZqto61F77S1481NUPnCehU92qV7MCfwKx7xXkmxbpvbfQTA5w3LxPNs3JuhaRPyaV3DDd6QszGfM/dX72fjocWregIl7j9K70KZ9vosnDWfef4r9X3GYUoZuqmK3TVnS02cot7dJ7r6dyuR+guY02cc+i7/tMMLVV97IxE1zKE+w+KbrsZcukS8UbK89SzA7T/PIbYQ9j6lbX4dXqVMklrLqiKeDuM7iwdeArzCVgOorX0Hr5GMUkUv/tk48yuy+u4jXRoJeV8NNFkDJUVrodHQYplSeWqFySSJEhfmf+V60Viz96h/z/Hf9c578e3+I7LTx5qfJb7yFPhUmZjzu/vbrWfnMKqWVXPrsFmjNdd96K7mIkHffQXBwL1YLlOdGd4vco2wHeAOnj+5lht7BilPB3T372dwOOfmmkLzuuuitjSfxpido3vEqTKxQRxZJ7riNwWOPY71RUOI7wvEd6kFRQtjRqNRFsX63QA0LRGlG5RrBwYNvxCslvlF4YYWp/bdBEiLiiMWb30hv+fSo637lG+Wl4zwjw6F4A38E23+wFzvtEBwQd+a6Ckd+7tUYBE8+KXj65z/A6Wf/kLk3fB2rH/oDhudOY7IMrEUmMSuvsww+2UFNNCgm3MIgIZ6rE0hNVaVjCro2Mbn2xgzz8gq1Rl5um/mB7yK69QgiMARRQetDn6Xzp48B0PvYZ2i/7xMU6y03DZHmbLyhgz5WJf1wiEibnP6WENHIWZjeorkS0F9cx76qRD9Y8i33H2dhosYDa9cRL9SwpaGzWRJMVph7/fVc+tPjTH/3HZz909Pc/4uvJ1TlVZG2C8/Qf/ARKoePoZIqdKFx4510P/MwU3d/OTIT2OYE7WFEI06pVw0iS7n1yEUeDVeQC3UGi9oR5BqBmmygG04tNehawrAxagIIZAnJ4gGEH9BfOoUWNbLuBlOzNyH6llyIK4afvLyLAlYphDBYTyHS3DnRNGP+E10Gc1VoLjL5N74Z2fbJN1bZ/E//ic/88qe4/ge/nDO/+n46T11ED9zrwlpArApotanMJOTaZ2uY0N1O8CYmQDiJCgHooUIOJV5fEG8YBlMKHQnnzHfJrLVPqWpC64E/J5iZw0QGvbVNduoiJ3/xpxizwBtD9e67UT03i68ygd8ZTQcNHSQp2LosBimzEjw71mfy/QQfBdr5ltLTnHjmj2mtHqfMh+66LDMMhnwivGKO05fsPKceUbzrxBvHY0/14Q5EoMaaX2dVclnuU8PM3m02n/4Urfe+F8/ADd/wd1CVCq3TT7L8wHtoPK3wug22t9vUTjgtHqt8nj+ecn5wlN/97TdfppmyDrYiS0tgIbSwdhX4T5EL1yGWkDcEOnfOvTzfZe03/oi5v/t/MnHHHEFgef6Hf4NqLUXvS8nrlrLXwkiDsk5advN8Rv2mBl6tQArLn5+YZ//6UTZ6FVqn2uAp1vQ8XhvC197D+V/+A9T1h7B+wPDQMc73uCpIkeOgS/+xx0Fbzv3cPwDA6hKTDjEnLqEygexKWpfqhAdLQlyz41htlf7hlCc/s8r+Y6v084CiFOjeNjIwBNuSoQGBQBYGHbktHG1YGrfew9bJRwmCGpN7b0MEwUg4cITjuwpMWAvaILSBsgTPc/pTZ1aYf+gwy/dJtHRjqHE6T3L3K+k//HGe/3efpOrnvPldb2ViUnL8Q8t8/J88zEzQZWre47n1AUudKr1WBdn20e1tvIVJp1VUSCgFXl8QbbqLKZ12P5fV3SX0VI062099mon77kfkEi+eJDpymEPf8ANULxr6e+RlpMQmeASodk7YtgQ9Q3d1G6kNavgCLFo56q4r66aX2CFCdpOAF5Y/xrC3zrG3/TB+UidbvcjT7/2XeKmht+BfcYlH2JcwyyeEWAfOfZ6nREAD2IIxcdIRYIjrrunR63ceD4AncId7C27Wcn30HoeBFWDpCxzWAWvtzBWfxJfYhBAaOAl0X/DwFDCNO9ebgKeBbPT4wdHjGy/4/QLuvJuj35/ArdUxIASeB/LR3yxw5gX/6xZc5XkbWB49tttrso5bj/3AM7x4zuEI0MfduHMuf7414BDu3D3gVtx5toAZYB9wnsvrNg0c/5x/7QM349buDND7nL9fDevyv/31M4Iqfbe19s9GawIwgTvPE7jP8BJuTwPEuD2UAotAdfQ8H7gOt1Y7e+F23GffGf3+wn21Y3tH73kSV7o8iLv2Hh39/Tbgb34hnCfW2i/Z1+jEfm904v3R918H6qMFeRS3oT8L/Bhw8QWvvQd4DHfRvXv09fNfyuN7Ob6As8BXfM5jfw34+Ojnf4y7GDaAXwI+Mto4O8/7BPBvgDbOSb7pBe/zAPCLwEOjzfDfgenP+V9/D+dQD+/2WnzOcf0J8C/+gse/GXdRv/OFny9w/+fsh7eM1qMN/BrwKeA7Pnd9/4L3/7PRZyJ2ew2+iDX73+L6+dxrBndjTIEHRr8fA96LuxFsAh8C7hj9bRr44Og8PwH8gxfuBeD7cUFEa7TXXrSvRs/ZM7q2eqM99n2ja8gb/f2BnWv08329pMjzmn1pTQjx13Af0mv/J39/AHin/Tx3QCHEdwLf+z97j/8VTAghgYvAX7XWfvgLPPe3gCVr7d/7Szm4a/a/re22gsk1+/9gQogE+Ju4yOx/KRNCvBl4EJfK/R1cavrpL/Cag8DXA3e+3Md3za7Z7ncWrtkXZSPnso6rc/3nXT6cl8PuBU7hyh1vA77WWvs/RXULIf4R8BTwz6y1Z/5nz7tm1+xLZdfS9mt2za7ZNfsi7Frkec2u2TW7Zl+EXXOe1+yaXbNr9kXYS2oYxc3QVvdU6fQTwi2DlY7OSVjrQKjgBvwN6FiisstUUKI0WCXQocT4jrzUjhifEY4ZRWUW4wl0wFisqagKvMFoLCsQqKFFloasqfCGlry7RV4Odm0eUVUqtkLDAXC1xmqNkMqN4O1QWwnc747+3E0++J4DSQuJ9RWi0NiiADvSUFEjedLSSd8JJcHzMIGijAVUNXviNhJHRbejZSSA5Yslra3dm131g4qNEkfMuTOtscNqJAwwmgwqY6eMKDzr+D+NmyYS6nIpyY7G68Y0pUa4QQk9Yoh/wQAF1o54GUcMPcYB0tElWOiYzQ27izhPL67Yiq5iA8+x94xE6nQAJmSkRuCIZaQ0yBHrlBqxZe1MjlkEcgSd9YQhEOX49x1SGjVSG8itGgkcCHbICgvrIbBoK1m5UKA7/V3bK15Usd70JFE1o6JySiudIO1IaWDnZzk6dzX6+TJvrRhfYvDi8wS3Vs4lSSdRg2AzrRCswYte6F6MTiRZb4ty+IXX5CU5z/qeCl/9O2/nYx+6laP/aQvrKzZvb+APDH7fEG6ktG6o4qWW9bsEix8u6Bz0ERomnx3S2xsR9DTtA/6IOt/SPQh6f4rdCkiWFFNPlehIUMSS+tmUtbti/L7FyssO1Yk2Wbav8zj1zl96KafwJbeKaPKayW/Cpimm1UY2K9iiRE40scPhWNgKz4Msu/z77DRimGGHQ0Stit1uoTs9ZOAj52ZAKezWtnOiI11rsX8P+XyNbMJn6bWCv/3m93NrdIHcKpQwKJzE8/e8/eKurkkcNrnr1T+E8dz+k7lBFQaRG/zVNlYKurfOsvTlgoUb1mhGrg+0nca0BzGhX2CMHGsy7VieexRDH7UakKwIgpa97JS1k5P1+wY11E73ppsjW31Et4/pdPlg/z9+PoD6y25BdZJ7vbdTHl4AKWgfjrESevsFw70FIjT4sZuUSaKc0C+ZjAccrG4hsVS8jNJIvBEtXaJyFoNtIpETyYKmHNBUA7rGKbAGQjuKRxSRKNjUVYyVrJQNajJlYEL+7tue2c0lIahPsvgvv5dvOvYYvtAMTEBmPHyhCWXJtN8lkTkVmY0VcyNRIDGYUeK8o9q7Y/oFHlFb6dQnTMRWWaWwCl9o3vHHb+bwe3qY0ENoQ1EPiJZ7lM2ITz/5jis69pfkPAWO0l8YKCYTvE6Kl1mypuPF689VySYEKhNULoCOJP1FCFruZDZvE0w+rZh6JqV1NGTzvgJyyXSzz0bPOdml1ynC6zr0t2PW+wGgmXpM0jyZUSaKpdd6WE9w/TuWCDeanNrlfpfICszGJlYbRBwjogh8g+31QEhkJXGOcDDE9IfOcRrrHGcUQLeL3W5hhimqWkEk8ZisQUw0sVGA6PQx3S5ieQ1fKYYzTVQm+MPl22nPxvij2UM5cqADs/75DvkvxcwoywDnPNEWmZZgDGaiRvuQYvHGZW6ZXKaVX6YW9KUh0wq9IyFrBTtj6b7SpMowzCRZ5pghvP7IgSo3Lmx8J70hR5kOvudGIJPYwc530wQIKZGlYTjn9IisGkXnyiJ9Qxg651kaSSQshVFsZBX2xW7YRiOR1jLt90aOQREIyXpZpytizhYzLPpbKCzpSPNLW0khPFLjk9qAROb4ouR8toC90kHul9GSKMcXeuzYEi+np0N8oYlEQSBKFJeVP51zlEhcVC6tRAmDti4P83HXQ+FeBUAkChKZ0dYJbR3z5jd+hs8+cgf1ZxzFnywMIi+Rmb5iEpmXhvMU8OjFfez/QOpS8GqINzQMZj2G04KFT6cs7YnIG5BPaeINxwCuUli/M8Ee6ZFdrNA4nrF1p48XlZTWY199mw2aZJOW6jlBd59PbapPt6gRX/Do74XN+6H5KY9yMaP6RIRtdVh/6yL+Z3d7aHk0beB7yEriKMc6PRd9NhsAmE7XRZhxjKzX3MuKAiEFNOpgLKpaBd/D1GJ0NcSECisEKi3xSo2s1RCJi1TCrYJwK+T0hRneMv80B4INCus+SoXB2+1BbiEwgZN3dRrZjv0GT6InanSO1ujekvOq5hqxzMmUR2EliedEzHztUWjHjq6toNAKbZxaqFIGEWnKRI2UDwUqc5pAOhixjivHjiMK7fLY4OqQawFHciHbA/T+BB0LCqdphhgoTGAoS0Ulyon9gsloQD0YEquCCX9Au4yd4xuJuWXWw1hJ34ScTaeZ9nuEsmClaAIw5bnpVI2gqxP6JkRhqKkUhSGUJVcD2EZKw3ru5GaksO74hCGUBRpHCpSjiMTlKd8dB6pGDlTtUMmPzmfHaUrMmExdCksic1cGCCyX3qIReoJoKwdtEbmH2h5cMXH2S3OeFvJugBqmiLzE+gorQ1Rq6R6ylJFiuFgSrntQK8iaIbpqKKuK3sESH0gnBd0jNaww6O0Qb8JpJ4ikJDjr4aWWWiWld3yCY/ec57hZZPoRRbgdkU5D7bMRjTMl2Z2HmftUm5PJLusr7Cy0EBCFjilHShc1VmJE36WkslGHuWnymQpl5Gqi3rBEDRw7VVELyCY8ylhQhoKi5qQlECHhVoXapRmSpSFykGOVYPK5kmwy4GOb12Em3QZTI13uHUe6m6YDV8tzTN8WoQ3GkxSTIe3DkmMHlwllSWEVsSqQxh2zFJZIFZRGUVpJpj2GQCmctrknDdI3mNhSlhY7Yv1WVmB3FEzFSJtGuXoypYfYBbmJv8iE52GtJa9K8hpYz9Vr/Y4kjxS55+F7msl4QNXPaPpDFsMWoSzo6ghfarSVrOU1MuPYzK6PVrguXiUSOQMTMuN1xhGnEoalYmIcxTXVAICuiXi+N+uUX3fZ0tynU4Z4UhOK0kWfMqcYCRLtfDdGUgiNwscXGn8kOu+LEo0YR547ahQ7tpPGB6LECIFGkKiMZGJIGdcQhcGEinwqIbzYQhZXxjb0kq4yC1BK+vsqVE+0kWlJ2CoYTobYqRwd+8SzfaIna2RzzhEA9A6W1Pd0GQxCippl+5gk3BBk8yVRnLMxrBJEBWUcYTzIH5zE8+H0Q/vx9g/Bxvg9S/WSYfMmhfFcVKOrwRXTR71sJgUySSDwMdUEubHtIlHPQwxS18TYO8/wQJPOAY/hjKCoOmosv+MTdFwdV4dOMqKMLTq26MmCmbk2jShltVvl0rkGM49UaJyWxOfbmCjAHvD5G3s+TlMOXnA4ht+W6S4uiDMnrOUc2ljqIJDkDY9syhCpkk4ZOko1wJcaKQzhTlRl1FgQDSArPXJwdIRWYJVFh65BpAsxlpQF14QxnkCEnmPiyuXlTspuW+Aj8sLpPPkjgTuL0+PJJVindxV7BVIYYlWw4LuUPYlyBiOBxFN6BikMicxRGBb9LWoyJTU+BQplLX0ToIRloEOm/S5TXo+aHNI1MV0dk+orZxB6OS1LA1Ltj2vcAxPQUMNRIKBcf2Qk0yFxDPwSg0KSW8Y1f3DNsJ1yBjCOOsG9NpEZqfZZy+tUopy0KakqJ8shRuU0Xg71TCEAz9DdF1A9Iyljn+FM4Ni7l0L6c5BeqhIKQbCu0BH425KiYeisVl1BvAC/C4MFiC759Moq1UMZ5mSVsAvRtmHwlQPE4zVqp2F7XjlJWU/QW1Skc5otodj75ymdw7GbKdlNUwq7fx7ZGYDWmE4XEYYQBNg8x+ybZeOOGp2jUEyUyKTECzRGS4apxzCViEKO4AaOfV0kJc3GgD3VDjNRj6moz8UoY6WYJd7w8TYsuhpQr/X58miNYhT+7myTaJcFe6zT1UIYiyzBegLrSYwnXWc5cGoAiZejvHwsjauEHUcTOwqjntAooZzo2Uii1xSO19Eqi45GXXcEKoeyFM4RlQ7tAWADD/KrQAEOsIGPqccEXYPfV+QNi5FgfbCJk3CU0tLKYgJVYqxgtWxwLFymsDmRCCisR1VlZMYjlM7JdnXMPq/FAE1qfWpeSmQi1ss6k16PwiokxokpjiLWY7VV/nSX1wNA5645KIWlr52ceCgLCuPhy3Jc09dIFNJJmIxcVzCWgxo1j6x0USgSbcVYKE9b4RwrEmPd/+unATKBMlEE25nLVNLsigmRX2LDyCJDTe+AIZ+MaR8JsNJpKE88A61jTuVOGIsJQXShdgZ6+xXZnEV4xj1uIGgLgpY7hNVyGhlYekc1wnp4nkZ2oagJ9u/ZZOmWBWYfNahCMP1fcvKGj8xLGif6+P3dT8dEobFxiK5HeHMzTuQrzRC1Cts31ti8S1OZ7xOOtMuFsBgjsFagARsahGcQyiIFxElGLcpItcd2HuNJw55qm/51Ab3jEyQnDf3FkDfvfRRfSEIkvrjsHNRuhxPCca7qHVnXctT8UYKsIansazET92j6Qwor8YQh0x6xKvCkpjQKJSyhLMmlOy9rBcPcpygUNpeIQoxqnlBULcKIUYRrMUq4ZtGOlWa3GdPHJjo9VJYTh4reYoJKhcu2KgbZ8RBRibWCThqS+C517emIc/kMh8NVuibiYj4JuHS2XSb4QnMkWGNdV+iamEgU5EbR0k6qO5EZZtR1NqMaoEa46EzuctHTArlkUAZs5Qmh1EjPspbXaXhDZrzuGIa1c3NVWCKZj4Ujd1J2AITj7ttBGpjx45LUSjLjUn4pLMZIpHQ396Lu1Cl8T11xNP6SQfJeoIlX3MviTUPrmCVrCvK6IN+TUzadM5t8ErKmpXEmx3qWaGqIEFDWNJ1jmrxp6Rw1VC5Zamfcxva3FGoI+tGmW6whvH3PE5R7MjZuVVQvZCy/JiZe7qOrAUUzREe7XfO0iDTHxD5l4qOnauD7CCXpH5th6xaY3t+ikQyJ/JI4KPCVxlMGKZ3TlKHGCzR+UBInGfU4JfZ2uq7u/DxhmKt16RwG00hYeZ3lb059Eo1FvSAllbvtOMHVIV9wTDv7t6goevsst88tUfdTDIJyJJsrhaUYPdGTmkCWhKokUk7vXklDHBQo5Qhtx+8dWKznUngTuBvzTgo27oYoAXL312VsQqD6BX7PNdPCbZh7EOY+BeJczKATkeY+7Szi4qDJ+eEkzw4WWC/rnMlmeLY3z7Tv6GO3R85zrayxqascTxf4zOAgK2WTronZKJx0d00N2dRVNssqLZ2wnDfZyKpjcbhdtcDhWEujyF6wHwBWiwZbukpqA3xREomCisyoiJxAaCSGSBTjr5ocUpNDEpE5SJMw+EJTk0MqMsMXJaEsSFRO4JeOaNmC3ytQmXHifFdoL7mzEIYFZQRqWJIeCFAppFOQNw1i4OFvS8K2pbKcs31jiAlc2i4yjzjJ6Xd9rLLIwgk5lbHD6/X3AhLSaQg6kLtGNXv8bX7pvt/jR4ffRnd/yODGlOFTFfoLitqFcve1aaTExiFlPSTYHCA7A2yeUx7dw+atPuVEgRCWxC8wVpCXCiVdh97zXZpmRszvShkCrxy7v0A5adlAlhgrqQcpZn9Kf3+FZKHHjAoprCYU/osOSey2AxXOYRrloirAFeSrkrKuqXgZntD0y3B8kZTWSRCE0kkpl0ZRjOqexgp8qdnKEvLMRw7lZZEuDUi3l3TgviPESI7WwU9EaRxY/mowz8P6I2REZvG7gmjLUEYCqS3Tn7XoZwOsDGgt1Fk6MM3Mvm0ONrY46c+xVVRoZTHbZYVPrhzi1qll/tUzr+f2+SWeWN3D4ELNQbX2DtCl5MZ9K+yvJEgs82GbCa9PT0d0y2gM/dlVExBV8zEIflAG9L2QVh7zyIV9xFHBfM3dKPZU2txQWWHB32bK640hSQqLGqf2l/d+JFwAUliPYNQwK6Siq2MKowj9klI4eFuZ+Ki0hCy74kN/Sc7TWMEtMyt8eqZOPhlQP5fT3xNS1pwznP8otA8Ltm4Gf+jBoQFb6xVsJXNSAA818JoWE1p0ZJl9BIyyRC1Necaj/9oek80eK8/NMv9JWHpTScfEzHttmgsdVNFkaqrH+b/SpHJGMPVkNr44d8usFGRzVYwvCAqNDXyIQ/p7QtKpUbOj8JhoDJwDGCYAKOkiT+NLssLDGEHgaSK/dNrrgCc0gdT4wiClAw1XKil5NWJ4tkb4ah+PqyMdfZEJ0P4oZbcgtXVYTwGyVjAT9GgViZsEsW4qpBhF2P0yZDOr0C8DstJjs5eQZf54WEt3faJtiY5cs8jXEh06JxSvO2kGf2DwhiVyWCDSArRGFFcuKftymo1DbBKCJ1EF+D1LXhP0DkA+aRBGUDkjmXqmoHGywDyoaB2d5jP3V7j+pjW3J5TGF5r1pSYfeW6K2mnJ6XaN5tASNwT9RUFuBXEl5+nje3muOg/AZLPHmxafw9jL673rkaeAuUZ3DFPLjceDK/vZutTEayn6Ck7JBqIUXOjs56MzN9M4vM3dcxe5uXqJg8EGBaOu+8iZdk1M10SslzU2ihrLaZ3T7Wl8pbFWUBjJDc01Djc3ebQxjdBgAkl4qe/Ikq8Qv/WSG0azUZfkkuLc1xiO/XrK1DMenQMKoQXeoKCoOXnYrKY4PLfBibulmzpTFjWEQAriVddlbJzokU+EyMIQtBXqzytsHKhgJwyNz6yxfuc8D3cOcSma4N49Z3m4eifbz00S9SRF3YGuVbHbNRs7EiGzZAs1hLaUsaKoSLyBoGwI1MgZToauK97JIkojUdKiRt1lYwWhXxJ5JZ4wri5qJaWVSCsJhcYgqEUZvaYg2nB3WCVeXHnR1mB3ORy3wkWBO7VPUbhR3iKBIHqxE8uM584RS2klW1nCmY0pstWEcE0RbUC1Z5GldU0o6yLK7j6J8SBZtRgPwramemGIHBYOs2cMFKVzmtq4sdirwETuRnD1jNsrxndRshh121Um6N2cIV47oLtco3rGo3FaI/8s5sG5g9w3fZol2aChhhw4sM7543NkTTeQkk1Y8sWcmdkO00mf6ajH3MEu7z97E4NLVdbzOn+U38orF86znceUVu06ztMKOFLfYKh91tMqvTwgLz2qcz30tHRDEkaQD3y8fsjEU4L8/BR/fqTJs0fmuG1qieuTFSZVD4PkXDbNal7nVGea508tUDnt4/WdWNz6PiiaBhsY1rbq3Li4QlnXyMLgdwvYamPT7IpF8V5yw8gXmmzKcvTICie/bRG/LZGlqzX1Fzy8vkAYQdaEA9Utjhfz1CYGaC0pqtA4bZAaqmf7bkMbS+dAyHDaSY/qQ0PEasjg+mm8nuB8bwJfalp5zHBGEB9pk7ynQfjtK6xenCff+mI+si+dCQvh2oB8Miab8AjaJXl9dFcv3BMCz0WQTX84xi56RpKNNLmlNAgrCJQep7HjdNZIjPVJtY8nDPOVDseDebKJnS6i+R8c6K6bwCkzWpe+uxqkwXoC3y/pjTqqAIPSd111qenmEadWpzHrEUFLUrlkqaxp/G5JsNqF9S1EHKNnG6TNOmUsqCwXeP0Sr5cjV7ew/YGDA0UReDv8AOVYSXFXzeIGCKox1pduzl+AyiBoQ9iSlDEkSyGyDImbrhm2eYti7sGCk6fn+aq5p7mjcZFJr8d37Ps0f1q5iQefO4wYKryeJLgU0FqZZmt/lenDPZ7YXuT+fSd5ujZPJw0xRrI8rGOsoB6kVwWCyyAYlAEbPTcx0IhTQq+k4uccrm4QypJWEfPUwgJLZ6epnvJILiguqWmnnSE0JnKf78V0gic3F1g7M0X9hCLatGQTgu5BKCZL/HqO8gxaC9YHFVQjRxYK/8ImJk1BijG07gvZS056faG58VVneOrxA9xyz1meeuoAc58QrL45Z/pJhSzcW+Y1waeWDhJeCOhmClktmLrkiD4ap3K8pS1sHBJv90mn51n45IDzb0kQFyKEhPYhH78PK90avtIMS5/+oRLRjpnoau6Yusj7D82jdo/TAHAd5LIRUiYKlblRQUd84vCNItJUgpyKl9H0BxRWkpY+qfbItCIrPEojEcJSGIkaAcF9YfFGUWlpJKVVVL3MOVUJjRs2d/W8P59ZXO1R5S5aNKG7meQ1qIc5W3lC1cspjEIKy3YW0R5G9IchZj0CRsitwo12ykzDVhvKEtvrw/wEedPhYq0nCJZaMBhiB0M3hhkGl51lqbHmKok8BdhOl+LwNFa4en8ZC6ywVJcMKnNTUumkYOaxPt5qmzPfvugWVELtOZ9LdzU5HK8z77UcDCkYIHwDA0W0Jugd0cQXFc0/Cnk+uIm1V1meT+a5/uAK8agklGmPqcjNqhqz+94z0x4bwwqDNCAMHfCuEQyZCIbkxmMjq9IrQgQQTw8wM5bBagWvpVjfrtFvhg74LnPaRcTqcpOgJRnOWbpHDHIy5/o9q0SqoBGkSCxne5NcWJ8gigp06GO7XccfIV4m5ylG8rB3Ni+w9dEDnFqcIlxXrN6rEVsB8z/1PM+96wbMG7fprldhucb8c5aVvYab9y1zZvYw4BiX0uvnWb/TRSCygMFshXx/xg0Hlln6g4M0zhas3uMjtaTqZ5xanwZpEds+fqcgMx63vvoka9nu5h3GEwzmQoSxhFslZUUhNBRVQVm1CGXxhKGqMkfe4A8Zap/+oEFeKjd6qN2FngpLqDQSi7GuEx2okkiVSOEK2VvDhN7hkh8/8im0NRjsVVf1FNY5ToB0UlIkIVbBcN5wY7VNbjx6pStVeNKQlh7tToJtB6ihwEsFtbOWylKO38lRrQFCuFFWW4npHqrQ36uxiaa9ERCtVFB5gWjUsdXYOc6idIDnclQmuBomjHZGB32J8QVZXVBUoag4Bi6jJGUVBnsMsqgwfH0VcUeb9HyN9dtcU7BVJPSCiNT6rJd11tIq9x09zUPnDtBvSo7s2eDMxBScilCZZeIpyfZ9Bc+fXqA+0yMJcw5UOnijZtGu1zxhzIJktGQ4CLEjfOaJzRl6rRi14WBE9WNbHJzaYrlTRy70GKR1hBWEqqShXDe94af4SUFySw8pDbFfYoFIFUyFA2aCLstZg5qfUa2kKGnRkXSEPUIg98xjWi9j5GkQrN0j8R5rkM0YqJWYVLEYtZDf+iyfOn4E2VXYwGHuZKD5yuln+W9v9jlWX+PDrzqK/5EGRdWlK71XD7jv0Gl6RcjTHz3KxFvWGLx7hvLYgIPNjitw5x6UgnBTcv7NAY20ytqgtuuMpFYJB3GQo6mnUOClls5Bidk3ZH6qzd5Ki7qXoq1kqF2a6ktNJSjwlaHQrrbjKUPkOb32naisKjV1300Mne9PsNqtcez6S3xN9VlKdtLfq8t9CgvewGmDDxYMumqQA4mtlgzKwMGPpHNqOwgEk6nLaWw66tb7OyNDFnyfYs8k7aMJ7etATmUgLOl0wGBvheogR/RGKh07kaYxbtpLCOxVgvOkKIkfO8fmm44Q9FxKaRXoUKAj0CGYyDD8qr6bgCk8xFzKoOLjb3isZ1Wur6zS0hXaOuZQZZNWkTAz0aXVjymNZM9Um5WvN1STjCQoUFoxX+1SGjfiWlE502GPzHjjyZxdMwtp6SOFq9RLaei3Y4an6wTbkmrqmmqdo5ZXL5zj2dYcw8zHaImdzpmd6OIJTV0OSWTGXNghjh0jVVZ4LK01kesBK2IWlQqKqZK5fdvEfkFWeDQrQ4qKQHieY7q6cw7zsSs79JfsPHc6owdecZGLH9mHSgV22mCV4b2nbuYNh05ALjE1DQYGC27THgjWubGxAsDt80s8Xm3g9V165p1I+Pj6TQgLUV8Q/tokF74xJw4LJC5y84/HfN3Xfor3PHMHRxfW6RYRWemNAdi7ZWUMaVMRtbSbUe4ZBjMe6Yzh3kNnWIxbKAw97WA5ZtQU2U5j0txHSoOvDEoaGmFKPUhJS5/CKKp+xqD0OduZZGWzgbgUEW4KTtwao46Ch8LsOlbrL7CdyNOOOu5JSTKXEvklmfbGs+tSOF7G2C+RgcZYKBNNWZNkTUU65ZOseoSdGFlYens8tm4zBPMDJpIMY2FrLqC76OF364SrI2drjOtuhgHC96DULnLdbROMGbZUbsmr7pjKqkWWgrxhUakg2FAMZEJWCYiTjMlGn61L01gPLnXqFBOKvgkprCKUJXuiFmVT8jwzLmqThn3TLYwVVPycN888g0ZwejhDq4jHI7FD7X+eg/1LMjFiA5OG6WYPbSQbg4B4VTK8Y+A4TT+SEGxLXlM/wddOPMqvBW/gqUsL3Hf0NIOR49U4Cr794Sa3z13i02cP4fkaLyiJLkUUddChJZ4aMvzgLGt3puyd36YeplxqSEQlwVYTOgcVfPzKDv2LAvr4UnPX5AUOvnWLh5b301mp4bUVB+65wFpaJZnpwyMNBgdKhrMG0/OpyIybkiX+bPNGLnabDK7LmP+gm62NN1yNtLffNZTOv80yMdmj148IvZIn1xZ4xVc9xetqxzly1xqPdg+ynlbJfI+8sfuNgPZ1kK961C+UeD1N3hCYxDWIIlm8CIbzxNYeLp6cJbmg8DuQV6DXtOQTmtZcn3qSMhENmYr69IqQZ87uQa0E+INRhBI5PGjLSGYVL5osumrMWlRhUSmoVOBXMo5MbiKFYWNYpV+EBMpRf3nCMJt0aVViUhkglaZUProUlBXFcEbQPupR1AymWrK4f5M91Ta59thKE1rVgqLmUdQU/rYjABFI8AUmlCBxOM+rwXlaHGF2mpFOOjYoAFG6SNvvCPKmdSO6qSSYLLhz/iLPb89iAovfEWSFT7uM2R9ssOC3GJiQSa/HoXCdxajFh1euI/ELFpI2e6MW+8NNEpmxpascjtfJQp/CKgqrUCLa1eXYMU8aakHGVNSnncdsBRV6h0tedeA8k8GAD5obmZ9qE4mCx9P9HKuvMhEO6JcBgXIkIqnx6YiIisyYC7scntvgaG0DKQzvXb6b5rOC5jdf4pv2PMo/P/c2wjMR1f0Zk2Gf5xcttllj7b5pBvNXHox80ShJX2jmwg5SWMJVR8Dw/Ll5VFRitUBMGUQhiA53+YoDx/n3K1/GayZO4klDdxgiOj5btwj0oSFmOyRclTSPW9ZeCX49p91JmJns0kpjfvqm97PP32SlbPJUfy8VL6OtInpZgA13N+2QJUzevcbqyWnq512q6fXdB3B+MEFhJTNBj62swjPbc6xcmKRyQRGtW1QBYdsSrwmypsewXWdlLiafUXT8iM1uBbHtIwtXFy4ii96XcuueFWry6qx3OhOuURSATixHJ7eZCAe08wglDaFXjkl9Q1nSCDSTlQFt6eLo1ArMlCGtKtJC4Dcy4kBTi1NivyDXHvVgiEGwpBqYAMpIoiu+y4S0a6pZX2GVvGLc3l+GWa2RlZgyFvh9N/tvPBjOGQdta5bgW/y44PoZx8u6tl4HXIRaDwomvAFTXo+6TWnpZMRrabm3eoI3Xf8kjwwOs1rUWQy3iaTjDKhJR/OGgqV8gsIoYpnv9jjF2CJVcCDZokgUE+GA4xuzPL02TyNO2TuzTWkk7157BRPBgKH28YXhUGVzPI3U1ok7VwwNb0g9SDnemSVUJW+470mGr3LEI/9l6W7mb15jWHjsq2wTyhJzIKV9yyS3fs9TBLLkd6+QX/2Lcp56NFivkdwzf4GPXB9SDH1ETyHWfPDdrHG0IhmWNSaODCCC/75ym5tRXq66+sPeDNsOEKXAepbWdaArBqxAeZqDjS1uq13CF5quiWnphPODiXG9bE+9w7O73C00HvTSkGhVkTZHUhgWRC7GvJrLaYMT7RkGWUB1ps8gCekXElJFtOohMygrIwmJocIYSXsYkXZChG/RCSSrgqAtaM144wL71TCK+RebWwfjg0kc/MoTxkWbQK4VgXR41p0U8khjg34lYG1QI6p3yLRHPw+oBLlbi9wfNRIMiZe7wQEsnqcdobC63NUX2lHTWV9iRpg9cYVMOX8ZZtOMyrIhrzmMJ7g9U0xoRGgIKzkz9R57kxbPtueg50OjQIUlr5g7z4FwYzSKmCIxdE1ManxaVFBY7orPckrNklqfrbI6HlFsygEKw95gk4v5FJnxroqij7FiDJKf8AbkoYeZWndlndHe2Zk8q3sp+6JtfOGo+do6pqdDjBVMej2UMDTUkJtry5yQs6wOa5ztTbomLM7R+kpz29QSB6JNlvMG+2a36Ezu4WC8ycc3jlzxcb9ESjqBxLqJOGEpjHDwm14AnsEmGmME0arEelC7YLFK8s6nX8nhuQ0a4ZDZsMfaviqTlQEX1icwnkUqTVYJEIHB9zXGCpRyHedzqSNB6OmQhjfkzuYFzg8naeeRG9sLdnlyxDdkxxtUNyzr92riix6VS+7mUVrFUPuURhF7BX5Vk5Ue/W6Etx4QrQvCLUtRF+hIEG2CyhTlHsl8vcvZYUBZOl7M9jGLN52yb7JDMxhg4CqOPJ0zsBIwjsx4qH3S0tXYXO3XjVx6wk3LBLJkOugxEQwIZclWXuFUOcXSVoNyOcE2CxaaHaajPnXfwU2qfobnGcqdcVDPMSrZF6Towtgxv+dVYVqDUkw8vsXSG6dRmZOX0VULviFInOOcjNxARVp6qK6kTKCSZFRUxrzXYp/XcX83Pk9k+9kuEt7W/Ox45PLm8BLny0mMlWOGIV+UpMZHCTtO3e1u34AtDsMszZhJvukN8GK3LzqlUxmoeBmzfhdfus46wFpRpzSS3HiEo4AqkRmhLPCF5rXNE3TrERtFjQuDCTZThyM9Wt9gb7hNInNCWbKQdNisLnKiP8vFrebLwyS/I0C103EPZUlmPGRfwXSJCGByoU3tlozVP9vL2n0aUQhsppy3r18iNT5fvvckf/TQXYhC0DjQphLmDBKfJCgIvRJtJLNJl+urazyytZ9QloSypKsjTvZnOFpZZzrweHjjwDia2S1TyrFXCwuEmuEBS+28h0zFCHIkHTtSGlOUiigoSKoZ/UnpZBGmQVc1lAJhJeliwZ44xVjB3plt+o0AKSxZ4VEJc5rR0NVSRw7i6gTJO6ycLAEDw9J3YPjRnX+H7ENbQX9EgquEJfRKZoIePR3SK0LWt+rI8xGVDUHP8xgUPs9uzjKdDJiK+mymFfrrCbWOK58gnOMUjIhBtHMNjhT5KnGevu/qnoGHjiBoW8dElgtsArUkI/FzIq/g6dY8S2enoanx4wI5KnPsUV1mpKBrDXWZsjfY4kI6wW+tvZa/MvU41/trtEzMlOrRNTESw8CEYyq61aJBYRVDHbxII2q3zFhBrwgZ+j4qMMwGHRawhNLxQSQyc+xJI0KDSBZoK0iNT2ZcczWROYnMKKxHXQ4pPEUkCya9HjNel5vji5fVFkaSHQDTfpduEDGcse66CoorPu7/T5PhapQOMJ1hOj7NxQ6RV3L6wgzJK9osVob0s4BmMuTVk2d4/9JNrG42QFjqC12KhydoJVVuvPEUUlhS7chvJ4IB/TLk/HACTxpW0jq59piJnKzAeu6ErKpBNsar7ZZV/RwO9enpCvHJEHl3Gx3W8buCfhkwEQ4IlERJg5bOeUxWBjSSIcNZH08Z+mnAsBdSzhhu3rNK4uVsZ4mLzpSmFmRMN/vju2uriEntjprgix2nEnL3iUGsRWjrGiL+KIUfjWDGXuHY4HHkHzkeaMalGImlVcSc2Z5EnouonoeiBjbW9LMArSVlLFlPq5xdnUJ1PEaByGiW3rHW77CBO1Jmi7xKiEF2VFC5uIrfc+w3Uo+GAkJN7BdoK9lOE86emMPrKKJjbYSwTCcD9gZbNKWhKmP62hEGz3gd5sMO//3cLawNa7xx9jluj85TkRmbtopCIoUhAPompK1jMuMRq3wcEO3aegC9PKQaZOTG6Sw11IBIOs0hcHtnR48pEoUjfB6RHcuRekLDGzCrumNiEI0LTuoypTJ6n9QEI/VNQ2XkaAFO2lmQcGf1HB8xR66Yku5LQqtx674lnn7wMM1kSOwV1CcG7Gu2eMP0cT6+dYR7J08z43WZiftMLA65sb5CVWX8zspr2bdvk/snj/NUf5GhdmDYpj+kqjJiVRBKzcnONNpI1ocVqn7OvnibVpFwuLrBp+3uRl1N1eemPcusNWssnZyh6ZX09gr8Hqx1q8xEPTzhYEiZ55GWHp1hRJZ5GK1QniNG9sKSo3MbHK2tszRs0M1CJuMBh2tuksiTGjNiHaoIQ03Iq7PTDiNGI0vQtojsMiu6J90FvHOjZPSzJ82ISVySG0U7i+msVqmvC4wPvcMlB/Zt8Pq55ymsolNGPN1aQAhL2SwZzvkIK5ClRKUSb1g6jlUlsJ43oqfb3TUZm7EgDSCZ/XSHjbvq42671YJeFqCtYG2rzsQTCh0LOs0q+IY9dSev8Zl8mluDDZ7Jp2jphJZOWEqbDLOA0/1pmuEB2mXCbcl5mnLAlq6SW8XAhGyVVcCte2mvjv2Tlh710JVitkvX+PFFl8J6jhlJGCIKIlWMSxCO5zR0QZTK6GmHHNiJKPvG1UFT67+AD9SMyba1lXRMRFsnlMYNtnRN5Cb4Xp60nTGo1rxg4fdXtnhidi/WCqajHp40zEVdujqiEaRcSCc5Z6eZizv4wrAQtFkt6szs2+bC0iTbeyrclCyxWjToaSdStVbUiE3BUPsEUjM00tXOhM9GXmU9rSKFJde7uwFiaXjt5Ck+LQ+xOVdBCEvt7g02t6oEucdmWnHEv+GQXuGmJ3KvpCwVWKeWqLWkKBwFW7eIGJQB7X6MEJZ6kLKdJvhKMxn2Ka3ktY0ThGL3dYo+n8nSsWX5bUUtSMeF/516p7HyMquSdTeG0jhS3E4e4m17yBwG85aZ/dvcMrHMnN9muWjSKmI6aURZKLxKQTYjUJmHLCSyUKhMQVYiCoMUAhOoK5ZWeLnNao2QHuQFamUTqevI0slwlIVkkAZuZLfvU1kz6ECQrEjyuuK43kNa+tTDlFvqSzzfm+XRJw+jBpJX3nucY7NrPHVpgec3Z6ionIY3Teq1CYQey+8WVqGtJDMe+ipI2bG4cpYqKKwTdOvqyEWfFGjEmNBYjtLtQGhSYccDJ49tLrKv1gKgoYZ0dcSpwQw1P2XebwPOb0UUFLjzT23AatF0DPvCYgLLjNelGr1MlHQ7xCB6lILtdH19oVGrAefsFHuPtTi+Mks27XFH7TwGwcNbB9gYVFg/N0FtTxcWYSOvcM/sBZ5Qe/h3f/IV/Pzb34UUluODeeco/D4aSaeI2BgkKGkJlOa2ySX6OhiNW/WJ1O42jBSCv1J7ktT4LPUatAYxdy1cgCk43Z4m0x69IiTyivGkkLGOfk4KixKWla06RTdgI64QewXNYEgtSRlkAauDGq1BTKEVWcOj5qfcEC79T53n1cCqBI4jEUBmgtx4JF6OwSEQcuMjhaEccXUaISiNRApLNw8ZZAEI3ATaLW1ev+cEe4PtURRhGZQBvWGIHSrKQCCsQEeWMhnpJgkcPMng8J2Wq0KrB0DsTDqNOD39gaOkExooBUXmkRuBSkqGU5dxmGHLMvsxj+W1BS5ULU+bg0wd2+T2m89xrL7K/nCTdpnQymLWuxX6OuBSNkExmiKSwpAZV3fORjyOvjC7X/MUjruhV4RMBEPW8yrXV9bQXNYhepHssBVoFMt5k/W0ylMfP8qRd23zzFfewOS3Dvhk7zCB1Fz6D4fZuK/gjteeZ95zDrR4QXtVIwhlwcAEbGYJuunkjRvhlet/fdHhixIGRmOGvtRc98pzPPfMPp7ZmCN4uEpnKeF3on3kb29RizJ3QUSGLPPZyCvMhl26ZcRkPGD/fc/xU5/6en7ilX9C3UvZLCqc7U9hrKCTRVgr2Fiv4UUFDwyOUhSKg9NbDMpg192EAPYqn29vPsqJwSwPXLiBtWbN1TbjAcPSp5XFJEYxGQ6IVMFQ+eNNu9VPKNqhA4wrMyIBkUxEQ7ZsgjaSvFQMWjHLQDxVMKOGKOE6hy9sGO3Muu+2WQlFIp2CZrwTabrzzY0jQoHLXffSuGaAtjiNotFk0nDBcOOE64p2dcRKXudjl47QOz6BNxDUOhBvWFRuHfGxgaBdovojHs8RGYgM1dUBkgfHF1m4ypw1ZgyhEhrQApMrhLLEScrmnT7JBQ+/7yBxsoTm89BfkEy+YZmD9U32Ri0WgjbzXpuKzPiGxcd47+otDMoAX2jaOh5rRIGjANyZLNqB/+yqWShLNYY/KmHZKKouOlY+icxIZOa0i4CBCdG4yPn5jVmK+YLj39fAypL3f+ZWvFqB3giZ8EGGmtWiMaar27GdEsZOdz9Qmpn5NiezOSJVvEzSwyPbcZzsfAeO1tY5MTHL9nqNiZ4lWS3w+gVr8QSbM5A3DHI6I+8FPHpuP0IamrUhtTAjUgV75rf547XbuKN5kVYRMyx9an6KkoascPqsvq8pCkW+FXHRa1BP0l2/c+bW8ESu+PTwFj7y/HU0nvTp7XMF8B2Cj2I0U5xqbyyrYYHOMKLfjpzoV7UkKxVnNycxRjBd79MbhmxcaCKMAGnJM4+6n1Ibi1pdBspfLY4THEF0UXHsQMXE5Qt0x4mWVo0xsE6bXY7nrvNSOX0nZbGTOTNRj6WswWPre+k+PEPtjGVCQF6H4ZyDhNUuGqLNAplqZKGReekiT6WurgkjcMTMnufKCFlGuF0ynJR4fUFRk1jf4lVy0mGAauYMfIsINXItQNc1zbkutlQUxg1fHIw2MFawXtbwhaawildNneXx1l4yc1korltGBLKkNIpQlRRGjXsMV4NtDWIawXDcTAReNHfvCz3SXnKp/WzQ4Y75S1T2ZlRVxlOtPZy4OEu1kvIdt32UyTf1WC0azPltUvviMdQdhU0zUtn0hOFgY4tE5i4ge7kbRk5o3nVHC6uY8vscntvg+eN7RrhFSX8hYTBvaZ6AwaxEHkrpdSMsUA4CqA3RRhJITTXIuNRujFO3QiuGhU97GDHsh0SV3NULWyHCCNJBQJb55LtMJX82m+L//Hc/xOxncm4428LGKc+/ssH+uS0K41iTdhT8Uu2Po6689BgOQsglBAZbSobPN6meF2Bg+WiFZEVy5OGUdMpn6wYPPZlypLJOTXpoe3V0j/8iK2uW7ZstJi6pzvbxhMYTZiTI5RzoTiRgR5FnrhV6VNc2RjpJXmF5dmuO9eenmXhasPfZAWXVZzilcBI+bpdndSc/GW4LxIgJXJSjFransL58EfZzV+0FBCVWG7x+gbABQReyKbB9ha1IojhnOAzAQrPZp6wPqUUZjTBlUATUw5S6l1KXQ/IdXXMkk16PrbIyRqb4IxhYYRTZqElXWDnOAMwuN1wRDu5njKSbR/g7rGIIqiobywhLYVBYUuNTUym+0NxUXWa7dMoMd0+e5xVT58YliZZOmPD6oxuKN1bSdA2okj7huP4bypJ7GmeZVL0x5eOV2EvzPKMh/s+1HdzUK6bOsbEvYSus0zsiSM5KTGix37KBKDyqUUapJbU4QxtJ5JWstGqcX57EZgqMIwauBI7TL/ELLi1NQibJpOuC+VseOraItdCldhe2EEJ8t7X2N1/SuXyJTJ427Pvnj2CLHBtFiEYd79wR7KyLOHdS00y7yaCxVkvmo7s+MpV46x7JiqB5siC62MUkPvULMaLUyEzjdyUzj1se+/AfcvGOk+ifrL3oGHYcqcGg7e5XPCtxhm0WkEmGwwBjJRUvxzOK0ihKqzBcTuV3UnVtJMY45nBZgO75rGZN5h6G5vM9jCcxnqB2LsUECpVpTCDxegUiKxwV3YhBnqKEwMeOsJ94EuDYbu4VwDE8vWBcVBSOQAfjmkaUUKQeQW1Ab5Ag+4rWdoW989vcMrlMpj1kYtkbbTM3aoZ0TYwvNBWZcS6bZtrvMun1OZtOsZQ2AYhVQTli9dpxnFJY0oubu3r9AGgtCX2H8Q5kSawc5eR6XqXuvbgG6QvNwARoKxmYYEz16AtNVzvn6/Chkp6OUBgiWWCQFMZxHWgryIyTYB6YgHDUN+kap22Ub6xd0Zp8QecphDgLJMChvTfXUVge/K8X+cwfL/MDv/MKdubLpDBECCaTIcWUYqba50yxgNeRzFe7XOrUx1ITAMPc5zNv/QUWfv7vsPduxerFCURS0u5U8Ce69NKQPPBQoUYXAiFA9z0nFSotaigppnZfAM6WJVYWDqBdloi8IGgL+nmANgIlLelzZzn/mw8wPLeBUJJk3yS1v/o2Iu96KucFQc9ilCWvSfTROtoXDGac7n205WE8N34o2wYfi0K8KEUv0WMtI8Pupe87e+XATTH792xyfmWS9vse46OPP8gPvfNuAJbSJvnIiRrEGDgPLpMVYjSKLsDrKsoatI9KHn7n3+f67/xJxIEKJlB4A4E3AJVa/EHgtIs6GpVpROQjwwBRlC4S1XrXJoxeeP3E03ux1nIxf57l4hSvrL8V0R6g8jrWs/htgQmh0IJSK2TPY/IJgZcFtBYW+OCeOexcxrHFVc72JvnQG/4lN//m92Gm5lHScGBimxvrK/R0yGzQeZG4Xr90KXqkCnxh6BOwPqzu/prM7MVaWHv/E5z5+Ge5/9+8bTyA4wvDULshEYUZ45zHjaQRzjw1Pg1/QGEVP3XL+/mx930ZU/tdsy21PiOkEgMTMjDhWOse3ORizUvHYnEvpQx4pZGnAn54p9suXlBRVdgXKdbdN32aP+zexpmLM8ihq+U8dW4PNlWotocwoBcybDoCucaa7jAhnhzie5puJ2ark4AVDDoKayWikOiujygEumKQqcD49kUStLtmO+mgtVitwRq8Pmjj0tFhp+Dkz/4++//mW5j8shuQpqD39AVaeUS8LlCZpYwdeXL3kMT4UCYWGhlqLUAYwWDBUs7m7LnYoSItGsvA5kTCo7CagdXjTCMR/m7rtqtsK+NXrn8XTx5Y5Fef8Tj5pNuo016PTVklUiUDKzCj+q8YoQ4i32mWWwvD0BJsubHV4nqHgh/emVI92EYXin4nRKQSUQqClsTftsTbAVFL4w00HiBTRtNOEuvtanqqgB8GXsRob4sSlteIWjN0KwovhSy2iKGr/3o9QWW1ZDjlYQWooSAvJOe2Jsiyy3W8dOjYqJ58dj9P5Qe4685TLEy2adAjDEr6ZUg7d86kFK4O3Mkj+vmu1jzHa2L0Dm+rA8RrKwiUm14MZUm3jOiVATOBK0UUVpEZz0WlCkJRMjAhVeWi1ERmSBFTGI/tsuIGeYBQFnQznyjwUKPSQDmaTnq0e5AL/SbrvcqXHCT/z4CfMNr+D2n72uk+f/ALz3Hp6Q7JZMAbf/B6jrx6D08OFrn0679K7f7bSBbvA2VpP/sp+g88wp5/9D0s/cKvA7D8U/+aZQHT3/v1+JMxq//696l95X103v8JwpuuY/Lb3sbGb/4e+akLoA3RwYMs3v9NiNkmaih2H4JiLcL3sUUOQiKiCJVa+llA4JcML2yBFSSvuR2hCqwKqdxxlOF6nf5DG6z8+e+RrSwhENT2HWPuzd+ANxFjN0OKcxc58cF3k2+tU73rOgZ+wJ92jnD85JfhCcNU2KdbhpzcmiYvPRYbbb55zyNolndzRf7Z+rr5xXqv5L7aOT5WDVlSOStZnd7ZLT74Cx/g4jMdvEbC0b/xambvP4ZShsf/f+9m9o030XzTXRRa0fv0www+/DDzP/qDbPzCOwBY+sl/DQj2/u23YpImy7/yHmr3v4buBz9O9cD17L/razn50H+mv3keazTNyj5u2vdWwsqEY1faxTUBfsIag/A91wAUDrbU0y2e/dA7aBcrqLhK86vfQvTlt6K15MJv/yrDA/fQmH81/X2a/lOfZvDOh3jNr309j//ouwB47m/9exDwqp96HbJR5eF/+GE+/pZX8Wfv/xg3vabBl/3E3fzJ3/0ES09tY7Rh6tZ5rvuRr8CfVmOV1t1ekzK/XAfOjWLtdI+nf/ljbD63SdQMufv776Dy2tvo5DGf+Nt/yNTrb+aWbziMEpYH37PE8T86ybf89ht4//e+H4Bf/NpHQAje9nN34E1UeN9PP8S933aAT/3uGfa9ap63/tRNvO+nH+bcE210CdGN+6l/59fzI294jD/hZp65whO4Uuf5CPBAdyP/up0xO4ElH5T8xvc8wpv/1lG+6x33sPR8n//wvQ/yHb/d5LHOIYRnkGsBQgv2Hlnn+GcMwjPEScbt7/gmHnrLP2HPL/4Q8b4GZanof/Yc5XYP0x+w+A9+GmssdAvqr7+Tyjd+F17HsvT+d7H85+9h9nv+OmVdj0PyXTMBtsgRnoeankLvm0VqSLshwWSJNzcNUnDhl/4bk/ffSHT9XmQlwY8L+nsKql/z5czcegCpByz/03ez9uCfsHD/12HLktN/8NvU/sq93PtdR3nmP7ZY/0/vJL54P93NfZhAsBoKx9oeCYLSshnX+SeH97E6PLGbK/JItSL4V/+2y0/8RI051SGUFpMW/MZ3P8qb/tZ1vPVX7ufppy0f/ZH3khycpnJgevxiISxCOO0jxyYPN/+Lb+PTb/6nfNV//DrivROc60xw4RPr6FYP1lNu/I6fwesbVDtlYeFuZg9/EzIrefr0H/Lsxfdz283fjvV29S77CPBAOex+nVUltnApYikNj3Y/wNH4bq57+/ez4a9y5o/+LXMH5xDJpKvPha5kI0qB1e4cIlXyLb/1ev71Xe/i7/7BK8gWFqmplKc/3abY7tEwm/zV97+VQ8EaS13DwlfdzE1//yB5qXjy//5znvilj3Po730jtTAfSzrv2poMul9Hx3cICwTFoOSTP/w+bvrue3jLv1pk82SbD/ytP+V1+xfQexYZFh7bvYRHjx9E9D0G6wMGxXn++Olb8X7iRviWn+W6X/kegoUpTllB6/EL9Dc+ysmVCm/7g2+loQb0spzbv2Y/X/GLB+gVAe/5qcfZ+Lfv4z8ffju3Ty+5/XcFJ/BSbsc/293K2d7UYzaWZz6yweSemFd83SKRb9l3U42bv3Kek396gbtvPg25pKxrbLXk2/Y9xNHpdSd0VihWliYAd7HkQx/d8/HXfBCSxhu+CqUDpB8gpmIqe+/BVn1kHDF391cyOH8KK8BvKXafE0OgJiaQhw+Q3bDIcC4mbBui8wHD1EfGMfM/870YK7j4b97L8e/8F5z7+XdRtnoE+yeI7ziKCDyCyZiJr3k1vZWT9I4WbJkzWEpqb34Ny91JZubvoBHMoXJNGbuLKOgaZGHxB9aJiUWCykVB2d1dhvC5ecVv/86ASxvG1a9EQfnQU9T3VIi/8hV0bJUDN1fZf/9BVh44SaY9LMKRPeQ+xkjwDVZZkJb2wDHrbOcJvSKk1MqVjoRg5jVvwTOKKPOITcLM3C0oL0QkCQcOvp7t3jmXnez2TRZ+tkx75GV/LE63np4lElX2mP1MPLxCZWov1ZtvY/DUZ2E7AGkp6o6qMFmWiK5CZ4rHT+3jwxeuA+Dx7t4RKUbOYtBCSMHX/ch+vECR+xVmpwz7Xn+IrmiwaaaofO3r6T11jsh3nKq73DL42TLtYb1tB2HTkrMfvUQ412DmzbexWdaZuH6aw2/Yx8oDJxwSQ0tMqvCrOZX9HaQyBKrkniPnODzrRpn3N1rct3CWycqAbC0GIdH3fT2buslktWRySnLzVy6gIh8bxSSvewvZydO0OglzYeeKD/6Ku+3W2qeSps8Dv3ma2SMVBJbW8oDzT7T5mVd/aPw8U1rufPse7q0v836cg6OU/Mozr2dr43GsPUe2FSPK0QSK0thMES77mA2LF1fw8xCZCUpApyXr//2/kj55Aj0cOHXKPMNvWdIDetd5bkUQkN9xiKLiUVQlft/gDTTVc5LtWoKeLAgWZ5n+7m/GakG5vsLGv/091n/rT5j49rey9c4/Jjt+DjPMwFpkEqN6CrPeRU00UL6lLCVhBpGOkMOCZC2nSNxH5w2sa4ZYgahJ0ilxxTi1l8tkKPnyN3r8xq/1OHadR1Xm1NYvsv50m//6lf9xRGBrQBuu++rD7K9t8cwIUiOEJc8d8gIB1rNkqbsZbPYT0n6V7iBEFwpVqeBrH5VZvKHBZhnPP/vf2V57nrJ0dVKtM0cDd4WKiC+XWWuf8qKEM+ZZqt4EaMGw7NDW63xo+G44J7DvkFhhqLziblTmzl/Wc4ZzBr/jMKAoi5/k4/f1pCPFOBys0VNDKhMB89UB7RK2ygqr3ZCH/9nHuPipJcruaMJtmFMWjuBpN21nTbZ//2PsvT0gjPocSE9y5rll/uytrqwnhR3tk0NMxz0qUc4tBy7yxpsytouER6fWeVYaJoIBRyvr/CmwN27hySZH6+tM3XqB90+G1A+kbA4qnI8nOCiX+f1/8izPf2KdrJM7PaQs48iMm9S6UntJUKXGTMin/+sl3vDX9yGAyfmQI6+Y4Pv+/V3A5S4YgC/6eE2J7OZ4mx5DERFmWwyUoTrXo7fhJmTyXoAfOvqy4aQbtfM7btwu3BIsP/chyoubHPgbP4ydr5FfuMTFf/1LpNMl/sbua7CYQNE5EKIDMIFA+4J4yxJvabJLHgPro2saR60O3sQCldfcTe+Bh2j9lw8Cgvl/8COosMrwM0+z9e4/ROYCOVNFt9vMTrRp9StUVjSp6ZFkBcHzy/jNGsVslTJ2zQRhQGVOA2e3h0ZS6/M1P7TAj3zNKb73eytIBEcXLXe/KuSbfv3LeGDzerLS47r6OndWzzHjPcLjjSF7giX6Yc72UgOz2XMRY2jGDcpCewxzl+K5k3ayFbJwpCArJz7GYLjBnff9IJGq0mtf4pGH/w1G7n5pHMCrNLjYOsHB2ivAesSNPUx2Nrln37eCkpgkoHVjje4+SW4sQoWUfY2ZLihsgN3suZvKCNYFsDSo88ntaZ72FznfXqPkEk/3FllPq3SLkLO/+2lWTqQs/MPvJ5pJMBcucuJHfpPNVsVhTnd5r3hJg95HH2Ip+DIoIobNWeq39mj80A9ALhFJiRdoSs9wYrMkVzEnVxt0zt1GXnpsnNlgUPh87PwRsqEPvIf3PXsztbxOEmX0Nw2FcVjrzc0qn2gd4QN/fJr+szD1Mz+EMlOIz65w9t//C06vT/JO/Sqs+fQVHbuwXyB0G8EKvtta+2dCiPXRwxPAEDgB3AxcArZHf4txSVIKLALV0fN84DqgAI6Pnns7cAbYiZVrwCHgiRccwt7Re57ElRkOAk3g0dHfbwP+5m7h1EZrcu7zPCUCGsAW7tx94Ahu/RSgR6/feTzAnb8AbgFWgfXRexwGVoClL3BYB6y1M1/cGX3xtrNXgP8Hd04H+N98r1y7fv5H+19mTay1n/cLOAt8xQt+3zc6iQdGvx8D3ou7wDeBDwF3jP42DXwQ6AKfAP4B8PEXvNf3A8tAC/hm4H7g4uf8/z3AA0APeB74Ptz90hv9/QHcB/EFz2U3vkYf9u+NNkN/9P3XgTpukzw6OrfPAj/2wvMH7gEeG63fu0dfP7/b53Rtr1xbk2trYr9w5HnNrtk1u2bX7H+0Xe9VX7Nrds2u2f8/2jXnec2u2TW7Zl+EXXOe1+yaXbNr9kXYNed5za7ZNbtmX4Rdc57X7Jpds2v2RdhLAsn7QcXGZeQAx0GA9SQ6lMjS6WQbTzqweATgSEWlMvhKk5centI0/HSsx2yQbkbeehQjirIdUlxTSmTmeB0ZvZ3KzWjMzmI9iVWCdLhFOezvGgY6boa2uqdKp58QbhmnoSNHpLxmBM4e/axjicoMQrvjF6XBKoEOHZuSLBz22yocccQI+G48gQ5A5SALS1EVeIMRjVsgUEMnQ5E1Fd7Qkne3yMvBrq2JF1dskkWIHX45IUas7gITepSRo17DM/ieJlIlkSwIpdORAYsUTnN9Z4BQYlFCYKx7XIx+tkCBJDM+ufUY7PBVFgo5FG7NcoMOJYOtixt2F/Cv43WJKtabmsTvO25a4wvkVEHdS9nKEoIlx8IvjMUqQVGR1Cf7KGGcfMZmjI6t21QC5EA4IU4z2jM4uQ5VLUm8HE8Y7AvGAz5XZthYQWe5z3A727W9oqoV6zcmEaUTFRUGROmkq4W+rABg3Yc+kpIWY5rGHS7nncGQnWtGZhpKzVjASux87byP8x9WiRddcwB558p8yktynlEywauHX44IfOTkBGaiSj5TQUcSmRmGMz4btwvqN29SCQqWNxvoXLF/zyaH6pu8eeIpcqtIbcDABPR0RGp8htrnVG+GiXDAxX6Tbhay1Uko+gHxmYDGKUO0VeL1S2SukbnG+gqdeHzy2Xe8lFP4klt9T4Wv/p2387EP3crR/7SF9RWbtzfwBwa/bwg3Ulo3VPFSy/pdgsUPF3QO+ggNk88O6e2NCHqa9gHfXRCFpXsQ9P4UuxWQLCmmniodNVssqZ9NWbsrxu9brLzsUFVu8VLL9nUep975S7u6JkFtknvVG8as6SKKYLKBqUWsvaJG6yaDN53iByW1OGNvrcX11TX2h5sjlvByzK8YjOjEdrS2FZZoJB/bt/5Yn/t0Pstq0eB4b47VYY1uFtJ9aIbGKUPtXEb3QMjDv/vjn2+Y4WW3qDLJ3I/+KLMPG6SGIhE0/vpFbmku8en/+xXUpgajC1qCtTT/6UVuri3T0yHv/f17qV2wbLwpRV6MiLYEyYpFZRZhQfvQOSypnrfOAf0f6xxubHIwceOGvtRjWd4dK6zid7/tz3djKcbm1ye5+S0/StgxBF2NDpyKQLSWofoZuhqSTYakk4reomA4b7CRBuUoKUVgsKVwk1dGILRA9SWVi4LpJ1KC5Q6iN8DmBWKHWcv3oSyx9SqDIxOYwPHnAmDguT/8l1d07F+UhoUIHA+g7KV4SYDMFf09Iav3WeI9XdrdhPZyxMSxLeaqXY7W1pnwBqyX9XHUWVjFQAdOZ8XLmIs79MsQgNgvUMqiQ006q/EGCuP7RNsSb6BRgxI1yBGexB/sLk5VAEPtIwwUkwleJ8XLLFlTYqWgP1clmxCoTFC5gJMnWYSg5W5sm7cJJp9WTD2T0joasnlfAblkutlno+ec7NLrFOF1HfrbMev9ANBMPSZpnswoE8XSaz2sJ7j+HUuEG01OXQXQXVuUCGPA9xFhgPE9sqmI7kGQU5flXbPCo53HnB1MkRmPxbDFnN9GYVHC0DcekcxJZEFhPQogR9E1ERfyKbbKKgYxdgwVLydUJWFSsp1MY3aJBPkvMjtVYqXLJPyBpoidLPP73/NqFteGowhIovo5Z35KcWdlk+0yYSWtM/dowdqdPn5Q4m8Igo6Lzpz4ncUKSTqr+ZZv/Bh/+O/up/5rk6z+SM5kMEAKQ12kI04B+wL5cLHr45myhKBvqZ7tuWhwIiS8NARPMtxXY+NWn+G8wdQLksaQ2TgjL5WTZy4V1oI1l28K1gpMHdoTHtlERO1sSON0SnB2HdvtglLYbs9RAypF8rwmOzCJnVVjwp2XR4YDQApEFGKrMWLgiAbGqXshGKxVqC90ufnV55gMBtS9IaEsR0p17vtGURt/gKEsWc9rGOtkhpUwdIvQLcqIgstKyGsClTkZBs935LZF1dt9PW4Bj17cx/4PpC4Fr4Z4Q8Ng1mM4LVj4dMrSnoi8AfmUJt6Q6BBUCut3JtgjPbKLFRrHM7bu9PGiktJ67Ktvs0GTbNJSPSfo7vOpTfXpFjXiCx79vbB5PzQ/5VEuZlSfiLCtDutvXcT/rN7dNQGwBpSPCHxsEqFrIb09PmVDEyiD1pKyVERBgcRS81OqXkZhFVtllUmvh09Jahx/gY9GCUNhPTo6oqUrbJVVBiZ4EadCKEuqfsZ02Oe5eB8mkOhYXRUaRgthm//nG34F9Q2WHMlSOcGJbI63f8dnib6rYL2skxmfwipeZyXbZULDG2JCwWOv8/jar/4k7/nAvdS2HJOWMCCMK5nJ0hKtKR5r7eMbvvdD/NG/fD3le/ay9K1Dbm0sURiFRuKLYnw8ml1nVULY/5e9P4+yLLvrO9HPHs5wz51jzsh5rrlUVVJJAgkJJCRhMZgZg6HBbWOLxsZ2d7t7uS0bd+Pn9xY2Xo1pt/2Mwe3F6EFMZjBIoHmqKkmlmisrK+eYhzufce/9/tg3IlPYRpmYIuqtVb+1IiPj3hs3ztn3nN/+Dd/f9wvxlldi0FtDVG9Csdymdzaid5dDHRnRruUo6VDSYqz0DtJKpHSYSmKNwBkJ0iGVQyhPoJIdqjCRokpi2skSyTMON554VishcWmKne+gMoMq8Cxejttm4PpjRZ6u1cCFGrFbIIwjnwkoawJbMzx07yXONjeZ0WO6ekzpFAo7vdCj/fcYmphhFVOTniEmt4phEVEYxaQIMJVCSAdG+Npp5Ws9TkLeVui0IphMVRIP0hwUwxCVZoiiwgUKJyNU5hiedFSxIj1cEW1qaJbknQjTsFQNxehERQBkM4Lh6SZOWMxuhO76yEwkFeFljc4czXrG6IUu519/lRfsYeYeV0S7MdkcNL8Q075UkT90isVP9XkpUX/0Mf9pmFKeKDoMsbWQbDFidFSAcoShV9TUytCKc2q6pLC+7h0os0+4XTrtxbsoGdoadZkj8UJgoahoTpnDc+cvY+MkWhrqumAja3jt90RQtBSvBqHIa+Mu3/nJvwzC8f33fZqnh8t85qkzIBwiNrQ7Ew63+1zemSFQhrvn1rk67DLIIu5960t8dus44Gt6wjikYRp1CkwoaFx1XNqd4Z7WKnzrNvb35rjcm+Fs04+PB/slEM+i3lYpkwNeGGEg3BojBxPs9i7u3DE2H4wZHbe4uQItHHmpCbXBOqiMwgFS+g3YVBJnJM4KSBVm6jgpffhYNS2jY5KqFqKKRaLnV6AQoDUYg9od4oI2jZWS/skAq8UrF3kKIcBaqmZE2AupGgGjw5LJkiOeSzmS9DgWbTOvB/TMTQr8QPoowkcPXi+5qTPGVURpFZkJMFP5WSUcQViRTUJQXqYimI75Cwvh0FA2NKJyB80Q7nfuSjI+WqdxoY/MKqJeSToT4WYLTC2gtjAmfqpJvqj3U4PRiYrW8pDJJKJsOnbPS6ItQb5UEdcKttIGYVxS1WKshuIzM+gAXv7sMfSxFFyNYORo3LBs36OwWmADgWncvnTqK2lCCB91NhJMPaR/QpMtV6Atea6pxSWBstSDgkaQMxOMaah8X8gsFiWxLDBS7tc9mzL1OtvCEMtivy5aVnUsYqro6h3vlf4Mej6lXGtggtu/IV5J033J/H+MiAaGjb/f5OLuHHf98xHFbI2qptk9N8Ozp9sc+V3HZF6x8h0ZKy/Nk1xXXKi6jM6XqMDXOFXpkKWPlEzsde7jvmFzpUnvcMKh5oAb6SzFx2eJv6fEOEkgfPS+dx/+1sq9FOXnD3RN1KREjjJcf4jQmtWvbDM8ZdGLE8LQoKSlMl6SWggfFJipbEeRBV44EsAIhBXIia+Zei5YQELZNthAskHMofE8emUHl2VQVZDlqFEOUhDvavLmvizbl7U7v6SUQowmqNzgAk06HzI+YnFHU+ZbI8ZVhMISCkN4S5qe24DcaS8hKiwzesy4iniuv8hzu4usjVuUVjIpAgJtUMr6IrAEqx1VInx0G/gvJwR5R+MOOMgSAtCW4VEFWlK1YtL50KverkSMFyXZjQZOCMJNL+oW7EqEEQzWG5hCIUsIhp41PL4RMFptUFqJfalBMIR412IfGiIMNF8GUyhU4W+c0WFFtmjYuUsRDEqGR6IDr2MBviivNS4KQQjGRyy6VaAig51ukkI4tLBIYTFIYlnSVCmJzL3jdJLMBWybBoVTqKnM9Z5lLsAgSFROW6VIHL0yYVyFnO1usjwzoOi4m7WsAzYnwUSCKpbkVnvBu9IgK0vYL4l6jmBXUr84oH2poLSSeFUR7TqinkNMprpfFYgKX4qYnprOPGnyzJOKQRlzvrlOuiAQFeyWCUpY1osWG0WTGT3mt67dy8oLC4Q7B7w21iNUMIbtb7iLwVmDnMsJAjPNQqYidpUizwLKUlEWmnwydZzTNFvkEjWWmJrFxlPv54EboB0msYyPWgan67gkZo9F3U1SRH+EEwI9sVTJ7fPh3nna7hwuTZHjHJSiTAROOcLAUBjFy8NZtDTMh6P9AnUgDE2VMTQxExMxqiIuTWZ5fmeR3iChyjXOCIKkpFYr6I9qBIEnOpbFHikuFB2BDUFliiD1iyoOuLwncMjIMDpuKWZq9E+HOAk6he6z0DvvhbuEddgIxBCal2B0TJEvOoS2/nELYV8Q9gA069UcMnSMzhiE02htkEMom4Jjy9us3HeIhScsqhTM/buCoh0gi4r2hTHB+FVQ87QW0ahDXrB7rotJvChbHJf75MbtKGM+HlFTBV09mTaKfFrelBl1UbBpmmQuIBZe8dA45REbU/lZ31jym/TIROwWNSZViJYeImdmS0wYMBVePFgTfoNk6IXOpGBfEM5D/UAY4VU/jWN1vcPsiq9t2gAQDpP45tA+tKYS6GzaAAoE9TXD49eP8oP3XKVsOUwNFsIha3mbjaxBYTW//aHXE/YEyy8aVmcOeKdVCnoD7Pnj7N4DtEuvNlFon3kKENLhjMA5QZVNXdZ+hx1EKXGhpQpB9xWmbhGdAptqL2c+UdjEQA7jQ5J2M0aNU687Fga4PEc4XzvWqbvtyPPOnae1vu0vBK4WehxiaHEOxnnIMI3Q0rKq2wyLiFAaFpMBR+Ieg6rG1UmXQR6zPU4Y7SaoHU1tRxIMAREyepPArceoHUk8jTqdAqs8DtJqQVhYwoGhqslXB8ltaAjX/E5W27asvEXQvCwRForlHHIFKGaegt27HQuPFwxPhcSzKWWhqZqGwXkPscjmHN1nBeFAMT5sCXYUKoX8iQ4SUCl84/IX+anVGbaKmKMfTFn9yhpHfq+PaYSYSGHiV0HNE3CBBikZHxGgHc4J8iygyhWmkuxECedaGxyOegTCEIgK6ySxLOjIDIWjIycYBIEwxMJQFxV1UVKXOXWZ0zMJA1ujX9aQwjEbTQBYqg25PJpBKB9NhMODD8dNw1K8p89uv8YPtl/gqe1DwFRXXvpruzyVsv3ovA8YigpVOlQBlROoiaSaL33UNL3whZlGZol/rGhI1Oeb3Djd8U5XwUbRZCNv8LnPnaF9QbJ0w7Bzt6L2Qyt0/4f04BYEfM9ipsP6G5uU8wVKW0wpfVRpBKIS2P0U3MuyUN2SMEs8dMkJ0Jbo3JjJIEZdi5EKTGKxkc9inXaUTTBJ6IW6lUJojTMW1U9xc15h9JWLPAGsxYYa4aYpUWiJwopQG8ZZyEqvhbWSstDooGJUhozKiNlowuXdLuNhTHAp5vinKoLRtDliHTaU6HGNxkpFcnETAn94NgkReenDcCUQaYEYjj3s4I91An+yFkUlVQwqrciOh6gMslkoOhYx0QS7kqjvqK8W7N4dYUNJ2baIXFNLCsbDAKfcdHOAqiYIe47xEUBCNgfhAIq2/3vLwS4/8RX/lr+RfjfDYxGTuzPSp+uMDyma1w5eyx4AKRGTjOrwLGXTIXKJzUPq1/xmUDZhpxvxW/06SzMDjjR79Bs1AmE4Eu7QkRPWqg7z2he7jZOUTlGf1jkNkrGNyFzAVtnk4sRj30NZ0Q1TtDCsDloI5chnPMP+gVsl+acP/BKXyzkvtawrkL6JqrIKWTnkSszM53epOjGbX6OwWqNTS9S3BENNNT+9ud20iSo9sL6sT9NQAa0rlo+tnUYPBcJCbjXP/sfzHH7RMDwCs3/9MvfUBixHfZ49aNkBIZicnmF01HfJbaFwE4UeKWThI24bOGzNT5yIXOHk3qDA9NgliKgiaeSMezU6nwvpvFRS1SRZV9I7BzZ0uMhRJY7xckSwGsF4jNMaEUcwSpFVB5Xffs3zjp2ncw6sQ15bozp3BByIwDIex4wc2EGAHnjlcFVCVXOsLgQMmjGfX2tw6t8bjqyNKGdAjQqEtd4ZFv6mmBu1fSqjJGzsMH7TSa7+Wcvd/9N1f5JS4sZjrLGIMPBTCAdo1gnum1/j0/MtipmQ1pWC8XJE1fTOcOmj0D8l2LkXglTDyQk7m3VcPceVEj7bRnccNnKY2LHwOFjliHuG6pJm/JYRM50Ra88vsPRJWHlXxcDWWNJ9OocGqLLD7OyIq1/foX5JMPtUjv3jbYl/4uaKkrIVYkOHGksaVwU6dUyWBHoC7Zcd7nMxWaPGFxeX+Myx09TnJpyb2+DhzgxHwh3GRcjz6TKbRZNIVgymWOAb4w5aWFaHTUb9GgwCnHZEsylLnSELyZA4LKEJ/U5INTj4aFzmMLAxEsvYRkSqwqkYBNjAR47CAVpiI+W78BavUVU5ggnkA43OfX3TSUGZyJtYT+kbdeMlifjdeWqZo2gJX0J7/YB3f/fjvDhe4I3tS7yczu8LOR6oOUjnNaZuPdRo06vt6rFA5VA2HU5P1UMFuNAiRwo98VN3djH3KX2qKK+0OPmRgnC7z+Bck/4pic4g7EO2uDflZxkeU7Sfj5FlC9cfQD3B9QfIwlI0Be42O0F/vNtMCqgqZF7RvpzjPh4x9/khclL4mqhSlPMJelggJwVinGK7TZyeoLaH5MdniS5t+sJtWfm6g7XYTp3xkQSn/NRMcKhF4/Gr3PXhMSwvkh7vABCtjXBKkS4n8AcH++ELAQvxkOSG4so3Wc7/i4zZZzWD48pfBJOSsimpEkfeVJxa3OLCIxLpQCiHSiGUgtq6HxFrXxhRdCNkaQn7CvWhOlvH67iupf25DTYfWuKxwUluxF3evHyZxxoPsfv8DPFIUrYcMvOp3oGbtVBVVA2FzARhX6BKx+AMmBMpJqgonmly6FMF7QsZZStieC1kdKzN55frrJ5o8ZbFl7kwXOC5tUXKTCO3QlovCaLeNFWNBTqCWld4lUkLbrvB1U7CylyLmdaE0iholpT1g3eeADumgZwiAmq6JJfSj2pGClFNy1RCoDJDXK8wYYQqPJY6GDqalyROGoqmv8NN5OvpqnCYQCCdo77mgfjDY4LoDTuUTvEDd32KtbzNyWSbrbKJlr5xe9BZitOSsg4yE6i+3xiDoXeUVe1mlI0DERtcJbANQ9GxUEr0aoTKBN3nLd3H1hDGUh7qABDtOvKuoEocwUCQz3sHnS4K0uUGSVpAFOH6A0QcI0vrG2+3uSZ37jyNQWgNSqE2+pSdRWpblnyuhh5pgp0JLlBUiUIPnJ8vlZLxiQa905q5p2JqL6xjm3XkyANWHSCMRe2MaN3YwlmLSGqYmQZEIcJa+g/MsntOEfVhfuQXuUwkNjxYDIrAN8TyWceZ02u89N2HCfrSd0QtjA9p9NjDKPIOHG/s8EK5RLM7wRhJ2YD2y35cr3F57J2OdQyOR6RzAqfAnEwR6xGTc3PokeDqqEsgDb2iRjovqJ3uk3ygTfTn11i/vkSxc6BL4s2PfjCZU+jUR5pWgcwF+ukaNgBTc2w8FLLweYg2JnQnJfX1iNGyZk3NkM5dZ33SwFxLaKxImtcMtc0C3c9BwuRInfU3KIJ7+swnKWkR0LvSIV5XVIM6OycFQjp0VPmZ8AM21S5pyszDhaoQKSxOCKwWqNziNMjDKf27mgBYO6as+/l8Vfhmhipu8h9YJZCV298sTeDTdFU4nACVCc7ObhIIw428SyILSus3EesEpVVMzIFLaOKU57CQxZTLYm8c3U1TaOfxwS6bjvuWAjXR+w3W5o2K5OoYohAbKBACaRy1HahvWIaHFdm8Q1iBCy2macg7irhVY3T/HM2LQ9yUZ6KqvYKRpwhDRL2OiELKI7MMj3iQbTioCHZTnJTIoiJ5addPI41TCAM2vyfl/MIGL9RPc2KljsjyfYC7mGRQGcxSFxt1kLlvjaqdEU77ou7wqKJ12RL3DDZUmEhSNCVVfKdn8CdvgTDc/cZLPP3kce57/WWefvo4i58QrL+7YO4phSz9MhdNwadWThBdCxnmCtkomb3hiT7aFwuPP6tF1HbHZHNLHPrkhKvvSRDXYoSE/smAYAxrwyaBMqRVwPhkhejX6A4Nr5u9zm+fXEIdHE/Kl5qQUwIHDzWzoaBzwRLvGvSopOiGTOYUg+MBwVyL9osjou0MJ2O2HHxV+3nOJOv85Po7qH0xpHFlgg0VwloGZ9v0TkuKmQpzscUkbNI+0UN0CtxWjbAvmGzGuGYFlSR4FQAQDkV9OqpDz9SJRUGoDBPt71QbSmwgeOeZF/jdb7iLViOlKR1prYnr4YlxShCZRacWYT0Jz159zgkxTfGhaHoJbIDMBORWk8ibcsV7cK+XJ3Pk6QGD5K2fz9djv8GCR9A47SFZCO/MbF9hA/+czvxGHIy845SVo5iNCXs5cpCiS0MUeR9hI18qEmZv9NKBhsmCJNmIiHoVwzNNWl/cQuaGZNPeNjLjjp2n7HYwC13f2nfT2VoDwY6f9hBFiagMlBW224B6DZzj7MImR5IeV7ZBTjJsI0aMHC7Q5EfaDI6F7NzvkEsZwbMtyoZDlk1mnnXMfHqVZN07TicFZUMzOqwYH+bgcZ5TBqCHOtfY+ehxLh6eJdpUrL/ZIHZClv72izz/S3dh37HLcLMBq02WnnesHbHce3SVSwunAM+4lJ1bYvMhH1XLEiYLdYpjOXcdX2XlV07Qvlyy/voAaSSNIOfi5hxIh9gNCAYludXc/6aX2MgPPsoCPM5TCax22Kaj+xx0n9jEJRFVI6R+sUfjmYLiaJfxoYjhyTo6c2RdRTI3IBSGs9EaZ4+uszp3jNpsTNgvGJxvYwLovmho3FBMFgRFB+RvdgkOC/JZQ9CXU7lnP7/9ahgcAKaDIxVKBNRVwY6WIAXO+mGQp3cOoS8kDOoxzbO9/eOWxu2n2J55yTeMhPOYz3Re4qS/H1QBWVcSbzueevkwh+7to4QjN5rtvI6WHj/5+MvHb7KWHZQ5R+elnLIRE+04bDjFwgZQ1bnJGCUcKhW0rvjUOm9Kiragf1IT7ziaV3MPnxSCqh3TOxOye58l2laoHKq6wyUVUlucEwxPG4SLKOsef9t6RpLPRqSz4rZ7BnfsPO1uDzlJMeePYmJNOLK+7mIMNtRU816P3UnBjbdFLH26BAFLusda1iRd8BCWfKFOGAXs3tWg9r2rNISjt9nFOUF6pEIN/azI5tfnNK516f/ZMf2nm7Rf8ikuDqId8arA7wXCYBFsvF6iP9/2tZVmhc0Uh+Me8rue41MvnEYOFS50Pt0KDV879xy//u6A860N/uCNZwg+0qZs+AL36E0TvuLky4zKiGc+eobuezaY/PI81fkJJzoDn3YVGipBtC25+u6QdtZgY9I8+GkaAXJxHoTAxICEoC9QpaX/unnGS5KiDcHQ17dH9+cIldP+RMzu60uo4KH5Da4Vs559qwxJFxzbKkBPAsKBQ2eW9ufWcIGm00mYHEl8p/mqZfuegHTBN1UYaVxkD3yTBd8g3gP/A2hp9inWnBYEQ8e1G7N01kFYwcB1iabUhFZNSziBQIWOqGcglvtvbEOP8xTGUcX+d0wEh39T89yv3k+ZeP4JOUX1ZF1JoyXYOOiIvDKE13vMBjOMlgPKusdyF829NNtR2xB0LlbEGxlqbReXxKgzXYbHA6q6Q5ZTWse635SrukIYqF9XFG1HdsiAdOjIn6wpPWxpvOwwDUu8rrj2DfO0LhminnvlIk8AnMXEmrKp0RPjw20pKbsxN94eUrT9hXvqwWvsrByhf85xPki5MpqhOJFRLjQJ+wVlK2Tjq0ve2d7keG2bK61Z1rMmhVGEyrAYD3lq+xAmbtOuj9BvHnPj0BydL/rJIpU5xKvAeVp8/ej4G65z/SNHUZnAzVmcsvzmxXv5mpMXoJDYpgELk0P+Tj4ebnJ3ew2AB5dWeLLRRo/9ha8vJHx88x5PnDAWRP9shmvfVlCLPJGGFpbghRrf/Gc/xQeefR1nDm0yLGPyyo+tHrS5QGM6CSbyUJOqDjv3CGQuCMY+EsjmLbQqkA6banYfLQmSgk4z5Wxzk6GJCWRFqAxVxzCuSVyrRAaWeiNj/U2HEJXfQItZQ/sZjbCKcOBIF/DeSjvQdn+i5GDNEYuSjACFJRCWqhFQ1W46Nr0REI787HrnRcFkcQrX0QJp2M/0EGBCMeW09LVCE/n/69Tt1w3LRLL5iEMvpJSTADnQhD2/Fsnq7QPCXzlzsLVL0K2ju5qyIShagIDmFUfnQkZ4bRvXH/qXxxEiy4k2M2ygqWZLin5I72xIo65QucWEEmmgtuEoG/7XZK1CCLePI52SxdJ6QZEu+Kh2sqg8bv02N9o7hyoZA6VAFsbTYlUOOfGx/7WvDSlnKuKZjFpUMB+P2BbgFnJSEzAqIoR0XPqmiFO/4uidDomvCOR9ft79W2cfp3CKHdNgbCMmNuRz/+oBBifgTHvHk4YsB1QXZglGDp1y252xV9oCaXh45hon3rvDZ1ePMVhrovuK46+/xkbWIJkfw+NtJscr0gWLHQXUZc49yQof3L6b68MOk7M5S7/reT1rW75GOjrmG0pXv8HRnRkxGsdEuuKpjUO84eue5q3NFzj98AZPDE+wmTXIA03RPuB5fwn9B+f8IEPihxyKhQqRSWQhKJueoi+aKNyuwtQcVbciqJVobVmoj2iqjLaecCPvAhDPpmTDiLhRkK/UGfVDomNjwqBiOKhBphiettiaQY0UKhNUkYXYItSBewgAlHD7UWcgDMtRjw++OUBlvn5X1QHhZ9Z15jzpb+Cxv8HYYxtV6ZtBeUdR1oRP242vD8rC/w4WqrrP9632k24nH77Bcq3PWtZiN0+48tgRVP5HHOyfphmD6qforIYeC2RT0H7ZMfPYFqI/xBmLqCe4WuQHCqz1EEUJMjJkcxacZPseRbSrCEZ+jcZHBPl8BaFFKIeYsjA566cWzUJBPoqYfcax9ToQm4LGivUE07dhd94wmhLcBqs9zFyLwak69RVBuhhSHfYzqdYKSqPYzBqYWKC0paZKKiuxwwC6Ff3TNWZeyCjaNT61coKvPfoCP736VgCWa31qquRXX3yA7tjxdX/rozw3WmIrbbC70qaTgcr9LnzQ45m3WiAMi9EAKRzRukY4ePHKEiqucEYgZi2iFMSnhrzz+Av8q7Wv4iu7L6GlZZhGiEHAzn0CczLF7kZE65LOC46NRyFoFfQHCfMzQ3pZjf/tnt/maLDNWtXh6fER6jqnr2JGeYiLDtZZOAHb9ymaV6YkDYFDN0oqEWCallZ3QhIVRMpgnSAtA7QyZEVAHJbc216loTIUlkFVw1jJYntINLNLM8x4Xi2SXm5in2+QO9ABVInDxhbVqHD1iqKUJK2MqlJUheKg4Yzggf6hMCgsRkjuqd3gR7/rF8lcQCJzXsqW+Jef/ipsoJEj66nmCkHREsS9m1FCVZMUTe9Y9cQRTAmRVeG777c2UXXqsZ4v/8JZPn/Wb2QoR+fywfcLAA/TynPk+ib6eAcbKmobjs4LY4/11hpBhWvV6d0/Q/u5HlUr9sMylUAFhrJuyATYmiU96gcyZOlr7QiQoUEAznoqu72xTmcE2fGCXRES9nyEP16Q2FcM52mthxcNhhSn56bdVMH6GySdzpgkLGlFGYu1IZtZAxtAEFZ+17USIoscaHbug8YNSftlw8rxFl9sHuYtcxeZC4b88rXXc+OZRaJtyZG/8iIfWjvP9RcXCHqSJPVpiYdt+HnUV4MZJ7FOYJC8fukaHzkXUaYBYqQQGwEEvoYTr0nSqkn39ARi+I21B3ydd7WBygTlkRzXDz0oWDt6Z/EAYidQ2nCivcMDzRsEwjC0NXom4eqkSzgt1Cy3BjxnD95TqBzKusBJhwstSZKTCoe1Eq0Msa6o6ZLSKpbqfsN5ZmOJQ/UB99au01IZxkmOxjtcjmYYlyE1XXJva5WH29f45MwpdrMapVGUlUJKixSQlRpjJFGzYqExYmPUYGRiXgVLgtwjQZl6rcIp/5jzPKVtPaE2k2KCJkVTIhxEPUgXmFLQeSxnFfvoXpipbIWbylE434WuEh9Z7U3oOOnroTPntvn6o0+zXdb59OOvn87LH+SKMFXIEDhjiTYmcLLto24lPMxRCFy3RbHYoGgJJsdblHWJTi3BGHInUI0KW0lPRaccLjAYIzydpbY4IzBW4CqPqRWpH/10yiGTinzeoMYSPfGwsFduwshYDzFKM/S4YvfukMlijFnK6CYp3WhCc0ox9olLpwg03L+0Sl3l1MOCndCQrHjyjI2HIxo3LIufhN3PH+E/dI5S1qG+4qi3fT3n6T84S/d5x7GeYbwoccoTwcpqSsl1wOYQSBwGkMJRWkEnmFCOQv/BJT4Sj9clTkPzmqfR+7lnHuXU4hbtKGUhGrFxtMFMfcK1zS5WO6Qy5PUQEVofzTuBUg7rBFeyGQBGJqKtUx7qXONqOkO/iLFOEIQHWwgWDmrrjqruL1CEoyg19SQniQpOtnZYjAbkNmBsQg7HPZ7uL2OM5MH2DRb0kKZMPZ9nqPh8cJTtNKGmPZXhmXiN9sKE0in6VULpFIMqZitvMCh92FVNw4fKTnHEB3+p7JtxEiUsIcazRQmHcYLcBty1sM6Lcy3EBujcEfUtVd2TgJd1D/1C3MRyCnOzmeT03oblNy+cHyRw0qf06cfneOq9yxxPdlCFB9IfNEh+z3u7okCtbeNE25+b9AQpZqHtaRaloHG9oqpL0jmJygV6BOOdGNXNcdoD4HH4mfjYILXdZ2VyTlAZAblClNO/aQVsRp51qWYRRk61km7vyP8YrEoWrMTZCvXFl1iavZfRsmJhfkA7TOmGKf0ypq4KOr+TsPUGw33NFeb0kBeiRWyqSdZ8t7R/WrF7l6DoWlQqmPuC9USvFmrbEPXKKWenYLIY7sMYyrogGDni3sFPSOyJau113CNZkVuNHCuYqxAhzBzq07wvZ/2DR9j4CoMoBS73xL8PtG6Q2YC3HXmJX/vsw4hS0D7epx4VTJKAJCyJdIWxkoVkyLnGBo/vHCOSFZGsGJqYl8bznKlvMhdqHts6TqgOtpbhhI9+qgR/ITpBVSpsUNEICur6ZrFtIRoyo8f08hrdxoQHk6vcF24TC8GK8ZFZO0jpxjGhNAxNTCxKTocbFE4x1D76TmRCS3u43E5ZZy1tspPVbx7Qq8Csk/RMMiV4FlgnKZzCIimmdI1Hkh5PzTrqqzcjy2jHMTzmoUjRriMc+FFMq/15VTW/OeRtXwOV5R79HT4CLT3nZ+Oa5XNfPM3u+WTajRcHH3numTHY4chjOANBPhshqhbbDzZo3KimvKWS/knlI8NpKqGHEtcFUTMI6RCrsd9QDvsAwjrB3pAS1g+reDZl2BPSE0bsz87Xdu0ryKqkbhZKhFLUL/XRkwbZz87y9EPzVA3L/GOS/oUxxRsEd917jSPhDneFq/y+ugtRSFTpMJEHxeYdWDyzxQ+c+BSzf3bEWtXm11cfZG3YJM0ChACtDWVhKEchqqcJxgKEIO7jVSpfRaaE9QTQczl2ENA5PCDWFS9fmyd5Q5/D9ZRxHtJJUt40c4nfXrmH9e02CEfr0JDysS69pMHdd19ECkdmNFI4uuGEcRVxNe2ipWUta1EYzXw8AmCzaGCdpBHm6INuoQoYnDPo8ZQ6zQhMoSgCjUVQU14xcmQcbZXy2f4Jrm91WJ7tT8XfBLFQNEXFs2XXMy2pklAZcqvpmYRZPSJzfjomFiXoCU3naQ97JEyqkEEWYYz0Ap4HuyIAbJRNfuLSu1DScrjeo7KKlXGbhWTIt8x/jg9u382giKm6FSbQ3pFIX7ccHRWoDM+2pG5JLafOsZg6TlGx32SymqmapP9eNgQLn4TNi0eIIx+lHfjdI/AkMlqDczSuF2zfFzFZlLhzTY93ntfYENI5P2qpU+8Aq8S/RZVqZGR82WIhR69EdD4eMzgFVdPchO5Jh1MOF3/pBWFrFlH5efqiIW+7FvzfTCGx+cYZdh5wnPuZHu0vVqAkVadG72yd/t0VD9WGSCxHdMqgiNEDiZOO4VFJumyorSjWrs7wwebdvHP2OVaLDsv1Ps3QC1btZHV2JzUK54u8COcLxblDpwcfef7X7P6jKzzzmVN0kpSaLml1Jxzt9PiauRf4+M5p3jzzMvN6yHxtTPdwyt2tNRoq51+vvYWjR7d5+8wLPD0+TDqVSegEKQ2VU1MlkTS8NJjDWMlmWqcRFByt7dIrE041tvj07c6XvYLm6gab+7RdFAInJGWo/Kw5fsrFOkEsSz574ST1ZyOu3aX52eQtfLSxxcloE4PkAysPcXVjBqUN3eYE6wQLwSxKOMY2IhYFsfSMW6tVh8d3j7OTJfTTmKK85fJ+FVwnWliuXFwg6CnyhzTrX1wk7Amu35syKiPGP3GErfs1ySN9bNCiTLyTEBZaLzuyOS+3sReRVolAls5LOQd7EzneqYjpeLA0N+ueIhLUtiyNG5Zsxs/EH/Su4qIQ2W7hyqla6naGiSOKjvfseuQbZmXDYSPrBwGC6fy79tE5VmAzBcohBJQzFeJlzeJjlsm8Ip0XlE1PZ2cDhws9SYiwU2HG6xoTQrLuIWKvqIbR/okbw9zju+ze3eXl7+ySrHg98dFRgXywz5uXVugXMVtVi18b3c3L63OEfQHOYWI/5+x3S4kUjl9ff5D5eMTqpOVlA6RhXIRew1vaaZGXfbJhPTn4VruAW9QIb25Zx+o7fHHhCM4J5uIRWloW4yFDE9MOM65lM1xxcyzWBgTCcijss162mD+6y7WVGXaX69yTrLBethkZz86/UTap2ZLUBITSkFpJaRSpCNgqGmxmDaRwFOZg26hOQNTIqXY1LvDCgDiBs4Ks0lyfdGgG+X6TK7gecuhjY7IXIp569CxPLJz0xf9K0Ho24MQTKaYWsfm6Jte+Gu5urrFSdpjXQ0qnmUzFzUqn9h1nXmhM5SkLbarRr4KOUU2VyFyiUsFCMmSlPo85MeGnHv63/MzaW9iaVbzjWx7DOsnvzz9CsuoB276D7rGcYkqSwbRJVMUeVC6MT9NFBSa+ScEn9iokAkwIo2VFbdvPce89fpBmYok5Mo+8cBXR7QAQb095N2NHtmg9eiTwUCNXCWQvxESQzxvkRCIyiasZxFgTryo6Fy1lAsMjisaKRadeJ6xoC0zksMbhgikfQOgwoaD9skVMG26vHDEI3FSsNAZxeYVgOIN4YEB5t0PoiqVaRk2XvNSbIys1O1mdrVEd/XSdmecrgpGhsWKn6peG7Srg/FvW+fjmaa6Our4rD4yKkFacMS5CetsNZO4JhmUJtW0/H33QtkcMYpzcF9YCXwNV6yFX3CxHzvd4YW2BfE7zuuZVLILHdo6zNamzeaVLc3kIh2GrqPP6hWt8US3zL3/nnfzYN/4SUjhemCwRKMNMMMbgVUa3JglKOkJleGBmhbEJiVXJbDQmVgffMMp3agiNh4QEDplJLAE72udaM7UJh2oDnhktU3Ysmw/XqWrQfdYSfwJ8fgrCFlSJomwokjVHK8xpqIwbeReFwyAYmZh+VeP6pENhFFI4pHRYabGlglK8KoYpJBbbqEieDbi/vcLn9Qm6v1rnRy78Bf7GN/86H3jhCL/1kUf4kff8Nr95Kqe2ESIKXwMsWh4kvzcAsZ+i16ZRpZ2m6WLaeZ+ONZro5mvR+Am2oUBUDhuKV0NAzuh4QrNY9hzBRUXzakk2G+4HSlQSpw1CWVwWkKw68hlBsCNRmSDaVejMN3u6L6aIyrL1YML4iCWbFyQ3poMDCN8zad7CpyzBxNxE7YhXUobjFnPOswHWbzjG9wvmGr7+llW+Ttcb1ih7MemgQzAULD1WEF/agd4QEYUE9RrjczOMzpZc8d5ebAAAV+JJREFUT7vUdMkgj0nLAOvAWskoi8jScHoDTBlmclCp8ScpDz6i2DNP8eUj5kAazj56heefPcqzW4uEjzUYrCT86/goxTf2aMY5kzyE2JLnAVtFnYVoyLCKmalNOPYVz/O3P/Ut/K1Hf4eWztgu61wez2KdYJDHOCfY2myi45IPT85QlooTcztMqvDgbwgHIp9enVOsnVM+Aq1yTV5q0iCgX8ae/f3ELlu1FmKiSBclc08qmpczds/XGL9nRLuest1rUEty3thep18l9MsaL9kFJI6xCVlPm2xN6kzykCLXfhZaeWan28XtvdImccTdlOYNr1wpk4rJQoA9OWG17OB+bIdDP7XMTx76ak4c2WKrfRhZOoq2n7dWI88RK6baPHvOURZQ1j1LVTDwr3XTrrzTIEo8oHwaa2SzYv89DjrydArylmTwji6zz5YEgwI9roi3A/REUDYE+YzFlRrQRANB84Zh9pkSNSqQoxSEwDZjqlaEDSTj4xFly8PkypZlUPdoF+F8GSMYegSCqVucFUQ9voQr4Hbtv8l5enyWofNyzm6uySrtITXSUhpFI8lJOiM2n1hk7qmKaGWEyArSh44zPBIwPC7Q9/d54+IqdZ0Tq5gqkPTSmCwNPaBVOMxEE+xqoh1f72leM6jSHrhy5q225zjZ+w6caW5yobvA7maT7siRrJfocclGrcv2PBRti5zLKUYhT1w5hpCWTjOlGeXEqmR5aZf/uPEAr+tcp1fWSKuAZpChpCUvvYMIAkNZKoqdmOu6TSvxteIDNQEohx5Jypr/v9MOUUhc6ZUQAUZlRKgMjSinmhtRVIokKhmf0axv1QmaY9514kXGJqQ+f22/S6+Epakzdoo6mdFspQ36aUxpFFkWeH/gBAYvT4t9dUCVDBKtLGUimdMDavWC4emQX3rzv+Rz6QneMHOFX/6qw3Q+XGP2e69zfdbtk4AI47vrwjow05Q9YV/faC8jg5u4TycdqprCcm6B4OyVxF8NAyYegwrD8yU2DJh9WiBLizAQ71hk6UPpPc2msAfBqEJUFpmXPhDTClVWiNwwPt0i68rppiKg8utXNTxzkw188BWMBU5JL81Rh8EJz6cqq9sfHvhjgOTdzWhPSjCG8AuXsOkZhHBeakR4PGItLOnEKa9/z2P82qHXceKXG4jlBpffq3HNkrfe/SIAx2q7tPWE1Pj65pVyhqpQuLFGlBKdCqIdQTBwhENHspr7wq58daQde+alb32EUTrFbDDm1OIWL76wTNkSmFgyPpQwWXJ0LnhaLHkyYzSMcUA1CaGZYqwklIZGmHOj30YKx7CIfH2zDOinMek4Iq4XOCcoehHCCrJJSJ4HFK8CKnmnp0X5wqdc4G9WV0mqSlEY/6WmNdpOkuKc4GRrm7oqeKaxRD0o0NJvDj1bo1fWmItGVNbL6EayYiurM8xD0jzAVMqDpQEdGJ/CVnIqVXGQq+GtdIp2LSOPO5RO06xldP+gwX+39SOcfPtltn/2ON0Qdh6wvLuxwRMzJwlGAXp8i8Oblh+qROw7TBOz71DtHk2dcEhzyyY6xevcug7C3j4g/JWyPbD/+bMrjI5HlJcXcMI7P1VA1J+y5k8RBsHYN5KyhQgWIsKFBrLwYHqsx38L49Voox2xj4ctOsIPENQcKvdBmDRQxY70cIUoPEi+tnb7gcd/U83TWf9JuuGQYFOz207oNieej0Falut93jHzHLN6hHrQ8nsz5ylLTV1POD2zzclkm8PhLqVT5DbgK9sX+OzwFG859jJPbi2zNZwhWZWoFOKdvdlebjpOKUgnmwgh/qJz7qf/WOfy32rCT478YVPCYpzkDbNX2DqasBO1GJ0WJJclNnK479xClJpGnFMZSbOWY6wk1hVrvSZXV2e8CJYVSGmphyUOSIKSGyszkEvyKSg42NGYmkNsRP4GsgIhxIeBnzuwdQktSIUeSkrlO52yFLhSYI1kmEU4Jwh1RT30IdNCMuR0sklDZcyGI3bLZH/kVUvLeCrBkdsALc0+tVplFPk4hFIi4mk4JRxVqXCFRFSvjtJOU6b8zVO/R/Z3AgySHzjxKT7www/RlpZ3zj/HT75zCbET8u1v/QxtnZLMTLDX2z4SctNxZOdhSVZNIUiVx3nCzaTn1ojSyZtfiFsmk4x3vPnuxoHeP6Jm2H694cGkz+m5Tf7twhJOQtj301RB6jksVOHvf2HBxIqy7kdUi4b0SrrTKMpqiHsWVTiSlQyZVgjnMLWA7fsTbODxxyrzaydzQfN5Rf8NOS4Nb6IWbsO+7H4shLgshNgQQnjEsRTccBd5vPogQkmEksgk4fhvZ0ShB3PnlSZSFd+x8Bhvql3i/nCN3Aa88dBV2vWUVi2jsIofe+DX+O2nFvhU7zRPjQ7z+PAkoax4oHGdB+dW6BzrUbS9homJoIq9PIfT0qtERvLAIs+9dXHWeflbHI//+2v8f7//s/tjeIGsiGXJTJLSnB1z6vQ66WGDqGCpMSSYznZHgf+00iJgZavDhW//e7TKK/7vJBX9QZ3CKPqTGr20hoo8xZYQYCd6P0WThcDWzX70dVAmLDSeDQl3BbIQrP+jf861v/6jWFshphKyRaGZjCLSPCQtA5wTXO7P8PjucUqnSGRBS/sShJaWxWCAFJZhGbOWNdnKG6QmIDeavNCQKXRP4yZebtZUCjvR+6N4B3Wh3Hr/SOHVQD//Hy7z49/7FIeDHf7SkY/xfcuf5FS4wT/9il/gf/+6f8exaJtEFhyf2aVs+KERPRW53HOcwsFT/+ffJB9sogofRQk7hTFN9X6Ykobs84BOU3dZeULhV0PaXl5d43vCn+YbZr/ApXSO0VHHzvOf5YXf/KfTyHAqM1I6gpFFTjHiVovpMIB/PuqVJDcmJGsFyXqJrBw79ySsflWbG1/TYfuBhGDiCAdeSwpAVgJZCdqXS+rPRFRzpS95/Ak3jBTwI3s/uD24xN7PRUHw4g2GvaPkiWes/r6Tn2FZ77Jta3wuPcGFwTw1XbIzSFieGfDci4cBePzSccKVQ9jQwxGWjuyw0mxzpr7JOw49x6+NHyJVyZQz1HcK89kAE/r51gM2Nd7Ofbf9lsr7Xhd4z75i7mV+dfgAl67PI1OJHguevrKMyxSqr/1ueijHZQpZ8450nIXUllICbRgOauwMEnCCdBxicocsJWYYIEqBqVtkJrCBm5IeHHCkZeHQJ8ZkixGrywPyi5eQtZjJs09Te8MDYKHIAsROSDWJmYwE4yknZV/P8eTscYgMaivExhYXW4JGQT3xV/0kC2kkGYuNEXmlqXJfHgB8fbUSuEKjhp5dyYkDT08V8CNeq91i8cgM8PyepdMe8O9AYemoCUMTc6qxzXONI1itcTXfdd+zvRruXiS5P6o5ZWC3WkBhEEylK+xeU8Q7jz25joM2gaOpMhKheO/Mk3ywcS9lfcoOxRSCFQpUCWG/okJh4ul0UeZo3MjRvQxTDym6EemcJpuVfurKTJEfHT8qLK/jGZeU2H9eFh7y2LkoGZ2S5F1PyHw7drvO88eBv+WcRYgvvTFHpsfz1eMM1nbQ/0OL+p97N/WvvA+D4Hu+fcC5rztB9LVnefHlQxSf/yT9D/06ta/7G2z/4k8BsPa3/yk4OPXodxCGDZ74wi9y/Zsf5j/9xic4+eYF3vf+Vd7/f/QoLl3FWUt98QSnHvlWZKs7vWJu8wxeGfvx4XbxD7NhTtD8Uj2QjZdH/Po/eJ4bzw5IZkJO/sCEybm3YRLLlX/1f5E8/AiNtz2KmSsY/f7nGf/0Z1j+wb/Gyv/nnwNw6W/+c0Cw+L5vIp6LufyPf43Wu99M/7c+QXzvWWa+5xvY/sl/R375KlhLcugk89/0bYSzbURw4JsKapwTbwqG648RHz1OcO4IwyceJ37bvQhg6yc/QDIIcasb7I6vkjQWOfvod1OrzxIMDVv9C7z0/G9Q5ENmTz3M7u4as6ceofPgm8guPsa1i5/m8j1LDD/6JM13vJ7B7z7O4o+8j2B2AUqJ3R5z7e/9vzj5I++HhfpBk2b/OPC3rLFTxUrPAatwXLlY8C/+/mVeejqlNRPwbT9ymNd93SJSOH7zr/wOowcn6HNvQRUwePwx+p//DEf/4l/l+r/098+Fn//HCAGHv/Y7Ya7Jyq/+PJ03voXeJz9K/cQ5Ft/1zaz8xi+Q3biCc5Zk+SRH3vpt1KL2wbPIAyDYqFpMnKYjJ8hcYmM/ftq4XvBc+nF2n/o0VToijtqcOPdumucfRFaO3lOf4cULn6TePcLa5pPopMny13wr9blzRD3HhV//ZyTLxxmuXKDY2qB+9AxH3vld6LLOjQ/8Sxqn7qL5VW9lfCik+4UdVj/9M3Tf+Z7bbhjdbn73OPDhIvdQJCH8P5UteaL4fQ4Fp3h7/G08tPhN7P78r1Je2+BEuMXEhDyxdoxn/+As7acCksdi5I5i5vmSN5777wG45xv+Rx78C/+Q8K0PU9QFZjBkdMPxTb/6XfzQPzjMtaxL/W0Pc+aH3s+Z970fqUMufe5XpkXkA69lPR4lmg/9zHUUDjENB4pJxb/6S4/z4HuX+V8+8k7+3I8/yDP/5COkz++iurlPJZ3g6IktVGTQjRKpLPP3bfDmf/HNABz78fdx4l//XcIHH8FYiemPMFs5R370f2PuW74DGVa0HnqU0z/8fo7/L38HooD13/0PFPMGV7wKuiNCIEpD/+nHaT7wMPXXP0z63AuY3RHO+mbH9tUvUPuO93L6f/0H2FNzPL/7O4z/Yo/eX1rl2Wd+jpn3fTWH/8+/h7lnnuHWZcpEEEw8WUZ++SoyWuLUT//PzH3720je9ACjzz3h55crQfqpL5CcOEsQN3xElx7otfI48OHdrS/Nk7OJ5e9+3yXe8g1d/sWnH+SH/8kpfvZHr3DtQkYoKgJh6LYmmMTeEj07nHQc+4EfBuDs9/yP3Pu+/zedsw95gPxoiMkmnP7h97P0Z74drKN73xs4+773c+4H34+UAasf/g9ecK18NcxnQkNmBKJiYGNsu0TUDbZhePl7wTzQ4ej3/zAPffePcezcO3n+yV8iKwbo1BEMCvrZKsHcAg9/89/n+Pl3cfU3/jX15wa0LpeowtF79nGOve27OPe+H8XGkpWP/QpOQff8G+g/9QTCwuC4ZLD2EmZnwHv/cnHbE0Z3cpf93TIfUbhsT7eNTXudmqhzODjr61w3MuaW7iN78gtsVw0Kq5ErEUXHMjhjKFoeXzU6pBkf9sX/hW+/Su+rM6JdR1UTIAXtb/xaTrd73BBL7MaLdL/6HNmDltDFLD78DsYrL6Nzt18EP0hrLYR87Oevs7XttVEAnv3IFjPLNd70LYcIA1i+u819X7tI+9pHcKsxNnQQWb776Gf5ipMvexVFK1hb6XJ5bRaAMg8wo4DoWki+G4MQdN/xHoQOoKVQg1lqj9yPjEJqkxozX/VOspdfJugpVHzwxSwnJb3dyxTDXVp3vY5k9jjB7CyTTz2J1A5RNzS/4jzijctkpw31d95PuXIDKaD8wvM0Tsxy/J0nOHF2m1N/6S50t4G7e0L5nTukb8pQnRaN976Jer0irEsab32YyWNfwBmHzAWjJ56g9cDrvQTISBAODnpF+Lu9bUNv+2YI/NnfH7JwJOSd39Yl1HDinjqPvrvLY7+zTSAMEsdcPMLV7H7TSDhfp9ury91KTefrooK5r3oPUmlEHKKTOq2zDyJViFYxSw+/g9Hqy/tjnwd9/wD8ox+6yJ973bP8+Yee5voP/X22f/bXwQmEciRvvB9zpolJJLMnXkctmaO8chmroWyHBGGdQ2feSm0IR+J7qEezjF78whTO5Jg/9gjx7CFsN2LubV9H//kncdYys3gPeW+TcmMTYWG1epnW3a/jBw592jP134bddrfdOfd0ECa8XD5NXbTBOTI3pu+2+f3RL9x83WVB7dhDDG2TrNIEAO2Se06sMNi4xng9p/HdK5xrb/CZX4Tnry9x+KmIqG9Yn3Podo1o0fCb1+/lh05/hP5IUv3cL7H6qRtc6+V++L/MobS4A5YdBghixd1vm+NjP32RpdMJAsfuSsrVL/Z5/5t+f/91tnLc9/WKHN/hwwh+8tmv9mxDbhdXSUSqsHKKZCgk0WpAfcWRjRSqXicsQ6rC4aykjCYM/s1vMrnwAnbiZQdtkVN0Ci8zcNCmBKu7T9KdO0ckG1RjaD7wMKNPPkHzvV/pMaozDVAO2dfoXh03LJl8Yo7djwWIYoHRby0xOeQwsUO2OmTDiKLSJFFJvNSgOTfGWklZKsLDJxBBSPHMJYRoU25vkdxzL7IEPfaSLQdpzrmnWx3FL//zHY6d8UW1jRslLz6Z8j0PPT19lcAYx1d8o9hXuFyMhux2MszmVE/C+S77nlTEHv5x7zldq6MJ9jvvtizY+E+/yujyC5hsep2UOcGwQpd+3JkDnr76X//vEzz8ljoKx197/DvZ/a2nGX/8s7iJZvSpJxh+8KNc3dr19c+qwI6GJKs5/dQSRS30lNdXGEsctsnchKIVYCKJOdZlcsh54uiZLlgD2yNU0KRz5nUMn3yCxuvexUr6At2v+/MMbR9Tz27ruO8IqhRGLW6MXuK4uhtwRC6hKxZ4JPia/deIMOCFb7mffvVRTswMyY9vUgHPPnMMd+NJskqz3m9ydc1zUiYvhGw/4KlixCQlUI7FzpA/f+wzrBRdtv7tJ5ErOQt//UdQR2vEH9jihV/5CYRz+x3FgzQB/JkfPsk/+rbP8jU/cBSA2UMhp97Q5a/8q4f3bwLwI5s/e6GPkiGiZ0h7MUuHd8kmu8jQ+BnefPp667V5JouCYN1HHAhHtCNI78qZ/JtPUG5ssvxX/xpB0qK8usLV//sfE2y+CljTJeyciVj7wrM4Zxn+1N/zWuOmwmYp1dOb2FRTDCMaA41OBWbKlFPbdGSiyWjQIxg6Eico6mB3+ohcMtqoM9quUxWa0bXW/joFuaD1ujcw+cTnKWstmvc8iBaedcmGUL4KJtFmFjS//ct9vvW/7wIwdyjg3kcTfvT/OT2lpVNYJzFIjLNEiSQsxhyf3eHiyw3MaOgjxgpuZR10yj/mJIi9sVbnO+obn/wwxfYm57/prxHpFtn6dZ757X+CTg0bj8bI3/NctAdtanoj12sFu1NuTpttsPNz/57l938/Sw/PsTNosfWD/xQqi8oNsjTk+cDzBQkwNc1YDAnunmPjkYDqOUjNLrWGR6JUvR5CKmLqyMIxd+r1XPrYL9CcPYlSIX/hO9bIXMBMbXJbxyzcl6F0E0JcBv6ic+6DQojN6cNdIAUuAPcCN4Dd6XM1fNUgAw4DjenrAuAsUAIvTF/7IHAJ2EuqmsBJ4Iu3HMKR6Xu+hC8znAA6wBPT5x8AfuhPG6e2ty7ALwJXgOO8etblOPAMB4TznF4nQ+AY8CxfWkU6DYzxG3cBrEwfv/UcNXA/fg16wDxwFLgKbAGzwBw312vPAvy6m+nvjv7Q88edc/P/red3J/ba/fNHmxDCTI9teMvDe5/vFeAe/LWcTx8/MX1865afrwGb+PM6gT9/A5wHIuBF/LV2Ah9uXbrlb92HX+9dYHX62O1dJ865P/ILuAy885afj+I/2A9Pfz4P/Ob04LeB3wdeN31uDvjd6cJ8AvhR4OO3vNdfmR5wD/gO4O3A9T/095eBD+NvhBeBvzxdAD19/sP4i/PLnsuf5Ndr6/Jl1+d3gH/8X3j8O4A14OeAH7vl8S85R+A90/PqA/8M+BTwvdPnvv/W9fpD7//B6WcjDurcX7tO/vjr84c/X+AfADt4Z/kTwEf2jnf6uk8APzW9Tl4E3nXL+3wY+IfAZ/EbzG8Ac3/ob/2d6XqcutNj/7KR52v2mh20CSEkcB34HufcH3yZ1/4MsOKc+zt/Kgf3mh2YCSG+H+9I3/Jfef7DfJnsSwjxfcAP/tfe44+ygx+Cfs1es/+CCSHeDXwGn97+z/hK7qe/zO+cAL4FeOiVPr7X7P//TQiRAD+Ez2zu2F4FbdnX7DX7L9qbgYv4dO0bgD/rnEv/ay8WQvwfwNPAjzvnLv3XXveavWawvzlvAuvAL3yZl/+X3+O1tP01e81es9fszu21yPM1e81es9fsj2GvOc/X7DV7zV6zP4bdUcOo3g2dWuhS9kPCnQKs5/Iv5mrY2HM5xddTT5IsBWUnhJYhVJUXccOzqOzp/EjcPsbdeXjvPjfmrfK51glGZURVKE+3tcdZKKHc3cGMxweGgA6DuhPLXVCO5aRPRxXTMwGLwzjPsGSm4GeLIBYloQDrHEIIFILCOSoE1gkcgtwFtGSGwDGwsddEEtbLcJgaiSoYVDUmZcBcPEZhqZxkWMWUGz0mu/mBrUkQ1l2ceCD43hjhHguQsIBxOC2oagIbOYT2qG43ZYQS6mYpyVeVxL7omZ9dn1Kw3UK35oXR3JRJx03HDx0YC8brfg/s9pb7U8Z53mqhrLmabrEnt+uUBAEmkrdo3E+/M+VGu7WqNgW/70lo7IvB7T3npcc93+0t6zKdrwDncGI6VSQ9eXAx3qUoDu7+0bW6C1t+YOZL2K+mp65zh5wU/kJw+4vjv1k3Jdq45fG9E5fy5tpYe3NtpX9jZ6ckR//Z70NqhxQ2+7JrckfO083Ncu9D/xOdj17CNQswBmcM137gQeJtx/ajFXe//woUJcO3n2P9O1OWZwZ0ohQp7L4w2R7TvL3lgENZUVPlvrxu6RQKixSOkYn4jWfvR6zFqMKfq6w8Bdu1/+uf3Mkp/IlbXOsy9yN/g/e87fP8b4sfAiAQgtI5hk7QsyE7prGvMT6vBhzVEwJg6AQzEgIh+UzWoqMmKBwXy3msk5wKNxjamCfT47TVhFk9IhYlAxvze7v3cby2zYfWzzPIIr71+JMEsuK3Vu/jiff93AGuCNSiDg+/6a96WjRAFhZVWkRhCdb7OCkY3r/AytsEh+7aoBP7PtBuVqM/qREFJdZKf43cQq5YFJoyDVDrIcmaIOzd1JwRBs/5OLao1HjW8WGB7I0RwzF2MOR3x//myp/6YtxiNd3kzSf+O8xcExspxksRZSLonYeqZb40D1QOjCc5kZlAWM9fqVI/USVL0BPnCZGN19+RBqpIeIdT3ZTmDnsFsrRUjYCipTGhYHTET7Jd/Dc/cTCLMbWwNcPp7/mbyMLLishqj/AYZp8uqT95A6dST36eZogwADFdKGf9/53FGe91hfD8GEx14EUQ7OE5ccOR14eXAldWXi9eCFxV+ccBlOJT/V+5rWO/M6hST9P+0Is4Y0ApXO6dodUQDRyyViHCEDs/w413QCfJqawkM5pWmN10mlPHuff/WFU0dEFTZ+RW0ysTtDQoLCMT8WJ/AbcbEky8qJM0AhO6V0XRIW8LbOj4xu7naEpN6SyZsxhgYjVrVZu6zFnWfWJhCHAEwMSBcYKJswTOsFJ1OawHbNsaCkdLTbhQLHFY7/LOxrP8h/4jLAU9LhdzBMIwrCI+cPlBWnFOoCz/7tJDvG7xBtc2ZqjGwUEvC1YJTOQ/IFlYMA6ZVWAtttukf1Jx+O5V7ptZpVfU9n8vkJbcKMyeWoET+2KtgTJkypLmkjz3Cmd6PHWgaspjGXgCZllN5XUDDVojkpqfazpIkxLbqTM+XPMkvw6KlsDG1pNEBxa0JYgrwqhCSctkEmF2I9RIeEVMDW6qxQ5TzR1xk69T515KF6CKJTqzmJpGDcZQD0B4HszWZYPKLTo7ePpCzxB/UzbEKYi3HPXnN3FFiagnuMEQZwxCxd4hGuudp7H+8xV2P5gTQQRKgZkOnlo3dbBerkOgEEp5sLsxYKfPSYlwt78ed+Q8g50UZvAHbiwo5dnkLajc0mhmuGbC5pu66Dl/pWppKa1CC59WVlZSWYVFMBv517QDH3lUVqKwKGmpKa9PnpqAtV7L08kKh0kcLgduIYE9SFts9/kzb/4Cb4wHBEITCIWxPs0IhGVBDWnLnI60+zPEBgiEl6LdNCEKR0dN6FnPNFWXORfyJRKZ8/Nbb+Y93ad4tH6Rl/NFPtE7zdHaLgvRkEEz5tLWLHkaEMYln7h8krhWHDxPoxDYUHhHVrqpgJkDLTHdJoMzTYb3Fbyxs0FNFuRKUzpJoj2RdmA0pVFYJzBOUBqFsQIhHEpZRGyoEuVlPaSYylF4pyEsKCUQxiHKqbZNGBz4uD+ACxQ2UIR9rwOczkoG5yuEEzjlkHGFCgwzrQl3z6yzMm5ztdRUyk21BcU+wa9VUDb8eVZ1H6GGQ4ecRt9OebZ1T6AsMa0IWVrCXkW4OoD1Tew4hfL2SDBesTWZfreh3xz2GI26z01wu31cVXknCcgo8o4wqYGSiNEE5wrvTJX1A5jOeacpBBiLo7rpYENPyOKm5bLpD97RyjuPxO4YJO+K8ktDXetAgMqsFzHr1Ni9z1ELDUlYIqbR5qTyB76XqoeyIpQVgbAEwuzLLcSyJJjqA1gnuDbqIqUF67VarPb6I86CiZ1Pbw7QhlXE++Y/TICidAaDY2gd5fQ8Y1GRO0WJpXTeaQ6twiAoncQgyJzGOMnYRoTCsFE1aasxW1WL9azJL2+8ga+fe5LfXL+PK9szfHZyglojJ9SGbCdG9zSGCFOz2Ln8oFnTAc/+bcI9ujTPeGO1pJyJ6J+SnD+xSiQrSqeoqRI5Fa2TwhGrksoqKifJjSYFKiExVqKlRQYWW3NUla/h4UA5n5VMC+s4NVVHDBRUGrEXhRygCePIFiNMKCnqgrzrybyddF7zSYBSjp1BwvNigZ1BnWIYggPTNATD6RpNN8eyAXriFSGjodtP3Z3Ep6x7NVEHNlLI3HiH2qoh7SyqaxDXD3hORkzZn7SPnJ2DYOgI1nq+EikEVBVEkf8eBqRn5jChJNrOkVmFzArY6oExyLkZykMdZF6h1nu4stwrnN/8k3sbalXh7B9K98XtO9E7W7mpt3bO+SKsUiAFJvYflBKOrQcS9KExgfrSi7Vycj9tD2VFrLzjnA1HlFbRDlIiWRKLkswF5DZgUNV82mYlLrJYK3CNisppLyMauQOXnFgMB8zIGZTQWAdXKkHPNggxFCiGNuZGOcNd0QohhnmVYhBsmjqxKBnbiJbMuFbOkMiCE8Em61WbrdLr9MxGYy7253imfoRWmJFPAhgG5NoxGQZE617GI+yDk4qRi18VztMpHxU66fYlFVwoKdqafNbXvwdVRE15TxBIgxSWaBp65FZ5PthpUTOvNAV42eJppGYi3yAypY/I9pQhnfRRl4i0b7AUcv/aPWjbPaMxNU+Tl805hN1z+g6lDUI4yknENuCshKkelUwlVd0RjDyXZzCA8bGK2ob2zmbs0Jl3oDaYnr9x+001qwRi+jmYWFMd7mBihd08+BKPd/Y3HWg4dlBWuKJAdjv+Nc3Ef4881Zywjnw2QriQsBcQ5CVups3uQ3PkLUHrSklyY8s73L16Zln6CDOKEFHko95iuhOp26SPv8Xu0HmCUBJXlPuyw67yqojBoMA4weh+y2w9oxaU+w7UTIv/lZXEqqIdZtRVQV3nSByHwj5SWJZ0n23TIBEFIxNTOomSljgsyaMAWa+wlfB8mBYvbysPNvJUOJQQ9G1B4RyZi+iZZNr8sWRTQRTrJG01IRJQOMu2aRAKw6dGZwiEIRCGD6w9xLsOPQfAR9dOc7y1y8qozTCL2Mob/Jm5p7i4O8twdZZSB4hc+k0r8zdi2BdEO/7COkhzYq8O53xNTgucllgtMSHY0JFWAYkuULogNQE1VaKEIxB7TUWLdRItDEoolLQoJ/y1VPpOqlMOE0+77ghUAdVU1EtUEpX7XcSFGoo7vzn+pM0GkqoO+ZxBD/1n59S0M15IbOj5XONmTlUqwqgkWcoZ9hLkQKFyyGcttTWJznzWZSIAj1xwEvTEN87CgUe3eEZEgVEKG0lkbrGBRKWVd64HfK2AP0aV4utZDtrP7OLKEtlq4pIY24wxSQjOYUOFLKy/7tOKwcmYYFRBWXH125dBwOwzFWG/gCCARoLISx/sxdO0X0nQChpdv0aT1KeyWnsnepv77B3G7NN3VQqhta9HWM9ybSPFbL2POAyzyRgtLYM8phHmoHztE6AR5GhhmQ+HHI+2yGyAFI4TwSYlipZLKZyiX9Vo6YzZeIwUjkAbdvp1wHcbi1mDqFUH7jxDAYVzTJxPv3smQQmvVRMKQyAqFvSAzAWUSCbOsT51nI+PT/KR1TOcaO/Qy2vUdMlnd09wqrHF2pVZ7ntojbcsXGQ9bzEXjVjSfVpxzgAQlUBlAplD67JldER6wtcx+5HegZnw3V+jprCyatr8UYK8Lakf7TFfG9EJUkon0cKSG01NlWhpqKzXc49kRSG903NOkBYB5Z6ccCmmNU+mCpNiet4Oq8SXSrRU9o8VWfxJmw0EVd3hgqkW+d7dNz1UWwlKp3GVxBmBu1EjTSx7xXJR+WjSSS+v23gpQDgvYtZYNcSbBbqfIvIKkeW+1hcGlIc65N0QE0q/0VQWWVTIlzYQeXEQS3HTHAQjX9KoEkG062Br1z/VbWFaMePDNS8CV/i6dlXzpRqdaeJdQ3CjR/+Nhynajs6LvkFZtkLGhw9T2ygYL0e0XxggjYEohKLE1WsUCw2iosSNxhCEPm035rY5gu+84GEdIo7B+Q4hcYQweNhFHqGkvxGMszTCnFbo5WMHRUysKiJZUVMFbT2hcJp5PSQQXqLXWknmAoamxrFoh/WyxVI8IFYlkaooK8U4DSkWFEePbTHKQ7b0wdayKucYWsmOjVE4VqoumQ04Gm6zpEY05TbZlBC5Z2PqomCtavNctsxq1kZLy/qkiZaW1X4Laz0C4Wte9yyRrEhUMXUokt/qPcC1jRl0AeEN/57SgIkEC5/L6J2KGB8WB06G7Pbxc9Ofp+l0WVeMjjreuLhCK8iwCKopJboUzjtSvB77npVOkqmA0ipqYUlWBF9SqnGhAwMmcthpw0jYaUS1V+tSwssPH7Q5X99UQ0V5PPcyydpCIRFO4kqHm0iSa5p4yxGOfE3Xy++CNI50TuIUlDVBfdUiDDSvZqhh5p1mUUJZfUm6GtzYwcTzGCf9Zib95yPUq0DHhikrvhboiaO2bRDT5k3ZTRgdiQlHhryl0blj5x4P20rWHE4JhJX0Hllk4w0+is+7kvGhkPSwIdpSyKKGiR2NawHMdSkW6oTbE1yosVrgtPIba1V553kHdufO88gSVTchuL6NzXse71vA6rsrwnFMEhcY60++rgu0sL7hE3rge13nLIRDRiamoyZkLsAg9iO2Zb3LNSdRwjI0MVYJZoMxg6JGEhUUleLkqVVm4zE7QcLFOz6BP1krkayYJqXTvvljA7aqJqfCDWakwQC9KmJGZqyZFhkBTZVSWsXLw1nySnO+s8HFwRzjnRpYQWc55VDcZz1vEcmSF/sL3N1Z56PXTsNKTLLidezjXbevZ++EINkyqFJx46BrnntNACWY9oGwkaJoSKqWoa5ztDCMq2i/pll58Xki6QcqKqsop3VP6wSBNOzkCUUeIFO575CZDktYjS8JaLxjsCAriygqRDVFhxywqcxQW5OMTldQSnSrwBQKVwIV6K2AxlVB98WccDdD5GaqmCBA+vJDsxmy+qaYzUeg+6ygczFHTkqfgk8ynwkWJSKJsc26/8N6ChifbixOCsp2hEw7sHuwEblgih7QPmNSmU+fXVFQ1TWycojKEQ0sO+cVTjmalx21HUs6K0nnJb0HS0ToN9xBrLn7ruskuuCpj5wln7GoVCIqy/hMizKRlM0mUa8kGBSI0cSn88aAvbOO+x07z8nJNpM5zeyoAZvbVOdOkd6fcubQFpfXZykqRS+NKUvNOAmZqU04nPSphZ7afu9miWRJzyQ0ZQYSJjaicJpYFCwFPQASmfPFyTHOxOsMGl7atzSKdy8+yxeGR3wkqw5YgGVq82rIxybnUDiOhVvYKQh1ywQMbY268IXplapLInPe1HiJQBo+uHqeq+MuM/GY4WJIXgbUdc5m0eALm4e50J8n1iWfuHGSybUm3Ze80FeyZRAGSit8ZzuWOCmmne0DrmMJMME0ZXc+YpKF7ybLZsl8OKJXJh554TwCo5xGoOMqYjuvM65C8kqzPUrI82B/QMQMA+Jd6ZuUBgIjMZEjGApqm45wZAkmFp1WyLREZCUYgygP/joRznfKRc0gQ0MUl+RAZQWUimAsCMa+6WMaISSAc6hxiU0CnIBwbUhVj1CHUia7dZrXFcEUq2jbDURRUh2fR794HWkdZqlL2Qp9GUOADX3kqjLnmyX2gDcVB7LwDt1M1buL43MgfB8l2qgYnG1SNCX5rKV1UdB5Oad/MmKyKEjP5Cwt9RhlEY04ZzEZcbqxya+/8ACE0Dg2YHy5zeYjDbovFlglPP41UuhehisKkMr3cfjPpdX/KLvjhpHMLXHP+N08DChbAYfmdjjV3OKlC4eoXIgwAj2S9GjQPznGzEnubq/RUDkGyUbRRArHXOAnZmbliMwGFE5zONhlVnpHuy0SYlmS2YBIVlgE98+uMrEhSjgaQX5Hh/9K2G5V56Oju3hz/SVyG9BWE5Z0nxJFCayZFlfLWZoyJcBwJZ/jk1unSKuAh+eu8ZbFl8mtZlxF7MYJa1nEx6+d4m3HLjKbjBkWETO6INQGNZ+hstq+ZKzKLODrWPFGyvBUg3Bo/XjiAZoTPgrcq32K0vpoJ4Ew/lInllvtkRg4KifZyROPXV1PiDYU8RY0Rt6h7I0ZysoyPCqxGpJ154c0+obGtRSZlmAcwlooK+80jT14JwEe+zv2nXVbSZq1jPFmAto3XVXqmz3pfEDjWoraGSPGHgMtZlteLKKsUKkgHQeQOAbHNNF2gEgLCBT9B+dwShA1TxJtpYi8xKlourFOwfXTaURXCw++Fiw8xnOKTqRsKBDCT6WlHmZktWDrUUO0rnECrr4rwkSO5GSf9x65yNVJF+cEUjgWawMujWexRhCeHPley2xO754QWYTMPJ+Cc8jCYCONjmPceOwb4WWFm46W347dmfO0jmgrRWUhTksoK3RmWBvWWTo04Py5G7xw6RBOQBlY1FDB9YRLRjIbj1loDpE42spfEE2VEQjjITtElE7RMz7V6MiUjkyZ00OuFzMci7bpJQmlVazkHcZVyKQKfbp3gBbLEonjU+Mz3B2vIIXlQrHEXdEKY+tFvXIb7GM4D4U9zrfX2cobjKsINOwUCaMywjlBEufsbLT4lD6BVpZRGrH+1CIzzwB3w2RJMP+FEj2uqOoaVfgRNTnOCQe1/wzTdiAmwMTTGWK5V4O0OC0IgoqRbxEDMKkC31WXhmERc3F9DrsZE/Yk9RuO+oYhGFaE60PY3EHUapiFNlmnRVUT1Ff9WuhRgVzfwY0nHsMXx76j6ty0nnXw42hOS6qaQIeGKtesXZ71eeu08YWEdE7SvGZQwxwXBv4rmtaFs4pqoYWp+dFNEztsICnaIfGkAClJVnNMolG52e9Qy9LuN9GEFRQNibAaEzWxl14F6zKNhKtAkHUkrae3EeOU3bccpWgKtt9Usniohz0qONHeoRtOKKzmcNwjkQXLUY+VpMN8OGRiQzazBvce83JEvaxG2VCMnWCyHNNYDag/s+YHOToNENNRTecQy4vkx2awj4e3ddx3NtteCzGJx4WZRkSwMMfO+Zg/c+ozfF3zixwOd/l/iohunLI6bDIYJti1GLES80xtiblwzKPNixwOdtk2DSY2oqMmFE4xtpGfLhIWheNyOUdd5vRNQukUV/NZtDBcTbu0goztrI4WFnPAznNoYnKr2S7rJLLgZLThI0+nsQhCYTAIPjS8l4eSK8SioKFygthwOOp5wg9mGZURq7stDnUH9GPDcBxjBiFBT3HyP6ZsPpRQNStwinRO0xxXqMKSJwGycFQzdYJBQdEJD7zb7pgOMxQ+WrTTm79oQisq2CkSGrqgtAopHLt5TD+NGacRdtPnbsKCKn3nVOYGdvpQVb4zutSl6AiqxMOgwpUeTFLcJPVjmFF401lWxgOhXwWRZ5lIyoZHDsSNnNRFUEpEJn2zY8YR7grinYK1t85Q27Y+fR0Zwl5BMVtj4+GQqm4RmZrCtaBsasJ+CNb62mflsFrilMCEEp0aH+yAz1rwQwx6bA7+WhG+Zo+dRsYhiP4QO54wPCbJ5hztJ0NGFxZQGXzuyCzRySH3Lq7xaP0iQ1tDYXln82kmNuKZ/DBbeYNndxfZ3G3SrGd0k5S5xpiVqM2Ga3DyWYGrRYjSeBA9UD1yntGRyHfzn3oFIk+3bFh/Y51DHxswPNUgaC2w87B3Ap+cnOULwyOcbm9xV32dS7U5PrR73pOfzBfkueajN05xvdvh7XMvsKT7xKKkcIpZlRKKCoMkFiX3hEPWzIQLxQKLQZ+NoknpFCtpGy0sF3bnWWwMqaxEHLD2sBaWf/vBr0RPBMe/+UM8MT7JH6yc5cfO/ypDGzKvhmShj64+OjjPydomX9l8kX+/9QY+sX6Krzv8LAvhkG4wYX3SpJ/GOAvtdsruMPCSsloyPG151+uf4nefvI+8G9C8LjxeL7dkXYVwAbJ0mEh+KUznAEw47zgBshlJmUQ4BemS5e5Gn8JqRhX7U2VZpekPElw/RKUCnQmalx31lYJgUKB6E1+Lardw9RrDk3XGRwwuMfS3QuK1OqooEe0WrlHzjrOsEGnuo064Oed8gCYNxNuOSS9EdB1SW9zY34IudJTNAmFCLn29H3RIF5THbRYSCBgds9iFDJcpROFrlybyjjCfjXEKglHlMZzOYSPla3yJmgLm/Zespvjg3Bx4fVyWHmo3XpbIEsKh4/p3nibZsCx+1o+ODo9GmEgwPmqRucA83ebZz7b5m3Pn+Avv/n0A3v8r30XY9xF8PmuxrYqZzwYIW6MaOoZzkrkNQ/36GDdOsfNtRGmQQrD5nQ+QdwWtKwYbiJsQsi9jd+Y8HRRtyOZrFA1BFWuWT6yzWrQ5W1vndLKFEpYj4TZ9U6NWz+H5GDZjum9bwwHPrS3Sy2s8MHODo/EOR4Od/fcPREUsSgIEZ7Rkx4zomYRL41mWawMmVYixkvn6iNd1rgPwmDjYD78/qXHm/nU2H1vk5/7dO0hWHTtvzeE8FCiaoqBwikTmzARjLqXzfL5/jM2sgZKWz+yc4DsOPc5O1aARFBxv7vKF8jCDUY25w322dIuXvzXAactq2ub48U3Wry1TxYpoK6VqReia9FMle18HPXHnPFg7mxNMDllMwyInEteomFQhsSoJ5ZRUxgmKSmFz5SejxHT8VnpQOTCd2Qsol2fon0nonwU5m4NwZHMhkyN1GpMCMZqqdOxFmtbuzzG7g67tASo1zD49IV2os3h2nWsbM7hGBdOxS3JFeSQnrhcoZRntJIRrATIX5IsG6hWukohceqxo5Udgq5ogmHgMaJlowqrEObBKIku7D9Pac5RR31A0FSZSBw5UksZzH5jQO9JwZNl8T05xocbMx9ZZe+8xxu8YUWQeouZ2A6q6o/voJo2fn+c3PvfVICA6KhifK5ADjZ4IiqZg55EKtOPkLzo6T+xgO3XkpEDUa/TP1BkfkgSjNvmMYP7zBU4LxgvqlXGetzaiRkcFZcvyvYee9z+bmEEV82D9KuDrmfcurvHEXJP2BR9hzNVGDLOInUmNl4J5UhMSNyqksEgsdVn4+qezBMKyrIcYBO0w4+qky6QMiVTF/Z0V5oIhL06WEAfsPPVIUP3cArUZQWPF0Hyxz/ajTV7IlzkVrdMSOS2ZsUODc/EqkzBivj3kaLDNStVlo2qRyJw4KKkHOSvjNg8cWuF4skNlJb9vztG/2qZxUfNc/yTNe3aovX4b8cmGZ4GpHNFuRVVXVLHAKvaL7wdme5Gnm3bck4pkMSMOKnKj92fXpXBIHLWgQoYG66BKDFVTkncU2WxAsq6JBr5JNlrW7DxgCZcmdJMc62BnMWR4WBMMW0TrU2drfbpLFCICDZW5oy7qK2UiL70zE7Deb6K0wQyDKQenwNUMtUaOVpai1FD6iayiW3kGsUpA5QcEXGhxiUVYtR/l7831m0h5iNMU7SAK+yXpuSwteuKRGRzwhJGoHOHAUF8RTA4Jot0SNiNMzZHetUT8zevMBQUXnjnM7Kldtso2J05s8HdO/Uf+2rG/TDjw7zE+X/B9j3yKz/eO8vzKIuxGICBICq6/MyHaPsTodEVypcWRDw3ZeAOIxZT534zoXCxwAnbPh4yOWbhNn3LHMYrMIewXVDVN6+wuh8IeC3rAv998PYfiPrEseSlbYi1vc23YwSaW3psqztUHaGFJwpLBJN6no1st2qyXLQ6FPSySDdPkfJBTOl/7vFF2uaexQp4EfGj9PMcau8wFQ3arOloY5EGn7RODE4LWlQpZOIq5OnpH85NPfjVVrhACdFyy1B3yloWLPJBc47DeJXMBgaiYVSMCUdFSGavjFt043W+qzUQjPhGcon5VMT5hwAjSPGS520eWiWcNihTh9gThan7Hben9utaBmXOo0qEyUJkgqOecntlGCstW2mBcRoTKT3JoYVlIhvTqNTIZIpWhUgGmElR1RTov6J/RlE2LbVQcPrbNcqNPYTQ7WUKvUVI2NWVTEex6AhCBhEBgI+nZtyr7qphtd1HA5a9vkh8umK/lDMYxOBDllCBEC8pSEWqDmUaLpm4QjQoGARTKO1kFIlPoHUEwgmBi90cWReUHBJyaEl3cmpbvTTJJgSo8KuOgxzOFdcQbE4JhQNlIkGlF+8WYwSm48faQ8uI8X//Gz1Hd4yfRTt69TTvI+Fx6gqLjqH/lFoNxjFitcyjocTWa4RvOPUVNlbw8ngPgcXGUu99yg8cvHqeqK9be3OTB11/g+f90Fp0ZirZm4xGJOz3i5PwuO/HtTV3dkfM0VqBTf8JVxzAc1VgtOkys73q3dcpK2WUl75CagGEaQ2hptFO2szrVdMa9XU9pBDnRdOLoZLSBRXJPdIMTuiASASWGsdOeAHjqkB+cuUFbpygcExPus6sfqFUVcx9fwQUaNrYQcUz36CncCzWcgmxWEO2GTGydX3zjHK972xUKFD2TMJlS0DVlyoZpcrazycy0kxjLkr5J+OajT/IzrXcSryne/PVf5IXeAisfPcKxdIjTEjl1DMH2BBcFnhDiYFcE8OQVNgSTOM7M7NKNJvSLGCUtka6opgxJkaxoh4aZ+oS+9MxcmRPYWUvWUGSlIGjn1EJDs+Y5EwqjaYUpFsGKamNDz11p6gEqEzjjuV5doDxb+6sBgQCULcXyx3K274/YTeo06hm5qKEKX7l3SlJt1+jbGjKTKOkw7QodVpRSE21rgrFPcaOeL200Vgx6ZDyjUm4QxuIChZHKQ7v+C8fhZ+oFRsgDp3TEGOTVDdzpQ8jSMTmcEO84+uegnC9RayFXxzM8PHON1IT0Ss/9+s8++g40cKK9w0tmDrHd5F9ffjNfc+hFcqvZKevc01zl0zsnKQcRsSp9ycMIBucrnv7kGRaeN2RtydYbDXNHtunU0jsKxu7IeVoraV0x5N0I3VMc/vWAD5x/O4PzFd/xxs9OqeWkJ3XA8y/K0GCtpJ/F1MOCmdqEUBkSXdDRE45HWxwOdtmsWszLnGKKQetbw8vlEi9kh+hXNbbLOi3toU1DE5OakNzqA++2g/Bg40nq4TFxxNynN1l598K0gA+qgHjXsC0dC2pI6dR0Iskf+1rVBuBYbZdBFZOagIkNGZqYrbxB2bEcu2eFus5Z32kRp3icWqgQU9Jf4QRUdp8M42DNX4A2AJsYpHBoYX20CRRGEcoKLew+q9Lp9hbjesjGpEncGpAbzbgIqYcF/TQmKwKcEyhhSXRBICwSh9YGp9jnV4BpbU+ACyRW+TU+6AgL/HqMl0MGZysYBvQr6bGbTNPrSkAFKvdSI1UDZORJa0UpibegbPqm06H/tEq10MIGCjUpkGmJaUTY0IO/aUY47YH1e7jFfUcphY9QnbvjkcQ/cbMOygK9MUCndZyEcGDQI03RkCy8bp0XNhZ4dnURrS1VJbFWEvQV5YyvoSdhyaBt2dhq8dvlPWhlmalNeNYssdZrcvzEJoOiRpCUyCqkdkPTeckiLOzeA8m85xWurGQxGX6JBNAfZXfcMIp6JeNDIfGOoP7MGkXzMOE7ejRVRjTl4oxkxVoVoqVFSIeUllh7NiUpLO0wYyEa8kj9MieCLcYu5ESwRX9Kj329UlytDvPFyTHW8xbWif1JoqGJWQwGNGsZT40OH3jNc89RiCDwqWFZIYyl+2LJ9bdrVAHyBmw8rPmpt/0MM2rCWtUkEBXjKePS0NbYreq0tR8OuDqe4SLzLERD7mqscu9Xr3BPfIPf6j0AwOyzpXecxvrIipuz5HqYH3gdC6bRjQSsJzNOTUBW+c93j5owkAY9ZZQKZcVcOKIbTohkxU5R52I1y8pOm2o1wXVKDnUGzMVjWkGGxA9JaG2p9jkhPaOSuyVFF1O+2YNGIOyZMA6RGNxEITfC/VFWNyW42Vs3sfd45XWO6jckTkN6LifbDZgsLYNwzD1pMVFEfaWYkh9LnJYEOxNsrKhq00bcHr/ntM4prMd/Hrw5xEwXN55Q264omorajSHIrieHFo43HLlCS+f7OM4baYcvxIepBjGNIGc3q2FmSk4c2ubuzjrLUY9j4RbrVZvnW4eoqZIXBguUmUYGjmTVlzr6JzRmpiAOS1pxxmJtOCWneQWcJ0agRyU7d0c0rjnK5Rk2vinjXYtXGU5nqySO1IT08xpmivp3ThDpilj7LutCNORcvAbAtqlzuZynJVPGNmKrarJT1RlXEeU0is1tAEYjcRyNd1gOdjFILuvZA695fkli5Jy/6pUkeWGDw2qBv/pPfpknxicIpGFWjimdZOIijJNkLqR0iokNkThemiywmrbJK82l3SO89/gzbJXN/bXayJvM/1pMtDnGKYksvO6NDRVWC0zkv7sXD5pVyTMcyQqwkFaBB8Mj9smOQ2UwTjCuIi+5IhyRrpgPR4xMxKiM2NxpIa/G1LcEI62ZlAHPbS8wl0yYjcdsZ3XGmwnNgZejQHjHKZjW8sweLZvEBQfvPMVUJoSxJrmhmBytCHrK81ia6ahqzQ/2Gg0umlLq9UKiXcf2G7yQHYEjXy7R2xqdWYqGxoYSNammc+ICm4SocYmJlN/EhIA9YmoHJp5Srx30RiskLgoQE0Hy2GV49ARiknumLCAtA47EPQ5Hu+Q2YLNospk2sFaQtDIebV9mZfQgQexHtbfyOsYJGiojkQVz0Yhrk67/W6XERL7U4SSkCw5Vqwi1oTktI2ppbhv+eEfOU2WCdLFGsVghL2kufF/EN5z7PA2V0w3GxFMuxtJJRmXonWZc0ohzarqkspKacqQmYMfUGdoY66Qn06AJQO40qQmQwlKYEOMEnSClcoqW9oTJYxthkNyTrBAfuObEHzLnoDLgfHf4aLBN3Cyoi4J5lXKtalE4xU7VYL1s7/9abjXraYteVqOfxqRpyOXJLKMq4spkhgs7c8gPzDL74gDhHFVTUzUjP74WqemMsEUeMMMY4KMc48XJCKYp/HQEs6b9zi7x5B8FGgz70CWJo1fWuLQ7g7wS07jqU1VXM4zzEGMkVU2ymTW4vD6LGmimA2vT7rJnrd+Lqjwps0O+CohBdArjQwIqgZ4AsQGhvrS568DUvZYRymNBw00FeI0wOw4QhSDoaWQpKBqKbFZgdUD3JeNr4BbstB6uckNVU748sCeEJqZNNPcqKGfsISPiCJLYq/KGAcFQUNQ0eVNxeTK7fy8Mi4is0qT9GBFYXk7nGeUhVakwzvdUUhPwzOgwwyqiMIqttOH/lnLoiSC5Pmbl7W2qpiWpFUTTMqInZK9uu49yZ84zd4yWFWF7zOhYwLse8V2tw9Eu/SqhRLNbJVRWkRYBoa6oBRWRrpA4pHCEssI6yVbZxE4j073GTyILElEgA8dulezLdEjhaKqMhsr971ZNjJMsBv0vUeA8UNuLOvd+HI/pfXXK0MbEYo8hXzGwMRP7/2vvzHrlOtPr/HzDnmo+M2eKpJqS0mor7Y4DJ4ENdBwkDmD4xgZynfsE+Q25z1X+QhDEQGIgRiOw20BspzseEFlSu6VuNsVukZRIHvJMNe/awzfk4ttVh4wMhBQiFAPUAohzisBBVe3h3e+w3rUScpegmr6dQ7AVhb7LaJGihKfbWXBcdLjZPeGP//pbXPyBpH1YBPJzqoNdbUet9ty9ChzPZZm6TgRFI0889ohSkukaKRxaOmJC2V7Yc9sNLR2FDYsElVOMy4zJsw6942AxMbtpuH71hO8efErtFROT8pPRRYTwmIFhcRAhvEAaiSokemHC9ogSeK0bebr1HhMInMZoDtUi7HKn9xOqgUNVDcXMg6wEVntkanGFwlWa7Jln9JbHzSKEE7iWQ0w1qoS6JYjHns5TEzaLIgmaRvRYBVERJVYbRsKFqb6wHj1/DYRBtGZxrY/JtpC1R+cWYRNu/pcxn/1OH7EPh3kP34ipL4fO2/sTyjrivz+4TSst2dmeMatiRouMg84UgJO8TTsO2cQgXfAktbSfeIoLLfILHpc4Ym3oJQVtXdGS1Uq46KU++it9UQ/zK5AkNbMbBYk0dFXBUd0jt6F/N7fJC3qMkbJsJTmpMlROMa1TBvGikSNzK5th5wW1UPTVYmU7HAlHTy+Qwq+eBmObsaXn/Dw/4LRu4/2PX+kr/L+HDxfgch2w+SnSlH/7ne/xRb3DtpoRKctT22HqMs5MZ1WqK+GCq6awvNV7RtWoC3Wi4Dw6rVMO3jgj/9k+8VgHkQ0lqbuasidXOo82CoFGuCAFt25I40lHlmis6DbOqbp5EAaamjxXVfJh0GicJDcxkypBDzWygvyCZ+/akHe3DjmIxhzWA0Z1xqRIMbVCt2vKPYEqNbKWyFqhSgWlQdQOKQQuVusvTwFRWwb3avAR+WVPdigwnTAcWlrnLMt3IUBEDjENfVHbcchmjTOaKLbvOLLjGlVYRG1R4yB44dMI2wlCIF4LRN4ER/+c2pY7f+B6veblAWtJD2f4WCMnC6pLvcCa+MVj0pMB3aZqdV4wqxJGswznBHFs2e3M2U7nXMom3Jvs8WjUp640xkou9iZkUc1OOsd5QUtX2FyTDh2n34yCU6mHWNuVKM3EZCxsRPWSWyavNm3XAnd7jhIebyQnZQfnJYms6eiSi1HY1f44vxLMupR9ofna1eULrphtXdHTRVBed6pRTwpluJYOLcuQbSJWVhXKOw6rAZmqKJ2mcOv3YHkB3oNW3P03Nyjc3xAJw8Nqj09sihKOM9NeeZFHwrIbzah9+O670ZTbvSNOyg6F1VROk5uY/faMo9+Ez7+xQ3bYJpo1bxWquaCo3kychWn+f81wTY9RloLKaVq6wiHQwlK50JYxjVanEyGrkMIzrRLyMgSMugPxu2O+e+keV+LAjZV4chMzWyT4hcLEgWlg06BE7mWgSYUVG5rJC2vPxgFsS1N3JNUA6i1DfeCQ4whZn6sKeQF6pjBJuLmlg3IgkIUkHkmSU9i+W7HY0Zx8K2kUpTw26ZKeOVpPa+KzBaIy2F4zh7BB1R8p8DQTdueDVF20ZraKVsEmBeBsTBRp8jd6JJ0223dr6n8Ob3TOKK1mqDMeP9hFzSXz7ZosrtlvTfnJ6AKTIkEpR76ImBhJO6l4o3dGWwfltWmdoiYKG8H8SjjYspJN5WOZNwaVpdXUL6nr+Wo8zxT2BjOcF1y6fMbD6RaPxIDxIkUKTz8r2E7npMo0a3f6hYFOW5dEwlJ7ibNLbx9BKsPgo3AReaO401VhotrXeZOZSloyHIi+yjkxXQoX0VKvQ5PvOTSWp1ffO+QfZp9RekXhNd+ffou/Gt5A4pmbmG5UsJfO6KhyZduRmxjjVLCfaDZwrJdMK007rjh484Qju4esZSP6G95y2fb1EoQ+V25fF7wMIhg2FthsmWmGD1s5jWkuzmUWapzEeon1535XXsLiouOdrSEtWTG1KU+rHj98fIvZ3S10LuhOIDvxqMoH4WMH8dig5o2Op1ta1qrXgyRPyPa27jqcjqi2giYrjsAS0A0/1YOcalzqcInHxZCcSNpPgtDKF78RYduOaOxpPwKde1pHlmhmQUC530LWDmE8yjTukD5M+r0SK8dbL8Xa2xlVTyMqE87PoItwjuxpjm9ntH70OT99fJX91pRUGS5lE37cq7CR5tu3PufXd+5xNTpj6lJasmRqM7539B6fPL6IFJ5M1RwXHW60T/lfh9eJphKEwydB8U2VgmmR0E9iWrqiqwv2k/ql2Vuvtp6ZWSLpSHXNfjbl0+E+Tx5so/o1V/aG7LemPJ71UcJT1wopwwQ1VYa2LkmkeUEpXArHxGQrvqPzImh14tiNZnRUEAbIXbzqRwxNm9orIhGavK8Fz1M+585oDNWbF3mz9ym51/youMafDt/mL+7dpD/Iz/+sA9faQ2Y2IZGG3MXMTcLEJCGzaiTqZlW88u8xVuLiJT2pCZKCpa11sDNoVvTWCS8FdVtQbAvqLbPqIy2DqPEK/Zy9tG1Kdutk2HN3wR3Tb1fspTOelH0+Or7C9P09uvc9WwKqHiwOgndR95EjPa2RhUXWFlkFibHg7vr6bBgFLdLQYtn6mePsXYnJ/HMPQYGNfcP5DI6ZiDBo0jOYXxKYjkcvBNmRovXM0XlUofI6bBU1Jns0zqUukgjbqC8tr4tm2u4bf6l1w8Uwu9Wje3eEWJT44RhxYQ9RVLh5zs5fRPxiZ5d39p5Re0mvs2B0OuCjT25QvBPxT/d/SiQsfzm5xftPrzE86hJ3K651hwyrjFQZ7s93GD3usfPI03lcgo3IjiQmBWMU4zLlnd7TIEwkQ3/+ZfBKwTNWlgvtCW1VMawyylojvMCNYp5G3UBFUpZJkdBrFxS1prKKdhbK75YKMmTLAOq8ZNH0+BzBkjgRhkjaVfnuvCAVBoXDecHUpjzId/hG+4gvqm3m9uW0975WLG/M5SaLhA+eXeF3P/pXXPiBJD013Kwcj767BW/PUGopvdf0ABFMTcpZ1ULimdUJZ4sWUngqo6iMpqoUzkmIHXXbo0qxKttX5OfmBln31ojpeobf9LjM0Nmfo4VFC0fV9LadFyul/eUgoLIK6yS1Dd/TKxDCc+fsgONPd9n6ieDKnRzTiVjsKKIpLKNO2ZPgI5KhCMRv7xHGhgawVvhIvsD9XBuac7W8Nwc/o1FIX9pQNIHUg3ACWQfCfOvQM78cAqewjUPmgsZuOfR0VWnPA+Py7WSwGV7uuC/L9Rc+x7pbwRLmB5L25xFqJhFpipjOcd02st1i/4dH3P3WHg/iml+78Av6WcFst6BeRPziaJfv2V9CC8fnZ1sUwxSUZ7c/Ww0oZybhZ08OEFawda9AzSrUPCWaeHCCRaVRwvP+yfUwiMrylavB/w2vFDwjaZlUKT8dHzAbtfClBBnUXcpZwqwXvJCV9ETKEilL0YjdZqqmJSsKIiYmpacXLFzMzMTUJqFymq4uQYNq1i5SUTF2bcK28vlj8vG8z+N5n4utyetVtouQhcZ3nyC/d5MLM8/Whye4ToJLNDaFi/0ZlVVoGfirPV0wNC0mdcqwaFE5xbyKWVQRZalxS6tdQGqP0KGMkwacblwjbXNziPWX7ADtrMQPaigli0WM8zL4WTmFcQrjFY7zUn5ZqlsngwFeEzjsLOJZOeDgfRh8OsNpidOC7sNiFTBcLNGzOtjLShlK9TpY0RJH+Ib7iX4NDsySrO8b5anCEc9BlZL8ksC0z2OZWoiVOpVpQdXzyAqimUBW4BKouoIoV8wvxERzH5wkJwa5MNhWhKpd0PXUgYHglDyvVlTj677m1VUZWZwWqLMZPm1EspXE9lPEscc/OuTm7/e4/9t7lPsPqa2i312QbE3Zzeb04gWZqsl0zaifoaTDOkkkHE44jJPUo4R4JDl+L+PinyzY+RgWe4L2U8dsEjPMMt7aPQpzllfQCH6l4DktE+78/HI488ojW4YoMVSLCIxkOM8YtAPpzjpJFtVI4TktWxwkE6yXdFVB7sKOaiIDKbp0EY4q0HYa+lLpokCOb+DwjG3GYdGnG5fsJHMupyP+x7pr1P8TQuCtY+/3PkH2e1Q39lGLmuj+M679csxWkvPZcIdeVKxElEunmdUJwyJk81Wt8R7qPG74eQJqgY0dumWwHYdeKLwKQVQ8l32uXVEJGOicK5dO+fzpNnYaMSoz3mskBJ8UA6omiDrEijgPTStONAm8AD1VmC6M35SUW128CJKILlboPHAlVeGJ8jh4F01s0KhMI2QSI+qga4m1r9WGUfilGW45TzZ0TN9obIEFYfEh8uh5sJauegJpgt1I3Wn+3gumb3imbyiSsxBQbSwRLYXIgn6nRwStAxOCKDRsjFiuAui6xZAjZVkceHwaVO85OsXduER+MaE32kKUJfqDu9zgLf7o6jvc3D/FOEmkgstqpoInViINxu8yKjISbTguO0yrhC+OtlFzSXWpZvuORlQ12z8ec/LtfrAmqQS/eukhCxtxvOhwNOtQm68h88QJEJ6t/SlJZDgedimnCeoswsUeteOoraI2oTyLlQ0qOV4xqlukSegnRM0dHglLR5fBOVCGp8Sy77CEbYJjYVOmNkVL22wxRa/JbjtfEp4QWkErA2OI7z2BKAKlqK3ig49v0run+fjXFe8dBNuOYdXiWd5hMk+pS42bRyE7qeSqxPOxR6SWXjdnWEvsuFEMcueB0wtg2fdcI3qy5t/f/j0+vn6Z7599k1kdMopdPeNUdkiVIfcC15RHQniU8KSRwXuB97BIPPGZwKaC+vaC0ghU5EjSGlsr5pMEUUiEEcQjSTyWpKeKdGTRuUUDsqAJUnLFc1w3Vr1Gv1zLDBlm5wuY3GqGf0057XUjrpIG0WNpgiiI2TKIWuK1R8xCX3dpd4IQuMZeePkazgdF0noWO4p45l6LSqUygezvWjFynCPiYPEzP1DEow7pF6F3rT+4y8X/+C6P/uWA3c6cUZ7hmxZQ5XSYkjcVXWE0ZfPPnSQk1+ekH3TZ/vMvcFtd5CRn9wPH5K0+vmW5Mzzg8eEW33nzIdcuDPnsJe3MXyl4drKC77z1gA/vX4NpRHQm6R4K9MJTDSTFbEB9e0YnKymNYphn7LRzUlVTOk1uw+BnWa4tXBycFUUIhrD071YNNclwZjqrFUbjJEr4lWHYqG6teJGvG1b6kcuf1lL8pwvceFJT9i3d/piL6Zj78x1OFh2G0xblOA0B04LKQ+D0shG96Bri2CAF+FoiDdRdj8rF8v54od+1TigEV5Wjmz4k2jH8aH6dp2Vv5TcTNtBCQFXCoVSzDeQFVltqG1YHVSGQlWBve0I/KdAyPJxP8ha59FgrqCcJLhe4OAgD2zgYqXkl8SroWqLlasi2ViyDlT/ve0obstHszDO7Lldc3ZAheqqmpb/cHPNp6NX52CEquTKO06UP0/Yma3e6GRppgfRi1fOcXYlY7EmSyfo3rpZIzkA9G/HsN6/SPgyBq+40GXKkoSgRWtP6k58wufoe439mESK0Bi9lE9q65MOzq5zOW3SSiryMmc1TzCyid33M4s6AG39wjNvqNlzYGHk6of04ITpuEV23/Nrb98hUzcPZNsZ+DWX7bJHy4Ue30DNJ92Hox5RbML0BJvO0ngrS/9ZhdrlLuedwiUNe9LSiiv0kkBNrr2g1HE2LDK9lxdwnzU5qybBukduYRJrgLGmTZkPJMaoynBe0dcVx0Vl3kvW343mzMSGC946x7P3RZ7jdLR78Vp9f6T/j/nyH3MQcDntUwxS5kMgy2FB46YPToQAfhTaJMQpjZeh7alAXFtQuIz1qqEu+GTqse+MOT+EdqYDb0RHHSY+RafHp/IAbrZNwjpXBNOt0/rkJlxAeITxeBk96F51vIQ3iRSAzVwmTWmGmEfGRpvVUoPNgO6xzhyqaNUUJWJq+3/qvlCBcbZ8bCjXWGD68HtyNOfm7HmED7zPQiwKNSdTLoBoeKF5ANBWkp5505ImnLwbOIBDSeBY19DmvBOOboWTP9xTp0CHX3OYRIgzB7H6f/r94zPEfXuHgrxfIWlN3FCLL8FUdHAGU4uKfnXB/d5fWr5zQjQouJGP2ownlQPOD+S2GecZ8kiJPYuIrOcUnA978D8egJNVORnySh2ORJcjKEk0Ej46D+2akLG1d4dzLXSuvRlWqBL17Cl14yi1BsQ3lbkPmNYJy4JlddzCokcojasnktE0nLanbIaDkLqZ2ioWL6eoC4wKz3zY3UOkitLSroFlaTek0mapJpKGwml5csLBRyEDXrqrEixtG8GVajFJQ1xAlnPz9Ld597z7TOsW4ZsJcavREoeciMJ+q853sILUWavPANBEk7YpioDjozzmqFXaSospQ0omXPPFfJzwQCcHUeSyCq9EpriW5k1/kZ7MLQcMzKoil5dmiGybsTQlWVFFgFaSWuhsGkuM8ozIa0woaoMYqhHSIUobstPbEc49e+FWpahMFqEbvlJX029qx5FcSLHchBEjhPGW/ySjLQDuTVbDXiCeNSZoEkQN5yCSjSQicqgwLATYLA7Vla0CaEJiEcbhIMnw7tNeEC9YdhQ9unuuEkg6bwoPf7vOvL/2AP/irbbwO1ez8QNLb6cFwBFLib1zGx5ruQ8/M7/LRjR4/3w6Cx9OzNkJ6okcxouVp3xpT/s0Wb/zXMT7S2F6CKoLmhI80JBo5LchOulhtudU7QQpPTy9e+rO/2m57Ffh1k284UOB1eLpHJ8E3RBioe4IoMfTaBVpZjoddhrMWi34EEdQulODLYJnIYEU7NwltXSKFW61IWS8obEQsbcMJTVbk12eLbijjXnIb4OvDSwRv74N3uFYIG1SGup2C2ktGZUbwYAcd1tvDJD0GYQTVcqJeh9LUA3FkqAcVsbIkWQ0iZcnYEqZRGFojSi84c5AKuKQq9lRwFE1kzR+f/B0ez/vc7J5yLTtjEC2YmIRJlTEqM4TwVJUCI/GxD66SRdQcwg5aOaZ5gik1KpeoElQJeuGQJgROr8/5Wt42yupy/Q9ZpwXFtloFz+d37r0UTG5bfGbxdegDLgeBThECpw3nNp56dBFsNnThglpTIsIOe9NHVbVfOQqYjmJ0S1NuB5K9V+H6Ij9vH6wL1oVMOPqlEX85ukV0OMKnMXqRMr8E+dUunekePkugqHGJpu6GAZkcafIkbFHF7QohPDf/0SGl1Yz+82Uu/8/T4J4aaWTVOIVK2VgwO8R4yt77Mae/2qJ0mlvtY4Z166Upwa+2YZRAcbsAAd3eguk4Qx4lqEKAC2X81k8FI9uC20XwIW+V1LXmMO+vskfnm96lC0MPAOMl4zpbbSRVTjWB05CqmsrpVSA9zHsN0V4SvaT23tcH8WVP8OcHSEKAEIgkBmPpfV7y6GzAL29/wXac85nbxeeaaCaI5kGJyEVgEEgBpg3MJI2dPUUR0e8UdLYndOISevBor0V6GPqEvQcOPV9vLVb4iM/qbS7pMdvSkArBniz5TvqA2VbKn53e5tF8QKZqvt15yJ6ecGx6fF7t8KdPbzN80g8+PdpD4ppSPgwXautDWeXD9lI1CORyaSRR3lBvvAxZlwuriK+JkHwgydcEfyHBSh4OoM4Ev/UPPuT7f/j3MJ3ngqoO/T8I22PKB4qSF5ANQ5ti5cnuaTJsj6z8Kts+fUdTDfyK1ykrQd0GvFg7J9h7QTzyjPKEP7/zJm9eMgzfDmrxXsL4piZ72gnUtFmJGs7xoku57XEdyzuXnnGx6Xv+4/4d7hYX+f1/90+48MNDbL+Nb8eoaUHdbREfzYP7Qlnj0hi3v4U8ndD7ZED0Tcu1+JTaKWL9ctmH8K9wZQkhjoGHX+UgfY247r3fW9ebb47Jl/GaHhPYHJe/DZtj8mW81DF5peC5wQYbbLBBwLobhhtssMEG/19iEzw32GCDDb4CNsFzgw022OArYBM8N9hggw2+AjbBc4MNNtjgK2ATPDfYYIMNvgI2wXODDTbY4CtgEzw32GCDDb4CNsFzgw022OAr4H8DBPGvO0zOXVMAAAAASUVORK5CYII=\n"
+     },
+     "metadata": {}
+    },
+    {
+     "output_type": "stream",
+     "name": "stdout",
+     "text": [
+      "Dataset: affwild\nImages: (100, 48, 48, 1) Labels: (100,)\n"
+     ]
+    },
+    {
+     "output_type": "display_data",
+     "data": {
+      "text/plain": "<Figure size 432x288 with 25 Axes>",
+      "image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"250.458125pt\" version=\"1.1\" viewBox=\"0 0 333.079127 250.458125\" width=\"333.079127pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <metadata>\n  <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n   <cc:Work>\n    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n    <dc:date>2021-04-29T02:55:39.829889</dc:date>\n    <dc:format>image/svg+xml</dc:format>\n    <dc:creator>\n     <cc:Agent>\n      <dc:title>Matplotlib v3.3.4, https://matplotlib.org/</dc:title>\n     </cc:Agent>\n    </dc:creator>\n   </cc:Work>\n  </rdf:RDF>\n </metadata>\n <defs>\n  <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\n </defs>\n <g id=\"figure_1\">\n  <g id=\"patch_1\">\n   <path d=\"M 0 250.458125 \nL 333.079127 250.458125 \nL 333.079127 0 \nL 0 0 \nz\n\" style=\"fill:none;\"/>\n  </g>\n  <g id=\"axes_1\">\n   <g id=\"patch_2\">\n    <path d=\"M 10.7 59.80778 \nL 48.189655 59.80778 \nL 48.189655 22.318125 \nL 10.7 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p1897e55d18)\">\n    <image height=\"38\" id=\"image1c0b54e460\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.7\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAK0klEQVR4nG2YTa8k2VGGn4hzTmbW1719+8vTHoNpjcRYwpoVxqxYICHLfwCJ3wQ/AFiyYsOKHfIPQALZkmEB9kC7h6bdM3373r4fVVmZeU4Ei5NVdQ3kpjKrsjLjRLzxvm8c+eGf/YXfvFTKwjkcYgIGsYez14YUR4sjGcTrfS6CR47nyHyu4AKI4ALiIOa4CrkVXMEa2D0XrPXDA5DDqTrr1xDHtfDyR6/48fN/BWDygLlyOa35ydvPyX/7lGbr6ODEvqCTAVDaQF6GGlBwTAWLQmmF0oBFQEAMYi+IOeOZkBcwnTlf/PG/87vrbzAXVBxzIWnhIm75y7/7MRFgKJH70lFcj8G92T/i8ssnfDI6YnPGvK7ckpKXAQ/15fU7YVzXwKwBCzUoKfU8bSFtHYs1uGzKl9tnvLl7xNPFFhXjoun5vcdv8ADxUD4VI0lh8sDkgathxeKdorkgmZopAw8yZ8IRr2UUcXBIAmEAS1Ca070wlzQ74kLZFMyV633L3b7lUdezjhNRC8/DHa4QEVjFkY3uUXEupw0AyziiGbQ4mmvWcOfwJh3t9EKrgXXF8SjkRWBaB8Z1DRAB/JRBKYKKcd72fGf1kR+cvSJJAeBDWYNDxOF9v+Kfbl/y2fI9r/qnZFfebc9I945Oc1AGUhyklpMwp6JU1OpkyFTwokijcxNx/Dw0TRic5oOynVqeLe7553e/xc8vv82LzS1P2i2fLd+jkxClwIfbFV93G7alYZ8TfU7819vHfHJTMyHzy+vKK9bIYEmwTimNVmwF0FK70qJg8VDCGpBFQTN074Vf320QcRwoJmRTzlPPi/QRD04UB3fBXLifWg7NkN41xL5ShZiD1vsQwVUojZKXSmkEDyfKGBfU7ltB2EPcQtM7aWdMq4AZxL1z9foc/eKGZTPxfHVPlIK58Iv9J+goFfxuwmQBqN1yvVvQXUot4yEwQHMNNPROux2Qux2+WuBdqhwUFesS41midDWLODT3hbA39o8CLqAjrP5bef2dC0Iwtk3Dk25L9kBfZooBMBemEuZsBW6vlzy+9yOxWtBKFSJILkgpkCtYMatNIQKqWKNYI7QfJ9pffg1Bsc2K/adrXCuRWgAdYLdrWK4HohirOPIo7vi0veYfGj/RBYCIsx0a4vuGuKv4cK0MjgkelXzeYo1SWkXMCb0R+oxmAzPi3Viv70d82dG/vCAvA5bkqAAHCrFdRDd7Uihsc8Mvpud81T9GBzkFJuJENcy0trR5lZcgczdSsxGF0inTau68dUAsVtAr5E7ICyEv1pS2fpfuoLmr2ce8St68WHMhHtoX2Jd4KiVAMeXjbsH26xWrj4LmiisLgui82pnlS6uUJKTeCYPR3GZ0KEg2hmcdN2eJaVWJVjN4qBIV93PJxSuX7RV3IbuippgrT9otHufAVJyPfcf0swte/JsxrXwmzvmhchLZA31ogTAY3TcD8aaHYniKxG1ieRkQE4YLQQvE3llcF3RycqeAzDQyqwbUarmjh2uoNHB3teLxu1q+GoBXnopSgU/tMB2d5q4Q9/P1VLA2kc/bI5Zibyw+CFqUdO9sXve1TM9aSiOUVHEbRuj/44xXL4XPnn5AcZKWU2B5F+m+amjuDA+VDJGKFYtgQY+yEvdG2hqhN4aLyIcvNkip0jWcK9PmJEOPfmlsXvdYG9g/SeT24EAq9uK90H4QdrLBnlwRtaBUyEQpEC8T3RWknZE7xSKUVIFfmooVizOBWiDsleVlId0XSitMK6E/V8YLp3RVLRbvlMU3E9MmsX2RmJbVvx38GEBeOvtnjq0KjWbOmz2tTiAQNTvttaKjIw/kxLU+pDSzjUkPPNZaKF1kcWmE0bEg6LrykwdIt8Li0tl9kti+UPKC2R7NumlVphCIW4E+0oTCJu5Zx+EU2PKdEyY/ZsXioZNqKV05OVQBjzCtwFUJgx/FWgt4qaW8/h54AusqZmQUdBJ0nN0Fh04VyLDLDYvlRCt5LqVDe2fEbaF0etQ8nwPRDBTw6WQoDtn0cCLnSsKgk+CAR0eykK5qQMgha45HJzdQ1oa4Egbhzc05f3DxKzZhD+IVY81NRscCRGQmTi3gsxnUEZp7I+4McWb7LEwrxQ4uNtRMWqji3Vwp7ZXT3hhaYFoI01oYz4XhwskrQ85HSm5pPgo3t0uupyUXcVszBpXldSzEILhUztUR4jA7063R3E1on6ugi2BRsS4wrSP9k1BBnRzNwvoNnL2eSDdjzWajxEUkjMq0CpTW8daQudObW2d63fHzF5/y+fIdHBxs6QI6lKPpg9qhy3cj8W44iTS1Uy3VISTejchk5K4FanBxK6zfZtLtHFRU8iLiAcaNUjoIg+BJ8VaJgxB3sHoDv/r6Cd97+bZiT8wJ+4KOGU+hYop5wDg40beX+HaLTxkJStxskLaBUtCzNeksEYZA7IV0C+3VSHp3U52HKikGvEmk+wXnr4TxPPL17wfyI0MHweJsq/5zwfTDgCUnHtRe+6lKj1UdswTTOoAviN0LwvUOvd/h+z3kjLuBaHW0xWluHFzorhwpBuOEXX8EVXS1RBYdaT+Qn50xvWiOM2kY6qdFYfPa+Wn/O5X5XWH3vCHet3WqmfWwjlmVDoZFiz/tiP05zeUOvd1Bv4cYsUUDIoTRSfcVl9YG/HyNxoDHQHm0wtrIeJ7YfisyPhJKZ1hWwlDFPS+F2J+GoZg74cP3BVix/qpHM4Sx2pzSCMOjQHNXSNtM2E7ImGuJuhZfLZgeLxg3VbI0V24azxIydsRxmicryKvI/nHFIVYXz6SEvjLAtK6cttSKzTiuBX25Jf5jh06FdJcJQ/Xz00IYV4KFQGqVsAzI4+4o9KVTxrVS0gMnEoWSAtNywbINtXmAsMukbWDcCLtvO7YsyF6xBL/+k8wPPn/Fl1dP+dHmX/gb/qh25TREmpuMTIXmeo91CUiV+VPln+GiMmr1ZdVxMDtc8cr+R7+2gGkj7B+3iLVHeExrYfepUTaFcBtobqr7ePz8lr/67t9z99vGt0K9P0oBfd+gQ7Umuj90Zx10cZm1rQ6zBxw+9GjuclQKn/XSFUonlM4pDZSF44sM6kgfSHdKewXNvXPVtyw1kbwc6SqKg0yCZMNTwFPAUsDmADTPNFbADlkKgJ6kS+Ao0sftgXgKUqjcxRDx4HWg3THrrDN8WLD3XI0iFSdRR1h8I1gTqjOdSs1MlBrczM74yREcauMiEE66ehT/BNYc0llV5PD7gwcgpTYYs3udcNpDxo7pj0oYJij1hYdyHPa4jpowZ0+sCrJxEmhxcKvcFMZZKXQOONah2aKjoxyzq1kgnBTHqHqsFmH/xCvLZ0PMjpskRwzNL36w2OPvWg5Dy2kROtUs6TTvXxyslFAn+geu5OGhQOGB59dCHavckWxItnmHh3nglbnjZrPnh9LIEUd124ljag8e7lBWa+Z5Ys54GE8TVHc+oFJniDCvPlZbI4ShDqyYEYZCGQJR6xL90PGhirg/KJGl+fvZ+hwya8FPVjo5nipph53SXgvp1tGp/v+7T67+T/aq599Rp6IuISlgUWumct2G0gheBC+nAFxONvlQGikcu1MR3L12pQs+CdX7Cd2l02znOTUI39yv+euP32eyyDIMxK0gf/inf+4e6sj1G4ecdnD+94bvw3t+A4P/z/Hwfjk2zsmOu852qDk9s71x/ge4+k9F5CkleQAAAABJRU5ErkJggg==\" y=\"-21.80778\"/>\n   </g>\n   <g id=\"matplotlib.axis_1\"/>\n   <g id=\"matplotlib.axis_2\"/>\n   <g id=\"patch_3\">\n    <path d=\"M 10.7 59.80778 \nL 10.7 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_4\">\n    <path d=\"M 48.189655 59.80778 \nL 48.189655 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_5\">\n    <path d=\"M 10.7 59.80778 \nL 48.189655 59.80778 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_6\">\n    <path d=\"M 10.7 22.318125 \nL 48.189655 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_1\">\n    <!-- Happy -->\n    <g transform=\"translate(10.08639 16.318125)scale(0.12 -0.12)\">\n     <defs>\n      <path d=\"M 9.8125 72.90625 \nL 19.671875 72.90625 \nL 19.671875 43.015625 \nL 55.515625 43.015625 \nL 55.515625 72.90625 \nL 65.375 72.90625 \nL 65.375 0 \nL 55.515625 0 \nL 55.515625 34.71875 \nL 19.671875 34.71875 \nL 19.671875 0 \nL 9.8125 0 \nz\n\" id=\"DejaVuSans-72\"/>\n      <path d=\"M 34.28125 27.484375 \nQ 23.390625 27.484375 19.1875 25 \nQ 14.984375 22.515625 14.984375 16.5 \nQ 14.984375 11.71875 18.140625 8.90625 \nQ 21.296875 6.109375 26.703125 6.109375 \nQ 34.1875 6.109375 38.703125 11.40625 \nQ 43.21875 16.703125 43.21875 25.484375 \nL 43.21875 27.484375 \nz\nM 52.203125 31.203125 \nL 52.203125 0 \nL 43.21875 0 \nL 43.21875 8.296875 \nQ 40.140625 3.328125 35.546875 0.953125 \nQ 30.953125 -1.421875 24.3125 -1.421875 \nQ 15.921875 -1.421875 10.953125 3.296875 \nQ 6 8.015625 6 15.921875 \nQ 6 25.140625 12.171875 29.828125 \nQ 18.359375 34.515625 30.609375 34.515625 \nL 43.21875 34.515625 \nL 43.21875 35.40625 \nQ 43.21875 41.609375 39.140625 45 \nQ 35.0625 48.390625 27.6875 48.390625 \nQ 23 48.390625 18.546875 47.265625 \nQ 14.109375 46.140625 10.015625 43.890625 \nL 10.015625 52.203125 \nQ 14.9375 54.109375 19.578125 55.046875 \nQ 24.21875 56 28.609375 56 \nQ 40.484375 56 46.34375 49.84375 \nQ 52.203125 43.703125 52.203125 31.203125 \nz\n\" id=\"DejaVuSans-97\"/>\n      <path d=\"M 18.109375 8.203125 \nL 18.109375 -20.796875 \nL 9.078125 -20.796875 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.390625 \nQ 20.953125 51.265625 25.265625 53.625 \nQ 29.59375 56 35.59375 56 \nQ 45.5625 56 51.78125 48.09375 \nQ 58.015625 40.1875 58.015625 27.296875 \nQ 58.015625 14.40625 51.78125 6.484375 \nQ 45.5625 -1.421875 35.59375 -1.421875 \nQ 29.59375 -1.421875 25.265625 0.953125 \nQ 20.953125 3.328125 18.109375 8.203125 \nz\nM 48.6875 27.296875 \nQ 48.6875 37.203125 44.609375 42.84375 \nQ 40.53125 48.484375 33.40625 48.484375 \nQ 26.265625 48.484375 22.1875 42.84375 \nQ 18.109375 37.203125 18.109375 27.296875 \nQ 18.109375 17.390625 22.1875 11.75 \nQ 26.265625 6.109375 33.40625 6.109375 \nQ 40.53125 6.109375 44.609375 11.75 \nQ 48.6875 17.390625 48.6875 27.296875 \nz\n\" id=\"DejaVuSans-112\"/>\n      <path d=\"M 32.171875 -5.078125 \nQ 28.375 -14.84375 24.75 -17.8125 \nQ 21.140625 -20.796875 15.09375 -20.796875 \nL 7.90625 -20.796875 \nL 7.90625 -13.28125 \nL 13.1875 -13.28125 \nQ 16.890625 -13.28125 18.9375 -11.515625 \nQ 21 -9.765625 23.484375 -3.21875 \nL 25.09375 0.875 \nL 2.984375 54.6875 \nL 12.5 54.6875 \nL 29.59375 11.921875 \nL 46.6875 54.6875 \nL 56.203125 54.6875 \nz\n\" id=\"DejaVuSans-121\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_2\">\n   <g id=\"patch_7\">\n    <path d=\"M 79.968966 59.80778 \nL 117.458621 59.80778 \nL 117.458621 22.318125 \nL 79.968966 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pbd80726952)\">\n    <image height=\"38\" id=\"image567492e7ea\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"79.968966\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAKy0lEQVR4nF2YWW8kyXWFv3sjcqmFLLKbzVnbbc0MhDEM2IblBQYMz5vf/G74N+ln+NU/Qm+CYMGGZQkzIxljzWh6YTe7SdaamRFx/XAzixwXUCArqyLy5F3OOTfkb/7lp7Z5quQGTDi+pMDyD0Z7k/2C+TULUIJgCojcrxFfbwqmfjH0hmbDBEoUSiWUCKEzqr1fD50hZvTLQH8qNDcFTRCHhTD74jV/fvEcAJVCEONtP+c3//Y58ytDsr8BSq2U2XQTGYFArqHUQm4cJAbVBppbxz3MhOFU6E9Be6FeQ31ntG87wnYgHGosVGjy/SIGZkIyHSOjKMbr/ZK4tzEaAmMkLMjxxjBGKUCphNxCrvy6ZkhzQTLEA4iNawT27xd2zwrxJtC+jcS7jvbrV7Rfw/bPPmD/OBIRCFqoNR3TWExZdw063KeIMU0lyjHVmgzJIB1UWwPz74cF5EawcL9OCmjv4GyWkSZjpz0v/25GfbNi8eKExz/7w3H/6AExgtgRWJDM7WbGahgDZmM9BbmvNwMyxMEIXUG7ggUhzQOahcMjwYoDkuJr4sHQXpC6cPnkjov5lvbpwEnV8Yvv/4jFi/dYfvkW/eQc9boyFH9HyXy7PYevF1R7+2HK1CMgBlKMMIKSzJhiQQdDE+NfgzI9nB3Takm4mG+Zx5557FGMn3z4Hd9/UXN4djZGTKDSwiz0TCB/d3XBybe+uT+xeV2JHEGWKKRG4ERJM7AolDDWW+1gqjsPtz1YW62N+KZi+Scdq2pPMaXSzIkmPvuH/+X3mx9x/lXyVFYhMx+BbVJDfzWn2vgTSxk7UiDsPV0YxH3GVMitjlHz36Q2UGph/zhgCs1tQYrXXIq+tnknvN4veb+943aY8ShuaXXgT1cvaP9p4Ev5MdEEmpCYqwN7ns6orwOxyx6pMUKajXh9ILy8xvoehoScLLF5i81qLARQ0C4Sbw8sf/4OViekx0uGVU2JweuyQOjg7XZO9ShTayJQGEqgksznJ6/49ezHHrEohUYHiimvDidU66munKcEIBt5UZE/+wCLgokQdwMmTh8WRrpRGC7mpKenDEv1LhwJWZORK0ETrDczBgv0JaJiVOJEPg8dJZgDKwhl5LHXuwVxPwKLYOb8VUJAmkCaKbmZ6qkeqcMLO9fCsBBKDWnmkQkHZ/d6+6ARkpHvKr68fY+hBBah56zaUUxodUCMKWKZ3+0v+dm3n6I/X9F0XlsTL00vC17wEzDNLjvVrlCtM915JLdKioJFGCrIDTTvOHLfRD+z55HfnlyyXB74Si7560e/5x9P/5tfHZ5OgYdkgf948xH8+4rVN/m4wcT0Jfo7V0KuhVx790mBel1orgfq6z3t9UD7tlBtjRJ993oN1XbU2VG+MI9k/fWM9XenrOo9n8+es7Wak7DHAkQx+O7mjPVvz/jgy0yaeQ2U4KD+v0hrNuQgaDIWL3rqVxsQIS9qJBmzNwPVJjgTZVhcjd1b+dvCmAVz0BaV68OCb7pLdqXhSVy7VoYO1v91zvJK6JfmRZrtXqDDfROAF3AYUz0sIuXjU0ygPw3kWkgzdxCaYPEyk1qhXyoWeVCbXr+HM6N/nLm6W8Il/M/hkhfhjHAQomSj2ipxZ0dWL0FcjCeBHkXagblr0AS7J0pug+vjEtLcKJWn7fxLSDNl86FS4thIch95FDQJ7atId1qzyQ2X9R0BxxHDAM1bIwweDfdNUCrG+vLNSjXJkpDmUK2hvTFSFg7nkGdGOjFMjfnzwLAw7j5RcnOvwVJw0S+jEUj+Oe8Dv7r5kKeLOc9m104Xk/5N8mM1/oQjKE+lR80UrILSjI0xWiGPkji3AIfHxuExWCxHg4m5BRJxejGFYCO/rSNRCz+avaGz6HQh2WhuRvJrRjAqP3Czk3XBSQ/EjaGMfkuzX58AaB47b6Mu8OqpK8Gwyj2bVUaeGfWNMn+u/Hr1EU/aDYvQI0mIk68q0WurVL6JjABgDH/mKCmTxZ7ATimZ7JAM0L4R5q8L9dqj5vqpbD8U8nmh1AWiEV4ps9dGiTW/fPQxf/He90gZCTb0hWpdsIuKwTxawv3N4s5o1ka1zeM1o1RKf6pOuK2H1RRCJ8xfCqtvBurbwaliFrDo0ZM0Rl1BOqW+cdVo3hk3355SLl948Yu5RMR9JnRxNISgByN0YxfundmrTUKGDCqUqIRDIC0CuwsXcItGuFHmV5lqndDDQGkikhXtjfamoElpr4XuPHK49MGjRI90+yqwS5Xz2NErFUMHO4qyJlhcJdqXO/Rwb7utClgVCDkTNz1xXzPMWydNBR1g9mag/uYKGwY0JeLkRE4XlHnN+pMlwzJQ2kKJgVBcCZp3rkLHiGGGHhJio8Mzr6HUehHJdo/d3GKHDkJAZy1SVRACFs8JgxF3AIHmnSHJICiSFU5PsLYmLxpKE9lfNuwvlH5lSBKaWyO13nSlgWXsMB3pIs8UyXlsbfflAGkmHN6fw+UcHZ5Q3fWETQcpQz+Aqs+QBvWtETqh2kKaB8KjU7QbyMuG/rwht0q3CqTWp6d0UtBeiJ2xeapsn7nt+Wh2wy8FYolCd6q0Vw3gVqVUzjOpcYClEbqziv4sMnsZiOsOGZJzWO3Mrxms93pJ80BdKRyMsOmoVeip0YWig5sACuggbC+F3YeFL37yGwfWvPNUpka4/QwWL2tCV6h2HtrcuIx0q0Bzk5nfDVTrHr3bgwo2b0mrlv17Df1SjrKT5sJeFbEZzXUk3u6RIVPf9vSryO6ZsH+/gBrt90r7rrC7Ez5fvGRX6qNhjKWG4XIgt4HmzYGZQVoEhrnSL4XDmdKdCtUOql0Em5Nmo1N4IMzIPfGmudCfRfg0YjIDdVJNC2N4MiCd0rwOzF8V93Mb/QEoGHmM5O2su4GqGDpUSInkJlJqo1TC4THsL8KRxU3u50WZzjWmsVNdW3Nr5AbyrGC1QSxQBBnEXbJ56uPG1821p5XBU+ltZ+692oipuFUe7U2uBMlGKTIK+w8n8wnQdFQwWaXJCCB+VkGnIN7lOoy6WTgeP+g4wFaSsCOwLEiBUoXxhj68yhgNGynkeIogHF3Hw88WxwOWxkZQhhTx6bswDjE/XF8C9Cfw98uvADjTPRYnYE2hX0aaNyCpHNMxRQJG84igg38X0gNxjmMKx8MWHYTQu8EUA1M77ldq5y/GoVmK0a+Mv2o8nxWBUhtqCmcXGw7n6mP8dCoDx0ORydyJ3XuryVQeFWE6PsjO4jpOSDKef1h0yfLfTTcYbVNrFDMCQiXBi98EVrMDdw+GW7g/yXkIZJoBJhAwutsxjSUaEtybecrs2AiTGwYXekkQBmOYC+E9nxcVPd4umgoXsw1vF66XUgwpmbBXwiIQehn9031kbPLt+gBUZf53DIWMoFE7ijRA2AvNtdDc+BFEPICoofJgTJQR5F+uvmPzxxmrAjJkdNcT9gNxX6i2hdgZmjmeTzgQPzwpjRs+pwZzemn8c2mLU0VTKPOMqVGthflVYf46Hweei9WGgBAegIs6GP959zG2TAzLiHbJW9iMuBmwUGEh+NOP4l7iPU1IGSOdvPOmafuYuvGcVpNQrYX2rRH3djwXGebCLGT+9e5TVIxWeuJWkL/9559at/Jua2/LcQI/bj55+9Ee3f//oBPFOxDuG8QePP10fRpGNNmDshC6ldxP/ALNTeH/AJ1nD4eE6yQ3AAAAAElFTkSuQmCC\" y=\"-21.80778\"/>\n   </g>\n   <g id=\"matplotlib.axis_3\"/>\n   <g id=\"matplotlib.axis_4\"/>\n   <g id=\"patch_8\">\n    <path d=\"M 79.968966 59.80778 \nL 79.968966 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_9\">\n    <path d=\"M 117.458621 59.80778 \nL 117.458621 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_10\">\n    <path d=\"M 79.968966 59.80778 \nL 117.458621 59.80778 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_11\">\n    <path d=\"M 79.968966 22.318125 \nL 117.458621 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_2\">\n    <!-- Happy -->\n    <g transform=\"translate(79.355356 16.318125)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_3\">\n   <g id=\"patch_12\">\n    <path d=\"M 149.237931 59.80778 \nL 186.727586 59.80778 \nL 186.727586 22.318125 \nL 149.237931 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p79f829d24f)\">\n    <image height=\"38\" id=\"image09b92984ca\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.237931\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAKPUlEQVR4nG2Yy49syVHGfxGZeU5VdfVjbt/HPO+MNLJmJO8tkCxZSGwQOxbesGXJfwJ/AX8FC7aAECu8QJYFCFlYBs/YM759p19VXXUemRks4tSpuraPVKru6urMyC+++OKLlB/85d/a9mMlLyDuQTPEndE+GDoaYiDVwMBUMAVTQAQA8zcsQA0y/Q0w5v+V6v+TW2E8F0rrv1vwF+LrSAEd4ewbI44r4fpPf8OfffCf/Mvb7/Hzb14iv1ry/GcQu+pfHipiRmmUmpSyEDDDVOZFSxLKAmoSD1Z8c81C6I2ShOEK9l92vH7/ls8v3vL56oaFjqy0B+Cb8YpdafiHv/9jIkCuCsBVs6c8NqxvBc3G4bEoWHWUpBqhn04rR3TSrjoyAXKrjGdCXghihqkjFzqB+8TtxZKP15FtaXkznvNB8wBAMeWD5gELEDEP7P+6a375+AwZhLgFKSeBOTBghlRHCxMEI+4L6XFA+tEXP1/QPW+oUanxGDgCFiHulHGM3OzXbMeWh2HB/zbXRC2oGC/bLTpC1AJvbi74p+33yL86Y/md0mwNPQnMOSTOKzNHzgztK5orNSkSGj+MGe39iGlDXgoWnDsHhJs74elmycPZnod+QalK1Iri++WqSJkQs6wMb1a8/udCXk4B2fQ6PCJTShy+0irjWSC3TmaA0EONTnqAmpzMMhWOZv89PQZKVUoVYqgEqfM21ZxWkamqlr8OLL7d8vTp2lNXPTBPoxM69JXQFWQs1DaSzyIxOh9DV9C+UJaR/lmkJKHZOPL794IHvgctRnoQnrqGNmVyUfoSabQgYp5CIEqB5ttEe2dsPj8nt0LzVF0iOJ4ewYMqFRkrse8IXTwCOmQsBTRXmts9tQn0zxfsr+MR0dEcsS1sugSAqmEmVISAodOGMfbG9c+gvc9sXieHvhrUY1AmnorhKlGjkJdKDSf806n6RKiRWatqctTjHkJv81o6GnbfUF4UwNOoJ0FNiBmL+4wU8wAmoRM7iid4RY1toKajkB5EEoEaFIt4QAeeTdXoXBNMDYLzLG4VfWWIGEErFYGqs3RFmNQ5V5qNURp5l/TqiNQgk0YJdsygC3CGYOZBJ0ELlAS1AVMjiKCjw6VmfvARSlaIMJZAnVAQ8U4RLQj7Fw1pUwiDUaNQm4NwQWmF0jj5axJqgvFCkAJpY6Sd0Wwq8anQXUdKE+hewLg2LBpxJ9M6fgDkwFeB/zije1UY1ztWaSRp4eVyw1dhQqw0YBcBC6DZlbpGmd9LI9TgKckroSSIGZa3ldWvO3QsYEbYR9KuIXaR7WthPDd0EKRCGCZqmFMg9I4oAn/xyU/5tHk7Z+Eni+97YDp6GecooFCrIOLolVbIiyNaNfmi7f3U5EudpaO0igVIOyNuBSnqvI2QF5CepmYfnQ7DpYHAP775kh8+/wWjBVrJSBYiZoTsJ5HKjI6YUBooi0NghwqE1EPsjP2zwP7ZGjGoAca1MK5hPDcW30F7B92zCaUAZeEdpAb/vg4gRfnq7oqfL18SxHjebBGbUgleSaWV+R05fOZBmXoh1GRo9gJptpX+UukvhfEc8tKoyVh9q7T3xtOHQm1sLqbSQhhkTqdnSxiHyEXsuUo7XqXHqYnjJ/K0TSmLx1Me/JX/7PzLK9i9UpY3ldgZ41qoyShL16TSwNNHQv9ePcrGlJHaTF1lkqbQwdhFnkrDh+09rY6udeCED6OXaY0n5k1PZMFAi1cjYoznHtx4JrNsHBR0uDTG9TEoqVMwExU8E0Zt3IjG3zZ8/XTFQkcaySBGFDtYHHmnRyLH8jYDy1NwctSxQ9X6xg6B1IO2Ce2dH6QsPI2lnbSurVhb/fu3yvor4X+uPmDz/Bd8mO4wmdyFDpV6ESiLCZEJKamQHo20N0LvL4uwuw7kM+eKlEn7wmTDC8SdsPqtsboppG2hBiGvlO49ZfMZlMtKuugpYyBtI2lrXP5X5N+++IwvPvzGld9T5KV/eOLeZoFd3lUW3w3IWNGxQq0sbhLDVWI4P9qeQ9riTlh/bZx/PRKfsrvfRUCLUdrp4EUoY6AOASmQl9A8GP/91fucf7IHOanKA0JSjTBA+1hoHjLaldmF1qRYiKDQftcTd5HuWWK4DNNgYaSNsv7NSHocZs7FigcpQhiUtI08vRZIDkZNAp3BfeJF2LjTBZB8RMhEMDEkQ7rdo4876HoIwcmmirXJDxAUk/fYP3dhtWjEJ2jf7gk3D9TbeygFaVt4eU3oC8s3ge0nC4ZLZbyqhM6RDINhjfFFytRozjHMqGHijBk1Ql4K/asz9NmSdLs/WupcIRd3CmaEvrit6QTJgWYz2Zu2Qd5/gbUN49WCvE6UhTAulWGyRRg0G2N7KYxnQrgYWIgnMSJgSQmDkbbm/Usd3tIqeansXl1SA7SPlfZtT3zsYMzQJNecPDVrEzRXxouWxHTgJjJeJPqrwHDuLiWfQTnLAGw/Cnz6579ExfjrV/9OxIeDeGiszUOmxsgoSmlhXHqva7aFuPfRrLkbiLdPSD9gMVBXDeN5ooaDrfGukc8CoY/Eux2SK7EN5KXSVhiXsH/lnUV73+uvPvpX/mR5Q0CofqSpKoeC9hmpLVITA0pN0F8KFgLtXSF2BalGfnYGugagf9bQXyplcdS+cS1ICUCDDgUZMul2B7Kiu06M58p4UZEsNLdKewf3ZcVKGnY2UCdHGzGQXNEu03QZKSugYTj3a4P9c9efMMR37Laj48NwDUc3e+Bndx3ZfLx207f3z4cLYfu6Us8z4S7R3sHqbeWnT6/58fprqhllaqwRgdpGpFQf0YLMLWSerFcwiLxjtw/9bp6mDu1ramVlAd1z7401uWm0piKLAl0gbfzqwATe9mtGyhwUQPSmHMA8t3kZfJNDWxrweWFq5AenMTd3neVqDtwC1MYc0WD+ii5J1gVkUPeAGfJCOIs9v/vMAit1uiSZTj3f2BQjFPf9FqeNE7PuwUlwCqXxyrZoc+/VnSJAjd7S5iuDCYA0dfgKJxzDNz/Mkb7B8cbmNNCDRT6keLZFuEut0Y6fTW6EE1dh0RGUIjOyUmEZhnlv5WRKQgWq+f6HAE+CMjkOJ0yN+nAfURPz2OeHhNSJj2sTuqU16pROF2ZmF2KB+bbnxGX5XYZkR0z6QujrdDkyBXC8Vvg9FE9nS9MTxIN3D4t4QBPnDjzTUUhPPmvkhdDqSDX7/VT6aoaUgo51No6IUMW/VX/HPFqYpqt4qLrjOCoGpGmATm4ILRmoIZ2yuFHSxnxueClch+07FfluYKpAQQf3UOD+vD9XSAcOvYtUTU5yR8eRAWa9OzR2S9XzVIS0URZvfR61AE+fFb5svuUkMcdhpDZKPktodDg0V3RQF8fG5jtXSe/OAZrdwWqYCkaPwc1WOgimOrUgWL4Rmk1FizEsFWszf/f2R/P92DIMpI0gf/Tjv7HZm5+gebxHPblTPeXYH+LdH3hMjn+Uamg5WHlfezyTeTQ8rNdsjP8HzbD17jz2G/AAAAAASUVORK5CYII=\" y=\"-21.80778\"/>\n   </g>\n   <g id=\"matplotlib.axis_5\"/>\n   <g id=\"matplotlib.axis_6\"/>\n   <g id=\"patch_13\">\n    <path d=\"M 149.237931 59.80778 \nL 149.237931 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_14\">\n    <path d=\"M 186.727586 59.80778 \nL 186.727586 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_15\">\n    <path d=\"M 149.237931 59.80778 \nL 186.727586 59.80778 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_16\">\n    <path d=\"M 149.237931 22.318125 \nL 186.727586 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_3\">\n    <!-- Happy -->\n    <g transform=\"translate(148.624321 16.318125)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_4\">\n   <g id=\"patch_17\">\n    <path d=\"M 218.506897 59.80778 \nL 255.996552 59.80778 \nL 255.996552 22.318125 \nL 218.506897 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p9d13bb57d5)\">\n    <image height=\"38\" id=\"image011afff601\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.506897\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALGUlEQVR4nG2YyastWVbGf2vtHc2Jc/vX5HtZL5uqTK0spErFDsSBJDgQBJ34J5QUiBPFP6BmItTAiX+DE3EgiIhiaoINigOrtKjMqkzIfJkvM193m9NEs/daDnace+5LDLhE3DhExLe/9a1vrbXl53/ve765K1jjuMLBR5A6YXvXqa6E7YNM/VTJLZz+DyyeZaZO8QA4aHIsCsOJkBaCK+VQsFguxSAMoFN5BuZnsyMGFsBqITeQa0AgWoTx1ECgfqZMB7D6asa7zHTfYVKGOw6VoSmyPQvUK8MNNEHcZFyF+krIjTB1Suog1wINeNyD0alc5KYswETKb75fgBh4AHWR8jAQe1i/auitAUwITUaazMnLl+gqsrmnhQWBtCjUxHWifbyl/WJL7A2L5cNWF9Z2h0WQBDqCS/k/tZRFLMo7Je1ZjQhYa+hGGc6c5sGKcahAHZuU5VHPxXlHfaFs7hsHD8GClJculMvXO3SE+soRc3ILacF1SHcs4CBeAHgooF33Z6kh9CUKVs/AJAlxI4z3JjrxEqYms+hGNusG/aJhOjZwaJ9OpGWgPw2Mx4JVkG87G0CyEPobOvPyoTAUNqwCiyVCFmdQMgNnBsyOMUAmIXVOWGSGoSJUmaZJbLc1NikcJaico+/XVJcj7cdbDv7XIAa8qchdxXhSs3o5sn4AuXYkgybBE0iGMDm5LguxHQADuQHMQmEUgcju5kmiChkRiDEz9BW40B6MjEPE+kB94fQvLej6Cf/hB+jRAdp16GcT0Z3uvSXjg1OG04rV/UBuy0ertYPDePQiQyL7cLsAoYTVdWbMukx7OKBqiMA4RBCnW/aYKbHK+MctVsHla5Hh+ISz9DqME64KR0vyYYOLUD9e0/x4xZE7VJF865Dt/SVXD0JJACsM7pjZHTtAHsCjE62G7vYGVSelQJoKzwfdgIiTAPeAThRNRRhOlfW92xx8atSXRtxkdDLEnHSywO4sGU8iOExLZVoKaSmI39CTzDYhNwAFsLr4aXSFZTuyGWqmMRJi5qDrqYJhLsRgXD3vWExCriEtfc4y4eJriiYl9AWER8gNpK6ELm4KJZqL2EM/Z+INtlzmPwWrnFzPjCGgUhxuuezpmpFKy7KCGn2KyGWFTnvRWoS6h+a8iLy/JYynXoRd+WymQlK/NtAwyD7zdmzdODyU91rtoE50gWU90sbE7cWKqIUpAHPh/ad3WHyuiIE6xHWxg4NPjMOPejwKF94WNz/0mTkn104GyBBXShiLP930t523uYAHL4asPmclcFgNdHEkap4B6TWwq8sFTV08SBLELbRPnOWjEasUi8Ly0USuK8ZJGE4hC7g4OgjVSombF8NWkBXibK6pHmdws41EhP8XlIqhAr6KpNavtaJZmA6E5z/dYFGIvbP8PHH6/sD2Ts3zWkFAL5Xqanbyav747PTX4re9tizsTZcMUTI87Ze8cfSEhY4ALMJEJZmH/SniUuIu4HMnsL3rs3hLIpy/FZEci2ddwfJjoVo545EwHewd/Vr48+OuM1NVCb9XBgriQowb5/2PX+LtX/gRr9VP0F0+A5MHXB1qyhmQSvAuE7qEZyGPAelDKT+90H0qaHK2d4XxxAsLs5YkFcYLygIs105uHGtsX/QFoqvgJjyZDnhQPyO7Ukki4CUJgpcE8kKzR7/WhwQvunDQrVKthOEExhPIB+kFA5UsyCgFXCogiz5uhDiUjHSUmBfwzTce8mrzjKUOe2BiZBTUkW0oxTk41jpu8kK2e23k6OQDIDpSZ3QG7C54lnKuBLLgg6JDMdxSH2+8bb6MuYbfuvvf3Ivn1JKLcOcCGij0xo3QPhF0Ejb3nSkWcEA5a1kpwdFoyC67XBAc191iykJNwNobK9sBcyg/zs5/L57TykSrE+ZKRjjPS36m+wRGpboSlp8a1daQFFmFQF4ktDIkGC6FCUywMSCrWAy5cbyxwmI0QpNxB5H8JZakJNYYYFTCRotdLHUAoCaDZHqvaHXkB+sH3PqPQBwMi8LmViBunfpc2N4VYswkF/ImIIMik1BfKN0jR0fIrTAeB4YzJ50kWCZCMEQdmYGJgFnRuei8vlGLXXwynXIvXoBAJcXPKkn83aO3uPtvz8AdryPPvnlMrqFawcahrhPuQpZAWCvtY6E5L8mRlqVCiJV2WSbFHTQYIewzXwRUwUwhlUYSQOMW/uLRL3NlC0YCAaeSzJUt+OyHd5nOOlwVvdzQXGYOP0ksH2VIiu9sfFK6R8LykdFcGLMd7o01lErgJqQUmMZISgEznUN7I6q5dNOxvnAe/vXr/MnbB/z+m+/wdvcBAP+0/gphEJ58a8HiSUN9mWnOJ2Qy+rMFZGEcI1Mfqc5LE3n4cKB6vIZs+KLm8qcO6c+KjeSnkVxHrHHGY4fjiWoxobvaudNcmiuH1ZBb6N+5zXf/+bf5r+EeZxr5evsprmXkqi8z9eWEDpnxuGZ9X0tHuqnQxzXVpRBGx6JiTQVB8ahUG2PxxDj5ycTp+4nucyeu57nABJ/tZAfKXJCtEldCtFAcOq6E7sOKP1r8Ln/6K3/JK9VTcmtYDPRngelAcS09WH9nzrRNJG6E+grC6ORayS93BfRhYDguDWJaBKYjx6Lj0bEul9FwVwRcrv0ubJS4hegR0u2J3ER0FPRRy59/9Ot8+5V3kbOR818sKSxTcW0PGa9LjfFQxrXxEOpLpX2WsCikZWB7R1m/7OSFYY0huZQL73IJYbAXteVgSdFdz59rePO1z/n46QnDRQtZ+PDhHf5septYZbI6tOUhSwrGvgONRjpxchOwWpm6mjBC7J24dqqVFOGr4rVBY1TdSIx2zdQ1qFxmOauc6UCI1dr5ySd3+NU3P8C+Ivzo2R3chWGKWFZyH4vvRINoMGsDl+vGTs4GxlvQvxpgUMJWCf1coA8zejDRthM6+5fN2ekm151iGudnB8HViaGHk39p+PfPvsFvvv2ffP3Vz/loe8b3n94nz07sgEdB6puTxJxNwdDghJgJixFVJ2fFTIhAG61MX7O4UwrkpKQp4Gl21EmIl4H2mVBfOBakTEnjsXD0Y+cfv/gl5Nee84dv/QNXqeFitWDs52YqCz7tcrvUN40FVKwyMebrtN9du8v1POEUh89ZCqhNRLdK3AhhKzTPoXtsxI0h7kSLwvaekRulvgD9+1O+++nvcHB/RU6hUG2zqHIJXWHKES1OXlUJAbLpbJxzuAFVR9X3bu+lpsqgxLVQnwtxW4x4fa/cC+NcxK3LjALWCHElHL0XGb84Id/bNU1cz4B7xvaiHYYKES8MzUB2h2opQUGcLPPkpKVbtRiwCsK5E0boz4RpKVRrSj/22lcf89FnZ4xtJC2UuC2tBwCVwaSFuTgX4FA+LrqveTuj3E3zO12pFMEHdchKCEZSxysnL5yUYchC+9hpnzhpWYbqmGv446/9Le/c/gbvfvYG56sFaSobZpUaiJPGiI9KqI1YpWtWdiztwiZSNCbiRDWCOuagN+7vnjXx6z2L1MF4UoTfPjXCNE9Jr8RzvnPrXX7j6Af8zcXP8t7lXZ5sllyuW+o6Ie1EP4erqjJRS6apgPnej3biVynDcqkzJWGyCdlKtspsEToJYZCyDTruZWKBMvC2kskIb1TP+YPb7/D+8S3+df0mf/Xht+j7iqZJ1HXZDQrqxJBLiHbZdgPYLguZ74s42YQxRcYxkrOSh4CMWtqhxHU77VraHhGQn/vO93zz0o3asPvAPNxK3k/PyAsWtk+GL437Xz5kt8+6m5Z2U/i8OSxO2Su7sR/7f/8KNaoxeoZgAAAAAElFTkSuQmCC\" y=\"-21.80778\"/>\n   </g>\n   <g id=\"matplotlib.axis_7\"/>\n   <g id=\"matplotlib.axis_8\"/>\n   <g id=\"patch_18\">\n    <path d=\"M 218.506897 59.80778 \nL 218.506897 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_19\">\n    <path d=\"M 255.996552 59.80778 \nL 255.996552 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_20\">\n    <path d=\"M 218.506897 59.80778 \nL 255.996552 59.80778 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_21\">\n    <path d=\"M 218.506897 22.318125 \nL 255.996552 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_4\">\n    <!-- Neutral -->\n    <g transform=\"translate(215.106099 16.318125)scale(0.12 -0.12)\">\n     <defs>\n      <path d=\"M 9.8125 72.90625 \nL 23.09375 72.90625 \nL 55.421875 11.921875 \nL 55.421875 72.90625 \nL 64.984375 72.90625 \nL 64.984375 0 \nL 51.703125 0 \nL 19.390625 60.984375 \nL 19.390625 0 \nL 9.8125 0 \nz\n\" id=\"DejaVuSans-78\"/>\n      <path d=\"M 56.203125 29.59375 \nL 56.203125 25.203125 \nL 14.890625 25.203125 \nQ 15.484375 15.921875 20.484375 11.0625 \nQ 25.484375 6.203125 34.421875 6.203125 \nQ 39.59375 6.203125 44.453125 7.46875 \nQ 49.3125 8.734375 54.109375 11.28125 \nL 54.109375 2.78125 \nQ 49.265625 0.734375 44.1875 -0.34375 \nQ 39.109375 -1.421875 33.890625 -1.421875 \nQ 20.796875 -1.421875 13.15625 6.1875 \nQ 5.515625 13.8125 5.515625 26.8125 \nQ 5.515625 40.234375 12.765625 48.109375 \nQ 20.015625 56 32.328125 56 \nQ 43.359375 56 49.78125 48.890625 \nQ 56.203125 41.796875 56.203125 29.59375 \nz\nM 47.21875 32.234375 \nQ 47.125 39.59375 43.09375 43.984375 \nQ 39.0625 48.390625 32.421875 48.390625 \nQ 24.90625 48.390625 20.390625 44.140625 \nQ 15.875 39.890625 15.1875 32.171875 \nz\n\" id=\"DejaVuSans-101\"/>\n      <path d=\"M 8.5 21.578125 \nL 8.5 54.6875 \nL 17.484375 54.6875 \nL 17.484375 21.921875 \nQ 17.484375 14.15625 20.5 10.265625 \nQ 23.53125 6.390625 29.59375 6.390625 \nQ 36.859375 6.390625 41.078125 11.03125 \nQ 45.3125 15.671875 45.3125 23.6875 \nL 45.3125 54.6875 \nL 54.296875 54.6875 \nL 54.296875 0 \nL 45.3125 0 \nL 45.3125 8.40625 \nQ 42.046875 3.421875 37.71875 1 \nQ 33.40625 -1.421875 27.6875 -1.421875 \nQ 18.265625 -1.421875 13.375 4.4375 \nQ 8.5 10.296875 8.5 21.578125 \nz\nM 31.109375 56 \nz\n\" id=\"DejaVuSans-117\"/>\n      <path d=\"M 18.3125 70.21875 \nL 18.3125 54.6875 \nL 36.8125 54.6875 \nL 36.8125 47.703125 \nL 18.3125 47.703125 \nL 18.3125 18.015625 \nQ 18.3125 11.328125 20.140625 9.421875 \nQ 21.96875 7.515625 27.59375 7.515625 \nL 36.8125 7.515625 \nL 36.8125 0 \nL 27.59375 0 \nQ 17.1875 0 13.234375 3.875 \nQ 9.28125 7.765625 9.28125 18.015625 \nL 9.28125 47.703125 \nL 2.6875 47.703125 \nL 2.6875 54.6875 \nL 9.28125 54.6875 \nL 9.28125 70.21875 \nz\n\" id=\"DejaVuSans-116\"/>\n      <path d=\"M 41.109375 46.296875 \nQ 39.59375 47.171875 37.8125 47.578125 \nQ 36.03125 48 33.890625 48 \nQ 26.265625 48 22.1875 43.046875 \nQ 18.109375 38.09375 18.109375 28.8125 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.1875 \nQ 20.953125 51.171875 25.484375 53.578125 \nQ 30.03125 56 36.53125 56 \nQ 37.453125 56 38.578125 55.875 \nQ 39.703125 55.765625 41.0625 55.515625 \nz\n\" id=\"DejaVuSans-114\"/>\n      <path d=\"M 9.421875 75.984375 \nL 18.40625 75.984375 \nL 18.40625 0 \nL 9.421875 0 \nz\n\" id=\"DejaVuSans-108\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-78\"/>\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-108\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_5\">\n   <g id=\"patch_22\">\n    <path d=\"M 287.775862 59.80778 \nL 325.265517 59.80778 \nL 325.265517 22.318125 \nL 287.775862 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pebbb7f7dd3)\">\n    <image height=\"38\" id=\"image224f179c2f\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"287.775862\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAK2UlEQVR4nHWY248cx3XGf6cu3T2XneXuckmakikpMkwoCXKxg1wECDaQhwB5DpBXA/l7/Jzn/BFGXpKH3INYcQLDgBVYMi1R5JJaUrs79+6uOscP1TOzcuwGGjM901196vvO+c5XJd/6m+/b8uuCVgYGvhUkw+jSiCtDMogaAIigHsyDiQy/gcnh01z5DsDwGEAelWe1hvGFUc9zGdsMDcL6nmf9QJBU3h36ifDwg8/5xuySRd/wZH7Kl/MJ/X9OqRZGXCuSDVHQIKSxQwUslIANKYEY4EAj5Ea+Epx52J4b/UmiOd0y/8kRD/8l4zeJcL2mP5vw8o9HfPu7P8WJ8eE/vEcAUBPUHMkc67Yi9R7XHQYFwRxoLLMGcKmg6bKWz1Rm3k+EDsj1AVHJ4LcCs477xwvSn634xfE94rLi4T8H4rJn/Fz434s3+O5bH6MVJTAnRnSZymW8U+y6QsMwYRHwhRPzB8pEwfeG3xZEh3ARFVwGy6C+3CcKroUMPJzc4MR49CdXdOr5aPVNvvZvmdmnicU/HvGvo28xW1gJLLrMxLf06umzx68cYWvIrRwxJyWX9teQamF7HEhjQeOAcBgCt4KUDaj5FtY3Nckcx2GLmnCvWfD5d77gRb7Hgx9uOPm/zMX7NVoJDoHK5/0LzyZrwlqoFnZIehiS/kBPrgQN5dpvjbA2XIZ+Au2ZkZrhVhsQ66G5CDy5PiO6zMj3RMl88OAT2j9a8uXjBtcr93/YMX2qBbHKJXrz/Mezt1k/nzJZHSjYoYUUxFyCsFbiMhGWHdIlJBvmBfMevLB8e8LijZKMu/wzB/WV8OrljPZu4ChuiZLJOL7zzif8118+YvtqxujFljxyBBMITln0DfqjYx58rPQjK7RZKWesBBQXyujpAvfqCl2tkRDAO6RpkFiS0hZLjn6yYvyHj1m+NQKDfixoVcZz88Cz9TG/f7KkHgA5rxZ88MbP+ffvvc2Lj06ZfTwkP8Ai1YxfGv3okEi7oApdSnO5QbYtNh0jx0dYDFjt0SpgwaHRIXZG/eQV7uKKKdDPIrmOmBZa40K4aRs8SpSMFyWb47xa8Nfv/Ij4W5m//cFfEFyGH188ZPNqzNFM8FsI66JbJoLcUsn2rMHuj0iNQwzCKu81bl8UImzfPWf1IJLGh0mqLwUT1sLLL475aHKfs3rN/XrO2HVcpTHz1HAS1yAQfGvwPzMe/kzZnBoaS7mLlYF2Cq9D4msUuokU9b/nSi4Oseco5BH0R2DOCGshrMH1th/H9WCbwDj0tOp5p75k4lp+nL9O7RP34rw8a66UeHWTgMD6XPBdeZOGg4LnWL7nulQkgG+NsDVcX7rA5syRayGNSrKbN1wn+HbXxgaxXTlmcct74wuO/IatRt5tvmDiWsauxTwE38LoC6M9CSU5e0M9uAF+pFTljopcF81yfTnrm1KhoobGmjwS+mm5129KaogCw1gI1K8cf//fv8fn793hd2fPuRuXRMlc9HfI5nCdEETBbwsi5gstBakC/26mMKj91pAEYQOzz1rCdYs2gTwOxLUyfVbyqJsJ45elunO9K6SBzgzSCYuupjfPIjfMU8Mny3Oa0ON6ilxodat1dAfqxAbU3K8E14LLxvpehTuLqBdSUyShvVMQHb8wJBvdsUOr0tzNDWM3ICq8Xo3RU8GLchLXnDdL3myu+LD5JmHXOsQ4OISwG6g0bwuHAF0PYWWYE/ozwQLkCtLYyCNDa2Xy1ON6WLzlDgHd6m+ShTgXFl9OeHZ+h8tuShTlD46e8v74Z/zd6AMCu4CG5zQM7SYOAcWh1ANoLLoWGqG+Muobo58KaQxpauhI8SsHBtePIU0VhqqVJEWwoXQKByi8Nf6S+3HOIjechiWNlPYYxAzfSbEt8YCQhUMlmS9BaTVQ6gwxIbdD0Ds/JkaeKMt3tFSPFXRsuAQwYy/rsgp8+PoR90cLnBjP22OeNOfFRGAQOgMzcj0k+1CBu3M3qut22gZpNPxnHEyhCpLK6TrBpVviGm1/v04yZGH8NPDz0X3Cu8pRtcWJ8unmrKQLgO+0VKArDkL9MNsEoQNZgkuCZMOlQnUeFZpFi/eSXALyG0f9WhhdGvVNaQnd1LG559ieG3mkuHHCbiqqOdhnkcsHE86aVZm8KCYMyZ8Ab4NLLbP0XdG0sIZ6oYRVLi5BQCtHP3H0Y0c3E3INWhnmjeZSmH2qg2BDHjlcMlwSNBhWKc4bdAWI5pVx/Ys7uLsvAYiipSXBoDFZ9jS5DHFpTF6kYqGT7Z2rVoXXaqHElSIW6Gayz7vmtREXGd8qWjkkQdwY8lLxG0GryPyxw1kBoZpDnDtqlwguM/LdrcBySehDrhSK4rwnXm2g65GUQRWcw8bFBWoTyM0U2bcKqOfK+NObkuVqyGqDns3I05rmKHL9jYiNMv46EjaDSxaofWLiW6a+LVTagMRucbHTtDSCzYOa9m5FnGfiophCrQPSK9KXsvZbpVp4+huHbwXfJiw4ECHdaUijk321zx8FtudGNeloLitMYP42pJFyGldEyTSuL3KBDFXXl8R2/dAffbHO6oX2TQ9WUS2Vap7w64TvM1qH4kZ6Iy4E35Vemo5HuD6Ta08/caSRsD0pYus6oUue/gi2DzK//Tuf4cQYuw4vxaMVKm8tOMKmXOS62Jx2JtRzo1oqrjOqRU+4aQtNDvqjSDd1qC9BSYZ+7IiTQHWdqV+u8G1DexJJtdBPhe7Y0CzEJWy88aenT1jnisb1ZOSrVYkWKuvrRNg60siRGuhmwqaSstjYGBor5CSSY0GzO5KifWHQNw/bU6EfB6qFL3IxiK8FWD1S8p2Ev6yorwy3dmRzRJfJCB4riO002PVKWHaElZCbgJsGzHkkCbmBfirF6O22AHYFc6sF7pq8jsuEVm+CBT+0M0PrjJv1yE1F/aoobTV3eFEayTRS5KWRHsQOVJobRh6UXgYULZWANJTT3OBuw4DELhVkNw777qGxtCgZJ5wYlhzSF9pNoD1R3muekxEqyWRz3PErNO66lhO0Kksv9Q4Nskdmh85uQa662zY4BLRrWzq0Ha1s386kE+jjoJGlwPYr+kni/eY5/TBUNpg4waphXWm39MuhIL4Yx10j1iK6Cvg8NPZw2OVBQJ3tBfq2dyt+utC5c7H7pu+NsfP0pmjBhyjuILB7Gs0w54oP82A75HYvskMwouwN5D6QVHQ6bIr10WjFNjVWAru1xYDA3fMFHqHn4D52R2D/ouK1LB5Q2jmH2y5jj+7wu1aUHrjLPQplMuwUaW1opV/ZmNmZ09Pxit90hB3krh8Why34zuN6KWKL7F3onqohwbWyPaX7at2jWtCySiEYBEXWgera4fqilaf1GofDo+TbggoEDcL21BM2Ab9OuC7jWiVuypqxOypUO4G+GZxssBJY2PksO2zeMfAiZflGUOKkp99EmgvP5Fm5aXNf+PPTn/5mxHTYtpROwQzpM9XrLWET2Z5X5MqXAPbLt509Mqw2LNyyp1oCwtmeOhHotwH/OlLdsK/K1eOWvzp6sq/I/xdYGgmbB8b0IhKW4EQgKZIVvzXiUPrJFf1Biq8SFTQLWhXLMyTXgFjxZmICSajm5YwrQ8zIXnj4tSv+aXPGWmsA8jC7RnrcxiHf/t73LdcM+2G/midDgns5FIB8tQC+Umm3DrtVyZIOy0OxssJq7wi5+jUPCtTXxi8Bpjr3hAf1/gMAAAAASUVORK5CYII=\" y=\"-21.80778\"/>\n   </g>\n   <g id=\"matplotlib.axis_9\"/>\n   <g id=\"matplotlib.axis_10\"/>\n   <g id=\"patch_23\">\n    <path d=\"M 287.775862 59.80778 \nL 287.775862 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_24\">\n    <path d=\"M 325.265517 59.80778 \nL 325.265517 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_25\">\n    <path d=\"M 287.775862 59.80778 \nL 325.265517 59.80778 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_26\">\n    <path d=\"M 287.775862 22.318125 \nL 325.265517 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_5\">\n    <!-- Happy -->\n    <g transform=\"translate(287.162252 16.318125)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_6\">\n   <g id=\"patch_27\">\n    <path d=\"M 10.7 104.795366 \nL 48.189655 104.795366 \nL 48.189655 67.305711 \nL 10.7 67.305711 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p0045260800)\">\n    <image height=\"38\" id=\"image278384703d\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.7\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAJBUlEQVR4nHWYvY8kSRHFfxGZ9dE9Mzs7t3cHnHQYgJAwkHDAACEchI2Hic7HxoW/DQMhDDBwEAbOHvtxt7e70zPT3dWVmYERmVW9e9BSqbq6szJfRrx4EZHyq8vf2vSzHzBdB84/3b4wvjwgx4SUAmYgsg6o300EFFDFgvhdAPX/JRuYYSqUPmCdUjolbfwqdVkpfjeFJ39+TtRvfMTb393x2Xf/QkYophxLx59efY9///XbDK8FPQEGKJj4y9S7KViAPBgW6z0AYqCgkyBJKL1RLjNhm7h+tONHHz3jF4//ycfxDoCHMnC0jifhnj/+4TMiZqSi3OYNANmUr+YLvny4gIJf5jsyAcGfre5SqjHbn2EScm9YdDAUQQroLNhBySFQihI1c5svFgccrWe2QKAgBSK+eTrJZFOQQjHllKJbKAKpDrJ375IruGl1RwmQtkLpoZzcmm1jOgtZjKtx4kn3QCdpARYoFIRRZxCIiKBidJIdnNuEUgTDF9I6uXOmgjqzpGQQM/+tCHEPZYY8ChbB1Jx30efYdic+7O4dRANWSab4PQKoFgadCRT2ZeCQO+ZTpFHd5Iz35vRpQC24Va0NECjRfy+dj5UkiEJJwKyoGIPOjLICO5ou4EwqsKDGKDOjzswWeXm8Yt539LmCaP4uKxg3a3VfPAuIAHmE+cJf1Bk0+WIAMim7aWS2gEqhl7zMdbKwPMdzU3aSuM0bnu0eIfuAJFks08BJgrg3ugcjTobOPqDSkxKrTJhx90mkdG7REiFtAVFevH7E/Scjd7rhcdgvlgLISAtoMBNOFgkYz6bH3N5uiXeKzpVLZxLRyG/qIHIvlCgL54Dlt4uXmeGtER8MyW69MEH5auCL0xUAD6XnoQxklKP1HEtfLWbGcY7c5g3FhBeHK2zXEw9COK2LLZqlkEbhVFYwYi1Cq/Wq6OYe8nBGBQEpgszCP958wjf73RIAGSFgZ3JhxjRFXkzX/Icbnu5uCHdK3PsOXcU9OttiLqCgp8rB5gmRhfhNaE0rprSqezgKT7+84W/jpzwZHtiEmVJJeNNt0GQOLM+Bl9MjXk9bbu827sKmUazZyGR1axNXnanja9oZYN6u4yyAiaF14fZe3vW8OlxyKpFeE1EddbKAZIgUo5wCz/ePeLm7Yr4d2Eyy8qpKgyYoVVS16lc4QpiMbm/+fzTmrfPLooAYVtyPOgta9bREkCy82W+YcuCyP9FpptfMFOJZVCbh2Ztrjq82xJ0jNq1y0KKyqXed3MlcAQUhd1B6yINg6iSXJISJRduQVTZIwt1uw7wNqBiXnYFmtC7owIpwvB3ovwroSRayE9wV70TmmXTkUUhbl4PcgXWu8qV3AMMbcZ4GsN6Bi4FFj9LyEDnMShcz18ORqJlOm46ZEe8Cpkp8kK/JQ+OVR1uLrJqabBXUvDHSZcE6z/bDy4gUmC8dcBo9GDSfWc1AYkHFUDF6zUTJNVemRHcn5H6NGqgp5UzN3Yqr2koWznKwczELbAw5qgO9MMpgS9aQLJQWFLFKS1ZS0RoAmUGTpyTLhXCs2tMsoysnnB/mFtQzy5ktOXMR18oP6wrp0pbxrnWChVqrvSfWpQip7r5bLIYTNferid9XeclCS2lt8RLPFij1e8uhwUANmQJ6FOet1dTUmwOMrkUSDDPhkDoedSuJIyUTD0barBKxAGPVKsl4Jii1LOreVfW8MQeYBTkp3Vulu/cSSE/uzrQRjh/D3Bdk8JC3pJymjsPcodvCNpwaMFtE0kJV+Er6RvJ4gPhghAk02ULg3AtpA9ONrJpXhLhTts+FuPexzcKmngGIhvY+ST4oZR/YX3UAKFbLnpwJk3npa3UCWy0UDtDvmoh6MShmmAianTt5hHTprpQsdHdCf2eEyZZAyp27s98JeYjkaIQho0dXg93dlqebG75/8QWIVI7NvmhWqQs7b7odjG+Li2layxuK1LRkhBPEPYSDkLb+ftx7RtBkWBCK1kRfjHgvjCrsx0CJBU0uxDwfeLW9YPiWJ/VoZpXgrjEls8qAuKqL+AKt0tDsubHlvZae4oOnnnCyladmSJGzyteQJOhRyV30VDXD+Eq5v77g/jvjWsG+n3ak1ltpw7IjzayTY4QqEU10dXariXmdVjq3sjQ5qTJTYm1Ueg8WqY1OmED2gctwxBRURN6Rh6ZNJh55aSvkjZCHlp7OCd0KRX+vgfeaDdJGsUaPsw3n0bC+LDqXByNtPCh+OH5O6YSIihOzWSzXq5YsaQTtnNTxwdAkYKVGZSsGHVz7lB7m4JspsUZ8laHS+YV6z2mdA5sfF+IHR670gClEGUema6G/N1KzShay+QQmnqDpXIemDGJhTV9VXEtYU1dxIWK+hOOH1b3BM0EeCmWsjXD25vjHP/kXv/7w71yFA5/GvQNbtllrLvJa9JnWiqEuuuTKsyJw6SsLS+qQ6EBKD3lTauPs2YBYg+0QiHdKOAhRCj/dPAXgA42V/CIecWKEuTamJi4fS89VI6SJ6NlmWiNrVd/a8UHjrWTXR2G1KFrBJSf98/0jOrfJsl5E1X3eIvJsghZRXgp54pQia42vLF22FFksKvUIwdq7/mbVR0/mFH8Wg7eHkSDiyl4/1WIeYUubf2aR5W4soFpC94JC1n7g/32axcXr/wW8CSYw5+AnWSJ0Eiow1miR4mJagpdB50cBS/6sXVOzmL9vSzdlcubK1vItTcxZKQSUzsiDQFE6UToCWgdE8JBuYe3EeHe3ntx9UqtlEGLvVCFLxdtcHGytVNRLHeLqKpNakm+MAATcWlonXFzZxFXMkCweCEFg4J3JhKraDUSzRnVXm6tZx9S8PmtROSv6EAhTnUD8UEfRBdRisfVYhyob3khqMPRUMwNC0dUKS3ncQKmtgNpz8EvUkFALzKToJISjB4sFuBqn91lJZJ4ZvzQ2r43ufmW1RSEPwrzRRa1LlEXTvOOWlfTNpeG82Fy78fbpD8L4yiuadtzw7NkH/P7Jz4ma2eqJ8U1Bfhl+Y+HmGuaE5bzOoIqI+CGv6HLY6yDqb8vYr4ek/I+DZAArBVKCYnVuQS622Dgsz3z+gv8CvRQ77/BCDpgAAAAASUVORK5CYII=\" y=\"-66.795366\"/>\n   </g>\n   <g id=\"matplotlib.axis_11\"/>\n   <g id=\"matplotlib.axis_12\"/>\n   <g id=\"patch_28\">\n    <path d=\"M 10.7 104.795366 \nL 10.7 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_29\">\n    <path d=\"M 48.189655 104.795366 \nL 48.189655 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_30\">\n    <path d=\"M 10.7 104.795366 \nL 48.189655 104.795366 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_31\">\n    <path d=\"M 10.7 67.305711 \nL 48.189655 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_6\">\n    <!-- Happy -->\n    <g transform=\"translate(10.08639 61.305711)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_7\">\n   <g id=\"patch_32\">\n    <path d=\"M 79.968966 104.795366 \nL 117.458621 104.795366 \nL 117.458621 67.305711 \nL 79.968966 67.305711 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pbec05cbeb8)\">\n    <image height=\"38\" id=\"image464f65b33d\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"79.968966\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAJq0lEQVR4nHWYzY4kWVKFP7N7r7vHX2ZlZlWrqmdGLSEWsxiNGCGEWPMCrNnxErwFb8EW8QJISCwRCzYMEkhoWqgHuqs7K/8iwsPvj7G41z0iqxuXXJEZ4X793GPHjpm5/PFf/Y2Nt0LcAQZ5bZiAZJbDjcLmG0MTiIEUQ3L9GwPTdjrBBJB2o11cX6A4WX6bvwMwAVPBHJQAGsHnDk5/+sJf/vJfKAh/vvs3Bon8Lr5loyf2pedv/+fP+Prv/4DuyZAI/mj4Y0GTIdkoXsiDEtdK7qWCFJACBvgImiF3UFz93idwJ2ubEoo38iCMd0L/yfDm4PZqz8+7ewaNHErPg63Z6Ilont/HG/79m/fcPBhusrZdGG8dxQtSQLKhjUFNRnGykCbtltQLxdd7jQuGG9sIUECnBlwK/PCw5R8//ZJeE7fdnht/oCAcclcXfehwJwOpDzjeKSWAuXrCDBAkgSbQaLipPqz4CspcDa+WJptwAa5JQGO9x0uB+NDz7Rc7PqwfORXPoXSciiea43/HK4ZvPaYFTRAORjgYfizoZKCQBiVulPFGoDFQvKDRUDNMhNLV7zW1EGvltPiqK5NZj/XTm4C7nviwfqTXjDbut+7Ex2nHx+OW7gFWP2S6+xF3/wIPT5ALOG3xUmS7xlZ9ZfjNinjVUYKQhnpilY05gaAyWDxVl66FsiWdB7AiPExrFOPRDQCoGG+7Pd8+7eiPVrMoFmScMIAuIKuhAlQBEeRpT3l8wv1XJNzdkr+8Y/+LdWWqJYDkKgkTadlYwZmvwKSF2c+W4CUzuMTb/qXu2hzv+0fMwI8QNw5Y0TlBYt1WCY4SHOYrc+H7F9Qp1ndMX+w4vu8rWy1DX1nEnAh6kcVUbWoGj4DzmZvuSO8SvSaiOTD47fMH4n9cAXC8VcY3Snft8KOhU8GdSmWgHePProi7W9IgxHXzJS9oNtxYmahsnT0SOZ/mWqizVcacq4sfcyAWx3PqeYk93zxe098LaTBKV3eWNg5Jhju5ah8CuRNyD3EjlNBEnJpeyszWpVVIY+tsFXYBTi5DqWIUE4oJnSaKDTx8t2NrkFaCWLtZ6wbNwem62kYeONuBNjAeLELYU21DwBAEW4AswBZfg7QW3HgBLGhGrVBMcRiDi5BlSW8pgKtMhD2s7hNpUNJKmLZC2ghp1R7gDZLgD+D3VVfzpihnTb1iq90X10J4vgCWTSimFBNO2TMVj3901fDm+tbKSDgU/CETnhIoxK1n2jnGN8LpRjAndI+w+bZUn/Kthr6qqxfC1/qbZFn05gFEjCCFIkYsDhXjmAIa2wLN/HQywrGaa3GCS4aeMsPTxHpKHH9xxX70SIb+OZODkDutpYgm/paRpk0WVgVfqFHRVKWwMDazplJqZmaHKUy7+puLgAlxA8X7pQDHdXX13At5gM3vjeEhM22V41ttzLSEyOeuZamPDfBsI7RPbwLeZ+66F8YSFpD/ybtabjZWhT8JOUDcVhswL+Te2oMNSTD8IEg29u8d450Q271SPnP+dM7AJbSz19lFKIPLrHWil4Rr0Fc+1hZl1oYzEKFIBZJ2RukLEoXwrAzfC+HJON0oh/dGWpfGkkBpm3NQ0tnEagPQ1gY0CnJqjCHg1AiS0QYqSOZmOGDB0KOchUnLOLsIia+sxW0Na14baWP1YVkwaW5f6qYItvgZegGsVAZ0kgaM6mEqhWyOWDxFlLfdHpPavc4ZWW2j1bhTXdm0PiSt5i4V/IsgRdDYrvW2uH0JYMHOOmufkg1T+XGtLKbE4jmZZ8wBrxm7inS/63Gj4Y/1urgWSg/RhKStI7UWhgL+AOEZuiej22eKE3JfPW66EqZrIztp0visPF0YrjcRdv2JW//CvvQUUzKCw1jtToTnjv6xEF5qbYxXjrhS9h+UuG2hjdWIwzMM98bwKeOOeSlDae04qlsk4abKTgkG7oI5WvZa09i74YU/Gb4mNlDz8XdXvyE+bdEEaaOYF3Qyulw4HasZlr7gjg6doH8whvuMm1rOS+1QpRh+NFbfQ//QwA7VjONVeVXIZ8l4BHZh5CsvZArFrCWA8qY/8vJxItwfMVUk56oFr2A79j930ELiJgj7QvcY0ZhxzyeYIhIT5XpDvwroMZLXHae7nsM7x3TdYlnOHcrMS+0u5PxDkMprL4G7fs/D4NBNh54SZJbeq/800T2uiVuHOwnhxfBHw40JfTyAU8rVitJ5rFNkKpzerYk7z7RVxjshrauNkM9RKq0qeKiOn1u9yBgOQRE+TStefuZx7zzDp0z3FJFYZ7I8ONwI/b0Sntt0k43iFa7XlKDEXSBuHSVIbY1CZTYPMF1bbRYvXH9pueWzklTMUKnoE5nHaVXTW2HaKe6o+Fg1MV178gDuBG6sY5u2trkEpXSOtHGcrrTWxhbuEmC8bcKf5dV05Y7C8EOdrl4B+/wImtEE6+8y/X2s4HvHdOU53mhd2GqaFy/E1kT6lwl/SrgxEZ7CEr7pWhhvIa1tGdU0Cv5YGe8ejfXHTFrra2AzWxkjAIfYkTth/96RhtohxrUQt7VjpZWr3IFdCXHr6HZK9+xxpxofczWMcQv7L410VZAkuIM0bUJ4ql1L2Bf8MZNW8v+HMpsxZUda1a7y+LZ6VQks7yTmdghPBQqc3ghynoTrFNRB2hTKqopoHoolgZ7AjxWURiP3irkGrMwO1w7XcrZzmaehmagK5fKdhJyFWp8GJRglzG22YaGes6olKjJJ6zbqRnUeZhr7GgtS3GVJspqZre0IIny5feR7+9D64HOnaZ83flpBmYfi7TyujYocXg8iCwgxzEkdilcAine19Jks9f31MZvsr3ffLFPLJRCoAEpn5N4qU501cLYUbcmzwFvmcV6nbgbSUJvMNFSQJci5H/upI5vxq9V/k9aGP8jFqizecwlao8DU6JDXay0T0Vx67Nwkouf15hn1Rz4GZ4M9WeKP+u+Qrw7IbzfngWEWfb6IjVhtj9o0VSelGt6K+gzoc9D1fUV9KVgjUTf2k6HMVL3tRPnqi3vyYOeBdBlMZ9HWzxKM0htpbeSV1Xvam5ziL5KkvYV0J0EnFg/TZJfLVWAqBRXBcT7r98JffPhX4nV10nnsKq1rLZ1ROl6fPQuwV+fKlgZRM/h97Ua6Z6N7KfSPmf5TontIaAKv0finr/+Qv+bHtqFS+Dhu0aMSnuViQP1sxIfz+we1ZV6cj/ldrcbKkkYI+5qBfqwvUUwF81oJFfD+COt/2PLP4Tc/FVUweDPa2W/4rOtcnv7ZbRf/n7Palr/nFjp3kIPASpZrTeH/AARSoaxDWAItAAAAAElFTkSuQmCC\" y=\"-66.795366\"/>\n   </g>\n   <g id=\"matplotlib.axis_13\"/>\n   <g id=\"matplotlib.axis_14\"/>\n   <g id=\"patch_33\">\n    <path d=\"M 79.968966 104.795366 \nL 79.968966 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_34\">\n    <path d=\"M 117.458621 104.795366 \nL 117.458621 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_35\">\n    <path d=\"M 79.968966 104.795366 \nL 117.458621 104.795366 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_36\">\n    <path d=\"M 79.968966 67.305711 \nL 117.458621 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_7\">\n    <!-- Neutral -->\n    <g transform=\"translate(76.568168 61.305711)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-78\"/>\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-108\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_8\">\n   <g id=\"patch_37\">\n    <path d=\"M 149.237931 104.795366 \nL 186.727586 104.795366 \nL 186.727586 67.305711 \nL 149.237931 67.305711 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p1c9e4e5acb)\">\n    <image height=\"38\" id=\"image37c5fa8516\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.237931\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAJ60lEQVR4nI2Yua8kyXHGf5FHVfXxrnkz5OxyQIngAQICBEJyJVuABDn8Y+TLlAxBtkz5sgnQoy9HjqAFD/DQzs7svpl5R3dXV1VmhozIqu4ZOmqg0fXyZWVGRnzxxRcpf/X3/6wP3wvkDtwIJYIoNPdK+1iQAmBjUhSUOgAqUn/56DPPlXw2OL8/zy2As8fcOoYLR/9tIa3g5otCmLaO7d+94Se3X/LLxxd8//KOXz8+51f/9Yrt770ZpraZmxRJdWEHxYN6QZ39n/p1WXETuFQNLCDZxkuQZY46szJHmLbC+Jc7/uHPf86//PtPCSg8HluCy/zw8hv6HLk7rFm9dTSPSglQom1evCDOXKbuzFu2l3lKz7zKydhlHRFEFfWyRMNl2H6VWf/Hmn/9z59y+b+FAOBFuQo9U/HcjRvGFHCJ5dRZldQJpWE5JZ+GrwB5jrGizowujVAiqD+bmwU3gR+V2Ct+KEg27758nSiNN8MA1m4EB7upZf/6gmePiktaQySAMl4IuT0zSlnCJPM0Z8ZpxVNpIDd2qBLsXcn10KOQOsWPDpfqYVyk+5AJLiv332z5xeUPuW56fnN3y+Z3nrgr+EnrCRU/CtNG0GAbzAbNRmrFtQLqzMo5Wfyg+NEMVM+C29nw0syetrWanVSPqfDlwxW/yzf09x3X+zmzzL2Wfcrtf4+8+7OG4UZPGCvgtBpT15di2a0z0CeleVLabJjNzQkH6u2g46WFvERoH2fDsvB0v8a/bYhnwHVj9ZjYyXPjaD/o4jkKC4CR2VMn42bvpbWgXug+FJpdIXWOaVW97y0pSgO5VfJKyVFOGNMsXP8P5NZOoXJKdYDc2uLtY2F89AzXNYzVoEKlDE5J6Sb7qof+WzBcO+LeEfrTRFHwR2Xd29/T1hGOxehCsuAuE9O2YfO2MFycQmkZJqTOkbrKWRlCX8PlzgyaI1RpRJ0ZFh8VNwi5g/ES0koIRwgHxQ/gklZug9Ar8VAM/N3rAK/XNI+WGWFQ/KgVX5BXjmkj1ZuCJKV9byHK3SnbTllZDQPSGoIKzZPCowE9dbJEoUSg1BM5WysMaqGMB3CDsfG0FvxgRhUvaBBSKwtBlgi6soWkQNhD3OtSTtQrUk7gzk01MgjhYBWhHZTcVhoJ5vkSaiI0yvprIbhJiU+GJXVinKRQgrF0iacUlwwzKkuA7r2yuius7kbax4bdZ579d0HF1nOjIGIbJ7GDudHoQzI0Txah3EBeCdOGhZiDm5T1N5nh0lupCGKlx4M4q2O5kYWvRC0b/QBXvx5ZffEWgqeE52wF0tbTv1Bc4qOPesh1vRKF0BuNhF5pdoAWciOklRB7JZQo9LdWLyQLxQPePCZLjfukNgLNg7L/vKF/8YrmqZDWRgHtO2XasiTJUtxnOnGQIuTOMBofobs3AmayVHWT1qws9SWpVFFVw/wp0fjGAGvz4s5K47h1jBfC8VaYLhU/CPHplBBLtiqIYC/JCQ7DjTBtrXaK2mHioYL/vESor6GrsmYxdt4kUMlWuHyTSJ3j+MySIndK2hRKdHR3QurMMzMXqlcrVdWTszNKxaEfl1JrHgt9Ma5aiaVw4I8MMw+oKQxAVNgl02u5MQmjUVFvgJ62MDwzi/zR/m9eN/y5JIs380YpjeImg8/qTgiiEI5Ww6aNLKT5KXDVGQ1IVnA2Nl6JCcc63w2ypH7a1I2qkijBDKcIqlBUcflj7VRaRaOSGzcXccsQl05hc9nGFfA9hCx17CRhVMBnw00J4CaxUpYhPAnde6V9UMatsP+OkC4LkkCL0QgF/ARxJyBiGduAH6tQNI2kSNZFx88FWsRIdPW+0H5IhGNmvIgMV67WT2NylVlqQzgKN78stPcJP2T65w3jtWe6FAv3ZO8tnp6M24JINUxPRRw1tTpjyk0Qd7o8h77gJoUCcZ+Q4g2XazMwr5R8kUEhHBzrtwPTNpDbiB+Vq99k4pNj/+oEl0WWe2ts/KgnfkN1aRRcttipmNUXXya6r3bkTQMiSC6GMVX8XsAJ43VL/0wWXEoSum+U+OYJd7XCDQl58w6Jkc2rW0K/4f5HZkzaFGtmZK6VQntfcKMS1FnZCYeMisflGezCtHX4mxXN1ztk38MwoocevEfaBr3Y0ADNkyf0jrJzSJpJquB3gz1fX1JiQKZM+1Bwk2daF3xvsMmdJZabLAGbJyGUVuhvPPHJmkA3VtA7GC4d6hrGq2vC/oLQZ9xhwg0TOiUkZdxupHvfGkmOrlKBkr51CUVxqTBdNIxXgdQJw5VlanPvkFyNUuOx/XeU5kGMLlLr2H8urN57SrAiO9e5peo7x/HaOGt1F+neHDBZL5R1BGeJ4hL4ownMtAnE+wGZMm7MSPFMG0dam2dyx9I/uIrxz37yhlfbe75492Oceshr6yTCUYl7rfJEKVEYt0aO7WOh+5BpP9hm6hxl0zE+6+hvA9PWMlO96az+NjC86MjriGSleUhs3mbWXxvpjs+ykbFXcmMHa0Pi3/7kZxxeCkGyyRN/VOLjgD825JWzGhhhurBaFnfK6l2hf9lR/IoSxNTA2uhiro25szo7XAuHlw5JkXC0Dj6thMNnyvjZCFlAHFKEvC6MQfBSiOJRrwQEStClkWgeRlKOlGC1rkQTgNOFcLytyTGnOmcSvJaXGS/Fm5G5snnpFO0y4hUfC3kf8AdBWiU9z8TNyF/c/IGAqYWFx0ojlM4bbrzgJlMKJYDzdbPWmo6P6xVL47sMOShRbX6jlKZAZ22THj356PE7hx9Bo+DbzPOrHT9evcaLM6GotbLnKOTG1ZplzarLljEuW1LMempRGrXII/rxdUU9SF6Vhd3l4JeDSBJcsh4irRXnM16UQ2nJWk4e0zA3sFLbdKl6XGy8mCRZVMZZc7uE1VVxWM7GdC5tRiMUMelT5+a2gn8MOFH+tLnDiy0etCoFKYofMsUb4RZfMTbfN1TN5jjJoSWUswA868jt0uQkU+Z9rDFRNAEiNPeOfGj5g9zw+Y8egA7R2WNRF8VqTUS905qxMxvhQc9jxllo3ZkKpqrV9CnmZslkJ2gexXrODO9uI7+dnvGDcF+XFYgvesYLqScthGNeUny+FVxUrJ4a3OUzK4vZuPpbgpGouvobFQ2lrqeEg7WO8+3iy/BA4QxjV9ue/mpLbj0hJaQooS80e2EEssjSC8z9nz2rbVifF8/KiTqgHsgrhALJ4Z88cWd9ZjiaiPj2d9/zuR9mkwh+hLdvr7hQkGTVXrLhrXkAlxzT6IyTaoO6GFOvOfVcxvCxR0/XBoIGhxuE7p11Wav32S5dWs+UPP/41d+w8iPNgyB//bf/pNPWVS1Uyago1JtDdXLSTZ/cJp5fPf1/PiqVhpLWbLXWST2MF35Jqvah8H9W6dZrSPS41QAAAABJRU5ErkJggg==\" y=\"-66.795366\"/>\n   </g>\n   <g id=\"matplotlib.axis_15\"/>\n   <g id=\"matplotlib.axis_16\"/>\n   <g id=\"patch_38\">\n    <path d=\"M 149.237931 104.795366 \nL 149.237931 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_39\">\n    <path d=\"M 186.727586 104.795366 \nL 186.727586 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_40\">\n    <path d=\"M 149.237931 104.795366 \nL 186.727586 104.795366 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_41\">\n    <path d=\"M 149.237931 67.305711 \nL 186.727586 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_8\">\n    <!-- Neutral -->\n    <g transform=\"translate(145.837134 61.305711)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-78\"/>\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-108\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_9\">\n   <g id=\"patch_42\">\n    <path d=\"M 218.506897 104.795366 \nL 255.996552 104.795366 \nL 255.996552 67.305711 \nL 218.506897 67.305711 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p29cd7c00dd)\">\n    <image height=\"38\" id=\"imagee6e1b5aff0\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.506897\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAKx0lEQVR4nG2Yy48kSVLGf2buHpEZmfWcru7pZpjZgWntLkKIh8QKIYH2MtIeuSHx73DcfwHunOC8twFpbzwFOwONmGl6Wv2o6uqqzMrMiPBwNw4eGVmzS0ip7I7ICjc3++z7PnP5w7/4qa0+UdLc2F8m5dvvhOW3hm8NHQzJBgamgrny/ctXdoCAZJBkaCr3Ui1kV/4uVZDmQlyCuf2i4FqYXxrVOuPjQvjk82/4/OEvcBgJIUjCkfnZ1W/x9d88xXWGazM6GKZCXArDTMheMAHTskAOQqpLYBoh3BlhWzYTF0J/LOQA8cjgexv+7Af/ypFrSaZ02fOmO+aL//mM85/N8QDZhGiOOAYfzXGkLZtYU99mNNmUyRxKUENddp+9kCtIM0h1CRIxJAmpFuJCqG+NamWkWkBKdk6PtwRJtDlM659XGz5/+hV//2+/jwKoGI6yeDYFIEji25sTfFt2DGBeyEHAQIfy8a0R1sbsyphdQvPamF0KksdgZxAXJYt+Z5hCmhtmwi9WH3IdFwAsXcfSdXw2f0tc2CFjAA4jmqKSiebYvVxynkGyIfmAB00gZkhXdq+pYDC7kqXsQayUdcpyDWSQobzj+v1iwmWaCRfVHUHSdM//CnrH61U8xW8U04yksoCJTEDFCsA1FvxJNtQJYkq/KL+TzFS6sRDoAK4TsjOywdVuSTblxydfAfAiniNZvhtYkMQytERz/MO7pyxeFHBL/m7QYmX3pRlgaLQEwKFTZTBwgihjR5fgtAe/FkLTcd7smPvIk+aWI7djneZc+DXmDW8Kj5sVj8It/90+IprjLtX8+/MnfHidD0HdYwZTiI3QjZjLHmzcYqphmBti4HalO30q5TcDOmN2DT4M/OTRf/Av64/4dH7Jy3jOQjue+PeYAy8DPLu54EH1Mc+352QTXm+OmX85Q2NChxH8+8AMXG9IKtRR0leuoRaGOdSURknV2CC7glOT0hSuhXfPPuCvuz8iZ2F1MefRfMUHYQP8Gm4reDFYtTUvdme0qbTu25sl8+0hGLESnIuZ+l3EbXtIRjqqGRZ+Ku/QuEIlM6W5jMyf32B1YDiqaS8q+qUUeDrwG8EMFrOes3rLJ7NrAG7THLER/Dkr7RDokyOZEm9rlp0d8DUBPYNAd9FgTqaAJBVVCOuB6n1GDLRP5FlFbgJD40pzjJ1rCq4VKp9Y1h3vugVdesJgymeLyxI4wDAobfJ0yaNiSK9ovAd6A8zIQUm1Y5gr/ZGSArhYuEyyMYyEOsyFXEP24LdQ3xQFkFRKax7CGu42M7zLPGrWPJytAXgQ7sjB8BiYCTE7zIQ2OfxG8Z0dAtNCFdkJqRJio5hC2BZdq276grFlYJj5ogR14Swd5USyEXaZ9tQVrdWy3yEpD6oNj6tbrocF6zRD0pgxM/CSeX75AdWXc+Z3hZ9gr4GFhEwK7jQZSYV6laiuexAwp2jM1Osi3HHksmptNG8HwjpOeNxzWtp5VnnOz199jyfH53jJLEOH9vd4rM+O8GzO6bNMd1I0LYcSyd5taLKRUI0cBI2GVcow98SFFhGvBB2MalWy1LyJhLtImnu6U8/QlN8A+KtAfV1x86Tm49+9ofE9tQ5FvgBycnzz7QNOr6A9EzSV1p9Ic2wCHcCpUK0SuRKuv19hWp4NTclmf2rEk0zzv56H/xRxXWb7eE53osRlkalUHbAbl4ZVmTfbJU9PL5m7iAl4BFKvhFcV4a4weQ5FfIudkSn1kouAD7VQrxP1jTE00B8J/ZmR6lL+6spx8nXGVFh/XLN7oAwN5H1AMsJCyyfcOvrBESTjNZWMSQJ3HZi/FcI20y+Kz8p+FG1h+vceY/FIiDeOam1ILhmWAezI0J0wuxZ258LtbyhxaeRgExFLlqmpTMDtymZzVrwmlq4rgbneWD5X/HZ0qJQSmj842X0Wsx+tUSjBp5kUWkmgUSBBro27jzMWDNMxGCvPZDgElR1YsNK9BpttzZAdjfaYjlqZPbieyfpmt2f8++Q6vni8B+PfdQYmyFCel6yAdorflfuMmU6VlQ06yLMx+NYhnZDezHn3ZMEPlq9KY+gw+uxNJoUR8HpgfI3F4OlQNC7sirDHppCppAOYxUCiENZC88ZYvBnQOJJvo9w9duweCUNjBV9VJjtHaMFvlZefndCdBTDB62BU64T2GVk6+jFd2hWxdn3JSrVOhFWcBpK6dvQnnlQJ7bmSq9IkvhOWL42jFz1+E8leSY1HEoQNtBFSkzExRA3UCBshrI3rZ+fcPpljzoqIy+itXGtTqVxvLF4n6vc9uVKyE3I1Bh0zGjOzy44088RFNWpmWXzxeiCsesgZm3lMRkPZG9VKcNHRHxv9PI0ZNnxnnH4l/PyHnx54zLQYPO2LW913YpoVzNTfvIMhwTBgQ0KqAFXAvENPGlwXcK1gWhYJqx7d9sjdFn2+hZTBe+Znx5zMAptPj7n6bY9oSYQptKdK2Bivr04ICbzJHuBWfHwGcvFTsVHai4ph/oDqfYtue0gZMys6poXgXG/4DUgSwsYwp1hwUFfY0QJ8+X9/VrP+KNCdCd1FRtRwbVGKeASyhnoWGcKsdOWwUFyXIZdMTS3ti3j3p57dwyPCJjO76nHrFl3vsCqU8kqBAl1ZJAfFvEJTk5rA0Hi6M093omRfEpGXA2JSrHZndAjVJvPw+I4X9RJNtXD9fcftb1bkSnHRCqcNxjAT+iPFtcb8aqC+jvibXdnAccNwOqe9qBlmMnVxfyTsHgbicQ054292VLc99fuB6q7MlrtHhnjDOjeWUTj5ySte/qnw+YdfgoIfaoHfW7H7x2PO/itR3yo10J464sJoz4Vh7qhvFLd0bD+sJoI1HTlP99RSxH17IbRnFdXjgKZS6uxg80i5+ySTjwdk4/EbJWzLccFfPv1bnv7wjkYdf8WP8bmCP/71r/ni2e9AhmpVWtzPhOy1jPRLYWhkItvvTE17EjabxjvzEOdC+0E5EjA1UmOkZgBn6MoT7gS3E6obwzx81T3hR/Xz6Z3eRHhUr8baG+TDpO2ikXsmG70Xc7s/g4wyaMi9M4yCzxwowq6Qw+iMhyJf4U4Iq0ITOQlv4zHREkpxkJMf0wiMAeQgU7kkl1mwuFimAXZyCXpPogIMM0gzm7RWxulbOz3o70gROkAKReau4pKEkSjTuAfossfvBPJBWiYaSeXooHDdOI2PAU4iP8pYOVApDkK7UkLJgqmNBzDjhvLhaMrU0AjrOCOboSMcPJQJPC4N81L4bJx6xEqwezNYkmTj0ZOU5I3gz+6QBdeVDU3DcD3aJmdTptmfseWREuUQFGM/sXQd9lFLdmPW9iBPNoF7AjoHfJkeMlUWPpR77+X2zJ69Tb/Zp3pflezgolpz//IATjIiNnr6MsvrsH9z6bLsZNzGYfG9gZyMpBvx4w/fORhpZuTR3e49mWuLa5EM/bHwJ0f/+aulTKbkPKYx2zScungPF6Nvs1/O0PjJzg7HlhwCz3XGfOlMGQRthbARqlvDdYf3Kfc5CLyLxheXT8lRGeaKjGetxQ1kTHQ8wSnudm8i9x0pqTzSLAUvesCRyyBJMVdKqh1TULMbmzatg/B37/+Af569o9ZIuBPkR3/+U+uPi9OsV9893ZnwonKgigNEvnsC9P/cOzzbO9tSOk37Q5axSF7oTmQ6wqpvM/8HEMA0brqXAuEAAAAASUVORK5CYII=\" y=\"-66.795366\"/>\n   </g>\n   <g id=\"matplotlib.axis_17\"/>\n   <g id=\"matplotlib.axis_18\"/>\n   <g id=\"patch_43\">\n    <path d=\"M 218.506897 104.795366 \nL 218.506897 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_44\">\n    <path d=\"M 255.996552 104.795366 \nL 255.996552 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_45\">\n    <path d=\"M 218.506897 104.795366 \nL 255.996552 104.795366 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_46\">\n    <path d=\"M 218.506897 67.305711 \nL 255.996552 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_9\">\n    <!-- Happy -->\n    <g transform=\"translate(217.893287 61.305711)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_10\">\n   <g id=\"patch_47\">\n    <path d=\"M 287.775862 104.795366 \nL 325.265517 104.795366 \nL 325.265517 67.305711 \nL 287.775862 67.305711 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p4e1660c6c9)\">\n    <image height=\"38\" id=\"image9062a7e311\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"287.775862\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAK40lEQVR4nGWY244kSVKGPzN3j0Nm1qmP093Ts7PNwAJCwM2C9hH2gksEb8AD8AhcwoPsOyDtzUoIbhjtAoN2tKPpZdXdM13VVZWV54hwNy4sMrMaUkpVZFZ4pLnZb///m8tf/u0/2eIHyjABDOIa4gbS0qgWBR0MHQwMpIAJWBQsgImA8NHLFEo4fi8FdDBKgKFV+in0J0KJfq+F430m/vnktRG7mfDyp6/56ZP/YmuRf7v5IV/+9iXV1y0P/hvCzoirAckFgFIFurNITkKJ4oFE8QcrlATdqWARtIewNZob//H1U2H5ewOvvviOVycfOE9rHqUlSTLbkmi052ma8w8/+xuiGOxyZF0q1qXi08kt/1k9I+x8F5hhQchtokQh18rQeMb8MwyNB1YqyBXkBkplhK2gjWAiVEujujNkpxQTPuwm3HQt38cTZrEjSua6m/Lvbz9l+saIGKz7xLvujN8sHrPsarp1RbO+Xx7PTqm8BGJABsUwEVI2z+YA2guhg1x7Nk1hmPkmq6WRFkKfA1ebGdsh0sSBFDK5KG+uzmm+nNBeZ6JmuLw+5V/tc95fnsIioTshro3Q2QE3UkAyxGxYsDHiIz6kOA4tCP1E6WbCMBVKAu0gbn19dSdcLyecTTfs+si06tgNkXWXGNaR3UNje6NEG0EatCBqTL8NxLWR1mNQUUDko0C0Nyig2aAYFtVLroIMRnWX0ays6kAoEFfmawTSnbF8P6F92RFD5qzass2RNvXULwZWjyq69xeOsZKFXBR91/DsFwtWLyeYQq6EuDXvnAKSDYtCTkqJUMYGGBrvptzc24CMmR689Glj5ErQHia/i9ydTwgxc5mmFBPMBBFjcTnj4Z0RASz7A5v3/ndohbgxx9L4EgPtCvGmx0SwStk8rtABbxQDU6ObCv3Mm2Ff5tAZUhyPYlAtYL1IhItMEGPTJVabmu664fnPhbQaiJKN5nXN7f884clvBj786Yywg9AVx03xH5VihO1A/O4Wu77FzDh7eEE5m5JnNSZ+T39aMUyUydsN8d0NNpvQX7R05xW58o2HnRHnkX4aCVrY9ZH4yxmf/MdAddexu0heyrSAk99lmsuO21cT2quPwb3vTAtK//wCeXKG9IWSM9INhCWQDYIgQ6G6hjDfYOstNDUWlVx7tspY7bQQdsCbD2eEr2a8+JctYsaHP2qIG4imMEyguR6Ilwvq25YS7lG5OCMDDNNISd51pqDZGyF0Bd0V704zZDDy81N2f/yQ7bl6uXsvp2Yhj5i1QbE3DQ+/ygxtYP4qcfsnA2dfRWLcGhe/zp6VJpFWRj+RA0WYyEE2wBuiJMhJxuCE0AlSgsvOxDHWT8YOzlDNDb11JfCSj+S9jFRzYfkssH6hlJcbnj+cM3/9iRMsAsvnFc0kYApx561domBBPGNj5koUSnDG1wHSqlDdZdKiP8jVSgL9VMi1IWvvxD0nluSw0B5OvvHN3P1B5ukXV7yYzYlauA2feCl3Z57uofH2jzvvIIv+kD1H7bMYev+cNsbk3Y54u0VypjQV2hdyVdOfBEBor4zZuwEK5FbdDIzv7gS6B4WHP7zhB6c3VDowix0mOPi1d57ZOwEXY3GsiQPN9Nj+cWukdSEtMuly6fh7OCW3ERNor/qRdpTp2w7Ahb8Wcj06CwGLRqkLp82WSgeSFM7jGhTnMecgRkmBosfylTgGZ37t5YO0NrYPInefPSatzV3FyUi4U9/Axa8HxGDzKLF9MAaVRhcSXVfjPJCL8lnrFuRpusMCjjHtbbQt4qDe7yiMYhyODxNzgNs1hM4dxWaqdCeQW2OYuLE6+dbxef2jmmEKuYbcOM4ky5gNF/zLxZSz52saGTgJm2MpQ+8CXCoPqoSRtyKj9HC4tmj0Uy9T+96tTHfi9w8To7RGunZ+uf0isHlaDpKGgAzixjEZMkBaCuv3U958fsHvt98ful8xSMtC3JYjZwmg967H7JnaQQdzC+tPhM1jxYLTgozsWSpYvCqsXpTRqRoWbeS5cbONURpDB5h9E/nF21eUA5CNKGaEXQaDfhrGAOSgj1LctmjnP7x3qXvrXKJnYU/CunGGl15Id0J9A8N0n20YWqPUhqWCVSCD0l4a81895Jvnj/nx7Fsv5V5udNRGEz1mziBs3OBVy0LY7O21MLRKNxVKNTaNCiW68Ke5MPnOmFwO1Nc7Sh0Y2sD6SWT5UsjTQjjpyavkGazg5DV8ffeEvzr/cgT/XhPNU73PRNgZceuNUd9l0rxHio3CbqBCf1qxOwt0J15OqwxdK80H4/S3HWnRUaJzV0lHRyuDkDcR6dSdyeCk3pfAn1V3WBwD01zQLruZGzGUVsbsbUf1fgVmIEKpIpYUyQVZZ+plR1w12KcNqGDB0B1Mrgpx7Vym3QAqxFXmZFNIax9kbv8w0Z+Vg1GoFgXFuNAWUyOaCkMbqZfdKLJGQZw6KqVMKsLlnPL+ChFB2waZTUEVuh7JmXRREbZKWCtpKdTXPfH7OQwZ22yQzZbY1NizJ9TvldXnM0wC0gnth8L6sVLmbhQHMpgQcyVszyPVtUJx00ftrrU7DZg26FlF9egU6QafJYeCrDYggoWAFCMtoQQlLdz3W5UQM3hwDk2iP2vpTyO7s8D2XMmt43V7Lqx+suauV/7u8ddk8xTGEn3kkmJoX9DeDnjIlRCjMNSBzZMZ2hvN9UB1uUJU94SDZCOujBKFsDNyrVhbeaPManKb2D1IdCdKHrnSKkM6YftY+Ps//2d+3H7L89ABvi7uxyqyEdcD9Twg5g/oZ05o9V2hvRoIm0y82aCrjffMtGU4a8mtg99B7pmOm4ZUCrrcoZsei4qFRAlCP3PCra+V5FLLj1IhEyiUMbDsYxVBCOuephhxk9g+iORa2Z0r/VSo50qqlX4WQU8oyeWrnyhD612n2aeq7QUMdU31IBHXBe2LS1kjLD8TNs8GdOtBha2xtURvhYwRJIyBjX7e8SLILhNEiG0gbKFMXS+Xn7q19vpwHDbMMyV57xigtEJ3BisJlBRgXDa0xvCogyxUt0pa+pnGriT+7yv6kGGUpEgRH9HCyPzj7FgQz+rI9Bzs0Mgke3ciHN1Dglw7y5fGsDqPUmfINqC985elj09l8sgfTrACFhRTQ8SwpFjkGBwGnYxAv2eFxrV7f7W/LrV5Q5mTaVgKtlaf4JXD5OXPN3oLZGxE19hTpkI/Vc+YcTzViW7oGI8GNBuSza97Dhm8L/wWPCjXUjuU/P57v4Z7Wdb749i+lOCDBYD02QMzD2zvLPYPuo8pRpHYi/dBxDvx6TvLocQlGmVilMpnCemP5etOhU+rD/8/MBMfubR3WaIUZPADO8mjvu1tTzjq3SFLyjgb7N/jBC8yrjMs7dd7YLp1gxh6N5BT7Sjg5Cr7wAL0U6Ekbx3ZDYRNT1yP52FFyBUfuVhT4N71Pit2D2uMDG5h9PZVOWSrmitp4dAoNUx1R2fG/XE2OuGJUwZAzsguk1YDAMNEsaBkkaObDcdjypLs3ufjjvcBE8Zjq2jQC+lOaS6Nel4oSeie9TyP80NAxTzj0RS6U8i1om0imB8ryWCEXcGCECrzRhgNpJUxuNG17t3t3mDuh5r7phP8bLe5EprbQuiMbqakScfPbv7icM8kdMSlID/563+0oRbS2ka/ddyxd9wRV3vceM0/Bv3hOzte3//fvml0MDRzmLq6mfIRvwpUd8b/AgE2ULrErSEDAAAAAElFTkSuQmCC\" y=\"-66.795366\"/>\n   </g>\n   <g id=\"matplotlib.axis_19\"/>\n   <g id=\"matplotlib.axis_20\"/>\n   <g id=\"patch_48\">\n    <path d=\"M 287.775862 104.795366 \nL 287.775862 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_49\">\n    <path d=\"M 325.265517 104.795366 \nL 325.265517 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_50\">\n    <path d=\"M 287.775862 104.795366 \nL 325.265517 104.795366 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_51\">\n    <path d=\"M 287.775862 67.305711 \nL 325.265517 67.305711 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_10\">\n    <!-- Happy -->\n    <g transform=\"translate(287.162252 61.305711)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_11\">\n   <g id=\"patch_52\">\n    <path d=\"M 10.7 149.782953 \nL 48.189655 149.782953 \nL 48.189655 112.293297 \nL 10.7 112.293297 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p3db27f20ff)\">\n    <image height=\"38\" id=\"image2f4140f5d1\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.7\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAKy0lEQVR4nF2YWW8kyXWFv3sjcqmFLLKbzVnbbc0MhDEM2IblBQYMz5vf/G74N+ln+NU/Qm+CYMGGZQkzIxljzWh6YTe7SdaamRFx/XAzixwXUCArqyLy5F3OOTfkb/7lp7Z5quQGTDi+pMDyD0Z7k/2C+TULUIJgCojcrxFfbwqmfjH0hmbDBEoUSiWUCKEzqr1fD50hZvTLQH8qNDcFTRCHhTD74jV/fvEcAJVCEONtP+c3//Y58ytDsr8BSq2U2XQTGYFArqHUQm4cJAbVBppbxz3MhOFU6E9Be6FeQ31ntG87wnYgHGosVGjy/SIGZkIyHSOjKMbr/ZK4tzEaAmMkLMjxxjBGKUCphNxCrvy6ZkhzQTLEA4iNawT27xd2zwrxJtC+jcS7jvbrV7Rfw/bPPmD/OBIRCFqoNR3TWExZdw063KeIMU0lyjHVmgzJIB1UWwPz74cF5EawcL9OCmjv4GyWkSZjpz0v/25GfbNi8eKExz/7w3H/6AExgtgRWJDM7WbGahgDZmM9BbmvNwMyxMEIXUG7ggUhzQOahcMjwYoDkuJr4sHQXpC6cPnkjov5lvbpwEnV8Yvv/4jFi/dYfvkW/eQc9boyFH9HyXy7PYevF1R7+2HK1CMgBlKMMIKSzJhiQQdDE+NfgzI9nB3Takm4mG+Zx5557FGMn3z4Hd9/UXN4djZGTKDSwiz0TCB/d3XBybe+uT+xeV2JHEGWKKRG4ERJM7AolDDWW+1gqjsPtz1YW62N+KZi+Scdq2pPMaXSzIkmPvuH/+X3mx9x/lXyVFYhMx+BbVJDfzWn2vgTSxk7UiDsPV0YxH3GVMitjlHz36Q2UGph/zhgCs1tQYrXXIq+tnknvN4veb+943aY8ShuaXXgT1cvaP9p4Ev5MdEEmpCYqwN7ns6orwOxyx6pMUKajXh9ILy8xvoehoScLLF5i81qLARQ0C4Sbw8sf/4OViekx0uGVU2JweuyQOjg7XZO9ShTayJQGEqgksznJ6/49ezHHrEohUYHiimvDidU66munKcEIBt5UZE/+wCLgokQdwMmTh8WRrpRGC7mpKenDEv1LhwJWZORK0ETrDczBgv0JaJiVOJEPg8dJZgDKwhl5LHXuwVxPwKLYOb8VUJAmkCaKbmZ6qkeqcMLO9fCsBBKDWnmkQkHZ/d6+6ARkpHvKr68fY+hBBah56zaUUxodUCMKWKZ3+0v+dm3n6I/X9F0XlsTL00vC17wEzDNLjvVrlCtM915JLdKioJFGCrIDTTvOHLfRD+z55HfnlyyXB74Si7560e/5x9P/5tfHZ5OgYdkgf948xH8+4rVN/m4wcT0Jfo7V0KuhVx790mBel1orgfq6z3t9UD7tlBtjRJ993oN1XbU2VG+MI9k/fWM9XenrOo9n8+es7Wak7DHAkQx+O7mjPVvz/jgy0yaeQ2U4KD+v0hrNuQgaDIWL3rqVxsQIS9qJBmzNwPVJjgTZVhcjd1b+dvCmAVz0BaV68OCb7pLdqXhSVy7VoYO1v91zvJK6JfmRZrtXqDDfROAF3AYUz0sIuXjU0ygPw3kWkgzdxCaYPEyk1qhXyoWeVCbXr+HM6N/nLm6W8Il/M/hkhfhjHAQomSj2ipxZ0dWL0FcjCeBHkXagblr0AS7J0pug+vjEtLcKJWn7fxLSDNl86FS4thIch95FDQJ7atId1qzyQ2X9R0BxxHDAM1bIwweDfdNUCrG+vLNSjXJkpDmUK2hvTFSFg7nkGdGOjFMjfnzwLAw7j5RcnOvwVJw0S+jEUj+Oe8Dv7r5kKeLOc9m104Xk/5N8mM1/oQjKE+lR80UrILSjI0xWiGPkji3AIfHxuExWCxHg4m5BRJxejGFYCO/rSNRCz+avaGz6HQh2WhuRvJrRjAqP3Czk3XBSQ/EjaGMfkuzX58AaB47b6Mu8OqpK8Gwyj2bVUaeGfWNMn+u/Hr1EU/aDYvQI0mIk68q0WurVL6JjABgDH/mKCmTxZ7ATimZ7JAM0L4R5q8L9dqj5vqpbD8U8nmh1AWiEV4ps9dGiTW/fPQxf/He90gZCTb0hWpdsIuKwTxawv3N4s5o1ka1zeM1o1RKf6pOuK2H1RRCJ8xfCqtvBurbwaliFrDo0ZM0Rl1BOqW+cdVo3hk3355SLl948Yu5RMR9JnRxNISgByN0YxfundmrTUKGDCqUqIRDIC0CuwsXcItGuFHmV5lqndDDQGkikhXtjfamoElpr4XuPHK49MGjRI90+yqwS5Xz2NErFUMHO4qyJlhcJdqXO/Rwb7utClgVCDkTNz1xXzPMWydNBR1g9mag/uYKGwY0JeLkRE4XlHnN+pMlwzJQ2kKJgVBcCZp3rkLHiGGGHhJio8Mzr6HUehHJdo/d3GKHDkJAZy1SVRACFs8JgxF3AIHmnSHJICiSFU5PsLYmLxpKE9lfNuwvlH5lSBKaWyO13nSlgWXsMB3pIs8UyXlsbfflAGkmHN6fw+UcHZ5Q3fWETQcpQz+Aqs+QBvWtETqh2kKaB8KjU7QbyMuG/rwht0q3CqTWp6d0UtBeiJ2xeapsn7nt+Wh2wy8FYolCd6q0Vw3gVqVUzjOpcYClEbqziv4sMnsZiOsOGZJzWO3Mrxms93pJ80BdKRyMsOmoVeip0YWig5sACuggbC+F3YeFL37yGwfWvPNUpka4/QwWL2tCV6h2HtrcuIx0q0Bzk5nfDVTrHr3bgwo2b0mrlv17Df1SjrKT5sJeFbEZzXUk3u6RIVPf9vSryO6ZsH+/gBrt90r7rrC7Ez5fvGRX6qNhjKWG4XIgt4HmzYGZQVoEhrnSL4XDmdKdCtUOql0Em5Nmo1N4IMzIPfGmudCfRfg0YjIDdVJNC2N4MiCd0rwOzF8V93Mb/QEoGHmM5O2su4GqGDpUSInkJlJqo1TC4THsL8KRxU3u50WZzjWmsVNdW3Nr5AbyrGC1QSxQBBnEXbJ56uPG1821p5XBU+ltZ+692oipuFUe7U2uBMlGKTIK+w8n8wnQdFQwWaXJCCB+VkGnIN7lOoy6WTgeP+g4wFaSsCOwLEiBUoXxhj68yhgNGynkeIogHF3Hw88WxwOWxkZQhhTx6bswDjE/XF8C9Cfw98uvADjTPRYnYE2hX0aaNyCpHNMxRQJG84igg38X0gNxjmMKx8MWHYTQu8EUA1M77ldq5y/GoVmK0a+Mv2o8nxWBUhtqCmcXGw7n6mP8dCoDx0ORydyJ3XuryVQeFWE6PsjO4jpOSDKef1h0yfLfTTcYbVNrFDMCQiXBi98EVrMDdw+GW7g/yXkIZJoBJhAwutsxjSUaEtybecrs2AiTGwYXekkQBmOYC+E9nxcVPd4umgoXsw1vF66XUgwpmbBXwiIQehn9031kbPLt+gBUZf53DIWMoFE7ijRA2AvNtdDc+BFEPICoofJgTJQR5F+uvmPzxxmrAjJkdNcT9gNxX6i2hdgZmjmeTzgQPzwpjRs+pwZzemn8c2mLU0VTKPOMqVGthflVYf46Hweei9WGgBAegIs6GP959zG2TAzLiHbJW9iMuBmwUGEh+NOP4l7iPU1IGSOdvPOmafuYuvGcVpNQrYX2rRH3djwXGebCLGT+9e5TVIxWeuJWkL/9559at/Jua2/LcQI/bj55+9Ee3f//oBPFOxDuG8QePP10fRpGNNmDshC6ldxP/ALNTeH/AJ1nD4eE6yQ3AAAAAElFTkSuQmCC\" y=\"-111.782953\"/>\n   </g>\n   <g id=\"matplotlib.axis_21\"/>\n   <g id=\"matplotlib.axis_22\"/>\n   <g id=\"patch_53\">\n    <path d=\"M 10.7 149.782953 \nL 10.7 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_54\">\n    <path d=\"M 48.189655 149.782953 \nL 48.189655 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_55\">\n    <path d=\"M 10.7 149.782953 \nL 48.189655 149.782953 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_56\">\n    <path d=\"M 10.7 112.293297 \nL 48.189655 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_11\">\n    <!-- Happy -->\n    <g transform=\"translate(10.08639 106.293297)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_12\">\n   <g id=\"patch_57\">\n    <path d=\"M 79.968966 149.782953 \nL 117.458621 149.782953 \nL 117.458621 112.293297 \nL 79.968966 112.293297 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p85e130e73f)\">\n    <image height=\"38\" id=\"imagea914d0e9c9\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"79.968966\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAK40lEQVR4nGWY244kSVKGPzN3j0Nm1qmP093Ts7PNwAJCwM2C9hH2gksEb8AD8AhcwoPsOyDtzUoIbhjtAoN2tKPpZdXdM13VVZWV54hwNy4sMrMaUkpVZFZ4pLnZb///m8tf/u0/2eIHyjABDOIa4gbS0qgWBR0MHQwMpIAJWBQsgImA8NHLFEo4fi8FdDBKgKFV+in0J0KJfq+F430m/vnktRG7mfDyp6/56ZP/YmuRf7v5IV/+9iXV1y0P/hvCzoirAckFgFIFurNITkKJ4oFE8QcrlATdqWARtIewNZob//H1U2H5ewOvvviOVycfOE9rHqUlSTLbkmi052ma8w8/+xuiGOxyZF0q1qXi08kt/1k9I+x8F5hhQchtokQh18rQeMb8MwyNB1YqyBXkBkplhK2gjWAiVEujujNkpxQTPuwm3HQt38cTZrEjSua6m/Lvbz9l+saIGKz7xLvujN8sHrPsarp1RbO+Xx7PTqm8BGJABsUwEVI2z+YA2guhg1x7Nk1hmPkmq6WRFkKfA1ebGdsh0sSBFDK5KG+uzmm+nNBeZ6JmuLw+5V/tc95fnsIioTshro3Q2QE3UkAyxGxYsDHiIz6kOA4tCP1E6WbCMBVKAu0gbn19dSdcLyecTTfs+si06tgNkXWXGNaR3UNje6NEG0EatCBqTL8NxLWR1mNQUUDko0C0Nyig2aAYFtVLroIMRnWX0ays6kAoEFfmawTSnbF8P6F92RFD5qzass2RNvXULwZWjyq69xeOsZKFXBR91/DsFwtWLyeYQq6EuDXvnAKSDYtCTkqJUMYGGBrvptzc24CMmR689Glj5ErQHia/i9ydTwgxc5mmFBPMBBFjcTnj4Z0RASz7A5v3/ndohbgxx9L4EgPtCvGmx0SwStk8rtABbxQDU6ObCv3Mm2Ff5tAZUhyPYlAtYL1IhItMEGPTJVabmu664fnPhbQaiJKN5nXN7f884clvBj786Yywg9AVx03xH5VihO1A/O4Wu77FzDh7eEE5m5JnNSZ+T39aMUyUydsN8d0NNpvQX7R05xW58o2HnRHnkX4aCVrY9ZH4yxmf/MdAddexu0heyrSAk99lmsuO21cT2quPwb3vTAtK//wCeXKG9IWSM9INhCWQDYIgQ6G6hjDfYOstNDUWlVx7tspY7bQQdsCbD2eEr2a8+JctYsaHP2qIG4imMEyguR6Ilwvq25YS7lG5OCMDDNNISd51pqDZGyF0Bd0V704zZDDy81N2f/yQ7bl6uXsvp2Yhj5i1QbE3DQ+/ygxtYP4qcfsnA2dfRWLcGhe/zp6VJpFWRj+RA0WYyEE2wBuiJMhJxuCE0AlSgsvOxDHWT8YOzlDNDb11JfCSj+S9jFRzYfkssH6hlJcbnj+cM3/9iRMsAsvnFc0kYApx561domBBPGNj5koUSnDG1wHSqlDdZdKiP8jVSgL9VMi1IWvvxD0nluSw0B5OvvHN3P1B5ukXV7yYzYlauA2feCl3Z57uofH2jzvvIIv+kD1H7bMYev+cNsbk3Y54u0VypjQV2hdyVdOfBEBor4zZuwEK5FbdDIzv7gS6B4WHP7zhB6c3VDowix0mOPi1d57ZOwEXY3GsiQPN9Nj+cWukdSEtMuly6fh7OCW3ERNor/qRdpTp2w7Ahb8Wcj06CwGLRqkLp82WSgeSFM7jGhTnMecgRkmBosfylTgGZ37t5YO0NrYPInefPSatzV3FyUi4U9/Axa8HxGDzKLF9MAaVRhcSXVfjPJCL8lnrFuRpusMCjjHtbbQt4qDe7yiMYhyODxNzgNs1hM4dxWaqdCeQW2OYuLE6+dbxef2jmmEKuYbcOM4ky5gNF/zLxZSz52saGTgJm2MpQ+8CXCoPqoSRtyKj9HC4tmj0Uy9T+96tTHfi9w8To7RGunZ+uf0isHlaDpKGgAzixjEZMkBaCuv3U958fsHvt98ful8xSMtC3JYjZwmg967H7JnaQQdzC+tPhM1jxYLTgozsWSpYvCqsXpTRqRoWbeS5cbONURpDB5h9E/nF21eUA5CNKGaEXQaDfhrGAOSgj1LctmjnP7x3qXvrXKJnYU/CunGGl15Id0J9A8N0n20YWqPUhqWCVSCD0l4a81895Jvnj/nx7Fsv5V5udNRGEz1mziBs3OBVy0LY7O21MLRKNxVKNTaNCiW68Ke5MPnOmFwO1Nc7Sh0Y2sD6SWT5UsjTQjjpyavkGazg5DV8ffeEvzr/cgT/XhPNU73PRNgZceuNUd9l0rxHio3CbqBCf1qxOwt0J15OqwxdK80H4/S3HWnRUaJzV0lHRyuDkDcR6dSdyeCk3pfAn1V3WBwD01zQLruZGzGUVsbsbUf1fgVmIEKpIpYUyQVZZ+plR1w12KcNqGDB0B1Mrgpx7Vym3QAqxFXmZFNIax9kbv8w0Z+Vg1GoFgXFuNAWUyOaCkMbqZfdKLJGQZw6KqVMKsLlnPL+ChFB2waZTUEVuh7JmXRREbZKWCtpKdTXPfH7OQwZ22yQzZbY1NizJ9TvldXnM0wC0gnth8L6sVLmbhQHMpgQcyVszyPVtUJx00ftrrU7DZg26FlF9egU6QafJYeCrDYggoWAFCMtoQQlLdz3W5UQM3hwDk2iP2vpTyO7s8D2XMmt43V7Lqx+suauV/7u8ddk8xTGEn3kkmJoX9DeDnjIlRCjMNSBzZMZ2hvN9UB1uUJU94SDZCOujBKFsDNyrVhbeaPManKb2D1IdCdKHrnSKkM6YftY+Ps//2d+3H7L89ABvi7uxyqyEdcD9Twg5g/oZ05o9V2hvRoIm0y82aCrjffMtGU4a8mtg99B7pmOm4ZUCrrcoZsei4qFRAlCP3PCra+V5FLLj1IhEyiUMbDsYxVBCOuephhxk9g+iORa2Z0r/VSo50qqlX4WQU8oyeWrnyhD612n2aeq7QUMdU31IBHXBe2LS1kjLD8TNs8GdOtBha2xtURvhYwRJIyBjX7e8SLILhNEiG0gbKFMXS+Xn7q19vpwHDbMMyV57xigtEJ3BisJlBRgXDa0xvCogyxUt0pa+pnGriT+7yv6kGGUpEgRH9HCyPzj7FgQz+rI9Bzs0Mgke3ciHN1Dglw7y5fGsDqPUmfINqC985elj09l8sgfTrACFhRTQ8SwpFjkGBwGnYxAv2eFxrV7f7W/LrV5Q5mTaVgKtlaf4JXD5OXPN3oLZGxE19hTpkI/Vc+YcTzViW7oGI8GNBuSza97Dhm8L/wWPCjXUjuU/P57v4Z7Wdb749i+lOCDBYD02QMzD2zvLPYPuo8pRpHYi/dBxDvx6TvLocQlGmVilMpnCemP5etOhU+rD/8/MBMfubR3WaIUZPADO8mjvu1tTzjq3SFLyjgb7N/jBC8yrjMs7dd7YLp1gxh6N5BT7Sjg5Cr7wAL0U6Ekbx3ZDYRNT1yP52FFyBUfuVhT4N71Pit2D2uMDG5h9PZVOWSrmitp4dAoNUx1R2fG/XE2OuGJUwZAzsguk1YDAMNEsaBkkaObDcdjypLs3ufjjvcBE8Zjq2jQC+lOaS6Nel4oSeie9TyP80NAxTzj0RS6U8i1om0imB8ryWCEXcGCECrzRhgNpJUxuNG17t3t3mDuh5r7phP8bLe5EprbQuiMbqakScfPbv7icM8kdMSlID/563+0oRbS2ka/ddyxd9wRV3vceM0/Bv3hOzte3//fvml0MDRzmLq6mfIRvwpUd8b/AgE2ULrErSEDAAAAAElFTkSuQmCC\" y=\"-111.782953\"/>\n   </g>\n   <g id=\"matplotlib.axis_23\"/>\n   <g id=\"matplotlib.axis_24\"/>\n   <g id=\"patch_58\">\n    <path d=\"M 79.968966 149.782953 \nL 79.968966 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_59\">\n    <path d=\"M 117.458621 149.782953 \nL 117.458621 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_60\">\n    <path d=\"M 79.968966 149.782953 \nL 117.458621 149.782953 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_61\">\n    <path d=\"M 79.968966 112.293297 \nL 117.458621 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_12\">\n    <!-- Happy -->\n    <g transform=\"translate(79.355356 106.293297)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_13\">\n   <g id=\"patch_62\">\n    <path d=\"M 149.237931 149.782953 \nL 186.727586 149.782953 \nL 186.727586 112.293297 \nL 149.237931 112.293297 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p6b98802fc7)\">\n    <image height=\"38\" id=\"imagee32b2ba361\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.237931\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAKGElEQVR4nG2Yy44sSVKGPzN3j4y81O306TPdDAPD9AIE4rJBaMSaR2DBM8FD8ABIPAEvwJLtINGjnj7T3edSlZmVl4hwN2PhHplV0pRUUpZnlMfv9pv99pvLP/zLv/nhZ4p1gIM4bL43wuiIOVLqOoBHcBUsACK41HUEXOfftt7WNIMUx1UY7oWyBIv1O7w+h7x4h8Lmd06clsLwj3ve3T1jLuzOC/J/3pOejTAaYSjoUPCgTDcJSw2c1heI180sCNbNLxXyCkoH8QzhJKCw/buRv/rme361+chCM+aCipOkcLQOgK+7Lf/+H/9EBDCrR3fgebdkVRxLgmapEdD6vZiDC1IgmKMZtDg6OpodrB7bOuX0NjKtwJIQJgeD9GPi8edLDv2CQSPmiophrgCoGPvSI0YFJgKrNBLV+OHzOzSDB3ABlwpMzAmnghSnmIKAFBrdMw8g7pCd7tnAlfEGJEMYnbRXPu3WnG4S9yEDRhAnSEEbl9byIyKg6qjUL8K5gqhHAI+CSUBHaxFraVXAolB6pXRC7gUPtPyrB5r30AxxcBaPzuNjz/mrSKeZhWZe/gSMt+kZ1xaxEAyA3dATD4KYgbdE1haMIOiQCY2qulZzSwqko1OSQA+lExAoC9AR4tmIRyMdlfgUyR64iycWUoEZcgG30AlkBqYV2KfnFeHcKLFrpWAOAjoWZHsiPgXIBe8T3kVkKsgwYX3H9Kbn9GWqdJyNaaXEkxNPBbFA2in7ccFKR5KUC6DSwPUy4QLRBRYp83heMv7vLXdPjtiL3PGKzkWwLhC3E/b+R/w8IEGREJB+gaREAMLnju7DurL4aQddwu7W5JtFjcgWftpt0K8NFbsC81DpFAPxGjEVZ5Um0k4IZ7/qzxwxFRynrBL+1T18dY+4YyqXhPegSDEwRxx0d8KXC7xfYH2kLBQpEI/O/tsbvvvTN/zl6j1nTxdw5sroEVyI4vC4X/GxbFidQbNfaKwiKJXRIHiE0gcsylVsY81DF9BSk98V8nLDeCuEEbqtk07X6HRPyreHL/jz1Q8ATB6YLL4qhKgZ/P/WrH8U4vEFjTOF8VoAc47mheKBS6eQ4oTc/i8J40YZb4WyqLlaenCtEmMRwhm+fXxg+CKx0oEkBZPM5IFAPUCU4qzeK/1no6QKQozWihzrmsC29mGhbl4WdS2MzvLJWHw4gghlnXBdMK0rMOugjLXnSK7RjEd4+rDhv7/8JcswcSoJc+FcEn2YCGeIYYL+k2FJsAR6qBGYtazq1TXEYpUyn2qEVh8y/XfbWrmxJnA8JeJJsFSlpH+y2raiVPF2J2wD//P7P0LEcRekJfS6H9GpRWy5LYx3EZcmrsKlDVU+ua65E0YnDN7U38kPK0ofKUslL5VxUxO92zrdwUmHwvkhVPEFdKpCbiaE4Kg6QQ0VpwuFkzTlz6sA7sRzq44kiLS2FK4JblFqYYxOPNV+uvuTDksd4o3iXshLGO+c1Q/C6mNhWinTqkZwpj/thSEHFl0mqBEauHUaeZqV32IFUD+3SIX62RKURrOl6lGkON1z7Yf91jjfK+OdMK2gLJ3p1khbZfO9Md4op7fKtK6FolN9lzjkIdDdFqRFyuFCadWxAibVb5UoNae8AYs0OzNLBIgJQztI92zEkzOtaxuyVCUmHYTDz4ThoYJFQAchNhnKPVCEXJQUCyp+sUEXYHitQJcGqulCpbKe0OOLIvAKYLirFNFon1uZWKVyeIDSN3s01jTw5uM8NgDBGpXGJk58vdzx2zADa4ntoWnWCwdqbe2y3k4sDdwl77iCkiyXZ+NRCKcqtHhr/F3VNoBlmni7fOauO7MMEzfxfHUX88vqSVpQ5qLUKhnd0QlDbT8WWu51cnn+JaiAE87C4jP0j4bm2ubO98LwRsgrx5ZW6RXHXBlKpMwvdYg1/F49/Esf3iKpk9PtneXHTNxPSDE8KmUZGW8j441SEuQmqGXhhBGWPzoPvxnQoYAIeRmwkBjvBY+OLwsSje2pZ9MNHHNH1EISQ3x2sHaNkDhgtSqlQBig2xnd4wDZkFLwENCxEE6ZdEicHyKlr74ehbQXNu8z8WmAqFhUtFx7sBTABD9Gtr7m53dbjJr4r5JfiqOzNWol3T0a/eeJuBvQ7RGZMoSAp4iQkXEiAHHVI3nDtOqQXPNt8dlZfbdHn56hGCFn7N0Dm8nonjt2v4gcflE1rftt5OO7Nb+6+1QHEy3Vj4k3R1EahwJhctJzIe5H9DRVUOZUw6XVo40TPgyIGeG2Jw6JMNQCWuwK+mmHn071/7qETIW4HwiHCbEVw0PCI2x+Z/z4+3v+9u33nEqi03x1sJJrSc/5VZIwbQLiPXK7QMsaijeanXCakEVXLXgI9TCjk56dMNSo2f0NsqqlV+5XWBeYbhLTRpnWii0cHZotep9If2NksYu7UJjLv714FsClkJfV7+S+bprXsT43tiEiBDwGPGltNWeIh5oj5XYBKUJQZDIIQllqNQtNE+MZwmj0n4TJlTfdgS/SocqFC1hSXIQwem1JTfWH24CrkA6FtJuQqRAOI0wZjwEWifxQacm9XArHkjC8WdTh5act4fmEjmswOL/tGG6FsnJsJxzeBaYNLMPE192WTTiDthwTc+KxoJNSeqF08y8cv1TCnRKGWEU1rK8KnuSieeJtDo0w3AnTKjDc3RC+uSGMhk5O6ZT9Hwf2f2bYunB+C4dfGuFm4pv+AwC9jDX5AeKxILnqU54Csm7+JAkmMK2ktp6Z/Ea5uF+E1Y2LQ/UmwONNmzU7rZY7wXRj2MrQ50BZG7/+69/wrt+TJFNQ1jri6k1gixGOIx4VsdRyrYJzrRRfW1eLTLs6cKFO0TIDuzbzsqjb5LVTuqb26sigpJ3CTlnHkW/6D1XDKCR5WZXz5A3g3qrUEauOk6Zxs+toJfNq4vZ5ak+1F7pezkY4CpKhmGIJwiDEU3PDYnwZd5dR7l3YX3vlZZwHPGkNfXoxhDTaNNcIebi+WHhxqLlzzJ9zjWK9JhB8qptJqVGPJ8gW+Pv+u1rJCG/avi/chYLqZSSzKBdnIQ6OzEGCF25iBjn3V8kQrwM2HiqlZbZMs3OJdX0dB96GQEAoOCvpXrsLcb+c/XLTM1/GNRAvv5sjc31OLp/nyNXbovac+qv9XCrlt/F8AWXu2KsmXgyygQiSa6jFr5tfcuhyk3Ndt1Ar72Ik56x4UaXW1Us8S46HlrtTfazXCUUpvAgzM7D5Xmsq6FTQKRDGSu/F1bYrJm8zwTzx0HzcH/RyAh68FkP0mpNZSPua/NMa7sIJm3OD6/9HBMoq1s1UsBTadF29WBAQr/euamD4ZZi4AHDavFjX9FWka0UGFVydcBKWP9U8yEvhvz7+Bd+ev6CgmAubMNDtBPn1P/+rv7pymmmSK3pmSXgRiVd/83r9D/1c/F4bmKFGeVq/MKhtj27v/D/ZfcvemSmCcgAAAABJRU5ErkJggg==\" y=\"-111.782953\"/>\n   </g>\n   <g id=\"matplotlib.axis_25\"/>\n   <g id=\"matplotlib.axis_26\"/>\n   <g id=\"patch_63\">\n    <path d=\"M 149.237931 149.782953 \nL 149.237931 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_64\">\n    <path d=\"M 186.727586 149.782953 \nL 186.727586 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_65\">\n    <path d=\"M 149.237931 149.782953 \nL 186.727586 149.782953 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_66\">\n    <path d=\"M 149.237931 112.293297 \nL 186.727586 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_13\">\n    <!-- Happy -->\n    <g transform=\"translate(148.624321 106.293297)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_14\">\n   <g id=\"patch_67\">\n    <path d=\"M 218.506897 149.782953 \nL 255.996552 149.782953 \nL 255.996552 112.293297 \nL 218.506897 112.293297 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p10e1623f51)\">\n    <image height=\"38\" id=\"image65a17b5f5a\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.506897\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALEElEQVR4nG2Yy48kSVLGf2buHpGRmfXs6u7t3Zlhd0e7y+wuGiTECYG04gQ3EH8M/wL8NdyXAxKHPYDEaVmEmmEeO4/uqq6uV2bGw92Mg0dm1YGUSpWKjPAw/+yzzz43+Yu/+gdPtyOogDseFBQAShuwIIg5mh0xB8BF8Ci4Cj7fC4CARQEB1/qcFLAklKbeG0anuStIccaTyOalMpzK4xIGx18YUScjfvYtlIIsFvjxCkTwINjFCjUnTEZ4GJGhgIItEmWVKI3iqlgSPEBphNzWAKypL1lcG67C9oVS5mtpo+gI01q4/UXm00++YJ0GkhYA/u2f/ojoApISPk5sPv0+dx9GdIL2zoi9o6NhpgRV0II3kbJMWFI8CpYEi3NQC6EsapCWmNFVumsnPTh2KoynTvrVO1btSFDjgzixTgOtZqIWkhgWIIoDKcKLZ3z518qrj9/w9vqY/JA4+4/IyWeG+JzCFLAUQECKIwLBjOjgSkU5CVM3B9kJ05GQNqAZPMJ4ZpwG43yxoQkFcyG7oq58dvuML3/7iudfGNGSkp8fs/1giauzTiPbVc/NECpfAMkOZvW7O2GXcRGCUNMue344iBBOE8NxwANEr6kVBxfwdaaYMlqkCTV1St34zbajuVHirhDH48CbPzmquT97IKhxvtpy+35F7OuLUEAVGTNSHA+CqB6CrVEJiGBJ0cnRAjpB7J0wOLkTdAImJc5IKY5KDSpb4BfPv+Pyzx/49u4jYm6F9Kfv+fj8inUaCOLsSuKz4SXNnddKFaG0gQDImEG0ohQUMcdSYDpOeBBKq7hCaWr60s4IgzOuA1JAHwJJDZXHoFSMII7i/OT4kq+6j4iucNL1PGu3JC0ozmSB5jLS3OcZCQ5ohBH0vq9opYg3ERUhbgse6r3jUaAkIUxO6H0Ovqazfafc9y2ni92B8NkCca7IqAUEYo3YaTVjVLL89/vnLC4FHJiJj9e0egpIPyHF8OurGnOM6DAA0K5WLLsWUsSWDbZIDOcNrnXt2MPN9YoPT28O7wVqNSKMFhGDiEAKhaiFXUm8HdZcfnXG81uv1eeV1HtxtRSw8xW2CLg+Q4qjk6FDPuifqzAdJcqiaty4qimnCCFDuGrIP6zK3GrGnqj0riTwGbGkhVYzo0W+vDtj/ToSBkMMdDIoXlU+KRZqSj0IHvdaJXhoyYtZJpr6m+Raxfi8wckRh+ZOGEokaWEZRgAmD5gLF82Ax1rNNFoYLHI1rLh8c8KLt7UF6WiI+SGgsghYU19soQalGWJvpI0hFshdDcoikGprCgPo6KiBFIhbuHpY8clJzcIyjEzzgpMHsBmxvkT++YufIb854YP/KeS2lvteWJ8GNXVCaau649BdG81dJt4MxIdIbjvGY2Fag8WKkBRBx8deiEMuShdGWpm5rTBZ4OvdKWGqvOdhbNk+tBx9aTQ3GbGq7C5zo57TtqeCZuquemf1vw+0r98SbjeEu4Hl24nu0rFYORp2gpTa4JllL4zQbxveDEcYQqsTJ6FW6avFLbmDGAbnm9fP6b4JpG1mOg4z2akOwmo6XOQxqOKEoaZQx4x3LeV0ST5q8CC0t4XFdSRuHR0da+YNlYqWC7T/1fGvmz/k5pMlP15fcZEeCGK8aO6rXGiB7uvA6hsnDEZptDoghdzpwcJYFErDQZ/StvLw/adnc0FAaWE4FayF1e+r5cldTbtmxwLzhmsxhPvA68sLLrcrlmmiDZlGC6GHGEajuxTEqpeSWa8syUF79gGVtqKYTcgLZ/11Jf3uWaB/VnmVV8by2yrEuwupaDloFkKoFMEgd451hpkQ5g6wLwAcok7O8qpUQ1gcS1rRSRzQKqn6q73FqXombF9E2ntj7sFY6/MzsPm+MK3mllMEm6gFY5XoYRC4Ufy5EPctat87BaKLoJMTt0bcZPqLhtLseTWTVmetmgXXtV6bVoKHuW/O3AHoL6p27QXacEJ53GxpK+80Q8lVv6YSEPFHxKQ46SET+lz7nzTV7vhc2jUGJDvxphbF1D1amf1H9vdPQuyFdA+Lq3pDaSF3UDoYj518ZHhrNJeRcpcYz0K1QC6M81oRAUtKvC+Hvrj35prn71unvck0lxskW+2BbaS/aBjXs7We0Q2DsLiEk88nFt9sIQh53bB92bB5pdgz8NYgGc2N0F5H3p2seXl+V0FwmVvS/hyQrUIz71wzLK4mQl8IfUbve2QYQRV1R7cjy7EQz1q2L+LMP2dxKZy+Hll8+4AMGU8RTYHYG9Yo1jgyKh6d5s4JPQyfdWxWPct2r8IQsdl5BqlGcFZmHLQ4zRdX2PV7LGe0bSEEpG2qU70LtOMx/dkJ1lZ0mxun+/wGuXvAzVAR9L5ByinQ0b0J3P9I6b/nNPdOGJ3z3wr5j411Gjlpd1wGiCiUVomzndkj5gHG40j4wTl6foT2U0UMQBW/vcM3W7RJNHdrmhsl3StHvx/h3XvsYYN0HSw7fNUh5qz/84r00Rn3P2yRvJeiKsh/+cHv+LuTf+fz/Iy/735KtCSMp4HYJ/RuhxQnDtW55oVSulgF9rwuHu5GdDuACNJ1eIqIOeneZzficHpcfdpqiZ2uKauG6Sgx/mjF7kKZjg0Za6vyAHFT+JfvfkKYq02yEEujPHyorL8WCErsq4PU0RhPI+NxZHFlhM2ETEa4vMH7HoohqyXT+Yq8CoSpimdpFTtdEXKBfkDGjJ11jMdhLhLBWiNslTAZ9y8DeIMCt7kjyexkp07Y/EFGfuNQjPS+R/uER0UKTEvFXrWkB6tnzMUFqGCNUholrwJ5USvJVRhPAh6WtCkQ3z3UNW96rFG2LyLDs8rfsBPe/Tww/XxLHwt/+/I16zBU1HS2PZIFGQ0Zp/o3tOTTJWE0chcYjpT+TOeiaB61y55o2fx/PBKG48DDD5bgS6RUN5E7uPsY8kkm3QS6S8hL+OVHX/HT9VtO4haAJAWXWS5kErTPeAxILmD7HsPBfVI4aNzBCc+x8kRoSyOURe2v1kBZOBbBGse7gm4D6VZobqutimKcxC1JCubKQiYQn0cEBlJKPfWI4G3Emzpckdl1zqk/9Mp9kHvdqUIt5EVVeg/1dykgCjoK5EDo68k8TI64sM0N5kqQTJDyiJj43FBlf5wWPATK3Mxl1rMDclI9Wp3sPAbgUq2PNRymRTXVcthUaWuAoa/r6VihPosbBkuoGAudqsBagOnYDscyRA6WGgHcEastp6LrsG/w+54b5lFCgfRQr3uEvJiHKwEs+dx0H/9KK/zs+A3fizdclzWKcaQ7XGeB5XjC2ojelIqcWZ2HZWCea+1R8dkyWXhEy8KMks0oGZAfTYAHr/dKDb7ORJxpDb86+h0/Ttds7T0qzkoyluaq9KJIyRUNq1zTyerRzeXg/S0+HS/N0535mj/h3uPvlfwea3B4VYAwOlKc6cT5ZfOOU42UUHeRaPDgNbB9zXtQZMpQDN1OJKiH1vgYQO72XKwcs8j84seA9mtWc+m1CLIQt0JzD3HrWBTyq4EjDfx/n+gCq5Oe8XRJd72BnJFxIgwjuknE1dnjqFKeVNyMiMcqB3vC+xy0R6+8EsCEOMDiCrpLI4z1GY2Oeb3HnvIaiFIgqLG7CCy+bZBc6vy0GFh1taVVpKunnDBWUss+ilLHSU/dLjpft7mqB2jfC6vvCmlbR5+WlHYx8uvdKyaPlBnqhU7EnSB/9jf/6P1JYHFbCDt7VPL9IDhqHV0+Gfru9euQtv1nlpyn12UezGiGMNr8e11rdx4oiz3M+wdg8d75P/GUMs6Lz+SPAAAAAElFTkSuQmCC\" y=\"-111.782953\"/>\n   </g>\n   <g id=\"matplotlib.axis_27\"/>\n   <g id=\"matplotlib.axis_28\"/>\n   <g id=\"patch_68\">\n    <path d=\"M 218.506897 149.782953 \nL 218.506897 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_69\">\n    <path d=\"M 255.996552 149.782953 \nL 255.996552 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_70\">\n    <path d=\"M 218.506897 149.782953 \nL 255.996552 149.782953 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_71\">\n    <path d=\"M 218.506897 112.293297 \nL 255.996552 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_14\">\n    <!-- Happy -->\n    <g transform=\"translate(217.893287 106.293297)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_15\">\n   <g id=\"patch_72\">\n    <path d=\"M 287.775862 149.782953 \nL 325.265517 149.782953 \nL 325.265517 112.293297 \nL 287.775862 112.293297 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p4dfaa1eee4)\">\n    <image height=\"38\" id=\"image1edfe31d2a\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"287.775862\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAKwElEQVR4nHWYy68ky1HGfxGZWdWP8+pzxnNHc+/M2AZbvgsjjHjIkiWEWLFhiRALr1mwYseeJfwD/BfsLLPBQpZASCyuuIDA5g6e8XhmzsycV7+qKjODRVR3n8ujpFb10enKivzii/i+SPn17/+lXX8TygTEAAPkcE93wvFzI20qGEgFMQOgRqEGwQIAmPgzpoKp/60FNBtSwRRKI5QGhmOhtFAmhgWo0f+PGsc/VWJ/Kvzh7/+I785/wvP+AQVlrh2v+gWdRX746lt0lw9p7wzJIMWQalgQcqsMM6E2HqQHC7WB0oAlCFtISyFsDVMYjoRuYQxPOs7Olzw9vWbRrvml2SWnYcOz5pI//evvEyUb//D+q7zuTrjqZ0SpqBjX/ZRl3/LmzRnngyMi5gHVRiiNUJPv0hT/HvxeI5TWsAgm4miJeEYEpAo2KABv1kf85P0DXp6e8fXjdwwW0CxEqfCL2xOiekAAjWaiVFIosIqEnsMleHAjQpo9XaE7pKsmT9lw5MHuUwxIgdD5UqUqSSvn8zWfzK+ppqhUTCCKQTXZv1cZ+YOwGRLhTj11siPeyCf1l8TB0GLoYEgBi1CS0B8rpo6qVNDenHthXKaCilFMSFoZaqCzyOfLjwkdxN2Lqgm5OrzD0FKqcrWaMn0raDFPo8ie5FpGAKsjJWXHP/YBWRjJP/jHgucyGsg2IGIkreTqSD1o1zxtP/Cj9CuHwMoYVDZl1TdUEzYvj3n0qqKD7XfsXDuAV6OQJ0L+CtQkmBzSOUJ/eKb6RjQL7QeFr8FR07HJiSDGh37GpiR0GBGze6kEmMTMy3dnnPxUkVqJY6uAA2fCYDQ32fkWxO/Ji2KYe7AA/amjJWVsByPf4gaW65Z4WrnrWspcqKbk6i+IACKGiGEme76V28aRyo6UmIGAdsb0akt4d4dse+xkTjmZUKOCCDUpaRWQakx+sSafteRpoLTK5lzRAaoZVGHYJCr3+C31HtdxEkb1KtwMiZeXC3StSIXQ1X3KTPeEREolPz6nTsecyb0XZCOuCzIUmjdL0u2ABS+CXVrFgC6wGhqa4IRNUmlDBjGiCQStNJp5eXfG5YsFZ59FQm9o9v6zgx8Di8L24RR7PGV7FtDsv/P7oUDKRLh9tkAMSjoUi/MBb9a9sB4SSSs7gBrN3i52HNuWRDdEpHgVxq35AmZ76QHQYtQgDDMdG6xQnRBO+gj9qfew2rhaNHdCujXvXyNa3kKE99dHaKh8unhNkspMe9AxsGLCv/3sEfPPJ5wuQcadh8EojY5VJtQApjo2UA8qZiN0RntdQGA4CuSpIDuERqRD56iVnS5GCBshfjYnbuGfZk/47qMvSFpGxATaWNikyvbcmA1CWntZI4eASiMHcR93HHrj+EVPXOUx3YJmI/TK9ixw91RIK5i88wxYwLU1+ppShdrC6qJiOXAUOo7C1qvWBOZNz0eP7/h88zHheRp7kVBGHdxpIIylXyGtvdOHoRLWPflkQn+aKK3Q3GTmWyNPI+2NEXpje6qUVsgzR9FRMw+wCNtNQ0EJY1+KCMxST5SKLKO/2MZUhTGoKKMgj/zIkJYQMK6+OUHyxNE4EsoE8jQwHFcW/+qbWD9Qthe+Ro3mIq5Gje48pMB6k/hidcH56coDM/He9dnzj1n8ixD60bokr8Cdjalxh5yBCWUqNNfOneFI6M5gODHKUUV64ei/FFPj9pnSnxl5Vn1XCjII2o3FkgyiK/xNN/VetqvKy9Wc+T9PaG8OPas2su/0NYzBBcOS13s2ARPaKxv5KNRkWKpQlP4Ull816qRAWxzuCpirhKlCNLIK2kG6THwxu2DyKGMKUYtx9bMFH/28Ejojbip5Eg8uwLyaLIMikEdpMUexW8heclwPBWuM7ivFi6QILOPeEVsyUMPaiswyJUSaa5fs/udT2l8dKLNKlAzTl4G0yp7bTUZqdFuTx26dodlAXJuXfOMNdGeppY6/M09T2ChhC+17AYWwcdfRnwjdhTEsCjLLxCYzDEq69YxMO+Wz5RNMzY1iWkHYVmpSTNwhSIW4NeJ6lJjOaK8GtCuetkYZjiLdqZInLuCYeGHcCkcvjNm7wRHvK7VV1n2kTITh3EZ9BgbdO+HpW+PHr76GFCFahO5sHCCiw63ZRVZ7mL7LTN5tXWbagCUdhw0h3WV0CHSngeHYLbQMwuSdMX897HW2TFzEdTDSnRD/PdGdR/KzLbpW0sroTwTNsO0TGMTSCs2vXfFGFzRXcPF5GX05lBbyXOHSCJc36M0tNmRk0iJNA9MJ9WSGyZzlJ0qZV3SjzN9UZv/xzv1bCEjXgwjlwQnHLyPDPPL2O4miRlgLcQPDsVuplDKdQqwB/uzTH/Ab33nBX334Hj/+8986ONUgDFNl9WROOp/Qvpp71U4TMhRktQXzqtQBdKOk1fjstIUhe1CqlPMjhuOGMlVun0T6hc8YcSXEbWX1rNKdK7/z+Dk/fPVtbxcqladxyoN0R+iMPLH9AFITlFYY5pHNgzPi1rkW7ww7me75JhWaG6G59efy6cQrUYVu0dCdKjUJw0zoz6CcZKwobYHNufInv/0Dvt6+5dvNa/7GRmtdTRms8Hfvv0HoK7HzUatGIU8ht0Kz8naSlpl0tUXWHdYk8sLtT2kOfqsmoTaBuOypbbw3WY1Bzw2iYVcNYQMoHIUtvze7oljjHAMoKAOFD5sZbfZeFjphmHvF5Zm7itYq2ih2MaU89rRuF4HtuQ8fjFK2uRBqbJi/Au0KzbVXZ3/i0tQvCrIOzF8Epu8rNQhvhxPuX/thJCBcr6c87ooLd9QvDRzlFPrTABL2A8fO1tyfHUsLtRG6M2H90QQddms4wTdPBlAjvk20H1zgaeCuTPx34/RymJIw+i5SG8WCwOjx5TBK7nVzH9TuMk/HbqYx9Um8u7C9O7FUoa1IMGwTCL0g1SiNDy4P0t0+jv+F2MPFHaU5R4qBHmbIHXdC5WBZxonn/uTjqJkfEyS/o4ZF3yTFjwYku2ib4hOWwnlY/d+pLBjz1DOMQyvjic5uhpQxqF1qLBy8mgXbB+iCP7oIA6uCDIeUo+NnzIRUo1soF3HJYIfB4EtJCVr3SO0E/N6pwB49zQdt3KVuFyQKmt3WaD9abJNDQOPaoR/XKtBdGN9Ilwz2P8a33fXx7IY8U3SoSDXCeB7hx05fDuL+tUdOwdQOCO82pTYeD+DWp7gj0cw+pTO5N0bZGFgxoZqxyg1xWQjbjBQjbCqxc0exW+AQwLiI+PYsGDX60VNNtrfOlmxvdYgV7ZV052K/s075uJDGRNWRQl/a+x88/EfunjRY8IqJm0JaVcLW/RY7/x+dSzurXKNRG8PaMZDWqNNKnYxBxQrRjUFcCdM3wvxNRbORJ8Kn33rJRGRfkcD+SIytVb43ecOH392SZwnM0L7Q3GTa20Jaux56jxtPDduxAhvDGsOa6p803tsCqUIwqBBuA+0HYf66kJYVqbB8Bn/8yd8SEOo9kKIU+Pu7X6aizLTj6Ucf6M8eMbmsTuTBD1VSq+NJ4ejXBMR8qNBesHHA2Kd3d41tIq6F6Vu34nHrKS+t0D0s/Gf/kOsyA6CRQtgo8pt/9Be2PdfDKU5vTN+b9zLGkh+1zvsOY8+S/Yt3Xf//vXaT93hILNXXtiD0cyHPDw+bQHtt/DdC8TArBvsTvgAAAABJRU5ErkJggg==\" y=\"-111.782953\"/>\n   </g>\n   <g id=\"matplotlib.axis_29\"/>\n   <g id=\"matplotlib.axis_30\"/>\n   <g id=\"patch_73\">\n    <path d=\"M 287.775862 149.782953 \nL 287.775862 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_74\">\n    <path d=\"M 325.265517 149.782953 \nL 325.265517 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_75\">\n    <path d=\"M 287.775862 149.782953 \nL 325.265517 149.782953 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_76\">\n    <path d=\"M 287.775862 112.293297 \nL 325.265517 112.293297 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_15\">\n    <!-- Happy -->\n    <g transform=\"translate(287.162252 106.293297)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_16\">\n   <g id=\"patch_77\">\n    <path d=\"M 10.7 194.770539 \nL 48.189655 194.770539 \nL 48.189655 157.280884 \nL 10.7 157.280884 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pbacc772c3f)\">\n    <image height=\"38\" id=\"imagee065f18eb9\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.7\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALEElEQVR4nG2Yy48kSVLGf2buHpGRmfXs6u7t3Zlhd0e7y+wuGiTECYG04gQ3EH8M/wL8NdyXAxKHPYDEaVmEmmEeO4/uqq6uV2bGw92Mg0dm1YGUSpWKjPAw/+yzzz43+Yu/+gdPtyOogDseFBQAShuwIIg5mh0xB8BF8Ci4Cj7fC4CARQEB1/qcFLAklKbeG0anuStIccaTyOalMpzK4xIGx18YUScjfvYtlIIsFvjxCkTwINjFCjUnTEZ4GJGhgIItEmWVKI3iqlgSPEBphNzWAKypL1lcG67C9oVS5mtpo+gI01q4/UXm00++YJ0GkhYA/u2f/ojoApISPk5sPv0+dx9GdIL2zoi9o6NhpgRV0II3kbJMWFI8CpYEi3NQC6EsapCWmNFVumsnPTh2KoynTvrVO1btSFDjgzixTgOtZqIWkhgWIIoDKcKLZ3z518qrj9/w9vqY/JA4+4/IyWeG+JzCFLAUQECKIwLBjOjgSkU5CVM3B9kJ05GQNqAZPMJ4ZpwG43yxoQkFcyG7oq58dvuML3/7iudfGNGSkp8fs/1giauzTiPbVc/NECpfAMkOZvW7O2GXcRGCUNMue344iBBOE8NxwANEr6kVBxfwdaaYMlqkCTV1St34zbajuVHirhDH48CbPzmquT97IKhxvtpy+35F7OuLUEAVGTNSHA+CqB6CrVEJiGBJ0cnRAjpB7J0wOLkTdAImJc5IKY5KDSpb4BfPv+Pyzx/49u4jYm6F9Kfv+fj8inUaCOLsSuKz4SXNnddKFaG0gQDImEG0ohQUMcdSYDpOeBBKq7hCaWr60s4IgzOuA1JAHwJJDZXHoFSMII7i/OT4kq+6j4iucNL1PGu3JC0ozmSB5jLS3OcZCQ5ohBH0vq9opYg3ERUhbgse6r3jUaAkIUxO6H0Ovqazfafc9y2ni92B8NkCca7IqAUEYo3YaTVjVLL89/vnLC4FHJiJj9e0egpIPyHF8OurGnOM6DAA0K5WLLsWUsSWDbZIDOcNrnXt2MPN9YoPT28O7wVqNSKMFhGDiEAKhaiFXUm8HdZcfnXG81uv1eeV1HtxtRSw8xW2CLg+Q4qjk6FDPuifqzAdJcqiaty4qimnCCFDuGrIP6zK3GrGnqj0riTwGbGkhVYzo0W+vDtj/ToSBkMMdDIoXlU+KRZqSj0IHvdaJXhoyYtZJpr6m+Raxfi8wckRh+ZOGEokaWEZRgAmD5gLF82Ax1rNNFoYLHI1rLh8c8KLt7UF6WiI+SGgsghYU19soQalGWJvpI0hFshdDcoikGprCgPo6KiBFIhbuHpY8clJzcIyjEzzgpMHsBmxvkT++YufIb854YP/KeS2lvteWJ8GNXVCaau649BdG81dJt4MxIdIbjvGY2Fag8WKkBRBx8deiEMuShdGWpm5rTBZ4OvdKWGqvOdhbNk+tBx9aTQ3GbGq7C5zo57TtqeCZuquemf1vw+0r98SbjeEu4Hl24nu0rFYORp2gpTa4JllL4zQbxveDEcYQqsTJ6FW6avFLbmDGAbnm9fP6b4JpG1mOg4z2akOwmo6XOQxqOKEoaZQx4x3LeV0ST5q8CC0t4XFdSRuHR0da+YNlYqWC7T/1fGvmz/k5pMlP15fcZEeCGK8aO6rXGiB7uvA6hsnDEZptDoghdzpwcJYFErDQZ/StvLw/adnc0FAaWE4FayF1e+r5cldTbtmxwLzhmsxhPvA68sLLrcrlmmiDZlGC6GHGEajuxTEqpeSWa8syUF79gGVtqKYTcgLZ/11Jf3uWaB/VnmVV8by2yrEuwupaDloFkKoFMEgd451hpkQ5g6wLwAcok7O8qpUQ1gcS1rRSRzQKqn6q73FqXombF9E2ntj7sFY6/MzsPm+MK3mllMEm6gFY5XoYRC4Ufy5EPctat87BaKLoJMTt0bcZPqLhtLseTWTVmetmgXXtV6bVoKHuW/O3AHoL6p27QXacEJ53GxpK+80Q8lVv6YSEPFHxKQ46SET+lz7nzTV7vhc2jUGJDvxphbF1D1amf1H9vdPQuyFdA+Lq3pDaSF3UDoYj518ZHhrNJeRcpcYz0K1QC6M81oRAUtKvC+Hvrj35prn71unvck0lxskW+2BbaS/aBjXs7We0Q2DsLiEk88nFt9sIQh53bB92bB5pdgz8NYgGc2N0F5H3p2seXl+V0FwmVvS/hyQrUIz71wzLK4mQl8IfUbve2QYQRV1R7cjy7EQz1q2L+LMP2dxKZy+Hll8+4AMGU8RTYHYG9Yo1jgyKh6d5s4JPQyfdWxWPct2r8IQsdl5BqlGcFZmHLQ4zRdX2PV7LGe0bSEEpG2qU70LtOMx/dkJ1lZ0mxun+/wGuXvAzVAR9L5ByinQ0b0J3P9I6b/nNPdOGJ3z3wr5j411Gjlpd1wGiCiUVomzndkj5gHG40j4wTl6foT2U0UMQBW/vcM3W7RJNHdrmhsl3StHvx/h3XvsYYN0HSw7fNUh5qz/84r00Rn3P2yRvJeiKsh/+cHv+LuTf+fz/Iy/735KtCSMp4HYJ/RuhxQnDtW55oVSulgF9rwuHu5GdDuACNJ1eIqIOeneZzficHpcfdpqiZ2uKauG6Sgx/mjF7kKZjg0Za6vyAHFT+JfvfkKYq02yEEujPHyorL8WCErsq4PU0RhPI+NxZHFlhM2ETEa4vMH7HoohqyXT+Yq8CoSpimdpFTtdEXKBfkDGjJ11jMdhLhLBWiNslTAZ9y8DeIMCt7kjyexkp07Y/EFGfuNQjPS+R/uER0UKTEvFXrWkB6tnzMUFqGCNUholrwJ5USvJVRhPAh6WtCkQ3z3UNW96rFG2LyLDs8rfsBPe/Tww/XxLHwt/+/I16zBU1HS2PZIFGQ0Zp/o3tOTTJWE0chcYjpT+TOeiaB61y55o2fx/PBKG48DDD5bgS6RUN5E7uPsY8kkm3QS6S8hL+OVHX/HT9VtO4haAJAWXWS5kErTPeAxILmD7HsPBfVI4aNzBCc+x8kRoSyOURe2v1kBZOBbBGse7gm4D6VZobqutimKcxC1JCubKQiYQn0cEBlJKPfWI4G3Emzpckdl1zqk/9Mp9kHvdqUIt5EVVeg/1dykgCjoK5EDo68k8TI64sM0N5kqQTJDyiJj43FBlf5wWPATK3Mxl1rMDclI9Wp3sPAbgUq2PNRymRTXVcthUaWuAoa/r6VihPosbBkuoGAudqsBagOnYDscyRA6WGgHcEastp6LrsG/w+54b5lFCgfRQr3uEvJiHKwEs+dx0H/9KK/zs+A3fizdclzWKcaQ7XGeB5XjC2ojelIqcWZ2HZWCea+1R8dkyWXhEy8KMks0oGZAfTYAHr/dKDb7ORJxpDb86+h0/Ttds7T0qzkoyluaq9KJIyRUNq1zTyerRzeXg/S0+HS/N0535mj/h3uPvlfwea3B4VYAwOlKc6cT5ZfOOU42UUHeRaPDgNbB9zXtQZMpQDN1OJKiH1vgYQO72XKwcs8j84seA9mtWc+m1CLIQt0JzD3HrWBTyq4EjDfx/n+gCq5Oe8XRJd72BnJFxIgwjuknE1dnjqFKeVNyMiMcqB3vC+xy0R6+8EsCEOMDiCrpLI4z1GY2Oeb3HnvIaiFIgqLG7CCy+bZBc6vy0GFh1taVVpKunnDBWUss+ilLHSU/dLjpft7mqB2jfC6vvCmlbR5+WlHYx8uvdKyaPlBnqhU7EnSB/9jf/6P1JYHFbCDt7VPL9IDhqHV0+Gfru9euQtv1nlpyn12UezGiGMNr8e11rdx4oiz3M+wdg8d75P/GUMs6Lz+SPAAAAAElFTkSuQmCC\" y=\"-156.770539\"/>\n   </g>\n   <g id=\"matplotlib.axis_31\"/>\n   <g id=\"matplotlib.axis_32\"/>\n   <g id=\"patch_78\">\n    <path d=\"M 10.7 194.770539 \nL 10.7 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_79\">\n    <path d=\"M 48.189655 194.770539 \nL 48.189655 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_80\">\n    <path d=\"M 10.7 194.770539 \nL 48.189655 194.770539 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_81\">\n    <path d=\"M 10.7 157.280884 \nL 48.189655 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_16\">\n    <!-- Happy -->\n    <g transform=\"translate(10.08639 151.280884)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_17\">\n   <g id=\"patch_82\">\n    <path d=\"M 79.968966 194.770539 \nL 117.458621 194.770539 \nL 117.458621 157.280884 \nL 79.968966 157.280884 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pa60e015aec)\">\n    <image height=\"38\" id=\"image0e30e2de13\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"79.968966\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAJBUlEQVR4nHWYvY8kSRHFfxGZ9dE9Mzs7t3cHnHQYgJAwkHDAACEchI2Hic7HxoW/DQMhDDBwEAbOHvtxt7e70zPT3dWVmYERmVW9e9BSqbq6szJfRrx4EZHyq8vf2vSzHzBdB84/3b4wvjwgx4SUAmYgsg6o300EFFDFgvhdAPX/JRuYYSqUPmCdUjolbfwqdVkpfjeFJ39+TtRvfMTb393x2Xf/QkYophxLx59efY9///XbDK8FPQEGKJj4y9S7KViAPBgW6z0AYqCgkyBJKL1RLjNhm7h+tONHHz3jF4//ycfxDoCHMnC0jifhnj/+4TMiZqSi3OYNANmUr+YLvny4gIJf5jsyAcGfre5SqjHbn2EScm9YdDAUQQroLNhBySFQihI1c5svFgccrWe2QKAgBSK+eTrJZFOQQjHllKJbKAKpDrJ375IruGl1RwmQtkLpoZzcmm1jOgtZjKtx4kn3QCdpARYoFIRRZxCIiKBidJIdnNuEUgTDF9I6uXOmgjqzpGQQM/+tCHEPZYY8ChbB1Jx30efYdic+7O4dRANWSab4PQKoFgadCRT2ZeCQO+ZTpFHd5Iz35vRpQC24Va0NECjRfy+dj5UkiEJJwKyoGIPOjLICO5ou4EwqsKDGKDOjzswWeXm8Yt539LmCaP4uKxg3a3VfPAuIAHmE+cJf1Bk0+WIAMim7aWS2gEqhl7zMdbKwPMdzU3aSuM0bnu0eIfuAJFks08BJgrg3ugcjTobOPqDSkxKrTJhx90mkdG7REiFtAVFevH7E/Scjd7rhcdgvlgLISAtoMBNOFgkYz6bH3N5uiXeKzpVLZxLRyG/qIHIvlCgL54Dlt4uXmeGtER8MyW69MEH5auCL0xUAD6XnoQxklKP1HEtfLWbGcY7c5g3FhBeHK2zXEw9COK2LLZqlkEbhVFYwYi1Cq/Wq6OYe8nBGBQEpgszCP958wjf73RIAGSFgZ3JhxjRFXkzX/Icbnu5uCHdK3PsOXcU9OttiLqCgp8rB5gmRhfhNaE0rprSqezgKT7+84W/jpzwZHtiEmVJJeNNt0GQOLM+Bl9MjXk9bbu827sKmUazZyGR1axNXnanja9oZYN6u4yyAiaF14fZe3vW8OlxyKpFeE1EddbKAZIgUo5wCz/ePeLm7Yr4d2Eyy8qpKgyYoVVS16lc4QpiMbm/+fzTmrfPLooAYVtyPOgta9bREkCy82W+YcuCyP9FpptfMFOJZVCbh2Ztrjq82xJ0jNq1y0KKyqXed3MlcAQUhd1B6yINg6iSXJISJRduQVTZIwt1uw7wNqBiXnYFmtC7owIpwvB3ovwroSRayE9wV70TmmXTkUUhbl4PcgXWu8qV3AMMbcZ4GsN6Bi4FFj9LyEDnMShcz18ORqJlOm46ZEe8Cpkp8kK/JQ+OVR1uLrJqabBXUvDHSZcE6z/bDy4gUmC8dcBo9GDSfWc1AYkHFUDF6zUTJNVemRHcn5H6NGqgp5UzN3Yqr2koWznKwczELbAw5qgO9MMpgS9aQLJQWFLFKS1ZS0RoAmUGTpyTLhXCs2tMsoysnnB/mFtQzy5ktOXMR18oP6wrp0pbxrnWChVqrvSfWpQip7r5bLIYTNferid9XeclCS2lt8RLPFij1e8uhwUANmQJ6FOet1dTUmwOMrkUSDDPhkDoedSuJIyUTD0barBKxAGPVKsl4Jii1LOreVfW8MQeYBTkp3Vulu/cSSE/uzrQRjh/D3Bdk8JC3pJymjsPcodvCNpwaMFtE0kJV+Er6RvJ4gPhghAk02ULg3AtpA9ONrJpXhLhTts+FuPexzcKmngGIhvY+ST4oZR/YX3UAKFbLnpwJk3npa3UCWy0UDtDvmoh6MShmmAianTt5hHTprpQsdHdCf2eEyZZAyp27s98JeYjkaIQho0dXg93dlqebG75/8QWIVI7NvmhWqQs7b7odjG+Li2layxuK1LRkhBPEPYSDkLb+ftx7RtBkWBCK1kRfjHgvjCrsx0CJBU0uxDwfeLW9YPiWJ/VoZpXgrjEls8qAuKqL+AKt0tDsubHlvZae4oOnnnCyladmSJGzyteQJOhRyV30VDXD+Eq5v77g/jvjWsG+n3ak1ltpw7IjzayTY4QqEU10dXariXmdVjq3sjQ5qTJTYm1Ueg8WqY1OmED2gctwxBRURN6Rh6ZNJh55aSvkjZCHlp7OCd0KRX+vgfeaDdJGsUaPsw3n0bC+LDqXByNtPCh+OH5O6YSIihOzWSzXq5YsaQTtnNTxwdAkYKVGZSsGHVz7lB7m4JspsUZ8laHS+YV6z2mdA5sfF+IHR670gClEGUema6G/N1KzShay+QQmnqDpXIemDGJhTV9VXEtYU1dxIWK+hOOH1b3BM0EeCmWsjXD25vjHP/kXv/7w71yFA5/GvQNbtllrLvJa9JnWiqEuuuTKsyJw6SsLS+qQ6EBKD3lTauPs2YBYg+0QiHdKOAhRCj/dPAXgA42V/CIecWKEuTamJi4fS89VI6SJ6NlmWiNrVd/a8UHjrWTXR2G1KFrBJSf98/0jOrfJsl5E1X3eIvJsghZRXgp54pQia42vLF22FFksKvUIwdq7/mbVR0/mFH8Wg7eHkSDiyl4/1WIeYUubf2aR5W4soFpC94JC1n7g/32axcXr/wW8CSYw5+AnWSJ0Eiow1miR4mJagpdB50cBS/6sXVOzmL9vSzdlcubK1vItTcxZKQSUzsiDQFE6UToCWgdE8JBuYe3EeHe3ntx9UqtlEGLvVCFLxdtcHGytVNRLHeLqKpNakm+MAATcWlonXFzZxFXMkCweCEFg4J3JhKraDUSzRnVXm6tZx9S8PmtROSv6EAhTnUD8UEfRBdRisfVYhyob3khqMPRUMwNC0dUKS3ncQKmtgNpz8EvUkFALzKToJISjB4sFuBqn91lJZJ4ZvzQ2r43ufmW1RSEPwrzRRa1LlEXTvOOWlfTNpeG82Fy78fbpD8L4yiuadtzw7NkH/P7Jz4ma2eqJ8U1Bfhl+Y+HmGuaE5bzOoIqI+CGv6HLY6yDqb8vYr4ek/I+DZAArBVKCYnVuQS622Dgsz3z+gv8CvRQ77/BCDpgAAAAASUVORK5CYII=\" y=\"-156.770539\"/>\n   </g>\n   <g id=\"matplotlib.axis_33\"/>\n   <g id=\"matplotlib.axis_34\"/>\n   <g id=\"patch_83\">\n    <path d=\"M 79.968966 194.770539 \nL 79.968966 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_84\">\n    <path d=\"M 117.458621 194.770539 \nL 117.458621 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_85\">\n    <path d=\"M 79.968966 194.770539 \nL 117.458621 194.770539 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_86\">\n    <path d=\"M 79.968966 157.280884 \nL 117.458621 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_17\">\n    <!-- Happy -->\n    <g transform=\"translate(79.355356 151.280884)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_18\">\n   <g id=\"patch_87\">\n    <path d=\"M 149.237931 194.770539 \nL 186.727586 194.770539 \nL 186.727586 157.280884 \nL 149.237931 157.280884 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p6dec7f012f)\">\n    <image height=\"38\" id=\"imagefd594e56c2\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.237931\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAK2UlEQVR4nHWYT48kSVLFf+Z/IiIzK7Oqq7p7mmF2d2A02l3Nag5ICDhxBnHigMQXQOKzwKfguEeEFgkkvgBiLsNhRwO7M8vudHd1dXVlVf6LcHczDh6RWb2ClFJKKSPczc2evffM5Y/++u/t/geOPAcAMU4fhbP/Mbo7xWVDyvingDmhNII5QAQAEzAH5sFEEDNcBlFw2TAHuZXxXRjOhdLW/0tb984zY/ULCMOZ8Pt//gv+8oMviFLYakuvESfKN4en/PNP/4T5GyPsCv6QwcAaR5oHdO4oraAeLEBphdyBxhqcqBC2EA5G8wAuw7AS0kI4PDdWP77h86trZj7x+dmvaV3ik+Y1f/vTvyGIwpvdgi+3H/HD+Su+OTzlbVrQusx/3HyP9p0hOmVKMC+U6LAgiIEUQ5yg7pRoP0BpQFtIDjTWjLZ3RthDnkGZKal4vrp9ThMyL/crLtst/909x++FIAXevFvy9fw5b4Yz7oY529QwC4nr2xVXm0clBHBgXsAg7BWXBHMGG5BSM6VBGBbCcC5orKXXIGio64jWpXbbjtRkvI8UdTzrNjyNDyAQpv2yOna5IY9Hv96e4b+e097nI+4syDE+MYMCYVBcMtxQEANtHLnzgAeB0tTgXLYRmzUwyYLzhXnXE72ybHuSejalez+wMga2z5GheN6tF6x+U7FlYzzmToGh4ErNpgVBxWO+AnvKKFKfQQSXQL0cAwsbwXnDCaRSk7FJLV9vnuP6MTBTYVAP6knFM+RAuW1p7w2TU6ea1IWnzYeFo0Qhz2qXIbXMGmvgYiC54tDl8UAjLpsHYZ88zTKzObQswsCny2s+nb3mi9mPThkDsDE1+yHSvfTEbT4tZlYpQCHsC+YEl4QIaHQVhw7SwtOvhMOVoA2ELbTvwA9GifV9KRB2UNYNyxc9AMEVXh7OuUvzCv6x2XBilDGw3UPL5fWpG8UMDFxW4s0G2feQC9Y16JMz0rKhzBwahTSrm1/+PNOsM6XzxyzrhUNsDC4bfuu4O8wo6lATsrkRMmMpnVNan0ni6YvHdgE3TCR5Sj9m6LzBzmdIViQVJBWam21d0Hu6LqCdx+8z4dtraCLl6YrDizk2EvHUlS4LRR1FBTWHmo6JGAMTZwSnqAmrpud67/DpRBE1Y4YFx/Cko3Se0gkm4Aq44RHXWQV8aVsePv6Y3AquGC4xPiMjNEASHFJAVVBGrnN5zJiA98oqHvhmf8mr/3zO/LXDZcWlegL1DosV2HnhyV1tApdABkXUEK1cdXjiOVwKeTGWZA/xoWYpbg2XDQ1QEHwv5OzxXul8YhEGZn54ny5u+zmvvvyA7/9rYn8V8L1WXoqnuk88ZFI3ateF9u0BSWXkOYf5OWnh0VGqALQRmrXR3hXy3FEah3pBG6ONGaNifOEHolR6CgClOP7r1TMW3wn7q3CUkNI4LIxY03rauFF8P6b9zQ7/9gE9X1AWTeWrbMzeKuY8pYPmwZjdKO27NGbcoWHU0izcf7dk9l3gqz80nn74S6KrhwwmoMVRblpm13oEe+5OmRKrgmze8AclbjKl9ew+WuBeVFuS5o7cOUoHvodmY/hbY3adCLuERk9ahsp97YRdmP86EB9gvZ5z83TBi3ZdSxl6o/lyTvMAPimYQRTSXDBfy3fkORH84JjdCAjsr/zx9MNK0ADp3Cidcvat5/kXPX6f6S9b+gvPcCbkuRzf0WiUBexfKLYNvDvMccsqXTVjI1NDtS6lmayLjKI8eqwxe7nzLH9TWLzOHC48h0tHXhh5YUgSzr7xPPk6019E9p+0pGX1XRrrWlO6NNT1Zi89w5Pa1VN3Vh5L0N7XbJk4mCyMjWAPj4LzNXiNgXZtqK9M7gbBzqx6RoH1x4HDU8hniokhpWqbqNQkjM9Nv6XANjXH6jg/GKtvle5tqdwlHEV7Co5RRqru1W9ewOGJnIR65Cbzxu5D5eETJS31ZAC8/dbC1ZNpYxVzBtu+4fPZr9BgBJeheSjEh0ReBPqlP+LKFcMPE2lWvVNfy1I6OTbHJPSSR7lRCFsZTWa1PqWDPIc8twqPVrFZAedhY4S9cPdyxeonh6qxdfXK7G7Q0a9XG+zyaIvXheZuwO8GEKHMIum8IZ1Vd9FfjIB2EPZCdw2rX2Xatz1SFAuOtGp4+N3A9iMhLbXCxRsWFRNHewuSA/9y/xPM2yhJpUqK60sdOlRo741mnQm7UoPOis7icciI64GwEdIqcngS0aaCNz7UoLrrPaJG6QJ5ESit4FOFgbaGjW6WLMSt0N0qosI/ffsZLglBzE7eHasYMnDJaG/2+Os1pAQhQCnQtVgT628R8Oe4Eo7lnl0bs9d7ZJ8Q1Sr2avjBIwp+cAyvHLsXwv4Hhjs4ujd2FPb9zy9o74RgTtAgSCpoF446mObCcDUjRk+4vod+wIYBVJH9AcsZ6TrcPhO3Rtg5tIG4K7htj6w3WN/D/kDwHrm8IK7mIML24yWHq4DrMu42EHdGf17jmL+sBwwlCptPGs6dEA6laqKN/ikKeRHpf/gMV4ywzfj1AVlvkBixNmLeHY0fu9og1gSkbWDWwofP0CZQuoA2nofvN/QXwuFpZQB/EPygmK8Wyw21xGE4E3Z/ukF0weVXhbgz0rzSQJ65Ok/2SplVcpNDjx16ZN6hyznDRYNGqY2yM1yq9kjnXXW90ZPOW3bPI2k+2m6Dsig4A38A3xu+B3NW7ZSDoBE++52X/NJ/iqjRrgs+OXIrDGeOEhu6d4W4ybg+o8s5PDkjn0XSWaA/d5RYMVla2D0LmJvRvTkg7za4lIlAFwQIHJ44+iuDTtHeIwaHS8/+L+750bPXdD7z7//249qVt4cFzX3tyjgKggZPaeFw6ejPBZcC0I1ywonDfOUtGweRYQlpEThcLmjXMzDwg1I6x7AUtt8z0gcJ2Xjig6NZV0Z4ttzwD7/3M7wIn03DyLvdjOVubAudphrDJUGaOp6V8EjnpsF8st32W/Ll67D78L3TeK4tDBeKnifoPd0bj99Du1bC3rjZLN5TmyAK97cLrta5zo3TeCbVUosK5IlSxtlyNIxT9mz6+pPYm68sX1rQmWKLDEWg9/itI26guatjnUs22mtlcugBARcL2gTsIEi2UdtktDlUobbRqvjaTdg0Y06qW29stKl2ZgreFXAbB5umym5bHciU9dzVUy264VHGBGcC5+c7htXkg98f26RwZGyXxu84xE5kfLTcjwKdaGcS/in4/+ud0grLtsdxKn0Qg6F4ZqXeP5h3718FPP5MDkLHKzGxOiRP2cnTId73caWt9gh3mqQmo+FGR7OMPYpSxlS+N4lL0VGOFFGPSRXnx104YUqDHPGkjxtDgTH5oo8xV/VRdLy+GmP0I6Gexf4YFIwO1omNGzlcn/F9GIW9ortiq972mJzKoGF0uq6WaZqeHh9Cg6GNYY0dvZ3rBb834t5GhYE/u/qyBvrYwc7bgbQQLDhkq/jNQFwEzLnjdab5armPnTcF11TGZsKU8l53ltYgGCZVsMNO6N5C3Fa8lUbYfSB82rxCzfDjtB5cgje3Ky4MLDp0VinW94UQBI1GRurCSTAbx4MRp24ARnp5XD6kdrCoYIyXMTshbqF7p0fTKWqYF/5x/Qd4UVrJxI0gf/xXf2dp7og7xSc7dtB0wfsYV8iplMd++H/65IjLR9dYk7t1EyWNz2gU+pUc32nujf8F2SZBs08XSOkAAAAASUVORK5CYII=\" y=\"-156.770539\"/>\n   </g>\n   <g id=\"matplotlib.axis_35\"/>\n   <g id=\"matplotlib.axis_36\"/>\n   <g id=\"patch_88\">\n    <path d=\"M 149.237931 194.770539 \nL 149.237931 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_89\">\n    <path d=\"M 186.727586 194.770539 \nL 186.727586 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_90\">\n    <path d=\"M 149.237931 194.770539 \nL 186.727586 194.770539 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_91\">\n    <path d=\"M 149.237931 157.280884 \nL 186.727586 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_18\">\n    <!-- Happy -->\n    <g transform=\"translate(148.624321 151.280884)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_19\">\n   <g id=\"patch_92\">\n    <path d=\"M 218.506897 194.770539 \nL 255.996552 194.770539 \nL 255.996552 157.280884 \nL 218.506897 157.280884 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p7f156ac035)\">\n    <image height=\"38\" id=\"image7848dd5a6b\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.506897\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAKQklEQVR4nF2Yy47lyHGGv8gLyXOpU5e+2NNuaUYwRhtpp43gJ7AXhpd+Ba208HP4YbQ0IEPw0oA2ssayBgM1PJppCTPqmq6qPheeQ2ZmaBFJnuomQJA8l+Sff0b88UfKT//131UFRAFVpkO9oAIIqIA6me/nQ0AdqIcSzv8RBTcofgAUpIDLipTzX9VBCWLXCGkh5M4+X36jBLCBpChUXLkRUidoYAaXG3su3n5TIuSFkjvIraLLjMQCTpHvGpo7R+hBsgHzJ4g7A1iCkCOMF0JawOlGiZ9s+ftnt3yyesuvfvETA+aSgSoBShTGpaCeefbzVe2aWxg3SrooaJdBwMWMZkd43bL+GtyoxqSvYzlBnaL1PVIMtEvGzMXyCMBVPKABggqMCzFGKq2ILYE6QQENkBv7Tj2klZLWBbkcWCwGRKA/NFz8T8v1FyOSlGHjOV05fFHKtIQCOQolGKASJzLgxfod1+2Bl81b1GGMlSiUxmaH2LKK2rKllV3VQ2mVtFDKouDWI0+ud6yagf3QMHy+4fL/E5IBEVwGSTap6SjBwJVgSyBqz5Lhtl/xYvnA0p2ACsyi8QwINbDDxtiZgr60BspvBjbrHifK6zfXuFcLNl/B7iNPbm3ppBgwP1jQi9rkcmvZU0Sg1PgbhIe+45QDr4cnuHECVmNHkmE8XQuna6W054QojaJtgabQNIkxe3a/u+HpZ0r3NhH6ROo8w2XgdFmTxxsbzU5JrZCWlnXvZWdlbHe35PXmiuAykiuwaXYlQv9cON0UNCoy2tLiQBeFZnMiZ8dx17L4ouUH/7kl/Ok7EAER4npB10ZkSDAmdNGACOmqY/uyRYrgT+fJEur4ACfHUDx3wxLRCkw9DFfC8UZJqwIOJAkajSVpM7FNxJgZHlo2v49svswcXi5xf7MgHDJuKLgxI1nR6CnNktx5+qeR440llxvBj2cFwFX9q+/bDw3BLY0xdXB8IvTPlRJtKpKhdArrkaZLtO2IF+X+LxdcfB7pbpXjlUPDlPIeqQKq3jRvXNnS5YUR4k4QDuDHqm3OAE0KINmoS8UZmephuFTyoiBJztmzSnSrgRgybUy8+faSy99GmndqsuGAAm60pFEvnC6FcVNZCFCCGhsKbhBLrEk59Cy+ouBOwuHUoCpIgTCjVUGDokFxm5HLzYEnqwO3uxV3nz3l+kvLsKn8SIbVt5lma7qVO8/pKtBnx/FG3stmdxSae1tGyWdwbrCKkJaQOyX/9pJdgdVDLUkIaFMgKK5LxJp1r75+Tveq5forxSU1KRCbZTwo3e0R149o9EguuFTwp4g/eratUIISD0J7pzRbRUXm2jrV3Hm8rbD6WumfCygExNC6ixEfMotupKiw//MFF3/wdN8puYG0tD+4bDN1SSmtp0RPbh0aHG4oNPcDLkVKDKiD9l2Z5SE3ivLIHARmSZEiHJ/B4XuJ5l0gqAi5UVbrI11MPF/t+N0XL7n+zBF6pYRawH0dLGNL1wrb77WUIBQPeSHmEjoDcfFVobvP5NYxrNw5LqsjKdHYQy0jJdt9903AH9WyslwlPrrY8vXdFQ+/ecrzzy2OxpXMdXICdg5Yq3mnG7Hkacs8++6Nw4/QPzGxzd2ZmSkL3VjHfJQMzYOSVlbOgjqIy4FX3zzj5pcduYHj05qd/tGfJ18WIHc2uorZl7RSSleQQWjuPc07ZfvS0T9XNFq2Sy0/FHBJcENlsJ4lWsXJC6V5qAI7HhqWf2jo7hIPn4TZc5ld4b3DdKpGrZ5TXYMhTwtl/xJKVPLSgktqGZJREAfF6exUtFYWN5g6uJMgWQmiEG4j69eW3qU51zOp1eM971S1SMr5d/4oqHPgTG5yMFbi/aNZyaMYqxPOrYKfRN0Ee5psQCE+CO1DIjdytsKjnQj4k9I+KOFQkKIMF57cWIwdo8wxQg1ifzLdau+VcDSRtUogjGsYL5TSGCgNOssGBUJvGR9cVrq30DwkTjeRcLTZtHdKsy+4UXFDIeyT1cHGEfpM8cLxaWRIJswlKv4kxK2w/FZZvsmEfa5WShmXgeHS0ydHWlUgamCo4JotdLeKP+lkrY2ZUuNHg6Fu346E/YgMyQpz9HUZFV+U0Bf8qVrnRpGdsHijrP+ccENB1EpVaj1p4Yzl1sIi7Ks5XYCpm9VT9dbUhBKEtz9W9h91PP3fTNwrxdd6tRtw93vkNKK7Pc47ZL0ym6NKeFhz2lzOLsYPQrMrtLc9bm9OVKNHvYfgGC4bmm2g/MlEdvt9x/771jP4o5hueiMo5Ab+8R9+w8+e/Rf/8h8/Z/N7m8lwEnYfr1i2ATdkSJfImK0jGROSMrLr6e7XhD5QGsEfIfQFdxiQXQ9OYH+AQ4+sVnTXG7pSyDdrDi+XZhaosXWAxV0mdQ6VSS6K54XPhM0ALuBPlp3j0rF/0RJ6xY0Ffyr4Y0JSRMaMOod6G1SSo71X3KCWoRdLShvhZgNeyI0nd4G08vQ33pJhrai3NkwdqEj1c3L2/J148uho7hUN1oCCEncGyI0F349IKrUYO9JVy7ByFjN9teYC2noUT2kDaR0ZNp7UiTW4UsX0Bsa1zqYUhcMz60X9oGdg25Jwtw3NrjCuHDK1cVP89CMlehyQF5HSOPpn0Yr7JL4B0tJR2kB4MOchqUBp0Jto1cIJp2thuC5WFbLgekfcT9ppETsD+1X/MZdfyHsd+fFGOD6J+KPihgb1tcaFSSBlNoKosXzwjtQuaHYtYZ/xYzFd6gvFO/Z/Kxz+rlgWjw7fC82DsHhjVWIS4RnYr3c/4OKrhAbBJa3tltRG14RT5VExL+cO3Ua0M7fCcCmod0CwilHtdFpB/yIbU6MjHITFXya/luv7xOQCoKjw6eJbfn3hiduMS6Zt75UhrSubzyVlFknFOqnqs0qEtDS7rsHiCABXBxnr8r0T4k6JB2VcuZkAN9VKgE+bbzheC3F3jqvJojy+Fypz007Po9/O7rQquRsFzeddopndWnpCb/cq4Ap1WwJUJ8YQPo13nK6EzR9rMzH5purRZyvszqBmlrD73FTXEGwGkqxuUs4hMAGTYsYyd0JK1hS7DKlaqgCQVfB1CezlUremzsvDNONyvuqjz7V2PV5Bx3NSzF33B2Op07oDVAlXKHK+f7TlUXUFW2MdBYnmpUrdi5g37h7F2xRfYOzMXdBsoayzmn83Mf+BI9ba/BYPbt7tUUcE5OMD/uiR4s36JNtkm8DNxvFxjPm6pDOAczDNRlAesVXZc6N15i4pUtS2p6KQ2+pwJ7aiCP/8w88Y14H2PhOOammues62YGdusZ3EzjZeptgqkfpcv29sMya35r/UKxTwA8QtxJ3iT6b0LukcRgBBEvz3l5/wb/JP3B7X7F54rl4NuNERjoCY6BYv1c4+lospKOrzNM0PWaoZMplPf4T2wXyXS2qNtBPzfjUUQjwo179c8H/hR4Blx+nKekKXrbEFUNHzUtRDP3ie5eXDzydR0XOVmKw7YiIOppntg1WevwJYmgIdhoRHcQAAAABJRU5ErkJggg==\" y=\"-156.770539\"/>\n   </g>\n   <g id=\"matplotlib.axis_37\"/>\n   <g id=\"matplotlib.axis_38\"/>\n   <g id=\"patch_93\">\n    <path d=\"M 218.506897 194.770539 \nL 218.506897 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_94\">\n    <path d=\"M 255.996552 194.770539 \nL 255.996552 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_95\">\n    <path d=\"M 218.506897 194.770539 \nL 255.996552 194.770539 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_96\">\n    <path d=\"M 218.506897 157.280884 \nL 255.996552 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_19\">\n    <!-- Neutral -->\n    <g transform=\"translate(215.106099 151.280884)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-78\"/>\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-108\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_20\">\n   <g id=\"patch_97\">\n    <path d=\"M 287.775862 194.770539 \nL 325.265517 194.770539 \nL 325.265517 157.280884 \nL 287.775862 157.280884 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p0c5a005c2c)\">\n    <image height=\"38\" id=\"imaged7d15c74c6\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"287.775862\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAKVklEQVR4nG2Y2Y4kSVaGv3PMzN0jIiMqK2uBXqbZ1EKtkfqG4ZJLkBAXvAAXvA038C5IvAYgNJoZqWlmuqa6q7urKisjs2LzxcwOF2axVINLofTwsHT77Sz//5vJX/zjv1j/RADQCXxvuAF0MsRAMkg2AEzAVDBX7gEQMJH6l/Kb1p8yaCz32UFqYVoK2UNuynMdy7zNpszrhjKXTx0cfrFnNh/Y94H0w5zV18r8bUYTuEPGDRkxI3aO3AqpUbIDsQJGMEzBQpk0zoTUFWDNe0MnmBZC/8wY/6jnzz59yxePfmTInodpxnZq+fXvPmH+dcPNVxkT8AA+JD67vmfdz3inxvh2yexOIBrHy0QwJ5gKkgwfSyQlgSRDkoGUaA4rx+GZkgOkRnCD4QZDJ0HWDfFjJVv5PAoHln5g+2nLS3/Dm3nL6hvwJtA1E5/M71EpQF4/WZC+lVNYj2kqAEAoqcZAp4ymiwWoEIKQ3gvTXEDL/7qhpM2C0WhiyB6VTMyOhR/48uYVnz96y39cf8r47kmJGECrkc5NBM2lRi5ryEmpKTnNTw6lruLCE1shtUIOR3TnsZIMyeW7JDBnRFNUMkEyzhn/9e5Tvvuf58xeOVbfZDSmAkw1M3MTCz8iUkJ+evk5GLURCigTChh3bgbJEDshzSD7EqXuFsI+kxopqRyFzdCymTq8JvaxIZmg1yP92JIbZf69FWBOjSCJhRvZjQ0SQczKZB8AK6uXBH4wZrcRGTM6RmRKAPQfL0mdMCwd/VNBcgGWg0MnCJvSstfNgWTCzE38yeIdhycNt3+84FevPyLePyrAzIQhe4bs2Q8NYSsnujiBSoY/JNx2QDcHGEas7yEb0jbQtSDC7FsDM5abPdPPnhDnvi7Koclo74T1w4LmDyNj9ngpC7odF/x2/RTVTJxR6r2fPPfTnE1sOewbmveVu6xw0jFyknIBdeghZ6TrkMUcZh0278iLGeYVpkh+d4f/zQu6H7a1m2ukd4a9mhWuksTduOCrzR+QTfjy6ff89c++InXgJcN+27KLDdmEvA343WWoaj07Ic08+eNrzCumgqYMx44UASv3smiQJ1eYCoiQgxZguTbanfBy95jPFmvG7PjTq1uehw1OMk/9hn8LhjeFbj7y51ev2eeG/9x9jhsNTZdRq8XeeHIl0ezlNJlYYfbjs9RCXAh+b7T3Vn+XE51Ihu8213y2WPPz5Q/c+B0ACSFIkQpvCqt5T6cTv958RHuraMwnGTrSgmmZNLsCzFQQM9xYyFPMiDOlv1amVRmjo9DfCG40JFap0iJTty9u+HeX+Gy5Zhn6SrjCMvS4UfAa4fXra/6VL7ldL5kfauoqix/JFanALqLle9BohF3E7SbcsiGFQJwL6RGM1xA2RQs5/q8rFOR2yv1+RnCJOzcnVWCLMCJTZX7xGSdG3IUTf52EugKi6iJWihiD9iHRvhtKZFtPDoofjHZtpK6kv7sz/CEzLbQ8qxqrAwx9YNc2aGuo2El5oGpl3nlebZ8ye+Xxh4vCp6zQ3DmKmgzXZxAhzhR71mEKsdNCrl2NSA/t2mg3qZDwUQnq690oTFGJqUSqdGku9CGlY2lfe65eQrPNxK4Waa2r7IvUHF9sSdAIbswcbhzTQmotQlxAXBipNa5eCN06Ma6U2ApxVmuzvkdH0Nct9warbkA1F9WpyL0maB5Kq08zQaw4AskFWGohhQq2vniaC90aunVGo9I/FqYVTAsjN0Z7V2zTuFL2z5XUcdZao3Y8+L0w3jcMzx3BpQool4hhELaGH4xUqaBw14e0gJSomCsmr0dp3+eTKSQDaiDFf/U3yvAI4pWddNQNgkTIFWCaGTijHwNXzciUHfvYgFWC1bEWdS6TFravNOHrdz03hHmYVpA6RRLktlCADmUR/dPM8ISTAZBUMnHZVNkXjnRbpR8Dj9s9D8OMuR9rjZnhphLe1JQIHRn/0iJLBqYzSC6skY6QQrXRg2CU+/ZOaB4MjSXah2elBrOv0aKk07nM83YLwKNwKFREfcnRM/300gHCrhBps81gkBthWCmx48TqMjtHw++F2Rtj9fuJ5mHCqm/TGNh+IkzPM3YVYVLs4BhHxyEFHoWemZtqxDK40Wq3XPiwGqmwM+ZvIu16QLcjYkZuPM1Nx7R0xE4ZVrVRmhL57hZWv490bw7oYcJEkNTibjySBQsZbRMWMtw70o9zfvfkCT+//pG5jpgaWlJhZxtNZfOtMX+dmL8toNxmQKxYGt0eaH/Y0L0daTYJN9Y1ecNvhcWPifk397i3D0X8H3WM1w2+N/wB/HtH7h3qDAHmr5Rv3z4G4HnzHlPQUvR1M1Gx6QTdOrF8sWf+2zXublfpQsmLlvR4ASKE79fMXu1oHzJuLNro99C9m+DtHWQjzxumZSA3ghszj7+eePpLo3vZkHae9k5o10b47zlvhitu3BZztcaO4DRVEq1MPq0a5CrUtFbUyXB9hHGCKULO6GSEjWEihK1hTpDVEgse7SP+4IDqTEIhbarM6VBqc/nC+Or2OX//rDbFMX1idWAskUutMD7yuD5j7twV7pDQmCF4iAlrPEiVoGSEvZV952oOOROXLeMykDphXJQ2zw2kpoivubJPcL2x+W4FX1AJlrIFEys+X3KVGA/jQmmToaMh2WjvBvRhD04hG9YEUueLjMm5Q6elwx86wn2P3wxINsZVqKqhRZ6CIWORt6NDDmtlqsLsTSF1Djfmk3OQaqlTA/1jR9gbzUMkeyU9X0Ld+MaZI86VaaEnB5I9DEshti3NTaB5iEgyNJVSiTPYfWykRcIdlPbemBYwXgnmyqbIAF+kRtCp0IbGIyjBfHlRnAnDKgChuFY7r5LjR877A4A0E/obh37kTnvL1Ar9U4jXsQQhCsO18PBFhCbTXI0stNgoX8Q04XexbjiMOHNMV0oUIUONDh9YafKxNu0M7ChjjtPBydhVRWmM3GSsKcUd1g6/E6YF/O0vfsnfXP+KZ+49n4cDFqyIuE6G202lRoKe6EOyVFNoJ7dxOi44mUf5MGLVpeZQP+54aiRnk5kgbISwK+9Y+p6/mz8wWSJI8Xf+ZBq9/p9jgGO31v0BpuVURziDvDxKOOmrns2lTmWAVNnL7sMJfG+8OlwDMFjEiZzpwryQG1dttJy3bJdHBKezsvrV1aMnvTCWch4jkVNaUzgDlYuaLO0PLzePybU2kl3wWK5dhp23a6fr0mkfbcwFWMw+HF9rUHNtIj0CtGLTfTkbOS4CoI/+BOgI0J+8eMp10ipPyAnAsQtP+I6WR0q0T15Nj2BrAxyboEbMgpVySCB2rs33u47BSr1oke8z8yOCpHwqfD0ezFndSGjdep3GgzmpUTinCopDNb1wvK2RKyhMisM4LtRgPAQShrsocH9cdZw5NGndzteCTUXQsz+bxktagJqOfJFyAVwNxvFcbAIXBdcLEqU4jN35nNd2nn9681cAzNxE2Ajyl//wzyYnTrpImfz0/uxsf3rZ//Psgwa6fFxTfZwT6pHC7DwwbI3/BaAG86jzR7zWAAAAAElFTkSuQmCC\" y=\"-156.770539\"/>\n   </g>\n   <g id=\"matplotlib.axis_39\"/>\n   <g id=\"matplotlib.axis_40\"/>\n   <g id=\"patch_98\">\n    <path d=\"M 287.775862 194.770539 \nL 287.775862 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_99\">\n    <path d=\"M 325.265517 194.770539 \nL 325.265517 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_100\">\n    <path d=\"M 287.775862 194.770539 \nL 325.265517 194.770539 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_101\">\n    <path d=\"M 287.775862 157.280884 \nL 325.265517 157.280884 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_20\">\n    <!-- Happy -->\n    <g transform=\"translate(287.162252 151.280884)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_21\">\n   <g id=\"patch_102\">\n    <path d=\"M 10.7 239.758125 \nL 48.189655 239.758125 \nL 48.189655 202.26847 \nL 10.7 202.26847 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p6c88f2dfed)\">\n    <image height=\"38\" id=\"image494e38667b\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.7\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAKIklEQVR4nIWYy49kyVXGf+dE3Edmvbq6e3p6psdDt9uWAQsJWyBZsPOCFRv+Bv89XrNhw7/Amo3FCiGBYGQZyyM8YEx7uqerqyorM+8j4hwWETcrp80jpKubFXUf3/3Od875IuT7P/qxX38H7OMBDU6eldXpyDxF0hjxUcGE5sHIyd+d8PDnI/sPGnZPFBfwALmD3ANA3IPOYBGsKXNiZS4MIJk6WQ6XMhdmP/zPBaJFSI9m1uuJeYo8frzBXdi6sFpNzCkQguEunP8qgYNkJ+4dnSCOTurlAAIvoHInSC6grS0HAvGunNPqCLhDnoQwQJgcnSFaI/QXI6rOajUVUENL1yS6JhHUiMF48+qCD3f58KAFVHuT6b8yAKxTxovAeCHlmlQYtcrOwpTFAjR3dSrfnzXVD3CFVTeVMATjerPiZDVx0k040DUOQPtlg9iINUpuylsswnwWkKxocnR28MKaB8htOZeLS4hyX+atBY8OBuKCK3gEawVw4gJonCN3257VauJiNRC0sDDnwHZqWH0pWKNMZ4HcCrmD3UO9/+pFR2MBYaF8+cKCC7hC6gtY16opl8PHQL2vESICcwrsh4aLsz3n/YCKo/XKLMpm23M2OmmtDA+V5s5ZvTVWV0IYC1MucPcssv1EyF15aRiF9rqAyz3Mp4AW4GL3gCSXD3MBbwpzEWDdTXx4tuFhtwMguZazlfN83RNG2Hwc2X7qXP5UOPnFFbIb8GEEy5AzJ6en5KeX7J+u8QhSNbb7IJBOBLSCWDKzJotUcGhljJqV33v0a1ah6My86Ge0hm1uMVd0UMZLYftHe/Jd5N13I+PlEx79dCRuZ1wEcT+8q72Z2T9pGR4rwyMpGUkBqqmwcxw+WcIoha3cehH/edyTKexovSqTWTHzKkd0FG6/nbg82/Hu9oLcOpvnznjZ0d526FTSPDfCfAbzuWNN0dESKk2gkxzCtoRO/L7EeABrHA81lMcjYAeQY468vjslnWWeffMrxhRLuveGmDCfGbk/qld9xmsWS1o05EgWPAi4Y0lKSfB7UOWGCiyWkEYUXvavCWIHcIoxeMvr+Zx/9E94/Ok13334ip988S2IBgo+C/FtQ7MtX14Kl9RwON5ZmTPBTdC9gkhhRiAAMldges8YulT+AH+y+jcMOWQiwMYbvgiPeXbxgr/48J8A+Nvxd8td5uDC6ku4+OUMArefRnYfKbMY3hjSGKjjWZBdJIyCzlLC6PcixyoYLaGveVfKRRAnHIFasuXvNy/54eOf84f9f/AP+xfYPiKToqOweqVc/HImTEbYJx6/mxh/3XH7jcjmJeTGIQu6icStEHYF1BI2pIKrAD1WcJX939LYMn41P2IVZn548jNUnI3191k0C3GA3ZOiuWYbaW8zcZcJcyDsBJfCUhgqIDl6+Psc6P1RakcVf4MzH905u7K1lj87/4wznRk88NnmGXqSsDGQHTbPizXw6EU7nZaXWyZsA81dbVs1yw7ZmUuycMTe0glqzoEvwIRDKGeHN9bxNN7wPN7RAErmNE70q4lJG6zLmJUXizqeFJJAUnRUwgC4kE4N6722H/laxRcrzGvmvqYZaCrXRWqYFy1eWUMviY+bHdkL6EYgSialAl/VkZiJsdih0RpIAZkEnUpBzacZThISSsHyXIC7ASaICRLAF2A1pAA6C9EFgpSvz+6sNdGLs9irIKX+XDY7RBxVQ7U8SdUxA41G7jLeCGllEI3QGrFJuAuWFVMpvbAy5+alY9iR+IqxwA+hrPrqVFkD5k4+VqgIp2EgpUAeYglFY9DP1G9CguOAREOjE2JpiG5S5gUIBiJ41qInBXc/ACqiFDxVd7HWhq8NgcETO8s0Iijw56ef8VfhT+l+0RLG4kCHbwuxn++1lqWCgeldT7wNpT9KSQI7y0hnSDCksu7V9rhJaZbqeJTqxwgE0RrOki6nEmg0MZMxd56GQnG7gf7KsCjMZy3yYiYEI3tABHxW9CZy8lpZvXHCWJPqVBgeNYyXXvS3ykg0RGoRFiBUsKHWsQXU+787IgFhJpNx/N9P0MmZ14LOlJIQysNzCvgQaN8E+iuhvXbi4MVU9pDWchD3cU0TOSprtYYd6tj/N3ae+curP+bF3+wJm4Hx6Sm7DyIPPndevew4u9wRYsamltUbYf3aiIOROsVamE/KGiDuwaMgOSAWQCD3ta+2hrReGFwq/+jzAYTWKmcYgyfMnS9Sy1//8w/4vf96i+/2dAY6rUEgXLWM64acAnGn9G+Ni3+9Rb+8ws3g/JTx00vGy0gYHcmFH2uE3ZPA9mNlfOR4WxNAKO5CDP4zjQyHVQNHIJ0TNX6TLhB1rn7wERefb5EpEW9G0kVH2AnTpkVvI92VEEfDmyJI39wh5jSnK6BHJ8OjsPmkY7wU5lPIK8fbWvV9qReUOnahApbZWMPgkamW25aMMfH5+BS7axgfFHHozRZfdQwvT4uF3gfaa6V764TByV1AHz1Azk/JD9YMT1aMF8r4QJkuIK0cj05eOdYbdMv6zUuWUt1FL4FBEpNkMvdqbOrfv9N+BcFZfWXMZy3z2QfsnjbcvFByb6Xd1OWXmKPJ8CDk81N2z3puvhmYLu5doVf/Zb0hq1R7rNwnhUkJ5bUlZi/2Z03CJNOI0YujwB90r/jed77gX66/Rdx1iEPqnby+X1XMp8b2WTXtDl0F2N5mVq8VFyGdeFmBr6tn65c9gVKKyMUYyFTr2FwZCjj5PcO4zP/++W/42fOnjNsWn7Q+pCxWAfLayGtIJ8rdNyJxd0ZzB5qctCrr0Pnc8YcTbT9jWclZ8aT4XJ4nSQg7pX1XgRmQEbLL1wAN9e/ZlbMw0DSJuYkY4NVNuB+3LsjnmfzQmIOzt9q8BbTJNF0iBMNMMZcDKBmUsFPCUPYv2s1RHVtAHVvs7MKMMrvS6ZFjk+LB0GVLQO7ng6PREC19MzaZGDMqTjYlJSWngCXFR0VGJe6UeCc0W2ivnTA7ES9sLaCWs7nQiDHX/z8IO2LI+NLXoABbRAJIawUUywJJmIbI6KUXizhLY/FFT4skli2G2elurDD2fghzBaY4J5JoMJ7GG/omlZ62NNxjBrU0cl1S3gXLcgCAlWyUWBq4qOOh1LB8WFuW/RFbmvgxoGWoODN6APhAd7SVscVtLroq4gIbA0ao/e49Yx8ckcIaFJtEY6WBq5QVeO/Muaym9PjeXjINRoMdrHZGMIQznXh+dkXXzwcvxdeJLpk6K0xazklrfSoMSbCyA1QP1IvNUUcSxL3Q7CDu3lslvR/S98fj9o6uSUxdxpIctCaVITe5T4QaYtHiGET9cN1hLNe6HDSmY9lOqOVCyAiBo+2nqrMlXAHno/aGdTcxpcA8xUP7WMLjLvXgt0AscJ3qarPgQ0D3gTCUtYJOpXNYAPn+j37suw//b6aWoblu8C67Nf/T+N/mj8ayM7RsrmD3v5dF8X8DKJaufB4PHzQAAAAASUVORK5CYII=\" y=\"-201.758125\"/>\n   </g>\n   <g id=\"matplotlib.axis_41\"/>\n   <g id=\"matplotlib.axis_42\"/>\n   <g id=\"patch_103\">\n    <path d=\"M 10.7 239.758125 \nL 10.7 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_104\">\n    <path d=\"M 48.189655 239.758125 \nL 48.189655 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_105\">\n    <path d=\"M 10.7 239.758125 \nL 48.189655 239.758125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_106\">\n    <path d=\"M 10.7 202.26847 \nL 48.189655 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_21\">\n    <!-- Neutral -->\n    <g transform=\"translate(7.299203 196.26847)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-78\"/>\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-108\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_22\">\n   <g id=\"patch_107\">\n    <path d=\"M 79.968966 239.758125 \nL 117.458621 239.758125 \nL 117.458621 202.26847 \nL 79.968966 202.26847 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p5bb0a7ced1)\">\n    <image height=\"38\" id=\"imageda7b71d26e\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"79.968966\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAKbUlEQVR4nGWYSa9syVWFvx3NabK5976ubKuKcoNB2JaQB4hmiEBCnjBiwo9hwhR+A1MsISHxF5AsS0wsYELhomRVlevVe69ec2/e7M6J2JvBjsybZYeUUjaRJ1bsvfbaK0L+5G//0TYfBOoIUiBUsADjS6O/VUQhFEPUANAkWBRMfJ4FweLF+/Y9gCjE2QizgQilF2oHZSnUATSCRUA4DxNYfWakeSFc/+WX/MW3PuK+9Hy0+QZzjXz67x8yvIN4VOJBiccKZpRFoiwjlgVNgmZfTPMJdFsMB5h2QrfxTR2eCPtnRvj+ht958o5nwz3vj+/oQyGKUi1wnXb807/8FQlgqpGDZoIYXSj88sUzul3bgpwWETCPQpiMUIwwCwhIBcznWqCBFeZR0A5q9v9J9VeMipowaWRbe9SEIIaaoLZECg4sBmUIMwfNTJqY3g4stqfQ+uIWhXBU4qEQJsFycKBmSDHCsWBB0DFxvMloFEJpG5MWRQNLDuwb44Y+FrpQGONMFGXWyCe7p8T5BEyMVTyQpXKVD2CQDuZRADQHAnoGYQJW7cwLqer8Sk6uEyfFxJ/TuKktcst+4ofr59yWkSyVRZjIofDZ/JhvDnf85wDJBPpUGKRwqwsUQaZAd2+IGUjjjgTCMRBrRdTQzoFYFDQHNMk57ZoEMRA1wgxiUAbnYdoKt9uRTR14Ny9YpiOreCRivNdtuI57LEISg6qBF/MV/3X7Ph+/esrii0Dal5bLC66JryxzJR0KonqOkswV1JifrZhuOkyhmw0LwrwQ5qUgCnkL2/9d8x/X36ZqYEwzL4c1fSxUE1ZpIh4hSYXPXz3iZ/I9Pv3yMctfjCy/1FbudgYnl6mbioOsStjsIAYsJ+QwkV8o+U3CugTAfDNwvO6xCGEGFMaXwuevHvHk5p5ZA6XpSxCjjwWpLWI6B+Ya0W1m8UI9FWeeAGqIAmbUPjKvryiLSO3Fq3MyQjU0CtoJZQzsn7bFJjuDkkZ+i1DedewXmbGbCfKw6SQKAgkD20devl2z+jg5O9sI80WUzNA+okmoY6B2AU0wLwN60q3oPLIgTdeAQYhHzkLtmRDiNrI/ZLpUKRrO4LQRNYVqrD9OxH3i5pOZuw8TeesROKt9F9AQ0CzMi0AZhdq7Sp8WPQGrnZwFVlOLUILU5EfUNxwnmA+ZMk5UDRD8IVONiEKyALWH9aeVtC1AIk7m6TNDo0enDk00F8K88goMM9hsxMlIB6MMwnQtlLFFLnkapXiURMWfbRCOAk1UqwnBBDVhlviQ0jB5xcVDYXirhNp2HAN1CMzLwLz0SNT8oEdxbwy3Stoq6VApi8i8FMoglJWiycHH4j301Bk8amD7xDb39LmQgxKDnlOawmwsv/SHHN4bPCVN6S1CHYKnJ7TmHFpbmWDxurL81T3hbocNHfJsyaNfVhavMq9+HJnXSt4E0s5Tjra0K4QC42cJ7RL7P5y8HcZKHwsmTflDgXRQtDXmOBt1CFiQM6jzUIgH6O5do8q6JwyJ6bpDu+AbiDC8hrwJEBxUPLZOol6dGNTBsOyd4Olii5pw0+35LDRgmBNSk4ugJvGUJXcOBKh9i5q4NYpHY1oF7r81Eg/WOCVMVzBdGctfQ3dnlMWpUMQpoq1vBtAeLBh3u4G///1/YxmOvKpX/KL/gesYapiIl3lyLtTcnEEnrS2Bdi2dBt2dMLypQGRaC8cbKCuj9sbiy0CYjcNT5yMG0jWHcdJsgXCEUAL7NyP//NWfcp33XKd9cxfmEThbliQPIKJg6cHQ6YWp273nlkFqE18R6mhYNsoIZSFM19qsjmfCRRrC7J8JoMlAhSRKRAmY+zhpaTwBs3BS5ws3eiK+cPZd2rnxC1PzZG1RFKYbbVbnQi6quG/DW10doPZGPAoy+W7HOPM4bSG0iKVddRFdBSw9kJz4IJ6xPqTRn87XhglIcTMZJiHthbxpv7WC0M4JX0bQUbFeiYfE+Dzy819/h7/+7n8TRC+qsipyNCCeCQ7Oh7gz4sH9Wd45yrP6d42PvWDZ50sR+rfC+NJYviykbaWMkeNNZLoS9k+F6VGBsSLRSLtM/9a4/+iK1x8s+YPxCxBzYCaCzC6sp6pjNkKFtDf6d4V8NxOK76bPkTpEyhiZ1oHDI0+7dkbaCMvnxvhVIW8LYV/QLnifNC8oshGyYiW44wAWz4Wfff49/vxH//MQMfftBuauUwqMbyrDqyPx7ojl6JIxZrc7AeK+EIoimpjWrXIHJb5KDG98I2JQVh2apUkMjK8gbzPHx4n5mc+po9DdGvefrDn8MCMGScyQudlme0hhmA0pihyOyIt70EoQQfoeW45gfiSTZ2vis4RU51d/C4tf3RFev4O+I1cFVUgRW47Uq4Hjk54Xf5SZge6dUXuhv1Xyxg9FJpBMLg91/tII0zoSSo/2iTT0hO0ephlUkd0BYoAYkbmS90a+F/R1pLttljxG7NbZL0PfKkkoi8zm/cS8MmQXyVujDm7FtTN+PHzqFtwilFWme3ckTua6Yy6s0zrSAfNqjcUr4qR0r/eEzcGjkBMEQdRIW+dQnJRyPRBFkKHDFj3z1UBZJuZV5PA4MF0LOlQsGfMysPmucngS6X/0lh90U/P8CmFqVrq4T9LkrzIIeSvuTgXirhDujx41NTRHyjJ7dwDy1rlQx0TYF8Q6LEa0i8yryLwMSPGsWKdgwu3vwd/95F9ZhwO/m1+xkt6rUtSIh4IUJd8XCJ7GMghlFHbvJbp7Jd9XpBq6HqhDwnJgukocryNlcNcq1ZhWgoVMPwS6NxNSlbgv9AIWM3cfBrbf8fIfvkjEI1QL/GTxFTOK4pFPJyWWosT7iXAsSOmR68TxWpiXrlvyNCA1n/umGGiU84GW1vyt93a0fxaQb2dcJ91ZTDfC/fdnwliIzweGr9xuP59v2Nn/NU13/Ui0Jo61KlQlzJ2DrS4o2szhZVu67H0A0oRZ84XKd+466mieumSEoaCbTL9xexUmmE9e/GIk73uxeSSXgHPrOQGoEGg99NQZTsf+Vs0mJ4Pp4GpnD9EUg9TOD7tEODautZ92tSMinsbzdBG0iy6W9UI5woOhC9X8hK6+6KmHnkBK65WEBqp3A3ga8RDQ0g4p0b62jlT3/fjfLyLGw33WOWIptGuBdpMjENXQCAHBTikMDvKU4lOzvrwBEvPv5DQnPsz1tYX6NUgXwEI191VFsRwf/D0tMrFFxoDa8hZwByIXwMQtTpouRFvcUdTxdGpy33RyMbWHVTz+NrBzS5orMle3wMUbuFXOjtajIQ8FwMlYOvdO8y4zcNqgdmDdCZQbxXjw09l0JXzQvYG2z9p41pq4uJIXD2o8VtLeHaJGOYf8fIBtxXF2t6mZwsazU6Webhc1OygpQjgKaeNNOxSjLIVv5tvfjpiJUPuArHpCjmcQfmNoxIiT0zwFSpOGAJyqVf0/5yq0B+erqQGaI/EA+U7o7sxP+8Wp8tOXf8zPF28oGhjjTN4I8md/8w/mh4SHi7rTImdZOFFGHg6ul8N+4/OJW7/5u5gXxfmyxlwjp7VcrOGnq/8HXV0EIW0jKMgAAAAASUVORK5CYII=\" y=\"-201.758125\"/>\n   </g>\n   <g id=\"matplotlib.axis_43\"/>\n   <g id=\"matplotlib.axis_44\"/>\n   <g id=\"patch_108\">\n    <path d=\"M 79.968966 239.758125 \nL 79.968966 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_109\">\n    <path d=\"M 117.458621 239.758125 \nL 117.458621 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_110\">\n    <path d=\"M 79.968966 239.758125 \nL 117.458621 239.758125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_111\">\n    <path d=\"M 79.968966 202.26847 \nL 117.458621 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_22\">\n    <!-- Happy -->\n    <g transform=\"translate(79.355356 196.26847)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_23\">\n   <g id=\"patch_112\">\n    <path d=\"M 149.237931 239.758125 \nL 186.727586 239.758125 \nL 186.727586 202.26847 \nL 149.237931 202.26847 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p43fcca70bb)\">\n    <image height=\"38\" id=\"image245b80ae93\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.237931\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAJuElEQVR4nIWYy47kynGGv4hM3qq7pvvMHIzGtm6AbAOGV97IMLTSSu+gV9ETCNAb6Cm8tAFvbcALr2wcCVocWMa5zJyZvlXXhWRmhhaRZFUvDBVQKIJkJX9G/P8fESk//eVv7PBWmV8BVr+AFGj20D0YkpeTYCKY+jGAJkOy36/ZwEAMpNTjUtcUMIUShRKlrgUWfJ3cCKWFNAj9nRFzJ9jP7/nV3/0r+9IBMFtgtsBvf/cz8n/cEA+CJsMU0kZIA+TewTbPSvtoNHvQoznA2Wj2iXBM/lKl1BcTShuYtw1pE5iulWkroDDewOld5u1PPnH4t7dEgJyVXe45lI5OZ4opvcxsupnHzw3uhGZX1zawBnIPqFEaKK2QB5imgM5GGP3N4zEi2ZBiaDJ0Kuicae9HTHu0FzSDGWgSJAvPp46QcWAAjWRmC5xSw5fHz7mfBnIR2gchHiB3gmTQGeIzYA7GgNwZpoJOoLMQRiitkgYIoxHHQjbQpEgKxFOmfZgIYyRMkfGVogOEk6BaMIWIgZnwx+kNX+zeEaXwMA18u9vy9IfPeP2NeZQE0qYCNAgnJ12JnlILhgXBCpQGchYoRglCbgNizjlNMOdAGI0wFrr7xObbzP3fDuy/b9wOJ+4jRARUjbfNE6erhl5nbsKRr17d8s9/+CndroBBPGROryOH74mnL1DJLZ5fnNwWwDKgUFq/J3cgJkhaRCKkztCsNPtCfJ747HcH0nDF3Y83iNVUWhVdrzNzCXws17wfX9HeKVh24gchjkbzbOTeFYS4IBYV4xleFWji0aVGnHi+5ieg7YXcbmh3mde/H/lwfUP7aEQpcHjq+Zfv/p4P+2vakFEx/vjta958bRUUWBAwCKPzzK78PLJYgoMQq7bQnIHKYhul2ozUaGeP5ihK6oV2X3jz3zNp0Er+pEw50IbMppk4pQY7BnIHaVA02eo1FiDujdwJ87WdI6DmEaopzW2NTqjgsvNr9byLY6eBMG+UEA2TRZX1oopxd9zw3YdX9N80iBkl+AJO8IsIZAiTkAZzr9XLNHH+WPViqVGMuEUs66ogwbAIuQi5FVfyEm8zoZgwp8D1/3Rs3pu/dV3Ulq9CCW4hkqHECzAXaVo8L5xApxrF/ny/CUgAi0ARpECYgNEIU7ULDKYSeDj27L7ecjP6A3SJlHioF5JrMmSEzQfDvob9Xyjja1uJL1UQVvkWJkMnKEfIvazqXdcODtoiSPLzEUBH5eEwsH/u2fxfJB7craUsKRBKkJXsYYR4MuKp0Dxn4jGymwPz9csHIv7AU/QIa7WLKkgHWEGW1pzTvRu020U0tv3I7nmgeYbmaOviJVTfas4WEGajJEi9knpdq4KUMw+XVC4A0savr/ZRQS00kSQQjTy42uPCoVOK5F2DWO0Awpm/ufNzFh3gLELYCMPHQphfelfaGDoJmlxUcikEgaIVYDlbi9S0F1wIayox+HR/Tfc+opOtPrSYZ2mEEt3JS1NDH0Gz0j7VAj07D0trlfwVXD6LYRHJCrZc2EVzVjFWS5KpQRaavfNnyXtuPScWX6Zoefu08UjqLOSunk6eesRTokmQuUbnYo2Fb2uVUL9HZ0HMXJWSBP3Qsf3fghiMW3GnX+Rf3y4kYKxAq+QdxJkvL0pQgIJBWM77DeWiVC0vqflcGDCIYkb3MXD1jdE+Z9KgsHSpuFfFg6cqjIYm7zDmK/+FypcKdOlaF9kvDzaW0uT/yS1IPFeE5slfOHf+/ygFrr42Nh8d8lJ+vPey2mIbw8dM3CcklZrGyHQTyZ2QOmG6kVX2FqB5VLo7r6tSvHXKLaSrC5NdBDY7KK1+p9mIkmG4K4TTGZCpgxo+FeKxINlonmYkFywopkKYC91DIndK2CjzdXAvGgo6KsN72H6ViPvq0iocP488D+q2sswN4qDGDSAezTBCFIMwFsKYya1SGqVE96p4KAxf7ZDDWBdXaCKlj1hQQjFCE0BaIFQCC82T0t8X4j4T5oKJc6t7yMyDcHhX1Yvz0O3I/dQdQYiYrUWahZ91wsmDkrc9ze5I+XiHxIhsBnTooInI4YR2LXlzSxiN5tnrUfsIw6dE92GPZKtCEtr9if79hqe/3rL7gTLdePHGWJsAnb1uRlPh8DaS+sjmu+It71SFGIXptqG0b4hvtjBnLBtSCswJcgERNBXaZyNtBJ2E7t6Iuxl9PsE4wTiCGTbN6EPL7eMBzW+5/5vAfGOUxluQEsE2mRIDMbfCx38wyiYj/xm5+pBfGGJphPG24fS6od1l2rsTsjshc4IYsC5Sgq6NXxhd+ukqEofOe/2hw/qOfNOThkAeAqmXc8laRBBt5Z0iUK4yf/WjT5TGG8OlE02dkDpFZyMeC+GY0cOEHDwSFgOlb8i9Uhp/kFabKJ2Sr1ps6KBtsD6ShsB0GzndBqZr8Ylr715S+oLFAsEbzmgC0md+uL3nC31Hs0+YBNIg5N7bFM1Cd5+RXChdgzRbLCpp2zHdRKatkrtzv5Y7GF8FKD0dEB6P6NOR2AZKo/U+r0+5q11LqNEqzvGIwHA18ro90O6M9mH2bYCglCCkK2H/LnC6VSS351YovHR8u3D93HknOm2F8faK9nl4sc2ACGkDpzfC+KZgXfFmMQnkSn6Aq35CpdDtMjrlOjmfu4Dcet1cqsHq9hdFeFV17fd9GBFOb8Qlt3S2leTz1sjbBLEgY0APSrMXwqkOySbQhsx/ffwBcTRKo3XqMZ8Fs6FJ1oGCpfQspeYiYutvLchWzTO3Rukg9wVrDIIhbYFJ0edI3Avto9DsfA8knmrPP+fAp7trfmiQh+jF+aInk1QzYO5Ja0lRXvRil2DL0pGoOdACOglWxI3UQE6BuBfisxCOPhvkxsuYInDTn/inn3zJtFWkGKV9WcQ1m28xQa2nL0cvLsCtLVNvzNtC3tg6Y+okhKOgR0VGXVO/zp16njMUIEjhH2++ZN5oLR8XzdySNjuDlGy+QGH9fTGyUTdXToKOvtkiF4PNurjYquS1V6tW5cOIGI958E40F3TW8zhWF1vx1YlpUaFdvC1L81o8LWGUdR1vPJepfgnJWTDL73K8Xt7o5I475jUSl6m6HB4uz533Kc4+xoUQFiCLKC6vX1YY56PPFedJHPjL5p75SnwKGh1R6mLt/eUliMvj4J62RmKtM+dRaflPaaB0BatbV7K+ZV3zQkxRE3zx++/z66dfIArTZ2cT1WSE0S3jJSA5R0QhXCr04mHL3sClKEzDGi3fZvD6GkZD0jlTMUzG238PlPAZ8WTM16ESpzrw6TxjXrCCFx/hz37s/7lnqRYvxjyDPwHPAquB33Y9BQAAAABJRU5ErkJggg==\" y=\"-201.758125\"/>\n   </g>\n   <g id=\"matplotlib.axis_45\"/>\n   <g id=\"matplotlib.axis_46\"/>\n   <g id=\"patch_113\">\n    <path d=\"M 149.237931 239.758125 \nL 149.237931 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_114\">\n    <path d=\"M 186.727586 239.758125 \nL 186.727586 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_115\">\n    <path d=\"M 149.237931 239.758125 \nL 186.727586 239.758125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_116\">\n    <path d=\"M 149.237931 202.26847 \nL 186.727586 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_23\">\n    <!-- Neutral -->\n    <g transform=\"translate(145.837134 196.26847)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-78\"/>\n     <use x=\"74.804688\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"136.328125\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"199.707031\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"238.916016\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"280.029297\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"341.308594\" xlink:href=\"#DejaVuSans-108\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_24\">\n   <g id=\"patch_117\">\n    <path d=\"M 218.506897 239.758125 \nL 255.996552 239.758125 \nL 255.996552 202.26847 \nL 218.506897 202.26847 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p597f4169ad)\">\n    <image height=\"38\" id=\"image850ba464d4\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.506897\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAKHklEQVR4nG2Y244kx3GGv4jMOnT3HHZ2lisuRRESKJigLQO6sQ09gXzpez+H38LP4AfwexjwhWHLhHgngRalXZF7nJ3pU1VlZvgisqp7aRfQ6O6Z7Mw4/PHHHyl/+4//bPuPlNyDGHRvje7eAJBiSAEMEAAwAVNABFNOLxEQKKGutdN7GA0xSJ0wXgu5933mPed9AVDYPDdi6oXDr7b85bPv2aWWb//9U9qvQJMRBiMcM2L1hyqUKKSVYmqYCrkRSoO/opA7sOBOluBndXegIxyfCOMvd/zixy+4aQ90IaEYKoVVmGgkcx33/Mu//pqIgRVll1re7lfoKL6rgJhhQSDXdxEsCGIeCckQzIiDGy7FMIXcCiXCdOXvHn2IB9i973h42lNM6ePEJoyswsRQIg+l53/2t4QBIgIhZhrNHMcGnfjgEfNIzakDkOwpDoOBeXQlFTQZJQqlUdJaQZXUC1J8n7gz2teB4WeRm27PZRxYhZFGMofScj/1FPNzIkCMhXUcmcZIN1V8WLWs1A86g8wjBW6QTmXBk6mAelQBJIFOhmSPWMiwein8+c01f/PkD3SaUDFKBVhsMz/p3/Jf7ZdumGoBYNq2rMYT6GcDxNxAU6kGuCFTp1gITKuKswgWhRKgtL4u7qHZG2E0ciPEncEfV/zxsxs+7u/pNNFI5iIO5DklBtEESlHeHDfoLtDsvILETpGyYkgymiGTu1ArStBglEaIBzcid0pujbQSUhHSxgshHo0wFEwVS8LmT8JXLz7hk8/f00jmptlRTHk+POLbww06QRSDlBQVD7n+IJUmICpQDB0yzYv3yGHAtlssF/TqEtoGaxusb8jrFmuVcD8S7rbYqiNfdAxP+gVrzdZ4eL7h+osDT+IWgIfSA/Csv8ciRE0wPd/wQkByrThxTCxprE/uI/b0Csww/QjJhk0Zcl0UBB0TcjBkmCjXG0ofKV1wGMzOBog74dvDY7p1oteJdRh42j7wrLmjRIhhNG5+KxxeXtJEkOJgNvUN5g2lgj9tArlVcuvVM0dBilfkXAipF4ZHQrOthG22kHGJEA7CN/e3RCmswrgUwWQBTRB1Mp785oHxpuftl93COQiURjCRBW8lVLYPzk+mQhgNnZw2CH7w8UYZryGMMG3EI3SQM4eFMMDz148QMVrNjCUQtXDT7ZFU6cKCEqZCGM/yhh/s7O08VkI1tnqOgQRoD4X2bkRyYbjtya2QV8J45ZiVIsSDk7ZV43WCdIgcU4QIZsKUA8fcIAZqQRie9EzreOp5HzCsYHoiV+yEvzgY/dtM925Ap4wFRafC+nWie2foCM0OVq8L7bYsxQSgGZpXDe8e1kw5LFymFYjRBKaL4NyVWXhKcm3Y1ct5U82GpmrYodDeT0gqpMuW6SJSoqe+uy9gSrsttPeZ4VEkN5wcBNp3wu7tiny5J2ohaCFqxqSmcsZPGGq/C0KpnpXovW8xuEC7NeK+kHvh3RerxaFpLeQV5A7S2rj6PbQPhfEqcLwRSisnJw1XNFk4jg392rtArGQfZzownRWBYL2HxwInRhehtNXYBjpVVx+jMV4IaS2kFUyXRl4Xmnul3RmH28D2UyV3NYXJsyG1EEhumG72TDkw5uB9dTG/gnv2aI5QiW6gBUj9HEWhBGH9KlfsKGktWKySJwmrl8LhsUuddGFVfQCDIOmU0ngQpikw5UA2odR/xJkepJxx19yvtdJCYDkUgSKQgP3T8EElL/tEOPzI3NFYwGQpGBM/tUTzKFaxp2KoGG1IFWNmJ6PirFDdMgtAbdgmp6Y+pzPh9LH8vSoPHdwhHaF9q4Rj3TdCWkPujbQxyjoTHgL5GPj86jWbOFBM+foUMVvC5NJllst+WBgg7r1qw+CGplU1qrg+44xmxNyo1XfC9R8mmvtEaZTpMrB9Ftg/E6wpSFugRLrnDcOXkb9e/Ylt7p2QHZA1anLyfD4gHIzV20L3LhEOCR0SqDJet4yPopNp42Rq0SOpkxt187uR9tUBHRPWBMR62kvlmAQLhogrmdV3wr/991+gvyx8tnoHC12UGjVq+ykzY9doHQrN3RHdjx6ZlOmGiXDsSZvIeBUYrwO5NSwa8b2yfpXpvtui93v3ctWhY7uol+5lYPh4JmHj9j8CX3/6MZ9/9vrEY3LG5iZCHJwgu7eJ5mFEhsmVRBuxxstWdwPtizviugcuOD5WmHnuHi6/2cE3z+HqkumnTxket+ROkGLcfp1JK+HlZSAchWkDm+8zL95c8uznd6eISTE0uUJd6AIXizImp5J1U6lC65ASkHxE39zRXrQ0u0jcKSZC82DoboAYoW3QIRH3wQediuNpHZDkGNXk54fvW1pJWDAnWKkY02wUZJl0pk2khHVlRqntSYiHjAwZQoDWo6wJ2juPWLM3ykWPPrnB2obcR9I6VLVSiTw6zsJwqup4EBrJdRixuSq9kkTdyNwK46XSFfM0Vr2vYyHsJnRMTswhYK1i4lPTzOjD445+ysiUCcdEey+kVST3TrDTZa3M7GPe608iw08HNjpUgq0TsZih2c+aKzO3PtzGQyEeMnrMhIcBmbyL27onb1rGy8abd3Huy51wvI3EXUvzZkd484CkDRQnx7QJHG/BojHcQPliy89/9Jq/uv4zjSQfRgByq2DQ7AsleGRy43gbrpTxQunfCzEI6bKhNOKvKKROXM3WvmoqmPiQcv+zFe3TjrjLPowEobTK/U8Cw9MMBu17yE3mHz7+Db2M9DLViOEEGY+ZeHDtldYBNkoKsoz+00X05XJ27zDz3VzRc5cIQhYYr2AXA2IBHXxdaWD/4wIFmgefyg5Dw23YstGBj8LuRLBhKMSHAcwoXaTEDm0FjW6UJqsR+rDJz6CdlclicL1cmaOYe++LZV2wYBCM8D4Q94IkIw2Bv+tfUIBrDadJvDTe0eU4IarLFcDc+3zg8JZk4Uxanz0mZ5+1prU2f6hj4V6x4CQsWRbByahsxDfsxbMS52sli4qtO6zR5fAlTTVtWsCKLdOTnTf4sznU6iQ+f9fkNKGTG+qqgmWikqQ0okxWFucW5vdvSlnFhRqQsxTN68q8vsqaIH7GMu75geF4uooyBan/L3pSwmJubLxXjpYJCLnSgs5XSuCsPkue/y9Fy4Q+p3lWFhVzs3GzQ+eDiwmUYJTWsMYw9Z7sd2tG4cNn0fyYoalgyScdyeqbLhrtB+pWTnhDPD0lnlI0Q2A29IdiE/OpXxPk64wCE0b3YSoru1P8nitKnZq8InPjGq3E+j4fpqdDS6yGzUUxRyo4kfoNUJXYSWjvhLj3Hhk3p0u5UHVdNIHcBeSyqxu5ngfvneDALUCouFKTE58x63wIZxy33CgFsCSoAnUajwdYvTxVfn7V80/P/x6AVZho3wsR8Z44XbT/F1vi4Q6jEaZzzJ1N7D+Yjz/4/flzJkLl7PIP4Ml/Cl99/Ytl3eW28L8lYsV8BtHDegAAAABJRU5ErkJggg==\" y=\"-201.758125\"/>\n   </g>\n   <g id=\"matplotlib.axis_47\"/>\n   <g id=\"matplotlib.axis_48\"/>\n   <g id=\"patch_118\">\n    <path d=\"M 218.506897 239.758125 \nL 218.506897 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_119\">\n    <path d=\"M 255.996552 239.758125 \nL 255.996552 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_120\">\n    <path d=\"M 218.506897 239.758125 \nL 255.996552 239.758125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_121\">\n    <path d=\"M 218.506897 202.26847 \nL 255.996552 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_24\">\n    <!-- Happy -->\n    <g transform=\"translate(217.893287 196.26847)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_25\">\n   <g id=\"patch_122\">\n    <path d=\"M 287.775862 239.758125 \nL 325.265517 239.758125 \nL 325.265517 202.26847 \nL 287.775862 202.26847 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p30a92251b8)\">\n    <image height=\"38\" id=\"imageb77586574f\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"287.775862\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAKfklEQVR4nG2Y245kyVWGv7UiYh+yqiurT9PuoWc87ZEF4gIkc4OQQCAhJD8AT8Ar8AZcc+1rxAvwAFjiyhIC+WJkDpZtoPHATHd1VXXWITP3jsPiImJn1tiEtJVVuXfGXrEO//+vJd/7i7+27QshnRoYaBR0Br+D/trQZIgBBgCmgICJ8HBJMaQcn8mdULr2PCC5XuYg90JacbhfvD3YCE7+B3wahKd//BV//urHRHP8dPuCn1y95KtfPKf7Z8VF0GhoNMxD8VIvZ80gcLPhJkNjtSytHPFE2D8R8gCmht8KfgdphN3HmfNvf+DT9QeeD3d8PHwgmxIks/ZbfvB338cDzNmxySP7Ehhd5G7f428VzWDSPOShOMG0ekraITXVP9IosPIUV72gCfy+edALmuohpIDbKmZCQTjzOzZpxFGI6gg5g1ENEzEUY5cDV/OK283IyXvBzaWFDRCpbnfVUKiGpl4oAeIjIffHUGM1dJoht3Au34U7IWbHebflk+GKf7n7DZ53t/SacFKaYQKrEHkRNgD848VnyGWH31aDNNXcETNAMNfyS6D4ermphjv3ULpq4HxmoBBuBM2gsYbcnMAEd9cjz799h8OYiiOaY607simyeGxZmzzyv+/OWb1VwtYO4TIFyjHZNRv9daa7iZRO0Snj7mfKGEirQDxzSIbbV47d82rUUhhS6v/hbeBndx/x2XDJqZ9RMVQKQTImzbBclGiOD3HEf9mz+rpWowmgNS5SaljCZaa/3OO/uqZcvMefrJAQwDlUBO8dvXcgwsnPHRe//4z5XNBopEEwXyPhd8J/XD7li+EVF/tTvvto4i4PrN0OBDwGU3a8T4/4p68/5fS/IffVCLFjPgG4fWG42KGbLXgHv/matOqIZ4ESFGv+NxGGi4nuP9/x0d/viK+ecvP5yPajmo8mNfx371f86+oFuzkwF4eKcRb2aBS8JuPdvz3nb774E1ZfC6tNYf9EkbLE8RtwxfRspLxcARBuE26fCHfpUH3FKeYFRMjfegyqTE97cqiVaQracFHvHTe7gRgdfl1jXZBjVWoU1j+Dk7eJu49d/VHi11YeFFNIvZA7QZ44NHdIAb+vAC2lYl4589y96pnOhdwf4cLNC6iC2wulCCIVsgA6fZD85ozcKf4+43eONBhYzasFueFoUAn1ezEoVis0jtKMF+IjyMMR0SWD21c2kXwsBH8vzFNgGGdiC2Wxuo/XCCe/VDRZ9YjUHyMCUsu7OCihAWyjlBLA76zS11S9JAX2j5V5LZRg5K6BqjN0lmrgbJQgiNV7pQhmQu8SxQSvpRaHFAhbI3fC/QuPuRpGk5YzvvLeQ+9pMooXNMKwKYSbhIsFU8E0kAdH7gU6QzL0H4ThwnDRSKPUw7f9/JuBHEe2f3B/ME4WgC2+nuThquEScqjEq7EaK1ZD4vZGf1sYv96DCGl0lKD4vXH2JuG3jvuXQr+B/roQdhUucqgMYnIsrDQY7+9OeLm+YZ9DS/6W6K7xWtYWttA2cc1Qf/RW5UFjPlHyJ2PNsVXNDXMcvNzdwOpdQYoxnSnzI2mc297RG2llmMK0D9yNHXQcq5JGOcXLkayXH4dq0CGUIqQJ+quKcfcvlRIgd2Chnj6dZdxOefKFEFfCfKbkvuIjCzbKgmcVHooJT8ctL8cbvgyfNLhITSt19aQHoPTVA5Ufgaadcl93DjdGuDXiIyGeQlwXypjRreP0jZJWxvZbQu6tGuLqp2RBUjOOmh6qhe9/9BN+b/gv/mH8Hbws2LOUsVQvSZM8pu1ydjCyiDGvKz6FWxp+tRc7w7yxe26kU6OsGiCaNHUhkEFbipgDtxXipueH73+LzfmqVjpW80WTkQZ3wB2snkTyUg6tMtt7ijPECWk86izJgmXBvBGfVPkiUVmwsm0Dzg7yyZyhsyNcOf793Qten1xWHBMz/K5ukvt6goMSmMCnJn3yMeRphHktB08tDsGAIkgUdBa6jTK+MzTCdF7DnQcjPSrYmJGuoGrItWO8EG7XJ+TXlXNrNhlIrpRiCjrT1IXg98ZwXXD7gmaDUkE3njqmdU38NByZXpIQbpTxrbB6V+g31eXDtTKfKvtnwn0v2HmmGxJx9vTXQrcxTn/h+NFnryvFHYziAYBGo78xwjYTbjOSDbeNoELpHaUow2VEkyeNSgkCLQ8pwvBeOPtlItxkpBi511r1S/UqlOjIvlCSoFM9nJvg4stzhihNWmersqVVnznB1Ag3me5yC9mw3iGzobuIeUViRqeeuO4qPolgfcHdeE6+qsArqcbZbwwLitsPaPT0H4R53XH/24blivTTYwh34G4dkh4qWK0GibUWqxPmtad0p3RXe0rnmJ51FC+Eu4LfJcLFPajgdw6NgkQl3At+n5EpI6UQn4xMjwPzqZIGOHsTyaOSVr4atXO4yZATwe9qJ1aFooB5rd3PUvZyNK4Ex/7xCdNaCPfQ32b8LuE3E9b5FvoqZ8K10l3XAimjB5HasAy1Dwj3xu2ngTQI+ydGWEXyxuO3wJNj52U1M2qvKMUI91UtSIEcmuZqgtHvGh1FQ2LBRCidIw+uSqBUux83GaWr97DaN2ise+yeKbtnTV4H8CFj3tg/Fbbfnbn63cL551eU3lqOmeH2hX5TMFXSIIgZ8RSKV/qbQv8h46aC2yU0ZsrgiWeBee2Jp3LAv9IJ05ki2TNcZMLNjM6lCsqkuBnmMyGeZbQIkoR5DT/4o79FKXwervmzn/9lq8pkuH1mmAt+69g/8cQTIY1CXkM6ceisDce6I3a5St6la7SlFeNKEOLKE1dKv8m4fcFvC34Q5nPl/nVCVonpcmT1XtEZBon84ZCAVcuxVpVNOKLR8FOVKJIrPU1rmnBcMO8BK9iC4MeuPQVIA8znlc8WmZ5GmJ4W/NlMmhzdlaO7qe+/KQOTfSBIZZ/avo0O84rGQu6VHB4ApoGLHDSUuTYuaI8sRi4kvyRvCUbpKtJbX6DPuD7T+UyKHrnzdJva1kmCi3RG4ao2I7SqXJJ84UGxY4VQQKcGJ43gSy24w3rorYXwSwelq6ROAWYlm1DUYZPi9nrweDoRHrkdD5c/GJK/Wa5VrRqyuKaFTLRex5nG4toqicxVL5WhtENKVRRRsVxaV19fWpoQzR2/tg5cqbEqzarbl9Ad82oxTBe10QYsB7ZYhilS20Fp7VhtaI5aDHecgZQ2BxGDaJ6MER4apunYEx4a3V/xxsNPMbBSU6osoVxEYAGdW3PbZHbpIIcWVnfk5WVYkwbhk3D5Kx57aFC2ijlJq8rM7XR69Mg3x1CtaVlEZGtWrK85ZgIWjNIZFgp4Q1zBssNvhe62Kpm4Nr7j7yim5NahVEpSwZygs6HZCNvS2EBqvrTOpvaWx1OVvlWfA/N2kMo19FKLYCjQFXCGCFhW9M7RXwtub7UzF3B8c3kTaRreVVXRvOFiG0NJTTKT2sprqfm16DaKoMtA7+GArlRRUKLDnB6KJeyE7loY3x/1H2r81ds/RTFGNxNupHosjtrGAg/mAW0ALKW2dm46gvDDfPv/vvvGIEYe3qj3NFvr9utX658KP3rzvcMjp/fG/wHjU/oqjL7WWAAAAABJRU5ErkJggg==\" y=\"-201.758125\"/>\n   </g>\n   <g id=\"matplotlib.axis_49\"/>\n   <g id=\"matplotlib.axis_50\"/>\n   <g id=\"patch_123\">\n    <path d=\"M 287.775862 239.758125 \nL 287.775862 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_124\">\n    <path d=\"M 325.265517 239.758125 \nL 325.265517 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_125\">\n    <path d=\"M 287.775862 239.758125 \nL 325.265517 239.758125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_126\">\n    <path d=\"M 287.775862 202.26847 \nL 325.265517 202.26847 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_25\">\n    <!-- Happy -->\n    <g transform=\"translate(287.162252 196.26847)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-72\"/>\n     <use x=\"75.195312\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"136.474609\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"199.951172\" xlink:href=\"#DejaVuSans-112\"/>\n     <use x=\"263.427734\" xlink:href=\"#DejaVuSans-121\"/>\n    </g>\n   </g>\n  </g>\n </g>\n <defs>\n  <clipPath id=\"p1897e55d18\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.7\" y=\"22.318125\"/>\n  </clipPath>\n  <clipPath id=\"pbd80726952\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"79.968966\" y=\"22.318125\"/>\n  </clipPath>\n  <clipPath id=\"p79f829d24f\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.237931\" y=\"22.318125\"/>\n  </clipPath>\n  <clipPath id=\"p9d13bb57d5\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.506897\" y=\"22.318125\"/>\n  </clipPath>\n  <clipPath id=\"pebbb7f7dd3\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"287.775862\" y=\"22.318125\"/>\n  </clipPath>\n  <clipPath id=\"p0045260800\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.7\" y=\"67.305711\"/>\n  </clipPath>\n  <clipPath id=\"pbec05cbeb8\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"79.968966\" y=\"67.305711\"/>\n  </clipPath>\n  <clipPath id=\"p1c9e4e5acb\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.237931\" y=\"67.305711\"/>\n  </clipPath>\n  <clipPath id=\"p29cd7c00dd\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.506897\" y=\"67.305711\"/>\n  </clipPath>\n  <clipPath id=\"p4e1660c6c9\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"287.775862\" y=\"67.305711\"/>\n  </clipPath>\n  <clipPath id=\"p3db27f20ff\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.7\" y=\"112.293297\"/>\n  </clipPath>\n  <clipPath id=\"p85e130e73f\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"79.968966\" y=\"112.293297\"/>\n  </clipPath>\n  <clipPath id=\"p6b98802fc7\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.237931\" y=\"112.293297\"/>\n  </clipPath>\n  <clipPath id=\"p10e1623f51\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.506897\" y=\"112.293297\"/>\n  </clipPath>\n  <clipPath id=\"p4dfaa1eee4\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"287.775862\" y=\"112.293297\"/>\n  </clipPath>\n  <clipPath id=\"pbacc772c3f\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.7\" y=\"157.280884\"/>\n  </clipPath>\n  <clipPath id=\"pa60e015aec\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"79.968966\" y=\"157.280884\"/>\n  </clipPath>\n  <clipPath id=\"p6dec7f012f\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.237931\" y=\"157.280884\"/>\n  </clipPath>\n  <clipPath id=\"p7f156ac035\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.506897\" y=\"157.280884\"/>\n  </clipPath>\n  <clipPath id=\"p0c5a005c2c\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"287.775862\" y=\"157.280884\"/>\n  </clipPath>\n  <clipPath id=\"p6c88f2dfed\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"10.7\" y=\"202.26847\"/>\n  </clipPath>\n  <clipPath id=\"p5bb0a7ced1\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"79.968966\" y=\"202.26847\"/>\n  </clipPath>\n  <clipPath id=\"p43fcca70bb\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"149.237931\" y=\"202.26847\"/>\n  </clipPath>\n  <clipPath id=\"p597f4169ad\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"218.506897\" y=\"202.26847\"/>\n  </clipPath>\n  <clipPath id=\"p30a92251b8\">\n   <rect height=\"37.489655\" width=\"37.489655\" x=\"287.775862\" y=\"202.26847\"/>\n  </clipPath>\n </defs>\n</svg>\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAU0AAAD7CAYAAADuFMYYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebxs11nfCX+ftfZQ45nPHXV1NcuSZVmesE1ANmA8kJkkYAghTgIhJoQMpN833Z3EgTQf0g2GvGmgu4EkkMFMxmAwc2wsT9jW4Em2JEuWdCXd+d4z1rj3Xmu9fzxrV9W9kiUdkHSOm/N8PvU5p6p2Ve397LWe+fk9EkJgn/Zpn/Zpn54dmd0+gX3ap33ap68k2hea+7RP+7RPO6B9oblP+7RP+7QD2hea+7RP+7RPO6B9oblP+7RP+7QD2hea+7RP+7RPO6B9oblP+/RnmETkgyLyXbt9Hl9JtCOhKSKPisgbLnvtbSLykef2tL5yaJ8nT037fFGKfDgnIu2Z175LRD74HHx3EJHr/rTfs5v0lbhO9i3Nfdqn558s8I9f6B8VkeSF/s0/C/ScCk0R+Rci8iUR2RaRL4jIX515720i8lER+UkR2RSR+0XkG2be/6CI/IiIfFJEtkTkvSKyFN/7bRH5R5f91mdnv3+v0j5Pnpr+jPHlR4F/LiILl78hIi8SkT8UkTUReUBEvmXmvUtc51kLTEQ+FF/+jIj0RORbReT1IvKEiPx/ReQM8J9FZFFE3ici50VkPf5/xfN7uc8d7cV18lxbml8CvhaYB34Q+G8icnjm/VfHY1aAdwDvqS8i0ncCfxc4DFTAf4iv/wLwHfVBIvJS4Cjw28/x+T8ftM+Tp6Y/S3y5C/gg8M9nXxR12f8QeBdwAHgr8NMicvMzfWEI4fb470tDCJ0Qwi/H54eAJeA48PfRPf6f4/MrgSHwk3/K63khae+tkxDCs34AjwI9YGPmMQA+8mWO/zTwl+P/bwNOATLz/ieBvxX//yDw72beuxkoUNemAawD18f3fgz46Z2c+/P12OfJPl+eBR/eANwCbAKrwHfFa/hW4MOXHf//AO+Yuc7vmnnvbbP8AwJw3czz10c+NJ7mfG4D1meeX/Ib++vkmc/5T2Jp/pUQwkL9AL63fkNEvlNEPi0iGyKygS6UlZnPngzxDCOdAI7MPH/8svdSYCWEMAJ+GfgOETHAtwH/9U9w7s8X7fPkqWmfL5FCCPcC7wP+xczLx4FX1zyIfPibqLX4J6XzkQcAiEhLRP4fETkhIlvAh4AFEbF/it94rukrap08Z+65iBwHfhb4PmA5Xvy9gMwcdlREZp9fiWqKmo5d9l4JXIjPfwFdUN8ADEIIf/xcnfvzRfs8eWr6M8yXdwDfjbqBoBv6jlmBEdTVfnt8vw+0Zj7/bITp5bBlPwDcCLw6hDAH1G69sMdpr66T5zKm2UZv2HkAEfk7qFaYpQPA94tIKiJ/A7gJ+J2Z979DRG4WkRbwQ8C7QwgOIF6QB97JHrAcniXt8+Sp6c8kX0IID6HWzffHl94H3CAifyteZyoirxKRm+L7nwa+OVqL1wF/77KvPAtc8ww/20XjmBsx1veO5+JaXiDak+vkOROaIYQvxB//Y/RmvgT46GWHfQK4HpX0Pwz89RDCxZn3/yvw88AZNObw/Zd9/r/E7/1vz9V5P5+0z5Onpj/jfPkhVBgQQtgG3ogmgE6h1/K/A3k89ifQGNxZ1Cr675d9178BfiG6rt/CU9O/B5ooHz8O/N5zdB3PO+3ZdfICBnzfxpcJ7s4EbZ82II1mwr7sd3ylPfZ5ss+X/cef/LFb6+Qrprg9mtffC/zMbp/LXqF9njw17fNln54N/UnXyVeE0BSRN6FxjbNoTdufedrnyVPTPl/26dnQn2adSDRR92mf9mmf9ulZ0FeEpblP+7RP+7RXaF9o7tM+7dM+7YB2hIKSNNohXVgi7XutngoBRMAIQSAYIRhAIIj+RWaqbWXmvVmSS/+G+lAHUoGJP4dAWKxYygeEIBjxnHrE4fr9XSvUTZrt0D3eYjDOydZAKo+EeI1GCFYmfNHXprx5Eo+ES0uTL7sqcWAqfYgPBCt4A3apZCntA2AIPPZI2FWepHk7NBqLSAB8vKC4PhDw9inWCdO/4bLnk79h+rzml/jIkzIeYqDqBOZaw8nHDIGNjTbj009cCCGsPg+X/KzIttrhpuv0RCVezCgk9H3O+rhFCIKIvi4S9PxleixAmFkUT3o91NtS4gNlphfEAR4k6Doi6P/j3hrVaHf3T7K0RNoLiIsXgMqVYOv9A8Ey3UOX75+nIolSJF6vODCRB8GAWSw5lG/h4xfUfDUEHn0EXO/L82RHQjPvLnHF2/8ZV3xgSLI5REqH7zQo5jNc01I1DVUuuAx8BsHGEzLgE/BpvHjRv/XFexsISTwuDYQ0gIAdGPKLQuNCwBb6+eXveIxfvuHd+BBIxbD66p1cwXNP2dwSP/Dul/Jzd7ye635pjO2NlS+tjPFKk7JtqJpC1RR8Ai4XfKb8CFavV58H5clEY0CwgWCD+gMmICND46xl7oQn3/SUbYNPwH7HOX7/lneRisVgmHt1uas8ydtLvPLl/5B0u0DGJSFPKecyyo7Fp8K4qzxxTeWDCtT6/kNIgvKn5glMNnyw8fXUK1+ckF20dB+BbFuPP/vnAu/5pv/AkaQCoCWWl73rn/Lw//QDJ3aLJwDpwhL/7X3QloovlYv8zuZL+eLWAS4M2nT6DbKsQoDROEUkkKaOxHiM8RhR/RNmLA6RgBGwxgPgvDqOPkDlLGVlqUpL2ctI1hOSvmDHkG5DMgzYIvD53/73u8CJKeXtJW564z9l4YsDTOmQ0hGMwbdSRqsZo3lL2dY9U8yBa4apnMgDIfFTf9mje8cEsLXyUdvOXsjoPCbkG7pGzr+u4M5vVNwSHwIuKqBUDIde+/TnvCOhGQCfBVxuSIwBE3C5xeeGqmlwmS58qLVZQGpDwwmm0kXvMqIWjO/VFkiqloMPUwE6XgRbCLIZEA8nLi49xZntIgW4Z/MYnUet3vDUElKLa6ZUTUPZNrgUvI1KJETrOUBwTKwASVHFEb9WUIsMowKk5mPZDQwOGFwm5FueYIQLmx0cARN0E+0Z8rqZfWYpO1Z5kQkhCkqpwLrpmqmVRvC60kMQQpT/9fUHgZCCD0aVqwmUXc9oxSIO0kGg/ajl/uIQVyRP4Jl+bi/Q49UCH9y6iQ+fuZaNXpOq1C1ojGc0SqmKhFAYbNMB4IzBmIBImFqPqDAQ0dcTI1gT8IEoRAMheJwxKmQl4NOAy/WDdoz2CIUpX3eTbBkImYHKE1JLsZBTziVqgOVTA0s82LHgk4B4wTshpEIw4VIvrfZirArVtF1SLgvFZkba00PaD+S8+zVX823dxxhT7eh8dwxS6i3RHRdIDCEx+ERNaB8tS3XLouCsGeOjhkhETeTa0pyREr4C56ObYcHnYSJkfQLJEEab+UQzmIlZtrt0Ydgh6euKDUCwBte0uEyt7sm1ojf+kr+uli2CDwETQLyGO4wEghEk1c/7LOCagfGyurrpQKgaQvD62T3AiktJhGAtPtU14lK1toMBgrpLIW6G+i8h8iPoNckM36SKyrVUJezwhBRCGhitepKB0Y01gouug0XwT2rF3j2SAD/68Jt57MwSYZBgBoZkqPuhWHWQeigNSMAVBl+liA0qNKM1OeGHBKz1iAgV4HxcLxKwRi1S7/VB0P0pAZIBZBu6F0fLaujsKgVorDnsQAWXz9QIK5uiFmYqKgushmGCAyn1NckCwaksmhhrdWhMgn42QNnLIPGMDjtCYsk2IV8LvH/tJr6t+9iOT3lHQlMCNC4KpvAqMKtpnKrW5BIutSL1xRhaiULVOPBGH7XVATObqdL3Lhe8s+QBu0ekxOawQW3iSQzL+ESmriXE2EqYHFefunFM3FODINVUoEJc7F5deHHKL5cHQhRCpgJ3tgmAj1zZCxQSjeWSGFxu1MqWaWyqpppftQIVHx8OxIqGJ5jxVASMCMEFTCF4gWDUkirbKhSSUWDsU4yIWt97JN8pHk48sooZWtK+kPSEZAjFQjygNDEoKVAZggSCg5B4xIgKT+snVqeP7rhz+tcYj7WeEAIuCM4ZtdpLwQ719/I1DYWNlqaCdLdJvUq9dp9bXGbwqcTHjPca3W/xgANTyTS0NXstHiTEcJg3+FwDmSH1FAtCMjDYMayNW3j8xDV/trRjS1OTMx6fGEwISAj6Wh1zmpVjdazKotpgZj/XSRGXqwU1+UgtMLwyReJrplThgZv+gG4Gz65SgI0LHQ6te7W+ZWrx1QF34kt+1ncOlwkPr8omWI0H17ychDcqEBHEzDBZlCdmJBgRHIEyfBkt80JT9BVDfABTRRo0iaGuI1NhameEqkwFarBQ5upLipfJLRenSgYbrfO41kwJp4t5PY0X9qqfngKYgSVbN2SbqjA3bq7oHO5hBzmul8SbzjS2Xa8fAWM9eV4iqDBwzuD91GUPQd3xYL2+7mMSqDSTZJnLZeK1Jf3wZY2SF5QC0zUCE7lxiSKtjbGZRBCAKQAvGueut5+LYTAJmLGAGLx4XVNumlO5OGhffibPinYW0xQYHgiYwqkAA6QKSBUwTrXbJJ6QMHGza2sUpkLAVOAlCsMglyRFpjGuuEnQ77FFAK8CIt0DGnJCY0PW0+0ZEkOwZnKjJ5anVd7UiY/672yEQWZiuT5lIiRq61MCmEKUhwFMpV+ebQp3jTsALJghO1SczwtNqwaiBe4DEuRJwmASfokhiFnSmKfgsoBEr0TjWeqq61/0g6HeMPq9wxm/0+8h0dk8Y8jXA8WcEL5unXe86P38zoWX8JmTR3EhjQJhmshANMYbfMA7Q1kmJImLiaJpLE6rSfQzof6gaMw35J7KGxBwDSFfh9Z5TzLwuoZ2mWRSYSG6Tnw0xKqAyIyHcpkivcS7Ja4PAZ/56VqqlU419Vrq1y+c706sTM+zr7/csaUZ0kBIDKZfIJXX/52akJrxjEmPZLoDJhqgdtuj9jBxkQcDrhEFho3uZ9NpEmRosUNLMtANmC8PaEhCicOKPPVJvtBkNfZoShcVRExkzIQtakE5cTdqLVoLwBJCLIcQp26Jz2rL81KzU0p1Veu4YLYNH+ndSNeOWEm2kPDE7vDhMgqXWda1wAxWpllzOxOimVUgM3FOOxJMqfzQxEDAt7wmgqzuGCnMJe59GTWvgT3lnmebga3r4C1ffyfLaZ8Pb9zAo5tLlMN0eqANSOrVgooxSV9aQkyshQDWeoxhYm0CJIlm2gUwJmBtgNRRtcBnhqKjrnrZsVRtQ7YpuGz399DErTbgrd5HWwZcLhOrU3Mp4KI3Mku6TlTgYqZemu6z6ObVS6DecwI4YeAdda2JC9A2zyw+dyY0Bfxqgc8ttg++kRCsBvl9Mr3AkETN7wMhxpVqE1xCmGwIkAnDkmGYuuZBKDspg6Me13WUXUG8wY6EdnPMwJdsB89Buzfid4SYAR9V0EjwRjTmOCkv0oxxmBGUASaJD4mbvRaawU/jN86o0AyZhyRupL6d1K9RBfBM6s3KsAcGEAZIBg47LEGEkBhcw0wE40T4yXSB1wJvErOaCV/UZSMSD/SZxjKJ8UxpqL3gU4tPIO8H+lX+ZU5u9ygY2PjqMV993cNcGHf46OmrJyVENnNUXsMvkngVlnBJzCs4gzcB7xPGYwtjgx3qvnAZjLsO0ynJGyXGBJLEqRA1gZBOmV21Lb35hHTTqoW/2+TVewWgmWAqMxPXn4Zt6jK9iZCtDbBYf2kr3ROmEHwWNHHaDkir0vpXZwiFmdap9hM+NjqCQ8jE4YJhwfYh9J/2dHe8w9K8ophvkGxraYDPDFXL4FLN+Ka9QDr02LGfWJEArmEoOlp+I3X2PARMpYH71tmCZHsMIrhGwmg1Jxkatq9KqBYqRlkg3bJsnZvje078RR5aW+Gnb3kXsAeCMonXrF8rpepkVG1L2dJrDSKYMpBuQjrQKv2qqUmcUNdt1iUVTIWpqbS8QmO/FpdC1Q6UqxUhDVRN/YypoFLPnIHPyE25J9xzM64wI3UfpZlO6jDVktZaQQ23XLoJXK5K18/EOEE/YwbQuKD8SYaqqIs5S+9KS5irKLsBt66KeSXvkWL3VPY8GLj26HnueuIY480GOEEajoMHN+hbj23EDHJlCJWZ1h0K+r8XwnZOvmZontXa5WQUqHIYHBYKb3FjwzBLIfekrYIkickhI5MSJYDSaYJur5D4GLj1TArQ1RiL3lntaM1UncB07UxcdR/Z5sCUAtuWMNRkkJkrCWnAxZxBvm64b3SEVBwtUwCw4VrPrdAUB/6RNlUe8Kml7CaUrWkwP+sHsm2nVka/xG6PkMFIrY12k+JAm+FKqoLCC7YMZNue/MKY5MI2hIBfaONaCWVbMAW0Tgm9zOLbDlNaDv9hwucfupHmhcDvH38JcM9OLuE5JwmQnkuxo4qqmzFcSakaEmvioLHhyTccduRJtwvM1lAz6MZQzTcYHG4wWjBqkaZCUoAdBVoXHfnFkmRzOKn97F3ZYuPalOEhz3jFMehZOk94yk6gZQoGfrfrR6YUEoNvJFTdnNFyStE1kzrc5gVPvu5IRg4zdirkoys/XsoYz2vxe9lWT8SU6tY2NhzNM0OkqCAEyuUWo+UU8ZbtqxN8wzNetIgz3NZ+jFTsngrjSICHThxEthOtPQ5w5XVn+O5jH+Z/vfOv4AsLhYnhF43BhSyoh1EZki1Lti50TgY6Jwt8olbjaMlQdtSyCqnX0ixnKcmgWWKsnylV0oQSEjCl7IlEkE8NVSfD5eqRaM23GhW2gGwrkAwD6UATz1q6JhRd9eY01o0aEXH/ZNuBfNNPvN/+IcvmDQa/UDFeEdqnhWLO44KhDBYjHktgFJ7Z9N5xydHqpwJzD/cncSmX6c1PRoF8w2mms51ojG9cISMDwxFSOdLE4HLLMFM3Kh1CtlWSbI2QsiIkalYk/YrGmtA/mEwSS6ReO0gspD115/eCkJAA8w9BtlFQLGSUrWmZhCkh33T4TBjPp9ilhOYZS7I9xmwNSMYFTSP4pKGJAdHramx4mqeG2G1VOL6VUcxn+ARaZwJgGK16RquBpC+Uc4H7+zo+ZjF5ei35gpBovZ1rJIyWEy1qzzVpk/cCWU95UiYJWelJz/eQcUFILKboIFWD4UpC2QGCei+NDUe+VmD6Y0JqKZdajJZSfCKk24F0yzA+UFEsecQZFuyAQSiwyJ6JaRIguZCS9DRGO7p5yPde+UGOpRcJaxkL91vyTY8ttIRm8xrLaNXjuwFxgh1p/DoZelxmwIAdeZrnBVMIVVsFTjkXtAynSigrwbYrbOI0xkkUnInfO6UF0aocLyTqheWaOLWjQL6lnUumCGTbJcnmWGM1ITA63GG4kjCeNxMPprEWaJ2ryDbGmGFJtdBgvJgiFbQfM/R9ij84ZrzYwLccVjxjl2FtwCGUlwdMn4J25p4HaJ3ThetbUWAJmDKQDD2m8CSDErs+QHoDwmhE8AGsAeeRYQEh4DKh7Ai2ADN2yGYPv74BxmB7A2yzQXLWkK3PsX11k+FBgWWPy6FqqMqsmsJKur3T2/PcU4DmmsP2xrCQqXtpBOMCyVgXqRkHmr2SdKvQ4yoHQbOEpnCYKuCtxj/NtsYDpfQaqujk2qbaiLHjVLUvMcvePhco5yx33K2jslde29tFZkSKgfZiPqFsTS3MdBhIB14tpKbRsAQZ4tokWxbKCjMoSLct40VtuSSAHQeSvsOMK3wzxWcJVcvicrU2vBXSHoxXNXNqx4afO/m1/CcJfPPBe/hb3TO7zJApZRvqQfVuKPmJ1/wqb2he4I7RAnZkMFWgsebItkrEebKtnLWbU7av84RWRTVMKbpCvi40Ck+6NsKMSxqtjNHBJlXDkIw8PhUGK5bRsjBeEqokYKyalLWLLjbgWv6Ssrfdpqopl3iu+ZYG/4tOrOFMhSwx2EGF3R6Tbpe4hqHsCEWm8iQdeJK+hjnGB9sUXattzC2t0Mk2heJIoOxowvXja1djJPCaxUew4p9VOGeHMU29CN9MtbTGyKQuLu05srUhcvI8od/HlxViDdLtInkGzsVaTaGYF0arurOCNZClmNVlMIaQWEKWUi03Y9eLRyqV/i7G9k0V2D4OL28+urPTfz4ogB16grXRFYjCbxitxjMD7MVtwsYmYTQmWIs0G5CmYG2M5UAxL1Qt7WZJBg67tgVFSTLMsdsZvp3TuJAwPJDTt4ZkWygXPFUuNM4H8ouGck44edvCbnMEACn9RDmqclDlasceU3rajw6pAV+k8qpIAIoSCU0VrC0tMfJnhHRrrKGNEJA8I7VacpQOhLJpKCrB9i2+4emc9Jz47avJNwL/29cd4tte97MzgdPdo7pbKf/6C/zAdR/k5fkZ1jw8MDqisbhUY7QA6aAi2yxon7ZsXw9Zq6Q0gbLMcZlgKo8Zl2qMVJ6yZRgtqSfn8ljGlQdcI2hySZgUxYN2D7mmf6ZE8QtDHjDT+KWGZAKm0kfzvFMcg6LC54kaFMS4eZnhU6HsBvxYVMFuDkEEm1tSI9hCyLY9W1cm+CxgE0e6DflFy5fOXk2x4Ln160+SilN+PMNS2aHQFFzDYsbJtGwE4qaI5RBHVkBWNalhBZclMdbgcI2pq1Y1A+WcMF7KIMyrPE4MVTshWOgfTBgcUmZUHQ/O4HNNHPkM/DVDvcjd3guCutCNRIvb42viIBlFnrSb0G4qT1KLT3VjSOnweYJLVUAUyw47slp94LyWmGxtw8UK2+1g5tq0RyU+6VC2LcVKYDxv1GKvwIyht1eyxqLWtnaDCabSuFR+to/ZGsBoDNaq4DSGkKcRuUk3ftUE1wiUc46iqwtNxgV+bQOcI81z0gPL+LkmPrP0jjW0L7kJRVdd2bQfcFsZo7Cz3uLni7yFK/7io/y9ox9hNdlizaU4hJsbJ3F5YOWzI5L1IWYwYvslB7DjgCm1rCrL9BqKhYRiPmH7ihx7IKNsGcquurQuh3JOeSadCpN4ElGhacx0o0xAP5K94Z9LmHbQBQs4Lb5vnhmTrg9VkVbab2yMIbQagG591zAUXajmPZXXxKpU2imSntkm6w/xy3O4To4dBzZCysYVGawG2k/A3KOwcaOwVrZp2/GzOt8dZ8/tyCHOE7LpR8uWoX80h5CT9j3ZdokZVipMY/dQ1c0oOyo0QbVu1Q70jlhMmZFuat1nMqyomgnZtme8YBmtaLmNSTwuD1QtoX8FXHXwIvePjyA8vNNLeG4pEDe+tn1J0LIOn0D/QMJwaY506Em3HWmvQkoXtarBzdeZ9lh36VXTDldSpDqAHRQqVJvJJEhedAxlS48zIzOp13QNGC9CshcUCdOyM0DLzILWY5ZLTUwru6QuM1iNz5mxwzUTxouJLn4XkEqo2jBeaZIlBg4vRg/HaFxrNWe4YhgvCOW8IyQB19DfdpkghfBAmWCqPZAMMvDWw5+ka4ZkuEkMrWuGHLrpHOlaqsnQuRbjOYvLoGoLJNUk603qGRwO+MSQb4RJXaspYzmO09IsiSVH1k4FY126NXluw55wz+uOwVnAjWCgnEtxrQSpauWr9aYQK3CMuu6hbgw0MJ4zDI7PkwwdPjO4bAmfKUbDeC62jg4trhGomoZkoN7z2CXanMOEpV+Wdl7cbgSfWaqGnXg8PoNxrgmhqqGxpmSQIEElv8tEYcxm0EpMqYKldwUU8yn5WkK+6TEObdbvxOzZWOv8aOlnizmhOj7k1oWTGrTdbQEhKiCqpl53XTcWEqGKLYEui6GMRBAXN0ZqKOYUSs9naOlNJbhmYHDAkvYTtbwiJqfPhNGCoX9YGC97fMshpWYR07FaGaODjlayu7Bwl5PiCWhXz2DVMli1NC96GhcLpFRXnXGFb6SMl3ONQeWaFFMcRPU2ekcSuj6Q9CvlbcPimobeEcvwAIwPVJhOSSjUijdlLIZdKDnvurFzaHcpCBxN1yfPy2AZhZR+yHjj4fv5rde8jmSstc0ui0X6HRV2RZHgKm2DcW3PIBOqjqF1OpD0A64BVZ2ETCOUnDOXYXQyaa/0PpY17QGqW6zrrjdvoewIW8cTkgHk215j2pV6tD4zFF1D2TIUc6Iutdf20dGykPXspMsoJCpPhgcMvWMe366w3ZJwpoEpoWpCOecZ+4QyGFJ5Zut7x8XtxYLi8rmGmdRGTWDP0M1bzFkQXbyT2rwAySBMwRgqrTLxKQwP6MWawmht1Wzhsoekb6hMRjJUDMb5uQGL6QC/F9QkKhTLWKtad69NW0ih7GocV4LW3tV1qnXGbxb5yKeBwSHwSUrrvCXb9tSNAZPumahZQ+4pFqwCVCwKnSu3MM/ipj/vJJr99OlUZ1fNqMU9DBcNVUPdJTtWAInBslWrKsazgAnIbNUK9K4w+FR5kva088pbjWEFC9iATTUuGqy6d8W88KJjZ9h2zd1XrpH6PqchJYVYfDA4hJHPuK5xlouvcrQeS5h7xJNve7aPJBQL2v1QVRZfCSRegTyaMJqD8WKi3VK5tkuSaHE8aLeQNgzMXHwQgmdS3rQX+KKNHzLBmPCxtdZlQtWE8YLFVBZxGp5zWcRiTaeNEKYQvNFcSTCG5vlUS46Y1nuaSgiFUWSkTGXLaEVYuGoDHwQj006yp6MdW5rjrqFqiHbw1BX5UanXFfuTVspYLmRKXcQ1iVbN4NOAlKJ9oWmg7ESNWAim1CyjVIKtIIjBjnVTXTG/ybZrRGi43ScNzGv/vSkFJ1OhGCbWph47wQaspjwJyfT1Gi9yeChQLBjERffDoGDNkWcGA9HCHK4Kg+sLXn/oCdq22CUuXEo+02ywHam7PEGrT9TlHEW0/0nLW1yJdoi2xAUwTggSwEbBeQzKjkWcxTWIcTzt05eRoQzaZlR2dBNt3lzxV5ce3U02XEIS4Ey1wKFkY4JQZPB0zZC7t6+CzFN2A/0jBlMaBocD1ZzD2KD9585My4RMwCQeWa3i09g1FCB4wY2tHnu5NTlBgNHvwOz+HnKZidUkqGB0MpElzup+8ElUpAZA95kdMwHfUOxMTW4ND2nVgInX7q1a38Gg3tkgARMo5mB4Zcmxdp/CWxLjnpUhtmPAjsEhbfhXCyjCdcWLJUSorkksSy2ptK8FzaYKlE1D2WHS8ZH0Ye5hTWT0D9tJp4tCojEBZTCVCg0MtJKCoUtpmD3gigqMF4Rsi8k4Cp+ECbYmQN0iWAs/0LKhZKDud9ViEscJNuAjkpNb8JPPTlo1PapESpkokcERz4uvOcn1rXOMQ/LMQZkXgMIMtmqtPMTF/ns7oyiYgnCYMlobVaCagMuGiZXtkkD/WJjhSf1jghmrBaG/Db1jgeuuP03XjhiFdC8kzyHA+87dyjeu3Mex7CIuGFKpsOJxqECsWoHhgbgOGpoEkijYxITYKSRQgk8Mkjkk9t+HIMqDIFAJOOWLGcvE7fW514L5PSIwAapc4giXOiQDUiNdicoXiFgMEvfOEOw4XlNdj26C4qvagG8SQ2XaZVSvLQLYbV14w0Oea645y3Kjj5FA05Yca6w/I2D1jt3z8WIg7cukB7RG2tFNEibQTFbqEotA64LDDj2j5QTX0As1DoKLi2TFsPrpguZ5oX84pWzJdPxFXb8eNHHk247CWbarxt7Inkdr26dqbdYtkF4CBtGWLkGFYuwvtwWk24HGRqBq6Gcn6NMoZmm2GRgeNLh8eoGTRRX7kusF5rsVlTc8MlzhePPiC86Cp6IadDiYyA+YCrtIIYZgVKAK6TY0z2sXR9WcgRKUQLZpCIkwXtQu+xp7daJYPeBkApJSHSy4or3ByKcUk8b/3SXx8LkvXcGN3bMsJVpP6xBsCFgirkDmqVImIRhMuEQHSmEwQ0PaU/SrYiHBddwlilKcJsCkisIoxnMN4OtGf9gTyhWpvTCZ3s+KaQdTDGGZMp53gGQgZBuBZKSxTxcNLYJg+4bmGUMxH6g6YdKmK1X8fpiCBC2UvHL5MQ6mW2y7Btc1znJb/gQ//AzjD3bsnlcrJaNBRmPNTBauLYEylgPZ2ufSkpu077Ejz3gxoWqoy90+40mGsVQig6oNwwMp3UeHzBWe0XKqCZJEYxouFxKrRb2Do1D4hM2isSdc0SAwXhLkfEwFE+HuHGolRdRpidlbUwXSnv4t2oJrROUy1A2vtXqB9ilofsHTO2Im6FGXDGSLUGkhAdt0vGThFAeyLeyua5FIotdox5oFJyLW+KhMQ5hmer0JJANonVVvZDxvYv2vYIcGn2qfdX5WzVZFfYq/E3QcSg3w4SNmYNqoaFttLR37PWJpotbiStrD4ifxZ0eEdXOCuKhAY2IwZFEvO7UiRcA3PaUI3UcMzQtQzGns00c4RhUSGt6YeDkCzoYJMIxKq7igdpvq0wiqYGvjK1QqL+pwH0Y7qWoc0PG8GldSQdJT0GWfq2RceAB6x8wMqtiM8eFkMnvrxGCJ02aOVDxLSZ9RZnmmVqkdC82kVTG6CoqzKdlWoGoKtvAko4BPBKlt6QCmiDibTUMy9HRO9MEFqvmcxpp2fIjXLp/xgmH7eJPuiSGtU47Rak7Z0qyzT3XC4Hg5kF+1jZGAD2aC7LOrJFC2tZ3RbmgJh3EBM5qJaUrcCBALdkF8oHXeYwtPEE2eaeC7HsAGjXVP52TQsooZcI8aqLjMA8Wyo9Uo6Ngx54o5WrbYfes7koKOaNjGlLoRXKYBebWw9TiJ8SlES0jEQeNiINtQS6LsCKMl/Z7GRUUdry1WW8wkD3IgVcGZZhVbVU7fZYx9sid6rIOB64+d5cRomXNFF4CmLUnFcXY8p7HcQhRs2sf4WyWEbd2m1kcrMoZpyi6k20LzXMCONJZbW+ez8IMQFXMRM81ENPO9kUedYmUCNUyiKtQwgYSbBeQQp9BxWU/li7daUuQzlSM+1bXVPeEZz09xHabgQVrP2l3qc7SxwWI6AOCzvStYq9rgnx7PYufI7aI/Nji0qHVi+iKm9BMoOJkENZm0MWXbHp9aksGQ7PSYNE0oV1oMD2QMl4Txoj7KdovWBafdI4VaalVQi7R57RbHF9dp2BIfhNLvPjRcEGjdus72gwt0nwhR6GnHRrAStfq0zixYFX6mgvRCSXa2ByJk7QyfJ5Nymq2rEnqHLe1zjsam1wL4mPyoZzI1LgriLQeuU1fv2sY5VpPtPbEZXKrF7RMlEpH3TTl1GetxBj7VWGfVEJoXHc3TClJStZM4KgOqhmH7CmG8GH8gJtPsSLPtEuH3ygxc23PN4gY3tM9RBksu1V7wzgFYbvTpVRk9sknSobY4gwRsEV9zKhDTbVU4PhGSUaB9tiIZOIarGes3CP1jik6uEyanvCQmW/WLY/iiAilBrCDGQBL2hII1BZOKEp9G0I0ywkoScybx2BCVo3ihc3JMsjHGNxIF+ela8k3DaFEYLQuts7HBYTLQcVrdMl4OLLcH2hkVDFtVg/OjDttVfkkI6alo54PVgrDQHLH98jVOH5qj/WhC2g+TAlMTe6o1XhVrDK3gcsPoQE7WsNpvXnmqtmWwYijmmSB3V01huGgVCT0GNjS7Om0Bq7xRS3OP7IRjCxucf3HJ2sWDLD7oNAzhggpMmWpJn2jNqraDCv5YTqOTkG2UJNtjXDtluJIyXDEMDsXgfZaQbWofu42bxxBAhKILxaJnudHn6vwcy0mP89XcLnJiSmpFygTOy7h6LEo9oVTwpWa+q1ZdWiLkW1q4bsYV2ajEZwnFUka5JFQdKLuedMsgJSQjqOtirVPQ2mxTGLbgGw7cz/HswuR8QrIHpAMwqDJaSUFiHEZ8XMe6lqVTkZzTkaRS1e3JgbkT2qmiXTPC+vU5xYJQtYM2fLQ9VVtIe4ZkoAJ3Nk9W1z+qFaeVKtRzuPYAuQak6wEKGE8qUTTxK7Hcrq7GcY1Yi5rA1pU5zU5C2qswladspQwOGoar9fRNIV9TAexlWsroLYQs0M3GpOLo2hFLSZ/FdIALhvc+p4mgSNZ4Vjp9yoOWYmNu0k6pGyNm+lCNZ8faEeQTCGJwWYpxiq9YNRQeLu3HUZ110DdaIUGm7VW+oQOlEvEkxuNDYLNs7IlYVSKOl62c5I5XNtis5snXIw/8lBcwzSQj00VQdA3BpvjMMF5MFOarPR0iVnSjRVVOEx4h0YVW3DCk2xmxWTS5f3iEN87dy8N7pCZRk12OqqU1rMk4TEcrxAyoFmCrDxkiiPVwyeCyJlksaB4tJwxWLaNVDYOECMoslXofaanfJ26KTUCA9zx+G620JDWOA81t7GhvKNjtMmdj3GSl2YvrWM/LB6E7N6QqGpN7XzVh+7hgi4zuYyMkCJtXNBiuClU34LIwic35ZmCcOVxmyDemI1FgRmBGJe4rdGx2nRnZRQoGhgeE+YdLivlEE6ouTCY7THz2WAPNzIwsn8J43lC2MsQHxnOqfOsQhWtquZupQzORH+MVz1te8Vluap3mYKrJwjIkrCZbtMz4GT21P5HQDEGovMEYP5kBVNdY1SMKTOk1/jLJcAbs0GOHqhXwakmGxGB6BVKUDK9epGpprNOl0VKtG+hNwEigCoY6od6we8PtqoLluuY5rrvxHL/aehmj9x2MPAnTzpRAbLE0k/IP7d8XbY2MGILeqsD0FSTj2v3U35nMThIYHqm48cg5Sm+5ce4cRgJ/sHUL87MFsbtIzfPa8TNeaEQ0bRWaQSDxmiBymeCCJg+zzalALVuCyywsKbK4a6rrKZXGrer4sB0zNamC9qqH6wbkiSc1nnGVMI5LfC/ENAH6RUZvlLM+aNLKC9I4mtcaTysvOHvQ0zqt3XNVVBK9o4ay3UQcjJYF1wrT4XNOdLBeyZQPmU7lnMxdiqydIOQ7AR80K7fbCjZa1cV8wjBOyHSZhiJMNRXqdcODLYSizQTJvWzJxHMJRmPjyVDXSDKIxkfcN9rjruGbrbLBnVvHed3CmLYZc//wCLmpOJxtQFh72lP+E89GCEFo5wXbqwVVK4vCUt1GCQGpPLZXIc4hwwIZjgnNnNDMVFhmCVUnpZhLyJoJ+YNnad1/Ft9tMzraYXAgveSGm1alcUxnaTcKDuebHM3Xec8eEJqGMHG1Vlt9HtGJulo64epYnkdKT9LXdsogQjIo4wRLtJdavwyAqplQRkgsDXHMCM1EsHMlL5o/y2bZZCEdaPmVsDc6glCFR2IounFDz96nqESNVUszGQdNeExqVZlgKk5Kz2KZmoyIMXRVJrVVAhBSsHFOTmodRgKGQCsp9kSPNTCxLPv9BqNxSqc1IrUeX+lWDHMl/kI+XfeVehWDQyoA7Aga56ao/1VrWoYD0TWvgXTieOia95NkSvTmQrEnNg+8bItTx1p0H0ywo2hQiFrGdX7EFOrFhkQwpRoeSd8pPsHlS16gfyjV+udI3gYC6tpLs2JQpSznAx4Zr9IyBWWwjKsEK88c3tqx0DQSSGew+eYWB5SdfBK7tBG2SULQ2ehWFKQCwJhJnBKv+JumCIwXUgZfcwwCZD1FORcfs/EefA6NVoFES7NfZWzYFj2XQ3hwp5fwnFMVDOOYCj7Y2OaLmhiN85CCanVQNPszFwlFAWWFdDuEVoPQzBRazoDPE5LNEemFdZrzXarlDuV8xng+9rajm6LbUZSnzKgyGYcEI4HN2ZWyizRcSck3qulETguhmlZ+hJjIyUp3Gb5mfN9oJUYQrSaokXxCyjTD6qdtuS6HquM1Ay2C84bEVlij4Zw9QQH6owxjNLtflZat7Rad9kjXtjekzRKfZlqH6TU0ZUfQOeXJtjzJwE2SroBiGCxoHLRsa2inmIulOHEWzsTSiudQNxLotNPdYoZSAG49fAp/SHj47hsmNaXaen1poiq/OMJsRJBtawlpQsgtPkt0UkBqkBDIH75A40tQHl6knEsZHEwh14RS1QocPLDJi7pn6dgxPoKmdOyYhimfVe33zrPnJpAa1eK5hdASTq0s4B/W1sfgJAo8A6ko0shqk6q1pBD2NaJJLGot5hTFxo60O8jlQvNihS2nFkf/qOdFS+usDVu004LKGxJxNO0e6AhCEVJqFPm5ZEix7LTLIRbkSnRBxweahMOqHJKh9k+7honzlNQVqRpWkXtevUQwkG/6aa+6xGB4DivtAWWwFD7BYWiYkpFP+VJvRQWJyAeB/xZC+LkXmh/BwMVbhfbjKc21oAAcRrRjoy42DoAPZJsKuCtjh/hL0bOkqAipVe+ldPjMMl5pMFxOKNtc0lDhU0EWijilMQoUJA5jm9CNIvJdu8ET0GseXGjRWBphjCdveIpxQn+Y0WiUeG+0DjPV8R4+FfINz9I9a1CUanSkCa6bq6eyNUI2e+Qh6OvLXYaH23hrKeblUmzIy0p2CLH1crfd80jdZMzgoLDwkKds1glgoe6rcw3DaLVJc1RhLqzj+wMkSRBrsI0GpNFS3+7he33cy26kd1zj+7WXFgTKbmA+H+HQMRdlsPggbFVNPnb6KrbvX8KOv/C057ojoTlcP83wcw9h3jBPJx0zqlIu/uFneOLXf5Xlr/pHikhkROcV+xBbIRV4VnwgSQSXmeh6QdbTkgCfRCvCgksVaq6+0KohdI5rQ/2gSHmimudQV2s1b2ic2bVAtog8CrQay0conWXgMj73noe573dO0PwXL6bsdEhGteDUG+aaEe1IoJhXNB/QgP/sMLHPv/Ofce33/M+0k1XG8yZaVdOyjPFiYLXZY+hSEvFsVw3GJuGh7VVO/M7V2NHu7ISaJ82lIxSHSpJeRvE7H+Rk//O8+PVvn8R5J0OyAriGxY6ANODyjKqdxJKtgI0zhFwz4YPv/5+59S/+C9p5i3zb4RNL1SJ2HSkSd94oydNqgk5eYxPslSqL0cXTjD/1Jfiqa0hbBSLQ/8hdbPzhpzj8ju+ZWJ9+tcQ8mNI5VdE6sYV/8FHMXAdptWCrh70QoNumuGKR8Q0L9A7bSZNEvhFIhtowUpe4AZcKzXotzabYd4nGF05z6hOnePnrOpiXb3LmUIfyfXexdefHufV1/5BAbIpIhGrBUnYXSAZzpL2KpKfAxLig5X3WwnKX3lVtto9GtKtKa6PrGLCfqzja2mTsEyzavrpWtPnk6SuZ+y9zrJwZcPYZZsHv2NKca4042DBc2zrPI8MVLuZDsqxiPC/km7X2R2+GaOwuJBGAYRTdi8IjpSMkhrKbUswrqHGV6BkplqK6oaPVwPHuNiuNPqe35rAmkBjPZtnkdLmw09N/rslWwx6lNwxdRhESPIbrDlzgwSs75JtCGAPIJAgPTNpP8yJMpnbWKOY+zovPtkAWA5MOj6AxmbIrlItDemWODzKpWe1VGQ996CqOfLrgsd11uWw11LrR4VFHNp/BACZ4AjFRSAgIWormU0Mw6WSkR5XXZVmJ9hfHVeoyYXBgqkRAk0ShFIpOxUKjwHkhsZ7cTrHgqj1QzztLZiPB5w4kKBJR7LEf9TJFHkoDxbywdO8QGVfIVVdAYvF5imulFAsZvSMJ/SsUck/RfxR4uWwLtggaG0zRlsy67C1WGZg48nZSirTLVAVLKo7XHn2UBzurfDFjul5iTkD3gYZqxguGwWqOqXKtyolxcJ8JoyXNmic9xbwIVj2OYBRvduXgFrmtqLyljEhsdzxyLd0PtGmcH1F2U/WKnoZ2LDTn8xGvmjurbV/AhaxHZh1lR3js4Q9y9pFPUBY98myea659IyuHbgEfOHPqbk4/cSfdzmHOnPkUedbl+hv/EnMLNwLwwO/+NK3Dx9k++SDj9XPMHbiOI295K8Vyg8/9L+/h0GuO8cpvq3jV3COk4vjBv3QPB/7xod0umfjRarj9I8X2GL+sjkQIcGV7nc+34fMf+j2GF54gzdpcdf0bWb7yNoKBez/0f7Fy1StYve7VgOHCQ5/kzIlPcttr3s5nP/Z/A3D/r74TEbjy9m8hS7o88uF3sXrz13D2vg/ReOm1nPknr+eJn/h9Nu87A86T3nCclzQP0LjwtOf7QtCPlqPtHwnjPvmBhPUbDeWGKHTeydM88unfoLd5kjRVnqweeSmEwGf/+Gc4cMXLOHLwlbRKz+kn7uLU2bv5qpv+Hnfe/58AuO83fgxEOPb6byHNupy4410svOprWLvzQ+Qvvp75627n0R/7Lfr3nwLvWbjlCC/6p19P68juD+CrKSSa1S2GltbikC1n8M7QaJSc/o0P0fsfd+N6PZKFecKhN7LwolvpHbacO3En65/9OPkVR9n+H3dju10OvfGv0br2BgAe+4WfonX4OINHH2S8do7O0eu44g1vxWRtTrz7Z2lf/yIWXv21qrgdfOk//ygHX/um3WVGpHKmYPRiv6Uwd7Eq5+QX3s+5Rz9BMe6Tt+Y5ettbWLzyJdgicOGhOzn38CdoHDzK+gN3k7TnOPyGb6Z91Q1IgId/9adoHTpO/3GVKflN1/KGV7+K0lv+4J+8n2u+5gDDr3sj+V0dlh4Y8ol7/k/m3/Jmnmle445ziiOXsO0b9FwDG9W9jxogn1vmJV/zdr729n/N1ce/ni984VcYj7fwmYItbG09Trawwqv+4g9y+OVv5t7Pv4vNxWJSarD2xbs49vVv5aV/4x2IMZz68K8TbOCKN7+IR37vIe46c4z3nbuVX/3EQS6crXjDN+y6BXGXSXNOv/tOXBB8EALCoO85/cM/z+L1L+c13/iveNFt386Dn/8NBhtxwNdMd1DZ1Bk3PhVGSwk3/PnvA+C67/gBbvr+f8fC9S/TMpzhNqUbcPU//Vcs/s2/zvnzHeTVr+WKf/IOrv67/4bsfJOH7/4Vei9augTHchfoLpPmVHe8n6+/+kE6R7bxWWCUF3z+oz/L6tHbeO3X/ytuuu3bePALv0F/+8wkORhQd90nJtb8emRc8opbvxuAF/+FH+DWv/cjLF73MuXdYBs/HHD8f/mXHPnH30Q3HXLdX7ieV7/ru/nGd38nWUP40k++nyPNrambutsUYe6ys2kECAY8DLZzOlfOcfBffzfX/s8/zMI3vpH77v1lBqGnmLKDwOjkY7SSFW77lh/i2E1v4uS7f56w1Z+UU21+/i4Of9NbueF7/w0Gw+k/+nWkgoUXv4qtz96tVqXA6NxJqt4mnatv3k1OTKjyhr7LGbqU1DodRRzDWI32Mrd87dt5zV/4Qa64+Rt5+KPvohhsaVtoGeiff4z5coGvfv2/4upr3sATv/Hz2LN9LUcLsHHfXRz7hrdy3ff/G0wOn/2JjzJ0KcfecgOf+60n6N1xgEMfH7DmzzMqt5g/evMzAlbv2NL83L/6Le7/oalNX5WBxRuWGR7yHLrqNpKxJww8Bw/dyonH72B78wkWFhbxRkjzNoduvB2fG+ZufhnZg3dw8cJ9zB9+JcHAwk2vpLF8GNMPHH7lm7nvvT/Owua3cfhrjvPZd36Q5OJpksWcL/7uQ1z1hqtZtx1gd+sS09Y8Z3/zbrbedhwXLAHhsQ+fpHVojsVbvgo5UdGdO8rqwVu4eOqzHFvQUbt14X7dM+0ToXfM4GI/to9z0yc1niKsfs2bqdIE6wwhz+gcfiVHPuJonu6zXNzCJ0e/Ni0g30VKW/Oc+827WP7eBivNktMG1s98gby9xKFjr0IcdLtHWT1wCxfOfI7W/KGJEvGpUGQJ46UMt5kwOD43LVbOBEmmbboiwoHXvJnBnKHZEY4ecFx5dYuBP8fhbJNrv+8wP/d3Psk1zfP8j2ceZ/2C0Pmf/gVtYayz2s6RXXkUk3p4ycuZXxiwBRw49HJ68x9gcP4E3YVbybcDWdrmxaPb4ItD2qsv4czcHQzuu4/5W1+po6RveSX5wcOIh0OveDMP/PqPc6T8drrXvpjTf/CrlOfPky+ssvnZu5m/4TbIkz1R53zvv/5N7v8hCAguCKH0NJevAGD16K2qFBysHrmNk90/YnDhMfJjt+gU0rzDwZteBw6Wj7+MJx79MBtPfIH5pVcBKlOyg4cpurD0Ld/AY//ipzj8T/4Kp/JvZPORP+a6D53EhHmeGH6a7utv5vbv+CwP/+rTn++OhebLf/ib+FvftAUoXP8n3nOaj777DCvXXeTsLz/KuXs/yLi/jgCuKnCDbR1JGyBvzGuVfxnItqHRXCRc3CTtaelD3pgn68XRtgeWCN4hF/vkTcMtbzpC8+Mf4cUvexF/9P4H+Os//ipOlTmEszu9hOeUTJKycNu1fP6/fIaFq+YRAqOzW2zdf5rPPfi/TqyAEDwHD78s4o4yDcyHaYzPxrZAYGJdZL3AyAWSRhuTphCgecaQrFWc+cB7OHnifqpyqNUIYUyVsutlJCZJWXr5tXzoPz7McPUaxHqG5Rq9tcf42O+9Y3pg8Bw48rKYWSeCs8QC5zSOQzliJ5Zz1QITAT8kgG22CZ0UFkYstYbYYsT733kXD330HKMtrawY9R0nh3N7prj94N95G80bbyBbMyRDOHP24/Q+/gnc2NK741Oc+sMPU11c1/rMqqAcD0iGekOzxjzjAy0dWJgLeXsRt7mJiWBfydwCEIFSFhYJ3uEGfZJul/kbbmP7nrtpvuaNbN5/D8f+8tumOJS7TLf80F/iq76uxXbZ4JGtJR79zS/S+41Pg8C5R+/m1Jc+xGiwDoBzBdW4r52CCaTteYr5OCXCQjK/SFFsqQ8tkHYXNMHcCIT8AKHynPtAl2s+BW7+Fta++HE6L3oT6w/fw+vf/nq2ysZzX3J05q7D/J+D2yfPt+6+k82LA5rvtZz441/h5tu/h/mFKzHO8Kk7foKqZalalrAO49Gm4ksGNa3L7XWWDt5Mc007Z8KFDdLDXk3zzXXEWOYvtrn3d2+kv5hx9t3v4tHR6xi7Dh97+K/y0UcDprh/p5fwnJJ4WLrhL3Pfz/84i699PYOLHU6cfDHNY31uev330NiopaYe6y2YJCOMC5KRZpL95jamUizJuqaucR4aDUVxkQoU4SeQbSpy0Jl7PkCxdo6X3v6PyPMO6+UZ7v39n1Cg5l02NsXD/HV/hY/9/I+z/KobMduWbrFAtXoNL/7avx8VRYjWluCM8sT5uvUJqsF2HJHCpAMo3YYGqlSLUUCC0DwbSAYNLuRHuO9j99I/kXL42/8FydwcozMneez/eie/++5X0z27+xY4QLJtdFxMM9A8D41zhn4ppHf2Wfuvv8YVb/sHpNdfxdJ9hvvf82MR7k6xScfFFqN5Q7FoFKPhoxs0l2/RZJhAub0xUcbj0SZiLGnWRgpYueaVnPjAu+iuXoVJMppXXIXbIwX/Fz+3yger6yHoTDDz2AnEBUaDNR76zLu56XXfQ3f5OGItn/39H58kVQNQDjYJIWhbaFAeLCQvJt2OozEurpNtRIjCzR4Yy+KZFmU3sHzdV/HFT/0SDX8TCRlPnHw9J0+AKX7vac9XQnj2i0lEHPAQsD3z8jKwApwAbgY+D4zj61fF1y/MPH8cOA8sxOefBRxwI5ADXwSK+F4AHpn5rVvQxrl14HR87XgIYfVZX8RzRLG85ruAX0Sv8TiwiMYLHgReDJyM5wrQRM99BBwFOvG4FLgeKIEH4rEvRa97Kz7vAlejvKrpividD6F69SqUp3fHc/k8L3Cd5h7nCcCtwPfuWp3m/v55En1F8iSE8KwfwKPAGy577W3AR+L/PwysxQv6ceAO4Ltmjvso8JPAZryQN858zweBHwE+iW6M3wJWLvutfxkv+pqdnPfz8bicF8AxdPN/MD6/EfjteDMvAh8AbovvrQB/gC6UjwL/puZhfP8fxBu4AXwL8Hrgict+/0jkWS/y8nsib5IZfn7XPk92lyf7++f/fTzZkaX5pyEReVu82K/5Mu9/kGewjETkO4G//+W+Y5/26f+ttL9/nky7xZM9EtV4ZhKRFvC9wM/s9rns0z59pdH+/nky/Ul58hUhNEXkTahLdxZ41y6fzj7t01cU7e+fJ9OfhicvmHu+T/u0T/v0/wb6irA092mf9mmf9grtC8192qd92qcd0I6K2zPTDMnKymQELTDpbpmMpqgRVXjy/5fTk967/Bgf5yDXvyHgW4H55hBBx19ceKigHPd3rRksabZDcmSBbj4iXNaTJhIovWXYz5+MXg5PbmGTL/M/TNsp678zEF/TURp66Gi0vqs8SfN2MEcWMUMhGYQIfhsi6pUiYdX4hrMIPJcgjD/bs4+Fziai5NcjNYIVwmJFKykxEtheazE6+8SFsIs1iUmjHVrHO4yLlGydyTyt6d6ZotdTQ11etje+7H667PjJ+qhR2uPrPoHO8oBcFELv1CMO19/F/dNoh2R5SbsC3XQoI0YR0jARwd9wySjfZ1wrl/MP5YdCxQE+aGfVvGexMZgcYwiceaTEDb48T3YkNJvpHIff/s9oXAikvang9HG8bNUSXJxnrU33TB9JmG4QE/+PfzEBrD7EBMTG7x0mJBcTkpFiJgYLK684yx/e8kvkoqc+f2uxk0t4zimbW+Jv/vLX8X8c+QB+Jj7sCKRi+G9bN/DOD3wT2dr0jgdbXz9PFqRG33+SAiIKhkrHHmQbQtoLpH1Ihp60r0j44uHOe37q+b/wp6Gss8RNP/23GP7RKiv3liT9CoyO8BgvWIq26FTBTDexT7QFTue+BB1xEf+fFRoTHE4iX2wgNBxUBrttSXtC53FtPXUp8Dcv8O5bfp4Fk/DK//RPefBf/cCJXWIJoGvl//NrL+U/fvarufo/CrZfEhJDsZhRti1ls94/MoU8M1PeTHhkw6UAJBL5mHvdZ0bXie0Z0r52TdmxftdoWXjnP/hZXpVvYkQ49OrdbT7PO0tc/e3/jAN3j0g3RkhvSGjkVMtNynZC1TI6Q2tGtgQ75YtPw8zz6XqZKB8b9PUkQClka5b2E9C86PGpcOYNFe/9+p9kyVRYoCGGI695egd85zOCarkQJby39ezquAnSuPBr3ER0oQcnk88ocrtK+onwNETBGOKNV8vJ5wFX/67A9ih/qrPaVdIRrAF3Wf+iD4HfOH0b6aYKzKlVqEpAqhkpEEk1pyLcXyI0Z/iuQ7em88+9NRG412DcU1iwu0CbvSbdzYAdaxtpMDrSomhr33S96cXFWx1QVHcnBBcFpp+umQn5KY6Jb0CoDEjAdR3BGqqLRtvnUrj42BKnbspZMHuk8RywUiPLi1pTRjFUXT0EDaYeFlNLyk8UCYiN/JvxPEICvjC4RsDn0ehoBEoBO9LBdbX16fdSVC7omOIJhqW1hNxSthOKOasYBFY9KVNFo8OhFmgS18tE2coUN7RWrlYIScDnunDKOc9o1WIqQzIMZKdTTlXzLGUXATDyzJtnZ0IzMJ07MrO5XarN87M0GRtaRAE5Y1VNXJFKL77WFBhRFGYXNQPg245grPaOOvDe4PF4Ama3549+GbLxvLaD58S5JbWUZxZ5CPFmGybmkyllAgyrlrlqUYGJVTrrirhcb0LVjCOPK5m4pnuByvNNsu3aEzG43FA1ZGJFQlxL9RiPpwhHGHepqyowhe0y+r+UUfjYgDihaunrNdDumWqeW9KNF+CKnx25YAhB52lJavGpmQBP15MZbe2i1i61FZ1cEcMyPmGCum7q/VjFvRb3nU+ZjkdpQFUIdhxIBoEPbd/Iaxuf2JXrv5wk6PQGE2eLhTzBNVOqlqHK44zzesZRVCa1FWlQAwJREJfg1fCSuL9ArU+fCYjBZ56QBop5T9ozOkZ6LPR9TiaCe5aVRDsfrBZjAvVY3ktWexSqRvQCJjE3ppZFMEE7PWsh6gEviImmNjIdQjkzelMqJrOrHYEyOFLZKyCJU6oFZi4JHx4tEE60LkFtr9kVLnOxqnQak7wkDhM3v4YxnuIHY8zHRyWzF6DhQIXZNGZHHL073chTr4OnjGWLQbuHAxPE98vRoUypw8d8GrRbXQLFnCL/uyxguiVXpWu0TOOFuehnQT2XI080MG482QPqWl5mVV8WwxQf9StMEZsiT8RNlaoKlumY4xpEs8bSNBWcL7ovzMU+Swoiqjwyq8ZEoopkolwDXOJuon9qJUI0vsTMxIdrKxxByoCkUZCKKm2XqTdix9D3mW6tZ2Flwp9ksJq/dHRqcGo618PSiNcm9TXWMGW12RxdLhWPTCYV+vjdU2YIgTARFKbUmcbGeMrgKfF0n+VF7gZZEe4dHtPRqrMDrmAaz2S6KSaxmRiXkVIwhUx4VCuaWhnqGAAmAnWy8SJfd5t0Iwsut5NzMw6S0dTNnMYxZ/gxMwSLaFHUAsOnTNwsvMSAvkQLTQUoAYoFj18tuPLgOqeqeW7NxnvHAg8ae5Wo3DQpJpcok0kss95TM+sFHy0siTiszbiHTNDrJ66NaGnVa0RfU+PDB8GH8Kxc0ReCbJxpHtJaSkblPzv4bWa/zHomEm2N+q/PQrRONfxVu+lSiYaBLpN42VbgiWIZ2iee9fnuXGjGDOVTzRqe/I1xyuksOaYxy1pwfjkKRK4o9FegdlX0eWodHnBBrc29SPVi/Oz2UQ0p2InCnywCU00XxHSeeZz2KzPKRGaUSf0DtUVRqhCy40AyUng9U85YrLtIKsS83sc45yUZ6pRS8YARXFaHZWYs8BnvAsclOJgTHhoI1uOjkpgKTYUW8zkkmY42frRYwTUffyEv/WkpNxVVM1wiBOrrqkNdE37MrJeaJnyJijiYoEpHmIw0rmOi9Xcbp2vElPq8m472jMAENIlZ+pjcU8aYKkxmvofoTdWhPJ9wqYFWC06n7jYEXCaXGBmTxFD8TL2HCDpDaCe0Q6EZJqUzE1drxo2YZsvrjNbUPZudvRx8mAaw6++YybRPMl42JoTKOKBNYKE5woWYHNpDZESlmhHBovGRU715JqaiaEy2nvc9S6qI1M2UOnNqA6GhMZhaXUppkEKiwNXvM6UKo6zvMeNpbGg3SVCBbsuALXR2eTBBB6dZvZfeorNYLluv9bqYJM4iBUPUKEYrM7JAaMUZ1aUhpAFxRieiDoTSWVwQWmaMlT2U+EAtZpyuiVrRmUrDCvV8mtrCnrqZXDIIzZSQerClrheXa5w7JOAaapqbGPOt46DpQCe/rqQ9LIJRm3UXOHAZBXS0ideyo1DKJfPPvVW+TAQmTNdGUF7MCkJTCaZQfvg84BuBkDvqSh0ZJDNKWkjFxbDa8xTTrJHHXaqug7eaxZ2V/OpL1Xeayd+6bkwXQ3QfwrSEIljVwJPseRImzAhxYRxubbE3pp1PyVxmdjsCBiicjqcNRib1cj5lqh1lRkgAthLMuH5N+aPxQKjaHt8MhDxoEkDqcRlTawsBn5knCaLdIlMEzMjF+5dSpjpl0udMhIMZTxM+sy5XzdLZMiNfCm7ibhqdydRwSMNhUo8zCW7dqIAeWy5sdrh/eATXPbcnpi4CnB3PaVgh1iDWmXGXCi7TON5sDe4lSyuuFQlB8wCXKxXq0jzBtTyuGQg9S9lRwWPHuo8OpFvTfMAeWCuuIarsvdd7m6iSqwXmbLlVHaqarcyZJKhhoiDEa2LMjyQidVqqZqBaKQmpx6eWkDCtN49knwVDdl5yBJMbXc90qbVAffLimFhWsxugjsvV870hWlkIvgQ7shMhiomaoqFWZ9X1uFyoguFjw2N07ZCXZBeQP+ElPB806/JYETLrGA8h2w7kGxqrLFtC2YkjamcC+fVY2mw7kG177DhmE61OchwtCb1jQjXn1Y1PwCQqgKqGIMGQ9j1pz+2+ex7iSIoo3Iv5DNfU7HmdELIjaFwINC96jAsxmaWCo2oRj53uaVOqhZ6M1BWv/1ZNy+BwoDhcqjJvaUxLBpZqs8U9q8eoDtz9dGf7wlGAjz5+NemWCsxiTudNVA2Dy3VPpD1dK7YMapCkMlNaxtR1N1qmIxWko0B7K6gbXujnekcSesc9fq6iyC22b0hiIvVF+SnW3JiWiannXSZvYzjOBXwjwbUSqlizimhooXUukA68xoLNFM2+bBmqpj6XAFKCHQWSAWQ9TzJQ118CDA6mbF6bMTxcUSx4sm2DHQVyszMzbGcSxwfyzUAxJ5PslsumBafiwJb6N+kH0gGT+SYu13nWZVcg0VhDkGknR9qrSw+i5m1A2TaMlwPlUqVIsoXhzk/ewCfT60mWR/znV/9nCLtb3D5LdXC91lattGBQBFrnHPma3piQCMVcwmDFMl5UC90WkG4H8i1PtlmR9ArEeUJqKTspPhHSntA+JYxGlqqllrnLw2SuTlkI2absiVk4QTQg7xpC1WwwnjNRwer76XagsTGNwTYujDA9vY8htYwPthgcSBgtqxtvCxUmyTCQbzmy9UJjUbml7CbkW4btQcbwiJvE+czQkPYEFwxlcJPEyG6SeOBTczQvBFxuGc/PltUIjbVAY81hC48dOtK1gSaDrODaGaPVnKJrKNt6z22h+7F5riS70Ecqj2/nFPNZTAoaBkdS3MGCKjOUmymNi4F/+eBf5Yn7D/JdX/dHwGd2lSd1gg8XcK2U8VJOMWc0JgnkG558S40IO3Qk60NMX4cphlaDcqnFeDllsGJ15vtY11brbEF6cYCMK7CG4kCHZBToPBYQlzA87Cg7AEJDSlIxmOfHPQ8x0yWTwHWd7ZSYGTUlcTNE01cE8QFbRAaNNctXxV82BSTDQDKCZKQnXRqZZulLJkXOUkJSCcnAMJQG276JotjvTSq9xSfQP2gp24bmuZJkUNE47wi2wXjZxlidBr7TvsOOKkJi4gJKGc0brW2UKDgGMFwVxosxAZBEy8pD1RR1O3Y5hCcB7EBjvFVTKNsyUwWhHTvBwHjOxJBNTmPsMOMS6Zdka4ZgG7g8oZhTRWDHgebFinRjjCkcVSejmE8YrFqKOd1g2Zq6L5PWQQPjKuHvn3gLrTO7bX4rX5YecORrFeIDLhWqlsRZSOphuIYq1bRvEN/Ebo8wWwOkdDQAnzYourofsm0VmOnWGIyhWsipWgnjxYSiowKkeVbYXhYkd4hPaWwENn/3MEcfc/zBTTdB2F2hCVB0VDFUrUQVSUuiIaWGRLAwXEkwpaWRGbLzYHojpD8ksULVsoizICovsi1Huj5CxhW+k+OaKcV8QtmSaM3D0MB4qa59hAdKwxFbMG8yninOu/Pi9hicnha4xwxdqTd+UlgcVHt6G7BRKFgBV2nWtM4oi1dhmwzVhK5dkbrmzI4EKQwh1QuxYyEZApXwudEVEDZ3eIueP5p1zxMs89mQzVItpWzbY+skTYBss8KOLONFMA3w/RifDGAqPS7pG3KJrkimXSO2gMZa0DhVHi32eBd9qgpt18trQqB9KpBuO1w27RSztVKtwI49jQuOZOgwgxIzLqGskEqf4xvqkiZAQ9dS0q8I1hBS8JnVIH5flUfZie6Zg1BNw0SnP32Ii5uHWbywB0xwIOnHhEcIE8FeC3kJgXTDka2PMIMCnFYfBGvAeUyhlrRPZDL22ZQeqTwyGGMrjx2UZJuWfDFn+4qUqg2ml8DyWGPjuS6Oom3Y3urseqxX0DWtHpOZTCM1pYYapArYoaf1xAApqhj2Cxr/dBoDDVao2kLZ1jimHXtkWCDjAhMCUjpNulUJ43mr4axC+dA4H3jnp78RVxq+5+Uf5h8tfv4Zz3nHAcFLwDjq+EqAZKiTA2UmMw5TAQrToK1PwTW1C8ZU6qLViZHZkhNTBUyh9Youj8JhrAmh0HL0XGPXbzqAlaAZc8LENfcEFrMhaycrss0CM64mNw/QkptG1HZiyLb15pvKYzYHGGsw44x0KyFkBik8VTuh7CYUGLJNYbwU+7Rnavhg96NU4qG55qbYBJmGcZIB5FuexoWS7FwP6Q9hXBAGQ7AWyTNCt43vZIyWLMMDQjHvkUrI1yA5twWpLtl8a0h2LiHklv6VHQaHLeW8xw5lUtdpS2ifVItrTxT910lNIwSmIBQy1nhd43xBemodKgdVRagckqWQpeqmo7PfqzZUrUDZi1nn0iHjAtY2wHkkSWhszpGfSelfPUfVSBgtirZYJurdBQPjUbr78W8PnVMV4nzMY2iMM3GBbMuRr42x5zfx5y6owGw2kE4bjIHKIc4RjFB2oFjymMoo8EdRqlBd24DhiLSRkxw+QDMx9K/q0L/C4hrqyvs/btE96fijYzfwT5a+8IynvDOhGS1LBQ2IrnmiF64tXWFSxzn5SN0WOPNwDajaimiSbZjJOFcuQ0oKom13vuGRVoXvqSYqFjydlT4dO9rR6T9f5GZMuzLUpn3JxXGbZOSw/YJgVLJJ5QmJYbyYUcwr4ITLNTmkwe+EYNvY7TFma4gtK/x8G99Myc8PSPoZZjnHJ1ZduflYngVIXfC92xsBdcN9ZmJiry6hCaQ9T7o+pFpowmJLN70LalEZASMUCzlFV6iaAdfx2iqJAWNwnVwV0MUNTJpSXbHMeN7g04AZa9mWHYk+Cl1/aT9gij3AFOqMeMA17CR5aipNXgCMr1rWFsu4jEzp4/4IuEai3U6NKDS7hnIu08xzI6G6ehWXa/vUeMEyWDW4phoowcvEe2tseIqucGhlk9O7rWEJJMPoQRiZ1GNqSM9jBgWh1UCuPobPEnxqdM2MHbQauPkGZdvgGuBanrIjjJdS7Gg+WqTz+EZK1bRghNFSgotJo5AFhsuWtBdHiAchwcIzFDTu2NJ0MZs3qasUwEI5pz3G2ZYmgOoC+Lo8onYxq5bOfA5ZIABVS5NENdVWQjBC1YHRciC0HdZGqyoJcHjMSqfPeC9Muw+wXTY4UQXKYHAzdt7GuEm5mjFeSAlW43LitCRk+wobA+DqkrtME1/FfIotNAGkBe7Ku6KrbkVd2Fs1agUTLu042huyQc87xMxoDOG4TNg+mrB15QKmVGs03XZa2JxoJjwYoWoZQiITSzUkgdGqUB7qUnYSFa5XdnG5MFg19K+IyjtoSMOOtT3ODtXFc6lm7XedoiflE0V5qsNbLhP6hyyjpSZ2HMi2HelWOTEmfG4p5hMN0eRxf1go29A/lGDKjKRfqpueaRLFZUIxB6PDThtNBEKqghZg40WBbz7wCJ/aA+vFWwOZxafT0sWyLWwfyzGHMvItR7pZxuL9QMAQOpZyLmM8rwkgItiLz2GwYsg2UtLtYiJoq7ZluGzpHROKRY/vVsjITn6v6BoyhHU/BJ6+PXuHQlMRambhmeqF4HImoBs+jUPfq4BxujhcpuASVTMe51TSl91A0RUSG115mHRIFHMBN19hG9re4Bue0goL3QHHOuvPOtv1fNP5UYc7R8fp+xwfBaclcG6rQ2tOyDfVwrJjTzlnKZuGqqllFmasi9hnMF4QxFsa62CHLpYjBUIEuxiuCGVXhUgwYdp6KdNYc5jtlthtiqVpdVmVT5lUDCR9qJoGO/IYB2VbkwA1AlIQsEPBblt8FqhaMDiYk29U2HHFcCVj8xrL4LA2AJihIjzN1u1JCJOYar69N5gyXE7I+n7S+QN13argSpA2FHMJdjkhHSrUX9nSZJp2l2nhtnitnugdFXyS0T5rNczlw0SghhTswODanuAFvMb9qqawdP1F5pPh7jKjJoEaS7QOYbhcFYS4aHDlBhsrcXw2RczyGdP7XShwy2jZsFVmtM5b8rVxTBBNUZ5CErDNCue1zdeOoUyE1Dg+U8whof+0p7tj91xh4JhYDyFMhVywKhRdpq4RsV3SpypU6++o6/cwgWrOM/BaHpIMtCBamRYFQCX4ImaNUo/pOlqZlu/stP3p+aLtcc5a1WHkU8Yh0b8+Ybidk3Y1wF22dYeULdWGVTsmwiqZCJdiXjFJx/MJ2ZYl62urYL2AlMdB2w/rRoAZFghc0q67qxQTgcHKpM1t1jspu1C1DP3DmVpT2VTAJjHqUrcABgdVI7B+vaGxlpJvanZYBUOYtFBOwE2I6zQmz3wGrXO7v1aCaOUDYrDjyBQ/TeS5WH84UYTBTnMDpYYZZr8rZIFiMVB2hf7RRLtoJtZrVKqiv0GhSsU1oJz3XNfd3HF94vNFEgGBgxHFsQgRtMeAa8KgJQwOWMRrZUgtfwjRoxhxCVBJOR/YnIPesYR8PYkwisrnqhnACW47nYQBTQGbN8DXzJ3jTLUAz6nQRONudcV9nU2fIHDX2U7U7a6zND5holWlUuFK3S7ZdBQNRzm2mJFM4K1CEvBZ7D8fa5eLZJ4sL2mmJT4YBi7b2ek/j2TEk5oKPLSSgsdHS8hWSjEHzGkRssQNEgQNyqcRqNnFFkqvSqdqwWgVTGl1cyQ15FuIvAyXKKzZRNCTMAF2iyR2LCVRmM223YpuBm+1/EwtZ/VO7GimiNtoRUBIAsEJVTewPQ89J7GeV+OYk+6YoJ9zDShyXT8YFazukb3RSmkqDcWkA4WyMw5cctkeipi0EOPUJZhhrYSYhqkENSoanmouHh9Ee9Mrbbc1DhgZggtICUjAHhyynPcp/Y6jc88DRVCXGis0ohkFOwUx8VHx+RmQYRO75+qqA4nWg28GpKdrqmoFxstM5JApRXleCN4apNKcyXBV6Nx6gWsb5ynD07vm8CeJacbOhQmuq5/ZtNESqrOCwCS7PptRV8SN+gsFKjWrXTvgWtH6monRSaWtccEJIoFmUj6pdXE3SVFj9IJTU5GK40LR1jheQy0KG8FLfFrHqQKu5aO2tCRDjcvQClSdMMGHrAWhRMGgXQ/6XXVLdbBhIjh2u0azJo25Tutta8VZ31ZxIBMwaiaACzVYbtWIpWm58sL0IRmIVhukAJEfpUy+zzxFAbsZCzLSQvBdJ4HecU/7cUO+Fc81qCFBbM6p+VV7IIrSH8i2A1XsJvNpAAtmKLRPGswYigUoOyFaYZdeq3Hqldmx7qtma0xiHAO/N4yOshMXRm0ERAu8BiWZuN+iwhCv8ermOQWqKboSk41ROBbQOm2oOjA86LXQv94bEcyEkSCVKvXh8Yq/fOThZy1TduyeK+R80BtAbRZP45s1MPAEzw+NS0wa8JNakMTPlwbbV6Ho8zAxu8XJFCew1qoCxgSS2PbybLTCC0HOC2WwuGCw4hkHw/qopcLNxIUQrSoFH55iaUpVF/JCuhVwTWFwSK3NCZhqFJaTzRRpglEa/5pSLt8vu0Oi8co6dKCuaIzh1YhNPgoLZAJsnW1A55SjahjCEhRGVChGxZH2VIG6xtSiFqvfLbPxTCEKCA0TKRrUHlCyAm6pZDjOyDdqoTit1wxWrUqYenLZViDfdoy7dtJKGZI6fgejpcDy5wPzjzgt01rR4vCJPKwrUZpBE7AWmsZTeUvP5bsfyxFNLpuISSFVzGv6oDXIJoZ3KpBELelkAI01jy1gtKgxT/GqVCtURgEsPORIepaqHQFNGtEaj54KQfBZoHWgz9F8fWL4PBPt2D0vu5qESAbTsohLhjfVCjRiAU5iTUE3t6sTFTZMLEw7FNK+xp9CqvGr2poN0QALSUCsJzGewidUvmLsk92/6UDpLAOfMZrJ5g+rdIIeXgs/qcDEYlzjpmMfXB4YHIRGIrRPeexYGC0bynZEoY44kXVheB27mmBPmmk5yV4xwOvysvr+2yJcIhR8Gt1wpgrXFoHBisXldf2uNjfYsdHE0aQXeRrLlVh9UK+7WtjU3WR1wfteWCcEsJmnPFxQnsqRSvvFTUE8/+mYGFMFbOxuqVqG8ULs2R9Dti4gQrEQKFYcm1cnHLinovvYmHSQMZ43E3yDOoLlcsBDueTIEkcZDJXfG0aH9o1rZYktNVxVyxJTTg0pn+j6T/ta1+oydbXzDU++gVqcidE61g6ICyw9MGa4kjJamklixwoGjCbMDnX7bFYtNp/l+e7Y0qy6DlJPNUq18LxU4SYReWmC/TgjtCeZ3VqAVIIdWYIxWvjcCCRDIe2pIJAygjUEtWrrwG+oTHSFhcJbqj1iaVaV5WLRoYwXPVmMHpI41M6W6lIkoxBLYjSMUba0HKauvwtWaJ9xpD3DcMVM21RrFyWGNSaVCzM1s/Vv7gWaxS6cAODGxoc6dmXMVLEiqgxsCenAk217GhuGsqmo9L3j+p2mkGmop46R1vHyqLzTLS1atkWYzN/ZE8XtgLGOY1escebEURbvC4znhWQ8xaetlYFxWjvoE1UKSw8U2LGjaiaUbTMp4RNvCBIYriS0zgZap4fkGwnD1YzxvExaBxFIe0I5ZzjY6lF5y9DtgZI9uEThz+L11rgDMF1PNeQgAo21ivnPqqirltu4pkK+GRcYrqSM5y1J39G4WGIqrXGtGqpMyrZQzgWqeYc1nseGi6Ti8c8ik7rzSLAJNObHjEpDsmXJNqaZy0usnOTSjWNH2n9eu9w+iyAeTUBiW2WdlfdTa0Ikzn9pVzRaBZ3GGOdVS5Z7RFPWZOPI3rFPSK2LqEVMwWDLQNoP5JsOM9YSJFM6ZOwwRcXw2Bz9QwmjBUu+7TBngm6Q+i7Fm1l3AQU73RC1EN0T7nmA5kXHeM5qnW5EvLKFCk2XakhDKwFk0g1WzAsrnx3TfOAsJJbRNSuY+YSN6xTWyxZROdRJyJiIxOnmSoYKFJOMppvOpVpikw53P3teU2Yc5fVDNqomaQ/yzborbjpgTIEsBNdWNB9beJJtT1oWJH2Dzwyj5XRSjgRCsBmtc4Z0uyTfqHBpgk/0+quVEn/UsTA3oAqGQZVh9sRiUa+jlLolVpVIXSIUjFA3PtTypGoIVW6oGgYz7pBsjEjWB5hhhm+l9I/kbF9ptZInz+icqkgGHgkm1rjKxHgzY8PWqMFqU83Yjar1jOe7c6GZBI4sbnLWevrSJt1OLgFHBSabuB5jILHwVHwgLQJmDD4Ch7pcocB8Fqja+nFtr7z0N7tzQ1p5QSstsSbWa+16k7VSCEIZTJxKqZZwMykVSKPunIzxmbIJdmxoDNRk9LmlXM4pupbRgjBeVEE43kxon/UqaPxMP7muIXXro6U1OzpiTySCBAardlIGUneL1R1jtXSvGlMBUa+XzWszivmjNC8UFHMJvUOW8VK9gSZeuP5MtCxNUTcO6DqsmppEck1D2Z56MnuBRKAKhitW1ymXNzn/6YM0LzAxKEzpYyhLLcm6OWA8ZwmSk20UEAI+NYy7wnhJPZQ6PhxMQtYxE3Sx2pCxzYpue8RXH36UY4011qo2LVNcytBdonzTUzUMySjgE60QsYVm+6flV4ojq55DLPK3ghzOydoJ6XaJz7QJYLRoosAMDFcEQkJjfdpjXFdxZNuQDAwX7SKJdRztbFL45BkNj50PVssch1tb5LbioXGCOx9nntTuxYywnJQReCaup0+14T4YrVdUaLkwdTElTNzOSQumDSy2hszlIzJTkUShmdvqy5/oC0x2ZpBPbisyV1HNO3yaTDZzSMChGIDJyFI1tMi96CjgQNWsrcigReAY0t7MaBGZbgKCJkHqrHqIaO+ziaLdIq3D1JKQfMsrhmYVkx5jHcXqrZmskWkZiQJveGspOg2GB+O0zSLGdSc/UCd3FCSmxiJ1uca1ahi6WZTvPWFUCYgEUuPwQWgkFVXbU+U6ThaISa8QY7p6b4uuzv32qaVqNRAfqGI8vI6H+oQJ9F4wQtGxk+oF8crixHouFG2SWPpyMN3aE0IToHOqIDvfp7xpgbIlpH1dL8HNhJ4iaXedWp51qGK8mOho65buJfVuJYb4iKEMzbWI19f6VzmapyxzX7Rc7B/g/LE5Di4/c2Rzx4kgmzoO5lus5D3O9ztspC3VBnW9ppm6ihNUpNqSqAuYkcmNvuQ4QGI2dVYI27mClWaP5bxP05YTC3MxHeyZm156SxUUk88FYeRSsBEgYTb+lmjw2eXaFufTWJEwE86oi7U1gy4qGCpiUil+WS1A63Iur59LB3tDQJQtoAVpX+KYBd3MxnmCDyRjrfkNZRT8MfGji15d9TrOWQvMSTa+0I6itB/LtzImVqsCvURhAhCD/rbYG8HeJPE0orJ3wRAyj0/NJWV7iGAKhxk7pEp0OB91XDtM2iulUmQwUzioPL6VUnYStbBbZjI7qOxCpz2ik48ZVBnnRl2qYNTS3OW1EgTWb7Qc/uMKGZUaagiza3tqNEw6eowaXiaOe7GFx4z9pG1bKp2BPl5IGS2YWMvJJZ2MwQCdimLesPhFz8JDns1rmpy6JX3GZOqOLc08rziUb9I1Ix6bW+Rid5Gqr61Il9yAwARDc5LVreNQMSmgTBPqIVuzXUO1u+kanitX13n5/OM0Yuq1blOct3tHaNaC3EigcAlGAgsHtqm+uKQDxeKgp9mKg3xTTYC6p1jBZSOPIsSej0DPmgnWzUJdgTWTLa//TwZh1zcCIoyOOMzimGKrRXpWLSNTQRJjVHboSdNpCVbVEsZdJtnNyxVCXXKm2JO6WYquuqYun1qedqCJNp1mOOWhHe82U5SM8TSSEo/ggyedH+PydNKkUHtXPjWYkSM/P1CA3m5O1Y6zbYxiSFYNoWoYWucrmic2JjHRqm0ns9TVywsUlaU3zrmqu8b1rXMAbLrm7q8V9H6OlhLsqMt4QWhemDmpeg0ASV/RkBpnPVJ6xDmkdIQs0ZlLVvC5ijR7bkh27ybdpXmKw3OMllNcZqZDDg1I4pHjfS72Oxz9UMnKvRXiGjwTiuCOs+eNtGLeDlm2PQ41t5G5gmqzAUEmblL9MCXYoQbmFdE9TMopFCJO4zYmzh0qOhqLKDsxk2wCIQ28ZPEUB9NNUqmiGwx9n7NgB3vhnuNiUXXTlrTtmHYypsgS5tIRdy0t0joLLl571vM6ObLQRFA9GxzA5Yaym1A1pllPn8h0Q1W1EAmXuF6zzQN7AbkdNFTghglpLzBc0nbKMAhRMETg3ZHHxuL07a6dJAXrLjOZ2TC1oqhLlsq5Gj8Rsi2m7m2INXnZNMtedi6Lke8SBWCuMeZYc50TgyV8EA4s9FhvdaZJPtEZri4zlIcaII1YuC2XGAhVnUQFNuZTLt68iqkgX4/955OSLEUUSwX6o4z1cYsTZonltI/dI6UWZRcu3mKxZUa2NaP0oxcKamSJ86Sn1glrG4QQMMuL+Pk2rpNPpnGWcxlVy9AyQjIaExKLVB47DhQdJi29ZVe/+OjyJude6jhdzbPyuYrl+0Y85J5equx8sJoEMqlwCEfyDebnB2xsZJjSzpSWMLGIJl0OETcTZiwJ6oxqYPtIolbGZPZQtCCWxxzItgFomwIrnpFPaUhBY+KD7SIFcJVlvWjSsBVJPpVaN3dP85kbjsB9czTXPGnfka2NFFcTCKmNA57UN2uc3KI5GBHyjPJAl+GhPCIb1TuASd3nbGXCbNfEJeNNd5nEBjZepOfbfrw+7yn8n66XwHDFartpXfwe3bMJFutsppxojQo0z0Fj3ZMONJFQNiOUoAGfC8W8JgNc05Ov7wGmCFy/cJ7b2o/RsWPKYLmitcFv3rTA/CNaUGl9uMSydpkqUI1ZyqSHGnR/VE3dP3aofK2a6CygmZDY8vUXeevxu/n09hW8pHuSeTukbcas2i3+/W4nDgVGV405eHCT9e0DHPnQNps3tKPSU0DhEA90jQQ5tEA4vEjIDMPVbFqjHPdE0dauqe0rOgTbQSpoXtQ1YougScJcqOZL8qzCeUOeVvRf2uOxYw2OfCB7bhNB2+PzbH3qEdw1hjIkzNsh/qOf4My7H+TY3/1+mEEur4vZy26cCxQ3+yR2J7X7DWVbd0ZdvF3PDXEtz5GlLTp2RNcOsZcFG+wesDNHa6cZ3vsQ1bE2g8pwJszx6G8/wKPvu49v+U9v0GxpA9pnHNn5Ifb8BmE0AmsxzQbWeTAC1kJR4je3oCzJ+kvY8TL9Yy3G3YhmH2LqvGZziBrYyxQxJ90DwgE4+b/8CMe+/5vIXnIdg/UmPJ5x/uE7Of/QJ7j19u+dND+kPadB/EzrjiR21NUF6bMYBxPhWWlpUbat1nvRmc6U0UF9QBkijoGGAOweGG08uniaez+8wUveMs9S0ic3JR95zzm2fvEO5m//n2idr4twp5+p8UBtGS6poABVQFUuMUYOk7ngMW7ncmG8CGmZ8LtnX0wzKXlkuMqfX/w0267JqWqROKpx12i4fprRfQ/CwQOMDuiFr933Sc49+kluef0/nBwXRD2xqt2YYBrUQ+eqRi1LasbMxC2NKp5kNFPa1oWkG0N9QcjTiixxyFyfU29cwn3g6ffQji1NH4RRSCmdpQyWubSP1CN4ZzbztB1y+tm6SHuCMF53b0Rk9klCowZqyD1z+YhUHD4YRtG8GgVNExZ7pLhdJLCQDciNo52MGTW2OGf1phyc2+ZCc141YmoIjQxGIyhKgqux8AzSaRHm2shcm2qhyWgu00URqwgmPf/1lMcZ68tUTPt1a97vOgVW2n2uPXSKT4ejVO1ssj58UoMxCFs3ZzrgKlxa7zv7qNdLPQKhtrLLzqVjb2vhWsfLZ129ifu+R6gMlu2ywdiv0U7G9I8F2ud4UlnVtBxLZ6TbkYISByu4hoFcCDW+rcTjYguzz6DqBopBzpp1tLMEQ2B7Tv3681V3T8Q0jQlY4/GHR5z+2i7FPbo+aryAWobUhf628Do6xQUNVSUGZmpcAaq2oX/ATvhSNqeZ9MGxiqXuAIDVZp+RS3DB0Csyuqs9zj2DWNm50PQyAf91CJlxiCig8MWPvp/Nez6OG/RIuwscfO1bmLv+VhBYv/eTrN/7cZorR1l/4G7SVpcjt/812tfcgE/hxH/7KRrHjjN45EGKC+doXncdi2//ZnwQfvp7PsfLb+/yjX/r4OQ8/vVf/DTf8U9Wd3r6zwv5fsrpQYfDrU2aUTK4ICTGcfFXP8IDv/wl3HaPrDXPsVvfwtIrXkIy8px/+E7OPP5JmktHufDYPdjOHEe+4ZvpHrkBcfDwr/0UneXjbJ15kNHWOTpHr+P47W8lMy0e+h8/x9yRG1m99WthrFbIA7/8Yxx89Zt2mRtKxgZunT/JdXNjtsoGXzjeJuRTAfDE/R/g/EOfoBr1SOYWWH39W+i+6FYIsPnpT7Lx6Y/TXD3Kxn13k7bnOHL7NzN/6HpMBff/3k/TOnKc3skHGa+do3X8Oo6++a2kSZtH3/uzzB+5kUPXf62WrBi4933v5Ph137jbLPmylImWHp287wOce+QTlKMeWXOBK295MwtX6/459+idnPvSJ2jPH+HCiXtIm12Of9U30+3cAMDDv/JTNI8eZ/Co8qR7+DoO/aW34vImZ//df6F8zXGOf8d1rDZ63Du8gv/41/8Hb/6+a3b5yqfkvCF4oXe1Y/jENPz0+Bf/iDOPf5KyUJ4cv+nNLF9xCwCnH72bsyc+QWfuKOeeuJssn+PaW/8K7eM3UnSEL/2G8qR/Qnkyd+A6Dv61t9I84HjkB3+J1m3XM/ett2gbdJHyhbf/R5a+7s3PmBfYcURDC7ltxIyMhWExRp3PL3PNt3wfN7/9hznw6jfy+O+/i2K4NXHJB2ceI1tY4ea//285+Oo3c+L3fp6x9Kna+v7WZ+9i9a9/K1f9y3eAMaz/999iUGbc8Oev4aO/eWFyDo/eN2DjbMHLXj+/09N/Xsh2Sg42t0nFk5uKTCoS8bRMwTXXwOr/5x/wir/xbzn6kjfypY//IpvtHhvXJvSOWrY2HidctcoN//jfcuDPvYnHfvPncYP+pO3v4sN3cfVXfysvees7EDE88bFfJxhYueYVrD18dxxSBuNTpyj7m3SuuXkvGA8AjELCZtWkk45pH9lW4GXUXUqXV7jmb3wfN/3DH+bAa97Iqfe+C39xazKiYnh6Zq181Zs48bs/jxsMJhb2xn13cex138rNf/sdWGc497u/TrYZOHDlK9i4/26aaxWNdYf/0mOUvQ0OdK/fZW4o1cDZDpmEmwRoHu3R6Czz4td/L6990w9y/IY38OCdv8hovKXF3Bn0Lj5GsrLCS/72D3HgtW/mwQ//Av18wHhRvZDNz9/Fsdd/Ky/75n8NxnD6j34dgENvuZnehz7DoeY2y2mfi19cY/vciJtu3xtGx3x3wGsOPsrNx09z5Q1nCR2d++Myodla4mWv+B5e+6Yf5NhNb+CL9/wig9CjbBpcU9hefxxzaIWX/O1/y+pXv4kv3P1f2VgeMjyoLvzGfXdx+M+/lZv/9jsQazh5x6+z1Blw6I0vZvOOz2pMM6kwJx/HbWyydODmKYLbl6EdW5qP/civ8EM/FhM6gCsC+bWHwcP89bdNMujzL3oZ5+96P8Ozj9GduwUMJK0O83/udspEaH7Vy0jv/SCbT3yBzpFXEmyg84pXkB8+TLAw/xffxOn//SfY6n8T1/+56zj3w/dw5tEhh65q8sfvvcDL3nIAl+RPf7IvEJ1953/nN/6Dj7H7QFkGrn1xk6/qPMyBv7DC5z7TxH/RsnzVbZz+wgcI9z1C69qX0NsOpI0OVx76GuxJYa77Uta7H2TwwBdoXvtKCLB87Stodw/hRTj8ijfzwHt+HH/7t7Fw7MU8+vFfo7x4jnx+lfUH72LxmtugsRcwEpV+9R/fiViFsXPBEMae1vJRqgbMveg2dUVLWD5+Gxfm38/4scdoXHuLlia1OqzcejsmCIvX3saFez7I1okvsHr1KxEfWLnqFcynh2AEV9zyZr7wvh/HvuqtLB1WvmyxRru1wqmHP0P3lpcxOtzcbXYA8Kl/+dvc+4MzFROl59jNHa5Y2GTz+tu0BXTgOXDgVh5v/xH9tcfoLr0EbyFpdlh47esYN4XGsZeRfv6DrF38AvNHXoV4WLzxlcw1DmPKwIGveQsPvuudrPS/jfnXXM/pn/ptOHUWruxy92+e5oY3Xsmj7hDi799Fbig9+EPv4cSPqLcaglAW0DhwBQCrh27Fjj3eCQcPvJQnOn9Eb+0xFrq34E3kyatfhwtC96UvJ7v3DjZO30fn2CsAmLvllXSah8l6gYOveTP3/9qPk/A6rv+6Qzz8/7vI0sbDHLmmySc+chfXvPEq/FcP8L/w9Oe74x121f/6N/j+v3YWh2JIfuw9Z/ijXz4PBja+cCdrn7yDYnMNBHxRUA171IXdydw8IRVcrvN+7MoixWgT19B6xWRxYQI8a4/Og3P4Xg+OZLz6LUt89n2nuOX7V7n7d87yff/hehbsYMc36PmgQ//82/mub1nHI3xD9/O8/93r/OovjUil4qH3PcSFn/k0jz7e077rsqAcD2isORobjkbapXXR4RpakJx2FyfWOQJpZwGAZBxoNBYJ3uGGfTLTYeXYS7nw8N0cfckbWXvkU1z9xr+tkGC7HdMUrVd944/dzvCmW7l27gJf2lrhUz97muEdn8Q1hPUv3MmFT91BsbWGoHwJvR4Sy9HS9vwUZlCEtLtIOdiafH/WWtAidhdo5gsEr2slbc2xfOVLOX/iHvztb+LcB+7hn//01bz3c7udJlZ62f/25/m2b+phCTiEe37jCf743adop2MeOH03F++6g3FvDQDnCnyvr73YFWStebIehGHAp0LeXiKc2yJf13hvi3nsODBeEGxjEbzDDfpsjea48U3HuP93HuX2f/AiHvi9x7j9R76eP3jwRZjyg7vLEODl/9uf5zu+aZtRSPjE+tV86L+cp/+79xAMnD11Dye/9CFGow0AnC8IW704YRSyxhyNTY1jB4PukfOb5OvaJNNM5mmuxaD4kSVwDrc14MDxgpvedAX9D3yGa266mnf9wSN850+8lFe/5Hf57meAGd2x0Oy8t8kvfe7Nk+fnHrkTf3KLw//9cT76uV/hVce/nYWVI4ixfOxLP8fS53pccfIiZr3H2vl1rnzvRcRaghXOP3SRo9vXcfjCkM2znm7vPNc+vk0wwnZ1kZNiWf6vh3iwdQXr/Q5//Nu/yN1f+BoG/XP8/nv/Lr/3W5D0fnSnl/CcU3p/k196z0shwC+2bmfr7k+yfeETfN//85d57J3/jmPf+XaukeNYb/jCe9+ps3LmLWXbMiq2GS5asFrLWPQ2WDj24km5Tdnb0IyoQLm1gRhLlrQJwNJ1r+Thj/0i7cPXYJKM7tJV+IszbZe7ROICvrR85o4bmHvwSk6lV2rZ0cnTFEUg/eIFTr7/V3jx134Pc4tXIhg+/YGfIN12tM96+hueamuT1qlKgYoBt75Oe/EmGusOqcBtrJPGGeJF7yIilmbVRPqOw4dezgOf/mXah6/GkvPrD7yNxUd2P3sOcPbuQ/zfw2moYPNTn2Trwgj55WWe+MDPcNPr/wHzC1digvDp9/8E4mKdcwFlb5Nsy0eeBNzFNTrLN9M6p/W+1faG4jv0oTizjhjL/IU2/pOW9e5f4Au/8t95aHCEsevwyENvYPF84NweYMu5Ow/x0/3bITYuNB/eYDQOFNvrfPHeX+Mlr/lu5haOY4Lh7o/8e22OKPVRDrbIttxknVSb6ywdeDHdx7TEKJzfwB7QNm37iPJk/ZPX87FPGwZz89z3y/+dB/rfwKj6FH/4xbfyB18CO/7xpz1fCeHZR8BExAEPcWmdwjKwApwAbgY+D4zj61fF1y/MPH8cOA8sxOefRXHcbwRy4ItAEd8LwCMzv3ULmktdB07H146HEHYtOLPPkyeTiJwH5oBH2efLhPbXypPpK5InIYRn/UA3wRsue+1twEfi/z8MrMUL+nHgDuC7Zo77KPCTwGa8kDfOfM8HgR8BPglsAb8FrFz2W/8yXvQ1Oznv5/Oxz5N9vuzz5M8WT15I5kwY8WXe/2DNjKc55juf7ju+0h77PNnnyz5PvvJ4sjei48+CRKQFfC/wM7t9LnuF9nny1LTPlyfTPk+eTH9SnnxFCE0ReRMaszgLvGuXT2dP0D5Pnpr2+fJk2ufJk+lPw5MdJYL2aZ/2aZ/+rNNXhKW5T/u0T/u0V2hfaO7TPu3TPu2AdlTcnjTboXu8xWCck60xgduv0aSDlQle4mT0RcQFnMxElwisMgMwSv189mk9NKtiguriDdilkqW0D2gf72OPBFy/v2s9MEmjHZLlJZ3l42YAYI1EVHrwViYwVU+C9xKedO31+4FL36sRjXT0hfLEzXsWG9POKEPgzCMlbrB7PEnzdmhmC5eAydYgujX+4VNe/1Nc81Px5nIeiicOFlOsyXx+TB5Rh0Ps8V5f7zA+/cSFsIs1iUmjHdIr5jHrlmTowNczXdBrT7XpY4ICNTM/6fJrnv0/XLZGJE7nnExHMIJbchxubhImTFZ0rhMPs7v7p9kOi1c3aJsxRgLniy7hXIqpplX3IcqW6Ryxy+TJl9tDMEVbi2vExFlV9VTKqh040N0iiVBaz4YnOxKa2dwSP/Dul/Jzd7ye635pjO2NkdLhWxnjlSZlWweFVU1tlne5TOYCKbBwiM+DXnwNYyYQbCDYoLavCcjI0DhrmTvhyTf9ZJSt/Y5z/P4t7yIVi8Ew9+pyJ5fwnFPeWeLqb/9nHLh7RLoxQnpDQiOnWm5SthOqlqHo6GAs17hsTknkyfR5mMFKjEgvNV+SAKWQrVnaTyiwqk+FM2+oeO/X/yRLpsICDTEcec3uOhB5a4nX3PDdmEFBEMF3Mor5DNfUsatVrutDFQoKbYb+D/H1hEsAdy+Zxmmn66ie+Nk4b0iGOn/p7d/+2/yd+QdwBHwItEzKi9/1/Tzyz3/gxAvNi1nKuktc9WN/j9WfadF8eA3Z7kMjV1izLGV01SLFnKVo6wSDYl4mkIvBQoiTGmv/sFYwIQn4NK4dL6TbQvOs0Drn4+x3OPtXCu68/acwIviYx8glYfnVu9sSlM0t8aO/cQXf2HqUVIRX3/F9XPWfDHakSm86YdJSdoSyMx2aF6zef9f0hCyAjdqgVtYm8sQEcILdSGidNnQfcyRDHY+99mLh//i2X+BrGxcoCaQIR1779PtnZ22UAe7ZPEbnUauzOVJLSC2umVI1DWXb4NK4EaxqNKn0nIMDfByaViO0x68V1BrD6A2ukZPLbmBwQAFm8y1PMMKFzQ6OgAkBs2v6cYYCpL0wxfKzlpBbynZCMWdxNSZm0CmMEHkRBYO4eqxFICRTK6zmQbCimyLX/vxyzjNatZhKJxhmp1NOVfMsZRcBMLIXmBI3usgEnd6nBpeZKf5lAOLawKnmr1norei6SS5Doo+I5j7RdRSaICYQkhDHFygm56ZrYjA4pnA1e2HYHEB/s8HRjbECoCYJIUvxrRzf0j3kIoi0BEWv0ie1EhFMNEDgUkXiM1EFbBR7dbQCEgz5ug4c85VgRLA1JNkeofq2NMRwx+gAS+9vkAz6BGvwqaGYTxjP2TiNc8Zi9MQFE71QACuXfnFUsCRewYjn/v/s/Xe8ZdlZ3wl/11o7nXxuqlxdnbvV6qhgCWWMUADmNYYXgfGANTYmDzi99sxrbLA9tjwfDBiPsRls3sHYAowNGCEMSFgBSQh1t9RSq6VW51DVFW7VzfeEHdZa88ez9j6nSqG6NFLfy+t69Lm6XSfdvddZ68nP72fJc4UuDO3zDq+g+wz8/Kk38Kob/9PzzlVe8ez5hUmXaOQl/AS80diWEXKw5OKQYp70C8QjkIhErJ32NJzeWoniUTFhE3hsy5MviXsejxVVpvAuWMp98sUrL8jaOiCD+zQSI9IOHlU8wwZsAIODF6kJ3pUScGHvwGsfyOeCgjWBlE1pXOLwsacYOOJdjSlA54qRS0mUwu6jTghvNETy46M5j2kuLdOwC4Y1mPEBebwH70R5NusXUkENJbIBlMKpgNMZy/pOXYzbJ/w3nydB0ynrwGgwesYimagGqFuXEIWF8gq0qdHKZ9737CMVuhD20prKuep4iqnG5Ip00xGdSdlxlqHePyhYl8qvr76c3slCsAtiRdUy4ogFZHZC6kGH7947WRdfp2ZCCkxeF5ywBDxa3qRlXSYHwWtNti5z/Q9/7hjTGzwd9fzU5hWv4NYka1yCmqTIhUPRiBfQhsZ1CL+0hZq7RKMCPWv9prBhnNyosrIBBBFJCOJ1BfacQHzJodgfyO1eKVyscYkRzzHSF62J8sgkbJOPkF8+5FqoEHY8zYxDx9dKRKFKj4rDRgihmk3AxuKNjFwiVnKfeJlAyDXNrqdWdI0B9cyUp59LR9TPOeQFSs04cy59n1OB7iNkebwQrW1XGRbfeFUafVHeby9FGYc3WiITE8leieUHpRrivJrzHELk5mogFiV7aQ7Z3mtRmGaqcIkoHK/D+UkkHxhvKR4qlrg+XmfshC21owq+DBXwFRejPFopOlFB1TWYPJJ8fSs4HrVRddAED3XON+wVZQOvufZz/62aI+FjwClc4ih7WjijlBjZaMdQhqP5fCK1Kw7PNy90ObThAsfLzOOrOV1q1kA3Hzv72YGA8EUHa+GSOQ+iPgwVKKVQuq4y1Yvm0VMJMyye0u8P6kVTE8bFtZasGTdnSfcmD6XmPC5mhqcxQIkP3qkX/vNmTZRY2Eu+sWTbc6pYgs6epus+Xzwo5/CBfkJX4ScCR210fVMYqpXmpcYXauNJY0xqw3vR60IqyOQwqlIuBCoRi2JRT/cc+amR7Ridj4QTCkAHAxsBPvA9eVAEb1urhm8OFRwPy4xnKyjHxuDYcG6CUqnBrONdeP/Oiyi6j7Juu2gcQzNG+fUXfAm+mDw3HhCNhQcewMYhQtEhHVMTMqqL90nz3YrnMNsfTVonvL+umYRcqItoQK/H3jBsrPGXvs4rNzO5JtkNoWik8UYHkva5g29Uk7Or8zFNtXxeWQTsTBfLA8rNvE/xGmY0rDXtb7KluD/vAjDUk5lS2kOJRw5dSo4EI1+4KAkCFfFsTSR/yeyLmVs3ZSXcBi9EYUJ9Ii+b88TmWT7xMyW0n0TNpQpU6dDGoWOFSpQECMETrVH9m/sLj+s5GtV5L3G+MORCAaTJdXmwLYi05b7pcXQ4TddE6/uC2lh5iLe1sJFqBdbNvHEPqIujDFd3GsCcc+JDrliYJxtuLjV7jS4VVvvGmOCF9/2R7YPckK2SuxitnNBh74PzU4t1Gtyc4pq7JwhrYi4mZ4Q5pTnneMw7KfLG8PrwPpvU5xLSNcVj5QonogvY57EgV640jXgHurShjUTizHnvqUlcx3M3V4ebIV/jQ1ihrOT9XFJ7nhe7naoMnNVerGyyAx/evYWembIcbaP8qSu+ha+4eMlRCTezx5dq1gITFGZzf2HF579oXXKRItSV5Khs6nGpx2Uen1rqSqAaR81ae62IlZVQdB+dgHmSK5SQf7lIBY6gOU+h9pYUM27v+ZxnKUpCVzNaZ2/Atj028biWA+2xSlO15EOd15yv+qSBJD1T5b7xNG3q5yyhR1mLKR2u0lRZMK5BmhYbZl62sqCUh1KhTWChnOu+aM6c9jgbGBq3Q14c2Kg6tHUhRIU1Xc0+EINiVCbEJmyAsH+alsWgR5rK+bxeqcNxBcZ6lFczZywUCpsqurs43eO1It3wrFVdYrWBrROkX0KuXGn6UAGfVpBFYg0jNddeJKGGn1OUnplXVOe1aqXpa8ZBBVaL0vSJk4qXU/iRCf2fQCUWo/asyktj1T0SmykpBDkn+ZXAY14rTB82f1M1djOlWRuS2hNSLlTVnXjabqoC0qChanmq5RIfu8CXTtOLV4vZJ16nNxrbTvCRpmobqo6hylQTctWUu4BY/3od6hylo9ncupIKqcklBPdGvClnhOGz7Dlsx1H2HS5zjKqEJ6Yr3No6g0XopveLPRHlZlDjHFVZ0BpVyL6p0xN1RPF5eV5o7sNYcS6UF6/JqeB41GeoZfHGUHbCmitoRwVauYZ1odwnbK4AFs/qRo9rCodNZrmXJt9tLnHE6ueDXqHxPBWmMZChq8UpfOwg9qjE4b2ZOSjW45xi3Xae97VeudaJHC4x0iLRTag6hrItrUZeCc1ovAXx2IFHyNljFfJSc0ldZspUyMFCKKINNoaq4ylXKnzsqVo0SdtKInPGLhFPYh8cBmdU8Bo8Louw7UjuOwOUhEbtVU88dkLnoMHFsi5lW3ryXCwHQJVgpp5oDMmuIxpL6K88jA/GbN2QMDlcUQwdyY7GTH3jUe0nqdoGCK1GmQrdFarh5I7HHpP7JuSqCxo1b3sdbNStSN55ofDNPaYUGlddemyi2Tlm2LkOXM9itgwf/fRNmF7JDXefB6RQptw+MSax7BGzEaxk7ZE3qQlmBY5LjOmlihMlaxKr2WtNIWdu+4aIamApB4piR2FbUHnNVtVmEMkwRE2FvR/EoEjSShwFowIt78WpGaE3ocmBA01+07sQ9CoxrDoXrvP6aLhIU/ZgcryE2GETac+qaYIvlL3mOi4nV6Q0lYd4NcZMK6pewmQ5Fu8hlYvPNh3ppsVMHfFOgd6eyKbQmmqQMT6cMR1q8UhjRVSIgmivWdK1kmhr0vR+7l7TZvOGmMkhR75sGe8auqccZdfT1gVjdxkijxdIfAgZsB7bjskXU4q+bjypdNORbjtM7jATS7QxQY8m8t52RrnYJl+KGS+LV2ByT7bpaZ8riNfGqLwCoykOdImmnu6zHmUjJoet8IWjyFRJrHTDdLjnEkJtm2nKjmr4qkEOdbLriEeWaFShSosZFVCUsuuNplpoMz2QUnS0KNEKkokn3nW0zowwq1sA+H6HcrENJOhSs3WrIbugSR9VTA5EPHHrCtek60x9sm/6NH3k8YnGJzG+nWJbMT6SHlY8pDuOeNehC4eZVKAVLpHna2+9DuGTHVmTdC0nWtuVz2+n5AfaxOOI7esipgcskxWDLuGBZ4/zYHSEb7npU3RNjnueLTYvhFg8w/YEm2a4VM9SNUikYXYh3XbEuxZdeWwq1z5dMEyWdVM7MIW0AKZbns7pAp1bfKQpBjFFX6OLmNGJiqrvyBcN8VjWs2em8rdmZbcvKlesNAePQ7JZUAyTpuHUa8nLpVsWlyjyQYxZjGidNUQ7OXp7TJQXtLTCRRlFX7zKaOLJNh2t0xPMzhSUwrVlesRF0D4rfvd0xTFd8UQjRdn3fG50CICFaHRl38xXSYquAqOo2hH5QFO1JYUR73ppyjcwWY7QpSFLNMl50LtT1GhCZBRV26CshAy6hGTbEm9MUXmF68rBKgYRZVtC23gXJhryRUed8X6k1BwxBQOdcLkv/asuHnTpcKnCJjrkrqXLINlxxDsWFyuKfoy2EWiF2faoaQHjKZF1pLHGmYQ89C7q0pOu5+hphe+2cFmC7SdMlxKqTHKeZiyeRWfVUrUjJjbmTDFgIYr3fElAvMXOMxFeiSEsFzKqlkEXskfisSO7UKBKiyod5vwmfjoF61CdNuXxZSaHM4quQllPsmXJzk8wF7ZhmuMX+pTDjHxgUA7SNZgeBNvyrHzKsbPdpnXe8cG/dCMvX3mWWNl9EakZHDGGxdaY3WhRmvyTYGyV8AYlI5luMoWTszHO8UlMvNPC64zJikR2poDWmqe1WhDtFrg0ohjGTBcMNoF4B5INQ3G4ZHQczMSgPByIt5/39V5xy1Fr3WJ2cxgmoQ1EKp1RLquvc09rtyTeLuR1lZXQ1Xl0IVaiLozoHYjGskFQCttNZdwukzYMF8siEKrsnVVP2Td88OO3AbD8NbtXdPlfDVHINXodejVj1RgRU3hU5TETR/vUGFVUoGTD4xzYkMsyiqqjKDuSxzS5Q00KVF6gvZdqq1LoKiIfiLehCjHD2XnPT33y67Gl5vte8iH+54XP7O2CBJHE/NyEkxMjGU1Ee0VTC9aHEFzhk0iUprWoqt4ThNFTBZtgtnMow0x5rMHK2jqjpXhWQZWBTTTTJU+sHOtFB+fV/igEeU/3pJPOAuuoMkPZlXyF14psrQTvsZ045KqH6HEOaxv40ZhofUTUj5ksaJSRfaI3R/jdEarTxicRurAk25qib2QKLVe4yGNjReuCo3OmYAoMosler0YjWjliZXjt0mO8O7mGKlWUXdnfuhQm1iqkeFwsKYUoktYSMynJNsWpqNrh80rRNa5uAfTSdaArGcCJRoqiUqiFAttqEe3Crs34vfECdyRnuZxavGKlaSYOb0wTgrkE9CR4jWfHmLUd/OYWfppLwruVQRyDMbIRlMzUSjOuKE2zvg1FSTRJMTsJrpOSXYiYHEgZGU20oyiHjipVZOc96Zqm7Cueu3t4RZf/VREH3dOVTHiEETZnFJH1JNuWdD3HnN/CrV4QhdnKUN0OaA2VRVnpQii7UCw6dKUF+KMoRamub8JkSpylRIcP0Io0o2u7jI4ZbCahvPtom95zlvcfv5m/tvjZvV4RgFAtpwmxTOmJdy3J+hQ9LlCjibSXxBE+S6SinBf4skQlMXgpFpVd2SudM6A3d/ATeZ/Z2sEsDoh2IjKtmR5ps3s0Dg3dUBwpKb2m9Bq7T8C8lIfWhQozklSEN4oqVWgrbWtmUqEnJdFaicoLeZPWQrMwmaDLSvZKL4zenlawuY3fHYF16Mqiyi66sLSeHJNds8DkQEq+YmWsGag6hjcceow/3/8ET1dL7Ie6ofOaZ6sJF8oeNhXQH5uIoYtC7jtbt6SnQwqiFQtY0GiKb6fiqWsoBjII0zsJ0dYUygpVlMRnNK3FLmU/xbY02y4iXzToXoEz0Fp3/MsPfj3RjuZr/+wngfd9yeu9MqWpkBA6i2b9ZUpCr2gaejc7Lei0pNAT5o4BAfZII2wsh6BYspipEbAG6/DOwfYOrFWYXhfd79CZlrioS9kxFMuefBBGByvQOexW6RVd/ldHPNGkaqY86n5M5SSU0OMC385Q1x3HJREu1tKelFtoZ9hB1oyK2baj7CryxRgzHQSPdIDLYmmn0Yrpoqyh8uATz2TJEO96dOnxXhFhgD1uSlT1lNisB9HGirJrMEVC5D26KFHBa8QGNzCJUUmMb2fYVkSVSr7ctjx5X+OW+uhNLa+vKlxsqHopxULC9vGIqiutGrvHNAcPb7JTZmjlKdw+qZ57JIqo+zRDQUMVkGxXRM+t49Y3cFWFTlNxNNIElSSoVgvXawmgxxCKviPZjGk9vYCOYzk/1qJGE3w3Zfe2ZabD4NxE0s9mCk/eN/zBqRdx39oJBukE5X53T5dEAe94+C0Un1wg2YClrZyqJbPUynriiaNzcoQ5v4Xf2saXFTpLUUkCrUyiFB3aFluOMhhINcllcCJNUHmBWduRaM1G9J+F6VJMcURQjqpM0XlG03vW8dFbr+VyluSKPU289FBJtVfKWy6C0YGIyWKfeCI5q3i3ajaHizR2UFfaQ9+lkwLKZDlGVQcwY8k/2FaETTU2q9GBwkzxVDf9mjaDfAGifZKTcUZDYiSMDOtddhQ7x1P0oYR02xJvlaGdxuPR+K6h7CeB/1w1o2AuhfGyJtmMiXeKRtFWHcNkybB7XFEsOFyvQk1N8/eKniZBseEm7Ifx0hrKC2j66ybLmuliislTsvUOrXMTqJx428ZAL8MlhqobM12IqNqqmXbJFxXj4z1aWubZXaRxmWF0KGHnGsl724GFSlEdsVzbHrFbpWSmpHRmfxSC6l5U66XgWbfJKIlOihPLmIND9M5UPE2t8WksjkonpVhI5Szkku4ohorJtUOyM5Hkv+MI20uZHkjZuCVidNSBcZA4ip7BTBVbN0HbanbLhNzug5Y9B8UnFjh4X4lLw1BDaDMyOUSjkLo7MMQeX4IGflKUqs2MpCIcmJEGBaODmuimZUwuxthmhqqtKVuKybKWaKTt8U5RtT1VS9JINlaU5eUN7BV7mj6SQXqbqqbNwUeKKrSSSOJfejeVjcF7QSvphznSUKdQlcK2POMDhngUiTKpcfMSxXSoGR1W5EsO17aoUhLDcR5QXA5a2tE+abUJHvj8mJ8NXpI07ytsqjEhn+cSRdXSFJ2wHnXTcqHwxjNd0myXCe3zhnQ9DwWiWf+ijzymVWGdwqYGk0MZKWJt+VTRR/m9L5DVwBPARdiqtRIs+hpTpEQ7JcpqqSC3Iop+RNELLWwBpAEniFe7RwzxKEXnkuNtcErrNh3tUW3LYCgtNRqP8wq3XwbPawn5uNrTdBFMl2O8jjG5J91MSc6PUJXDtRNcGjFdTii6kuvXpQxAFH3YvDFhEPXITo/BKFxqqDKNLiQ/bgcy9F/0FaoL7voxnbSYXcseGxPlId0M/bmV6BQXSbTmEimg5sMOUe5JN0p0blFKOgrKXii8Zmo2VRZ5psuaaBLTvlBJUbJwmBzyftS0Hel2RRRbiraj7IgadBFkyeV1yhWbGpvo0JcpXlXdnF035ZY9RTFQKK+bJu76OWXnmrqdFHfGh8BFMe3zhmTHBSsTGsJr7EAHPnUUQ0M09eQLiu41282Y3F5LDZLstXjf3itJT2gZ6xu3FeMDBuVMg8ZTN6qaXHK79SSQ155y4Nnqw+7xiHQjourQYEtWLQ9WYXfipq9PF7B1M7ymv8rZagj7QmkGo1qjGDVPSGFnuqAo2zEmj1E+FAfjADARMWtRymng8SYHFS7OyDZcgxZV9ALQS6VQE4NvwaA1JVKOdlQQaUtqqv0B2BG6CnxsargvOQdmNi5pe4q8nxAdjFEOypb6PANUnzmbeqYrCpvFZMt9eX9K0yOsS3C5NKIVQ0+xaDk43EXX03Zz2BF7JV4JBqrNQljtfdPQXmVKRkW1GIrJgkbbAFaTzQHi2Ho0OcAE9j3bN0A+jEGDmYjDUfQlHMcrvFcymBU7WScF0xXF6488xecuE5Z8GUpTyVy1FSQWq2ZK0TfeZliQupG9grpY56PZ416Bj2FyyFMMtXgcGrEyxuNjL2OUaAge5mRFMb6p4A2HTtExxRe5yhdSxNurJxZUQDPyZgZEUY+JujmQYV0pdC75Wdko8oRredSuKImqLdB49YnRpUJZFRqANaoSBTNZUXTvvMAN2fn9M+VRT1xUzCroYT28k31Qg+zWwCZ6HvSlngQJ3oPADnrKDoyOKcxESWdF2N/RWGG9psosziu0cqSmomVKetF0z5UDAArKfoRtGaJR8IIqP0O2CmkMGyuKvnhbNUiFziGays02ACeRp1LSMTA5wGw4ogCcrImyGhcmbEy/JDEWrTxKeRK9HwbyYXLMUj4j+LBVK7oYmCMAkhRtyJdUE7rLxFyob4THUMgwTGyxbUWxQON0NUAvsWwuP46oAEpNKfaGYuC4s3uSr2xOU0E+VCTbNHQULpIcZ6Oba+8iKD+QLzEay+ao2jSbwRuPC7iRduia9zajmg5MBb5UmFwWbHzE8eLrn+Om9iq5j/bFYSi7+uLDXo9Kzo8HWlBKlCEOzARaq4LnV/TqSZmgHAton9FUXZgcdFJQqdc0KCKmClVJPnlyouLPHXly33jeAM1IpAU1Dw5rQtis1WyfUH/v4h3pUoxL1bo47KISRVK1vOCtFgozVSEURd4DTMqYM67PRt6mFZUcbm3vj5YjxMuuMt3ggpoCbOyDQQm57WBEXYhGcKFhe8cxHegmwvNAdkEMT9kJe8fKZ5hS3mcKFTwzj4lEYcbGopHf+0EWrtlg9+lleiedOCCqdj7EwXIh6hRHSh43U6mNpBsyY15264lCYX1I14zk/mMH7TBGFHQLlUIVGmyMmSqJ3jTooxNyd/me3i+jECRfvK5840k45dEIerKq81dhvtwUEO9Ia0wVeu58DUMPZGuKZMszOagFzCBIzXVSj78pG9zwXkXlNE9NljnRWruiy/+qSEgg66DkVRVGqd0M2kt58BWoCJRXRGPI1h2mgOlCKKoFz6BCCl0Aw8ct0a6h6oiXbbMQVtkwHuYFP7F9YMTRdAN3EV7aHkvI8yo/86brfJXzoLRHKYE9mwfeTbccya6jDA3OjbehBeEqGkG+IPnwpvpce7R1W43VKOWxTrOdy2LuB5Qjr2C8LDnoaOICmr9vsB9B/ts6RQMT56Tft71aBTBq+ay6/1I5aJ/zTJZn+XEdIPKUFbSsoucph45EeSqnMVp6YPdLrnelM+LR27sk2ylhwhNd+FAXCRFIIcbXheJzNIZkS8ZI6/qKLhW+1CirSLagfVaRDyOKoaFqB49GI9FrLvWTaAJ4RX6s4OYDa0x9dNmi4RUpTa+kiqnOB18X2ejKIi5vsAoq0DroyhPvyu+iI3kW5cBMVBg/VBR9T+c0tD7r2D2im9zdRYRswUX3EZiW5Y7haQ4k25i9zmIHqTsJlJW5aG9nTd211yQKQzZ0PJI5dJtIqJ1uOtJNyc+5SFN1ZMZeWc/iIzmT5ZjpYgBFievigXhdZQcO9UZsVW229ngd5qWeMcdLj2YN7VeDLlinULGAJYDca7LrSXaF1qRqzXKbupS2o7LjGTzpaa1JJb7s0Cjl2tPEeKKA2OC8RED7RTmgFJMVRee0rEc9OqnLOhyRtI2JwJYBZLr0xGMfvmuNLiFbk3OVD2WeOtkSj6tqqQZDUwecSJtBNJGRVq09NqxFrO3+CM8BrTx3XvscD25ex+KD4oAIElqIVGyg+VDidKhKpu1MKfcsvZxQjpRUyluwe41j4WFF/xnHdEsxXZKquRgacdycqlNegIJBOnlejscVh+dlR8YZzaYMvGvr0dO5nKZSszAzYEoq52mfd5hCMCeLvtBjzAjYINtwdJ/zFF19EbhHDVRcpp5iydLOCromZ7Xo0zYF+0Fv+pC/q73j2ntwJuSXmIWhugygxQqy9YrBg6LqqqUOtiWQb9p6Jssx+cAQjSzZWomuImyqmln/siMjpdXAYrTj2ckCsXKiIPbBmugKHOIt1ADEqmYCLBW6Uf6EnlZPNBHU8elAjGe86zFTSfpHY0Mx8Owe1Qwfr9ClZ7oQZtO9eGNVWxGllqIyGO3wXjW/94N4BZOjFpShta6bPHg0lf5NnHSakAlGrS5pIhllFQuf2oCywg7bVL1EmuNbmq3rI6JxWL9QT6jzwyrklG3PcuPKBa7vXmA5libxWFnesw+Ck3GZoJMc361wsRTA5s9NDXkHwUlz4YxZWHh0SrQ5pepnFIMYmyqSrQofabauk/xo+4JDl1rOT1u8dRcpqkB/4RXErZLrOmsyWnoZuWJPs33nBjuPDemd8kHpKXQleTfvoLaYNVqLTSX3EF8oSc7tglIkHWmj8JGiygzb10bsHjZ0Vi3ZlpMG+CxM1wQMxmxNoZzhwI3yhd+QrbIS7bAfhj1cDKVSxCOPixRR7psWIakizyX7CVXBVJgZdd4l2pwSbYzRkwTXjhkdSdm5RiymTRO6pyuisUN53VCPKi8evc4129OMlZa4sZv1LNkeSzS2MtqWKfE0S9nkBFzMxhO3gPdoS9Pn2n+2wEwqbBYJ5UFLenY7z0net2pp4pGVQxDAYlRoSzKRpbIaG8JQrTQjneyPnKaCIzee53R/SPlEQut8SbUSIyj9XjovTPhNAGg2SsgKY41LIsz2iKiy6HFGcbBDPjBMFz0syXhgNBYD4oysrfKQ3zrhtTc+wc2dVVJdYvDs2IyNsr0vDOyoSHjuwpDofIxtKaJpGLu2NM6HDVQvdSGo7ve2sUa1E5R1pBsFVSei6hqmQ8NkRZRkdkGiGD/x5E7SYaTh/JRQdh2tVoFBYPMuJ1dcPT8+3OT8i0vW1w6y8JgVsATrRWHW4TSi7GwSEJBQuOMpWTci2SyJdnJsJ2ayHDNZ1owPiRJwSUSyJXPsphQFpPGgFEUPigXHUjbiunSVpWiX81X/Si//qyLplqPKNNHUC5p4FObOy9r7lpyed2FdYhXAdBXqcErSiYh3yjm6Uh0UpuSq8BHZRt2rRQP4nOxANNasmQUiYzna3aJwl8/JvBAyWY5wcZ1OqNuP6gub5eaUk7DdJrIuynniXUW0MSZyHiKDa8VMDrcZrxiKvoxW1ulsbedC/syThCjHOYUPViqOzL5QDgDdJKfdzdm5JsOUUfCkQnongFirKhQRoaHsrTLF6Lou6TAl2sxxrYjxgZjJimoKsrblm4IpGgjtOVm74GC6g8aTu5jSG0pnODMd7P1e8ZBXBltqOuvSUeKMhORUM2NbQwg27YhhTXaOJ0TTmHRTQLrLrmH3sKYYSEpHMEYV2QXZK7pCUomRRMRmrOhsaZJbLbs2JX4eKYsrVpqRstyz/BwffFnGVjUg3QjFiXAgaj1dt4xIEzKhp07jTYxLNPlCxHRRoMPqtpSiJ+GEKWfhro8kL1PcPKHXnbJVtPjc5Ahv6j/Ek7a1fw7D6YLk/IjyRUPKtiIehVDUwqVdQN4E/NCQp3KxIl+IcAaqtoB34KVCqDxN/2INgqHCNNXoWkvrtKH/qGFtdIDzx/scXNr7zKZXMF3SZOtC51BTOnuHeN1mVi2XaZjwE8ubxysRXg9Jz49BKWxH6G2rlvTtaQvTocaUomAaj2xQcefh07RMycTGOK+Y2pjMlHwmXtnbRQmSmYo3nniE0wcG3PfodRz4QIyrBJ1eIa18TC1giAlGIewfaUWSCbGyKzzguhTknnq4Qs8Bj9dtOJFxTGwi6SygDB94tLW5L/pXjfLces1ZnhsM2Hquz8KDGpWL85HsugZjVZegrcMZwaG1mUS1NlWMD0ZNuqdmSQCaPWZTIKcplLlKlKq/cYw1jlceOCnAzM58kaucyRUrzcobbmytcuMtq/yn9j1M331QKsROrMKs9Ua0ZmMhjITyRVc3lVFnVHMDUWjyrkFDG/RqBZMjFbccWaV0hlv6q2jlec/27fsCqcUr2LjFcPijFWpaykiknykF8SDktTP2QBkBk4R3mFHPXQCalVDNR4p8GDMd6lB9DmFt3ROrgW5FMdAsPOoYPu7Yur7F6dvjvQ9FFYyPeLzRRGOPGs9y3nU7WUP5oGTSrx4MqNu2ip6manVRTvKcZbuOWqToY0rfFH8kNIfeyi5/ZvA0bZ1j0Q06+cCMeTC7ZY8W42IpnCHVFcvpiJWDW4wPrNB9TiZcVO4FEq6UvLabKkysQ3O/vN9rRdEXpKs6Z6mR3/PrJ3xVwlJ5uDtq2A7GNqH0BucV6byG3UNRypOZkjSu2DYy6FBldY9vqKDjm3NlKo+2lqkxTd2kzpt7pWifl7WYDmR81sa+AS9uIjUNLvGsDHeJtRMjq63g9H4lq+cgF6+Vw3nNSnvEU61w41XdIiQc4Kp0RCMZp/RKEY3LwGCJcGLLhwFQtaKm17GeWW6UZqQw/ZJbB+fYKlsM47EkaxX7pi8xGsN0McJMe+RDRevC3KqHTQwI6K51ZOdkfZS1qNLikwisD2Nw8pWY1QnJQ1v0FgcUh/tMl2JsoiV0CeGXihzqxIi1UZejf1Sy/FCFshkX9rooqkBdN2J0jab98TbJ9ox1sjYK8xEJgKpcGLFUDdhHFUnfoTNiXJJtmerQlRjYeCL5bwE8hhsXNkh1ydTXIaisZdfsg8R3kNIZchdhveKa/gYfv3GB1oV6UkxjnChOlVtCpgGXmZmhLR06F4jBegqt7MUCpxgrio6kdnwAfi76ntRUlM4wtgmTMHniUOwU2d6H5wihWuEiDnR20dd4LvR6+HMpw0dUk9+l2SeedG1KdH6b1kofZd1FwECS+9WYqaXz+DbKOcrFNpNDKXmvbgoO3TiJpx2X5FUYo/RKwF0uI1+Gp6mlARQ4mO3waC9cR8jJ1GxyZlRizq7hi0IgmnpdfDvDtxIBZ9Dg0ohoa0p8YYPWoEe11KUcCIiFTeVYuQh63QmxsiS6wnlF7oW3eWufFD3KHqzdbjBlQrLtZ5aqbk6GkK9yxKc38OubeO/RSwu4QQfbTUMF3lP2E6q2pq0V0TTHRwZVOUzuKbo0Tc1lTz746NIWq3dZzlQDlj9dsfTwlMft3p4EDyz0xnSSgjNZOxTzfOMVEkblqKl9c9HyNaVv7aF7I4hQOHm93p6AtfgsxXUTym7MZEX2YjF0XNtZw+AoMWJYNfurdxUoraFyBqM8h7IdVo5vkD+8Qvtc7QEpCL29uqgEvKOs8Fvb8gFRBHkOgOp08K2UaCOSGfUsxiwK4pMP6Q67XBBpcS5yF1F6TRycjZbZH9gNzisqp/Fe0YpLjq1s8MzOAbw22FSjC99MTgEyTGM00el1fL+DjY1ELqrWGQrfNkSxoRy2qVqmoQCGWU2A1NKJC3ZyCWFKr+F5gJhcsdLMbdRQTfSjCcWSFUzAMjTnepmlzQ+08IePg4doYqnpD0zuBPJMQZUZpispk1cs4rUUVJpZ9eBC2xSWO2NKbyhchEWT6ZKpi3lid3lfhKLTa3MOHtxiY+cAR/5oh62bO5KD9AIUW2d7bRahDg3xhxfwiWayksx5YCHv25FCx86xLt50URW01hzxWJCrq5b0a1aDkjSpsE6TxhWju3Z59njGkfftD2oH5xXjMqbse2wGyW4I0cO9EgjUzLgkOr+Nu7COn+ZoowUSLUtRAXCWNMENOvg0Qq+NRZFGGhPL+GrVVqTXbnM8W/883hutHImq2BeLgqxL7qKm4HDzwnnuW1mGx2gOPUqBCxByhMjs4DI+ifCxwWZRAK42FD1D2ZIOhXRTzpYgaUmIO1wcXfR3K2eaCK9lSvL1VZRS3+O9/7cv9FrU4sMsOEjPpvUK0y9wsRhcM3Wz/HeqGB1toY60pLXIBOAWE4BxEkXZkda8rWsHFANhOki2RedIikt6nONWeRFFjGvmN7+0XJHSnK6fYfW+U4zfJEoz0o7pZz7CZ/7bJ7nr1T8UFGfoC2vpRiEUA0MVPMc6dJjvwQSItyEf6KYPq1ae+YJnpbXLxMZEyrFTZeQ64vGdFZ75r9dhpnt7GCYbZ5g+/BgcPMD0gFzL+sP3svr0vdz+hh9qXucV2FRTdTKZiomkxcZFsrm9CXSr0LRV1KOoNhGSqDpXVfQg6omXYL0ijSuSyKL6I06/aRH7vr3N7ivgwbf/K+76219LcmNGfmFAtg6rz9zP6pP3cvcrfwAxsIKw7ZMYdc0RVGXxWSzpitJCXuKyhHIxazzKaNqnbGuSbUc8kpxcPoCD/V2c17gvkJCytbbeA1FKPQ20gevaS8fYmmR84g+f5vR7H+EtP/9WKq8pViqKniHdrKjhF3UZGvR7WeNhKedl+KEtDK0fevff4e63/B3iaAWvFDYTxk6ZkoF8ybGc5Y3CzF0kqTUnXSnVnnscolNGDz4Br11uHjv1e59l9fcfxH3/X6O9ClVLN4j/ykpngY0Vk+W4GfSo2mHasM5X1uOWeXBI5gtDXvRQt51TeU0vzYUDHkf01aieW6eYWLkirRwH+ptspeGCcwDV0PdCPbHhSQsfvEwaV1puVjNdmMGqqTo0QxCqq+WC3TLFeUVmSpxX7FYJj//RtRz5ZMGze/+9o7XHaIc7POXMa3sUn5A1qJnu6n7ZmmDMFE6KXlbSGT5Ahc1zhVcdzeiAaSDVytaskj4+XrHYk3mzldaIqY2wXrNbJPRWdlndD5gd4ftf6o65kA1m7Wj1LWppKXGJwXe6lD3ZU9LAP8s92VjylfVIpYRrhD5YyfWVfU8vyYWhNBDOO2ZrOdXxXjuaBvhR5aC8b4ELDx1kO3+Gc5MeuY1QqaPoR6RbksMzuW2oUajBXAIqki4q0jXbeKXJrkUPoOhA2dY4E4oeBmyroHT6Ing85w0V4tGdGg33TfeJ0TKYEStLYixGeVrHdtg9MqB72uGsTALBxftIV9KimG34JoK1mWa8Ip058+hQ4oiIw5IvOlrAbpFSOY31isVkzDXpOlzGvl6x0nReNRvSecNSOuKxlqNsKc5+6v2cfeZeymKXpDXkmhe/hcXjd+C14twz93H+iT+h2z3C6nOfIEn7XHfPn6fbvxkXK574zZ+ju3KCnZOPMd1epXf4Rg5863egoog//lv/lSNfc5Rb33YbvTjn46ePc/p//0k6g6+50sv/qol1Gu8Uu9dZJqdm+ZOTj76fsydna3LiRW9h6djtAJx5+uOce+ZjdPtHWT31cZK0zw13fjOdE7dQdBVP/Jefo3X0BKNnHiNfX6V/4EYOfut30Dpgeeof/Brtu2+i/+23U1rDuIj57A/8Iotf+5b9MWcd9kg/nXK2EwxCMKbKeZ594v2cOXUfZblLmg458aI3s3LgdpSFC0/cy7mn7qW1cpS1xz9O3Olx9HXfQvf4LZgJPPFffo7ewgl2nnuMye4q6W03cMuLX8FWt8W7f+QDXPfqQ7zkL9wICGnXv/7WD6DuObF3iwE/CfxtKsvx9+5QlY6NUhrwTz8y5tzP/SKnHn+OxHS4/sQbOdK5BR9p7nv033F4+S6OHHoZKM3p1Qc4fe5+XnrX9/KJT/0bAO7/6M+CUhx//dswvT4n3/NODtz6Gs4+8kekd97Awo9+LZ/42Xex9fBZvHUs33GQV/4vr+IJbmL6wGKTI99r0coTaYfG04lzjHYsdCY88pn7GH34Y5TTXdJswIkXvYXFa+7AGbjw+H2cf/xjdAZHuPDMJ0jSHtff/c30jt6MLuGpX/s5WsdOMH7mMfK1VbpHb+TIW78D2h3O/cK/pXzVCVrfehexlsL2L3/be3jp99552QW54iy5R2H9/I/GGIeLIWsvcefX/ACveuNPcOKmN/LY/b9KMd1utPzO+knipRXu+bZ/yJG738wjH/tlRslEQnUF64/ez7Wv/Xbu/PYfx0eas3/4W/hCE/+Zl/Pk7z7Jp//oJu7/jTswv7hDMd6k9dKXNz1ceymD3phXHnya206c4Zqbz+G7IYebKFrtRe556ffxNW/+Bxx/0Rt59BO/ytjvSttVS7GzcRJ9aJk7/tI/YuVVb+azH//3bC5NBDsygs2H7+fwN34Ht/2lH0cZzXMf/C0Wu2MOvenFbH3wQclpRhX6uZPYzS0WD9zGno8U11XfoDht5pmvx6jK04kWeNntf4XXvervce31X8cjn/w18nJbPIeJY3ftWfrVkNe85se44ejX8cx//SXSZ3dIduSUrz15P9e++m3c+KM/gc48n/3ZD1G4iOu+4SYeevdJdqqMUZXy5GenbJ4r6N142x4sRCP3Ax8o8l2i89tkpyXPuLUDT/zYr9B++d28+H/6B7zo7r/Ao4+/i938QvNGl2hsO5IKecvgjabsx03q58Xf9De56+3vYHDbS7AZlJMdbDHmpu//eyx929swynHtN9zMN/7md/LW3/iLmDTivn/2UYbtCcVwH4RpcHFecc7Na8Ul+tgit7zlh3jlN/0DTtws56eYBNQqDbtrzxIvLXPnd/1DDr3szTx8779ntz2l7EgT/NZn7+fQN34HL/qrPwFGc+b9vwUKOq9+CRvv/zRGCVD1zuPnmZ4f8eY368tmcq7Y03z8H/4GT/2T2ae60tK56SAuhpXDd4Z8pOfAobs4+cT72V1/lkH/DqEozbosvvR15C1Nes1LiJ/6IGtrD7Nw6GUALNz8UtqDw7gIDrzmrTz+zp9iYfQdtF50B+v/v99m8N6zLO60eeyRD3CofTPR82hEfSHksX/4mzzzDh/SUYqygOzAMQBWDt2JySW8OHjgLk51ZU2GvdtxGqJWl+ErXo/1it5dLyF56INsnnmY7vGXAtC//WV0W4dJdj0HX/kWPvcbP03E67npaw/x5M+usbj5JEeub/GxD9/P9W+6FveqMe7f7eFizMknf+zdKCPh4ckSvLN0+0dR3nNw6cWghPZ4cXgP2ckPsDU6xcLR27GJJkk6HL3uNSgPK0fu4tlTH+bCxufoH3sZKFi46aUkh44wXYIb/srX8NAP/hJl9QqOvfYEH37Hx7jw9IjBNX0+97tP86I3H2Vs9pza4e+Xxe6fL6bbsL1LVsC5f3mBLF7i5vEriNY9un+U5ZXbObf+GXrLr2n6LqVPUwod3gjXdxXy3/lQ4Yby39FYkKMOvfTNlERkI4PvdMheeScb3tFKS25/+92874d/l7cMVnnxq8/y8/ugueDkO36d0z85i05caenffIDSGjqvfTHmQwlqzbJy5C5OPv5+dteeZdiVaC1qiU4pM0375S8hefSDXNh4mO6NL8Ub6N31MlrLh9ETOPTKt/LYr/4UK/F30r77Njb/w2+yc3KTcvEIz77rFNd//Ql0HF12kPKKd9INf+9bee3XS4leK8fj736cT//Wk1QtxblTH+e5Jz/EdLIBgLUFZT5ucgRxZ4B2Cl9KTjPuLeK2thrszFY0FPSXWJEMFsBakicntH2P6fG7WXvq4wwPvJbTxePc8PrvxiZ676vnwEv+t2/kf/yGHaY+4mMb1/FHv3ye0e99Aq/h3OlP8NwTf8R0ugmAdQV+exeTS1NukvXJtgh0H5BlC/jzW6Qb0tTbiga01sNNHlkEa7HbYw6cKHjRm48xet+nuP5F1/Er73mK7/6Zu3jFHb/HX032bi3m5UU/8c3077mO7WlK9ltDtj/5Mc49/TGU85w59wDPnvljJvkmIHslr8YNVWvUHTA6kgh4cwTmySVGZptkSfLF0WAB21KUBwsOHkl4sHLEu9v0F1vc+qZjnHnPwxz+3rt48j1P8V0/cxfve3xv18J7/1Act3li8166eoAe5WQPPsd49Rnu/88/NstnO8fhpTsE07GmvS4dXulQDxBK26b3dxyUpQO37YnSDnaYCJTepsL9Vo+HP/zbbJ1+hKocY7SjGpdMS01h9gfh3Lf/i5fxF79um6eLZSyaB/7LSf7br6/x+oOP8St/8DAP/9YDlNvr4GWf2NEu8cihKkjaA7RXUAIlJN1F3OZWM02XtIcyjz/1kA7xzlJNd9HtlOFrX8T0Qw/wiu8r+S8ffIhv+ed3cGN69ivvaeYPDvlIfnPzwVufLBlvnEU9u8Zjn/4Nbn/199JbPIH2mgc++DOATArpEsrdLaJdR6wVXnnchXU6y7fRPiuvKXc20aUn9lCc30Bpw/BCiyS3HDz6Eh7/2K/RPXgdKk7Irr0Ot+n2xZe+et8h/tXodbKhx9B6cpNp7il2Nnj0od/gjlf+VfpDWZOPf/ifg5fZelN6yvE2ybbwngBUWxssHngxvWelxcif38QcEAAG85Ssyca9N/HHn9SM+wMe/o/v5JHR1zGtHuC9j34H73kCTP7Te7oeyoOaKnY+sYRfO4TyEOUuTDMptqNdHn7yt7n9ld9L78AJMIZP/refnmFvOijH2+jCoW1o4N7aYOHIbXTOyF5yaxskW57BJxOe/MgAtOH97389Smkm/UM8/J/eybOjIYXt8L7H3kb31N5vlCTrc2ryOa45+mr8Zky0sMKwuI577vrL2NTgTJisqzyl86jTLcrYCfKRUpQhLI3GrmFCyDYtmXMo56kKj0LRXhVKW1N4zjzwPsoL57jrdT9MeWLIVn6ap3/xp7jvXbejMfsip/mBP76Tj27f3NB47DxwL9sbH+Pf/drtnPqZf8rNb/x+FnrXoNB86r0/HZgQpGhW7m4RbzsB+FZg19fpHLyN7nOCkKVOb5CtSCtjtSPnZ7DWofq0gYOv5al3vZNd9RImtse7Tv8F3vUuj8n/+Ze8XuX9818ypZQFHgd25h5eApaBZ4DbgM8gU55LwLXh8Qtz/z4JnAeG4d8PIpyztwAp8ChQhOc88NTc37odscEbwJnw2Anv/Z4NFl9dk88XpdR5oA88zX/n6xJajr7He/+HYV0AFoAJ0p35YuC5cJ0ALeS6p8BRoBteFwM3IT7VI+G1dyH3HDrf6QHXIetUy7HwmY8jNYxrkfX8eHj+TuAH96pP80/l+fHeP+8f5BC88ZLH3g58OPz3PwbWww39NPBBZMPUr/sI8C+BrXAjb5r7nA8A7wDuRTbB7wDLl/ytHws3ff2VXPdX8+fqmlxdlytZB+A4ohA/EP59C/C7yKFfA94H3B2eWwbegyiUjwA/Ua9feP77kYO+CbwNeANw6pK/fySs125Yx+8L6xLNreX37Jf1+dOwT17IxWkW4os8f9kvD/juL/UZf9p+rq7J1XW5+vPl/+zVPtkHtbPnJ0qpNvCDwC/s9bXsF7m6Jl9Yrq7LVXk+8uXukz8VSlMp9WYkfDkH/MoeX86+kKtr8oXl6rpclecj/0/2yRUVgq7KVbkqV+W/d/lT4WlelatyVa7KfpGrSvOqXJWrclWuQK6ouT3KOj4+NkBvGKKJbZBXaqw7H5uG1qJmo6yngZou+/lu+0ufg4YG1xQ0vENeK+yi5XBr62IUZ+V55kmwo9GeDaAnuuWj5eWGqlguGFmPmoFSXXz/X3Atgnzec5e+xgUemPpvKHBtz6A1EY4Z5bnweEGZ792aRFnHmyNDzI4mmroGmBqjBbbLqLA+fMH1+KITGfNrWP8zwAjqkosQbVwCw8VdVBjOW9vokZ85dcHvYf9qvS7dNKdyhnI9weQ+ILDTIFrBDPDlS+4RvvhrGsYAN0fnK3O+gGroR4rtdarp3u2VOOv4LFuQ75H5+5+dHerHv8h9f7H1+IJnyc+gJ+u/WbU9w46ghmnlWX26+JI65YqUZtJb5Np/9ldY+YU2rSfXUTsjyFKBNUtiptcuUPRNA7lfDNQMUNiAD0yNtX/rw434yONigXXCKeIdReucTDaYQt5z7psL7nvdz6GVwoU8bKoill6xt3OUrbjP4R/4G2QXPPHuTHG6QENctQXaTKYYfIOT6bXcd6M0ArJ5jXCO9mDkR2mPMuFzJxHRWkQ0FTR0b2D5ped47+2/Rqrk6xzcWezRaogk/UXu+Nd/kfI3DrD42THR1hSXROQH2xQ9oeOV8cialfNi4GlhEPSyT/wMW7XmR7Kph8jjlUdPNdFY0T6jSLaFP90mivFBxS/+0M9yU1QSK83dv/rXeepv/c1n9nRdeot886+8hX9+/Hd5x+pruf/HX4aufDgzMwg8HwmLpOyRer/4mVK9xHjMHveNslUeVKkwBSRbquGQj8dyXsqOpmwrHv+1vZ0eSzqL3PPK/5lku0RZh0sNVWao2oayIyO1cj5mBHOA3HtNjRPN4WUyt48Cp5ZLRb+42INXmFwRbynSTRmvXH9dzr1/9v/AoESnvPJL65QrHqMcbWUc3czFYkURPolx7RTXFsZAG1CHlBcA0PoGXSSHRM/d4LwlcInCxb5Ba58ug/KadENGoFyl0Eph5uhf943UtbSwoZ0R6loXK1EOsVCsCqVFeKkHX3M5KwJ/kngdjfIMh8UbLwpWy8ybSz22/rsKdqbpXtz1l5RxntAe+cD9o7HdhLIjhHpQRxQeU6gZ4VVgE2z44muk9zqgCZ6HzsG2wGXgY0/VhulSIOCyMj7YOet5rDjELfGpPVuDLyal9/zOo3dwzW7F+FAiJIOx7AHl5WjpKtyvrZWAOCD1ngCYweDXRkfNGWECgLXQscgTHl2pOaK/fVQE9j54lwGFPfBFNawGDnSty+r94oLXHJ6vMXkbbqWyBiNWAfgknCeNYJSGp5JWKXrlecqVQ7+EP6asA6PBaFw7puxGYhW03KQuIQraxCvQRjX81D669CMVuhDmPLEanqrjKaYakyvSTUd0JmXHWYZ6z9FqLhZPA6Qgh182t43V591nPVurCzXzCubDMaXwFXIwanI5rcB6vBXvCsB1LF4bTC6KwjmNw+Hw6H1iUZxX6Ep4kXwSYVPdEIFBSMFY8NXM23ZRUHwlDVCHIijYWk9oUG7GfS3GJBiSlqIsId12mBx+b+0OvqlzCrvn09Uz0cpRAv6ZNjarmqjDRRcbiRmL6ywNAYihDIyegpuqgtNRG1hmirP20GLfsAR4HXAANBg1S3XtldS71ZsAxB0I42AuVL9kS6s5BakqL2fE00Swqg7BrfwBX4Z1LBVEYf/U6+Oh35mSqojcVzguH7lesQZSxuGNUFlgInykhQEugAo0hFnlzKI5I1ZB/q1kKtTNcgtei8I0U4VL5AuuQxObyCLGW4qHiiWuj9cZOyFW66jiy7mFr7gIhWh9P/7ibzkoVa2E97vJp6BmHrf2cihqJeoAp1BhwwsMwywUg7AxKlkzAIun9JZY7Q+4vFq80Xgj+0MMqng79cFWNS+8ElxF70NEUqN0ByNcv64JPx0oewkyd1j2GuV9t0wxqH2lNGuJd+Vi66jER1zkcauQg6zvq773+n5tOgvXm9fPe2Jzt9wY9fozQl68Uch7LLrmNQpA1co1Ges5rTr77/n1mGc7kA+Tl7qIxiOVM6jQ1uO9KNiakwsgi6rGgGg0XEZxXrnG2Y7R+QhMOJxaiwWLAO9RLlxUOABeq9llqJCUrpnhFI1ybA6DVag6v2cEzh6EHOn9Oy+i6D7Kuu2icQzNGOXXr/gWvtJSFyLkywdvRTnU4RIQ1oTwjdZvJGySoERC0aLmNHHhs0NkJRYS3yhOXQZOGO0ovaPE0VP74RhAbKyEWYlpyL6+oMyFk0Llo2Yb3Ul46RKJPoQ3fbYm2oL3c0yXdVgWi5e7U6bP6xC8kGKUx4ZIDERBeHVx0QNmyrD+fWlBpGabrPPiqkKMkbv49eKcqDljfVFUvy/MiaoEAs+mJjgd4fFaUTaF1ZmeaJgA6r0SojgXorQ6J3ypzHuYAGi4prcR9knwvi8jV6Q0lYd4WwtLnlZgnWxy6hu7mOvHhZyEvDn8smGTxIFkzczdSHiNLhU25O/qH5N7Htk+yA3ZKrmL0coJGdI++NaVFeX+edie8/euxKNUqNkl1znLWnF+MQkhGV74Yjy+Sfwrr4iNxQHWi7e5H2Rrq01/O1yLnoXlPqQvav72+r/nuw1qjik1H42YWVRyUdrDgY+RtMbce0zu2cnT5xVuvZCi8TxWLpBuSnpGVzPlUBc6agXQpCVmZIwiDoxT6FLWwkWiPG06S3U0nEgOfBEM7NQTTX3zt3Q5w+XcK2n+fOVQieHSWZv5LpxaUTb3N/8TPky5uQgmRGqEolBdQJSCgCx2lSmOtjYBKSyL8vzSZ+jKidXSkKkGOcTWYkqHqzRVFtpJgtQ5GWCmTC0o5aFUaCNFH2pX23ixnhrQHmcDQ+O2x4UCwkbVoa0LnNdMa8q5PRXBd2ws4VyYOCNzosk31Un8eaupQNIXYQM0nzFXacdIQQgTMt2lEgWkYNiaYr2/zFf9AooHVxp0ITiPPpYbVdajIqjmct9NiKXm1qPeXk6KiVIUUYGu12NTcC2H71RgFVQa5SQ9BBBNPdHEszmdQ2Pea+0wJ48Vh8g2LjH4815V7VnVxgPEY7z0uQqcU7jQfVLnd4FZF0apqKzBtCAezUJ+gmLZD+Jihe3E2HYkTlUoBtVtUY0x1RcbEqBBt6/7lZQDZeZepxXW+LAe9RmCsid/RznYqTJ+dzxgxWxzUzyZKa0vIlesNOVGDGqcoyoLWqMK14QF83mnixTDnDUAMFa+PeVDCKbqZHZozWlZvAltB4Gasx0VaOWwKJzXlJe5uRdKlJUvzsaqseIuujg0l0pHHXfQ/K4T1srRaFspAgQla0Luqq6eR7NN4iMxOofb25Qv7C1/aVHQXxxRDPrEu2XI5fpwYOt8tZrlnuDikCxEKnXV1PuZFxaNFNEIwOBSQzF0uEGJBcquxhlFlEteXGuPRj+vkOuFEq08j00OEu9YobCoPUUjv/VcUbH2sOp0xLz3WHunUjhTsGWaIpqyUHVgcsTiY4drOcq+JpqKd9peldRJ3cmw11K15cst+qZRkDZRM8/b+aYTpzG2l3qb81GbDSkJC/HO7N821UyXIT9YUS6Ifuk8p/i9++/k95LbSboF//tLfhP8hS90mY1cudKMPS6LMBuz0Et+01jAOvfUVJaZ0/wws7BKvLRYzV5rCqhaiu0bIqqBpRwoih2FbUHlNVtVm0EkjahTvx88zSBqbvOHVqMmB1dXOlWoetZ5OWgKQPNeubKgUbgSzNQ0SpTQo+gysZhVzwnlrdf88eQ4PTPhjuQCah8UxxbaEybtofxD0ww9SO+ckjxWWQdJzHJ2ei4UV/KEysE4T7LrSbckVjWFo2ppRgcNO9cllAdLpiuWeEeTj+TgLXdHswvaH/oBgJd3n+JD17yc1gUXBkFkX0RT6RvUhaxBHX5LG95c3jPsH114kh1PsuuIRhLxeaUoexFFV6MLw/iowieequ0ZH5RwNJrIql+aR90rqdMENhFFPl+kiSYQjz3JVkW8XUplPXRhVC1D1Q59v7WyrJ2ykScZOZKtCmU9LtGUXYMuNTY1VH2LjzzpJiw8aPAqYnQsZnT35dv3rlxpRh6faHwS49spthVLH14iZat0xxHvOnThMJMKtBJGvURTdYQQqg7hkx1PvOtI13KitV35/HZKfqBNPI7Yvi5iesAyWTHoEh549jgPRkf4lps+RdfkOPUFMr0vtDhPuuUp+qGlIySh68ZaZcEE6x+NPPGYhvjepooqFX53IvGovAp5LivFr3gU6B0ihG2wo8mXPOViJUiyhea+e2/m3vgmoqUp/9cr/i9JYu2xLGYjnuorXGooOxFVW0se00G27sg2LNGkwoxKsB4iTdWV1rV8oKlSFTSqJx5Ba60iOz9Fb+xK8bGX4ZdbJDuazknNpIzJj5UUbUu8kxCP4PxOl+9+6hvITIWZ7APtEOTPtp7hx2/2ZOs0Sitb97TOV5jcEW/nuNigS4ttxbhEM1mJKXqKoicRTDzyZBuO9ukp0dYUvMd2U8p+QtXSeAPtVY9ymvFRh205bKTIjWayo2f5zX2QtTBT23jO3sg5UF4cqHTbogu5SF059NpYWh2dJwHKlS7+cErR042hiSee1mpBvDkFwHYSqpbBGVHCndOKXWNwqSMfCvtktuEZWyj95Ts2r6wQ5KDzTIRXFRhNuZBRtSR35Y1MG2QXClRpUaXDnN/ET6dgHarTpjy+zORwRtFVKOtJtizZ+QnmwjZMc/xCn3KYkQ8MykG6BtODYFuelU85drbbtM47PviXbuTlK88SK7sPvnTh+iH0y81PrtTegy5peJKU8+JxOo8pQtSeS9dBFb4NXUA08URTyc8BlCH/Ip+F5DMUqBKiShGNNROVseNaCLL/HoqHz5w5TCfkp/KBoWwrTAnJriNbK8Uj6kaoyhOd24KtXdJ2RrTYR1VtJisRRaaIxp72+Yr0wgQ1rSBNcFlEOcyYLkaUbVnLdE2RL2t0r5RDsG5x7+7ztO5jM0VrH9jXWno6wi0XFN1UPMmIi/axbcWYSYmqHGa3wCD7xplElCagKuEK0nmFyyJcGlF1Y4q+EaMdRpnjXU+yoZlG4NMQqneMeLP7JG3hYi3tQCF1I4VVSEYOXfqQylFMDrUwg4R4t8RsT1GTHDOtiKYJRTc4HNYT71hRmM5RDVoUgxibKcq2bIJoImfR9mTaUIUBgnLBiU65jFyZp+k93ZNOkq/WUWWGsisawmtFtlaKxevEocVkiB7nsLaBH42J1kdE/ZjJgkYZhckdenOE3x2hOm18EqELS7KtKfpGevpySXTbWNG64OicKZgCg5pZaq+lDrXnijh1/kmXgSmwmstVaYUzHuOk4m4U2ErJRjez0D2aikeqPE1Tct34bKYKVWh8LB6ryZUQbVWKT0+Pgd/au/VA7rX9wS79ZyTTWrZDT2oh9ySc8BpdhqJYlqLzUvp7d8YkWUQ+NLhIiQd/QaEqhx5PJXlvFPFWTje3uMSwc02CzcCMDL5fyjhiWo9oioHeL0UPgKm3mNhRDOtm/mAYuzIAoEsphJhphaocqrREmznJIGJkNDaBZAfZe7lFOakpJJOKZF3avGwWUXUMk0VDug62pSjmWpTa552kk/aH3mzOjYsUxnlMLiF53arWtKxZmTKjrKCsUEUl9YQMir7cTOeMQ2+P8XFEtJODhqqKMCHXXXQ1plCUygfHRtakd2z7eV3rFbcctS6EkCp07lepQluIRxKO60lJtFai8uDtaC0w8ZMJuqzwWsJRb8CdVrC5jd8dgXXoyqLKLrqwtJ4ck12zwORASr5imymBqmN4w6HH+PP9T/B0tbQvcjIXgXHMtcxEE2GnVHOVcZgpUJgls10sHrUupcewzvM0fXrhtbry6EKhi6AUIiCXgpBvW3ZttveFYg/DJwqyc2NcFqGceFTKyX1Fo5LsqW3IC4lEokj2U1WhfJgiMjLw4BLJdamigryAPIczU7QxmMUhrt9maW3M6NoeNo2YHAKbyfy5smF8N5E9uh8k1pbT1lBtJ+Dke4tGEqW1z+bowkr7TWnFOSkrVGXFWNgOVRuKgcMUmvaqQjmH2hljRgo/GuPHE6JOh2ihT+oc2WKX8bE2xcBQ9hXeuFBf8DKFsx9E1c5E+KeDaOqItwv09kTi9VgGaXwSSbdFEkMoRLtYdEq+GIZqrMdv76BaLexCm6oVYVM5Vyb36Ew1kZpLQY1g51rFHcur2OdhRa7Q0wSTu1mfZjjQqoBkuyJ6bh23voGrKnSagjGoNEElCarVwvVaAk4whKLvSDZjWk8voOMY7xxYixpN8N2U3duWmQ5NqBJL+GsKT943/MGpF3Hf2gkG6QTlfvfKv6SvpNQ9mGZWzPERUuDxoeHdzpr0gVm/4dyPzaDqSBN4sqlnTb6XICV5JYMELnOodoXblU1TDB3d5RFdM92bdbhIhIbWx9LYHk09ZaQkob82waxuQVlCFKGSBLIUn8RgLV4pXCui7CiqtsfHULY1rpOitBavKomo2rHkS7sRZUdTdMO8/zSC2FO2FemWZ7oIOycg3dx766o8/P4f3837117CsYcs4xWPKxXJrqf7zAi9OULlpTgRRqO6HWmj8h7f7zIdGqqWx6de9ktL49oJOrQA+kEHbww+0hSDhLIXyXRdyJMD4nW1YbJgvmDz915IM9UTfrkYpgsGm7SJRxnpeo7ZyYPXnYuXGUeURxYohjH5QIchCE/VVkyXYpKVRRhP0eOC2Gi8irGZZvuEYXzIUy0XmJYlXxR3u7x5zIF0l3XbvWzK78qUZt1gauVANNU3Jf2ZxYllzMEhemcqnqbW+DQGpXCdlGIhxcUCuKAcFEPF5Noh2ZkIlVe4OML2UqYHUjZuiRgddWAcJI6iZzBTxdZN0Laa3TIht3tfJQZpNWpmh2tP00DZl3xNsi0FoLoBXnkPTkl/WqIECanl8YnHI5vaprNDXleSvVZUXZgueXzHYowPOTEPh3OWuyPyfdG7WkMDqqaZ3SvpKsiXW0TtBLzH5LZ5TT1B5Y2i7EQBPk743icHFNlGi2xVvFUJPSNspskHhp1rFNODFh97iBwuU0xXIuKx7P7WrZtMPzfc2yUB8LD4kGL4+JTJckzZEQPoN6DqJkRKPGp/cIiLDT6ZabV8GFN2Z4GVTTxFV9ZT91NZPy1tNVVLU3Y00yVFvuCDt+0a1CibeaqWGLG9NyUSCcw7eHWXRdk1xDuhwAzo3UKmjLstysWMsmeoMlGYMoeuqLqe0SFDNBmSrU7QkxKzNSVxnp1rW1QtqPoWnVmclfHk8VHHNSsbAKwW/cte75endSIdSlxQI9NMl2O8jjG5J91MSc6PUJXDtRNcGjFdTqQ1IJJeMV0pij5s3pgwiHpkp8dgVICG0uhCgC3sQPoIir5CdcFdP6aTzhU69joURWFT1VTL58dDbUoDuuFiyT3qyqNtILZPlHyJrfA6Cz7xlD1P0VNEhiasrKuLRd9jBxUmq8ArXOYojWLYG3O8u4He+wUBaMA5XGKanGzeV5TtmGgakWxZQTkaF6AUthVTDhLKriBlKe9DCsJT9mD7mghoka5JCBs7DyrBhnXXucIp8CkQecqOZ7qoKfrw5058hl9/4lV7vSRA6Ev1NRoT+EqURL4YU/YidOGIRtImA3XYqgRBLA352UIm6iYrCuUi2uct0UjWMx5V4MXD1HkYCOhIj6+vEZEIYWnIi+612GSGU3HRKKmGsqMYH5Acd7KbSSorUeR9GaaRdjx5vylqXQTKyX5JtiK8QoxsaNtSpcblBsowOnlozPW9NXIXMXbJ513fpXLF4bkuHT421ADEyslFN2AJPUXeT4gOxigHZWs2/QFc1JRqU890RWGzmGxZNLxNpU/TZgHtJhc1UAw9xaLl4HAXHT5MKb/3OU0VoN9imgJQ3TJRh+1VSzaGKZBcCvVY1+wz6gZmtKfqO8ZOE+8qorH046GY5TArhStC1Sh26J6lnUjRxe35ggRRSiKMRDf9c7MmbkXRidAHI0zRwhnJz9pMrt2EVpgaBMWmnvFRKIYR6YYJM+myR6q2TAk1wwNWoUqN8pAvwuRoxZv6D/Gf7Kv3eEEABdNFRTGIcAaqLDy2pCj6kooyuSfdiojGMk1V9Iw0eocmeFWF8UklUy27iaLoRaSbhmjqG0VTtRVll4uawWUMX9a46M0q7HstLmIGrH3pcynkqYSzY69nAzOhyq4qZmlCC8pA1fKMjkLVikm2InQl522yIhGdmShsUH3KQ5JYWqZkNe+ilfvKh+dlP8K2DNGoChu7xsGjUSA2lqpnHa4qJyF53T7TjBdGnkrJ5pkcCJXjkqBcIBorlNW4EKaYfkliLFp5lPIk+yK7r6haqsGBnJ9/nffEQQ54bT3mwZhVQJyhHpdsWYrMUuYGPZWiD17WyyVh/jzXomwTR5KWtOIS5zVje3lL+VUXBdNFI3osldx3PcXkjMJlzHnmEqLWU1FmApGbHXQf+RpsnKrjmS7XfyQYzoB0pCyYicYqBALMK6qWZ3h4m22Xofe+dRWAcuDJB4Z02872RywFL2dAdRT5QKErPSsWXjJzL+kfmRhziUDiTVeg8SAUszFKQsSmZv6FjBfW+/GFuvMvIipM0nkf0Jd8A9xSYxM0uf8apwIalC+QtauNsox5g49hfMQzPiJ7RFehXa9QTdueS+TzrNWs5l228lbjkH0pueLwXBDJdTOuZAqwsZd8tVZhxEsOtqsPi5Nm3HTHMR3omUcGZBckhCg7oYHVymeYUt5nCmnHsZnHRKIwY2PRyO/9IDX6eKPDa6QZCN6mb6wjzKrr8xV1QdyoP1BBpfDGYzse2xYP4yJggkrL2JhVKOVpRaVYyX0gXsH2CU1Pi+fUQHHVLwheT9PTGqqm8Q6kW5LHbCgxlKRyWquCuTpdhqrrwv5TM+0axEy07JtcDkUnLXhwco0gAO0DqZZLdo8lpJ+Rftw6BX3p6HFtVHQZwLx9XTD0uJYDqzAT6QpwMVTDEPkFSEZVqhmuZCVr5ZW62EPbB6E5yPdkyjlv0QH4xrMmwAo4gDAwEo0EN9VFYmSqDFwqk3Kts4ZkG/IBVF0/w3IIxlV5UZ5F6rEdRzcp2cjbOK8YV1/h8NwrGC8bTF73EPqmuCEVMPlv62rLERRg4WmvVgK6UVu/0H+pHLTPeSbLMnpYh2UmB2WldaToecqhI1GeymmMduK17IfYQhHoLDwml+tp8AqD910DAzeI2wQPqcaMjOQwNLPnpcaMRCm6gFwjX7hq0FvqfjsUaO2JQiPifpnHdzHkfU37gmsKX8zNUqtKRul92MTxtqf3nEU5z3RoKLsqeNVQ98AOnq7onVJMljRlT0J6AdcNf1T5GY5i8FI68T5xMYPE7YL8xZbp6Yxo4qlC5fgicxcOee2UmNw34CwuFWAO5SCaaFqrUtSZHND42KOqORg4JwZHF7OQdn6017b8vgjPy66chfrc1Li0UtjyMzaIEMHpErINRzT1TbN/k3oI7XvZuiNbh/EBjc1mkV+dT8YjYXqqyEJqK9aWdnT5/XKF4blisqLonBZlWY9OSnOuHGJdKUwEtgQbgym9VDG1jADqErI14dPJh5qyB8kWpBvy5dcYmroI+awMoonCZhqtfdNHFWu7b8JzQUzxkk6o0VfCVEPzZUGDFdmgSoeDbeuDbnzjYZqJIh4pKXTEUGW+8WZ9sLo+8ijjiLSjcBGVq8hdtC88CF3SeNb1oReIt4vz0F6JYmhdkHB1dDAKOS5PNJJiRjnw7F5rQUUc+MSU9pmKfDElHxqKruTvJF+qqDoem8DkcKimw74pjgGU44SbT5zl5DcNsY/0GH5OFH3VmuMGCuDAykp+N5qAizymVEQjha1kZLDsOcxUM3jK0bqgpPUmoxnfbZREQC63Se25h/NWzECc90q8gmLgSbZk/LHKpLVQ0I7kBQInCeSy/+OxxxSOyaIA+igH8bY4FVUHiqFjvKIZPiFeSZWGFFo8i2pcHHLhw4J0LmKt3OX7sK7Y05wclWxra103yCzRVPo3cV4Q3DPdjPzVOQtlFQuf2oCywg7bVL1ENnlLs3V9RDQWOK+6eNUw6AXFY3uWG1cucH33AsuxzKnHyvKeve41U1D1LMSOahrPciYBpEPBDEh47lrr/Kd3dX5GYaYGr4V0zGaeaKKId2mg+pvcTeybwpOvNM4rnFcUzlDtB09TQXHHmMmFlHRDScoFmhageaRxXXnM1BFNBIS2tWabntayraWlJAOTS7/M+GBCa1WRrufEO4ZiGDNZNFStGihFCYHYc4btl09ZyMZSHNsnelNvRpxZ7NFt5Rx49RqfWTnGwici4pEYRZWpGbqRBTMNTkQFelVGi21Ly6HPQsgey2x+sqspOnoGr9jkTNVFnqwoqjAcsQ88zfxgRX5A0XouonVOxocbBogabxRxOrSVSqtNNOm2o31elGuVaapMioN4+T1dMKQ7NkSAmkopap3oEnAHc4bDEUp5oWdBPa/o9YoLQUduPM/p/pDyiYTW+ZJqJcZrj6p8mDIIv5lZfxtLv6JLIsz2iKiy6HFGcbBDPjBMFz0sBdivsYTzLnhVykN+64TX3vgEN3dWSXWJwbNjMzbK9v44DNqTDXKmpSbaNiSb6mLIt1rmEOrx4kWYghlgahJAPFpQQ8ypuiof8nRegVLijapORdYu6GY51mmhhXX7QGkC2jjUypTJgQ7ts5JOiaZO7jUKiX43S++UXdmK7VMjzNoObtAh6SSgFMUwpmxrxisGmymKXkLrQkS6URKNLUmqxNjEwbAfq2idjhgMxiwnI0lZ7Id94iVHP9rNmEaWvIzorozYvKNH73FDtiZsmi6mCSNrQOX2ahEmiDQ+0ujCoQtL1Y3ZORax04lItz1R7mVCLAlFt0g87QazNPIymGJheqja+0IQoDsVh5e3eM4sEW/HpNuzL0vQ+Qk53ZmC9BraFyzpmmDGudhQBWCYoqMphjA6ouCMacaRgaZ7xyYeEzki49BKqK8d6nk5HVdcCOomOe1uzs41GaaMQlVL+uqUE7daVVADENVV4ipTjK7rkg5Tos0c14oYH4iZrEhly0Ve2gHy4BWEvkWbQNYuOJjuoPHkLqb0ohzOTAd7Hl4AEHmOLGxxzjhGqkO8E10MhQczqx8UZ8Nx4zxx4dE5uBKkFUuFEUJP1ZG3y3jlxX+z15/QTgvacSl5XvZJnhcwxnHtgXUePdJm6TMVkyXZaqZw+ErixtobKruCaqQ86JU2qRZ2ADMuhYMqSpgsaaquGJJCKWxqKLqa1oW6iyMYn8jTP7KDPwK3LK8C7BtDAoIbUO7EuCjCloY4regc2WGn06J8IqX7rERcNg05zFhag3RupVE7lokfwRJNmCwZRsekPjAda9INgYurwTiaFrh6fQIQduc8eLU/Ujm+0liviDqleAkh5ypwk6GCGDh85vmB8oHBRRnJtox260RTpYZ8QTXtfNNFAbMReEYvBTEjrUxpVtJJCmJtsV4/77NzxUozMxVvPPEIpw8MuO/R6zjwgRhXhZwVXtznqQUMMWIp6j0rrUgRLhZsu7IroWy8I4tSw/83ixkOVWQcE5vQNpKkrQ/B0dbmvggvdGI53N4mNRWP5xH2vCHeneU355VlndKo87XeyGRQjVjt0hpazs8wNkM/6kWUD8az0J7QT6ckuiIKSjM11Re/0BdYFtMxh+44x7PqAK1zmv4zYKYOXbqmGuxDY3KNoZgPDDZtyey9C43ffSMDBHOeui4EwT0fmqZwoG2oipYRxjicV4xsQssU+8O4giiEQkPpcWVMqaCdFdxwfJULCx02Ogv0npaeXmncFsCT6XJGsmNQlcdmhnwYMVnWTBdVQ3NRDGplqzClb/Lm9b3Xa1y1PaPj+pLq0x6JgoMHN/nmYw/y8d41fObTt8jD3jeF0gbTIeQ4Z3S/sj8EetCESSgJzRsA4jr9VRdnI6kh2I5j2J5wuL1NL57igtLsxdPLet9XrDQLZ0h1xXI6YuXgFuMDK3SfC03MuRdIuEAy5qYKEwfq1rrHTEsjb5WpJmepCZbQz7WnKCCANhzujpqm7bFNKL3BeUWq94OCUJjYcjDdZjnd5fyoy2bcFmtY92vqmQFoUJFqzzOp+zglfJqv/jZFJdRFob7XYPoFy61dltIRLVM2VnIhHu+LkMtazXaZ0U1ybrjnFI9/6hjd5yRNoyuLtg4Kj480ynp0IaF3M35pASR6aV2o6JwLMHNDE0BiZjij9cQRSJ9eElmcU0yt9PN0TLIvPCqoC2Ghyl0pfJmyWWmmRUwcWRbuuMD5AwMGDyQk214mHzWMDhqmC0I85o2i6CrKvhhSEzpRaoT/YqhkMGLiL+pltCkNSpa5c4tWUuJ/fk+XA4DtccbUxVzXWeMTyw73LPgAvKHL2tMM9BQxwZgyQ3iPVcOWoKx0YlQdmb5LN6UDo6r7hcN7l69d52Urz7IQjVkUKgAsikWz+5VXmqUz5C7CesU1/Q0+fuMCrQsmJJw1xoniVLmdkbZnJqC0eHQpGIA1SpKgHskwvYsVRUfLWGEkSrXoe1JTUTrD2CZMQvO2Q7FT7ANEHyBNKw6lW/T0lGf7C6z1FqhGpumva8TTYGg2bSHBSIhSDIUSpUCH/tS5qaG6p9FmMiv7ksFJskBraFEYPAOzP5Smd4rKaazX7BYJruWw8SxM9krJ0FDlSHZKAfcI6D7SlCcWwhsjeJGZwUwq2p9ahSTGLveZHmozWYxmDdAKfAxZXGGdaqrmuYsuzi3voSRbMh/u6sp+BW4UMVVeeNCB4dIum3f26D0c0zrvA3GahOq6knOUbXjSbVEa9QSQbYU/cnHr6kUhbd221E4LOsk+aMfyMB0nPLJ7kMprbMdhE4MpPDokIJX1AWpRcHp9JFCU2joBsAZqYBOQczSjBFbkCwku0lijmseP9TYB+MzOYY60tjgQ72CUo9SXV4lXrjStoXIGozyHsh1Wjm+QP7xC+xwNqAQ65KeKSsA7ygq/tR3+YiTwXoDqdPCtlGgjkhn1LMYsJmwfjxqKUrtcNKFn7iJKr4nDCWiZfcCMo+SQDsyEJbPLodYOql9QbUlzmAAPz350CWYiyD+C6D6bhJAeMwHx0IF3qOiKESm7EnZ47fGx546F0xyMt4hVJaycwMilDM14XzhVzmlyG2GdxigviEyJCcAcYY+bgCc5LlCTHCqLzxLcQpey1wpVYsV0YPAGWmsRSXYEm5m5qREpOtaepot8yO9qtHLNhMd+SOMoL+12yimmizLh5A0yS74dU+SGMo2I0orO0pidW9soH9N/WtowdOmJxlaKQKVt5tMFP9MwWY4lXE9UQxE8z3VeT2V5I++rz9WeioJ2N6cTFexUKbpbUnUikt3wfK0TrcdMKqLVbZgEJC8dut7jCN9K8VqDUahxjn/uLCqJ4eghAbt2utkj+aLnms4GzisSbXlyd5nTZkAvylmNe+Cf/pKXfOUTQV6Ru4g49EjevHCe+1aW4TGo2QBrT0GV8hpvNBxcFiy8WABSpafOUPQMZUtyMOmmaziyPdLlP1wcXfR3K2ea/r+WKcnXV1FKfY/3/t9e6b18pUQpT6IqLIoj6SaDwZjNzQRdmoYfaB6ouK6G17iZMLexke4B5T07R6LAbc3MiKSgl3IOJDsAdHSBUY6pi8lUQbZP5gW9v7go1e7ljA9kdM6GRv+QA3exJj/cbzwAFxqZXayb8CyeePK+Yv3WCJdEMg2yIY/XTd81WZvtWIbZhJ0iRStPpGYYCcAte75XLCSbnmgEkwOafNFJU3qpUKWBsaHsGFQ/x3RLdu5yVK2UY3+4Q/TcGvVMv++28GmMKir0ZoVpJSQXFJ1hxs6xVIYD5hHhQ07POQnhO0nBQro/opIsrhjGwvvVahcU/Rat88HLnB+pNRrXa8nxr7FYnRf4Se+lq6SdQRyhlxYpjy9RBYbLmga66ijUUflblTcsJiMOZ1ucnCzw4IUj5JVBuT/+ktd7WaWplHoaaAPXtZeOsTXJ+MQfPs3p9z7CW37+rVReU6xUFD1DulkFxSBhOCBcLrru6Pe4SFO1Dd4oPvTuv8Pdb/k7xNEKXilspoSytRTlkC85lrO8UZi5i9DK4ULoVe2DmGsnP8/2A09hr9eUPmJgJriPfIyz//kxjv/lH5kZEqBuZi97gRcobIimwKHq8LseK/UBEYqmkmrbjiOL23TNlJ6ZYC5ZA7OHfma9V1qLR5rHzv7epzj3h5/jxnd8F2uHLeUTGjMJc9fNpBTYVPaEzYR9tGpJeoLgkT74f/wNbnr7/0o2WEFVwXjY2ftr0GIzKNgpUnanKVXLcLizxk2tc3yodecLvyCXyHjrDFtnH6V77c0yCXfWs3P//ax/9k84/KM/TD1yrCaawqWQOFq9HP3yCU/1Bix9ukO2LtxKVWYoBlEYIZSKcLwr5HN1jtems9Y3YKZAU0eiLQvJeI9WYibTtTPsfPJJ0mMVqa5opwXPPvIxTn3wY9zx+h9qXidOVkQxjHFRD5N7okmFKhy6qBoHbXqkh80UeW+J6bIiu+BprVeSPjQCVLwwGFGEFKP1kdRokhEswEPnDl+2QPZ8PU0D/KhyUN63wIWHDrKdP8O5SY/cRqjUUfQj0i0Jl0xuBWk75BmUn+WodFGRrtlGmSS7Fj2AohPAZo1UQb0B2yoo3ax5G8B5QwVo5Tk1Gu6LBL/ziqmPKa2h9IZ+PELVFLy1zgweZtNOUT9cI0DVRZ/gkdbI7PVzSktF3aeOfjolVla430PMUTNzFnvf3G6qyS5KC6BKoi0KTxJVmMWcvN+idZ6mX06Q2mchY7It0UZNU1HnvQHa5z068U3V1EW+mXxxylH0NHFsKaqIyFhGVcJjOwd4bjLcP8RqapZjVF5SNbpQJOtaINwUqErhbBhYSCP63Qmdu85z4UQX/USL3rNRAKdQTUdFDfqS9+dmzi85/DUARndhzLHOJiey9X2RtnBeUXrDyCaSZ62BbIKH2RwhLXtBMFcV08VUENYCAHjd2mhb4oiYXM5X2daN01H2ZFE2ixaRtoyrhIfWD3NubYBfTUm29GXz389Xaf4k8LepLMffu0NVOjZKjXWa04+MOfdzv8ipx58jMR2uP/FGjnRuwUea+x79dxxevosjh14GSnN69QFOn7ufl971vXziU/8GgPs/+rOgFMdf/zZMr8/J97yTA7e+hrOP/BHpnTew8KNfyyd+9l1sPXwWbx3Ldxzklf/Lq3iCm5g+sHgxEMQeiXOqAf+1SJ5EKQEUXvvIf2PrE3+CHe8S94Yc/Jq30r/pTlCw8dC9bDz0J7SWj7LxyMeJ2z2OvO5b6Vx/My6GZ/7Dz5EdP8H4qccoLqzSuvFGFn7gW3Be8a++79O85HU9vv67DjbX8ff/h0/yP/61lT1ahUZ+spzuvMOOJhjtGlSqLKpobT/LI+/9AOXJk8Rxh+uu/3oOLd8OwKc+9n9y4PhLOHTsz6AUnHvmfs4+dy8vu/N7uf/TEk1/+vd/CpTi2J/9dnSvx3O//04O3vxqzn7uQ3RP3Ezvu/8ca//kneSPnwTnGN5+hNf8r6/kpuvGPJC+aC/X5GIJuf+6s0J5T7IN6x9+H5uf/BOq8S7RYMjwm95C6xUvZssq/Mf/mI33PEB63SGefO9nSeMeN77om1lcvpGqrXnwIz9P59AJtk8/Rr6xSu/IjVzz+u9A9To8/Tv/hs4NtzJ41WuxiWfQmvKuv/hf+M6/dmBfhOfOKSY2ZlQleB9oL4KDcfKJ93P22Xspi12S1pATt72FpSO3o4DzT97HuWc+RmvpKBee+gRxp8ex13wLvaM3g4LH3vWv6Bw8we7Jx5hurdI+cSODH/w2emnOH/9//isnvuYwL/6OW1kd93CbCWf/yU9x/JY3XZYa5fkOId4PfKDId4nOb5Odljzj1g488WO/Qvvld/Pi/+kf8KK7/wKPPv4udvMZ2bpLNLYdSYW8ZfBGU/Zjbn+DuN4v/qa/yV1vfweD214iYelkB1uMuen7/x5L3/Y2jHJc+w03842/+Z289Tf+IiaNuO+ffZRhe0Ix3PvwHMAHSzl18Qw5PVjIdLDE9W/7YW77gX/MgVe8iZN/8CsUk+0mJB+ffZZkuMxt3/uPOPiKt/DM7/8SuRpRdeT57QfvZ+X//e1c+2M/Dlqz8c7fYVwm3PyN1/ORd83W+emHx2yeK7jnDYO9WYSZ3G/ilK13f5hIOxJdoZTHTkqe+LFfofv1L+bub/sJ2SuP/Daj7XPNGz2Sl6zahqqjcbFmciDltjfJXrn1W/4WL/rRf0rnJfcIDcZ4hyofc8e3/RhHvv7b8NrRfd1Lue5f/w1u+IW/josSPvFTHxEKkL22rEFUwFUwuZ8BDSPRRytd4oZv/WFu/ZF/zMqr38SF//CrqGdH+K2E3VHG9sNnUCvLHP+F/y/Lr38Ln33glynzUaNk1h+9n+Nv+HZu+0s/jkJz6iO/ha48Sze8jM2HP96kh+LnnmF3dcJNrz34Ja/1hZTcRUxtTOn0RehfWXuJe172fbz6a3+cEze+kUc//qsU021hd608O+sn6bshr3313+WGo1/H07/3SySndqRzBVmTE6/9du5824+jtGbzV3+bSDlu+IYbeeT3niK3EXcvneKVC/8Npuu0/vph7GXID65kcvvvl8UuxXQbtnfJ1uDcv7xAFi9x8/gV9E9Dt3+U5ZXbObf+mRkxlA99d5Ek+b2RmdDRAQkj86GiGEooGo0lmXvopW/GEJGNUnynQ/bKO9nwQ8q0y+1vv5vVB85y82CVt776gYvmufdKnn3Hr/MPv+a9/ONX/QH/5FW/z4f+6X1StXUwuOlu4s4AhWZw6z2kC8tMzj0rb9QQtbsMXv06yqGh9WfuIV5ZYevUZ0Nl1dN96UtJDx9GZSmD/+HNjO/9NNujmMVX38jq0xPOPi2snB/97Qvc89YD2OjyZPdfbYnbA3bf81GOls9yY3uVjimIPvVJFo62uOFbbqLqR3QWjrGycjurFx6a5ZCU8N6UbcnTuRh2jxq2rpW9Ml2qKUSQNIdSHH/xm9FGuIZMt8PK195If+hZXHLc9vZ7OPfAWS6UvX2jNB//wC/xqX//d3nw3/1dHvq3f5dTH/zNgE/gWbzuLtKkT5xrFq+7h3S4TPXoSaJdDROD6XVJX/u1KGPQb7uN6NABTqnHyAfSXDW89WWkh46gs4wj97yFzac+hSocg+MvJt84T7l6Hl3CI+9+ikNfezNnWd4X6/L0P/nP/NLX/kd+/63/hnv//L9g7T//ZnNdK4fvJE36aK9ZPn43WXeZ7e2T0qIYKZKkw6GbX4fPYpavuYdWd4UL649Q9CWvu3Dry2gPD0M3Zenr3sroEw+Sl4qb3nCYrWd3GJ3aYGITPvwbF4hffjeTz65wuaaC5109994/FMdtnti8l64eoEc52YPPMV59hvv/8481eSec4/DSHXIQnEcXVtDelW4mFKLcN/2V0TgoSwdu2xOlHewwwWtINhXut3o8/OHfZuv0I1TlGKMd1bhkWmoKsz/GwK79u9/Gj3zrOSwK5zV//Jtnef9/PA8aNj97H+v3fpBia11yb0VBNdltcltRf4CPZarDR2CWFyimW9gszGsvDEMPrMccHYC1uN1dOJLwircu8uC7T3P7j6zw8f96jh/+FzcxNHuf3FdRzMGXXcvT/+E+jt2QkemS7voZVj9zgfVv/RnK0FXgvePwyl3SnxlycHVzewNcPCfeCAZlNIJqLHvF6Jgi0IWorYqz7/4dJp98nHInR+MoRpav6zzIb7W+Zk/W4lK55TVvZ3jgpubezp66n9UnP4a2sPbY/aw++EGKndlecTu7xFuKaFcR9Ybo3RjXtqjYYQ4P2G1t0ToiwyNmOGxQwtLWAt5Z3GiE7vcY3Hw3m5/7OL2bv54LH3iYl/+jN7NZ7r2BBTj4N76TpVccZzqNsWfaVO+6n60H/wQUnDv1cZ578kPk0w08YG1BWY6pUnHC4s6AYhg1wCRmaZGR3iYN+A1Ja9AUxcxgKOR9OyOSZcX1X3+Cz/zuSa75ruOc/cNHOfb/ejsHHnCcuUx4fkUtR0nW59Tkc1xz9NX4zZhoYYVhcR333PWXsakJXB3iNpfOo063KGMnyEdKUU62BQdw7Khpy7NNS+YE2r8qPApFe9XJ1EvhOfPA+ygvnOOu1/0w5YkhW/lpnv7Fn+K+d92OxuyLnGb3t1v82qff0vx79an7cM9tc/idJ/nIp3+dl5/4TobLR1Da8MdP/FsWP73LsefW0Bu7rJ/f4JrfXkMZqR6ff3yNozs3cvjChK1zjt7ueW44uYPXip1qjeeUYenfH+Kx9jE2Rl0++ru/ysc/+xrGo1X+4Lf/Mr//OxDt/uQergZoB60bvpU//KWfZviqNzA5/zg7z7yS9Ljm2Hd9P92TnmzTCViH9RSASlOsLwOAh8dt7aAttM67JproPAetbYeuwO7KXlFO8oHxLmy874NMzu1w5G1/i7jdZ7TxHM/+nz/FD/3H72HwzJ4uSSNNL3PdiB3aYdy5NU5+8Ne55Y3fT+fAtSij+cy7fopkx9M57ZmcB7e+xcKnwcfSsrf67Dbd4ZD2Wemy8KsbZGsyyjzd2kBpQ6raMPEcPPYynvrwrzDsX4uxKdvPvooPnAJTfHCPVwTSRzPIF2iXwu6wkUsv77jc4LGHfoPbXv999JZOgNY8+J6fwdVI7hqKyTbWgNIyDFPubDK85sWyDiXYzU10JZ0F0eomaMP5+2/mvQ9pJgsrnP3Nd7K783KMS1g2J6jSy2OMKu+/tMoJbSTf473/Q6XU+fDwAjBBujNfDDwHbITnWoifOQWOAt3wuhi4CSiBR8Jr7wKeAkLnOz3gOuDBuUs4Fj7zcSSdcC0wBD4enr8T+MG96r1TStlwbTtzDy8By8AzwG3AZ4A8PH5tePzC3L9PAueR+7oWuX8L3IIQ8T0KFOE5j6xZLbcj670BnAmPnfDev+AVoXqvAL+K3OMJru6VRq7ulc+XP5Vr4r3/kj/A08Ab5/59HNnkHwj/vgX43XDRa8D7gLvDc8vAe8KCfAT4CeDDc5/1/eFCN4G3AW8ATl3y948AHwB2w81/X7jxKDz/AUSpX/Zevho/l65PeOzt9X0C/xhYD1/yTwMfrK83vO4jwL8EtsL9vWnucz4AvAO4F1EWvwMsX/K3fiysx/V7tQZX98rVvfLf05pc1tO8Kl89UUq9HdkAr/kiz38A+A/+S3hGSqnvBr73i33GVfn/D7m6Vz5f9mpN9kHt+ap8uaKUagM/CPzCXl/LVdnfcnWvfL58uWtyVWn+KRWl1JuRMPcc8Ct7fDlXZR/L1b3y+fL/ZE2uhudX5apclatyBXLV07wqV+WqXJUrkKtK86pclatyVa5Arqi5PWp3/C03lg1gTy2XBvgK2HYtNooW1mm8V9RZgBop7YqyAl4F2KzAuzMH6ltsr1NNR3sGOxCnHZ+lC4K6Xt+U0aH5VjW855f+bqRejy90B2r2u0F7n8PnVF4g0lrDKYm2eC/oT6tPFdjx3q1JlHW8ObiASRxsCQp3vWlcmPbxc/fWSL0Wlz7+heRLrFtDahd+VPgZrZ+64PewJzFOOz7LFhqEfpSSSzQ0B6Nu5L9on1yMLvj5azP//CXP1dw49ZurDvQ6k/DnPRtPT6n2eK9k7cVwfsKD9QBAjQhVwyZ+ofX4Qus0/zmXvF7osi/mIqta0O+NEfwUz/lncuzoi6/JFSnNeLDIr7/78wczHQobrqzGc/yl9VfxhydvYWe3hasU3gVMTSVX7p26+BtWHqUDNJb2zeuav1FqfG5QE0O8Ixwo8TY8/ms/fSW38BWXtL3An7nzB4m2Jqi8gshQLrfJh7HMUbdkxM3GagYoLBTeQmFgwmPGN6g39Zde01u42ONaDlUpdC4wYtmasA7uHtf8b3/ll3l9tkqJJ1WaQ6/o7uGKQNpb5LW//C1895GP8pM//R0sPTjGtiJsqpksR8K0WfP6qNl0R/PfAeqrvv+L+FeRf9fvcTG41Ak1LaCswow00VgRjwQeTBeCM3nvO//Wns4FpZ1FXn7PDxJvTIVQLxEaj6IfUWVCQWzj2X5B04BxzOOtCi8Sszix5o4y4CMh5HOJb+Dn0vOabF32y9o3TPnoa38OBwx0wvDl7T1Zi1rSziL3vOZHiMYWM6lwqaFqGyHTS4StwIWz4+IZSSMIo2RDQBj5i5WmF5prlzlIHBjRKd4p9FZE+4wmXfeYHNbuhA99+0+SKU2qIpZe2fmS13zFyO21GOWxX2Le6ELRJS8jbG7AqpkimL+xoEjRXqyu9vLffvaYutSKBIIlOSxwWY/khRDvBXo/MrgkwqbCjGeTGRigjJcqfCBVA/AVqAi8FSVy6b3UikE58InCRx4beapSUVSKaCJz2GfLAWSrL+gtPx85XS4QjwSF3qaasmdoQKCcvwi3UHASg3KoQNVKU8+8DnkhYnlr79t7QOOdx8cXhy9NVDKHmrPX4gM3Flr4y51Rzb27qMZvCPQnCEV5QzZXk/OlNJ77PAGfNwghWRyikJYPRGueaCr7pRrNIHzsPikC19TfXiucUZRtLbiYabhvhaxJKb8vOidOoSKP86rBaK3XxVuF8hpnFT4JCPnG4bqWfEERjWWcVXkZH3q+8mUrzekXALs1eDSeLZfy9M4i+TQOwB3hBfM3a7z8XOJR4oNi8Qpl3GyvOxXCc7HEVcuDm3HD7J0ofKzxNWlYJOgrrgZGrUNER8OPIzxK8rhGlse44F3N0V6o+v8UqEJBFDyJ2GMzhUsgmnhOFYuAfJbZF1ZEZOyEBdKlpvGamu/Lf74DWa9Tswa11+1m72sAmxUCjV0DfdSKsTFSNGR1wnT6Atzw8xWlcJEOyF96ZixqZ8nN1iG8XIyCFiVichoO80tDUq/CfVfzr/F4JfQXZsvggHgf7ZMaXFgZYbV1UTCgAWAYaPjbtaUhiKtxL51Ss+gUJCILoMyukujDKvDK4YN7XrU9RU+RWoi3FE9WXe5KJhh1+XX58j3N8C0Jso8iVZZEOQqv2XRtCmtCiM3F5SYlmkInFmNcyHcKUrUP9AXYoAy1EjBfq/ClRlklG6oSGtJ4zEUo6Hslgh6tml0+j5o9f9idntsIfi4shUaJuAhs7BtrWWMgyn3Oea4hJ2Ny2G0oK/ePOK+E+iNSOCMEafPIRfPenygKiSzcfJg+nwPWISwN3mRDg1x7W7WCCNIYni+AYL6nUgdXlcO7iy1+Q11dv24uX1crTPnHJd6lDks7t9e0VfiG+VSMtC5Bl2rfVX/rKKtWnkCz95v/rn/X33lthMNZUlbCcW/AZZ6qvkklj+GQiFfJ79ooeaWIpnCyXOKu5NTzut4rVpqXhuUGj1HyM/IRU284Ww2YlpFY/5rHd97SO8ktOK2CN+XRBrzyeF/nPj2qZhh0Sm60UJhc8pnJNqQBKWevpTmUwUqpyqErjZpDoa4LIC6moSioFUON1NTwuQTKVpgpjc9TsI1S8JjLkZrsgViv+djWdcRjN8NVvSjEZk45zuXv5n5f6gyJh+0D5bG6KPz2tfb0c3QPdhau7QdaB5i7jsqhJxUqMzPjeEmBo87vijJhLiUxpzQj4ZQCGuqUJvU7b7zD3qv6jkwZSu+el1f1gogSIj1duiZt00Rmzc3ILxcIBue/0zr6qL11F4dcJgSqHSRS9V4UZ9gb2tbRnxJW1+fpfV+50sRjEWIzF37PK1KDZ9O2qYKnqXQo+riQ1wyv81ZhY42OLUqLkowzSxQJPYJ1mqrS2MoI347ywiOjVFMAsLHkQPZWBDNU2RA/1IrTzRRezWNSF4Gagg8zj0sBvs7boLDhQR8Lz7lvhd3vwJdz/OFGNTS1+0Z1etiaZjx5eplrdpxwVBf+Yu+oXifvGy/SzyvKucp3/ZiZKnRZ575D+JV4WdfI42OHmpoZLmfIfTgjkfx+EOHzcahJgWunDTQczO5/VghTFxvLIBfVT61gjNahuot8cz68kZymmcy8fB85Sr9vdgrAjJc9RE91t4NXc+k3Pfe6S/dJuLe6ZqAcuMqEvRH0RuIglmKzz+XDdCnrZ66QwPXLCs9rJann3EejPAaLwZO7ePbMXLvQxcl4BRac0igjsWs1iUCBji1xWmGMk3wO4FJZwEqBVxLuVZlqPLK9FF0EIjnrhXfZJRd7UsE6Nl/2XJ5zPlytjaIGUAqb+JmhqRREHt2uJJURyW7yCtqmECW7jyQ2lsMrW3i1JFXROBHKYqtwBANSJ201F3tH895h7V3VBTGFUPUmHh8HpRlLflwlTpYqxOnaSm4rHnFZ3pcXSmqWVp/FkgufK/DUCsHFkn9s0g1qLg3l+TxvUpdicB1AFKrMbSfKwnh8oWZFpsQx8k72ma/4PHd+D8QUfhYVwCwtA2JQ45mzURuH5v5DC16dwlFOHDK8LJJVQCRK06TilFVxhCs03hhQEI08O7b1vK/3ilWOhsa7LOZMYKYkxZpj2bEZZRlJm1Chm+q5qr3MEI+akcGMI2kP2ZWKYdVSlF0oFh3FYkGSlWjl8VHYbEAVe2xHYcb686zwnohW4gHHGh+LQq8rogC69E3yXryBkL+sEcoVEjKouVzfBFQl66Ut4A3FULF7I+heSblrsGsKrzzxfkjsXiKlNbzy4NN8Ml0W5H6NrJESD8rV6Ye57682IhcVwsJr5pWIqiCqlKB0etOsadnz2J7FdSvK2GATTdVWFFNon2FfiE016LTJ37lEByWpGpZNCH2EdmY4GuNaO4lz3pauC2GAKRQ6B+WkU2F81OFST9UWjzxKLR+bHqGjc45EW/tAZYKZWMw0MNR6MJmmpNYVCGfP3DqoKjTXBCaIxuDUBUItUUk0ATYVutJARNUSWnCzMsV3K4qBtKYp7VmJttHhf5erpV+x0owVlJ6mL9OhLuLatig+u32I8ukuyVjyS1Xmse1ZSGAKudjOKeidrEjXpigPxULK7pFYYOy3FVWZUrRjCbsyC9qjEot3Cp9C1VZNC8teitfi+dlWTNmPKHqGKpMNEI8g2XXEu5Zop0SXFptF+FhT9CPygaHK5LDoyqOmEI896bYlWS9Q1uGNkNNNl6RZbXStpupbpssRJlccjjdpq5gSS6piBLt3b2U0TXBek/cMWWJEQdTpCS0hkZn6plFf0hg03nnT2ByUSDQFJmKAkh1PsusaYjIUlB3DZEkxXYrIlxyu5USBtiQfnq7vB/UgBqNMIqq2boymjYOiLIVwLduyRLsWtAo9iqJUq1RhEzUXuQjNsbZgppCMHNHIYnInPOFtg7IROzdbyqGlvBCRpCVrtsvIJcSqAj/a4xWRNWkirVjus+7RVQ7SLem11aEjYD7NU7ali8RBk/IyOZgJZBuOdMtipg6XaKaLhvGOZjtNUO2KYtESjSJ0oejrKal6furwipSmVzDUEZuuYuoUYx9RBvMfK0usHI8VB3jgkWs5cq8jW5MkxfhQzNZ1hnzZgYJ4V9M+4+mdqkg3cvS0xHZSiv+7vTP5tSzLzvpv7b1Pc/vXRURGZmRWl+m+qtyAMZTAAiMhgcQAISEGiDEz/geLfwAxYAIDixnI8sCiJIQxwnILxpahbJfLlV1VZkZG+7p772l2w2Dtc+6NqKIiw6rK9xBvSaGX+d6NF/fsu/faa63vW99aWra3hX6ph8F2YLwhOkOIgky8pipCBpj2eCtXZkKoHRIT/dyxPXJjFOW2icnjoOMbnCLs5kmDOdXvFfOa4taMzZ2Cdql/p7xMTB71FE8aTOeJpcPPS9oDh6+F+nECLJdv9TSveuyFxUrkq5sTvlA85Ivl9XAO23XFk25KtxC6g4J+przV5NQxTB5Hqqceu/UKiMRIcga/qOhWjm5h8BPBF7rvXJsoLhPVaaB63GDPtpAS/mROtyohJdxGqFNComF7B9IkkKqUQYJrUMcBbBfxU6uzuPeAPRJUFxG3jbhtwDQBe9EifS70OUuYlTS3JzSHeuaS1QzGdon5+w3F4zXSdMTVDL+oME5YfivQHViaVzzdCmJv+ZX7P8mPrz7ieHl5JWvwvCUnhEzybw6VoylJx+bYS6jOI24TsW3U/dIHYmHplwXdytGuhG6Ro9QOyvNE/TRQP2wxfSTUju7A4SvBNonZO471Z6A62dJsZ5RnhiYV/NrW8oXiKS9yiy+9k5oUaBO0ydInSzeU2BPUEnivO4EgbE8Mi3c77MMzqo8qbHfEg7nBz+NIG9Low2BDwj2+ZBYitpnQrgztgaFbKR/TAKkxRBxUGjqPAMFV+wiBWBrYDLU2fW8mzzuRmEYCc5g67LzCXDQKo/UBt+6xnQOEfiZUpwm79UgfoO0QK5guUFzqgzZHyi+RzpBcYvUN+MWv/gOKc0P55af8xl/6t1z9okBqLO9faMtgP7P4SQYKG10X2yjh3XQG0/bIxQa8x8wm2M0c09dsTxyhysX6Fqrz7DAvW7CGOC3xU4efGXxt8BPwMxkpWimIXq4DQf46WAY49jm5gl4kbqvRs68tTCxm5ijOO+y6QzYNbttSTnYXisQcmT7xuMsOjCEcLwizAj9xhFoBuPoxtCdC9RT43Tnvzuf86Rfu8pWvfOOqVwPQ9Qi1oV3pcyUDBKG8SBTbSCiFbu6wXaI6N5RPO8zWUwZlz0Rb0C0kD95LVOeR8kwvm35Z0hw52oM85XSqWUtxbjG3FSgqz+Cf/bd/gmwsh595isRf+p7v96WcpiQ4i4kmWQqJFLKDnQyJmYm8Wd3HzHuqU71G42pGMob6UY/4ijQJdAeCawz1mWDbgDw+JZ5fYJ/OmPS3cduaxfuR5ISLexXtodDPhX4p9AcoEpZAXjRr89OwBO5S0+EhdSLo7V9eBOw2UD3dYtZb6HqIEawFa5SbGGuSEfxMaA8Tk4eCO2uQs0vSeoM8hrKuKMuCNJ9S3Zlz+mbJtjHEOlKsE4t3DItvBx64A/7kSyWkq0/PzdrywXvHHPfgtpFuljOSJuHaONZ9jbfYaYkJEWk7xAdM02ObEtOn3EGTf2cb1YFsW5I1iDG4rW5h21okGboDwc+UeWAaQyoVPZVr0v0ydDfFUmvatku4TaK8iJhuoMnkVLU0hFmB9FER8BCQLmbNAXWaZUxUT1pk3UBZaFS11BLXAKAVFwnpdR3L08Tq7cBDW7H+q9eD32t8IhYaNMQSiPli7dJ42fkJSMxjwAuDbBLSaS1UYkFy0M+TMiw6ZbQMNfSYyx+TRxGfx0NLD763iNfszX+jZPIo8dQfvZCG8tLp+b29udomFxEikSZ5YjK84s5IUTj6nY9Imy3p1hH+sNLazTRRLjrCJNB2Nf4D0YhKBFnMYTmnP6ppDx221daqyWNPdS5sblutd0wzYm6vxyF4hhKQI18ToLwIFKct9sklnF2SYn7OqiJNawZ6Uios/QB+HQe6lSOJICEgqwWEqI4Wcgras/jAsLlb0BwF+lnBwPEznfCHzRtI+uaVrMS4DBFO/kDwtWPyJO5oIQxob8JtPO6i088/JBU5KRyybZHWY0IcC/yh0nqnW3tk2+rl07ZIStj3elxVwsGS8JO3n0FVEUhedq2518DSAPhkGppEvWCLtad4okIaqdRjGZ1BUsprFKDrkZSIDrqDXLbYCOaygUdPkYMldlLgNnYElJIRzES0K6bagWl+ksbS2lWb+IhYM9azTRioQBp9l08aYmlpT0qt7U50fYqHa5iVSj8soT+MmGA14swln1hOcI2Wx/qZsHyvJ0wMyTnONwVSJvx0Bzp9Envp9FyBhufN4rB4CXzWdfzTL/8Ov/nqz2IvJrSvzNnccpgA4ahnWvW0QD+NNMeWsx9Z4j47x1eGbqm1CUm6eP1CQaQBKAj1TpjhGmSg2TJqHtK46MPtlpwh1RVpMQUDYVJoQdaA9JFUGPqZy5tZo6N2BZvPLikP6hxRWMLEECpDuzD0C00xwkTXoTtQvlm7MvSLSG2uPsoEmD7w2DYQSkM/t4RSEWHjE+VpT/HhU+KjJ4hzyHRCmlRQOI3AUyI6QzcX+oWi4qYX/KLArmtkUpHsUi+hdUNcTTl/c8HF6wY/VQdpOr1cDQlp7DOqNldpWpKSrHS028RJhFQ6pO0xm47kDCY7NQkBrCUez+hWJf1Mo+lYJPpTQ5xViPdI1xMrh59aQqVRlsktpMml8d+OTgh3Orrkrs1looTzlAOGnKmdecrHGwgJCZHZux2kRHIG6QN+NaFfFPhJFsMpIn0u1aTKghfcRYc7bZkWhu6oZnO7UMGYAuV/TwKhskpnnAjyCZplvu/V8alY/vnx7/Pv/v7Ps/zmZOSRnX9OmCxaQlDCeioT21uJZA3lqeCahOmgWKvn9xPoZ0ohkTogTjmb4gdYFRJyPT70pAjgSKlxsDmxNIdT3HZCdeopzntsG/TnhSVMHH5i6Rbaa0vSdDLUiebIIrGgWGutKrmKfqoR1/YWtK/2mIlHvCEJ2G2inwv158+p5Xo4zWdaGtOQlibsNmIvGk2v75yocEXhiLXT780qYmEJtSFUQj9PhFmkW1m2xw7iDNtHJccL+NfmXN51bF6R8SKRTD9MmfQai3Rtapoj6R5UyKSE7ZGhOSixbcnkiae+v8FschTuA6ku6I9n+JmjW6pDJPeid0u4+NyMZfcanG8oPniCe1Lhj2Zc3qt5/OOGWCbizBPWqvzUHBgOjy/4qDu40rUYLFnJoh3kbi8NlPqlBZkiIWE3PakQYmWJ1iAx0a2cCuNUuQus1Wdd3zW4tqY4V8A1VIYwMWyPLNtbwvaVSFz1FJXHd5YkaL1XICzCCwOyl3aaIUVs7m8Me50FbfL0BGKuHcln1sRvzamfRA2N5wkTdqQ8qQPd3UiYOkJpmDzUorbJgN4AHOw7xWfKUumaOEx086fCEO3Av4RUCMGoo/N1gTtwFBtdr36qEjK78gAAHHFJREFUBe9Qooc78zZNJ8QK1neFaB2zB+BEu56G/lzTAb0CaGLTSLna3E38zXtv012TlCtUZiRkm16R0CTgp4btvQUS5hTn/UipSlbA6nOFyuAnuz7+JIl+GWkODcXGwsCSMUJ7YGmPZVw/jKZ2pievr4zv4VrYHig1to+W+qNkksoJHtTYymFaD6aiW5V0B06l0ooBJdboyk8Tm1uW6mxOaS2m86TCZv4nmr3cDkgViKWjnwmnX/T89ZP71yY9T1ae6YyKhdCuoDlwuMZSP43YicWEpJeFFfq5o12ZnVxcRPvPXaI5SUhwTB8YqjPdhEk0I7NdLhEVAesiMRpiBeVFoj0Qbt075ePvt9P0BHx6lvzZJM8mBoq8QR8GlXTrFijBeALhlVYdSjRK1k8gRSTdblnPCtpjLcpqH2oiLDxSxdyDrinX0IeanukwuvoIIlqjCDqM6jxjI89U65UgJGN2jl6ygEKXuWd9vgdsoj2EUAvtYQEUu66iEkKdsGtLjEKqIn6aaA+F8ofPOC7WXMRP3tnwg7IkGj1NY8K0aazdhUrY3DZINBRrrem6tdeaVlTUuFs5QrXj6plOsFtVAtregVg4TK8UL0kZfHuuL38gQFcbRVMB7DVxmgOJfdAbGAU58l5Zl5bNLYOEEtvqz/1EHYnkFBbJBO9ef759JQElq0Iozj2xUBm+bq7cWFGJH/1cXkl85ct/xk8v3+dyaFq/apMhU8uXpIPgBCJ4ETaFQYIZeZp+At1Kz//zYizJ6QUbaqE7MEwe5PLVgZ7DUCftImstbVJie3uo5Z/LLwT+1ivv8L9f8HZf2mluoqZ/JjvImBKBNDrMCPzq5RcJwdC91emDFZGy7hFRTGMQJAZF98rDBjlKxGCIuYfK5NelYLQndXCSws7xfEdr5tWYn2pXivEJ8UIqGYm2z4vqDs8wlC0GG+tOLhEFujrRnqTsALSQP0RubgvRG0KnG217N/ALr72LkUS8Fi1SsH5VQCzzD/0OlLC7ww8QSodttd4YKqGf6VfIhydTh0x+zmQTzb7uej40z6i077XViYdYKgDitp/m0//fbV8bVGIikdcjaxOEaudY9830uT4pu24qUGcbKs00/LzANsVYIvJT3VPSC7EzYBLta57KeN7e3iImcx1ozviJUU5mO1wQaJBU5WcYlMFkB9Yko0i5bff2gAAmt9daaOpAcye/PgPHkn2GNBZaS7QqFrS9lajvrFX85gVr8tJOsx8k4WLkIgm1JAZoyIoQUuIy1Cq8MY2YrHLkXFS1IjJ/LgrJG0JGhl3hVRMvCDGhzjK/bpB1kj1nu9/DfaWWQR/j99RZPBodWxn7pWWoZeVHMB3Uj5XH2S1ld5gMlKeKJHarmJ2A7BRrkv6/6xlVflKpi7ANBU9kdi3WpD0J9AtDeW53oiSDspOFfi472TJ4RtF+GNGwLyqbzK6MMbTPjb3Ked/YjlEyDwP9cqeYdE3ukh0306Onbxh9wa4HfSjxDD3nplOnb3PU3BXDJaK9926jqfr2tm62Ya+YTgVO3CWEXhfP1oFvnp8AcHt6cQUr8J3ma8F2u4ti5NnmZ9Q/adclFLLEXcgBxNBplnvtpTMUpwY/T8RpjjSGcl4CsiaB/luCeOiPAj9x+2OOixd3SL00T3Nf7XkTHRcIR0b5mjWJADztp6qRGY2qjhh1mCkJ0Rtorcq8bXNtdB7pZkZFh1PW1fRmlHSSKEgvu15TnkvHrtii00hAD7u2tYUomgaIYIO+ZmwRTDB9oF0LzZG2GJLAboUQdSMU5wnTmfHW3Z8LBOzUrDOlxidDwBCvQbkCNMKJq5aLz9RMPk671NLmzasiBoRhBIhVR2K7QfdRI42BTpVk129svPLsJDEqJg2KNaPOZnrOYV6PZXlGjZ8BcxBIAwUt7b13cpPEBqYPA7ZPdHOjRG6z20uTj5Wb2Jyoo9iXTBMPJurZiRVEUZXzkIQuXI8uqWhFkez8PEMGNkrgCeNlEJOm0uW5nhGAmNdDsiaveGHyUDAfajdiqNKYqehFJDuwMK9VsWr5hZM/5Wfqd/nF7zsQxI77uTA998OUb/QzfqR8Cmhfuk8W54Km21FI3uG7HH1FAacKyjEk3KVgH1l8I8Q6jVGDqlfv6haSb5ZRezAfiOtwFpIRJMXsNHNtJiSizxQGo2nnED2ZoKBXc2TpFtraVT+GdCZ0S6E5Ujmv+lEa++tNl4U7ctoaJnoIwiQyOdryj09+h5lpeRiW12JRJOpB6GdQVrkAn58bICbNKGSvzEtSB1GeK0e3nw+83IRpNWoa6lqjgEVGXAcVo+c1R1V/cedIrtyyKIUJaECxt5+13RaSFwZmndsmqjPtu+7mSsMCRmX2WCW2txMnf5RnRt0zDJrUY692gn6m3MyqCBQ2YKLBXBN15ugyNzNzVmPIHNacoQ2XYTKazdoWqifqANuD3fkoTw2+EfwycPkZOPojYfmOZnKhyqWfIY0XVEUsg2UxGr764Cf4w8kbSPq17/l+Xz49T4wKJAAHpuWb3W1q0/OavaRJlktf0mxLYmuRjcW0uRDt8nCjSonLsYoEb3HbhFsLabtTNVeR0BxdDp/tkJK4lDUYr8lhkF3XQTIKOpheaS4DqEHKqtJZ/zNUQnkZWb7TYfpAtyqJpRmlwS5ftXRLyYot2dmk3SEIlarZpEJYThv+5bf/NjEJB+UWiV+9ytVQEzg+vOThnYLJQ6eUsn02VG57GaKJJPqc1dOI7aGfyFj/HNJM43lmL7D3d8dUfj8Vl72v12GfZBveswkpo7nqIQdBDiSRMspbXibcRoGNUOa5UE2inwquEZ1HNU10M2H+kcd2ie2xIQ7daaDrNAFcoi57YhIKGyjtNVHHMoz8TPFgY4IeQpBd1DkwMXzC5fMQSmH2kfqSfiCoW4hOh7J1S5h9HCkv4y5Cd4xCxlKAr1J2xonH2ylteDF39S9Q03x29xUSmZmO/3T+Rf7h6n9gJPHFxQf8xvqHkd5g14b5t4XiQtOPYh0pz7Vn9OzzJRdv5PanVrCNIC2jc/iulkCMkOILnuxTtOiURlSdBUyhzs02g76ZHVVsAI06S+iMUJ0n3EWLOd9gz0v6WzOSEdqDguYY+kWkPBtCMU0pbEqjBJZthBhh3SpnpbRBgbTrYAlq57GLniROyxY50k5GoFVnkTyYVrC9thM+U8vMTtFtZOcYh+XYi9JMrvU+M9VyqIdlUd7rZCYk5RY2goSICapPoER03dfjGqA0LbeNHH59i2k9flHSz52S5JN2u7QLQ7cwlOeBZIRunnU1C72YbKPpaV32WiZLgo/XY2GiA2rGlFlBLwWGQp50YHpG1gFoHbS6iEzuNyCCn1idt5RBx80ty/quDlarnkaq84jthObAQDFEroLLIG1V98zLjsq+uAvi+1LUeL14zG+FN/kv6x/l52d/ysI0482eioSvhdU3PbZTlRIStCcVoRDCNBIPPDFBuHC4tWA3zwE+sEvH4u7PdQgzk8D6FcPy/Uj9oKH/7PQZgq5tIjbLew26mUNr4ObYEt0Ct57hmoCfWi5ec2xvCX4eFTBZaJ92caHE5GEeTHSwfd1jlx3Lsqd2HpFEuCYeQrxw0VSkBP1cHZ/LqbnJcmaxHyZQplyrBNeojF63dLQH9pm5N/sRpTrTrDsp7EYhD47T7jIRu5WdjNwVW3EZ1MHfMuOlAIxq5QyCukLu3iH/MYgvqJ5G3EWHaQJ+5oiVkrbXd4VuY5ne13W2/V6kCXSHiepoi801TaLB78/DvUIzXqljbq8bR+lUeoZCKc/MlPITdZrJGqCmOPfYXi+f7UnB5o5le0s5rH6ml079MGF7/aPTQBl9i2uEk/kaQ6K2L24O+QuQ22Ucc7Fvf2XxTX7pw7/Gym4oJGAmniiOUCcuZwa3KVi90xOqkvM3HJu7og5hFrTWaRJx1dMX2hmiG31wjrt6HgYdfWt3t85VWyyBlAi1SlvVT/UkmBChgcIIJuTUa6o0GATCRGgwuEoFTHwt9Av9mbs0Wapf/41nEGjJ6cXEM5u2FDnNCtGMoy+u2mIVOZhuCUm4eL2guHTYHC3YVsnukgGykGlBSk0y9DPD+q6hPUqZbrXnVJIqHpXn2kEWC+W07ve2D1vTdIqoF+dpdNhXbdWjhjhxSHTfKSKSx8kiexSbfGn4SkhHFqgoT1VnNRaGzYmjPVShi15ge2KozvT3DlshWuhv9byy2FDYMPKdrwto2E8Ft03MPvZsbrlRpFsvOhnXJdo8ujs3esQCmpXB1wWmVwfbrgzdkrHdOlloDxOhEMpzFUgZhhxKBP+Zhsm0Y1p0xCSf6Py8tNP8re3nsXsFZEOkSSUP+iUfnK3415d/g5++/S2KytO2Nnv0xPYO+LlyyPpl0j7yUsOH1Oe4O+pEuVClrM6cUeWByDu0xdkMNMR0LdBz22o6UF7ocoZSwIjWaWLCdhHjBVvISNINVY6aom6Cbq4bQrxGUKB1y5SRebtlN0ROFAAgf8hWEpK/FtdlroNAaQIHkwb7WsK/fQQZFbbkA537rwfF8lRBeyh0BxkQjHvOcj8iy9GHr3Wo2HDIBhrSMFTN5Q6Q67IkABIioVBt0WK927wSEyZJdqRJJQF9GlXuk1EgNEwM27oeSf39TDvLyvNcD+wGesUOQAkVuImndp7SBLpocSZ+oqjqB21JYP16ZPG2wTZxZESQhhp+wuYsxNe6DrbV+vjw2n4mCjCzU38yfaZQwEjZSzafzaF8Y8AYPTttcBhJn6hk8XJOM8E3m9uEzNy2RAKGNjou+hqRxKP3D/ia8yymLe2TyYiC+1kklho1hJJx6BGAtEMLTX5AnxFGnxHAocyQi//GaypGvAb1fYGLNz3FQYufzpjdV9XsaAUxA9KZMCkqmNFFXGsIpclpl7CfJQ1yWDELXNAzEniBESgKZcLVPc5GrInjDXltivvZkRtJFC5w+uMtfl4x/WjvUO85ORMS7UKUFVDsnODzXNwkmp4x3fv+nqMcBmVJpn4R2bEurtoEHv3kku1tvQzrp7nckoVMRkeRdEChHnKjgUXuihvFPvKFO3kSKTZCe6BOuDrX3zOIXkuun752csqby0dMbJebIITDYsOvXvkBInNsE35mldw+6DiMQJZ+eFp2SCNgNuwbiQqO6T5QEBaBdmlpDzSLGXmZe0ChnyXKqsd7OwYbP5BIc98G5wlQWc/t+SUXF0d88PYJh/fOGEQoAIoLQ3mu1ADbJUJhVcFmmbJ0f0ZT861iehm5j0M9S2DPue4W4qpNJoHbhxd88GbF7KPdmgxFeNXNFEwbMC2Y3iJTvRWLdVT9vwwGxFLwE8P2xOQ2y4y6u6wlaHJKOgvM6h5rIs7sR/7XwTswdkTFJBxNNkxf63mvu8XkvsujU/XnQ+o9ADehTDuHOZD591Lukeiencb+CIRxumCfMxU/INTXg2WRBJ7+RKK8d4l/Zz6KmIwOP4Ob4lM+/FFZF8NYi0FGDzLfValZ0vakqiDWjlhZukVBP5NxfcIk8bnlYz43eURteoxELkPN3eL0GkQdSgk7e0voF47p/UhzlNs/h89/eOQmZuFlfdPFhcc2Ptc2ITkhWgWD7DZQ39+AMWzvTNjcsvSLnUi4RG2prEwihF2w4T6BRu9LO81zP2GSZ14OSK2Plm0oqK0nVonlNxznqymYhO2E6YfC8dda3LrXlHWvlhMLy/Z2SXNoaI5lFC8YuZhDXSdn4mN0EoYQ/GWf4PtvpojKfZv1bO5MNNrMvbMJ8mWgpFzbeIrHayoRCBHZNDstyaYj1SUUjlXWVOwPas4/W9EcZcfQgRhwBx2TskeGwj56S/prAgThIqUNnDYWKDGSkEnAtg63jWMUYbucas8EP9mLQnOGMjrXuBct7IFBDOTn7HQBUiaNS0wUG72UBgGQKzWB4rU1rx6e8d77MxXsSLvIZx8xt43HPr5UweXLS1KImOUCyoJUFqS6IExLUmmw54I9vUS6CuYVMnO7Gm/QiOqNyRMWtgHgItQ86BZchBrSu5/+OuybwO0ffcjfe+1r/PK7X6b9j0eZrseO2L5n1aMt5myD+EBcTgnTzCQozDiZNolgNx57/ykYQ+UM7cGE1mXKkWj2EWeB5aRhawt8xgM+SdDx0h1Bf/D4NRZly1GlhbfhkPpo2PqCWEeqp4L5zQnrNxKHX4Pj33uAbBpS00JUQVWZzwmvHNKd1JiQmN0PTB9qbbA9FPxMH+4Z6tHgMP3e16vm5wrcu/WUr9x6m0XZ8ueTEy7++5LjP45jp8/zH3wqnWoEAvFwrr+mD6RpTX9rTndQ7hyAES1yh13Kvr2duHfrKSEaJq7nuF5TWU9Iwty95BDnH5BNlw1/59bXeHCwpM/1h3vzU/7n13+M+jS3nYak/MMqp+RRL9QdzzKNEnBm6NXfA4TGVtq9ixUyUHQRKS90Hv2Dn6koT6/+dk3kduK0G462zyHd1XkhVpb+c0d5GuXwes3EklEVqVCqGpivJ/jZCtvA/EOdpTNE4/1cKF675MxP6KPlsFiPmMRHzfJagKmVDZy4C/7yK+/z628ccfB1GDrB9s93qA3NrQmVEdxHT+Hr7+BmU4qi0GkIIuAsyel/p+WMhz93Qncg4xA/k4VxwgRmJxt+7PBjHjZz3lo8YGo7VnbLr7wg+n55wY625OHpnMfzGcu6ecY7t8FRHDSEasbiQ4/tLcYn1m8dEeqhgKup0uVrjvU9UdAnaMhdnu7qUgM1Jymg+mxaPnzdT9uuyBJgTeROcc6XVjB1Hb/36pzVOwbbxV33SmKszaTCEhZORYqtEAszIoKQQRGrtArTg+1VZ7SplbDrfuiCnz15jyfdjJlruV1cUJueTSxZ2e214CVm/RaaWFCbnpXd0kZHd5QbG5zguoivdJQJaBStEnGwf5r3mQMSduDf/sWpat9axyzWkfrjLckaHv7UjPRzZ3S/vfp0F+C7mADGRI7rNe/OVHW/OtPISAuWKQu3CH3tnpmJrkrvkkn/ud8618OVvZGjylrVtGIGkNb3Ej/16ofEJPTJ8rSfUZjA0jW8Xj/hP1yD9NyaSCGBg2KLv9eyOauZfrybsTVKxlnojy3t4YzquKY8PyGWBtMG7LojTgr8tKBfWiTAxT3Vz9SyjWr2hqye1U4SP3L8mC/Nv82fmLsYScxzJP4ie/kRvi4wqXvOLiZ03nI43WJzHSAmYTFrCNUct4nUT4Rubrh81dIeydjeNdSfyjMgZtXlrMoy1LcGMuvA4wPGwmYaalnXINIUoPWOJjmtF5FIZaSbW+qnu6l6po8Yr292qFFJyHWUkL/vdG56P3d5WqEQC312kxkE7TJxNNuysI3yN3MoHhAedAseyRzS1z/9hXjOYhQe9EveWR/jJHLaTbh/sQCgXai6Trs0+Km+fogig9t93vtI+JCKm0EPcSCCp73aZZuwbUR8IhWWpz804fzNyGuzDU/l6p0maLseQDHviGWR55+nsfd+JP/D6AgBiiZi+ki9F2HrID8V4W2X2j4ZSvQFSYfM8fqG1ydPqYwfAaBLX9Eny2qgaVwTW9ktr94+5aNHtykujI68YcA1dilbtML2lmN9V+lJtoVkppqxZPpat0xgoDhnl4nAiAn0d3remj8A4NKXzGxLTIb+E0QcL6+nGQzWRA6WG04vJhhJzKpO6/ZJKF3gyZ2E+V+R8iJD/Ajzb8fcfzw4kUS7srQrpeeErGASh6Z9P9S7IA7OIyYk7SKy64KKhiRchpomFpz3NYje+OP77OMo5Z/yQLFUZHJzSuBFBWe9jsBQaTDtggn1LhQYLpJ1W/LHF3eprGdVbJV2lBxz2/L25uRapFwiiTfKx0xXHSEZ3tmeMHUdb78Fm4fHFJeZKjTQSZzSh8IkqZ6HZ8fRzGmVkpPz5MY25n2SEJ9wjQ4dCxNHe+holyXtofI0T7f1joFxxea9YeNLitJ/R3rO8+ryw2EXiCJEZ/PzKpE7DZE3uVZX7Mob0WoZ5+7xGd/aHrIqGia2o5DANpac9zWP2jmSvvapPv93s01f8HG/4nE/4/OrR3x4fID/sEaeaOaRMpAK+QLdV61JSqnqF3kGUl4v2+74vcGBFNqWGbP83uxwy8Nuzuv1EyoTKCSMWdGL7KUpR9u2xLlAiIbVvGHdKHJTFZ7OW5yNdHd6jaa8UgRCqS1ixUVQRBCIlRk3zDCidXzoTNu0jd6+OuFiyF0ZpbVMJqpetYVoaGKhl4bxlIcNfpZrlXt8s2SFWFpCZXLvvIzPTyrHQxKLXMNyjGIEQ1FcPIRg+Hi74LDaMLE9W+IYRXx++uhaIMUAfbIUEpjbhi/Nv00hnn9z9hW6g4TE3FqLXgx+ruNNMKr/aFuhuMxCJb221BWbiNtmxDjmy7eLiirHRHtc0x7YLLU3EN8TMRrsVde+QQ+4t/TRUpc9m+fGbSVhJzIcc7dUTtFjtSdeLHYUsAilOoI+Cw4Pbah+JnQnnsp5uuC4kIqYhIntKY1nWTR6wV8DS7lhZmJ7jsoNi9WW7UnF9IGW9CQHFxKVqzrQhkxIOYVX+hZ7o5FDJXQr5fKOJJ8MFvbzxNwGTrsp32qOmLmWNjoCZszcvpe9tNNsziqmh1varqBabpjVHeum1JqJt1gbmR1t8dMZbh3yKFLwCKwsvnbjiIZRsUgY28WSe/bfM14Pzn4dy2T5sKtOzQcrbaA2PZe+oouOz5484f2pOs1d+2fK9BFNIWKhowuUc8nY6TBoBoJ++G6zUx0ffhaCIn2lCcxsS2U8ViIhmWuTclkbWdhm5L31QJMKNm1B9UhwG0ZQIwlIr5ckCMWlUJ4lijUU25gjTZ3YaLdeHcswoVP0IupXJaE2mfcq+VKCZBPzumVzHToGBcREZq6DKVyWae8MiI4xTiityOT1KWVHxypyPTPvlWG65Ki/mU2HhKnc2aJoOCy3VNZjSBiJVMYzty2fmzzkl6/BBVvawMpumZqOh92ced1ysYhEa1TtKdeuDSrQPWRhoOugUyszJQsVBe9nu+aHZLSzbMjUwlQnQhgS537Cq/UpIanDnNr2O4Db5+3l0HPAPS5oqoCxiUePFkzmLb63NJcVqTUQheKg5fx1x9HXA8mKDoCfQmOzRFO+4NxWnd8QUcHOIY412ZRVt5vhJs48vD1t0as0iXD2n1/h309e0Q82O4L5g5RVtRXsCZnyMpCOx9Qy1+eG23PoVBh+96CYhAj1I63R+PsL7tcLPrTwh5mWNVgSsN0Vp1wJ5NcP+Re//492IBj6PMUaqtO06wUXxp76sZzh466OCeNF0zkHS7fjbQ6RuduboeQzwRtwa2HyyLD95m0mT65BShJh8ttz/ryeIwkWTzLwY0U7m0r3DNti3Asiu70QILXKTRqEiveZBEOboDwA+7sz/qx+KyPwu7cxnhkDtr/avSIJHv/Xu/yr+d/VM9ELpoPFVgONMLRN5jLVTpBl9//RSZ5aa8bvmR7qJzsmhmIIGoQUl5bu28f8WXnM17Na2u4Ngen+9AXv+fn+1+/1YpGHwHuf+C98OvaZlNKtF7/sB2M3a/Kddk3XBG7W5bvZzZp8p33PNXkpp3ljN3ZjN/b/u10DRt+N3diN3dj/O3bjNG/sxm7sxl7Cbpzmjd3Yjd3YS9iN07yxG7uxG3sJu3GaN3ZjN3ZjL2E3TvPGbuzGbuwl7MZp3tiN3diNvYTdOM0bu7Ebu7GXsBuneWM3dmM39hL2fwBb+dKGpKT4GAAAAABJRU5ErkJggg==\n"
+     },
+     "metadata": {}
+    }
+   ],
    "source": [
-    "#@title Hyperparamètres\n",
-    "classes = [\"Angry\", \"Disgust\", \"Fear\", \"Happy\", \"Sad\", \"Suprise\", \"Neutral\"]\n",
-    "Na = len(classes)\n",
-    "maxNbrImagesForEachClasses = float('inf')\n",
-    "h = 48\n",
-    "l = 48\n",
-    "p = 1\n",
-    "input_shape = (h, l, p)\n",
+    "#@title Visualisation\n",
+    "for X, Y, name in zip([Xf, Xr, Xe, Xa], [Yf, Yr, Ye, Ya], [\"fer2013\", \"ravdess\", \"expW\", \"affwild\"]):\n",
+    "    N=5\n",
+    "    M=5\n",
+    "    print(\"Dataset:\", name)\n",
+    "    print(\"Images:\", X.shape, \"Labels:\", Y.shape)\n",
+    "    plt.figure()\n",
+    "    for i in range(N*M):\n",
+    "        k = rd.randrange(X.shape[0])\n",
+    "        plt.subplot(N, M, i+1)\n",
+    "        plt.xticks([])\n",
+    "        plt.yticks([])\n",
+    "        plt.grid(False)\n",
     "\n",
-    "epochs = 5\n",
-    "batch_size = 128\n",
-    "validation_size = 0.1"
+    "        afficher(X[k])\n",
+    "        plt.title(emotions[int(Y[k])])\n",
+    "    plt.show()"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 3,
    "metadata": {},
    "outputs": [],
-   "source": []
+   "source": [
+    "#@title Hyperparamètres\n",
+    "epochs = 5\n",
+    "batch_size = 128\n",
+    "validation_size = 0.1"
+   ]
   },
   {
    "cell_type": "code",
diff --git a/loadAffwild.py b/loadAffwild.py
deleted file mode 100644
index c50f06902252db18cc8ad998794b83b3d0dd5053..0000000000000000000000000000000000000000
--- a/loadAffwild.py
+++ /dev/null
@@ -1,125 +0,0 @@
-import os
-import cv2
-from utils import *
-import imageProcess as ip
-from config import input_shape
-
-
-def extractDataFromVideo_(filename, videoName, facesList, labelsList, maxNbrImages):
-        # Extract every faces in a specified video and add it to a list of faces as well as labels corresponding.
-        frameRate = 1/15
-        emotions = ["Neutral", "Angry", "Disgust", "Fear", "Happy", "Sad", "Suprise"]
-
-        # Start capture of a video and reading of a label file
-        cap = cv2.VideoCapture(filename)
-        if (cap.isOpened() == False):
-                print("Error opening video")
-
-        file = open("data/affwild/labels/"+videoName[:-4]+'.txt', 'r')
-        file.readline()
-
-        # Read until video is completed
-        k = 0
-        while (cap.isOpened()):
-                # Capture frame-by-frame
-                ret, frame = cap.read()
-                line = file.readline()
-
-                if ret == True:
-                        k += 1
-
-                        if k*frameRate >= 1:  # Read a frame each N frames where N=1/frameRate
-                                k = 0
-
-                                # Load image and labels
-
-                                #Detect faces on the image
-                                newFaces = ip.imageProcess(frame, writeEmotion=False)
-
-                                #If 2 faces were detected, it means an error was made since there is only single-person videos here.
-                                if len(newFaces) == 1:
-                                        facesList += newFaces
-
-                                        emotionNbr = emotionToNumber(emotions[int(line[0])])
-                                        labelsList.append(emotionNbr)
-                                        print("Donnée ajoutée, donnée :", len(facesList))
-                                elif True: print("Erreur pour la donnée : Aucun ou plusieurs visages détectés")
-
-                                # If we overreach the maximum number of images desired, stop
-                                if len(facesList) > maxNbrImages:
-                                        break
-
-                        # Press Q on keyboard to  exit
-                        if cv2.waitKey(1) & 0xFF == ord('q'):
-                                break
-
-                        # Display the resulting frame
-                        if False:
-                                cv2.imshow('AffWild data extraction...', frame)
-
-                # Break the loop
-                else:
-                        break
-
-        # When everything done, release the video capture object
-        cap.release()
-
-        # Closes all the frames
-        cv2.destroyAllWindows()
-
-        #Close file
-        file.close()
-
-        # Return face and label lists with new datas
-        return facesList, labelsList
-
-
-
-
-# LOAD DATA
-
-def loadAffwildData(maxNbrImages=10000000000):
-        print(f"\nCHARGEMENT DE {maxNbrImages} DONNEES DEPUIS AFFWILD...")
-
-        foldername = "data/affwild/videos/"
-        facesList = []
-        labelsList = []
-        k = 1
-        nbrOfVideos = len(os.listdir(foldername))
-
-        # For each video...
-        for videoName in os.listdir(foldername):
-
-                # If we overreach the maximum number of images desired, stop
-                if len(facesList) >= maxNbrImages:
-                        break
-
-                elif videoName+'_left' in os.listdir("data/affwild/labels") or videoName+'_right' in os.listdir("data/affwild/labels"):
-                        print("Vidéo à deux visages, non pris en compte")
-
-                else:
-                        k+=1
-                        print(f"Traitement de {videoName}, video {k}/{nbrOfVideos}")
-                        filename = foldername+videoName
-
-                        # Press Q on keyboard to exit ONE video
-                        if cv2.waitKey(1) & 0xFF == ord('q'):
-                                break
-
-                        #Add datas extracted from the specified video to features and labels
-                        facesList, labelsList = extractDataFromVideo_(
-                                filename, videoName, facesList, labelsList, maxNbrImages)
-
-        # List of colored images N*M*3 faces to array of gray images 48*48*1
-        N = len(facesList)
-        print(f"TRAITEMENT AFFWILD: traitement des {N} visages détectés sur les vidéos de AffWild...")
-
-        for k in range(N):
-                visage = facesList[k]
-                facesList[k] = normAndResize(visage, input_shape)
-        X = np.array(facesList)
-
-        Y = np.array(labelsList)
-
-        print(N, "données chargées depuis AffWild.")
-        return X, Y
diff --git a/loadAffwildDS.py b/loadAffwildDS.py
new file mode 100644
index 0000000000000000000000000000000000000000..40a5e89a43497f426222c42e4c16b9cc5f3cd329
--- /dev/null
+++ b/loadAffwildDS.py
@@ -0,0 +1,126 @@
+import os
+import cv2
+from utils import *
+import imageProcess as ip
+from config import input_shape
+
+
+def extractDataFromVideo_(filename, videoName, facesList, labelsList, maxNbrImages, frameRate):
+    # Extract every faces in a specified video and add it to a list of faces as well as labels corresponding.
+    emotions = ["Neutral", "Angry", "Disgust",
+                "Fear", "Happy", "Sad", "Suprise"]
+
+    # Start capture of a video and reading of a label file
+    cap = cv2.VideoCapture(filename)
+    if (cap.isOpened() == False):
+        print("Error opening video")
+
+    file = open("data/affwild/labels/"+videoName[:-4]+'.txt', 'r')
+    file.readline()
+
+    # Read until video is completed
+    k = 0
+    while (cap.isOpened()):
+        # Capture frame-by-frame
+        ret, frame = cap.read()
+        line = file.readline()
+
+        if ret == True:
+            k += 1
+
+            if k*frameRate >= 1:  # Read a frame each N frames where N=1/frameRate
+                k = 0
+
+                # Load image and labels
+
+                # Detect faces on the image
+                newFaces = ip.imageProcess(frame, writeEmotion=False)
+
+                # If 2 faces were detected, it means an error was made since there is only single-person videos here.
+                if len(newFaces) == 1:
+                    facesList += newFaces
+
+                    emotionNbr = emotionToNumber(emotions[int(line[0])])
+                    labelsList.append(emotionNbr)
+                elif False:
+                    print(
+                        "Erreur pour la donnée : Aucun ou plusieurs visages détectés", end='\r')
+
+                # If we overreach the maximum number of images desired, stop
+                if len(facesList) > maxNbrImages:
+                    break
+
+            # Press Q on keyboard to  exit
+            if cv2.waitKey(1) & 0xFF == ord('q'):
+                break
+
+            # Display the resulting frame
+            if False:
+                cv2.imshow('AffWild data extraction...', frame)
+
+        # Break the loop
+        else:
+            break
+
+    # When everything done, release the video capture object
+    cap.release()
+
+    # Closes all the frames
+    cv2.destroyAllWindows()
+
+    # Close file
+    file.close()
+
+    # Return face and label lists with new datas
+    return facesList, labelsList
+
+
+# LOAD DATA
+
+def loadAffwildData(maxNbrImages=10000000000, frameRate=1/20):
+    print(f"\nCHARGEMENT DE {maxNbrImages} DONNEES DEPUIS AFFWILD...")
+
+    foldername = "data/affwild/videos/"
+    facesList = []
+    labelsList = []
+    maxNbrImages -= 1
+    k = 0
+    nbrOfVideos = len(os.listdir(foldername))
+
+    # For each video...
+    for videoName in os.listdir(foldername):
+
+        # If we overreach the maximum number of images desired, stop
+        if len(facesList) >= maxNbrImages:
+            break
+
+        elif videoName+'_left' in os.listdir("data/affwild/labels") or videoName+'_right' in os.listdir("data/affwild/labels"):
+            print("Vidéo à deux visages, non pris en compte")
+
+        else:
+            k += 1
+            print(f"Traitement de {videoName}, video {k}/{nbrOfVideos}")
+            filename = foldername+videoName
+
+            # Press Q on keyboard to exit ONE video
+            if cv2.waitKey(1) & 0xFF == ord('q'):
+                break
+
+            # Add datas extracted from the specified video to features and labels
+            facesList, labelsList = extractDataFromVideo_(
+                filename, videoName, facesList, labelsList, maxNbrImages, frameRate)
+
+    # List of colored images N*M*3 faces to array of gray images 48*48*1
+    N = len(facesList)
+    print(
+        f"TRAITEMENT AFFWILD: traitement des {N} visages détectés sur les vidéos de AffWild...")
+
+    for k in range(N):
+        visage = facesList[k]
+        facesList[k] = normAndResize(visage, input_shape)
+    X = np.array(facesList)
+
+    Y = np.array(labelsList)
+
+    print(N, "données chargées depuis AffWild.")
+    return X, Y
diff --git a/loadFer2013ds.py b/loadFer2013ds.py
index 434ebc910b26a6f537f844399b3edd7e08ecaa39..1229db8c7a389e6725e7dcde2b04bc04af4e19a2 100644
--- a/loadFer2013ds.py
+++ b/loadFer2013ds.py
@@ -3,6 +3,8 @@ import csv
 import numpy as np
 import cv2
 import matplotlib.pyplot as plt
+from config import input_shape
+from utils import *
 
 
 def strToArray(string):  # Fer2013 provides images as string so it needs to be transformed
@@ -23,7 +25,7 @@ def strToArray(string):  # Fer2013 provides images as string so it needs to be t
     A.append(int(nbr))
 
     A = np.array(A)
-    A = np.reshape(A, (48, 48))
+    A = np.reshape(A, input_shape)
 
     return A
 
@@ -33,7 +35,7 @@ def strToArray(string):  # Fer2013 provides images as string so it needs to be t
 def loadFer2013Data(maxNbrImages=35887):
     print(f"\nCHARGEMENT DE {maxNbrImages} DONNEES DEPUIS FER2013 ...")
 
-    nbrImagesFer2013 = 35887
+    maxNbrImages = min(maxNbrImages, 35887)
     filename = "data/fer2013.csv"
     emotions = ["Angry", "Disgust", "Fear",
                 "Happy", "Sad", "Suprise", "Neutral"]
@@ -54,7 +56,7 @@ def loadFer2013Data(maxNbrImages=35887):
 
             emotionNbr, stringImage, typeImage = row
 
-            X.append(strToArray(stringImage))
+            X.append(normAndResize(strToArray(stringImage), input_shape))
             Y.append(emotionNbr)
 
             print(f"Donnée {i} sur {maxNbrImages} chargée", end='\r')
diff --git a/loadRavdessDs.py b/loadRavdessDs.py
index f170ce25147b70e2d4d117e0693abf07699ae551..72ab952108374eb381e38703b97f7e077482569a 100644
--- a/loadRavdessDs.py
+++ b/loadRavdessDs.py
@@ -21,6 +21,9 @@ def extractDataFromVideo(filename, videoName, facesList, labelsList, maxNbrImage
         ret, frame = cap.read()
         if ret == True:
             k += 1
+            # If we overreach the maximum number of images desired, stop
+            if len(facesList) > maxNbrImages:
+                break
 
             if k*frameRate >= 1:  # Read a frame each N frames where N=1/frameRate
                 k = 0
@@ -32,25 +35,22 @@ def extractDataFromVideo(filename, videoName, facesList, labelsList, maxNbrImage
                 emotion = emotions[emotionNbr]
                 emotionNbr = emotionToNumber(emotion)
 
-                #Detect faces on the image
+                # Detect faces on the image
                 newFaces = ip.imageProcess(frame, writeEmotion=False)
 
-                #If 2 faces were detected, it means an error was made since there is only single-person videos.
+                # If 2 faces were detected, it means an error was made since there is only single-person videos.
                 if len(newFaces) == 1:
                     facesList += newFaces
                     labelsList.append(emotionNbr)
-                elif True: print("Erreur pour la donnée : Aucun ou plusieurs visages détectés")
-
-                # If we overreach the maximum number of images desired, stop
-                if len(facesList) > maxNbrImages:
-                    break
+                elif True:
+                    print("Erreur pour la donnée : Aucun ou plusieurs visages détectés")
 
             # Press Q on keyboard to  exit
             if cv2.waitKey(1) & 0xFF == ord('q'):
                 break
 
             # Display the resulting frame
-            if True:
+            if False:
                 cv2.imshow('Frame', frame)
 
         # Break the loop
@@ -77,6 +77,7 @@ def loadRavdessData(maxNbrImages=10000000000):
                 "Sad", "Angry", "Fear", "Disgust", "Suprise"]
     facesList = []
     labelsList = []
+    maxNbrImages -= 1
 
     # For each actor...
     for actorName in os.listdir(foldername):
@@ -104,13 +105,14 @@ def loadRavdessData(maxNbrImages=10000000000):
                 # Doesnt take Calm emotion into account
                 print("Emotion 'Calme', non prise en compte")
             else:
-                #Add datas extracted from the specified video to features and labels
+                # Add datas extracted from the specified video to features and labels
                 facesList, labelsList = extractDataFromVideo(
                     filename, videoName, facesList, labelsList, maxNbrImages)
 
     # List of colored images N*M*3 faces to array of gray images 48*48*1
     N = len(facesList)
-    print(f"TRAITEMENT RAVDESS: traitement des {N} visages détectés sur les vidéos de Ravdess...")
+    print(
+        f"TRAITEMENT RAVDESS: traitement des {N} visages détectés sur les vidéos de Ravdess...")
 
     for k in range(N):
         visage = facesList[k]
diff --git a/test.py b/test.py
index afd0b49d75e49b3ad6f39385bb30c776fcbf8475..e043bc403971ce4440f13874546144d8bfb48771 100644
--- a/test.py
+++ b/test.py
@@ -21,7 +21,7 @@ from loadExpWDS import *
 from loadAffwild import *
 from utils import *
 
-# X, Y = loadFer2013Data(10)
-# W, Z = loadRavdessData(10)
-# A, B = loadExpWData(10)
-C, D = loadAffwildData(1000)
\ No newline at end of file
+X, Y = loadFer2013Data(10)
+W, Z = loadRavdessData(10)
+A, B = loadExpWData(10)
+C, D = loadAffwildData(10)
\ No newline at end of file
diff --git a/utils.py b/utils.py
index 0bb6258c798cdd8d66ea335ddbf68b0b9d47ea74..4d5ebea3e956d5007507c6cd93a501935737a2a4 100644
--- a/utils.py
+++ b/utils.py
@@ -2,6 +2,8 @@ import numpy as np
 import cv2
 import matplotlib.pyplot as plt
 from config import emotions
+import tensorflow as tf
+
 
 def afficher(image):
     if len(image.shape) == 3:
@@ -34,6 +36,8 @@ def normAndResize(image, input_shape):
 
     return image
 
+
 def emotionToNumber(emotion):
-    emotions = ["Angry", "Disgust", "Fear", "Happy", "Sad", "Suprise", "Neutral"]
+    emotions = ["Angry", "Disgust", "Fear",
+                "Happy", "Sad", "Suprise", "Neutral"]
     return emotions.index(emotion)