diff --git a/.vscode/settings.json b/.vscode/settings.json index c2b79dbdc852dcac7855087a52d6f36603de7e7d..e6434a613891bcd7cc24c16d18c1d15bdd084d96 100644 --- a/.vscode/settings.json +++ b/.vscode/settings.json @@ -1,3 +1,3 @@ { - "python.pythonPath": "C:\\Users\\timot\\AppData\\Local\\Microsoft\\WindowsApps\\python.exe" + "python.pythonPath": "C:\\Users\\timot\\AppData\\Local\\Microsoft\\WindowsApps\\python3.9.exe" } \ No newline at end of file diff --git a/buildEmotionModel2.ipynb b/build/buildEmotionModel2.ipynb similarity index 100% rename from buildEmotionModel2.ipynb rename to build/buildEmotionModel2.ipynb diff --git a/buildEmotionModel.ipynb b/buildEmotionModel.ipynb index 50ffec723037ccb8d3cac0c504e826507fac67d1..0cd664ae6fe4da9c7480ebc815213454fb519cf9 100644 --- a/buildEmotionModel.ipynb +++ b/buildEmotionModel.ipynb @@ -10,16 +10,16 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.4" + "version": "3.9.5" }, "orig_nbformat": 2, "kernelspec": { - "name": "python394jvsc74a57bd0d55a872fb12b64c3eb6a530d12935ddebcb38da0925d2cc3bd9c2ebc1d370b0d", - "display_name": "Python 3.9.4 64-bit" + "name": "python395jvsc74a57bd0241a3087cce17afe2d3bd9b072a200bdbe084ac2f3f20c4fa80011e0c0777b07", + "display_name": "Python 3.9.5 64-bit (windows store)" }, "metadata": { "interpreter": { - "hash": "d55a872fb12b64c3eb6a530d12935ddebcb38da0925d2cc3bd9c2ebc1d370b0d" + "hash": "241a3087cce17afe2d3bd9b072a200bdbe084ac2f3f20c4fa80011e0c0777b07" } } }, @@ -49,6 +49,7 @@ "#%load_ext autoreload #Need to uncomment for import sometime, dont understand\n", "\n", "#Tensorflow :\n", + "from sklearn.metrics import confusion_matrix\n", "import tensorflow as tf\n", "from tensorflow import keras\n", "from tensorflow.keras import datasets, layers, models, losses\n", @@ -78,15 +79,14 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 2, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "Array loading...\n", - "Concatenation...\n" + "Array loading...\n" ] } ], @@ -105,16 +105,25 @@ "\n", "print(\"Concatenation...\")\n", "X = np.concatenate([Xf, Xa, Xe, Xr])\n", - "Y = np.concatenate([Yf, Ya, Ye, Yr])\n", + "Y = np.concatenate([Yf, Xa, Xe, Yr])\n", + "\n", + "\n", "\n", "#Enregistre X et Y directement, à faire si assez de ram\n", "# np.save(\"data/array/X\", X)\n", - "# np.save(\"data/array/Y\", Y)" + "# np.save(\"data/array/Y\", Y)\n", + "\n", + "\n", + "\n", + "#Chargment des données\n", + "# X = np.load(\"data/array/X.npy\")\n", + "# Y = np.load(\"data/array/Y.npy\")\n", + "# print(\"X et Y chargés\")\n" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -125,21 +134,9 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "output_type": "error", - "ename": "NameError", - "evalue": "name 'Xf' is not defined", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32m<ipython-input-4-27f8e461a14b>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;31m#@title Visualisation de chaque dataset\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[1;32mfor\u001b[0m \u001b[0mX_\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mY_\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mname\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mXf\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mXr\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mXe\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mXa\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m[\u001b[0m\u001b[0mYf\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mYr\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mYe\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mYa\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;34m\"fer2013\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"ravdess\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"expW\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"affwild\"\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3\u001b[0m \u001b[0mN\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m5\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[0mM\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m5\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"Dataset:\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mname\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;31mNameError\u001b[0m: name 'Xf' is not defined" - ] - } - ], + "outputs": [], "source": [ "#@title Visualisation de chaque dataset\n", "for X_, Y_, name in zip([Xf, Xr, Xe, Xa], [Yf, Yr, Ye, Ya], [\"fer2013\", \"ravdess\", \"expW\", \"affwild\"]):\n", @@ -163,7 +160,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -177,8 +174,8 @@ "output_type": "display_data", "data": { "text/plain": "<Figure size 432x288 with 25 Axes>", - "image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\r\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\r\n \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\r\n<svg height=\"250.458125pt\" version=\"1.1\" viewBox=\"0 0 338.459612 250.458125\" width=\"338.459612pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\r\n <metadata>\r\n <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\r\n <cc:Work>\r\n <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\r\n <dc:date>2021-05-07T14:27:58.053826</dc:date>\r\n <dc:format>image/svg+xml</dc:format>\r\n <dc:creator>\r\n <cc:Agent>\r\n <dc:title>Matplotlib v3.4.1, https://matplotlib.org/</dc:title>\r\n </cc:Agent>\r\n </dc:creator>\r\n </cc:Work>\r\n </rdf:RDF>\r\n </metadata>\r\n <defs>\r\n <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\r\n </defs>\r\n <g id=\"figure_1\">\r\n <g id=\"patch_1\">\r\n <path d=\"M 0 250.458125 \r\nL 338.459612 250.458125 \r\nL 338.459612 0 \r\nL 0 0 \r\nz\r\n\" style=\"fill:none;\"/>\r\n </g>\r\n <g id=\"axes_1\">\r\n <g id=\"patch_2\">\r\n <path d=\"M 13.293297 59.80778 \r\nL 50.782953 59.80778 \r\nL 50.782953 22.318125 \r\nL 13.293297 22.318125 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#pefb0875e78)\">\r\n <image height=\"38\" id=\"image62b1cf1603\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"13.293297\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAKg0lEQVR4nI2Yy48k2VXGf+c+IiIzsl5dXTMem24aI8Agw8aIDcILngtLIASS5QULxJK/hT1skGDDwgb+ASSzswySNbLcoj22wfbMdNOPqWe+IuLee1iciMysHpAIKZSVlXFvfPc7r+8c+YOzv1CKAoD34J39rQo5o0NC+wEA186Q2QyaGkSgFHAO9Q5iQKNHhoxsOth2toeIbVcK9IPtmTOoInWNLFpwQrm8xi1a9HjBf331Hdzdb38BTclAOQEZgR1eWkAL0jTQ1GgMqHdoFSnzhnIyp7Q16hyljpR2hi7mO1CoIiK2/+HlxsONxGgpoMqTf7rEzf/yY67/6NeQiYXDxQdMSghQV2gM9lzwEDwa/Y49yXl8XqCKaDuDKkIIEAJSVUYA2JqJ9fEW5+xvILy4O+LudxKvv/SEX/zrl8imM6onkBnEe9zJsYGCcbEDFNcN0I/min5PsggSg31mY4LgbW1KB9ZQs5jbW0pUCQ/mG3gI27bixV/VLP7uHY6++wpulsaU90hV2em9txeM/kcV0ejJ8wr1xoDkgtsk3DDsmFXnzHdFoK5wIpTV2nClBCkh3oFzSMqoDIRVX7FZ15QiXL864vormcXPv8fjr3+ErjZIXUEMUEVKHcFBXlQMbSA3jlQL6iGulXibiLcJt+1BhDKLBiarESwCOeCCR1SNORFzGe/v+WS4vG4pnac927C+rDh9cs0Xf+UF3/Ff5PE3XqCTP+UCDkoVKMHhu0JcJciK6zNuOyDrDknZInUKkOBAARmBqVJmAR/OkedvYOhRVcSJWWHMCkFvKuqLNdtNRXx3w+89+j5fO/02T//8KX/z7E9Y/MclFEX6Af9yg2sq/LyGAoR9atHoyRfH+HVv/6osfegBIA0OdQICpfbEfA4/+XiMWI+WgvQDUpSgXnFOmc07/vTz7/PHJ98hUvjh9l3CuqBNNJ/yDuaNbR7c+FJBgyO1gRIFNyjpKCJpDH9nKUGyIllRJ2gQihekKPpOS3N3SnlziZSM1DMInrKYEz735A0K/P57z5j7Do/y79vH/P03v8zn11t0NB1O7LQO1Am59qiDNHeUYL4hBVxSfFeMURnvYOB2aWL81ADlpEWubmBIEBMEzw//7Izw2cUNj2ZXNG5gKIGn/Wd4uvkZTp7ZZqmN907qsuL6QlgOiILfGsDceNJMKB4kCC6pAZ5wJGMJAdTcDiek44ZYRbTroevJT97lD3/324Sj0DHzA5ep5ctHz/jX21/mH7/1G3zuZaHUnjTz+5MX8OtEuN4iqqgXwusBSiG9e0LYeHLlUC+UIKgXM+dYmaSAZBDMrJKUUnmkne9y24+/0vK19iPCUdyyzDW/Ov+I720e8Y33v8SD7zrq6w6dfMHbsd1QcKmAF0qw/FUuWrbnkWEmzF8lfFdIc08JsmdMQYoiRXAoMmBmRHADlLMjeHOJzBpOfwB/+5PfJKxSzSpVfLP7Ah9cXdB+UHH2wRbXZYbjityIZW9V3CBsHzaUaoYUpV84hlZIjeA7pVSCFPOdXBtb01opYmwpkHSMTkUFclsRqgpUefDP30O+dUH4txePWX//FHXw4Ck8ev+adFSj0aEOipeRMcFvCqLK9tRTIvQnQmqguQTfg3qhPwnkCKk5DAgZzccYKM7SSBFEwfUZmc/Q7RapK7RtCO0/nHDcF8I6U1928KMPiZ+5oHt8Rq7dzhwlQGq9gSsjYAH19lsJ0B05EEsT6sEN4LJ9H0agFPCDpRY/GGNu3aNdB0NCzk5g3REWH272CVDAPzilzGtKdLuXSrE71YKKI2yVXIHvhBIhNwAyPqv4Hqo7xWXIEfJMyJWVLimgQQkIvh9TSNdbZamiCYXgCW6TyMcVxVv0ldlDKOycVxT8oEg2FkTB9+ZvcankevSdbDmsWirzlwPhzipAnkf6k8D2zNMfG8u2t457F2TbW5TOZlYCh0TIbURFKNHUwZQsSxwZyOC3SlwlXJcptadEM/EwF8LawMY7pVoW2o83hJc3lkCd4O8C1WtHc9Jw+3MzuhOHG5OtiqUf3WxMqzlBhgS5EPrTCg2WzTdnjtAp9bU5eVxB86Ynvry1BePLdF4jqYWHkbC1l1S3mepmILy6RYMnXRwRn1/BaoO2M8InmWMRugcV3bHV2LjM+De3xpL3ozA1WRWGhaM7FlyC7kzoixDXVtuq20S469BZhXS9LawjbrklepMuKpYWwibjb7amEJqKNA/EXNCj1g616Qg549Zz/HmDeqF5sUTXG5Ps3tn+oxwKm3NHrqFUMLSKy0J37Fg8H6j/+26UO4Ku1tAPyHwGMeK6gbAcw94J0mVk20EuyO2Kph8oZwvyosZtEjJkUyCLCilQv1riXl9baZpk1SirAcL6s2aK/kFGsqBV4eyZp3652qsKgNNjZGmqc9cXpIJThVSQrjdmRhkk3WD3dgDv0DqitUnvsOxxn9yazJk1uzWMzYiqEkpgrKjglw5RR3WTkE1PaRtcNyBbK7D2kDch6Jw1HUkts48+aA1KMA0/HqzMK/KiGh1e8JdLtB9MHatyeOn4PUiBPFNmzwP1JaTWpIwMyUCtt7agnY3A3F4EOkErjwSHRE+pPHkeybUJQlMTFum5Fqq7TPOfn8DdCpmPTOWyy6OHIMOjf+nJjSMuO/w6cfMLLbNXPTo2GuXihDwPSFJkyHzqcmJ6rQ5okF3BZ6yTk8KYvemJH1+bO8wOQE2NzVvMhctfqnnv6z9Agtn/KDjCzQZKYXgwY2gDfpuJ3WBBMAo9yWVnGvsECri+4DfFijQgWQm3W3hzZb1pHBXxuP7Qr+4BO/5pQt87h1RQ5wjXa+TqFs0Ff77AbTOuN6dW7+436tPLi5o8cmMLlwpOQTYDbrVBl2ukinuTTWr2AIxMynYC9vy3PFLO8FuhvoLF88ziRxXux88Jr27JZ+208h5j+H3Xrtzf1HrLAVltLMUcgjoEMKWHt0ABhHSWIAnDKXTnQnfqcUPL0YsKXa1xTWW+Vo/a3396k0lzUcAN2UCttzZEmfpF1X2k/j8uNz9fI0nAW1M6HKnVzRjtMDdLJBWLwujIB3cJdqsXine4IeNvNsZULjaz2DFsDQ3+oCuv4i79HI4I8J5w2m4YLgLDJqJaKHks5KpWWEtBlmt8cOhxw7Rciu4iVSZ/Wq4h7ZvWe9eUFgCGwUBPLuBG0Fl2jIaiwqOLKz58c0rqA6RRHOY8TmmsuLrLO+Jquz9ZKdZ1T0BE7Df/f5hqAjsxOZWhaXjztvO/vjri13/2p6xPItfLOb0oadbsx0Vgswuw7F4OEuFulDSqgrGu3gMC953+cGLkZATnPp1gQ8hsUyQXh/cFHwq5HucVE83TRlPumX6bvr89kJMDBlQNePT7KEx5HNqpAZ3K2cHe7vx4xUWzHPdTxCndCeSHNg9TJ/cTYgxo8Gjw3LsmMM59Ovz9OJA7fHk5mJdNURv8bh9X+cyLzTHrzopsTp5SK3kWR585mImNoPZ8+/1mb4P83wAfKoimMuamA3t3j+Ww6iv67ClFGPpIXgZmd+MU0AmkjFYRZvVu6rPLSQdziN2lY5e9l1Z7kx4AlH4YzXkAalTIkgv/A3gNvn/Sn6DrAAAAAElFTkSuQmCC\" y=\"-21.80778\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_1\"/>\r\n <g id=\"matplotlib.axis_2\"/>\r\n <g id=\"patch_3\">\r\n <path d=\"M 13.293297 59.80778 \r\nL 13.293297 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_4\">\r\n <path d=\"M 50.782953 59.80778 \r\nL 50.782953 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_5\">\r\n <path d=\"M 13.293297 59.80778 \r\nL 50.782953 59.80778 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_6\">\r\n <path d=\"M 13.293297 22.318125 \r\nL 50.782953 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_1\">\r\n <!-- Neutral -->\r\n <g transform=\"translate(9.8925 16.318125)scale(0.12 -0.12)\">\r\n <defs>\r\n <path d=\"M 628 4666 \r\nL 1478 4666 \r\nL 3547 763 \r\nL 3547 4666 \r\nL 4159 4666 \r\nL 4159 0 \r\nL 3309 0 \r\nL 1241 3903 \r\nL 1241 0 \r\nL 628 0 \r\nL 628 4666 \r\nz\r\n\" id=\"DejaVuSans-4e\" transform=\"scale(0.015625)\"/>\r\n <path d=\"M 3597 1894 \r\nL 3597 1613 \r\nL 953 1613 \r\nQ 991 1019 1311 708 \r\nQ 1631 397 2203 397 \r\nQ 2534 397 2845 478 \r\nQ 3156 559 3463 722 \r\nL 3463 178 \r\nQ 3153 47 2828 -22 \r\nQ 2503 -91 2169 -91 \r\nQ 1331 -91 842 396 \r\nQ 353 884 353 1716 \r\nQ 353 2575 817 3079 \r\nQ 1281 3584 2069 3584 \r\nQ 2775 3584 3186 3129 \r\nQ 3597 2675 3597 1894 \r\nz\r\nM 3022 2063 \r\nQ 3016 2534 2758 2815 \r\nQ 2500 3097 2075 3097 \r\nQ 1594 3097 1305 2825 \r\nQ 1016 2553 972 2059 \r\nL 3022 2063 \r\nz\r\n\" id=\"DejaVuSans-65\" transform=\"scale(0.015625)\"/>\r\n <path d=\"M 544 1381 \r\nL 544 3500 \r\nL 1119 3500 \r\nL 1119 1403 \r\nQ 1119 906 1312 657 \r\nQ 1506 409 1894 409 \r\nQ 2359 409 2629 706 \r\nQ 2900 1003 2900 1516 \r\nL 2900 3500 \r\nL 3475 3500 \r\nL 3475 0 \r\nL 2900 0 \r\nL 2900 538 \r\nQ 2691 219 2414 64 \r\nQ 2138 -91 1772 -91 \r\nQ 1169 -91 856 284 \r\nQ 544 659 544 1381 \r\nz\r\nM 1991 3584 \r\nL 1991 3584 \r\nz\r\n\" id=\"DejaVuSans-75\" transform=\"scale(0.015625)\"/>\r\n <path d=\"M 1172 4494 \r\nL 1172 3500 \r\nL 2356 3500 \r\nL 2356 3053 \r\nL 1172 3053 \r\nL 1172 1153 \r\nQ 1172 725 1289 603 \r\nQ 1406 481 1766 481 \r\nL 2356 481 \r\nL 2356 0 \r\nL 1766 0 \r\nQ 1100 0 847 248 \r\nQ 594 497 594 1153 \r\nL 594 3053 \r\nL 172 3053 \r\nL 172 3500 \r\nL 594 3500 \r\nL 594 4494 \r\nL 1172 4494 \r\nz\r\n\" id=\"DejaVuSans-74\" transform=\"scale(0.015625)\"/>\r\n <path d=\"M 2631 2963 \r\nQ 2534 3019 2420 3045 \r\nQ 2306 3072 2169 3072 \r\nQ 1681 3072 1420 2755 \r\nQ 1159 2438 1159 1844 \r\nL 1159 0 \r\nL 581 0 \r\nL 581 3500 \r\nL 1159 3500 \r\nL 1159 2956 \r\nQ 1341 3275 1631 3429 \r\nQ 1922 3584 2338 3584 \r\nQ 2397 3584 2469 3576 \r\nQ 2541 3569 2628 3553 \r\nL 2631 2963 \r\nz\r\n\" id=\"DejaVuSans-72\" transform=\"scale(0.015625)\"/>\r\n <path d=\"M 2194 1759 \r\nQ 1497 1759 1228 1600 \r\nQ 959 1441 959 1056 \r\nQ 959 750 1161 570 \r\nQ 1363 391 1709 391 \r\nQ 2188 391 2477 730 \r\nQ 2766 1069 2766 1631 \r\nL 2766 1759 \r\nL 2194 1759 \r\nz\r\nM 3341 1997 \r\nL 3341 0 \r\nL 2766 0 \r\nL 2766 531 \r\nQ 2569 213 2275 61 \r\nQ 1981 -91 1556 -91 \r\nQ 1019 -91 701 211 \r\nQ 384 513 384 1019 \r\nQ 384 1609 779 1909 \r\nQ 1175 2209 1959 2209 \r\nL 2766 2209 \r\nL 2766 2266 \r\nQ 2766 2663 2505 2880 \r\nQ 2244 3097 1772 3097 \r\nQ 1472 3097 1187 3025 \r\nQ 903 2953 641 2809 \r\nL 641 3341 \r\nQ 956 3463 1253 3523 \r\nQ 1550 3584 1831 3584 \r\nQ 2591 3584 2966 3190 \r\nQ 3341 2797 3341 1997 \r\nz\r\n\" id=\"DejaVuSans-61\" transform=\"scale(0.015625)\"/>\r\n <path d=\"M 603 4863 \r\nL 1178 4863 \r\nL 1178 0 \r\nL 603 0 \r\nL 603 4863 \r\nz\r\n\" id=\"DejaVuSans-6c\" transform=\"scale(0.015625)\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-4e\"/>\r\n <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_2\">\r\n <g id=\"patch_7\">\r\n <path d=\"M 82.562263 59.80778 \r\nL 120.051918 59.80778 \r\nL 120.051918 22.318125 \r\nL 82.562263 22.318125 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p9c37b9f1b6)\">\r\n <image height=\"38\" id=\"imagebf58e40f52\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"82.562263\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMVElEQVR4nF2Yy48k2VXGf+e+IiKfVdWPme7psWdGzEsYrIGNQYB5Cu+8MgJWLJH4D5DYs+APYAeWkRBig5DFxhJISBh7JMwgGzS2xzNmHj3unq5HZmVmZMR9HBY3untMSKXMirpZeeI73/ed7175t/de1JmJ3LWZArw1nPDXD36Ft7/2GifvRraf9ezvCMUrdhT8DswArldEoVjqZaA4MCMgYFK97Q9Kc5WQpFy+Ekgz4Xhb+fof/AVnpq5pxXJVEmcm4MViENyIZc2ARbguhf8ZnuPNf3+V2Vx4+AuB7qGyek85nglqwfaKyVACpE4oAdTUH7QWhVLXWDBRsM8G/LXiejBRyY3UosVMr5a5FKzU+wXF3DIHrOi0AP7qh79Ec27IDTQXij/UvyFgR1AjxIVwvCGMJ5AbyAFyq6SZMq6V8VQ53lDiWhlPlHEFu88K+7tC7oT1u4U/ff/LHEqmqJJ1+o7pKhTMDavMRDEi/NP+FdKbp6SZEq7gxvcO+H1hXApxDv0tGG5AnNWCACTXoouDuC6kdSbPCrlVKGBGwR5BIsSVcrijbF4yvPe1l/mtN/+YT4pyUUYacWTVWhQGMxPLmQlsSubP3/wSasDvhOX9xHga2D9rOdxV0lJRo6itbYSpdVp55XrBHmprdJ7QWSatC+Np4XhbyZ0iubY8LZTDXaH7xpI/eef3CSI8KiNWpBaF4LxYjpr458NLyGXA78Fv6z+Jc8vhGUGtogZKC5r1CVJFpiILqAV/LTSXjtw50kzJ81I/F7QiCGDBHAwmQmqFD//1ef7+zmv84fL7T4qyYnAXeSAD//DgDcKVwV8rYa/YPnP1kmM8KUipqlQDWkAKYAV1inpFnYJRincs3xPW72ZEK9HVwLg0DCeGw52KnN9JffAFhCv46ntf4Cs///ZP8cxF4G83b/C9N19i/bHSnRfai5Fx6TncnZDyFUEpkwK9oqaAAYxW6ATyWeR4HbDRUBxVfQp2UNxBuflWtZjre5DmFXW1sPvWLb7z6hm/0/VPC/u77ef5y2/+Ot2V0GwKYZMwfeL69bZagAHR+kqp77WAIKipSCFAEty1owTl/I2MWcaqsGixl45wYcihPkBcVJ65Q/3d7eEfL9/gS7NvkbXUwr76gy9g9hYbYfZgxO0iaoXhVJCikKmIAGonnuhkVgVIBoziT49E1+AfOcKFJQ2G0hXMIuI/M9D8TOT6B6fMP6zFlKBEAY+gBi7GWaXg5G1uf9khFppz5f4vt6htOXu7UJoJHQUTJ38xVYiPfQ3z9H3sPX4xwmJkPDpk77DXFvYGth37Rgm9TKpWJIE6JTcgFv7r/nPwImQtlfyyt9hB2LwKi1cv2GxmPPINuSuog3BpUKsU/ymLkE+x1NZ2hlnEGEUVmvmIXR0xRlm0A7tjw/FyRjwaCAVUMDtbRSSQWxgv2p8mvwYlm4LfGDb/u8YdDCYKJkrlllbzVPOpwgCViV/TPRGlDRVamSbJ5YMVOzPDNBkxijYFUm2lGrC9PLGQx3R5UpiZTDGuC+HC4PZCcVOHSiVpsU/nofqJ7FLREl/QZIijYzU/8uiTFfZhILeF5Y8tkmH7eqpICUib0d5Vnki1DTuC9rWOgmIBp04xo6Bax4zbT7ZgIS6rMapXMBP5Q0FswRhFrGJMIRVPiYaLzRx3P7B6D+LM0j9Tldd+7Dg+PxKWI7H3T1BR85S/dpQnisxacKt3LMebSlLBX9cnKB7SXEmLUotyBXFaWyTgfCY0ieASsxAZkuNqOyOPlnJv4PzUIVHwz/QMo6X77w534WE5Tq2oaNUkIiCKxEmRj8nv9opZCd2urim+qqYERUNB2oxrEovZQHCZfvSYiUONT8x9/bLQRA6DhaOFNnPzM1s+s7rko92aB88H1CjyGC3zmKfU+evADv+PYwBhW9sXF5A7pYTq9lilnY94l2l8orGZMdVkqCqkXN/P/UgfHLGzxLEBFVI2vHt5g6urORIFbRSxBeszCY8WKKWKDKV64nRlLbj9vZpKw1YZToXUQWkK2hXE19VGFFVh07cUFYwozhZSNlweO+ZhZB4iQ/REr6DQhUjMFh0NGgpmGQlNwrmM95kheHIRymgx02h6axiYmcSZAdc9VJqNkr2QOiXPMzjFdAlrC8d9IAXLnqZKvgjx6AiziLUFYwpjtqybI7shcHAF5zMLP/LjzRlkwa4jy0WPdxlrClaUvctcDZYymmrig/D1689zLJ6oFuf3Nb+rgB0NUQCnaBZiH5DewL6praV6TzcKKg1pplzcSHSnPbkYcjFoFpppTsajA6e0XaUDQMqWBBhTsKGQfYEimAiXsY6lzkbcsBbCNagViq1tYDQwOMJWaK6EsFUW9zOSlKuXA1efjyxv7XDfPMUMnqFNlG6ogjNK6xP7GNAiNMsBawrH6LCiFBWKCiLVarJTGAUp8Lvr71bOmgE3rmGXLWFXvcruK6FNqkpJsynnzzynP4zc+cZD0NuMv2k4eycTrhJXH7Wc/yoslkcQaFzi6tBhXCFFx3j06L6iJ75gQma16GuBTUad4vaW3+iORM1YEZyJNRt1F4rtDSpTfHbV9dXAuFbsUfjJDUf30m1u/eeB/v6ixvDLIyYFys5zvQm4mz1zP3J/e8psdWQcLeWqQwD3icVEIbfK1bMGFzI5G+yFI39xg5fHe0FwjzcSqZG6F5zmGEbJDiRJjcbrDFnIraW/3RE2wuwnhc3rS1IrLH7kqtO7wkU/Qy498aOAHYUwwOG1AW5E/H8s6B4ImzYQlwkxiknCM6vryeKqnzk1TPlesD3IAggTak0Bo8hoMDtLaQppmTGjrck0Aqqs3k+ohWZj6S9XbFbK/BPh5J1E8YI7FNI7jovXGp59s0diYfGTlvOfDfTPJSjQ2PTTBitlGqJ2SqrTDKOAZEF9wd/uiYMjvN/Qngt+p9ijIkXxu0JxQn9myY0QNnWX5XdKag1xJoxzw/KDkc9+/RqzPaDWsNgNqKx5MLe0j4Tn55dVtWQMBqcCqa1F2SOgT1v5OAymaAltpPlcT98Hrs9bmkeWsLHEhaW/k5D5gNjqczoaiAbJgj0I4VLobzVgGmx/QntR6B4l3KFw663qBm8s3idrIWrGoDgz7fVyy+RlQhnqaIJqHSULYxZEwNiCzjLHu4XjvTq2qk9AOTgkGmgz+IK78nUGShVQbuvDp7lhdy9UMHrwO+WF8Iid1qOKQRNmOKl5C4W4rip0e8E8HqqPv9cowz4w7Bp8FzFdAqvM10eMK+jOgS/4mz1kwT3yNdcvCv2dzHgzV0F19dggLpQ0g3ENx1vCn739ZYoqR61GbPKsLn7cwuIVmbb2JEFGA1koO49m4ezWlq4b6eYjr7/wMePgKKPFnYzcur0lDg67taRVJp8kys2IORuRLpMX0/FBU5WoUjsT57D/1k3+Zvs6XgwRxej0FGmuT2J0mWKIPcrT+BwKZ7e3GAFrCq/cfMijw5w0OBZnB16+8xAjinEF7gyEG0e69ZHlyQHnE5qlZv3BVOPutI45neJZgX85f4WiykxszfyFmtugLshA2Fb/0ramjJOzHarC9tDway/8iMYkvvvhcyxPDtxZbXGmkIshhIR3mUU7UFQYokNVqjBSLSTNC5IFSfWYSouiRmht4qiFRhwOUbSrQ9vuDeoAUYbTyceSENYj1iiHwfOL9z7gbnvFt89f4IVnzrnV7pi7kY8Oa0SU9bxnFQY6F+mT55PoMI9RN1BOUt2QDOZT+9V6jNXYRAYOGnFkAV+NtDiDzjJEqXOtt3Ay4lxhu2/5ubv3eXnxkKyGYDOfW32AEeUqzjCinLY9p+2Bm2EPwMNhwXZs6IeA2EK7GEjRkkZb9w+9haEGxbhUvnjyfSwQVXFMcUZcQbuqHJln9GjRRcIY5bBrODnZ8+L8HIOyy55Xlw/wJtNI4kFZMXMj6+7IWdjjJRPVMh5OGKLDuUy3HmtwnNJFzqYeMUwjsbm757dn75KBVgRj2mkUqGAXEdtmxCrSFMQVytHhQuLuaouXzFAcUS1ealG73JDUsPZHnmm2nLk9N/01HxxO2afAujvy4tkF99YbvM2IKCGkp5Nl2in93ivfoRX5FGJSOWV8wU1hbuw9NmTyowbawrwbmbmRD48nAKzcQMZwHudkDHM7snL9E6Q+Pq65GjvuzDZ0NtJnzyEFbswPbGxLP3pIdTKoVdIC/ujk28RPnXj+H4Og3qCbDnU1AAAAAElFTkSuQmCC\" y=\"-21.80778\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_3\"/>\r\n <g id=\"matplotlib.axis_4\"/>\r\n <g id=\"patch_8\">\r\n <path d=\"M 82.562263 59.80778 \r\nL 82.562263 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_9\">\r\n <path d=\"M 120.051918 59.80778 \r\nL 120.051918 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_10\">\r\n <path d=\"M 82.562263 59.80778 \r\nL 120.051918 59.80778 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_11\">\r\n <path d=\"M 82.562263 22.318125 \r\nL 120.051918 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_2\">\r\n <!-- Disgust -->\r\n <g transform=\"translate(78.805216 16.318125)scale(0.12 -0.12)\">\r\n <defs>\r\n <path d=\"M 1259 4147 \r\nL 1259 519 \r\nL 2022 519 \r\nQ 2988 519 3436 956 \r\nQ 3884 1394 3884 2338 \r\nQ 3884 3275 3436 3711 \r\nQ 2988 4147 2022 4147 \r\nL 1259 4147 \r\nz\r\nM 628 4666 \r\nL 1925 4666 \r\nQ 3281 4666 3915 4102 \r\nQ 4550 3538 4550 2338 \r\nQ 4550 1131 3912 565 \r\nQ 3275 0 1925 0 \r\nL 628 0 \r\nL 628 4666 \r\nz\r\n\" id=\"DejaVuSans-44\" transform=\"scale(0.015625)\"/>\r\n <path d=\"M 603 3500 \r\nL 1178 3500 \r\nL 1178 0 \r\nL 603 0 \r\nL 603 3500 \r\nz\r\nM 603 4863 \r\nL 1178 4863 \r\nL 1178 4134 \r\nL 603 4134 \r\nL 603 4863 \r\nz\r\n\" id=\"DejaVuSans-69\" transform=\"scale(0.015625)\"/>\r\n <path d=\"M 2834 3397 \r\nL 2834 2853 \r\nQ 2591 2978 2328 3040 \r\nQ 2066 3103 1784 3103 \r\nQ 1356 3103 1142 2972 \r\nQ 928 2841 928 2578 \r\nQ 928 2378 1081 2264 \r\nQ 1234 2150 1697 2047 \r\nL 1894 2003 \r\nQ 2506 1872 2764 1633 \r\nQ 3022 1394 3022 966 \r\nQ 3022 478 2636 193 \r\nQ 2250 -91 1575 -91 \r\nQ 1294 -91 989 -36 \r\nQ 684 19 347 128 \r\nL 347 722 \r\nQ 666 556 975 473 \r\nQ 1284 391 1588 391 \r\nQ 1994 391 2212 530 \r\nQ 2431 669 2431 922 \r\nQ 2431 1156 2273 1281 \r\nQ 2116 1406 1581 1522 \r\nL 1381 1569 \r\nQ 847 1681 609 1914 \r\nQ 372 2147 372 2553 \r\nQ 372 3047 722 3315 \r\nQ 1072 3584 1716 3584 \r\nQ 2034 3584 2315 3537 \r\nQ 2597 3491 2834 3397 \r\nz\r\n\" id=\"DejaVuSans-73\" transform=\"scale(0.015625)\"/>\r\n <path d=\"M 2906 1791 \r\nQ 2906 2416 2648 2759 \r\nQ 2391 3103 1925 3103 \r\nQ 1463 3103 1205 2759 \r\nQ 947 2416 947 1791 \r\nQ 947 1169 1205 825 \r\nQ 1463 481 1925 481 \r\nQ 2391 481 2648 825 \r\nQ 2906 1169 2906 1791 \r\nz\r\nM 3481 434 \r\nQ 3481 -459 3084 -895 \r\nQ 2688 -1331 1869 -1331 \r\nQ 1566 -1331 1297 -1286 \r\nQ 1028 -1241 775 -1147 \r\nL 775 -588 \r\nQ 1028 -725 1275 -790 \r\nQ 1522 -856 1778 -856 \r\nQ 2344 -856 2625 -561 \r\nQ 2906 -266 2906 331 \r\nL 2906 616 \r\nQ 2728 306 2450 153 \r\nQ 2172 0 1784 0 \r\nQ 1141 0 747 490 \r\nQ 353 981 353 1791 \r\nQ 353 2603 747 3093 \r\nQ 1141 3584 1784 3584 \r\nQ 2172 3584 2450 3431 \r\nQ 2728 3278 2906 2969 \r\nL 2906 3500 \r\nL 3481 3500 \r\nL 3481 434 \r\nz\r\n\" id=\"DejaVuSans-67\" transform=\"scale(0.015625)\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-44\"/>\r\n <use x=\"77.001953\" xlink:href=\"#DejaVuSans-69\"/>\r\n <use x=\"104.785156\" xlink:href=\"#DejaVuSans-73\"/>\r\n <use x=\"156.884766\" xlink:href=\"#DejaVuSans-67\"/>\r\n <use x=\"220.361328\" xlink:href=\"#DejaVuSans-75\"/>\r\n <use x=\"283.740234\" xlink:href=\"#DejaVuSans-73\"/>\r\n <use x=\"335.839844\" xlink:href=\"#DejaVuSans-74\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_3\">\r\n <g id=\"patch_12\">\r\n <path d=\"M 151.831228 59.80778 \r\nL 189.320884 59.80778 \r\nL 189.320884 22.318125 \r\nL 151.831228 22.318125 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p1449e2fcbe)\">\r\n <image height=\"38\" id=\"image11ee3fc621\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"151.831228\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMFElEQVR4nGWYS49k2VWFv73POfcREZmRj8rq6i6ako2NAcnCsuSBmSDZAyQYICRm/B8mzPkBgBgz5QcwMBNswG6MgW7c7W63q7oqH/G4955z9mZworIRXOkqpZu6EXvvtfZa64S8+Mu/cBeH6BAcTKAKOEgVJAvhKGgWxCDu4ewTY/PfR7QYdRWpfaD2Su2FPCq1A61gEeYLoWzA1fHQnnlw/uR7P+AyHvirv/se/Wshfv8VN+s9P/3Ze4SHQNSj4Cp4ALQVpovgwQEIkxBmQSqkHaw+N1afL+hUkFyJcyaq4ilQ+0C3io9FlkHIpb2LCVIgTDDdGEkqAPVrR44fjfiPr3nz7oawC4RZiOEoIAAgJkgRNMPbh2GGtHekwHBn9K8LYs5yPRCmSpgKVIdiBHd0qcSo1CES1oEyCpZOjXOaWGxNf5HXlPuO6w9h9bLy+rcGXMAV4vDFqSpAFwiLN8gmx4JQVq1LMXCB6TqS14pFkApx9vZOhbAYYTJ0MXSpaKfo0j7X46mwALoos0Wu0x46owyRZaP0bxxLAgZx86kh1j64uyttAiKE3Uw567n/6kgZwZIwXwTKCsrakSJ4dFyEMCkhg86B7sHpdk48GLUXrAMPrTEpIF1r6OWy4avjS777jf/kH4cX5H9ZsfmFk76opJ0RNz8/INWROSPHBckF3+3x40R68ZzwfGC6UqyDmsC6dpfLiidvS2Jt6rII6V7pb4XuTnCBvBGWC8cFurtGk+6N8vOHK/7g6sf80ZN/5qvrV/ztm9/j5ofG+IsH5LgQl22HOEjp0GVAi6HTBooxPVuznAt503CX2jgnLrgodWV4cjxZw8mVsjZcBYuCLpBXsFwYflZYniq6D3T3yuvDSHXheXrDsMr8/Yvf5vDONd39QDzMxJff6k7EB83tltrIWQchr6GODep4FOLxVIMIeRPIZ451jvVteq5tonkDWqD2DgFCX+nOZuSJc3i9YhMrn+VL7uqabdjzpy/+ib/54+9w969bzj8ckRd//eeOyaNUeJHGcgeZlHhQJEP/Rth+VEm7yrwN5LWSV0IdoIxQNq3At1vtAazzx0lbAt8UNlcHalXOVxNDLLw+jHzt6hV/9uwHTJ74q0++y79/+Iz49Mk91RRzcBfchRQrKs7nv7wgvA6EI4wvnbOf3sK8YF9/wrxVxJywnGQln/RQ2gYu56cpCsixibR5ZGdrJBnH+wE5BHQWfrJEPr6+4pvDx/z+zc/oYyGKNNjMFIAYjLN+ZoyZX4Vz0gOknZOOBmYggjh0D44lWDYQC4xfGN2DMW8DD+8rfunI0jTSEkhsUOs+gAf6W0VzayAvkR89vI+5chYmvr75FXEpgaVESgmYCe9e3vPNy0/55XSOHyNSIB4auvvfuESzIcUYvjDKJqC5NZR2RrpfwBPzNrFcCq6Nc3VwbDCkNLsLS3MDF0DBDpF/+Ogr/Gj1Hr/79FOeD7fEpUTstO4hGOf9xCbM3M4jelQ8Nr7ktXJ4R7DQnEAz1J7TlwvHJ0raR3CwTtAZrG8y8Xg5hLn9T06LHCbgNlL3gTebng9iZfvOkbgsEXcIwVkPCxfdgZfLhk9uL9DclH9ZhDg1KOoAZX3iUgKL3izGId1Lm258VI8mrg4UQefGtTB/6SR6KhQR8iK8Wp1xdzUSa2lvihgxVII4nx/POex6VP0kjkr8DDafVizCcqaUUah9K7KKo0v7QhRq1yTm7Va+Fd+412ZvzqMnikFYmkzhwnEfqS7EL+26beVD7nl5XONZscEfDXc+KsNrGF4X+jeg1Slj4HATyWtB3KmdMF87y7bFKFd/jE66yJdF6Ylfj+Gh2ZXWNtld7oka6iO/ghp3y8hu6kFOKUCdujYO74HFQHcX0OqEuRlyWZ02T4Xp2lluKvQVkcYpn0MjvTaITRv8JzFAqlAADa3Y+BD46PaKqOqIQIqVLlTMBXNp8FaBRfDRsFXl+AzmJ004H7s9cQeBcl6ha+SRWKEqTguGFtuyNK91sNMCeHMIXQQtzfLu7lcNyhgrY5cZY26rH1rH8UHpboUyBjw23SrnFV1n3KTdi2KDtPRLg0I6axM/OYpHwFrSsOTYWFtirtKeZyEcFKsnt6jSJqbiDLGg4hRTxi6z6wtx13P1QSHtKss2Mp8ru/cjxxeGJIMpEHaBeDyR+WRD1ivuQGpUgBO3Qst6KKRVbuhkxUOghBbtpTfGzUysVYmx8UzF6UJlkxZeR0MLDK8W4r/9nGEc8bMVcbpmuYjUq0x8CIyfC8MrJ06NNzWBJcUSHN4R5mvDO3/M/JhANPohU6tSJEBfEIGuKwypNEuqVSklcMiJVVq46Fp8EHFqD8d3etbLc/SwwJKJkxGmQPV2LgizsHpVGD49EF7f49OMjAP733mHMiaWrWC9IaElU09G6Iyo9rh0636hC5UxNjqpGLE+JKZRcReGWLjqD3Ra6FPh4dx4eB6YthtWLythMQ7Xp/A+65eEToKtEoQtAPm8Z/c8spyD9db4V9p5wpOjoSLipFDpU2HbT3Sh0mmh00ofCrF7FalDYLoS9kPiUBJDKJwNM7dro45KnFo2OzxN7H5dKOtGbkKDpyZhvuyYtwPHJ8qyPcWgZBB4jFH/+xJxxlTYdDNdqBRTOm10GkMmnv0X5DPlUDuOZx1RjeJKUEM3mWUbqEk4PgnkcydfFkjWNAqlrGDeKmBYFKw/mXZsxo2+3T7wzqEzVJ0uVvpYqK7MpWlPscDF8MBFOhCf/PCe+clI7TvyC2UImUNpqXYYFw43EaIj6kg0UmjcKEuAZEzPoPaBdN8gzmdOHRzv/aRpIIsiJlhnaFeJ0f7f9KIaQ8xcpAPbeCDqR5/R63Nq3/HOxQO/NtzyyXTBgw4MXWbe5CaY4oga8lafAE2GdjN1o5Takq87iIBEQxzsGJHToVdqe89MWEpg0y2cpak9c+Uszqx04UwnYvnN93n57TXhW3d8/9lPebe7JXsgiWEId/dr6hSQ4EgU5KRLGh0rioujwdHUJMeqYiZ4FXwJ6CEQjq0gD2BzoASDHsaY2XYTx5rY5YiKEcRQceLLb6+5+87MH77/H3xj+IzFA5fxwGU8kF35OF1gRZDgqPojh0UcjS0mOFBLwIrgRdsGZkVP5v22KA9NcEM01l1mCPnErVPYFCN7IHsgHt511tsjUSv/90pihHAKTu6Pk8AFCUaIBuKYC260orI26ErTubpxPBrSG3HIrMeF7ThxNexRcR5yz2KRIWTWcQbgYB2xrJ1owrEmFg90Upk9cldG9rV7LNLtxKFy+q1DT2Z/4tVb3hFaIURHk9H1mfWwsO6WJg1a6EIlirFYYLFIlMpZavxKUskWidzMvH95yzdWn3MddzzUkSSVTZi56g48Pd9xlwq7/UB+6JC5jd2jUjtDQjNdikB0+u3ExebImDJRjT4UVnFhHRc6LexL3xo6WeBFd2ATF9ZhPqFUG5TrzcQqLqx0Zi0Lk3Qkqag6FoWbcYeKI+I8ADkkyNoEc9HTgcIhOd164el2x8VwxFwYQmYVFzanonotXKTjI6+O1pEtoDhJKqswM1lCceLV6kgXKq/KGb8IE5MlklSSVAzhsjtgLiStjKmwX3XMOTYDzgGvbVNDNDarifN+4qI7AHAeZ87jkVVYWOnStg6nIsyWOFjHobZB9FoAOAsTvWbie+s7ztLEr5YzJks8SQ9cxR0rnXmoI9WVIM42TeRROZSOQ+mYayTXwFQi7kIfC1fjgZt+x1lqJ62zMHEZ95zr8bGovXUYSlXlYD05BFY6k6RSUZ7FWwBiHwrFAkH8pF+Vm3jPhR7Y64FBM6swtw5rx6727Ev/uBjFFHNh2008H255kh4YJKPiXIcd12HHhR5RcbIrtzaST8eovfVUhLXOBJwv6oaX5Zy7uiKOIZMtMOrCoBl7e6wBBs3ccE91YfKOObTxT6n9BZgtYi5cpgNf6V9yE+8f4XoW7rkJCysRAkKmcmELiysZ5cE6skcGySwEfjI954P9u7ycNsRRF6I0n6uuHKzj4+WanCIXp4mdh4nBM+dp4t4GPpyfNoWm/erYa+Yq7LmJ91zrnkEKFWElhUGErQ4ows5n0Pbea6u89qb2SSp76/hg/y6fHc/JNfA/rw3d/4osY/AAAAAASUVORK5CYII=\" y=\"-21.80778\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_5\"/>\r\n <g id=\"matplotlib.axis_6\"/>\r\n <g id=\"patch_13\">\r\n <path d=\"M 151.831228 59.80778 \r\nL 151.831228 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_14\">\r\n <path d=\"M 189.320884 59.80778 \r\nL 189.320884 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_15\">\r\n <path d=\"M 151.831228 59.80778 \r\nL 189.320884 59.80778 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_16\">\r\n <path d=\"M 151.831228 22.318125 \r\nL 189.320884 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_3\">\r\n <!-- Happy -->\r\n <g transform=\"translate(151.217619 16.318125)scale(0.12 -0.12)\">\r\n <defs>\r\n <path d=\"M 628 4666 \r\nL 1259 4666 \r\nL 1259 2753 \r\nL 3553 2753 \r\nL 3553 4666 \r\nL 4184 4666 \r\nL 4184 0 \r\nL 3553 0 \r\nL 3553 2222 \r\nL 1259 2222 \r\nL 1259 0 \r\nL 628 0 \r\nL 628 4666 \r\nz\r\n\" id=\"DejaVuSans-48\" transform=\"scale(0.015625)\"/>\r\n <path d=\"M 1159 525 \r\nL 1159 -1331 \r\nL 581 -1331 \r\nL 581 3500 \r\nL 1159 3500 \r\nL 1159 2969 \r\nQ 1341 3281 1617 3432 \r\nQ 1894 3584 2278 3584 \r\nQ 2916 3584 3314 3078 \r\nQ 3713 2572 3713 1747 \r\nQ 3713 922 3314 415 \r\nQ 2916 -91 2278 -91 \r\nQ 1894 -91 1617 61 \r\nQ 1341 213 1159 525 \r\nz\r\nM 3116 1747 \r\nQ 3116 2381 2855 2742 \r\nQ 2594 3103 2138 3103 \r\nQ 1681 3103 1420 2742 \r\nQ 1159 2381 1159 1747 \r\nQ 1159 1113 1420 752 \r\nQ 1681 391 2138 391 \r\nQ 2594 391 2855 752 \r\nQ 3116 1113 3116 1747 \r\nz\r\n\" id=\"DejaVuSans-70\" transform=\"scale(0.015625)\"/>\r\n <path d=\"M 2059 -325 \r\nQ 1816 -950 1584 -1140 \r\nQ 1353 -1331 966 -1331 \r\nL 506 -1331 \r\nL 506 -850 \r\nL 844 -850 \r\nQ 1081 -850 1212 -737 \r\nQ 1344 -625 1503 -206 \r\nL 1606 56 \r\nL 191 3500 \r\nL 800 3500 \r\nL 1894 763 \r\nL 2988 3500 \r\nL 3597 3500 \r\nL 2059 -325 \r\nz\r\n\" id=\"DejaVuSans-79\" transform=\"scale(0.015625)\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-48\"/>\r\n <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_4\">\r\n <g id=\"patch_17\">\r\n <path d=\"M 221.100194 59.80778 \r\nL 258.589849 59.80778 \r\nL 258.589849 22.318125 \r\nL 221.100194 22.318125 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p600aba0d64)\">\r\n <image height=\"38\" id=\"image99f80523ea\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"221.100194\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALNklEQVR4nG2Yy49s11XGf2vtfR5V1a/76Ht9bUexnSALgxQBYoAUhgwiMSEwgBEzmDMijEFMGDBEygQxRfkHAhIIQUKCeAlELgMbP64d37b7tru7XuecvddisE5321FaKnWp6tQ53/72t771rS3bj77sAIpy82cYAH+7O+RP//B3sSxsHynTCjwBDtaCdY5lR4ugI+SN4AnK0qkdWGeICToKUplfQt5B2kF/4fQvKtYK40rxBDo5v/mtvyH/NEA3n707ngIwHAnTAbiAtQ6AK1iKB2Ggk+AawHUUrHHSTvHk4PFbNXB1ah9ALcN0oDRrI2dnWgiuwmm+Jn8e0E8C/LO//waPO6Eshdp7gMkgDghoBZkg72YW9o41Qu0AETw5lgVkXkgbAN0cqUJtASQYnxxtwVVopJIN+6nbeG0jJ/+TmQ6caQVlQSASMAmmtMRvxiNnOoA0xAJq70gNFoPeeJVlbK2rgyvjidBeOqUTuksL9nEmT59D9BNb+QfPvoEUpyyF6dCx3rDeg7EqiIEU0CLknVCODTHI2/gub5T2UtBpXo8BLlhn+LLiKaRgWaitUBZCGmNBvUxf1NjN+8kr3/veW9wbYDwOkXtv6CbdXnv4LqyeG2kw8qbiSdBxBKAuEjoa4s7utOX6S4nNy6FNcvyvvZO3grVQFkIehDQ44lDR0NjnGcsk3isFKaEVa8Gzgzgyb03ewfLMWL2/Qbcj5WTBeNIyHSRcBctw8o/P8P0AP/8am5cW2MJAAANaR6coJGsEKaHB2gnrl5XTdPVFYM/rwIva8Nv/8vucPIWyElxmjZSZWXFchetXE9PykHZjTEu5u4lDHpzxq08YHjSsnyQ2rzqeHLH5uiFhraNjVDISWyoV1m+NfKW5uAP2nfVD/uTbv4MnWF767XPEQxuIoTW0oxOUJVzeF8TTrbi1RNVa42hZRFW2M9jLkEFdgTcB6qZ4rAm9tTuHUfmL818NYINP/NH3v0m/CEF7Ch9yDerTXihN+JVUyNugXicYj53pyEk7Ie+FsnDqIqovb4Q0F4NnqK2DCTKBmASDMwee4p6P/inx3R/9StjFD4YVbgEmj1EdLuHC4TOQNgkE2isoPeR9MJQGoX8R1YeHTsoioRV0nLXTh7E210I5CK1JjUWLxX1c4zUdwP6RB2Nfa684ur9h/+EJUiENUBuwVvA8r6ZxSgvDSRimFmjWTrNxtN5JrHSCNVA7qH0UQu0dTzNjidsikhmYC7MJCy6CDqCKMrmz2fThQeF9oKGj2jvW+C3ltQuv8QT9hXHwwZ7uxYRLgNIaYA+fVbqLYN4y5LVQjireWDBV7opF7EbPjmcoq5mxv7r8BfSDnryH7kUgsByCxOO9dwbqTKqgSt4K+xMF6ZiWyuZJVNjiEzh8VnAhJJFjsdORI8uKF8Ebx9PcWzNQbp4jNNceLU4Rnm5eChefIE3RIizP26izKSYnrSZYCZO0tBeJ6UgYjxP7h850r4DDdJiobYM1wepNs7bTEUmGu+KNUxdhpmkIadxsqwCrZ05e+8D/XT2guQ7nrXMT9jw33Oy4OHk1IWqUfYO3xngcrEEY5fLRhmlK1HHJ7nEUgxaYDp36YKLpJ9wUd4ca1egJ6iL0lXbxvOlQKAvQH40tH/3rE8SjNZRliN7SjeMDyalFMVPQ+KwuPyd6gWFowOVO2DUKYDqpSDbqlEKmJrg43oR2a++URRQKs/9ahvxhucfB+/NNDuaneDBmzRxzJoVJqY3BnK+kBvgAIZSrFlsUVHxOCREY0dCsJseq4CbQhJ9ZnotAQnOWYPXjSnup5GYuj/bS6c/hszdn87ypmpkhiiCmwWJyXOc+N/uVDAqlQUqI3TpurxVxyrqJBWYDje9k3s4w9PDA/nyi9C35pXzJ9iXh9D8r01LIW6V2IcRmB2lIlN5DmB7R2Zoo69pHBd1YCcbt9tY2OocMCd9k1MH62bQKSJHZKgJUWUba0LGyflXJX0oD01d2lKcdrsLiE2f3UOjPnWYb2zbcU4aTGcgmkqI33PlRe7elcMe4j4JuoiWVlZOuU7S0/Rytm8h3kfUFHR0x5/ADIx9ry5uvPOe911/j8Q8HxGA46cg76M8r/ad7rFHOfmlFfg7DCeweOd2LOSzOevRVwSfFhoQ66BAPd4XpyLBlJV0nugtl+dzJe2dcCfvTiNhpH3EqXe4YD1bkRhJ//sZf8+3f+jr/9d2fQ4qxOGtJozPcS6A9/cdbHv/gmumoBRUuvtrSrp3jt3dcvrFgWs3l1BhaEt0FPPzvPVdf7vjsTejPlNP/qNTe2d13Tv53S11k5EGm9onUBvPN1pCLK8QehvO/nnv++PEP+fX+azRn14iDFmd/pKxfaWhfOeL43YnubIueX5GvHyDuSDHy3rBGkX3CF5W8FVYfV8oicfDRhFhDu66snp6xf/0hzUaYjltwZ39fSYPTrKP6+/OC7/fknYfzz+WHFkPGiTRGJeatMx4K12/A9RsNzeUJJ28f0X86oWNleKln/UqiHFXS/QFRY3iQGc5iJGtf7Omeb5D9xO5nThlOMuOBUPqI1M3aaa+jOksntGcbMKd2chcU1zaAOXgIsvRKe20sz4yDj2boxcgbo6wS4+OGzcvK9mXDO0PEsZqwDMN9QWpm/+CAdm2MK2XzRBkeRDHlLTRraDZOszXGQyUPjn52jdXK6T98fDNXOv82HiLVokHvnBc/qyw+UfIOcKe7rEgxPCtTL6y/NIO6N6LJEfVIB41hSSkrYfV2oTvfs1Bh9eNm7qPCtNI58TrDseIiNNsKpUCt8NkVOYliXvnW029yerGBqdCsK3mb2J1GSKydgCi1c6x16tKgG2kWE5qMlAxVp1aFE9i2xhYYTloO389hCXIT0yMo1Fa4fCPRXjnNBrrzCa8WvXQYgzFFWP/zKQ8vnyLLJZ6ENEabij7mePYY45aV1FUQJzeVVR8jW6lKkyoHi4H9MmOm7BeVs1ebOK+4VmQKSeStIhYWkfbBXPNiG4wB1IpWNwwnbwFzvGuovSLVb9vSzUp9ngmtCn0/0bcTqzaAmQsijorT5UpSIzcF6SveVabjehuFrIl76jQnizFYApAUDTgD/N2uZ/GJQ61430UGm/tYOCiRHEpkNM0ROceS+XSd2e8brCj9cqTkSrVgz12i15pGC5rvWxcxyjV+N43RNpAzlIK0DblQ+cvnX+fonR00GZQ5JIaNxCmOIwl0p5hDVdjPDAGoGqkLsMOYKSUxaoqoM6Tb/HXTU+V2bBPE4uDFugYFRATMI/O/tjxnOmxgKiARR27+ItnGtIzO7BWhDgl3QdTousJqMSDiiATQMmZslyOV1C+ekUVD5XZncGY2DS8F3FBFeK3/lOkwQdvgWSndnGLl7sdpjAeQQheSDLcbrSq7oSUlY9kPiIBXuY3kEZ3ldujQMpv6zWFQAr3cQr2ZSuazi+989IscvrMGUXRf5jT7ufGqCXBSiLMHcXJbWSxG2lzJ6W5+W+87xnVLWhSsKG56F4vm4wYdZ0AaaVmLI6XiSSEl5GCFGs4vP3iP3ZMlkhTM5gMOj+qxu8H1tntNSq3KVFJozpRqiopzvNhz9GBzeylFb+N2RJvIdDKfMrpAs66wHwJU2+CHy9jK37v/fc7fytC1IKGFunCk3M18nufgV6I6bZvZb1our1Zcb3vchbFkLjYLNpueWhTfJ2SKLdSB28n7hq2bibx7MYS2AHJmfHQQW/kkLXj8a8/Y/ftj+g+vyYNjC2ffGKsPlenQ5wjs6CSYhw7coQK1VaYpYWMCdXyb5xAZDKVBbhdHiW7iM6VpdNJF6Etyxg9XvPMbLf8PIv6JdjfdPZsAAAAASUVORK5CYII=\" y=\"-21.80778\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_7\"/>\r\n <g id=\"matplotlib.axis_8\"/>\r\n <g id=\"patch_18\">\r\n <path d=\"M 221.100194 59.80778 \r\nL 221.100194 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_19\">\r\n <path d=\"M 258.589849 59.80778 \r\nL 258.589849 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_20\">\r\n <path d=\"M 221.100194 59.80778 \r\nL 258.589849 59.80778 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_21\">\r\n <path d=\"M 221.100194 22.318125 \r\nL 258.589849 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_4\">\r\n <!-- Fear -->\r\n <g transform=\"translate(226.888772 16.318125)scale(0.12 -0.12)\">\r\n <defs>\r\n <path d=\"M 628 4666 \r\nL 3309 4666 \r\nL 3309 4134 \r\nL 1259 4134 \r\nL 1259 2759 \r\nL 3109 2759 \r\nL 3109 2228 \r\nL 1259 2228 \r\nL 1259 0 \r\nL 628 0 \r\nL 628 4666 \r\nz\r\n\" id=\"DejaVuSans-46\" transform=\"scale(0.015625)\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-46\"/>\r\n <use x=\"52.019531\" xlink:href=\"#DejaVuSans-65\"/>\r\n <use x=\"113.542969\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"174.822266\" xlink:href=\"#DejaVuSans-72\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_5\">\r\n <g id=\"patch_22\">\r\n <path d=\"M 290.369159 59.80778 \r\nL 327.858815 59.80778 \r\nL 327.858815 22.318125 \r\nL 290.369159 22.318125 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#pf7a5628c8a)\">\r\n <image height=\"38\" id=\"imagea5a02853b3\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"290.369159\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANGklEQVR4nG2Y2Y4k6VmGn+9fIiIj16quqq7qZabbTXd7HbCNx4yRsABb3AAHvgDOOOFCEEJcA+ICOOIEAxaWZeExeBnP2N1d03t17Vm5RMb2/x8HkVU9gwgplZHKJd74lndJuft3f6uTT4T8KCABlruWs/cislGDgHWBNG3ppzUhGsrG8Z2bn/LHo0ckEnjTjvl4ucdp1aeOjsS0lMHTBMvBfMhyf8zosSGdRaIV5neE3Z829B6foFnKxVcnHHy/pTcuURVElGrlcWHccvaepTh0SIDiToPJWxCujra1LDSllzS8v/ecPxn/jqFZ8brZAGDkSuZNRlShjg4jCsAwq1huV6wWGWAwQSl3W57+pZLv7xEdlHdq8vEKABFFVUh7DQ4BHbSsBm33ptUr5CKACs61bA2WPBgf8cHoCdfsglI9Z+2Al9UGv73Y4WA6oq48sRU0GGgEN2wwVqk3I9Ja0qmQP3esHlbY98+RaBiswQCovgXnLisjAqzvVNbPxkRuXLtgtz9j7Fd8c/iMiS1YxpTXzQZPim1+8vIOq5McuzSEXgQD0grJmcE/8ay2FfJItRNQa0kuoP9RSvEHkbxfXoG6xHAJzl2BApA1KAHnAw93j7g/OCI1LRt+Sd9UlNEzDTkH9Zj/Ob5BuUghiQRRsIo4BVHazUh82qP/Sih2DWG3pnIKYvELIfm4R/W1QJo2V8C6TnXnjv/nMEa5t3PCNyfPGbsCi+Kla3WpHoAiJqgKGoX0RULoKaEXcXODaaHaCoTdBj9PsJWgPkISaMqsu3AhVK9ykruzq/ZddmrdSv08KoGtjTnfubbPreSM3FRYlFI9jVrK6MlMw2q9ee7Igyh6s0QUmtSRHDqSc0tzM1Bej5hKyHo11kRmA0fbeCRAMjUUy5T+oPwcqM9XTBQRxdrIe9deczc9ZmKXTEwBQKOOWi379Q7z0OO06rPaHxH7kQ+++zH38hN+NbvBokn5dHyNeplAEMxOSagtg6zCmshq4GkrS6wMphb0IkEGZQfqatYUdzX00qHt5xUP80P6pmJiCvrS4CVSaktAGNqSx+V1fv7pO0weC9X35nxn/IRNt6BRy6tywnHep0kblvtjQhD6WwVb+ZIqOPq9mmnuCaXHtIJdGNpgsDZ+fpz+7ybeHF9wKzllYgq8BLx0X8ilZSgNt/0pt5Iz9namVBOh+nTIj84fkEnDrM1oomW+6LF4NsbWgp1bNvsFI1/iTSD1LTYNxESJXpHQ8aQzEbvuWreVKui6hmKUO/0zRqZkaEoyCWQSCAh2XehtU0D6hh/c/pC///Kf0ft1jw///Yv87N5tmmmGBCE5NaRBQKHZDezkczaTbiQWdYoAahW1Xf+akx6zok/YaBhtLbuKTTYXPHjnkMnGkiRrebd3giESPkP9pVpqNQSERCJ9qfn93jP+5hs/ZPDdI+qNQHzRR2rBFIbooc2VehLJry+5lU+Z+IK+6xZARBEVVEAN5M8toyeQPU9YlR4jivvr+//BveSIWi3/fP4NxnZFIoGoBm+6Ng6lpUFo1FCooVFLQuDb+WMePnjN07vbPFpd56QeUAXH8/kGr99sgCjvbp6z4+fktuKs6ROi6TZPu2oJ0Ax0TaLQzFPo1ZhdP+WGm3PPn/Pe4AUjs8JLi5ew5i/oGyETJSAEhFI9uWnoS0tmGm76M7412Oed3hmbSUEdLNoYru9c8HvDY24k52y7OQbFmojzAXUKZk2sDiSAKyA5dB0NTUOfT9QQMSTrCzXqyNaEmq2peGwsmQROQ2SKUETP2FRdq2OCRUml5elyk9PzAbRCagM7yZzb/pTTMMCZgBHFmHglf0TAgF8otgIJwnKZ4JYx5bgdcifpZssQqdUSkG6uNJIbSyaOXAxQ8qx1PG1H3Pan/Nv8yzxdXWMnnfNkscVHn97AHSdoFnn2Yovf9Pf4au8ljToskb6vO0BWUVmbGIV6IgxeRJI5FG8yXCY1X+m9JGCYhU4urEQyCfRNpAEsQvezyobJ2LZzfrq8x3E74h8/ep/0lzn2j855f+85k80l85MEtzA0TvnJ777A7fyce1mnuVEFayMmDah3aBAkQkhBjWAa6L8WXMTQqGMWs6st9BLwRDxg162stL16/7qt2UumRBX+6ms/5tWDCX8x+RUW5UY25V/Th1St42zaJxaOs7rPdZ/hTWDgK/ppTVl6mjRiavsZ8VGiCOm54n58cZ/H6XW2/Jxdd0EmDQkBK0oDeCCgBAKVRso16X0ze8pxGBIQ/jDf5wvuAoBplvNh9g6vZyNQ2L19Rmpayugpo6dnGzayFYsypTGKWoXY9bQadWYymSnmQf8NZ02fH53ex0sgMw2ZtAQVGoVSlUo72vAIBggKE1Pz1eSU+/6U225GBJ61I6YhZ+RLFkXK3vYFt4fTjlhDylnd57zKOS97rIoUaU0H6rJice0DA7ihKfnPV3dxJuL3WhK6zSnUMV8rfam+4zVp6UvD0DSY9UJtm+4zS1WMRDLT8MFkn5u9KR9d7OEk4kzgaXGNg2LEsk4oqoRQWmwpmLYb/miVbNoBq/uC+4ff/Cn8YkT+wRGJBLwEogqnoU/EYIgkElhqwqt6l6NmhEHZ8nPuJYds2yXbpiUTIZOGTBqetVs8WWwxqzJu5hesQsfmqW1ZaPrWIVeCK4SYdBuKQu+kYfUwxfkfj5AA47S8MoOnMee31Q28tGy7OS+aTZ6WW/xutsOiTjGibGZL/nzLsvSnWH/Ku07YNhWPMDxa7vDfH9/BjytS1/L04Br5r3qkp8pqRyh3Ir4U0rO3vj56JTowdaQegxvvt1zccWz3FuuWJJyGAS/rDX5xfpOnJ5v00ob4w02yc2X8qODxD3q83C6Javj+9m/YdRecxYpSDcftkGndgyRiPx7wbJhja+HaRw39X7/h8Hu3UGPwi47x9XImVIi+m7P8UHESumEDCGrw0r0Y2pKghuo8o9IeQwduFaknCRLA+8AoWa1bb9YkLkQ1JKYl7deUNwxSWvxMCKmh+OJ11ELvWFED5ajjLaQTAtMqaoTxpxVOLZha+eXRHvOtXkewKHfTY/xOILUtn7y+zvKWoRlY2tyQvTvj63uv2MtmWOL6psCgjG3BtbRgY1hwYZS6drTb8HIvwV14/FJQsxZuifiZAQFTgS8UiYqUcZ0rDSyejfnw3Tu8P9gnIGzbGff6R3zQf0S8bZjGnNN2wMt6k9fVGC+RvWTaJSf1NJRYUXb9lFvZOU+TTbbzJS8vxszmOZMbM+5/7bhbrLLP0WzA6s0AXYJpwS/Bz1rUCdKCi7YbwPTU8C8vvsSDB28YmpLX7QaNmzExBaP1xT9Z7fFqNaHvat4bPmNil3z2KKIjk4aH2QGLjZQXqw2+tfucV6MJjw63+dn+uxgX8T5QFR6zEtQoEgRXKBJBRRCNuJBIZ/kVzk8HPC6v8/X82ZUKlOo5DiPeNGP2kgu+2Dtg2824Zrtl6Uuz5jpLqe4q3n0lf8XAVszajC+N3nAzn/J4tn2V2AHCYC1JCqaBmBjcsgWlAxatEB1QWfaXW3yp95ohKyZmxdA0wAUP/RFWlLAm3cvzRCK1Gubqmcaczq2MaNQydgV7yZSDekKjljuDM65lS46KIRerjGk7QKJd6yREL1cezV1KgQRBgrBoU5YxJZMeViK5mZGJkkqkUsiNkogQVClQajVYUawqhki2ruBJMwDgXnbElp+zCCnndY+Luse8SqgaB/qWMtqsA6YiYAUjsSujaUCl44+oQmZqvARKtSyjodBOJy+9gJe3Gtc53U6O+qbiup8ysBUBw1noU8QEI0ruOtBtsNS1A+02FIHohOje/qYTVUwrmACigjORRh1hzU3NZUVQGoRsnZYi0FU+EoGoHYddfi+3FZU6ipDSqGXZprRqCLF7xNZAuGR+rv72EtWuYqZZ590WCOAkUqojYjqroq7z+uvZaoCgSn2Z+YClOmoMtVoaLI26dSYNRIQqOlbBM6sz2mhoGovWBqnM2/gNmEYhdCTrbKNED+oEWxpOyz7V0DMLGZl7u3FWtMuAKGtDQanCNCa8aK5xGgZchB5juyKqUMSERi2LNuW4HvB8vsnB+QgRpS48NAaJdMHXCW6l2DJi2kiTO5ypFe0biOCWwuODbe6NThjbFRNbEDB4wpXklGoJRIIKhTr26x3+6c23+eRgh2blefDOIfdHxxiJRDWc1XkX5w4nyHmCNIJbZ5HLXGlLsJXiyoC0EdNEnIQu3EmEZAb1ccovtm5wPZlxOzllGvIuZ5qC3DTdoKMcxx6nYcB/Le7yycEO+ryPD/BofpPnextsjxYMkoqiSTiaDnAHKcm5YGs6auLtczpVXKlIE5EmdDxmgl712ZZK79BwuDPm0WiHLT9n280oYso05GzaBSNTspTIR9Utfr28yc9PbhNe5/TOBAmQnViqiwEvN3NkXGNdoDnLGJx0Xt7WEH0HSk0XQJK54lZdGwlKten5X5Eg/0/xEDPTAAAAAElFTkSuQmCC\" y=\"-21.80778\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_9\"/>\r\n <g id=\"matplotlib.axis_10\"/>\r\n <g id=\"patch_23\">\r\n <path d=\"M 290.369159 59.80778 \r\nL 290.369159 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_24\">\r\n <path d=\"M 327.858815 59.80778 \r\nL 327.858815 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_25\">\r\n <path d=\"M 290.369159 59.80778 \r\nL 327.858815 59.80778 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_26\">\r\n <path d=\"M 290.369159 22.318125 \r\nL 327.858815 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_5\">\r\n <!-- Angry -->\r\n <g transform=\"translate(291.380237 16.318125)scale(0.12 -0.12)\">\r\n <defs>\r\n <path d=\"M 2188 4044 \r\nL 1331 1722 \r\nL 3047 1722 \r\nL 2188 4044 \r\nz\r\nM 1831 4666 \r\nL 2547 4666 \r\nL 4325 0 \r\nL 3669 0 \r\nL 3244 1197 \r\nL 1141 1197 \r\nL 716 0 \r\nL 50 0 \r\nL 1831 4666 \r\nz\r\n\" id=\"DejaVuSans-41\" transform=\"scale(0.015625)\"/>\r\n <path d=\"M 3513 2113 \r\nL 3513 0 \r\nL 2938 0 \r\nL 2938 2094 \r\nQ 2938 2591 2744 2837 \r\nQ 2550 3084 2163 3084 \r\nQ 1697 3084 1428 2787 \r\nQ 1159 2491 1159 1978 \r\nL 1159 0 \r\nL 581 0 \r\nL 581 3500 \r\nL 1159 3500 \r\nL 1159 2956 \r\nQ 1366 3272 1645 3428 \r\nQ 1925 3584 2291 3584 \r\nQ 2894 3584 3203 3211 \r\nQ 3513 2838 3513 2113 \r\nz\r\n\" id=\"DejaVuSans-6e\" transform=\"scale(0.015625)\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-41\"/>\r\n <use x=\"68.408203\" xlink:href=\"#DejaVuSans-6e\"/>\r\n <use x=\"131.787109\" xlink:href=\"#DejaVuSans-67\"/>\r\n <use x=\"195.263672\" xlink:href=\"#DejaVuSans-72\"/>\r\n <use x=\"236.376953\" xlink:href=\"#DejaVuSans-79\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_6\">\r\n <g id=\"patch_27\">\r\n <path d=\"M 13.293297 104.795366 \r\nL 50.782953 104.795366 \r\nL 50.782953 67.305711 \r\nL 13.293297 67.305711 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#pe59183138f)\">\r\n <image height=\"38\" id=\"image6f89b9a200\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"13.293297\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALEklEQVR4nE2Y2Y4kR3JFj5m7R2RkZmV1kc2lySExoAYi5wfmab5BH6BP0pfpTQ+CAIEUiBmSTXazydpyicUX04NFVbOBQFZ1RWRcN7927zWXv//bf5gpDG8nwt0FyQWWjOVM+ZdXnL4cKBshzEbthbwVyg6/tkbdNjhkXn545Dx1jMcNNgYkC+lB0SJgAKAZ0hlahLrxT82w+8VoAdLFmK8FC0IMYwUVaAa1YkERMzjsaX0gbwUtIM0fbAlaFsIEkgVdlLJ0vDvfOIBgEAxTo1wJ8eSgMLDg3xUmQECqX2E2VKElIcxQN0YMuWEq/nCK/tkatu2pnT5XK46GBUEqpLMRL1B2gjTBIiCKKRjNwUXDktGiICswqlEGQTOE2ReLOaDu2FiuBDH//2iyglLB+oRcZtj0tCFRN0rrQdbVhsVoEeZrpQzQEuQro+wati/QxK8qUCEcldYbrC8TEaQ5JTDQxStXO0jnynxQTBysmvpNUp0Ikgu26Si7xHKltLAWMYA0Q7Pf25IDjmehfxcIt8mrsl79m0gdvGoW8CuuVOig9Q5KF0Ma6NII2UgXx6G1VwdlvlUA1sXnbUxnQ5d1xRUO3x7Z3Bmt92rVjdF6Y/OrsvmpQ8+BeAxggnw4Y9FADYuGRTCF2nnla7cCVghTob+riHlDxNYLbVbCCKhiQan73sv0RFB7qk5FcuXmP19z+PbA9NmW4+eRuhGkwc23ldNngcsrY/mwMgwLl1PCgoH697EIiHckPYg5v8LjRBwi+Sr4u1oUtDavmAqIYNFb1lb6WYCy8V8ufz4Qlj2bf96z+58jmzdXnL/cMx+U06vA5TMj7w0bKuOpX7sUr5oKNol/BmhAbdCi0PonKhgmQjQBnSs0EDFs21M24ZlzdeOdaGKMH6d1CwL3X31E7YW6WcErjH+qWF8dDGBN0E2hFUVWOWu9oVl8C1aAl0+E238/IA36OyGeIYZsSGmuXVPFUljJvbb/ygFpsOyFlqB2Qh1cJMtgtM5o+0rYZVSMWpR2Tsim+vaZYN5qPP0zWf+kq2R0xu7LR0oJ2H9dEeOlPWuX5EK96tFqVAFTeSZoi0I6GbUTlhf4diWjDRWiETaVlKqDmgOooalhBhSnyFPHSgPNrlmIg4tn4fT7Fn2M9AE0zNUrlutzZ9ZOyTv1h4LrlbT36h9mHNSuIn1DVgA5B/KpQy4B6SshVqytRM3iFVt3QQtIWeVFIMwCJujiAhwlN6/WnGmHLa0L1EGpaeWPwe61sX9d6B4zNOP+X7fML4R2ZdjiC0iHmeWhJ91G8nUl9YVaApYVmjsEc/DFrguW4l1vwd8THgLpLOgCEUDm1bhTwKJQen0mtRbY3DekGZKdgwC718KFRH8r5B3MwdBzoAWI1wvDJjOOQguKVd926gpw5Zaw2tIKtG4buQibdxDdw6rTLCktipO7d35p9octCvNHG46fRy6vnLnhIphCS4YcI7oI5cPMB1cXVCAn/94iARsjUuVZzyys3rvyzh3F/y4NouaKNIOgmAp5H1gOwnJgVXVhPij7nyt3f+l4+Gtl8+rMdOmwS/S2B6hCSSDRuEw9IkaKlRgrkySKCUZAisvPU+VaclA06N8F0gk0G9GiUj/Yo5fFb4yrQq8/ixnjS2H7bt2CZMRY2WwXxqxu2NEI+0I9RWxRptX5y5BpNdCqoF2lATYrLQlSIJT3Ih4mp834qTG9hJgPHePLyP7HmTAVuse23qxgQuugbGF6ERh+bxxPyuXSO3Z5liWs+SNkQRYHnOewRhOBq4yEhgWhdYZUQet7cdYC4WzoIlxeGbEFYT4IuyhgRjoXLEbKICQR8pVXbjkI/b3RPSjzJ09cMdenRWm47SDiLmKrRIggRajRjZ0GBHeAVlzPMAiTsXtbETPiGInjR5HDD4V4P6OnEe0C8SQMIp4uTsL4sdCi20g8wzgHtK+IgJzCuu0NmQLhrF6FuFbqqfOKghqybr9ODtLUEBM2D+4+8VK5+d9M3L9ekGo8/PWK7ZsN6XEmNSPMjbIN1I2iNVA7L3scDZmCx5hLYPjVrSsviTg+Zbs1c3UQJkFnaEelRWP4VejvDDFj2XuUTmMjXhrpWNDsgh+lGVJtFVQlPYJOxRNAjNROnv3s7mtl/4MRj0rulfQQvBrA8KsQRtBizzYz3whxXEOmgQ2ueS0KLQk331W2P49ufZtIvBshKnWbiLUPbG5P7F8rqFD2HaZCdzuyGQv60UCLwukrxdS4/sfC5iFy/DzRP5injk+8y+JkaIE4Np+odsL2rWf582fC9o2RTvDiuzPzjWe+x6+2dMdG95g5fnNN6R10lNJoQ6K7n6lDIh8i44cR/TTRHV3xayd0R9j+n6eO228C8zcjZzXqY0c4Kf2tcvihUQZh99PE/ddbXv73Qlgaxy82zJ9m5i8MvY+8+9uAZGF4q2x+M/IuML0IiBltzYHRoqdWvSzEqbC8OGAK51fK+VOlv/cc3v/UyINw+ShSeyOmSp4jrEnB1IeUwz9nEDj8Y+b8quP0hTK+akhRzIw2NKR4U8ULaAWdPfe3IM8SFMughEnRFNwL1ee87dsVvXp6LRthfiGULdShEQBRIz4GugehvzVM4PinntrB5VNh/MuMxkabAzIFD5BV0FnoHjxGxdEI2cjb1d6C62OU9odIHQJSoQzCfLOWdPKuL1tYboyW1uEjVfKbLWHy4Xe5FuYbI78sDB+M3OwvpKnn8XaHjN7FriPQ3SvpaMTJEINlrzgOqL0vPqbT6pW2jm/rp4n72JIgXxtl37BdefbFaewQg/llBQK1M/IHlfAQKbdX/LLd+bZ0DdutE82ixIdAOkMc8UoNimYfhGv3vgBR6jq2qWLJDVazP1htPV+YBdkIZoKmSkOpU4C+QdeYv8poMIIYbau0JpiBBHNhNSArOvq2S1lHN1WkQd76lFU3ngFrb0RdKojQkqK5PZuqVPczCQ5UZ8HGQHvyviKQmo94YmhwJ1BtWHP1r38AJYsfssRpDYcR1tueU2y+8hkiXuQ9sLqN1KCEpRFnl4iWVleRNZqclBL+YMzN/bItAav+FgkNM8GqeyjVD166e6W/dRxanFstgomgxRg/FsrOkLpOSnqcKB/sqH3ABMLcSMdKi4E6uGWYgiRPADoprWuwTtio8XT8gZgPImUtRYP0GOjuhO7RF4v4IcpTvNIM4yfCct3AhJCd25Fa0anALkL0sBjmRroIeRBs5/HEslCDxxJQGs2DubgR02Tl02rcWRh+DnTHtUoZMKMO72dRzZD3zilds1kche0v5plfLzP28UDtBQtKmNxUBxUuQX3oXSOKiSHBR3szW6dYgazrFoMUYftToHvwieppAJlvvGLSIF5guXKjR9bqXjwEXH8/EqVUqM1bdusHeLVXtBjx0tj+5qFxOfjUHKtQq7+8btdwWD3mSA5098r+RyNOjTgay5VSesgHF1AxF9Hl4JVC/Lusc37dfFtJ37/xipEL3e8XlusDZafES0OKoa2huYFF4qQsV86NpELtYanqo9e64s1vwtWPje5UCWPj8kkib4Xleh1oElCcQ6Z++qOLYGrEk5DOsP15ckvCXFxlXBjeTEwf989RxqcZIZ0rcWz0j/JsU8uVEib/2SJ0D8b+57JmqkbZRcaXPgZqWYm+QO2h7Jzo8eKuYdGb7Pr7Qnr7gJVK9CjckFKJjxN9VFCoSTH8ZEaXhiUfr+Liud10PXArRlhg83smPS7InEGVu68HD4sJ0tE7233WD/K6e6F7dJ5ZNPo7Yffd7Xqqqfw/Oo2y/rYBcwgAAAAASUVORK5CYII=\" y=\"-66.795366\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_11\"/>\r\n <g id=\"matplotlib.axis_12\"/>\r\n <g id=\"patch_28\">\r\n <path d=\"M 13.293297 104.795366 \r\nL 13.293297 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_29\">\r\n <path d=\"M 50.782953 104.795366 \r\nL 50.782953 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_30\">\r\n <path d=\"M 13.293297 104.795366 \r\nL 50.782953 104.795366 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_31\">\r\n <path d=\"M 13.293297 67.305711 \r\nL 50.782953 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_6\">\r\n <!-- Surprise -->\r\n <g transform=\"translate(7.2 61.305711)scale(0.12 -0.12)\">\r\n <defs>\r\n <path d=\"M 3425 4513 \r\nL 3425 3897 \r\nQ 3066 4069 2747 4153 \r\nQ 2428 4238 2131 4238 \r\nQ 1616 4238 1336 4038 \r\nQ 1056 3838 1056 3469 \r\nQ 1056 3159 1242 3001 \r\nQ 1428 2844 1947 2747 \r\nL 2328 2669 \r\nQ 3034 2534 3370 2195 \r\nQ 3706 1856 3706 1288 \r\nQ 3706 609 3251 259 \r\nQ 2797 -91 1919 -91 \r\nQ 1588 -91 1214 -16 \r\nQ 841 59 441 206 \r\nL 441 856 \r\nQ 825 641 1194 531 \r\nQ 1563 422 1919 422 \r\nQ 2459 422 2753 634 \r\nQ 3047 847 3047 1241 \r\nQ 3047 1584 2836 1778 \r\nQ 2625 1972 2144 2069 \r\nL 1759 2144 \r\nQ 1053 2284 737 2584 \r\nQ 422 2884 422 3419 \r\nQ 422 4038 858 4394 \r\nQ 1294 4750 2059 4750 \r\nQ 2388 4750 2728 4690 \r\nQ 3069 4631 3425 4513 \r\nz\r\n\" id=\"DejaVuSans-53\" transform=\"scale(0.015625)\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-53\"/>\r\n <use x=\"63.476562\" xlink:href=\"#DejaVuSans-75\"/>\r\n <use x=\"126.855469\" xlink:href=\"#DejaVuSans-72\"/>\r\n <use x=\"167.96875\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"231.445312\" xlink:href=\"#DejaVuSans-72\"/>\r\n <use x=\"272.558594\" xlink:href=\"#DejaVuSans-69\"/>\r\n <use x=\"300.341797\" xlink:href=\"#DejaVuSans-73\"/>\r\n <use x=\"352.441406\" xlink:href=\"#DejaVuSans-65\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_7\">\r\n <g id=\"patch_32\">\r\n <path d=\"M 82.562263 104.795366 \r\nL 120.051918 104.795366 \r\nL 120.051918 67.305711 \r\nL 82.562263 67.305711 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p7d07d61ff9)\">\r\n <image height=\"38\" id=\"image0c10506ba9\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"82.562263\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAOKklEQVR4nF2Yya8k6VXFf98UU44v841Vr8au6upu92DLtoxLMjYWIC9AYIyQkLxih7wCwRaJDX8EC5CQgbVBAoSxLTDdprGNC/dQblxd3V3zG3OOjIhvYhGvqhGxyVBkpuLEufeec26IX/7cn0Y1WyMaC9aB0eA8t/9on3M3Dkm1Y1GnDLKKV4cPuZof8ebsCvcWI2qv6CYNHd1wuXtCV9XMXcbCZdReM7cZfVPxta0fU0XDT8sLhCjYTuYc2x6vH1zlcNoludXl0jc/ImwOEI0DH5B2mBK6KTExoBXRaJACVCQ3FusVu90FG2lJriwzV3Bad1Ay0E0alAhk2rL2hqktkCKSK4sUkb6pOJ9PAVAEQhRIERmoNVObkxvLtZ1jqnGkubJNFAKcJxqNDlpQ7nco7oGqakRjiVWNWko+OhzRKWpybembChsVJ7aDFgHrFVJEghSULsEFCUAiPQFB4xUhtteUCCgRSKXDRkVfrlEiEqKgn1SEInDycsb2fzagJMI6ZNNXzC5rfDcBpSBG8B4E2LWhl9W4KOnomhAFP52eZ+USJmVOiIJcW7q6ptANmXIAuCCpvGHWZHywGtNExVCWZ6zmrELKVrJoH45IFJEoBMIFolKI1RodBUgHs6sZW3cbYl0j0hRpIe3W9NOKvXzO2KwoQ8KySagaQ11rTM9T6LbHUunQ0gOwcimLJmPVJKyt4c5glyPdZ+lTuqpmrJcoEZiMCwBE4dl8yxJyg1y2rOmgBflxQFcBEgPlmubaDq4byVSg0A0hCpY+xUWFkYG5U8QgmVcZ1ivKNCFTluQMWEc3KBko6wQhIkufsp+0w2GjasGHFmQdNLFSCN+yjaTtsc7jBhHaazExEAOzKxlqp+T65jGzOuek6nCtf8TBuk+IgvWTLjuvC5pezuPn4H7fgw6YjsVWGqEiyYcpxSdPGXdKCtXQVxWntsP7s00+0/0AIzwfluNnLAsXkJVtz0NESh/Ry4bkcIVYrQGwHcFosGLtDLm2GOkZmva702UBASY3JJOXIm6rQfUsImmnjlrBzBAMTA76PJn38FFy6PrUXpNqhxKRvlzThJa93UsnlOcLxLrB9zKIEZ08WYCURCWIVQVbY6YvOz5RrBilq2eTtWkWfG95HaUC2d6KjeslAsiN5XL3FCM9Hy5HhF1B19S4oJAiUHnDd57c4Lf2f8KFYsJJ1eHI9RipJc93D+mqmtO6wwcvKrp3U4QPhE6OxDrEukasG0SnIAwKRvtTplVOKj076ZzPj+7y7vIcifKMOyWDzppEeVLtGCRrXJRo4Xll+IirvRMGpmKcrih0W5qnx3PZIfcnQ95a7NNXFRtmRSYtmbKEpP2NKwxoiRbWgRCIGMEHQqLoJK1ArlxCR9f84PQqp1XBZr56plExCtbO8NMH5/FecnXvmIudCT1TIYmk0vKwGmKDopvU/E+5yy/232Ozt6KjayQBRaQKhiudE34yDESjEDHiC4NGytaKnCPGiGw8q8YAcCB7dHTDyiV0k5qLnVPqoJk0BfMm4/69TdRcoc6t+eDJJr0LFZMmZytbEkLCvMkYJGvG6Yrb0x1eLB7z9YtvkghHIjxGeEoSLmfHdC/PqLa75I9W1NsFOgw6yMkCooJyTUgUSkakiOzkCx6WA05WBS+MDwHIlYWk5NFyAE5w8+a75Mry3Ts3eOffrtF97YSVTVEycL6Y0dE1A72GAfxwfgmAFzoHXE0OGagVA7ViEXL2+nMW3QHFuoGQo6udgmJeghCtZEjByaTL9njO5eKEW80+tdVIEamDZmxWdFXN9eERv3LzZ2TSkkpL+rzj7rlNQhQk0nOumNHTFSO9opANRnh8lHy4HvPzcpsb2WOOXZ9C1oQokSJSbkl6/ZxkUiF9Jgm9HJwH7wlJO8JX+m3Zaq/Z7i9pQut9c5ejRECLwFHT47DpcXe9hYvqmcg+1z3iXDplP5kwUCVSBFJpsVHR0xU/m2wz9QVGtBpWhlaglxcjwUgIoG0hsaOcdF4SncN1FOe3TrnaOebeeoMQBb2k9UkXJcEbTpouLkp+PtnjXGf2TI9CFIzTFblqQcx8jj+Tm4BgagtSaakaw6nvcCk5pgwpx06xkawRARaXcgZ3VmgRwSeSqCQiz1icV2ybhrurTe5MNxlkFY1XuNDSnUjP2huaoMi05WDdY5ytnknC05JLEfFCUgf9DLSNEhkV18dHfLTe5Hp6wL8vLzG1OfeXG9gNj7KCKEAvLkiImqybIxYrJp929J3hznqTsk4wytM4TSdpPXOUlgTO+jEKrFfMm4yuqc+ABeqgcVGRywaPPGNbnUUdyW42553pHi92HtHXFQBboyX3DkZIa1DLGh0/P8Me92lGOQmb/M5nfsjKpfzDG58ipoGySIlesB5UDIrWlgrdMEgqHi4HZNqRKE8iPVJEXFCsvaHyhsYP6Cdrpk2BC7L9n6nIVesWb86u8FxxTFfVFKrh05fv8TC5higr9B+8+B3+4m9/g9WeISSSv3//ZfQP+gwqmN2IpE8yooCtm8cMkoo7//gcq0uO0f6UvV6bqbq6PusriY1nWazOGWcr5k3OW7cvgogUmyUXNqZc6LSp9uFqyMPVkK/svkMhGz6Yjsk8xNUa/Up2n8kLiuJRRDaBy793D6Rg9YUbhETjMlANpMohRWDzvy3ZkebUblCdN/Tymp1ifhYQFQHBrM7Zypf89taP+JN3fp1L34osLmpW5/s8eLltgV7SljBVjtKn1MGQ/uUGve/fRWiFvmEc4ZUF/TdTlucT0rdSkILsqCLc6NJsRNJTwf1/uUR52ZLc1PgMVCnxXlI2hlR6jPQcVD1WNmFZp8yblL9ynyczjuV5jV6DmQsQsZUIl5Aqx8Gyy9+8/kXMUrD/4QwGXZq9IbIrUr5w6S5NTyFdZPalqwDowznpJBL2KqpX1lSbgXPflvQ/gPRUEC9UaB3Y6y1w8Wned2cTCE8+GnPrrascn/SYvhCZvAT5Lx1xaWNC52xQTtcFs0XB9n8FLv31PUKiKZ/fRFUODfCVjbf4jyuvsXWrZnEhIW6NoLFsv3HM5JUxg+dOSUZzitcaDg7GFEXNyDj2e9NnOb/2mkJbErUgRgHnp6zWKZv9FdefP6L2rWyc1gXH5YBl1dpWPMzQpcfvDJHWY+YW20uQAJ9MH9EMIlEJQgLL5wegWhYu/pNn8c6YxTrjcNFFyoD3EiVDG32UQ9J6q5Ge8szw93oLXtp9wqvjR+ylM0ZJyeOyz3t39ziddRh1SpbLjGQqkU1AVA5hPWplCYlEKyHZ1yn+aoX4V0l+EliPJM1nNhn/+AQza9h5U1L/rN+WaUvgcjj9hOLV8aNnTW+kp3aK+9Mh04MecqWIJqJWEtmA7UdiEkhGFf1OxaJKCQtD915EVY6YKppxznqsqQeiLSXAV1+8xfd3P0f3QYPLEpqeoNnukr5/yHr3PPMrAndtjZ8ZOrsrPrXziJVL27RxduTKcmE4xUdB/dYQEDRbHtm1pKljq7+kcpraapaLjOKepnNg8ZmmGSZEKWj6gslr/mNgXxv+iO8Wv0Az0AQlCEZw/GrGsNgjnVqKx5LJlmF0YcqlwQQXJT1VY6QnkQ5FoA6G/WLKVrok7D7AnsXraVNwui5aF/GKutHIhxn9jwJE8LmECNVIMXkpItwZYxLJy4llcRXSmSSdB2xHIX2kHiiyxyXDO4KoU071gE5iOdedERD4KDCiVX2PbxcSBUuX0ATF0hbUXqNlu703TlEvUgaPBMnCE4wgaIHLBeWuQPiIWsu2+QGMUPzSl29RbbQ+KEKk6QmqseTg5gBVB4Z3LJ33DQ8Ph5xUHexZqnh6pNKRyqfbuKLyBh9arwxRsLaGskpIHhuy04DLZbs6CnCpwBXtuZmJj4FpFN/Y/h7TTwQefUHgU4FZRdJJwHWgGRjMwjJ+15Hdzrn7eJOjdZeVS6mDfnbzEMWzmPM0KjVetSV0ivo4JzsR2KJlJ0qwhaTaFLi8LWM9ii0wIxQOzznl+eJn30VE2q0ltjummUeW5xSytKSnDaPbnuydnJ/f3+G9020WLmNqizZYBkPtNZVrP2unqaxmXmYsTjokJwqfQDCiZSqXVBtnYFwr3unVedtjPgY0ip5M+Or4x7yxf4Vw3OWsKkQJwsPiWpf+7RmFDzS9DtKmnFzRvA1c3zgiREEdNKd1QWkT7FkZrVeEIJAzTToR6HVEWqh7kmDOWmneAvV5ZLOz/riUT4fgZnbE5y5+SHnFEjQUR57x7YrOYduodqvA9hO6DxrMMrLzuqB8Y5O3j3Y5qrssbYoPEhskjdOs6gRrNU2ZMHxPkJ1EomzbxHYFrmhF3SxBl2C7kbIxLWNKnOGLgYHM+MPdb/OjhxdZXu6RTSTFskF0NOnME4xELy22ZyiOA+mpoziA5f0hb3+2jxg1ZHlDahzzZY4UEbtIGN4y9D9sCEZSHEcm1wzJIhI0iADlrkA6kLsV290lwj++Fv8va2VoMELxd6sN/vjbv0v/PUXvgSd/XBEyhe1qkkmD8BGfa9bbBlVHzMoTBdRDTbkjaQa0N43QeRgZvV0irUdYz3q/y/yiRpctKJeDzwT1EKqLDd/88p9/LLDPRl5oApFf65ww/fK3+LP6N8lOBWojIX+wQNgMnynMvEHVnuIgUu4kuEyjbKQ4aOg+CLhc4ToKs/S4XCEbhyyb9j2JFPhMIF1ENi0o4cD2Il96+T2um//XY0/LKhGkwvD1/n2+8av/zMnLgnqoqPa6oATJtMb2E4KRBCMRPiJdJJl7VGlRq4ZkWqPXgfWmoRopZOUQy3X7GsBHdNkOQNAgbSRqkPslv7/zXQYy4X8Blh9u7w1OFYgAAAAASUVORK5CYII=\" y=\"-66.795366\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_13\"/>\r\n <g id=\"matplotlib.axis_14\"/>\r\n <g id=\"patch_33\">\r\n <path d=\"M 82.562263 104.795366 \r\nL 82.562263 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_34\">\r\n <path d=\"M 120.051918 104.795366 \r\nL 120.051918 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_35\">\r\n <path d=\"M 82.562263 104.795366 \r\nL 120.051918 104.795366 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_36\">\r\n <path d=\"M 82.562263 67.305711 \r\nL 120.051918 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_7\">\r\n <!-- Surprise -->\r\n <g transform=\"translate(76.468966 61.305711)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-53\"/>\r\n <use x=\"63.476562\" xlink:href=\"#DejaVuSans-75\"/>\r\n <use x=\"126.855469\" xlink:href=\"#DejaVuSans-72\"/>\r\n <use x=\"167.96875\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"231.445312\" xlink:href=\"#DejaVuSans-72\"/>\r\n <use x=\"272.558594\" xlink:href=\"#DejaVuSans-69\"/>\r\n <use x=\"300.341797\" xlink:href=\"#DejaVuSans-73\"/>\r\n <use x=\"352.441406\" xlink:href=\"#DejaVuSans-65\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_8\">\r\n <g id=\"patch_37\">\r\n <path d=\"M 151.831228 104.795366 \r\nL 189.320884 104.795366 \r\nL 189.320884 67.305711 \r\nL 151.831228 67.305711 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#pa56993fc46)\">\r\n <image height=\"38\" id=\"imagea0fb90f1b8\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"151.831228\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAM70lEQVR4nEWYSa9cx3XHf6eGe2/fnt5EPoqkpNA2I8u2HCe2A8SAs0lWzj4fKJ8jiywC5BsEyC4L7wwkjmxZhmQNJGWK5Ht8r+c71HCyqBbVQKMbje6uU+d//kOV/OPf/YuqEdQaUEWSghHUCaaLYIQnv5ryvb//ks+uLhieT7G9EBcJ6ox0Frs1+L0gCao1+L3i9xnXKX4XUSuEmaU7s6zeh/n3b7g335JVWA8N9l8vWPz6C/TQoV2HVBXu+q+mVBul2mbsmHH7iISEiiVPHGSwnfDJizvE3uN3wngv8O7b19Q28mI7Z7dr6PYODPRbS31j8HuL2yv12jC5DvhtQq2w/MSw1jPcjzIX7Z7LdsfHP7nL4tcgIqgYANzNTyMomIOlWjuaq4r2VaJeJ/xmJMw8Ya6kYFEF+96WD+5c89ZkzTY0LOuO582Sm6YljI5UJ7qZZThY6itDbAW1nsl1xHaZaifMvxRu3DmnP+nIJtN8sCI9uof53WdIU0NKONNGfBVxdzK1Dxz6mtWmxqwdsycVJkKcJ3yVuLiz5tHihst6w8wN3Ks3GJSLes+r6YwX+wVdcBz6mjizDNqQawEMqfK4TpEMdoDpV4ZP2vu8996fuTff8vqDt7nz24S0LWjG5cGSjGKMEpMFwE9HqtOO/T0PKniXmLU9p03HRb3jQb0C4JArTt2ejDAxIwC3Q8sYHSkacptIgyPMQa1QbUpRkkAFZp87/rS8ww8evGD1nnJ5fkbebAuU4jI5CykVbFM0qArGBObTHmMy1ijLpqcykdaM9NkzqMOgfNpdcj3M2ISG113Ltq8ZR0ccLVglN0oQkCTEiYAqKLhOyU5wn7Z82Z6SLwL5fAGbLWINztURgDA4goKrIwLEaGnbnnk9UNtISJZl1ZMwBLXsYs1NmPKym7MZGtZdQ99VxM5BEsgCCuqVnCFXQpyUjqVakFiKq1fC/k9LJo+2pHmDE0Ga8gqAGCUHQ84GYzIA02rkTrOjtpGv9icAZBWG7Nilmtuh5Wo/Y72dEDoPo8HfWmwnpFaJ04x6BQexUWIDagTXgxowEfxGaY1hezZhf9+y/EjQGDExWGKwaBJIQtr7UlQzMvUjExuY2hGD8tuXD7geZxhRvGQetit+fvmUt+/c0swH/HIgPewZzjMSwXbmTdfUK/EkMZxnQgupgdiWrtS3Sv2VRxSkaZDFHGdtLvNVyAMo3idm9UDrRraxZsiOITlWzxf894s5J/e21D7SjR5nE7tDw7ivkL3FjIIJgtsL7EGyJdWKCUIC0iwTg+B2grGgFrKB+laobyM0Nauf3cPlbJDjTIrNaDS0dWDiAjEXQhyi5+cXT1jUPS92c7xNNC4SknnDZNdEYm8wg8HtBb8vzLODUG0hTKVo2iSjFmyA7CiEMEemWuHw/Ute/lxw6eDKkCUBnzF14mTS4UxmOzbULvJqP+Od6S2/PP+U9bLl0m8A6NURsuPTw12u+hmzdwf+cHXJ9uWMvrfYQTDDN4wEEwTpi5tIKghp2Rfq4PZxxbiAdD7ipE5lDvYOgqE9O7CsOlo3sqJl4Xs2ruHp/pQLv+NhdUOvniF7tqlhyI7fvnzAetXSTEe6TYOMpdNqlTiF7UIBsL3QXAvjSZEMSaWoMAfbw3CmjJcRMYoT0VK5K19++2TFadXhTSKroTaRs2bPJ9d3+Wp7wj89/IjGBA654sP1AwDW65b6swbbNzQTyJWSqlKYKMgo2AGa6yIhZEAgF56BFDJkB+IzYjMmj5Y8WlCws8hZfSistAMTG6ht5P5kw3fOX3P1asG/f/S3fN5d8J/Pfsjv/vAOV4cpF+dbxtNMtmBGmD6DyStBK4UszJ4Js6elhvG0QBqbUliYKtkq3zz0+NZxlAm7HPnBgxfUJjKxI14SZ9UeL4lH9RXOJJrHgd/88RFPdmf86OJr5ve+4BfzP7FKLb+/+5D/+vR9+GpCtRaaayXMDZOXguuU9WOIs/SGtRJLhwBMAMnlWWYd3DetvH++5juzawCWrsNLwqCs04TfHR7iJTF1Ix88/oofL//Mz6ZfcGIOJITH1Uuu45z3H7zgj+Yu60uHRsPky4rYwuqHicX9LWNw9LuKfHDIIIWdnRRYHQX2waI+4xCw88CPz55Tm8iQHbVEBnXchpZ9rDGifLq+g4gSkuVqMqOfeDY0TM1AQrhwW2ZuwPuEZkMC4kTp72b8WY+RgpFYRauMWsHuDSYemamKGvA3hpA9DqMsF3vOqx2HVHHXF3f3kuhSVebMBB4vrxhy4faT3Rkf+rf5h8VHzE3PIdesU8smNAyDJ20q/MpieyFXQrhtWK3rN4OOUXBafOnYLQOkWrEIEgWDwFvzLUkNQ3YEtWSEdZywjxXOJGoTWbjuyNLEu7Mb/uf2bZ6FcyxKa4Y3Pup9QpJgRkrAPA9ML/fML3f45QBWIRjkYEGFbMtsZQdaKeE0IRmM8YnLZssu1bzoFwVKE5jZgbnvedXPeTksuBpLtPm6W2BFSWr4t6e/4NPxkl59SRxjTb+p8TeG2CppESEJ3b6i76piBYBEKUXV+Y3Aih4/N4XJrmrKXL3eneNMUbxXYynw9TClT56pG6klMaayeD4u8OTpBR9f3qc1A9vUkFRonlYARKOYgyU3Je9lowXGscCnVUZGgyn6juuEIGC3FpPAnc33GMk4k1j6nj9uL2ld4IvNGbu+5r2LV3SpKGFlEwo8W52wmPSgwn98/FPe/+vndMnz/MsLLp4q3V2hzoZUKcEXOZJRsL3gDoI6GBcZrRQ1RTrMANaB5LJpd4xjLH3P192Cjz+7z8mdHUNw9PuK31w/wtQJXVVUt6aotcDX8zlYJWxqfr35S553C04+dMRJgSU7GO9GpM4lUqlFOsFEMAdADWGRUVuSBwLuIGRfRNodRs/XhyXeJD6/Osc0ibuzHXcmO55uT3n+4T0mryomr5Tllz1h5ti95RhOLfu3E/VbHR+t7nG1neEBE5X266LqtvfYoQgoAiYo1SZjA2wfGtJEiG1GopAaxe0FN5aU6zbblrYKzNseazO/fPwJ95sV361f8n/1O/z+bwJPXp+yu56wfTTBHYr5ZgfNS0uvU548n+I3gpmAuwGTFN8ps+eZ+uUBs+9JJy3jaU2aGPaXFhPB7YSwVHJS7CCFjaGoiHv38jUTF9iGhn/+3v9y6dfMbQ/AzA1MXOCt0w3PVUircgqXePQ1f7SRi4GxcVQbjxqIjbB7aFBjkbjEhCV2VFItxLZsyu8ph5LtMUiOQmpKZyWBc5J53bW8Nd3gJfG4fkFSQ8Zw12/47uyKj9Zv4VzicBmIC4vpi9+Fi4ibBk4WBzZVw+67ghrH5JWy+CLRnRvCQhjOIE2ArG8WTk1R/OpWSI0Qp1oK2gui4G66ljvTHe9Mb7n0a5IaTuyBoJYPmmf8tPmSX51U9O94LEpCeBFO+KS/x7PDKa/7KUNyZIVQB3aTCfu/cLiNpb4pw6xWyU5RC+ozVLlI/WAw0dJcC2EmaOEIdg/uMHgOVUVW4ZBrVrklY2jNwD27x6I0OWJEuW8Tc1NxU13zQfOMful5Hk75fLgLlANwUMuQHdfDjKtuxmasGYJDVRBRuqFCRBlHRxLLeA5u55g/UcIUwqxA6sbBE6aGqJZeHX32LEyZsW32nJmR1kQaUUC4SgMZODcDz2JNawbera8Jaklq2OaGV+OCs2rPie9YhQneJNZjw7PNKcZkwlhCjXGZnISwUOSp0l4p8gJe/8BiVIV0PHRYlErSG+9b5QkAjSgGuMlQiRTDRfASeeBW3HMrDJm57RiyZ8iOrOU/vUmEbLkdWioXEQHrcrGkaCAY7CAMJ4ZhXn5jIpi0dxxGT2UitQl4SYSjgZ2bA77kNhoRPEpSJSgENUwlsM0N2+MGDrkkiIkNTOxIOBYH4EwmZUNKhpSE1FvIghkMZoDYQqpBVPE7Srroe88+1gUOhFWavlmkkXIefJkMGQiAF2gkvemaIdOYwCq1eEks3YEhO9Zhwu1Q4tA36SNnIUV7zP7HgTff5v9yiQhGeoNmwzo0DNlTHRcc1bLRmoN+m8fnRvCUs8So5k1nK0lYlLnpMVKuF7wksgp9cuxDxSH4N2ExB3MMYOUWMk2UOClXVGZU7KA4suB8Yj1MWMcJm1R2xxGFbbYsTWJpUlG/4yMjpQg1GDJeIv6ovCE7ahNxxyL76AjJkrJgjCJWIX+bKqSMHK4DyUr2gmEZsDbz9XbOh+sHbPMEK0o4MrRXSzg2rVclAKvs2Kt7o2uB0rmpGTmxB7wp8jL3Pc7kkkpU6EdPigYRLSf/VIQ6tkrzWvBdJvviDs41gcvFlmdXpzzRU4YLTzJCxrDNEzIG2GL5FtK9+iOD43EDFftcUUli1G8ZWZtIZSLBWLKCqhQ9MyX7yyhHtTe0rzLZCcmX9Pv/Gg8TqsASGJYAAAAASUVORK5CYII=\" y=\"-66.795366\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_15\"/>\r\n <g id=\"matplotlib.axis_16\"/>\r\n <g id=\"patch_38\">\r\n <path d=\"M 151.831228 104.795366 \r\nL 151.831228 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_39\">\r\n <path d=\"M 189.320884 104.795366 \r\nL 189.320884 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_40\">\r\n <path d=\"M 151.831228 104.795366 \r\nL 189.320884 104.795366 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_41\">\r\n <path d=\"M 151.831228 67.305711 \r\nL 189.320884 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_8\">\r\n <!-- Neutral -->\r\n <g transform=\"translate(148.430431 61.305711)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-4e\"/>\r\n <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_9\">\r\n <g id=\"patch_42\">\r\n <path d=\"M 221.100194 104.795366 \r\nL 258.589849 104.795366 \r\nL 258.589849 67.305711 \r\nL 221.100194 67.305711 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p0a94e036b6)\">\r\n <image height=\"38\" id=\"image3abddb44aa\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"221.100194\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAKvElEQVR4nG2YSY9kSVaFv3vN3uTuMWVGVE7VlZk01UVBiW4B6u4NC5CQWLFghZD4BYg/xRKxQwgkBAsEqAeVmgWTisrsKrIqp8jImHx4g5ldFvZ8iKx6kis83J+/d965955zzOQP7/25ASACqgCQUn6vik1qrC5ABOkGSIZVHiscqfSk2qF9QmKCZLhFjyxW2KQm7teYCtoF3OtL0sUl4j0ym0II4Bx4l+9tll8p//WbD9fg3jlkCOAd5gRi2p6TAAFJhrYDMkSscITDhu7xAVcfeBbvG2GWkCAc/dc+d/5BSG8vkBCwEBHvt4BUt+8B/w22NogEVKAfwClSFplJ55BoSAykxqNdzKCqgva9muWxZ3VHWLwfKe6s+ODoih+dfMFPP3nE+fwBh//YYsOQr1tX+WEhs7dDUkZjlm+6Zm4NLI3/j08iMUGMMITxfDAR4rRieb/h8mHB4oHQHRk2jcwmLZUL7LmWv3j0T5z+Ucvyh49yGdct4xQKj6ncqNo7NO0ca1pjzIBEMO8ys27sv1KJE8/qXs3y2BEmoAGKa0HmnvPzGZddzfPukKf9CX/88b/z7A8c4eNH0NT5IUcwEmK+33htj3P5A5EbVN4AuGZz/RLBnJC8EhpHqATzIAm0B5/AROlSyWXT8LS+jWL8SnPK/uMLvv69WzyQexQvLzP7jlxSpyNjCY/TXDIdgYV4A5SZIWmnlICpghNiqcRKEMuAnAcsD4TrBNcK7XXFV+6Q/bJFJRGSsvyw49VqyskvHOWLK1BB0lgVpwjgUQXZYYy4ZQo247v+ESJ5SktPbJTQCLEQNEB9njCBUAsohPsdv//RZ5x1U05XM1SMrvNgwvy3VjSnFYfzGukDBL+dzph2mt8sN+BYY2LE+gEsYV2PtD0SE9IPWOEY9ktCLXSHSpgIbjCq80h1lfCdoQPIWckX81uULvBmPuVnTx4hT6bUX5T4MnLxPWH+aMr//tlRxlAWyKqDlEYd27DFzfcAolvZWIuiCMkLJiDRcB0U80SxDCSvmIKpYKo8ndzl/P4lpQ/MV47Jc8GvjDffqdA9I1RCeZmb3wqf77VhbA1Gx1I5zXrlNL/WDMbsCCaSAQ1QLHIJi0WWgFTkS7reKOZG8dZhJnx06xRMKBaGKaCGvNcxTIVb/zO2T9i2ke6q7Y3p3GVtrcqj1kiMoELyYAqxFMLEEWqHKYRaWd1W+r3ca+/N5hxXc/ylI3m4+Ah+9dErfvz4lyzvCpOvW6wqkbbP4FLC35hClRuyYGaICKSEhQAxYYB0geSF9pbSHQAI5ZUyOU0Ui0QqYPUe9EcROer53ZPPOXAr/uYgcv7ryoc/eMaf3v8pAP9693toOwp2CFjKk+93pWEtC8SUT0yZdoGxt3JJpR8wJ3QH0B0nEOiPoLut1G9yKWNjWJ3wPqEYlQ4c3rtCNfFrB6/47foZL+MM3RuyVFxcQ10hw4DFhFrbYW0HXZ8bfF1Ozf1FysyRLP8vCv2AW0XEwJxh3oi3Au2dQHcIscx6RsqlTwgPirc8PjrDqfHV8pAnw20G88z2WmSISFWCSu5jwFvbIiKYczAMyGQySsbYY2uTTRFTyeBixK8ifgGuVWJl0Cp+7iivoLwyQFiZo77bM9Gevzv/Pr/4/CF0ij40Xh4f8t3yFR8dv+a6vAN1CdeLPPllgZd1ilhPZ0pbF5ARCECRM9m6B9y8o37bMMwEmYFfeDSARCgWifrc0MEjHxuXseFvf/597v6LcvVQubjd8Jdf/pjfOfk/LrsGSoefL/M9qxIzG3ssWfar0bTX6p6lw22D49h3pIhezJl9PSFWJfYGJqeRYSL0e4Kp4NpIeWWcXTc8WZxQXDrqs4F+r+D89YSv3zQcNwvO24ZDn+XJNqnDdtKFjc2+/nI9pTv6ZuMES1FAiPjlQLE0pq8izYuW6iIhMVtSmDhSAXZZ8vnFMcPJwMV3S5IT/JXiDgY+OXhOTPlBKDx0HbZcQQg7U5kMNGWrjDEzpqPBr8utgniPNRUyBGSIJC9cP/CsjhzmIdaSB0KVfl+QQTi7mFHMei4+USQI7AfeP75gHivevt7nZLXKDzydZo10Dr/pr13mdqOP5sBohWdzpiqEiF63FMsZy7uO/mD81nKvmsIwM9IsUPhIUURuPz7jk1sv+c3ZVzwsT/m8uwvDaNeLFTKbkKb74ASP6BbQmrn1IGyYzCW1wmcjH3K5ZQg0pz3X32lYnRipSWiXPdS8YaUh3qjKwEHT8mj/jD85/gk/qhZcpMB1avLaIYFMG/oHR8TagQr6DcY2pU03+2xXgNffAW4ZqN8YfpU1LVWGFVnb8AktEt5FZmXHrXLJnrYMlngeK77sjinPHDpfEY/26A9LzCsS7VuitUoW1Ji2+Qi2oHbZHB+guopU50Jx6XBzRbvskVpHymqg9JHaDRz5JQ7jWVT+bfkhf/3FD9h/CrLqSE1ud78KuGX4FmCj7RDjFsjuCmo9peskQo7UrjXcUkYty587H3N/aaJ2gTvFJbVEnoVD/v7Vb7D69Daz5wM2bZBkFIuAWwy4Zb8zlbuHGZYSAjm1blFtwZjbJFrXJfzSARAmhjkgQUo6FsGoXKDWgSfDbf7q9Ic8/dkH3Ps0UJ21WOXRZZ/NPLxr4julJNmNFczGP9fsqWCQJQXw1wMTL3RHBcM+pCaBNwRwmqhcHpbPVnf5j6v7/PdPHvPgnwP16xXmNcOIhpiBV8zrCEwFkm5EFsg91g+IKlYW2T9HoOZkIx3SBzQa1Vtj/0tFkmN5VxhuRVIS2r5gXpa8WO7z8+cfMPznPvc+jWifCLMy++94TwkJSXnI/JYJALdlCrC+R5yDusQKl1dH68qq5lQwRCQa9IHpEPGrCcXcs7zj6Q8dbV3xwk95OQizXyrHnw0Uy8D8fkVzFtA+kUodbUiRcWX/zVJKZs6GHAzxPqfK0oPb9piRIAmyXs+IIF2kOl0iqcG3nvZSSaXgWmPyJjF5sSQVyuqkBBnXBU5IhSAxBwQNCQnpnWgN25KtDT0EpB8gjks4YVxjGjJECHkzxZoCq/K+hl8EikWiWBrFtdGcJZqXHW7ekbwwNLq5zrY8hg5jQI32LYztnpwSDAFrO6SusNoj42Sak8xitO25CcwJ5oV1E7oBqsuIWw3ESUkqlWKZ8mLlasgNTwEG2gUkpNGSdo9kW2tyeeIsRqTrkGWLOs3slHl/zAqHiaBhfFIFKxyxUEwlszZPFBcdiNAflQxTxbdG83yBO7vGCo/JXlb8YSvq32Rs9EZxmiUhpRx3l0skBJg2YBVWF6TSgctOocNoVSJoMNwq4ZPhukSqPOZzvKnOA9XrBfr2mvT2HJlO0VlDnBZ5sCLjxt1Gr9Zx2o0lTTm9rnP/uDaQENEQIU3GzD+mD8kSIiHh2gACsXKExiGWb1ad9/jXV/DmnLRakfoBtzdDUkL7mA19dJmbjInkyctjttU0R5aNteG3HRoTNtRY5fPvRoG0lJAhoiK4VdiMv8SYt0qXK2zMXFqClCXJr/04bXBsgW1y/ztCuz68z7uKInlH8PoaGQZk0tzcrlRBWlCRHI/aLp8fI7tXFOegLLG6zJqYLA/SSIzfgNn0WNxsB8g68ztFvMsLhcIjvcfGGC67S75xj4w4Ll7bbhPVZSPk4zUtQVnkSD22wO7x/+mTHG3dMuFLAAAAAElFTkSuQmCC\" y=\"-66.795366\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_17\"/>\r\n <g id=\"matplotlib.axis_18\"/>\r\n <g id=\"patch_43\">\r\n <path d=\"M 221.100194 104.795366 \r\nL 221.100194 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_44\">\r\n <path d=\"M 258.589849 104.795366 \r\nL 258.589849 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_45\">\r\n <path d=\"M 221.100194 104.795366 \r\nL 258.589849 104.795366 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_46\">\r\n <path d=\"M 221.100194 67.305711 \r\nL 258.589849 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_9\">\r\n <!-- Happy -->\r\n <g transform=\"translate(220.486584 61.305711)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-48\"/>\r\n <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_10\">\r\n <g id=\"patch_47\">\r\n <path d=\"M 290.369159 104.795366 \r\nL 327.858815 104.795366 \r\nL 327.858815 67.305711 \r\nL 290.369159 67.305711 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p06b8301276)\">\r\n <image height=\"38\" id=\"imagea5c5589e84\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"290.369159\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALtElEQVR4nEWYSa8kWVKFP7M7uHtEvDGzMrPoorqbplu9YMGiFyxgxZ5fg/gF/CM2iCUskJAQQmqJpkRXj1WVWVn53ovRhzsYi+svyzchhXuE2zU759gxk7/963+08OtvsMsIKljKYIZ4j7y8Z/78nvFV5PJKSVtAIF0Zy4sCvqJ9oesTZsJ8CVgVACgCJpAFnRXJEB+V7deGWwwx2H6zEN+dsOCQcUEOJxh6yu0Or0sBEcwM6XqkGlYKxIB5R/VC7oXqWlClg3Rb6e5HANLimU4dlgWyIlmggiZBsiAG1UG5KoybijnP9W/WmAdH8IqkAmYQAhY8AFq9YrVCKbAk6jhhOSPeY0Ok9I7ansUU8sbgKjF0CecqdXaEP0Q2v474vQMBGyplqLhJCHshPgnurIgJeWOkHUg1SqeUqx6ZFuR0AacgAl7xFhVRRe5usZsdoq/R4xmWRL7qWK6V6qEGKL1RgyFipOKYxogePeEkxIMhVUhJKb0gRQhn0BlQACVvDRTypt0zNdLO44cOvnvATmdkMyBDxFen2NWW9OqKr/9mw/S6cv3FPa//fY8FZb4WlhthvjPKpmLRUIFpjNhjxE9CGWCKQh4M8+DGVsLlyohVcAt0ewgXIW2hRMg9SBU0K+YEvb8F75A5UUVoRQqe+UUk3RibHx7Yhyt23+xwc6VGoXRQO8OiIX0hdhmAKQRMWyYxyNuK3C24LpMWD992uElAQBNgDRI1QroSSidoAguO+UcvWW49m68adr2YUXvPdOcY3gnHzRVu1HZ6VUyhBsO8gRriK5t+ZhsT34kx+h6ZHe6o+IuSto54NeFcZfRxLV3DpyYog2ECbhZMIW2FsovM94HpVolPAX+c8TUo6bZnfCXkAeKjY3gP3VOmdNqwtTFsKIg3VI3oC7s4Mw2eeQrQFbL3SFa0K9SqiID1FXCUzqid4c8tmOpb9kxhuRaW6wCAVJBckbngNVWe/qxjfFWpg+GPSvdkxH3i8OOe5dqo0ZBQCX2m65pmper4k92B4ArfvLttrHWGzY5JA+UQkUUYP824s0NnYf40N30DJlHivlVk2Sn9YyF3Qt4FEEHz4Hj8C+Pnv/gdf/dX/0m6z8RjxZ0XpIIFsGCoN2LMBFeoJijG6+HAj68fCH1u2Zpaxn726bd88qePoOBGRazhMFzNhJsZukLZ1JXlUL0guVI64fzGUwaHXj7xbH+8574783n3gJ4d3UOiRtdwMTfBtApeK8FVShXGHMjVEbQgYsgiSBJe3J34h8//mb//6b9g20x8aqpvnVGrYtaEGFpJa2fkAWpQ0ka4vBaqF/z0UvjsZs8Xj6/44vEVV18q7rKQr7vGjhGWpFgV+pi46SZOS8eUPV8eX3DXXYAG5vgovH97wz+9+Uuu/QRF6N8b8500drsIzlo55XvRrkHQVHGzMb0SSq94N7UH7ocLv/rdp7x6rOiU0c7jlpXi3hA1cnEAbMMCRE5zx9NlYD5HYgJ/Affo+be3P6FUIX4T6PaGeaEMQu0FUwMxQJDaDuQWI+4Xdm+Vy5vAfKX4m98k/ud/P+PqzZHwVWR4n5DziFx1LLvGIr0opXN8+LDjPEXudpfnA7Pfb5DT2rOkiWbKjsNxYHMQct+y4iZphzRwJ4cJ+LMgpfVNc0I4ZKQG5nvBb774jjf/+prj53fc/bHSf3OCXDDXGKMZ3AT17BGDaR94exe4vT03zCTFTYqbZA0Anr7bIaMDg9I3GbD1JLIomgQ3NXFFwBzkTUBTpXsypILneObuvx/Z/X5AqqH7c+v01egOxnItSBW6R0Fn0ALTpedhdsjs0EUIRyEeWmYkC3Ju38ej4UconYEK/qSEo+AvEPe2BiT4Jva408KLXwJmeFGF/Ynw7QOy6bH9AboOKbXZj9SyEM7QP1Tma0WvIHwX8Geh9IYm8JM19jmhdoougpsa4/Y/Ncp9ov9tZPuVocUIF6PEhrN4rITDjPv2Efe2Qgx4uggpwzxjOUM1RAQpFT9Wur18BKqpUCP4ixCPoItx/qw5DyqEsekSIkgGzcZ4pWz+/IkX2wvvvvwBw0MhD4pUQ0pjfTwW9DBCreAcNs14yurFug5qgdhD36FTJh5SK292TLfKciXUAPEAm2+bwVyuFfPN2uROSFdC2q249K2cT7+94dhfcfvQwC/F0NQav0uGPzfXjPegAmPGY0Y9X5DYWoFsBswpzAvuEqlOGeZKuDimG4fmhqXLJw6pxvZtJfeCOZheCsefZMLdzHSMlC6weWe8+C/B1KHFGF868gDhpISxEk4Vd5qRy4TN82rLC976CI+Vj5cIUq2VN1fEDKrgxkoPsIf52pE2Rv9oxFNhvPfMt8L00th9euKHd4/8frjllK6R6rj5daU7FNJGqV5wc8OVHwtuzMiUVvQ3nZS+bxjTu1ssrTdTXh9qXlyqka49uV9x5oQSn/2/cLpuQY1vKtuf7PnFmz9wGy70LvHHmHi433IoW17+srL5dkGWlgTzCtrcBCrNJD4nxyn+ORCJsT0ggnkHwWOdo3SOPChpaOXKg7BcN+9fA5RtxX8y8rPX3/GDzR6VylwDP9w88POrd/zfzSf8x/IjPljP5q2j269VAHQ24lJBtWWrtu8tBrykZ+C59qkKqphz1M63gSE05uWhsRKB2kF+kYi7hU/vDrzsT3x5fMG7wxXRZ7yrXOZISg7LyvimUqKSPjjcZGiGeK74yWEXbRlbEphhXcSbU6SUNhmptr642u3nJmsqVA/mafPh3PpP6R0peL7+cMPXH25IY4BFOXcFcQbHgCRBrY1zfgJ/aXOlOaEEIfcOHz0yLk0d1ssDWKmQM6bS0qzSNGX16OaaAzBtyt/oLviLkjWQS0Rz+5l1hhXB8iqyc+uRbhTC0fBzy1Y1W9vRiqy6ElAVPY94GWestgGXnNvguz7w/EMTkLIOFLQ2UvrW/2QRUKi9Yc6arXEGddWszPej3AJpELS0e3423FKRJTcl6LtWyuMJT63YktpKoO9bOnNL6bNZlApajCrycfitwShDxTYF7Qt9vw7AVShFKdmRs1CKx01GDQ2fUlpw/mxoto8S9fGaF+wy4hl6ZBwbI2KApaXVRDC3eqbFKN0alK6Zqm03oX2hHxa60ACfsmM2odCerXEdhLV5sLhvwbiltSTT9h5ShpSwy4il3ARW7m5hSd9H7z1ihuaKmyqmip8ExJrKryePT8riIpekLF0hxIyZUIo0C+0MC5VaFCmtf/qxrQfC2NqS5Np2F7W2d8eALAveose8ou/nFrUZlhJyVlzvSVtPXQH6/KfPqdcFpDrKQSm9Mfa1rQO09UEdHf7cvNdzUJoMPxn+srqXbEj5XqbEDAsBb8EBrt0oBau1raTmGQ0evetBmuPUYo1prpWlxhacpsa+em4izLqB0gTdk+BGVndrHzuIWwRdKroU5HTBxhEJAZxrLakGxYKiuw08HZrtcdo+Txfih6ExcefInSLFcAnKuE7YTlatWyXFPVvlVm43NQdRXbP6jUhNctxccYcZO51bUpxrC56+w1tQcu/QmwH3sAcVZBiwXLCUcO+f6M899Xpg+mSgdoIuzf7moaW+urZDS1tpUtK1INzUSoWthnNpah+fMv60oFNCzyMGyG7X1lC5QPB4d8nk3rWt3tW24UwF8b4BMmfkPOJSZnNZqF3AutbXumqYV2pwlMGRLo48CLlbS0oLxk9GOBXcXNGl4i4L7uGEPR2aqIemoZjDrrer8tfa7HBQrI+tPZ0vUGo7gRmk1AJcEs675jJdAytmOBF8HwhDoK6NH0BTRVLFTRkdEywJWTWSJTX2+4Zvm+f2LhHMKx5VSq+YCrAjvheY5jUw1wTXDJaEzTNWasNg1zVHsv6ZLAkZPc4p3jmk1hZItY/bSsuldRn/vKKsKzgrSJvOKbVtFEvvSRvBOdDsKNuIvwwf6fu8n20MyO0FtX5f6mfVNmvuAJpTyKXBQqQFbyup1nVmW69WrCxNu7btnbZm8P8BkI/U8x/hqxkAAAAASUVORK5CYII=\" y=\"-66.795366\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_19\"/>\r\n <g id=\"matplotlib.axis_20\"/>\r\n <g id=\"patch_48\">\r\n <path d=\"M 290.369159 104.795366 \r\nL 290.369159 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_49\">\r\n <path d=\"M 327.858815 104.795366 \r\nL 327.858815 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_50\">\r\n <path d=\"M 290.369159 104.795366 \r\nL 327.858815 104.795366 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_51\">\r\n <path d=\"M 290.369159 67.305711 \r\nL 327.858815 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_10\">\r\n <!-- Neutral -->\r\n <g transform=\"translate(286.968362 61.305711)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-4e\"/>\r\n <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_11\">\r\n <g id=\"patch_52\">\r\n <path d=\"M 13.293297 149.782953 \r\nL 50.782953 149.782953 \r\nL 50.782953 112.293297 \r\nL 13.293297 112.293297 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p86e05772f2)\">\r\n <image height=\"38\" id=\"image3d457d692b\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"13.293297\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANnklEQVR4nE2YyY8e13XFf2+q8Ru6m+xmk2xSFCNKlo0YGQwrXiVBDATZZBEg2WWZvyjbAPkXssnKsRHHhgdAkeUYii3KkkVKZLOnr7+xpjfcLKpFp4DaFGrx7rnnnnPuU//68Z9JQjOIpU+OJmVc+gnrUBCSQSvB6UimA7kOOBUxKuFUpIkZZ/2MlS9YDSV9sFw3Jc02R78sOPxAsH1i+djS7wspgzhJ6P2eg/mO/aIltwGrIkEMmyHnbDWle1ljT/0+WiWSaFah5Kyf8eVuj4tdTTc4tBYyG5jkA0fVhv2spTQDi6HmsquZZR37Wcvbk3MqM/Cqn7MYKrYPcz5+dET54wl3f7xBxcT2zQmrNw3+quRqWnCx59EuobSQvEYaixo05rDD/mL9gNoMtNFx1dVcNhWrTUVcZ6AEomJXRpp6YNPlvHP7nOuhpAkZD+oluQ48KBa8W7zAqMRn5g7PzQGLoYZjOP+bhi8nR5x8f8Ps+0+ZT2pwlrhfc/knM9aPwd8K2IknFBHJE9Fr7M9/9RYk0DOP1kJoLEQFQHW7oWszjI0MTYaI4tl6n8p53p2fUdueO27Ngd3y0u/TpJxFqFmHgpUv2Aw5R/WWzbdynpUzTn7wJu5n/4sqS8zgmT4v2TxyHNxd8d7xc6Io3j97wPBft7FuaVAe0tqQ7nfoIiLLDNGCiOLwYMNiXSFJoZSQm8jj6RUz23LbbTnJrliECb/YPuR6qLjuK7ZDRu8tvbe88HOO9rZcfwM+Pao5vvdHHPz0FEQoP1vwYNjjZXebD76T+MbBK+rM01mwYZpQgyK/0oQvCvytgJoEiIp2WTD0DqUEUwTu7q95e37OnmupzMDEdAB04piYnpUq+XKxR7/LEAGChqg4DYZ3T16xne54Xh3Qz+5x/INzVIhk5zvu/QhecsRH34HMRGIp2PyoobsqGfbAbTRybUn3O7Iq4HuLUkJV9RzUDW/NLl9PZq49SRRdcqxCxcebO3z08QkqaMQIyitUVKgIURxaCe8dfk5uAk+/fYxKR9z5z3NICbfsOHrf8GJ6yOSda5ID3TcOEogBP0vYViGrjKHJSDsHwLToeTRdUJqBiekptOfa16xiRULzq/U9nv70EdmFRfKIbjV2oynONPmlRneanc94mF/xzvyMyX7D8uvC9bcOQY18Li47bv2PsLyYgICVnYUswcwT147kxmpTZ1BRIcDJdMncteQ6oJWQa8+z9hZ9spwPU371wydUZ4rmvlB8mWEbsDtAcVO0xkeDIXGUbTiebfjUTVk+MVSvpmRXDYREfeopvswRLWgU4DUAZu6RKiJGABCbePvuOUf5hlwHDImp6aj0wC5kfHh9wr/98Nu88e8NthXyhUL3UFwI1UXCNoIYQODFxR5nfk6uPfOsRfJIzIXdPTeiZhSmCdQvBNMqrJ0PVFVPiJq+yzBlZHa04Wu3zrnoJtwpN5TG41QEIIqmSRnbkHO2nlKeacym5873Fvj7B6g0FrV9WJEsmEFwW8VwWvC921/jL44/obIDpowocQxThVj9uqX5SvAThY43aFmTiK1hPtvxVydPuZ1vKa2nNgMAbXT0yZJQGISJ7Xl864q//oefof55zW//6QTRCtVHkjOYPlFeJUTD7kSIB55lU7KNORM74LIAAmIUsbCoIWBaj9tFtAerrjPWjYU8Mbu947snT+mT5ePVHaZZh9UjUlaPbdy3O26ZLX88V/zo6gn38yVfP35J8fc/53d/e8hPrh5zupqTpCdGTe4CRTR4bzicbjlyG14NM6yNdBnjo25QS6CCoKJgU55QQUEp/OWDTzjJrokoPrO3yW4O5VTEqcjEdBzaNY/cJQ/cFc/a21z6CY/zcwC+WT7n4d1LPto7oU+WkAyfrA9ZtBWZDXzr1nPeKl6xjTmzsmNXT0EMKdOYVoEZXVC0wqoqgIIn98/5g+KCJmVsYkEShdWRXAcKPXKs0gO3zJbHdmCqM76YPeW/d48AeGSvWKaSTEVS+ZIPdw9po2NIBqMTt6qWP60/Z083Y1ox45CJhlAa7EYhRiNakSxYpQVlhIeTa1ax5HyY8sHlAyZZTxL9WkydihRqoFCeTRIa6Tm0ax7mC5ax4lPR/GTzFqfdnCeTc162cz784oTjgzXn53OO3txyz11zEWb4ZBBRqEGRHKTsppUAMsYjC6B1ok+Gl/0eVkUEEFE4/fvsVSgPwDJVeLEMYlimirnZMTMdL/w+R9mGW25HZXq+e+vXDNHyYjNHkqKyA5/0x1yGKVe+Zt3lqKiIOSSrxmlOghIIJWhJCkma3yzucNnXaCUYJbTBEUXx1VNoz5HdUCjPOhW8CnPO/B5NygF4kr0iisbpwJP8FffdgkeTKxbXNSihCRk/Wb3FR9u7nLUzrEmkPI3cj4IYjUqC6SM6gJXWEjph4wr2DxtWvmTVFpSZf61bfXJErSmUp1AeryyZimiVWIQJnTimuuOOW3Hm5/yyeYNVLHn/4iGyylCTwBAN10PJxhcAhKhRUaEj6CDozmPOluiqoDotsGgBLVgb+Y+nX0OCppp1xDT23Iu5EdWc5/4Ao4Ra91S6pxPHZ/6QL/t9TvJrpqZjajoWoeZZc8CrxQxxiUf3LznIGz48vU/XjBohUaEEVBy1TG97pOtgVqMSWF0GjB0hTRuH2+/IbEApYUiWNrqRY9rjxfL+9gEfXD7g9GJO8euSfCGs3hH+7s9/zhv5JV4Mc7Pjyo+0iEZoveMX33uX4595dseW5TvAmzvCxmIbGTnW9UhMjHkJbD3t8N6SkgIjWJuwJpGZyNbn1GZAq/HnuWl4b/oZTkU+Lu7wG31Ms3bcfrDkbrYiiuLYrjgwWy7DjL1Zw9oU3JusUO8Jzx7PkQ7crCfLInqpcVsI+Q2XjQatR7nYKzta61hc16gbexJRWJ0ISXM9lOgb9Art+Wb5nH88+CndvuXp8R02qcSQKLRnzzQ8sEsiikr3vL1/wWk+41be8Ifzl3THjtNuxovdHr97eZvJUqFjIlkF/TCiFW7I//JqTlF4lIakhRA0MY0V+GRoQkZlPbXtaWLGS7/Pkdlwx7RMiy/4zXCHZazQjHTYiaVJOVoJj6orZq4jiuJimLINGYu+5nwzQbYWM4AoyDYJ8R6UIlU5oQKLKLo2Q9IYT3yT0d2005lI1JohmXE5MQMRzYuwTyeOiKLQA8d6wCCvY/ZOMgyJ224zclcUy1Cx6GtON1O6NkMFhelH3cpWAXyAzI3xp78RWJQACtNqkiiGwrJTQpV7kok0IaONDm8Ne6ah1j1OBSoVOVZbnEpEUaxuNG3018BUd6xURS8WjZD+ny7qQY2mncBtBiQEVFmMCSWCjp3BmEQ9HRcL3WiS13hvCFEjovDRENIoG11yaEY3mCrPVEcqJdQ6UWmPVgnDKNJfBYCIpo3u9RClqDCdei2uqvUoayGNQhsLsKox+KZkqDNsUOgAMWjEabQepzPITcJViU4cCY1ByNTIK3ODgkFoUs4gBn/zOh0IXuNFE9JYaOrNzcEEHUD1A+Q5KnOE2pKcws4frlheTVAbiw5AArwmOk1KmigKIwp/g1afHJ04vBgG0UDC35D+ItZsUkmXHJtYsokFTcpoU/YacR8NDBoVRwbZNqF8gCJHZjX9viUUYO/PV3SDozeJodbUv82IlSaKpa8suQtgIl0cN6aIYhmr16ZeqDB+SyUXYUYnjkEsXgxNylj4mm3IaEJGHyzej0uOSqADuPWAtB2qLIjTnFBo0GDPttNRabOIqTyQkV9pBq/opw47ach0ZIiWXchfZzOAzjicCq8taxmrsdWi2cSCpa9Y3txzLLqKTZcTvEUPCtuC2yXsdYPSGrGGWFpCOdqUzW2gNQ6tEzFq/FSoThWiFN11xnqSY/UoHYuhwuo4tkQMXXKvJeIrX12FijY61qGkT4a1L9gOOYtdxdBb4saRbzW2FdwuoZoOSQmpctrbDj9RxAys1YmUFO0mh96gJsIwVbgdyJVhU9eEYNgVGalWJBRz19Iny0pXAPTJvkbxytesfMnW54SkWfUFm7agbTJSZ7ArQ7ZmXPcuWwgR9ma0J1O6fT0aeAf22Ze3YdC4hUF7Be9uaOcZ1a9zshXEM0cr0K4LrouK+bTh7nTDtR3IdMTpiL8R4C5auugISdNHO17CNRmytaiosI2mPFNU54npFz362RkiCQVUTyPV5w7VdOAD9qsrp3BvXNNO5lviTHG6PaT+3FCdKvouoz+MpMawWGds9wtm9ZhCjBqFc4iGps8wOtEPln5VkJ1b6uXYGh2huBSK60h12mF++VvS4FFFPmqY1ojVhPsH9AfZGHsAJpMOoxNDHKvX+wNNyJl+qqlfCNna4CcgGtJlzdLWiBMQ0F7h1jcaaCBvoe6EbCPkq0A/M+ggZOuI2wbssoU37tM83mP90NLcE/xUkCyBFrAJmzqDag2bRYZtNMW5IlsLh7uvuJZQAsUy4SuNr8eMLnrkgtsJtk1kq0Bymljo8c5CwG0Cto3YXSTmmuQ0zd2c4UnJ7q5i2BfCJMDNHkKWICgICvv2vwyYyw1q1yIhQt+Ds2BvbLSu6N68xTCzlFcB12iiU/jJ730vFAqw+EojGopVxK0jKgnJadqjjO09jZ9AmAhhkkZ0krpZJBXjBgRYgUHzf/esoUfMKirTAAAAAElFTkSuQmCC\" y=\"-111.782953\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_21\"/>\r\n <g id=\"matplotlib.axis_22\"/>\r\n <g id=\"patch_53\">\r\n <path d=\"M 13.293297 149.782953 \r\nL 13.293297 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_54\">\r\n <path d=\"M 50.782953 149.782953 \r\nL 50.782953 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_55\">\r\n <path d=\"M 13.293297 149.782953 \r\nL 50.782953 149.782953 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_56\">\r\n <path d=\"M 13.293297 112.293297 \r\nL 50.782953 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_11\">\r\n <!-- Happy -->\r\n <g transform=\"translate(12.679688 106.293297)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-48\"/>\r\n <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_12\">\r\n <g id=\"patch_57\">\r\n <path d=\"M 82.562263 149.782953 \r\nL 120.051918 149.782953 \r\nL 120.051918 112.293297 \r\nL 82.562263 112.293297 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#pbf72236718)\">\r\n <image height=\"38\" id=\"imagec44fac758b\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"82.562263\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANZklEQVR4nEWYya9k91XHP+c33KGmV/UGvx7c6XY7nckkTkwsFhChbJDYklXY8KcgITb8IyAWgUVWCEUYBQWcBDsB43bH7VbbPb656tV07/0Nh8V97pRUUunq1u+e3znf6Xele35XrRiSZr78/M3pt/nHB++wN1kTkqVyEWsyTXS0waEqJBVSMuRsEFFEFGOUwkV2B1vujM65Uc0ZmI6RbbD0679TP+Z7hSGTSaqc5o5/WHyPv//s+yyfThh/aqlPM+Yib1nlhoySUY7Tht/OX2cybBCgcpHSRQBUBRF99TsES7MsaV4O2T4bsboY0HSe0kZKEyklktRwEYcEdQB82l3jKG0x9MXtGMu+W+JsAgV1gICpxOLFkq92dJQ82+gpbMKZjDWZmA0hWbIKqkJWoesc6cUAs3D4uaG4sPiXns3xkKPVGCMZb/oNvWx3OI0jgjrO44jfdvtkMl4sHss3yucU7qowgTAQTC0FDovBYBB+F16jTf3uRBRVoUuWTeeJqS9wvSnh4ZDBc0N1bKhOhNknmckjKI8dq23JcTvGomSE59sJD1aHnMchAE+6PX7bgcEA8HW/5d70BC0z6sBEcABWDGim1ch7i28Ss8GZjBElqRCSZdMUiEAIFp7VFAthcKSMv2hBQEXIXhgeGRZnY/7vh9e4Vl2SVfh8MWNYBK5Vl+y4DR74uL3JgXnEDVeyIxV/efA+v9q9TThxDF6AiSSSZqwYft0V3J8fApBVAPA2MSw6cjKEzpGWnvJcmD5M7P7mglQaNocF29c8YWxRA3sftQx/MuGn97/Nvz/9KucnEwDOuwFBLQBJDR+HfRqNBE38QXHG2zee0e0nmj3BGAyRxCo3/HT+PVZtScyGfIUlgzIrN9R1R9o4/LnjtQ8Dkw9f0lwfsb7mUQOSFBVQK6iB2UeX7P6sIvz3DNn2+GySZ5NKgjoShpM44fMoWBHGxvKD2af4aUM3VYxBMBgeBMP/zm+waT1dtDiTSdkQ1bDoakK02Lnj4INM/etHqLPYLjN+2jF80VEuEn6VceuEbVLf7a0yeKkQhTY6LruKizigUUdQS6eOx2GXoImBFPxx/ZDbBxfEoeLO8haAf1m+w7ypKVxCRF91rI2OZVOyXZZMHwuT+wt02yAxUpxegGYoS5hOyOOKVHtsE1HbQ0EF3FbooqWJnpfNhH2/YmA6AE7ihEfxnNuu47ZTvjt7ysPZIe7vjn+AEeXB8pBN5xHAm76wpP2C28YjK0c7hbRT4UZD4t3r2GVL99qQxd2CxVfBdtDeDNSPa+pjpdkTqjPFtMJmUzIoOy6aAafViJFteiwj/Hxzj4/tinerJ9yrj/CDDvdgeUhIlm30rzQqRIsRvWIm5GQxndB8reGzvYrhs6/SThXJQ9prATtqmIw3XJyOOThcMB/WLCZD1GbCSMhlJp+WrActRpTjZsxrfsnAtmQMA9P23Us1d/wJRZFwp5sh47J9xcIvlT0kgzWZ2gdWRaSTEs2Cu7Fhte+QswK3gvLIIc89y7qiaoT1pwcUGcJI8W8teef6E37+yT38UUGM9hVuv2SnkV7YKxMAeM2uMCbjTs7GpJmh9qEH/FWB1vQFdslS+EizE5G1Ixf9Qnkn0o17EElrMI0QxopOIE8id26f8Fe3/pOjsMN/LL9JqpRREShsojAJKxlL/4yEocmeS6m4XVxwOF5h8trTRos1Ge8ScmXkRhR7Nc7CJQbTLWqUHAzGKmQgC7gMk0DeD6RJQg5brt284O74jJM45p+fvI3dGNhrGRSB2gWGrsWgGMmvzD1hyBi8CO/sPsGZxqAqGFEqF0lZiKlvufWBie9ok8PZRDMpyCuPG3QgSmp663I+IUYJxjEcNhwOVuyXK341v8PxZ3swysyma5zJ1C4wcQ07bsPYbMlXdv4/m1vsujW33Jy36qc4vRqZEaV2gaTCJvce5kxm4hui6z2yKCPNpafbFJTDDgFy/j02rcsMyo5ZuWEdS+6fHCJRMIcNu4Nelmblhh23Zc+uOHCXrHNJIYm/ffAd4mnNT974Lj+49hnO7LekZJhva96YniGirJqSi8WQ5aZkPqgpXWTZlKQkUGa0saRKMDaTgiMsS8q9LWUVSNnw3v2vcef1U2aDLat6xMF0RUiWUdHirsC+ziXECV4SU7shZ8PeB4bV0QH/dH2GS42jA7ZnNfdmJ4RsuXw5RoLQWk/cDknTiKsjKRiKF75nbe16lh4VmADF9UhKhpOnU1Dh5XyCKvhpw7bzHD2f8vW7L9gmzy8v7vByNWZWbfE28c3JS4oi4tdKdQLDpxZTvPCkywJpLNNiy5PTKRjF7rWYSQAFe+GIrcW+KLGN0N0IFHXAHxXUJ0K331vQ5mSIlJkf/9F/8da1F+QsHExX/ajbXvnnXc3Itby9/5w/v/YRf7r/O+5fXiMGS6yF4XGmWCtGEhSnlvLMsIoFYeuRYIhbR256YXVrg2wcxaI3aLqeMHGUaXcVuzYsn48pjxwahY8ub2BEuX1wweFg2Wtkgk3wXDQ1ziRu12d4SViUkCzOJ1RAsrJ4w+AkCgIMXiofvLiFrB3SCSoGyYLbCLaD7A1uA7kEP7d0ucKte5KYTpBkMR34E89H/gbDScN6WTGdrtluC+zGsNxUeB85LUfcP7tG4SIDH7g7PuWyK8lxTPJCdmByqUgGE2CzLHFLg20F0xpMK5gAkkAU3FaxWzCt4FaWYiGYTsiFolYRhXAQ+P6bn/PDW59CFubzIWnpcRuhax3bTcnDo31OT8a8e/AFP7r+AT/ee582OFIFsTKkSnH1kVBeKO1MqEctQUpMB9lDLpRUQVcqYZZILx0mKOVcyEvBr5RUC9kJ3V6iywLBcNlVvFxPYOFh1iFlJntFo2E0WwMwXxWcdwNO/ZhfxFGfAXeF6lxRB85tlTiAdgaaDOlmQ2gt9sJTzAXTQXUiuE8t04db2l3P5sAShoK6K/vqBAmGfL1hMm54ttjpI7hRdt6vKOcZtbC9KFncdey/cY6tE798cpsnsxnjomW1qBm3kB2U53KV+Zt+lFmgqCJUkSYL9bGnvFAmXwTsNlE8uwAz4+xbjjBWbCukUok3W7SxGKv82Vc+4c3qmI83N3jv/Xc5+HCNO1lC4Xn01wV6WbL4YJ/qrUt+9OZv+E79hOdhxie/eIPmQPFLYXMr4fxasZ2ydBZVCK3DWMUOI+vXLbY12G3Cv5iTBxXdxGMSpEoJ06ukWkaSUQaDPqVUJrBNBd2OkmqHDxEFqp/vUXhY3U28tX/MG+UJ19ycny2+RXkubA8zkkB9xsVKeq1qYT2vwCnWBZxPpMPEYlywuV4xfHYdt1aafSEOIA8T5axhWLfkbOi8ZVo3bHPB827G0LXUb1/weDSlPnodgHZPkVsbvnX9mO9Pv+DAXfIk7PFvj+9hDaiB9noEo7gwEiT145TGoIN0pTuCc5nR/pJ2x7G4WaIbhyRB64SvA8YoXXR4m3C2j0zn3YCQLVENN3cWlN+ItG86jMnslx3TcsuboxNuFBcEdfzrxVuEz4cYAyYK2hj8wuBSBXndy4FpDanKaBJidMQWQuf68KhghgGxirX51ffLQ7ERRYDLriJehQAjyk7ZsDIFy6Zk3RVYk2mzZ54GPO12ee/hPWwUTOpVwHSCbQQXayhs30aTILeGnHs/lCTk0I8ar+RhxEgmBEdQQVzG+YS1mRgN29azqTyjsnt1Nl23BZfLGl0ULItMe2Cp3S7n3YD7p4fkS484JVsh1wl/5lADrtvJFAtDLvoTjSTBrQy5j1o9dbcQawg7plf3y14mUgVqIVulXPUbWO8ol5WSK0Vdb1fD54ZmX1ExrMqah52jnVcQBRlFEo4QeviY0K/t8k6k3fVI7H2wz2eCXwtkcE2v+G4LkoXiUvErJbu+MBN55XFq+3vUCKnsHcN2UFwq7RTUg0ZDe15jtoY8jlSDjm00mBOHW1lEIdWKK8ctYeywDSCKeiWOMqazCJBK8KsrW0o9e12TyU4wUZCsZH8VyEO/sXTF9HKhZAupFGwLuewPv4iS64y4PqQSe+tTAxIgfCXg7uyf82BegVjUax8ErZBKg9sKbtMz1rVKHAgmgt9k1PQvUbKlf58V+4XZCCpgBPxaSV5op/09PfD6SQBoZ4jRIM0VWaIgGW7dPMO9M3vC4+kuLRX4jC0yKbk+/F2C2yh+m3HrTFn0XfOrSLamL6zoF0UEv87EuserCWCCYlslVYZu2ieVVBokgQlCLpVgCvymv4ZCmCh/8fqHuD8cPub93Tt8HhzOx175lxaT+vbaDtw241cRDGQn2FWHFSENPTkokgyxNrh17wTJX50ZGkUNVBdKKoVU9P9X1xMolULAQe6fE2sIu5F360e4Rj3fnT3l6HJMzkJee4z0s7ZNb1d2m7Hb0APcCGbTQe7xId4i2aJGsG2CKyKEoe3JEMGvE9U5xLpnXTcFt+YqxfyeidnD7Polt90GdxLH7Pk1XWevIvBVqyP4jVIsEm4TkCZiYw8O2bagilFFpwNsoyAQhw4/b5HsURFiLZSriElK4QXU9A6TBRMVE/quSe6ZnUvlT2484sCW/D/h2GFQBya3EQAAAABJRU5ErkJggg==\" y=\"-111.782953\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_23\"/>\r\n <g id=\"matplotlib.axis_24\"/>\r\n <g id=\"patch_58\">\r\n <path d=\"M 82.562263 149.782953 \r\nL 82.562263 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_59\">\r\n <path d=\"M 120.051918 149.782953 \r\nL 120.051918 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_60\">\r\n <path d=\"M 82.562263 149.782953 \r\nL 120.051918 149.782953 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_61\">\r\n <path d=\"M 82.562263 112.293297 \r\nL 120.051918 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_12\">\r\n <!-- Happy -->\r\n <g transform=\"translate(81.948653 106.293297)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-48\"/>\r\n <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_13\">\r\n <g id=\"patch_62\">\r\n <path d=\"M 151.831228 149.782953 \r\nL 189.320884 149.782953 \r\nL 189.320884 112.293297 \r\nL 151.831228 112.293297 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p150e4512bf)\">\r\n <image height=\"38\" id=\"imagec209260061\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"151.831228\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMVUlEQVR4nE2Yy5KkyVGFP/eI+G95qaquvky3ZjRokEbohgw2MrZiwQozHgB4B56Al2DDY2AyVoAZmLGRcTEwZBKYNDOInunp6a5LVmXmf40IZxE5NVqkZdmfWZEex48fP+7ytx99z3ap423csk8Nv+yf8up4xqv7Lcf7BhsdfufZfAKbTxOxFcTAjcayVkxAoxH6TLiPhKsD0o8gAqpghrU1uasY3uk4PnekWpBkuAm6NwkETMGcgAECfjbHLnXcpZY+VXjJBJcILgGACTkYqVUQ0AjZQw5CCoI5EAMTQVKGbDDN2LKACOI9AugSqYMjNQ3ZCxoNP2QklbO+fKaLYU7wl+7APrdcxQ2LOVQyKoaIIc4gCZKEHGDeKH4wJJfDzEFsIVWCieLmgL8VzAzUlYuJQM7IEAkvJ7a7DnMOawPLpiLVCga+z7g5k4MSW0Edxrk70unMYg4nhpeECjiXy9kJMIiNFNSSIcnIHiSXz01hWTvSWYuEAJbLC7BxwoYBOxywT18jr9+i/Yxpid0Pifp2QueMuRKkP1rFufY8C3fcpZbbpaNxkTYs9FVgqTLmhdQU1ExLMF8emoMgajCBZCM1Htc1cDhgS4QYsZQhFWrYl++NL5fOhs4ZWRJ4RRL4w4JPpgRNPHH3HKsaxYjmuAkdh1AxVAnMF3Iq6GJkLxyfO4YnRq5LausrJV8JOhuhq9G2xcZdCUS/vEVGnEO3G5bKo9EwO1E5uFJUUwIn+K2OXOrEaIGtDvS+4pBq1mHiWle4kElNJk9a0pbh9kNH/80ZcYZNX/6oR5PgJofGDt8GQlOT31z9BloZCQFbtSAgMYMo5oWsDhMBQIeIV8kEgXMdceGa0QK9r7mvG177LSKGOUMXQbKx+8Azfnfgncf3XN1uiINDkmAeUg2xFZaVK5VWX1IFj/3fZyV4FaSusCaUonAlkOyE3DkkFcTcfsS/cBOTQZ8DowXOXc/oA3ehpfaxHOhKupZOuP/uwmo1c983xH3AHRy6gO8FN4FJ+Z6pQgZ9ssHn5/DmGmJE2pYcHJIypg60yA12osqYkH7EP3E1d3lmtomUhUU8GzcS5KRjAKlIw/5bibCdyVlYZg9WxBYgHKG+tYfqNS26lINiXY12LSwL1taYUyRmrPGkSove5RMG/YxVAe9xnGlFLZEq9exyB0CjCypGXEqqxmeRcD4Rqoiq4dqZQ+/JleKSkOoHqmEO5o2gUdHZ4boK2a6RaSZXgVz7gpgrF5OlVL7rI9JPoIoH6PPC3jJH84y5YswBxTirBnwVWbynejSy7kbMCi+OQ41MDn8Qwr48Gx4LmoBc0rOsBLcofvA478jVitwFJGZy43BjwrxABhbwh7l0j5TxGWO0zDEriynHXNHnmqCRy/rI+WZgZ8LZeqByCRVjW48cmprjauSqOmPZOKqdogskg7g23CCYK6j53uFXNZiRKwdOvtIuHDko/rgUtABTwSvCRj1OEqTISmeu4pY+1YRT32zbmbNmLFzSRKWRp91Ms1l40x351esnxLll/bKkdFxl4hrAoZMwbxx+COh86iRLRmImdQE9/V2CBMxAFM0YtQRqUTLCpTtw5vqSrlSxH2tUjNpFgiZSVsYUmJPnZlrx6e6cdAzkOpN9afISBesSy8aI68K3ZV34iAiuX0ALosWd5KJhrmiitVVBzImypuaJGzjaxMYNbNyIYsyzZ9VOVBrpY0XtI4pxjBVLcrTVwvl71xjwqr6k+99A2CvTFtI6Mc8OiUI4KjorjkL60oOtkP+k9qhiVdE4zRjJcglOAiuJNLKQEKbsEYHgMl5LGoYYyAibMCJiPFvv+YOnn/D+5pb2ciDXoAswK6iRGiN2RXjNFRmx4CAbYoapgJYUmghW+xKYIg9yFcTxxGWeuj2NRKIpl5sj7252eMkPFakYKsammvCSmbLneXOHcxmJpW25QZFZIcvJBH4liyYn/UsnnXN6Qs8Kal5LVZZvF0TWEnjmBr5dv+KL1ZZ3mntidtzMHZtqJGZH4xe8ZCpN1C4SzbF2E02IHLSouC6CTkVKqnuo74pVMilO1VLhVq7cSctO/dQ/BJZPKDh6mwk4MuAk88gfWcyxXxq8JuLJ68zJMeOI5hiTZ/GOZMK6nrivDX8Qql0hdntltNeZ5nqGDOYF8wrxVI3ZIGeICbwjB0fqPP7Xcea3ffsA8+dpZp8Di3kWc/zzFx/wpD3yrL2n1sQdDdfjijf7Nce7Fg2Zs+2RJ6sjZ9XIy9qob0pQqSsm0o35ISidc+GZCGJWHEYGXEHKKiV2Dv3H/lvc5qG0IfGcqfDILXQ68WbesCRHNCVIZusHVIxXt2ccX26oP6mRTxturjbs55rKRdK6+HgANxepGC4983lg3npMwO8nfoPaoF+lMLa++P+f9y/49+mcwWYANlqxEeWJ9nwxbVExDnPNkAIfHZ7wi7fPGG8afK+0b4xqJ8jRcxhrsgnVxci8BfOFa6mF4alw/74ntvpAfgzMFV0rwSmpDcURZ0OvpjX/sP8e/zSek052cqsN7/nibN98dMmvXz7Ga+JubjgcGmQs3mm6EFJrWFta1ZgCj7ZHxvcWpkfGsjZSVXxaduDHXIhuhsZTF8gGIqQukBr3VUv6vN9yWGpu5hXu8l/5UX1Lp0U6frh5yU9f/wDUcf3hivfWtwxLYFdF5r5iHhwIuDbiXSab0PjI6rLnqC1u53E7wR+h3hkSIQdFvZK9PrSgXPuHojBXHIr/5LPHtOuJX/KYf/viXT68fMtfff0nXGjLYo7VKyM18N9vn/H7z1+yqSemxWMmpJBJkyMvyr6vedT2bKoJWwsxKtOsLPEkql7QpPhBSj/U8rz0xlIM2Zf3ZaV4S8pwqBE1Bqv56Wdn/Mn+z/iLD/6ev/n0h/jJcDPcf7zh/rIlaGKcA/N1g87K6d7kOhJcImbFaUbV8GczqVPSIaCzO/0wp0BOkzelIxTDWKau6ULw9XpCtXArLg4uIm92a/7yZ3/Mcddy2RXLvHop/Oz5C77/7it++OIzPu4uWaJDT61qU89kk1IoS8C5TLvp2R8bltlh3pWg9KRjTsiVYlqQKtM4jBfC8NTwP/7GL/GSeD1uAbgeVyzJcdu3MGlxDEvhyPhxw/9UT/nOs9f83pNPWbuJQyoVO6bAYalp/YLTjIiRspSiO/l5pMwEpkJ2SnYFrVyVdcPSCctaiKuE/93VS0YLPK321Lrw6+Exx1Txtl7zi0PN4X3Hxc/Loc2NcH9Xc3fRclEN3OQVXvJpes80bgEH7alDDEsoeU6lX2rkNDz7glBVeBabktpcQQ6gk+LPXc8udQRfVLHWhdbNnIWB6YXnV4fngEOSoZPgdp7Pbs6Youe8GXhUHwmS8Zq4cAv7WNNHz5Ich7Emzg6ZlXAENxUHkYOQGiWHElR2ZRiZN8J0YaTzWDz/aAGHkRBat5QAiXx9dctH89dIDegsuMUI98p43fJ68RzXFXkrnFcDGeE+BvZLzW5o2B9aliEge0/3udK9NqpDuXwOSqqEVMtpIQOpEcbHRn4xstmM+N8c0xZzLCd/0ulMRpDLif1vNaxelnT6EaobR5yU3dEzTIHtqgwp/RQY+wrbVYSdsjoK1Z3R3GTqu1SGkFpJjRAbZVmV9KZaGJ5Cemfm8aMDH168xQeJ5C83JZSxbckluEfhyJ//4Kf83ePf4S3PaN4KkqC6E1wvpE6I9yuuwgpdIOyV7gjV3vA9hD7hh4wfEjol5ouydpq2yrIqnixWMF3A9GLh8eM9j7sjP9h8VlIJ4DCQhGIELSgmlD/a/BdT9vzkuw3zf5zje5AIPoKbBMlSJvHBCMdcdG/K6GKQDTcmJBux8wyXnqWDuCoSJMmYt8L4PPLOuzc86w5c1D3fbj7HjxbKHHnahQVJZIRkSsyOIImv19f86Tf/hb9+9WPktcMfwU0nQxgNjSWwal+Wb+Sii+aEuA7EThkeKcu6aJWby//27wjTuzMfvP+G75x98bA0TKb4fWq5XlYATOYJJ9RUEq2bT1tGo9MZHYXheaR76Yt9Hg1dCk+g+HqkbAjFjNgo80aZLoTYFj10ZXRkvIT5/YkffesTvr95RZDEYo672JIQ/H8e33sQ11ojh1xTa3x4qZTmvJjDHxT3bs84dtTXiiRBFysLu7ooeKqt7FW9MF6WgIqLKM05rmA+y4SvHfnD9z/mG+0VZ76nzxVnOjPmQCML/w+0k9dmUSdE7wAAAABJRU5ErkJggg==\" y=\"-111.782953\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_25\"/>\r\n <g id=\"matplotlib.axis_26\"/>\r\n <g id=\"patch_63\">\r\n <path d=\"M 151.831228 149.782953 \r\nL 151.831228 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_64\">\r\n <path d=\"M 189.320884 149.782953 \r\nL 189.320884 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_65\">\r\n <path d=\"M 151.831228 149.782953 \r\nL 189.320884 149.782953 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_66\">\r\n <path d=\"M 151.831228 112.293297 \r\nL 189.320884 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_13\">\r\n <!-- Neutral -->\r\n <g transform=\"translate(148.430431 106.293297)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-4e\"/>\r\n <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_14\">\r\n <g id=\"patch_67\">\r\n <path d=\"M 221.100194 149.782953 \r\nL 258.589849 149.782953 \r\nL 258.589849 112.293297 \r\nL 221.100194 112.293297 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#pd9796ba227)\">\r\n <image height=\"38\" id=\"image55a48cccb1\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"221.100194\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAOZ0lEQVR4nE2XyY9kyV3HP7G9LV8ulbVXdU/v7Vk8Y4/H9mBZDNgHS7Zlgy9YQnBGCCR8QvwDiBt/ADcfsHwA4QsSAqOxjccsxuPBs/RMT+/V1V3dWZlVmfky3xIvIjhkuSEuL6Q4vG/E7/ddfuLNu1fDUdvnYbPOu8U+/3b7Kt1/T6l/e0Z9kLP2vgAgGzmyhwuCUdheRLFnKDcF9TDQ5h66LTqx2NJgnkT0P4LBrQpVNKjTAsqKj//sMupqQWRaAqClJwSBEIHZzTWG7wmOP+u59PxjpA2KpY+ZupRx3cEVmiAhfrPH5i/AdgSqgXjc4PKIaiNhvm9Y7AraDAggrCDUkuAlYmZIHwuEh8V+TLnfod3sEZznyvdPqeYxsWkJQRDC6tK11eT3JdVQ8Nz1J/zu7v+gq2CYtDnTNmXexETHmq2fLwiR5PillKCgc2SxXYNLJeWapF4TtHkgKADwuUPnljSrsXuOtRfmbKQFT5ddnkxz2vs51/52Ez68w+aPX2XxzYjYtAgR8F6yPM7YHXmefqPmlfyUn88uoOcuZe4SnlZdJouM9IlATxYsrg1RdaD3wFENNU1HUG0KvALbC7SDFtFKcIAXJGnD67sP2EtOuZ4ccaPc41eHe2Rv5eSPHPJ4SkhiNn72hMknt4mun9C0mraVJIeGyYuBz1x4AMBPb15Fn7qMWZswqTPms5TtkQclmT2n6d+1tJlkfl7S9AKqgmrPEW0u2egukSIwnnVQv+zC7QE/fDFFjQ2qFohW0A4ds+cd5ZYkmu+S3jrGH43oPNrBXlFI6alnKZffqvF/ccxeOuVOscHe9il66jJObca0TmBu0HXAd2KieaDpKU5ekLh4VTbb84Sspdep2M4KtHQY6Rl/3lHd7EOteP6z9xlEJTOb8MHDXeSDhGBgsW1IP3LIXpf9793io/OX6V89IT6MSG4/xCnHml7y7Z2fM3cJetqmjOqcRR2hZxLwtLmh6QsWe2CHLagAAUyvpq01UgTaIMlkw6XemEu9MbezkmmZ8HSRc3A6IIsb3MyQngh69zy9mzPCskLEEawPuPr9Bbe/k9I7CvjxCYnK2I1O6ciaHX2Krr2m9ZLlMkZIyB6VzC5lVEOwQ4fqWpR2KOWpS0OcWRZ1xF4+pXKaVFkuZcd0dcVxnQNQOc396RrIgM0DXoOcLghASCJCpFHTkvPfHdB2PKFpuNYtqL0BwAi3kouyNfhmRTE1LphdlFR7LWZQoU1L8IJqGYGAECBPaqZNShsUXVMBMGk6pMryqd5D1uMlk8MB+xfGmJenVN8+5cZ3djn98hXazR7lXofy4gAzt3TuFsi8w9+9/dqKhG2PdVmiAaxbgdJLQbvRZXnRImJPklick3gvCE4QWkmcV4QgcF6ihaPxmqO6T+U0T8ouCxchCXzuk7eJpOPK7ohYtHywuctb2TW2f5QSpCBI6NqAuXNE8IHL3wv817WLvDo44MAM/q+UQnviEygupKhuhVsYlouE4EFIEAKEdmjl2OoUnMtOSWVD7Q0eQdfUjKsOB/MBn1p/xGv5PeY+4dPJA+7ZDT6WW9AKghLYDngtqNc0idZQNwB8+OPLvNu9xJsvXUcrEVg2Bm8l3QNHsafwjUJEDlcpTKfBe0nwgsFwyQvrT9mIC/q6ZEMXVEFTuIQTm7GdzalaQyRblj7GCMdT12XUdrl5ukl2oElHFptpEGAziR90YdhF1Q7z8hTz1oD2rW1k0UZ04gYhoPvRCbINBCdAgMks3ktcqekMSq4OjxlGC/bjE7bMjFhaEtFihCNVlp1kxsV8zJVkxMvJAZt6hg+SbT2laTVrNx0igC4hmgZ05UFL5GwJIbDz1zEuhqNvNejKGZpWESqFKGs23y6ohl3K5ytsaRDaYzLLdm/OVlxwMRmTyZpEWiSeSLVMXYoRjhZJqix9tSARFkVACcemnqGVI0iBLixJLIhmLfq0Rj6ZENZ63Pr9BJzA7BR86eJtdKIs3bhhupDc+cN91KenbHUPeXA0JFgQMtDvlmymBetRQa4qOrIGIBGWUdvlxK5EWkuHlh6PxCFY+AgbNDv6lPV0yViBGRXASlbUdEGoapqtnGgiqTccu2szXsoP0Y3XTMuE7m3J4FuHfG33Pe6XG9y7twUqkKQN2/mcYbQkFi09WZKdAauCYeoyJrbDuO5wdzKkOMnoDhd89cINvt5/h7fLi1TB0DMVj7sCMSuwV9ZYbmryRJG8M8fmmq3Xj3hj+xa70SldWaKXbbSSix44L3lrfJVJlSFqSYg9a52Snqno6gojW6TwKOFxQfLIrnFrucXjZY+P7u0SH0T0TkBVhh/sf4Hsmw02KP7TXWVSZ1TrApQi+9lNMq0JO5sIY0gPF1wePuZcNGGoCzqyRpetoak1KobSGh61PZZ1REgcMnbEuqWjG1ov8UFSecO6KnBIjHDUXjGtE7J+STXTrL/+lJOf7tB9EPjuT36TEHkIAkQgMTD7/DnyW1PkeAZPxgTvkLcPsF5hg8YHiSKgO7pZ+d9Lc/a7U95Y/5ifTq7wq2ofKT0AqWoofcSk7RBLy0AtGbU93pk/x9uPz1OVEds/iOg8LHnyGzt0TgP5I4tZaMxS0OSS0WvQDD2P3hBkV4cMbvVJRg16WiLuPWJU5ciupwmKKpiV8odGIvPAjaNt/urCP/DO/BzbwxmPHq8xr2PmbYIWnnmbUPsN3i/2+cWTcxQfDAmAzz2P3wBZZZgC+ncdetGiM8XoFU3QgTCskcbT7VTY5xSHF3JUkZAdpQw+7lE2T3jcDKi1IRIO3XiFmivansROY/7y0dcYlTm5aRALzejRgHtRw35nCkDpVkbbTytONi0AcqaJx5J0FEgmjrqnGL2S4V5YkKYNPgikkwgRgJXX+m1BmcUsidBLxeT+Ji8NjujrJWOXr3rM5Y7nd0acDlLefnSOXlZxuT/mzlLi8pbHJz22szm1X3lqLB2RdGxszxiPc3zH0bQChGDyumNvb8Tn+sfsJjPuL4ccLXo8neV4L6mtoGkVttH8egkP6/9h0K867pcbPK1zdOMU0aBGC8+fX/knDuw6//jkZZ6UXfAQWoFtNCdVxmZaEMuWWLY8l5+wnc0wG55htKB0ET1dciV5CsDcJ0zbDC08rZd0kpUfOi9YVhHtLELPFHqxiizZsePt4/NUrWZ0fw09r2L83Q7vPbjM33xO8kr/EIDHpz38fgVzg8xajpcZ5zqnpMqipcMjqL1iIy64FI/YMVOaoNhScxyCuU+5E7aIZUsvriiVobSGsolpKoOoJboQJGPIjh3ZYcno73cotwW9OeiqMmRHgqYPH/zqOaJPt3x4sEOwEpxAdFajVllH3Jmvc73/lFQ0IGFgHAqPDRoXJJFwNEHhkZy6DBsU+qzsJQbrJM7JVf10wGWBthS0iUQuG9bfL2kODV4LNEFAAJcEkpHiw3++Rm8Ks+cdBMBKXOJogNE8J9WWjaTgUjbGCEeuVkFRCX9WwvRZ79iz+U5Lx/9fUgVc5PFG4OJVNmt7CXqyQC4jhPfoOLHYHgzfC6THlvk5Q3FhNcT6xKN6DVJ6osghROBw2keKgBGe3xp8yMTlGNHignz247lPkHg29BwXS0pnmMsEKViFztUdCBKEA2cEqrQEpZC1RcwWaO8FthNYe3+GPC1Y7Oxj5gKvwacBVyu8UGjt2eguaZwiURZ5Rn0j3LO9Q6AIdOXK6GfeUgVDLB1GrUKmUp5WnE3KYcVIXQeCWYHi+BQig7SNRgCLizmEgLKBtgN2zUHkoVaEAEIEenFFolukCPiz8R5A4c++gUQ2dGSNxK9iDwEpPLmp6ccVsWlRyoMMyEZgCjALj2haxLICKcA5ZJI26Llg/KKm3V0jPnXoBSRHGmr1DFykHbM6YV5H9E1Fqixzn5IIy7ousEHRkfUKyBnQhY9Y+ohUWVJlyXRDFjdI5cELVC2IZgEzbxGVZfaZPZavXSA4j/zqhRsgIB0FFudSzLyFAG0aEFZALUEGaqvxQbCRLZ/5Z+3Ns8AohacKZhUQz/YrMbbEsiVVltzUCMC1ClqBWYApPWppQStOPqG4/01B8cVLyOvJEX/we//K5BVPfNJijgtkCyKArM4aWgWqIqZxCiVXICZN5yy5ts8YCdAEhWLVcx3ZYIQjkRYtHMdVztPTHP1RxvCXivV3LcmxRU1L8J7FFQvGc/ANj6yC4TPZPf74Sz/k0Rdjmu0uySSgl6seEo0EKzGppbYaLT1zmzBvY5YuwgfJwsdnRGiZ+5SZT7BB05E1hUt4d7rHD+99ghs39+FeB72E5DQgXcCclIhiCUIQ9WqQAaEC2gaFxPPlzg3uf2ODnxSv0T1wSKuIpoJq1yNaQTOPUMozqxMap9hK55zabCWowdCVFXOXPku3B3bIYb3G7WKD9x/vYkcp0YlEWkE8Wb2onltE2Zy91oDWWoQ8O+vKikg4utLyJ5tv8uB31rj1L5dJxoF6INAziY8C1JrKREx0iiAlUm5VnraHDYr7fgOAG8XOM8YeFn2eTnpwkKIEmEKQH3qiwpOMGmS1YqIvFjz4OtAoEAEhQN+utrgYjbBB0peOP9r/EX96/jydQ000BdsHVQraLBAWmrnr0BmUPJz2yeOG/55eoGhjJmX2TM9OlineC5YnKWKhMRZUJYimgSAF0bRF1i1yWROqivlXXgRz5g5eEATopY8Yu5xNtaAOcFlPeO3Fu9x6/zqiBdlAUCshFF4QAiwmKYsgKPKGRWOorcFahRCBtlX4VhIqhRmvoo1eiFXflpBMHLqwyHmFmM6x185x9AXxTHB/vXRfl9yqdkiE5Tl9wizEvNR7zC8vXWXzF4CUVBtgux5zIgmFXMUhBRaYegki4BYGUUqEE0gPohWoUhDNQS8CUREwS49eupWYzgpCt8Po1Q6u00K7GrJXjIP/BUFiptD79GxoAAAAAElFTkSuQmCC\" y=\"-111.782953\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_27\"/>\r\n <g id=\"matplotlib.axis_28\"/>\r\n <g id=\"patch_68\">\r\n <path d=\"M 221.100194 149.782953 \r\nL 221.100194 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_69\">\r\n <path d=\"M 258.589849 149.782953 \r\nL 258.589849 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_70\">\r\n <path d=\"M 221.100194 149.782953 \r\nL 258.589849 149.782953 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_71\">\r\n <path d=\"M 221.100194 112.293297 \r\nL 258.589849 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_14\">\r\n <!-- Neutral -->\r\n <g transform=\"translate(217.699397 106.293297)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-4e\"/>\r\n <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_15\">\r\n <g id=\"patch_72\">\r\n <path d=\"M 290.369159 149.782953 \r\nL 327.858815 149.782953 \r\nL 327.858815 112.293297 \r\nL 290.369159 112.293297 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#pf555901934)\">\r\n <image height=\"38\" id=\"image11ac9b6cdb\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"290.369159\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANTElEQVR4nFWYS4xk11nHf9953Ee9u2d6euxJz7TH2IqMozhylARBCCIoUZJNJBBigVixQFmwZceCJRJskUBCbBDsIIl4SigJwSQhD+SJYjuJ7fFkPNOe6Xe9bt17zzkfi1OeiJJqUapS1Xf+3/91Sj76e3+mCCQLagCBiw8qCJhWCE93IIp5XBKnAWkNEgVzbUM8LTEbQ3kulGdKLIUb/35M2BmwvFkzfe2Cd764y4c/+wYvT+/xFz/4FPWw5fPPvMZ3jg+xJrFXL/nU7k84LI6Javjrh5/ksqtwtlcAxEE/FJYHkDxUJ4bmoMe4hF4UqM+fcwtDfyWQlh68IisItdIdwo1v9PDeCe7MM3utBecYPtjh4XLKJ2YRXwaMUUoT+P1b3+TV1U3urXf5ytGHeXp4CcAf3Pg6EcElB5IgVMLqaQFR3FoIw4yaBkNxZmivRczSkkqFJEgv6DAiaun2A9IZBt99GwqPiKBiwFqqi8SD4xn3r+7y6ds/4ZUHz/ConVCZns/PXmUxqXnQ7/DnP/gNNAlXiyUD2+EkgokZLURRAbcWNvsRKSL+ZyUZUsV2Qr/Xg4KKwcwd6VbD3nTF9E9HaNshIiRVRASiYfrf93j4a7f4zvEhv3XwA249e8o3Tp7j6289x/du3OKL+//Lh6r7/NHL/0YlHX9/9DGcSbjyItKPLcmDCtTHwuaKosOAPyqZvgXnL4BsLAq4OqAqxEtDmgSKt2o25wP23rkPoyHaNEhZoesG4z2aEodfjZx+qeTN9T4vDt/lc9d+xO889T/8cH3AX73zKyQVbk3OuVFdcHt0Spscrnq8Rt0QMBRzwS+V5YHijgtmr0OzJ8QqIlFQr8j76K0NMusYv+NZHCpaFnA5h6QQQl7n7hQen1G+8jrppQ/z7hdmAMxDyUU3YNUXNJ3n/PGYx2/s8f1WkFtrPnF4F2fPlvhxiSSHXyrNnuBWUD8WUqG0u4pEQRKkQtGlRzYGPBz+jSOWkeaaQ+siD+0diIARur0h8WBCebrB9PDqa7d4cDDlYj4gBoMuHdUjx84jpT5NqIXw+oA7kxdx6izFowUf+JcF5x+5QjcVylYA6CaCOoUsyEz6xmI6QSKU3/oxYg3Dbxfoeg2DAWjKlKwqyrvH0HZo27H8w0PkvGCxLrEuEjYOnJIKZf2UcPXOhjDyJCcMHoOj8Jy9tEPyQj8S7AbCIHtaP1aSV7RQklWkNdhWQMEvBLN3Ba0KUumRlEjGoKVFjZAKi7tsMZsOWTa4exX9TiL0jqru6FxCCqWfGuzSYJctEhLS54O51e0pjz6ZkNYwex36qZAKkACx4ol/ScwomS77nDq4+Oh12omw/MyS67MVm+CYVQ2Xm5rdek1S4cd3Djj8So9a0DISVw6tOozLA6Q6knrh4sUZO999jA5KUMUc/bLFTjrM3oYwyEOphVgrcZBQp6go0mae2Y2QSiXUyvyWwa+V+htjHp5NWDQlXzr4Gn/y/Je5Wi351atvUj02nL1QkgpFfIIkvP/QJIhV1CmPfkmR9QaiIlGRF/7xj3X53ggz6ql/VNMPFdG8yjBSUpEQFdzCQMorjLXSzRLFuX3CwepEcE32QQT8CkINi0PoZxG280gnyE4HAtYmYjSkjWX0RsHNv3sHHdaQEm75aER1tSElyV9KRixZIOUV2pXJb2yz1DYCVyCVilvllJi/2DG+umJStTS9Y9V76qInzQdIb9AklD8r6SeJtHGQgEFArGLrmL8bQARJirOTDu8DAH2ZuYOCCYAR6AXXCMkp/URRA+O70FyX/ycQd+JZhDGLcgCAr3tiNFibKMueZlliN9DuJRCFZEiNw416EKU63ko/bclvTGJxPoAo1HHLIaeo3R4gQvJK8mxXrLQ7htkbcPHxDv9uASkP7xeO4UOLKJx81NHXETqDu7bCPSzpJ4qddQDEeYH0htgbfBUY3+/AbX9UFdc3HoJhesdjWyXUQhjmtcZKSSUkq8Q6IYOIAuuxQaLHPSzorkae+rqhH2TfQ/Jh6ocWFUtzs6e9O6ZcCM3zLdPhhqTCojdoZxFARKmOlmAMEreIAfhjRzFXilVitW/zGhXUSUZroFAl6vGGwkWiCutxyfi/BqzV0o1h9tMW0yfOPlgzPxSmbyXKy8Rp8KiB9a3A1auLbCMI1iTmy5rYOFISZLkGayEl1Dvc5E5JctCPQY0h1JC2PFOTYwhAbKJtPSkZvA8MBi0XLzvquwWrG9DOKvqx0l6N2GnP49uG8u0SDHSTxMEzxxhRmuApXcAazaoMQr8sIETUOzAWiQl3/ZUF9z8zpt1RirmQLMRBJnmeiCeRJEC7KmjFoxtLMWtpnjbUR44whPTcmo/ceEhSQ0L4od6AYBjsrjGiiCgpGUIyWJOtAqfYM/+E9BJTtou3f3MEqkiCfqg/twunSNqGd5UwRgmNA6MQDViluyiR3tDupjx8MDxcTqlcoI2WetwCsDNs2ASHNfnHu2jpowHdGuz1DTrKalZnwXjc8IEw/4UIFszaYNs8FJLjp99RzMqSegGv0Bow2Si1TmiRkMYgCWJruVjWeB9x2yFCMJwuhpngRY+ziWHR4U1iYWoolP3dOTookU2fkUsJpzabaHIJtZpPEeSJkao1+LnQj7Pj625HUfekN0foxhAmEb/cVvEkpGgYjddsOk/beFLj6AWkiKgKhQ9czAdMxw2hsyCw6R2z+Rot/JO4ct0Y3FIIkpHAgO1ymy3PoZgLsYTr34n0Q8Nmp8IvS05fUp7+T+XiWcdmLw+FUWaTNarCYlVhHlSkacTvbAiPaxj0LH42wTaGk1mBGQTsNswJEeoSrIE+YBAwIWeRWwpuKTmGuhwNps9mu/iAY3jUMX4QcBvlub9d0k4MJuacRJRi3HF9tEBEKX84YPdHcPhl5eAvfW6/d8bc/oce24I/dei8oKo7Li6HoApdDzFlg60fK/1QiKVggmD6n8cSQDnP98XL5xOLZ4qcCAqXtyd0M8U1YDcQR4m6CDTB0wVLP1GOP5ZwC8fgSNh/JbHZgXufLQnTiL+0uLkh7FtSb6DwYEyOQSxORXANxLWgDtx6G1keVgcw/WbM2bcSmmtCclCdQrFQ5H5uE/PbAj5RFz3eRPZHS86fGjP7doE6Yf5sYv3UmmHdUUaLvDHBboQ4UEIwyNqhRvIaRcCAa3ehvMgDiYKJim2FWEEs4PQFz/73G7qJp5wbJCqLmxbTK91YOP9FRcc9JDg5GVPsR1ZtgQah3REG7ymHX+1RV3D+/AhnYPpeoq/h9CUlXZYUF4Y0HmDWLaS4jSQB0ymxyGuMRW4N74f28plIqGv8Mq94c1VJTlnegoMXjqAtWDUlxig3di6xksk8PjhlsVdy9vaMxWFJ/Qj8Ivvl8mnD4qUWOfNgcsUS3XLHmMyx4iKr0JxrDmGTC54oqFW0TDTPRjZGMUXEuUjpI8Oy4+b4jLNiSDU7o7K5Ol10NR8YXzC0HWkqnM4ueG85Zt0WXM4rXBkYjxqGwbE+95ilxa+y+KQPWQQiOLdW6tNILIVYGdpZtodUbKtPEmjzbSlJfgaBRjxJDRO/wYhyshnSRkfTexhASIbCREau5fmdDfO+YrTfcroZctlWLFYOtYpfGDZ7EVk2qMlJo0ZwkqAbG/wqoSLY7WXD9ORLydbhpci7NzYhohQu8pPzPQa+R0RRFSrXM/Qdy67kNA7YG6xIKlS2x6A8asY5yDuP9xFdZ/O2jUVCJI0GGTHAXLkzJzkhFoLtleRyZU5ua8EWMIoGgxgl9I7QW5LCuGypXE/tekobKGyksj2jomVStDTBE5IhqbAKBQDr3rNpPZt1QXGZ+Tx9K20zMpdEtYIxm8DgUU87MRRzzXaxrTwSJXfzkF3duoTzgeGgpXARbyKb4InJZBRNwJlEYQKlC3gTqWwgqMVK4mw1oAsO5yLFT2tGD5T6sTJ9c4VWJRIVdWaryj5Q35+zubKLXyWqc+hHhljnOm1aIYlBBVJh8EUgqWBFMaLMyoaRzy0iqNkiZLZ/I2XQ2+C2gktYk2iWJbsPlehh/G6PtD1YeX+L+bNaedRnX1resAwf9kzfTkjIMKvhSainmNVjTSIkw7ytWPQlZ+3gyVAhWYIaVn3Jqi/otq/nXUnlA+vOM/tWyc6PN5TzRHnWZouI75c+yao8eXkHSdDuCv0IQl0yPEq4NbS3O+TMby+5gmLZmIIQLNPdS2Iy9NFS2sBxM8pKAhJC7XruPtxnb2dBYSP7gyV3z3dZHI2Z1MLpixWjo4hZd6gVsPnQqfacfmiImf3uu5x8usV0W67/+imPPgGbPWXwRplL480GylwGdVttmt5z2VRsguO9xfjJKtvoOFvXAPTnJTEZlm3Ja0f7XB8vkEEgWWiuCUe/3XH/C1fQ0iN9Vr1KbtFmWjSYRyVPfe2Em/98yeV8gFqluBSuvtozftvwsVv3cCceMwiIKGISl6uatnNULmRCS6K0ubnuDhra4JAgiCjnl0Oev37M8WrI/r8W7H9vw61/mjN6ZUD6+CX3Pj8mjvI/l2YTuP4fj/g/U40ssL24epYAAAAASUVORK5CYII=\" y=\"-111.782953\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_29\"/>\r\n <g id=\"matplotlib.axis_30\"/>\r\n <g id=\"patch_73\">\r\n <path d=\"M 290.369159 149.782953 \r\nL 290.369159 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_74\">\r\n <path d=\"M 327.858815 149.782953 \r\nL 327.858815 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_75\">\r\n <path d=\"M 290.369159 149.782953 \r\nL 327.858815 149.782953 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_76\">\r\n <path d=\"M 290.369159 112.293297 \r\nL 327.858815 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_15\">\r\n <!-- Angry -->\r\n <g transform=\"translate(291.380237 106.293297)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-41\"/>\r\n <use x=\"68.408203\" xlink:href=\"#DejaVuSans-6e\"/>\r\n <use x=\"131.787109\" xlink:href=\"#DejaVuSans-67\"/>\r\n <use x=\"195.263672\" xlink:href=\"#DejaVuSans-72\"/>\r\n <use x=\"236.376953\" xlink:href=\"#DejaVuSans-79\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_16\">\r\n <g id=\"patch_77\">\r\n <path d=\"M 13.293297 194.770539 \r\nL 50.782953 194.770539 \r\nL 50.782953 157.280884 \r\nL 13.293297 157.280884 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p87999b9dce)\">\r\n <image height=\"38\" id=\"imageb53206968f\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"13.293297\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALQklEQVR4nHWYW49l11WFvznX2rdzqVPXvrg7djvu7iQyCQ88gAARnuAvIH4EPKH8JH4FjyAhEoQwkWIbEseXdru7um7nsm9rrcnD2qeqbcOWjlSqo7P3WGPOOcaYW/762T+Y9COEgIUIKUKMkIzbyzksBHY//wkv/sKRivydJJAg+FbQHtwA5Y0xexWJpTAslTATkoPhCKo3cPafLW4z0N2bEWulPh8ozjcggpWe/rTh5kmJl27Aug5iAksg+m1QMAFN9CuFBK4X/FpwPYiBjiAB3GjokH+y/N2W/rShPXEMS0FGoT+C9eOK+ddKsQuc/6yh+/OKxWcNxx8P9CtHKoT6KuFtHDOoGPcovg1KBYsJKUvGuVCsBd9CuTZ0BAw0GL4zim3C9fn3sfbUX2+QMKNoPeVa2L6jXD1XNBa4wdh92KE+cX3k2T4uWHwhnH7U4m4G/PfY+e6VDFJCFnM0wOyV5dIcCKkAU9CQS1ldK751uMFwXQIn+DYyrDzmhPqNkbzQr4TmjWFbT6wSsnMcfgynv7pExoiVHi+LGYSItS0M4/dwmWXgVpe43tjdV3YPjTSLmEy9FgUdhPFSKW8EHQ2JSrFz1G8yg+Um0R4rOkKYCct/XXN6sGJYeh7+yxr3+hqrSqzwYIan7UDk/yTLpvLqwZLt8xO2j5TtowRHA76ImAkpCZaEOCpd5QgzpVgLGmBcCv1KqS8S9WVEVoobIHl49ccrTj7aUXx9lZ9VFmCGxIg5j7eY8iSO4XtMWQjowQHXf/Yel88c3VnClgHnDMQoy8A4eCKKGZg3wkHCNDOjUQgzCHPFFOqrRKyVVAihFvybbZ5GnYgpcsnNKx57u/Hfuqb/bf70fd586BiXiTRLEIQYPVEdowFRIAo6KDIK5oxUGqkCxHCdEGsY58ri8zwwEuH+L3fIGO5AiZBKD5r/9oj+P02fsD98zuVzT2wMc1mzQGDSLw2ChKxnGOgoIEJsjFgZqU5gOn1vdKfK4X9HQuNwmz6DEgEzcBMOVcwJnnH4lm6ZGcSIHh3y+mcLQpMnjwkTZFDVpVJdgusMDMxBKiBWIEmIlYHa7W9TlQg7ob4Ymb3skSGA6i1bpgoK5oRUuW/LhZlhw4CIMHzwgP5YMrUGpoap4TaO5hth9srwbULjni1DgzEslZsnDh3zYOANi4Azwjwfovj6CvNu/9DMmteJLcVE8Dh312MpISLIYs7104ZQ535wnZAqwa2Ve780fBtpTxztqZK8IAaLF5HqcmD2mwua16e8+qOabaFYabhWcyvOEt1pQfmlQOEhJQgxN33hSF4xzcPgKQto4+0Ukgw5O6Y9m9gK4LpM8eHHsPx0TfdgRrEzfAdgSDRcm4i1Q08PcLuR8qai64RooAHYKeEwsDtzHLwtT2VBqj0mIGaQcvm9iGATW7n5hPFkTvITWz34FsSE66dw88PVxCJU15a/72A4cITGE56VpEIwD8U634MJnARlXEwNH2K2u8JhTkFzbyWnWS6sH24bXpwD5xhXBeazOesIrjXqN8bmsdI+SKTCkCSgyvyrRHIQK5kaPwOWaLSnU2k8JCwb+Ymx/oNTlh+9Bl/kDiod3b2K5AXfpswYMSIimHPTgAjjTIm1EUtILp+waI3VbyOmjuHQmL0Qll9FdDRcn9AxMRx4Yin4zgiNkiqIjUEit0WCsEx8+VfGj37XoH22QEmG3yW6I0fykkMBKlkuVBGRTKkXkp/GvDRiA6bK7GVi8VVig4LA5oEjFVBsjeYiYQK+NczD7lTpD43Y2K3OIUAQmAWGs4b6sw5Kj4R9KsmxJ3nu5GIPCp9PbQrmJgNXoT8yUqHU54YGspGX0/hvlFg5iq1RkugOlf4IwiphzpAoyJBdQYJgneP6iaP+vdz2NYDvLAMr9nJh6U5kRSdRtCx407TESkiFEWag/R2bKISQb4hBv1L6E2FcGVbkgTIAP5Uzwuxzz3BAThJ7oymy2A5zYfOeTF75nUxme5eyLIypyAkVheCBWW5+CYIVmUEdYVzkAYgVt2xmxzCsANQgaZ7yCPgspiRDgiGWrS85w/OdS5xiLt/QiunUUdBRkCh3DyNPoE0eKckwJ0gCHcBvhVEcVqUMSO4OH+t8ECscMsYsJzGho9JcJMrNvpRpijzJYJrOtAe1BxEFvxP8LjMaKxgPLJd0Wk7KG0OSMc6zwbtWCAshzBJWZu+E3B4YhHlBcTECLk+uQXuiDAeCx/tsov0wAYi4YV9KgZhBkUBG8Lusa7ESzAlDnUvtepi/GBiXnu44J4piC74Vks9ZLi4SMgqzl4ZGSKVizmFOJjKEcSaEGrx4jw3jrfLbOFJdJ3QULArNS6W6NEIj1JfG8vOe0DgkGaksGY6m6TWhvOrRYFw9c5z9e48bE7FyrB8VpFLpNZd4/jKAgI7TMyeLilVOGL4FT5qC4l7HYqT5psNv5ll/JOvU4f8MuF2geHlFsWwYzvJyop2iMTd+WJa47cj9fwN/1ZMaT/uoYjgUig2EuVBeC8V6JJUODFLjJ0sCiTlIDkumHnMOuU0YRvHikupiTn8M9WsjlkJ37GmiEQ8XWOWIpSLBcF0GHxtoz0oaA+0j3cMZm4eecSGUV0ascy9Wl6Ahb1C5dwQdI6ZCsU3UF0IsFb1Njm/LxXrD8W8GYm1sH+fFolwnzAnjcc32UcPNE09/tL85hAa2D5TupCCVjvJq4OiTjtOPetxgbN7L8am5SDm5pv3Dsq9KSPmTwO/elou9NU2szT55zfz5I26eRc6PhOImRxPzOa3uhdemSYtl3n7CzOHeddMrA2M4ENoHRiqMxe+VYp0VQPtAqu4eb0VWAw1ZI73VVdagt/dKS9h6w/KryPYHSlhE+nv7O+SPTBPLNPqSIDhySt1r3Fu2poNQXWbDl70NpkmE9wLQOEI12ZM1JTIGGBy4lJmbFoTmZYfrZoTFntXpRiZYMvZ8i8ktgFsG9n+kLDcSodgldIxItKxlTOHQDJywO3PEkgnYNKrS1OA9xJxmCQF/vqG8njOcCKYJipSPlgyC3iIwvg3q7UtEMDV8pxS7dAdqv7YBRMNE6E6EYZVXPg2rCqtLrKmwWX3bY4gg25bVbyN+rblcAuISOMsfsbvt6e1N6q2NCpnKeJH9MRU5oeZDZUBpVuTe7PJB2w96fH9coH2DdiEHt7pCQpzelwWWvz5nd3aPqx87UpnQfRSaRBWbSlxMgXBfo8lXtc0iPfsm4bqYXcZPcT4a5pXd/ZLtO8r2cUKC8OjhJf7Nh457XUn9Tcj5+2CG7HokOCQm2HWc/seG0Cy5qR22yCyJS1mxg0IURFNmDcNSlgO3c8xeKMsvIuVN1slU5kShMYEIoXFcPVPad0fqow7VxF8++BT/8Odf8nr7mPvbEreZTLKuYBgzczHiv7ni4T8bOh6w/kCJq3CbRnXncK0QZ5o3bybDv1ZWn8LyqwG/DZklFZITUqmkmCN0f+RonwwsT7eczHf89OgF71ZvkF999gP7u0/+hu4fH3D86w1Mqqy74VY+JOVlxeYN6x8fcfU0T49EKDZ5+Ug+y4PErF/zr0eql+spFylxXpKaPMbdSYlJ1qyLn3jcn1xyPN/x9OCcp7NXvF+9wt93I3///j/xi5/+LcsvSso3LUZeqyQmcJr7YRiRtmf5X+fMv5gRZ57kFB0ifjNMucqmV6b5ZR+Fx6pi6slcwlgpsRBiKYxz2P5w5H45sio73qmvOPVr5trjV1rypDgn+TwxqfbZMiqPqmLTFPlrwcYAZujVFt16UlUgMSLdXTpBFbzDipK4qEiFomMiNI5x6RkWSmhgWAmbHw08eHTJ/dmGd+cXrFxLrSNzGfhf5o1hoOxaJfYAAAAASUVORK5CYII=\" y=\"-156.770539\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_31\"/>\r\n <g id=\"matplotlib.axis_32\"/>\r\n <g id=\"patch_78\">\r\n <path d=\"M 13.293297 194.770539 \r\nL 13.293297 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_79\">\r\n <path d=\"M 50.782953 194.770539 \r\nL 50.782953 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_80\">\r\n <path d=\"M 13.293297 194.770539 \r\nL 50.782953 194.770539 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_81\">\r\n <path d=\"M 13.293297 157.280884 \r\nL 50.782953 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_16\">\r\n <!-- Happy -->\r\n <g transform=\"translate(12.679688 151.280884)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-48\"/>\r\n <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_17\">\r\n <g id=\"patch_82\">\r\n <path d=\"M 82.562263 194.770539 \r\nL 120.051918 194.770539 \r\nL 120.051918 157.280884 \r\nL 82.562263 157.280884 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p744c2eadab)\">\r\n <image height=\"38\" id=\"imageadf1b3d72f\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"82.562263\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMiklEQVR4nH2YS6il2VXHf2vtvb/HedxX1a1+VdGdB2kN2NGoERUhs6CTSAjixMfAgTh2mJEIGWQiONGJ4sBRQAkORMSYEEWQiHaIaKKddNndVd1dt6ruPa/vsR/LwT7dIWD7Tc45nNfaa63v//+tJfnhR+3lb/w6H/mdN7FxYvr5H+XpRxvMgTkoHhCYT435IoMz/DriQyYnRV0BICVHmR0A3AS6KwWD3BrmQTK4QQh78AfjK1/4Enf9ig+6PEDbRqTrICZMQMwwEUoDppA7iGvDnUasgLqCasF3meAyIsbu0GFeEDXsojB0nvbtgBjkYNDUg4oJmuQDA3rvUgAzARFoAoggBXIDqauPuTHwhojR9pGujThXMBPMhDl5RKz+oBjqDF0kpmcSaWHkZSGfZOJpJq6MeQ2f//Zvkq38/4HdXu0pZ2sQJfVKbuT9LJVg5N4wZ3T9jPeZafbMs2eeHeMcyFkppWYhzY4cFSuCZKH09VDryx3d5UB6fmY+Nzb/dIcvPv74BwanAH/28p/z9qcv4PyE7V3HfAbTrUJeZubLTFkn3MmMipGzomqoGt4XShHi7MnJYUWwpAD1uRrWZ7qzke3VklKEs4sddncg9caffvXT/N3QfnBgz7me+QQ2r9wmLWG8zJSzCN4IpxPNeqZtIwaUou9nKEVHTo40ekpUbHIwaQ2uCIQCSchZCMvIvG+Yome9HImXie5d5Yvf/6UPDiyIYzo39s865hNDzmeaRcStIqKG9xkzIUZPzoKI4VwBMcxABodsAm7jcHtHeDfgrwLn/xLQnSMOgedv3bC+2DPsW1JR/DIyXRTuv3Wb/5gP/3dgT/OBfJaIS4i3E6enB6wIy8XE+fqAd+UYXM1Yip5h1xI3LWUXMGfYSUSysHpDuP2qcfIa7O/WO5Gk3P/+JaXUbO6eLihFKI3Rf7fl83/8u9yU4YcDmyzymW/9Bpf/4Mk9hJOJRRNpu8j5YuCiP3C+GBiHhvjWEh528LBFrxpkVCjQPHJcfq3B74TthwpXnxCevlKY7ySsy0iTIQv7d5YghgyOcvCgUBoQgy9dfeqHAvPfi5HrV29zqhCXhhNIRatgmjCkwKPtkvywp3tUG9vNkNsqvvG0MF9mrs4FSYJ5I54kUIPJIV0mdIlogkUFq3ev7h1y1DON8Bdf/gV2n2v5g+e+WQP76uFlLv/N2N5VSlPwYuynhhQdTw89XUgM2w65nJifNUoWyuRqExhokxET7OCxZYLJQRaYFULBNZk0OxAjrCcAYmmQ6JEClBqri/A3f/Upfv9zO75w+z/xf/Laz7KcC6lXcEZOjnkMOF/YPVmwHxzmjeZiJqdqOW6RECA0iZSUuGkJTx2SHBYgnmVkmfBNom0T8+yruwApK7ao3wMlOsMflLAxNApvjOc1Y/KVWzz6hGDOkCiULNjgSOahALk6wbRrWZ0fyFkxE5wrTGMgXTe0jzzdFcQ16Ab83lOCQz8+14O4QuszfYjM2XFwhd3ssCRQhBIgt0Ju4Z8fvsjDZ/8W326M7YugWZBi5PlYiqbmWNZTtaxZmcZA388YsN91+Nc7Th4LzbUx3BH8AOffjaROufmwY5gCzmeW/YSIsWomhhQAGLtIEqMMntIqugUGkL8+56s/8iJ+e08pjaF7kCyQBLyhXca5QtfPdCGxHxvmKTBOga6N6IOOxQPh9PXIu58MjB+d0FBIfY8/wOGFQjl4ulszp/2ImbAKtceGGOi6yFCUVDImtTqLx4XcCL/35V/B717KhI1W508gSeEorMvFhHeFxmXCcmBsItfXSzaHgAbj+pOR658EbQbu3rmmmPDWS57wxON3gj07se5Heh/xWigmxOLwWojRA5Ud0qpQrmsMLhpn3xV8uFEkC5qqplhTCE2m62cW7UzQgtOCl0LnEyk7dtsOCwZJa8mBMXmcFqQpmEC8yJwvJp5bbjhvBoZcS9j7yBDrc3WF4qrZ56NlNtuCmwpqDkytZisfm12N4DKNy6yaiXWYWIaJ02bgYnng5GSguXNA+gRJsKwcpoaPnD5GXCH3BVlk+ibSuMxN7DikhmSKYnitTiJiyFHaSgATYfnaNfOJw4eN0D8y4gpyV0WyHO+8XJRigneZRjNLP9O5xGkz8mRcsG1btvuOPHpKEebiEIXSGL6pBysmvLU7ZXPoiNFhRWm7yDQGRIwSK63krgq2PN1w8rXH+OYGlu9kbnp/zFyVjJgd+zkQXKZzERVjKlXHCsJFdyCbMCfHZMJwtWB3q6VkAWcY8M7Nmte/d4fuYUAn8Aq5N8qwQBdGXBmo4Uap1QJQJT9+gq82fiyj1MccHWZCcLVhAXax5cHuhJtdjxWh72dSVuLsK24vY9UsX0hRKVEZnyzpH7qq8ALhAIu3qX5ZIOxhOlOmcyGua9bw9fB+/WaiuY7IXUfxx+EjSwXArEDgrcfPEfcNuvVIFDTDwAI3CulDI5YV3yWeDAucz6TY0Kwnlv/Y0j/OHKkbKUb7NCKxsH+hY3fXkY9zRQlgKqCK+IBff/MtECG8dK8iihpkYZ4CwWc22wX5SYsYhBtFCugMUiAtQN9t4YWB0KRjUxfiQYnjktII5oT+wYgUwz89YI1n87ETDncch+cMN1KFPL03kdUK+fzoCl0sWD6cuf5YQ+mqseZZ2V6d8sLXjeGW0l8VzGXcaCy/c0W+teLwfM+Tlx2TdOR7FfYanxgAvxemM0idsr23YPehDNZhzgg3Snx2glmR5BEzwlZws2HvlZKcsWki7CJSWsxbdYCDZ/FA2b4AF9+Z0bkQ154ShO2PXTIvlems+hwmpNlx0o6oGE9XGZs900Wh9IXlfY+1BZkUfzazvndgioH9TUezETiWun9syGaHOMVbMZhn3OMd/rAijlqJtCuMl4J52L3owYTSFXQ6BqMFcwZtQXYeHzKH2ND6RHc+Mmpbud8b6ZNbnlkNrNuJ3kc2U4eZsB8cYQvTeWW85iZhKYFzdeC1YsjugB8qY1ljyHScdo78f7Hec9qOeC2kohxiw9NDz+bdFXJrYtlXklCM0+VACBWNNm+vSfdXXD3v6e9UuthODftvXXDySNh+uBzlQnBTAeewlPASPOSMxUh7bRwmqX0GlUhnRzgdCFp4pt+iGDex4+HmBL5+TnNhLF7Z0jWRYoLTwrPLLWmhxOwwwH37HPedjgcvPV+zLdDshe1PTNjBIfG4WhCQpkHbtmYM57DdntPXBnYvLMitYsGwYOjOMTw+4/7ZmvvhNuIMbgLn/y4srgv7n5q4WB6I2dH7yCpMqBjFhKTK5Uq5/9Ipi4dKs4G4hOn5SH42YwePZEGOeC2xQEqYGV77DosJzAjfe5vLk3sVY+4U8lll9zIr0mcsKWbASeTJjztkkbl7+5qgGRUjmTJnz8LPjDmQTFmHiY//9Os83J4wJUcZA64olgUTA5OK1hPonLGUa/NL19XBdJqwGFn81xUXyzs8WihzXzUlnMyEJlU38Jl1V7lqGeba7EfLejwuaVzCa+ZWu2ebWubsUYxbiz3XY4+ZME2eXI5zg1ZNlFwzJt5h2qJ2uka8A+eQEJBxpn9nprkWZFYQyFmJ0aFqNL5uePoQaX2i0YSXwtLNrMNIKoo7Sv1pGPGamYtjTIF4hAMA0foZmQWN4KajZrRN7bN3Pn2JrRZIdwQiM/xmZPGO4fYKs/5g73W8YnYohmI0xzJGUxpXndhLQcXeZ7BclFSUcFxfYYJKdRgANwp+NKQUECE/c4b+zG/9KwQPzoEq5IxuB1ZvzrRPBJmrAFqp/ZWy4rUQXGYVJnoXCZppNdO7yMJHpuLYp4ZiQqMZd5SYObn3MxZHfwTUOiuEgyHDDCLoENHfvvwa9z97m3jvNrY46kTONE8G2qcVg2Q4rpZMjnisP8ieKfGIQ/n4fjq+noujIPgjBZvJ+4M0SdFR8DshbI3uyYzEhDkFM/SVpuPnfvlVxjstmGFmtd8OE4tHBT/UrFnUut0pVZ+KCWP2zMXTu8iJHzgLA2fNQHu8ARp9r7SZ93aI3mfsyGwShfZp5cHmf57AMNbqiVQa+6O73+CNzxwbTxViguBZvnlg+SZ1NRmVnJSUlFx+MFSs/UTvZrwWVm7CS2bpZnpX+WzOjmSObMIUK+kioBvP4qGwfjOzeGOHXW9AhHTa89qvXtTAnCh/+Yt/yPjcCtoGSkFudmDG7VcPLB4IOiplrAu6YWrYTnWdVEzYpo7r2BPN1aY+XnNxbGPH42HBzb6v+D0F7KZh9bpy/t+R1Ws39f+6FjtZ4fYTv/bZv+d/AT8RJcQfRKNWAAAAAElFTkSuQmCC\" y=\"-156.770539\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_33\"/>\r\n <g id=\"matplotlib.axis_34\"/>\r\n <g id=\"patch_83\">\r\n <path d=\"M 82.562263 194.770539 \r\nL 82.562263 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_84\">\r\n <path d=\"M 120.051918 194.770539 \r\nL 120.051918 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_85\">\r\n <path d=\"M 82.562263 194.770539 \r\nL 120.051918 194.770539 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_86\">\r\n <path d=\"M 82.562263 157.280884 \r\nL 120.051918 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_17\">\r\n <!-- Sad -->\r\n <g transform=\"translate(90.012091 151.280884)scale(0.12 -0.12)\">\r\n <defs>\r\n <path d=\"M 2906 2969 \r\nL 2906 4863 \r\nL 3481 4863 \r\nL 3481 0 \r\nL 2906 0 \r\nL 2906 525 \r\nQ 2725 213 2448 61 \r\nQ 2172 -91 1784 -91 \r\nQ 1150 -91 751 415 \r\nQ 353 922 353 1747 \r\nQ 353 2572 751 3078 \r\nQ 1150 3584 1784 3584 \r\nQ 2172 3584 2448 3432 \r\nQ 2725 3281 2906 2969 \r\nz\r\nM 947 1747 \r\nQ 947 1113 1208 752 \r\nQ 1469 391 1925 391 \r\nQ 2381 391 2643 752 \r\nQ 2906 1113 2906 1747 \r\nQ 2906 2381 2643 2742 \r\nQ 2381 3103 1925 3103 \r\nQ 1469 3103 1208 2742 \r\nQ 947 2381 947 1747 \r\nz\r\n\" id=\"DejaVuSans-64\" transform=\"scale(0.015625)\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-53\"/>\r\n <use x=\"63.476562\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"124.755859\" xlink:href=\"#DejaVuSans-64\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_18\">\r\n <g id=\"patch_87\">\r\n <path d=\"M 151.831228 194.770539 \r\nL 189.320884 194.770539 \r\nL 189.320884 157.280884 \r\nL 151.831228 157.280884 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p50057501db)\">\r\n <image height=\"38\" id=\"image1e8ae65088\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"151.831228\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANPElEQVR4nG2YW68kyVWFv70j8lL3OvfTfabbTbun3XNjxkYD2BIG8YCxhH8Fv4Q3+AXwxiNvSLz4GWTZMrJsY8/YzHimey59P9eqU5VVlZkRsXnIctsgUiqpSsqsWLH23mutDLn9z39vAMOdFX97/0f8ae8hF2nA3338PXr/tEN+1bC8VXLxjhAGBpMWl0dSEtIyA0BaAQPLDQwkbX9nCR0EMEhrjxQRC4rOPamXkEaxUWBnf8Hs8ylWJO7cPeUvDj9BNY/0J2u+fvyE93uPOHBrLsKQ80/36D9eItFY7yspNyxPIIYBqfLoStGVQhIkCdIKulEAzBs4w5KgziAJVjvEGeYNf+26TS081brABhG8UbgAgJ9OKk7G1/zlzkd8xa9wwAerW+z8SpDlmuZkwPrYSLkhvdgtmgS3cEgS4iBhPmHOIAqoomsBU1JfwBtmAllC1g6KiBUJWSquFswZzTInHzakqERTWnP49w6e8VrvineKJwxEOUvG9z97k5MPV9ig5PydjHay/TNA1LCg4CDutrgikoKgWSLLIiLGZpUjlznZpdKoQ4tAygRrFHWGjlpi5XC1kDzowuMmGybDNT3fMnIb/P3BS97tfcmRa1Bx/PvqHtl/TMgePeT6W3dY3exYkqJbVJyRVoqVCZ15ytOcZtwxWhcGApYnbBxonUPXShwqzieCM0Sg369Z9HPcxiFRSHlC1bg9vuKwXNLXBv9afsktP6MUYZ4i//ibb3P40xU2GnD5wIFEzBtZHsCEZNIBbZTyTJk8jCxvOjQK2nbNb05ph0LMIQyMduVxkxqyRGoVAXTQYjOHRohqZC5yXC64WcwYuTV+6ioyScyT8a+Ldwk/3MVkxewbh2z2E9oIcRgQAdFEaj1u2TXu6l7D+sRxePeUZMJ82aO5LshfeGI/AZDPlPyzjNUNB8MAS0+VlbgsEgYJCQJ5osgCA1/zWn5BqS3+LIx50U75+fIrfP/H73HwwljcKVncViCRyo7+ZpGjZYTTgr0PhOp719zamXGjf82DwQserfcZHtf89OI2X9gBsnZkC6G4gN5FYvgYzr/uSYXBsxK5XXV9Ow1IVJrgKLXl0C/IJOD/4YPvsDnr0X/s2T0zYg7tSGmmv+sXnWXgjSSw84kw+WxD9dMJD8djPgvwg/ItfKVIBG1h1EDqJI4whCpTUHAbI/YTru4mG28c7C24nA8QMTKJjHRNax6//y998lkAicRcSblwfuw73dpKgF8K7Y4ha8f6UHg27WECfiO0o0QcJFJve79PyMZBFLTtxFYbQCAWhl92Dd+sO+ROE2WvYb+/YsdXOIyncYQf/+hzcA5UwTvidIg+mCARTARdC74S2nHHQDtKpNzQthuClBsSBLdSUmak3tYJpAOTvAFC8kYqE/mV68oJEITrdcmgaNgrK0ppUUkdY7bZYE0LgE7GzN66QfijBTwegBhsp7A8ddR7Xc9hYAoSIZsp2VIoLzsAm11P8pDyjqHUM0IZoWtZ2mmCYYsIGIqKcXdywUlvxp5f4jCiCZ7UoRfvsWGf83eFm5Mlzx4Puh4rjM1Bov9MyWdKfdAtIgnKc8Wvut7JKiO/TgyeQztQmpGwvCWEScSNW2KjYILvN4hAu/EUw5q3Dl7w7vgJO75ipGsiQkLxFrc2EyOiShxFNqHbtWUGWcIyYXUC5amitRCHkXyW0Ts1FnegHRtaC6PPHcPnEUlGO1DKc6hvGHHlIYH2A953MiK9lm+cPOGb00cc+GtGbo3DaM0x0g2e7SWZxwqP1EobXDfKvYB664y7H1hrga8EU0c7MK7eADvesLe75HI+YJ6XXL0D0g8cHZ1z/YMjsnNP70y4frthMNrQz1vq1nMymfPXex9w6BdMdUWDY5UKGnPsuSVebt9EVhusWiHrBkkg0iUDUcNn3S5zH2j6DdVFHzfvBNYyw+eR10YzZose7TAiG8U/z5l/esT4y8R6X1m8Hjm6MeP2+Ip53UNK4zsHv+a98gkDCUSER+1uJ8gSOXJL/PL+DsVFQ3bZw7ySJl3sYEs5gGoiJEXEKCYbmiLDPysYPVLCiyE/v76DrJXy0pHPobg0wDh/V5CTFaN+Td16Hl7tMSoa/uTgc94snzDVwMZ+B2qkXTkB/OrAATkaEos7fe5/5QmnyyEioM5oa0+9LJDKdTKgYL1IuxMIVxntYJu7cuumdGHUO0L1/prd6ZKLyyGr30yRBGGYWB6s+WKwy8+yOyzSS562O2QSeVA8I5PIntYdMHOd3qxu9HjxZ8YbgxnzusSCEJJHVo7JbxzaGrEQYgkxVzbHgdWt2CVWNSzrGI6FsLgX2Z8uufh4j+GXSnlh+NpYHTgW6wH/eXWPX+yd8PWbT3h9eMpXi5e05tjTNZlAlRSvLWhjzO96Hrz5OYUL7PZWvNQpvUc5+x8G8vkGEyFlQjtyVIcOV3tWNxM2bin6Dc1ZHwzqXcDg6sN9pg+hmCfyRUSbRHEJ5WXG7GueOvQ52x3y+vCUQ7/glr+mL10ZS0l4SZ3uXN9NfNU3RBOGWY3OPDsfR/wqoXVEQsKc4qtAea5c3ykwVVZ9ZdSvWRxAvBySLYXh547Bs0S+TGSLgDZxO/rC4LmB5JwNhVG24Q97j7np50QTaoxCYKCCxzr69XjTWYwpX17v0HupxCLxWwEGcKsGCQlSYixgUrA+6TJ+lkU2GfgVjJ5GBl9W3UPRwCvtKCf0HeagvIxki4wv5jv8W/Ye9wenfHPwCa9nc9x2LQ9QHSsn+zP6vqEKOS+f7DAKkLzgqwACEhNEw7wiVUP+dM6gt8us8uQ+IGJUPUOi0H+2RmcV5BnEhGWezIxY9mhGjuKyZu9D5bTY48eyx6/ePua7b/+Svmz9F/DJQzM1hnlNoZGXqzH5qUcbyFZG9nIOdfOqFDiFrbf2nmTks11KH+hnLWeDQL7McNcbpA1QrbG2RUJARBk8LejvTki5p8gUJCeMEyE6noYpMMNhbMzjXQO+EuroqZNjXpcUl4IGI58HzClUFWlZIUWBZB68B1GsyPCrDnPPt2gRkfjKTLrE4ly3kV4GRY5ljtTzXL5REAYR84m/uv0RrXlmqcfGMn69OcGbgt/A6WLIQbmkqnPypZEvu96yXo4cHeBGIzAD7zrmgHq3IOWwCR2Y1DjqqRKHBaqK1A0SIjbpno3jHmFUEHqO1Y0uLsluYMevaM3hMPa0YtdV+N5FxNRxftXn+WBM+K8pOgANsHgto7jw6GINbdsByjPMKWk6YH3gWR8n8taTaYJaWdxNjJ72yBY5xfME67rbjCphVFDdzLl8U3jr25/yjelj/rj/kPeLeTcnGGdRmLoVXoNRzhLZy5yXoxHf+u4vebTY48UPT/BLmH1tyOB5QfFiASES9oasj0vqiXL5tsFxTbUu0G0wtKOal++XTD9yNJMdYId6pKwPhfWh4W5XvH/rS94cPudvxr/g2EU2ZmwM5iljlnrbqTTD1QkJyvq65KPZIQ+mpzx7Y8LyqmR5D7LLHL/ex23AHMRym2QPGgb9mtwHCh/Idzfc3J1T7eTM7vUIraPXb7i/f8q39z7hwC8YaM2uW3LsKnYVHMIGY2Ge0zjkMg45C2O8OUGbRP+50N5OnF2NOOhtNaiIHB3NKe8G2qQ0wdPLWgofOOotGPjO1zJJFNrycXnEvdEZi7ZE941kwsDX/Pn4Y+5k50y1YaSC/lYXESLGIjkWKWdlBZnE7ojA1Qm3CmTLHFt6JreXbKLvok+jXK9KZLDuzh+Awgd2ihWFdinEiVEnz3Uo2C0qQnIULtAmR8+17GUVThKLVFJKRFPEbf1wpImVCZV5WvP0pSaJ8mb5FK+hM9/eZaT3zDO+v6HvG7xP1ApmQkzdHp1294akVDGHCMmEJnqCKaVrCVtAPddykC94u/eEO/6CvoZXkeYs5lSWk+ii9EACpYtd3qcjwEuTkNh52ugLx/PZmJ2jVQdim8na4Igm9PO2A9UWBAvodqFEd3QQksNrItGVcD9bMHXVK1AR4SLlLFK5LZky0pZCOrWPW/dL0DEmdYuuWvbOKi7e3WG5W+Bd7M6yjO6tRdMr5kS6/il9i26/B1G8dqmgjp4qFGRlZ96XsSQiVKlglvrkEtl1S/oa/lfPbcnaWlKm+Cohqw3UDYc/2eHTmwdMRiucT92ZBeDUusnTSO4ifd/Qcy1x23tBHCpGphHFqGLOT67/gE+yI1SMXV/R14aJq5j6FVPd0BejEPdqEH7/8qbSCWeIoMrkv2dcPdilea/B+Yh1r5GvGj9zcdsDafsBlYTbRqbfDoRiJITzZgjAyG04ymYc+zkHumKqiVIUh6AoTv4PsO6dVhCzV/52+LPA44MRg5MFIThSUiCiYl2AowMDvGLo90vRJodKIpPEyG/IJHKYXVNKy0AaRproq8MhZOJQFP2/jGkTkdRlLEsJvbimb8b44x3qI0eeBWJS6uCog6fnW3INhORwYhQEWtNXLK1jdyaRzJG5RCaRsd8w1jWHbsGRaxipI8NRiMeJ8v9d/wNLNc7tKGzH/AAAAABJRU5ErkJggg==\" y=\"-156.770539\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_35\"/>\r\n <g id=\"matplotlib.axis_36\"/>\r\n <g id=\"patch_88\">\r\n <path d=\"M 151.831228 194.770539 \r\nL 151.831228 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_89\">\r\n <path d=\"M 189.320884 194.770539 \r\nL 189.320884 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_90\">\r\n <path d=\"M 151.831228 194.770539 \r\nL 189.320884 194.770539 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_91\">\r\n <path d=\"M 151.831228 157.280884 \r\nL 189.320884 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_18\">\r\n <!-- Happy -->\r\n <g transform=\"translate(151.217619 151.280884)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-48\"/>\r\n <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_19\">\r\n <g id=\"patch_92\">\r\n <path d=\"M 221.100194 194.770539 \r\nL 258.589849 194.770539 \r\nL 258.589849 157.280884 \r\nL 221.100194 157.280884 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#pec29144960)\">\r\n <image height=\"38\" id=\"imagef68b596d3d\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"221.100194\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALFUlEQVR4nF2Yy7IkR1KGP/eIyKzLqXPpRt0taQYZGg0LzDDEal6ADRtWvBJLngXegC0rbBaYYTaDbghNj7pb51K3rMy4OAvPqqMhzdLK6hbp8bv7//8e8sU//bMxXy36a10aqz8o3ZPx8b9+zfTFxwxvevafBPIa8sawCDTQAvEoxAHKEkwgZDCF6dZoAeIA/YOw+GCs307EoVKWgdYr3cNE+uEeSgURMIPWiKYQB/GIzLAEUn3hdID26o5ylcBAGoQJ7Chg0HoDE8rSKGtfQrMgJ8hXvl9p0DrftCnkTSSMjcXbPadPN7Q+eEAAtZ4xIkqFMPpOTQWz+WErY/mhUK4X5CvFVNj8b2H3aaR2gHgQp48qlgw9qW9mD9O10Lp5zWBIFlqC8VbQIuhtIhwj3fuBtkrPQYVwQS0ufhLiYLQkmIJFR0MqSDOm246ahOMrJV8r/U/+8NbB8MqwaKCGvZiwrGQNhKMSTsL4uiBV0OxrTzegRYmjUTY96cOReD+B6nNQpUAIaNoZiwdDsxGPXFL26j8K8VjJV8rpTplufWPjHYwvIK/n+toHwj5gQ0T3EUtGXTXKyggHxfpKuW6e1nmzNQl1Eag3C6xP1Lv1n6IGxLoQbG+UpVCW0M41FmB8mRivhdaDZohHmK4hbxqYYMlo6wpVkFGhgYyKZkCM1hlxVWh9ZRx7uq1SO6EsPM15k5BcsaCEnxU+qsTxDtJBLsGYGloEU2H754F4Mky9DqV5gN2DkvbeCLVP1N6/Q7xTWwf5eq7VQyJtRvK6UiZB157aslLSvmIpILVhmxWyPXhgtRJrb0wbwRxBxByZdKiUVaAlQSvEgxFPsH7raTndKdPfP1FKoBYl7zuowvqbiGZHXRu0UWmrACbUdYOngAWYNoo0iMeKVDj98oZv/+EF6Un5i3/ZEW++gryCsgKLnsowQIvC8HGle1RWbyGeoN9WHr6IlN/s+OzlPS/6I5t04t++/jVyDIRByBtzPpT5NmhVIDZ0l7AI+Wquz5NQlwHN1RlhWclXha//cUOcNkKYDM1CvjbqwgBBqmHJKCujrJTFfaN2yv6LgvxhzX9/t5672LDOkOj/i0dBC4y3hhjUXtDYqEW9MRYQ90JZCfXgAEg14j5z/Z8rdl+eqAsjxqOzuJjvzsL8vtozYVbIK6GshdV3SuuhJd+EHhXZQzgJ/eNMqPN6UiG+PrJeTmzbEksBU6EuHM2ygNYJ44ue/n6kezRsiFjfiAjkKyFfeSoRpwKLSv8uEk6QDkaYjO5gdE9C7WF8IUxz4GnntdeCf5dfOpNPt43b1YiIIWowCdI8+LI08pVQH5UwNCwIqw+V/seIBSNiXlMYTgEo061xeONFnDdG/zjLxLGR9kZdKHkTqP2M2qicXigtOlrjS3PkV5Xt3gW0FXFSD+fM+D1dCdICYYz09xObbwMfflOJYXLSCxOEUShHIZ4gDo20F6Yb2P7KSDvl9vfQP1YwiEcjbRWp0D8aeSMuVXM51GWDJtTHDqkCApIFmpsEZuvQEuSVEjaR5dsji8fG+ptITMd2EdtwatSFEqaGVBheKnGA6YVxejlynzru/iuAuO6dPs3Ep4iY0KK7iJagdQbRCE/RdThCC85F+bYhWd04mAt7i1A7QUrj6psd0+aG2D8WMNCpEsaKjBmpRlt1xE8i8SjUTikLYXpdKN+5NxreNNL1RK5C9xBZ/dHon4zdZ4qFOagJtAhkoDfKxsX+LE91AWESpBktCiZCeP+I5mtiGArSZlxLmyUiQGksf6rULiBNKKeOujAOnwrXXxuLd8rJlnSD0G2h2xnjjYv18ocI4mh4ugwE4k5pyVN9NgoWHK3aQb3qCB+Eq+9PxHCYsKhOD2agiphBrYTRUQjTnKIktAD9UyUOwm4MSIUwGbUX6kKIB6i9/94UUCgb50SdfZ/MKSxXzn1pD2JGXQZs0dF99UeinDIS1B0kQFDIBVEFc4gxkAKLXUMaWBAWPxW0wvEjvRSxCaTBEBOKzFzW5voxof9JLkHn2XEs3gnxZJRe3Hr1HXI8ESUXmDyVFhSZ8uyLKvFQiGNkiuKI9F4P7q8i/UOhdonhpVJ7F/UWYNq43t79LrP+7fcMf/0L8joQh8bjF4nhldF6Qyc3kC26OWhJaKuEPimRXC52VmyutVwgKOn9Hn3VU3uXLWlQVsLpBvJ1wMTRsOCdJ4NRl4JFWDwYaZc5/s0vef9l4vRRo/+QyDdGWTcwSE96cS1hAh0NC0q7uSLS2s88d3MHOZs2mTJpe8MyJq7+5wjN9e/7v9swvDbCoKzeN/Ja5wC9iNtMD49/ueTwiTB8UkgvThxvOshKfAqE0ZtGGpdMIFA2CTHDe/9s0ACbX6kVSYnuaWL/aUdZJ1oUppvoZrLA6c/cHaStYTdwejkTbDS2n8/gXzdYNFQNXVTYRhYfhLvfF8brwHTj2qmTy2EYvdajrZeXVObX14T95OK9H2AY0acji8clh48TJsL+F0LrfSyzKyMehfFOOHyeoQrxKdBtXfil+gSWD4nxNay+6li9NdKxocUYXgkmjm4YXQFokX4oxPzxNZIbUhrHNx3SOuei9z3p/oiUxvLtwPDiiv1nwul1QZqgR2X1g8xkaxAMXRaKQdpH3vz7SNpNWBAsKMPrnnDKtCTUXtl/4tOW5pk+ZqMah0q56ogtKNp8dFu9mzBxf9SSUtc94TAS329Zv1uQN4kwRK6/a3RPBYvCu7+NlOsKRQirBpvM8KvKD6knDj1hcHeCgZgL/emlj4dhhHbpPOh2jXjIHqDWdiG9NgcFLlEAUhq23bH+bWb1uwVSG4wT+bOPuP+r1UySIJOSd5271iqUXx+pQDkk4n28uFlTF+YwejeHCZ/o8/ysIOiQiWE/OUJdQNQnlYtE4b5Mr9aXscoWHbsvX/P4eWC6MWo/o5EFHd3Pt0Wj7pIHE41yV9Cj04sP2D+bMeo8yMyXngqSKzE8HLAYUHosnX/98yODgKWIrXrGN1e0IIzX+sxdFWRQNJ//A+F4VoPZdldxfWzimYl+3iHFu1vPopMbFI8y1pcbTIAZrUvKSwMVD1YEGQstCWXhQqwFwuBdZdGN4blWpMizVS/PwZwD1+K3NC8hzUYYzes7F2SciC3pXJh2eTURUPdH1FnYc0GKue5V553EPEOu3MW2hZtDUsPS8yYxQEGPjmwYZ7TajPjM6XE/XQ5WFBEPRj0Vdn5/TqeCpQi10n8Y0GLzjs1HPgWpQuvb5RyDMCPX3AAQDJnkIup/glo1Qvb16jJBl1ynaTOEzXUKwM7FaAbi6bRFjz4d6bZLLAgtCmF0iyPFUWzyjJAU8al+UkfEfHDWUWYDyQW1Fp9lSU4TlOJTkuY219n/68hwdpuGLTtkzPTvBiysMA3091AWgkUv8PO5h09CXvBShDgILbkriScvg3MnOuJcXLQ9PGHjSLSgVH02cOcpwYIiNOe1qJAr1IaeJtI2zTuNdFsoRShrI4y+TovzyRGCFAH1RrkE0i6PuTjd/qmhT0dsHGnDMIt4EFpQjzjqHKAH5+mYP0/RTdw2INVYKkBkyoJU8VNEAZ0E7LmmzqjYfKrYEoSTB5cOsHiorL7dwtMOm21YxAwqKA3CvOO5Ac4d6fTQ3IFMGSk9mivxWOl2iok6pZhbb9Nn+ywNmI9ONZ+nMVj/WOnvC2k7En58xJ622DRhJfuJ4plML104w9uCorS5W5UGhP2AHQdEFc2FEJW0EyBSe0XT3IXihX1m97Dz2XP1vpB2GT1lwv0e2+2xcaIBNgz8/Po/C1u2vpHad7wAAAAASUVORK5CYII=\" y=\"-156.770539\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_37\"/>\r\n <g id=\"matplotlib.axis_38\"/>\r\n <g id=\"patch_93\">\r\n <path d=\"M 221.100194 194.770539 \r\nL 221.100194 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_94\">\r\n <path d=\"M 258.589849 194.770539 \r\nL 258.589849 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_95\">\r\n <path d=\"M 221.100194 194.770539 \r\nL 258.589849 194.770539 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_96\">\r\n <path d=\"M 221.100194 157.280884 \r\nL 258.589849 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_19\">\r\n <!-- Happy -->\r\n <g transform=\"translate(220.486584 151.280884)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-48\"/>\r\n <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_20\">\r\n <g id=\"patch_97\">\r\n <path d=\"M 290.369159 194.770539 \r\nL 327.858815 194.770539 \r\nL 327.858815 157.280884 \r\nL 290.369159 157.280884 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p5e03609a90)\">\r\n <image height=\"38\" id=\"imagea5fc5b2d36\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"290.369159\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANGElEQVR4nE2YS49l11mGn29d9u1c6l7d7rjTdmx3BMEiEIUAihQGIKb8AGb8Amb8BOb8h8xgREZISDaICUTEgjh2+9bubld3V3VVnTrXvfe6fAxWucNgD87R0T7vWt+73suSn/3l36tbBxAhThx2SMiYccseFeHVjw+wQZl9PTAcefwyYcYEVjC7iGTl4g9njPvC+vsjv//uU6Z+YMwWI8rZeo/LdUfOhn5VYxYOvzLUV3DwKODXEbsLmEdP4O4J4XRG6hwGABFUwO4SZkiYPiKXCzBQrzKbu4bLHzS8+ustZz+tSY0lW4PpA7myiIJfKdVzz6OLE66GjjE5AKbVgLUZVRCX0UrJtTLuw+auw4SEWe7QlJAx4FYDEhWjAmoEyYrtI5IU049gLav39vCrBIDrIQbL8E5PnFoQkJBQUxaVasEEYbds2EUPgEHp3Mh+22OMYqyiTSK2SmyV/kTojxtkGEEV3fWYmw0mZIwoYMCEjISEDAFZ7xjfPuXlTwybNzxuB9lDuKk5PVkyzGwBM2tYPGyxA6CQagVgFzwZYeZ7Ojdy2Gw5nG6pmxHTJLTOqFfCBDZ3LYgAwBjQXY/tI2W/kxZAMUOI4B2vftiRTgfGZzXtRaY/MkweO867OdNTQU3FLENsykvVQjhMVJORxbqlsonvTV/R2kBrA40LJC2/7RVS9mWHT4V4uod5cY6OI5ISZjPgVArHJGaICUmZeDrn5mHCt4HlQwdYxjnYHjQawgSqJdx8r6JeFg5mD3u/dqze7tBKeXbeUbvIT44eczV29NEzrcZvKc0mGtJgMA1s3+yY/HeGlMErZrPDqbsFJYLEhFrD6kEHeyPeJ8Y6EztLfQ2SFf/S4zdgB6hvEtkLopAaOP7fSHdu2J1Y3Eb5vL7L7+y9IGaLkUxIFm8y3iZslcmVghqGuWHa1OTNthyCbY9LlUFUUREkZ2hrVvcNvomIKOTyp92Lwp84yeiVpb5JSIZhbjABzAjf+bvPmPmex6sjzpZzeDHlnz9+nwdvXAIwJIsVRUTxVaTvDNkbUDB7c3S3Q6oKXa1w2UF2Bqt6yxWhP1Yk3xISCNPM7tQwOSvHHYUwMdhRGfaF2IFk2MaKi37K55/fZf6JZ2Zg9R7c7BqczaQs5GwIySKiGJdRWxae7uxjQoBdj8aIE4VcW1QE2prceNI0Q7BMugE/H/HHke3div6oAYXd3UyqDWGuxOMRu3CkSeajL+7DaJAgLH83cHJvQSfK1c0E6zIhWIzJ5GxAhRwN4hRUGE46Nr/3Docfr7HPLgr5h32HW3kwFbHzIKA7y9o1VHXg7aMrDusN8W3L39z9kF49j8cTPrh6yNPVPsv9hkkz8qd3v2ITayZuAOAmtHx0fq8AidxqE6CCKhAMakFNeVyvDIc1zXiAs6OiVkgTj4ow7hUFIQkpFA5c9y1/fvIbhuz5+cWfkBGeb+ectit+fPKEX766z270XI0dczdgyQzZ88n1KTfLjum0Z9YMKLAdKja7quyYz6g1IIIZM/MvdpCUXDuc7TMA2QomKePMoCaBUYzPdM3Aqq/5xYv3+as3fsUPpmd4SWwnFVdxwr9+85DLxwdonfm3F3OqvYH3750xZsd2qNjf2/DOwSVZhT55vMlkFVI2pGhQBRXBDhmz6tG2InuLy5XBryMAdhOIbQ1O8dOR2XTHcbcF4Gw555/0D9irdnx9c8Cd6RqATV8hUbBrRzyIhJ3ny+sjhuDYn+x4uH/Bab0iq/BymBGSpatH+tGzCRa/Ndig2F1AvUNFCFOHu37PcfTrjOsTEjImgJsE6iYwbwZO2jVz33PSrvn06pSnFwekZDjutvz46Gt+evQFHxy8x83QUNnEqq/Z7GrePFrw05MveNi8YGIGHo/HLEKHt4naJjZawWjwN0J7mZBQEktuHbkyuO0byuGnJcJobckexGQaH9mreg6rDXerJb6NeJN45E5YbNoikpIJark3uSGq4eVyRuUiP3rzKW91l3ynumZmdmQMFsVIxknGmkIfGYVqCdUiosaAM4wHFW6bcLnJhImlOcvk1qGmnBprMpWNeCkAZqbnve6cVajZDhXrseas38dIZhMrAI6nG97bu+BOvQTgyXDEeZjjJbFKTUkpJuEkI4DdGvxasUMCZ0i1RRL45YiTJIwTQb3BjAkTwdiMM2V1Q/acjzOuzISYDTFbah/po+Ny6Pju5JqdDRzUW/KtSa9TXcJCdiQVshq8SdQm0rmRm7Flu61pz4XuVUBS2UFEqK56ZAg4ibffKZjtSH2jLKLFmUxrA7vkebw5ZEgOg+JtonGRzVgxZoeXxGG1ZRsrVqHhoNrhJbEIHZ8vjwnJUrvIXrXDiOJuT6WeNcyeZdw2kZ0BBxIzZohIH3BIEbfsDWIM1U0kLSuGA8vLfsbL9Yzt4EnJ0NaBO7MV1mR2o2cTKvbcjqCWx/mIITr2/ZavNkd89PRNqjrQ1YGJH/nk/A6qQluPXJ/tcfiZUN2EorfeFMnoI0U/FMetGCNSovTVQP1yxvVhx4tnh7RPPJLAJVidZPoHnjA6jE0lLUjCoIzZsh4qvlif8NGj7zL9zFNfKbtj4ZnA4aNEf2C4eRfmL4TJi4gdMshvNfR1WE0ZJ1mKLThBaw+qVEtYbSrcpePev/f4q6LIi/f3OTcT8jSRGyHmUhnerC55a3rAlxdHfB6Pkd5w8Cjitpl6WZxk+cCyejfi1pb2VcavEpK0pAsjSF/SM8agtcdlXywJIHUOiYpfazHjB1ue/EVHe9FgRhgOIDcRaRLaW1I2nI8z9uyWkC1tHVhcTpF54JufVagXmI+IUb5zskC3LfzHPs1VLFHLCrkypW8MpVuoKwbvcpcIE19yV2uxpLKiK4c97OnevyRng4giwWH7irR11Ps9R92GhOF52Oeb7R4xm9KEgsHf23K8t+ag2bGLnokfef7RXe58lTDxNv+hZCf4dcJsx7JBqqi1OKpM9gUUQGwsasAOwvjNhH5WI73F9IJfGaxX0p3AwWzLYb3FSyJky7zqmbc9IVj0yRS3rXjVTngxU9Qp/tpw/LFSLUuzEm7HCLhNgJzBudeHwbErgFJtsEMuqEUIE8X0QnVd4dcl78cO1m8n3npwwf3pNSfVmj23A+BHe1/zR3uP+WbY51+q77NetpjzCglC/cowe6LUiwRZUSeIKrGymKjIGFFvyxhFUG9xfmExqbQdib9NrWmWOLl/zV7T403Cmcyb3YJ323OmtierENTRmYGJGWhM4L674nA28rcnH7JV4VfDPX7+/I/5zYffAy0HLIspMau25EqwY0YrV0boTAEu4KobwQSIrcH1ignlkcFgRJn5nsZGahtpzcg2V3hJnLglRjKNhNeLsSgZeJkqnsZDfrl5m48+/S7zV0L2hU+4Aia2huxKDktNGaFkBVP0y8mtG8SmdEMZFFEFBBFlE4q9ZIS1qTGiJDXM7A4UejwTM+IlssgtS62pSCxSxz/+5od0X3lMBL/9tlOU/FWauyIxo66AlFyKN3BbeIFcCbEx+GVCUvGoITik7hmzw5mMFeXVOGVja2a2pzaBrIXAjREWoWPfbgnq+IfP/gz7ZUu9UPwGJCmpEmxQclUoYwctfcMK2Qt2l1+P1MGtJbnCs1wZzJixW08/+uJvkonZMCTHKtSEbNnWFUEtnRlZ5ZabNCGoZZVbfvHyfa6/OmB+LlTLjA1gIqhRJBX9klQmkxqDGuFbB8qVxaRcbnuKV0KYFORuE6kXZZRGlMoWpx+yo08eI5mkhj57vESCWp6PeySED64e8snH92mfW+qFYhKvQZikSC5cMkVPSzujjFANxM5idrGYeLaQqzL/2Ah1VtqXyk2wr0lY2VROYrLEbFnGhtpEno2HLEKHM4kny0P+83/eoT2zdC8VO5YdMvG3gFQEuQX7LagCHFJjUQemD7hUQZwqqVGqK0P2JZt1rxJXLzr6U0fnRmobMSibUHHQbFmEjtpGQrZsYsVibHn0Xw+YnwnNpeJ2GVGwvd4qPeXqigJITflsQinQ2QrjzNCdF790YaqkSUbbxJgd/b6hvnG4bWL2pePp/X26k5GZ7/lydcx29CyGlugNBLjsJ9zsGhZf7zP7RqgXSnOdSNX/SwxJMaXXos68BiW345Ss9IeuAB0SYb/Bxf0EVcZUiQz0JxXVyuF3mfYis/liztM6UNnE1bbF2TLabazYhoqXNzP6i5bpE4tfK80iIVFxSUslG/OtTAhYgay3gEqqQQWthDARJi8T6kvEdnZ2G9YyiM+Me5lh3yBZUCN0Z8KrwzkpF37ttT0hW663LZtdzXjZ0D11tOcFlAkFkB1um48p71Fni1YlvX337Y4JbO7Y1xyMbXEEVzcjMVpSMqgKucvs7gpgsIPiN8r004rV1SHxMHBwf8c2eG5uOvLK0z11TJ4r9TJjguJ2CbsrV6YljZZLm1SZW1fJRCuoLQIbJuWawO2UVBVNHKeG/wNPC39FH0pbEwAAAABJRU5ErkJggg==\" y=\"-156.770539\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_39\"/>\r\n <g id=\"matplotlib.axis_40\"/>\r\n <g id=\"patch_98\">\r\n <path d=\"M 290.369159 194.770539 \r\nL 290.369159 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_99\">\r\n <path d=\"M 327.858815 194.770539 \r\nL 327.858815 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_100\">\r\n <path d=\"M 290.369159 194.770539 \r\nL 327.858815 194.770539 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_101\">\r\n <path d=\"M 290.369159 157.280884 \r\nL 327.858815 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_20\">\r\n <!-- Happy -->\r\n <g transform=\"translate(289.75555 151.280884)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-48\"/>\r\n <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_21\">\r\n <g id=\"patch_102\">\r\n <path d=\"M 13.293297 239.758125 \r\nL 50.782953 239.758125 \r\nL 50.782953 202.26847 \r\nL 13.293297 202.26847 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p5266701de5)\">\r\n <image height=\"38\" id=\"image93b4e457ac\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"13.293297\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANhklEQVR4nGWYWY+l11WGn7WHbzhjzV1V3U6743hobBITFMcJAURiokjhCiEkpFwhfgQ/AAkx/QcEFwgkBBJXCEFQiMnsJE7cHaftTrvL1VVd45m/ce/FxVfujsTF0dHRmdZ619rvsOXjf/E3aishPwEE0stIdhlIJjXubAEnZ0ieExdLAMygD9aiVU28scPFn9X88a3/5e8ffpbpKqdtDWnScnv7MbcHx1zzU4woibT0TMVpO+Jhtcnt/BEvJUe83+zwj8ef4c9v/guNGv7y0Vf4yb/exqlTWgu2Blco2SSQPV5hLxbofIGWFVo3aF0DEGNE8gzxng+/POazm2/zV299GTnKiL2IjGp6Wc152edDt07PVlTR4yUAMA8ZG27Jml0xixn/fvEyB5M1uAkAkzpn560KFz2A0uaG/DySf7hAjs+JiyXatogI2rQAaFS0KJG2pf38y2y/ccg7F7voZYKJILUQF57LxZjZap37cp27v3KNVzcPSU1DFT2paRi7FWX0TLTHWTngtb0PWKojqqFoPa4KONNC6EeagcEtA+Zi3hVkLdq2qGrXirWIBULArI354CspX9u5x+38kPdu7PKoWqMInnmbkpjA0WrE0WTE4eEGa1nBXj6jihYvHgAvgUYtL4+P2ElmJEQO45CDkw1uWXCmEkKv+2+/aKFtISokHlGFpkENHXIhYgZ9jn//Ob74Oz+iio4yeqYh56zu82ujA17JDwA4bwec7Y64u9zjvOpRBE+rhhYl0qeICQBOAj1TM4k575b7JHdy1JQ4Pxds7bAltLnFf4QQINag0XbFAhihfO157FfP+UTvhDuLfY6qMT+73GFVJYx9wdiu2PeXJFeIpKZlM10BsGwTyuBYtQlzE3AmYlByu0mjln96+GnW3o+g4FwJFJBdKG7VgvdPCwEw5smzWMvBFz1/+tw3KNXzUv+YaZszH6T8dL7Hf773IkfXx/zm5j28BKZtzsgVGFGq6DASabXHrE6o6ozUtjTR8rgYMileYHZnk2cuGtyywUULGGgziIlF6xqtasSabqSAOIe2LfHV5/ndL/2QX88+4AflTTaTBSTQszXPDc6wRE7rIe+tdthPpwxsxdCWeGlZxZSxK/ASaaNhUaeUrcOKdq9XGeqUas3hJxXOViAK9UiYPZuy/SCDukHbFkJ4uvgiHLzR56+3/xuL8mxySiYNk9jjRnLBPOTMQ4ZJlbFb0TM1Q1PQNzUBoRcr5jGnUUsRPGfFgGmR4UxEpAMg9CPBGyREnFspJoBpOh6Lgx6yLJ6OU+TJSfSfvmTDtHzY5vSlxkvAovRMRVCDl5ZrEvDSMrIlhghAJpFMGgAaZyGHx+WQy1VOUXnSpEUVpNcimmAfnX/EY11httHuJBpBEg+NPKELHQ/5zO4BETgJQwDW7IpMGmqxNMbhtSUzDX1TUcYEBDJpuqIErESsKF4Ce/mMSZlzUg0oK49zkRgjtlLiYolzxRUwCmpArWBE0NgVSLgqLE/ou4oH7YC75XVWMWHPT9j3l5TadZdcsfsypsxDDkDfVE8asChDUxBUuJbOOO/1uFj0qCuPiBJri60USRNcfhFQC01uqPuGeqtPWtRQ1cSifHo6rfDtx8/y5tEtLo7GrF2bszea8Yd732fNrljFlEnscVSvcViucVoOGPiKm70LXsiO2XYzEglk0tA3NWO3YjNdsTFYcRoGVBc5/sLilxXiPa7pGdRASIVoIaSGOO5hiwqpqg7NNCWKMHl7i5Aq4weG2XKNqR9TXvsxxkYmocf9Ypvvntzk5GyEFhY7aHm8M2QyzvnS2h0i5smuZdIycgVrWcHFokfvocO0oCKQJk93TCK4Vik3LH7hMVmCDAfde72cZpyy/UOl6Qn9o5pk6pm8KOz6KRHDWTPke6cfY/L9bRJAWiE793zwwh4P/DXuv7jFV3d/wq6bUqslIAAMfEXbGrbuRxb7BomKJh6nIogq0UGbGyQoITV475A8QxdLKCse/J4nOzFc/8YKUwfKTcfglUsyaThux3zv/CbHh+usP4LRQYufNjRDz+DIYCvlF8V1vv36kk8ODxm7FauQUsSEsvU0k4ze45r5Mxkhs6CKa3NoewZbKukk0uZCM3QkgwxbNWhVU376FrJTUVcZD7/co9pt2L5xzh888zY/KW9QRc/Pf77P9ncsAPXQUo0szUCo1oXVrrD54jkGZRFSIsI8ZAAczMYM3nOoBFwBaukKA7ClkswVVyr1UJCoSNEQxn10a8j0luf1W+/x2Vd/wTTkpKbhvdUOjVoWTYoR5RMvHHG/vM7mjwRbK9NnLYuPBwY3Zjw7WHK9P8FLx2vTNmcZ0s6NLHJGlwoC41805IdLmC5wbU/wc8VV2lFFCxJg/uKYi9uW/iNl8Qx8bedbfC6b8M1ynX84eZ13Tne5Pp4C0EbD7fExn//ifb7zqWd5993rDO5DemZZhDHzYZ9HwzEv7pyQ2o64q+A4r/q05xn5ZcRflHhnMLMVsSw75rcNqOlOJQLLXcvgsGXrp8pq01JvBfbdlIsQ+I/pK7z59gtIK8yXGWGWgCjmBWUvn7GVLfnCb3yD8W8V3Ct2mDQ5G8mKLb8AoIyeWZux0IST5YD+A0t2WmBWFZonqDWYjTWcaSA6aHIhZDB5SbGVEL3DVlCtC9lmwSRmPAg9/u3Or5IfOkKmxFXO4Eyo1pS79/e5215HWsPk5Zw/2vsuXxhNmIeci9Cnip5GLbM2o4qOk2LI44cb3Lzb4I+nSN0gdYNag/bzX6ILC+WmoBsVepwiEfxSKXaEPK05bUd8fXob+2FGSBQJMDgS2hyih+SRp3csrPaVx4shf/fh55jVKeO05KXxY/aSKalpeFSu8eOzfaZvbfGx7wb6Pz0mXkzAuSulCSAGJwpodxrUAAuPnwl+EckuW6qxJ6pwHgb81wfPIxHagTJ632ALZfGxTs7SS6EeQb0euLy7SX24hS2VD3aE8NuG53ZPubva438++Djpm0NuvTnDHJwQ5wuIEQ3hiYvRUOOI3V7JlcOw884YhkQIqeFK/rhXXKO5P8Q1Qnoh5GeRui/YQnAFhBSasdI7cPQeK8k8UK4b7KtT3tj5GdOQc2+2TXx/wPp7DfZ0itYNiCB5DkbQ5YoYIuIdTq4KA/BLAEENtLlQDw0SYfHuOv988Brr70OxBfmZkk4Cy2seV0B2qrQ9YXAIpom0mTC7aTFfuORPnv8WXgL3i20OztfoHwjZSQlRkSztCqqbzsaHDjmxBqdXmVIFkpliC6jHcuVqBRUYPBBsbcgvIiqG7FJp+oaQQ3ampHOlfxJAYblnmbyovPKZ+7y2/oCTesTXj5/nfDLAvdNn806JPZ0+NQfGovUSkqRzzYDkeRffJCrRCxIgm0bUGVAwLdhacWcBWyl+WuNWCaaJRCes3YP8rEZFUCs0A8viGbjxyWOmdcbfvvM67k6f4QNlq1ZG9+eYh4+JqwKta+z6GmyMsYnvHHNloGmRfq8bpRrBhK5A0yi9k9ixf4T0rMLULdJGpI2YskVihKBkVpCiRhNPHCSUm56QwuFbe6z/DJ45qEmPzro/a0OX7IsSQkBEiLM5UpaoXAUe57o8W5adJKFP92x5zZLOlMFB1WnW2Rwpa3AWmhZLp2XatshVgpIsvdrRlJ0fWPLTmuRkiUwXnUX3HlRhbYTxHoxB14bQtHB6QVytkCRBgkCagkYcT2MkaGd/ynXBFQmDn18i8yVa1aDxSWrSEBDvUNuJNm3ANC25FXplgyxWaFWhYpA0QfOUOMxo1jLcvMaUDWGQYooWSa5hqrprPnZaqnVzhdgvoeZXSj0Qig1L+6lNsrMRybTGHpwQLidPEjmqQPMkrNDmSFVD2z7pVXopYXuN6lqPkAmmUUztkBBBhHo7R1rFzxw2RChKtA1QVbiPRggQTXddYFowAYoNQ7GRgqRsO4Mry457QnzSHd4jvR7iLNp0sU+y7ClSuSN6wdSKBEWdUO72WOw6MNA/DvipdiQbI8SAquLUPEVMLbQ9wdR0oUCVkAlND5Y3MtY+HEJRdJpW10i/h4yGxGGOLEqIEUmT7seLArEGfzzFzjKwAiJUWzmrbUczEvxCCYmg1kBZXSHWIr38l0Z5hZzETvvavnR3CGVHvMtdy2h9gHEWzRJMURG2Riyf6ZOdViSz1f8Pyk0L1mJWBeQZzf46y/2EetRREwp+Ebq7uNVVXLMWSVPMRwsvsfugrZRkpiRTxS8UaZX0UgkZHL6xQdgYIPMVmqc0o/RqbwKE2BV1NWJxrsukzkGaEDYGLK9n1EN5utN0OosxkPjueqKuiZPplSTxFK1krrRp15FpO0sEkF4oqz3h8uURm0WDXM7wvQQTEor9nKTv8ZcjpAnIbNmNErpdSxPCIOk48rTT2GZwVWDUq9VouosbgBC6HfvIYUiEaK++YCCaTtyRbv9sBbNbQrSbbH+zxaxqYuJwi0BILTJI8Ber7lr0aqzius786RJTtDSjhGg9EqF/3JDfP++IN4QObe+RxF/Zno92TLv9kgim6vRTTfeQQDfaIDRDYfWJTXr3zvBHl7g0AWu6ES+WHYfVNVhLXK4QVSTPMMbgrGFQdcriLpZQlJ3DsBaSBDQi62v8H0xmYZEt3JgCAAAAAElFTkSuQmCC\" y=\"-201.758125\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_41\"/>\r\n <g id=\"matplotlib.axis_42\"/>\r\n <g id=\"patch_103\">\r\n <path d=\"M 13.293297 239.758125 \r\nL 13.293297 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_104\">\r\n <path d=\"M 50.782953 239.758125 \r\nL 50.782953 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_105\">\r\n <path d=\"M 13.293297 239.758125 \r\nL 50.782953 239.758125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_106\">\r\n <path d=\"M 13.293297 202.26847 \r\nL 50.782953 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_21\">\r\n <!-- Happy -->\r\n <g transform=\"translate(12.679688 196.26847)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-48\"/>\r\n <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_22\">\r\n <g id=\"patch_107\">\r\n <path d=\"M 82.562263 239.758125 \r\nL 120.051918 239.758125 \r\nL 120.051918 202.26847 \r\nL 82.562263 202.26847 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#pf4910801ac)\">\r\n <image height=\"38\" id=\"imagefd7f268593\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"82.562263\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMn0lEQVR4nFWYS69l11HHf1Vrrf04r/vop9t2Ygfj4AREiEAhQYhkwAjEJF+EKXNmfAXEmK9AZkwIQlEkRCCS207s7na77+2+z/Pae69HMVjH13CkI52rq3N2rap//eq/Sn70038wKYbbF8ImYSrsHjdsnjjSHHSC7sLwgzEeC8N9QTIsPy90lxnzgmRDkwFgArlTto9c/VshzQW3h+kYpIAboL0y+otM2CSaszXkQny0Yve4oXjBY2AilKDkzuGGTP86EraFzRPPeCrsHgsgmEJ7BbOzjBSIS4ffFdxQcEPC3Y6gMN2fIw8du0dCCTWY1IE5KI2RO0GK4CZFssMd9Ug2pBjNujCtHN4U3GRINswJqXeIgRsLq88mpitP6oXUCrkX/NaQAsULzTqjUyH3iqkHA7ceaV9cc38944u/WDKeFtwg5GMDAzFgX7+fOkGXDrTF7zI6ZADGleCl1HSLghUQqNGbIbHgYqE4pQQhLmp5EIgzIewEgP2pZ7gvjCcNYT3n5Gli8fSGt36+Y/NOx3gE+wdKWhhuL/gBNEFpYFQhN44O8NSsNmvDu6kgyTBfy6liWClQQEQgGzgojWJOKK6WJrdw857n5ONCf5nYPQ6MbyXK7048/6Bh9p17vPVvA8f/dcn+3RVh68lt1WMJkBuhOEHEiF7Q5DAV/DZz/PQSX4LgMlBAS0GTobnUgKipL0GIcyW1QvH1VOaEaQWXHzW0V8bxJ5nZmef2WwH/+7c8/p0zPrv3hAe/OMVFYzxRKOCikYNghwOWw2cMQJkWCnKM5/DSQyDmhGJagxwTaRGYjjzTQohzIXdQ/KG7IvRvCtNCeP1DI1zB0ccGz5b85gc9H33/GR+/9ZDmv2d0l8ZwTzAn6ASaqdk3kAxxKYRt1fmLHzd4U8G0ChrqCfBSxWaO8TgwHAvTSphOahlMwE3QnQur3+zx57fAYzY/3pK/O3L9+THdy8Cv3RPC68Ds3Fi/B/EoY2q4naKxPkMS+K0gBsM9pbkxujdSu7JGZHylbHNCbrS+24qJ3EJcFqwxZFTCVglb4/b9nvLhjNXzxPE/Bl79YMG9H77h+Dt7Lnc960XHxeNAvxyJmxYGR54VbFD8Tip2VkZzI8Q55FZwA3iNdtBVDawUKI1g7QERTQ20NNSgZgliwO1r+rdvC8M3J9xF4OgTmJ0Z25/fp/3zV/zxo+ec7Ve83Kx489kpuhfcKHdZR6osTCEurWpwFNwI3m8rLE0O5VNInRAXcqclc7ULZKoB4w2/g/EE/Peu+fbRDZsnLe0fJYoJF58+4uX5MbspcPV6SfNlYHUmxAWUADp+DVuEQ0UMKQIYflvRQW4VNxVyq6ROKb5qCqC5Nnw2jj6B3Ci7Ry1paZjCdFr47v1z/mD1krF4LuKc47Dn+esTuv+cMWpH11aB7B8Z5kEiaDw0QBJyU3FUAzSkKN1Nxm+fNGg0uqsDWA/ANQWNX3WfMTtPNFcjw8OOqw8CKJRZZhlGgmSuyoyLcc6vrx4jL3raa2P/QBgfZKzNiDcsC7LxuAHcWAMUqx2aHZiv4PW7gpdimDuIbuSAfggbQzLMXme6NwNx1bB+b0Zzm5mfFfanCmo0migIjsIyjHxRjsizwvp9JT0eOT7d4NQqSJNj3XekTcDWDrevB8eqhHCGRvD7jO+uMrmt5UMqWzQa7QTNujB/eom9+JL0l9/l5U+M1dOG46ep6q8pLNzIVZxxNq4AeH91SfftxD4GTvsdnYsUUxqXSEV50y24aGfstAc8bhAkVcDDIZNTwce5w00FtGrKD1bnWBDCOlFmLfrkEToa3atAe2W0FyO56+hmEydhx8fbhzxbnwDwzuKaD4/OK6SlMBVPNuE47Fm4kYtuw2f+Hp9nZUyKRIdLVXPlIB/zgp8WgkZHsy1gX2nLKEHYP2xwRx43zmiuJ77xsxF3s8caz3A8w7nC8+GEp9cP2AwtfRP55RfvMN62yOCwWWZ5uuXJ6hYnRquJVhO9j/RtZOoaSqto/noCYFCcVj9WfBV+5YqgYripkDolbDJun3DbEdlPWNuwf3vB/qEQR88vzt7l8uURMiqbvjD/NHDyrNDcFqaV5/qDEz7+oGd4HNjOGrwUhuwRMTQUclvIydVGS4LGaii8HqLUWP2SjnVeAczOJnTIaCrkeUt+MGe4F9g90DoJLjsurzu6V57F50Z3A7OXG3LnOf9+R2kgbKE8b3kuJ6QHSh9ilYwrqBayQmkLmvQuaybgvyLvtHQ060xzPRFXDbsHnvGozqvcHIZ3ENKsUjr1hk6K2wvtJczPErNPr+D8Anf/hO3fPGT+rRvWr5YQCn0fCS4TNFNMaFwmNInYesi+wtZgOlb0M6uzsnjuLLCOCZOGaSmkeR0faWaH/xsmUDqjdAXU0LE619wp01sr/KKldIHmVtn+5ojlFzW7u/cEPb5lEUZUjFgc3hV8m0lJYVf5Nh0ZaebwSBVe5UdCh4Rmw01G7qtXKgFyd4BvMKwpEAoaCikJ44nH7xU3OuJiTpwr/Ssj3Cp+byyfFbo3nmeXb3P24S0f3j+n97WkJQskobkRNML+UWH70OFzI9WLl4LEUqf4gSdugNwcOubAGVNDmoI2GRVDjiLjPBGXLVI8/WVm90iZllVfkqsESiN0l7A5m/NUHjBvJ3JRrAi6V8K6PkOyMB0J3o12N3Y0FsgF0//rKg8jKtjXhBZDtdA0GdVCFxL5dMObeyvaFwGdYDouDE+sjqPB1d9ta6bH0dOFhIhhk8MPQntthF3B7xQXDd/elIO2ajfKON3ZXg5eTUolszUGbSZ0iVk3MWunyiefWIaBb5++5uKbc377+pQyedo+0rcTwxSYJk/TJPQwnrzLSHLIoMxfCkef7kCEElo2byteDlBFQXcT5WhOCfXScGeF7vx3ZY87tLoAwWWcFFSM3kW+d/qCbyyuuJp6Gs3sUsPlMGMfw50fjdlhJuSsuL3SXhXC6w3p3pzUCZv3E36aK6f/s0E3A9PjJf56pL2IDMddLaNA8VZL6QxVw/tMcOWu/RtXEbDNDeP+mFYT78yuKSa8YcHUOFSM9diQsiMlx/Xkmb6cc/IJhL1RFi1pEVh8Edk/aPDr94XiFyxftLSXI2UWSHP/tdgPKCEUJBR8yDVLWvBa6FyicQmAIQWG7OlcYiyeZMrt1HE7duyjJ2ZHKco0efJtQ3+uhzVBJvcBv468+cMZkkH9Dq4/Ms7+pKE0DskFnUp1lT2UYKA1Wz5kvM84NZwYiuE102iuN2fguN1z0u7uAs1FySZMyTPsG7ZvZuiznvlnnv5N7S6dCjplxIzV88R4z9B7v4qYg7CGuPDk3qO54EYjNxW+X72cr+VTMVSMchBg0IzXXN1EdsTiSKYM2TOVqicVI2fFX3n6V0L3xgiHdYPfRswrpkLYJN7+14QPt5HSCcOPdlznBUefRpqbqQo18P+w4VxBxO4CLSYMOeC1UKwGOeSvRK7sYsOQPEP0bNcd+mVHfy70rwt+MMQgrNMha5nSOOLC050PaFoEHv7c8dcf/Iq//9t/4uwHgemoob9IhPUhAhPItYtSdjWg5BmSZxsbroYZt1PHkAOxONax43rsySZ0vj7Ybhvay8MNaDD6s5Hu9UT7aoteb+8yJhlK41BzsPhi4mf//Kesc89P/uqXrN/1NBd75q8KYSPVZY6OGB25KCkrxQQnRqOZ1idUjH0K7GJgTJ5UlFyUIXnGMaA7pT+3Q7YK5hUULDisb9B9xO0j7dmO8PKq3pKKFx7/x56/+72f8mcffXK3/Ji/jKSuYTwW0s4xSMNwJNCD08iQPFN2NKl26T4GYq5UjgcspOiImwZvMC2F/jLjdxk3JEpwpKMWMcNfD7iLNeXiCvMeLxlMhRyUJ//i+ffufZYZzCvhdmR+5mg2yrgSpHiGIgxASnrQHDS+jpfNriNNDsuKRYUkSK6XXL8V+ouC31WnLNkIt1uYIsiB4sOIOIXH9w9LFQE3ZJpbJTztQSGuWtqzTfX3bUcJSnsF/blSQg8GcQFxYexOCiwjNjj8tcfvBR0PRmAENxphW1g+G/DXeygF2Q0wTtgw1OVcE7BxRE5PGB8t6/VNkhFXgeYmEheO9lLJvZJWHTplwqbQzJTuMtN/uaU0/rB0qQedTht291ukQLvO6HTYHhbDjXUNKtmQMULKkDPkAiHU4b5eI06R0xM233lI7qRuewRwQ4VcvhfZEDh+CsPDlu58JKwjvQNJBqr4mz2lDeCrnvoXG2a/zbUszoF3lMZjQdFdRIYRgqd0DXQC0mCzFtlPSIywXMLDU3bvrhiPFCnwv1hJLG6jgyueAAAAAElFTkSuQmCC\" y=\"-201.758125\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_43\"/>\r\n <g id=\"matplotlib.axis_44\"/>\r\n <g id=\"patch_108\">\r\n <path d=\"M 82.562263 239.758125 \r\nL 82.562263 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_109\">\r\n <path d=\"M 120.051918 239.758125 \r\nL 120.051918 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_110\">\r\n <path d=\"M 82.562263 239.758125 \r\nL 120.051918 239.758125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_111\">\r\n <path d=\"M 82.562263 202.26847 \r\nL 120.051918 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_22\">\r\n <!-- Disgust -->\r\n <g transform=\"translate(78.805216 196.26847)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-44\"/>\r\n <use x=\"77.001953\" xlink:href=\"#DejaVuSans-69\"/>\r\n <use x=\"104.785156\" xlink:href=\"#DejaVuSans-73\"/>\r\n <use x=\"156.884766\" xlink:href=\"#DejaVuSans-67\"/>\r\n <use x=\"220.361328\" xlink:href=\"#DejaVuSans-75\"/>\r\n <use x=\"283.740234\" xlink:href=\"#DejaVuSans-73\"/>\r\n <use x=\"335.839844\" xlink:href=\"#DejaVuSans-74\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_23\">\r\n <g id=\"patch_112\">\r\n <path d=\"M 151.831228 239.758125 \r\nL 189.320884 239.758125 \r\nL 189.320884 202.26847 \r\nL 151.831228 202.26847 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#ped861f0e46)\">\r\n <image height=\"38\" id=\"image6e79d8c2aa\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"151.831228\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANb0lEQVR4nG2Yy49kyVnFf19E3GfezKyqrKqumuquHs+0Z3rGHiwZYQwsvLF4bCyxNhJL9mz5G5BgAcg7dkg8FiBLCAkxAhnZBoPGHsuPeXqmu7relVn5vI+I+Fjc6hmPREgppTKvbpyIc+J83wn5ox/8gX5hcMLfPf1VTt46ZO9/leHf/jdiBI2KOzqkfXEP0wXarYx2ZIkW2pGw2RX8UPFlRBMFASK4hcWtBNNBzKDZjsikQWcpj//iBn16xvLrr/PXf/anfP2f/5jX/nyKpo5QpsTcEq3gLuqKvXTEq1vnPHEH2FYxeQaAGVaEg20kKhKUmAg+F9RAyAQTwK0EMIRciVmERPHjQKgEvGCbHqCxET/saA5HJHnK6W8a/uTpNzj6V0GzBGk9AGoEAHeQL+ii5bXBKd95+BLmzQHiHDIaEnfHmGWNiUqsMrKrhnQqiELILPXE0YwNzbbQDSHklpgq6hTNA2YU8GuHtIawTijGNU9+ewgPPePqmg+/9SqTty/BWdQZjI+oj4TM4p6ut9jLHcfZNW8cnPLMPIIi73eq9chsAVmKbTusKs+HHZV0oxEoSAQJgnjFBgEVQidEARJFbQCBxAWqN66o/22P4U9S8qslWqRI61HrkE2H9REpE9wH//QyH3/tmpP1mCppuPySo/rpEETAGMgzdLlG0oS4t0U7KfCFZXVoqXeEmEJMFBUwneA2IAEaAzEKkgYwgtjIep0xntTYZ5HsumZzUJDOOkxj+2dUkRgxdYc5+pcbRt8a8bMnBzwaXFK/2OInFeZ23fO+qUEjGEO3nbO4n1LvWHwuhKwH5dZCeSps/zyy81OPaSGkClZJck82aMnLlrxoMaKc/27bA4lKN3T4KsXUHmJEfESC4uavbzF++5r7/7DN3zS/zvhHCcn5FYSATmtiXUOMAKRnC3aWHTExhNzRbjl8LiTrQH7eYGpPGKUgDrWAQgyGQbEhSzyJiazalP29Obcv77L1zorNvYKYGtQKiAUCxIizTaQ9GFJvWbbeEnZ/tOlPyTpADEieg/dIksB8hQ5zbl8uCSnEBEIhhNRgX3S4teILYXWkaBp7YFGo2wRnI6O0oQ2WIul4+oZQXmbYOhBTQ8wcposogBWcWwVCamhHgvEKqmiWgAg6HIAzSOuJxqCZpZnkuDqSrmB+bAkphALasSLaUxvLiHSCZmBdwBhFVYgIRdKx6RKKxzPOFtvs/tgjAbpRim0CavqFOttE/MBhW70TrqJWCFsF3TBBFGwTcNMN9mxK4SNmr8QEJdkxIIIfKOp6FlCwC4MmShDFGCWxgSLpsBJ7kE4YZzXvPCqpn6YUNwFfGpqxpRsIxoNzi4aucqiBZB1RK3TjvD8hCr4wiFek8b3ujGH2KCWmQjbVXsClEFLFrQR1oEbpciAIMQrGRKyJ5Nbj1XxiObt7C9aHu6QrwW0iphMQg88Ep4mlnlhCLmRTD1aIiRBTiwQlWfYe5HcGsFuxeJgzf6QMHs1YBkNTp9yb3PJgOOP7bz8if+Z6GdiIyQJF3jHKG5yJ5K4DwFtDHRLuVQt+vjUhOuHqjQSAZA7VWcBd/UrF6r6gVgm5QTsBEUImRGtIFXxpWD3OkKi0YyFUnq8cfsw3d7/Lid9mz87Zsmv+8NkRnA7pxhFGHWXVUOUNheuokobC9sCCEVITuGlKhq/fsHpsKFzgaHhLGy0/fe8Ic/PlyPArlzSHHjVCN7B0lSEkgi+EdmRR02svpIIvFdLIJiSUpuHl5IKI4d32AIBmJ8KkoRpvqPKG1AacifhoaIIjqFC5loFrOV8MuZ2XvLp7wdXJmI9m2zwaXvLNX/se5otf/Iimc4x+nCD+rlBnnxbrthKiE8qrSLLudSQry8lqzE+aI4ampTQNb62OCUGQnYZi0OJMZN2k3KxKTuYjTlcjlj4jM4G9dMFWsma+KLj37YwfvP8QO+yYXVe8VFzy5tnncWfLIeG72zx484blozGo0oxt38IAvoSuEoqrSHarfSvjLE8m2/xg63O06ogqnNZjqrLBR0NdJ9R1QmgsdAZTerK8I3ee43LKrluyNimHu7dIs8fn/8pz/pUKt1H+8vz3kJdWOP37XfZOu09OigmQLpSQ3RXnSE9hIaSrgG3uOotpxsfrbQrb0qll2WU0nWN9OSA/cwwuwQ+gHSm+smzGhmsXuClL1nlKZjq+sHPKf75ywOi/rjgIyge/X1FcCNv/keGMh/xshTQe0yrtyKAGsrmSX3XY2hMziy9sD9RHygthc2b56Gib3HZMm5Kr5YDN0yEH34Otn0yRVY1WBZvDAbcvJcwfJdRFQhstnVoSDUySFevXGnRcYaZLxu9VTL8QGZxa3M0bMH4/IZmviYkgAcpbT/nuDdzMoO3ACFmeE/e3UWtJbw2rexW3i5zrasC8zrmdlQw/NGz/zzl6egHWIDIBGdANeza6Vcr7N7sYUV6pLgA4fuGa9cM9yg+mjD5qMT4lXXic6cCXjkQVUSVdRIqTJVxcoSFCjGjjkbpB6rpvIgcl5WXJ/DzjidsmBIM9z6hOArJYgTVwuM/Fb+0yexV4YYMGgdoyOx3x1jqjfcHx+eEFVdpwM7YMbhfYyYDyXNjsOZwKbPYTip95xIOtI1J3SFHAqCJWWd+SXE3R9QbBQ4gUFy2DJwXrWGKA4uy5QVukqtg8GNOOhWQJ+l6BxL6O+lLxpWXRZZzWY57NR1SbiNY1yUeXLL52zMVXFdcddNRPUwiBZOVREeIwxzhLGGa0WxniI3nnkaaBqBACdtMxfJpiW0NMhPS2r7Fxa4h0HrfsGH9g8YXQFcJmX+gqiCPPcLQhs57LTcX0fMTuVdu/N3EMnrUcfCfF7d27pfh4mzidkVxv0ewPkNoj6xq3abDXBgkRXa3RziNFjg4H+CrF1ZHsVpCgZDOPWwcwIPMlyXxJcpLQHe0wfVyiDsLYU2zVvDK55CBf8P3zhyTXDlOv0TspZe+dk761xN3MKh6db4hthzGGdNZgFit0uULbrteYMUiaYIYV8d4O9WFFO7L4TOgGYDwYbwm5od1KsAdVn3ZUaceOzZ6wud9xdHzNwWDO4+E5N92AdZPgFr1hSp4T9rcw0yU69bi9b2fY6ynBWuT0Cn2w/ykoQKxFdnfw+yO6KqHZdnRlbym+FHzZe110Bom9GTc7SjfsW2u1ETuuOdqZ8+LohsJ2zH3O2WZICIbyWjG1R8qcxYslxSAh6zxu580P0a4HEa9v0M8dEI8PMU3/myaW9QsV3bDv86MFBNSA2h4U2neyaqAbgC/7+EYaEaMkSWDVpPzo4rBfLNB2juaqYLyG5qAif2dFsoosHmQsju/jFl99SPXv76K+Q9IU+/4p3atH+HHWA5A+NCTLAPT0IRASsI2C9lTE9K5yeEhnBt8KMe3TebNMqJOIdAazEcQLyVKYnCnV0xa3bNFhSchN/+4MHApxsQC5a+CahuR8jhYpmliIEAtHN0pxm4htIVpBCiEGQU2fNU0Htv0leoOgTohO0aTf4uJMSJbK8GlH8eEUbmbE2S0aFS1yyipDH5Qka3CbiWWQptB5RARtW+RmhilLtMz7SKV53zjG3hpU+vYXFNP1VwC2U2yroP0z0QIeXCu4GvJrJZ968ssa9+SKOJ2hbYtGhRiI6zXyw3cYze4z+/IernrW5zkNAUmTvn2uGxBBrAEfIE0wbZ9mQta3vmp6mk0HrukDb0jlk9j2nFa3oe9MpgFRcOe3Paiuv6sQI6gKpiyRIu8rh+7hyh8/I6hi0gT1vjc61T7oWgvew2hAKFwPKhdCKp9MLhGMV6IVbKfIXSBxm15+IRfaoRCt631vp0KubiAERBySZ7A3QdoOrUpCmZIuA+78d47Z/8eaeLvodyixaOd7u7idgzGY1QZb9+KUcCd6gXQRceuAW7SYxiOrGolK2KnoRhmhMGwmjnYk1BPIZoZ2UpA/OEQHGSExSFTqvRw1/XFN5gEJ4Db7gr6wB7cLpCiI6zVo7AXZtYhz6PSWBLDLiixzSOiTub1ZousNNA3adsQQ+l08s+T7u9Qv7VFceZKVwReC2yjJrCGMclZHRZ8rXK/H5C4sN0PL5HvnuHQOm/tDyl/kvb7uuH8+NCqxaZDzS7iZYQBCH+NDiJ8s4rleEINGj2Yp9cQhCunMM3xvjTm/Qesa/9qLRCeo0FtRAyYoagTbKrJpcLevRGZfglcvjuHtdz87gfY7Q1RUQ683QEP41F569H2CV0EsmM8ds3y808exZSQ/mUOIxIMJzX6JBMV4pdky2BrcJva5dqUMTmpwFnf/8TltsMRkgLmjQqMiJn46ufanFtX+euo5mOf/S2+MYgSzNSZWBdV7t8j1DJIEnKV7YZvVUU4283SVpd7qy9pmv09mwxOP8RFbe9r7O5jf2P+Q+8MZy+OiP4X6WXo+8/3/GWJt/7m7okQMdrpAP3xCmM7QxQJiJHn/lNE7c9JpQ3G6YfeHC8YfdNimv6eNiWA6ZXNQ9pcqpWm5X874xah/sR0OCfM5cLcjv0zZ89365fEcULhbR133lMcIUYmbGnnuWVWJJA7NEtb3Kza7FtMqw6eB7LqhmWSoA7Px/B8p2VDdZXOiyQAAAABJRU5ErkJggg==\" y=\"-201.758125\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_45\"/>\r\n <g id=\"matplotlib.axis_46\"/>\r\n <g id=\"patch_113\">\r\n <path d=\"M 151.831228 239.758125 \r\nL 151.831228 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_114\">\r\n <path d=\"M 189.320884 239.758125 \r\nL 189.320884 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_115\">\r\n <path d=\"M 151.831228 239.758125 \r\nL 189.320884 239.758125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_116\">\r\n <path d=\"M 151.831228 202.26847 \r\nL 189.320884 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_23\">\r\n <!-- Neutral -->\r\n <g transform=\"translate(148.430431 196.26847)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-4e\"/>\r\n <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_24\">\r\n <g id=\"patch_117\">\r\n <path d=\"M 221.100194 239.758125 \r\nL 258.589849 239.758125 \r\nL 258.589849 202.26847 \r\nL 221.100194 202.26847 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p28ac5e060c)\">\r\n <image height=\"38\" id=\"image840e2daeab\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"221.100194\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMpklEQVR4nF2YW49cx3WFv72r6ty6e2Y4F2pIipRESRZkGTCQBHCe8pSXAEmQh/yR/I4g/yM/IXDgl9jxgx1f4Ai+RIolWSJFcsi59eXcqmrnoVq0kQYGDZw5jVq1a61Va295/M//YhjoDAA5gCmYM/JBBAGigDPEG4ghzhABy/vfzA5GBQGZBBxYF7lzsuHbp8/53uFnPKxecZ06LuOSXa64G255EC5JpuxyzWCBZEpCcWS8qaFRChgPJvvFmlwWGhzmDNQA0JBRMbIJIJgJ4jMGiBq0hiWlXY2IGNdTy+fDCWf+lk5HntshT8cjdqnixG1YaY9zmcZmJnMMOTCbx0MBY6FUSZJg3kBBdntQdSqLCqiUqjk1TEEERAzvM04z3iUqnzioRpxm3mjWtG5mm2tO/IZkypg8X8Ujan2T73Z/4NhtmM0xWABgF2u8eQoQAAPUsGCQ989DLqBMgFIp7zLeZ4JLyB7koprowkTKSnCJ43pLrYmzas17zXPO/Q1BIsd+w8fpPhfDkstxwcoNnHW3VJIIkgC4lgU+ryIyOGQSJEGuDfP7ymEQFYNSQWeoFH7lLCQVHJAyDNED4DTjLDOkQK2JWiMrHTjSHY1EhuoVD7srPrk6Y9PXeMl8u3nCfX9DY5FKE8krXqtEnhRByJVhdeGWbhSJigUj1+V4LUAE5nWFDIokASuVtWpfdYCQcU3izuGWVwcdQRJNNxFIDLni2G/JBsN1wyd6ym9P7/E4XOLECJZRucGrM7Irx2eLiOzJjzjCRtBZMAe5Aokgec9JD6mxshktFNA2os5wPpGTMsyep5tD/iO+x2eLU4Im5uzYxoptX+NuHDvr+Mn1O/xl+7+85XuKLg0fqkj0HiMTmkicHZaE1Ga4UpZPMpJhPBD6c2E4SaWqrtgGYmjIOJcJIeE0vy7cna7nzeU1j9pL7la3jDnw5XDMj5+9jfvFinxopCw871f8ePc+Z6tfUQtkMv6gGxi2FZaVnBWylD+F4Twx3RF0FFJn5NVcPGy/sBmFArO+BmOFagWoSxyFnnvVDffDFUEib1UvWTwe+Tf3IeOupgmJp1eH/GZ1jz9rP+ctf0tC8JVLxUSzkCaFWWFfCauN1BppVsjlHdv7mTiDSbFYQKXJyFUiB6VpJ5oQWfiJA99z7DcsdETJoHAa1nxw+oIpeZ5uDrj48g75oTBYYGduf5SueJQZsCczUcAbWicsS1FllmKyJojL+/cU7RWJQm4zZhCjMkpR7+XQcdu1JBOCRBzGjMNhrPzIqIlXl0sAvCaUzDpXrHQqBut8IntXFgt73vjCGxxkXxhvtvc6IG8DzdcerIgAlOSKCTftxN3Vhn4OvJwW/La/TyWJletZpxaVzFHY8Zvbc5zPHD245mFzRSWJ69yhkvFBE84ZqSrVETVEC1hVQ/+EzCkpOSlzH/A3jrgwXC8c/9poXiVu3g3szo3p0KMYx+2O//riET+Jb/PTB2/xD/d+CcDLecXz8YAnN4csFwPvH7/kUfWSIJHb3JBN0W+I6nwu6vIZ5xPeJ0KIVD5Rh0hTzbT1jPMZkhBPZuThDp3g4Pc91e3MeAjT/RlV43aq8ZLKxtaBy13LVVwAcDEt+fT6FNsr963ukrt+jcM4csWI/XqqMQMfEnF2IPZa9ipGV08IMCVHTHs9OkNcuaqmj3Z88la1fzbiqrIpt+fZ373/Mfot41F9yQf1Uy7SAZ+vT5ii42Sx4/HqFd9qntHITJDEmfbUAn6YPWYlJdTNjJmUa0UzTo2UlTaUTJSykLKiIZGjomqYZVjEYvhVJITIQTNy1PRkE8YceKt9yf1wxbvhik+mc0SM+we3POiuuV/fcOI3e2CZILBSh3dqtPVETI7DdmCIni7MOM1kE1pfQB1WAzeuYSOgmtlcd4gYIWR8MzPNnjcO1xzUA2f1hqOwo9bIveqG73Wf8r6feZocm9Tw3TtPiFm5E3Z8p/2KM3fLSic6SXQiZDP8HB1TdKiW5NBPgVU9krLiNHNQDUzJsYsVc3KkLNQ+MXUTw9cLrE2ExUxKSuNn3mjWvNe9oNOJQ7flo/opj33kkxj49fiAIIljv2WdGu74LY3MNBJpJLHQQpXBMjonx9BXjGOxbBVjTo7gEq2f8ZKpXKJyqYRBMUT2nrGKyOiYB0/uPZd991rBx37D29VLPgwwY1ykFdep4+VcfOubiLPSnkYSCiQzBjMS4EWMqo54n1Ax2mpmzkq7N6zLscPvLeNO07PRmjE5ctKS3dqEqzJZoJ8CY3YAnLgNj/2GlxkuUkUjM+f+hpvYMeTAod/xMLwiobzKLWsSjURWOrNSwY+jJ2clZ2HrS4KsfGIzV7hoBJeYcznmlJWYFTMpKh49TEp2GXGZoa+4njp2uSrXD7DNytYqXqUlX0yn7HLFaViXC30+4SIe0OjMSnse+SuCQC2K508+U/S01fxa6k4zKSuzCXP+40WdTfA+7bO+w3oPTQKXiFmZs+NAB47Us86ZZ/GQr6YTbmLLOjZ8tj1hFyuO6y1n1YaTsOXN6hUP/DUKzJbxJVwV0pkJMelrrqU5kK08n6Ivzp/Lu6q27wMM2V/koSq2kVBUMoMlLnPLp8M5V7HjN7fnfHl9RMpKHWbm5IjZUWvkwA00e97NZn+smGUhZ9krT4lJmSe/74bK/y0qlvaxaG+2EqVc4rMiYvQxkE2YzfE8KT/v3+GXt2/y6xfnbK/akl4Mdl18LbLZCi8bSbg9ngJMDLMCzMyRopKiFjB5X9EkEAUdFZ0EndinWyu9qFNidPsdO65zx3Xu+PeXH/Lx5/fRi4pqLJuJC8M6yLl0TGP2e4OFncFk/49jMZb0mmdXgOwz2DdxR0dFB0ET+K3ge8CEXAEo8U6pdjZhyBW/6h/y8WcPcM8q3ASuF5DyndY1Y13z+3sVz9dL1rHhH09/ynVacO6v8bY/qvwNoChI7/A7wW8EjdBcGjqV3H/7GMKtELaAgUYjz4IkYbOsuKiXXK4WXKeOH3z9Aaw99ZXQPTdyMLqLRPfVDswYT1u++PuKv/3Oz/jX//4LfvifH9G8s+afPvwBXjRjWbGkMCh+7WheCn4L68eZs5/B6vMe9q58/a2W/jyz+IXg+0xslWkF1dqoXzmGZcXzfsVvm3s8+cMJzSuHzuBGw1TQydDrLZIy+d4CGYUfvXiXw580LL5OPFksCN+ORZUCiMuYV9wgLJ9kdDbW7wqLZxNuO4II/YMlOkOsDckgBtmVyqVQeMfo2EwVX+yOkd4R1mUukoOw+DoSNhEZJqzvWf5s5GF+SPrRXTqXePHnyocffEFG8XkPTJ1hTSIuHdNKWH2VePh9w/URvVxjfU8rQvviiNXPoXvaMx9UxEbIAVJd5h8ShXXf8FQOsTYxHgs6CfNSkORwY2Z+dIqpEBee6cCxfqRs3okc3b/iuN7xy+0jfI6K+lzA+Uw6nrl9XJFDoHuRCeuZfLxC4gJi5t4PbyBDbj2be57+7p6joagNoN9WzLNDBkVnQSLU14YfjNQo4JlXjmmpjHeUeWngjN1Q8T9XZ3xdH+Bt58nNPla7jPpMPJu5WTh295TbRwuqdVd8WEtbRwYxI1X7ZthT1DYIiBKtYlpGxIT6EtqXpTc1henAMb/hCw0C6GQ0F4I5zzwr11l488E1Xvtyq7l1mezkLiNzMc3YWrGwpqjTjbB8kmkvJnRI5NoxnAampZLq0qnHThhOHWOTsSbRnwmpUWIH8zKTlhldzuRNKHakQMhUy4l7hxv++t7v+JvVr/BuFMwLboLmhRK7cr24qZDWDUa1zjRXiep6RGLmmzmCOcHvMtNCyU7ITflN2MKYBF3MxLcjVGUqdNiOHLUDHxy+wEuiTxWtmzjwA2+EWx5Wr/he/YxDrfBuEEBJFZiD7rlhrlTH9xk3Gb7P6JwZT2p2Z57xjhCbcjSpNXIFqUuvx1Z665Eu0i4mls3Iqh55drtiVU+8d3DBXx38jot4wJm/5cjtOHe3HLuZQ3V00jLajPdb0EmIC6O/a5gTJEOqIGwcfjCgKHU6MmJnpGWCOhGaSKgidYh4l5mjQ8SYj13pIcLMqh5RSlpZjxXZlC/nYz7d3eXDhaCSOXe3JINdTswysM6GDxsjdlKI3RrDSVFWao1ey5wsVxn2gdCseJXsPClkJDqaauZm06JqNNVMcInNtmHoK27XHaGKxKiEoKxjjcM48AOzObIpWwt0RDAjYazN48MGJH8zMSzgYmtYl9C2xBjZN8JpLFdWuPSYQvSeuRVuU2lMxsEz/2FR5maZ/ewjwwG03UhXzSVwInzUPWGlA0EiCSWZ0Kgx71P7/wE7Ui1XBNlSPAAAAABJRU5ErkJggg==\" y=\"-201.758125\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_47\"/>\r\n <g id=\"matplotlib.axis_48\"/>\r\n <g id=\"patch_118\">\r\n <path d=\"M 221.100194 239.758125 \r\nL 221.100194 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_119\">\r\n <path d=\"M 258.589849 239.758125 \r\nL 258.589849 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_120\">\r\n <path d=\"M 221.100194 239.758125 \r\nL 258.589849 239.758125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_121\">\r\n <path d=\"M 221.100194 202.26847 \r\nL 258.589849 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_24\">\r\n <!-- Fear -->\r\n <g transform=\"translate(226.888772 196.26847)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-46\"/>\r\n <use x=\"52.019531\" xlink:href=\"#DejaVuSans-65\"/>\r\n <use x=\"113.542969\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"174.822266\" xlink:href=\"#DejaVuSans-72\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_25\">\r\n <g id=\"patch_122\">\r\n <path d=\"M 290.369159 239.758125 \r\nL 327.858815 239.758125 \r\nL 327.858815 202.26847 \r\nL 290.369159 202.26847 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#pcd9222b436)\">\r\n <image height=\"38\" id=\"image85af33c287\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"290.369159\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANlUlEQVR4nE2YyY5k6VXHf+eb7hBjjpVV1UVXlxu6kY0bGgECI2QhduwQT4EQ4h14BDYsECtewGLFwpbMAiMLC+Sm3U1321WuoTMrx4iMiDt9E4ubTnGlu7ihO5w45/yHc+TvPvnzPNMdC73jbVjwvdcfcbGe4lvLt957w3f2f46SRK0GrETWsWIbS162+2x8QRcttRkwkvjy5oir6ynqwpEOB5RNxFsHwOxkw6zsaXrHelWDgKiMCCgdyUmRopCzAGBq3QOwSRW1Gmi9YWgss72Gb82/5r3iHE0mIqziBJ8MV8MUI4njcksfDWtfMmTNw9ktMQk3g0LdOOS4Q009ee3YvpzjHzZMqx7jIn5nwWSyZOJgISiIgkSBDEaT8VlD1tSqZ307QV9b9h+3/EZ1xlx1RISYFZd+xvP2kJuhYs+1zEyHEYvPituhwkjk0fyWnIV1vyDcOtxex1AH5NbiX064OrS4yo+B9GN2JAgqAElAMggYnzVKEgBv/YK4NbDvmbqefb0lImxixSrWrGPFm2ZByoJR4zNKEimr+3fUZuDBbMPuwOFXJb43VLOeNglyZSmelwxzB1XCbNQYWISsxhPuSqkkUYqnSQVWIpOjBqUSISm6bGliQZcs61jTRksfDT5qgPGeaPFRs/OOiR2YuY6p7XlyuOLUzBl6S/Ca2cGOzTBDDZrqrcLPZOyzCFmD7oUskFVGRRkz1sQCqwI3oeZwuiMkRcyKJhVsYoXPmks/5byfURnPwrWUOhCy4uvbObu2QKnMzjmGWlPoQB8Mk3JAqUyMir632L2O0NaYnWB2QnJAHs+sMpIE1QuSwPhkSAhWIrtY4JPCqkTKYwnHUpa00WEkMbfdPfpIQu4VahI42t+w7QrWbYnRiRAVOQsimaoYaPsRnX4RSGuHaSGHsaVyhvY9DwnUxuBuFOYff/hdss1Uhw1704YhGKwbiEnRJIeVCEChPIdF5F9/8Zt0FxX7T1b81fv/xoHZYiVQiud7Nx/zH2+fcr2aMp81FDYQB8uuLdibNay2FcWsx08tphVQkBSEDxp+98lr3mwXaMnjn/vw7y/BaOK0YPPsmN1fbqmsR0mmSxalEz5rVr7mp5ePOFne8tcffY+I8KF7yyf9Y35w89u87Wacbmas1hO0ibS9Q6ue2nm8N1zezBDJAMRFIK4tJIhVxtjIkAxz12N15LjeYGTXgjXomHCbkpSEmAUlmSY5fNacdgsSwt/++vfRJH45HPLfm3f456GmDZZ1V9J7g1aJ+awlZkFLJsQRdcZEcgZrI31v0JPAsKcprhQqwPBmwnMT2atbZq5j6wtM3u3AOiREojtA60RMCqcjK1+x9hWfnp9wMt/wI/0+n60f4KPmnemKqenpwxhQykKKGqsjpYlYHYlJoVVCq0Q19RiVaLwd2f9I8EOBbgXVwfamBmCImpgUJrUdCsj5jpdUZggarRL/c/2QdrBsLya8aB3XTcXEefbLBoDnt/t0g6XtLSkqkIytI7Oix9zxmkhmantmdvxtEwpWrkIkczMo9CuHaYW41cS5ohkss7LHjE8rZDbFT0at8lHjW03OgtWRvZNbHs1vKbWnCY5Xtwt6b8kZ+t4Sd2O/SJFodaZ2nknV0AfDYbnjw+nZ2Ft5BNRET8fvHGiaW0N1rrBrRTsrePfxFaXxGBGBR8eEiSMZwXuNUhlrA/Oqw6pEaTwPyg2HxZbnuwNexwX7k4b9siFkxcvVkqYpUCoRo9B6w0oqpq7n4/lLHtkbblNFnyw2RlpjWRQt66JkOw+kK4fbCOmt4+tqTgwaox6djEE5jZ8KMWiyShgj96UodUBJ5tBueM4BR9Mdf/Hov5ipFp8N/yIf8Zx9ChvovSFEzWF1wx/svWChG1axpkkFShL7ZovPmvN+RKkqImGakVuhPhWGboo/CRj/YAFKiKUm2ZHsUh4zRwUAXTT0SfOm3+N2KPnDw+d8p/qKWgVWyfH57CFnuxnbrsDqSF0MfLx8hZXI62GfbSyo9cBjd8NE9axjjSJjVQKB5DJZC6bNzF8l1huDUV0gLAuGhWGYQRo09aJlVvVM7cBBuSMhNMFxO1R8vPeK35/8nFoF3jUOwsBDt2ZW9Ky2Y1M7HXnV7XHktqx8jc+KY3fLNpZsY0mTHEMa9TZHGdlfQ6gF3Sf2P0uYOHdkJeg+0x9GbOVZTlrend1wWGyZ6p6I4rSbsxpqrIpoSXzpD4ArlgoOzS0TMyAC3mtuu4JNXWIlsYuOx+WKJhZsY8FtKGmjZTOUtN6OZjEJyWSSE2KhKK8GTBYhOsXFR4aPf+cLzpsZT+dXfHN6yjvuGisBgFU5wWfNgd6ySwU+G36WDR+5M566S/aKBmsDXetoe8fbdsatL3lQblj5kaN20XHRTbnpKoZg6ING6UzWGUSIBQwTRXWaMLoL9HuWwz855c8OPuPfzTf45vSUb1WveKzXzJRnlw0+K0qJWEm88Et+1j/mbV5wotc8M1t+a/qGz4tjus4So+JiO2FZdaQsLF2Lkszr7ZKrXc32qkaVkaP9DVoyqz2Dbi3RZfo9GfvNTy3NseJPj15Qq55Kew7NhqVq2NeehdIUKdBniAg+K7Qk+mRHK1TMeN92fFT9kh9UH3C1mhKjostwnRSbruDGVZy92sddGPw0oyJkO6pFzAKDGq2PhlBDrA3K3XSEWvhGec6B2fKd+Zf4rIko/Ki5IzkiXMeSV2HJKk6o1UDKwi+GY5qcWaqWo3I73jsojElUzlMXA09mK8yNQbdCeX7nWtWopQJIr+7dRnTQLw1GrRtisaBUnokMYLY83x3zxF2h9BaLps+Ri1jxSffkHv6X/ZQhjQL/zJ3zobtgYVtEZUhC6TwAFzczVruKrGBYZFKdyC4hUaFVJucMkrlzV6AglILBWSTAD1cfUO55hjzC+MVwxJHe0OTAWVzwSfeET7eP77391hdctBO2XcE/DN/lb558n6flJXuzhrdbx83FDLGJHBR+42AZxus4Evdyf0thAtt2AnLn9xNkGbOmwrKiuMn85OwdruKUH64+5EdX73E6LLmIM87ilM/7R7zp91CSeNMs+fHpu6z66t7afHl6zD+d/TF9spxMNpTzHqLAyiKtHqefILA1EAQ3HRDJrJqK4DXZJZIF5UdbLRFMLA1ul1l9tWD9rGYTCr549YCp7Xm/fEspnks/40275KKb8tXPTzDXhtUyMn2wHYeNjeWnXz/CSKI2A4tJi9aJZlPArcXsNGRIRSaXmZyEpitISdAmEpwmlhnTCLoHt02YMNGokJm80fzn6tdYuA65cXxxdcSPy2e00fLp1QmXVzMeHa/QG41pBJRmqyfjMJEEYxJX3YSjast+1XA82XJRTVhPKobeok2ksBFnAoUNaMkMUbPrHNolwiRj2rv5EjDRCcpn3Crzs7MTnh1dkSaRzfWEl8s9QlJsmhJWlq9XR4iCYZlIVQIv42SzN/BwccujyZoPJ2ds6pJ9s0MdjjMncL9euPRTNr7kbTfjpqsobCAlRTfRhJ1FghALwQwzhe4zkqDfOS4nE0jgzi39u4bL7QStE3kWUCt736h6q0Fl4l5gMd/xbHbJt6ev+YY7vwNX4kDv0GS6bHgT9ogITXTspABASx4dhkroKpIKQxqEfqkwsYBkxhTqa8tmWmKvDZNX8OK9A0QljEm42uN1Jnca8YqkM8w8J8drfu/oJX80+4pa9SxVcz+hlxLv1guCz/pewH91pDwaU60TSkdCmUldxk8FE6pxIlYeqlNhuywwGorbzOZ1Bb+2IyXBuUBdDvjp6OsPpzu+uTzl48kLHtsbShl5q5TRu6UsrO40tcuWLlvOhxmbULILju1QMMTRJac0lntEpyJZMMMc7G7kDrfJ6JUhPeqQnxRMXgm7dxS2GDiZbzgodzwuVzwtr3jirnhqrqjvurVJhl22DCh0zozLGsNZWNBlyyZWhKxpo6WLFq0SpQnEJITekpMCnUk2k0Uwsc7ofoRpFlh8IQxvK1SMTE8j661lstzydHrNt6ev+aD4mrnq2Ncd+wp8zjQZlGQskZQVTbZEhF0qGLKmSxYrgaVpUGRaPTDEBX24GzkEov+VXmayBpOBWI41z0oobjLV21Eki+tA+bpgd+RY+3LckaUaJxHo6HLGZ9hlQ5PGcgF02TJkzXWcMmRDRKFJKMkUytMng1Hjdc4ykuyv9mNp7HcTDgLcGMhCqEGi4DaZbqGwG+Hg08jZbMHnkjksdqRK0RnLLjtmqsMR73toyJomFexScWcCRnnbxpJ1qP5fQAkjCZ8Ube/ut4gyKCSAacDoOhASSDBIhO4IJI/cNsw19dnA3mclV9Wc/50es293WIl02XGgRzfhsx5Llh1NcvTJ4rNm3CQ5+mQId0H6oLnoplx3Nd0wjoApCLK9cx+XwuxlxOQMRCEbkAQIDAtwa6E9VJRXislpoPul5eX+Po8nq3vC9FbfQ99nzU2YsA4Vu1DQRntPG0MydMHe+/w2WLpgGIJm6Cx5ZzCtUJ0L5XVGDxnz7OElr9ySXirMWnNnHvATkCT0e4b6tGPytaZ9UPLycJ9Ke6a6p08GJRktiS5ZzvsZV/2EIWr6aIhJMUSNSEZLxurIEDXbrmDwhqEz5FZjbjXVuVBdZNwuIQn+D5/6sGl7IxngAAAAAElFTkSuQmCC\" y=\"-201.758125\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_49\"/>\r\n <g id=\"matplotlib.axis_50\"/>\r\n <g id=\"patch_123\">\r\n <path d=\"M 290.369159 239.758125 \r\nL 290.369159 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_124\">\r\n <path d=\"M 327.858815 239.758125 \r\nL 327.858815 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_125\">\r\n <path d=\"M 290.369159 239.758125 \r\nL 327.858815 239.758125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_126\">\r\n <path d=\"M 290.369159 202.26847 \r\nL 327.858815 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_25\">\r\n <!-- Happy -->\r\n <g transform=\"translate(289.75555 196.26847)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-48\"/>\r\n <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n </g>\r\n </g>\r\n </g>\r\n </g>\r\n <defs>\r\n <clipPath id=\"pefb0875e78\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"13.293297\" y=\"22.318125\"/>\r\n </clipPath>\r\n <clipPath id=\"p9c37b9f1b6\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"82.562263\" y=\"22.318125\"/>\r\n </clipPath>\r\n <clipPath id=\"p1449e2fcbe\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"151.831228\" y=\"22.318125\"/>\r\n </clipPath>\r\n <clipPath id=\"p600aba0d64\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"221.100194\" y=\"22.318125\"/>\r\n </clipPath>\r\n <clipPath id=\"pf7a5628c8a\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"290.369159\" y=\"22.318125\"/>\r\n </clipPath>\r\n <clipPath id=\"pe59183138f\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"13.293297\" y=\"67.305711\"/>\r\n </clipPath>\r\n <clipPath id=\"p7d07d61ff9\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"82.562263\" y=\"67.305711\"/>\r\n </clipPath>\r\n <clipPath id=\"pa56993fc46\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"151.831228\" y=\"67.305711\"/>\r\n </clipPath>\r\n <clipPath id=\"p0a94e036b6\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"221.100194\" y=\"67.305711\"/>\r\n </clipPath>\r\n <clipPath id=\"p06b8301276\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"290.369159\" y=\"67.305711\"/>\r\n </clipPath>\r\n <clipPath id=\"p86e05772f2\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"13.293297\" y=\"112.293297\"/>\r\n </clipPath>\r\n <clipPath id=\"pbf72236718\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"82.562263\" y=\"112.293297\"/>\r\n </clipPath>\r\n <clipPath id=\"p150e4512bf\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"151.831228\" y=\"112.293297\"/>\r\n </clipPath>\r\n <clipPath id=\"pd9796ba227\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"221.100194\" y=\"112.293297\"/>\r\n </clipPath>\r\n <clipPath id=\"pf555901934\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"290.369159\" y=\"112.293297\"/>\r\n </clipPath>\r\n <clipPath id=\"p87999b9dce\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"13.293297\" y=\"157.280884\"/>\r\n </clipPath>\r\n <clipPath id=\"p744c2eadab\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"82.562263\" y=\"157.280884\"/>\r\n </clipPath>\r\n <clipPath id=\"p50057501db\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"151.831228\" y=\"157.280884\"/>\r\n </clipPath>\r\n <clipPath id=\"pec29144960\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"221.100194\" y=\"157.280884\"/>\r\n </clipPath>\r\n <clipPath id=\"p5e03609a90\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"290.369159\" y=\"157.280884\"/>\r\n </clipPath>\r\n <clipPath id=\"p5266701de5\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"13.293297\" y=\"202.26847\"/>\r\n </clipPath>\r\n <clipPath id=\"pf4910801ac\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"82.562263\" y=\"202.26847\"/>\r\n </clipPath>\r\n <clipPath id=\"ped861f0e46\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"151.831228\" y=\"202.26847\"/>\r\n </clipPath>\r\n <clipPath id=\"p28ac5e060c\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"221.100194\" y=\"202.26847\"/>\r\n </clipPath>\r\n <clipPath id=\"pcd9222b436\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"290.369159\" y=\"202.26847\"/>\r\n </clipPath>\r\n </defs>\r\n</svg>\r\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVIAAAD7CAYAAAA4sRx9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d7hm2VXfiX/W3ie9+Ya6lbpSVyd1K7VSC4SQRBI5mWA0RHsAg8cwngcYY36DwUQbbODnMYxtjG0yiGQwYEAECQmBYkutlrrVsbqrutKtm9540t5r/tjnfet2q0Hd1eEWTK3neevWm857zj57r73Cd32XqCrX5Jpck2tyTa5czF6fwDW5Jtfkmvxtl2uK9Jpck2tyTZ6hXFOk1+SaXJNr8gzlmiK9JtfkmlyTZyjXFOk1uSbX5Jo8Q7mmSK/JNbkm1+QZyt8pRSoibxWRr9/r89gtIvIfROS79/o8rsk1uSbPnTwtRSoip0Tkooh0dr329SLy1md6IiKiInLjMz3O8y3NmMxEZCQi2yLyThH5JhExAKr6Tar6/Xt0bm8QkTN78du7zuGUiHz6E177OhF5x16d09Usu+bTeNfj8F6f1/MtjVG0JSLpXp/LU5ErsUgt8L8/2yfy8UREouf7N5+GfL6q9oDjwL8C/hnwM3t7Stfkb7F8vqp2dz3OPhsHvcrX0EJE5ATwyYACX/Ac/cazOhZXokh/FPh2EVl64hsi8gIReYuIbIrIR0Xky3e99zi3e7dVIiJ/3rz8wWYH/vtza0pE/pmInAf+q4gsi8jvish6s1v9rogcuYJreE5EVXdU9XeAvw98rYi8SET+m4j8AICI7GvOebsZo7fPLVcRebmI3NlYtr8mIr+663sfY8HttuBF5HNE5CPNdx8TkW9vvIb/CRy+mi0bEflOEXmwOfePiMgX73rv60TkL0Tk34vIjojcKyKftuv9t4rID4vIu0VkKCK/LSIrzXu/JyLf8oTfumv38f+2iIgMRORnRORcc39/QERs894NIvKnIrIhIpdE5Bd3r83Gwv1nInIXMPlboky/Bvgr4L8BXzt/sVlLP9nc25GIvEtEbtj1/hsbvbMjIj8lIm+b65xdc+nHRWQD+L5mDb541/f3i8hURNae7glfiSJ9L/BW4Nt3v9gs3LcAvwTsB74C+CkRue3jHVBVX9f896XNDvyrzfODwArB0vvG5nz/a/P8GDAD/v0VXMNzKqr6buAMYVfdLd/WvL4GHAC+C1ARSYDfIkycFeCXgaez4H8G+EeNVfwi4E9VdQJ8NnD22bZsnmV5kDBOA+BfAr8gIod2vf/q5jP7gO8BfnOuLBv5GuAfAoeAGvh3zes/C3zV/EMi8lLgOuD3npvLeE7lvxGu7UbgZcAbgblRIsAPA4eBW4GjwPc+4ftvAj4XWFLV+rk/3WcsXwP8YvP4TBE5sOu9ryDMk2XgAeAHIRgpwK8D/xxYBT4KvOYJx3018BBh7X0/8CvsmiOEcfoTVV1/uid8pcmmfwF8yxM09+cBp1T1v6pqrap3Ar8BfNkV/gaAB75HVQtVnanqhqr+hqpOVXVEGMTXP4PjP5dylqAUd0tFWPDHVbVS1bdrIDv4BCAC/l3z+m8C734av1UBt4lIX1W3VPX9z8YFPIvy3xsrfFtEtoGfmr+hqr+mqmdV1Tcb6P3AHbu+exH4iWZcfpWwQD531/s/r6p3NxvHdwNf3lhrvwPcLCI3NZ/7auBXVbV8zq7y2ZPd4/U/gc8B/qmqTlT1IvDjBIWCqj6gqm9p1sg68GN87Jr4d6p6WlVnz+tVXIGIyGsJhtKbVfV9hE30f9n1kd9S1Xc3G8IvArc3r38O8GFV/c3mvX8HnH/C4c+q6v/d6KcZYbN9k4hI8/5XAz9/Jed9RYpUVe8Gfhf4zl0vHwde/YQF85UEq/JKZV1V8/kTEWmLyH8UkUdEZAj8ObA0d3OuMrkO2HzCaz9K2EX/SEQeEpH5+B0GHtPHM8icfhq/9SWEifRI48584pWe9HMkX6SqS/MH8I/nb4jI14jIB3bNmRcRrM+5PHFcHiGM11xOP+G9GNjXzJtfBb6qCZ+8iStcJHsgX7RrrL6HcE3ndo3RfyR4fYjIARH5lcblHwK/wOPHD57eXNpr+Vrgj1T1UvP8l9jl3vN45TgFus3/D7PrOps588RE6+PGQVXf1RzjDSLyAoLF/ztXctLPJF7yPcD7gX+76yTfpqqf8dd8fgK0dz1/Kgr2idRU3wbcArxaVc+LyO3AnQT35qoREXkVQZG+g+BOANBY0d8GfJuIvAj4UxF5D3AOuE5EZJfSOErYjeEJYycijxs7VX0P8IUiEgP/BHhz8/2rmtpLRI4DPw18GvCXqupE5AM8/n4+cVyO8fjJfnTX/48RrPP5IvxZgvJ8BzBV1b989q/iOZfTQEHYHJ7MLf8hwn1+sapuisgX8bHhrqt6HsxFRFrAlwNWQl4EICUYSy/9OF8/ByzyJY2V+cT8yZONwzwEdB749d2G29ORK8aRquoDhB3/W5uXfpfgSn21iMTN41Uicmvz/geAv9dYlTcC/+sTDnkBOPlxfrZHiItuN3Gy77nS838uRET6IvJ5hNjLL6jqh57w/ueJyI3NTd4BHCF88ZfN//+JiEQi8oU83r39IPBCEbldRDJ2xcBEJBGRrxSRgapWwLA5JoQxXRWRwXNywc9cOoTJvQ4gIv+AYJHulv3Atzbz6csIccDf3/X+V4nIbSLSBr6PsBgcQKM4PWGz/9tijT5OVPUc8EfAv23ml2kSTHP3vQeMgR0RuQ74jr0612dBvoiwDm4juOy3E+732wlx079Jfg94sYh8UZNQ+994asbaLxDyEV8F/NyVnDQ8c0D+9xEWw9zaeiMhdnOWoOH/NWFHgRDXKQmL+2cJ8Y3d8r3Azzbuy5fz5PITQItgcfwV8AfP8PyfLfkfIjIiWA//P0Kc6h88yeduAv6YMPH/EvgpVf2zJm739wibyzbhpv4uwRJBVe8jjPUfE2KIT8RgfjVwqnHtvokQUkFV7yUkrh5qxvWqytqr6kcISu4vCfPixcBfPOFj7yKM2yVCTPxLVXVj1/s/T0jGnAcyLm/sc/m55ri/8Cyf/vMpXwMkwEeALUJSZZ6Q+5fAywkb8+8Bv7kXJ/gsydcC/1VVH1XV8/MHwcL+Sv4GD7oJBXwZ8CPABkEZv5dmDf0N3ztN8KyVoLCvSOQasfPVKSLyLuA/qOp/3etz2SsRka8Dvl5VX/vXvP9WguX/n/+GY3wN8I1/3TGuyd9NaeLiZ4CvVNU/+zif/S+ERNT/daW/93eqRPRvs4jI60XkYOPafy3wEq4ei/tvpTTu/j8G/tNen8s1ee5FRD5TRJYkVEN9FyHW/lcf5zsnCN7gMyqguaZIrx65hRAL3SYkpL60iY9dkysQEflMQuz1AiHze03+7ssnEhK0l4DPJ6Af/lrIl4h8P3A38KOq+vAz+eFrrv01uSbX5Jo8Q7lmkV6Ta3JNrskzlGuK9Jpck2tyTZ6hXBEgPx60tH2oT1mHgiLvBSkMydAjdQNh9AqqIPJ4ePVfF0mQJ3lv8ZqGJ0I4ZvP08ofCZ4blxUuq+rQJB54tsb2ORvuWm9PadTHanKOCWCWNa9o2VCo6NVjxGBSPUPkwprFxWDwiysSl1N6gCFbC+JbO4pvjam3ASzi+h5WlEfujKarK6TOOzU2/ZwUL2VKm3UNdrHiseCLxpFJhxaMIqkKlFo+gCF4Fj+CbPT7cbiESRyI1sbjFsSPxxHhMU+GngFdtjkX4q4KIoghTnzJzMcNzE8rt2Z6Nyb4Vq4ePGO5fP0iyWYIx1J2IugXiwj1EQG0z/efmjtEw3UURAWvCXPAqeC/hS57HzYXda0qUxevR1CNFyXz9aCthNHpsz9ZPnHQ06a/gG43kE4izin6c0zZhrQi6WCsCGJQKQ62WkcvYKVpoaRAFNSCxJ7IOK4pXoXIWCoM4Hq9rmpkgDkwNpvKIUzQyT3lMrkiRpgcGfOnPfxYfvHSYWRlTlhH2ri7H/nCI2ZmCKuI81C6shDhCbZgNUlThIEaCkoXLf+eyO267+73aQWTB+8uK2prFZ/7g4R975Equ59mSaHWZg9/zLYj1aGHBKhJ5NLcQKSZxqApLSxM+7ch9dG3BsM4worRtSSo1D8/2sVNlDOKclWRCLI5KLR8dHuDRnSUqZ4mto3KWurZUlcXlEeSGeGhRILphzO+8+v8B4As+d+NvPunnWLqHunz+z34+qa3pRTnH0g1OJOssmSkTn7Lu+pytlih8zNQljF3KpE6ZuASA2hu8CoMk57psm33xiEwqjCirdsyqHbNkZhhRKjVs+xaVhmk98SkOoWMKLMqG65L7mO/7krv2ckg4fjTiM3/+c3n7d38i3fc8gi73ufhJ+xgdB1MLNg9K1KXgE6XuejRSTK8izSpaaYk1YY3E1iHAKE+ZTlNcbdBphJkZTCVE06BcxQclITXYApYerOi8/1FUFeoaDuzjDz/8Q3u2frL2Mi/43P+D6QGh7kB504zPvOUebm2f43iyzpKdkklFRy4Xd8XicSpMNeL+8gC/dP7V3HtuP9Us5uZjF7ipv44Rj1fDZtnm0dEyZy8sIVsJUgniw+aiEhRvuin0HvV0z5ZEo5K6l/Bnf/pdT2lMrkiR1s6ynocSV1VBvZDugL00DB8wjXKzJii/qkb0Scrh5wpzYbnuUprOQxwFpSkSjmPksjJ19eXXo6uk1H5+ObVBZhZtO3QSQaTIOEKXPO1ewWSW8vBklRf2z9GyFXftXMeL+mdxYkhNzbRO2ClajLKUfckEgMTWpHHNrEiYjlPSVoWrDb4yjZURrBDjoDjb4Y+nJ/nM9kPsdTLRI0TGEYlbbArrdZ+JSRm5FmfKFS6UfQoXUalhWidM6yQ8d5a8jlAVLkY1G60Oa+mYXpzTtQVbtsNG1KVvZhjxWJSJT/AYnBqmPqVSS9sUxOJwGA5G26RS7emYALxn4zitc1PUeTAG8WCLsLjVBIvscRZl7LHWE0cO8wRrdJynjDfb2FajZCKPxgKV4OPgwUUTQaUxahWqroUshfEELSvMaLon4zAXFUFUwQh1R7nx0DqH020GdkIiwTubi0FJxJM21rnVipPJRb720DvZ2N9lx7UY2BlehZHPGLuM1FRhHhrPuayPiFJMEsgtJg9GnssElwp1ZrEzg4+feuTzihSpKmRRhTUe5wyuNthCg1ITaSxFGxSq1WA91o1LNleWftcCN/J4K3T+mr88eAtL1AhUdXiuGlyZ+e/utQjgBJxgatCJDW6EF1zHwTSiblX0Ozn3XDxAYhw3dS9SOst7No+zlo3pRCVeha28xbBM2UratKKKWR1TVOF2qTPMtlphbOsQVpFKFucQj4S3bd/Cp7cfQvZ4XCpn2alavKh3luvTdXIfs1l32aTL1CecLQZsFB3GVcq4TJkUCUUV4ZyhrizqBDGKjTyzKsL3hEoNm7TpRwU7UYu2LWmbcqFMHRIsXJ8wdQmxOFJT07YFhY+p9KE9HROALzn8fn725BcwOHUOn0WoQDQDlwRFigcMaBT+okJdWsZ1ho0dUeRRFeK4Jolqkm5JOY2DeeV3hdOaZeWTYI2KB1MqPgKNbDBYnEPHkz0Zh4UIqBGkBpd5VrMJqano2xzTKNFMHAbFihJLYJh3QCbKminIkosc1Q22XZsKy7br4DAUPqYbFRhRYvG045JhkbGuQukELQ02D2u2bgkuM/jIYCr/N57ybrkiRRpFnvVZl42dDnUZwSgmmik4B1FzyCrsjprGQaECeI/ULii+uUtuTPgehJu6W+YbwlwJz2/8XFnPrdirBcKlIDOD1GH3lxqkFpKhkEcG33WU0wSXlaRxzfvOHKVzouTG3iX+8P5budjucqg/JLEhBLAzaTEtErpZsYiH+nm404MZRWisiAuWDDRxnlIoXIQFzB7zudTeUDrLvmjEddEWG67LpboXLEaXsFW22SrabM8yRuMW1TSGxsoGmgWm+EgZG2WYBLfeqzCtE4ZRSjcqSUxNaurH/e7MJ1TekpqafjSjbQtGLqN+Mu/oeZZT+T7ikYOyQmpPVCiuEHwM+KBAXaKo1aAtNGygJgprwVpPbB1FFVFVUVgOVtHchM1cw7ipCXPDR4qtZTGu4sAP2pjtxovUp640ngtRaR4RYKFWQyY1Bk9mKjKpsY0ShUCHZUWwQN6s/47UeBUScaAQS02llkotBiU1NS1b0U9yplVCHDuqxKO1h+LynPCxgBXEP3W9ckWKVFBOry9TzWKoBKmDNsc2J9O4236pS93P0CgsZvGK1IpUDlGQWYUZT4NytE9iRs+VpghUjTtmTXi92bGvKlHBNOMRngd3zcdBuWluUCdsrfdY2T+k38l534UjnFjaZHkw4dJ6H6/C0aVtrPGUZURZxORFvHDrRBR1zawTiCYm5N78/BEWTu4iMjHoHhP/eB8U3tSnTDRZTOzcx2zXbdZnXXZmGeNJRjVKkKJJMkUKiQ/KwQU3tRwnXJQupbO04orCReQuJncxnUaZTuoUr4IRpVZDYmpiE0IKU5fSs1dE7vOsigKnpqvEoyqEr1TZtQegEfhYg1LxEnzxSLFpc/+9oSgiSomw1gfHzBuipMaJ4vMoJNsSEBfmidSEv00iCyGsITFIFIHs8WIS8BF4CypK7Q2x1IvkatwkmQDiXXPaAJVCqYZEPEa08UzCGpy6lNzH7ItHAFRq2a5aWOOxxmMij7PzmByXw3MilxPnT0GuSJE6b6jXM8g8UhlMKZg6KD0tSySK0G4b103RSPC2USxWkAjIGoXbS4i6CXZnhkyfZILvVq5p8vhwgG+U6dz9t3tvZQDYmWBKoe4qpqJxFxSXaVgUKJSGzYt9VvYPcd5w36X9HFveYjttM95sc/8sYXkwwdcGczGhbHtIPblVTNwol1rxadhNkm2DmqB85oHzT1m9DyPC3toZQG04vbXER7sH2BcNSZo46dilbJZtLg67zEZZyEQnHm0y0xKHSY4KGoFGgtaGYifjwjBFojAWSVrRyUo6SUk3KUhMTWKDC+hV2C7bjKuUQRLTbRVUV4E1KsDXHXgH333yBazeVQfvog5GBoS4ptrGS295NHPYrCbLLsd28zzG1wbbLkmTmigKFupUEioVVC3Ul118jYACTDWfl4ppEr+qipi9D435ODxEhVotRpTcJ2RSkYkjE8UARWOkW6Da5Y06Qtgn9zG5xlyolhi7FItnxU7INW48mRiAyDqSpGY2jRbxaFMrpn76xscVKVJfm2AxuJARjEeCqXRhNeqgi0YmWJ4C9knQN/Pgso8tDFpYkaBMizIoRZHHu/FzKf+aTgnOPfnrz6OID4pUoyYWVUmTOAgWhRoFq5isRp1hc71P3CSN7tk5RGeQ42pDvZ2wXliSdkXZt0SbERoHd9enikaKnZrmxgs+UowTzEywJWSvu8RX9e+hUt1zolZxYIzSshWJOEq1pFKzPx4xqrLLn5tnQSRY2yKKkfCa18ZVBXCC1CF84o2S24RZ1GIj9URZRadVMmjlrGQTEutITE3pI0ZVyjRNsBIgZXstn9LKma0JWIvkxcJSDNCcxgqVcK8xYc0BJFFNPyuYJAllbYmsI7Ye5w1lbcO1+ZBV0qjJISjYPMwNlV04w7IKGXvn0Nnerx81EjYQq3Sjgo4p6JkZq2aKRReWpxVl1OgUK+BUSMRTqsE10Llcg7LcF48x4nEYLlU9KrUsJzMiE8bMe8NsHobzEOVhsxFVxD3Hrj21EO9YbC6kW9A962g/OkGLElke4FrhIsQrpvbBNZtLs/PJLvNcrcG3YgyEzF1ZXc78z7P2fwtEXMiauxjinaBQq57i03lgKvxRL6SdElUoxmmwHIwy2QmKRbo1mluqSy3IHPW+ing9xhaC2ZxbuGBziCcNZlDBziAeK9//gt/GiBBfBbEPU8Fkp0XtP9YSrNTgnGmURlC42sB6BBoFGpSKGAKUjLkyCAk2MxPEGdRC3YrY7sXk3WB5HOwM6cUFowpyFzOpg2tv9jjcIQgGoW4DRpCiwuYetXaBo9TG/ZZa0ASM1WCFJrKAPhlRVAP2tqgt3hvqKkJzizghGhnmAAVTNRZuDMzAJRK8PECdQ/bao1MwTjG1QOo42blEJhWeAGnb8G1GvsX5asDUpwzslLVoyKodA9BpLjQTx5KZ4hDWoiG5xjxS7ON0vYIRZeZiTo1XOLfdpyxifC1QBY8OwhiZSnm6rtwVKdJkrNzwy1tI7VFjEOeQrSEaRdT7+6gIpqybrLpeDr/4ANpaQB0IuxAiQZl2UsQYzGSGjqdIEn+sEjUmKNerJcH0BFEJCs7mkK8qLt11nonHJI44qUnimtksQaaW9JIl2YGqC7NDNXRqTLtGvUBpoDLUPY9aQ1IIyY7AKCjObNPTulSjRigHFm/hVLmPz2jNmGm558mmaOoZvCflrf0bWbthxKFkm626zWbZ4dx0EBZ+bUAVH/lgmRJgdd41lqkFEzlsBN4ZvBfUCb60MLHYqQQguwtQPFcbJmVMnoXYaWQ8uKC4Y3GP28T3SjxK9xPWkV/sh4ST05CxtyF7Lz6sC1cqvhBc20DqqUUZ+RRrPcYozhmqMqKehqXcOpXQe7TJystlEL6tPC4RZmuCK8E4oVppE19sVMAeK9IFnlNgeXXMjdkFAM7XA9aiIUtmymoUsKR/MryN986O04lKXtV/mCUbEAf77YjD0QgvQiYVI1p8eHodp2fLDOIZj02XuP/CGlURYSJPnNQUdYwdNyD9ZqMxpUdtmFNPVa4sRpoIcm4DiUJItzpxgEgCLMm1IqpOhM0j4nHj6ssuK9QrWAlm/G5QfmTwRiC1SC8lGmbopa0QCDcmWLLu8dbpXmMkn0yi/HJgfxHcd4ImYZeLYkeZx+h9XVobQjxWbK7EM0889vhImK6l1J3GnbXByownStUOVn7vdEmyOcMMp6g1oSrlpgHrtwuti8Kd42PYpceIFyH3vRMpSg68e8QjqwP+pHMLr93/IBeKHhemfTanrYADzEISRYwPnr0X6spg4pA8cM7gqqAZFmCNyCNZHcLmGmBmmigmdURxWAGzOmZHgpUfNcBsp3tvpc8TgD/8gt/kR5e/Ars5pupa6ja01pVoBrZQ0h0XjJXIUPYMw+sTpocj6uUSsUoUO7wLoaD26YhkBIMHK9KNPOAx2zFVz+ISoeoEZTF4yOHSYMwUqzGJNYgI0linezcoYUyKVc8XH72HJTulVMvhaIu+ySmxbPsWuca8oHWOri04Wwy4a3yUG9sXOBjtLA7VNjWPuZiP5of4wNYRWlHFfRtrDEdtet0ZN133GF6FjbzDRdNlNo5D0tZC3Q7hOOP0aXnCV6RIba5MX3+CeFxjpzWj61t0TxviiyPizRnROMK1QzWTVB9rAYhqY5UGReEjg49syO4rqBXy/SnpvjbxY9vIeBrAw3P4U2OVLqByV5FCdQnEReNCERTpPO6DE6qLLaQWyhVHuQrJhiXdFKIzQtkzRDOltemYRpbZmlD1lWxdaG04jBOiqadYiTj3miWue3uKVJ7ZwYzN2yz1Uk3uLacnywAEANTeiiYxxUqKLeDCdo8z/SWmdULpLXkZ48ZxKFgwikSCtZd9Kl8Z3Cwi3rLEw3C3q15I3GmqaOYuxwJFUNuUDholiVwAZFdZKE01nlGdMvUJ7moIeSC8PBmFij/vqVtC94ySjML/ESiWLKY2RBNPlCvd0x5xATbm+g61AUsqlcE4iCZKvmrxaYuyY5gcMhSrDSB/KsRjsKWQ7njKnsElJsAVrYWlftPwZe9EPHSP7/CKzinaUuC0xbrrc+fsBG/fuJF7zx5AL2Qk24a6rSQ3DnnZocc4Vy7RMzmZVMQouRrOV0ucyZcZlwmPbQ0oywgRZftsnzvvWSaeBIVZdUMsXlxI0lYdqPoR0YXi8cntjyNXpEirvnD6MyzpRky6CXUHbJGQnKnAGszOBEtYRABYgyYRGttghTaxU6k9PrFoO4ZImlI2bXBvwmxfgktXyR4CRhMkSxvwvoQJ4P1VkWTaLWognijTQyFwjhcExeRNgiT1+K4DJ0RDu0gyuCZbOVwLlsnsgJJcP2SQlWzev0KxYjGlYAvL9AUFUTbjfNElmsDOLR7tlcEtNpbCPZOehs+u1G3L5q0JxaoSW0/u4pBEAvJZQrIeBdfcQ9VXqmUHsQ/5kNqQnY/onAnWWdU2zA4IxVIDrTQmKFIblIU07n6dPF5RalNnnUvMdtW+KqxSgK5JF6XSpoYo99SZMN1vyPc3UJ8dw9KDQnapItkqiWcJ4iJGNyraEYx1UEO6qXTO12TrM6RydPOK9vEliqWIsivUWYBDVR1BvAloklTwSz1kOGL9dQdDE5s9ElHwifCS/efomRmZqdj2bR4u1njb+k088MBBUKF3xtB71BGPPafjHu/zRzFHPDdkF4GQfPIq7Lg2G0WbrVGbYitDcku6YTh4tyOaVAyPB92kBvI1g6ka+FUKVVvIjKDJU58nV1bZBJhcmB2uqTo2wNymHo0jfNokjfISmcyCorMWSWJ8pwVZhNQ+WKqTGaY5CY0bF76pn/ftBNcN7kZ5ZJnkDOjOOLggdldk+GoC5BPgTlGh+Ma6Fk8gG6nCTTOlYIcBbtG6KKzdOWW2P0UNdB8aU7+sz/aLHeKEujastKZsLPeIj+eUpaXYaMEkgrMJVRfyfQpLJXHiqGYxPlIuDHtAiMPttfgUJkc9bqWin5bU3pDZOmRMxzHJjpBuKdmWp+gbRscjqoHHZx6phWgK6Y4nmikuUUwh2Dwk8sgNOgetG5CyibV7oawtVjRAoqyj9obIOLarFvVVoEg9isfjI4MmMS4JyJe6HTbg3kMwOFWRXpxiNoZUR1YRVdpnpri4w2y/oSZFW472hiHdcSBQrmRMDsYkY0//zvPI9ftIt5swmirDEzFlTxaKo9zfIT0joTJxD0UlYEiBBXYUYOSCR5Eu57TSCn/PCnXL0DmTo7ZFVVmGZSuA7pvvGQKWtPQRxSQhOxtT9TwuU2zhad97gdGRI0wPBis9mjbVZHPIWRTA+NvXZ09ypk8uVwjID9lpANf1aOIpB5ZWK8HkZXCzsiRkJMfToEy9RbxHG0iBikAcIWUFziNVvaiA0laKmZaIU3wW4WOLW+kSzQq0qpDo8RcoIleFe68C0STEkF1LF+69qUOtMxJgKKaE5fsr2g9uce7T91N+6g4rv9ilWs7wEZhuRbeXMxq2mFQJ7X7ObJKEpF2vQicR1VodsJaJY6k7YzhuIdbjVmrs2wZUr3ZU6vZclWqk+LWSrFXRSSraUUXuIkZ5ip0Y7CzElG2u9IYVKjGjk0KZEqBODmylpFslrfM1Sx+Fqp+yc0PC9IAh3+8g+th4lqowLWOcCoM0J7FhwnoNjFB7LQ/XOT+98VpsXqPtdLGA44nSPVuTnQ/x72JfC/a32boxIRkrgwdn1FkgJNEsVPDUbWVy0LLv7orh8ZTtWyAeWuxsPy4zzFYMKx+Z4loR2aZnut9S9cK456sRWZaFcMIeiktDqG99Fjg8OlKyasccSba4/uA6a0dGnK5WOHVkH/cN9zMuU47JDivZhE/bdy9H4w06UrNiIpzWrEUjlpIZlAZ365jj+7Y5dW6VjRe2GB88wmy/UOzz1F0h3WgqvgJsCFOFirDpgec4RmpKSDeEeBRRdRTjLHWmFAc6ZGeGTRxTYHuIlhXSbl2ON0Qm4NKzCIktZqSIa5RvGqPtFNdNMbM6WK2Fg9hSdxPMah+zvo3OcqSVXS4xBeQqcPGNg+45R9kz4An19QZ8YZAa0m0hGYaFIk459xn72X5pRc96tm+0VB1LdXLG6so41NUrFHXEUnvGZCcj7ZSknRrts6AG8yrU3oSkTGGR0lB34M9mYbOZ7rUmNUrWLum2CrpJKHUtfURRRcRDQ+8xR+f0FDMtoayo2/sYnbSQeszUYOcg8mmF3RyieUHWynDZAepWTDkwuKjZnBvcpHcWbcalav6fWEcrqmhF1Z5bpAr804e+jEfecoIDSwFDOtsvtM9D61JNdinHpxEXX9EhypViSZjtV9JNYXKo3bjBzY2tDD6CYhnOviZDo7A+8/2eR74I7EjI1oXtW9pEuVJ2hKoXYvnRDKq2QZf77LWRrl1HOYCdIluwd62aKbekZ/EYDJ7bs0e5KT3Pbe0VLlZ9DMq+eMQNyQXW7IQV48hVWPcBhH9T5yLTW2MuTnuc7G1wY3+dyQ0pl/IOG9MOpooYb7ZBY6JpUwghwfDxiSHZ+TgnvUuuTJG6kEk2NchKiG+lQ0/dMhQHeySbs1D21mlDS9E0Rrzi05i6G6MSAr2RNUiVIlWNdlrkh3u0PnoByatgoZYV2grdnN1qRn6oSwbIhc3L9fqYq8a1n8MlxCnGmWC6Jx5aNWXbUg0M0cSwfUvwYexMaT0aU51exq0o1WpNq1UtYojqhbyKWGlNEaMUo5Ro2dNOAz/j3LLyClNvAh6V4Kb84c6LAdhxe9v2SQSiyNGOKyLjGdcpRcPoZAtoXSgwDz2GtFpor02dmVAFJoFDwKUw3RdRdnuI9nBxqIX2MZT9oDxFJQRNBaQyuNJQe7MgPimKCBFIkposrqn93moNp56PPnaA/Q97JoeTQJcXQd2CfNWSr3Qolg3lAGYHAu1dsi34lFAFVTUA8kkIEZk5dCdVXBrej0cSsLsqFMuKa0mIIceBt0BtU0HUAjdokYz3dg0dyEZEr9iirC1lU0Ycm4pVO8E1aeVcYzqUvDA9wx1ZRc9UGEJctCdBF0zUk2uobFqJJtzQvdRgiBP2Z6EIpHAh8bRYP6mGpaMsYFCztYY/5CnKlbn2TulcdAHCJIaoUEwZaoPLQYSpUuILw4b9qTnZbka1nJHvixe7XzI0JICZ5lDVRNMarEFGE7TTgm6bel+XYiWh6M8nf5f2aIaOxkiWXa7Fj/Y+waImsMf4SHBJU4pTC5IoUbekTiyshZyxGEW9MMsjknZFZD29tCSLawZpzvm6h1ilyGPoQ5zVlNsp+Swhto44cgvS2kmR4EqDVIHU1sewHE/Jfcye1zbJ5TOYW8/jKsHVBokg35cQ33495SCi6BvGRwU3CImzuueYiqUchFCQ2mCJ+TQkozTWwAvnBVOZxUbmakORB1C+rwxa2lCrb5VJGipa9lJKDPGDLaLCUVmYrZmwYRwK5cU+hTrTBV9m3dFF2aidStg4GlEbykrFX+YvdV0N807Bd8Kg1BrA/aHKKVy/jxWfhPjp6Ogeby4YXnvdw5yf9ag0osSSaU1b6gVlXiIlqRi8KhP1zHHzMbDeeLwW8E2Z6F9un+S9p4+yf2lMNy6oveVEe4NOVLKed7lguuSzBJ/ZkBR2AdWQL4Vxz7aeB0WabNe41NCbXgbH17Gl6gh1lpIMVoknNaZw+NTiY0OxFFG1hbIXbnKdSggcuz7RhR3i8zuB2qvVC6zhg4zhiYxiYELVQxV4FN2+PmY4CrHXOWj/icxReyA+gskhQzJUopngYxuy9BKhiSPrBNanNK4pqgivQqddEFlP7QzWKIl1jMuUsg5A9aoKimfQnbE+SnA7MUOFJK2JIof3QlHEgVexlEXs+vN6H6Rtan4/Gu/toDThh7yOaMdlqC4pY+oigq6yeWtE3YpCLDWGul9jUheKETKHM4rrSaAMhGA1JD5UOZX2shUuAWTu47C6qmnclDALUgl2GhStTxTv9lZpVGrpnlfyQZM9b2tIRNZQ9aHu+hCvq+VymahV7ChUEzInHoEQOrJBgdhS8KniU4fpO/wsQiqDRn6RSJFKUKPYIpA+Sw0+sXTP7O36yV3MSjzh5vb5BalNYhxtUxMLZCLETWVPheIJNtqmS1h3PRwBhH8y2uF4NOR8PWBYZXTbBefWBzgV9qdjurbAJYZaDaW3jNsp43HU4NTnHp2E/MzTQA9emRnnQy2qqYILZupAIOJjg6mD2+4ywccxauMFxVvZkQb0GkxoFcGlBpe2aXdiolHTfqMdUw4i8mVL2Q+7qBdpamDBtSNsq4XOZoEgJYvDtrTHYqrwcGnIikazUIlTExhtIFhlIsqglTPMQ9iidobIepaz0Dn2Up5SNlYUcVA80CiQcYQfxZQKLhbqPEYLg5QBwgFhbG9PU5xeDZB8qGvLTGJmcYA+hbgl1D1P3QZthfkjucVODL5KmHeWkVowRXhS9x0kHvVhIw5WfYCVBfpACH6ZXbDCowFaFIh1wNfwuDYweyBzG70chDLRaEqwsBvWpwXjk1U09g2nryBeFvfYJ6CpR1o1miehmrAAaQWFoCpE3QrvBK1sw1HQbCxNEs9UAfifr8Yhq7+H0rU5n977MEOfse3a5BqTUeFUiKVRnAgGQyyWrsCmL3lffmIBd3qsWOIzlz6ERbknP8x23grltALnT69QrJwnMxWFRsxczFbeoiiiy2MCoCFM6eJA8vxU5coUqQhSK7aqA5fihe1AmdeJMLVSp4KLBZJwYrbURVyrbje0cgJah0xl0Yc6S4hm8aJWvW5dvhDROStL2FVdbAIqYDJFZzNI42CZXgVS9sGWhOuehcCLiQXnhHySUKc11gQgtWuSRBCYaAAmVUJexoGiUABRIus51t/isbjmwmgfAOoMtTNo1SjRMiyOBRFwI3IVKFLnhEospbO04yYGrAFATxwKFczMkF0MAX7jFFsES6tuByWqBvLCUq4BqUOdWYTGxUlo0VE0sJ7isq4UF1ASpgohD9flcaD/vZBYasbHIN2CeBySaT4WXNKUKDbkxtJy2MgHkqDCojaQ0/imwMP2ywU3q1qgCsD7ut+E05wgNpBvaD4nuZmXjcqCG2JyyFL29nRIEMK4LNkp264NBMu9wlDhqVRpC6QSLWB9F1zCuXKJlWjCf/7QJ5He1eZtn3Ajdxx6lPeeP8rovuVw35cctBwryYSuzblUdRlXgUTcVRZTmIZJLpzLvFioWH6OFalPDLP9KdHUkW4W+M1tJIkxVRtxwV2hwYXFU8XOPNMDUYgdpmGyBPxWWDDzhTLHt5lmt1ysBg+2asgE5tc2x5OWITGlZo/TjhDcrEQpB5DszHvvCCYGX5oADK8M23m8IOqIYkeS1kilTEQp6sBBKgJkoVXJpQdX2DnQoi4t7dOWYkUxK3lQtnNCZw312VIp3u6txbVbVEG9wblAvzhIZkyzmKF2AiFHBHZiaJ03DB5ypNt146YrdcsyXYuoOoJRJbskiFrKgQmQJxMSUk2nO6QOIVNTyWXSD9cw+hSN29xzCyjUXklLlN4rznHpTw4TzRRTBiIatY3VqGFzsZFHjMf70AXPTuWyu6mQphVVZUOsmKBMbQHxtqVKPVG7RH0oWhANIQ5TBRxu4INo4vjwOD7UvRCP8J7ZSU4klxavOTXkapl4z5LxOJQah8Gw5XPW3Qq3ZOc4Gm/wVS/scOrkKvvTEQ+O97G92SHSJkySej7x5of4xO4DTHxK4aNF6bEvLLbp34SE8ROvuEyYHH6OY6RuxXH+EwxqDCsfjlmtjlL1UkztsUUgMlEbaLuiiQtckk39qsx3wjo80lGoL3cxi2y+J7wXT5R5HyJTB2jCPADv2wk2TVFVdDJFl/d4SyUE++t2YHuqfMD6iWswpBqy0RpLABpYhcRTa0iO5DZmbNLgqivY1GFOteg/HCotZuMO6TRsRPVKxaIyuqGYC+zOTbY/Dplhj+45sTMs1ioiSi8uqFsTzsVLmK0IRIh3DOl2SK7kKxFlzzQeSaiac5liSiEeQbol2FkonfVJiC0iTZIlCwpi0YVzXrfRtOzwlkCQLHtrkRqE6/sbnOsdIp4I8cSjRhouzhDOEBXqSYztVJjY48cRyU6IgauEUMX0YgcU4qnQuhAMFLUhY++jmNpoaMToQoxZpEmozILXNF9LyVDZa75rI8rJ5CIes3iEXk2hP5MVoVAP1BTq2XBCLDUn4ksMTMGn9D7CeqsPwMDOyK+PuSc+iI5ijh+9xG29UDFVqsVhmFTNCnJyOdIjkGwrLgl5HD04e8rnf0WKtBOXvOq192JEue+2NU4fXOPgu3JM4Ro4hqI+1NRLE9/Mtj3ilXhimoRUcGXEKcnE4VoG0YageBc7lDSkt7bwuMQ0dfohQG6mMzAS6Psme898Hto7sNjZoHmuYXKLgi8bzsVI0VpALN4EperjEP8ziWNlMOHSYctOlOAyR/dUIOYY3lqDgXKSILtc1HnTNCS0qLBi8Or23LUPUN/AVFQ7i1PhQGtIu7uP4nxKPBKS7fDZ8WFL1WVBaqwxC6jOXJlG06AEfNNN2Uche6+JUncC0XWwKoBmTOoMaIU6fdupr4JgB7ygc56/iF4Uwg2xLOa51I11VAtYwY1jpDDEw+DpxSMl2/G0LhkmhyLUBKKT3pkKFSiWLTs3hM/KhQR3oAzKogob0DzePJ+rYb3B5MjejkqE4wXJOhblT6Y3k/uY2F42k3NVMhF2vGPbh0aJFqVtKuasG5kpg8WpESc6m1xc7rI+W6Jwlotlj9PJKrE4am+bFtbNxUMIhylU3YCzLQdKq1M+jfO/ArHi2Z+NeHH7DC/uPcZ/uPn1bG2lLN9XhIZRKqhtbphXsks5ZlahkSFtJ/jEkK/GVC3BlNrEiELg20dNoF0v192L2/XcNXH4SRnY+FsZm1/8ItKvPA9vvJKreRbFhAUd7xjKJY9PDHZ6+UbZmUCqoSDBA41SnccJ1VsQJU5qqtoyWJ4gKyHrvtXqgwnsRlqHliWa2+DLqlksDB8HVvXwk3uvMkSUOHZ4b5jkCdtlm2ODxziytM39cY9oKiSjsGm6dM6xqk3Sbr7Yw1yaeyhVT6g6jUXlmsRLpPgUnA9WajRXtGngbvWx4ruOA8sjJntskQJ8zeBOfvroa6l3Wug+IdsIOYA5JtTUISSiBuKhEM3CXMm2Pa0LBUlmsUVTWuqUYmCJp4EqT5pcQjwU6l5oBS6NdyRNCATmv6PkK4a6tbeeS6URZ+sepVruGh/lJd3TVBotmhmiilOlQrAoHiWTiqmPMeLJfcxj1Qr3zw5wqexSuIjEOiT2XLg44IFsjYPJkLYt8IT8RF3ZJgHXDEdNs2lDeaCm/TRCQFfm2quhawvuyw/yut69fOnt7+M3ZnfQvhiTblWPK/b3cdORzymmbqqV8or0EU99YIDLLC4Nnzd1sGDnVpz4y8pzHu8ydePub41Cfb7zbN8E//z4X/AXV3Ixz6ZogNn4GAbHd9jZaSOPpLhWwNgmW6aJZTbubqPnRCX0HrMhbqoq5GW8SKZY6+num9DNitB6d6sNhQlgf22am6WKmXcSNXvvzs9FRDFGG34Zw7DIGLuUpXSGb/nAdu8CYUfrkmIqv2Amr7uWOg2TIRk6kp2SqhczTGN8etkCv/xjNPyvghaAhkVRL9XE/YJBu+DWlQuc3vOsPcQidDo5eTsLIaDGgo6mLNifXNZgI4ugRMVBvmxwSYZpDIqoCMldn0G+YnGZNMlZqLtKNLS4XoBTzduNPC7sIUHxRpO93XQvFl1++NTnsD7pMCsSjt96ibJppV2pwYpjpBExnlg8mTicFyaa8MHpSX7xkVdx4dQKdhIgh6YIVrk1YRN9pLvMzf0e3aYhojVNp4Qmlq5AMhaSHWWWCnGveFrnf4WKVJi5mP3JiA9Oj/Oq7kOY1yhv+dAn0jrvAgmJkUW/JteO0KgdyEoU3L5OA5GyixpfW4ZeKR4ud8SsgyKduyLzrn6mdCEu6jwSGU783oQPfc6RK7mUZ1dMIHJeuUuY7qyQWli517N5W4iPVj2PKWVX0PAJ329wbOU0Js6C2VDlETKJMDPDzCjx0BCnAacaTaBoyKPV0oCtIT5xFYQ5GhEhVBM1fdgnZcKHtg7TiqoA3Yki6jbEM+g8uAW1Y3bDKsXAhuqlboPc8AbRhGIQIHF1az5Jwh/TZKUDOW9I3JiKUAnUrvmkEw/z4u5jxOL4g6ug1v6DZZ/hZodUGysobXCeThdwLqkEW0O6HcITIZsv1K2QpDMVYbNIQ1WUaSBggbtA8IliZ8Ks3ZTPIgt33tRc9vI0kMvspbjact+jBwKdolEeme3jxdkZ7K4Yf9bETCG0HJlowgdnx/mJ938qrbtbJH1Fb5jgtjO89UQbpklGCtOsw5n9SxzMRkzqBOdD8ldFF+TX02OOfGpwyyX9rFp07n0qcmU0et7yV+sneOOhe2nbghcm58l9zK+/QFm9W4gmFT4KZMxqmuSKkVAeaqBum+DCczkGamptyt92Kc55zxSRy21svBIN85Ctbwhpo/Pb/M4fvxp485VczrMmJvKIg2JVOPzOnGhcoVbYvqFL3YI5AzdcDs2EJ7DoiqoQtyqqUUp8KSJxobLF9RymW8Gxmk5SMbpvmXjYNNrrBNfNFsG6eMnhxwCwe90ZcpeYBvJVO8OoSJmUCeoMVS9A4KKpadi/Qta+7EnTez3E0od9ixq7aNkrTkIIQwjtRmrBZ4rvBHcuHwgytZhCiJOal/ZO8+LsNO+a3Ejhrwz192yJAK9OJ4jRRV+vOfuTjy/Hfl3HYbYtZT+gXHzUMDYNlKoflGSUS2g90/KIF6JJiIPOO8pWPW0Czs1m2yhSH0HUYG3jMWQX935zmStRVeHUZIXhICOTCmcuW4dzGp513+b+4iC/cvoVZB9pka957vjEj/IV+9/FH++8kM2yw7sfOU59sUU0E+zMcHHaIzGO7bJF6YJKnmNqVSDeN6PTKgI08WlutlemSIuIrXGbX3/odr705AdwCK/KHuVrPuXPedvvv4ZoVGALDe1MRdDIoJHBxhYVIR4Z6k6EjxuQvZ93UGxcjqayQJw2lm2AEaHhc2Zngncu8JM2paE3/vwWD13JxTyLsppN8B2Hiw3TAwktEaJxSbqlFCvB8lhU6MzDdHM30xBmtgrVVkY0CsmlcsVheqGm2JeW6kKKbBp6Wyw2nJCECXhJm8NKMgVC5n6vpa4tG5d6i1JOrWWBNJA8WOrewmxNGN2yRDx2VN3glrkkKNG6FdxUnwRrbd6dlUIWLqprKdqt6a5Mcc7Qb+dkUc3mtMWNK5c4Gm9yvl7ibes3Mcs/sJdDAkAqMT/0ib/JD979psZtD3FhnwCmcesbesB5EYtKCFUYJ6SbssCFRl4wZVMMYxXXDuGvhS4wGhJyxRzl0BgxTcz04ic5vvSO93D3T+zRYOySef37YzsDzuxbJUld6E/fuPRTjXAIp6tVzpQrnLu4xNK2witHvG75PnKN6Uc5ozqj151RtUomDw3wXcfmpE0/zam8pagiXGGxZYCE1S0ljtyCh+HpMoRd4dYsgfOxSPmle1/J9OaENy29ixuzC/xJ25DlofxCygqqGrIE2mlgcorCiUbDHI0MPomw04aEI4kC0bPAnGc0r4e8690/wSe/4XswKsTr04BbtRaMDbR6zmGughLRFTPlTa95Kz89/HSKgWCLCOM8vTOO0fUWbdjy5zFfFRoLYa5cQ+UJkVKvVmSPJKzeafGRDcUJGhJy9fYmd//aj/CqL/4BXBoFSFkdkAJ1B75g+c6rQolCsBbb96RNV9WGcKPxNFwWkkaurZRLyvYNlmgWgJIqoYdV1dOmvr5JOApAwEJGU8GlSrXsMcsFSVLjvTDbatHJSj770Idpm5KBnfBAcYBfeOBVlHcPiCaCiLwV+AVV/c97NTZf0r3Ea771R9h0MV/xnq+n9z+7i2ufNzHyFsqBx+aBxal7Rkkmnqq9a6E3sdLWhZJiNWZ8yDI+DvXAIV5CiagGV9+XgoUFXtslAonnm1bfzo/tySjsEg2WgRhlMk356PQAB+IdYmmDmYZEo0aUahm5jJVowsuvf5QPrN+IP9vlnYdv4Ib2Je4dHWBcpYynGeUkgUGNbdVMhxmXsg7WeCazBJlGIQHsAx1o1KBgnhBBv0VEvv7jzZOnpEhF5LXAjwAvBJykMcO7LrLy8n1Mz3R5S+sWzuV93v/bL+LY3efCbI8smsT4lS4+Ca1HgFBO6hRTOkxeEe1MkdqBMWgcoYNWULYaXPy27fMpn/DdkHvspEQubATGfecR75AogSQOiafnUZ44JsA9N95g+crBnfzlHSf56OQGxBlcmpJdqmifjZgcDV0SfRwsg5BBFfChvbXGTV21gt2MyS5Buh3iynOOxLJn8PtXuP4HfpgLLSXZYtEmQRx0P2Gdl6ebeLI9zdqLyCmg3ekdYv+dJVIr5x99F+cvfIA7bvgaqD3FwU7oQ3Rg7t42qIOk6ZTa9peJSQApDeLhof/z27jxG/45cWcNukLVB1dYZqMYM7FkQ0OxZjkUb3FdvMW26/Drj7yM1m8POHT/jIuj6m889+dDbr7jNP/Pv9nHp7wu5Tpr+a07/iOf8mufzOT338XRb/zW4G1EoTBynlDsnXF0H5lgpiX1UotyKcHHIXzmI0geOEd8d0H6ohOobbHTlV0FLA4zjhfJznkPd/HQ/UjCg69bBs4/7+MwnyfxsUPhBRWGf/YeJu/8AHf9+JdzNNviSGKZmBSLkmtMpWGz7dkZq+mE1skh+UcHvPstL+SdN+Sh5+Y04tFv+Gcc+7Z/jrykj17MsIUw7qdY46nGCXZqFglaGZQfg7h+Olbpx9U+ItIHfhf4ZkIQMklWu9OoI8ymCdrybK33uPPtqxz/tTPoZBZY7OMoUOB5MGWNj4WqY/GDhDoNWch4qsTDmnhYYkc5iCAu4E1xihePMbZRvDVc2gLvIIoQXwX+OGsXrsrzJU82JsAnR0b+sGcsX3TgTr5/6XqSnZAAiSeW7jlP1TPUHcXQxHxrBVWMCloJMg27o9qQRa16sLnfUrcV1/EBW1jXEDf+rA09Z+KJkGxBuQTfeP1fEV8FsKdGbJWPSbaK0HJ4OEPKGjlzAZ3lZP468tUVqo7gk1Aa7NIGsjRXogpSNZyzlRBNwv+TbYhVwQh+26A7SeiuCtSJY6U9w4pyvl7intlhNh5Z5tiFOsyzq0gC06ZyPIoWm2tIGIV6+VC1BDWhBYloB1u0iCYOW3jiUbCiXMtS3HIYUWW2loRS05kJvKUJ4ALgPx7JZc/ABw+nd8az7vp7OApYP5w8/hWFS1s93pmd5NUrhkEUetvHUtOzORjIfUzLVsTWMd5fYU8nyGMZvuWJRw3BSd8Re6F1weCy0N4GUcw4wo4dtoiY7fe0OyEOe6Wk30/FjLs5/ID+cvN81rv5IEu3LnP25/4YvbTObfu+lt5d55gOL/DnG7/IZ6x+PTbNePe5N7PcPsLm5FGGxQVec+zruGf9j1jqHmFj+giT2SWWl67nthu+mDRLKEbr/PmHf4oXHvocHlx/B61kwIuPfAF/ft9P8saD3wzTnLP6MA9O3kfpcxKTchOv4fDgRXNluioi9wAHgXcD36iqj1zRyDzNMQH+6GUvTfjRfzviIw+/H/3iz6O6lDGbbnHn7/wAr/2cH6J9IeWet/wU2YkT5A8+SHH2DMf+t+/g3G+/mezIcWYP3k+5cZH2iRtZfdNXoEdT6uElzn7Hj7DylV/Gzu+9hXh5hQNf8iYe+Tc/yMkf/BGMwM6d72brT/4IV4/40Z/xuO/o8o++NAYM65s1z9OYPJn8aFmPf3j7kBDbAVXRQWcR9S1HyS89xkce+1WG958lanU58ImfzeDm26nbcOq//BT9F7+C/h2vRgXG73oPO+9/Fzd82bdw6pf/PQD3/ua/AYRjb/hyWO1z5vd/kX0veS3rH/xzshfcxEtefyv/+hse4IEPTqiqD9I69FEGt38J9c0D/MNRgAHtkey2fHwTLI/FcuONZ7nrraHgYPgHf8rwvX+FG02IlgYsf9bnIC98MZPDhtF73sfOA39FfPIwk3e9n6jbZ+XLvpje4VuIZnDql3+S9OJxZm++n3L9ItktN7Dyv34paTHgsV/4afrXvYBDN7w2JHaBu/7nv+X9n9R5/gfisvyoG45+2E9mmE5r8aL3wj13Ku/7xTsZ3XeBznLCZ33rDXzW54ck1L/6mg9zw2cPkTtOIkbZeOSdTN76Xg581zdx5t/9JADnf+jHQYUjn/73qY90ufjjv0jvDZ/E6C3voHv8ZtY++4u5+PM/R/HAGdR52rce5eA/+jzifU9vY3kqad37ACciPysiny0iy7U3jC510FFE6/2O/rtOw/aQOfBR8wK/MwTnOLtzNy88+Jl82o3/lFa2DKqc3byLFx38HN5wy7diarjv/t8NbUiaevmt8SO89ujX8cr9XwzTYEH4yZRaK+4Z/wWvWP18Pv3gN3BH+3Pp2VU0slzMHwI4BPw9YA14O/DLH3s5z4p8zJhAyB/N1JGI8J13/AHiQ8YdIN4u6Zx32ALG73sf+7/gy7npO3+YtL0CwPCD7+XQ530FJ7/9e9HYcOn3fhMAaWKG5Uce4vpv/mec+MJvDFRqNNbLZsn67/0W1/3g/8LdH93Hb/zWCp/0ohZOld/+gzEXLjqepzF5MnmvSVJOnftzhsctk0MRdcdy6aThPY/+EoPbXsmLvu5fcvJ1X8XZP/t15KNnGTzksHko1es9DCv3KJ3zoYvm8gMVr3zxNwBwx8v+Ca994/ezevRl4KCejKiqKSe/5btZ/YovYzUa8+IvPM7av/ouXvDV/4KkjDj13t9kctA+LVaf51pMswQ9njet3AUiRFMla+/j0Df/E47/wPez9MY3sv7Lv0g1HjaJVyV/7FGS7j5u+D+/n+U3vpEL/+1nKWRMOQiVf6M738val/19jvzgv0CwbP/8/0AcLL3oVezc8z5sqUQzZTQ5Rznd4dbX79vLYXivZCk7//Pt4dk8ZTAreez7fw555St51Zv/CS//3jfyG993Lw/cV5OZilgcg2jG7WtnyboF1E19eWk48G3/GIBj3/zt3Pp//CuiT70d31bczhhZz7n5f/1uDr3xyyhvmrH6GS/hpp/+37nxp/8pEsec/+nfDxwRTwNu/HEVqaoOgdc2l/fTwHp1foPV352x+s7twGJf1/MPX/6ec1DXXNe5jW66hrERxoba6kOrL6WzcgTTbnPjwddzYfvDqPpFWeiN/TuIasE6gXLOG+YJLZiFcb2Jt5CS0YtXAXh0806A86p6j6rWwA8Bt4vI8ac+HE9NnmxMROR38lKpmt7rn9O5j+iOrYYBCjZf2F70Fl++9VUsyUGyLUtSBMq3/ktfSXLoECZOWf3Uz2Jy513YrcCKBLDyGZ8J3QTtJTSdGGifF/qnPDZVvjP9BboF3HqoxcmbDVaEn/n5MQf2W56PMfnrxPYHbHzwHUxaI6q+4hJYH96DXVkhe8OrqXsR6XVHGFz/EjZPf5BsoyaaeVqXHEv3zxjcNya7WGBzR3ZhtqBa9LEJjGJJKCVFhH1v+CxMHEHXsrRiOfiGGzGSkfqUYzd8KuPzD1H2AvRnLyXMCOXL/+EFDrzgFIde8CiHXvAo3/ldQ1xbicfKyvHbyZIBUWnpvehlxKtrVKceXcQ8o3aXgze/nvaGYf/+l5MurVG+/94FzV7vZa8gOXSIxGWsfEYznybKytptFNvrVJcu4mNh/ZH3sXL97bTSvS1SsIM+oz9+J/XOeAE3mN75UaK1JbqveyXntpc5u/will97C7/7OxXbro0Vz4qdcEN7nTccf4C1/TuY1GEHAaMMUO6ryW+fItfNFlUwh1/6WWgnYna70jto6H7CCzFpjG2l7PuyT2b64eCwPasx0nBAvQf4OgAReYHmes+53/lZOnGwpp60/7NzoEpGK7AzxRHUgQQ6s72gdI0hy1ZQ9ZTFJGT4gcxnDXEkUF1ODEREvLT3aZya3s3d23/Kkt3PLdkn0+0dI692AI6KyPausxDgOuBZd2WfOCbAL5w75xeopkrhH9z0l/z4u+8AoFgRrA83Ju4uhZ45U21o1CCLl7BFSBpl2Qo4hz03RZpgeEuWsdsNEczZpuJlpoxvbvFTX9jlF/7ThO/4jh0+8VUZ3/vdXV56c8yjZ2rOnHU8X2PyZCJpTOuFt3LpL/+E+NB+fKzMqk1m5x7loz/2XQsOSPWe5VtfyfRAoA+0k4ooyhtsbUjXu+xy0rJcitBB4G3wOdhOB23HC9KPalbzjn/7Xs6+9Q853cRFtSjIV+qn5oc95yK8+b8c4FNeF5DwBsPP/eqIf/XzW0SFMvzAe7jw4bdR7WwG/HFZ4keTQKEXgR0MqHuCa4Xn0coKZb6DSwGj2OWlBhoHSWc5rMetCbHvsnrspWw89H7S29/I5qk7ueH1X0ul79vT0TBJTPLC25j+0jtIVw4w8YLb2KJ44Aynvv77F1F/9Y76U1/E27dvptIPIXhWojFtW3Cqu8NGUvKSo2eo1fIIcP3xdfyKcH59QDQSolaH2EWMjtVQC9VfdLjwx/+d8SP3otMAG/SzEl8rYp9DQL6q3tsyXcayQ581nK+hgdoUfnr5g9LU71U15EUYiAbSVEw3MTtTiCMmbgsRQ1YIs8mcbUUC/tT7j1HS+6IjrC3dgsNx3/k/5SPDt3LHvq9Fj6zCg5ceUdWTT/eanqmo6r0i8t+KXF+RtizTWUXHCLelj3HL8bs5A+x/f8no+gyXQdULMCXRUMooCv7SFulGuNZ8Zwsxlu6oTTndBqBzXklyT7pdkzdZ53IgVAPlta9P+YJPSZnNlH/zo2O+9Tu2+dP/3uLI4Yg89zz8aL30fI/JQgz0v/AzOP/D/3/6n/nJYMAc7JPddJID3/KNl8k0mjLJ8QRopzjr0FaMa0dMp2WgbjyYUrWaJELbIFkD2jcg0rDDRwFX+1c/9yCXTo05+g//KZ1qQHn9h7nvW38G16m5wnzCsya669/drr2ipFJRTLY4/bY3c/3f+2biG09AbDj1n/5NSNw24PF6uIOLPHFpwEE13CJbug3X8uH9ne1FubXb2gFjiW0HU8PBA6/gvg/8Ctmxkxib0Fs9znp9314NRxAnnLjhs/job/wY1518HfFIsOkq2a0nOPjP/yE2cqRpTSctcd7w7nMRk7jP9jRiyU45Xw/YvFiHdjZqSXbxAo7yFNZT0s3AqmVzyM5HHHxXxdl3/Q6mOMtLPuNb2fiCNrL5MI98+38ElGL21DmO5eO1MW6src8FflVVz4jIUeAhYBvYAq4H7iFAgE4AS8B8e7sF2AAu7TrkLUBKiDOWzXcUeJiQX3zxru/zhNcioAsMCdGQw0AP+GjzuyeAl6rqh0VkALxRVX/tKY7FU5a/Zkx+BXg5cJr/D47JE6WBtXw9ISb7CHAcWCYk5u4nwMYeI8whgFZz/jnBYu42n4uBm4CquSaAlxLGZtg87xHG/K5dp3CkOeYDBBv0BJfvw3Hgw+wRjlRE1oE+cAoY7XprFdhHGK/bmnMsmtdPNK9f2vX8NLDO5ft8F2HO/U3zaS4vIoz3FjDvkHhcVdeepct8SnKVzxOAlwD/+OPOE1X9Gx/Nyb65uZhJ8/c/Av3m/Z8kKNUHgG8g3LCoee+twNc/4XhvBX6YkEEeAv8D2Ne8d2L395/4GiGZ9DZgp/nNtwK37frsVwMfao57GvgvH+/6ruRxbUye0hidAj591/OjhMn/1ub5LcDvERTBBvCnwO3Ne/uAPyIomb8Avhd4x65jfRNh8W8DXw68ATjzhN8/3IzFmKBQ/tHHuw/P5+OJ49O89nXz6wR+ENgkKM4fa+7x1+/63F8A/7657/cRNsiPO592feb/asbj5F6Nwd+lefJxLdJnW66GipKrTa6NyTV5OiIiX0dY3K/9a95/Kx9nPonI1xCgcE96jGvy9OSqCLtfk2tyTZ4/EZE28I+B/7TX5/J3Ra4p0mtyTf4/JCLymQQ3+QLwS3t8On9n5Hl37a/JNbkm1+TvmlyzSK/JNbkm1+QZyjVFek2uyTW5Js9QrqhYLrEtbdl+oL6LQqnenJpLeDz7+24iWbXg5312JNC+2VKb7ypqBJfJ5e/L5WPMCXylYfWet2aOcsXkNTjPsF6/pM8zDm637FuxeuLoZRCv7oJeb7qEcztLRNPQZdWUHrUSeubM26mIBFo0aPruhIJflcs9ezAglV+0XfGppc5k0RRw3nLEpdDrzvAXNtnc9HsGQbe9jiYHBgAkUaiNnrdDjnFY8USLPpBBagRdFFKGHmHavOZUqLE4NdRqKH3UdIQUvDaMSUqYIL5pBGdChY+tCBy3xRb1dO+aFCUm05bp7Wo10zB0PzHKJnKZ2Uyb4m8jTSeBXV/dLUookNEnHm/XFyKL2jBRdrevGs7O7dn6SeKOJt2V0HnYg1QOareoaluc//x856+LhDFRmrFoXtvFacw8fDn/v84PtKiX2jXOzUtRYJV7qmNyRYq0FQ14zYGvwK/2GZ/sB9q3qcfmYYGrFcp+6E8+bxmBCYu77GtY7AJ4yC4JvdOeZOywM8/0QEy+bCgHQVG6Fkjd9Ow2GnrVlIIaxeZCMoL975kQn7rAH5z9988Xq9GTyomjMe/+w6OL51NfEovldybLfMdb3sQtH7X0zjha53J8Zqm6EclWiTjFtSJm+2NsocQTF1rrLkVMD4Sx8FFQlJ3HlJW7p5jKIZVjdqTL8FhENA3jVbcCYXKxBPmxktZP/Iu9GxAgWl7h2L/+Bo6tbPGKlUd5QessAJmpOBjtsGpmDEzo1piINJ0iYeQtE43wahj6jFxjtl2bTddl6lLGLuXUdJXNos2oTKmcxXlhmqehIsWHLqvJhl20kli6D1obNe99z/+9hyMCLdPjE/tfGKr/7C6nUPVjy62NgLGINRDHaDtD08BZgdOmPbmgqcUnUVBERZgb4hxSVDCdodNZ4L9wDrO2D7d/gFqDKZoKIBH+6M7v27P1kyUDbv+kbyGaOpKLY2QyQydTcD6M0VwZRhESRUHRWYvaeYuaoAw1i/GtGJ9aXBoIf0zlkcpj8xozq0KborrpEFpWaFkhkQ2GYVEEas7VJTQy/NEHf+ApjcmV0zfEEeVqOxxkEnrnaCR4Y6jbhuk+Q9kXXAbzXus+AdcOHQ1xoJEyaRmqnqF7WojywEgTT8OuVPUFqRrrrCTUW6OoVcQJdVcRL0wPZwxOXfGVPCfi1BOL5cNlzXff9QVEI0P7gqfzyJj8QDvUkxdh46n6MVXP0rpYgcD4cML6qzyyUpC1SrK4ZjhuYUTZOJzg4g5LD5b42CCquESwheLSoEzLfqBii9o1Z4ulvR4K6soySGcMohl9m1OqJZNQ5tprlOiOt6zZy6z+BsWrwSF4DJVGVA1bS2xqiqpD3bgpWRSUgRGD94I2Dc8gEERH02Cx1C1CD7GrKb+6W3nu7mrgNSg+QNptyFJ8t4224tB2xytS+VBDbwwaW3wWlMe8vxmqxOOa6KKBooSyxJcVUpZI7VFrUGMWZEF7K9K0W/FIXobr67TD2PjmOq0NJO6tFJ/GaGrD57w2nrHFtSxVJzTVnPMeQ7MeciUeBx5XU3rstMRujsNG4x0Sx0FJWxtA9tVz3I4ZIbDfx41basDmwVVdKNElWRAsuKZVhM80tD1o2g5TGTRzFPs95YrQPmNJdhRbhAs3G8psfzDTjQutasueLPqY07iyWzdb2ucPwtkruppnVeYtPjzKjs/5sfOfzWyzxfKp0HLYdZNgsfcMnXMldTfGVMp0n8ElMcMTBnvHFi9a3sKgzOqYcZVg+0pRW2zk2bnDY1yCzaHqCu2Lntk+E0InMcSjJoxyPlv0oNkzMYoYzyDOSU1FqRaLkoijLwVtEfJmIY+8EkvYZxPxxOJwTWsJhzDyGb5RnpVajCiZrUmsw4iyk2fhJ2OPzy3Y4P3YmTR154pPdrHG75UIQSlAUBTOBcsTUBdYzjAGyVIkSdBOC99O8VmMTyxYwRRuoQA1Mrgsos5saA6Zh5bWGgnFckLdWiZtJZjNEWxuBSVtDD6xWOeh8s87OfrHyDx0Vzl0NAl924xBawfqkSxD2xm+3yJfa+FTwTRhwboVNgNvhToTqo5QtyUQuEjoY6azYHAUvQhbQjLxJNsmWOW9FmY0Q4cjpNUCa5DhBNLkKZ/+FVukvp0iTrFFiPdB6A46Wza4rJkUUdMaNwoLW3f1kcYoxA3ru4DGyvSIQ40laaqPba6kW4prhVYUPoZkFCyLqkdgiO8pyY6wc7IF77jSq3n2xeN5Z77Gux49QfvhGFMr0zXL+JDFVJAOfeg/1U3YvrlD1RW2X+xZPX6Jm5bXadmKwkeU3hIbD1FNZB0TQNuwfUtM54whmilVR4jHio9DT/SqCwjEY8HscQ93gCyr6EQFcdNOd8lOiCXs9rkqFjhgPSMfCqZzhbxRuJVGeAy5j1myUy5UA0YuIzU1g3hGy1ZU3jKrY4woxig2cnix0LTaDZ1qw7mIf5JY5F7LbiXqXOgUYQ3SbqO9NhpbNInACKb2qAvWm1oJ1lMUuvK6lsHbcN/TjRyZKXXLUixHuFafVmyxkUXjCJ814YFFE8a9Z3KJcofdmYXx8IoWs4Vl6taWKFcz6q6lTk3ImbTBxRIaA9rLraZ9PNc3zd8WmEqwXpvOtOAjg49i4swQTWNiDzIcoeMxpGmwTKv64572XK7QIpVwI0wI5ooPN6xqm8tKzwYlCoSmW4mHSIMCNRrum1WIPFoZqE1QpkdrqqEl2QoJFJcEV8zmLJh+4jH4RCizkHWqW8r00F6bGUGsGAqtGPmS39p4Be5Mm6RuYpzNpFULvQfGuEHGbH/K+DphdkvB6r4RL9p3jkg8LVvS0orU1GyYDpM6YVbFxNZRG4sf1BST4BXEY+hccPgo9Dyv+hq6S44FdxVYpO2kovQRhQ/9duZKdMO3GZgdvNDERoWOQIwS49n2KT2T4xCGLqPdtOWduZjCx8TiKZufqb3BGo+1oa+1zxyuNPjU41NDMgzNAeeJu6tGjAA2KFDnAudukkCaBgusnSyUnFQudOZ1CpFpXPzwuq0stVeqvqVuGYxLSTZmJFslkFC3DLPDHdImjuraUaDZiw3i/eUY5F6Jgp3WyHgaQhX40JfNGrTbplzNyPfF1KlgXGN9NvkAnwR9M2937qPLeRiVQFNpy+aJ0Fjk4TtqBZcaTD8lHnXQyRRpCOY1f+ptFK5IkWqzM9rCgQefGKqepWqFjLtLg9af98/2mW+44hplN0+yWQUVTOrQJOy0lIaq73CZwbUM6WYYZFMptmyUqQitC4o4Q9UPoYU5oe1eS6WOCMtZZ3nbe24LScWSYCFOlMl1hpWP1Ph2TLGSsHmrJb9txk2H1llrjelFOWljPnkVPEIWVdRqQlYaiK0nihyjoke2GYWWEQrRzJNtBeRDsaIUK4ov9l5rWNP0FUIo1TL1KW1TsGQCbWKuQibKigkWamj5FqzRDddl5Ft4DCPXIjVhc6nU4tVQeUtsHMvplNPDZVTB1Sb05Yk8Pg6dRtNtJSoaV/jq2HMvy25r0BiIIyRL8XGwGgNCJbQnl7IOiiBKwmcJbnzo/xUO4WIoBhY7jYlGBaYTUa1G1JliyuAducwgteLTKPRJK556PPC5kJAkq0JYw9qgzNotpJXh+i18EpAKIUTT9PjKGved0DDRpRrae2dNHsaEMTEz24QfA4ojGQpR7rGlhrUjEroXd9sLNAxVheZPvb/XlVukiUUqj6k8VTejTmVhUodAd9gdXNdD2qRNq+biBEzssLG7jFDwBiJwVtHK4A0UK4qKJd0GH4WdKOiYMEDt88rEBou0WL56/LUax09e/BSWPmzoXPBMDihVV1ArRBNIdiqqXszGbRH5rTNOHrrEWmtMJypITf0x7rhBMaJE4kmsw4niIkO5b0a+2WV5Pbh5Uirx1JNdCp5BOfCYp+6dPCdijBIbTySOTEKLiLn0TIUHpj4iF6VtHWs2ZdMVnPcpRjxTn/JIEdpgTH1CpZbCR2yWHdZnXYZlSlFFqAoiiveGKHaUZYSvg6cTD4MVOl0Tqq4gf7FHg7Fb5hMfQmZ6/poxEEVoEoNtPL45P68ViG1QnJULROmAppa6E1F1DFW7sdBig2hKu4HRxTMfvLvdUCIRfGywxsCuRN+eiCpmNFtsJFT1Ij7suiFWaZziCJZo3ShRnwTjqlx1aKcmSh1pUqMqOCd4Z3GxUiYGkxtsHrhv44lQWWkS2YpEYXyl6cShdf04UvmPJ1emSI3gMks8LMOPz5OOVhaxCR+HbpDacsEyqIOipDSQeFTDRSIa3vMB/yfzRFTsURGqgWBzQ1yDFCHWJT607kVDYgUVyqWro487BKv0z/70dvZtNRaQEZKRkgyVwb0jytWM7RtjJjdUHN2/zWo2ITaPtwiKBh8JEBlHZitqbzBqUFFacYXLhK1DFfnFhMHDdYgbaehxHk2Fss+eu7FGlHZchr+mYMlMWbJTKrWcdx0SHBNNyDXmbB0WyvnqKPflBzk9XWYj71C4iFGRUDnLeKeFTiOioSXdDJu3y5S6Hdw5jT0kjUVSGJJNS5TD6Hiw7KLZ5RDLVSNNglLikDGWOEaj5sY5vdyO2gWrdJGMUsVnEcVam/HhiOkBoVwKVhmRslMJ3YfbLN9X0VovGR9OF5atqXSR8faRwex1CEgV3dqGOEGSOGwyzqEi+MgEDzUW6iwoUZr242qhXPLIUkmrVZLGNZH1VLWlqCIqb8AJUoXWy6LBW65bQV+JE2IFUwfkA8aEEEtZhZj1U5Qrc+1hcUOlZpEtrlvhLzRKNNLLitIJtuXQUYQ6IT2d4BKlWnHYkcU4qNsBRkXiIVZIQuuOciBEeWizEc88VcsQT5W6Jdhc8ZFgi6vDX/N47i5jeg+FLH2+ZANyIRLSnZp6KWX7xoTt22pWDu2wrzXGq2BQrCiVWqx6am/xCIWLsKIkxrEvG7NdttmctUmjmiRypL2CyeGY1iVDuu0wtRLNgvKeXMeikGGvxBrPVt7iUbvM/njEiWSdbdfGY3iw3M9DszU+vHOI01tLTLdbyMxiGquh2lcTdSqW+lPG04xyK6PzcETropKMPbNVQ9UPRQymJlAY5xZxQQmpDXHiYinE6cWBjGXPxwS4DHtSH/CkjUgSWpkHeJNDcAtrdA7H0TgA6jW1TA+1GB21TA8q1UqN6VZkWcVyd0ovKThzbIlz+/oceJ/QWq8wdSh8mSeIpW6gi/Ee77i+iYmmEvq0NXAn0aD41TT5EgnGlI/CsKlpdExuyUlQFaz1oUBjHkr0AXtuSkLr8h1dKGGXCFGhiw2GOGBURQSpaxZB+I8jV6ZIbYPHa9wEnQfDNcQqozxkDuu2pVw2+DjAn7KVGVNJSS9Zkm3wcQi0V/tqkpUZa90p4zxluNlBJjYo4kipB45qHBFNwNThwutMsGWIsYaFcXUoUoDf2H4l8VRJdmrKnsFUsHJPQfrgRYavvI7pIcEOKjZPL1FUMS85cJbCRxhRCheR2hqnwrnZgFNbyxQfWgKgXHOYbkWS1qz1gwJOk5rxdTnDnRZrO6GowWWGbNOx/BHLuT3O2ivCamvKqMqo1HJ/cTD0JQcuVn0eHK9RuIi6tsQXYpJhmPAuBVvElAPLphP8NKL7YES6GTyW4fU2tBipId0McDmXhgyujyCeQJ1Buay4VMnWTYN13tPhuCxzJQqLLDXWBJxkZBeJp/C+QbyESp8oZPB9bCmXk9Cd9YjHdQKs0BglSyq6ccmh9pCXL5/m7tXD3JNcz3VvU5LtGRqZRdJqN4Rqb0WCJQohNhlFASQPmNIhPm4SRLIIHypNNn5m8LXAOCKPE9TqIpGNF8zEYgsQL5iqyVkA8TgcxEe7qsfmkiZIuxVo25+CXOG0avCjqohzYeefKbYM2TQNsX6SEdgiYLqKFU9VWWS1wM0yXCakm0p2Ccw9ES7psXWwz+zGAhM7fAskb5SpBPM9mgWlFE+DRVK1Q2mqLUIi6mqR37rndo6dr0KWMQtZ9eTimOpI6Hjaf1jh4YzZmlCfH/C+F1recP39APjGF5+5mNPbS4wudjFdRWMl2rGYdUvRV05fapGs5PQ7Of3+jO1jMZMLEcv3Tol3asrVFsnQLLqY7pWUlWU7b7G/PeLND7yM1xw5xeFsmxvSC4zrlFkdc26rT7mRkZVNqfE8J1k1FvVmSjKURXlwVCiDhzzx2JNemGImOW6pTbmc4lqGyYGm5XIL6p7D5AafKPEoKOmrDv7kNSjTObZ0d0kjNB10QWq3OPW6FzNdi0L4xoCUBlUfSmq9oXBhad/cOs8ndB/gzZ+c8269lUPvaNM6Pw1JKwiubO2DYt1LaSq4KKuAIZ0n4LwPSSanixJoHzcG2zRY13UHNFFwgsmlqfTSALdsMvXzNtZVR4imkO7owrIN1q5Bkwg1gkzysHn1uoFw8CnIFSlS8U0FQhWy9uKDNZCvhnR8uq0LxWoqCRfbarByXqj6wa72kdA9o/TOFJjCsfSgZfJQwvioYXrYo3EYHDSECsqBYsoQ5/Bx+F2Ryw3B9loU5UxdYB/KUFsxWzW01z29ezYBqAYJF15tSG4eYo2nyGPi2LHUztmpWrRshUGpvMWKcnRpm+sGOwAkpuZga8RSNGVYt/jw9kFOPbLGjhcOrgwZ9irGxyL6pyLssCC9MCFZN9hib7WGtZ5WXJG7GOcMf3r/zdx4aJ0HW2s8Olrm7F0HaV0U+heVwakZVTdifCiiWBYmRx3poSkHl4asj7rYPx6E2Hst1H1h6yaLLQaYahBcvirEobMtZXSkqXyrBFM2c6/BGF4FU+VjRWQBuxG3CyA/V6YSLFJpklQuNdShsJBoGmLFdQqmQUh4DWGh3MfckG3wpv1/xaU7OjwyO87Bv8pondrGLbdxrYhoVD6tKp7nSsQa1MRhHJoKI4y5vLG6cI81kgYj2lx320O/IorDNVSzOORirCLWo6XBNTk2tVDloQGelZCkNVXj1kODhAC8x3daT/ncr8wi1XCzNYlwrTjEFzx0znmSUSh7nO6LmO4PZZHpTs3oeExRWUzkcSZgTMUL6Y5nciih9/CM4YmUzrmKznnP+TsyJicriBWzHaGxUnWVaBJ2FB+HwRBVdI4PuwrkA8Vhkp2m3K2E7n07i3rhRz/LsnTDBknk6CYlD09XsbbCeUPpLAYltTUoVN7SjkrOT/qMioTJLOViv8dNS+sULuJQe0h6smY7b7E5adPt5oyXUnxi0CzcVpdFe259GVEOtXeIxcMa3PPgYS6Ou5zeWiKfJOhyxfSgY7KdMLwhCzF2CZakWiXfynjhifs4m/Z5mAE+EqaHoOpAcbBC0gagPrXEQ0M5MpgyFGz4OGzkpg7QF7Xgsr2PG3+MqAcbB8Wx2xKbL+o52cYuvKeaBv7TDtQ4asPrrrZUtafyhtxFXKgG5Go5Gm3zWQc+zM+9osv40RXaH56hqx2qThTWb7nHMVKlSbRF4RqtRSN7OWzoGwOuFnwdsvVlB8olRTuOJK05tDzkWG+TxyZLXBj2SKKQeJp2E6rKUo4TGEXUWfCS1YR4q62UKHeXrXRrnzau9opLRM2solhrgxGiiaM78ySbM1SEcq2FLZWyJ8zWhCNv9azc6xiNWqQ7igrMDgh2BvmywdQwOZJhauXSixO6Zz3ptlKfj2mfD73fl+6fUiyngKNYtiQjTzKsmK0l1Ok83rr38gdbL2bwsGO2FpOMPbK+iXTaXPjk/bCaszPsoBdSzF8qyz3D9ECbzRfNmBYJ1w12ONzZIbU1W2WLraLNqEjYfGwJccLZPOb83fsxtbD04kvs74w53N0hb8VsztpM9ufU7ZT2hW2qI6tU/fjyTrvHslNlHGoNyW6uaEcVDw9XGEeOW/ZdJGkQC8MqY2PWZjjLWGvlnD29StwreG3/Pt4pN3LnS2r2vctS9YJyTC5GVMuBOUqqYKX4KCjLsu/RRLFTE7wVhboTNvyrTpF6DZamNU21UbBI1cxZ1fTxC9sYir6lWFaqgUMarw0PPreUAmVakruYrbqNQzhpPa9p38/0RMrPnvxU1lopZlYDKXUrwkR77NrPmZycb2LGIb4pzmGKGlvE2MqE+LdXai+4BEwB0XpMNbWcVWjHJSd7G9zYXycWT2oqWrbigcka737gBK3zhvZ5Jd3xi/iwKRSTh2IHqd3iXKR46vHCK3PtFep+xvi6hPZ6TbIZSBBcO6ZcTkKFUyq0zyvjY8LOiYThjVDtq4gvRSTbjWkeBSiDqZW6Fcq+fALTA6HULZrB9GCwPGdrXXwMy/c7+g9NG8q9iN69OxAZXPup96B+rsSjvP2RkxweOSYHYpb/+EEwQr2/T7EsmHMZ6WbYCc9+RkVyweAyRU5n1Cdrzo16HOtuAVD6cGuMwMHjGxzqDDkzWsL/+T5sCdNLazzySTGH+yFMsNKaUjnDxZe32Lr5GEfeskP7vuGeM87WLgDna2/ZqTJe0LtApZaVZMLZ2YBpnTBohW65l/IOAhxd2qbyIaPwplvfR9sUtGzF4ROX2Dx3EIBy0GSbm8SCZoofQFUaxEkgtinNQnH6NCSw5jjmPZW/bm9buJWhyCQoUxCdJ3bDhuPaEfm+gJ8WJ5hCFpuFGoOvlNpZxmXKZtlm5DNicRy2BcfTS5SrDt9tYbdGJJ0Yl9mAUd1LmUcyyqC8JElCiKN2iLXYwhHNDGjYXJJxQOr4OCQWXWoolrrcd7DNYzfs8MqDp+nGBY9MVzgzWmJzp0Pr3ozVD9ckwwppUAsamQZK5S+TozRJPimfYxxpcCUEWyk2b2IyWYTaUC1hS6VuhaMvf9RTDIS655HYUw0c8TBCDcz2K9EslG6Jm5eSBmIJU4TJr1aJJ0K6FTKMk/2GfNAhninJ0FEvtzCVw5R7H+PJVTAf6jE8qgweLqEowAj5WoZxkGyFrOHhz32EdlSy+VsnGB+O2HypJ7GedlJReItXoR/ndOOCxDjWWmO+dO29/IvNz2flsZrRsYiqr0RNYLgdlWwVbQ50x3zB59+NFc8f3P96+n9+MVSL7KGoQmpq9nXHnJ0NANifDJm6lMJHjKoMr0KlhsQ6lrIZxzpb3D9c4/ixS9yanWXJTunZHCtKfqwkORuHuHzPhUx16rCNRVURw9QiZch4ehsWXt0OCTvfdldFPP1xTE9mVzx0zq85T+Y29d6aJkhZoXHEbC3Bx5BuCWxZ5tSaaqDqKvU+T1FGbGmLyq/xK+YT+Ej3DMeTdS5Ug6bqB3QyI3lsK8QC91qRquK3tpEsDWMQN6qpqgPcq/F8TRk4BXCKLS0+Csnm1obD5hE2N0zLJd6twvHlLR7dXmL8WJ/snKV/qgk77k8Wmfpk5IlmDolMGPPaBTA+XE54PQW5IkXqkwBtGtwzwoxn1Gs96nZE1WviD5kw2x9imXO8p2YOYz20Id8fdl7fq3G5xU6a2taowYulwQVzHQ9GqZYaHOosKCJRiKaGpQcUJCKaSqAU22OZ+YRD9zpcIvjEcOq/HCP6yz42h9H1jnTT4jIoXERmay69NGZyvGblyDaHeiMqZ6m9DSWgjbs7SGesz7q8+eKrOLm8yQe/sAdS09435cjSNkc723gVtoo2hYto24K2KSn+wRYjPQm/vceDosKFvMehbIeD2ZDU1BQ+ZuxSRlXG/mwUztcH7tGWrXAqWPF85bF3cVNyAYcQi6ObFGT9giK3JBsGNMLtK2l1Sozx5HkDn4kUqcAUJpBhN2XWGu0qU95T0cvUeUYCIHL3om3ek6pG8yIQaMQeIovvZVRtQzRpstZRIKoxlWJzQpIui3DtGu+F8bkuF+7fx5/0X8CRQ5u8fN/pcCxAOi0oK8wsv4wY2CvxetkihwDQtwbSOPAKNNa5axnygV3EulWEfJlAoZcGovjskjA61+W+PKYaJWQXLK31wP402R+F5LRpcO+RJc6EODbYSYmMCVYpBG7SpyhXpEhNpYFMeJYSWQks7V3LbNUE0oxeiFUlQ21iU2BShxjwNWjXhWy8AW05ahuyq+KDS4YQWKGiQEqisUfE4DMwThbxsHxg6ORK3baMD6Xw9iu5mmdPLuQ9VruG/iMlyeaMz7/hI0yOp/z+O1+GJkpxMkedsD7qUrYtR94YLNNBknPv1n6yqGZch+JhIxpq7m0FKUzrhH4y48W3PkrtTfheHOryZy7mus42N7QvsVV1KGzM9UsbPGaXHz8590IUzo16vGLZk5p6QVgyiGZsR21qbymIGNYtjHgKb7k4W+Lly6c5Gm/gEKb+8phUlUVt4LaNRwISM8ntovpnURUXA6VgXBNLq0FLIRqZvXft5zJXotbsotWbs9s30B2vgXi4AahrbDG10nvMkV0oKFZTxocDTjIdBo7RcaysLo25cHaJpbvDEp8cMZyNl3jdgQdY2T/EtdpYQCeTAISP9hhgK2A67YZG0KHTGdLKQoloO8K1DMXAki+F+1e3A61m+2KIaQ6PGTSCbEPJLikQBeL0PJSSuww2Xhbq8Jfuiug/WuPSUHPvo8BP4bopMs0CasAIOn6KIFKeAY1eOmyIEkSoOhFlJ9DnVd2mukmDIhUf4llim+YR2gTGEx/wonmTWW5IrjUOlQoaNZVQnkC8UYApQsXLfOBdJkwOBhLX6aGrIKkytgHjujlDzl3ize99FcePr7Pvxg2mRcKgPaOsIzpJSRZVrKRTPMKoSuknBbM6pnSW0oRF1YkKOqagjkpapsRhWIpn1A3WNNTge06NV/h7h+/kXLnEuHGZ33fqGNeVetlt3EPZGXbYKLt0ooKLVY/98YhKLS1bMqnD+d6/s4aIUjnLC1fO8ZL2aSaNAu2ZnIGd0o9z0rSi7AcOSh5L8akSL+d0WiV5GVPMYrSwYaNu4oamDsB9SyCtuGpEwoJ9nBLzuzL0xiCRRWuHVhWSJtTtmKotlD2LmoyqHdAIUa5EU4fpG2RQcuPSJTY/uMbSgyXDEzF136M7MXfvHMaaUMlDVQfKuPnv7qk0ONrpLPyd5YELYLVH2Y/Jly3FoImPjhQfhxJoxGJKpeorUgs0OON4FI4pdeAamPUMnRPbrHamXDhzHZyew6cEFws+EqJORCQCdR3O4WlsLldkrohTBveNiTcmuNRS9g3FsqHsB35QnyjRFLJtx2zV4LqedrsgTurHBdolkNdApGjbof2KeCnHdmukXQeF6oJbPy/xkpoFdtVHoXx0cnSvJ0EQW0G6XSPjGdQ1y++LyKKKG5cu0U5L2nHFantCOy7pJ3ngz2wGRESJrVu8DuDVkJqaXpTTshWxOFJTB6WqghHP+bzPrYMLXBdvMawztqsW7988ih8Hij21e2yRAm4Uc9fmYYomgVZoRCyOg8mQfWkga3nVvkc40dtkpTVlLRmTmYq+CRVQFuVS3WNcp1SVxVUGrQ3RTOg8aqk2swUvgTpBSoOZhgyvjwL+UHxYhNVKQyy+1zLf4KRRIPP71NSYL/7OPxtF+KUu4+sSpgeE0QnYuM0yPmKa7H5gdCr7Qr8344bOOtXAka9G5CtCsn/KdScvcaK7wXI2ayqbAi5V5nHZvRRtsLNpivS7wSJs3Pu6ZSgGwUhT28CgyhD3nhxRZgfCZmIqwEDVCuQ0xYpSLoXKpWSkTB8YcOr0WsjPrFhcEio01Qace9mz+H5rUW8vWfqUT/8KcaQaKPqdg5V2qHOeh3zqMGlblxpiBAI0pa4t+TSBqil7qgTXxLSk7Ug7ZVAmkUOpyPOYOo/R3CJ1sESNu1yKCgHm4lJonQ/JqL0WBWzpEefxs5zeY45plfDKlUeJjOP0eJlWUpGYmk5UYlBatmLiEi7Nuhzu7FD6YG16Dc3cUlNjG7b4uVvskYaP03H/xhqvuuEUpVpe3n2EM+UKsXge2zqMi3XPcaQAKJzdGLCUzVhLQ2lr1xY4DLE4bm6f50PTI0zqhA/df4TypOWxfIlelPOa3gPc7w5yvhhwz2MH4UyLwSkhmimj65V0U9j3XsvOTUvUXY8tw1yRpmpl/vumhjoGTd3lCbRXojQloQSFaZoYaePS6xwCVNehVLKJn9bdlHxFqAah7LUaOKKx5f9l77/jLMvO+l74u8JOJ5/KnXt6enpykEaDEhKjLLCEjbGxHAjGgLmGe/06+7VxwIC5vjbGGAHG5uIACFtkhCQQEsphRpPzTE/3dK5cdfLZaa31/rF2Vc8IAzONRA3vp5/Pp7qrzjlVZ+919n7WE37P76cngqIuGR4STBcciRO01ZQ/c9fDfDC+FTLJYmPKtxz5AteGq1ya3s0wb+EaNRiO/TRRuMeoFweu3aDoJgjrCMA3fqoNxpPT+AZ0UZdIU/F7zBWUTYXIPXqhjEXVdIOiaX1zKhboKXSeFkyWQu+ADwj0RGD6nuymrAmElRStCEzXM045B2de3OFfMY2ekwKR+y5YMDKEkYdo5E7sMsDbQNA+WyBLzWSjRSQA6+ei85ajrHsBuzK01OIMKWCchpSFosyVd6JFVUtV4KSnFJNFNckkIZs3lA1JMLqiM/mymrCOYGvqKcC0Ro8NZ9Y7nG7MsS/uc1F0GOYR80mBFr5mOBuOyNIOt3SXiWRB4RSlU6ylDTazOp1gQjeY0FZTAlFikExsiAkkgzImDgtm1JjVokMgfA1yO09wEppnp7wsPGlkMcOAJy7s4zXXPIc0vv7bK2oE0tArapybdHn09AF0reRIY4sH1g6xcb7DF48exljJ5jOzxGvV5I91pHOCfMZQJl7vq/mcr5XnHXzGYnyQZ8LLAHYneZlEo9JHXqqa4JEVfnIHfrP7Ok+e4YxFhAFloijrYHb4NmNLKSBvaawWTBc9L0U6DZnYkK/tPsyl4y0uDDscbPZY0j0Kp3l6Y4EDeem1keIIZ93ep/ZKsn17l+FhSeOCpTuqe2kUKchaYvf+z1tuVzZGdHNmOmOslfQ2GhRl4NmcxlXjum6wUpE3pRfOrIiwy4albIAee0kkNaWajPOHYhohm7fEHsP7IvsuV15hVpcV+mQFeVIZqOgy5b8oHeF2RthTqCwhbwkmBxy6YvdxzQJrNWo7YFCrUatl3olmGlfBV3woL6ppKg+T2qmpev5TBy8TkLWweE7FSuHQQ7IEzw1mOFrbJFIlZ7e6HKj3kcLS0tNdWeGD4ZBYFkSy4PR0ntQEWCc4NZpnf63PUMfM6HHV4fbR6LCMuaG7RkdN6JsagSipSQ/EbpwTyJcBkgHpkKHBlhoz0mxlNQ7U+oxNxLQ6x+084fTmLPMLA/7Mwce9wuihAQ82vSLrY2f3E237KKRMYHzIO0iRC5CO0SHPfh9vQLgN6ZwjGotqJrsSYKxsrxU1AF8XjaPL8/XW+tS2YkDamTV3Ev+zsxAGmKQStjPeIcgtTTCSRL3q7wp2m24Sx8Vihue2Z5HScrDW49pgkxXTYDSMcUEKWe51oZR8SZRxXwmzsWbljZbmUp/txzsk6w1qg4knnbaXBy1cvYTAEtdzuo0JAshKjQgsNvaEPeHQf+aduRGDYQIi8fpmzcvJiAstNheY0BGVHt0hDOhJgQ0UWUegXzyv85U7UhdpRBFU8gcOnVlMqqDlTzrtSPTYenquarcbH3CU8wXFjG8EhPWcvBQEW5qiHzKVFmulZ8q3whePBZdnbXekOnaiCwdqIgnGYnfueC9N7qg6VlKvwjpmu2OcE5yZeMKSKCh3U/aJDZmagJO9eT7x4I284Y6nSFTB7z17PfJ0QuP2TeZqE86MZjhQ65NZTVtPWclaTI1PxW6orzKvB4ytJ78dWs+kX1u3yMH0ZVAjrVQ9S59ZnO91qOmcms4ZFDGtIGUrrXNibo1Xds4zp4ekzp/bbe2LZFZzvt2hfy2Iek46iBFj5Vl9yqp3WSnU2sDLe1NdGzssPyaqpGoCKAv58iBmgMuZnROXJYel9an8TtPDeCfqQj+lFvVhp7URDqC2bgnGlqwtmc7LXWWJnfJPb7mFnEieqo+5v+43JjsMcDJHdJowmuDc3jclTSi48foLADx1oMZ0PiC5kHgu35FjOi+wNYuMDDPdMbM1f1+NC3/dt9sTeqYOvbAaTPBlwk57zKgV07jgKOvCc7VWPsU0PElHmXlwv6jIUYpZj3OPtl58lH7FI6JIiYsCxCRDNkLUVKBiz0BtIhgfEOStgGCkEQ7SWeElAKxAhB4fWhYK1SgoBIippMw0QVz6Jomp6PFCi0hVdZL+7XfJigWYtqEon9fN30sztvoyEAbI3GCswCBYnTY51tyksIpenjAXjZiagO28RiPMQDs+97mbkPunOCe4+Y3PAjAfj1DCcWY0Q03nTKOAZ/oL/Pn9DxHJglCUTGxE39Tpm4SuHrM8aNEdGVwS7j3Ux4LLvdQDgWUyjui3Eq/hVGoGxKSl5nB9m0gWXMhnWAwG1GSOFJbCau5YvMh6u0EjyHhCLzIsGv6aMKKKRP1Gms1Z0nn/njsAdWEq8m+gtizQ472fgPMdanm5Nvq8r10QuJQIrf2EVhhiI40sHfGWJRj5GnE48kGMJ96AZA2CoSKbxHx6/3Gub6+i+4r2SXjWHObnnGQxGRKvePE7OfGlhR1W+L20nYxya1pjYaFP2l3Axtrr04fsQiKdFWjlHcG4CMmNohFldKMJT2QBNggpa2C6JW9YOkVLp/y31deRXQzIm9VgRsUoR5Xp7mDXTSjI2yGjJY0LIBp+pYmdpfCjVVbtEqKq3O+M0xkfJksuR45l5J2rKDw3oE0A7ZCxIQgMsuEoRACZwmiHkJ6IgaACUFc1L6uf1yew/uQR1TTUy2LW3vm0PtCIosSGinpYIIVjMRl6OJPO2UprnBvPYBHkRuGc4NDhDVa2WhgjObZvg244pRmklFYRyYJWmLKZ1pmUITd2fBT6k2fu5o7ZC7y1/biXJ8ZxJp1jdKbNvrURRTfe+1l76VC10vNF4qFsvWlCUDc0Q5877W/0CYTh05vXsTJqEihDrEt605jSKNIswBpJ2QsJeopkLAiH7KpEBhMPw5sGDtcy6G29q9Qgc3bZ1Lsnc5wUnC5fBuOQOw7zeU2mF8zTV/P2OzIkTvnMbof6TeUe7uSFJzU6tSSbkLUF2QysjRrMxmPKtkGWis7T8OzMIs/Fc7RXHJMDMe3lbVzsJ6bYa0maEi7029yxeJE7mhf4iWNvZ/6hEDUu8OJ94AKLlI40D3BOUBhJPSw41tzEVhGDiRzpHMwv9Xl35yHWTBOUI533I7U2cahW7v3yOIAqABPW4+Nt4Mfb1ZTdqc0XY1foSHfOXuICjUxLyrrHgwrrKsU+P7olS0A4wp4Pn03sQ2kbOowVILwekYwMdhxgC4nQ1iuO7njNrJrDD5wH5FdyI2Xd0ZidULYVYqN5Jafy5bVKc8cpr8woc8M4D0gC36VXWF47c5qnxkuc7M2jpSUziliXBMpw28GLNINsF+40LGMyo5maAC0sgTSM8ogTtRUGNmFjWGfcjrBIDIJYFjw3niXsSa8PLsRlMa89XBK3M8JYejD1JAuYRgGtMMU6QaxKvrhxhLOnFkA6OktDjJWURlXRR0CZaoQR2Mh54Ec1oVS0HeNDvj6/w0kpjBeA06nnyfUTMZ6RK3lmjeDF46y/cvZ8rlHndjOZ3VqlFIgg8MQa1hNsOCUwgWe+sloiC004LJCFxUQKE3rYTzFTIoTj6a15EBUH59QHJW4tIhg7tm5QtO/Db/x5sefFY1k6xs+12er0OBfOYOuGbCagfjbzNdLI8w8I6RVjpZEo6Uh0gZaGcRnhnPDXgIDN7Qb/z7l3sjGpI8bay5EYgciEpxp01cBPoZClx6jrqacHDSaOYOKP6cXalXfttZ93Jdb+plX+QhVV9LjzFY68lrQJwWRU3t4XKZyUTA9KTORnpomMHzd2gPCSzc5c/oB3/OoOwa/MBekzbaJtLyq35yYELol8d3C7jwwDti7McfON58msYjXzjPCvn32WxzeX6E9jjJHIqmjeFwnd0APuH+3Ne5hQkFFahfwSoaFT6QKHuj1ubV5gYGK2izoNlZGaYLc2qCd7L626G2RV7EQ4QVEoRllEM8yYj0YkqmBdNejsH3DH4kUOxD16hS96WwRP9xe4JNuYRGJKid2KKCsqtbK5U4/2u7saSfRIIJ93DcoSJvsdWVcTpxlqr9fF8cLo80ujUWfBerZ8Lzvina0sd8iNvQBc0ZAIo3FakDcl6axgfMBy7PgKs/GYJ9cXEYlhsl8jM0HYyhDLdXRmydvOM/ELcZmdfw9NWOg+JnjKHOGJ5DDBUJI3HXE99CWawme0thTkua5w1wUWweq0xfq0TpFqnLb+/ssUzywvYAahHzdPLGqsUKmgGEZ+YAPfY9lRF5Wlw2nP4RtvG9T0xfN3XHGzyUYKVRiv/zLJ0GlM3vT1J5W6XdmRZK2grClUbonP9hBZjpltMj7cIGtJwr5ickBSNByuUSK09dNO+IIxFbuNv/gup/m1VcfBjwwo2xHT+YC8sddNFXCBwtRD5KRAxDFufZPOY0tsHKlTGEWiC1Kj2Sia7G8MeGZ9nnS5zuZWi7xjca2C58I5rBGet3UQIgqBHkmKuZLG3Ji/cOwhajLn/KSLRTCvhygsz4wWqOmczWmNmScNYpLhGtFlhco9MiFAB4YShbMOFfkccpyGjOOQhg6weNnpOxYvMheOdklMVqctLg7b9IfJLllvsK1QU8/DaRLPACVyPzase4qwX3VbnZ9FBz9/nh3McY8qL2PhgeifAH7eOfcze7YwOxnDDvRJKYRSfiQ0CnFx6KNFrRCFIRjk6LYm6llMNZGTdX0nf1fFdzbnaGOLzazOXGPMzQsrPBAeJJ2EyFwx/4yjcWbMdc+U/hjyApdEO+Qo1wshvmMv1sQJaJ/JyWYjn8ZLyDqCvB0QjB3hQGJqAlNICudLPfUoJ5CGS6MWm9uN3ZKgMALRMMRxAXHBeKNGcj7wqX3kiJa1JwjXVXMSj/oIR5ayYq7TowLde/Ft+yvzPs7x2S/8WzYHpyvpZT8uunb2i5z89R8HKihB6i/k2pkBydOr2FrE+OZF1u9sMTzkeSUby4baJUEwFIipImlkfrcoBBSyokITu5GuLDwOVZYOmRW79aa9xlgDjEYrrOXnyBfquIpdu//QPTz6/3kfiS6YloFvNhX+uZnGBKRnyOo+IdDrIWYY4HLpp5siA+0CWUB3ccBSa4gSlgU9IFIlWakxTjCwyS6n58rZWWoXJ7gkRA3TPWs2CSHOCCHWnLWV3LZg9Kl7Wf6Bn9ntmo/zkPW0wXra2J3w2uEYaCjfQJivj1joDml0J+hWTrFQ8Mz3/10m+aonJzEe3aFTQbQtiLe8sJnMfZRTtASTfZZae0r9Uuajrz1KY3fXxNld53m+/zD3rP3yzguoFmG3JiJMxZFZeuJhNbXoqSOY+kwv7UqytuTBn/l75Jvr6EsRv/fEDTy7Ocd8MmIhGhJFfkqw8UBC40KOHKYebVOUl+nj9tiEg6CXemHDAZz7H+/lsZ/5p0ybvjQjC1AT7yNcLrFWkJeeKnA0jbCpwg1C9LZGDyU2U0jprz2RVtlK5oMSWUnayAK/EVs/zh4OfKbiJDgtcdGLJ3K5QqmR5zd9/CSPGl1mSnEKXCX/UdYVQaDYfs0Btm/0QnhYQDqCgWDjduX11wtBuKlIOx7OIIwAw2XS2mo6RWU+4i1jgWnFlHGlGPly6DUJyNuKoqmI8wInJLX1EpdLTm7McfPiCs1Ku35/rc9WWiNZGrHxroBOa8K+oKAVpcSq2HWMdZ1z8VCbc9tdVgZNJjMhAxMzE4xpzqa0VMqwSDha29wdwXRaYmshcrLnQlbK9CaYUhFEJUHkR4SdE2htvFxuVetqxyn9PGZf5BtPDZ3R0intYMpG1mCQeNLnYerH9kRsILCIkfZTb3kltWxADUtc7DkYsg7UjvcZ9Wqo4dhDffa2bqxyM6nSdfH7j+X5I5vieSO+QlTUcT519QxjHtolq0aRCcHFjriZcbDTYyEacTTeRMtrSZ7WLN4zJljp+xn7QO8qN7wcnKkDZFoSbxvWF/pkp59DxjGD04+xOH8rwqpqYk3gAoErJZM0YpJGpJsJeqAqEmwo6xYZGvJcU+T68gx+ehl076yFQO2K4QVjhxrlREIgrEaPi5dE+HPFUiO7kWDVFRZ5icDXSIu6YOuBj7L92D0U6ZCw1mFp/uuIs9tQqWD7sXvpPfQFgsP7GT1wP6rdYuY9f4727A24zYjVH/9JoiNHSZ85SbG6RnLsOPvf9R6krHPul/8LrYPXs3jDGzCxJusqHv2tH2Hx1e+4olP5clvWlqQdRTMvQEnUWh/RAmMkj/73R1j+4KNk2yn1xRqzf+0t1O66maJQjD9xP2d/+yEWbuhw6kOnqc3H3P2P7qR+5xGMlZz/5/+Vxo37+fknnmTjuRGLd17g677/TmjDf/nuB+l81bXc9p4TiNiP1d3z4H/k2rk3vLD29idv/9YMhj/sphNUHHiyDAFCWqbntrj0079N/twlVKvG/m95Azd93SEmNuSXvvPjvPJd+7j1zx/jumSVMx98mgd/5Tyvfu9f4Mm//wEAlr/vPwKC+W/8JiLd4tyv/gILN301a498itb+Eyx87Tdw4bfex2T9DNIZgkPHuGb7NYSw52uS2ckPF8WEQMU8n5d0VGzx5PYnGORrBLrGdUt3s5RcB0Jw77n3sb9zC4uzr0dPYeXSfSxfuJcj3/J/cepX3gvAmZ/5dyAE1/ydryU+OuYX/sWnuf091/HYz/4YC/ExDog7ub//MXrFGg5LN9rPzbNvIdbNvd5cvBUl0WbO5HP3ER05QrN1hK2n7uFA4yZkrln9lf+JawYU/S3SU6cJDi6w8L3fhApqCAvpY8+w9qFfxYyGNF75SvLlFVq330nrrtcwvN/7nNriYbafuo/2na+ld//nuO5d30MrWUKnlnwy4NP3/zhfc/RvokyAmWu/6EO/MtKS6n9XgXhdoBFpjsqMT6sMRK05bnrL3+LVX/8D7L/97Zz92Psw2wOcqCAKF8+hDnc5+GP/nPbXv431//RzTJoD34iyMP7ifcx/0zdx5Pv+BUJI1j70a8gMujfcxdazD1Rs+pLhcJk87dM6fOOVnMqX3ZyC9unUy7nWa1CWOAHZKEIszHPLv/8rfPPH38Pr/uZNnP63H6CZrRJFJcZJtp5YI9rX5Rt/569y0994FR/8+59ldUOgpEUJS+/3HuFv/5sD/Mo91xBqx+/+m0fYLBtc967jPPibl9jIGriJ4vy+LbJswHzzur2eEL1PxBGDD30aKR2qEmbLtuDsP/t5Zvfdxc3f+q+Y+5Zv5vxPfoSLT4/ZyBpkVjO1IYVTbBRNhmVMajQr4xbX/PC3AnDw//5ejvybf037xlegJlCOh7jBmFe+659y+A1/Eawjfuud3P3+b+Or/+ffIEoDHl/7XUQc7zX4/D4tAp4bP/iCB0tbcN/6r7GvfgNvOvBd3L70bp649NuMJ2svoNYTuUVNSoJ+USlpwuFv/V4Alr7/b3P7r/x9jr39GmbDEaONjEdOd3ntV/9jbinuwE1TDtRv5u6Df4O7D38XUgU8sfXxyzXaPTThHGI4JnxujfE993JNdgPXrR1gc3CKYjwgGjhk7hg/+BBzb3gHh3/oBwgWZxn8yu8gujl5OWL5f/039r/q6zjxt3+AcGae9NwZT+c59M2kyco55OIsR77vX9L+2rfRvv4V9J+63wt1ppbVrceYVfsINie4PN+VInkxdsU1UoBHnv5Ffu/hf8PHTv4HPvrcj/PU6Q94ZpYMZg7fThS1sJGic+IVxO05ytNn0akXIlP1Bu2vuhuZRtRfcQfB0hzpY09imhbhBM1X3Ek8tx8tI+bu/lqGTz6MKCyN628m661TbKxT1BVbz97HzDV3IPeaTxHAwbnf+Fk+9dl/xUdP/zgfPfeTPDH8DABBUhB91W3U52tMbMyN7zzIzOEG+TMX6NamSBxBp8b+b7yTlJjFN11P83CH9c+fIVYFWlpufdchrr0+JIsbvOl7b+C5j54hcSnd111HenGL/vkBwgl6T93H4szNfqx8j7uxqt2i96F7GD0uyM82kD1F/N+fpk6XG0c3MXOypNY5RO1VN3P2Q2d54NJBpiagX8acHC3w+HAf50cdpkXA6laL7e0GAHYzItqQRFuCuGcRCI4deSsi0Lh6QHZdwh3vmSWpSzbMLNc3X8+2XfPNpj2OviJV59z4UXKXshOWrGdnSFSLg61bkELSSpZYbN3A8uSZy6J4wk/6Cee8jlFuaZ8tqF+sssKpYjTxkLmJCXFCciL5Ohr3X0AFMaGMWWqcQDmFNpJrO69hK72w1xG6N+fT7c2Np0nzHovrNRrbgppqsX7+fsKBRThoXXsr9bkjKKupv/YOsudWiJOc8enHCBaXSO68nXxOUvu616PaTWxsKeq+BKKbLerveD1mxkPLZo+/iq3TD4JxBKOSS9uPsL95E3K2C52Wn8p8kXZlOFIhcMBtJ97Dgln0Kf4k5UJxkvPpE+jUsfX0faw99kmy8ZafQCpyUjUmrHlMmOq0cEkF+1AONdvFbA09SYkD3exUeFFBEnZx1pDbMbLZpH3DHWydvJ/49rex9dyDXPOWb31ZzNoD3HHtX2JeHkBkOS4MuLjxICflMxxZ2OL8h5/i3l/7ItOVgScpnpQs9TPqyqCkJZ6rUw8K2sGUQFhmDsSI7T417UH9zaUaxgkKp4iXWtjScWlTIyLNwptOcPJDzyFufhX9Jx/g9qN/0Ucae4wPDMqQ9uJNmJ/9GO1knmxk4OIaw/55PnHvvwbAfgoclvrrXoF5usl4GrE6aRGndVaGTXrDDWyhKMcBcugv7tpFQRI6or4j3TIEYR3XiMgbnmKuc3SFp370o2zee4a0VyBzi6HATqd7uBrelNDMR0c4PbiPeuhHh6flkF6+wkfP/sTuZ+aw7G/e7H9JeDZ38IgZlARriVcmhD2PlmmekpRJnXONhGeeugkdPsTsvWvYNEU26pQYntr6KBvTsxTW9zSMy3E4hNh7AnAhJZfMc8xGh4jjDs4YluRxLm0+zFL6ZoQFVW8irJegFibBTAuMkdhRH7XUYnJtDqVElALVbiMLr4tmEoea6XjVjer3W/UjXNABo0vPInuSSdFjfvZmyKsMoPwKA/J3hLl2uBRFUUEpphk4h13f5Ozn3s8Nb/5ukgNHKRuKp3/p32G1B1CbxGGGfeYObTHJIqbDGLPZQ910M3roO2pmq++bCAWYzR5CKujUMSG0br+LlV/7BZKD1yBVSHLo6G6ZYa9NTgtEULxAgxygd2HCs//hI5z413+Z/XfMcvvsMr/0Vz5EXWUYK0lLTboxZlpoluKChsoYLE9YfH0D6wTGSS5dsIDCIBmtjJFaYFotOnbKzJtv46n/+8Psy55FW0m3fhDycs+jDT2xnDj0Ndz78E8RHXg9AFGtQ6dzlDtPfAtIwdmvq3P8jWc4tT5HdskhRczGxZjs7JLv0p6bInNB7bmAsO//bn3F0tCGYFSSAghB2pb0T0Dzhi2Gv/YZxue2uf5Hv5XkV4/Cx7/I5zffj3N7m8Lu2PHmV/G5jfdzjXolOIhVg5noAHctfiOuFuPiwAcoWQHWoWSIdUU10ihI3QSn/PCH7vnNYf6ebeLTfj69tz6ll1nsVs8TR2vNmeGjjIttXrv/rxAFDQbpKp+79PN+cGOP1wMJxhasFs/hcHw8fx8A1llKcia9SxWvLNWwD6iRHxnNBhG60yQdPEHczsgmAdaAGfSxiaGcKTGJB+qrkSTcltQveXLruWtexca5+xkXEYudG1EqgGKE0C9NekW4K7jRhBDrQAvP1jd83lOzwBxwFrgJeBzIqsePVo9vPO/n88A60Kl+fgQvlXg9EAHPAHn1nAOee9573YLv/28Dy9VjR5xz8y/5hL5MJoQwwLNcXROEEGeA7wB+EX+OR4AuMAVOAjcDF6tjBUjwx54CB4BG9boAuA4ogKer196OP+9B9XMTuAa/Vjt2sPqbz+K3/qP4Nb2/OpbH+RPGkb7M1wTgNuBv7QWOtPIpQ+Aw8AT+vHfsWmCMD/xy4FL1+PPPUQO34tegB8wDh4BzXL6/5ri8XjsW4NfdVL/7pYScL+7+cc5d0Rfeib71Sx77NuAz1fc/BGxVJ/HvgU8C3/G8130WeC/QxzuHtz/v73wC+GHgXvyF8QFg7kve6/vwjuTYlZ7Dl/vr6pr8wWuBv6hT4BPVz9cDH8RvGpvA7wF3VM/NAR/B31ifBf7lzhpWz383fqPoAd8E3A1c+JL331+t2ahay79ZrY1+3np+x9U12ds1+ZLj+23gR/43j38TsAL8PPCDz3v8BecIvLM6rz7wk8DngW/+0vvwf/P3P1p9NuJKj/2KItI/rgkhvg3/gX31H/D8J/gjogUhxLcA3/UH/Y0/bXZ1Ta7aVfvymfBF3wvAX3XOffyPeO3PApecc993pe/3Mmh1v3QTQtSAv4Xfda4aV9fkql01IcQ7gHvwpZJ/gIdEfOGP+J2jwJ8HXvHHee+XSa/7xVu1WOvAKvC+PT6cl4VdXZOrdtUAeC1wCl86ezfw55xzfyBMQwjxA8BjwL91zj33B73uxdiepPZX7apdtav2/0/2py4ivWpX7apdtZebXXWkV+2qXbWr9se0K2o2qWbd6e4MUDFBleyCZZ1kV6TOy6ZWjPoVidOO9pJwIEoPkn0+mF4Y52dchfCMTtXzrlINtZpdpURgV+gMID97ccPtIY60ORO42lKTQR57wqpKaE2UnnVGWhCFp0bbmfcW1fSE26FOq85VGIcTwktRy4pSrTpPqy4rtTrl1xMBTuMnRIx/XNZK4s1VtrbsnuGtm93A1fY10cLuct3smHGSjh4ztSEOwWq/7VVH84p31l2+lnA7P1/+7HevC139Ycfz1ghc5KjHGYksEH5+B+Mk45UBw6290xtJOpHbd0gTiwKFwyK4lHfItiNw/jpHsCs5/nyOSKFcRQ8ncBXlma/OVWtWndYuubr1lJOicF6byRhcGJB15QulqQXkZ/bu/gnbiROzs6iRwGqQ9RKTaa+WWmnYoyvGLEcVAjq0tlgrkMLhJ6Krc3JgnCBUhuk0REfGP2YloS7J8gA5re6j2CKnkmBg/RpVooRlTTJdv/Ci1uSKHKme77D/B/8PGo0UJS2h9pRvG9tN3HpE85RETx1FU1A02JUJsRpc4DwlXiEIBpUSpAI19fyl4dAR9Q1ZSyFLRzjw0yt6ewLA+FiHwWHNZL+jaDpcJaSHdpz79n989krO58tlCwdCDv/YX+fs6iw6KCkyDesR4UB6qeCBI9ksCQYlRaVFXrswBiEw9QCrvApkmUii7ZKyrshaPmmIBrYS6ZKMlyQmhLzjcBqCgdfEKtoWNRHEm55BfXqoIPnxf7aXS8L8wZBv/8XXUVN+JHFiImzl0NbzJn997tN8cXoNfVPjpz/1ZuIVhR77yRVPnejlavTUEQ4tKre7s/JO+c2nrEmmM5KiISo9I+9EpguQHcw5dmSNG9urSGGRwvHBb/nNPVwR6Byo8dO/uciSGtGWhofzOb73Y9/M3Bc0ZSIYH3aI0gu12dhCbKl3poS6pBHlHGz0GJURW9Oa560FticJ1gom2wlirAmGApUK4g0vm9E8n6GHnouUzW0GrznOxa8zuxsQAs799b27f4Jgjhu/5u+QzXifEQyhvmwZHpKMb8kQWwEqFxRt4/XekhIdGPbP9DGVOkIjzMiMRle7r0WQ6IKnLi0y3x0SKkM7THlue4bBcpPWMxqVOhrLhsbJPm5R7I7n2iRg89Y6D/7nv/ei1uTK4E9WYEcBw9KfwMF9WxgnsNsh9Qtel2d8QJDNewfrtCPspnTqKaEuUcJhnRd+m2QhSlqyXDPox4RrmrAXYEK/E8UbknhbUXMO9fCzJCfPUIsjZL2GazVwcYBpxmQzIeeu6GS+fDaxIRe32pixxgQSFVpM02DHAhsITAhl4kOotKu8tlAjxCqJDQQ2lJRx5RzqijKRlDU/JlvGfnQ27QqyLiCgaHoSY9f2/AW2UaJSv3Y4CLY0Yxvt6ZpIHLH0kZfB8wRYBBKHlobCKc5ls3zgzC1EawpVkZKbaCe78efvuRQkOhOozCKLSnQxLQkGjmCgGe8PKWpQ1gXKQm3FobKQ08USkyMBi7UR3WiC2GNKrEiUKByBsAyt5Kcv3k1yPsDEjryNj5wSn4GIekmjPUUAB9t9tDC8qn2WwilS62fsnxwtsVT3A00X623WtlrYNMGGzvP8jix5WyNzCyZCjWOaH3kC3nYjVIHIHlMyoCeG2Yd6DE60SGcknZM50/mAsgZqNcQGzkspa4eIDHGSEwUl0yJAS0ukPSnrfDKitJLSKkonyUrNofltT4RuNKuTBo04w+0D9XCH2cdTJkshthYiCuPn66Uf9Z6/t/fij/+KzrpadH0pRBaCtVqDfBJSO6+QBib7HMWCZ69XcUm7OWFfc0hN54TSEEhDYf0sa2o0qQkorSTrala7TcaTEDfyYmdZV5KvKsokoRmcIHjigudwVMqTSpeW4OIWwZk9lkEExmVI2IuRE4ULJMaZ3VQtb3mS6iKTOCnIOpJw4CgaGie9o7XKa1rJEvKm3JWTMCGo3H+/41CLpsNF1sv7xIB2BI2ccqLQI+XVNQeClby218sC8AInWlhFJEsUlt8Z3sqnVo+TP9Em7lek4NqL15maw0QOG/jSSDCU6DGEQ4meQDCx6FCipwY9KUk2JeFIknYkRV2AEgQjiJc1K2qGcp8it5cd0F6uRe4UQxvwXzfewJnfOEb3vKF/rf/cypb1M/WxIannzNSmxLqgE06IpGFOD7BImjKlcIpX1M4AcDpf4GKty6naHI+rfRTrCUUm6R+T1C8KTBhTP++QtRhpDIc/CBf+knmBLtqemXWIwmADQeOiYbw/YHhIehWESqPNhlU2W5UkjJVo6cnQQ2loBBW5/E7nx0IYlJSVwq6xklaYsTGpUQsL1l6bIcsYHIQzEfHyCJT4/RpaL8KuyJGGQUkyN2EaRZApxHKdZEWiMsg7UCwWJK2UepwzXx/RCj3TeUunRBWdd2Y1QSVUv1nU6RcJoyLi8Mw2/XrMsBEznYSUiWJKAEICEZ3xImp5C9eoMbm2y/Cgpqx5ejH+/ZWczZfP8lIjK4EtW4KRFQtNpTlV1jyLuw0EZey5JIuaxGqB1V6/x3/P7utt5Ot9Re4drTRc5hiVrkrNBCK0aG0pYk9sYrVDlIKi2NuZC4dACovCUcALnNhWUefXn7wdfTamfh4QvhyUtx1l3WFrhqiT0qqnOCeYZAGTSci4FxL0JMFYEfYl8ZYi6htk5lO6aACykBR1UKXfwJwM2AyaCOGY2nBvFqMyAVgkvze+kY994E4OPJAyPBxVG67z+u2RJWzmBNrQilIa2gsbLkZDQmGQosAgaKopqQ0JRMmhYIsbomXmgsMAPKUWmQYJwbYmmxFEQ0fZDFCTEDGeUj/VQwcxeRHseUSKgOmhFkUiEEaSdqW/BjQgfcblAguBRUqLMZJQG58JO0EvS5iWAUI4GkGGlhbrBKVTlFYSSkOkS3KjsFZiBCSNjPH+mNYZx/BgQLQVIKbFrmLrS7Ero9EDpHTUWinGSNzJBuEQsjZks4bmzJiZ2pRGmNEKUhbiIQ2V0dYTmtLnbqnzN1ThFFI4z3akEzKrfKiuDBtArjRFKclTTTgQZHMJtXUFvQHJBU1RbzNsKMzeZrAAOFNpT5XeGYpCoMdyt1egMl7QJDIRlIX0KqsxyNI32IT1z5c1UdVFYRoIVO7rrCbCUzpoB7lETiVWV10Z7SM4G3mnK4q9vUOev68HwuxunkUVJbjNiOYZL/dgQyhjyGcMqlXQaUzZ1xrQCadYBGkZMCwiep2Y4ShhPA2YDDW1ZUn9kiDZ9Ju0Sh1OeF5bEwpU6kjWBCYK2VQNJsXeRqQSxwOTo/zMJ+/mms9mhKtD0jtiylpV+w29wyimAe3GlNJKmkFKaRU1lSOFpS4zxjaicJqmnBIKw8DGjG1EQ6Xc2r7EwVqPZ2fneXZ1jnLaIO3467PoJoRpAc6RDyKoROP20pwUTBYDooEl60jKGuzoKdnA+ShTO7DCK8laydhIpLQUgSKuqCaNleRWAyW51RTGZ0HWCWo6Z+oCZuoT0lIzGMeU100ZVRpq/eN1ul9cxdUiRGm9UvKLtCtzpE5gjJfGVdqih4K8VdXsujmtOCNSJVpYZsIJbT2lq8d01ISOmhAIzwg/sRE9UyMIDFZLWjplPW9SWoUWfkcZqoihlZRj34Qp6hJXixF5AZOMZKMg7co9590EwAiiLa+lU9a5rL1e95epLHwrtkw8nWBZ9+k3eEfqFDjlCEY+gs3bvi5kY4fTDjWWgE93AIS2hI2MrBdDLkknIaQSGzrKhkFN9Qs5dPbIYlFgkEhgagLPxeoU58ZdXGhRqUJYR1GXFC1LNDtlrjWmE0+ZicYEwlI4rxoZqpJEFyRBSS9KmAYhEyKElahMEYwtsrAoJV+AclADR7whSEWMLfcW9Ze6gJ9//1uYWfUS0TJv+EaswDeXAIwgbqeEymCsxDrJTDimraYUTmPcZUnpUBhMVW8bV8oCqQ0onWIuHjHoxKxeL9laCsk7Ae3TEjVJUOOc+qmA8dGSQ7/NnvYYTOKbyyp3mEDsas077bARnpvJCkRocFYQRAVSOqSAYRZRCwqEcDgnEFUPZpRHZEYxXxtjne/s13XOsPCvj6OCUhvydky0LehfK5n5vPHqL8+TUXoxdmVde+U/7DJXFOOAOpDNWkzNksQFpZXkVtFWU+o6o6FSOmrCku7TkRNiUWIQ9KzfCVIXkDt/KEXgdxAtL2tKT7OAPAy9A6pLym4NvdVHlAY1LdHTiLxzJWfy5TVhvARwiaj0xx1F11bPCdLAO0gXOFy9RAaW3HjnKrRFBwalLFkpkdJRj3MakRews04wzkIGiwmuH+JCS7M15XCnR+tAypMbi/QutlATSTAQFDPO7+R7bMZJUhcwMjGRLMhswNh49dDTl+YIepV4oRLYCEyn5MhMn6ONLX8dCEvpfPNgVKUdWlgCZWjEGUWhyENLUfcyuuHIIQtHpbBIYPDyvgLCITgtdjXN98r6WUzHwXReMPvolGwmAgF6Kig7zjeAckkUlEjh2JjUONzYZmpCIlmQ2oC6zLBOEsuU1AVILLHwzjWzgZdrMQGjIvKwIG0otaOoQ5FITC1A9ad0nzbMPeKoffHMnq6J/3wsJhII5zChwCnfX3AKXFiVPFCI0GCNRAhLXipuXVjedZQbaZ3MaHppwFxtzNzzhCSlcAysZjEZspnWScKCrUENU7MURlI0LU4rRJohrHtJHMdX5EgLo0iHEWKoCUeCou4wdYuolURBuavNEyv/wSqcj0blhLbMCCt4QlD9P7QJqQ3IbEBN5p4hECitYqxDgsCQKbeLGSxaIUESg7GoYYZOE19I3GPbxcjaHRyjRSalx/s5kIFFCEeZK6R0COl2nadS/jklHFEA9SinFaXUtHekudXUg5xalDNsRETa0IpTjta3OF5b5abmMv91+FrkIEYakFOFjfbekU5syOnpPCtpC4DNtE5hlIfrjALaZ9lVN0hnHHE7ox1O0dLQUBkjE2GqDmxqgip1U4zzELMDj1W+IWG1xyartAQ0TjqcAi3wUU5+WYJ3L805Qdl0LH3BoJe3GRw7QFmHdLH0EtyZgsiQl4pWlCKFo1/ENHVGU04Z2oTNskFHTRjbiFjmgERiqcucmsyZmoCpCZiUIZMsxBoJ0jfv8pagaGqC7YDWA5dwaYbYY0kaJExnldd0CwW6UmERTvgmUwVxFNIhA4tUFq0NSVgghaWX14lVwVw8BqCXJzSCjLrKsQg2szoroyaTLGQyiNFRSbMx9XppRlDWHPG6wjUS5GDicdsvIZu7IkdqMoUYK1yzxKaBl4MNLEr7QrASDik8vCOWBZEsiEVBIAyhsATC+0oPAxmhcAyIaaopgSgJbOx3UxmiquiD0PqdSXgIkQs0jIcIa4m2G+jFl4EjtV4a1wmwUQUrUQ4lDVpb4rAgKzRlobDjAGEEJjEESbXhKIuQFmO9ynsrTGnqjNJJ1tOAfhaTFZpAGephTjPIiGRBR004Gm5w9/GTfHLlFqwSyFxgErvnTmOYxXz0zPUAlIXaBZeHoYHIIksvo5vOCMyxKTcurBEqw4PrBylKr00O0IxyakHOtAyYFgFpoQl16Zur4jJz+g5oXxqLM+Jy87V63IbyJd0gXwkTFXi8fmbkMcSBQI8h2FYUsw4iU8naCwZZ7BskVcS1Y6ZqTRsEadU8q8sMg8AgsE4yKqLda8YY6WGLoaNoCF8iCzWuFsMkhXBvm5JWeTnpouF7Ac6CHkMW+WxOZJL4rCIYeVRHOueYapgEjvimkmEWMp5GSOk40O2jhOXCsIMUjmEaMTjdIRhIklWYGzuEDUln64zvyBAObNNQZJfFPP03X+HUHukIFqZEUcFku42RPjUV0mKtJDeKRHvnYJwkFgUSW8E+JIGwvuSBvxBqMiN1AYEwGCEprEZLSyAsWvpITUbG48jwkYeLQkSWeVbacYks9rYTC/5mVrnDxAIXV3g04VDKUZaS7UGTYDWgfVGgx450zuNF030C2U1JohJrJaWRKOGYCSccjLZZK5o8tHqAwakOyaq/gQazjkuHJpT7JLPBmPnagLd1H+dzR65BrDex2uFi6wcg9tCcFaTjECF9/cqNNQeu2eDvHPsoP3r6rZjJAk7A+JDjloOXyK3i6UsLpOsJMr8cJQ2XJpxYWqcRZgTKME5bDKY1TCERufTTdQ4PoyktaOlxk4BUvqYvtSDe9mD3vbZgLNi+uUWyUfNZVtNhag6cQEUGKS1SOrYnCVI4UhNgnW/UFk6hquK3qtpEQxsztiETG9Eva2RWURhFaZR3ojuXgfAZQBkJRGFwSiHmuzAY78UyvMBsWIHhA18iM2GFoa5B4znF4v1T8lZAmUjfaT+sqK04hk/sY/tmh2uWYOHUOGT/Yo9xFtJbb1A7FTKz4midzXBasH0ixEloXLJE2yGbd7jdCapd2ZWXqKp6xY7UGMl4GHsoR80iA0sQGHSVogbKoKVBVVGpRVI4xRCwtvTO1AkmFRzGIDDVyNvOhZKoAls9JlUFyEXglMAlAZQlIokRxu4CuffULKjCd9WjTkqRaZwTFLnGbkS0T0nmH5wSLPdwccTkmhZbN3rIVGYSMhKCmRRTKHrKksic/eE2z03nmD7c5egnc+JT67hAc+mdS9iVOk8cO0x4W8n+cJvrwhXedPQkn773lQgL0fLLg242aXh8XxSUnLh2nfce/gBdmXD64MO8P3o7Job42IBWOGV50iYOC+yswJTKZz/KO5XCKCJdMikk1grKfogeKPTERzGyrMZod8ZpjccDCuMbB0VDIws/KbWX5pwgGMDWLQI9Cb1m0zrks9YjPrYjTGywxgPPD3R6zERjDibbnMvnaKiUwmlUFVob5zGlQxuzUTa5lLWZlCG5VVhHVUby772DCFGFwyQBujfBxiFituVFbvbIZMku5M9p32gykS+VqRxmnygYHYgoaoLpgkfFxJseShhMHPP3CQbHQtLDOXNzQ1pRSitK6W/XibYdZV1w5t0Bat+EejKiNIr1p1pe0TgDtS+jKCVyOIFAg9J/AhEpVIPA+PQxtoRhST3OCZQhkJaazkmUT+d7pkYsfHqfuoD1Cvq0s5vWpL/RCqcZ2pjCVWqJvDCd8bUSDwkqmiGR1mCMLwzvfWaPk5DXJbIEKyCM/R2bbsc0Lki/yyYK9nUIL24TDhKs0qhUEPY1JnKUdY1LFRMV+UjEBiQqJ+wL1LT0aUcYkL5hSDaICJcDntlY4Ln2PE2ZcmNtmY/OOFQm0BOx+zntlYVhyXVzG8zHI75x9j5eHW1TkyElHgo13u/5BG6aXwV8B3aaBRTTADdVIEC2Spq1DCUtwzxiY1QnG0a+sTbyTinqOaKe9Z1WIXxkaiucbTWzLks/UrvXqT3gh1VSQTpvuOOO0zx05pDnZjACERmUdoRRwXxzxKH6Ni2d0i8TrBNMVMi+sI9xEiUsTTnFIhnaeBdeVn5Jz8AagcglsvCOQ1jQg5Rypk7eCbBawEN7sA7PszLxY7EqF5Q1MAngoH4e0hnFZF4yPOan2pzymPV4XZJ3fKNOpUAhmeYBRazYmiTo5ZDezRY9lDRPS+L7a6TdBtkBR9k10Ffg8BjsWul9ibGVSuufgCONk5x0GoKAoJYThwW1oEBJSyDNbqdsYkLm9JADeptFNWXiFE/lix72JEo6asKMKLBCYpBsFE22ijrGCZ/eRj7lyEvNSIeYSKAnjrytiXZqGca9LHCk4GFMNvCbWZFpbKZQfU3R9GB7E4boqaNDl6wTkKw79ERUxAyCYhqTzllcreQj527Auht9Z/qoYT2tE/USnBKEXxDkxwztV26w1Wvwv55+JZ/qHqcZZpT7M5oPxqjMUe1Re2ahNFzfWuWNzad4YzxEiQCNYupyHh4eIl0yuJphNhrzTH+B9a0mbjMiGAn0WGBiRxZoyrr0G0upGW/W0NsamVU18zqAIO6DLPy0m6xIb1ygkFmJdQoRWIRR7DVoUgjHZMk7g5tuO8cNzVXSQwFnNmfIpgF2GCA6OUmUc6y5WcG/FLnVjMqwClBKlLDkTtGRBoOloyZslQ1K6ye4AIKqkQlAKVATgZ6ATi22FrJ5c8J0URAM/5AD/hMwq/3naGpV4zAQLyBAyloCE0P7GcnsEyl5W1NGktapAVs3N8lm/N9QI0ne1SS6INQhwUDQfUJSWy+RueX0X1QklyRHfifjwpsi/75tS6wNMrCQF55QSAgw5g8/6OfZFTnSoOqWTcchwgq0trusK4E0u9FobjVzwYj9wTaxKFk1Cc/kiwxtgsLupiZ1URIrg3WCM5NZlictjjU3WYp6NLWPXqfNgPEwxoQa4fwIpQgCXFEgJxl6ciVn8mU26aeVom0olMVejAlyv8vmHUdkFOODjqJrKBoJsnCYxE8sqcxBIDChn+BQyzGDUcD1119kUoRcWK7Tf3UKVhCcDykOZbS7Y4pSYaaK1x07xYn6GhLHme0uJooJxhUj1B6aFoa3NB/ndfEQJfzNPbApKwYKq1i4dpNYl5RW0Q5TGo2UwVjjpppo25F1BGLqmy2xKtga1InPB6icXbINWfj6VhlL7zyFwGqJMHaXOUtNCpwUPiPYY0+qpEVeM+bGpVW+ff+nOV/M8hAH2dcZcO7ZA9i5AmsFc7UJmfUfYAK7Y9UbmZfofmx8kJaecm28Bvg66dDEZFYzyGKy0v9uqEvKWJJFmrIhSBGoTAEJ9W9cQZWa9bPdvViKF5it8NFlw2cSwlT9ECl2Wc6aF0rG+0LSriQYOU7+1Qb7P2WZzivSOV9jzochK40mUjiyWyfk7YS1tiDoFog1jbttyOn5GmoKZadE1krSaUin7QmECCvY0Euok15Z195KRtOIuJYzmfo/IYSjtBItLd1wBz+asS/oMbQJP7d1A08PF3nq4hJmEDB3qMdfPnofEst5YZhRIyY24pnteQbjmHY45bGtJVbX27hUEbQyao2MvBORrFdUWlEIZQlaYV8G5UAbwPCIoH7RMRhFfhCjwsHJwqcewUggnEJlDhMJso4nqLChwAb+ezWRhD1BOWNphSknWmtcaHvaQpf59Exoy2gcI6QF5RtTc3rIDdEyvyzvQG45n+rscfQVy4JXRj0SkVBiGNqciXOs2waL0YBn3DyNMCNRBdc21ol1wcOFJstqTBcUZc1jbhtxhhSOfDumNahuMO1Zw+ItR9wzuzAqT8OIpyvcqXNZi5oWyEbFUbeHJgTkvYhyUfL/nHonW6MarVrKsfYm5yQI7QjCkm48QVbDCNJqzo26bE1rbG42cFWmEw4E02ty9u/f4tr2BvviAaXz9+FWGu4C1JWy6FZOGSlwPpOczCm+eu48pVWstbf2FJAvrHegNrTIVIL1XXwEZF3/XDAQrLxaYRKHm0kJkwL1bIOV1wrKVkm0pijrfvqpN6gx2xnRrKcMDgiYaophhGj7Jnjz8IDpNGSuOWVzs+ERJQBagbF/Ms0mW41p6diAEZSl7zQDHrtVOdEZ7dPye4bHeGDjEMvrbeInE6Itx1Y6w/L+NotBn5WyzVrZ5Ew6S29QoxgHXGq06d+7wJEvFIyXNL3rNfk1Y8qOpWhIks3qBqlOeq8bCADYHcpAqDUzJs0AkQtsZBHWO0rhdiBcHoBuIz+FhFN+miMXuzCvYD3gvuAI9VYK0tHpjBnohLKmCaOSICg52O6zPm7wxfXDPB7s41hzgygosalP3/bakTZlRlcuAJC6kr51DG3AxEYshEPflKycRVbVAPd3+6xpw7iVIAPLTGtMM8zIjUaN5G493ISQrFXUhMMSp/0gRNmMdnlegYqn0/NM6mnpHe0emsShRopnVuYp+hGvv/Uk69MGm2kdU7O4QrKvO0ALSySNH0hwHj+7serxuHKsCPuCZN3RfUpRJot88egS5sYxSZJfbtJWNJdRUDJwgjKrBiAkbN1VUFrFkWSDG+uX+JU9WxF2B1iEEwgjKn5dvyGaxBO5mERgQwuBg7Emm2pEw+ISC6WgaFTYT+mQyjJKIz9unhSUgUEphxCOOCzQyjJTn+CcoB/6bDgOSmyrhkiLP/J4v9SumEavGAdEcYFsFpRpQB4alCwIZUmiCmoyr2arS17dPM2b208ir7Vs3dXg0fFBpjakq31NB2CrrLOWNf0FYARJUHDsbU/y0C0H/Ogj4KYBAj+DLlctLo5gPHl5jIeC59YNHZMlwV37zvPp/nUgNEQW56Csebq8sm0phwobQNExhN2UwibIvh/vNDWLSjXFfMGtRy8Rq4LtVo1mkHLSzDOuRXRrKYEyzMUjXjd7mq4ek9mA31m9if44oa59Z1bssSMNhaDEoPE38D4VAjmbtiQQhq9ePM1G1mBqAlITkBtNO5zSnp1Szii0MNR0QV1nPNNfQGWeDUs4n9I7BSaWBGMPxrehrPhufdPJaenntI1FCIHI7Z6PzQrhME1DqC2ik/FP93+IH15+J6f6c7h6yfzCgKPNLT/BJY2fqy8j+tOYYD3AAaZhSRcNeVsyGSnmHy45+Hs56aMxG7fWcdqRH8mQgXekozQiXa2jR5LaiqBxsaT1F9bpBBMUjlk12tM1MQGoicf4Vv0yZCmw2mFDkKnAtAwyLrG5gsSCFb50VTXSdqBdMjJ0GlNiXZIZRVZotLbMNCaUVu4ODOVGkRYaayW2kKyst2lP+pcPSn6FZ+39JykoS8VbTzxFbjUPrBzcPcBAeNhTTWYcDraIRUHP1uiZGmMbMRuMqamtXQKT1aJNIAxHaltcmOlwaWuesxfniA6X3LCwyrCIAdgc1+iNOlW9xGEbnlvRlZfTuj01AfmcQWSShs4JkoKikOikxFqBDTU2dLhaSd72HWdCDxfTI0m0JRgeNzT3DRnKJkI7bmld4pnRAmfXu8x3Rh7FoKAWFDTCjNIqzk5naTRSDIJAGcpCVeoEvkO7x0tSTdlDTYQUzkPJjZNslXUyq0lUwTSv7UZRYRWlWlcSKb8xd/SEURb5+WvpcZfeIQpMqLA6IuyXFUepAetw2lMWIqVP2QBZmBew7O+VidAzu9+4tMqHR7cwKiJWt1oESUEzymjqlNIpmjplX9jjWLjGa1qn+MLitXz+4lHSacjir4fUL0xYfU2daVehpp4Yev6RkrwhWW+GOAEDYmqXJAeeNcTrKbo/RZy5RPgPEvaFPZpySixfehT25bSoZwlGfsIoGFeUktIh3WVsqUglLhTopMTkCrTFpYqwk5FvxsTL2m+s+yz7G32sk1gEKysdKCXbwjHfHCOEh9IFFY8BwuGMQK7HiNEyrp74spB98WtyhThS0M2CZi1lO6+xP+nTTi4DOZWwRLJACUvqgl3+xdwpT76gRywFfWoi477JMQJZclN8EfD0eh9Yb2NLSagM3XBKI8gY5Al9FeOUwyo83VwcwFIXUw+Y7Nv7qNQFDtXKMcOAXp5waK7H6d4SZjPCKYcSfpZcRwazL0OejwgvBeSHLG4xxxESbijYB7X5MZONGr94z2uIZ6dI6VjvNUjiAheZip9yyqCIebY3x7lRl0AZbmytcHpjFj11jBfky2KDkQiUkFhnGLmCVZPwdLafZ8fzXBh2WKoPCKVhmMfYqn6ppSG3mkkZ0qxvkVlNWmgfsbhKcSF02MBH+SoXBCPhsaTGR+KmYu/Z6d6LwvgUf49Te+sEOioRjze5WMv4n6M7mWQhZqJxkQ/HpiakpafM6DEzakRdZsTBJmkzINunONmbp/eemJXzTZZuWGH7M0s4HbB1m/Vz6c4vVHwxYO4xQ+PZLeTmAJcXYP17zMcjrJOEwuzO6e+VFQ1Pwxn1qmGVWYGoRqtNDCZyu6VtB0T1nCAooQ3DzTrJJY3TfhrKnazx4PY1qHaBLSTxcxFISIdN7M0TJH5QRldThEpZTCkw3WI3CnVKIl5CpnuFxM4OIS03zKzS0L4eY5ygEeSo5+WSqQ1YK5vM6hEtmXosaUW6AHAyX0IJS2E1J7MlajLnzGiWme6YjbUWNZ3zuvazbJRNTk/nONfvILOdExW7XVkTvTyaTQjn8bQHJpROEkhDa2nIeByjA4+FjHTJMI2YpgH5PgmFJIhKhIBin6OcaETuU5H5gz3W11osdQYYKzn/3Dwzhyd0D2+gpR9YuKGxwr6FHnWZEQjDvB7wa/ntFHVBOi988f1lYoUzrBvJmmmSOi8JsTmsU1rJ4dY2oiog79CeDfOIepATyZKL046nbPQMaR6/rBzkAmHFbjoIvtnkBKCEh0MZ6/klS+HJwPd4SaRwhFEJGSRBwUw8YUvXmFzy3fis1IzLkJlwjKwGWlIXYJwfaomkoR2lrCx3ifqS0W8vEaeO4WH41jd+msIpajLnUxvHOX/mCK17L+BGI5zWuKV55GYPc3gfgTxFIEqksLvsUXtlNnFkXUeyBuHYUtYUZaXHZq3vHZjQ4YwkamS7XKSTSUTn/pDJAUfzDHROZsjCsnVDwviApn3KEvVLNm/WxJm/h+YO9phJJl7yxvqpN7QjqOegPRMZ1l4eFX0RdsXux1pJJA37ox5redPjnoWjsGr3AweokdGRE/arCUrAycLyRHEQi2RJ9/ncdJ7ltM11jTU+N7yWJy4tsTQzQEjHpAy5Llqhoyb0y4RWnNFTDpVV4GopPEBfeMLkPbfS726dZEo/SxgVIVI4uu0xnWTKfDyidJI12SQvNEUmETVfBC8LhVAO3fG5eJYGNJOUu298hrrK+eSFa5FTyWavwdHFTTKjKatwsy4z5vWAsY2Y2AgpLZuvtMxds0Xnl/YeF6aExDjLyBWMXUjqAhSOSPpZ+cJIykp3J9EFEsewiHFOsDpq0ksTHDDdTKhlPkIhtFBIVFrhIqdVJFoxrbtA4YRA2qomqjyrENmLxwZ+pUxWk38MPBTq9bPPcnY6x/loDpRje5zQiacMy5i2mmKdxFSf9f5gm6wWUDpJeK3hue4Mg+0azZkxf+7Ik7yp+QQPTI9ya3yex4b7Wd90YAyT151gMq9pXMyJV9aZHqjz2NY+ZoIxBkkq9/4GKuZL8uUAE3mO3l1qQe35SGUmMFIylTFTPIKlfjrwkMIZQ/iopH8sIm8JwoHzY6RHJAMhmR4uUENF7ZxmM25SdqXfrPsJLveMUlI6XKOGmKQgJaL8CuNIcQJbSs6NutzWuEAQGVpLKQ/1DlZwDUVmA6yQpNLfOE0paMqQz01bnMtmeH3zJEf1JrOdEakLWCnb9MuE5jUZp4ezLCz0yY3iUtFlRo0IpPFkD6HzuMHcz1Q75blIZX5FZ/IVMesEmfGp6E7dr7SSQRGTGU1mFHmmQUJYyykKhUk1VDAV5zwqYpKFbGc1FlpDbpxf5b4LTcxWxFYzoRnlbGc1+mHCpm74sknFAPQN1z/CzM1j3tV8hK9/GSxM4QwTl7NuPAft0CQMjU/jw9DzC+RWe9xfqVHSUtc5pZJsjOpsLLcRU0nzjK/9pvOejEWNfOc6HDjCkRfGE1Vq7wKftbgSXKQQmfHRaL63KSyAwNFOUi5ca0k/fYD/fkeD+ebIN1IyRToNWR01aQQZ8+GQgU12SUpiUdBWE2aCMRLHvgN9Oken3Jhc4rpwhVP5As0q+xsUMeHQ4VoNgkFBe1AQXurhjCUYlVy4Z4lfmJvnyPE1/tyBh/Z2TaQDbenfnpOcDSumN7crPSMqRIsoFbbiVoi2vFzP5Mac8ELI+h1+wkmUEPZ942m63+AS42kJrxlSFC30csgwrPTkpl7SiNDgnCDd1yA5OcGFwZ+AI7VAP+CkXeRUZ4Vr43Ui6RmqS6sqGZEAIyQTG7JpGpwuvb7MZwYnaFXh45lyFomlZ2o8Od0PQFLxB45sxNqowf3jo9zVOE1hFblRfm7agp76poGw/v+XBfxJuF1S2bTUlMaz/6uqFtNLE7JSM8kC7CBA1AxloTFT5WdKAx+ZYgWukIzHMatRg9lozF2dM5y7tsvmI/P0enWS+ZJpGTAoY/plDTQovErmbbXzzKoRi8oydXtP5pK5gsxZJIJN06BvvI5UXeU044xRGpEZfykG0hCrAi0tLVVQdiTPpgH0EmRZieJph5gogqFAjyAcOoKRn1xxAkwtQJR2t1ZqtUSnpYfKwUvGCH65zTrBMAsxdcv1713GfLjF+bcewN2QevltK+gPE9bjBnMVmbN1glgWmOr/bjDxTTrjyX4kXs6lLnMgJ3UBm9Ma0kAx3yCbDQkHJaZdR01TwrUR+UyAKCTL2y0ebx/Y0zVxDppdnz0VF0JfE3UVNwAVP0DmhytMDNIKom1H7waHWguxoa+bl0DZMUyPeycYJAVKOWxFuVjuz0ieipn0Qp/VOHCBRQcWayTDQyHJk8aD8r/iNVLnmauxgo+fv47oSElmNVmpCSuPVjjlyUeMZV20sE5yvpjh3KTL3bPrbJYNYlnwXDbP5zaPcbHf9rVW4wltC6MoCsV9m4fp6gkjEzGYxp4lXuCZfZzv3Hp5jpdBLVA5Iu07gUWpdiGcOzVkYyV5qZj0Eq+OGVisEbsa3ZQSxhKZVji6oWJl2iXWJW/oPMM3HHqYn372zYjNiEnbM82Py6iqKVbrgvEOFUvhHJNyb2U1AIa2pGclE6cZ25BAGGoqo3BtCqOYTkP6QUyoDJnQyMixlUaM89BHoxNFOPEqDDjQY4maCsIhBBNHODToUVHdZBoX+CxFTQqf4mvpm03wsoDKSeEItUHEBpdErL+yweR4jhD+xrdOUEwCVgdNZmNfJz0Ub2GQBMKQ2csyPQbJyET0TX23sWud5GLRpTSKyDrKRkDaUaQdRTAX0HIO2Rtx/H0pTkkuvrHBx8sTe7soxuuLWSvQWUUvXPEPW+0qGXeJwEedwcAPs6AtYurHics6FHMFzbkxrThjWmiyIiAJC7YHNYpU46wfNZWZrCRMvLSzA3C+rwD4ppN58RvulTlS5Wjt88O5g406H1UnePOBk1zfXuXMeJayUoksraTvPAt+ZgMe7HtRrotZh48ObuDUZ49w+LenqHHBQiMkm/HkCZMFSXoMzEzBetBgbabpRaxKdTmFd24XZO20eMliVV8J09rXR6dFsFvzQziMFQTKw3r6RYLsa2y3QCqDNRrZ1+iRqIihBWXi0KlAZiBWQy4t7+ffDd/GK/edxzVL9GpImgeE2pBXNWmDQOKj0lgWtGTKqgkozN6H6rGQ1KWlsJ54uHCaYRGzmdXpDROKXkRfOho1L3I3qrgli42EcFsSDP1nK4wfBQ2qtdITn9LriUGOM5yUSClwSmJjhcQz4gvjHawoIsRg72vGUjjGWYhzMLy+64UPlY/Aikngmx5JybiX8KyeI5wzSOFo6ylzekTqNIVTTE3AWtYkfd5mKYVlXg9YLWYIdcn2CcX8g5Yy8TR1wkooLbZVAyFY+bsZ6rMJS78W8txerklgSTcSZKNgh/lRGM/nbGMP1jdNTz5CxT1rEgemqp3Gnh6x9ViIngZMKrKa+tiTocijYDrGT0otlohcIOPSl4iUF9OzqbqMMXZ/Agz5O23P0khUYugP6nzMneCG2TWmpZeSqGs/9gd+ksMgGJURpzdnOf2hYxz64BbHhxcoDszgIoUsDCaKSDs+da9fEIwJ6BzYoqEyzuU1ilyjBLt65i7UWC0p6h7cvtempUXidhmrXFUfDZQH9UyLgCL3XAFCOsylGo2LkqzjEFaQLRWoRkmrOWF7o8n8Yp/eMMGer1OeafKFp25GRY6y5kkWlLQetF21rHei0tQGoGDNNIDe3izG86wmA6QrKVxJLHNiF2AR9POEMteIUpBvxQytIAhLpPTohzwylA0/6RX2BcmGh765Cv4WjB16bD0jfmmQ2RSoU3YTZGYwifbojtJ5iREXEozTl0VUWgsLxoFleEhRW7MMQ4MZB6haiSkUQvprpN+v8aRY4EAr5mCtx6iMfP8BwdQErE6a5Eaxv9anJjOGNmZBDZnoiBOddT5xaI7pBV2pzXoJa9kb4sYTzCuOUTzapjhgmX37KvzS3q2HSxWq7aMkmYMKRDXB5vXKfMnDYUJXUQEKiparGMCgcdGRdiXjN4wIAsMP3/ZrxKLg59dfyw31VX7hf76F+kXN8BqLnctxaJJaTpYFHg1SSsRUMT5S1U7D4CVNwF2ZIzWCwXIT2Sw8ScpU0dvs8PlLbRCO4IShqVNQ7JKT1GROQ2cstoacWWximhHrr+mSzXjwbW3FEY59rbOoC4oGuH0pb9v3FDWVMSkXMVOFFL4m9nyVv6zt5Y332mJZcFv3Ik8PF+lNY9+d1cbj1Zzw3JDKUIaO+JmYg5+YoJ+9RHlsH2qYkS/U6R+L6R+PiXJYd22SMyHJmiOdlcSbjvF+ibluQj3KaQQ5C/GQmvLQJ4XH7dbJmFdTHskO4Vz/jz7wr6A5oG9zNo1gy9Z2qRNTG3g8ZWAolCZe1WRGwGzqH8s1lBKZeyzhzmCB9Ny9hFPnde2nBjnJEYMRrigQUYjMgooNX2G1wIX+OikbAXoY7TmOVOA3XVdKsi4sfHHK8jBERJZa3SvzFoXC5BJXeHLmtXGDQRYzE49ZSoYVssGPQC7WhvTyhN/ZvJlQGrbLOpEoPcmJ9s23YCRw0hFtl56forIbvuY0r+ic59X1U3x675aEYOQwgxCRebpJG3gRSZkJ1ERiar7B6CIHVQQqM4GeClpnLVlLMP2aIfs7Q9JS85Pn30QvTZhJJnxq2iRdsCx9oWB8IMQUXnZlx4R0WCOQpWDhi3jVACVe0mVy5ejLoCKV7QeI0s/HOhyilDyzvEArTFmKB0SyZGhiLyGrc+7oXuCOr7nAb01eTbIqyGZcxcsodvXphQEEHJjvsRj02Sib9PMEkSlUJqhfyv3NYBymrRkf8BfJXttSMOIfzH+Gn9GvZG3c8BIPViArVpskKCnjgkEjIOopVD/FjcboJ8+AkEQXLAuPRyx0WthmjEkC1HQAzjG4rknWEtjIUatlRMrQjSfMBaNdmWOF5XXJKY5oh3WSk9NFnD21p2tSOsvQOvo2JnUBqQsYmsucs4DXXDLQPKkYBCHh/IQwKihF4OvfQFFR5QUDh079l8ydx4lOMtxkiitL5DRDNGNfEzUOle9gjStpjlq4544U8PAnPDOY3hhSO7PE5EhJmgZI6fG0Qnm8dpZralGOkpbSKUJZMheM6BUJ7fo2J+qrPDtZ4KMP3syBoxs8vLofLS39Mx32fQ4a56bk3XA3kzP75pDnljn9VwTf2T3DXDDkkO7t6XrIzLD4aT9cUTQ8pK2kUp1IK1q90OGUA+WdLM538zv3reDikLn7A4RNiKXERTVaUpCHLXQ/4/p0EzGaIt58CJEpZMfXpG0pEdIhpgqZCTqPbWO6dUTxJ8KQD+QShhplIRhIsvmqeJ76ov6FYYdEFTR16pUxbcB8OKStpywGfc5+zQyPfOY6RAnpwRw51Kip2K2HZbNeq8kgWcubrAyaiELQOWmJVoa4UIOWjPcFpAdzgrW9z+01gq6MeUfzUT4VH+f8tEMUXE71A2WIGiVFqRgeDamttWmvrEO3TX6wg5PCR1KBxCr/Pc6hRz7lEQ7KxDcqnv13H2R6UHDn3z20+/7zesAxDZEIebwoeWj7oAeh76EVSAIBNVlgrOC8mWWrbNArkl2aN4wf+wwmjtYTAaNXhSzMDcibAaUVWONn5mUpCJ1/ncp9NKrXh7gLywA453DTKaJo+Km3qkztqnqZMGBj9ZJmqL8SJnAeL1tBcMxsg9YZiw00KTGqWaC0Ia7lZNMAIWCURuyrDwAYFjFzwYiZcMxG1uDhwUFSo5k50OPi2VmiVU3jKcf+zy/jRhNoN1DTBDHNmR7tUC7F1J8Y8xdeeT9NlbKgB2xWir57Zs4x88AmANuvmGV0QFYkPiCqBpF1IJ1nxzeRQ+bC8/yubyKURAYhbjJB1mp+sgsQWnuWuCzHZTnlkRS2Q3RQUpY+pXelIOxLRCkwjYiyURFdv4T99oquKCEdF7/vh0mffIZgICkTh2jnpPfcw+qP/AQAwzTizHCGqQkZmYjUBnSDMW01QWK5tXWJE689Qz5fIjKFTSxl05IuWrI5i40t9SDnXDbL0/1FRts1Ok8Iuvet70YU6VzM5m2Czvxor5nRds1iuT6w3Nq5RC0qCLXZJUrQwlI+dZpz/+RnOPPP/gn3fuCf8/nitxmMLmJCyfBgyHhfSNZWFA1JWVeY2EduRSKYLAnQjkiXhNIQy4JYlJWoYMnRYItAKCYu57PT45xd7+45G/yzT+V84lMZPRtzvpilZ2p85lfX+NVv/12y0kuxCCOwgVeJ7ZwuiZ9IWLnU9fPU0vOzitKn93rqCMaGcCsnOruJu7hy+c2sw2W5Z++pMhYAaTw8SqVV/WuPFTOlcHzqPf8V+8yTCAuT/Qn1lZzJZ+9l7V//JGYYkA8iplsJKjBkk4B6lJNbTaxKLIJTk3ke2jzI4+tLPNub49TWHKE2nq925HXhbbsOgEhzRF5i2gnnv7VkvCgRYcjJ4QJRNWP/ggxhL8zBJ0//FE/dtE3e8ExpWcex/cS9nPm5/+h1tnbucelwicFGFpM4stdez/gN13P2O66D44ehyHd9hEtTsmvmmdxxGHv8II0HElzgaNYyTKkQ2jNHyVxQW3aMD8SkM5rJvKZ3/MUHZ1cUkbrSd870SHp5jG6JMJIi1R6OVI1ujSeetv5Ee20XpN9WniChrSdc31ylcUvGw5cOkI1DXFT9bSOQDQ8DuWf9KOdWZujeG7D4iTVEaXCBpujErL0qYPYWrzo53XuctRfiQxHJgHd3HuS+zcMUFZZUCkc+zvn8P/wws9/+9Sy++jbKnkB85jyTjRqLyyOgQdb1DZLdmXEL27e02HqLJz2ebtU9NlV4ccBAlCh8p/aIdhjnGFrDp7evo+jFLxid3CsbuIDUBgxsUgmzjT0kzApMIZGp51h10jvT7jOGYBwynXfYyKd30ZbHDUZ9Q7Q2Qa5uYbd7/g2qCFOAl54ZT2G2sUtaInOLLIzv5odyzzddj/e1xEFJ2vI7nR4VaO3QY4hXvOyMU1BOFa7l7wUtLLlVXBq32RzXSJ9pU7YNN99wfpd3Yb3VIusq1mcEZdRmbnsIpYHNHs9+xzHajW0mSzXkbJfUGJbzDnWZsVK0gaf3bE2cll4cUUDe9vSA2zc6shmPZoi2BOPDFvBOT8wWuAZwKeb8t5W0P5ZQ1hxiWsF6itJrL1lHuD6GtS3cZIJ90+3cftNZDtZ6DGYjenmNcRGyfTBhe61Jf6iRmUAcmfCao8/x6H98ccd/RY5UmMtppj6UIgW4XuibA9oy1x1y6n/cx+CjD3BmOOKLCw1e+z23cdc7ZhjJmId//Swf+V8niY/v45kPPUc4U+fQ33o78S3HyQrNme/778zcusjH7z9PdmGT9txxrlVfg5Ax9639Ot39NyHf8GZar13j5pkV3v+e36L7ynddyal8Wc2Pd/txyFeFJTd2Vnlkc/9uaj8461Oz9htvQQiLmFXwqhMU64JLz6xz4eP/mdFoGYSgO3eCa+/4Bga3NDFv6vGayT189B/ey9a5MeOvuoaZKEdVimZKWG4KNohFhETyWD7Lw5cOEG6ol8WggnGSddPiYt5lu6gxKb3eUFZoer/+Kcaf/CJmOCKsdzhy4zuYX7yF+rKh/9B9bDxzD8nsAXpP308YNTlx7buppfO46ZQvZr9LJ1xkc3qJse0zoxa5Wb+GcKB4+PEP01m6gf3XvN6nh4Xh8w//BEeuf/teLwdKeHRHPcxJmwVlFCLHGeWil5yZfdRwau0TbD36Bcx4hJ5pU/y1N6PeegQpHM/9xjMMfvMh4vkD9J66j+VGi/l3/3nqR49hZwyX/t+fINl3lLWHnuHB4RozapHZ7/wukqNDTv3L/0Vw/Y0cuPZ1WLPBdlnje975LPv+2hv2dE2clrjqWs1bDln6OqlpGkwNkg3HymMfZ3DvPZjhCD3fovtNbyM+cQdMNRe37mX4oXvIh20ujZ4kEgk3tr+GGTeL3Opzz/Zv0Dh4go1f/V1OvneNG17d5j0/eDP7F3P+1d84g7vtZpa+/lUcaW1zIO7xP77pIyx/5x0v+vivKMdxykcObj5HKodNFS64rKG+vtUkWJxh8Z/+TY79t3/C/r/61XziX3yG5RVYLVpslQ3OPDLgxmMlP/jZN/K27z3O6R/8VQ6qiyy0RtTCnLXffYKFd/4V3vBV/1/CSwOeXP4IlIb546/h3PQRkq/a4JXzF+g/u062MaZ19KYrOZUvuxlnsTgiobm7/SRaWkrr53qTg12EFGz81C9TPPoEoenDgSl525HOQfNr38aJ7/5+bn33P2TiBjy1/VGyNwy5sXuR3/57n+TOr9/Hn/nQt3HibYc49XvndwOrm6KLHNQJxjn6NuV9668m3Yo9Td/LoOQxcjGrhR8BLp2iqNajyDXBzBz7v/t7uOFv/xD77ngbz97zi+TpYLckMVk5R1yf5Y6/+P0cuuntPPbYL1AMe6A1KMml/BS3dN/C3bN/DSE1T9sHEFHIgdYtrC4/iJMCG0oG+TpZPqC774aXhA/8SpgSfgKtGWQ0W1Om8x78nWxZTOhlZ1pmhhve+T1c/3d/iLnXvoOVH/tVLj6iWT41T9kPmV46R/iKOt/6sW/iXf/gCNvv/xn+zN0fQ89P0RPB+N77uC35Gu5uvwcRJ5y/59cIlKH9pjuY3PsAl14fsfz5/TzxSEm2MSI9+so9XROrKyLqKkibznsBR5FJXODoXwtha46Ff/TdXPP9P0jr3W9l/Sd+CTMcIAcau1AwXTlLuHCAuxt/mWujV/DQ9ocpXI4rChBwaesBTvz9d/D9n3wDVmre+89X+YEH3sXMW29DfOYe/s31v8KbZ56ie/5Jhmsp0atufNHHf0URab2WkRc5m//h59iUnvMPJ3CFITx8ADsIiO54BVE9J4kKrn/3Ehu/1ObR+zJe8fY51osm9ZmIv/odNbRcIX73Il/4Hw0G95yi9ZYGhVG0rr+LE19sok5e4MTi3Xx2+Re4eaFFePs+ivf9GqsPFfzutTew/nO/Q/Kq25ncvvehl8VRspNLS04Ea0SqpLRe8iFohNzxH97D2f95Hxfe+yGK7RHNO48z+53fALUFFLPkY0Gx0KJZeyObn/wIjeQN2GfOYErH67/5KMv5mNu/vs7yL3um9EPhJreHvjYL8HSRcLI3j8j8PPLe96fhh777HEJd8KkbUBaO5NoljJHUX3k7ciIR64KF/Xew1vgYg/55uq0OwoBOGszd/kbUCPZ1b2Ul+D3Wx8+yPzoBCPbXrqfV3A/GciL4aj678j5uWZxlNp7n8eUPMx1vELfmuTB8lIWl21BO7/nwhp88g8/9449g5cdwRvBkAdYZ4sWDbJ/QHHjsZmxfYE46ktk72Op8DPPIJeJbZ5C5QDXr1N76Br64nlMcO446cIFPf2TK0huHXGobaifupN67Fp46zdw7/ixrv/UjYN/B7OuOsfJTv8VQL3P4iUW++IUVDr/1GK++6Qy/sKerAgg495s/Cx+6HN85YwiPHKA4lNN0t5O1DXYiaJ24k8HCJ8hPnke9toHYCFDNBvnfuRv1/afYp27ibPkEG/Yi+9VNmFZM/bXHedNdY87aA2R/9npW/85/5p/9u89z1x3P8Zf+/ZSPPTXLz2+9g62f/zA3veMAd85f4sMv8tCvyJHWZI4Thr/0H1/B/F2HWM1aXBh3ePo3nmXjdx6mvjRm9KkHuPQbXyBf6/MUjmJaEowHnB8fZ1DERHMN7hlfR03lrGRtgoUO6yslyysL2K2Q+UGMmLcM3nKC7QMl7j9Ynv5zEnHIUTtzC9MH7iM4+BYmn3+Y+W//FlSw9xq7Dk/QEQlfpF5UBYku2E59R1QKR+uaLjf+o3cwLQKGZ7Y4+yMfYOvnPkj3r/0Z1v/f3yZ7+gw2y7xgWyNmsTFkuJbSWogRQrAU9WmrKbP7QxKZc3u4gSQhcwUGx1PZYfLSyxgL93KQHhZ814/fwtxXHWZiQtbzJl/81Yuc+o2ncEYwvPc+hh/5NGZzC2HAmJwinyALXx8Oa23iIQQjix4VJEGLzE4qTk1HLBsgJS4M0Puvwa1YNo8HREGDubXbWbv4AIdab2Nt+WFu+KpvrpQp9xpH6pAC/uKP3UX/hjt59KlDtB8P2H7sXnqPfAFh4Oz4YTYe/Dhp2vP8ASaHrTFqWuFqW23MKGQqBGY9RtpFVj6ccPDUIsGqZGmcIKbruOuvYfDOAH7dkvYy4pka7TfcRP7oPYwXv57JBx6h/kPv4q7W2T11pDtb2/G7v43a8esZHfLk3dlH72P7iS8gtGXr5L0M/tOnKbe2PIdCnmOyERS+7q0bHfRYMbnrGLUvPEssm6R2BMZgtWDhSMCheIufeuyN6PkJtrR0x8t81L6C+TcF/MIvwhv+j5P88n0P8M0/uciJ+ouHDl6ZiqgwKOFoqJR9YZ+2njITjsnbW2Rhxq3yMX75vR/kG/7TmzhyR4dIW372mz7GUtTnxu55PqMKRmtT7t08TG4CticJa+c+SbZwlGO/WmMtc2zuTzF/toUNIR1uglLM35EyU+8z+QuHefiHfpel1zdZa0jaXz1Hemnv9ZgVgoaMMRX0YkHVuL1zgadWX8lsa0xawX2U9Kz40cF5um++jc3feYDe+z+CCizX/Nh3o1sJo3ufZPW/fJjMaKLZBv21FImhrTMUlu3ljFuPZSyqWWzF+7RlczbKJqWpHOneB+mAoyFT2mqKxLHs2hgrcAjKjW22fv6X2f+d382cPUrrkuOBT/8oOIcsnCfcGPehtJ5jVEnSYsBC4yii2YCRIhVTXBJhayGDZIiQiuJAE+MErdu+inO/9z6ac9egVEBz/ijGeZXRvTQhvDOtyxwdjVGNEmEDyhumFKfBrWxy9nPv55bXfxeLkzkIAz7/2E8R9d2uWq7pDyA0CGlxrYIs3aa77ybqFzNUZsjLdUTtGp59TweVPofQEt1KEMLRffNtnP/R3yB49w0oEdLTr+DXl5eBj+3ZmlRDgB72V0LzDPRu8DhbUUCx0mfzfb/Mvr/53ejbDiILzaUf/lFkZBCFh8+Zfp/Gc47tEwG1M3NMz2XUb7kON53H9CDobVC4JYpMY7YHSC14/+BN6Ckc/bqMx37oIxx/yyqdWsknF7+O33wuBh57Uccv3BWAk4UQ60ALOAM8XxF7FpgDzgI3AY8DWfX40erxjef9fB5YBzrVz48ABrgeiIBngLx6zsELxoFvwQ+5bAPL1WNHnHPzL/mEvkxWrcvZP+QlMdAGtoACCIBrgSmg8Od+9nmPh/g1EfjzXcWvVxs4BqwAl/6Iw9rrNTHAs1y9Tnbt6v3z++1P/Zo4567oqzrht37JY98GfKb6/ofwDmMD+PfAJ4HveN7rPgu8F+hXJ/f25/2dTwA/DNwLDIAPAHNf8l7fVy3EsSs9hz/pL+AA8H7gIjCu/v9p/AV0M3A/MAIeAv4ecOF5v/sq4EH8Rfa/qq8f3OtzunqdXF2Xq2virtyR/jEXbHdx/oDnP7GzQH/Ia77lD/sbV7/+9H9dvU6ursufljV5GUijvXQTQtSAvwX8570+lqv28rWr18n/3q6uy++3P+6a/KlzpEKId+BrIKvA+/b4cK7ay9SuXif/e7u6Lr/fvhxrckXNpqt21a7aVbtql+1PXUR61a7aVbtqLze76kiv2lW7alftj2lXBMifmZGueyDhQm+GsO+QpVdvFI4XkuY6z9yC8Do6SA+GFs4zG73wtdU/QuxKQTxft94pD7p1EkzNoUNDIA01lRMKQyBKnn0s3XB7iA+cm1HuyCHNY7154jUDxvhzkRInJWVdYiI8O7dy1VMWXX3tyJRI4RC4XS1zhyf+2JF2LqzCWIEAr45YSmQGKgeVGcgLv25hwNj1MOPxniHQw6DukqDtGYgAtMKGkrwtkIGXwBXVOStpdwlelPDyLEK43amXnatl53d2Hhc4YlnsElwHWFR1DQnE76MbOHu+ZGPL7OmaxHHnhQ8K8fvvBwfCWi/CpjyTFcpz1bpKcsU9j3NVuBf+D7uqQF7/qKSSq7ZeatgYTz1Yve+Q7T27f1Sz7vR8x//gBJQClbNLn2cV2MShqmvGD7WAsQJrPaeozAWyYFc9FouXC3l+9bLyJ94v8QIuChP4a0UWbvcwxr2LL2pNrsiRLh3UzPzI99D9xSVmHh9BaUEJ5CT3NzHVGJ4xuHrC8IYuveMKE/oPNBhB1HdY7S8EYUDljvpyQbQy9BeUlJh6iE38IaazIU6ALB1bN2rUa7aZqU843trgeG2Na6I1/vJ19/9hYPivuB09FHD7z7yH5F/fTOPxdRiOEfUaTiuGN8+x9irP3WpbJUG9IIxKalHOXG1MTedoaWnqjJaeUjhFWQmcGScorcIiyI1ibdJknIWUVjIZRdhCodcC6hcF7TMljcdWYZriZtp8/tTP7uWSEMcdXnv0ryP6I3AOO9vizDfMoO/oURSeAzMMSyJtaMWpJzwWjlaQXtb8EhYlHKbyDko4JG5Xtwjg2to6J+JllnSfeTmhIy2xkARCIpG7jhXg9e9cZi8tjjvc9arvwSqJzP0GI55/szu3+7icFohJim0mmHpE3g2ZzmnyppfjKRpu1xkIUwkoll4LXmaVJrzxXK4qBRyEI0e8bag9N0Csb2G3eriy4KP2l/bs/tEzXZb++f+JDA02VcTnQ1qnHcHUYgLBxisEnZs2uba7wcmtOZR0zCQTpHBMipDVfpN0PaHxnCbadtQ2DDLza6My61WHqQKy6svqne8vO+zxoqK+aghGJSZSfOrD/+hFrckVOdLz2Qzyd/ax+NzUa4RLEJUA2Y4DBTDzbVa/qsXwWotp5/4DLwVyophMBabmsHHFZG0Euh/SPjlL82KBHpdeHVQKrBKo1OuUy9LRPCdZOV6vNpo5EpXT1eMrOZUvq02c5XO/fjsH1sYgBEIIv5m0akzmvRN1oUMEFh148bpAeYXIWJVIYXcdQ2YVpb1Mtptb5Zmk3GWZ57JUXn0yFbjAkXUF46kiHMwQntvynIx7bTtZilaQ5fRv7FBcP6GmS9JpiA7MblCQlRotLJEuKZ2kdLJynn4tpHAE0uw6US0sc+HIPy4Mq0WH1Aakuk+hh8zIkqYQGMxuNO8P6WXQYDUOaUylHLtzk0sfLRqfmYnCQFHi4pCyFVM2AqZzmnRGUNagrLtd0UerHcGoikQrdiun2NWGl8Xl6LWog1UKXIt6XiCGI1y5x4S+RiDGyruTgSZeh2SrRKWWzZsjwmv7HGpt0w6mzNSmbI5rANR0Tk3nCOHoRzk900EWirRUJJsGEwpsKFBTsRupOuGz3V0nanzkKgpHMJbkTUm4bVEv4TK5IkdaDANmnipQo9xLIjuHSLMqXfA/l/tnWHltk8H1JaJR+pvF+ROwEmwiEPHlm8hZQaEt26Ei64Y0zyvCgfG7iXGI1CKNBQvRtiE5EzK0gqKrWRs0aF2bXsmpfFltvWxy529sIAbjy2maUuQzCVlX4LTFJQYd2N10NpCXWUUCYbG7qa3DCocUltIqQllp/FiJsRIhHFobTCkx2mJjSWkcRVOQzoQEy9p/HnttruKabNQQ9YS1u+D40jrr4zqmlChtfOnCCrJSEyiDMA7rIqwTSOGwTlBaia7WyjrBTDjhtsZ5rg1XqYscg2BsI3q2xsRF9GxBLMaEzjMtPd9N7DmPi/MlGCfYFXCEyqFa59PzHc0gJbFxSNEKyDo+q8tbvrwljJfcEMY7S1PJFovSa7+bxCELgcirzK+SMd5xrllbkrRryPXIN0v2MBYRFvRYYowg7EniniUYleStgOExy3XdHrEqya3mcH2baRHQiabUVU6kSrrhlHEtpNcc8kx6xG9EVqGnFisEIpD+WtpJ559XL3LKv7+TgqhnyDoKGynCzemLPv4rcqR6CuF27msQhUFMUl8DK0tfb2k32bijweiIhcQghMNZgTPSawhZX8hxVlQa1dVZOYGpWSb7wUlF87ygtpojc+vldMFrGE0NnZOKYBwwPqgQpeAT9euu5FS+rDbeqEG33I3IUQrbTBgdDMlmfDSKAFHVd7TyXKWFUYyKCKu94zBCkFtNbhSz0YRIGqYmIDUas+NQtHeqAEFcUmQKqx1lIihq/z/2/jvcti096wN/I82w8s775HPDuTlVlEqlUkIJhESwGosMEm1j09jYMm1oYYLA0LixDcKmoQGBujFCyFgogSQkSkJShVs53Kq6+Z58zs4rzjSC/xhz73NKIHHrVFiXfup7nv3suNZec6wxv/GF93tfQcgTxGSxdO5NBPjM4DqG6bmU5OKUnqm46QYEJxAiHhrWSxId3V1oHWjt4vb0REeahBi956qhq6sTeYxVVaIIOFVw5BdMfZSUXXiNoiFtt1mrPIJ/A0D+vJaxfidiZETLSCWP6+oQ2d6dozo/pB4obCai6m4SZanRIcpuyONbKBBkQNaSRsXQK6gAXqBkTO+FbZ1Gy+zgE4VaGSIWxXIdaQAzjpGjqmOdUjSexbpCbc/JVMxSvDORFNvUSAIjsyCVFikCR7LDZjZl9Z0LfvVjD9Fc03RvSswiEPLYQxA+lh2PiWuOD5cg2lq9DSRTT9NXJLuv/8i9J0cqXUCPixh1WQdlRXAegkekKZPH15neD77rYg3di+g03V2CUl5A/e8WmPJ5oNj2qFqSjhWydogmxAWQAlE5etdKkqlBWEOxGbh+c+VeLuULamZqEWZBKCtEloIQ2EHGYkvgug4SfyJ4dvIY5fCIWP9sI89UemYuOgkbJJLoPEqno/aT9BSNxnsJIsTPbR7isoDNBEHKmCksOyoVMWVt+prpBcGp0aSVGZFg24NAO47VcbT0dE1F0qps+iConUaKgG7TeklgblP2ZJ8j3WVNLuhIiyKwISsUgXlIMMIzD5oyBBwiOlsE7t9qP32JTcRUMsg7DlSE9uZum06icYiywq0PqAcKlwhcCi6N0WXQIRKs64Cwol3nEPWvEg95QFQSGoFIiRGaAyFjmi9tJJAOUhCyBFEvObUP8TVJC3oBuoyvrdgSGOOwQZIAtVN0dINRDi0dAx0z0S0zZt1M2akHPD24Sv2k4oP+QYRX9K5HJ+p19F1BxbWIzTqBqjyhPdCCC6jS4TIVBRRfp92jrr1HlHWsjx7X4aQAGwjdnPH9Ctt38c0NEHN5oiNtF+3k49dZVJ8EqtV4sbLxd2o/QiC8Ryws2khcZkBA/vLyafRwjtB2Q0PTQDen2EqoR4GQ+JjSKY8xDu8FtVU0WkVdJwLoyFk6dwnTJmMlXeDa6GzcZCcpvtcNpdXUtu0u+rYmlkQ9cJe261zVJzfqsuz45C9WFcVpy6TMMNJhW90v0Xbrw7FzpXWmqkbLSNfYeEXV1osHusIjqLxmt+7zSc6ihGckF2yoOR3h2FA1HW/pS88iCI58wsKn1CFSKjdhb2nrAdyJgNrI6NiJiuNI2YNoLChFtZ7jdVTO9LqV30ij05SVxAsfg5IQIirmWJbctfLFNqJdENGRxGhU4ExM+1XRxAaxXrL4HW206MDMI42i7WqqUcAEcdeB6kmlJVMNPshWu8zRBI0RjlPJmCYovnb1BWaPpXzGncPMFdl+QHhB8PEgku1B5lWkXTt+D7yR6MahF+6k0f167N40m9r3KhTlCdTmOB2x6z3qYSCImFLQyNZpis8qTonwG0QFAYQX2CzQdCSpioXi4EO8agAVN162HzDT9kHLNh8Ii0XsunY7zC+tc/Cwoun5GDHKQDNJsLkiWEkhAhM6UChEx3H21AEdo06gTrWLzZeJzbFBooXHI9hfdKmsoqraqLSFetBukqAgGBmd+rLTWAm2q2l6AtGzjKc5Z/pjQhCQeAadklQ5mrb2W1nNIR0SGSMOFwSptAx0wfPTLVaTBdMmQ4pA4Qz7TRcXJH1ZkglHVwok0FEBhSQTgSZYGqE48h1ckJQhWe6aHDeYZBtJHiMKXIg1Uw3MPMFoghaoOtD0opZ7020jqzqWx2QlWu5ZiVjEplOIiUpExSjwpo16nQDb7o/2zre9hGRa3oGnLdGEbyPSMiBrH1V0O55+EsX/bJB0lCVVlj4VuWroyJpURqfal1FYs/SGkVrwPWd+hb88+1ZmkzVkIzBz0K0DPfFhShCEQBcudvJNfC9k7T6rfv3vs3uLSEOIkahrsWiOuCm0ptjOcNldf+vFnQJ3EPFvWxyX8L/Gud7tCET83HQk3igk7iS6Cicd8UBn11ENJE13yekaELwnWIsQgub+bXafMVRrHmRAHel4ElYCGwQYj5DA2LDynCA7ktz4bSMubO3TOEWuG5JWejdRFukl4zrn8kdP07kpY6TeheZ0g0hdCyCMN5BLY+1La7V8RxrAJ5LFqUCwko3NI9bSthhXKW5fWcUcKHQhUCUUKjZNXu17/EZNt1+SaEtuLLvjHvMmYV4njGc5tlHknZpr6yO+Zu1FNvSUrqxYVTO21ZxVGVAI+tLhqJn7igPfQyz50BXOoY4WhE6K695x6sEo8AFZWwiBkGpkE9DeI/sy6rnnAZ+09dTmGG/dpvpEpxmSmOLHw1WcRKNeg/RtTGNiqUCEQDBR/+qNYLIO6DL2RCLqQJAaSwiCpK2FuiBYT2b0VMWqnsXH4enKGiMsm2aKFJ4Exx+/9Iv8pelvoZp3CBJULWJJQ4EqQ1syESRHreP0x1iyGLy9Xrs3R+o9YTaHcLcXlIh+j+kZhcscspaYSQum13ecowh3pR8h3jxmLlAVLag8UA8ExXbAm0C1InFpCws5rpGG47oSqMKhU/GGcKRAlAMeDRk/kNMMIrxLOIFoBG7N0r1vxmqn4L7BPpKYsr98cZ3ZL66iXsk46HXIkgasQUlPImN9qHGK3VmX/msSVQamF8Eb0Iea5NBQPFwRvGpvphiRojXLLgcCuFQSNOSDkkdGO7wyXUN+ukdvBt2bnu7NOuKHrcOu9Si2M6qh5OCJhEIFGqOQAuqDjCuNQl/OGH0GkrkHEq71B/z9zUsUmwF1fs7bzl3hsd5NfuvgY2yrWH/tC4tXs3Z4Y7nRV1CS0EnxiYp10hA+S/5ENA7RWMQskL1ag9G4fIViXUWMaIdYKkKeNI58Fg9sBKBjSi8XKt5/ApQFn7bprY7VNgBnJFpLqJeMZWj3qS5jeh+kOInUQxB0TUXWRqM9VTHURZR2F02UthZ3arwjWdCXDUc+YaQW/EePfpR/Onsb+jlD04mO9BjypKpYDgtaIlxAufa9OK5hv067N0d6bHfX36Rg8dAG87OBdF8xeCXQ2bXIFsZRjTSLTUk1ihg4ZExP0kPoXXdk+00Mp5XEG8n8lOHgSUG5EWj6Gr2w+FTHodb2PhCNg1xFYO0b4UANsfwgjKEaCVzqT15v0AGROJpG03jJ7aJ/ojA6zEsOv/aQeqeHnebQhzQvcV5yq+iwqA0CmN7qoy4EOF1ybvOAVFl2511mH1uj/5GU+XmPPPYRAUJdx3LIMk1AOZI0WzVnhlPe8y+fIplAbxxhPqPnZ6j9KRQlCIGxDr03pTvqIm2XPZHSfWhON6nZCyBup2x9wGGmjvTmFDGZE/IUpKQ+NWB+usMHHnuUxdcYPIK3d17mbemYTEBfWlI3W+56AEiB7acxMDhpfLQO1QWEjYGKyDLoZIiyZvD+q+S3Njh4rMP4IYFNIZiAT1v1XidQ/SZCtecGfahPMr8gY6Sqqjv40rsraz7TyCVnLrEEAbrwCBva1ywIqccHwbTJKJ1DS0+uGs7II1LZcOQ6NEHTkRVdWZHJBkcs72ypmr68Td1VPP/wFp++fT/ZQRzqEW3TSRceKyQ+kSSHUSstRqaBkLz+uvE9pvb/9o9Ev8fBIwmqhO61OLVU9yX5rkOPK/RcoRcpkws6OtIQYVTdW/7EidajhNmpWE9LJoHeZZg8GChWJZ2bgXDcRDvusMl4kgQJtvMGCL0AIQWh18HmxFS7FoTMQ6UQhwnNbsLt0ONm5pGViIBqGTuwpJ6wnzLXjmFe4hGM5znlOI0pR+LRFwpGvQItPYly9NOa8NQBh9eGjJ7TVCtR0talMkbHS9Yn8lpQjwSDlQWnOhP2numi/+UQXQayfYuoLSExEV0QAvioz6T2JuSrKfmthOxxi5IeUk//OU1+Y45cNLG8ZHSsz3uPnlZ0b0B6qHiOB/lY5wH+weY7+J6n3sP96Q7bekwmmpPR22XZSaR13L1vewA+UajCErREDvrMH9vk6AGDzWFw2ZOMHd3bjvlpjR3EqNT0a5yVeCvRL3bQBXSK2LCJ5bSY0pdrMuofuThuSeu4jiOxkHx+MdXnvSYqQrp0GZAunMgzq6ni8BPrTAuBmcXprFc78C/vs1y8dJtzvUM2khkrJopZpbLhlWqT69WIf3X1YWaTHLmTQBAkVUyJhQ3IxuMTiapcG4gJRFtSicBS8dnTZv8eu8fVa8c/Q4g3qhQ0p1eoVmOds9wQ9K56sgOLrBzqaIbv56iuIWiBy6KwmSog361RiwbXNWQ3FyRHmunFnMVW3OyygWpF4LXEK4nwARE83iiQ0HQl5Wo7w75sEyCSBLfWw3a4K62XZLsSvYDV5yMutulrvI6PqbsxUq9WonKiaxQdUzOrU8rDDHOgcUnA5x79Qp/bD2TsVBK1WjHoL6ithtzR9HWcYBFQDzUdrZdfIwVsBqf7M7R0dNOaRS/Wv7L9Fiu5u4+bzRFpijC6LUlI0oMKWSdk2kbcYOJIjzxqViHmBVhHsDZGs3mGamycfqsNnZuG8cOeMNcc2g4mczgE+76LZX+p6xG5JjzCemYXOie9gXy3Qc0rhPXYjQHzTU21CuWWZXFeIBea7nVBMgHbU9i1JjrRqSG/oTn1ngozrduJHUmxlaJKjzexBl8NBcV6O+WkgRCDHVWa5eON27NNVceTjjG9NnNJPfKUGw1VqZClwEwlyaHitcsblGc0dqBOpts+OT3N1emI/UmX8EKPfCGwecD2A+W2x6US2Sjy/ahSG4RA1R6XSEKikbPyDo73i5/aC1AK6jrO/puUYivD9nzcELdi82fviZTsMKGfKmyuED5Gqj7zUMUTRk9rbC/h9tsyNj4sUI0n37PY1DA/K3BJoB5C048wJ104ZGHxmY7RqIpRnaru7Uq+sCYQaUrTMwQZ8X1BBcgdi9OCM78UmFww5Hv+pNjdfX4Pt9ZjcTqn6SkQkZBlUmUsaoOcKYSD9ECiShlHCqvYqbdHCdPLOc12DbWkHsQROD0TFGuC4aBHuLXcFQkijjKmypJKxzAtOVwNyNsiOnvnodtFdbtxAyt5h6+hamL2AhTW4Cv12Zr03sdmpxQtekQiGocsBKufrpifTbAKfu7KI7zr8ecZyQLFgp5c7hScaDx6L5YYOqlGzWoA5KxAFBWhk1GcylFNYPAyyEpjezFiK7YD2Y4g2xHMRgI/M+iJQni4/bYU4dLY3e8Fmq2GzssJnZsBswj0bsRJoeO66XGp2OaKdH/Jk4EhOnhVOFyu0KWj6SlcGkjOzOlkFb6d6KsaTVMmsNAcTjsM05LNbEpH1UzqjEmRUZeGcKqBXs36cMZKVlBYQ9fUfDq9j61n4+QkRHilSyS2a0gW9UnwcTJd9jrs3rv2SoKMx4gwhmoo8cYTksD8gmdxVqDmkqYnqAcZqgi4VFCtRrybcLGbWI9Smr5GlbD/ZAwrg4zpSD30+I7HIplva6SD7q27AMy0J5iX2N49XckX1ITWiF6X+ankDnJBgko83Qtjbn1nijtIIUByEDe/fHIb4Ymz051Y/1QqvoF1K99su4HOTUFnx9O5UbL93oA+XBASzeShAYvNlNmFgLRAEDT9gF6I5YPxiallciSY1SlVqljL5rywaUkPY+G/2RqCAFlZROUirG1egpQUZ/vUo0BpNY1TiLmm7gncIEPVEaeLa2FCmabczKmGit61impFx/LRRKLPO87oIy60k1Pp55KzfTHM+xhRe08ynRN8e8M6B8bghx3KkaJ/rY7Y0Upz8IiEJKDKmHImh4HwiomZWIh75BgB0wwCoW9JexXlY45yPaVzQ7LyoiffCdRDgZUR3WF2PGZhT+bzl2ZexHKEjOOzwgaKdUmzasFKpp9YI98VyBrCCrjTcfS8OsrY73RRQ88pc8SZzoibkwHBSoT22Bsdbu7m3Bw0CBk4s3FEdmnMeHfE2nMe3fh2GCDgE4nvJIiqabv2r//+uffUvm7u1N9UnAEG4p2j2zKqhGCik2h6EW5hu+Hk9HEpzE8nCB+7Z01PYHOwvYDtRKeMDAQTWGxLVAX9Kz5eoJNg4iiZWYQ7I6RLNNc11Bc3aHrtae8FKE+SNmjlWBvNOJCeZp7QtJ384+aQKgV+syKUmoY4/mmtxHc86WqB/FQP4QLlZjxsxGZKetjQvV4CGT6J70FQ4HJap7r8tB5iHfz63oj1fMZKUrB19pDZy5tIG0HXemEjYYeK6S5GU2/3mW9pXNdTW03ZaFQRSwKL0zlde+x8AmhJ008IUmAWHtvV7D+h6D+5x+Prt3iou8ORz9kINa9/VuWLbKLN6oRA2OOhlhiY1MMEUwT0vAEfSA8qjh7o4zqQ7QU6u57FpkRYyGYRWxqUoP9a7NrPT0sKI/EdgS8V5J5yXbDT16SHbeRXxlo6AVyqkNWSD91wJ0JWi1irbHqxLxAud7jwryrMQQEucPTkiGpV4rVCZJH8ZzOZ0pEVRjqKytAdFSyu9zjzSx698FSj6KCOzp5i9qBFbwTKVUX3hkdafzKG7lKFrpq4D/0XPSK962spTmbLZSPwUhLMMZtNiJFW23i5+/ERAxehTl5HJ9sMAk0vENIWynGXiRCfQ8+bkw1HO7GR73uS6fIdqU8E9cgQhEDaQLDgVEDKgFGe3DQ8cfomPkhuzAaMZznBC/K8xjqJrjXOBrwTrOYL9o96YDx1Yaif8hQ3YxQbSxxg1lSsy3ro3vBtnbXlZPSxcfNGcKaqCvhbGZyLlHjnB4d8aGud4SvhsyIh10lifU9LJhdSFtuxawvQNArZxEN5fJ/Cpj2SmcdMLbJ2qNLGxoGRzE8nNH3PheEhv23to1xKdjB4mrD8wAtoSTOOgxAJKomAeCUJWUoz0BSrgmrQbbMVgfCQ3xbk+46mKyNwXMZaoqojWF86GLxS0Lth2H3GUBYdOnuSZhiwXY/rgHCK9DC+J6oiRu3TBtmWF5ZpwhH5UquGkBrqAaTdmmpNcuOrM4TLEA7KDU9ybk5Ta6RyJ2Q21+o1Xput0slqzg+P+Nh+h8OHDOlBoFyPUMyVFxzJRDF+EIp1STJVJOMQM1zfDrKkBjErY2T6Ou0L0qoLzsfTJIBoRIsQbiEWx1xULQD/ZFzNtDitY3hGEqPVkLkT2EYkII2PVy2+TDQuzsUK8CpuqGJVMr3whbiSz9NOpiXi10GBNJG0pXGSbguk7pmKR1ZvY0eKmU2RBHaLLkfkeJ/gpjFucjYChKXxJNtzCpOT3TTICpoOlGugWjrCpgdIj5nIyD9Z8oaYVkGAmXsGrxgWb0rYzGaRoGVkOXw4Yf2TAdkoQqbxRtD0FfNNRdOHYtuD9kwXKfVuh6yKDmNx1lFsSgYvK9KOJJm6E77JYsNw9JDEZ45pk/Hx4hxdWXG/OeB4cnbppCWRsQaImFJhXUQfhECz0cPriKu2edv0sIFsD7KxJz20FBsmNjFtjERVEfkVyhVB3jd0P3qVTX+WpqvQRcPRg4ZiU1KveJqhRy8k0oJLwKcC4Txy/AaAhUGL3IBqNaXasmz3F6xt7nH7VJ9FZbBO0k8btvpTGq+4PeljlKMJiibEEepeWvNAbxf9iONj3bP4tKGTNqzmC66+ZUQIgn5aczgaoguFKj2qjixzx2OiwqjP6f65d0d6F+ECtCwqEJ2gFzG19PEkjWB7ge1HkoWTSQsD6WFAFxB0ZLj2neMFjakvUiBsTPllzHkRWrbQpwjaFQ7k8gjPTyyoSAwbabkibZ5SAaMc3aQhVfaEFi5XLnJsEjgoOyyqhKoyuEqRry/omQqpAs5F1u6t4ZSN7ZtcPT9issiwjSJ4ickamtKgRcBWGlcbVHnsMTxiyTPUQcRIvXfd8ZlPnePUWyYcFB3wUNxfc21bMXghQzaxhu6yeIOX2xbhBWKmI7dN5kAo0gMot2DliT32zRq9KxKXCHQVWGxIphcDrm/J1go2sugcdmwfIyzbakZfRpKYpZoQEfva3qgh1xHKJSW2q7Gtx1dVwBSxu6zqQHJkqUeaahjHRlUNTUdgKkimMfPbe9qw/+T9VKPYeEz3VZxgsiKOk3KHtCRmhiFCyT6HNPaLZZE31SO8px5q1CCOD29lU7ayKbfLPpXTSAJaekpryJOGrqkZ25wmKLR0pNpy1HS4r7vPygMFL03WaZzCBskjm7dbAhzPbqfg8uw02aEm360RjT+h+7xbqeP12L3XSO8Gegff0lFF5yogUndVYGaCbC923m2vnREOoMuYgiIgHXuCkDgjcF15wmJz0vUOsDhvWf2IQjSWoGO9I4L9Fck8MHph+SlsUDC9ENlrjpl5pPInxBxShMh0HwSl0xxWHY4WOUVlqAtDqBQi8UgZSKQj+IhDdbWidhHicaY3ZqszI1GW2mmOqpx90Ympr4kEFqpsSwsrA1yR/ftf+Bd1UeJH51bB9i93uPbIiKrRCB1QicMbx/gZhZir9uAEn0cH07msaXqBuisiZwPRufRfUhys9Fh7eJ/9jR6Lm1nkZug5zEbBW89e4y3Dy1xKb3O9WaEMCUY45kGThcggtVQTAp8bhItRqLAe0ljWoC0LxWkbKFclXsHwNUu5ppmeiygOswixhBPAZrE0dhyc0MrxBBPuENiIGMyIEMsjwguyQx/p6qp6+Y60fZlBgO8kVEOB1g7rJYUzrCYLHu7fPhlieXm2QWl1O/1naYLioI5RWN+USBFogqKrKx4d3cYFgQ8SIx1aOI6aPEr6nC6Znu1g5op0P8LnXKbx6ec2pHDv8CeIOFIPWIuq4/iZCOKkmZQeCjq34uRFuSbo3IzO0ZsIGM4PIquTqgKdfYdLddQ1ysMdElramdvMMXztrppf68htFhs2xzorS7Xj8kU7EouKnKuNi44whDTS4AmPDZKDeYfZNCOMkxipJx6hPJ205uXxGsFJVCGxWlHUhtopVpLihEW/bHk6rVWEEJltZLv2IgTmD4wQV5e7LtIG0v0aNSkZfqrmM5e3WVmfxgzOCUxqSfolrMZRwKZR1KVB30jRBSAEtRNxsEFB0xekB4H05zIOnsiQZwo6Dx1FrSvp6ac1FzoHvDl/jUtmzGPJbV5pVln4uPa7Ll96RBqkIBhFMCAqh/CWoBRBqYhsGQqaQZwAdFns1FeHitkZQbnh0YVA3hCYmUeVRI5SxZ0+hAc9jRkboQXey9CSJwta5rmIoSwcoqypH9iGG8takWjJPHKQ+jxirL2TcX8HSSobNpMpQ7XgwPa4LFepGs0wL1lLFy1fr+Gw6uC8ZC1d0DvGRKrqRNNr6jJ26x4LmyAJdDoVi82cxb4mOWpiIzsE6tWM9HOAG997RApx5h4QKKQNSBuJElQpMAvo3PaoKnD0oKIeRUhO75ZDNiEy3zeeeqCxuUCXgc6ex/YkdSBCOSTYPEQC20qR7M7v1Ja0xKXxa9lEQtZlW2TViTIYBBC1xNaKRUhRIqBVlNEogbLRzKYZ3kpkI2Lq2l5Cpi0+CEIdcaPJgWK2mnLTDCidiVNN0lLYOz1o7yTBxWj+eBSw7ssTNptlmSodydV9wnyBWBkixxrWiVykumW895JEW2qrqcYZahw5A6b3e/SpBW86dZNP3jhFmadUa5JiU6LngvWPeYrrHaaXUjbv2+f84JBxlfOxwzOcTQ7ZUHO6wnK/OeCVZpWpzz9rJntZFqTAdkxskrlAMCpOF2lJsaaoR4JqFLDrcbpi8KzGpVBuetR2QX2Yomca2QjScaAeCYrzFjVXLSmyQFqBUwHb9zHSByJnKScaaaoOEcMaArNzy89czNwRTDt04wERcF5SO00TIiva1Ge8uNjk5nxAbRW9pOJ0doQkUHvNPl32Zl0mZcojaztc7OxzMdtjWx/hkVyt19ite1gfU/0AuI5vMasKuWhQQDM0NIPXzxJ2zxFpCKEFQ0tCCJiFR5XqBFphpjElH9+vKDc93gSmDwhcruhe9wgvY02sxcFFsoIQiUuKlliBiCvTU8nWsx45KyCJziNuRhmj0XY2d9kmW/JYXUHIIeg4GhpUYL5IyfKoLTMvE+rKoBNH1i9Z7I4YfDhh+FrDzptzrjmJNJ7Oawa9gNlFj5+mTBNHpiMTzmZnipGOqU8xxsaaaQA9i4qiwnFCBrxUqxv87j4iMYQ8iX3IICJfphfYRmNtoPAJYT/FzKNEhrCxcWlrxbXpCO8lcqbwqceeqlnbOmLit2h6MdW/nY1Y1IZO0lA1mp+VjzFUczb1lJFc0JHVCSepXfaIqBZUKxrhNar0uKyDqmPD1mYC2wm4lnoxuW7Qi9hXyG9J5p0EPYtojcW2oB5GrlLhBG5oYazbefE4CiqrqDohGtkOgbSBR9POnIeAXx8u/cCVTWyq+VyjJnWcvvKSstGM64wD08UGxaTJeP5gk/E0x7lI5uOCJJU1N+ZD5nXCanfBtEz50LVz3F7rYzYc3XYW3xFTfBvkCf9tSAL1AOqRJtn3UHuSw5pq7fXfPPfmSGWksQtKxRE95zDjBmEN3rQ3cS4oN2KT6O5OcjqOs8WqCYgixrM2g2oYUxGbx3SGQItDDaTXJf1P7kXYk491UVk7OjcKfKpi9z5ZvidVdXSmyFgjjZG0xJcKHzTOSmZtpGm6DVnaRLam0yWLOsOnhu71gGxSVA0rLzTYLNIIFs9UNI1iXGRo5Zk16UlEWpYG18g4z9+u22JToqrAqdXDZS7JiYXGIipLSD1GO0QlCWic8eAEcq7IdyTVusd3HOlBXItpkbG/nyIrweA16N0EZzSz01sYD4uLlmYDsIL5NMPmMUt5aWednzFP8o7RK2zoCX1V0BWRZs2y5AachGoQHZtLFTYHXSryXR/RKzlxFHI3ZfSiJz1yuFSSHgXcdRMn3Q6jPtdxICJrgVPRmTorTgZeZCExR+oOEqaFy0kbo9KgJfNzXeanlutIdRlQtW/LHhJvIvlKJQITnZLIHrtFjxuTAZv9GecGh1wer6Ck58OH53htf5XqWg9ZCuyKRaSe0eqMW+M+P28f5spolc10ig+Cykcy9coplIgltWYYKNYk3SsKUVpkYZH1F5sh/ziLPsZz+oDZnyNtB9vKIXgd4Uyj52HlkxPK7Q5NX92JHEPURsn3PGZcEaRg/+kexWYU9NJFPGmD9phZlM3A6NiJbhxCCQISWTmEemNEpF6BbBtkQRKlZa2IaayHsEhjd6DnSLOGpq1t5p2a6v7AZDUh3dVke9D0Yf8xg8siVCxJG5TylLWhm8U5/NopFrXBlgZmOup6V/F1uBzkNxwy+JUlz84eZ5VKgfeoqSLTFmnBSwFOISpB54bEdluqNxvnq2Ujyfagey1KCCeTFp+cximY2bkY2apBg6slvlFYE+VtmlLz4etnAXh6cI0VPeeB5DYd4U5knZdlQURok8ug6bUTbSI2ZptejM56VwXJxJ9cMyLiSZuBb52hJJneyYKEE6hC4oYWNYolAW8FwSZxjRaR4wLi85tFxOD6VFOOJPP7lqw4G8AlkUCFron1cStoJgnj9v1qnGJ7MOW3n/oolTd8/Zpj4RMObJfdeY9SB+xaLJGZvOH+lX1qr7l8uMLHd0/xwErSNnoNldMsqgTnJdI4bEfhjMLlBjMtQUvM7PWvyb2PiEKcbNI6pvi7B+S760zzeBK6LE4oHTwp0FUfXXiaTow4vRbH/oRk0qD2JlQX16kHApfFiSbfxJQEL+js/hpged0gid09L1rmluWjN2Bk2fiYZe9xTViN0KeQO5T22EKDFwQd4uhekeCdQKiAbRQmsYhVT6VTfKIjRnAAzcghOhZtJUp5nJNUVlFbhXWSujKEUiGtOJHdVVVEnr/91GU+IpYtIdE2Jq1Fzhasfyywc6Gd5w0gKkG2K3EZ1KP2TWxJPMp1jyoEZhb3S9NVlKut7EbSKmjWEjc2cTjDgy1y6DUgoJqlPLe7DcCZ/IhNPWEki2WDn4B40DW9SNTsup78hqJ7q2Fyn8FMxUnN33Ykti2BRU4JESVCasgOPF6JVnpE0AzAG8VgcxrliacdwvHEUDtbL1w8lMw0DjGUGxnTi4Jkb/lRuu0q0sOGIATJ1MfGbQDfSBZlymp/zrdtf4KZy3hhvoVHcHMxYDOf8o7tV/mQthS14YmNmwx0RSobKm/YXXTZ2R/wvFP0s4oALKqEojTtgSMj2ikEXCpR/Qxc1M16vfb5NZsg1kithdmc4UsFxWbnpNsYZCx2336bIr+t6ewE8j1/Mpomm0DTN8zfdorJRUW5ERmOhBO43BPSNoLZqyN349067Y1FNCreP1J8FjHusmw9neMSGU9TJ1DakeU1ZZHQW12QGcv+Xp+m0shjsbpF5Fi1hUYmDpE5mhUBqYNKxRHZuaapJcFLvBM0pUancS3sQiNLiawEet6e3G3H91x2yEeWtRjHJgVyZRSzF60YPTdldmaI3Wyp2luvVm6203FlVMk8nuBqRp5mBao1iTcBnztkIT/LMahWQdVnHnMkCdOUZrMBG7V+XhmvAbCf9zitD3kjeFIziyiX0tA2WkBYT7VpMUdRMUDYyHxW98GnMTNxWSQvcUlkPkuPOMFqN0ByJJktUrp5HUUnk0Ao4yCMLgRmFlNoiD2Jxbqi2rKfPa24DGuHbNS8uWv8TIMKKOOR0rOSFXx4ch7rFd+z/W8og+G1eoNfOniIDxxtMFlkdLOa1WTB3KboVq7mkZUdqkYzmXYoiraBJALexb4CjYylkBDVHCYP9EiPLNmt1y+r+nnBn+L1C0gScI7k5Vukj9yHzUSbfsQuvu94FqcFLpekhwpVhpPJn2PJg+MUFhnriiJAcK1zENCcGqEP5uD8HaCs9ZHkwgnEG2DWvi9Ldp8RDF8MLE6JyOyd1lirWOkUKOlZ9A3l5T7JbouLrO+UQpqhx3c9wgpEaaJ8RO7BxKaVqxUmb2gKQzNNQQVEpU6mw2i1eqyBb/n2Z/kz65/hJ5a7JLhuSvnwqZilJBKfRPhbUIAM+DRguyJqcQUwUxmJKVqehqbvcd34EevOnmBiSi9CHMSQbafa+VhbU0W7F3RgkJdMy5T9sksZDD7IpUuNHFPGBUF7INyZUoJ26k8JzCKQzANHT3hEJU8oEn3LQ2FdpdGYTQAAVhtJREFUbLgmkzgAEycJwd7uMN2Q+FpFXXsf+xOqjk1dWcf5fZdGhIDILeJwyTpWQHpkkYsWguQDBI3IHb1uyXyR8ur+Kp8utpHXM947uISaS5JDSTOICAd1pFl0PT9+ewi1RDSRC3jj9BGJdkjpUdpHzLUIIAICEWV/nGqlmmPDb3BQIXdef3/h3hxpy0F6IiXbpvj+8Ii1j8+oViLBwt1KoUEHqhVP0xcn2trHeFNETHGAk2ko4UHNI8ylXDXMTitO/ZsqMgMdS9Z6T/Cq7fYvfxwyFYL86T14fj12n0NUxNS61WPXDRv9OTdOaUqR38HKHo/M6kCyqxi+BNMLgnrFo6cG24/ReagkjdCERds8OIYPdR2iljBXeAO/8//yy/ylzU8scylOzK56XvlOReeqJt+N77GZx6jZGwiZx/bagzV35DuStU+V3HhnTpOF6BSDRM9jw1I2rbRu2wcQPkrUIOPIbL3qkHcdOM5LyiJhT3U4tF0cAsNy90okV47XL5sotwPRkYpGoBcCvYhg+nTi6L2ksV8x5cLaAavpgr4pefcrl7C3IwDddsIJt21U2w34Y5XWRpxMuulFhDxJGx217RkmT9SIcOdvlmmycpGrtaiQRqFmErEWQfnNJMFPczo7ku4Nz+2vjiiG3g2PqgOT80kcNNiXXPqWl5nbhJde2mbwKUP5mQ2mlywrp8do5XFe4H3s+HsvqLw5kbROdxfkH9mFosTbL3aN9Nc70aVEfOwFVk49ze4zOqZbeRtliggK9oEoy+wEspaIpu1wHz9FKVFVq8Ft41RUudJ2OHspZlrcaSy545qa/41VSb9EJhH87FM/xJtv/Jd0XzKUk5QX/sGP4fsryN/3TspEU9SGLK+pz3isVXeaApUCL6g3HLtnHXo3of+qpLPjqQaS2QUZCV0koALdjQXzo5yQO2TiCGUSIzkBf3L9WSBf9nIAsJ2P+b6v/wk+MrvAv3jfM2x8QKJ3PTaXlOuxxhlGTdQYSh3jSxpdZPCWMQ+sHHGqM+GR7i1eKdbpqYoP7Z/n8msbiEJhpoLODUG+7/Ea5mdaGFAKSgawgt39fsTXdgVNUEx93k4Ail8E/lEI4e99qdck1jRjOu5NrHpExq5AfjNCCF1GK76mGFx2cLnD7kqP6795fLJvQsdhU0H3VY3wRNnvNsqVKkTS58wjDlTk/i1aspIiHiTCh7iOY8l9Pzbl5S/1QtxtAaSN+vKCeO3ZnqC+745vMDNJvhPZ80UtTngchIf0KOLY6z50dM1WPkE+GLixOWB2q4foWIZ5PLFKq1HCsqgNRZXgrUS1qCJ1+wi3f4BIki8B+xOCXxr/CE/k72RNnzn56XX3Cter5/mK9wzw5n4OLylKCX5kUalDKocxjqbWOBdhQViJsAI1i6mLdKKte0H3uscsAvPt6Ehvv7XDmZ+ZxTHRVjRM1jYyBpnlFMuFEK8BW4BVEr79tx8wP/8sw9PvwOxp+r/vO9GJY76QlJVBa0cIIgb1Mo6DqszTpApnFWGcwMQQVGB2jlgikNB/DcaXIorhwpl9DhY5Qnu6/ZKySAi1oHio4qe/7m8ylDFS+cX3LPj4p5fTtW/XpXP/Yynv6rzM13Ve4vb+R/mZf13ylRf/MLLJKNdjTdR1IOlHjK3dgoMnU3itz/NHOS8UZ/n0/Vv4IBjPcupJypX/63/L2T/9p5Ab61RrgmYgWZzyhJ5FzDScLmOTpZIwTwl9S6IdpTfs2P7S4U8ESKaBut824kRLNdlVvPw3/yJ2MUXIOzCU+/7on0YPh5gZmJ8bItvmU9rWkfGx+RZURGyE1COVwwmNmquTenIy9eiFO+knZFfHPPpX5m8IljARAr/y4f+JJ079FtbVaagb+lc9Lx19jMUvP8vGf/N/Q5XQdGM/RM+j8F81VKRjRzrxVCsKn8D1/+clmo6k2JBk88Dsqyy/9bFPsFf1KJ3mIHTjwEsQNLVGLOJwAyLgxxOCD4SyQq2tQvH6Xv89pva0DDaf/XDRDvqHxYLhr15GF+fYf9wwVxqvPVIK6srgfQRjRz1ugZ7ItlPJST0nO/Bkh47ZqcgKFEH7AbvWxdw8ipMgUsamk5efE8HAF8G+PYTw8296Ig3f+8cG/O4/8W7kymXWf/fvYXGYUPctNBLZj/VSrR1aO0DjvcA5GUlaRDtnLmI0QdMK6AGHa0Ty27zhxv6QpjB0hlG7yc4NnQPJ5tN7PJp0fsMX+iU2dbDnaYJkVXnell/lZ4cjRIDRh3cYP7BNcSo21ULeEHws8rqeQ5SKzksJo5ccsxc3kQ56TSwBXAGyPYFSEtsNNGctZljRFAaGDZ1swXzRQc1l9DOppGo0c5tyrV7DLzl7kRZ0EahGbeblY6NF+CjBc/+3fg/5ww9HfOmCCBYfeOqRiIJ3XRtrxJVshfPaEhkRPqa7Da5RyLlClwI9j/9PzRoQKjKoKYmYLiLi5pgbdZl27MdDIGiFsI7+5QXcHyGCoopSPdVKnJxstmpUkZBMYLGh0GWMxlUJ44ua6X2ekMTI+8H7bzHQJUdNjrcJRjlmdRLB/LWM/B8ikE48oawQSiGMRnRe/7TXPTrS3wC0KQApeXnvPVz72VeofqbADEYMv/03k3/F4wQRmL33g8x/5f0kp84w/+CHMZ0BZ971OxicegizCLzw03+L7sYFJjsvsZjt0LnwIGe/6bs48/6G9+3+KN0HH+GJxTOo3TEhTfjVV/4+D2x/7T1dyhfSlBK85RslF7759/PSj/4NRle+nsN/8YuIzQHD3/ktlNct+z/0I9QvvYaQkJzb5Nz3/yGElNSvXeXm//oTNLcOyJ96CIRAb6yz8ru+iekvfZj5L36QrT/zR1EqUI4TrnzPn+KRv/OfMR2cof7lF7n5Mz/B5b++x7m+4E/8JyP+6B8c8m2/9yZNA0KIY460h0IIX8qJ6v/XeK/5K58+6DNcPyIXktP5mJ23dBj+409x8+/+GNPZNWSvx+h3/SZ6X/kkQgVu/7W/Q/ftb0K85R2Mg2Lvxfcz+eD72f5v/hi3/ue/BcDLP/TXAMH6d/0u5NmU63/7R+l/3TuZ/sIv03vTffS/4z/i4Af/EeW1K+A9B4+d5fT3fQX+/Aqe32D/fiks9jnQRYgpurozuilcJCqXFfhBxBP7ecH+T/w48xc/DVLQf9vbGf3mb8b3PfbaAXv/9Edprt4EIH/kYVb+8HegVI/sQPLyD/xFNh79Ko4+82HK8Q5f91V/tlXrbaPQmBotdz3usqAEaEUIAb0zIe9KZl4weEFx+Is/z86r78eWM9T6gO23fRv9lSfpX615KXyMg3/1PrLtMxx+5kPo1R6bf+TbuPjVmzw+usn/97t/hfUnNrny7A7jy2M6j9/Hyvd8JyIodv7236d3/hEujJ9BKAlK8Z7FT/Cg+4bX/brvbQWPU4FfpxgrhCCXfb5i4zt5+g/8JU696ZvY+9/+MenH53SvaJIDSfXqVbpqg2e+6/s59+g3c/lf/BDZyxP6V6P41+7lD3HhXf8xT/7uPwdKcvvnf4zpg33Mt76Z/Ssf5IU/2GHnG84wCftUzZSN4UP3dClfaPuDz/9e7v9Mn0z2cM+9hKxjF1nNFfMf/2V0b8SZv/bneOgffi9bv//r8UHiKsf1v/ojDL/+GS790H9L/6ufYPHBT51wsYrjz4WiPMror0dYxmTcQVzL2f1nP8Lv/6sPMH7xIh9/93m+/p053Y7kp/+3UxgDIYRe+/GlpqX4oOkk/MDf8tx2CSEERqqg+opdPjD+Kc6mj/DQH/9+Nr7793LwD3+C6souwQmQAdFI/MhSPlngVyyknnR7wcX/4Q8CcPr//r088Gf/CvlXPYVSAXc0w80Kzv6NP8noD/9OxELQf+vbOftnv4+zf/77IDG89394P9cWo6VHpEFCuSLwppUmj/00dt6sCSI62OzQkxzFv9/5Zz+MbiQPfff/g7N/4r9m8dLzjD/yXkRu8bll+I3fwIU/8+e48Mf/FHZyxPj/+AX05M6tffjSR3j0nd/Nu971ZzGTBlE1qMMW2qPUCTH7G8GC0YREE/IEGkv/Sg1NVBWWp9Z56Nv/GGf+xl/g3B/4Kq7/9D/GvLKHntWoJrC4fYVksM59f+b7GXzHN3Hrr/0TOvUhhTM0XvH8T7/G+T/xW3nw730vHs3+D/4LVCEZPPU2Zh/5EHpnDFIylVOqsGBt67HX/bo/L2Lnj8x/oVWQjuZxDNQaSMF2cj+ijONe6TveTPLxf03zymX6Z55gcRgwWY+LG+8k2QkMs8e4na8zvvJJBp3HCEqwef4tdAbbzLclq9/0m7n6t/5HePI/pvuOhzj84X9GPbnN0cOnmHz4RTa3nkSo5crJHtverMv5ozGp7ODnC4SIWkpmKpAo/OEUt3NEtdInffg+jHbMXroM3rP929+CC4LBOx7l6KfOIlsM3THaTBYCJwXT3Qho17cTklSgcsFbbr/IfDZgZaRYGS0bhH/HxEqf9//j13jPdz9NxRGKwKUr7+b66hpns0dYPOexX3WOztNPsnj2EyRnf9PJGKPeM7iuIjQSnKA8yBC21QmzgmbVI3IXHaMQrPyWb47juaUiURrzzFMEFXAjy8rv+Fqu/4V/QGENbskRadBQD1ty8iQ2W70BYQEh+PSzPwQfiq+xv3qB6e5LXPre/56QJGSkDL7uXUzf+z6Gb3snSW8bc+ZUZFVb1Yy+6ms5/Pmfg2/hBP2y/eBX01FD0sWcYBRumGGuH0QHqlQs0S2b7Lq1j734TxDHGW8I+ODorp6le7OhePIZ0r1AsrLAdr+CvPsss6NrDO1ZOrZB5z3W3vw1NFbQ/Yqnqd/9bnbf+xqr33YfPgjWftPjlOsXaCrD8Du+mZt//gfgd/weRuceZ/foR5knB+TATfsy271HCF/81D7e2W/qfzNr+lRM9Z3jev0i1+rnwQduNC9xefZJFj9YxCJ4XbMwc/J1QXNToPtDFtuaqgnIWpN8ZoVmMaZ8oIe/IWBrxORibDKtXxlyxTvUrSO6L27QfeoZ3I99nLOjVd77mQ/z4Lv+ALNhDz58T1fzBTUhAoRA5eZok0MLGtclrL/169l978+y8zf/LshA7+vfxvp3fjX13hy91kdKUMJS1xq9NjyhmgstJk4vBBEsGv+XXkBSw//+g4a/+78UfN9fPuCpRxP+8vet8Y63vjG69kGndN58mr/9Awu+46kET0Fn7wbz3ev8wu4PwCsC/3MQ8HS/8s0ACCK43uuAqKKcNU4g6tiYBHBdh0wdQobI99rvQldBiJhL52r2fvLHKT79GXxZRHhVWSG9XT6OVHBCJuN1IBhwSSCbSIKEZy5+J92Hn6bpSnbFNY5+9Ad46Qf+/MljCQE9HKEXAjudcvsn/znFa6/gm4oQAjLPY+e+iY60o4YkRw2ytJRn+i2PL9GJLpuH9NfYk4/9HlZXLyEbh6gcN1/+Za4VL9D0FUef/ACvPPtL1D+yD07g65qmmRMSBXUg6Q7RNVQmkA9Kqu0e1d4cj8AFiRuu4r3AO4HuroNziP0FncMe26uPc6N8gft5kJvVSzx9/+/Cm9d/4N4zaQleRCYmlYB3LYAtWuFnPFf8Km/tfCvJN3wNN7/WcPV//h+xvUBxytNcDtTFmGoQ0G3YXhVHhEuPMzut8R8XVMWYroF0H8zLO/GUGg5YecHRKZ7mU8/9CPPTaxiv2QxnmIzeGHWeqjIcTa9QhjnD0UX2D64DcSZa64xT7/ptrP3W72BWXGfnb/wd8ktnUMMBzd6UeWEQIjaf7N4Ytb5GOEjJZjnzuo7KK43AHU2AlsknCTz9jOGf/8MVmibwv/7gmO/6T29z+UMXI9h42RYE3W/7Fl74Cz/AR1fP0oQZ5894+k+e4+nz/znJYc3sXMb+k6IVRmwQaQKU+E68yd10EtPfFmsLMSLFCYSMGlcAInUEK5FWcPj+d9Ps7LD95/4Y6w/Azq/MuflX/zqVewNkLiGOt0IcxIC2RtqOxoqjGXrW0PRS9HAFoRUX/7vvh1RBSziiFwK9B1d/4V+AFzzw3X8S2e1yeP3j7P74j8UhhbbypguP6ATKUz28EeiZuxOBKhW/foM4VAG4XMV4QQjodeAQJuKImz/7T3nTk99Ndt8DJNPAB9/3NxDO4zODnHjq+Zi6B/Wphqc3dnnP7pju15wDwAVJvTuNEHQrcTv7oBR53aV7y7J96i186tP/lJHqo2RCb/sB3Ocw5CPCPYT0QohdYAC8Bkzv+tUakW3yMvAY8BxQtT+/2P58767vrwK7wKj9/uOAAx4GUuAFoG5/F4BX7/pfTxBZSw+Bm+3PLoQQNj7nC/o8rIX5/JEQws8LIfba13MOmBHX5yLxGm4AQ6AkrokBHiVe04x4PbeBHeJ63A/cah+XAo8Dn24ffw7YAD7ZPvcKMCau3TpwCvgEkLWPG4UQxl+kJfh32vG6AD9MfN8vtK+zAF5sX9d14npBBL564vWdAXrt3xngEnEC8vn2b58mrtuk/b4P3EfcP8d2tn3Ol4i9gIvEdf1Q+1qeY0k40vb+ufzr/PpJ/u376gHi+3yduEYpcV1mxH3i2ucz7d8m3FmLf9fz/Xr2Jb9/ju0/eJ8SQrinj/aCv/HX/OwPAb/Sfv3fAwftRf5PwC8RHc7x3/0q8L8QHcALwDff9Ty/CPwV4FnizfKTwPqv+V9/pl2I++/1Gr4QH+06FO2bPwbeC/wxQLW//4fAX2q//q/av58D14D/7q7neSvwUeLN8aPA//Frfv997VpeBX5fe+0PEm+an2nf/AnwAeCr73rcDwL7wBFw+ku8Lt941/fniE7yF9vvHwZ+mrjp94F/DTzT/m4d+Ll2TX8V+PPH+6r9/R8lbvQj4HcBXwdc+zX//3S7j2bt/vpP2zXTd+2xP7LMvfM53FdD4P/d7pkx8BHgu9rfPU48HGbt/vneu9fi3/V8b9SPX+fa/xD/AfiUe4pIP18TQvwh4gJ89a/z+1/k3xMtCCH+APCf/HrP8R+6CSHeD/ztEMI/WPZr+bJ92d7otmyf8sYoLH6OJoToAP858P9Z9mv5QpkQ4muFENtCCC2E+IPAU8RI88v2ZfuyfZHt8/Up/8E5UiHEtxDTwdvAP17yy/lC2sPAx4jp6vcC3xlCuPkbPuLL9mX7sn3e9oXwKUtJ7b9sX7Yv25ft/5/sP7iI9Mv2ZfuyfdneaPZlR/pl+7J92b5sn6fdEzpZZ92Q9lb/rZ8fcyEekzIEEYHGQbbs3LMmskMpGWnwWsYbYT1YB8FH8IGSICP91/HfeiPaaY2ArKJyaWTRbokXhGDi9vbCknBwACbphixbiWBiF6hGElVHDkhhQ8tsE7XmpQ2I5i62/9aCFvgWCCxciKqgbfVFBNprjrRjHH/40NKphXbsLxIv+ExTFoc01XxpyPx8JQ3Z1pBmJ0UeLT73UcST9WmB+EpHkg1rI+xEyni9IYDWBCFOpn+ClrislbCoW35PAdX8kLpZ3provBvMcPVE1eBkRe4Oa0SI34s7hOfxQvwJBaNv5YSljJvEe3myvEKGllEskJuGrqppvEJLRyIsibBoAoKAACyCT3+iWdr9o/rdoFdXTojdj+kBj2WJVBnfO5sLfMfTSysS6RAE9F2CbYEIvj/+CNzZPwFxQp8H4BFx0ilEomcckSfZxmEG4QLzo+uva03uyZGmvVUe+7b/Kr48CaoJ2DTyZooQpzVUFT8vTgn6VwJrH9xHHE5wp9dwvYRqxZCMLeawjKqgkzmhiOR/IssInYzm1IByNcEbQd0VND2BLgKD12ryl3YJB0dRLwrAe36u+Ee/Hsj5S2JZvsKb3vVfYCYNtme49ZWGbA9WP1WR3p5hhxmL0xnzLXVyKBxTBDY9aHqBZsVDvyGUCn2k0UVUBlUnHwEzD/SvlOijIpJaL0qoakJZxnHdxEBVIVZX+NWdH17mkqA2Vrj01/8wg7/YRX7gOcKxqoIUn/21c3cOxWP7NSxjQgrkaIg/t42sLWL/CIwBrWhOrzA/k5EeWWwuWaxHbsqmF2nk+tct0gay2wXv+/RywR5muMrFP/JfY7tRfynbj87DJUQC5jKuS90X1KNwR+c+dZjMYhJLaixaeRqrECLQuEg3l5qG1U6BJHBr2kcrx5s3r/NQ9xYvLTZ5tHuT0+aQh8wOQ9mQCTBCMPWBB8/fWtr9ozdGbP/p/wKzr0/E+vIdgWyizlvnVs3RpYz9N3vue+Qm71h/lS0zIZUNayqSmzVBUQdFGRIWPqHyhiYomqBYuITKa2yIPBSNV+yWPQ7KDtMypagMdWHgKEEVgmxPMLjseN8//ZOva03ufV6u3e9Bxjdc1i2x7F17v1oV6AWsPDeJjnLUpxlm2I4iv1Ggbx7ij8YE72N0oXUExgqJUBI1q/FbKYuNOHN/RwZaEBITHUZdnzz2DWEBXKaoB4rmUkG2k2MmFT43VGspXsfNUWwJyi2PXKnRxqKUxwjoaosQgdkiw3YslZORtKPVKpeVwEwkQWV0djSy9uh5hpxXUHdOHJGYCsLB4eekhPjFsKY03L62wqgp2tlui5AiOsnQxM9CcrfYaXDus51oiGxjIQj80Ri5MmT22DrusVGU9L58hN6dMpjXVJsdzMyRaUGxHhnVk5nHJQKbScxYI+rlrklQ0AyiE+3cFKRH4YQxXxdROkMXHtl4bEex2NBUKxqbaYJMsXmgTsB1fByZNR450YS1GnowrTz9tMIHQT+tkcJzzhyQdS0besJARqZ4JaAjFR2RkIlmqWuCF+ixRpWRVjA9iAKBQUAycRSbCYePQu/shIeHO6zqOUM1Z03P6MuSBEcZDGUw1EGx8Clzn+KQNEGBgZnLGNucymv62iPbSLbxkrI2SB1wPYtTikILRHj95D/37H1O5D4EuFRgs8hkEwmYjwlY4dQvHSCnBaHfQRQVZlJRD7v4RIGS0XnamKoHa6NDtBaqGnUwo5sZbJZTjcQd5y2Is8F1EyUBQkAO+nG2Y5nWlipU47nxLZZ33vcqn3zfYwjrqVdz5luKaiSwXSi3LGrYkOU1edJEligRSJRDSY9RnsbFRW6cwlqFbRTNLEE4QbEmSWaSpPFRinetGzV/QkAflVFFYL6Au5VXl2CqhAv/HOQLVyBNcY1tI9HjCBSQAiF0jC6hFT/zBOch+JbwmRMH7F+7Rk9Kxk+t0fQk4syAdHeBvLVP9tp17KMX8esGM4vP77VAukDdFczOZ/C+5ZOW2K7HTCIx82IrbmxVg2yiOGQylWSHjnS/IrtdnByQLlU0A8NiQ9N0Vav7BLYHs1xTiEAxTzhMOggRmFYJL002UCKghePj7iy5qhnoki0z4Vyyz1ektxjKJYvf2Sh0qap4PckkKsmmc49sAvuPK/IHj3hkfYeHOrc4bQ7ZVFNO6ykdEWgCTEPDwkdnOpDliVM9cD3qoOmpkqFacK1epXBRCNEGiZGePK2xTXScIfEEqyLF4eu0zy+Ma/djkJGUw8xC1BvPBE0HVl5wyMNZTNn3G3xdI6czBvt9fD+Pta7ERDLVtrgjet1Y3+tkoARqXtO9oQgyoVqJzrTpKZLVHnq2ICyK6ISr5Uhq/FqTNnDr7Tl/5at/mH8zeRhVBYISzE8b5mfESZqmRjVZ1pC0EWimLbluSLXFtmG9kgolAj7En/kgGMuAO9Ik04BNJbKjTmqmelxFJyQEbq0PK3345JL1yhXk16b4okT2ugij4/t1V1ov0xSxMsSPevhUI1otLnUwi+9vVRHqJkaqEBnMq5ps3+IyST3ULLaH6AcHdK8uEOGOwJtXcS+aRSQF8UrcJfe7HIsKqQGXwOyCx3c8ohGRiCVEBni9kEytRFWG3nVPvlsjS0fQEtuJB4t0AVWB7QiaLqACfqFJdjTJNHKdjntdDnqe13pr+JmJk+QSMJ6kV7M+nPGNp57nN/c//u951V9cE7SaSVWsh/okUg0mr0C1qinPNmylNUNTogiM5OIkis6EQBHwWJAgg8e3kZ4RMZA4ch18iJRbPkTBOx/EyX0lREAbh2skARn15T4H73jPjvSkvuuiOuFxgdalsaaX1tC9VhKm03gTNBahJGG+INQNYpaBVq0TrBFZhkgTQmKwG32qtTQ2W1zU4e7sWryKGvCqDvFmy9KoJmotoarv9VK+cBZgdibhm7/rffRVwbt/+s1sXW2o13Lm21G8zieBkEbtKiU9WnmkCLggqL0CG6n4ct2gZZt6OEUAEhEo04ZZx1NsKuwsNq3MODbxROMQVY1b6+G1xPYM4YXlOlJhQdzYjYKyRYFQiuADQoFIovKbWBnSnF2jHhnqnorZjoBk2kUvHHpaIyuLnJcIH3CrPcpBisslxZqmHgi8jgJoySgluzah5wLeSIQPlBtZ1HWvwEwcPl1yGUgEROZwiUeoqNvlGwWLKESXHAqSaUxrgxQsNiWL9QwRQixRdDlRDYWowGu7HrRHTAz5riDfi6JwwgWCkjR5FvsXJmZ0LtUU24abo5wfPuzziTOnieP8S7KW1eq4zzJ+KBC2SvqXUxabEt2rmFcJr81WmdqU17I1Lmb7nEv2uaj36bRUVz5EkUMjHH0Rna4isPApXjZMXc6R7XBQd1jYhMa30szEWE4Zj3VR5158DhWge99RbTQqfUDNoO7F0zQ/8GR7Dcm4Rl3dwRVlpMOCO5IG3hOmU8hz0PoknQ/WxmiiyJFNgstE5FRcBLJbC5Ijg+3q2AFvJRKElASpEGK5KSzEtH7nHY6feukJ/vUvfyVbL8d1mF7IafrHfxRABZTyaBVlmjNtUdKT64aeqU5OSoBMNXgtOSg7lDa+XWJQU61myEZgM0GxlSICmFSSjA3C+tjAUcQIZIlmxjVezeIhGkIsNUiB0DpmH9YSujkuU4T2Nbsk7qViVSFGClNovBKoZoAzgronCLp1CFlsQCZj0KUn2S8IV29CXaOEQGQp3f01RN0Qeh18JzlxQEszBTJxxwAXXKXQu4beVUFnx9O9tkDNolJEkJLQ0uf5XHP4cAeXCZSLTtF2A7bnEcMakziaqaZahbovyQ4CnZ2AmTvyHU/TV9Q9SbUiKTcC9YYlGVYMewXjern8tVG7Kqb1dV/gRg36RkZQgfm5gJBRj/7WpM/erMsn3SmMcqz35jw+usmbu69xxhyeRKkJMUDxQWCEZVuPKUMsHWnhyFWDD4JJlVFajfcSrT3eR3pG2YgTwMTrsc/vaG4hCk0n3gD5bUfvhUPE4YRQ1YTgkWnLYOtcTOuORbakQqQJfm2AKBvEbEFoUzi1e0Q+L/H9jGaUISsbmyapJtktTiKveFNKRCKXTdULRL0ZWUqy9/QYvVijak9oyWFlw0k3EsA5SbiL71CKQKYactXggmDmUzLV0NENNkg6pkbJuDlEH2YCipAhnMTMQuz0Bk0yrmP9GTAz+1n/Yxnmc4NoBL5ukHl2wsou8gyRZ2AdQQhUEdVgdYtiCDJGY0HGGmcQYDNB04noDZvHG08XUZEzPXTxjDqY4VtoXAiOMLOE8QTZ6SDmC5QxEXq3VLsDyvFWog4Mg1egf61B2BBF8A6msSR2bpub7xrSv+bo3Cjp3bSoRtF0BC6NeEPbh7xbM+oUXB+neCORQVCNBMlEkB56VGmRtUOVGuk0tiOpnKCT1Ty0sst6OuMXl7giIoCZxsx2el8gG1S4HUM1EHA2onmkDNS1Zl5pQqkQjWQchrzc3+D9mxd428YVvqr/Eh1ZodQ0SjwLz0hWOGqmPuFIdNhMpkgRYVOLJMF6iXUSKT2gEHWraPw59N8+/xxHxE2fHQayvRq70kFbh2hhKcfNDhFCjDiPo9IsxXdzirM9mq4i361JduaI8QysRRQValEixwliXkSH6frx+XYP8IsFIklitJumsbO7ZLN5TAeafnRiwnlsx+BSgarB2QhVA3BW0miFVh4fBMdHQeNVxLUFSaYbjHTgIVOWEASl0PggUMrTrFiKoHFHgvQwav3YrkEtGpCCuqdp+kt2pIkAJxF3aQOJLEXkOSFNwHiCUSfOX1WR3dilAi8CzggsAtUEVB1hdsdeyGtouhFr7LUgO3TYrSG6bvCHR4S6jrXYEOJ+sRZ54Wwk81uiHSdo3okIc5tJkqmn6Uhuf6Xg4k955GofxIDidJdiMzC9HzafzdFlXBOvxUkUF3Sgn5ec7o25UWySHkQUTToOZAcO2XjMlT1CUZAkCeFN5xi9FBi8Kth90woH75jwjaufWu6aeDDzWLpwqw2rnZLd1Yy511zc2mdv1qVximJqkEcmEjQLogJolXDLrfCrVlF5zVO9ayRtXi7xKDU/SfGNcPRUycIlzIlBnhRRZcE5iXcKWcaI1HwOzevPG/4E0L3tCFJQriexdhqIOD/rEdbjE43wHlxsAIiiJiQG30touoqdtwgIKSufSelf7ZHenEaZZevgaIIvyngT7h+0EahBdtqWmpKRoX+5csxAPFBGnxb0r9XI2uEThU+i/rYqQOYiAqudwDYKpT1OW1wQeATWK+q78omjKqdUhp6pyHRD7WPzKdEWkQeS1FL2DPNRgleafI/4/6xCuMDknEZ8YIkLAggb7ji0trHE6gifJwRzJ2V1mcIbcTLA4XWMRL1pU9ggULXAduLPgozaR04HmiEUm5Df0pjNLv1hQv5qjjg4ivA6FDLP8I/fz+RcB35huWsCMaUPLsLaXBaYnZHoORA88+2EfulACpJxgzca4USM0EWUbEbEXoFPBKSOXlJzoXPAB3JH05eYScQpz09purfAZAnCaGaPb3HtGyRnHr/N4idPsfkhx6dXzyJPPbvU9RAezMJjM0XarVnvzNmVI+pTDamybPWnXN5fRUw1QYVYw/Tgei42WxeK8aTLK511aq+ZdTOmLmNVz5Hi7uaTY+YyFj45EUF0LUjfe4krFKZq+zxHrz84+zyaTfFklMSpo2JNnkCfmm4e8XBVwIxrmmGCbDxeC5qeIt+rCUIQlEBVHlUptr/yJuItgat7I/Sn1um/FiOQwStz5JXbhEVBqGvUoE8Y9mMpwNrY0W0scmV0r5fyBTNVwfrHZ8hZSb3dRx9VaCkIsq1t2pguuEbGVFUrGqMwymO9pHQaj0ALR9bWS1Np6Zvys6JWLROmVYIFksTiVx1l1aXYlYgAyX5BvZYzfLVZfj0QkP0+7ugofpOmNFsDgo6d5yDi/gkSbC5PIk5noqM8nvLyCdhu1DryGmwnNu4QEJJAMB47kMhCML5kMG/bonNrk+ErNXpWI2YVi7Mdmq7EL1vC/Xj6SHlCJrA6MM8UeiFIDiXT89D0Osg6Xre0kOzJqG/fV0gbp9vqvqBac2S9mq18yiP5Tc6c3+dGtYEqFC6NB5NPBH7UjTDBxhNSwVdvvsw/efsK092E7uaMJiy3ASd8HE6pR4LHtm8xTEqenyu6F8ec70Yl0IOiQzUynN484tZzm5ixxFqBXYlTbm5iuJkPkAQarzioOmjp2V10Gc9z6sqgdGz0JjoONah2mKFqNE2tEfM4BKPLOPzyeu2eVu+4m3jcuS+HkqYb01dvo4MtVjWqDuQdyXxTkh/EDvzRJUW5kpFOIuhYOOhdhWudbZ5426t80+PvY/ZIyrtvXWLvqMfRc31O/4ohfW0PnI8Y04MxbjKJGNKmITgfMZNLNuFherGDWWTkV6NaQrVmkE0AYvFaWoFv4iHivcBaRaMcWt7pHibG0lU16+mMg7rLtcWIRDoWNmFWpxSNQQrQyhGATtIwPeuZVAPMXCBnFTrVHD7SwX9qudVjNa9hKBDagHO4B06h5g2yigWoYBTF6R5NT2EzEZ1cO2rs0hh9EjjRM/Ia6pHHdx0kHiEDaachS2JtmfbhdaPZP52j6oTeddA3D1HlELryc2oifDHspPeqAkJZghN4HWL9dxXwgvn9ccRTlhJZCppBIEiBLtpIPYFqNSBWajYGM1aTOSO14Dedep7/360VqhWJ7UYp8GJDs/fEAJcGfApiUPJTlx/nax96ke/8qg9w5Lps66NlLknMTLRgfsbz1tEVPjo5S1ipeWhtl7f3XyETDRfzfZ4fbbFb9nB9h2gEduDorc8piwQ7NVgrWcvm+CA4KDrMypTFNIWJQRUSH6BIA/OexXQbVNtgEiLgaomZxxr95wJ9gnt0pOKuf9S0GLYgIw5Ml7GONbsYcB3Pyick5Vp0IoPLDlUoyvX4YudbmnQcMLPAynOCl289wKtfvcofvvReft+FZ3llc4OfVo+zf9Bnaz5E3TpsF93F+qiS+NITnDsZL122CU/cFJ0EffMQ2fRboDx8VkfMC3wjcUbGGWkizOm401g4w0cPzvLq7iq21qR5Q57WlLWhrjVJYpGtgqYQEQXgck+1omg2eiAEugzIarkhqe2niOEAJjPk2ireeuSVm4Q6OlIhBN3pKnZzQNMzVCuaphOzG+EgpHFN1SK0ZSOBTwSNUtBIggo0xrPWn3NxcECuGnJVc20x4lNhm6bTI701AyloupL+1Qo9fQNA5VrT2iEMOO1xVhK8IBzP1TvwaQv8rKM4oE/EiXyz7fkTGJ0UgUzWvL37Mh+57xyfFKcJuwnHwzm2GwgrNZ1+xanhhEeHt/gto4/zWLJPE/aoTyZslmPCx4GJzoNHDPWCvq546NxtHunfZkNPyETDvukxy1P6piR9yHJ9PGSYx2xt38d9/tTpGzw9uMZ7D+5nPM8pDzNEKUGBHbRlACdOhBM7WUXVGKrSQC1RZVs6UlD3vsgqokHcmWxqulCtBMy0haFMPU2u6D18yDeee55/vvhK9AKKTUE6VphZoFoVlBuxE7s4A2Ys6dwODC47ysmIv/et7+T3X3qWFbPg3NoRl8/1KC9ndHcEoawIdR2jUSkimB/uQKuWaF5BNZTIFv8a0iQ6A8kJDOmYqEI0goCikYF5aJ2o9GTGcrDIOdgdkF4z6FrgR54qN5RpiigVOEGRejAe063JTGxEhcwzPy0x0xyz8DS5OFGSXJbZocet9QmvOcKpdaAdupjNT0D2YXcfNZ6gjSHdWqU81aMeqJY4Iqa22aGPRC83Y0MqSAEhUA814/s6XL/fwAXY7k7Y6k/Yzqc8rzYp1wQ+08idkv5rC+ThLBLkLNuCQMiIIVXKkxiLdZKm1ie1u+AFwUp8cgeWAyBsBO+HzKN1vBYjHCO5YCQrvmn902Sq4VP9beaHOTTtwUQkO0mVJZWWMhiaAB0BHbHcZq1wnmpF8Nbta6ypGV87+gyv5pusmykbakpXWEhv0ATFUXOGM50jznSOuF0M2C26aOW5cGqH797+FT5TneLWvE85SUEFGDUEG+vRCCB34AT1LCHkFaNOwb6TuDpFNtBkAdkIPocJ0c+vax9UbAS4vsdMFaoOcZO3EKdL+W3M/VPc833sMFCsS1QRcHnA5ZDfEjAWLM5ZqlVF93ocj3MfHfLzw0f4ju2Pc2mwy9UHRhze6pPdHiLLKtZFi9jJxxhkIk6mXpZqLUTHGREhKCoCwu+GPQkfnShAUDF9815SV/HzzArkTsr6pyE/cEzOawgScw30QpLMAuVqnG6Z3WdJVyMGNQSBSBwuU1QjST1QzM5/btMZXwzTylNs5XQSA95Tj3LSsouUEtEygYm2NOOnM4S15EWNOj3EdhXSKYQDM3MRnD8ukLtH8ckTgzmzSt3r4BPDdbHGwWpsQm5nUzppw7jfgq3LErVzFMtDb4DGJESGJikDRjm08uRJwKVNS2omqK2OneQ22pIy0DQKNzWRn8DE9z3XDVLEjvSW8rw5f5Wpy7jQOeDTq9tcPRrhvCQ1DeudBQNTYtqudhkUqXAsuWzcsnXB146eZ1uPmYeEV6tNLia7bMiKLZWQiTFZ3pCJhmv1KjOX0jMVibLovue7Nt/P/eaAnxk/yeE07oOVjSlKBsbTHJNYqlcGAPiOJySeo4Mean1KljRUbQmJdihAfQ6Jy+c1ay98+497Dc1A0vQEpdVUq4JEBNbUjG+48CI/9+Kb0TNBsRnIdwTZLhSbgWol0LklsIeKwdP7rL55waRO2UxLHhneZuET7st3edcFxce6p3l1fZ3tZzv0Pn4Tf3AUgfxSRIyqWvKsMES0gou1rGDkSZTsUnAZJyDyO2snCLXEBQjG4yeG7JameyPQvW0JQtC57ZFttzqolkawDpRnobs159LaLrXXFLWJGu+5p+lHHFzsbi53SaxVTM5reisjqrVOrHVmmhAyXD+lHqUI68muKERVRf6E6Rw9yynXulTD2IyymaF7C/QhhEEPu9al2MqwecxshAU11hQy4wW9wWKYsJov2Fsb4jODbqkWqwe3cPNsuYsCHBdqhQho5Una4QxlmthBDoLG3EknnJeUjaau4iYKKmJRmzreworYmc6EYlWWPJjd4lq9hhk6zncP2au6LGzCajpnI5nRUxUTl1FqxRCHWfLhEpREVVB6wzwk7NseW2ZMX5Z4oMGRCthQBc9kV7iY7DH3KTeyFV4r1ziXHfBMusOuSxg3eSyPyEBZG7pZzcbKlDO9MR95aYCZCjhSVGsCNiyupdKL69q+IH+Hhev12D3XSI/Trmw/UB4kkX9UQtMVCAtFlbChJ3zz6BP8y7OPkb6QR5jH+UC2FyeW6tMN9aZAWMlWb8rvPvUsRlimLufAdSMNlk/IVc2bNq5x+Z0Lnt84wwW/TecFg6gbkJKgWuq4g3u5mi+sBdHCdXKNyuJEjktaikF3DPKNjbpQCXzWfjQSPVWkh3E6TM8delqRZobDRzvUA0/3uuTokmJxseH++2+zls2RIpxMpUgV8DpQDwOqBDOL+MtlmmgE2ZEHpWi6Gr1wyGmJmMxQtkfaOGRpYTwlOB9LNUrhcsP0rGJxpuXa1ILe9YA8ik08e2HE+H5F07tzMKkKwkQzS3Kq3pxTnQm7WxPK9SE9KaCxzE8nNC8vdUk+yxIdb2QnRSyhe4lRDiMCJgicl1gvCSJgrYopKiByGzlHAS09RjomPuPIF4BkW4+BSC3nkNyX7+KDpKdKMtGQyYa+LNoZdTBiuaWxoCR6EXi53KQjK351com3919FEVnRjk0RWFUlfVlzy/V4qdpCisD9yQ4dITjyObtlL/5t4rFWUtQG6yRXwwi7YpFW0/RikBG8QLeomZB6bC7Ax2g0PXr9dbF7rpFKGz22qmHlU7F51Ltu8akgCMVsP2ckS86pGd/+2Cf48fmbEVYgVytmgwRE4NH7b3Aqn1B5zSO9WxzYHi8Wmxw1OavJgnUzwwjHQJdMbMZmPuXo/AH7j25iJkPMzpSQJ4h5GUH7SzZBXBfZtB3mVEc40jSQjuOmd4nAZcQoqxPB+9bLmE60hLaq9CQ3J7Czj1xfoR5kdO8fM+30wXjyYSywz5o0EjBYjXUSW8WpDGQsnXRuyqWPiALkOw0YHXGfmSRkBm4XhNkc4T3eWkQ7zonWoCTFZsL8nEeeKXBOUpBRXdXkbWMxuzomOb/OYhs4XZ6A2/ECYxx9U3EqG3M0yDnIVxBZRnNhg2zfopfMEiZEwBiH1o5u0lC7GAb1TI1RDh/ECc+CD4JZneJCxB4jAyQeqQO+kWS9glGyoCNrfMsM3ZWeRahZUzN8Iim9YeFShnrBObPPSEWES9KOhzQBqiUPtAgf6Ox43r97kQfO7VA4w57tc2Q6dF1DExrmQdMESSYcRnhckKSy4VQyZlNNKUPgY8UF9osOiIDSjjRtGOUlvaRilBQ88MQ+12Yj9ucdZvsdpIqsa0rEdUXEUpJegFp8sR2pjDg/swhIohPt3nLYjuTgUUX3RiDZU9ywQ96RHfFNw0+y91SP53a3OTMcw+noPB7s77JiFrx//yJ//2NfQ+8Vje1CteIJfUvWr3h4c4fTnXi6GuHZ7M745MU1ylcS1CwFLZHO4w+O7uVSvrAWYlSUTGN3sB4mBBUnbszcIkuHtB6vJa6jKdcMiw1JsSmoNiw+g6rSzLc0Llujs9LBZZruNYnfWaHfRMhLlTianjq52WqnYopXKXDttIeA5CgsHUcaBOiFBSEIQlD3JZzt0SnWEQdHMZU3GpFl+M2VWF/XMnLQbpWc2zhkUmbsO8HsTMaw340O+OYOm7/k6N1YY++pnGLLEwaW0daUS2u7PNTbOXFCydgRhn1crllsGaRb/kBxXWmcE/hcUNQmdp/bN2s1XWCDZGETDsucstEoGZDKQ6URhcKJAFaSJw2pjA5x3/V4xVa8NanJRMOtasAtO6TymqEuGNsOV8Uaa2rGSFZ0hCOL4ADqZYtgSoEqPTv/5hQ//62PsrPon/zqKOnexeLUpQmKNTVDCs+GntKVFVuq4BXb4xOzM8yrBIJAacdGb06uG7ayKbmKSBEzcPSSisO8pLaaRW0oFinqsC2T1IL0MDaMX6/dW2rv2/Q1jRAbr2Ntof/8mN4rimAk3vT4Rzvv4MXhq4xdztODq3R1xel0TOU1UgTev3+RVz5+hrWPCs5OPeOLUK07emcnbPTmnOkeYYRnpBeRnBVYS+fotZJipUMyznCZJG8cYjqHyb1czRfWvOZEFsXryM4EsNhKyHcbKCxqVqH3piS3E8z5PvXQYFZL+t2SAzGkWpWE3NN9uUf/imflBUs9kBw9KGnOVZzfOmSzM0ULz0HVwboIocKDrOSdWfWldxDiLLxaNASjkU3A5oLFuqbpbpDtjVClxacKm6tYN7aepq8pNwS9fnlSvrAjyfi+hMO3bDD6VALzktDNIICZQrEFplvzwOoeTw2u05E1e02PKzfWeOTyGJxjciHh8PFA+Mnlni5CQJbXrURIjDqNcjQujgf3TEXtFLVTrWqKuKPQMtWEPDLlOydZze/gpw9sDxcEXXGD+7VgQ03ZVQO8kSdM8QBTn5MJSyYcSggM0CzbkYbI8rbxMcuHtx5Ab5QxCveK6+mInqpwSG6WA47qDm8aXeXt3ZeBiktmn64UvFasc1h1aBqNVJFjdCufsposmLuEkVlghCN3KYm0rKZzbi8GHBQd5k4gnbgTDM09Ifkiw58gsu4cN7Ui/ZUg5Aa1P8Xv7jMcPcz7Xr2P9199FFUJqu2GjbNHXDh3QMdUVN7w0gun2PhYO8mSCLo3PclUUl1Z4bXtIdOHUx4c7QEw1MUJYL3fK6hWuvAqjO8zQJfOrICde72aL5C1JY+gBMIFZBPrMLYTx0SbnsKbForSSVDjgvz6jPz0CJla3rp1lY9rx6xMyZOGyTDj1oMR8hQ6lv7qnAuDCac6E9aTGZXXLGwSmxONRFZRIyqOT4aT/7VsK7e7ZDc8PmkPXiWoBoK6l+DSBJcIzDzQ2XMQFItNSbnteHDlkAudA07nY17Ta7x4VnHra7scPbxCthsnnepBZD/yw4Zu1pBIhxEOKTz7TZfOp1PE+Cbu9BrjB6F7TUb2sCWaIJAlDbbFDedJg/MSJSPvwqSOzbBMWSqlUVJTWUW9SMhOzU8aVHWjKa3hdtnHB8HILEjlkLHr4jovcUk3dMVlfmr6FAe2i/WSQ9ulNIYyaMrgkN7Rl4JsyTVSfCRrcakg3VOUPcNRkuO8ZD/tRpA9kRXteHLJBckjyS4XdMJlW7NnB8xtQghgjGOQVfRNycjEw2a37vFgZ4e+KjmVjBm7nIVNKKyJUDMZkFYi6wixa7qv3z3ec7Mp34vyDdVIIlzATC1yVkYNoTQh/8Q1ws5F0rHgzL9ZIGvH+NIa//t3PcNffuyfc8sOeeihG7xgtln5oKGz6zDjhqZvyPcla895roU1/Ffu01MVQ71AEpjajHODMR97cMTWh0JkAXK8ISAtwkE6dXeE/VwbnQL5To0eV8hZweLBNW6/zdC/0mX0/ILsyLNwknPZIcXI8NpkDYAHz1yjf7HEB4kUntprXBD0dYSvTHxGYQ1FZQilQlURX+jTKF2BiGQxS7UVy+7ThnM34rdexdHG45KD7URScF0EXCJpOoJiXSBXKs53DrmU38YHwV7ViyN921PKkWH6kMRVEZQvO5Y8a1jrLlht64ULn/DcwSlWXnDYc+vcfnuPwauByf2BZn25axKIzdgQBIchJwRB1WiU9CgZKBpDbhomLqNoNFVjKOZJq3UosFZSlRGlcnvc58DkHGQdRllBIi2TPKcMmqvJLs+kN+ipknfvPoSWnjOdI1yQPN25gmKMkw0qWIbLxmELgaw9ydiSTBV14qgqg3PxgKm9IlWWzTbC/PDhOaQInNeHXLY1Rz7hZj1kWqVo7dHSUzvFueyQjqzbGfuUmcs4kxzSlRVNUCTymCw8nNyzehFwqWR8n4Kffn0v/94i0mMuUgvp2LfhsIfGEooyUuVlKRd/qqFcMxxdyunebHBGMPvkKuWjhpFa8La1y0zqlMMbmyxOa4Q1ZPswfsgTjODBh6/zlaNX2NZj6qBolCKXdWRFGpUstjoIB6p8Y5CWCN9Cn1o/YbPYsRcBmr4muTkh3LiNf3ydctuSTDXVWorNBOUi4bDpsJHM8P24qX0QvDDepGgMq/kicpMGSekM1kv2ih77sw7VJEXNJdIRmb2T0Eaky10PAKMc6h2H3ChXWXmhwfcV6TgewrGxFmvtqgmUK5JyVVBuOy5sHPLW/qu8LbvMvs95Odvk2cV5XKPIuzWJrnCduE5aORLt6CcVldfs2R4Ll3Bzb8hWKnjxP9NIs8CVmv/yK36eP/v3l4sJO2YbAuJEjQgkLXovhEhK07SpvXUqYkkbhVARmO+9xM11ZMRvJE1yp4az3Y2CcDv1gExY+rJgpBaEILgxGTBvEvxAcjY5YCQXmOCiTIdf7poI6xCNQ4mWclLEdTLmzuvKlCWVjjPpITeSIe/du49TyRF9WdAEzYvTTYra0ElrqkYzK1M+fHSOr1h5jbPJQRTB8+kJYUnpDR5B42VLtBQZtWwu2HtKUW5/kZtNoh3f8xqcEfRuWFTRIMoaP21bonWDGfe5+o0JLg3Ug4TpfZ5gAreaIafNIetmyts2rvDsWwU7ewNCoWgetlzYPOCh4Q6/afQpEuHIRMPcp4zb4u+siafO+H55UlYQ9ZLFu6CVtRAk00jYEqSgMZE7s+4pCKtkKx30wnP63YpkUlOtaKqBJNSSmUs5l8Ux2IOmy2cON7n98jp6JtnZrhmtzlDtWGhjFdN5hpsZ1FShCnFSuz6W9XUpSz9giiIlNZbdJxpGr0Thv2P8sUsFpogp3WI9UufZbiB0HWe6Yx5LrzP1CQuf8kz3Cj+lnsDeTikA2fd005pMW/pJFYlelKXyit26T+MVg37B7d8Kb714hQ88dz+j7SmvFBv0zXJlaaIjhaZWLRkNNI0iaFDKs6iSk9Hf43IWThC8JCSC5LkOZ989ByG49nUdigdqbNKyiAXBT774BHY/Z+X8Ib/jwsdZ0XMu9vcZVxn78w5SrLGazCMRcmi47noMxJKleuom8jKQYGax4348Ag0xEi9dnPraa1nSd2ddfuTqW1nNYnPuytGIxSKlkDGC6HdL9ooev+Qu8Y0bn+G0OUSKQOUNB7bHftM9kWf2lSKdCaSDxamAuDhH2i+y+J3wAVO0IwBJZHCS40WUEWknjMIiapiPntrDecFBb8hoa8qpwYRMNngkI7Xg4c4tBqdLrq+O2C179EzFhc4BD2W3yERDIhyyxfCUQTOxOUdljnOS+rzFHKiYvr4RpEba1EBVkQOTdr6+6UXc7GJDUY06dHYs/dcWlJsZ860IfcILaq+RBBySaZNipEctJP1XoZilHJ3ShNQhdCA4gZhpdHksGCbwJpyQbePu0M0t09QCps9ukKqA8BYzb8c7e7FunEwi2iMoEdUzF4KqluSqYeFTrtsVNtSES8ktANIDSR1SZl4QBgKZB6yXZCbSrQHMbIL1iq3+FCECz+9tsn5mzJn+mJemGxzMu8tcEiASe5/M1stwIprqvcRJ/1l/550EFdC7hnBg8AlM7s/J9h3pGNwNg+9VDJIKG1RsPPajLPOKngOwkcx4cLTHJ3ZOcbjIuZyvspP36ScFR65DopasrApwYwc9GiBtF2McQkTl2PEixyjHRKRo6Rk3GQubYJTjYN6JWVllcPOoSeVTT9qtyY1llBVUVvPhyXkWvRj2uyBZ+IS5TRlXOfMqQU400kHdD9itmgurEzLd8NrrfP335Ei9FpRDFTGSc0+yN0dM5wRA5llUf4yvmK/ceo3vXP0A7714iYVPOGWOWFUzymAwwrGmZmx0JjzVucLURWB5V1aMVBS3OpZYnfuEse2wX3U4mHVwVpGuFtRZQtPVJM3yI1JZB9KjSKTrUvlZ01/HPJs2E8y3DZPzhsWWwPYD+U2BXCimTUoTFB1Zs5bOeaC3xz87O6TajyWMdFcBCq/jOJ1oogMVDpDtMIBqM4YmZgzLZoPXC8/wZU+xIVGlR9rIOamqgHYeVcePzo0SpGB6IaNclzx78zzvuXaRqkzYWhtzrn9EuZ+ThcjNUCvDQt5RXr1beydSEhq09Ew/tcrGRwOTi5KXWMdMwIyXPMWDiNCnWp0gLBCB4Ikctcg7kzbtYSyNww4l2U0NAQ4eE3ijcT0LOtBPLJ7IePTWC1e4v7PHU52r9FXB1OU0RlGkhoNhh5dubfCiWOdKf53z5iAGK0uetQcgeMJ0hpnHSNQoR57E+7qoDYe3BkxnOYP+gm7ScG4wpqNrXp2sUmpHoV08dEQgT2tSbalaeZ69sstH3Vn6pkILz9SmHFU5u/Mus/0O2VjiUmiGnrxfcbDI6WdfbNKSls5MtLOpwoWoxyNFRPe2JoqauU25qGccZdcBGKlFJFn10ARNHRSZ8HRlFVmshY+TF632ikMw9TlTn3O7GrCz6GOtPAn9ZeJwqX5jiN/R1oqPP7dohGTSOjUd09nZ+UA9ilhZSkXnuiY5kDy/t8msSZnVKam2+CBwk4TF4yWj0ZzD3T7JTUN+W9D0OKmB+oQTbk6gpZ2Lkc6yuTdFCGT7LnJnrmjyWxWyCajaRlhOT2GmDn0wR4ynDBfrVIMB/soKvcNAx8DhqZyd/hb5LGo1ISKxr68UhTFMVMogqyitwQZJ0wLcD4oO6ZFAWs/6J5pYaunKNwQszFkVSTRUgCbyBnof68bBC0IjIwm4bJsgyiNyS3kKZCFjUzH38fEyUBYJO/QY5iXryZxH8hts6AmKAApuNCscNR1W0wXOSg6uj7i6tULdUYzkIpKCLNGElGASRBqjRu8FSepIlOOh4Q7jJuc5p9geTHn4/2zvzH4kO88y/vu2s9XS1dt0z2aPx3G8JCGxY8VKyCYRiUgIIUCKAHGDkIiEUC4Q/Am55zIX3HEBEhISSBFJCNmEIpI4JokJtmfGjmc8np6Z7q6u6trO8i1cfKdrEoHAHttqR6pHGvXMRU9VnTr11vu977P07/LCeIdhWVB0ax7qDzksOxwnKdMyXf6fkyrFKLdkRIzKnNzEUMl5Y5hXCeNxgdk3EKLHbeg6lPIUSUNt3+GtfdSUtxpyE4nWwodojdbGARMCYjzhB7cvIs/BGRWlfUY49n0vdpretPw2TekNfVUi8dRB4RC4IBm5gqHrcmQ77C36jBcZUgbSxLIoDd7G2Zrsdk6dRxoUBC2QTVzAneh1VROtBV0S0y4JgpCEuCm0UeGUTKD+0YCXHixQh4a1a3FMkO8INj5xwPs29riz1ufWbp+DVzeQC4GqxDIVUtXxpxDR8xQPqhLLeenpXROx/MJtCknhAmZc4lONSyR64ZHOE1IdY5a9Z3CtRrrA6OGUphdZCMjWCk6ytNhDRdMP72XUojsdN+BOkyrLwX6P7b2AquIW1pk4wz5thBCLZcwgDrFgtveC9zoWz6ZVpRlAe4IX8X7RHn+SU6cCInEo40mzhtRYNrI5fb2IhsVB44gKIIdgYlNqp9ncmLI/W8d6hUfSkzWnnnomJaIT42dU7Zfb+hAEA7NgO5nSOVvjEXy0f42P969wq1nnR5MLjOoCT5TTShGWv1c2mqadc2rlKRvNaJpjjKOqdIwV2U8wk5hS4LNAd33OerHgTDFh2qT/z5O+h/srpDLO/WwWyavyxK3+BCHEbPrRmOa5hxl+SC+1sRkNDtFuz1Imre3/mp4z8Tk9uaAja8p2qzbxOUe2w83FOsdV5NfladMO4yHMdbRuPLcJt+7r1bx9EDFLB3/i3Btz7kUZ0DOo1xQubbeDtSCgEV7g8uhZkN8N9K4bin2LrDy3n0npfPSA3DQ8e+cik1lGszDkOzPKaYorY1SHLOO5Xrr40GYiljLe00Zov1Sj30BYcmz1aIE6rkBLRG0JUuJ21ynPFDTdyEBougKXxO5a2BD9HBS4ro9ynBC7uMYpFo0h1TYe661mOM/Jr6VkIwshjhjSKlLT5Cn7D4RWDYgMqMTjBQQXj/KiEsj2jysCPrX39oVtwRXagQhI42MarXZ4HwvHzCYc25yh7ZKJBiMsc59y0PR46eAMs3mKMY5sM/KyM9FQCEdz2hI4KQlFhuumMQVAtrJNoJA1haogg71yjb+6+mt004o/e/CbXNg85LHkDs9X5/nG0ePcKXvsTXqMjwuUdigV6OYVSnqsVdhGx9MA4Gaa/CimVXgNyfkZD20MqaymdIZCv/FT7n1r7W0RJYj9VyvCoozBdkpGKWAIMXI5BC5+fcaXfvPT/MnWt3m13qYj43bwZr3BxGUoPPt1j/26y7l0zFgU9FS5vAHmPuGw7nJU51H1kVUoERcMM0DNJKqJpgenjpPP58/NJYWLig1ZOVwmET4uh8xELrtJbwJNR7DxX3P03WNuf2aX6adndIsphz9bZ3qwRXmxxuwbNl+ByaUE1nz8IM5l9E7UgAVzHB/bzCAZh9PuMwgKVO1JjgNNN7bMomoQ8xKmM5AKrEVmKUhJqiSLrS4uAVWGJesgGQn0PCqjZhdkzOrx8YjstY8bbu5xMA9/ss3FH9TgAz6RmOM6nhTaHLHThPMi5jV5gZQeL8XyBJPdVvRf9QgfqPqCxW5CtekIaTzGR77jvSJ6Yux8gsYpRk3OXr2GQ1B5w2vlBt+88R54dg25FigHjsvvuc3jnT0u6mOMAH/KfOPyjOaFLwzIt+asd+/SsXo5885kswyuG5g5v3r2Fb76yuP8xdXfY+PiiD99z3fY1FN+Z+tZMtHwj0dP8e/yEsNRl24xR0nPvDZ4L9hanzCaxpY+jPMYSpnG05ttFIm07NcdlAiMF2/cJey+lU2yjvlMso5u9ScJkVgbQ+6sRSiFev4V/uVfn+TDv/UqZTAc1D3GNufK9Az/uXcWaxVPnL/NJzavYoTjbt1n6tKWpqA5thlHdbHc0nWVpfGKlHhUPLYd0lFz6vEREYGfn9nLJiBszMlRlSMdNXiTtPndrXmJbiW3adzE1r9ScPQhh/lZB3Wlw6aAg2caHn/4FleKM8ynBZ2bgXKhoq1eHccsyyVTmyyZHXqCagvsaUIIktsTsr5m/+OBIHPOf7lNOpCKUEYRB0rC9gYiwNrLc1ymqQcamwnM3JPdqZClxfUT7oqcyUOSkERj5CxpUNKzsAbnJYvGsPl8IDmqWOzkSBuQlQUPwrlTv1eCF2AFopY0pUacjGQWsRmYnpdt1lK0B8z3FEGo1vQl8oR9GnCJx+YWqSJdyLu4pCqt5qDscLEzwsi4iPvg7i2ee1Lib3RABnbyCR8rrlIIKAOn7pC/1Zvwxx/7Dl1VcmW+y48PzwGgpKeQNa7tmCtvGDU5T567ydV8m8Nhly9+7zcIlUR2LNsbE6ZlSqItG4Mp1kmqJo58OnnFeJYjBJTHKdm0bXh8/AyZFwp+WF6K/55okqN3WiIqoB7EjXDnlsY0TTTMVUsOx/JncI6L32j40vs/yecu/ZAXZ7sAvD5dI00sn7p0jSe7Nzhnjpj7dPkNWrWOxDMbc6czZemaCi09ksDF4oizyYi/U09T/scWsn4XbB1beBVnxtIGpPMQAj5RS+VGkBp5slVXUf1UDWCxJUmPAhe+Kqh7cHxZIN5/zOXBMVeee4DtZ0E1jtmuIh2CamI+VlCg/T19vZ7HpMngA2ZyulVDlY755QE3f9fy+x94lr9VH+HMs2vowyl0cuRwHL9085xqt8fxAykiQLUmqNaj1FXPNeacJht5zMwvZ6RBgFSeRZVQNRopA5udOTf2Nnjk5UgvEz4gax8NKLx/U0YU7yiciAbfE03I4mIyUuUCwcRCGXQA4xHaEyqFKGWMyWi7V7zAzwwesMajMkdmLOe6Y54e3OCDxXUMjonPuVbt8NJwm+FaRrEx5yODn7GhSuYhmjvPTjv8rj1RNEHRURVGRms7o9ySedBTJVOVclB3mDYpF/tHPLK+jw2Sa8MtZouU8SwnSxrW8pJUWaZ1SmV1HP9UCd5HJoQc6xguqFqf4HZslN407SgJ3gyR4f6O9grKHYusNXrxi6qi4Py97hTAB7LvX2X05Se49kdnOJuOeSy/xZl0wvX5BpfzAy4mhwDUQWGEo/Kaw6qg0A0eERUNyi7dW7RwPJAe8r70dfwDkr9++LMUd+7nlby9iLlMAZTAq9ZmO8SbRDQ+fvCbgJl5hI9plsJDuQ7JsWD9Sk3QgsMnDNP3NphuTXOYc/u5Ppe+W5LcnbK42CdNBS5taU/t/BHaDriG9Dg+hp45ZH26/MC6rzj+/DGP9SZcm22TvZqgD4/wawWicYg8g+kcvMcclfSkwOYKlypsFQnmtgg0HVjsSPRCRq5uLfBO0JTR6FgoH/1YiwU7X0nAxy19MmqQlY1xI6UliEA47X2TF4gT1/ta4IWMxTMPBOHjglDHn0J5dOJQRdwLaO1QLVk/0Y5Mx4SEtG001kzJheyIR7M9NuWMTFgaFEPbQQrIBiWPbB3wWLpHGaIgoAyau673fz/ndxiCwIaeMvcp63rOwbSDlJ5uUlG048DSG7ZM9JjYX3Q5dhmFqemainP9Y5qOYtYkdExNLykBYprotKCuTIzyyWsmez2SeRSwNL170tBonB73Cz4N0cTkDeK+Z6Qns+mmqzFaxzNm3RDqdkDr2w2rFPjpjN1/eJlvXPoQf/jZb5PJhjW1YCuZcWW2ww/HD5BIx968z96oz2Kc8b6HX2dTzam8ig5QZs7FLMq87tZ95j5hIBc8mt2ifmKB+Lf7eSVvL4IQuEzGTrSJ3Y/wIQoGQgAdO3ZZe0QiUCf55JWg97pFuMD8jInS2z2NmRh2r1q6Vw+xg5zRBzao1gSLbYHtBtRJbGwbHSss6CqQTGIshy0UrjjdTiMdVHx45yYf7r3Kt44eZfvH0cSZfh5PLmWF6ORRaz2ako2iMq64UTC73Ge+qagHke7l0kCdACH+HRnaWSMEr+j2ZpRWU56TpKOM/PYiFuva4lMD1hOM+oUZ9qnAt92oaD+8tYgLp5bqhPYI4zmp+D4IZAClwrKIKhnItKUw9XJbnbWNRuU1E58x8gVGWF6rN3ltvs4gX7DTnfDJzav05IK5N9QoJj7jth2c3vUAQFAGgxSeJihm+wUkHj0YkYmGjq6WPPOh6pAqi5GOQbqgpyukmDGzKR0TOYFSBI7rjNcOBjSjDFFYktQxOeygJwppBYsdj889ZhzHZMLF++pkyuHfxIbhvo/2opKYKdiOwm/0EHVNKOM3hxCCQADnCL61ChuNefArFd966hH+uXmCuy9vouYyznuylns5jxu080/c5VJnSCobKm9IZcNuOmZXjymD4Zv7j3LcyfhU50U25YyLZ4bg1u/rpbytECxTRE/mcEEJAjF6pF7T2FxEKlQu0LNAeuwx83veh/nQ0tnz6JlFTSpE3eDXCvY+WjA/51EluDweb30SUyVTKzATSGYBM4tFVJYOkapT55Em0rGdTCiD4fnbZ9nywKJE3T7Cb60RBr24EOqm+EQv6VIuVbjWjjCOLKII4cRHIGQOmTj8XCNqSSgcjVUsXhzA0zMmn16w+PtNNr+3D1ohnCPkBlfoUxcpEEBWYvm6YmGFkIcYihhiOqpoC6sUIbITGkVdq3amGljUBiXzpddA49TSQUqKSPna1FOGtkuuGs4WYx4uDric3sUhKYNqxS7pMnDvtCAIkV8O7Jgxqmvhdsr0fMrQddnVY3pqQSErhrbL+WLMUZ3T0xUbyYyFMyyEWRr8zG3CnUkPe5iDCpjUspikiKkmqED1UEWSN1TDHNtrz/C2DYv0ol04vPHnf/880jqmhjaFYHGhS6YlapgTJtNovGt0TPuUApGmiDwjffEW179+mWd++yfsD3uEMiMkAdltWFubs9mZc6k75L2d21TeLAO6Ji6LeTSyYUNM2cqmfH/vQb5wxtIgyXVDlb4LWNah9SANIGqPKh3eSGyhmJ6LWVYnhS3eM4JkGilSTVeh5wI9d6gyFlEkVBcGjB9OcFnc9AsPeibaZURAtm++LgNm4kiPKoSLM1mIQ/TTROMVRjpemJ2lvN7Dm7iIDMMjRNPgH9hp58eOaiulXFcECXU/8mu9ifxRl4UYTaxDnC9WijDT6Kq1P9tqKGcJD32txhxZrv3BJk9//iVuzh+hd22CqC2uI/H63WEteKI+C+Ekcypyf0Phom1ipQiJjzlcrR4/bvujNhygsrIttrEzH/dL8rRGisDAzOnIijoolIhH/x095/35TQpRMfHZUhBT/txn7bQQYGl/6JCs9WcMa8lwnnNlsUvRiYIdh2DLRE56Kgex+7YZlYuWklo6aq+5ddxntN9FNgK1XmEbhZhHFZF5YE43rxhP8jhCydpr6AXOynh/ncyi3yDuu5DqeeT4ubR9wFCQpBptNKJdHvhp1PnKbgeUIlQ1F7425vlPnuUvn/oaf3PjGcbzHGsjoXozm3EhO6InS9bUgkRYClmxb/vcqDYZuYLdZMyvb/yUUV0sn84gWfD8Uyl8/b5ezdsKEdotfRk5i4ttw/Scwnbi9KPYD+gyUA0E5Zag7it61z3Z0BF0HA0EbbBdE/mxWezS87vxyGE7ArWIyz5VC1QZaU7JxKMXDjVegPO4nT51T576PFBLxxlzzLfvPIK08Z7xZYWQAr9/iE4S3KVtgor8zuhXGvnJdS+amNgimt3EtDeBnij0LPoX+DTGgQcnYWJI94aEm7c5+90n+OLn/onPfObPefynDSGJt7rw74IqSrso8yBqlp4IsozRyyFzUfXU2ln4pu1Q2/dSiIBvFFTx/RW1QChYiJQsaRgkCy5lh2SyYeQKjHCcS0ecMcdksqYMhrlPKYNpyfoSdcqZNCfdaE8uuGPXyI0lKRqmo4L/XD/X+hH7pSWekZbNZMqNxUZMEWh5n1p4ro83GI06qLHGb9VxNzc1oAK98xN6WcW8SrC1QrRfVkKAVJbgZYyteZMfHBHugz8mhNgHrr/pX3zn8WAIYfu0Hvxdel1W1+R/YnVN/nec2nX5Zb8m91VIV1hhhRVWuId3gRxohRVWWOGXG6tCusIKK6zwFrEqpCussMIKbxGrQrrCCius8BaxKqQrrLDCCm8Rq0K6wgorrPAWsSqkK6ywwgpvEatCusIKK6zwFrEqpCussMIKbxH/DYoryaMlqR+VAAAAAElFTkSuQmCC\n" + "image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\r\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\r\n \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\r\n<svg height=\"250.458125pt\" version=\"1.1\" viewBox=\"0 0 336.123362 250.458125\" width=\"336.123362pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\r\n <metadata>\r\n <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\r\n <cc:Work>\r\n <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\r\n <dc:date>2021-05-14T15:45:57.988242</dc:date>\r\n <dc:format>image/svg+xml</dc:format>\r\n <dc:creator>\r\n <cc:Agent>\r\n <dc:title>Matplotlib v3.4.1, https://matplotlib.org/</dc:title>\r\n </cc:Agent>\r\n </dc:creator>\r\n </cc:Work>\r\n </rdf:RDF>\r\n </metadata>\r\n <defs>\r\n <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\r\n </defs>\r\n <g id=\"figure_1\">\r\n <g id=\"patch_1\">\r\n <path d=\"M 0 250.458125 \r\nL 336.123362 250.458125 \r\nL 336.123362 0 \r\nL 0 0 \r\nz\r\n\" style=\"fill:none;\"/>\r\n </g>\r\n <g id=\"axes_1\">\r\n <g id=\"patch_2\">\r\n <path d=\"M 10.957047 59.80778 \r\nL 48.446703 59.80778 \r\nL 48.446703 22.318125 \r\nL 10.957047 22.318125 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p3fb8d858eb)\">\r\n <image height=\"38\" id=\"imageaf54eb39cd\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.957047\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAM4ElEQVR4nE2Y2Y5kV1aGv7WHM8SJjMjIobIGl9t2dWO6hZBAQlwieAKeikfhhmseAK5A4oa2kNVd6sZ2lasqK52RMZ9hD4uLna4mpZBSCkXsFXut/1v/f+Tv/+GftHq7gc0ejBB+9ZzjZw0mKO3tiF+fkGECVdRZtGuIZzX9k4r+0jBcCv3zhM4js8VA7SOqQu0jIRm8zYgodw9nyJuW5ifBTOBPiiToPkS6374DZ9n91TNO1wY7gjNDQtsK2YCeetQbsoVqnwHoXy5QJwDE1jB1hthCnAlxBsN1RlYTXTfS1ROVTQC0LrCse1bVCYD7eccf55c8vF/gNo7mXqg2ih0yGgLhyyekSpAMNiguLCtybanXe4iRVNvy5pCZzivu/8KhBqoNIJAd5AqmhRIuMpwFnE8YUVI2WB/o/ERWobGBuR0JavlstmFV9Xxb3XB7tuBUN5ANoooYQ1g4EDAB1IDbvPJUe4fbnmOWc8LcYKKiAsPKMl4ouVJSI0gqN5edEs4z7rLH+0QIlpgMCly0ibkfuR86puxIGGoTeVZtuep2fNn+xG/PXvBN/YywW6BG0PkMMkhS7ASSwR1fKvFe6N412DETG8EEGC49w4VAVtQp4QwkAqKoA50ljFFitITeE0eHccqxGen8SEiWIXpitqyqE3M7MGjFjd/y67lls2p5PT8jtpaqa5CsiALlCFx8NmKHhlwbTFJMhNgI01KYlqAWSIJEQb2SmwxWmZ33OJvZPcyQvQMLyWc+yILdUGNFOU4VQ3LkMyEjLG2Pl8TMjlw1R363ChyfVdT3ntQashWyF2IL7tVnd/zx4QVhZnDHhIkKjTCew3SRIT/ekgW1Cj4jLpOSwdkMk6H5aEmtItGSasd+5ZE2IaI87GZshpYvlmueNjtW7oSVzLnvmZ/3nG5qZnc1KJioZA+SBfd31685fF2xfX/D7ONEtYlM84rsFfWK1glTJ/LegwHxGRSm3iMCGHAnqLaCG5TYCtPBE+eOVClmFH5613C7Oufm2YZfX9zyotngTGLejHy8ypyuLfUmo1YIXVGm+8v2B8wL5Z//tuF+u2D1+wk7aUGEgqkTi0XPDsijRYNBBouMwgjYLnB6YeneGtxJC4NOkBohO8FEyE4IDxW34QIRhRWcuYFV0/OhyYTOUW8FSQoqZAemMyNfN+/5x69+y8PfBMaVQxKkWlGfyaMlq1C3AQQIBns0VDsDe1+Y9dWO/avE5mth/1KIrWAHpdqWaQ4dTOeKzCJjcHy3v+DDsADAzAPTosx19oIaSJXgjrnm2u248nvOrw5M8xU2aCkCwCpTcBiTIQvmZDATmAmqtWHsLM0i0nzxwPFpRb9uSbeO+dsinOESxuuEvRjp2glrlCnZT5xrZxNT0zCdCYgwXJRjXcZwFxd8N1yx/X7J82OmvzCoy6ACwTBsaxCwW0u9fiwsghrBPHh2s4b5bHjUegFw9oIKjBcZdzlQNwFnMrtjgyo0LnLT7jmf9bxbzBl7iwmFYSaC8xL5bnrKNw/PWf2Pobkf2bxq0DqDUaS31Hf20+wU5UjBCGBHIdy27I8dficsTmAnBVXCUsBoUbUKw+SJ0+MHAWcSCriDob1V6p0iSan2GWdRDqnhx/WSJ7cJCRm1IMFAFKqN4ex7xcTCOH/MhLnhdG0IZwW+1YPl4ttM934gNpb+yrH/vLwvQUjBkl0mTA4xYEzGSSar4TDUtLfCxbc9blduXY4DLiEYlPFQY4KCLdu//mjxe6j2SrtOpFqQVFoUWkFdIXRsM2Z8XPKN5fTEs/2lMF5H7NEiSchZUBWsS8RgiZPlYWjJCPvNjCd3GX9/hBBBBLzDBXVsU4vZOWwfMGOi2imuF2Z3GX9IqCkHj0tDfy1Mi9IeOwjZWtRBf2lI3rN7JeSvD8x84rSegctcXR5ofWB9nDHtK4iG01gRk8Hce/xRUW/BWyQkcleXGXu9v2b2o6H+YQ0iuL4j2NI+f4yM557h3HB8LoSz0lJ3EOwEdigrJFcQZxA6pWsCzibGWcS6RFdNiCjD4Mt6m4TjtuFklWZtsEMg1w51BjMlsjcFF9/ePuXqDwk+3qNfPCfMYVoKdjBUW0N2hU0mQHMvNHdK+5AYlobhSrDjo10RwBS8/PwXJ8v9cUbOQhocVBmiQU4OElQ7MKncWPYGRFAjuNtwznDXMnvXk/sBKkdqhDAvrYozi52U5iEzu4P6IVL/1KPWcHwyZ7hSqq1QP2RMguMgTIMjJSEdHeZkOew9eAWX8U0kCuhkMME+2ighVwYe3UX2Bvd2WuH2FokZ0zZkAC2GcFrC8Yml2WTanxLtmx38+AGcQ59ef4KwP0D3PpC9YPuKKBAnR/uDp71ThkvH8CSTayEAxmWkzehoCve8oKMgWYmdI1vBvR8WmABxXuE/f85w3RJnkM4yaQaSLfBoHr1F6hoWc+JlC0BzJzT3GXcKhEUFBeDko2P+Vpm/nZBUEVtBT7bYm2VEXNkkaguosxNEhVQVV+um7JBcrjOeNwwXluE6M3+x43SqGWOD3xl6tag5o/tZOdbQ3WayE+yYmc5rTteO0Cmpt9iDLTa8NkUspzKjsROGxqBa2Jt9sdKIoCgm5CLA0lNQW/oynQl6OfKb61veHZa82VTkqqShaWGJTUfzkLBDor0dia3ldOMZfmEYrpR4nsAWyxTODNO+zGj98HiGgBkMuc5IBHcAOyoSM5gy+CrgTrF4rzC32CkjJRyx9D2npuKNKTMnWpBw+MxwujHY0WFicQL9ExifRMxZoJtNqEJvldNYQzY0D4o/wXABqaIU5TLuJFSHgiUonj9bKR5v3c+wvSCqpb+5FNLawE2z5/VlT/g4x+8eIbtSUvtoIl2pWNpE0wbaeqJyiZAM1mbGOrK7qDluLXYUsleyU2SWcFVEUoOJubTSChJKgSqC2w819YPgd5FcG2IriFVitixcz/PVlu8WHbaXAtFFRruI8Zm6jogoIop7DLbjo0WaVYHzdiAsjhyuasbRIUA+VohR6joyVeWGfh4j4qPdEjDm0c+nxpb+GhCj7GINQG1jMXtLZbxKmNXE2epE3QSm0RGDRQRiMpyGGhGlcomzemRejTQu0tUTy/mAZoOpEufnR1TLLJUsWVxFfgzWKLizZuTDSpnODPU2YVIpej12vDms+LBZYEZBAfWK85GUzJ8KChZVQUzG+8SsCnibsJJxprxaH1AVjlXFcKg59jU5GYw+KvIxsklS9FGp7rP5hjcX10xnlnpbwOp84hgq3tytSLsKa5VcK2YeWHQD6dEtqObyRVkQgdpHahepbcSIMkbHYapIuZyesyA2lzwaBENZYyqUXJkVFLQ2uJezB/77+sjp2RLXO/LjmkvZkDYVZjKks4Rfjpyf9Vy0JxobmbJlTI4xOqZksSYzryYMihElpGJtdsemeHujpGgRqxiTyZPFTFKybPpT2P3Uyn/55q/Rk8OcZ/afl18Wg6UPHtsbyIK9jry43HLdHqhM4lV3x9wO/G9/zbvTkowwdyNnfmAbWu6HjlPwHIeKFC3OJ2ofyVkIo+O0abFrT7Utbreko8eaDIX8T/+1or8yHF4qw00qiTsYxlgWrGSo24mb2Z6X7QO1ibyqb3nqtmQ1/HBcUZlIawNecvnfBfZjTYwW6xJNFfAukVSYThV246jXgj8qJpTnJCb/P4UquNV//Ej95zeMq4r82YS1GURJyTxCD1IyGJTP6zXXbsevqltu7MSgnj/OrniYZuxjTUaI2RKz4ThWxMnSzCaW7YC3iUO/RHuL3xqqfUlan55XZEWMIFFJRjCI4A8RfyyY+MWTNS+vNtQ+Iknwe2FYN7w/Ldinhqduy1cucm1rOjPS2sB2bNmOLUmFU6y4PczpTzWqgrOZxoVi3wdPtbY0a7C9ftoyZagVEzOSyr5045dXpMrgd0raVNx8sedVd8fvDjf853xJvXa4jePN3Yr/qj/nxm+5tkd8nvgxPGM9zTiEorzdVHO/7QgPDRhldnXi2WLHmBx3+zn6UFGvSxjG8ClpSeaTIgXFBHCpMsSZxfdK+6Pjh1crfjN/zy9ma37/2ZbdaYWJQnqo+YYXrIeOfzv7M76c3QOwm1qG4NgfG+Lg0d6WRwtd5Olyz3nd83p9xfFDR/fW0tyX3sWmtLLs4UdUfHKKipNU1oCdlPlb5c0frvl3/0tedhu+Wt3z389b4k81ZhB40/LmQ8P351e8fvbAvJq43c85HhryaMEodhFYLo7czA88a3e87xesPy6YvXXMbhXXlyc6JjxSXspuLIosg48VnElFGakWfK903zt+Z17w9sk582ZERNE6k6WQ+uclryrsx5qUDGIU301cnx941u142uwBeL275vc/3DD7Q0X3TvEnLThIYKeChp9f2VvUCdkKovB/oZw1xprP350AAAAASUVORK5CYII=\" y=\"-21.80778\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_1\"/>\r\n <g id=\"matplotlib.axis_2\"/>\r\n <g id=\"patch_3\">\r\n <path d=\"M 10.957047 59.80778 \r\nL 10.957047 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_4\">\r\n <path d=\"M 48.446703 59.80778 \r\nL 48.446703 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_5\">\r\n <path d=\"M 10.957047 59.80778 \r\nL 48.446703 59.80778 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_6\">\r\n <path d=\"M 10.957047 22.318125 \r\nL 48.446703 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_1\">\r\n <!-- Disgust -->\r\n <g transform=\"translate(7.2 16.318125)scale(0.12 -0.12)\">\r\n <defs>\r\n <path d=\"M 1259 4147 \r\nL 1259 519 \r\nL 2022 519 \r\nQ 2988 519 3436 956 \r\nQ 3884 1394 3884 2338 \r\nQ 3884 3275 3436 3711 \r\nQ 2988 4147 2022 4147 \r\nL 1259 4147 \r\nz\r\nM 628 4666 \r\nL 1925 4666 \r\nQ 3281 4666 3915 4102 \r\nQ 4550 3538 4550 2338 \r\nQ 4550 1131 3912 565 \r\nQ 3275 0 1925 0 \r\nL 628 0 \r\nL 628 4666 \r\nz\r\n\" id=\"DejaVuSans-44\" transform=\"scale(0.015625)\"/>\r\n <path d=\"M 603 3500 \r\nL 1178 3500 \r\nL 1178 0 \r\nL 603 0 \r\nL 603 3500 \r\nz\r\nM 603 4863 \r\nL 1178 4863 \r\nL 1178 4134 \r\nL 603 4134 \r\nL 603 4863 \r\nz\r\n\" id=\"DejaVuSans-69\" transform=\"scale(0.015625)\"/>\r\n <path d=\"M 2834 3397 \r\nL 2834 2853 \r\nQ 2591 2978 2328 3040 \r\nQ 2066 3103 1784 3103 \r\nQ 1356 3103 1142 2972 \r\nQ 928 2841 928 2578 \r\nQ 928 2378 1081 2264 \r\nQ 1234 2150 1697 2047 \r\nL 1894 2003 \r\nQ 2506 1872 2764 1633 \r\nQ 3022 1394 3022 966 \r\nQ 3022 478 2636 193 \r\nQ 2250 -91 1575 -91 \r\nQ 1294 -91 989 -36 \r\nQ 684 19 347 128 \r\nL 347 722 \r\nQ 666 556 975 473 \r\nQ 1284 391 1588 391 \r\nQ 1994 391 2212 530 \r\nQ 2431 669 2431 922 \r\nQ 2431 1156 2273 1281 \r\nQ 2116 1406 1581 1522 \r\nL 1381 1569 \r\nQ 847 1681 609 1914 \r\nQ 372 2147 372 2553 \r\nQ 372 3047 722 3315 \r\nQ 1072 3584 1716 3584 \r\nQ 2034 3584 2315 3537 \r\nQ 2597 3491 2834 3397 \r\nz\r\n\" id=\"DejaVuSans-73\" transform=\"scale(0.015625)\"/>\r\n <path d=\"M 2906 1791 \r\nQ 2906 2416 2648 2759 \r\nQ 2391 3103 1925 3103 \r\nQ 1463 3103 1205 2759 \r\nQ 947 2416 947 1791 \r\nQ 947 1169 1205 825 \r\nQ 1463 481 1925 481 \r\nQ 2391 481 2648 825 \r\nQ 2906 1169 2906 1791 \r\nz\r\nM 3481 434 \r\nQ 3481 -459 3084 -895 \r\nQ 2688 -1331 1869 -1331 \r\nQ 1566 -1331 1297 -1286 \r\nQ 1028 -1241 775 -1147 \r\nL 775 -588 \r\nQ 1028 -725 1275 -790 \r\nQ 1522 -856 1778 -856 \r\nQ 2344 -856 2625 -561 \r\nQ 2906 -266 2906 331 \r\nL 2906 616 \r\nQ 2728 306 2450 153 \r\nQ 2172 0 1784 0 \r\nQ 1141 0 747 490 \r\nQ 353 981 353 1791 \r\nQ 353 2603 747 3093 \r\nQ 1141 3584 1784 3584 \r\nQ 2172 3584 2450 3431 \r\nQ 2728 3278 2906 2969 \r\nL 2906 3500 \r\nL 3481 3500 \r\nL 3481 434 \r\nz\r\n\" id=\"DejaVuSans-67\" transform=\"scale(0.015625)\"/>\r\n <path d=\"M 544 1381 \r\nL 544 3500 \r\nL 1119 3500 \r\nL 1119 1403 \r\nQ 1119 906 1312 657 \r\nQ 1506 409 1894 409 \r\nQ 2359 409 2629 706 \r\nQ 2900 1003 2900 1516 \r\nL 2900 3500 \r\nL 3475 3500 \r\nL 3475 0 \r\nL 2900 0 \r\nL 2900 538 \r\nQ 2691 219 2414 64 \r\nQ 2138 -91 1772 -91 \r\nQ 1169 -91 856 284 \r\nQ 544 659 544 1381 \r\nz\r\nM 1991 3584 \r\nL 1991 3584 \r\nz\r\n\" id=\"DejaVuSans-75\" transform=\"scale(0.015625)\"/>\r\n <path d=\"M 1172 4494 \r\nL 1172 3500 \r\nL 2356 3500 \r\nL 2356 3053 \r\nL 1172 3053 \r\nL 1172 1153 \r\nQ 1172 725 1289 603 \r\nQ 1406 481 1766 481 \r\nL 2356 481 \r\nL 2356 0 \r\nL 1766 0 \r\nQ 1100 0 847 248 \r\nQ 594 497 594 1153 \r\nL 594 3053 \r\nL 172 3053 \r\nL 172 3500 \r\nL 594 3500 \r\nL 594 4494 \r\nL 1172 4494 \r\nz\r\n\" id=\"DejaVuSans-74\" transform=\"scale(0.015625)\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-44\"/>\r\n <use x=\"77.001953\" xlink:href=\"#DejaVuSans-69\"/>\r\n <use x=\"104.785156\" xlink:href=\"#DejaVuSans-73\"/>\r\n <use x=\"156.884766\" xlink:href=\"#DejaVuSans-67\"/>\r\n <use x=\"220.361328\" xlink:href=\"#DejaVuSans-75\"/>\r\n <use x=\"283.740234\" xlink:href=\"#DejaVuSans-73\"/>\r\n <use x=\"335.839844\" xlink:href=\"#DejaVuSans-74\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_2\">\r\n <g id=\"patch_7\">\r\n <path d=\"M 80.226013 59.80778 \r\nL 117.715668 59.80778 \r\nL 117.715668 22.318125 \r\nL 80.226013 22.318125 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#pb93e9128d0)\">\r\n <image height=\"38\" id=\"image83d0970f05\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"80.226013\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANmklEQVR4nF2Yy48dx3nFf/Xq7vu+d95D0hJFkaZI2bJjW5IRxIkDJPDCG68SZB9kmf8iu/wJWQbZZRMgQJCHjTg2bAcxJEWWLYoUZQ6HMxzO6777UY8vix5RRhq4i+pbKJw6db7znWr17T//W0EEJdB5XuN+c4C/9wpnb3WJBcQcANwK7EpY7ymqnQQjj80DG6MVhQ1crjsslwVymdE7MORTIZsLvaMaU3oe/FWHrWszdvsLdosFr3XPGJkSgMNmwlnd583+ESOzZtMusTEDHRTdZzXZo2PIMmLXMjwIrLcN03sQuwn7yDC7C2GroRjU9Ds1407JbmdBx3gWvZzn3SHnvS7LfofV3GHXiuntDv1nBa//Q83hH2+xvJ+jdwSrIzHXAOy6OXWybNglj6pd/nP6ZaxoxfjDCzi7hF6X+tUNklGIhek9uPnNQx59sk+5J8ReQmkBoGwcuQ0sbU7P1mQ60HUNc9NSLN1I3AxEgfKm5fKNnK0PEvqjHh9+L8feieQ6sAo5+8WMiV1TJUdXN/zk4W3s5i9O8TsDyjfGzF81DJ5GdITz+4a773zGrz94FVsqQj8hWcJkEaUEEQhJUwZHGR0hGXwyVI2DoOlMSrYGKwCSKOINxekrAwY/7bL7I8vR/ojCBIJoOr5Lz9YA3C6es7mxxLbbE9Y7GhQYL1zctfSfCo9+fBPdbfWnvALRRBxVYwBYTzucJMUneo/epETrRHnZwQ1q3tg54UZ3ShkzViFjHTJ2u0tmPyg4/OU18h/v8OBym2pD8fDbF3x154gtt+CkHKGUYOvrI06/npPNBJXBs+9qdu6ecPa/O4RhhCLCuaP7TJPPhJgZmiGEruCHwuYHqt2bclRbCnUjokeCVsLQVgxtBTksY05IhmGWI99QPP3VHoMDuHjX887uM6xKbJgV19yU798Ae/J2jmnaypu/1XD75gmfPt1BOaHYKul3as7qMW6p6B8F3DIQOpaYK1DQ/2SKmi2p7+xx+EoBrZ7bSlaRgakA2HILAI6bMUYJ4b7meHvE7WtnvDt8zD8ef4MkihudS06bAdbU4FZC6Cnu3TqijpbsIKPeDwy6FaOiotq1lLtjJp8k3NEMvdlHRUH5yOm7m8y+V7A3uaR5tINoISXFOmR4Ma2gTY1BqMQyMBXBaV4ZWDrOc3f4gl8ubrLbWWB15JXsnH03xWZzIXQVphYuqw4nJ2NsBroIOBN5seizfNFDjxIvvpmjv7ZHtSk0O4G37z/mfudjypTxcL6NGAEtZFkk0xGnIl4M9VW1FapdU9NWdpMMD+fbfPJ4H9Pz/NGtR/zNL77P7u4UGzoK0WAqeHE2pPMgp94QtBGSKMrKoVcGu1Y0YyH0BDZrtiYrMh2Zhw5OR+pgUUEh3UTuPFolEup3jjVQaM8q5TgdGNqKkatIovi9u7/ls8tNfvjRG3zpnzSL67vY5EBFUALuswId24VSbBd1LpIExELMhFQkCJpe1jD3BSflgCSKo7MxCOgsMsgbutYTRdPVDU5FtBIasXgxJNGt/lxFGR0Jxd2tFzSTc5785YTB343RKWuBmFroPwHSFTBvaIJhs78mdhPKQzbXuKlB28SzszEPnu9gVOL5bEA6yxEnGNv6XBJFEkWhPbn2/P/HqESuA4Mr1pY+Z+VzLl4M6fz1EVo0aC/YKqED6AjaA16xrloXV52IGKj2Amat2NueEUpLfNrl1uAc7w1KAAFrEyIt2xFNRJFEY0gUqqGr298XAIWBrfn1k30eHu6gVoaDi0lrsJ3zBApUakGZRhEajfeGi1W3PWdABUV13eOj4d6tIwCWISMlDQJkCaWkZQxFSBqfLF3b4FQgodsucKW9JIoyOupoQRT54xwdQE4HLWPGC+pKW6LaQtCVJjWGunJIUmQzRe+JQa8NZeMojKcMjuP1CGMSYgSdR0QUPhqSKKxOdE1NT9eYK43F3zE6rYRVyEgoXrtx2r7zMHycsKIgZhrTtKyJhWTbCbHRRC3gNTGHbAbZTLNaFKyGObeHZwTRHE2H+JFHaSF4w6LKOTV9erZhZEq27QKnApC/NN6k2uM9LftUwVJ7i/bQP0yIAVtvJXgIyVyVtoAYEA3Ka8QKuIQfJXTQ2DXUM8fRYMjKZ+Q2vNRU8hpcIkSNj4ZVyFjGnIvQZ3CVvZJotErk2pPrQOkdpxcDJCk2TgVXJs7etGjtFdL25/b5HJ8TEFBrA7Uh2RZ0Mq3WUmo1ZFXCNxamGSwc1ka2ByuGeUUVHcf1iIflDo1YMhVwKmCuSt+piNWJtHQUDwr6x4HVrkFHsFetrBV+EHxXoX2rNcnbBVStURFiAflFO7fIPDcGU16sBwBsvq8YPPVkM4jdCeu+5fC7li9/6wn74xljs8KLpVFtoNFEEgqtBNUoxo8S2dSTbjp8T7D1dkR0G3lEtxrLT8HUGt/XaA/d50K2SMxutccMIKK41pkBcHQ+YvmqYvSZMLvd4+zritffPuDPJk9xOrLvpqxTzirlL9mqxLGOGavG0f+tofdsTTNyTB426OCwezfPiT/fwdaCaEUsBOPB1NA/FNwqIRaqkaGeCKZWxEGkk3m0EkauQqIiZsKnf2HIxmuG3YqubYhoRrpknXLW6Qvh+6vdTUOXi5Mhe88TYjUqgSkjmx967J3xKT9/Y4ft9xQI+I3AeunwIyF2BAYR1/FIUsTTAiUa0wsUttXKKmZ0eg1lJ8deWhpRLIEnTEiiyUxgkq3Zzpa4K0+qk2UZc35+/CruzKGioOuI9gkVE8lqrFMJe2dB/XiAqVqTtCVtnO4ZmlrhcwtJYeoWvAjEpDlt+jy82KIqs7ZYakXn0KKe9Jltdplf63Lv+nM6xmNUYh4KtBLmoeBnRzdZPxxjQiuPlLcs6iSI1djdfM53XvmUf33nK2z+t0UtLNlc6J5GxCjWW5pyR+MHAgr8JMLacrroYXRCK4hLixp61FZoo48SOibx1Z1j7vRf0NUNT6sNpr5DEsWDi20WZz2cbwspWUUsDKaKaB9BK+zIltTJ8t2vfsx/Tb+Cm2uSg2piuIpNbVcQiEXraXhNVWYchjG74wWT/TllndEtalLS5K496oTi0ndZqpz3zq+TROF0anuwtDcxs1ComBANuomgFIigPze6ga14691HoGD8sGk9y35hJSlrUZqpbdtVbWguC54ebgLwysYlALuDBb2sYe0dVXCUMePfn95lXhbs9+atPSiB1La+bAHZMmHq9LIlitNt4xrZkr6pudaZk785xdQJ44VYKJqhImWQugkpIm7ZWou6Sqt6Ybk8GXI0H7I/WGB1YloWbHTWXOvO2MhWNO9P+M6Nx0yyknmVE6NGFRGV2uRsasGu2mgkRqPLgDUIZ77PD5/dIURDbiMX9wqKqRC6ramGbmuC4iCZNiwqQGWJ5BLFZzmrasCJC5xf9NndnnG9OyPTgQ27IpvB0XoEtHfR0BiUEXQN+UywZUCFhPYRySzJabRWib6pubNxxpfGUzIbWNwC31XE4ovj1LXGzg3aK9zUIGuDRIW2iWaSGP3GcHHZQ7xmu7tCX0WlKjlEw4MXO1SxXcw8K0iNobgQbJkIhSH0M2KvTa1m1aANCaMSI1dys3fB29sH3HrngJi37efzxm4qcAtFNoP8TJGfWlRpSLUhjT2mFrb+rUDZRKbbG3ZIhnXKWLzhcT8b8GLZZ70qcDNF53FGPhNUFEydEH3lo4MMP+mgL0KfKjkAcu0Z2ZJvbRww/YMKlaQFcqHIFopsDtlC2PzIs/lRojg2qNqAKC7eEjbev2Ty05xfn+xxvB5y1vR4up6wtT9jeBBZv7cJz3PEwNavAtkigoKUaUwVUCKYMqCbiD2qxy+/G0Q0GkGryA/uf8DP/vkdqivGtIfOxVXSFRi9f0r/oMfZ13qsrhlSLqxeG7L93pL1SZenbw55cKemPy6pa8twrNn9n8DiukF7QXvBzQO6Dq3gm4A4cwXUYJ9XA/YKCMmwSIaQDGO3Rivh+E8Cuz9qb935LJHNAnbtUXUEo7HPp+yeL2lujFntZSSrqLYKTJXY+0VN+NAwuznGDiF0QDeJjY8DoWOwVWxZagLKR1LHYWZlC66fY9ch46zp0TGeWVPwuN7k1uCcG51L7t46ZvYfXyKfJZRAPbH4oUEFyC8sbl2hGk92OMWdZsRRASKkzBBzTX5es3e4IvYzmpHDrgLussR2HHpVg1Kosm4ZCxFEUDGhjcH+5pPrbFyb8frkHKsTRxcjDj7cRyWIw0h2X/H635+RujnmcoF0ckiC8qF16ZhQVdOOAZUSqeOwCxBn0LXHzFbYy6ItJB8wqzbNElqnVykhmUOtK8hcO//Nu4cAWJXo2Ybff/UzfhJfJz0vKI7aokjdHPP8HLRGAeIsYg2qSeA9EgKq00FfztuFVyWSZ2ANxAQpoZfrdiMpte+sadOAUi24xn/xv1LYb04OWIac+qoyx6bhT+98zPMbA3473UBEcTTf4Ma/eOTpMcpa1LDfAh700ErBukSqGrRCxc9ZEDD6JTBSAnMFJl5dyT53I2tQyzXkWctijNhcBbQVEm1l+mQY2zW9fjv+4OAGvT+8pPxoSP7pE/Rw0LIhrYGmYRfdeGSxhDxHJILSkBJKaySllwAUvByrz8Fp3TbxePWlQykwhv8Dl/g5vwH6jpUAAAAASUVORK5CYII=\" y=\"-21.80778\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_3\"/>\r\n <g id=\"matplotlib.axis_4\"/>\r\n <g id=\"patch_8\">\r\n <path d=\"M 80.226013 59.80778 \r\nL 80.226013 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_9\">\r\n <path d=\"M 117.715668 59.80778 \r\nL 117.715668 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_10\">\r\n <path d=\"M 80.226013 59.80778 \r\nL 117.715668 59.80778 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_11\">\r\n <path d=\"M 80.226013 22.318125 \r\nL 117.715668 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_2\">\r\n <!-- Sad -->\r\n <g transform=\"translate(87.675841 16.318125)scale(0.12 -0.12)\">\r\n <defs>\r\n <path d=\"M 3425 4513 \r\nL 3425 3897 \r\nQ 3066 4069 2747 4153 \r\nQ 2428 4238 2131 4238 \r\nQ 1616 4238 1336 4038 \r\nQ 1056 3838 1056 3469 \r\nQ 1056 3159 1242 3001 \r\nQ 1428 2844 1947 2747 \r\nL 2328 2669 \r\nQ 3034 2534 3370 2195 \r\nQ 3706 1856 3706 1288 \r\nQ 3706 609 3251 259 \r\nQ 2797 -91 1919 -91 \r\nQ 1588 -91 1214 -16 \r\nQ 841 59 441 206 \r\nL 441 856 \r\nQ 825 641 1194 531 \r\nQ 1563 422 1919 422 \r\nQ 2459 422 2753 634 \r\nQ 3047 847 3047 1241 \r\nQ 3047 1584 2836 1778 \r\nQ 2625 1972 2144 2069 \r\nL 1759 2144 \r\nQ 1053 2284 737 2584 \r\nQ 422 2884 422 3419 \r\nQ 422 4038 858 4394 \r\nQ 1294 4750 2059 4750 \r\nQ 2388 4750 2728 4690 \r\nQ 3069 4631 3425 4513 \r\nz\r\n\" id=\"DejaVuSans-53\" transform=\"scale(0.015625)\"/>\r\n <path d=\"M 2194 1759 \r\nQ 1497 1759 1228 1600 \r\nQ 959 1441 959 1056 \r\nQ 959 750 1161 570 \r\nQ 1363 391 1709 391 \r\nQ 2188 391 2477 730 \r\nQ 2766 1069 2766 1631 \r\nL 2766 1759 \r\nL 2194 1759 \r\nz\r\nM 3341 1997 \r\nL 3341 0 \r\nL 2766 0 \r\nL 2766 531 \r\nQ 2569 213 2275 61 \r\nQ 1981 -91 1556 -91 \r\nQ 1019 -91 701 211 \r\nQ 384 513 384 1019 \r\nQ 384 1609 779 1909 \r\nQ 1175 2209 1959 2209 \r\nL 2766 2209 \r\nL 2766 2266 \r\nQ 2766 2663 2505 2880 \r\nQ 2244 3097 1772 3097 \r\nQ 1472 3097 1187 3025 \r\nQ 903 2953 641 2809 \r\nL 641 3341 \r\nQ 956 3463 1253 3523 \r\nQ 1550 3584 1831 3584 \r\nQ 2591 3584 2966 3190 \r\nQ 3341 2797 3341 1997 \r\nz\r\n\" id=\"DejaVuSans-61\" transform=\"scale(0.015625)\"/>\r\n <path d=\"M 2906 2969 \r\nL 2906 4863 \r\nL 3481 4863 \r\nL 3481 0 \r\nL 2906 0 \r\nL 2906 525 \r\nQ 2725 213 2448 61 \r\nQ 2172 -91 1784 -91 \r\nQ 1150 -91 751 415 \r\nQ 353 922 353 1747 \r\nQ 353 2572 751 3078 \r\nQ 1150 3584 1784 3584 \r\nQ 2172 3584 2448 3432 \r\nQ 2725 3281 2906 2969 \r\nz\r\nM 947 1747 \r\nQ 947 1113 1208 752 \r\nQ 1469 391 1925 391 \r\nQ 2381 391 2643 752 \r\nQ 2906 1113 2906 1747 \r\nQ 2906 2381 2643 2742 \r\nQ 2381 3103 1925 3103 \r\nQ 1469 3103 1208 2742 \r\nQ 947 2381 947 1747 \r\nz\r\n\" id=\"DejaVuSans-64\" transform=\"scale(0.015625)\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-53\"/>\r\n <use x=\"63.476562\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"124.755859\" xlink:href=\"#DejaVuSans-64\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_3\">\r\n <g id=\"patch_12\">\r\n <path d=\"M 149.494978 59.80778 \r\nL 186.984634 59.80778 \r\nL 186.984634 22.318125 \r\nL 149.494978 22.318125 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p4ca74924dc)\">\r\n <image height=\"38\" id=\"image23d18f1e17\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.494978\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAOPklEQVR4nF2XXawd11mGn2+tNT97z/47Z5//4xw7xz+JY5wmbSilUBTUFFooUlskelGQKihcoUogwRXqFVdcQXsBd1Sl6g2oLW2FGkRRKKnbkqapcZLGduw4PraPz+8++2/2zKyZtbiYE5t2pNEeaTR7vXrf73u/95Pv3Dzn75ddAJoqJ1E5Gs/9skvmAwBeS9d54d5ZRpf7cGaK3WnQvqlZ/9Y2UjlcN8HFBn11C2k28FmGdNoU63O4SOOM4LWw80z9fxvfHqMyi9zbQ4wBAGNABIzGa4W5VqwQS0HfTGirjJAKJY6eTpm6COs1S+GIx+Z3+f7JhFZkufDUNj9dXeHm/AqnvjFGSodUHl+WuKU50o2EdEGTrgpmBif+bQ+2d9l8pYHvtKCqajCijsEY8L6+C0t5chETS0GiChKp73eupsopvKZCmNdT1htH9OcmaOW42L3Ho8kBr/VXuRFt0LkJykL27EWmF3JOru/weDJkvXHEr7Su8bni06x/I4OywkcGMKhRivcO0MeMafCeaqHD7jMJZsmMicXSVhkaz4FrcqtY5JXJSXbzFk927tJUBcvBiM3eAQdZQlqFGOXYbB9wcCHhcD2h1cp478oWj7e2aauMWFnWzICL4YDR2Yp1pfBlDoBrhqjBpJZRKVAClSO9sMr2H2aYl8EAxGI5qBKuFytcTVe4PZ3HIRSV5kuvv5dnHtniVPOA86377IQdZlXIkW1wZXcVD7xr4w7v7m2xYMb0dApAW894IhywoBs072ooK3AesbWMvqjVkXck8p7wMGPu6wnDTTBtNUOJ44s7v8oP3zqFd8KJ5QEb7QHXJoto7fnBm49y+EiT315+lYVgzKSK6QUxZx/dxSEsmAldPSWUikAqtDjaKqOtNBOXs/jcXfzXIsQ5yC16JFCWSBCAc1CCL0ukcgCc+uo+JvMBl9KzvPTfj9O5I2TzcHd/ma32AnEvo8gMTAKu310iWrX09YTKjHBekfkAhSOUumEAAikB6EiORth3FX+1+S3+7G9+j/U/2EVWFsF7pNnEz2Z1A1AhYYBKC2wipI92MZ95/o8QL8y9BXkP2m970lwRXheOzjfxzQq0x08Cdm2Hnp7SURmF18RYACqvqBCcVzhRABQoUl8w9YZYLH994V/5+9Mfg9wiuYXAwAzwrgYXBgwv9ln4yYQyCVBnv5wTHihGpyG555mcELwCnUH/J4rOlRCMQ5zwnZ3HuFP0OaqaaHE0JacptfclKieQqu5kr7hfdpk6TyIlgVT0dMpsNUFyix9Pce1GDUhr8A6fzogOLSotUEWFKroh3evg1zPKBjT2PUXXU3SFMhYa+47mjZDgSDGzAYdlwlHVJKB6AKipchIpaKsZsVi0OLQ4Mq+4W7W4WSwBcPAnU9zeAdgCNUoRXbMrxoDzNN7cQ6YzzO4Ig4Jku8C+GDN4f8Hyvwd4A2VDCEtwgRAdeWwHLva3ORdv0zcTejpF46kQtPcgdbc5FJlXxGJJlKOnJlwMUr4yfoxGaHnjbx9DjQznvjhEFbZuCECOfcx1EySzmFnf0LpbMHe1QFzI6KQQDsHMoGhD3hNsy1MuFzzZukPqIs6pHZLjIgeoRLBeUaBR3hFIydg12CotKzrlN17+DLMbHYKRQpYqPvnsJSYfiLj+awGqP//Q9Z2vQc7y2se8QNnSzL+Rcfu5mHAsiIPZ4xmiPC7XnNnY5VbW5/3tN2kqWzOFR+GPmfKEVHXxe0hUgT5+l0QFv/XBH/C7vZfoqYJ5BZ+69kl0c1abq6MeTUpQwylohZktCOHY4AJhthCibF38WR+Wl4bk1tCKCrQ4trMuX8vfzccXfszFaPvBwRVChRBQPXyWkq7KWdaG/3jyy7xphTOBp0KhEWafX6Pdul8zBTVAEbzRIIJBYLShSe47xqc0xbwjPFQUpzImWcR0FDO3PmN71OHG1Q2qpiP5pZyLy9uod6QEnJdjH6se/C5qTyR1orgQQu4tznt+/ZVPs/zW6PhjV7NFzZrYEh8YTNEBF3qKOUW2UoKDbMWh90LKmzHSc2TLhigoGfVKHvuHlO+tb/LZJUWFxx0zVLPkaOKwUuG80JQAheDwDF3GTqUIxNP48hxiDx7WFkDp6gFZVojzGPFQRZ6y45C4gpEBL4RDRfuW5+ijKed6e3xk/n/5au89/OhT5/j4qR8ydiFNZXFeKFBoPAEOLR68o60dEDLzBYFoLmWLvJmvcGWyTnMnRyazByw9iEGVPJibpoo8rleCeBqtnGorxKSCqkCVng9tXmWzsUcoFX+x9m2mn/hPnH9HRB6AaitL5evuDMSRiGLfFQTA8+kGd4p5rNf86fJ3+OzSE4S35EEX4n0N8B32AFPFHgqFblsaUcFYg3ioQsjmFR+Zu8zn336OufgUK/GI97VusBYMHrBVO7sjwGNRZF5jvWIqlpeyNf5p+5e5cdjnwtJ9VuIRa7ogm1P4Zoyk2cOw6NzPgDPhQJFFDlcKuQ1gc4q9kWC7jjKp2dibJlx/9QR/+aFvshYM0Dhez1epUJwK9ljRKdkxi9VxkDl0hp6e8uePPM/jm1Oaovnq5ASZh3jgkMEIP9dBZvlDxqAGaAxGWSByiPYUhWa9P2Q/KgmBfpJSIfz+5kv8c/A0O7ZLU+W8lS/xwu5Z5qKUDy++RhXdY1GlBOLAg8aj8SzqKRpPUzSRBPTNhEQJ4uvaylc7BKMcvX34EJhSx1I2POSK3tKI4SihG2Z05zOMqugGGZfTk9zJ51huTvjpZAWAf7n5FNm1LreWCtIy5GMrwlPxbdrHplqgKLyiLZa2coAhEM2HGylaEpwWiELEe/yxf6FVHSaVAu9R+VKFWFWD6ky5OZhnbCOUeF74/i/QNSnffv0JXr27SukUl4frTLZbVE2HMo69acILg8d4OTvFgWtgvcZ6jfMKLZ6eMjQkBEAfRyKv6oJXWYXZHz/0s//XCErNFOHqlGocUFaaE90hkS750StnCEaKr9z+RT564Qrddsrp1j6Xb58A4/GxQ23HHG712Br3uJqucL/sMnIx1huUOGLxBKIfAALYLieIAx+F6LTAB6Zm6+cuJaWQNHIaCymj+232pi32pi16ryvkiTGryYj/unOGs/P7vLizSRRbJKqQXFGt5ARzOZVTTMuIcdVASz3EY6mIRVD87KGf2/5NomEFRlP2YqSwNVs/ZxmG9RmNoCQJLXe3WlROGOy1WTnyDCYhV795jjKG/1nqcPr8PVpzRyyuTSi94sZggbJStKMcJf5BWIylJMBReY/1tXkqBC2KS3dOsbE9wUUBYh1+kiJx9NBsAYzGxLFlOIvxXuidOeRwv41kGpsIvZcioqGjaAv5acvN7QXcOOCa8UhUkbQzZrMQ54V3z2+xYob0VEaAw6KwOBz17ujwDKop6aCBDzIQoWwazEIPxmkt5zvMOYfKsgDvBRHPeBoTxCVqJkweEWYrnvGGIlsUkldjTFDxgafe4PyZu3UceqlHfLnJ6H6b/bxFRe38UFuG9VAdJxCF8GK2zNPn3mb6SILMLEXXUM418Y2o7kat6sVXBNNOMnJrmG/NuHs0R/N6hDNgO47GjiJb8OBBSkFfafFGa5l3Ldzj4oV7XFlf443XHgEH7SDjqEp4I187lrNgPRgQyJAxM67aLp977XdY64zwx8t30VJ0jmaILWur8L4GWFrMaNzABBVpEWCiCqmOJ8RigWzHNHaFycWctKtRbYsuAn68u44SyKzBNyrEOG5N+uxm7yGrDGuNEZuNPaw3jF2Dq9kqX7/zJNksZGl5zM6ypnO5wLbrDRxb1oe+42cYzMLzMXsfLJgC2lTYlkfngmhP8Ow+zyxv0TEZ+0UL6zQTG7GTtpjmIbM0Qo0M0YHi6lunyecr6Fnu9MfYRcV72m9zNVvlH3/6vrqGOykf7V/m1eoCrtsEB5Ll2I1Fgtt7+FYTyQsoS8zCi/cYnF+jmNf1OGl4fABuFBAvlAxtg72shRKPEs+sDIhNSaAc3gvq0Qz7iKbIAnyuaTQLLva32ctafOHus1SVQgQ+cfYnAHzp3vvRBaQnmqjS45sxZjirQU1nIEK1voCirGi/DcktgxlpwqGisSNEe4btnR5tk9MKcubCGaGqWEuG9OMpAJ1GxmQck91LUHdisIq5VkpDW/ZnLdJbHWxhsIVhO++yEEy4dukUCz8e0tyaUjZq+WQwqpOG96CEshViMJpkp6L/asHOM01sB7K+p1ixtDoZ14eLWKdwXjjZGaC8o3T6AYPaOGzk8IVghpq9QZtb8Tynu/u488L+D1fgfD12vvDd5zj39cnxJq5BwWyjS3WuR/LmiKobI5VjdDLCuKRBNLCY/QlLL8NkI+bwCSFoFYh47h10scOI3uoIhaehLYUxSBGztTeH3G4QzwRV1DnOlk1uvvooR1crzMzhPuCJgooXrjzO+b87RLIclKLqdpm7Zmm8fAtpxvgoJFvskPU0zb0SU3Vj9NRSdRsEu2OidsD6dz3uexFZv4ndVJRLFZUXjooG7SBjPkxpm3oUbY1CgrEhmEI08IRThzPC/kVNmQjgWf58TL8J/t4OstinXOqgBylBoJEwqK0icEQDi9NC89oBxgUKPamw/Sbm9i5m1mW6FjJbUJRNKBOPN56y1FinuTleoHSKO3tzlOOA+L7BZJCueIYXS0xiCa80ad3xJNuO5I09GE9Jn92kGcdU8y30IEVGE9yJLgQGHwZUvSZqVtK5fMTszAJGKo8PNMo63vrj06xeyhmdVLgIspWS+fUjsiLAWs39UZtuIwPg6Y0tSqfIzgVUTnHt7RVar4esXipQsyHqzi4oQcLw2KPAry+iDyd1SlUKL5A+voyUjuj+FN8IGD69RDan+D8AyhoRuc1rzwAAAABJRU5ErkJggg==\" y=\"-21.80778\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_5\"/>\r\n <g id=\"matplotlib.axis_6\"/>\r\n <g id=\"patch_13\">\r\n <path d=\"M 149.494978 59.80778 \r\nL 149.494978 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_14\">\r\n <path d=\"M 186.984634 59.80778 \r\nL 186.984634 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_15\">\r\n <path d=\"M 149.494978 59.80778 \r\nL 186.984634 59.80778 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_16\">\r\n <path d=\"M 149.494978 22.318125 \r\nL 186.984634 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_3\">\r\n <!-- Happy -->\r\n <g transform=\"translate(148.881369 16.318125)scale(0.12 -0.12)\">\r\n <defs>\r\n <path d=\"M 628 4666 \r\nL 1259 4666 \r\nL 1259 2753 \r\nL 3553 2753 \r\nL 3553 4666 \r\nL 4184 4666 \r\nL 4184 0 \r\nL 3553 0 \r\nL 3553 2222 \r\nL 1259 2222 \r\nL 1259 0 \r\nL 628 0 \r\nL 628 4666 \r\nz\r\n\" id=\"DejaVuSans-48\" transform=\"scale(0.015625)\"/>\r\n <path d=\"M 1159 525 \r\nL 1159 -1331 \r\nL 581 -1331 \r\nL 581 3500 \r\nL 1159 3500 \r\nL 1159 2969 \r\nQ 1341 3281 1617 3432 \r\nQ 1894 3584 2278 3584 \r\nQ 2916 3584 3314 3078 \r\nQ 3713 2572 3713 1747 \r\nQ 3713 922 3314 415 \r\nQ 2916 -91 2278 -91 \r\nQ 1894 -91 1617 61 \r\nQ 1341 213 1159 525 \r\nz\r\nM 3116 1747 \r\nQ 3116 2381 2855 2742 \r\nQ 2594 3103 2138 3103 \r\nQ 1681 3103 1420 2742 \r\nQ 1159 2381 1159 1747 \r\nQ 1159 1113 1420 752 \r\nQ 1681 391 2138 391 \r\nQ 2594 391 2855 752 \r\nQ 3116 1113 3116 1747 \r\nz\r\n\" id=\"DejaVuSans-70\" transform=\"scale(0.015625)\"/>\r\n <path d=\"M 2059 -325 \r\nQ 1816 -950 1584 -1140 \r\nQ 1353 -1331 966 -1331 \r\nL 506 -1331 \r\nL 506 -850 \r\nL 844 -850 \r\nQ 1081 -850 1212 -737 \r\nQ 1344 -625 1503 -206 \r\nL 1606 56 \r\nL 191 3500 \r\nL 800 3500 \r\nL 1894 763 \r\nL 2988 3500 \r\nL 3597 3500 \r\nL 2059 -325 \r\nz\r\n\" id=\"DejaVuSans-79\" transform=\"scale(0.015625)\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-48\"/>\r\n <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_4\">\r\n <g id=\"patch_17\">\r\n <path d=\"M 218.763944 59.80778 \r\nL 256.253599 59.80778 \r\nL 256.253599 22.318125 \r\nL 218.763944 22.318125 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p5ea7692852)\">\r\n <image height=\"38\" id=\"imagea50aa3a0f6\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.763944\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANUUlEQVR4nHWYS48kx3HHf5FZWVVd3T39mB7O7Ivc5e6SIlder2WKgihTsizABuSP4IMv/gb+JLr4Ihg+GDJgATr4IMCwBUm2JNOEJFsURdK75D5mH7M77+7pruqqyspMH6pnyJXlAApd6M6s+vc/Iv4RkfK3t98KdYgAiKVB4fEoXFCUwdBVFUNdUAeNJjDUOUYcU5dx5HrUIULjSZXFBo0R1+5RBXfqLRYuBWDTzCi9YeYyMlWRKksqltwnlMHQV0suxwesqyVGPJHC44PgUGg8RjlSqUjFYkOEDZrSG8pgUHhs0DgUqVjGeoEWD4ALikd2navxHs+aAXvNGkOd01VVuycIt9KH9JXFBkUeInxQANRoUrH0xaIlUAZN1FU1sTjqoInFAWBDRCqWVNV0CWcsAhhp6EpNKg01ip1mxO3yHI/KMVPb4V25wtAseaN3nzVVAjBUBak05MFgnWZTL+krhwtQBoVHMOIxBDygCURvpTtsNx0e2Am5T0iVpa+WeBQxjqEqUNIyNfcdHtQb3C1fYLda42E+YrrssKwN3gujXoF1mhe6C6539hjqghej4xUripejgqlXHPmYTBqKEJFJsyJDwYp9Ix65/2grtK5o0R/5lGfNEBs0uU+4U26xXYypnSZS7cZYOZR4ah8xrTocLTOKKmbcLVhaQ1EZbmw+45XeHr+eXeDO7gZvXtrmz8Yf8IXkEVsa9n2gLwEH2AAWwQXh1OTOw62QCWRKAzD3jsdNh2/vfY3dsk8W1SgJdLRFEfAIHW2Z1h0Oyy65jamdxnnh+P4IXSp0CbYf8ENL0q2pThLWfhNz8prlW3/yHW7Ee5RBM1COKoBZ4bEB6qCwKNRAtd8W3mGDpyuKa6bkm+Nfs5EuGMUFkzhnEi/wCGOTY70m0a0LOsZS2Yjj+yM6TzXxsVCdt1y68Ywvv3KP17eeMdxYML/mUEvNd/ffxCEoAjOvWyCh9VirDJ5UHJGRNrRdCGc0euBz8S47/Yc8rQfY0LIZrWLgfDrl8XLE/b11XKPQT1LUi0uWaxrTsby8PmU9zSldRKwdaWyZRgGphf1lj33X4VJUnDFUB4WW9v2a0Aa/RjAIrOh0BFwI9JXj7ewO/xpe59h2qXzElc4Be7bPT/evclKm2FmC1MLNr3yMksDCJgzjJSc2JVaOhU3IbYLzCrFCiAKX+4eMVcncaxyC4VRuBC0Bh6AJKEfArsC0iAUjgg2wqS0DvSRRDUoCg6gAYJQU1I1G9y3rLx/jgzBJci5kM5QEDpcZ07rDuc4J/bgk1g4ExLeyEIvHiKcrDZ5PA/7UHIKy4Xk3KhGMKIyAEeGCOToT0eOmy8x28EF4bWOX0SBHJLCRLniYj1g6w4lNMcqTakukHAfLHjt7Q/RCER8rPj7ZQAF9CSRyGjpyxtppZkZGFOBXhK4WhkAmgg2BDT1HEejpisLFvJDM6eqah8WItbTkQnfKR8dbJFHDQdllUSd0jAXgR/eu0+x36G5rvAGTw8OjER5wQPEZefCrhDgFqAy6ZYiWKR8CjoANrcZ0paGvS4w4Ml1jxHFQd9lIFnSitoRcHRzQiSzjpCCJGnbnPX75wcv4xxlmqtAVRAX0dhz+do/36y1iWcUSgd9lCsCgSSQ6+8zEADBWMUY8A51T+BhFQItHEchdzDjJ2/smpmoiIuWIxLMsEi7+i3Dx5jN6tw4pvrLg5GZNvqk5/xPLtx58A0WbkafxdqqRpxb9TrjAWCe4EFb1S3Et3eX9/CLrJgdgYJb0dIVDUfkIrTx7yz5NUIQgPP7TwJbTjLMla2kF6/AwGTP9PYPc2eLxtYiXIsfUA4QzbQPQEoiej65PrfJ+tQjGesF+s8a6yenrknPpjEQ12KCpXKtxWVTT+PY+BDDDkj+YPOF8MqVwMe8cXCEyDmtjxLbM7PtAKkDgTMeec+XvMiOKTBmmPmLqMn46u86mmaHE04sqRianpysqH1E0hqKJqX1bT89NZridjH/+4AYfzs/xq+lFQhDsQQcZ1UiAHxevYgio1Z83K2HVtF5SjjbYf/syopn7mgd2zPvFJR7Mx9yvNli4FOvbhtCIowmKoolZNgYlgSyqubX+hPVXD9F7Me/eu8yyMfTiiv6FE66f3yO5POfv771JGRT6t1g6Bfr/Mgaw49oeTUng5f4hT8tB+wAJFC5hz/Y5rjJcUHQiSxbVTJIcJZ63t+7SeWWKzw2LKmGc5Hz90sdc6k65OJxxtLvGe9WFM0BaPr0UtHJReMfcO2bekUpEFTz7ruKBHfMP+1+i8hFLZ+hGFbOmQ6oshY8BqFdxFSvHVnrCMCpIVEOiGm6+8JTOpMAHOKq67JV9nhSDtkMZlnxSbZKKIpZTgW0vDyiLw9JKw0C17qtD4L16wt88+jrTOuPBYp1uVLNuciZmwSSas3SGuU1REuhGNaOkIG8SlASUBJ5WA3wQPvfCLhvdnFf7uxRNjA/C0hpsHTFrOme1+TTRjIABIoPG4J5zYSrC949v8fBoxCsb++RNzBudQ86ZKf95cpWbvccsfYwNiiyq6UY1HW0Zm5wPT7bYLfrsHg5wtWI8mTPJCipvyJuYvilb9XfC0sXPaYICNG0pjDyeVBSLYDEIfRXzi0rzuBiyOZhzsOyyN+2x3Vvn2Gb82w9vMns7ZRQXDM2SSluMeA7qLjvFgINll1g7wm7C5H1hfmWdzpsNO8s1bgyf8sH0HOZnazQbgXsX1/8PKL1yq5r75uzHRCLmvub7s1s8OB5xbe2Aoja8fm6XP+w/4J9u32Tz557/2n6RRDWMTBtPkXIclxnv3XmRw3e22PvhBS7+yDP55TEbv/I8ebTO/+xt8tF0i3tPJ2z8qmTyXmAtLjEIWuS57ARQmdKUwa8yQzjyUPmIblJzMT3mr1/9AW+Mtvn23a/Q/48MHwlhL6GnK4w4Kh+RqAatPF987R4bbz1l7au7PP6G4unXxgQFmz/WuNt9ZlXKV699woNvJqSHlg/3N1EiZ9LgABfaSSkqvPuUPhSawNRmZMayUw0w4vi7975M/EmHrA7YTFB1Kxl7dZ9ENfggVC5iP+8xLxKqk4R0qijOBWxfU048F248Y5gu2S97vP32b/iJukH88xH/+OpV/nJtmyNXPefKKF0p/NzXVMHyqFnjx59cx8QNT44G1M8yetsaH0GTCaoJNOMWzJf693jn5Bq7VZ8/2rjL7cUmzUDRbGr8dSGLal7KjnhUjCiamFFSsF/2eLgY8dLv73D/8Qbf2/kC38jutD2aEjSCIxCVwaPC6WznedKMiLZTmiQQIkj3FeLBzKHpQjkRTL/i0Hb52cl1NuI5R3XG3XwDH4QvDreZu5RM1VyMD3lcr7NMDPfshMf5EOs0h3mGksBwvOCL69sMVNv7tRkaPmVs7h19pTFojpoe4iA9ULgUQgR1H3qzQNCC7YF7mnF7vMmVtUN2yiGXsnao1XhKb1aa5Cl8gkeofESqLYs6obCG1DQ4L2z15/zF8F36KmZ35cpTi3oqYe6Wq4cJhY/xEeglpAcBAixfEMr1dmCxg0BYr5lXMUtnePf2y1y6cEjZRFwbHnChM+XuYsLOYsDhbzZoeg49sCRpzSp8qGtNJ7XcGj5mXQeOXIUNMFCKKnjKEIgOVqBm3pHqiJfiA0IEZhGI84CLhXgGtg9NN9D0PCKBfJnwi3deYfKhcLh5DmXh9smEn18FcSBXc3wcOPfvit62px5lzC9FTF8LMKnIkpwb2RPcqlPOpA2luV+50gEDpVcDr2MjOoEAUdkuCALxPKAt2ErwkaL/fsrgbk01hqdf9YTEE+9GeCN09mD8oSX7TgX1oqXoaIoZrGHyEV53mCaGtXMVl80+RfhUYIvQNoxjBVEsgg2t+hfBoQl4065WNhA3AR8JZhkwCyE9EgYfF0QnJcp1CSpibWPBn7/xAd/96AtsfS+h8zTHpxFiNNx9BNaCc8S1ZdA7z/xKxMXulC1dPHc8oAAjgSJAdEplSTir8hJANaDrVXEtA/HcItajTyrU8QkkMWZfGP16xEk+5AfmVaLI4WJBTRfgPG5rhLx0Adk/IsxOwMTExzXJkeGtwSdnoE6PB1ZdNlogmvp2IHAIXRE2dI4bNcQLISocLtG4RHCJJj6pUYuCUFvIcxQjNt+Z0n/SZydMiK4skAC+lyG2QRU1zSBFeltEDwQ/X2C298l2M26lDymDkEpYjXPt1HQKVHWVX7UagTJ4+spx+dI+4lr03gjxrKFzZw/56C5hvgAlyGiIX8vABdL9ko1fBtR/94lPHCGNkLKCqiaalQQluAsT1GhImC8wRaAMEZmEM7ZYgTvtNlTuFblvq9U8CGMV8Vcv/pTjVwzlxFD3V5XMedT6GCZjJOsQTISaLhDnaLoGXQcG9zxm3uCNJqQJ1YvjNsOmS1wvxm0OCZfPc/SaWp1ayhlbnzUPqKHypOJJBfZdBxs8b6XbzD5vsR1FetgQ7y2gacA5mJ7AskTmOShFMBrxgaAhOW7QZUM9igmpQVmP7xiCUuAhaMX080M+98d32dQLis8cTZweDZyC/F8TNv3nNPiR7QAAAABJRU5ErkJggg==\" y=\"-21.80778\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_7\"/>\r\n <g id=\"matplotlib.axis_8\"/>\r\n <g id=\"patch_18\">\r\n <path d=\"M 218.763944 59.80778 \r\nL 218.763944 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_19\">\r\n <path d=\"M 256.253599 59.80778 \r\nL 256.253599 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_20\">\r\n <path d=\"M 218.763944 59.80778 \r\nL 256.253599 59.80778 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_21\">\r\n <path d=\"M 218.763944 22.318125 \r\nL 256.253599 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_4\">\r\n <!-- Angry -->\r\n <g transform=\"translate(219.775022 16.318125)scale(0.12 -0.12)\">\r\n <defs>\r\n <path d=\"M 2188 4044 \r\nL 1331 1722 \r\nL 3047 1722 \r\nL 2188 4044 \r\nz\r\nM 1831 4666 \r\nL 2547 4666 \r\nL 4325 0 \r\nL 3669 0 \r\nL 3244 1197 \r\nL 1141 1197 \r\nL 716 0 \r\nL 50 0 \r\nL 1831 4666 \r\nz\r\n\" id=\"DejaVuSans-41\" transform=\"scale(0.015625)\"/>\r\n <path d=\"M 3513 2113 \r\nL 3513 0 \r\nL 2938 0 \r\nL 2938 2094 \r\nQ 2938 2591 2744 2837 \r\nQ 2550 3084 2163 3084 \r\nQ 1697 3084 1428 2787 \r\nQ 1159 2491 1159 1978 \r\nL 1159 0 \r\nL 581 0 \r\nL 581 3500 \r\nL 1159 3500 \r\nL 1159 2956 \r\nQ 1366 3272 1645 3428 \r\nQ 1925 3584 2291 3584 \r\nQ 2894 3584 3203 3211 \r\nQ 3513 2838 3513 2113 \r\nz\r\n\" id=\"DejaVuSans-6e\" transform=\"scale(0.015625)\"/>\r\n <path d=\"M 2631 2963 \r\nQ 2534 3019 2420 3045 \r\nQ 2306 3072 2169 3072 \r\nQ 1681 3072 1420 2755 \r\nQ 1159 2438 1159 1844 \r\nL 1159 0 \r\nL 581 0 \r\nL 581 3500 \r\nL 1159 3500 \r\nL 1159 2956 \r\nQ 1341 3275 1631 3429 \r\nQ 1922 3584 2338 3584 \r\nQ 2397 3584 2469 3576 \r\nQ 2541 3569 2628 3553 \r\nL 2631 2963 \r\nz\r\n\" id=\"DejaVuSans-72\" transform=\"scale(0.015625)\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-41\"/>\r\n <use x=\"68.408203\" xlink:href=\"#DejaVuSans-6e\"/>\r\n <use x=\"131.787109\" xlink:href=\"#DejaVuSans-67\"/>\r\n <use x=\"195.263672\" xlink:href=\"#DejaVuSans-72\"/>\r\n <use x=\"236.376953\" xlink:href=\"#DejaVuSans-79\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_5\">\r\n <g id=\"patch_22\">\r\n <path d=\"M 288.032909 59.80778 \r\nL 325.522565 59.80778 \r\nL 325.522565 22.318125 \r\nL 288.032909 22.318125 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p96f2f529ba)\">\r\n <image height=\"38\" id=\"image28367eee20\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"288.032909\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAOQklEQVR4nEWYyY8d13XGf+feW8Orqjf065kzRVoiJdOWLVnOwoFhIIhjIPEiQADvkiBAhn02WWSRVVbJn5BdEGSRRQIHMGLEDmLLtjxJskxKpCSyOTTJHt/rfkNNd8ii2kwBhaq6Vbj31HfOd853rtz8m38M9Sjwxm/fZSOZ8cu//yJm6QlG8JEAEAQkgDeCN93VRXD81ZrhcEnzkzHD+56gICo9+SenuEGCLSIWmxGT16BdawHojSpWiiWzKmF2nBPtR6QHwvhOS7q/ZHGpICgwi0sW8cLdf77B4Z2KVFra3CA2oOgOHwlBgdfgdWecBAi15uTJkLWnoXsGbKpwgwTVOJpByuHvViDALEKsUNqMpjH084qVtRlTk7NIYoJErLsetieoNmDG72kGD1t6n+5j1wf4RKMrRzCKEOgmPUMtKPCmu0dAn2ryxwplO7SQ7l07iBEf8EaIEsurW89578FFQqURq/BHCdN5RDKqCE6QAPVa972pAuIDauVeTe+XD5G6RVmPWbSYpUV84DeH+EDQAgLKgqkDykL+WJEeB4ISvAbVduP1SBME4lNH+LjgM/0DvvnZX6FyS9ABcYKeaZrnGWY/5tJ/Oa79y5Ry1SAuUA01Kj5YIFlK6CWoyRx1skTVFrHhhRu96WATd2ZU2xmRTMILJIPuvgtn/m+G3SKqFhY2YSOa8Y1X7pCult1cVtBLhU8Cp5cM0jrSiSOaOfpPGgytBa0R68A5QmTOYIKgzxYVIIByAeW6MQlyhiQEJS9+Arr3ugm4nnoRCkOzZGiWDK6X/Lu6RblboGqFOJh81tMM11i93eJjha4cRpoWrDsLpIAA4jokfCS4qGPncksoN7pYCkkgKM/wQ0P+zOEScGcE4Sz+fCS0uUbX8PbTq5gLju34BCWB3zr/kNu9LQ7urgGgl4p6NdAMNDYV0qlgsA6shTQhlBWSxPhY0/YNdV9xeg3Gb+zze5v3uZIecr9cZyOekamGtz93jY/+9QbJJODjjrGoM0R9h7JZgv+fMd/3bxEMNAOoNy35xoIwbjDPElwcGH3UsX25KZQbBhP6GfiAzJcdaJGhHcTMtzWzryy5tnnIs1mf7zy8ya2NZ/zu6m1uJU9YhJihXvDO6y8x/klEmwvB/L/rgwGxHVkAVAO6hux5oP9Qo9oB0UCwPYjm0DvyVCOFasFmdIiFJEYigziHG/Q4vRJz8lZNP6t5ejrgre1H3Cie0VcVV6JDNIGB1FQhhkbRjKRzZxq6dKJDx+BWzowTyDry6EZwKZhlRy7Xg+X5wOyKIj2WjmAlGIxGmpYQGQSoNlKO3nBcv7jP/qzgaxc/5sv9+1yJDtAE/vreH5FHDX964W1+dnoVPVcstzzKCi71oCGoACrggkAA8QJWUBbECeJBLwVbBNxmzWhlwSCteXR3k/4nGh+BwXl+Q4CQpVQrmvNX9zmpUm6u7/HtO7f4NrcIy46tyZ6h3A387bVvsfH5PVzfoZYal/nOINMZZTKL0p7gz5gaBO8E7xTBC22jUEXLm1ce0Tc1ual5uj6g905GNVYYsY7QS5BlhbQW2xP6UcuzOxvktxqUDhTv9KhWIZl0mf/4TcvlKwdo5dGFxXk5Y2OAyKOMJ4otedpgtCNSHh+E2hoWVUxTR8SDijxtuJofvUjkzmqSqWflgxNM0ArU2VnVRItAz7Qkx4r975/HpIFo3pUL24NXvvExf37uf/n+7CbvT86T9hoWtQYroAOiAkoHIuPoRS2JsfRMixGHD4rjKOOQnKJXo5XH+i4jvze5QDiOsZlw+MURhtM5YgzBWmhasuctz2YDXv/Gh/z0x6+w+VMwpacZGqpNzzCu+PHiOj/ce4lnz1c6V3kg8i8SM4APgg+CFk9mGmJl0RJITctJmXI0KdDG8XG2wWY6Y+eDc6y/K7godOnm6+t/EcQYgvNIHBGs5dGfXOeb3/ohbxX3+aenX+HDd67iz1WYnRRdC20/UDwUggazCJxeh3azBQno2BMnLcY4BmnNRjYjMy25qRmYCh+E4zbn14fbHB32CaXmS7c+5dPJKvrfVhk8rIkmFfL1jb/qeBs8OI8kMWFQcPyldY5/v+T82pTVdMHdww2S/xxS7FqCFuKTluV2QnLcMnklYfqaRQ1aothijCdLGoZpxWq6YBwvWY9nROKIxFH5iL1mwN2TDR58uI2sNHzm3D6Pv3uZi985Qc1LDN6BD51hQLAWWZSM7s4pnsbYdIOnQ82oDqQHJdH+DDfOkdqRHilU40lOPBIEpQJR5EgjSxa19ExLT7f0TcVQl2SqJlWdYMx0Te0M0WuOu/e3ufdoC16pecyQ3v4Ag9LgLYjqjJMuGNVpSRgkBCNkzxv0skU1DjfKEOtRdYv4BNfr6lvQHhM5irQmi1pWkiX9qGYYlWzHU7bMCQ5Frmoi6crBYdLHKMfoZskvH13kL2/9gPYNzbHNMSiBOAJrkTQnFBkuS1BVQ/J4QpzEhF6EjxQe0PMaRPBnY81AU64LKm+5NJ4gEiiimmFUsZmcshGf8lK8TyotWjqvaAJHnN1LoHGaG+f2eDXdpQmaNhiMiBCsJVTdgoz6uDwCBYhg+zF60RK0YnGhB+T0Dhqk9QSBaqRoB4H11RnDpMSIp6dbxvGCoSkZ6zmptOSqRhM49SkHruDYFRzWBT96fBV5r8/GV5+y06zRBoNDMC/kThwjSQKnC+LTBSFL8VlCWxiWGzG2JyQnnqBhfi4mPXYEI7S5YDNPrB3WK5QO1N5QuphjySl0hXYBLVNSaZn5Hg+bNdqgaYNiczjj8XrOqyvPObR9ACJxmDAokLKGtgXnOtREkEWJXlbkiwo3zqlXEubnDPmeQ3yX5G0iRIuuBA2Sisy0VM5Q+YjTNqW2htkgZWSWvBcuMTQlbdBUPiJTDTfyPf54420eX1rl797+Jm+8vMON/h4VEcaNcyBHWod6cgCLJVLkHWLDDClb1LzBpAbdGso1Tb0iZHtCtPDEs0ByqJlWPc5nUyLlKF3E49mIpw9X2Tm4iLw858bmPruzIZvFjM8Nd7mcHLJuTtnSc66YE/7g8+/z3Qc32EpnDEyJUZUF6xHvsde2O73fOuwgZXE+RQKkRy3LjQgXdZk9f+axqTA/b9A1pEew+3TMa+NnxGcCbDs/ZbKa0U769L9X8OGFgvZSjfPC19fv8OV0h1x5pt7QBMWbxQPKSzFGdWratKMUVTuip8fIIGV6o09bCG3R1UbxoC4lKAertxvqoabNFMmJx5TC7GKn6/N7MT9fv8iXtx5hxNOPal7f3uWT3hqH/THjdxXmo5j5H9Zcjg9Y14G+Shgqy9J7UtWyHs/IdNMZZnuayHZZ3+yfkqylNH1NW3Sqc7Dj6T+qUFWLjw16afGxRjUOH2tOXkqwRaD3XJj/apVfxy03V54zNiWt0fiRMB1nHH0pZvt7msVRxkgv0QgKxdI7PmhW+MXiKplqUATaoDtW6trhNkdd0IdAduAxpUI8JCcOVbWoqnORK2J8JESnFpcZit3A7LIwu+qJ5sLjJ6uM0pIL2ZSRWVJkNR/2NuFBxuyyEB0K75eXuWJu87Cx3GvPs9eOuBBPcGcKYOkSjARoVhLaXBOfWNqsMyjbt2Q7U8pLQyavDhjsVJhZDR6qsaEeFSRTS7HbUK0m4BWu1+0TWK+Y2xhF4KXeAV+7+DH/cfI5sucp6aHw34c3eDV9wrpe8HryFJ3sUgVNFTRHLmfme8gX/+wfgjhwadcQLDY1qg2U68Jgx+MSYbEtmBI23q3QpaVaTylXNf3HDbq0NMOYg9cjgoZqy2HWSs6vnnB9cMi5dMqamfODyXV+/v51Vn+hmPxOiZvGFNtzbq7v8Vr/GW/m99nSp6zrhqk3mKMveIodTZuD15pqtWsYqm1HeTHQ2zXYXqA65yl2Y0YfzPHbPaJFt53QDGOiuWX0qaYpBLPU1JOcMD4F4FE55kgX3Ow/J3+j4Sd7t8h/lrH9wxlBNJPeJX6gLvO9/Css1zWLc10vYJIDTTOAZuywRedGl0JvV9P2A20/sHIb5hc1ybQhxAYE4pnn+GZO8ayTQeIDqhWKXY+uFI/ubcLLME4XPLMDDpOcnm4xX5jifzRCP5/gNoboecP0Zp/JK0IyFYb3PRLAmBLm1yx6ofDbFaID/iBl8KBru/KnHlMHBjuCrj3tSkrdVyzXFOnEo2uHWE8099SDrhXXTSDd05xeSrBesWwiZk3Cdn7KxdGUT8ZDQtFDWkdIIhbbimAC1Xqg7StWPvIYH0E00V0/eBITPKgW6hVBNZBOHIutrqS6RHF4K0Y82ByG9y020+A1uvbEM8/8vO5aNgtVE2G9YrZXELZmqCIQK4dYCElEiDSLCxltcbatYAJR01UUk0wCK/e6v9W14OKuIU2mnqj0TF6OWFz05I8V+5sxy0uW4YcGseAThWoDunS4RBEtPcUu6DYwvWZY7hSEuSKvoFnTHFU5iyYmPRZcLyIYxfSa7hrluNsZGt739J4sMKu/rrCZRtlusnIjkO8KydSC6jpmcUK1HvAR9J4Ysn1PudoZJTYgzuPSiHjWkhxYbBGjWkN/R4GHegzVkz47j/sEE7j6qxoJgdmFhHLL49NO3ae7iuJxCVowy62Y+QVNtRYIOtB/AL1jTzRrWZ5LOXk5EAzEUwUB1t9rcalCXCA+KGlWU8qtlDYT5udS+rsWmyrMMmDKgE2FtQ8c83Oa+UUY34FoWlFtZhy/KrjCgQrEe4bV2y3iOgFpfCQkk4Cuuk1fCYFo4WiHEct1hSssxacGZcFH0Bad9O4dedwgJhiFTYT5BUU9DkxvaOJTRfEwUK4pXArDHQdohp9A9rxlfrXg8JbG5h6pFemBYuPdlmhp8UaBUfwfQ0JMsYDBvuYAAAAASUVORK5CYII=\" y=\"-21.80778\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_9\"/>\r\n <g id=\"matplotlib.axis_10\"/>\r\n <g id=\"patch_23\">\r\n <path d=\"M 288.032909 59.80778 \r\nL 288.032909 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_24\">\r\n <path d=\"M 325.522565 59.80778 \r\nL 325.522565 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_25\">\r\n <path d=\"M 288.032909 59.80778 \r\nL 325.522565 59.80778 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_26\">\r\n <path d=\"M 288.032909 22.318125 \r\nL 325.522565 22.318125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_5\">\r\n <!-- Neutral -->\r\n <g transform=\"translate(284.632112 16.318125)scale(0.12 -0.12)\">\r\n <defs>\r\n <path d=\"M 628 4666 \r\nL 1478 4666 \r\nL 3547 763 \r\nL 3547 4666 \r\nL 4159 4666 \r\nL 4159 0 \r\nL 3309 0 \r\nL 1241 3903 \r\nL 1241 0 \r\nL 628 0 \r\nL 628 4666 \r\nz\r\n\" id=\"DejaVuSans-4e\" transform=\"scale(0.015625)\"/>\r\n <path d=\"M 3597 1894 \r\nL 3597 1613 \r\nL 953 1613 \r\nQ 991 1019 1311 708 \r\nQ 1631 397 2203 397 \r\nQ 2534 397 2845 478 \r\nQ 3156 559 3463 722 \r\nL 3463 178 \r\nQ 3153 47 2828 -22 \r\nQ 2503 -91 2169 -91 \r\nQ 1331 -91 842 396 \r\nQ 353 884 353 1716 \r\nQ 353 2575 817 3079 \r\nQ 1281 3584 2069 3584 \r\nQ 2775 3584 3186 3129 \r\nQ 3597 2675 3597 1894 \r\nz\r\nM 3022 2063 \r\nQ 3016 2534 2758 2815 \r\nQ 2500 3097 2075 3097 \r\nQ 1594 3097 1305 2825 \r\nQ 1016 2553 972 2059 \r\nL 3022 2063 \r\nz\r\n\" id=\"DejaVuSans-65\" transform=\"scale(0.015625)\"/>\r\n <path d=\"M 603 4863 \r\nL 1178 4863 \r\nL 1178 0 \r\nL 603 0 \r\nL 603 4863 \r\nz\r\n\" id=\"DejaVuSans-6c\" transform=\"scale(0.015625)\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-4e\"/>\r\n <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_6\">\r\n <g id=\"patch_27\">\r\n <path d=\"M 10.957047 104.795366 \r\nL 48.446703 104.795366 \r\nL 48.446703 67.305711 \r\nL 10.957047 67.305711 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p8e2c7f9c31)\">\r\n <image height=\"38\" id=\"image7c13a746ba\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.957047\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAN/klEQVR4nEWYya9kyVXGfyci7phzvqmq3qtydVV1uXAPHtrGWKJlbIRAggUSLBAr/gU2bJDYILFjzwZZYsPOYoNgAQssRCNbatPubtrdXUPXq/HVG3LOO0YcFve5SSmVi3sj44tzvnPO94W8/td/q9nXZywfjOk9NfReBETBlQHx4GMhOMHWio+FeiC0mWArBaDYE3ymmEYIsSKtYGqodgK9WwuuDZes6oTnLyZkg4q7e6dMki3TaMOzcsxuvOHXes95I3nG1G75ZX3A3z95F1dda6jnOSLQZlAPBYDtnsO02oGqFBDaXEDBlZeg9oUQQXIh2ArUCBIAgfxE2MwnfLY/ZPe1C65cmVM1Dmc8j5Y7bPKYoMKt7JTf6f2Sh82Uv3j4Rzz87xvc+vEKt3d1wWqbUm4cITa0qYBAcNDmQrSGNhNCDKYB0e5XLdgKog1krwLpzCNeEa+ExLD4SgQC8bllMdul3vNcf+2UR/MpAE0Y8Z29Y06aIb/7L3/O6GPH8Ljl5qst0gZcUUfUlQMDPlVC3J3eeMADegmmBgyIh2iruDIQbQzZWYstPG1uQYS2byimFrUw/SRg68DqmkPU8sTucvfWC96ZHvN2/oS//OkfcvNHhq/ONphNSeilSAiExOHKz0eEgQcBVwg+Bh+DbcCtIcSgpouOBEU8tIngSkjmnnLqaNOINoVmKKiB5EKZfFZT7DqqoUWCohZM1nKjP+Nu9pK/+vGfcO/vnhIGPXAGzWLEewhgNzXOJwq240ybK7YE8UIIUO52ETJtB86ngivAJ6DGYnzHt1+lXVrILhTTKGdvxbR9GDxS+i9a1ETMdyL+5/SQf//pm9z7hzPCZABt6L7OgAiIogjGFYIUtgM29LQZtJlS7gWqPY9cprLtd8CbHgBEheITME23MXSAN9eE87eE9e0WFKJtIJ435GcBszXMlzmD60te/tYusq348hMCaBcgRDAEwCkSB4gDftTSHtSEcYsmAdNerrNdOnymIOAjwSdCMmvY7jmaIZQHAfn2gv1vnHDl5jkhUvIXFXZd0eSCJsrVnQXfP7rP8t2C+nCEeI+oIlW3kTqDimCanRYZ1ZgoEGUNtt9gooC4gF1ZxEOwXIIK3WLT9blopczvJBR7QnmjJrux4jvXjvnTGz8jsR63FepxzOm3x6x+f81vfusTfnDlM17PXvHurQc8ezcFEVQEXFc84hVpPA6nJGmDqqAKzih1FaF0XPNJl6IQgcZKS6AeWfypEBUKRfeM2rCZZfyMG8yqnOOXU9xAOf2zLd87+oI3+s9JTMPAFFhRduM15VFDdWVAfLZBpYtUxxOLExeoyghrAy7yVEWEjTxRrFRpRNM3qAFMl39NAs1QaFNh/Nka2oD4PsuVxTSWIvY8MlOMCzRjzx/f/gVv50+Y+xyAoS0xBJZtyp3bL3n5znWu/meLW5YdmZ0BwOSDCjFKltW0jUWsYq2Sxg3a9/hMUadfgpMk4HuB7VVhebsHVshOKoYPoe0H4rQlixv2JiskCP/43m/wN5/8Hk/rKaVGPKl3mPscK0obDJvrHlO3qO2ipSKgirs6WvLK9BmkXYU0raUqu6bbGxdsNIPQlTECGgSiQPGVBtNE9I+7ilYrSBC8F6bZln5UsffmhifzMdPeloumx7JN6duKQVZwUeccf3iVu994wubGEelFTfRq3f1X6nCDqGQVJ2zrCIAk6qqjqR3GBGzqO1Aq+LUD6aYBvmum9SgmmVVMflnRpgnlvmFWZpys+xRVTNtYtmXMvEhRFW6OL3g7f8IXiynx3HD/xT7jXUP/UQXGwGXkXFDDKCkpbMS8SFltUox0fLo2XNL0NwQVFkVKmUTUtUO9oMsY04JpAtIGomVNehFTqJC6lpePd+h94dh5HPCJEGyPalf4+a0hb42e8+psSK+EahYTrxSNLOpM18tEcDf75wB8ttynaCIKoFkkuGHN1yfPmLoNH64Oqb1FRAlBaIJD40Dbs/jMwhzEB1yp+Nrw4r8OGc4gXipRERh9tsFerPE7A14tBvzTwduwiEAhf2rJX5ZI0RD6MeIVVDGHyYwbyQV3BqdYEwheIA7IccYHs0PKELGbrNnJtqgKcdzS75cko5Km10VW2gDGMLsnmEWEz5TVLc/iDtQ9g1mV0LRI44m2sLk/AoHt1YCEjp/ruyOe/qDP6bf6qDM4izJ1a5rEcnM0YFPFrF/1GH4OD+QGt354zvPtiIsip5/UNMGQWE+VWM5Cn2pkME2P+Z2I9nZBWEaY/RotHfbcUg8AVXTUpzjss70imBZ81uJ2a7Z7lieTlHYQuPu1x9x/sc/oQYQBmPucvi250zuln1bghWirHP6k5cFyl9Q19KIar8IoKdnN1qSuJcRKNTbM7kYs7np8YRlfW9IWjr2fRLjtZTGX9Zfic3zfk50IJvbsjDb0ByX9Ny749W9+znd3vuDt609RK7gX9Yj9eElQw9Rt+O7+Y/51lRNcn3jecP+DI65+7RUAo6TEmfD/czcLrI8EW0M8s8iZxb434bUnDeVUSc9g/HmB5intKGX0sOTVOxnLt2reuP6STRPTj2v20jWH2ZzjYkqrlsWtCPdos8OD9S65a+i5iuvpjKuTJaeHA0RThvcNz3fH7O6sCCosq5SydazLhGhc0iQRfhmRvxDyF0ozEM7ejBEPg2eeZhDR9sasjiIuvhkYXb/gjdGCcVyQ2oZtG3O8mvDz50dUJzkMGvRtj3v8o9dR6XT65lD4wR+8z6aOCRHUfaEeAfOIeZRTNQ4FttsEX3Q9zUS+U7rA6qZQjwO2FJILYX67q9o2U+xra+7tnXOQrXi03OFkPcBZz+lH+8RzoflaAYMGOY9Jrm9wo0cV0ipqhdEj4d/ufZVeXlHfK+h9d0M566GrCFWhrCLqRYJdOCzge55QGwzQ9JVmoOTXV4gor00viE2LEaXnavaTFas25T+Ob1OsE7SyDD6NuPagZXbHEf9vxvRTz+aKYX3F4qQJqDOIV0zlSX7eI//hiu8f3efD2TVWj3YYvnNGL645PpniZo54IahAZQ06bdC8pW4MNIbtKmE03rKsUiLr2TYR58se9Uk3xGVcM55smJ0MSc8UHwn771ckxxfURxN6x1vS8x5OwmVDq1raQUwyU17c3+OfPzjg6nue7FA4Gsx5tR0QJy1mLrgttPmlBFfI8poQBN92c3O5zCjrCBGlbSxJ2hD2CvRxj/RxRhVlyKGnmgjTX6zBGfy0T/xqTTvKWB8anBqB0ClHt6qxVYwpDMOHkD/ZkL20PLSvs3otoLEyOddL7yjUCjSGYpWACmIDLmmxBrwXnOtUS1FGuI/67HzsKXYNbSZkHxhMrTSTlOTpHKxByprNm1N2P2pwWAGvSBvQyJKdtYw/dfSft/g8Rp3Qexk6c9sI2XkgPW+QNrD6SsrmWoTaziw3g0AzEQ4OFuzmG+ZlxqaKCc9yojU8+22AQP+hhQCTT9bY+RYu5jAdQ90wfu8p/mCMM5UnRJaQOaQJqLn0la1Sj7tNfQS2EtQo8aLFrSqk8gyAwVMhOMPFvQQwyCLhxI/xVwxFHVHXFj9tqG/UHA3XeBWeRzsc/MSyPcwZrCukl0NVd+oCsKcLnDQeMQJBME1nUMsdh08joo2y3TNUO4qKsv9+ID4vMastGEP8eI1mCVjDoD8B7VqIzyLCASRRQ57UVGlDUcQAnJyPcDPH+kjoPVdoPeH0HKxFku4dxkPcr+zSryyUWzeYNub8ew39yZZRVrL94IC995Xe0wJTNcim6ORJFCFVN26S85pybGkzCE7ZlgmDvGQ337BtYpKo5fnZGL+KcAYGTwLZWdvtbS2EgCTJlyrWhdghvkshxmBqz977G+JlzvpojPm45ea8xFQes66R1RacQ+saigKmY6SosJsGyDAebClU24jyPGN+sYu/UWJtIMsrNrOY4QMYfb7Bnq/Qswvk6j6hl8LpHH91in05wyEgbSdfgjOYtpuFkw+XTD4xl2bDI41HYwdG0G0JwcP+DhrZDth8TbrodQdUQ3OWksyV+V0ItcWepOSfwLAIxMsGQiD0U8w2Q08vsEWP9miH7dWMXMBJ2zlgtRZpfJcihXacED9bgOs2pqxg0AMfkF6GFiVSVJTX90kCmMUatw0EJ8Rrof+sxaeGeGHpPYuZfF4TX5SYRcfPdqdHdLZEy7JLpTXYRcFgtsWPMpxGFqna7m7rUjWIKqYOhGGGvVhDCGgIaJ50lx9FTZgMuveaQLObE9cNbt2gRkhfbAmZ4/xGjijsflQQP5mhiyVaN4hzRMs1JDFEMWINfncIXjFVw/yrfZxK11xN4xEfIIBpW9QZQmwxadxp8UEPWRfdVdPeADVC/PQCG1vspgZnqScx8aymHSeYyhOvlOw84BYVuliCc5g4xl/bwT47QzcF7E1QH5CyxWwKFt+6QrLyGFN3/JHGI21AVDtv5xW7rkA7yx7yCAnaWXkFt6pQZ3HPzml2c0IWYcvOmCRfnKNG6D+rGH58gTmdo1f3EWPQ8QBTtjS3rqAHOx1vzy4wsyXNtQn9xxuKqcVIcyn8AqgxEAKmajBV05Vy65HlBvdihjqLJhG2aLqDVB2J4y/OCLEjPtlgym6dW1XEnz6Hl2fgLGZbouMBUtZoZHGnK9pJ1rWJPKe+c0D09ByzKpl8ssWYujMJ4jtHLF5RY9DYIZsSzZOOY2V1WQg1ZrGBuiGM+mgvQ/MUU7bUBz1Wr49Qa5DnZ4TNFqyBuukiX1TUR1N8HiHrLaZqMauC5sZul+6yy1B0suD/AALuihMzN9+/AAAAAElFTkSuQmCC\" y=\"-66.795366\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_11\"/>\r\n <g id=\"matplotlib.axis_12\"/>\r\n <g id=\"patch_28\">\r\n <path d=\"M 10.957047 104.795366 \r\nL 10.957047 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_29\">\r\n <path d=\"M 48.446703 104.795366 \r\nL 48.446703 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_30\">\r\n <path d=\"M 10.957047 104.795366 \r\nL 48.446703 104.795366 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_31\">\r\n <path d=\"M 10.957047 67.305711 \r\nL 48.446703 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_6\">\r\n <!-- Angry -->\r\n <g transform=\"translate(11.968125 61.305711)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-41\"/>\r\n <use x=\"68.408203\" xlink:href=\"#DejaVuSans-6e\"/>\r\n <use x=\"131.787109\" xlink:href=\"#DejaVuSans-67\"/>\r\n <use x=\"195.263672\" xlink:href=\"#DejaVuSans-72\"/>\r\n <use x=\"236.376953\" xlink:href=\"#DejaVuSans-79\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_7\">\r\n <g id=\"patch_32\">\r\n <path d=\"M 80.226013 104.795366 \r\nL 117.715668 104.795366 \r\nL 117.715668 67.305711 \r\nL 80.226013 67.305711 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p84f078b21a)\">\r\n <image height=\"38\" id=\"imageea488fc199\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"80.226013\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANi0lEQVR4nEWYyY9k2VXGf+fe+8YYMyPnrMwanD2ibrfasi2E1YAlZiGxQLBEbNgY8UewY8+CDVu2CFjAAoxkISQPDU3b7W67uoaurK6qrBxjeBFvuveweFnZsQlFvBi+951zv+87R35n4y8UYyF4APAebVq0bTFJgqoi1oC16KpEvUdEUFUIiun3kDwDEbAGzVNWhyNEIZrVuC8vwBrqgwkXb6dcvaGEcYu4ANMIWxja9RZJPOoN2bBkdZ7htG6QGGhaiByIQdsWcQ6yFKkb8B5EQQSxFokjTJridzeoRwnSBpphhGmV2WHE9LsrQhDCLCV7fkj/WOk/a9j8cE5wQ6ZvWGTNo6OGNjNELyOaTZDYUxYx8bjCiQi6KiGEDgBAULRtYVGAancNwFrMaEjYWiM4Q0gctmxp+hFn70asdgJma8V37j3ASfedJ4s1ji/HnJ7mDO4PyU8CgweW+VGMJgFJPe2tCnMWE0YKXqhri8MI4hxhuUTrBjSAGPAgImAM6gNmNMAf7eONIG3AlA228WjsKPZiqneX/N5rn7KTTBnZFetugSXwcXzAncE5D9c2OJ6MKT/vM3yk9L6wLN4IoOBiTzNqoTFI3sIswt0wkeeEqurAXL8ncdz1TxKzOtogREK0aJE2oNaikUGtITtr4WlGc2RYcwUTu2Bsl3xW7QIQSWCSFnxebJGthOmR0g5a7NTiB9B4Q5Q3NPMYFNKdAvnt4Z8rISDWonUNUYQkcQdMBF0b0kx6hNhi6q7UdtUgbQAR1BlCZGkHEZdHMdU6rPZaejsF+6MpkfUUTcyTk3Wihyl2JSxvt+SbBd4bqqsUooBxAQ2CLh2StzhJ046hpkbiuOuttgVrIYnxgxQJSjSrwCuaWBAhZBHSeNp+TLUeEZzgSoVLodzuWB/EJbfyK/7ph+/Tf+RYbSnt0ZKDyZRhUtIGQ7XmKOqYq1lOUIFRjb5Mr0upAa0bxDkkjsA5JIrQvAMlTUAa35VQFVSpxwnqEnwi1D2DrZViX6jHAXWK94b/eXTIh8t7jH/uWG4rO++c8O7kGdvxjPOmRxUcl3XOZgZfWs+z52tEWUNrFUfwELRjyAhEMZImaJ6ikUUaj0b2+rQGzKxCI0dytsLnESZ1+MRw9TWDff+Ko9EUgNS29KOKH31xm+lbwtfefMZ7a0+5P98CYOyWtGrZSAq8CqEnnPd6VLMEs1bjaFqArq9UO8auJULa0IGrWwh0PZXGaOyQVY0FqvWE8z8u+N6v/ICfFXscpJd80P+MVBpO/YCNZMHjxYQ3hie0wfCiGPD7Wz/lSTUhNi2WTlZWLuLe5jmflTuIUcwNU6pguv4hjiByqDPdaxFwpmNNtXs2XeMDDHsl76TH/NfxPT5b7BDU0Khl7jNyU3MrvyI3NQufME5XWALrrgCg7yqGrmQ7mfP+2jEbkzn2UYZBQ1dGkWvrMeA9sqqQqkWq5pqx0AHxASlKNImQuqX34JLwjxv81U//lOVlxpv9F7x6zELWdQDC/WKLh/MNYuv5j4u3eLjaZORW9G1Jahr6tmJgS/7g1ifUE48jKLhOZNUHhK5kr3oKDJrFtIMEDNjCdUBVO8nwgY2P5sxnI8r3hJ9c3mbaZuzGU5Yh5qQa8nw15GTRxxql16/puZpJvGDNFTRqadQSEJYhZiua8Sff/hGOJOn6SgTJ3A0otQZNYjR1+CwixIbpnZhkFjN4VGCWNVLWaJaw3M+5eNvQ7FZ8+mKbjx/dYrIx55vbT/jBwyPaeQRxYHNrxnY2YyeZsRtdsenmXPmcpSRMfcbcp5w1AzaiOY6qQo108mANEpSQp0gIYMBnEeVmzGLHsrij5M8tvWfdDZjW044zTr/uGH3rJR9sfEliWtaiJSPblelfZ+9iC4PZqzkcXjJ0JbvRFWO7JDU1NqTkpsJ3taIMEWfN4Jox57pkYS2KR6oanAVjaAaO2W1L8c0le5Mpx+MNkouM0cMSlZxyI6Y8aPjNzaf8xuhTPizu8qDY5DC74NNiF0SJDgu2R3PW4hVb8QwjSq2WIiTkpiKVhl6oeAF4NeSm7kwcY256SnzoymgtaoVqZPExZFnNVj6H23DycodkHpO+VOJpi53FGJSTZsy6K/hptceD6YSiiskmK17fPGUzXTCOlgQ1VCHix4u7fGPwmHfSYyzKuQRqtUTS2Z4TkWsLMl32CgpxhCaWdpBQ7BqagfLW+jl72ZSn8zH1hqfYsmQnYKcV488SHr4/4Sg/ITc1742fsvAJKx/TqqFnazJbM2tTquA4q/oEBCNKqREDU9KTmsI0WFGufI7DuU4irnMY1vCKRbVCuaX4WyVGAkaUxhsIoEYgKKLK4EnD/edb/NHOR1QhYj+5JJWGSFqWIQHgUbXJF4t1vjhfp20sH9z7nCpEnLZDcDAwJW/aJae+h1fBaVkiWYamEbgupb7SKJ+kSAthHvH4ap1Pnu/SrCLc3JKfetQZVITkoiK87BFUuB2fctoO6ZmKO9EZqbT8stniH46/xbPzEVHk+frBU749egjAue+Tm4qxWXFgA3t2RiQeJ0l3R+JDx4LIjT+mJ0u2f9yjHhjmhxPq2w2SBNxKSC+6XIYBs6yJrwYAbNk5pUaUIcIjfFzt89cf/iG8SGC35LWtU+72zhmaFUYCsXh6pqJRi6fBIhzYBYbIdf6XJd0hUIXWI8sKe7Gg//Mz8pctIYJ4XLG1NaVa9zR9iztfIF7RyOIKmIcuQqXS0Kjjh8sj/u38HfzS4dda1oZLqtbxk/ND/vnsPVJpWLcLNm1BbhrmQbkIgWmIcOos0nrU2a6/RJBidd1jhvrWmJNvxJ3oPuhxsplAGjA1aBzdmH1ypRyX69S5ZWIXfH/2Nv95/Bp/dvRDnt0eEVnPYe+Su/kZd5NTGrX8otrlu71PSa9P4onPKDQmlQYnVdNpVlCkadG0S6+aRKi1oHD4LxfI0+edp66PqW+NcfO607vIoZHFNPDxxT5v5884iM9JTEtRpPzt938LHbSYKPDlZwf834nS9IW/+d7fs+cu+aTa4/X4hEg8HmFsVqTikd/d+0sliTvGIodUTecErUcj19lOWaFl2Zl7r4ekCTiLOtv56Cjj8vWUiw8qxmsFb2+csGgSpnXK4+NN0scxa78I9J+WRE/OOP3uAVdvgTua473h1uSKo+Epb+QnHCUv2HdXOOx1CBTpGHKhK2no4o2W1VfDsLXQ1N31qAu/vp/Q9hyikN5PKdKE/x6P0ThAEKQWogUMP59jvzzrYtIXFW2ecLmZQhAu0hyG4BGWIeEqZK+itYIxnT++0rS6QZyFNEHrGpOmXd8lESFPaCY5pvKE2FIPLcX+tfkbMJUgS4caxbRCm8HZ+0OSe31MC+WaoRoLtMKdey85Gp6RmJbc1HgMRUiugYkgdYNmCbKqutMpclNe8pR2lNGME+qBpVwzmBZGD0p8aqn7HajVfovpNUzWF6SupfYWZwKR9dTeElSIXUsf2HQN35k84F7ykiufM7ZL9qJL5iHFq8Fp03Sx55qlG9+0X6VXzWKaYYz4rrw+li6FRIbVxFIPhDZXTGno7ZTcGV1gRLmqMg56V2S2Ziue8272hEYd++6SkamIJRAJeIW5Ol60A+Y+Y2BXGBHpFimRu9ExtaZjC5DWI1WDLT2mDaj9qmTFbkSxZyhuKc1GS3ow597aBQNX8Xi6jhElszX7yRW/2rvPjptiJWAkdF5JBwrAovRMhZFAGWIcSadR0rRo1m13MJ1fStV0IGOHeKVai5ndMagBXQrNQCgnCvsrhnnF1mDBMF51ifV4ja03FxhRjARetGMeh4iJW3Dlc4Ip8aYhogNZqiWVFouSmhpH67umTh00bWdNgNT++lB0XNtlTTS3JJeWJhdMrZgGor6wWjnqyHNe5BiUVg045fPTDY6vxtxdO+ed0TMi8Ux9Tm4q3kufMDbtDWMAVyGhUcuzahuH6QYQqeqb8gE3aylp2mtjjzFNIDsPxDPBtEqbCcmFQIhphhGXI8+0l3O4cwGNoXzWo7Twv2d9eA1eG5zyy2KLZRvzfDjm13q/5MBN6ZlASidJL9oRX1Zr16ey9d3JbP2NPr1aSWl+vSMDTGlJLg121dL2ItzKkJ576mF3AOa3LWFqeXK+S1QKpoZqr0Gs8tHDQ+o7ji8u16gqx9mqD9vwjfwRqTSM7ZJTP+TfT9/iydUYp8slkudfgbEGqQMkcWfmq6oLkqsS27TYsxmIYLOk07TYgqS4Umgzx3JfyZ8ZorlSjQVZWdLdgtVZzif3bxEPK4xRTqYDLtdzHtZb5KZmEhb83fGv8/mjbcQpDmO7P341yNYN2vrOdqyBqkabBsmy7jN1022CLmcw7GNri6ynhEiwldJ7KqAgAeIpNAPDyuWIF2RlqPU6ZqWeT6c7PCnW2c5m/OTkgMVHE6IIkjemONpu39oNuqEDBDczZVfD696ram6cIk2QqsaPxt3HrRAVSvzSg0LTM6hRwqnBZ93vhDRglrZbNywtD9hEjPJzt437WZ+0gPldz1ZWXg8jrx7WdDsyEXS5ugbRTepa1aChm6iMuYlF0njSFwVuleCT7gZCJJimq0C0UGwp+FSRRogvDfEVtD0oNSZkgUBEuoRyomgSeHEx5P8BVufbwKWNnK4AAAAASUVORK5CYII=\" y=\"-66.795366\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_13\"/>\r\n <g id=\"matplotlib.axis_14\"/>\r\n <g id=\"patch_33\">\r\n <path d=\"M 80.226013 104.795366 \r\nL 80.226013 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_34\">\r\n <path d=\"M 117.715668 104.795366 \r\nL 117.715668 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_35\">\r\n <path d=\"M 80.226013 104.795366 \r\nL 117.715668 104.795366 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_36\">\r\n <path d=\"M 80.226013 67.305711 \r\nL 117.715668 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_7\">\r\n <!-- Sad -->\r\n <g transform=\"translate(87.675841 61.305711)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-53\"/>\r\n <use x=\"63.476562\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"124.755859\" xlink:href=\"#DejaVuSans-64\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_8\">\r\n <g id=\"patch_37\">\r\n <path d=\"M 149.494978 104.795366 \r\nL 186.984634 104.795366 \r\nL 186.984634 67.305711 \r\nL 149.494978 67.305711 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#pc711ff372e)\">\r\n <image height=\"38\" id=\"image2650615c38\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.494978\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANYklEQVR4nE2YSY9c13XHf+dOb6ipB3aTTco0RUu2LFsOLMBOkCDI4EU+gRfZZBHkAwT5IFk7uwDZBAiyCgIEQRaBEcOGE1ieIJqSKFMkxSbZU3XX8KZ778niNSgXUIsa3qt/nXP+wz3yzb/9ezURyvOM7ZUUhOwEANcpKqAGqpOBHAzZC8d/aIm7EZKAgGkNphMkQ/aKWshVBgAF0xn8lRAuhWEGd//4CX9556d4SZQysMolq1QxqCUheEk4yZADXN0zIOBXUCwV2yvZgd9mupml2/P4deLsXUfcGcBn3EVg9hjmjyPV8zUaHP0i0O15Tt+z9AcJfCYLxGSwjSADZIReHQCWTK+OQS3bHEZwanDqwAxQNIrtwUTIHmItxEqQZAhXSrGM+GXHwS/hvPMAHH7QUjw+Q6uCXHnaw5KhNgy1UJ4LGEt/lEHHSubxMrxJWDKGTP87gAyKQfFmwA0TkAQmCr2FbEEdSIbq5Qh29qyn/PQUhoh7aZj8bEBjGjt1uMf67QWrNxz9HFQAgfbtluJRCd3YCYBUjuCcybQ6otzmgqftHoNaboUr9txmHCN1kApFlNcP0wvhcqzk4pOG8PSMfL5E+378fDpBvAfniLOCq7uO7W0lLIXiUgkrJVUF3UFCBoF5RL0w1AlTpmtAAW8TM9twp1jSZk9tO7xEBnW4+rkSK0EtIziFcKVU54nyVYc/XqIXl5ASZjZFigJyBufQqiBVjuyhPBFMD7YF1yoHHygvv2tIhz1Hty7wJrMdPNZkDMqrfs7alixsw6AWgMtY86Bb8MHJG7iD/70ayzwPZGsAkKxkJ7iLLfn0HIYBmdTIdAKqqC+gCOTSIUOmuBiJUp9k/CZhm7Eq0ycVqzuZm/WKYEem7YUNWQ1Zhalt8ZIY1FKagSFZPl3dYPOjA9zyGzPCKuPXiX4+MsVEpTjtkOUKrIFQI1WFOovWBRoc2VvWdytcm1l82oGAGiEFQ9zzmKgsHg00BxW/tkdU5cC07GgnjvVQYEQ5ryYYlC472jS+/8mTQ268UOTvPvi+/usv3+fo3x3r25b6JDN90hKeL8knZ2PbACkL9OiQ9o3ZWFErbI4csRR2P+kpH1/QvbGDGiiP1wD0BxNiZTn/ukcU5DXjobuR4Vrqcp2RzjB5anDNKF/uv5+/zc5PAiffhmI5stGte9g2SF2NoIyBsiBNA93CYpISSyEFyAVsbnrcZoa/aMHA9u4cdUIKIx1nzzLtjnD1FhRvXXF3Z8lO0dAnS58dO6EhquHhvUOWp1Psucflf9vn8h0lVxm3ddhOIWYoAjqbgAE1hlR5+r1AtxCyN2QH3R6oU4ap0O3UhJUSK2j3hW5/1K/5I8P0OGEGIU4TP/i9f+aWXTOoISG06kgYAonlzZp/Of0OP/zhe7iLP+r4yp0TfvviBojDbRO59qifgzPEiSfWlnbPMkyE5kBIhRInSl5ExGX6ZGg6g+kMKmButJRlT7Mq8b8I+HWift7gm5q/sX/NP3zvH7nlVqOYyihBqxyoTcfEdfgrwb1795h1X1DVHTTVWI3KITajwdAcePqZob0h9DMlzjK5yEiVKCc93kdKH1EVUha2baAIkbroiQ/mbG8JmzuB9oYj1xm88oPnf8pfHf2YTS5YpZJWPetUskolPz97A9uBK+3AlZYYUbKBYWKwvcX1mVRYurmhXwj9QhlmGeYRAVSh7xwiigkDpR+Yho5u4uiio42O/kbi97/3G74xPeZ0mLJJBUO2zF3Dfy6/yZAtWYVBDX12OMm00aEW3LPVDouiJZfCWQXbm4YUPLURholhmAn9YmSTThK+HIi9g86iV57WBtp5YDpvsCZzUK1ZdhUvlzNkEH769Msc7y94Y7LkXnWGl4Q3kV9cfYmsQkYwKH2yRDHEZJAEro+W2axlFlrOvjnh6lXN9FOLbwzJC7GCXChxngjTHmszOWdSbzADMAg5e1adpes8J8WEnaplUnWs9g05GZrBc9ZNSCpUdmDu2tegYEwbWQ2QSXkUeTcvO7YxMA8t37h1zK/1iOFkRrZCP7/OWE7xi44Q4tg6o3RAzIIUCeMzIUS6xhM/r2m7HYZFwu707Mwa5kVLEz2rfpeb9YqYRwsyKFEN5neMWhkTjvM2kXUs536x4c/f/Jj/aN9l+KwgloIayEGx5ouLg4vMdlv8/qiQQzZsu0CzrQjNGAjrY0cqHadvBuLt0YJmZUfMhotUUbuBqOb1PZ0ZbSxnQ7FV3JAs1mXWsWDZVzy7XFDWPVf3C+qXY8IAmFQdcv3PrFG8yRhRrMlcbCvWL6b4C0u4lNHIt8rkOFO/sGxu7zFMlOHrK2I2nH54g/f/4GOCSWTkNcCsQoyG6UZxe+WGi65m3RfsVVve2jsl2MSvzRH9djFmKRWsUSo/omyjoxk8WeHiYkr5sGT3TDERzKCje7QZE2H3wxWzp4F237PczHl1Z8LtHyu/6L7Kd/7swRdRS5SYLTnLOPyvtjPmRcu92TldcrxsZsx8x/tHT/nJYs7erxRJhvO9CXdvnROuS94MnuVyQvWgZO83CddkzJAxMWPXPdIl4n6FPV8jbYmaCbsPoT42IJmdh/D5dxd8dfGKTSxok8NIRgTUgjl+cEiXHMFE7k9OeX6x4OV2ihUlfPUKv1V2P0q4z0qGZClcpHARZ68TrIPtoWF76GhueNq9QHdQ0x9OME0kT0u0dEjS63mF869ZtreEJ7864r8evkOf7WsCWJvHyHXjZ8JnN/fIKpwUU9rTiv2DUwzKjemGrpwxfdYx/7Tkxf0586OR6kaU6ayley+ylVFs89bhlg7JhvJEcNtAPxfiRJEoYCBWSty/TsIrR/Gw4v8u3uL9bz/CiFL4SCzBhXXmxs6aq7bg2c9u4xPEbGiSp42O0GTstmfxW2H5pGK4aVl1BeumwLnEfNKyKFusjAy97Epislxc1aT22tqywGAgC/iMrSJlObBJNc00QRIuupqDaoxLagSnFiah5/GLfeZPhDiBj57eZGd3w8WLOe88XiPdgMuw92HB2bs1wSW8S1iTGaLlfFvhbcaZPEboLlCWAzlEAOJg0UIQUUIRCS4yLXqCi1ijTELPzHdkFZIKoVecXp9gFvMtzUGF6UDOAquXBfsfgbnaQs6ItUw/7/ntkx0O758RXKLpPaoAltVgEbmekSzkLBijDJ0jdxbxGVQwNlN4ZciGwkdu1muCjaMTqJDztSXFyrBsSu7vnvHLdwraTYAkTD/07H7coGZUf2k7/NJy639mnJ8fkMM4LzqL4ykmGkwVvxBMl+l7R24dGEWzIAJxcFzFURasS3SDw9nMrOhYhAZj8mji2cL5qzmrTcnOrGH14RS1MH2ecWcNkhUtAqSEdInFg0vmjxzDPHB5P3D5licddRTTluAjRpSm84goziVkAikarMv4ECl8pI+WGC3TumVedug1mYwozmRSEEx9mph8FBjWgdOzGe2bHYtHyvTxBukHtPDjgcRa1FtISvZjIKzOMuFynIVp1bGoWnbqhv35hlnVkbMQNx7rMkU5UBUjG2O0pCcTLq8mLLcVO0XDbrF9XW0EnOkzBz/v2dwzuGmPfTBl56M1povg3XgYSRktHFpY1BvUG3JhiIWMrgtYk0eNsxFnHKuuYG++RRYbFkWLqmBNZt0XbLYF+7+C9vOK1Z2ST75i+dbN50QMMRtcVlwqDcVZz9v/pMTaY4cGu+pQK6gIeVaOIMcpJ008KZjXgNSCdZlFMUan0ka20bMIDTPfka7ZZUW56GqGbIinJfWryOLjnvWXKy7PFzz5k4bb00sKl4hWcNtDS3mi5MKCEVJhMbMC6RJilDgNOCOYbf9FNLFCKsadRJwos2nDxHcEk16r+Mx3dMnhTKLPjg9PbjIMjva0Yuehxa86TB+pX/SYwXNa3SR9R5iEnvMArp/JNfMUM2TUCNkZcAYTM9kLubCoLSErKmP7UvHFHm1a9NRu4LyrOW9qmt4TXGLTBgofWW9KzKMK2wu7p8rsWRy7kMG2kXAp7Dz0nIVDdt47RR24YQ7DzINAuByIE0cqLddCju3zCNSCSRmTMvRgoqGfjVKSdIwux1dzLpc1XHpMZzARZCXUDdQvMnbI2Fbx6wgiYBQZEpI9kxcDsQ40X/MkD679Ug8/FSQpqbBkK7g+49Y9/V457iHcuM9I3mCHjFrBdorpwXTCq/M5pYtcXkywLwPVS3m9oPFrxW+UYplQN3bGbgeyM2NEihnbJUw70O0U3JqveFIvcPfuntDuHDF92hHr8ZStRsjBYruEpIxkAVXEGbI1SFLMoBRXmfTScDWp+HR5C3dlKS4E1yh+M+5AJEF5NmCHPF6bdZSdrCDj75h2QK2huZW5Pzvl0ew27s7kkg/u3SFceSQpknQMhyJkazCAREXt9WE2K2QwZKyF8kJInxtScKP+NOMTxnWU6RWTdKxQn1+bNEZIVkAEt+oYFoEvfeuYuWthMeCOykt+9JWe7jM33ijpKAU6Cl22BhF9bU0opNKSivG1iUp5nkdNA8Jm/HPleQQdF8upGL+P2DE5bEeAph9nVkVoDjx/cfgxF7GmqAf+H9AzRlJ1jypsAAAAAElFTkSuQmCC\" y=\"-66.795366\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_15\"/>\r\n <g id=\"matplotlib.axis_16\"/>\r\n <g id=\"patch_38\">\r\n <path d=\"M 149.494978 104.795366 \r\nL 149.494978 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_39\">\r\n <path d=\"M 186.984634 104.795366 \r\nL 186.984634 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_40\">\r\n <path d=\"M 149.494978 104.795366 \r\nL 186.984634 104.795366 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_41\">\r\n <path d=\"M 149.494978 67.305711 \r\nL 186.984634 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_8\">\r\n <!-- Angry -->\r\n <g transform=\"translate(150.506056 61.305711)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-41\"/>\r\n <use x=\"68.408203\" xlink:href=\"#DejaVuSans-6e\"/>\r\n <use x=\"131.787109\" xlink:href=\"#DejaVuSans-67\"/>\r\n <use x=\"195.263672\" xlink:href=\"#DejaVuSans-72\"/>\r\n <use x=\"236.376953\" xlink:href=\"#DejaVuSans-79\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_9\">\r\n <g id=\"patch_42\">\r\n <path d=\"M 218.763944 104.795366 \r\nL 256.253599 104.795366 \r\nL 256.253599 67.305711 \r\nL 218.763944 67.305711 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p730e5cab65)\">\r\n <image height=\"38\" id=\"image6f33664053\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.763944\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAPAElEQVR4nE2YWYxl11mFv73PPuMd6966t6aurp7To7uTEA/EOLGA2EEkSkgEEbwBEuIJMSgRD0i8IUAgAg8RBOUJISSkgAgKijMIx3bm2O2e3G63e6rumm7Vne89496bh9OxOK9H2uff66y1/vX/4tLv/Y21ElQM2geVQLSbI3NL8NYjbn7+CC88e5l3xh2MFfzsGcxDxpMIPXZBWbw9xfIPNJWb+2AtSAnKgSxH5AWmdwCOA8YgWwvYyQSbpMhmg96Lxxi+OOP5Y+8A8LHmddR8WeCNQViLO7MYp/y4MOXhQsN+WiHXDsYK9kZVilyhZwq0QE0c/ANB811N5c4IG3qIXGM9hZgliDTHBh5yoQlCgNbY6Qx8H6EU+dFlpr864VhrQMeb8v7oPol1UemixiqJHQqEASzIwiJzA1KiqwZjBaM4oDCyLGriIhOJFRD0BJ03UoLNEdZXFPUAJ84RuX58OYHQ5Vk4P0MxQ4QBdjgiXg74xPEf8kS0SduZcqCr/NVbH0PZ0JBrgSgETiJQiUWmGmeSgHIQYcG88Egyl2TsI8cKKUBmAr8vqD4yFFWHydk2TmKQuSFe8gkOcpSnkLMUen1oNRHzBJvnYGyJnpDUL+/wta/+PO5nXuH1wTo3b6xjHYvCsZiqJgNkLtGBKA9WEifyUJ5mZ1LDmMf8smB8g3+gqD0wxIuSg2VB2BNUtgTaU1gHspqPP3aJtiQqrWEeboPnljxzJBiDqFexkylH//kOr1x+hoOziloC0Yu7SFKJSCQIsA7kVYjbkqyhMEriegVZodCFg1fNMDWNM5do33JwXjBfsYQ9QbRrmC9JZmsC48B8STDecEp0jEHWa6AUIorK+43GpTCUwhpD9foeTgrGg6xwkGrs4MQSUZSAGN9ShAKZWXSkKAoHRxqCMCMb+ThjBwTk6ymVcwO0bwHonxGMP5iQtC1FRZA1LXHHYnyFHU0g8EGb8iPagLHYQoPrQr0KWY4sIO5a+lsNpF7KkDnIQiBzEBqc1BJuTVGTHM8rWIhi0sRFpBLbTZFrcxYXJ0R+hvUtk2Ma/8IQIS26UZAulKJo3AZ3e4hNU2ycgBSQ56XqG3WEcqAoSnsBjAO6onEbKXLpGy6iEFjAuNC4DVHPoCMPWRiKwmF/WqHdnLJ6skenPcHzNNPYRxuJbGZYzxDPfaJqCsqS1wxp21K/n8HeAcJz3yO81eY9jlljwHEQ2mDTDKlh6UifPHaRxhV03yhoX7O4s7Jqb6Jxd4ak7YAoSDFGMM9cMu0ghKUZxVTDlHnmUqvGONWCYuLiOhoVFOhmgZUQ3HiEzTJwvRIZKO2jEpXkV6pUJ0CaUr9f0DuoIQcuyp0bjCOobabU7xjipYC86hB4LvsXXC6293g4bSLEYy7NIqSwBF6OtYJMS5RboD3JLPZxvYIgzIiHdWyhEZ4HRpeKLIqS9NQhThCNevkbi/J9uD3HjiqgLKr2328iF9sUqy2Qgvob21jlwGRG/V6b7//oNJ1T+yxGM2a5x8cO36ShYhLjMtU+X7txATN1cRoZUZAR+RnGCmKAVgOGY4gTkA42ThDrq9jIR+wclGhqjVAK4fs4vRF+r06yUqBE4GPHE5w8R7guxaE2zjgBoPHNmzRfDSk2umROFU8bXn7f0wzPgDox4efWHtBamHFgqyw2p1S8DIBZ5iELAcZAloPvQ54h2y0evbiMcaF+v07t7RFyOockBVdhpzOCHsgnZihcD+G56O4C8sE2anOf+Nwqo2fbeBNL65VNRKqReYaczOjc26XzbYVp1bh37DSm6+BuwIfP3SE2HjcGy0wTn7yTc/DMEosv55j+EIzBLDZIOhYnERycd4AGlU0X9egA6yqE6+LOLMe7uyi71oE0RyZZqZqiINgcMVteZHhS0v9UG3O3QvNtaF92cHrDslU92KY2TajlBZMPrvIf65d48cwNHGnghw2WHhqMgtm5ZayzgpOW3iWz0pbmhwoGmcIfeijlYOohzjwhGGoGaYQS85S8W0MYi4zKZCBHM6ZrAicFpOWLn/0KGsEf/uTX2fhSF3d7XMo/Kz2peq3HmSuWG2cu4CSGww92EPOktIRWg/ufbJOej/GvhWQLhqBXdppswVKEDrpVR+jSTtRMc3+3jTj7+b+1Wd1S3YTqtubRcw66XhC0EpJBQOc1RV4RVD65Q9VL2fzWBknX0HxL0P3BEG4/KONREGCTpCRytYL13dIKBiNoNdn81BKLv/yIe+8usXDZYb4KWcuw9D1BZTvDv98Ha5md7fLwNwvU7LDGKoveU8Rth/VLW3hSc3urA8B8RdC+ViD+vs00lHSnGfGiYvfDmvFHfOr/+wRL39kpjVQIkAI7GiOiEHwPlMLu9Fh5rcY7J7u4fQfjCtJugd+KcbIImWhs4IE2ZFUHawuUM5dlKzJQ2SmwVlDzErygQEYZnaNTek9WmY0C6pddsqaDcS0LVxxmh0K+8Cf/yl9/8gWKr59n5V+vY+MEqzVOrQraYJZaALjvblO/dpzwwOAPNe4LQyZzH+0JnDhH1wMA4kWJ2A5Q2DLKqNgy7yguNXfZjesk/YC1jQNWojHWCg4vDLhwaYu7szYNNyHWLq9dP8lfvv0Cf3Tq2yz/8ZA/+KXPIV9r0H09QV65h6hW2ProAlkDFq/WKSLw3zXkFckHupu8dPUceVQ6v0wKippPVi95raR+HHcqgunTMU035t6kDQL2hlWqXkpuJPvzCldZZSmcMCl8CiP5woe/znf6p/mzb36WxaN9fv/0d2mfm/KNwXl+8tULVLYM47M5cubQP+0A4PdTehcrVJ0UFRZkDY+0G+ENUrAWJ4Pw2BhpFAhbDiKn13aYFT6z3AMjUMoghSXXDoEqe92s8DBWEKmMh1mLS/WHLGwMGF5Z5B/+/RP8eHqUvzv0Ei9+7vvs/oJGpJJoW5JfnBL2LO79HmuvxrzeX8fzc5KOZXLIZXYoIl30iHYMWkuUNxQYF5BwEEeshGN8VUDZGvGkfq8oKSye1BRWUlUZkcwwCNbrI+In54wzn7cnS/ypeZ7v3D2JjB28ocR7bp+L7T22HpzAZjlqEFMAWeqiK4a46zBbc3BiqOwY0sRFCVsiJlPY3W0CsFIZg7KkiYsUhqqXYqxACosUhoosSLUitYquO6bqptzYWubEco9cO7x06wzmwKN6ZMRza3foeBP+88sfZeXN2wCMzjRZDfZ5yAKiEMTLBlMrcMKC4laEozQq6RicWOD4AmfPY3+3i3vJIFyDSRwyo4hU2QP//1yZGsW08NG2yfFKj5+qdd66t8KJw3ssLky4ePIR768+4J9uP0v1Kw2WX7oMYYCo19h9CpqFR7c1ZhqljPcryJFC5xLT0rAfokxgy+y0LzCeRSaCzYdtVtf6bO8sMMs9lDB4ToEUFkdYDILQyYmNh5KGWLs8vX6PN/dWcYRh916Ly//W4Qft9+MPLOHODFGpAJAdbtE61WdnUmM0jpBbAd1rsHB1zN7TdSZHwB5KkGokMZEm7lqiR5KirpG+Zrdfx+aSpFDMCo/5Y9J7siB0ckInQ2LZTurspnUAzi7uEjgFy0cPyGqC5u2C/jm482sVdj99AhH4DI8HzFOXwV6N4HrI2ssFrTeHONv7tG6mqJnA5BJVuw9x7JIsGtypoHpX4Q8cRqeAqqZ4PIH/TAiDLMKTmkV/iitypnmdBS8mt5KKSlkLhyyFY6q/fZdhHnFaappuzKtPHGPUX6OIBMZIgkZKvOrQEy5HbsyZX1zHKkGykSGmCgXgTiCvCXRgcScCoaFoFmAEQlgW/Dme1HSDCf0sInRy+lnEOAtZCse80TvEYFQhCDPWm0PWKwN6WZXMKNCPdx3TiKAjGZ4veGr1ETd6S6QWwl2LDX1Gx9xySHFTcA2yCATaB3ckCPZLZFRqH49ptozRj/kFsORPmOQBhSkN8/a4g+do2s0p0+0qt36ywfX+Ch1visQyTENmhU+8F1G/X+A2E0InJ399gY2vG6J9TbJaQxgYPKHxgpzF9gQlDFhZ3ippQ143OJnAGwqS0DKYRAyjkMOVAZO87GfXestMN+s0N4ZU/YxmEDNIQnAtZimlN6rSb1ZQUrMSjdmaNSAwqLlBXa3ycnaS2gSsgIOzCpkr9NNjLnT2uXZtg+dPXkXFXYs/EMgCsjqYZs5szSPoQdIRGC3Zm1U5XBlgEChhONQY8dZODfm1FlunLTuZwB0LOFwQ3imL/5E6zKePX2FcBNQ8H+fAxb/3iIXuKknPp/9kxsontkl3Ouixx2+deJOp9rkarVEYibIu5LUSsXDPYqVPUbF4Y4uaCSpHEgot2Zo3kMIQqZxUK9aP9tikQ+O6ovPGHCfV7DxTI69AXreIm3W+HZ3iF1ducSvvsvqaxlQjqvdm1JMcb9Lkzv5hrG956slbnAq2+cd7zyEcy4XKQ5QFvCHkdZgcBYzFGwqK0OKNBVIaHGmZFR4L/pzQKVPrTr/O+049on4+4ccXjxJsRuW6QIK/L2jc1QymS/zXUx4VP2N+RDE40SJtlQKTORSrCb976TV+o/FT/mX4JHuXl2ifP+B+uoha/pFhviiZrVvEakK3Nab/vWWKx3EkzV2W6hMmqU9FZQxsSMXNaNbnbI/rBAsFv/Pkq4w+EPLV65dovhLgTQx7H5KYw3Pq0hCogp2zOXLqEGxMyr7rGBiFfPmnz/LqkePceWUDG8JzK7dpqRnKnWoCB2YzB3MvZGvk4bmWtFXuH8YHEUkUvzfwBk5B4BSomubWfpdrD1e59nAVnUn8Bz46gOGKIF/MONbt40pNP45YO3zAwaRCmrpYI7B9D9VJ6CxMyI1D1rDQyLlQeYgrNMpKQbIgady2uLFhuqowqty65DUQiWSeegReziT3UVKTaJfCSJ5Zu4cUhs3ZQhmFjmdsTRss+Qm+Kmj7M+6O24ymIRfXHnG4NuDK7ipZqmif3Of55Xc4HW7xpbsfQbRTPnT0PhMd8sX/+TjKKMHilRk6VGQNhQ4g2rFYRzA7UrrjdBbguwXz3AUi2sEMYwV3Jm0aXsyRap+ON0FbyfHqPq7QzI3Hg9kCB7MIpTTT3MdYwaHmkFP1PV5oXuW7k9P8+bc+g0wErdN9fqV9hb+4+nGqDyT/B9CYkiv5HSfcAAAAAElFTkSuQmCC\" y=\"-66.795366\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_17\"/>\r\n <g id=\"matplotlib.axis_18\"/>\r\n <g id=\"patch_43\">\r\n <path d=\"M 218.763944 104.795366 \r\nL 218.763944 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_44\">\r\n <path d=\"M 256.253599 104.795366 \r\nL 256.253599 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_45\">\r\n <path d=\"M 218.763944 104.795366 \r\nL 256.253599 104.795366 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_46\">\r\n <path d=\"M 218.763944 67.305711 \r\nL 256.253599 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_9\">\r\n <!-- Happy -->\r\n <g transform=\"translate(218.150334 61.305711)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-48\"/>\r\n <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_10\">\r\n <g id=\"patch_47\">\r\n <path d=\"M 288.032909 104.795366 \r\nL 325.522565 104.795366 \r\nL 325.522565 67.305711 \r\nL 288.032909 67.305711 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p65bd9821f1)\">\r\n <image height=\"38\" id=\"image40bc049f45\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"288.032909\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANOElEQVR4nG2Yya9l11XGf2vvfdrbvqY6V5Xt2HFDbCcmhEQ0AiXCjAERMYE/ghFDxoyQmDNFQkLKANEJwiSRkGIJEImDm3L1Ve/V69/tTrObxeC89yxHHOnqHOnee8531vrWt7615INv/rmazoMPIAKqSO/RsiBu1UhISEiQEtIFtMqRpgdVtMrprtWs7uQ014XkAMD0gAAKkrg6REEN2BaMV+qjRLYIbG5kqBHGz3vUCptrDpeq4W5GBEKElAaAMSI+otYgqmjukJBIueX4V66xelnobnpwirQJ8UK1Z1ADKRsAiQ7gjB+AoKBWMEExfgDpmkixsDTbllgYiqOW0gku1A6bGdgYpPPIJg5v1/YYa0mTEqJi2pb+1pT738/Ir63I80DYFCRvMFuB2Fk2zmE6QYJ8AaoXsjVIFIxXbKcgYMIAPhaW6vmaze50eJmklC82mPWtnOQM/SxHrQVj0DwDVYiRlNsBaNfz+HcLvvWNe4yqjjr3xNbBIsM+qHCH+VXK1EBySsqVMEp0c6WfQsoE2w/gTFQkKeoEe7qmPE/EQki5xSwa3Nnb0O4WjPYSqTBkq5zscI1WBSzXZD6gRY46y+S9Y54s55w8nWM6g+vlS0BMJ6RM0TqAN0gavk8ZYECdIEnIl4pthw9JUWdJFkQESQoiuF/6zfs8X03Zez5n/EnG7IFBfCLb61CAOBBfxxXb9ZL7/3ObYmEIo0TKFRI4LxSnhm4roVWCYAbyA2oUqoQvIWUW1CAJXKOoXPwsJfJFRK1AUiREzIvNmMxG3nxtj2/8wc959oESxhnqLDKqSSenyGrD8vUJW8UGSdDd8uSnhtETQ35+SXjF+As07qIU48AtAKySCqWfJ9odoZsZYmXACBQ59WdHmKB0O+Vwi1nRoip00fFgsc333v85H718k+Xf3WD3J6fIK7eh6Tj6uuU71SkfjhKzn2W0u8rqzQ71BlcHem/QYLDlUDwpJBQHCYiC9AY1Shwr3WX+1WDbRJiWuGf7ZGcT/LxAiwxnRJkWDUnlirzv7ezx5I8bHr78Crd+3CEK3Z2eH/z0l3FnlvNv9Jg8QhJcHShKT0eGZgljEilaTJZIGtEgkGQAFwWVIXJ+pnS9kDUWiRnZ1hx1BrfyxFmFu1UtKGzASaSynmUo+eH9N+HeiPpwAHr21RxxHa+8dMyzcgbrnLTMKHYbRMCaIXXWJpyLhMt3zCFGB1bRLCGtxW4EtUOxxEJo54JrDP6lLc5fq5g+bLGbDved2X02Kac2PVPT8OHqK/RnBfVK6KewvJuzuSns7KzITeT6fMWzs13KA4dfj4k7Hl84UhS2ZmuMKEmFEA2LVQVGwRsGpivGGzR8ISuxFNY3LPm5Yfy8B3NB03eKp5QSaNWxTgXf3/qQrV/b8Nf6W7hzS3tdSRPPe/NjHp5vc/h0jl0bxEO2FEzIQDN23z9kVrRM8pbzvuJgOcaIYmuPbzK0teg4EqNgehnENEIswHbgx47yqEWiIusWNzcdXg0j8WAgIhTGc+3uKUdhm+zUsPXWGQ/Pt2n6jGKrJU4s5iue27Nz7j2/hntYMi8bjCi5iYRkKLJATAYRxbmIjoWUhC6Brh3ZSjB+iE62ArWgItjFBuk9LiK06iglkEkkqSGTyPXRirPdCl2MsCZxvdpwpz5jFXKerec8erHDo7AFAv2dntr1JDVsQs4o69kp1yQVzvsKHy1tcDR9Rhp5vIEYHLEc2lVyYHrF9AHperQuccs0tJK1ZkQMSQ2v5ke8Nj7intmlf6nnZDni3e093h8/5shPeLk6pQ2Og5MpAFs7K/rk2C7WPF5u00XLOO8vzIGyXW5Yh5w68xxTY2yi6w1xI1SHUCwT9b1jJCboekQV12p2JRNeHb1aerX89vQTPpy8zP5Jxc3bCyrrSSrcyM552m8zyTsOTWJn1rBqCs7aiocn22xWBRoHeXB1oK6HDpLZyKToMaKIANngVNwG8rOALNdQlWjToDtzHEBUQ8LQakabMsyFifrT1/+NP3v4Rxyva27fOuWFnzGxLaehJreRsvQ0fUaZe/ZPpqTDEtML+ZkweaLEPGN1t0atsrzl6baaQXyTYPJIKhySoDhYo94jVQlJwYDx6vBYWs2uotWmjEwCt90pb775nOVpjU8OKwkjiaTCNGsps0CzKVitS9JxQX4uTB4I1ZHSXBNsB6Nng82RxrI+rdgsC3zrSL3FNkK+SpiDU2QyRjcNZG5o4o/9zvAWKnh1eLXUpuPtYo/nYYvfv/Vf/E34Nvv9lKNuzHa+4Vq+5Ga+4JOT66QgyIsa6sSNn0RSLjz7PU9xr2TzvqLXO+yTErU6aFcztCnTGopTodproMgHB3N8ipQlqXC4m+6MdKFqUQ0RIZfIWaz5TrHP34cp3735KbtuxVE35h8/ehdXev7wrf/mre0D/uNshG2E6eeGfNny+HdKis9L2q902DxhnpWEO93gtBuLXRncRrCNMH6SMK0nzcfI432kLJHJCLtsMe/kB7yRHfJadsTb+QvezA646054PTvlfqj5dvmA81BxNz9mFQq0scjnIz5e3sBIoig9sRray/pmweQR+ElCFhmxN+y8e0heejQYpDfYVnBrYfI4Mf18PQjqswMwgoyqIaq5w2QCExPZNoFtE5kZz8R4liljbjqMKG9XewDsryZIGoaOj370Vb45fUzfO8I4sr6j7P+GcvztQPX6gle+tsevvvGQ3EacS3Ch+PlCmD5KbP/nMeITHA3pY3uOrtaDWw5pqEoD2ME+kQmDrb6SEMNr+QFP/A7Hp2Pu/pOyvAPtjvDp5iajumOtwuTOObOqvfpfbiKHzZjjVU27yZHOkC0Ms/uR8YMVqcwx6xapK7QqkMWa1LRDEWQWd5YcSYUeg1dLKUOHtSitWiJCaTz/cvwOxccV+3+ywnw0pn25Z7+Z8MbOIfvllJAMR6sR06qlzjxNyDhe1cRoSBtH9cIy+zwxetqAMUBC1g1pd4ZZbNCux0zGaOZQZ5C/+t/vqlfLKpa0KWNiW17Jj3gpO2UqHZkknoUpCcNfPvqABz+5S6iVr7//gKCGcdaxCTkhDQV02lasuxzvHSkJ/XlBse8YP4Htn20GdQfck0N0a/rFyAhI06GjijSrcUd+wiKULELFOuRMspbCeG66cwoTSQhzu+Ekjvns6XXyXnj31x9wrVzxop1QWU8fLctQoCr0wRKCHUCtcszaUpwIWx83GB8Jkxx31oG7mI4vaCMxQRxAhlGG6dKgXUmFPlmamJHUXKl/RCglsh9maOP41gc/59XRMUENN8ole5spbcxwJrHuczqfEaMheAveUB4Ytj7x2DbQXq+wa489PEOnoyFaquioJM1GqCppa0wsDGYAZUgISYWk5oJjCY8hqWBRvlk+5i++97d8a/aQLjkmruXcl/hkiRdpDNGgCiKKtQmzMYyeK9kq0M9yyhcb4ihDZ2PiKCeNSuLuhDjKkT4gIqgdhmVz6fUNeuU+I3LhNIZrg5KRrizRPGt4upnTRzdMThf/q4ueMvdkWURVGD01jPc8fupQK/h5iSQllQ7xiTjNkaiouVhPOIdaQ8zNpZEd7MmVRFykN14Mh+niPLENXi3PmjlJDbXrCcmS20jlPOOsp8oC06olRaE+GOiQMgERNjcyxCc0s7Qv1fjaEQtLrIf+qGVOey2n3bJfALuMXELwOqwFMklYlIiQEO66M/b6Odv5mtwGEkJQQ2k9teuZ5C3TomXZFuT3KqrDQDcfSN7sWlyrpMLS3ChJTnBtpJ/nGJ/AGihy2rmlm8uFwErCq/nSCGdRLPoF9xDWmrEOxVVhXC+WjOxgCF+0E87aimVb0P10zvaniW7LDaspFbqpwbWRUFr6iaHe9/ixI5TDyiBOyyGNxcUWiF84Bpcx2J/IILyXIAGu5UtWscBJYmw7ChM48zVOEs8e7TD9OGPrIIGAL4V8rbTbBhMUt070U0u972muDQZVFDY3CooTT7uT4ccXnDcykN6KXlVkUsFjvxRBgInped7N+If77/C1yR4PNzvUticzkdwG8kNH/SLRT4V+IrhO6cdCyoTRQSSMDPkisng1JznB10IohWQhFYZ+MkxP1YEOwH4xYkaGCF2eM0n0GEqJ/PDeW9T/POEHj77OPG/YxJyR7fjZ/i2KE6GbDQYxXyqhGADm58Mz3CYRakM/FUQVPxZcq7hOibkh1ANISfr/pzKpYBic6mUBjCTwmd+BvRKJEP51lx9915G7wNnZiOLTCtcoyQnVcaK7iJjtIF8nVAQ1sLxjqQ8S65uG+mDY+NgusbztLrZAsLpjcJdA4mVVqqFLjoRhrRkT6fE6XJ/FERIHAayOEs2/z1ncVvKNUB7p8HAHMRvmxFAJxUIxXpGonL6RYQJ0U0O+HFafKRO6mR0G4DBoWnWog1xccuvyiBgMiUyGzc1aM/bDHEtCb7dIAl8LW595XvpxJNYDKBOU8dNIc90MU3YmFKeRza7l7KsDKNsptldMDyYqxSLSzi+eL4AB1yr/Bx0DTi68GW0eAAAAAElFTkSuQmCC\" y=\"-66.795366\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_19\"/>\r\n <g id=\"matplotlib.axis_20\"/>\r\n <g id=\"patch_48\">\r\n <path d=\"M 288.032909 104.795366 \r\nL 288.032909 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_49\">\r\n <path d=\"M 325.522565 104.795366 \r\nL 325.522565 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_50\">\r\n <path d=\"M 288.032909 104.795366 \r\nL 325.522565 104.795366 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_51\">\r\n <path d=\"M 288.032909 67.305711 \r\nL 325.522565 67.305711 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_10\">\r\n <!-- Neutral -->\r\n <g transform=\"translate(284.632112 61.305711)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-4e\"/>\r\n <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_11\">\r\n <g id=\"patch_52\">\r\n <path d=\"M 10.957047 149.782953 \r\nL 48.446703 149.782953 \r\nL 48.446703 112.293297 \r\nL 10.957047 112.293297 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#pd7be474ea4)\">\r\n <image height=\"38\" id=\"imagedcc50f106c\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.957047\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAN9UlEQVR4nE2YWY9k513Gf+929tp7ma1nxh7biePEcZSADAGFAB8hl0h8HL4MXHEBkRBIEJLgiMg28QwzdnvWnl6nurqqzv4uXJyOQ0mv6lwcnff578/zF3/xV38XAIQPyM4hO4foHQgBISB6h51lBAGqsci6x6eGbhrjEkVfSMp9STcBWwRs4VC1JAjQlSA9E8SXgXjtiFc9+qqlvFdw9LOeD+4ec7wZ01mFdZK+V9hOA6BVYwlGEqQYwAgBQBAC1PBsU0XQEuEDQUvaWUy9q7EJuERQ3Q6YtzfcmWy4P1rSe0XjNEfbCWcXY9ariOKpZvxcYFJN9qpk8ssxR9Mx46Tljc3wXuKdIlQaPe7QPlKIELCJwtiALQx6C6KzBK0JEoQHL8Bmmn6kaccSH4E3AheBN4Ek6plEDXNTUuiWrY2ZmIZYOd4UGVs/RlpFei4IImP2uOP52wtG3z8mBIEQYTiJw5YG3U304OLaIXzARgppJLryIBxBS2Tv6ceKai/CpmAzgU3BZQFhBfkrybae89l8whfjm8wmJZOkIdU9Rjlujde8vgtXUYE3Gm8E2WnP/iee5zsL9veveLMqcL1EnUbs/XdAx8seABTgA7oZAPrUgAtDvDct3dTQ54L6RqBbOLAC2QmkCKhWMD4Ee6zpC83FrZjlomUyqkiNZSctuT254mmnqfdyhBd4bZgeNow/T6l+YtDGYdcRIkC9EGjhh8ttphDWI1s35JiWBHOdb7mhXij6EbR7jmRR07xJoZfYSWA1C5A4TGLxQRBpx2Jcsp9t6LzGI6j6iBDA7vbU3mBTgXAJxZHn+NWY6d0VDSk292zvSnQ3NZi1RfYBHylcohAezKbDxxLhAu3U0MwF3XQInTss2HsI8ZWjmSrK24LqbU+etXywe8LtdIXCs2O2PGsWXLQFK1LSpEcI6HbBG01fCEbPBcmpZDXKQQaKgw3l0wlatp6gBd4IdGlpFxHSBoQ3qGoIc7Wn8BEEBQggwOauoH+jMCXMnjgmh5qumPHZYs6vdwNu1nNw8Ibvzo+J1eDJNBq+FwL0KuB6ydZpoisItQYVWOQVWzlBH/84ZvGFQ5eeYCSqDRACXgtMa2luFtQ7gnYe8Hstt/ZXFFHL12cL6kcFdgubRFG/06Jih3iVEq0FYhlx+fgm/65uUt63xPOavcmW+aTiMk7ZRAlNHdHdCgRj0GuFSz3rJkbMW3Rzp+eyM0wPBar1yN4TlBhOpNkcaNodj5takqxHS0/rNPJJzvyhw2sBAnwUYz5c8fFPvuT9/BiHoPeafz7+DuXLBfZlzokXHOw4pAhI6YniHqcddqPRG4FLYFsljMc1ev/2JetZwkU2YudzTbR2iAC6cdjCsD0Av9ORFS150mHUUBxmIzCVx8US2Qdmj6E5n/Iv38+JP7L8zeKXHNkZk4OKfzQf8vjwFjIIVnUyNAERyLKGttes0hiLQvaCroxI4h49Tyt2spKvviU4MwU3fx3QW4foPc2NhG7hyccNt8ZrHowvWHUpT9dzXAKnPzLYPOBvNqR5R/18RHJk+KfNDyj/NOKvZw/51eoBX58tiMYtO5MtPgiqNgJAiID1csg7FUjOFPWup2kN+mQzAiCOLN2DLf3nOb//lXuSEFkAZkkFQK473hov+dX9GViBGvX87P1P+WH+lNX7Oa03fLo54PFqj0fLn3J2uEBMO/7o7efcy5ZsbMLheodtP4CTIiBSR3CCaAX1lSF+mqDTqCdSjlT3HK/HrO9JshNBZqG+ITCjFikCWnhGuiGRPZWLiIoO+zoj3St5Lznhe9ExPy+/w1RVvJefclyPefTkNtmtLT+9+xUfFi8Zy5oTO0ELx6tqynE5pus1wUpELwkKoqVi/zc1uuk1Rnoy3VE1EekW8hNLUALZggN2ihIbJMsux0iHJDDOG97MNYmxPG13uR+dY4RjaQv6oNDS8947x/zl3mN+kv8vmewxeBLZ44NkYUp8kKy2GbQSEaBdgI8D67cSdGLsN6FLf1Gw8z8NLpY0CwUC1MOCZ+8qluOMTZkQRZadUYnzAh1bIm2Z6IobasuRrFF4vpu85L3kGIC7eslcNUwlFMJw7rc8EzskskdLR98N/cvnjqawfPDOEXwMepbUTKOa376+w73/WHH2xxPidUDXw6hafOHonyVcfifBzSxdIVjpoQfZXtFZTSY7MjFUayZbetTQmH3M5+0BU1XywJyTCcvGj/FBcmVTAJK0ow4QVhEUlsK0zKMKfbodYTMJn46pDizrd+Duz3vaqUZ4aMeS8YuOyVeW6mbC+n7K9l4EYRjiSzEYcO5jLuwYh+DvT3/EeZWzm5XcyVa8lZ4D4IOkC4pCNWxcwsi07I62vKjmyFYQ3Wj55PA++ihGK+l5vR4ze+w4+4FGNQGzbPAmY/xM0GeCiw9jzDZi9qhm9LjBFxEu1TRzw9mPEo6/N+W33OcXywdcthnPnu2BFZxPRqx3EnLVci+64Ja5pA+Kw25/YC3CX7cNCALqq4Sd/zRMvm4HYHUVk8UCs4XdTzvU5QZ3L4cA8dqjWkE3FlS3EuRejIsE0gZsIhAePr+6zb/V7/Lmk33MWjCtIUiobyheekFmOoxwTHTNTJdsXcJhtcO6SwlBIKUn9ILRpxGTpw1mWaGVCGjjkBZ2P2tJHr4izCcEKWingiAE2YUnfumxmcQZgddQ7yjKOwF7o+PwYkH/ZMz8SUDXHt14mqkivQB+F3Myucc/3L5Hd6fj/p0LDopLtn1M4zS9l9hWMzoW7P/XBrWqENahG6vR2g3eeXUFWYrPImQXMGWgXkjOfiixYw95D2tNvFT0I0/Yb8ELqrOc8ZlA1x7pAuW+5s1HnjCy6NiRZi33RxsmcU0kHZ3X2KDovcJ5SagUsy979PkaQiCkMTozPc4LggScI0iBLFvipcJHCcllj240m7ckfQZmr6abK5K0QyvP+jIDAc1OoNmRpKeCeBUoniu2H/Y8uHFOCILLJuWiyhjFw7z1QdA7xWqbkr/Q5L97SYgMwjqagwk6VpbzLkfkAuED1A1hPkGVHcVhRz9LMaUiOZMEEWFvBvZ21ozilk0bs3f3jFT3FLrlILvkqJ7y5HKXzdkYas3jpzcHDmcFInGEaUl2zctWVYr7uuDG5z3+/A1yPgMhMKsW3XlFU0XEBoJWiDgiqEHGyasSIwS5EtgkYvNBTzFqcF4OFFo5ZnHFLKooVMtFWzCPSv72rUPyBy3P2x36oDhtxxzXYy6qnOjaW+dXBf5Zzv5vPPmjM7xShLYbmMfzU/TJaoyvNMIB3hPSGGE94MF75MUVyVWJ8AuWHxlmWU3vJUY69tMNAJs+wQdJ6zVXdULtIlLVsbEDxTmtR2y7GIBtG7Fa5URPE3YfecYPl4SqRmgN3iGKHKREN1cxajN0auE8IRJgByUekhjRdtC0REdXjL7cp3tb8cH8hFhZ5qZkbRM+ObtHpBwPJhcY6bjqE16WU3qvGJmW3isuq5Ryk8DGkJwoJl95xo83iNWG4ANIgTCGYPRQlQCqFbhYENTAjRACpAApCcEgQkBUDeMXjqOvF+RRx0ezV/RhMGgUt6zqlPOmoHcKj2DbRVinuNjmrJc5+txg+oFgFq8848MStVwTrIO2hTQBYxDbCoxBR6MOTgzdFDB6AKXkN6sCQhienSM7rpl+kfM03IT3YRLVTKIGIx1aObTwlD6id4pEW46ucvp1jF5qgg6EIEjPA9MnJer1G3AOUWSgBwMxmlBVNN+9g+5rg5bgkkC/V2COVsOOIjbXnpPD0Rp9tGSWG3Qd8by5Dbdrvn3rlMK0jKOGVPUUpsUHwYvNjH6VYC6HS52B/JVg9qhEHS+vv6mGgosMOI/PEkRZcfmtGB1aea0jBVf3E3ZfeIJWQ55JSTCaYDTIoR7MqmG26TBVzvo844v1ATfuveHe+BJJ4G665EU952xVIDqBiwM+9Yy+1Nz61yXi9TkYA0kM3g8N1WiIr9NoPqG6FdAyt3Q6EKQhWjPkmRlWQcEo7CgGJfBKoupr7iZg9LQkWifES835dpfzm2O+ffuEB9k5R+UE22rkosNfRuz9UjH/bIk4XSL+PyjnIRJ/yGvATrNhwGvjsIAdKeAalHVDvLXE5hoRQLhAP4kIErqRIto6XCTJLhzhiaIsU75ob3PZpLxZ57A2ZE8V+bFn+ugKUXeINBmiIMWgm+NouM97EALRW1yWExTonckWIz1nSUG1HOOzCHW6ImQJQg/uld2w0xCJQm86hE+xmaTPBKaEZBXILjzLNuK1XaCXmtGpwGwDyaUbNGqRoq7KIU28HyLz+11cbAhCoFZbXCTppw758e6z4XIZaG93NDeyoSpDQJQN6cs10dkW2VhUbb9ZS8kukJ30mM0QXtkHRi886XPD/CGMXjjMNgyMJIsQ3uNH6Tdh87MCn8X4SBOEQG4qwuWKfqQQmUUv+5xvTU9p3S2qKGZ9EGO2O5jXV4N7y3oYE2VNSGJ8FqNhAKkk3gyC10UC4SB/HZgc1gQBPlZ/UPVaDhPFDECCAHltPJGBTYn94C1OPga8QNfOMDcl8bXCFgGaRYQ5kYT0Wpg23ZAH3iO8hx58agYl1fth+AuBqT2mAtm5a2N6fKJxmcaO4mFJk4oBsBDfvEfXwyjn+McZ8kaFdwLZOcV5V6Ck58/e/YrlDxzbm4oQa0TdDQ3W+6HvMKxA8dBPDO3cIJwnPa6JriyyDcN/2SK3DUiwI0M71dhU4fJhqdwXQ9XjPaK3iK7n/M9vwJ+sCEHgW8X/AY2gUrffvwxSAAAAAElFTkSuQmCC\" y=\"-111.782953\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_21\"/>\r\n <g id=\"matplotlib.axis_22\"/>\r\n <g id=\"patch_53\">\r\n <path d=\"M 10.957047 149.782953 \r\nL 10.957047 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_54\">\r\n <path d=\"M 48.446703 149.782953 \r\nL 48.446703 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_55\">\r\n <path d=\"M 10.957047 149.782953 \r\nL 48.446703 149.782953 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_56\">\r\n <path d=\"M 10.957047 112.293297 \r\nL 48.446703 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_11\">\r\n <!-- Neutral -->\r\n <g transform=\"translate(7.55625 106.293297)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-4e\"/>\r\n <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_12\">\r\n <g id=\"patch_57\">\r\n <path d=\"M 80.226013 149.782953 \r\nL 117.715668 149.782953 \r\nL 117.715668 112.293297 \r\nL 80.226013 112.293297 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p6da5d82d4e)\">\r\n <image height=\"38\" id=\"image4cb36707ec\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"80.226013\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMUklEQVR4nG2YyY8c133HP2+ppauXmelpzkKJq0ntFm2HkaAoiSH4kARB7gFyy7+RW4Bcc88htyA55OIgEZCbAkMSTNiOYmuhSEoUlxkOOWtP71X13u/lUFU9pJICGo1CV1f93u/33V6py//0dyFOHUoF0rikkxR04pxZGXM4aVPklnIWgVfVJwAK9EITn2h0CQCzC44/+vHX7M1W2DvtMehMebkzZOEtsfYAtEx1sa3PmyNSgqDwQWFUqK5Js4LYeiQoWnFJy5ZIUEhQRMYjkcJFhs76nMU8BhVI05LpJGXRseAU0YkhfWr59JM38OslOhKOVOBg3OZS/wRsQWrcC8VI0PW3wmH+T7E2tp7IerQKpNYhKJ6crDB/2sFMNa7nMb2CfjZnsH7AzMXk3vInF7/m42dXWRQRQ9ul1AFzYomexoiFaRKjnOJeHvHHV79ZdsqJAUArwYlBUFglGBXwQaEJaCXYyHpi47FasEo4nmeUd3sM7kA8Fsq24eBmQrZdsBItSI3DBc1303WMClxfP+A7IyxKi+sZ8nlEyE018lKjv23xaXSFH5/fQYsl0p5CbF1AgFB1zQdFpKQerccaXZ0oFXBBMxxlZE8VQQVGlwzJMBCdVm3vx1OGZcbUxZxvnfLB+h0i5bllr3KUtxEU+9MOEhSL0hIZT7ig6CQFLmjapkATsNrTMiVODLlYtJIlzjQ1xoyqKvei2f3vLdyaRwUou4rsmRBPhLJtubO7CcDlzjEzF7PjV7k/GTDKU7KowpATzUZ7glUeCRpBUfhqdCd5xqhI8TW2khpzTqpzHzSagNFSTc/XbXTecP4Xjkd/pgkGOjue7v0JaM3Tdztk7ZyrnSNebz/hyWyFi+0TPnp8nVcH+5zmLR4O15Cg0CqgVMDogAQIQRHqZ4hoQtUQlHoB6ygVEFEoBVpL1TEnmtNxi+EHlnRfUXZg/6Zm789T0IGbV+/ydm+XD3ff5MvhFqU3vL/+DWvZnEejteWN//6tf+XfTn7Cbw4vEBvPtIjxUv2GaIzxONGE8L2qAO81Wofluc6dRYKiHCa4VYfrBOZXCnpvHHHppUN+8NIBr3T2+Wq8zYXukNIbXu4O2bSn/O21n5NaRzsuWG/PuJdv8eVwm7V0zp9ufYUX9UJHvn+EcPb5/nU2d4Y0cvTuWsaXhfUb+2xmE9aSGbF2nBQZX422uHd0jqKw+McZpz9I+Z/dl3jv4gMS4ziYtumlOd/l52jZSkQfLtbPVq9ACISgUPWopcbW/1e4iMYWhSWNHPFpQDvYbo843xrRs3O0ChgV+OJ4m9k04eo/gJmMkSxm7/2MT8MV2q2cXpqT2pLPh+frQgLfjgZsd8eVJNRH4Q0hKARF6c1SJqCSjMR4lKoWYN2jNuG1nGDArzgyW7IazeiaBT5oJjrh1dV9LveOuP83A4azFs55Lg8esp2NyL2lbQs2kxGRqtQ7F0sZDJHydExOpB25RJTBUIqhDFVRI9fCBU1Zi26i3dIBbHyqmS5ibE9hWp5EVzSOlCdSnhU7J9EOCYr+uRkrdo4mICgmLmFIRj+eEimPoFhIhBONrmVIUEgtBZHyoAEBrzQtUzD3MV4pEu3RtcACWOVgPkmIVwLaVNYkQTH2abXCUImgE0MZNAbBoynEUophNZqR6pKZxORiATBIDYOzBxkl0BSoPToEctWIq6r92dQLEuz81RzGlrITSKMzI22Kagy9UehhmVEGTc/mbCYjjJJllwyVODYd14SlkkfKn4mrcpQYDJVHSt2MauEBHRQ2uZ9QrggE0LpeTQ3YpiitwpIMiXakusTXyj7zMT//+ga/d+kR19oHVSrRfjm6SDsMAU8F8lSXaCXk3mK1EFNBJ/e2cosAkfbYeAyDzwPDawa5csaQBiNaBRIciXZEypPqkkj5Jbj/+clNotsZ+lJYEgYgqrFq6o4ZAiUscRQpj1cax5lsNL/NfYTlpyc83VwlOalsYun6QKYLjBI0gczkLzyoYxacuDYHX2yguoHt9BStBB80RkkFeCV4FJHy1f909fBcoopAQeHRlV1RhcSGodqLxq16fAKR8cvVZLog1SUdsyCtY2oZDB6FR5FLxONFn5VvwF6ZsBGPkbooHzQ+aHKJloHQo5YdeZ59EhQtUxJrRymGQgwLF6GTqIRI8GkVrZs/SY2JXCJmEjPxKWXNuqrwnE+eXEEJrLTnaCWM/Vl6aEat6+49TypDxVhfj/H58GiV4ILGjsYZ0X6E6wlr6XxZVERYPmS5OhQzn2CU8I/f/QHm39eYXFD8aOWYUixGCTOJMUpI1BnGni+uIcJM4hfuK0HjxLDwFicay6MWQUOyOaOfzCqlrhW8GYsmLOVjd7HKf332OuduGfJVxdZ7T7iaHXLqW0tSSFBoHZZdT5SQ6BIJuoJCMHWR9WipQqoLlT76oLGSBtTGgiuDI/rxlES75U0WEmGUUAbDQiL+8+HryMdr9MeBoqcYveJ4NRszk5iNqPrOdFFDwJJoVy1MyXKsZY27TBfMiInEM6kh8jzurDqXs9Ufsdka0zE5qS5JlWMsZ8pfBsPcR4z2O2w8Cyz6ivF1T7Zj+XX7Elk3563NPQbxlLbN6ZoFmSmW3WiwlapyqWfP+2YjEYWvIpgXjR2sjdnIxnRtdbNMF0sCNADu2ylZXPDum99y+/ZrROPAxi8VygvZ04Sim/LrdyO0Fj64eg8nmp5dVETRJblENHJVAd8vydKA30k1Sl/HIftyd0g3ykm0e2F1DVZSU1IGw16xwsPRGnYW2PjFPiovQCn8oMf4Shv9SUa+Ch9xnXcuPqrGSOUODRFyiZY61xy5WKY+rrzYV9s5Jxq7nkwxtdU0f5j4tPbGwNinjF3KzmyV/cMeWVcxu94nmjji+wfou49Y+dYQv3uNgx9FtG51uCWX4TJczo4q61KK8rko1IyvIljVDBc0SgV0qPKcbZnKYhqQH7s2I5eSS8TUx5RimLmI43lGGMbk/cDBjYjWM0ur/xLJcIN495T5wLB2xzPZNtivMz45fYXFW/d5rfsMHzRlvTVrptGAPK9xVelYoAy6Ar9BlknAB12ru2bkEiZlgtVSa4xGlYpgYH7eM9+u3l/4tqW1t0n/tifbnZHtgrQsz262+Gx+Df1OYJBMWbWzZZeqAqo41Yyu8ecm1VrghTHOJOYw7zAsWgAUQrWF10KwAW8DwQRMr0S8YuvcKdkrJcc3M05u9dn6ZU6yM6T/laX72PDNtQF2XejaBQZZZrbnI3dz3jBSq4Btqm8OJ5pRmTJctNAqVC9ZtCKLSkIcUKVCd0taWU4nzdnMJsTGMc4T/DsnPOqt0ru/wdq9nP2fRKzFJRvpGAmKuSREqkrJM4mXblC9dqiYqVSg9AbbRGmjhFPXYuITvjkYMD9pYdolLw+GpKoy8c7mhNnDHjV5ub56wA+7u7XEXOfO4Qa+K0xfMszPpZgCnjwY4NZ3iYxfRidPFSqnkuCDopBKAZrNsfO6Updl2qzZudaZgQ5EdzIef7HF8TxDE1hpLTCbc2zsWWkt6MczSrHsFassXLTc7gcdKHuByasFmMCDaZ+RS5n6BI8mF8tcYnIxFHVslzr65N5wctTB5mIRpRBd5aZcWd5Ye4ZRgeKjTcQojsM67bf36LdmZ+HRuDoOGw6KDofzNnluMWs5RWYwied8f8TBsMPJooVVQifKKesiyqBZ+GgprBIU8zLi4KRL+jDBSlCUGHS9HU60I4sLVs/N+PyvCx58fJH13yoeJlu8/cMHXOyeoJVwnLe50X5MGQy3J1u0o4JWWjKfx7S6OVoHJouEbrtyAEFxnGfLPUFjVw0rT/OUk3GGftBi8DuPLYMhonqj2GBAqNjxh4Nv8e9rdtwFLn4o/NZc4i9+/zMi5Xmzs8eh6/Jwsb7UoW6as9Ja4IMiNp5unDMtY+xzSt8UVIgh1p7CG8ZFwmiWUu60OfdloPvFIXbuY6S2D4+maxakyrOQCICfnrvHh+/FTHc22PgU/qP1Nn9541e8HB8DsGJm7MWrHCRdJi6mEItVstSljs0ppGF9JabN6MZlQu4sw2mLxeMu679T9H+1T9h9im7m3bxEW0iEVlLtFX3M2Kf8bPsuq3+1w+l16H6W8C+/eQeDsGWHdM2CV9KnXEqPuJIdcaF1wmYyohstKv9VgUIsCx9V2PKG3Ftyb1k4y3DWYr7XYfW2YnDrEHm4g8xm/C91vhxcqIF/mgAAAABJRU5ErkJggg==\" y=\"-111.782953\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_23\"/>\r\n <g id=\"matplotlib.axis_24\"/>\r\n <g id=\"patch_58\">\r\n <path d=\"M 80.226013 149.782953 \r\nL 80.226013 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_59\">\r\n <path d=\"M 117.715668 149.782953 \r\nL 117.715668 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_60\">\r\n <path d=\"M 80.226013 149.782953 \r\nL 117.715668 149.782953 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_61\">\r\n <path d=\"M 80.226013 112.293297 \r\nL 117.715668 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_12\">\r\n <!-- Sad -->\r\n <g transform=\"translate(87.675841 106.293297)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-53\"/>\r\n <use x=\"63.476562\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"124.755859\" xlink:href=\"#DejaVuSans-64\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_13\">\r\n <g id=\"patch_62\">\r\n <path d=\"M 149.494978 149.782953 \r\nL 186.984634 149.782953 \r\nL 186.984634 112.293297 \r\nL 149.494978 112.293297 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p4576d54b7b)\">\r\n <image height=\"38\" id=\"image4c68cca37f\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.494978\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALj0lEQVR4nH2YyY4lSVaGv2ODu1+/Q0TGkEPlUJ0tiuraQBctxAIh8Q48Aq/Dih3iEZBAYsGODWKBGFRdiKazq5oasrIzMjOyYrg37vXBhsPCPCIzKxtMMrnr6rrZb+f/z2Ty4V/+hUoGrRS1it0a/NqQaiU1CgJqFVQwEdSUiSgYUFOeN0PKN1jFz0eW8x6AmCwA1mRUBYA8PZX3h1Gfy2ZWwWVypagBybwBNW34/4IyWqYAWSAY4uiwRhmCRwFn0w2ot4eqvDed5OmPWk6pXsmVIpN1sG8dKRdMv2XtN+DeWk+3jgvfEq4qqtWAbfQdS/1f1gJw5MkCgBhFXSY7i01lIzX65muRYkkVUEVUUHSyoIKdLDbta64s4aLGn1tGl3Eu4WzGiL4D7tpq75wRFbSatDRYsEpaJNSCGQRJ0wcCWmXUv6FMZQLlFfEZ4zKmSkidiiyajBkMca4wGnbrBgX60WNESdm8BezdaW5OC29osIXOPDkEgCThhvZrq5g31ikWn6YUSmUeyVXGdoKMBpIgQFMF0rXwVcj5fW04tzVEA+oKFSKFuey1/CaTEN52hmsHmN7FKMYpxqZyPizVYiSOFuYRNpa9J5ZxZdkMltndKyqXcC7Sj35Sybtqc9VlOXpcZBTQYLE7M20A6vVdS9npAD4jE6XGKM4nKh9RIKVECPbGsvFW5LKxN5rN2ZA0Yynf/laLtS8U2wnjviVXBbUZBHVKykIi32xQQooiLmN8xpiMCFibaapAWwUAxmS50hprlX5Tg8Dyw0tmVeBs3ZZDZ0NIhpwFa/P7wBbPA9WVpesM40pIM8gOckUBeh2vbigEsYoxGe8TxigiSuUStYsYUYwozKAPjtQKKVpiMjiTiS9bolPcYYdzGe8zqgWotZmUDCKKq84HyBVqPGpBnRRgTpEEaicKVcAU+sQoxijWZvykK2dKGAAwonibsCbjTGYIDmOU7zdz2ucGNZBfLugPM+52R90EQhCcK4cUUZzZDngr5MoQWkdqCgZJRWdhlYvWrjOA0cKsTJIzBYQzmaxCViFmU5xWFGuUeTNiTWY3VKx/FKHKiMvcOriiHz3zeiyanDQH4AgR0wX81uI6S2gFlyE10N3JmFEwQFplUCaLFU3cxF0gZkPIhjRNa/KkIcOyGXiwuMCZxBN/hz979HM+aX7Dr4e7BLV8tn7If/X3SMmQUqHUScpoUiRkTFRsUCRDrgT1itkKJCHpROf0VFVUhZSFEUvKQkwWvXZeUzzN2czMBW43G34yO2FmA6/Dggvf8uP6FT/2r/ls/XAKrIJmQY1gyJNHTEFcEpgAfqM0Ly1uN4EREJ/fSbR5AhOiZYyOEC0hOGIyqAq1j6yantpFsgpeEh/Ul5yNcz7fPmLf7Nhlz/OrPUKwWJsxNheNaeXBCpImqlJJBNeiTw2kWckO8gO3ThMAO+U/caV6cCYzr0fuztcYUY7qLUaUy9Ry5Dc87Q5YuIF/6x4TsuOiaxCBGM3NugZAQkKyYseMG0p50x8K3aPA4R+9wD3cggHry8ZptKRYxKoqxGjJKlhRZlVgb9az33Ts+Z6Hs3M+aU9Y2IFf7e5wlRoet6+pJRKy4/mwT5zWensUKtNbllAIrdDdzdy5f46fhG7rRM6mlDO9JQ3XXlQCrRGlqQJ7Tc9Bs2W/6ngwO+fj9gXHbs1v+n2+uLyNkczvzZ7SmMCR3/Bst09K5j1gToYAXkGK6LKH4RCa+1clBiXLsK3wTcS6TD9YTG/QIITK4dqRykVmVWDhR5ZVz62q44Pmgp+1X7MyPd+EI764OOb0fEm+a7jvLrCS2aQZZ32Llu3fBabjiOQMqqiFVAnjXsYmw6IauBwa6CzMAmnSgBkFMwhBK3qBehVoXGRZ9dxurjiuNtzzFwR1/Lx/xOebhzz/6ojFV46/1j/mq9854s+P/4m/P/uU76/a96xV4liM4D1qBInX6UipbOab1wf4f13SzGH2YGB9NYPRYHuwnaDWEGaOOLd4k2hsZOl6WjOSMHy2+5Bfb4/5z5MPaJ855i8y+nnLP/IxHzZn/OLsHjHaEqx/UF0YUiqVqYKJSqpL4RijofnnJbc/G3BbGKMjrSvM1uK2Qn2uuOs6C9ivOw6qLQduS20CQ/Y82dzhF6/u0r1uGVfKqz+E7ccjbTvwL+ePWfd1KQqnaP8mFIHTEJEYMbsRO/fEuQefCecNauHZn1ZglPHVHLMzuJ3QnCnNWSbVlrA0DKMDoDaRoJY+eobsOB9aul0NQDyItIc7Pthf8/pqzuluPoUanZL4da8wBWZp6lK/73psXxMWU43VG2anGbJh/UnE9AY7Csuv4eBJhxkT1abGDp6LWcvLW0sOqh1DdkS1vOiWbIYaX0VYKTkYhsGzGWouXiyRWaJdDEW3U4dzXfcr4GS1nIRfKImLqZSOQncs+I0isaSnxRPh+D8uke9egLHMTirc5gh1c57eOmBZDSzcgBHFmcytpsPbRB8cu75m2HlePj1g9StHd+xIH4UbK6nKm45JBZfnMyQlMFPVOk+IzVQXQqqhugR/YUgz5ejzHeb0Ak0J7XrICf/8jMPG0h/O+J/ZIYeLHa0fcaaURIduBzMYWsd2WXHZNVztVujRyLIZuLiYI9eVy00fAE5U0cqRZ37y08yje2c8P7mH25Y/miC0J4L78hk4hywW6PkFOgbY7qi/fs3hwT1O9pc8v11xa29L7SK1i8z9iJPE4XzL7y+/w0vi5PE+D6oz/ub5z7jctJPFuClXVAVDTJCUXFv644b6aU1tI9XvrukeBL7/g8xwO7F6GtGrLZoyurfA3DmGnGEM6LZj/t2O/SeC/arh9emSTV8T0ptUE7LlMrbMzcCn7bf8tHnK3I+lmsgF1LVXouBICVHFnQMZ7vw7PM2PSD/ZYpcBAfwvW+a/PIGqgjCCKulwie168nqDaMZedqy+bZDsWLuKjSkldutHnEtkFV6OK65SzaP6DCuZs64lB1OovBbYjVdmRa0gQ8Sdd/jvt/zoW8Nwe87mUUV1pSy/WiPbDjUCYpDNDtqKfLiPhAAxIusrZt8KZlxhxooLatZWWTYDlU0YCXTJY1CejbdICLupdfuhvkpKsobc1oSDBhWoLkfImeb5htmXHXk5R71l+9OHNKcdZtPDtsO+XqPVtLCvyoqnZ9QpI7pHf9SwueXZ7nlWdbnxSSpchBnrWOOl9ArG5UKnvgGHgpNYqLRdLJk0ZsxY3tU7ZAyYzZaZKrlx5Tdn0W0H267EQGfQVKoUGUZMn7BD2cDbTMwGI5k79YasghFlaXtqH9HryuLtuwsBR0yYyy2ytSVk5Iz0IziLOouMAbIiuwE7BDCGdLyHqSt4eYr2A+p9cYSUkLrCjBFJpeWb+cBRs+XR7Jyl7fGSqE3grrukcRGN8u792jQcRmAMSExo7cE7tG3Iy4a4rIjNm4461YbspBxO5sxO96ifniMxQYho14G1kCE7wcwiMxdY+Z7H9SlL27EyPXftml4dY7I3N0fvAVPvEGMKdU1NXlSkxtEfesaFIXuwI1RXmfbZDvf0Fcwawr19dvca+sPbVJcRfxWxmx5CAgPVWslbz6rqeTw75aH/npXp2TMDdy387dWHnJ4vb67A3gOWjpaYPiLbHrPtkH7AilB/2RfNeVeeIZaTeQ9dj/vvb9g72Sfc3SfXllwZWDZISKTW4waleeE4/6jlo9svue/WNJJYGmGjyt+9/JSwrkqHn+U9gC41jrDw2L0aux6x5xu068m7rmhm1iBNUyiuK7TxSHzTV7rLDkRI84rxVg3iSbUwrEqg/M3lHhepxXjlyFo8ln/YPuCLF8cF0LW+rm+VruNYdbJmvLdid7si36+p1nOqy4A775CTV6TzS8w8wIf3iYczJGqJZwAGUm2J7dS1t1NPYEpfmp1igdYMWFE2OfMyWf7q6z8hbGqo8wTmB+CA/wVDV4cPV78LDwAAAABJRU5ErkJggg==\" y=\"-111.782953\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_25\"/>\r\n <g id=\"matplotlib.axis_26\"/>\r\n <g id=\"patch_63\">\r\n <path d=\"M 149.494978 149.782953 \r\nL 149.494978 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_64\">\r\n <path d=\"M 186.984634 149.782953 \r\nL 186.984634 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_65\">\r\n <path d=\"M 149.494978 149.782953 \r\nL 186.984634 149.782953 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_66\">\r\n <path d=\"M 149.494978 112.293297 \r\nL 186.984634 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_13\">\r\n <!-- Neutral -->\r\n <g transform=\"translate(146.094181 106.293297)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-4e\"/>\r\n <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_14\">\r\n <g id=\"patch_67\">\r\n <path d=\"M 218.763944 149.782953 \r\nL 256.253599 149.782953 \r\nL 256.253599 112.293297 \r\nL 218.763944 112.293297 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#pb454f90d6c)\">\r\n <image height=\"38\" id=\"image506e860fd6\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.763944\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMtElEQVR4nJ2Y2Y9k113HP2e599atW7equqp6me4Zu2fxOIM949iOI2UhUbBDhEEgEI4isBAgwVv+Bp54hkceIrZEQgglMYg8JCQkLHbsTGwnztjj2Xt6eu/p6trrLmfhocb7jOXwk+7b0Tmf+/3+zu+c3xFPyWe80AEi0LgsR0iBOrbCtT9eIV80tF5VpLcMsnBUtoZgHWiFTUImR6uYigCgTASVriObk+DBxoLKgSNrS+ZfHmMSzdqzcPq+HS69uULnvKL9jZfxpgTveX9ovMeXxWwAAAp7a5PGtWXsuqLz8yG2ogn2RxTLdcK9MV7NYGpX+xSdBBtL9FRS1CRegvCgck9Rn8GpaYlJA2RoGBURMpfMvTkBKT4A9A7YW/EWtZDIuMLc6wNcpHGRxiQar+t4IchWUrwUqMySdyroqUVlDgBpBCoXCA9ezj4XCMpmBZVbXCmZlpoHHrnF5EcrxKUBIcHbDwG7E7Jewx9ZwKQRo6MhTgmKhkBlHmkg6jtU7vGJYtLRuECjCihqgmjgiIaO4Yoi2Z3BqtxRNDXRYYkvJYXR9P72GGZBkK4ew6zdAqnuaDJT0Dv/PjAhEHFM0amStQOGxyRlwyMLTzAUjB4sqF4L0VMwMYQDEHYGPDzhKA4k4QD01DNZkJgKqFyiJx4bSuZeFpS/DvrZPeTfLbD/uSPMO4fd3MFbi3fv5Np7wbwHY3ChBAEuBLNUIENLPtWcuH+Pm3GbKJ1QC0uyUnN4kKL2QlynpHAh0SHkTYEqwEaQdzxhT+AVhENP8WIT/eQWw2e7xP8wx/TUPJVuDzsaIwINzuNN+UEr0Zq8qSlqAuFAb4WYlRyhPPujhOVOj1tbLQaRRUrH8tIhdlHQG1XJlzz5YQXhIGuDrXi8BBtC3hLoDBo3HJ9duEZVFjz3J+cY/sc8S6NV5M8uI+IYn+cgBeIp8fvv2asyTTGPnKR/KoZnbpN/fx6nmP3xwFOmYqZEy+GqlpX7D1itd1kfzgGwdWERWQjMSo7airA1h5pIwp6guuOxEYyPwslP3+SPln/MX77xG0xGES7TVG4FVG5D61L+QcV8luMihdPQ3a+jljymU5LMTXly9Q1ujNtcPpinFhgmecjmRovgfkugLIG02FYJBwF+pLGxx1csfiop6p6oC2VNIHO4tLHIt4LHcE7gxgEqLSlOG/zDhsHTOfIDVnpHdLPLdEHgJwrTNFSbUx5e3KaqCj6W7jKdRBxcaZNdq3Ps3yXrOy2SoMB7QaszxNYtSPA1g4wstm4wcwZpQWWzOqdvVvjpq6fI11LUUGEnM43a9TFa2bvkGCBGE6YrFllIvIDac3UupQ2uZQ8S9R2nrvQR25uzwc7Saj3IwZertOMJZ9p7XJae0TQim4QgIGzmlHsxOAjGHlXMNkL/uMKFUDYclAKZeHZuN3Cj4C5gQoIQyEygj40JQ0P83Rqd5/fxgyFCawgCvLMgFaJaRVgojKY7rdKOxpxtb3Opt8Du1ZTamUOSqGBzGNJ9BOJtReXAgweVQzHncKkBJzCDkHAu48Ez23cB8w7XHxDdliycG7D58jL944LkTRC1ZDbGWEQ9ZfO3Voj6nsEJgRvG1JKMgzzhvuohnXhMcfY2oZrlX6WRU0SaiQ4AjfBQ23SYmgQfYBsGlKcYhVzZm79L8lsL1hLveyJl0ENBmULv8UXKRHJwzqMKQdQVmBiyeVAP9SlGEWVFUQ8ycqcpnKIalBgnWawOyYym6xLKRJB3JFFPIC00Lzv2HxXIsSLqSsqaxxzczUrvwVrmXzxk4zcbZIuW6EDR+8qIx5dvcWH/CMM3WoxOlcyv9GjFEzb7DRrNCUJ46kEGQD3MkMJjnETiWan1GWUR1ko4kpF1q6QbFj2xLP5EU90rKBONjSTSvP9Ienfc3ORYM0W3utz89gnsTxqcjxo8+qWLPPk7/8VG0eKl7io7w5RQG9KoYKeXkuqMqQ3ohGNCaZiYEIcgswFJVFAUGlMosmVLtq6oFo5g5FDjknC9i0tixM7+vcHceEJ/ukga5UyOeE4+sc6n2je4OFrimzuPMSoiNveahBWD1pZqbcRKq8+RsMfIVuibmKkNKJwGDLUg50BUUcoRJJZxqZjOK8KxIjoscZFGFSXSWLwxdwfzziOkoHd+gYe+9BpXFxa4/MZRbi62yIYRCM/SUg9vJflWQpYY1qzk2dPnCYRlTo/fnktLS+E0YxNSCwv645g8C6ikOZNlTdSTBAOBdB60wkchZHcrsO+CO/7NLg7B6ft2oWYw12sEuwHphQj1tQ4L3w/wiQErOHdki04wROFwfjZtICztYIzEszVqsDusYUqFs4Ii09iGpX8Kyrom2D7E9weI4RgR3i35Z1QIpZDdIR9LdkhUwXgpZHdvkbJlkKVm7wlJeHqAHIcI5VmqDFA4+i7hdplyO6+R6JyxiYiU4RPz62xNG7y2tUw5DRDKgfKULUvWUNSzHNGoz24X1cqHJL+Q+Lzg69/4In/whz8gWcz59rGUP3voRV7onqCXxWze6CCqhoXOgI1Jk5rK2c3r7GYpEs/mpMH13Q7qUkI+5zh99hb5MEKMND5yiIrFAyYWUIkojrXRh1NsGt3DSu/x1uJ6fY7+55B/ufEoAE+ffp1DU+XjzQ0KqwjmMtLGlHqYc63bIXeai4eL7I1rnKztUzqF24ppXnIEQ0F3WkXFhuhAgvQI7cADAnwUojKDaVZAinvnGM7OLH39GtkrLRQO4xTbWYPNrMmnl24w3xyxkI5wCLRy3Jy0iIOSRpTx0v4qn52/RnRbMlmSFG3LaqPLYmuAqXlUYvBWkKxp6usGlHy76ZFZ+SFgQuDdTLnjf3WBf379cbpFlViV7E5TFI7fXvkFJ9LbSDz1Ssa1wzaxLrl8ZZneD5f4x+c/A8DgbMGnzl3h/moX6yTCgs0VfqwJxrOGpVioIeydpmYw/RAw78FZfGlw04z0pZgL+0sE0jI1Ad86/wn+5vzneTjZ4r7aIddvLJIVAb+4eB9xZ8L0iENNJZNTBWdPbrBQGRJJQ/dn8wQDAYVEDxU2hKwh6R+PKJohrhbh6vGHgL0NOPuL5a+/DsD/bh7n2aMvIWLDyncU/7ZzjsfTNZ44c508D6hf0lR+kFLdlNjYUW+Pubi5xPee+yTf+dqvkmwJytQjYoNJLdMFz2RJoAqPiSV5J0aU97iPvV85by1uNGb6ZpPGFfjrF36PegYHZ4Fuk+1Ok6faF2kEGWuLLa5eX2L+ec3CK5a8WSesz7rg8RFB53PbdLRhbbeNiRxm3lG5HZLslKjMokY5Nv2wcvFWiHd6vaM/LBl9dcB4bQ4fOHRacrQ5YE6P6duYM8k2H0/XcUuSB7+wxavTVQJhaagJ60WbzAXcnLRY67do1icUVcXwZoPapqNMFXpcYqshwcbBRwB7y04hqf78FrvZPF/85GtcH3bY/NExnj73PzTVBInDIZE46irDITkV7aKEw3rJd4cPUVhNZjWllXSqE/bHCZV9SeWwJNqdgJYIY/GB/ohgzLpkP5ky//dVvvf0WRpvah77yhs8EO1SeEXmAnq2yrweMrAVxiLCekHpZ0skugBgLpogxawxK/+7zcLFksrGEAAXSFwSoPaLj5ZjSIV3HpfnJNd7HP3+HINj8LudV+jZKqnMUMKzHBwytDGBMGQuoG+rSOFQeL7QvMh2OcfEhQzLiGv/dJrWuqGyO8VVA1R3hCpKdGnwlfCjKwYglMKvbVCZT9h9xrFVznrJoY3JvGY56DGvBwxdTOmhKnMqsiQQlswFdE3Cv145S3A+Zf5qgSwdtqIJt3rYVg2128OPxrPC/v6G9+5E7zwXySjCFSX2849w4089v3b6MmeSbTIXkKqMeT0gEJbSKzIfkLmAF/onud7vsPvaItUtQXXPER1agmFJsD+Cbh+8m0FJiS/vcR+7p6WAyzKE1gQ/vcKqPM3BX1SRNUeqMiyCQFgSmbNetrkwXuHHO8cZvNom2YSVWwY1ndXFaKOHGE/xWYaIY1z3EJTCG4O39pdQ7F2vfiKKkHEFXxryz5yh/9UBX159FeDt0vH8wSnGJmT9haN0XnMkGxm6O0YUJT6OEIcD3GiMqFSgUYPeAD/N7pw4H9XKu4GK2aEhlEI+sMqlP28RLI/5laUdtsd1dtba1G5oahuO2q2coDvBa4mY5IjhGJ9ld+aSiCjE9fq4PH/bnf8f2LvghBTIRh1RT8lX2+w+USHse2pbFhsJ0qvD2ULGIaY5fnDnHRdASShKXJ7ji2Km1h13fqld+Z7wHrzFO7AHXXQYogc5zSsBqnBUdiaonUNwDu8cOI+bTPBFiawleGNwvdHd5wX+D0aXkOHdNN7dAAAAAElFTkSuQmCC\" y=\"-111.782953\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_27\"/>\r\n <g id=\"matplotlib.axis_28\"/>\r\n <g id=\"patch_68\">\r\n <path d=\"M 218.763944 149.782953 \r\nL 218.763944 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_69\">\r\n <path d=\"M 256.253599 149.782953 \r\nL 256.253599 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_70\">\r\n <path d=\"M 218.763944 149.782953 \r\nL 256.253599 149.782953 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_71\">\r\n <path d=\"M 218.763944 112.293297 \r\nL 256.253599 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_14\">\r\n <!-- Sad -->\r\n <g transform=\"translate(226.213772 106.293297)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-53\"/>\r\n <use x=\"63.476562\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"124.755859\" xlink:href=\"#DejaVuSans-64\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_15\">\r\n <g id=\"patch_72\">\r\n <path d=\"M 288.032909 149.782953 \r\nL 325.522565 149.782953 \r\nL 325.522565 112.293297 \r\nL 288.032909 112.293297 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p496002fce4)\">\r\n <image height=\"38\" id=\"image380cfc0406\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"288.032909\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAOKklEQVR4nEWYWa8m11mFnz3V/E3nfF93n9OnB3en3XZs4QQEASVCIYJIETcIhBB/A4l/wAUSN/wOxBXcQIiiKFEGy1Gc2LHbbs/d53Sf8ZuHqtoTF9VxrmvXrrfWWnu9717iz/7+3+LqSBEV5OeR6lmL2jpEjBz/RQWAaqD33VMuZj3yN0uGnzhWNxXru+DKQEwDxf6Wf37t/5j7gvO2z39+8HX8aU7xTKJqsN9eYD/sc/gTx+UbBp9BMwqoRhAOar7z8mN+8P4rFI9TRAAdlACg7UMUAhEN+aUkvapRDdTjiCsg7jLKn5bYEk7+XBHyQDQBokA0ku1Fyb/899/he56XHzzjL7/yIT/NX2LZK8k/T2i+6NE/Fpz9sUFE8FkEHfHDFqUiF3UFXhA1qA3o2UP55cLBxxClYDvRmKVENWCHHrNUuLeHlPNA25f4PUu1tyUzjk2doLUnM44yaTlb9DieD8i15dXJGRdVxWdmTP5BxvCTlvNBgh1E5L01CTDub1jsMn7z/h3IPLYXUTuBboeBkAcQEJWiPHX4TGB7hmwaUFtJfirIppHdROKKiDCBcbWhdpoYBdd7a1LlcEHy1/fe4935IQHBrC7wQZJXDVFnRC3ILyIgqFtNaBWrxJEZRzNX2BHIBpr9iL726gWnz0Yc3pxyMb9OdRxwqXlBK+iNxKwjbU/gMmhvtpRVw7pJubrsUTxKWT8tic9aohT85PAW09cE9kbLNx9+wrzNqXPN5TAQtEDXEVcBlyly3OCDpLYC7m5hnmL3AlQW/freKa+MzvnR269igNnDlMnbG7YHGU1foBpAgCugvhbIew1tq9iclwzf1dRjOP1WwOw57l27Yno2RnxcMHoz4Wfrh1S3lvSzBj90rI4SylNPspAEBa5VFKMWozw2sVw5SYyCbz34GP3RYsJXR6fkky3yiz56G6knKb0PF4gHAxASWwhsBUwaQhBkmcVMPMO/WdNLGt4/PsD8puLzvOSlbz7la6/8hsum4oePHrJe5Bjlqfa2bA8N2VSgt+BvRvACozyFsZi0ZtskbKY5IUo0QOM1ZdYyvRYongtcJomZRjWBKCWuADsIxCCQMrJfbrlerNAi8NN3XubmDwTbccTvBCffvw3fhdeHz/je6+/xq4sjNk3Snfx9z26iSWcR4UHkjlWd0jrNrjUIERE6YqRHKhkodYMPgv79Oe1AoGxEWM9urPGZICQQTUSISJU3lKalpxsudhWTnyvO/kRy9I+f8cY//Jb6jS2n/3Wbs6aPFp5htkOISL3riqvHEekiqhUQoUgs28awuSzYLDMAtAjoSb5m5xNenzznyWqPmQLZRlw/wxbgMrBVRA5bRoMNg6wmRMHCZrRBMf/ehlcPzvnO+ANu6AXX0xU/Gd5n2hSM0zWJ8vSzhlR7FiLiVgW7sURtQWWORHluDFZ8dtxDbDp/vKgrtBaBXLV8OD9its2REZKVZXMzJRhBO4z4cct4sOGgt6TSDVp62qABGPZ2XM9WTPSKG3rB3eySs1EPgIXNKXTLcLCl9oarrOSzVlFvM0SELLEMsx3LJmP8lStWb06wHr6Yj9AuSgCOz0Ykn2WoHHyqaAaCehJxI8fk2pLb/RkvlVdIEQE4b3pcrktiFIQoWPmMVinWPqMNmrVNuVnMuZauGKgdC58zSrY0TvNsPUGtJLvGsJ9uuFdd8uOT+9RHlsFvDfOqj86VZeUy4kbT7ntu/hB8KnGFwBVdDxxkNQNTMzZrCtkCkEnL2bDHosmYtTlSRCyKbUgYmB093XAnmzLQW4zwGOkwwnO7N+NiXBGXJfak5PPRHvvZhkm5YZEX7K5rzFR1VD5Zj0CAmUvUzuFKicsgjC3Dcscg2TE0W3yUGOHwSEZ6w73qinNToUVgX61RdGgOzY7rZsmeXlPIhhAliXAA7CVbDkZLnuYFxYnkC3WDk0lNWTQA2JstyZMELUVguitIzxX5uUA1gc2BxpWRwWjDJN9wLVsD8EW9x6nsMzJbDsycW9kUGyW5suyrNZuYkApHoVsGakshG6auwkaNeVFYrlr2sg1P9lo4yUjmkjbmzLMETKQY7OC1uqNyOivZ/xTSpUfEyPa6wN6u2Su33C6nPNsNON/2uFEuGacbFi4nFY6eqtk3G1Lp2MQEG/WXKAF8XN/gypY0wSBF4FqyolAtg6RmvL9inWRECSICtUItBFsneO3lY+TKZqinGVGALQTz+ynNXmR/b83DwTlzm/P+2Q1OzofMmoJ5m2OEp4kaG9WXh2HlczYhxQhPKVtWIee4GeGR2ChZuYyZLShky81szijb0Y4Cvc8gP5WoRqBqUCtFIh363asDqqfgCkGrBbYHftywX2zwUfDW8R2a04LDBxcs6oxSt9zPzjmzA563A5qg2biUnqrxCBSRUjYoAo3XNF5jo+Tx7Bp3B1Mq3dBTNZN8zeM9R0gMegsiCGwJUUTaoNHOS+qxIJhI8RzqHJLCIkXk58/uYn7Rwx4EGqfZ/mzMR3HC4d8u+J9HX0UbTwiS8WiFlp6h2XHe9JC9wC/m9/h6/yk/PH/I81WPbx99zP9+8iryKPL1wRNyZcn7NW0/IbuMJAtoXoWYRGZ1jl6uc1QakVYQNNgqQKN59OiI/mON2URGjwObD/a58WnD/EHCO//6BtdTweJ+54HT1zxmEli5jDeP7/Cj1csQBPOXcup/PyQfKvJ/sqSp5efvPiD9mkOLwF615aLXY/RRwCcCs5D4TJBphw4XGcYK8rNIlALpwO8Uaiupx5Hla455aeEkJ+iEZB3ZXFfYHkgLm4cNbxycoaUnlY7UOOxFj8FjWH7/Fs2BoDz3/Mev/4jxjxNkJfiReoXDW1cIQDVdzwy62y8kgUGyQ+utwOeRdBEJBoQVyJ0ipBE/dKjck6YWexRZHkr8ypDtb7izP+WgWOKjwAXFymZgah7sX/DWsMfqJU153I04m2sKfa6Y/dUOpQKpiFwuKsq8QThwucAn3Vq1k8yaAi0C6I0gv7LUexrVSKKOxD3L3YMrblUzUumZJCuubMnGpVxPl7xRPmHhS95ZHwFQ6ob35gcclXO+8wePOKt7uCA5X1fMTvsgQDjJrcmMTZuw2mZs6wTjQXjQdaTtdxejJ6d7aCL0Pw/INqCaSJSRkEUGgy2jdEv6O4qkI0TJXrLhZjrn0vWZupJJskKKyO30qrMNl3GUz/jG4FOu6SXnrg8PYBsSHm9vMG0LzuhhnWK5zMlqUG3k9E8lxTMonknadY4uT0AEED7iMkFUQN9itCdESRMUTVDkqsVIz810TqVqLm0PIzyFbmiC4dz2uZdfANAEg42KTUgpZYOPgiAELxenNJnhJB3yK3+LJTmyjSBA7wTFecCnguIsosuzQJQQlcBWAp9FksxilKcNChcUWnqWrhvi6mB4Z32LgKCna5QIXYGyxUbFymf0VE0TDBexG38UESMca5+x9QlN0BjlAZAOmp5EOEjWATmLBCPQNheUzy2uUKgGhBc4pwhRkCmLixIZO9MbmB0XbY8maPp6x9ismNmS5sVsJkWkUg1GdB+to8YGjRIBKTT+xYiVK8sgqYmxA6M68ZiVwhaS4qyFKNHVSfui8ojZBornilUvYZHkFMZyUCwBSKSjUg0oCFFgpKcJhvvZOQCeboKYuurLjgBQ6YYUh48SJUKnQ5sREMRWYjaRdOFJZw6fK4QLaB/RsvVEKQi5onjeoDcG6QyLVwrqaouR3d+bF5sqEbDRkOKoVM3CFxSywUbNczekUA0jswFg7TOM8CgRuLQVX2z3aL1m4xLOVxXpSUI286jGIxuPdBFeRBaaCNIFzMpie4Zk0TL4VNCMNNNJySzfUJkGqUNHyYuZS4lAEwyVqqmjIUTJdbPAI78s6ng34sP5NU7fu0b5VKJ3sTPTRKBtpH/uyS4aRIhEIZA2ELu60GpnCZlGr9tugRQkK0v/M8XFXslJPuCgt/wSuX2zoadqKlUToqQnd9QxwUbFwhe8Nb/Du88OaVcJo18aqueeu4vulm6WDQhBMBJpA7afIHxEugAh0IzzLwHSruoe+tygthZfGKISlKcWfmlYTse8e6vP3vUlB70Vx3JIZRr2ki0AhWzYhpQz2+fX0yM+ORuTvF9w9L5H1Q7ZdrmIqh3BKKQLSBsIWqI3lnaYkswbQmrQG4cIkeffNGjpAlF2+PncIFyACNoGKhdJl4r1mWF1Z5/N/ZRRb0s/aUilpwmKMz3guB7xs+O7bKcFYqvQO9hck6QLQTYDrzoKfabQawtCQIxEIbuidEc/gO0n2Hs1uh5nJPO2E12nb2IiUVsH0SFtQLYRvdNMk5L5bRiNdzyaXadKGqZNyUdnE+T7FWLsQUQ2NwPZhaS47DRjdh6fduGgLzRRdC4g2wCh02w0EhEiq5uGB4fP0WbtsAODbAIigIwR0QZCorqXYsSsLL02IL3hylY8mmf0J2sOqwVvP7mFflygtxCnCuFBtZAsIkELoha0fYNsA8J1GvapILaxk1Bh8GmX0anGM38FvtG7RCP4PVJagBfYyiBtR2kw3eY+lQQtuvYx0zQDzWG+4K3dS5RTIEI7iLgq4qyA2CVFbaXIrwIiCIIRCEe3R+2JShC0QPjI5iBBRI24s0GKgP69vhRq52n7pgtTVPeC7Sm8Ed0FeCw6CqxAyK4bZE8T9Dbiiq6dBQ1xYHH7gu1tSfWpIlkJQCLiC6upI65Q0GV4tH1F+bzl4g9TXj98jhQRKdsOLp8IbE8TjIAQCS8Ke9FdqMcC24+4MuLySNtqTne97qC88CfZClQjyJ4kyLUiueriUp9089bvEPeZQNqOVgKkC0871Oy+tuWomOOC4v8BMVyDINT7iyYAAAAASUVORK5CYII=\" y=\"-111.782953\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_29\"/>\r\n <g id=\"matplotlib.axis_30\"/>\r\n <g id=\"patch_73\">\r\n <path d=\"M 288.032909 149.782953 \r\nL 288.032909 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_74\">\r\n <path d=\"M 325.522565 149.782953 \r\nL 325.522565 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_75\">\r\n <path d=\"M 288.032909 149.782953 \r\nL 325.522565 149.782953 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_76\">\r\n <path d=\"M 288.032909 112.293297 \r\nL 325.522565 112.293297 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_15\">\r\n <!-- Sad -->\r\n <g transform=\"translate(295.482737 106.293297)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-53\"/>\r\n <use x=\"63.476562\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"124.755859\" xlink:href=\"#DejaVuSans-64\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_16\">\r\n <g id=\"patch_77\">\r\n <path d=\"M 10.957047 194.770539 \r\nL 48.446703 194.770539 \r\nL 48.446703 157.280884 \r\nL 10.957047 157.280884 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p81cd189a61)\">\r\n <image height=\"38\" id=\"imagedf63e51360\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.957047\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMG0lEQVR4nHWYy49cx3XGf6eq7qNvd8/0kBxyhg+RUkiRNuNYtmwpCOSNgwTOQkLgRVbZJN5k412WQf4A77PKLoARI4s4MGArQGQLgReSJYSyZEUPUjJpSSTnxX5Mv+6r6mRxu3uailzABe7t6a77zXe+851zSl546QfaufUZOp6gqphOG+22QQSpatQIQPM8L8B7NAQkipj+0XnSv3/Ad3ff4gc/e4md1xSA7H6OO84hBKSomj2MAWug9sh4ilYV7Gwzv9jls29HtK4PARgfdoj3Hab1YIrO5qj3iCw2EIEFIAm6AoYsQC5W9vGAhz+5zMi3+Ns/e5WDrxtUYHQtY3ZlA40sagSZzpHjCZKXzR7ONVsOx8SjElPBdJJSvr1F94OIeCSY6ROd5ou6BsB8DoRI8/flf75cquy8PuFff/sNvp7d43svvsLhs4Z4ErDzgNSB+uwG869cpLhxgXp7A23FaCsBEcJwhNsb4mZC9usWvTsBOwe14OanDRudDJ3NTkAEBSuPhfELVwi4g2PyN85z8HSXF9ofkrxY8U/8BRd+aXj/+z1OXRwSuwk+GI6OupjDNskjQ/vhOdoPK9L9GaffqzGVUrUtvgV1C1yrH9A0RqKGXqwBZx8Pn6wBNKYJ+fIKnp3XC3754nWeONNnx42Irx2TPT/g+9sf8LDcxIhSBMdBr8tnOz0ORh0OL7cYjCKSfo9sT+k8rBrZKKhVXLFhaGcxRgwYQZ1FnQGviLOotUgITSi/KMzG0PrtI37++lf4u5de5dik/Onl21xrHTDyLbbcjEotQYWWreilc6wJ9OOa6UbCdCsi37ZMz8e0jpTsIBBNBFP0hJC4kxd+XuTONEB/z1IjEAJP/UfJjwbPE4vnUtqnUsuobjELMROfMPUJlRpiU9NyFWe7E86dOqZ3bkx0ecrsqYrhdWW6a3BzcLZYiN7Yx8VtAL+IoF9LjAVLy6wF0MgRfzrg5//8x9z/6x5GlEmV8ES7T1ChCBFzH5EYTxTlxKbZeOZiQmvGuEwYJSWTbsKkk+JTh+s88JgqIM6CMYTIoc4gZTjJxjV2JKyBcxZqv7rfffk+nxw8zcO/LPnalU/p2IJKLUVw7CYjElMzCzF1MMxDTMtWVGpIbUVia5KoZhx7pjbDde4MG+NciXsBQAQ1BjUGIfyerFyy3XiVthL6NyybmzNyH3FrcIkqWK5uHHIhGTDxKQGhwq62KKoUgE5U4NWgKugpcDKeQV2viduc6M1oA1QEYWG2awwuf6PWIlWN3+lRbgWkcjyaZwwnGee3RlxKBwAkpiISz0xiMltiasWrkASLMx5nAomtCSo4dO1lRlA5uWSpKSuwDGFQCGGlNykrZJajWcpvv9vmy9+8y3Nb99hyUyq1WBRPo7PMFGS2YBYSPIbEVGy5GbMQ06/anIpnxKZmWsW4xzxqEUoAWa8E6ywtRR8CMqsI/QEhLxj/1Tf5m+/8guvpQ1JTAjANCf26w7jukNmCrs2JpAZgHFpE4sFAitC2BVOfAHA6nWIwAtae1MgFUF3eL0Msa4ypgg/oZEKYzxFrCQ72yg2sBLomJ5UKi9KvOwSEbTdefRaLxxKIxJNKTSSeoEIVLEENZXC4lYC/YKkIag0EQBRZMmYtRA7Z6jH58y8xvGqYP13wYL7Jj4rn+FJnj6vpfuNlvsXFeEAkNZHUVOoWxCsRFV6aEDkTqNUwLFvsT7o4Qmg0Ywxq18zUsPpMgq48jaBgDNXOJne+F/Htm+8yqlJeOPUR56MB78ye4Ff9KxxvpGy4nFNuyvloQNs0mR+LZ+gzLAErARa8ZIvwPxx36R9u4LQoQAwSmwbIWgVQ4bESpEaQxXP/ZsY//MmPuZE8wKKkUpOZmivREafclJFvXH83HtKz00ZPQFBDz84wEshDhF+IehZiHhVtBo+62L7D4AME37Dm7GNiV2sWIeVEgzT3yTBwO98hlRqPMNWIe1WPoc+4HB/xZHKIXfjfMnwxnswUnLITembGhs3p2vkiax13+6cwRxHpoVmIXxrd6OcYQxqWlgCXoNRZunen/NuvnmOqMR5DWyrO2gkbJueCG5CZAo9h5FvkGq2J3RMTaJuCTAriBZNlcEz2O8QDQ7anGIljJEkatqygbq0P+1wiAE2LXXukrLn0n/DT0TP0TE7XVJyxFefsnHRhCV2bc1R1eVR3SKUmFU9baiIJdE1Jz87IpCAzJf915wbpQ0f6SBcSjyOI3Kp468oueAygaCN6VKGsMIMJndtDfvzBV2lLTSYQixBJk3EW5e7sDMOqYWzPb5BrU4pS8UQEulKxYXJ+0b+Bu50RTcDlUHUFp8sGEZqMXGJZ77vkpCwtNajzOcznJLeuc/h8i6eiHK9KACo1vDO/xKsfPo0G4X93d/nO+ff4w9ZneDegK9XqnQe+yxsfXSGKFDeFqi0QwIWtDlJUSF41+hFW7r+sk82HsCpfIUBVgxG23y757+kNLm++BcA0GIahxQ/ffY4zryZUmXB0boeXn4dq12KygHVDUvHkavnp4KtEnyREUyE5Dkx3BVOBme+08O1GY2qX7t4ACusMLtlaMqaKVjWt9/f44cffWH2lwvDa9Brx+y2SUaA4DdEUHtw7w88+vckro5vcr3uMQ8z9use7/V1sIWx+7PGRUPSU+Fhx4hXxTeu80pThBJDy/4YRVW3mS+8J/QHTuxc5fMaRq+Vfjl7g1X9/lvOv5xS9CALMzgdst6IVVQQ19H2HXCPuFmfZO9xka09xuTK4LoCSHda4dH+GFH6tiC+yMjIEJxhtOthVUVeFoKj3EBTT7aBbFe8Vu/zP9Aovf/hlNofK8GrC4KbSemLEtd6Qs60xG67gfDIkEk+/7vBa/ynMg5TOg5rZWUe+HejeM9h5wEkdEFXUGUJsCFYQL820YgREV9kq0OirrhelSSiv7pJ2Cv7xrRephiluZBlfAXNlytUzfdpRU4oS49lJRpyLRvTslP1qk48enaF9XzC1Mt8W4qHQ/bTxNec7Cab0oIpP7Er4DShWupPlwAugAbEGc+Y0hzdbpK/Axic1dUsouzC6CuU05vbsHHFWsbt1zI3uPleTfS5Fj2hLxU9mX6PIIzYOAsEJEuDU+4HWfgmqODeco86gsSM4QR1ILYhfam6ti/WhaXd8U/TLPzhL1Wmy6ODZiHIzECLF5oJMLcnOjO2NCdc2D3mm/Tuejg6IJPAotPjoeJu6sMQjT7lhSfpKtldiihp1BieTGcRRA86emKo6gzqgbLJUwqLv934lfFN4fALyrQHfOn+PS+mAjs0Z1RkX4z4XogGGwIbJyUzjXZUafpNf4mDcwfYjollB1bW092vctAJVpPQ4oGHi846/7vxrwte6AYX32I/u07t0lfFzcDU7YNuN6Zqcp+IDerY5cohZNIMEKgwlhncmFynyiGhkMIVHvBJNa1RAEKSsMTrLGwaW2bjEYgRdTEzYxrsaWwmLoyhFZ3M2f32If2OLN4dXyEPEOKSEhVAtASMN04VaxiHm0Hd5++gC3huSAUgdiEc1Zl4jQZGyRuqA0TyHslqAWTfTNd9ab7P92igXAjKesv1WxZu3n+TO/BwPyq0VU5U6KrWUGHJ1jEOLvapHf9QGhdZRs5epFanCChRVjSE8PjOqnJyJiW/CJ+uT1PoyBqKI1sMpvVsxt/qXmIWYoc+YakypdgUu14jjkLJfbVIdx4S5I+3XIILN60bDYWFHIWC0rpsJPHHU6drYbxuA4nXxgyUYATGYOEKSBE1jADY/rvj0nV36VZvfFWe4V24zDBmlWqYhYRgyKnXcmZ0F38ys0bhqWK8DujyaqD3iA4ag4Cx1ZgnupEkMVprnhehlnVkjEEXNgZ8xqAjRpKb3vnDr8CLHdcon5elmdAstxqHF0GcMfcaoTBEV4v0IOyma0HlFvF9cC8YkcmjkCLFpxC6N1oKTk6K+vhaDsFiDxBF4jylrbF6THXmGb57lzuQsh2WXSDzTELNXbzL0GUdVl0GRQS0kjwQzyRtd6SIqftG11B4n7TaaJvi4ycIQQYiae6kbt5d1eVnbXNIcpEhougwzVZKBY+sDw2/OX+L4csp2PObJ5JBB3WZUtzgqOzwcbJAeGFpHTSNAJRA7JITmDKWqQIT/A03RTk8YxxzeAAAAAElFTkSuQmCC\" y=\"-156.770539\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_31\"/>\r\n <g id=\"matplotlib.axis_32\"/>\r\n <g id=\"patch_78\">\r\n <path d=\"M 10.957047 194.770539 \r\nL 10.957047 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_79\">\r\n <path d=\"M 48.446703 194.770539 \r\nL 48.446703 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_80\">\r\n <path d=\"M 10.957047 194.770539 \r\nL 48.446703 194.770539 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_81\">\r\n <path d=\"M 10.957047 157.280884 \r\nL 48.446703 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_16\">\r\n <!-- Sad -->\r\n <g transform=\"translate(18.406875 151.280884)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-53\"/>\r\n <use x=\"63.476562\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"124.755859\" xlink:href=\"#DejaVuSans-64\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_17\">\r\n <g id=\"patch_82\">\r\n <path d=\"M 80.226013 194.770539 \r\nL 117.715668 194.770539 \r\nL 117.715668 157.280884 \r\nL 80.226013 157.280884 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#pbc08966e7d)\">\r\n <image height=\"38\" id=\"image3d79cd8354\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"80.226013\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANjElEQVR4nE2Yya4lx3GGv8ihsoZzzj137Im32QRJSzZhWIJpARa08NYbP4DtJ/JDGIb39ksQsAFLlgwLkkiKQ7PZ7Ol23zPWmJMX1SRcq0ItKiIjv4j/z5Rf/N0/ZeUz5uiRmJGcUccJGUbY7JDVkmw05Ew6qXnzFys2H2XSxYQtA3U50biJs6qjUIGr8sh71Q3X9hYrESuBF2HN4+GCL9pLvj2sefnqBNkUiBfiMlJftvSHksVvHatvIpsPNSZrUG1CDwG162B/hBAgRqRpYPJgNLl0bH+8ZPOnEJcRAbROrOuey+rI0oz00XJmWy7NgWv7hogiZUWneqyKGEk4HWlWA8egkF6jj4qhW5LrhNtkqhcjkhwmWsHy/54QwAfSOKK0RsoSCZHNx2te/xTkfo8zkeANIpmYFCEpEsLSDpTKs401vxvfwWeNJvHSn/BsWANwVR9IWWj3JVkrQDCtkAeN7TL25oikjBnOFG4nqG4if/dirpKKiDFzojHi715y+2dC8ehAWXja3iGSKQuPkszBl7TeURmPlowi82pcMEXDo8UbnAr00TJEQ6EjMQuiMyQhK9CDYAZwG49MnmwVZvdhxm0N5lhh716R9wfy5JHCIouG3FS8+fOa6TzCriQuFCKZRTNwvdoxRMPLw5LxbQW/kAsArI4oleiD5eFig1URJYYpat5b3bLvS45HS64zI1B9KmQjhMsV3R2HKR4d6b5Z4XYF5o0h7Q6okyVMnlxY+usVx2uQOiImEYOmaQZOqoFCBw7ecWxLUhLSqFEukqOQg0K5SNs7Xnc1VidEMrX13A4NOQuYBEGRqkQyhiyCPo4sv0yY/qamDJmsIS0can2CNBVpVePPasa1ISwyOQlFEWiqEa3yjGNSbPuSeOvIev6WBAgCSbDLkZSE25sVSMZWnq701G4iZ0BnUAkGRbIgOYMIEjOmemZQU8YeA+o4ku+dkxPkwuAXhmQhuYQpA9ZGhsmSs5Cz4HSYK+EFu1VIglRo7F7o70bGTYnqNHYU9CCM5wauPbX1jNYwFmnGGJAMposQIliNMS2U24TqA8P1CYfrgvFMKF/PVWwfCOjI6UlLbf0PzbsfHLuxJKZ5K3KvyQp4t0OVHvYl+nWBOSr0ALGaYVeSMTInlKKQew1JMH1GTWmen1ph3CYTnbD90YLunjCeZtwtTCsha/BNpjwbOCkHFBlnAn2wrMqRF9slwRtQmbBKyCQsqom/f/9X+Kz55OYDPv/jfcxWExcJ1St22xqlEiEp8qghC6pX82pzxt8/I2vBSIasYPeBzFthQE2AQKggFRljIlZFajNhVMJIpCgjb9qace9mni57cob9zYJ/Hv+aupwISaEWnmDnCjEK7Cxb3VC4gBSR3BskQbTCdFKgp4QaI0pPmeM7iqwz9fPM8mvBdhkJEEtIq4BR848LFblb7qmNJ2Xh7uqAXUxz8EmjVKY67YlRMXozd64LoDLSarIGVoG6GVEqoUwGnVFekJQZ15ppZWb423uK7scjtIb611C9HNl+WOGbmQtVRoxOGJXoQkEbHHfcHiWZ06Kj95ab3QLfW1JUVG6kchP9WLBpK4bbEtVqUMD5yMmqx5rI4A22CCSvkABmAN8IxweKrEpM+07i4nJPOFMc755T3szT2DeQTP4B9kIFzl3LuW154DakrDiYknblOAyOaesIorm4avlo/ZzX44JffvsQikQuI2ShqifOmg4lGastB2AyhlRA0qAChAVsP9QYPQi3n55jjoqrZwE9BMpNor/SpDrhioBIxqiElsyYDJvQ4JTnfrGhqwv+oK/Qi0AKwpu25ok95XZoSFFBFozzLOqRk2qgsRN9sFiVKG1g0ImkIBWgejAt+GXG3P8kUGwndDshgyetKvSUkKDBJlJUFDrS6ImlGQhJMSSLlchLf8IxOpS8LevBss0LvkiK9liSvKJaDTgbeLS+pTbzuJmi/mHBm9wgGaITlM8Uu4w9gLGHgG4nkjOIUvR3Kg7XmuEio6uAKz1GJcZk0CSsjgDsQkWXCp60pxx7h7EBfW9i3fQ8WOz4lCsOL5ZMhaVyE7upwqhEoSJnrmPvS3zUaBOZmkR0muXThLsNSMooPQSkn0AJYe0IlTCuhbhIpKAIQTNGjVWRiMJKpI+WiGLnK54dT/BeM3UFRicuq5a75Z77qz1Sz3ADP9ij758+WPaDIwSN+JlriWAPE8XTDQYgFxa96ZBYEa7drFt+FuXkAjEplmbgdmroteUQSgoV8EkDoFQidgUHqXii1nx5e87xpkF1mlQkDmVJZQMnxcDSDPSxIGUhBE2aNHoQ7BH0mJApICFiklVor2BMyOixbUKyRk1CCoIfDTfdil+qh2jJXFQttZl43q04To7j4EhRg8nkznCwFaE36J2ZhV1nnAtU1tPoCacCbXBMUTONljxozCA0LyJ6eDuIQ8SkQoMIympk9PhakWzGHoVkFQkDAje3K96/e8Pvn98hTIaff/AVX9+cE7wmtW9NZZGIQYFXZJtRg5BqQSTPTsRXbH3F0TumYEhRkEmwB7BdQo8R6UYIAfW9RgFIN872x85tW2wVFAm7HtAm8tXLC8KrCv3M8X5zw/tXrxF563WyIDZBEiQK2WQEwCQEyFk4eseTwynPjit2xxIOFt0p7DGjh4QaA4iQ2g4zrQ2mU5Tf7ohnC8aTWR70BBxh8IpFPXJ3eaDUni/qCw7Plvz35iFPdyeU1UQsAsFrFs1AzMLBL0Ay3iV0Hfjw/IanhzX/+/kjyrstMSrCTYU5KIrd7CyiU9ickckjqyWqP9WQMtlZju/WuG0mK5iWoAdY/tGweTHzdLc68Lfv/oEPfvScPsy+bFGOvHO25fSk5WLR0rgJKSKnVwd041kten5y8pR2LDj5gyb9bsW0KdGtwh4E073V97WeDycxQUqY+iaSjSIsCoZThfLgNkIyMK2h2EHxyvC0v8NTuYK1J/caKSOLkx6tEn919g1WRa7snsfDBf8p79FNlrOTlttdw7/+/mekpMgfvIVbMqnMsBfcLqOnjCRQYyAvKuTQYfSUkDhb2uKYGdYKd5tpHwihyfR3E8oLppN5/6cCPQrTncyqHPno7Dl/2TzmkX1NKZHf6iMn93t+vb3m01d33o6TzHuXr1leD3x5e8H21ZJiq1g+SZS3kegUekhM5zXFbQ83A8YcPVkJsTZUrwO+sqQC3C34BeQi0zzck7JQmMDHd75lbXvOTMs7xS0/Lp5zX09YEW6icN9uuG83PBvX/ObwkOoLh/bw1cWCeGckD5r6saV+mXHbRCoE0yfcmwG/KpBxZszE0mA3A3oIpEKjoqW9FE4/S/iloruIXC2PvNNsued2+Ky5Y/f8ovmMaz1iRbhNwlqgkEQjE5d64h/O/4PlTwb+rfgp+uuS5qmQvytREepXCUmzddfD7KB3HzS4bZx5rxxGTREUZCVkrXD7xO1KaO8pVo8T3TsapwOKzOPunOt6w5As/zO8y2PdkvIsU2vd0iZHo0YOqaTNBe+5G3726DGfrS7ZHWp4VqImYThT1C8ytsuoClTIaJ8pthPZGnJpMNkqctAkqxkuCvSQWH5lMUOmfulpnjie3F9TX0x0oeCb7oxCBdZ2xamdW+rUtPis2aeKMVmGbNj4hptpCcD7p2+4KUeecopvLWmniVtFcZyhT3q2J6ExZC3EUmPUlJAxkivDuFLYXqhvIm4XsduB088Mr8tTvv44cl637KeSUnuciiiZB7MiYyXy3XjK8/GENhR0oeD5YUmImsJEDp0jBoUMCntUKJ8pbyN6jIRKE51iOjHU/exezPdqLz5h+4zpE9EJdj+h3xxY3R6pXq55frzgy8tzss6oBz1/cu8VD5sNH1SvqNVIROGzxifNbqzog8VHzTBYjr4k7wvIYA6KxTeZ08/7WXSMgED5eiJWmmllOT4wmGyEuChQPlK9mpCcySJISKRFjeoGzKs9F7+1hEazv9aMDxOtL3g9Ntx3BXfsjpf+hDHN63QmELKicRPDYEmtna+tOsXyG2hehlkGRTBvevRez3FNCSimlWCIGT0EiBnjI+IjKAUhIeM0X9oZTdbCuFLoMTPuHU/DKW/qms1Y83l9xcNqw+txwTE4DpNjCIZuLAijQYKgRqHYCrZNZCUkp+cDbkrIYUSGCVVbxrWlu5cxL39Wc/+TA9kpprXDve5RvYcQyU1JrObbM9sGVNDYTqi+LhgvDEdVclg2fGkuMUVgUY+IZEZv5yNcZ7FPHaYVlIdil4mF4BuF6QSJCXwgl450usCvCvoLRTwJmP7jjvAbi/jEtFToscDdHiFG4knFdFoQS4XpErGYBXf1TWbczQAPZwXTOiOT42gaUpHRg0CGchTq5xkV3kpOyOhxlqBkBdV74mkDSshqTri7IywuW8w/fvRf/PtP/oarX/U03w2kQpMWJdKNSJq7LitIRtDjHCQxv5ebhNsKvp7b/fuAeszYPqF8RkImGyEWCj3OWhlqhUQhOUNyhtAYTBtAwHRw3JeYj5uv+JePfs7p5wa784Rao3wJjZtHQci4TUBiRgXNcKaRBLadV6/0nGCxGVHtSDitER8Rn4irAvvqOCdz1pCNkEVQU6LYDCRn8CuDGhMomBqF6TLqpuD/ADSzmnFbp9fFAAAAAElFTkSuQmCC\" y=\"-156.770539\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_33\"/>\r\n <g id=\"matplotlib.axis_34\"/>\r\n <g id=\"patch_83\">\r\n <path d=\"M 80.226013 194.770539 \r\nL 80.226013 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_84\">\r\n <path d=\"M 117.715668 194.770539 \r\nL 117.715668 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_85\">\r\n <path d=\"M 80.226013 194.770539 \r\nL 117.715668 194.770539 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_86\">\r\n <path d=\"M 80.226013 157.280884 \r\nL 117.715668 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_17\">\r\n <!-- Surprise -->\r\n <g transform=\"translate(74.132716 151.280884)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-53\"/>\r\n <use x=\"63.476562\" xlink:href=\"#DejaVuSans-75\"/>\r\n <use x=\"126.855469\" xlink:href=\"#DejaVuSans-72\"/>\r\n <use x=\"167.96875\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"231.445312\" xlink:href=\"#DejaVuSans-72\"/>\r\n <use x=\"272.558594\" xlink:href=\"#DejaVuSans-69\"/>\r\n <use x=\"300.341797\" xlink:href=\"#DejaVuSans-73\"/>\r\n <use x=\"352.441406\" xlink:href=\"#DejaVuSans-65\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_18\">\r\n <g id=\"patch_87\">\r\n <path d=\"M 149.494978 194.770539 \r\nL 186.984634 194.770539 \r\nL 186.984634 157.280884 \r\nL 149.494978 157.280884 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#pff475a7427)\">\r\n <image height=\"38\" id=\"imagefdd37784ea\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.494978\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAN8ElEQVR4nHWY248lV3XGf/tSp+rcT99vc7+Y8WUAYzAYMASEkBIlJCgRDwglUh7ykufkIVLyZyQ8Bykh5AIJAgQmscOAsSe2sZnMjGfGc5/u6Z7uPqdPn0tddu298lDtGZtASVsl7SpVfftb3/7WWltlG8eFX7mceCJlCAS8CDdLzwuTx/n6xecJ77SoDRW6hGDB1yGf9UgSIKjqAwKqVJiJpux6VKlQXmFShQoQjRTRGPIZyOcCYgU70iTbitpIMDlYjXofqBJPrCwlHi9CPxRs+w4Azx+9wZXuIllp2dtvEILG70eooFCFrjBFATMx6EKBonpWViNEAqIIPUE7hSpBFIgVfCyESEEAFQT7XlBGafJQgvJkUuIk8MPJKfq+iUGIdcnGbhc/tVBoTKpRsRANNBJB2QrUti3KV4t13QAeQtNDqVBBISaAApdabAomV5QdjxSKYCHUwIt6PzAvgUAA0RgUG17x7a2nKYPmzn8dRZfQmkKyG2jfzpBIE4wi3knxjQjXjhivaiarUDaFEAd020Gpqc9lZNMakpsKdCdQ1g9YBOg6CqcQq7FTsIFHEtMoImVw4vEI19w868MuyTd7LIxLXEOTzmlEK3xi8Imhea0PIti0IFucZbKqKJtC2RRIPFGtJGp6JvsJyghR02FswNU9ZWpQUcBGgTI3hFgIkRCsQv2q+J14xuKYBOHfx08xKJt84xefAC2YzZhkuxK+nQq+pjC5UHQURU/wdUEM1AaabKUkGhjaT+2SFREhaFxhUUoQIBQGZQO1uKQWlQRRTO50iHcPGHsvWwGpQgncLjsMywZf6vyCx5/bYD/UuTRd5b/vnWIyjanXC2rWc7y3y+akw+agTXhQJ+4bEMAG1IkMrcA5A6LwqUEnHvEKRhZRYFYL6jWH0YFJL8GnMaZ4j8ZKPNPguOQSnFi+N/wQebAYhLtullcHx6lpz+cPXWU969GNUgB28yZeFGUWEQ01rTvC8DQgCpdGpJFHa0EElBVCasEpaHhMvUTrQGJLhmlCu5uyn1p0YbD3fcor2Rr/tv0Mr73yGM27Gv25PvOtCZH2XO0s8q93nib//iLBwOvzQrFcYpuOE0s7lKLZm9SRqaF1F6ZLCl8PIKBrnjyL8IVBnK4AaSAO6NgTx44jvT1m4wl7cYP9PCEsKcaqif3qpT9m/dY8vQuW5S3P4DQcbo/Yy+qMs5i/K3+L/i8XWLzvsWnA39WkM5bRCcv9RptmXJBOYjpXLekCpGtl9XOvMCYgQVWgAF1oQqtE2Wo+jkp6tZReVI2LboVOPYNFsP2fLtPKoPHAE4zCdYQz3S26cykXhqu8eeswyUgxWTboUuOaimgitG/BNJ1h82RO63JM0YHWszuoPKqMViovK8oIvELlGrGVwSotxHVHJ8mZrU1omZxIe+rWVbYVF9jmhmAKQYyijBUcm/I73bcwKvDB+l2+OH+Jt59cYeQS6saxHA9p6IKL41Ve/c4HSW7GFF3h8U/foBXlLMX77Jd11qddtsYtAHKBECKIAybxoISV3j4z8ZRYl2hVGcOxZp9r+wsoJdhgQbRCeXBtxedOXuV0NKh2hB0SYvhY/SaZWCYhpu9bFGI401Kc65xFCXzmC7/kY52bDMomkfKcqG9zKGlzqz7Hzf05dnSTTFdsaeNZ6I3p1lIatiCIYs810CrwIG/xzoVD2JHCTtYqUNqBLuHPF18EIFLQVJpMAl47nDfcdXMMfYNpqPFK/zjhWMpXHn+DZ5q3aOqctaiPF800xETKE1AMiwQX9ENLUEpo13Lm4ilBFGmooREi5dlOW9ixwmQKWxzNsXFJKYoysywbjxfIBPoSmDcGHzxe57RNyoXpIVIf8YH2Fl9++hcYFXBykGbEkoUIrQJjnwCwXB/RsI7MW8KB7mZqKR2bcj/r8tLPnwIFn/r4JSZFDbGgAti5+RFzjQmtKKemPQBTqTbWRCyNUDIVxZZv0dNTnmhsMPR1dlybLdcloJi3IyYhxqiAJjDyLRo6JwsRPTulaXKcGIpgccFwvL5DLpbLO0us/FTovPWAc93TfOoD13mVeVBgP750G60C5cGqCxGuuxlem54g0Y7PNy8TqcCub5HogjxEvD1e4fr+PLEpKUWzOWwTgqZVzzk9s82xxi6xLnFiHo7UR7RMTs+WNEyOKw3DQZOF+xmh3WD5hYj9EwnlosOvBuzhpE+/bFIGz55rkAucn57kn288zfhGl++ePcvfnv5HIlXy2uQEP9k+xc31eWRiibct8R5IAxSQlm3e0vO8shxI1sbU4wKjhWatYKkxogyGQ/UBBmG/TGDfYiZTVOZo347opw10zZPUC6wXTdtkvDE6zPHmLh7Fm8NDpJd7GIHbby9z4egKPT3lXjbDxrlDzN+uLCbZLUgXLKatGB0Fv5KjjCC5IRvHaC0oJUyyGoU3PNbbRiNkYslDhB1rVFEiSYTdGbN+fwYdBTqNDDv0dRq64CO9u7w9XubLX/8LVl9OObW9S7HUYng85s1PHyXSnhfPneXU90eYB3uQF0heUJeAajZZbjWYnphhcCYimxdcN5D225hc4WY8nUZG22ZEqtJx3RQoD2o0RXptVJbT/t+Y8dmcSV7D9osmSeLomoyVZMg7dwLBaqRmqd0dUHxohV3X5MUbp1l4HfQkR7IcZS0YjWq1EWuQeo1kO2VpWOATi69r0jnLeE1RrniOdgYcTvoEqdJTEEXSV8hkivYeKQoWX8+AhBDF2ElZo2UyhmWDH9x6gnpNYaYliDB+aoHJs1M6NqPcrlemqxRKqeoex4g1+NkWkyMNxiuGdFkgVBWszOU02jkfnn/A8zPX6Jkp94pZAC4OV5h52yFFgZQlOEd8bZO1fgcC2JVkiAuWPFhEYPeZwO5nLe1ewR8c/xlHarvcdz2+9MnX2Xmmxf/cPULRP4rONe0bmva9KjSioLXhifc0RbdqNFAxg2cVZ09uPGTKi2bkE65cX+WJK9v4wqGMJuQ5svUAtduv1v+n5/9EHmtucrS2Q09PCWgO2z00glHCKERMpMY0xBRi6Jkp0xCz5xtsll0ujte4M55hc9RmPEowNhAnDhHFc2u3eKy5iUHYcS3GPubKcImrV1Y59h9C8pOLhDRF2QgpqwSujAFjsEOX4IJlzzd5sraJRggoAoq2CiSmIAmeZTMhE8Nm2Waz7HKvmMWJ4fHmfRZqI9yM4UjcR6uAIZBox6wZs1n2yEPEvazHubfO0LtgOXOuj7pzv+o2lEa8rwABGINSCmsPUsqgbFbzSmirwCho+sESEYhUIBPDrC6J7JCApqFzbuaLTEONtXhAEE3bpOgDUEE0m2WP69kiP906wfDFZU69klK7dZ+w00dEHjIk3iPhoPUIJWiF1UowKtDQBaNQ41SUEVDUVGAUIhLt2Qu1h/nQIBy1A+6WXR5P1pmGGI8mC9FBnhT6rkUQzcXxKpcGS/TfWOTkt7dgcxufZlXYVKU5JIC8/zBAAtiTzW3m7Yh7xSz7cUImKYEqVwbRjEJU1f1lD2fGXC2W+af1j7Ix6LLUHfHZpWus1QYEUWRSdUNZiHjg2gxdwtb1eRYvCVKvPWSniqB6xJJ692jhEUDbNSmjkLDnGjgMw2CYiOXl6WkeFB12XZOnW3dYsCP+5p3fZ+v8MqEG0ckRwzTh7197juZMysdXbxNQHKvvkoeqkhgWdVS3YLJSp30nIXoISFegJPCbLvu9zaeItEcrYb01y2G7x6V8jWU75HDU50d7T/KjnScIohn8eIXaJ/f4oxNvsl8mfOfyh+i+WaO1YXjp+afQheKljmfh8IAn5zZJXYSEqgExWQn2PY3/rwOlHp2j2K39NpMHlfA/PXed2WbJE/E6NQIexVfmzvOXl/6Q9NV5siOeLx95m2/8+DP0LiuO3HUMPgDrv1vy5PENPthd55vnnmN0fgF+exMAbQXXhLIVETfrMBhUoJR+pC+lHt0PtKcngzrz5w0nvuV5YesMiVLM6Zz4IKdlEjHotzAF9I7u8cI/fILeZUU8DAyPR9R3AjPna9x44TjfuvwRukeHiAaN0IwKtPGoAPlMhNQiMAaUruzhV0T/rvaQgF58KaJ3NcVkJfd/vkqiDJGCRFU24UVz8tA2riW4n8yR7Aq7zznKuqa16dn9vZT8C/v4RFDA9MIM+bIjD5bcW6wNFL2AaCCEKse+G8r3il6bymgPNoRuPHBEm0PstQ2WXy0fIjcKnGiu5Cvc6/dAFCs/m5B3FfF6ROd2xr0vKJqNnE4jwx3JmZ8ZYaeKeMsydjFTF+G9pransZOA8gG0/o2Cr0JbhVeH6ODFsqTxs6v81ebzJErhBBZMwTvTRbJRTNwHMy1YfDPl+L8MEK3oXDHs3+yxeXsO9iOy7y5hJ9UZ1y9vrTEc1yn2YnQBpghQOPC+Ctd7Ba8NSKis5CC8tnXhPjLNqgeF44c/+Chf+9rLGIS9UOc/r52hthExc82hHwyobQnUE3Qzpnfd0dg2aKcQDT4O7J5V+EaAYYS+mdAZQjwQ4o19ZDJBXPl+lg70Jh4I/mF4bWg3od1E741QZcniG4Gvnvgznj12i59fOM3Ki5r27QnmnXWkqMoUVZZYa4g2HM3CgdZkZ1bQuSddaKBzg8mFeBRIdhzRfg47e0iWV3nxXXMVqWryX2Md6osf/mvBC2prF4LHnz5E0Ysxucfu5ejrdxERJE1R1iJliYpjEEFciYosqp5AEFSnhTTriNVIZFDOo3crpsIkfVhB/D+reKixR7v0/wCnqo3Xo8Cj1AAAAABJRU5ErkJggg==\" y=\"-156.770539\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_35\"/>\r\n <g id=\"matplotlib.axis_36\"/>\r\n <g id=\"patch_88\">\r\n <path d=\"M 149.494978 194.770539 \r\nL 149.494978 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_89\">\r\n <path d=\"M 186.984634 194.770539 \r\nL 186.984634 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_90\">\r\n <path d=\"M 149.494978 194.770539 \r\nL 186.984634 194.770539 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_91\">\r\n <path d=\"M 149.494978 157.280884 \r\nL 186.984634 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_18\">\r\n <!-- Sad -->\r\n <g transform=\"translate(156.944806 151.280884)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-53\"/>\r\n <use x=\"63.476562\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"124.755859\" xlink:href=\"#DejaVuSans-64\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_19\">\r\n <g id=\"patch_92\">\r\n <path d=\"M 218.763944 194.770539 \r\nL 256.253599 194.770539 \r\nL 256.253599 157.280884 \r\nL 218.763944 157.280884 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#peda901b58d)\">\r\n <image height=\"38\" id=\"imageb3dfd9d1d6\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.763944\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALzUlEQVR4nG2YWY9dV1bHf2sPZ7r31pSyXXbizmCiiEakEyGk0A8gNe+IBz4A34ePwSvqb8BTAImmkSJ4IEnTOO2kbafsclXd6Qx7WDzsUxU7cKSrks69dfY66z+sQf7sb/5Om4uAHSJmP6HeggjqDLm22H2EnHn81wc8/MeR3f2KxbOJ/VnF/q5hPIHhLCJdRAcLPiNbh90Z/EbwO8ge7Ah2VJpLxe8S08qCwnAsXH6SWN7bsr3s8N973FZwbp+RpKgIZMrHAlkBmA4rJMP7v1xz+ccH2FEZTzyhEySDJADwdcR2E8You3GBWkiNIlnKDwTCQlADkgzVdWI4seSqfC+iIOVMyeDsmJGsiM43VVEEjEBSqAW3Htl8uKI/FbrvlbAwxE6YVuD2UL20pM2C0GRQsKNBFNRCXCqSQCcBhfFYMMGw2mWqXSY2gkw3wZUXAHB2iKiRctfwxiVZsWMiLTy7e4b6UhmPyo9SBalVUlseplZRq1Bn0jIhvcUMgh1KlsJKcb2QjTKeCCY4ls8CHXA1GabJITaj89k/CuW1KyuIIFEZTjzqYDoUpsPCmVxBfSGYUDKhlgKbAAokyK7cLy+QiY2iBmIDsYWwsFRXkeUTQ4r2jeMNIjfQFtLbOa0pgypqhGllcHtl+5PMdKgg4Hbgt4pEMFFw+wKJ9BZ/7rG9QTIzpwRtM/EwoXOwaoRUCdkJZ/98Tbqs0WQQCtXezJgqkhRUwZgCZR+KCA6E9r0NaZHJFkzUQtIBzAi2F+pLQ3VhsGOB0AQhtZlcKVjFHk6kqpA81xAbITUW9ZbV1yVjShGUA1AnkGb2xQxiwZS3wgiuV2IneJNBCpQAu3cEfrbmk/u/52/v/RO/2j8iqcFL4u//4S/pngr9mSEcJRgM6gWtFVkbsitQZy+MxzWn/zlip4r1IyU7wTCrsUji/16p88RGiK2yeb6iemnxO6ivCowf33/KX51+wau05M+XX3K/uuIvlv+FfLxm/PmG+kJY/cYhUZDzGhmLLUkGEyFVgh0zAKf/0dOeFxCdZC1KuAnwBtU5zuwEteAGQV6VoNxeSZXQvlD+/fOP+Ne3HiE+c3pnzYtnh2CV+klN/QpiB/3bCQTstZDaco4JJfPSQziwZCs8/6zCJKV9LjPHkiKzoUpKt562/qBFcnFsOxRSZvuDKsNC8FvB7CzaWy6+egsZLSRhPAvs7yvTkaJtoj635AqQYrzZFyihUCY2QvX+hvhgZDoEc+PwN+QnF/Jv31sQa0FUi0pCUZhaSLWgUgJ1PUgQcEpuMtomZG+xG0taFCXK1pG9EleJ7Lg1X7VCdmCCYiclfr2CLAz3Y8mYvI6iEVAltEJYyhuwSoTxJLM/U6ZDwe2Lq6++EZZfeZrnDjLY3mAmKYZrFL8RpgcBfzyibSL74mMI5Bt7ytCeS6m3zHahMpP/NQHc2IGEokQ1M4RdJjdaHkx5cztpyVyC7rcVrhdMBFHBXjv00Z6fPfoWX0UwWs5TbpUZG8HEmUpNwl3bmWNSoFFjbgN0o7J8Wip08sXRZf7H5uGGR794TGxLudm8C9Mvrhk+Gsg1hEVxeDXK4sMrPnvvMY8vTwhTIVWuM5Ig1RAXQn9qQODky0D1u5p4El8z2JtaOQfWvAwc/vop03FVeOWL+bF2xGj59uqI608n7ADhMPPO0TXtYkQi+K2QPuj59I8e01aBf3n8AeuXC8LgQAXJQlgpqS7BoTAeWOqLgQefj3SPPe4NjxCZBZDxVwPhwQlhYUiNoLOpmklI33asFxlcefjiieXr7gx76agzDGeJe8cbvjy/R3/e4dYW0xRx3EBpIuRKSUGKx2UlVxa/nrj3K34UmOoPPNMbv9FC6GHm2NyX+GtL9ood59q2caiDOPvU9785BRXcKMSDBE6R3pZuwypqC78kldYJSgWym0D77PK1wAxgTKmXY0JCJLf+9rvqSqkvYfc2TCcZMwqSblx4JvMyEbPFbs2cEYgHie7OjpQMo61xlxVmklLW2mJFzNZjxoS53KLTNAc218UbWyBndLdHxgVun6kvBb9XppUphhos0x/uidcV6z8wHPzWYEYhH2VELXaC8U6ie+JYPnGQD0ktmBa65yWjw6mU/swV6zBzs6jDiDiLE53f2FA8jJI5WXSYbY/fV7e1rH0e8buGsDC8OG04+MbQ3y0H5UqxdSK1Frez2K29LTt2UI6/SqzfnQESaC7m1v3g9YQo0tRo3+Oym4Wp3Hay2njIGelH7D5igeFOw/btjuEtob9bjHX9UaS6sMXjusy7p1d8m49JW4vrYTyZufRgYFclwssWf1mGFElQbUqpi11JTK5sOXe1xKX2h7d4o1HcDyVzU0S9Ra2QavAbZfFcMVHpTyybD2D7XgarxGzwVWQ6G0lXnuU3Fr9TwnnL5qcT9mgibxpSPavSl+7XDiWrtg/ookXGCRdWFjMpJuSSsQwSAjoFpGtQY4iriv0dS1gKZoLBQ6oNu4cZ+3CP9p7FwcDZYs1R07Odai5WHfGBYXPZYrYWe+mQ5KmuhdSAjJRhpi/laPm0jI/kjA4jbjy0uD7jd2CSghUYMxhB9wNm2REWC7KD6RCGdwKmjYhRFt3I/YM1z9YHfPbgGx42lyQ1rOzAq7jg4+4JQ/b8evs+X1y8w3fPj9kfulJyQhn/UFg8z9SvxoLQdo/GiBuOBV+bki0F5y0mZTQlsBbGCRMyqXbErngaQF0HKpdIanA28T+bU/57fYeFn/iToyfcr6743XTKmD1PdicM0eGqRAgGdQZ1gowF0uo6lodO4fZMFw4gdlLqIeD3HrO2xWBjRELEjhk7KSiY3pIN9EmKN0WLqrAZa/aT5wULNlNNyoajpmdKlvPtkjE44mRBhewVNYpJpUMp3DbookFiQuoKF1ZKdkpqBYzB7z3u0mPaFmJEmxq1Ugg6lm6W2VjjHJT3pdh3VSAkQ20j+1zRR0/MBmsUEfBNZMrC7QyUIbbC/q6jboQGyI0jO4PLXsmLxFQZwGAHS/vdvL+IERmn24YO5pWAKGKVpgl09YQ1mXvdFiOZyibu1huO/Z7n4wEX44LKJK5Nw3VqIZWKkau5xNWgezCjYsaI2Y3YrBi1iukirALTW5n+jhAPa3TVId5DiEhUbAAzFSMlCyJQucKNKVp2sWITGrIKWQ1LO5C1ZGYbKsbgCKG03eoLV81MreyKXZndiGx7ABwCzidMrYzAdGzY3a+ovgvQ1DAFRBXXZ5oLQ+qEUAtpMvRjRVtPtFUgq7AeGkKyDMmzjjWvxgW7UJV7kyeNFrJgenO7OrjZCaTGQMpo36Mnq3muVDAmFw4cWbYPPcunR9j1hNmPBcIMdgK3FbI1pOgJVSZFwxQdzcGGZT0yJct6bBij43y7JKswjJ5p72EymMFgwlz5YnkugJkUmQKqihoz9/w3GxaXMF1kOlQuP2yIhzV51aCmrBHsqFSbeZRTSJNBVZhGx8vtgj54+slz3TdsQ0VSYZwcORmIBlKZzu30g4eZSXGD4rcR7YeyL0npR/3YXDOzhf09Aak5/SJQXfTEbokuTJloBsEMgoonLgRTJ4bR0w8ea5UUDfuhIiVDGlxRcRAkmFvoJJXJywSotpnq2RrGETk+QgGHzkszQPWmsS+91OYn0LzqWH6zpboKhIUhB5kbO2ECorXkyTA5V5ZzAFZLMKl0pzembHvBBJBQmkPXK+2rTPf7HllvYbVC25r+4S3HpAR1A6uUQSIcKOd/avC7jvr7PXasytAiZYODChJNkb3/YRuIlgDcrkxLqZ7nUleU7foyzXcvEt3THvviGj1Yom1FPKzZnrkSWE4GES1cmK+y68rE+xMvPml48Lmnuo5ItqgpKybXQ3UNqS2TtAmzSAawQfHbjEllzyqx+JaJ4Aalvsq0z/eY/UQ6XpEbR1w4XnxaMx3p/8Ox28Dmv1bZ/3TgSdtx798i7bOexhpS6zBTYjytcNtErgypKasrMymuT9hdILeO6tpiojIdOCQr1TriL/YgQjpokJgZ7tY8+7klnQ2Y85r/BXTlnKuranI8AAAAAElFTkSuQmCC\" y=\"-156.770539\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_37\"/>\r\n <g id=\"matplotlib.axis_38\"/>\r\n <g id=\"patch_93\">\r\n <path d=\"M 218.763944 194.770539 \r\nL 218.763944 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_94\">\r\n <path d=\"M 256.253599 194.770539 \r\nL 256.253599 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_95\">\r\n <path d=\"M 218.763944 194.770539 \r\nL 256.253599 194.770539 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_96\">\r\n <path d=\"M 218.763944 157.280884 \r\nL 256.253599 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_19\">\r\n <!-- Happy -->\r\n <g transform=\"translate(218.150334 151.280884)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-48\"/>\r\n <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_20\">\r\n <g id=\"patch_97\">\r\n <path d=\"M 288.032909 194.770539 \r\nL 325.522565 194.770539 \r\nL 325.522565 157.280884 \r\nL 288.032909 157.280884 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#pe66127ef0b)\">\r\n <image height=\"38\" id=\"image85a1be5cc5\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"288.032909\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAMmUlEQVR4nH2Yy49l11XGf2s/zuu+6tH16K6y3cYQO4ntkMghEZECEgPEiBEDpog/ixFzBiCGPBUgSEmMlZdj3LE77nZXd5er6lbd1zlnn70Xg327OkGCLW3dku6tfb6zvm99a60tf/79v9QH8zus/+GQyaPI6tiyvqvEWlGrqFcQwChSRlwRKcqBpuyZVS21CwD00VLYyCoUfLEcUReBmAxfPNph56eO8ZPIZt9gO0ge5m+CWwnTT5XpZy3+yTXzbxxy9keRL71xhnu2mXD5wQHThXLxjiF5JTnQQgGQJKhVSIIGw6BCjIYYDUM0jMue2gVEFIPiJDGrW5IKSQUE1MD16xa1UM4VFIZZZJgCOIpVgf/ZNbv/3lEs7vHxn5zgHnx8l6oT5m8lkgO3EYAMBpCQD0dAOgsrQYHWe9qqZD3usDaRkqFvHXpdYDpBghCbhAis7yq2E4aRsnw9goHXfus5XbQ8q3dYnRdMyxJiZHniePXNM1z53JKKHBFJisoWlMlb1SC9AZvfVDJe3LVlCAYzbXE20UVDWnmqLyzVOfiVEsaW9dFWFiZTpyeBd195zL36hlUs6AfL1Vt7xOI+3R6cfOcx7+1/hpNBSE6RBAokr2ipGciQoyUp06FVgiIiRhluCuzC0H4+ptvvqJsed7hiXZe0JxY7d0w+hdkvIYwN87cH1BviwjMrWt4dP+Kj9TFv7p1zOVoRvmoxoly3FX/zT9/Gqctvc7uLBE5v6SNCqhOUEVskEMWIEmc9MRUUVwZzXhNNTZgoLkB5JZSXyuRxT3Hdo9agpmFxP2E2hh+f3+W96UPGrmM5lDz8Yo/ussbPLeWFsDNXnCRBVElWMyifwGS6MAoiGVQZcS4CMAw2fz8L9JOsSbEJMTAMQthzrE8M8y87/LKgOofqMtHuG8wA84/3eP/gNU7rK266im5Z4i8tfim4DcgADgV9EZ0iYYqIRoMOAgbMJFCUAyKKc5FmawP9YEnbDE1J2J2s2a/XXLU1SYX9es0qFDy7njA/b/BzixpF1oJthZ9c3OX09IrKBRgka1eBBGYAJ2mrIZvpUxUQRbxifKJpOryN9INDAGsStQ9Eb+ijpQuOqEI/ZI18aeeci24EQO0CpR/YCMTTlqrpWZ+PMJtsNV4i06LN0U/5QzRnl0te0a1vZTq22WegKAYqP2BNwtv8n4WNlHbAOKWLDhGl31LbDY5Pu326aJmVLdddxeLjHY7fh/VRDX/QMj1ecHM5onCR0gRmvs3yEW6XJMWFsZKqlGl0ioiiKhgbKV+AMonSDRnQC7/IaiMmQ0w5As+XY+ZPpkweODYBYgHHn0amP/mC5nSHz75Zsr+zZNP01D7QmJ6DYoHx6fZElcyY00LBKbbMwlYVRJSiiEyqDiOa6XOBwgw56ir0yZFUqFygi5bFuqLwA83himUaUz+2pBKef9Mw/50juh3ljePPeHS1Q4qWSdFhSczcJrNEdgVMBue0idCZLaitAE2Oa0iG3WpDYTJoI0phIn2yDJpto4sObxJ12dP2nlHV89pXHtG827MeCgoT+cWzQ7529yyXKKCqe5xE9tySRapuQUnKWksODAmwijE5nJpyKM2WwpAsg5q8U/7so7uthd2Q/y79QF32AFxuGi7aEc4kpsWGu7s3VHbgw2fHDIPFmMS9+oZDu6BLHk2CxF/TmIIRn71LjOaQbkuj3VJ4W4y3q4+WzeDposvZYxJGlMYHJmVP4V7qDmAZSmZFy4cXh7RXOTpt60kIKy0wKNZm8f+6fJ1uHH7WvUS75TuqEJOhcCE/HMWZhJNEnxzLviSQvcyIUruAEaWPFlO27BQbnInM+4a79TU/PzvKcjBKt/a8f37KaXnFnltSVoHO8hvLjR841r8bIGZ9WZcwW2tI20SobMBJwm21FqLlpi2JyRAGi3fZQmblhrHLCVPbcGshSbelxCdiFDQJF/Mx4cQysS2VH2hfkCIZhzn+wQb7qMLahKpgXaIsBryN1D4f7iRR24CXDFhEb62kXRfcPJ3wybM7tNEzcj1GEquhoEuZ9o/mh4SbEoIhrAtoLU3T8fXmIft2iYi+dP4tpa747zOOd1/l0X6Bn3YMwd4+OETLqOwx28L9wiZUhWnRIWVLTIab2DAsPJebBoNmUINjWrYYUT57uodZWlKT8E8dsVG+dvQ5U9PydJjRBncbLd1uhyqTH37O3tGrLP6wR0RJSShsJKkw72qeriYs25L1soSrAr8Uwk7i8PULjicLbp5MGH/ieBIOeLo7w9iIMUo7cqzagvoXFcUcVt9dE0yJHQfeGj2jMR3nw5Su87eAXnQ1TmcTuLzm8D/nLF/ZQb60pC4DcSvqRVdws2gYrgv8laW8FOpzxa+h++CAZ7Vw/6Oe+pdnzN87Yv5GTXeQCLNAVwzZsBUO31/yeDZGd5XiU89fDd8hfM3SJZf989dKUs7KyiOzMWa+5OgHEx7vNkzvX95mmLcJkWwjsVE2hdLPhPrcMnqamP4q4G960s6Iodw2lhHoLJtNAaIMx4nVac3d77eIKv58xfWDXf5+723++PRDjFEGu22xtt2OkxDRqgRjmPzoc07MKWd/NuJ47+a2OBubMKOA1kKKhqjQ34Pla45iXlBeFFRXiVRsdWJzBhqbSEnQaeDs9z33vueZfHQFQP1F4OxiDKfZQky/BbVtWJ16iwwJrAFnmfz0nOW9Y86/m9idrOmCoywGRnVH7QecSZQ2Z+SyL9kEz9X1iOXjCn8jDI2SyoStss4AXBmRe4FnvzcC2aV+2iKDIlclD1YHOBfpKsWt5Nb5HSKoSLaPsoAYOf63Kz6vdrn+ttJUHTFaUjIYUbyNJAQLTMuWw2bB23fOOLs75dHVDk4FgiVGQ9+7nM1JSDcV7EYuvuIoj0dsjpXffucRM7+hdJFl8bKdVwNOupC5hVy81WCuVxz/R8GvdsYM7wys1yVFkYfcbnBYk1gHnyuDjbSlp7CRg8mKkAyLtmS9qkiDQUVJg8ljoIH2KLJ5NfGtr/6Svzj6Hv+y+DKjoudCswTUZj9zGINsOtQaEEH6AKr4J5ec/Kvj4c6U8Ss3AFwtG6oim+647Cl8Llcv2qHSDohYmiL8RpIN0bCONQwGvN6a9nmccljckDQP1XFLpyiYq3d3SdMGGSKkhDqLjmowhvqTC+7/7YD88y6LpxOsTZR+oNmCA7Db2tknR0Juoziucv21JuVuddrl9jkKJOGN0TnfKB/xw+v71C7QHK1uz1QBd3PfYMOE6QcbJCbSqM59typaFVQPLzl5CIcf7HD51ozLV6A/DkzurDiaLHHbDqRxPZUNXGnDoivpgmNxXVOPOw4m+aH90CCDoF75u4fv8NeX34bW8q13H/DETF+2PgJu9kni+r6luNmn/vApZr0dDkQgbb1FBP98ydHzJUciDDs1q9MZZ6/vsj6J+KMNrx9ccNJcA7xseUxuabyNOJuwdzqGzlI+Kpj845SD5x2f/mlBHy3Li4YqbK8nDLid/zon+QOef73guD/Ez1sYXvbg0nZITNAH1DtwFne1ZnrTsfODDVp4hjtj1ndO+PHeqwx1PtwMyn4PblOyTlNsKdyJ4DeJ6nyDCly83eDfWFDYmC9tDJgIJoDDO/Z+dEGyd7h4u8IvS0zIAvUbxa0ioiBR8dcdZrGNaCHEnTGSEu5yxfj5DZMhwhBzj+4sxARDTgxdraEsYWeCjio290asj4XT3WtGtkeC+Y0u1m1OJzQ/O2P/gzk3b87oJkJoDLGCWAJYZDuE1s8Lpg89/nKNeos6AwEQjxiTJ5zCQ0pZAt5lrRoD+zs5423+XRgZuv3EyPUshhLpXw69ouC6XUfjLNIGpj+fM+zWhIkjjC3trpCsYINiOyiWaTuxAFExfe7xtfSoM4jPJUxCREXQykHMvzfrDgkDKh4tLbHIQNro2AweE3JJerHd+tCwM6qh65GUKD5v8daAd0y9Rb1F+gFps7+9iILEyItyJl2ABBJjpk8EygxKUsolz1l0S7GK4DpFolDZgUUoeXEjINuImfWxsn5tmt9mVKFVkR8eBiREzLpHQsyaKXJkMIb27pjz96b0+w0SFayg1qKFR0uXgYYIUTPF2dRQb4mNox8b0kHPG+NzFl2JxNyVmF4xQ76Z5OIrnuZXDdIPqDFbCvztPQIpZXM0OQkYIrZLVJcJtw7b6Vny7dD/t2JC+oFYGVb3hP29JeW2avzvZQ5/lNuV7ngMQ0RS1pGo5kpg5WUtTaDeksYlbtkz+/kce73J36lu6fw/wIXtFN8UtLuWfqokhfN+QhhsjtgLl1L4H/u/0xHoqZJqAAAAAElFTkSuQmCC\" y=\"-156.770539\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_39\"/>\r\n <g id=\"matplotlib.axis_40\"/>\r\n <g id=\"patch_98\">\r\n <path d=\"M 288.032909 194.770539 \r\nL 288.032909 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_99\">\r\n <path d=\"M 325.522565 194.770539 \r\nL 325.522565 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_100\">\r\n <path d=\"M 288.032909 194.770539 \r\nL 325.522565 194.770539 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_101\">\r\n <path d=\"M 288.032909 157.280884 \r\nL 325.522565 157.280884 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_20\">\r\n <!-- Neutral -->\r\n <g transform=\"translate(284.632112 151.280884)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-4e\"/>\r\n <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_21\">\r\n <g id=\"patch_102\">\r\n <path d=\"M 10.957047 239.758125 \r\nL 48.446703 239.758125 \r\nL 48.446703 202.26847 \r\nL 10.957047 202.26847 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#pf6d4d2c62d)\">\r\n <image height=\"38\" id=\"imageda3bed4b7c\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"10.957047\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAALHklEQVR4nF2YS48k21WFv30e8chXvftV3ff2xY9ry5balkAIgUBmgISYMIdfwF9AYsofQIIBEwZ3gMQEJAaIAZYQHgAGCdwg29i699r9cndXZVVmRsbrnM3gREZm3ZBCmYqqiLNy7bX2Xifkd779JxoLR8wtwRuiNyAQvaBW6HMhOkEtqIHoIeRCN4XmVAknHeIjYpWibJnkHSLK7aagfTuBXrC1YHr2hwIC0gsSIBSK6cHWQjdXEHDqLWoNahIQdUL0QrQJXPADKAvRQciEmIE6iGWkOGqYT2pOy4p75YrcBK7bkhfmiCsV2lVGEItUBgkDMAEVwCYQyHA5DtcBE70hZoZoBTWJneCFvjD0hRD9AMgLIRPUJZAo+KWheTXh7YtjmuD4xuwVx76ij5bC9ZwfrSmOGrSMqDkgbFhczXBKumi6ETdOjRD9AMxJ+seBHbUQLYlJO9yh6UESwVWC21hELS+uHvEXx/fJTmqyrKfMOrwNxCiYoqc/U7LXHgaSdGBKzQFj/b7SLuY2lc6lUoYsfU9MCZgEDpPukAC2TaBdBX6tuK3SF0Jz4miPZqwf9vhHN/TB0FaebNJBFojW39WaHGiOYY3hsoneoDKU0SYwO4pjDn3xRVCK2yhuDRJ0LItEDjSkOBtZXk9BhcW0ZlK09OddYkhBdMAje3w7Uyjg1O4cmEq2o1d070LTJUASh4dGUKtEJ7RHUJ8nNzXnPf605vJ4zdubGflPC5qPGi6ma5rgqOqMcOOwteyp0T1huy+ig8aQJO7oRuyDGQaGe/CbxJCrE6C+TOVuF8nuauH48pYnx0ue/8dTZp8Z6vO00sw3FLajWnheL3Ls1o1uVD0o6cHhdNDQrnyph7HvW1laPF/qAFzJbwK2SzdktyBRUSM0Pz/l590JJwGWH0dipviyIzOBPhqO8po3eUCtS+wcMHTIIAImMSbjH0M26MztXRNKZXNpkAi2UeoTSzs1uFrxm4jbKhKUmEE3F1YfwtHHV8hJy8cPfgFAYXvOiw2P7i0Jpe51e1BCtfuSOtFBO+z1Fd3+VKuog3aRfopEQ7aJdKVBLTRTgxroZoL+xpL1mxnleUXmAt9++jMmrgVg4VuCCh/Mr3mRnWMri5iRINQk1mVoR04CyKClsafI0MP87lTId6AN+ZVQvo/4KqJi6aZCN4Pw/IjLX35D7np+af6ex8U1n27PcBK5yFYYlLWrIY+IWlRBZO/SXSllp7HDrrwXP6hTYqbEPIJTYi6osagVoreU74RiGfBbQ3SWUAhX//yA5mtbfu/BD7gJJU4ij4ol9/wtlsiR83z56Rs+fft4r3mzXxOS643E5MCdI9UOs3A3H8uIWXTkxzX+pCFMIiFLLrSd4qpAdtNjG8V0kN+A+7RgFQquuwkLt+Wev+XMrrlwK07tmu9c/Ggca7tTD9pUwrrrV/ZAWwNbIVekCJSTlpN5xdF8i04DasFvFL+OdNPksHyl5DeKXylnz5W/+u5v8otmzmW+5IG74dSumZstU9Ny6tajyCWmcyefOySqSWlhNyd3g1WdYrLAJG85KbacTTZMjrcgMH0daOeG9WV62vyna0yvVA+Fd98SbCO0wfLIX/PALTmzGwrT4aVnbmt0lyzi3pU7p6Y+NgxnFYhZapoMAKUXQmOpmowmb5j6lLfeT5SQCbZL5Vt+OcPVGe1cqM8jPGxYzCs+mF5zatccmwYvESJUku9pUZAoqNF9FBoOZzod6VS7r/U48SvHRks+22ZMpjV9b9E8snrsOP1hyikxEzansL0XOf7KFb99+WO+Vr4iYKg058fdBQ/sDY/cFi831OpHF8pOYybNWtOnieNGAUrS1+6XjG6NYG4dURzr62xMnt0c2rkhv4mASea51/Cti5f8/vH3eR9m/GD7hL9784zruuTZ2Uv+4Ox7PLIVXvoxOhEPXOl138fUSmKsB9sMTdWlQptWEJUxOaiR0c5qYHtuyG5T7OlmgrWR+/kthfT86+ZLfPK9X8MvLRLgH+b3+OE37/FHH3yXgNxJq+Mhe327Mdoe1FglJQrTyX6ehf2NmJTJQi70k/T/3RR81vO0eAfAJ//+q5QvHX6dnhWuhc+6S/66+BXmrkGCjG5MdB3ozhw0WLVgQmLNtjIwqOMvMX26OeSpjKJg2rsxOXeBe+6WQgLZa0/5VnEVHP2kQqKy/MqU/wxfRZ/UmLAv3zi8D0zh0sZDIKZYk61Sj3K1YpuIGqEvTSqxQLZRbCv0E0m9bKuEDJpeOCprTu2a5+0DJq+E8l3AVRG33ELXE745JbsRqlOHkbtA7nwCDgbRm8RWsYwU71vMtsduWtQK28dzys9XmNUGzTO2H51QvN6w/MYRfh2wXkAM5+WaqIY//d/fRUJiorrvuP74nJiBrQeJrO0dMDvBj7NSh3ZheggGXK1kyx67bjFVi9QteEd20xEWOeuvHlG+qsmuG7rTMpVaoS9SJHq1WfBP66+zvJpybIVmYbCNUlxBX0I7T+POVYLpZCzjaILDaG06xbaKCUlHoTCoKzGLHImKtKmc3dzTTg39RyW+ipg2WbufGkIuqMCr/7vgk6sFUjmih/JFQHpwVRJU9cDTzoTmJEX5mH1BWwfldKaNuFowvSK9jprqT1zaRx5s5xCwjeDqlIltnawUMsGvBIIQO4PmgfVTIRSOkEE/s4RpRFqI0577j6+5+q+LpOsvaEuGaeBM0KEkKSlIiITCYTpNAAuBkDJ/vuzx6x7ThtQiFhnbC8/qSTKHOW+Yz7aIKJPHHYtnNU9nV3x98ooLd8vcbgGoY8Yf/9sfpnl5wJREGb87M5QqxR2DXw7Cn3jc1qQ8LyndRivU5xnbU0tzImyeROK8B5uy/Zcurng6f4+XyLGveJgtuXAp8kylxUugU8uP+hnZDTQnB31sR5emtZxpetLeMmX95rwESe8v+iIBbhZCcypJwOcBe7JlMa+4zDpy1+NN4Onsisf5Ned+RSY9x7biwt5yamoyibRqqNRRq+fPfvKdO/l+h2n8VHBmucF4S3Qu7cQLQzszNMdpz9icReKkx057nO+ZuEiZdWSuZ5HXfDC95sPiPfd9ylyZBArpmJuaU9MyN6kPrGLkJloCwuZfLsDfJemLh+PdFS7PiPk05Xu72ymlrqxekSwiohijeBvIXc+9yYrHkyVPiisu3IoLd0shKW146fESsQKVKp3CRh0tFosS8qGfhWH27ioZGEeTi+sN9uoG7wwhn955gZK6vSKAdYEyb1kUDSd5xUWx5sxvmJiddhydOgrpsCi1Bq6C0GKIariNBRHDf9ePEU1m4mBWjkk2pn2q0xCI6w2mLLAn5ZjH4pBosYrxkSzrKXyPqlD1Gauu4Np2eAlYInX0TE3acRfSUUhgFTM2MadWT60ei/Ln3/8tHv5PpD7e72UPtTa6UpxHJPUl06XGIvFgO+UVYyJd53jfOkKfVPt+UdEeWfJZT2E6JqYZP+empZAABrwE3oY5XXS87OfIVUbIhvUPguIYs0eNaQSTgOnQEvpCxs0uQei2nq4XZJtA6bSnnViMKFEFL4FjWw1MdcxNYCLCRHsq7bkKM4IKf/vyGR/+fcfmUTZmursi24N0425XhJhb+pLxraHdpn3kjkUUYqnYMjArGuau4chtObIbJqZhYhqOTctEhLlJtNR9w+fdGZ83Z7z7x0vO8m6cIneOg3cZKEljWAuSetYurdo6RejdO4zoNI2VSc98tuWk2DL3NTNbMzUtU9OwkIa5KHOT47C8ChV/s3rGXz7/deJnU85/FtmeujHC78Ln3SabgP0/IdPh35G8wYcAAAAASUVORK5CYII=\" y=\"-201.758125\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_41\"/>\r\n <g id=\"matplotlib.axis_42\"/>\r\n <g id=\"patch_103\">\r\n <path d=\"M 10.957047 239.758125 \r\nL 10.957047 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_104\">\r\n <path d=\"M 48.446703 239.758125 \r\nL 48.446703 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_105\">\r\n <path d=\"M 10.957047 239.758125 \r\nL 48.446703 239.758125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_106\">\r\n <path d=\"M 10.957047 202.26847 \r\nL 48.446703 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_21\">\r\n <!-- Neutral -->\r\n <g transform=\"translate(7.55625 196.26847)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-4e\"/>\r\n <use x=\"74.804688\" xlink:href=\"#DejaVuSans-65\"/>\r\n <use x=\"136.328125\" xlink:href=\"#DejaVuSans-75\"/>\r\n <use x=\"199.707031\" xlink:href=\"#DejaVuSans-74\"/>\r\n <use x=\"238.916016\" xlink:href=\"#DejaVuSans-72\"/>\r\n <use x=\"280.029297\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"341.308594\" xlink:href=\"#DejaVuSans-6c\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_22\">\r\n <g id=\"patch_107\">\r\n <path d=\"M 80.226013 239.758125 \r\nL 117.715668 239.758125 \r\nL 117.715668 202.26847 \r\nL 80.226013 202.26847 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p2e5a42ec25)\">\r\n <image height=\"38\" id=\"imageaa3fb813ae\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"80.226013\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANcUlEQVR4nGWYya9d2VXGf2s3p7nN8+v8/Ox6tqvssquKkKQgUSIFUCTCBDFgCIyiDBAj/gH+A/4HBjBBSDAJDCAN6VCRiiBFKk01sctV7u3n195377nnnN0sBufahcSRjnTvuVd7r/2tb33rW0f+8p0/1axCbQNT2+Il0eSCB8sNpr5lx5/RqaNJBV4S59ySu+0W759c4OHBOmFW4E4ctgNJgloFFcK1JeNpS4wWazMARpTZ/gR/6MheyaWiXkHh5s1HfGPvLRKGqVniJrbDSiZkO2xuEgDrvmHiOjKCQXl+tdnz88NLPPnFBXZ/kpncbZBlACvE9YowcZztOWZlRbgeMSaTkgFAjVJttITZGBgOggF1mVsPd3h7/Tpfmd6iVY+rTMCgeJs4SxVGFS+JDd8Q1JLU0OSCRSpZdw3vz3c5/uEur373DHPrHhoiYi14h38AXoTR7Q1MOM/hbkE16UjJIKKoCoWPtJsRt+9RszqwVUSUf793k9HLPV+a3MG02Q8wo1gGyK3kF8+67Djqx5z0NQnDT351nSv/coS5/QBtO7TryMuWPF+QZ3N0vkDvP+L8P/8af78gJYNmGRBTCNGytrlAvSIZ1CpSZMTA4uGUx905Lrlj3DJ5sgqliSQMSaEiENQO6c0FUYdUPFyus/t9i976eEhuVjQrkCCtcq0ZxKAnp1z5dsvt8xX+XPeCCjEavEuYlxriYY0ZB6pRT+ESX3/z+/zx5JdUAu5XpxdZL5fsVjNGpn+xQMgWI59yKyNkFbpzgtx4BUkJYiLsniOVBlFIpaE8aFFriGNHu+WRXsnZkLPBFxFrla53TMct9fqcNzae8oXpJ3x1dIvzVgkKVgT59p3X9Fa3y71uiy47ShMxoi8+n4QRB/2YmA071ZyPZtvcfnSevPCYxqAWJIHtBBMAFRAle0i1kicRsoBR7Ci+qFBrM994/cf82dq7FDKkOumnQEj76BUFCJqYa+B7zR5vz6+/+MMyeZ4u1zCS2RudsFvMALjbbvLhyQUeHa0Re4cYJTcO6Q3qFKkjYlfPWgMGWAs4n2CViTf3HvLXl7/J2Pz/wJwXS9KMFWFDKnq1ZBXyild9dgAsQklWg5XMOduwOZlztTriwcYGH822Oe0qqp3IrC1pe0/OQox2qLgsKIqxQ1oBjE18dLzFh7tbfLE8WsEkL4IzzyM0GOa54yCuYUTJCEFf/MwiFCxSQWkCRpRWPZ06QrYso+dsWdIETxccqoKqIAACEkGrTE5CjgM6ORsWy5Lvn71B83+QsiJYEVzQRNCEF8tRzrTZU5pIzJZuhVblArUPPG7WuDEq8ZJeVK2RPHCyLVguSrS1LzhlRhF6gzqwkzAUbRJyEoyFnAxvPb3GUT/mr3a/xdTISrDAPA8qaOIwl0MgJlDbHiNKyBaAjbKhCQU/m+1xGkcchCk/fPoq3/ngDbIKo3GLBsPuDyw7/2khCfnMI0HQjWGt5wiig6pkFYwo3iS+09xkJB6zSqOxImQyvwzCrX4XbyIGXfFMBkRW30e+58lijY+a8yyT5+CnF7j0Tc+z2YRp1VFOOw4+J8xfEmQcwSk6GYpAVT5tbPI8QOF0WTG2HZX0BBIZyIBLqsw18M7yJptuvsrzAKgziZyFfqVhzmS8TTxernFzbZ/Pf/XXVL8f+NrokPfPdgnJsriRCcGiiwKMIgIi4HwiRUNCEKPIqh1lFd45uszF4pROM2YVmOk0klRZtw1j0+ElrYLKrLmWse1XCxicZEobySo8adf4zPQxn50+5Jxdcrk+ZqNakrMhnJbIwg4885miDFibMTZjVsEa0ReaNmsr/u72l/les/epXCSUkbFs2jnP0hp2BXhlwguS1zbgJNOvyO7MkN7DMB4OshLlqIYYLKigo4QYxflI6SMiijWGaDMxWowZAjOiWJNZLmv+4cmXuHHlKZddwARVPg6Gd9srLHKJl8jEtmy4BeUquLTim5NMZSNT13GxOqU0cVWdjqB2JQOD8mNArK4QGg5rTcbZTFFE6rKncMOBRBTrMndPNvjXs88NVdko/Lx7idM4IqjFS2Jq2he3EcU+R0MNpY3UNlCayMR2LzhpGdLsfAKniM2IQEqGtvc0bUEXHHFlgaxRnM0YM6AWesd8UfHdJ69zksE9SSMe9FvMYsUFb7Am4yVhySxySWUChYmcaclZX9HEAqo5te0piXhJeEmUJlKYhLUZcRmxCqKkaEnRYmwCDKu2SBTFmIyq4E0mHxaoVw7rEbfCFu6jfofDMOZBs86Gb7jgT8hqMKvK3HALmlQQs2UeSk7amnlf0o0dF6tTuuwZu6FojAwbaW8Hn2UzGg0oZLfqIqL4Kg5IW8GuOKaThH/iiduWwzjBfbC8xP3lBrePtnllfEglgcDAmYQhq2GZCh4s1jluaxZtQc6Go6am37LsVHNOQs2WXwzKrkCU4Q4W2wsmCn4mmAjZwvJSIm32GJuoqqHFicuDzdah8BzAuw9foj8tSZcNhSQyhrNcEdRyZ3mef7v1BvKgxs+EfiOTxpm2TOzXU66OjoYqFR0qM1okCpKE4sQgCaafKNMHLSfXSpYXhHMfWNqtmnYv4H3CSkaDQc1gh4I6TJcd4VkNOlichJDU8CxO+dnZFb516w1SO/TMrfcSm78QpDP4pwUPHm8CrKanhsIkcjSY1lDtG6qDof2cu7OkvHvE5HGk+8ySXMDmBxlpBwNpRLFHHtcIXed5f3kJs8wF6hR/6PifZ3u0ueAsV5zGEW8/ukpsHX/+xf8gX2oZ350zehYxvWB68A8L/uvgKveWG1QScSZhrGIiuAaqw4wa6DYL4s4a3bolH5Ts/niO7TNaZwo/CHZ5LIweKeZuzVvPruHeO94FUapD4eQX23x4+SJT2w4i6yPuvwv+xv4OO+dnPP3yDnEE6jPVPcPpG5GTZUUzKjhLFQBl1bOcFrTR4M+EjQ8zYWxwjccE5fo/9ag1HHzWUa2fMak6uuQoTmDyONFuOw7mY9zdOzsUB5bJg8z4Mfzty1/m916+w9S3vHn+IT+6tMXVvze0W9vYWnFLmDyC2VXwmy3r9aB181RiRamKQLve0zvPaWGpDgy2g2anRC2cXq9pLmbqvVPOjVoKmwjJ4lqlmAVibbk0WeD8kWX0SBjtd6gI4btj3rr8OfT1OV/Yu88rX7nHh1svsfahoT7INBcMB69HJtszztct3iba5JmnkpAtqkLuLHZhGD0RqkNluS3060q/npGNnnrU03WeUxV01BKSQSxkazBJ+PrlH+Mm92F6P4JCuT9nXce4tmDeTHi7fYXre8947bWHTH6zo7IRI5lfH+/w9P4GTbNGrjNXr+1zVlb02WKNQm+wrUCGdlPIBdhWmH5sse9VQEXeEZYv91RFYLEsWYtwfLPga3/0U/5gdAe3/bMGUUWNoFYo9hes9ZliXmDbitvNRfxGS10FSh85eLZGeadk69HQ/45+a/BpXXLEbKh9YLSzIG8b9DOR0g1upY+W5bIgnJSYzlDunbFZ9oMbeVpTzjIHnzf84ca7VCI4//SUPK3JtSdNSswyYrpIeQAbvVIdOZqLE3KG0ECxq/Q3ltg3e0Kw3Ng+orKBJhZkhiDr9UCfLW10w2CyMollFagu9gjgVtxqlwX1Y4uf96TCsG4agiqmuXkec7YcVNsbup2aVHvi2JG9UM4Sk/uZ/pyy2FOqA8F9UtG2nivbx9RuCGoZ/acDxaoHtr0nJEvKhhgtOQspGVI29NENaC09fgGSlMk94Z3lKyTAqUB3ZRN/0BDWJmRv6NeH/pZKg4mKa5XpPeHozczphlI/dEy/V3Nk9ni0LXRbmbwVqCbd4BxWBrDv3TDCPXfTZvVOZGUWcxZoDa5RTFLW7kf+8cFv8ye/8R7ON5HsDGF7hFtEwmQYSEyvoEoYCcVZZu3jnslDw+yK4+yacnQhUxwbJveUzQ8UNY5+XNCfE7p1iGMlVTr4fpcHK+QzKBg3OIusgl1Y/EKRqKiFke9Jqrhuw1PtdywvVJQnAdtm+qlFBUyCYIV23TJZJIrjnvMHLZsferoNz+yyMHtVOcVQ7wvjJ5nx40EPUyHEkdCvGWJlSbUSpoqWmQTkOqLJUDZCOYuoFdSs5goR3LM3HZd+lKj3O06v1dSHkVQINigqUJ0mUmFotz3TecB0EdMG/CGM73vCtKDd9iwuCGdXDKaH8kQpzjLlaWa0D2FsCGOhnxrCmiHWSkqCCUK9D65JIJCdMPHdMCV1L3fktw22jZRnifklRzlT2nXD9F5PHFv8IoFCt1FSJcUsOlBFYqboAn7mmNwz9OcK+nNueK+SQR2YThnPetQIy21PfyqEiRAmFhOhPMn0aw4EuqlwuT6mFIP73dducc++RrdZUj9padfH9GNBBRYXC9ZvLWi3K0QV30TSaNjYni7Brmaz1VUcd5SH7fAOorSoN0jIiII6Yfykoxg7wsSSLaRySF+sDZLB9vC0mw4c/4sLP+D4hsc1ieZSzdonHaka5okwZhVwQy6E5A12MYz6cWuMmpUrVcW0EcywEYCbtRT7C9xZhztu8M8W2CZSHPdUB4H6WcAvMgiogfpZz2g/8LRZI6vyvy37d7XLCr2cAAAAAElFTkSuQmCC\" y=\"-201.758125\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_43\"/>\r\n <g id=\"matplotlib.axis_44\"/>\r\n <g id=\"patch_108\">\r\n <path d=\"M 80.226013 239.758125 \r\nL 80.226013 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_109\">\r\n <path d=\"M 117.715668 239.758125 \r\nL 117.715668 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_110\">\r\n <path d=\"M 80.226013 239.758125 \r\nL 117.715668 239.758125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_111\">\r\n <path d=\"M 80.226013 202.26847 \r\nL 117.715668 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_22\">\r\n <!-- Surprise -->\r\n <g transform=\"translate(74.132716 196.26847)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-53\"/>\r\n <use x=\"63.476562\" xlink:href=\"#DejaVuSans-75\"/>\r\n <use x=\"126.855469\" xlink:href=\"#DejaVuSans-72\"/>\r\n <use x=\"167.96875\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"231.445312\" xlink:href=\"#DejaVuSans-72\"/>\r\n <use x=\"272.558594\" xlink:href=\"#DejaVuSans-69\"/>\r\n <use x=\"300.341797\" xlink:href=\"#DejaVuSans-73\"/>\r\n <use x=\"352.441406\" xlink:href=\"#DejaVuSans-65\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_23\">\r\n <g id=\"patch_112\">\r\n <path d=\"M 149.494978 239.758125 \r\nL 186.984634 239.758125 \r\nL 186.984634 202.26847 \r\nL 149.494978 202.26847 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#pb580d6ee8e)\">\r\n <image height=\"38\" id=\"image4c3339cd04\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"149.494978\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAM7klEQVR4nE2YWY9c13WFv32GO9XYA8mWKJmSTCmKEsOyDTsPQfxgBP4BAQLkNb8nvyKPAZLHIHkMjACBgwSxDcfWYJMUxZnsblZ1Vd3hDDsPp03lAAdVQKHuXWevdfZee8tPl3+rcnYDOQxQV+R5Q1w2hIXHXwUApnVF7AzjQti/Iwy3ImYZaNqJ2kdCssRoaesJEWWYPOP9BXf/YQ+/+BwNE4hg2hazXKApgxGYAmgGXyFNDYB2DVo7nJnPUFXIGfoBsQaZ11TbAFkZbtaMS0uqYTgRwjIjXaLtJlZdz9xPRDUcgseKMiWLs5nDOvLoJwveqj/B/ddn5HFEpwkNAZxDjEErDzEWkEYgZUgJGcHgHJIyqKIxITFhQkZCYjqq6I8tsYWwEGIHuVFMlThsG6woY3Icgicmy36siMmggGkS/a3M8x91pB98jFiLZoWUyq4rxHswFhEBEbAGvANVnE4TTMA4grWodxAz8bhhf+ZINWQvpBpSo2iTEKBbDkzJMgZ3TaUhRgsqqJb3pFVkbxyPuo6z9rtU//ZLNETEWlAF75A/sKWKHgYkKzpvcaSEjhPkXP7gHWlecbjpmRZC9qAOUg1xHbFNQinPPUyeEBwxWOJoYbSgIJMhzyJkIVeZ6Qi+/mnFh0+/jd7/ukQqK9r4AkwEdRaZAqgSTucYYiyhVUW8J80qhtOK4cgQZxDnEDslNYrpIs5HjCgA4+gZtjVx52Ey4DI4RRcR6W3ZUUiLRFxFfv83x3D3W0XTgNauMDQFqDw4B96x+XaD0SmgIaIpofOO6ahmXBZQqSmAYgtxkTFWidGSVQjBMl02yMFidhaJBqkyf1juytA+M7TPLBIMpotMNxIX3z1CqqrQmLQAqqtCwTXgcS2Ywm9GnCMdzxnX7o3Qi76U3GSYRxRIoyXtPfF5h7+0NM8sbi+wCDRfNshgaO9VLO+B31GkYBUEqBOvvqekmyu0qchVETrXFFJ51Fn8XnEaI5oVu5gzLitiK8QGYqukLpeH1hnfBOLkMBtPfW7wW/B7JTWgW6G6akge/MYwrZTpSEldKoBcJl95qDKicPGnS07/4wViDLLv0b5HnAVjriMJTrMiRtDlnLB0BVQHqdVvTgoYo5AFMwhuD25Q+ptCmCtxpkVbbWK27mlMoXQYPSlajE3kbMiTJVfK9gPDjZ9F8qyBmNApwOYKqSt02WEnxQFgLXnWEGshtUJqy4uKQsvOWdAkxJPI1UoK4CpjqoT3qTBRJVZdX6pFdGQVfDtS+8hV3zCZTBRlAp7/5G1u/etXJa+EgOZrfeaMZHBoRqqKsKpJdaEx+wJKVCCDqpCTBQHTRKomkrNgjOJc4v+vbd8wjg7nMjkLs3piWY0YUQ62IjeBqQtcfLfj+Dc3cJ89LOefAhiDPHlJ/e6iREy6ltiVDK8OJAtkLTkpC0yGZC1iM9Yn2rrUSFUhZUNMhs3rDh0s3QNP20N/poTjyPNXLc3dFzQusqoHsgpjcry0mSc/XvGtzyi1UzOEgMw63CFdA/OeVBvUFEFJBgnlu5mEDGglmCZT15HKJY6anqzCk+2S3cMl7TPL7Ini94mLTyzpnQErkDaeTd/w/tE5Z+0VBuXVNCMky+P3Z8RP7mB+/usStVTorH/34lpj3pEqQU3Rk6QCSK719YdlbabxkdYHKpPICLvXHfUrS2yVq28J2Rumm4E/vv2c02bHzx++hzGZxkYqEwGI2RCzQdrIcKOiE1MiprkU+XmHE2vRti5ilhItE66ppOShXGVsF+maiVk10bprO5QsVTehrkIU4kzJlWIXoQhfMtZmdoeGz7nBfx/eJbxssTvD/JHw/m9Gmgcv4Owm6dmLAi4r8eYSJ3WNOoMkReI3t7BwCrkqeaxuJlbtwHGz56y9ojKRZ8OS0+Wex7dr2gcVtodcCcPScTXVnNsZ0+RoftWhmxl+KbQ9bL4TCB8duPdpy41/f4vhWHjnX1ryl/dBM+7lFc6sV6TaYxJIViRL0ZheZ22vmDphbcbbxEl94Njv8ZLItXA+zDBVYlpnTJByuMnQT57YGPRZQ32hXL0Hx5++4DB52mjLwYOhex658bOXXP7wjNX9r0FKknX5ZEn21xG7BqQCaiA7RauMs5mcDReHlmfbO+xezpjd8ywfZLKFUyP4Q8aOmSc/tkgWpugYk2P2yHB4C6qPN1xedUybGhkMWGifWNonl9APrD7fot/5EHnwDERwuauQmLFjAVZcHqgFVJDRoA87Bqe4rwx5Dh/85BG3/uSK82HGlC2bvuH8qsPeb7j1n5nnPzSkVARuArgD7F51NI898z2YAM2F4vuE2ezRmCBn+rM5sweQFjVOkkLM2DGBONSUiEkGE8EOhu65cPW+Yv7ynJvtQEiWLy9vMEVLyob+UKFZyO+OhC9q1p/B5TvFQCIQZ1C9dKhVTn4TkaR0X7wknK2LvX69wVz11Oc1Ulfk2uLMYSrijyWhltv5TY7wewEF83bPGByv0oyUzJut6Tr3XVRUF4bZs4nshVdbz2HhqbZKfwPMKCVytx3DibBenJG8sAoJeZqhrXGvduhyRrYGF0473GWPxPzmNkoWVLRUgQT1JvO696UQJ0EPDomCOsVfWOIqU9/eI68WjCvL6n9e8MlvlXi6wD3+iuzucHgLwgL67/cYUbbTjOxh/sjjrUG/eoxZr4i3T0i1wbnLHjKYKWLiNYUTiBFAsWNxErK3pNHgrixuJ+RKWf2u/BZaw7RekGoIM0NedZivnpFvHzHdvcXpL3foryCsa6Zf1Wzet4gWnW0+aDj9oiZvd4h3SD5GneBkCKU7CeAPmSFaRIq+JAlHXwRia3A7gzsIy/uZ9mVgXDsuPzb4nVBfKGTwW2jPE7v35hx+9BE3//ohF33H+Zcn1C8NudZy4135rBrh+PPSNYm1SNOQvSU7wUk/Fvq8o3vR0p82JBXqS6V5neg+f8H20zMkgR0K1cOJIzuh+t4l25dz0j1P+0IZbgj7M0t/Khw+CKyS47Tb8/pWR952LO9Btcvf1OOs2EFBDGINdC1aGcJMcHo4lPJTedx5Q3NRIzmjVvBXibSes/j1Sy4/OmM8VrIzVFew/nJC/nHF7vulWdl8CHaE8ei65gJGlHXVc+fmBfeSYRda2ucGtdDfLMn49H9jsfarJVp7sjXszwwub3egGXvjlLBu6E8Nfqe4QTnc9KR3KlK9pLlQ6svSB4xH8PVPHWmRkDoxNY72qaN9rqiFdCrYLrLwIws/0NpA+27g9+0JvUoZI2xa2vsV9WWpuzLriIuGXBn27yechqlYjlnLtK6YP03EWhiOhcNb5YbGVsleMbHc1lyVioDV4sG+dqx/XzL/5j1Hfztydrzlne41tQnsqJm7kXfWGzZjQz95SMWi2+1UGu22Rq/1deejZzh7dITGCC/Ome8O5FvHXN1dEtuStVGoLwQTSzfe3yqAUGjvV3TPFL/PTHNh86kl3+k5O97y1myLM4k+V+xjzS7WZEq0QrTIwVJtFDMGiBHpR1i3APzV27+4ttZ1BSmjhx5zcUX7oiG2Nf2pIVelbsamJN/FfYMdFNFC6+GWMJxl7MnAennguD3QusCqGng1zhmSI2bLPlQcgmeYPDFYXC9Ue0X6ETW2jAmAp39u+YvuC5wOI7KowCgk0GmienTBMq2xY9FcqgWpYFoq4+l1PxCEXCe0Usw8YF1iipY+eloX6JNnF8poKasQkmWYPPu+Iuw9TS9U2wjDiHQN6WRBbC327o6VCThNGYYBcQ5ZzNEY0d0B/xSWhxlumNOfWMa1IEkwI6Q2o52iUijNgyVKcbhDdFyFmiG5N2UtqSGpELMhBQtTkUm1KY2uzjtSVzGtHOv5a34+vIszs5a876EqwzRZLmAK6NUOEyKdKnac4XoHGIYTQAzZKyKCGkXFkFMujiIZhuhIxmBNxogyRsdhrBhHR+4dfmNpnyvmEMB7cuVQK1x8bPm7D/+ZT/wrnKyWmOv2SacA2yvEe8Q5SAlzvqUJCTPNEa1QY5hWJUEWv3YdliykaInZEFKZb5hsEGCMjmHyhN5jdpb6XFg9GLGbPel0RZp51AjTWrlhr3jb1ThEkNkMDZsy9QlSBmyVL+OiGJHLLXU/YsIRaM1htExLISxKu6coiCKiJWrGoFpcR7o2jWFyyN5RXxjmTzJ+M0KI5Mah3jAeOe7+4CFBLYc84N7MC9oGPfRoKoM5skOn6U3kmALuxZZZXoC0mCiYJAyGcnODIVnFJMMkDmsyMZVhXoqWtPFUl4buqTJ/OGBe78nHC9QZzJg43Kj5q5u/5TzNCb7HqZEybmyaN2MgQnwj3NIhSwGrit2PzB4LJtaoMWQngCWuQaMSjSWnErEUDRoMjIbq0jJ7DKv7E9XX52AMsSs6yJVl80fK3//uz7hzdMnH7/0T/wfYVVG5o/n2RAAAAABJRU5ErkJggg==\" y=\"-201.758125\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_45\"/>\r\n <g id=\"matplotlib.axis_46\"/>\r\n <g id=\"patch_113\">\r\n <path d=\"M 149.494978 239.758125 \r\nL 149.494978 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_114\">\r\n <path d=\"M 186.984634 239.758125 \r\nL 186.984634 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_115\">\r\n <path d=\"M 149.494978 239.758125 \r\nL 186.984634 239.758125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_116\">\r\n <path d=\"M 149.494978 202.26847 \r\nL 186.984634 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_23\">\r\n <!-- Happy -->\r\n <g transform=\"translate(148.881369 196.26847)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-48\"/>\r\n <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_24\">\r\n <g id=\"patch_117\">\r\n <path d=\"M 218.763944 239.758125 \r\nL 256.253599 239.758125 \r\nL 256.253599 202.26847 \r\nL 218.763944 202.26847 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p1fc0b451f1)\">\r\n <image height=\"38\" id=\"imageb531a9cea0\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"218.763944\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAAON0lEQVR4nD2YWY8k2VXHf+feG3vkVplZ3VXV+zLtmTEzI0OPJTCSn0CyZSEEDzzweXjiU4D4AEgWEgJhI/CmwXgZz4ynl+nq6e7qWrIyq3KL9d7LQzT9EMpQpFJ54n//yzlHHv7t33tlAQ8A6UnN8+9FPPj4ECWeRydTmlcZ8anCbMHG3dWmHps4fOzQeUMcN+RxxaYKqWtD22jcOkAqRbAUJr91DP7jMRKG+FGfdpgw+yBFHJRjQbVw8OMVq1spp39ZYcRDsHHoylGMDU3PsPfhMUUb8Go+wD7LSRaC07C+6XCjhiBuwQt5WnFvZ8a19IKD6IJINWg8Wxcya3JelwOWTczhYsTrYZ86f8D05zOoG+rhAABdQ7CBzYFnu5+w2dMkaYVRLQTrljbWDH6/AuDLp1P0sEYdJgQboZw47Kgl39mSRTVaOUJteWdwyoP0hDvRKVf1JaUP2NFbGq+4cAlPkytc2oRptMcnXOd8kCB+wuSnp7SpQhzUPWFz4Gl7lvm7hnroibygnAEXKJ7/QACwWUCw1OhnCeKguN6iDgp64w2BtiRBwyAqeX94zPV4wX6wYKqXKHHs6C0BjlgsmdRkqmJHb3gnO2GvtyLNK2YPHcXtEW0siAcXQDtquXr7HGc6Rq1PckwbCdJ6ek8M+mKNzUboUrCxp92vGA629OIK64X5KqN1ihvDC4bBloEuCMTyohlT+oCNi9i6EIBALACN12xdSGRa6lojg5rjbyf0n3WkdiFIpTg5GTI+8sw/8EQ7BQaBy7sh+SuHO50h+yOazGMnNTujNQf9JdNozVmVUzaGXlRzK5uTqhqL0HhN7TXWK15VI55spiyqlMzUTOM1V6IlaxsxDLcM8pKyMVTvWYp1TnThkRbiY83eu69ZcoAqhSCwGHFQTIV44ZAkZrMf4a+W7Aw39KKaabRmJ9xQOUM4bPlo8JJr4RzrFWOzpvaap+U+//76AWeLHiawNLXBe8FZ4eO7h3w8OGRgClqn+epyTKAtm52McAmmALOFl+dDwrGgKzDKYfAQLj3hRQvec/zHwu5kSRo0ZEGNUZbChszKjJv5nN1gyaPiKgNT8Kya8uPj+5xe5ByML/neO58xCdZsbcjrasBPn9/mF49us74d8f7gNZNozVmUs5aQxUGNehLS9KAaQpZULO5HAEReMGfftjz84Cm/fHaD69Fddu7PycOaQFlyU1HYgK+2A9Z1yCJM+Xy7z1Ex4JPf3SV5abCJxyaer1+nvHB76FIIVkKbenQtDC7h2aPbnPxJj/ujM6rWUDWGyXTF7I9GDL7Q1BNLu07QlwaxsM0jzPcf/oY7yRnhXctPfvAOV7VF4VHicQizMufook9oLKfbHmdFzp3eOQ+/+ZSzuzmzdYa2Cu8F2yq8eFTcUB33kFoornlG+5fs9ZYsm5hNHbDeRgx7BWZS4HVO8lKzDQOSCwEFxdZgvtN/RCCWdFjx9OaYQDkc0pEPONvkbJcxLq8JjMV7ocoMH/RfkQ5rJmbJ1kXM25zzJiM3FQrP491dni13mCYbxtGGxiueXk5wTgGwrULkaUZ46XGBEMwM4RLqAai1QW1cxMaF/G5zDS0e5wX1Jp8uqoS61QRJQxC0jOKCJGj4ejVC4XkQH6HFs3IxlzYhNxVfrq/wT58/5Dcn+wjQekUvKCltgBbPICnpZSXWKkafe6KVwwVw5RNHeuZo+h7XbzErF3Na93m8nNKPSoo2wCGsmgjrFHlcMck39IKKu/kZaxvx2XyPXy+v0dMlShy/X+/x+HLKqowof7VDeg7VGF5dr0lunXDZJDxdjLk7OmfdRDgvlHVAsPWI99RDT7C2SKLwWtHf2WBmTY/Ga8bxhos6AaB1HWecF6bJhivJkv3okkmwIpaGSLX827NvcFkljOItv3h0m/RRRLgEprC851C1kP8+5Hm6wyzNCIzlZjpnYyOOtgOOZsMuaQJBWpDWY0NBrKCVw/zo+D7vDM/ITM1J0cM6hfOC9cIgKrmWXnAzmXE9mHMnPGWoam6FZwD8y6P30drxh/eewz043faIneJ2f87RZsDzV2OSwHIxz/jrD/+XG9Gck6bP3KQgXSHO8EbFGkSIzoWiCjFHhxOO8wEf3njJRRETBy3WKYxyDKOCcbhmalZMzZKxqthRimm44s70R7yXHvHD0w94OHzOXrBg5RJ6quC76SFzG/B36fc43fb45s3HfLf/BRvX+dShjDHG4hV4JegSmlzRJEJ87plvA8yVG3NOn4351dMbiPJMJiuUeJKg4Wq8JJKWQOybC+wbYfSU8Bf5l3wUf81n1QGztk+uSw6CBRfOcNiOCZXlrw5+xZ+mjzh3KVp5trpgJ9wgAqr1OCPw5j7cgNMQPYsxAD509H8Tsbrt8GMhNC2J6bjU0yU9VTBVW1IRUgmofEuDR4twLyhJ1SGHzQ5bFzFUBc4LX5Z7fGf4mPfiVzxtpvxyc4tU1wBs2oj6RUawsZQjRZuAKRxeCTYS4hmY09MBN/5ZMNuKehCx2ovQeedhAAO9IZaGuYv5tB7xRXHAeZNxPznlQXREX5VYhAubsnIJfyBHNF5hveJOeMpxO+CH5x/y34/vIeLJeyVlFZC/UOiqwQWCC6HJNHhPdNkVa27/A4TnK2wakh6HLCYp560mC2tmVc7/2NvkumLrQlqn+d1ij8si5r+4y26+5t3hMQfRgkWTMQnWxGI5bEe8rEb859mfc7zqocTDIqT3RJEfhZixQjUesR5decQJxViwoUJZMIXHhLMNPjS4SBOsPb2nmvIy4atil+Nhj7bV8Dij9xyWt8HeKJGTCGdguZPw1cmEB/snrOuIP7v6BQBfVVf45OQG5093MIUgFq5+6ul9tUI8iEsR7zvi16ArsKFQj2CeadJjjxHrcUahaku8sASFJ1wqyouQ9buQDEqswOhRyeTXLWffypEWkrmjmMRUQ+Hz2Q3UpOLmzRnnLuJ1PWDx5Q7ZiSKae4KtJ563uMQw/0ZMsPHE5x1dgq1D1ZrtgccZj+tZxAUYH2iaPEA3DjxEi4bwUogXBl2HXH4E6TeWPBllDD9LGD6paXq6y7tdoZo6pBWmoxXPq8nbjtWOWpp1yOaaw2cWlIfaII1j9+ddWLtA0KXHRtCOG4KsRjnF5p7HuFBjE404UE33FnrbEtcO1QSYTcD5dzzvPDhifSdkVsSEpqVuDcVZhl5p7KBlEJUs2pRYdWq+df2Mw/pK973x9PdXjNKCl59exZRdcOu2s5545tm+7/BOEUYN7dZg5A1S9cAQLltspMGDWE+waRl+1SIu4tHH+9y5f8xKPMtVijuOSRaKNvOEw5JhVLAbLklVxZVgybd2XnBZxCwfjYjODKu2zzLNGD5V6KrFhoJSgngPCrgIaHP71g0MRqEax3YaoFqNqh02Uuja0cYaXTn6X9fEF4azx9cornjMVggvoOmBubfio71X3ErPSVVNT5cM9ZaJWfLg/jG/2L3DJ8fX0VZRHOeYokPJRoLZds4vLXjjoVa0bUA4qDDOKHTlEA/rfU12DLryOC3oN0WqxhFetvS/Bq80xZ6jPLDolYYqAECJJ1MVQ72hp0o0jo2LWGQZi52EL06ukrzUBIWjSRVewGsBD+VUUP0GtwrACbbVKBdrVOOIlt2RliNNmypQgo0VLhKansGFClM4smNHNFPolcZrME8Sfvbb+/zk7A6lCzhvcxqvKX3A59UBn64OeLEc0TzPiM89bdTNr6rtUBPrcRpuXT1ndHBJOCoR8Zg20Rjf7S66UIU6V4jz4KFJFF5DsWMI155w7Uhmglcdv1zkCWeaF9s9/tF+m7+5/ksyVXPUjPjp4i5P5hMWr/tkZwroFCheOoN9sy/xCrZNwCApScKGXlihqqFGrIc30NoImhS2Y41qPKb0eOmCthwJda4IV57oAnTV7TRsDNIKR1+P+dez9zi3Oa/rAS9WQxazHsHcEC49NhZcKJQ7XSZ61f1nm3ti09JYTVEHWK8w1UAItgFmY2lTjS4Fr6HJoU0D8iOLOI/XgjfC5V0hmoMpPaYQ2hRs5vDKg/Z8frjPTrQhNzWt1chWE150fVebdicTbEAcOC24TGj7DiWe4ZvWvWgCjJcOhbjxBCtPmwk27H5YD2He1+Qvu4nZZt3z9U1HNFfgO664tjNMrwXfKH727A5740vmFxnBpSK89JQTeWsFTQbRojulJhF83LJtApR4FL6bZ13QbVy8GOKF5/wAVCPUI4dqBC+wRgiX3QJEWsAL9dBjNgIOVN21xL5Q2MRhzyNe2SF+ERLNBVN4xEK141EWkhOhjQVTeZqeoMJu+lpVEVlY47xgbAJIxy1TgCmEuu/xoe8Mz0MxAHdsiM+6FiVcCvXQ4ULQRbd0E9uh11aqK3IREy2E3gtLkyqansclDrVUeAX/vyzcXOtaIaMcF9uE2LSdwdZ9j447ZNrkDRf6FvGCBA7EowJHfcvidYRZC6qBcK6wsUe1EJ57VNOpy2w6juoKknNHclazeT+hGbaIl7fdhik8qxuKtt8SBS2BtkzyzdvjVjb12NhjI0+566h3XMeXqAte3yhspVHa0xzUVGOHMyAezFYQB166YsV2HFQ1hKuu39ruhhRXAAXhTCNth2wx6VAMRyW72ZqLbTehBdrSONXNts24xUUel1lc7EB3CvNWuvtC4+Yh3gk2dbjQvzVJacFrsFH3Kc6TzhzZ6wbVepa3NU3fYS66RgG6ZGl6UO1a4qgBYJgWpEHNtgmoW4NymQUruNS+LUgiiw4dOnTQqu5ZI6gLgzQKF3ZFqOaNKkNwYbchDJee7EVBONuyuG8opp5woToF9lyn6mtCccWRTjdo5aisYVOHvLoc0FhNPy75Pwbpgzu4EEQ5AAAAAElFTkSuQmCC\" y=\"-201.758125\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_47\"/>\r\n <g id=\"matplotlib.axis_48\"/>\r\n <g id=\"patch_118\">\r\n <path d=\"M 218.763944 239.758125 \r\nL 218.763944 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_119\">\r\n <path d=\"M 256.253599 239.758125 \r\nL 256.253599 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_120\">\r\n <path d=\"M 218.763944 239.758125 \r\nL 256.253599 239.758125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_121\">\r\n <path d=\"M 218.763944 202.26847 \r\nL 256.253599 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_24\">\r\n <!-- Happy -->\r\n <g transform=\"translate(218.150334 196.26847)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-48\"/>\r\n <use x=\"75.195312\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"136.474609\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"199.951172\" xlink:href=\"#DejaVuSans-70\"/>\r\n <use x=\"263.427734\" xlink:href=\"#DejaVuSans-79\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"axes_25\">\r\n <g id=\"patch_122\">\r\n <path d=\"M 288.032909 239.758125 \r\nL 325.522565 239.758125 \r\nL 325.522565 202.26847 \r\nL 288.032909 202.26847 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p5d117c9480)\">\r\n <image height=\"38\" id=\"image8f26dea9f1\" transform=\"scale(1 -1)translate(0 -38)\" width=\"38\" x=\"288.032909\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAACYAAAAmCAYAAACoPemuAAANHUlEQVR4nE2Y3atk2VnGf+9aa39W1ak6X92nP6anO3bSHTIzSWYmo4yJSgR1IF6IEYQIEYIIInojiH+B6K0g3niRCxG9kSCiN4kiSj6IGRMniWOSmemeTvc5ffp81anatfdee63Xi1WnOwX7YhdF7Xc/z/M+7/Mu+YVf/FPtp46hEkImIDz9mEGRCCiIQj8R+olg22e/kagUc8V4xfZKtgiYLiBBMUNkeb3G/d4+9x5t8/sv/xt/8bVP84XX/oO//s+fY/yuozhRyuOICYrplH7D4keCay5nhEIIOagBM6RLIqgIiKJW8CPop8+KElXUCG4Ftk+FuVVEgiIKxgekH8jnAw++dpWf+fT/8ldvfRJpLACTHzpsx/pSjI/YLhILIeQW024buqkwjAQ/FkIuqLmAA0Ih+DF0mwnNVLSmglqlPAu4ZUSNEApDP3V0WzmhytAiw3SB8ftQWY9f5rz+6tu8Vv8It1SyhSZAHNg+YvpAceLJmojrJ6D2ghaIHrSHaCFmEJ3QzxKabrkuqoXoEsW2VaITogM1ghkUuwqYbsCcLLBD4PJJxdc3X+J3PvdlPlrf4zBsYAbIzyOHHzeotRQnHrMawBuKU4MLlaImFSWDoJanV3RCP4VQgFsBEdQKEhVIhYdSyM4DMXNUjztM6wl1ThhlwBjxEc0Ml97s+eLk03zmja/z3bMrFGeR8shz/SuC7dYvsmwhc+SdxxXHQnNFkQA2pIKGUhAFP4JQKqYXZK07FFSe6TFaYagsaqDdzTF9hm0jxkfUGkTBLnvssmf6gy3+YfIa4/uG3aMO23gkRKQLSO+RrkdjRERwe19b8PBTY9odJWaJFjXpwcNoXVQAE5LmJCrRrREOCUG1qRttH1ERTL/uyn4AIEwKojOUZ4HN71qqo0B20mLOGyREEIHeo94jImiR46o/O6B7BPFhjcQ1lQ5CrqAJFdsnGiUmHalN9Gd9egG1QswNbjkkt7GCDBHxAb9d40eOmAsobH2/JTuYgyriB3TZgCq6apG6ghCRrsdEhF+5/X3K589RC6FQQq7EDCQmtC46FBLVfvzM75KtQD8xPHmpZnW5gKCYlcdv16x2MkSV/GzAdhGJmmhbNGjb0b10kwefv4u5tAMhpmfUJebxcsyGa3n9+nuEUUSzJGp1yY8kpAfDs05VlzxOgqLJ6hgKYRjBo08JRy9UhDpHRcgWcd1EjtW2Y36rRKsCHdcwDBgfGT2KtD+1y/DhGwzXtlBncAf7M/5m/6e5/fwBjAZimyFDqiQ6JWaCWTdFoi01gAlpKohCyAQ/EZY3A9PrZ7gPBhYn21SHnlAZQpZ020+FZg8kbHN+w3DtX0e4eYsZckwfefzKiH4Kl77lMXLusMeOd9+8hskDMVPUKkhCJmYJqYuGiDYVY7t0b/uYvKtLmryyMeeN699j43ffB3hKnwngx7D1ymNO7hq6LeXeZ8Zolky0n2ZM3xuQAPEPn2C0CqmIyx1xMInCmISqAGZdoEtoSQTTJ3qfjS0IuWC2Om6OjwlquDs94NHrBSi4NvleuxNZtAWT95TqQOiuet7+Qs3yimV+w9HsWKrHyklT4YiSUOrW9n8xjtaC1zVyhrV39Rfd+awZJMDsHU/Mar78zsdRA5dePqDbirhVQE2SRpgq06qlKadr0Qp//PP/xJ/Xv4x2FlMNaBTuzk5TGdncUL6fU93LMSuToNKERLKG9MZyMeCHi0HOmsbkXxv3AqMfg58FTpYVow+ckR8scEuP8Yp0hp+9/A68cUy7qxSzlplt+INXv4Ide2azJb/x0rf49b1v4YrHFrcUbA+mSyMGXYtd1ogMycdsn9BBEj1mSFHFtYGhtrhWmb4bMYPj6PWSK/+Sofkcs/Jk1lA8rvn7N18FUa5+/ID9J1O+0zzH5za/zmc/+RZ/efQ6D9oZpfG4UK5RWQhZgOkPoN8Qui0YSn1KrwmJxotPzIQQwVpBjWDbiDvvEYXygWf3q2BOz9FJzTCr6Tcy8jl0K8ulrwoPX9/hQ3ce8o/vvcCDdsZv7X6V39z8Bp//9m/zzW+8gFNJaACYXtfZKAlM9CmjyRri2mhl3amlEAoL2BQSJxbTKbbPsc1AHOcMdYbfsLRTm5gwypM3euq3Kt7d2mJU9fTR8UdvfZbmh1NufanD/dd/42wL+blgPPQzwaz1k2hd1xGeeZjxycdinr6Pa4+yHUg0GKsMtYGZYyiFdtuQz5XzG0J7qyM7yLl2+4DDT4zxxxWXLx3xqzvfJurHePTFDfL3DtE8wxmfimq3UwvPftRxfKdIA9uDWwmuScX8JGLBClmTdCYD5Mt1DCfFJT8SnrwasNOO3a05r0yPeHe+xcOwxSTvePHGQ55cHnPUjvjbR6/xyuZ9/u+5O0zerqFpcPl50k79UNh6u0sxphZMD3kvFKeafEjBjyQ1BykOE5P2XHuxG6R0cvYBQ/fCig9fPWDelSgQVcht4PatA2Z5w14+5069z8Ss2HNnfK+7xtmLniv/7hBjcflpmomT+z0mpLavD+LT4srTgOk1jZY8JVUkFSTrwpKhKdanSJQtIL5dcf87N0FgtReJd4Rx3hNVuFGdcD0/ookFVpRGC16u3qPaXLF8fkyVW1x5djEyIv0ko92y9BPBeE3ZexWTbawp1PVIumgY2z+LRzJAtgpszQNEJZSW5RWLnwgHj6fse8PzN55Qm55tt+AS5+wPU5axYGJWbI4bnry4wXQ0wvlaWO1YxrlBBYZqHaUbsD6lh5iZlL8afbqMmIGnG9HFTDTD+iYqMTfEXBgqwc8C01nDa1fusVfMWYSCt1bPsemWfCjfZx5LTsOIOvMcbMY0xtIKpjQ7hmIeabeFbAHFPGJbpZs5+nGyDttrSqbhImGwTqqactaQAmTMDTEThiKtfSiIKH10+Gi5WT5hZpdccydctQ0HwTOPJXc2HvPulW2gxPlRQsdvQ2dM2l7mKe7Mbzja7WQh2Xnajmy3dvxBURFsH3ELn+IxMFSWUBq6icFPhNVepNxbcmN6yla25FpxwkvF+9TGM5KBmTEcx0BpPLOsoap62q0aF53QzZJu/Hg9AyMsrxiaK4ptFXcs1E8irkn7o2hacI0P2KUHIxAj6sx6F0gJuNlTmPVMRysiwirmlOIpZWAiA1bgMCp+vT9aieRu4ORuwLkm/UnMBK2SuJs9odmLSAS7MkwehLWpCtEKtkvOb1dKzC3qzNNFZbWbpU2rTtoaT1fs1kvmXckizymNZ2o8pUCjEFQwEkEthQy0fYaOB1wxj6x2DO1OGhcmCP1UiVXEtIbd73jy4x7NDc2lnJAL2TLilgNqBSTNSj+xqBFilppkqBL6zbLkgZnSecf18SmHw4TDWDAzPRblMNa0MeM8VjzoNjFGMS5i+rFhqCRFG4GhVoaRIlVg83tCcdgSasfJ7ZKhSlQZH7GLnlAY5jcK2u0MNcLiqqW5ZGh2DdWh4s4N0RtODjZwNnKzPmIRSn7Q75GhnMac/WHKeaxYxpwuOKZVi1jFnHxE8Rvr84OVpJxfB8xRxvb/LAFY7qWDFz+C4jSgAstbY85uZYQSzp8zPPglxY/Atimd9FPBLQTOMrJJR5V7HrVTPlQ+4lPVPVo1nMaKbbvguewIK8rIdczKFRoFk58Z/Hqx1ewi0wi73wR7vKTbLVk8ZxBVirN0TLS6lHF627K6JKwupV203HdpWxqnQR+zdaarAzEaRJSI4NVRijAykaCGTAIWJZOBS/k5J22F7Be48X3l+AXwG5H8zDwzzF7RuqDdtMiQ5mR+rkQrLK4L6iA//4m0sU7mQwVSpEnR7g1MdhfMqpZ2cBx1I9qY0apSi3AYNjjsJnyw2E8Ga3rOmioF0aFOGdl0Qvk4JQMw6awqt/hakJi8bSjTgPcTxfYCEfoJDON0nBRmA3bk2Zkt2KoaDhZjOp9oMKJsF0uuZSe0KuyHnGUsKMXzTneZVh2lDMQoGC+41W5a+euHgt94RuVFigiFMFRQHyirHUNzTVNWy5Xz22lg1tcW3JyeMclb7s83OV8V9INFRLEmUriBwg3cHe1z1Z3RquWf5x/ldnnAgZ9SGM9EWp4MEzIX8ICr95XRw3S0dHY7LRL5sWW5Z2l2xsQM/IZy9FI6TRzGAXYi5aRje9zQ9hn9YHk438DIhPnRCAahUaHcXvHhy/vslgsq69l0S05jybdXz3OnfESvlkf9lBfr95nZhr/78aucP9ggG8Cd3lXqfcPGu4HdN+HxJywxh9OPDCnerAyxTMiEWsAptgiogqpQFz1BC5omCSsb9cRgCZ3Fe8txO+Lu5ICPje4xMw1fOnkZZyJbbkGrOUaUVnPe6cfc39/CNobiRHBc6liUGbZ1jB4FTA/D8y1yXFAeGlYf6BGjmCwSOgutISwdAcfjVQbzjOLQMjmG5nLywjiLUAc2Nxq2yiU3yydsmJbTWGNEuVUccq/bAeB6fsKN7Ig/+e6vEZcZxblQHCv/DxZ3J0/2mlIdAAAAAElFTkSuQmCC\" y=\"-201.758125\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_49\"/>\r\n <g id=\"matplotlib.axis_50\"/>\r\n <g id=\"patch_123\">\r\n <path d=\"M 288.032909 239.758125 \r\nL 288.032909 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_124\">\r\n <path d=\"M 325.522565 239.758125 \r\nL 325.522565 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_125\">\r\n <path d=\"M 288.032909 239.758125 \r\nL 325.522565 239.758125 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_126\">\r\n <path d=\"M 288.032909 202.26847 \r\nL 325.522565 202.26847 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"text_25\">\r\n <!-- Sad -->\r\n <g transform=\"translate(295.482737 196.26847)scale(0.12 -0.12)\">\r\n <use xlink:href=\"#DejaVuSans-53\"/>\r\n <use x=\"63.476562\" xlink:href=\"#DejaVuSans-61\"/>\r\n <use x=\"124.755859\" xlink:href=\"#DejaVuSans-64\"/>\r\n </g>\r\n </g>\r\n </g>\r\n </g>\r\n <defs>\r\n <clipPath id=\"p3fb8d858eb\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"10.957047\" y=\"22.318125\"/>\r\n </clipPath>\r\n <clipPath id=\"pb93e9128d0\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"80.226013\" y=\"22.318125\"/>\r\n </clipPath>\r\n <clipPath id=\"p4ca74924dc\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"149.494978\" y=\"22.318125\"/>\r\n </clipPath>\r\n <clipPath id=\"p5ea7692852\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"218.763944\" y=\"22.318125\"/>\r\n </clipPath>\r\n <clipPath id=\"p96f2f529ba\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"288.032909\" y=\"22.318125\"/>\r\n </clipPath>\r\n <clipPath id=\"p8e2c7f9c31\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"10.957047\" y=\"67.305711\"/>\r\n </clipPath>\r\n <clipPath id=\"p84f078b21a\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"80.226013\" y=\"67.305711\"/>\r\n </clipPath>\r\n <clipPath id=\"pc711ff372e\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"149.494978\" y=\"67.305711\"/>\r\n </clipPath>\r\n <clipPath id=\"p730e5cab65\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"218.763944\" y=\"67.305711\"/>\r\n </clipPath>\r\n <clipPath id=\"p65bd9821f1\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"288.032909\" y=\"67.305711\"/>\r\n </clipPath>\r\n <clipPath id=\"pd7be474ea4\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"10.957047\" y=\"112.293297\"/>\r\n </clipPath>\r\n <clipPath id=\"p6da5d82d4e\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"80.226013\" y=\"112.293297\"/>\r\n </clipPath>\r\n <clipPath id=\"p4576d54b7b\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"149.494978\" y=\"112.293297\"/>\r\n </clipPath>\r\n <clipPath id=\"pb454f90d6c\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"218.763944\" y=\"112.293297\"/>\r\n </clipPath>\r\n <clipPath id=\"p496002fce4\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"288.032909\" y=\"112.293297\"/>\r\n </clipPath>\r\n <clipPath id=\"p81cd189a61\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"10.957047\" y=\"157.280884\"/>\r\n </clipPath>\r\n <clipPath id=\"pbc08966e7d\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"80.226013\" y=\"157.280884\"/>\r\n </clipPath>\r\n <clipPath id=\"pff475a7427\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"149.494978\" y=\"157.280884\"/>\r\n </clipPath>\r\n <clipPath id=\"peda901b58d\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"218.763944\" y=\"157.280884\"/>\r\n </clipPath>\r\n <clipPath id=\"pe66127ef0b\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"288.032909\" y=\"157.280884\"/>\r\n </clipPath>\r\n <clipPath id=\"pf6d4d2c62d\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"10.957047\" y=\"202.26847\"/>\r\n </clipPath>\r\n <clipPath id=\"p2e5a42ec25\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"80.226013\" y=\"202.26847\"/>\r\n </clipPath>\r\n <clipPath id=\"pb580d6ee8e\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"149.494978\" y=\"202.26847\"/>\r\n </clipPath>\r\n <clipPath id=\"p1fc0b451f1\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"218.763944\" y=\"202.26847\"/>\r\n </clipPath>\r\n <clipPath id=\"p5d117c9480\">\r\n <rect height=\"37.489655\" width=\"37.489655\" x=\"288.032909\" y=\"202.26847\"/>\r\n </clipPath>\r\n </defs>\r\n</svg>\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAAD7CAYAAAA8RMxAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d5xk11nnj7+fc26q1FXVcbonaoJG0ZJlOcsJGxsWY4JZe0nG7JKXhd2FjV++Cwts+rF5Wf82wLKAiWsbgzHBARsnWbZsycphNHmmp3Pluumc8/3jVI9GwsYaI6kFO5/Xq17ddW/VrXvPPfc5T/w84pzjCq7gCq7gCi4faqdP4Aqu4Aqu4C8rrgjQK7iCK7iCrxBXBOgVXMEVXMFXiCsC9Aqu4Aqu4CvEFQF6BVdwBVfwFeKKAL2CK7iCK/gK8RcWoCLy30Tk/306TuYKvjxE5H+LyM/u9HlcwRX8VYaIfFREvufLfe7LClAROSkiYxHpi0hHRD4lIj8gIgrAOfcDzrmfeTpO+nIhIq8WkbM78duXCxG5bTJ2XRHZFJFPisgLd/q8nilM5s3rnrTt7SLyiZ06p+caJg/plojEO30uzzYm82NVRGqXbPseEfno03BsJyKH/6LHeSp4qhro1zvnGsB+4F8D/wj4xWfsrP6KQUSmgN8H/gswDewG/jmQ7eR5XcHOQUQOAK8AHPCmZ+g3gmfiuE8jNPCjz/aPPp3jclkmvHOu65z7PeCtwHeJyA2XmpQiMisivz/RVDdF5OPbmqqI3CIid0002f8jIr91yff+jGZy6SoiIn9NRB6YfPeciPz4ZOX6Q2BJRAaT19JffEieEVwN4Jz7Deeccc6NnXMfcM7dIyKHRORPRGRDRNZF5NdEpLX9RRF5voh8fnLtvwUkO3URTydE5B+LyGOT63pARL7pkn1vn2joPz/R2B8Skddesv+jIvKvROQzItITkd8VkenJvveLyN950m/dc+nxnyN4G/Bp4H8D37W9cfI8/dfJdfRF5A4ROXTJ/teLyMOTcXmHiPzptql5ybj9BxHZAH568hzeeMn350VkJCJzz9qVfmn8HPDjl873bYjINSLywcn5Pywib7lk3xPM60vlh4h8bLL5CxOZ8NZtS1VE/pGIXAB+SUTaE1m1NrECfl9E9lzuBXxFPlDn3GeAs/gV9FL82GT7HLAA/FPAiUgE/A5+skwDvwFczoT+ReD7J1rwDcCfOOeGwNcC551z9cnr/FdyPc8CHgGMiPyyiHytiLQv2SfAvwKWgGuBvcBPAUzG7b3Ar+LH7f8Ab372TvsZxWP4+dPEa+PvFJHFS/a/ePKZWeAngfdsC8kJ3gb8TWARKIH/PNn+y8B3bH9IRG7Ca/zvf2Yu4yvG24Bfm7zeICILl+z7G/gxaQPHgH8BXkEB3gX8E2AGeBh42ZOO+2LgOP75+xngN7lkPIBvBT7snFt7mq/nK8GdwEeBH79040Q5+iDw68A8fjzeISLXfbkDOudeOfn3polM+K3J+134Z2g/8H142fdLk/f7gDHw85d7AX+RINL5yQldigI/ofc75wrn3MedL7Z/CRAA/3my/T3AZy7jtwrgOhGZcs5tOec+/xc472cdzrkecBveXPufwJqI/J6ILDjnjjnnPuicyyaT+t8Dr5p89SVACPzHybi9C/jsTlzDV4j3TqyRjoh0gHds73DO/R/n3HnnnJ1M8keBF13y3VUev+7fwguLr7tk/6865+6bLKT/L/AWEdHA7wFXi8iRyee+E/gt51z+jF3lZUJEbsM/uL/tnPscfqH4tks+8jvOuc8450q8gL15sv2vAfc7594z2fefgQtPOvx559x/cc6VzrkxfkH5VhGRyf7vxC/IzxX8M+DvPEkjfiNw0jn3S5PruAt4N/DX/wK/Y4GfnDxnY+fchnPu3c65kXOuj1+kXvVljvFn8BcRoLuBzSdt+zn8ivkBETkuIv94sn0JOOeeyFxy5jJ+6834yXNqYrK89Cs96Z2Cc+5B59zbnXN78Fr0EvAfRWRBRH5z4proAe/Ea13wxcft1LN75n8hfKNzrrX9An5oe4eIvE1E7r5EuN7A49cNX/y6L3XRnHnSvhCYdc6lwG8B3yHeffStPLcEBniT/QPOufXJ+1/nEjOeJwrFEVCf/L/EJdc9GZ8nB1Gf8Fw55+6YHOPVInINcBi/yDwn4Jy7Dx8f+MeXbN4PvPhJi++347XIrxRrk7kBgIhUReS/i8ipyXP3MaA1WYSfMr4iASo+erwbeILf0jnXd879mHPuIN4x/vcnvqtlYPclqyB4U3UbQ6B6yfGfMFDOuc86574Br86/F/jt7V1fyfnvNJxzD+HdGTcA/xJ/HTc656bw5tb2OH2xcdv3LJ7qMwIR2Y/XxH8YmJkI1/t4/Lrhi1/3pS6avU/aVwDbAumX8Q/ca4GRc+72p/UC/gIQkQrwFuBVInJh4pP7e8BNE3fDn4dl4KKfbjI+T/bbfbFnYtut8Z3Auy4VJM8R/CTwvXiZAn4R+NNLF9+JOf6Dk/1PkBc8NcH65HH5MeAo8OLJc7dt+guXgcsSoCIyJSJvxPtV3umcu/dJ+98oIocnN7YLGLzqfPvk/x8WkUBEvoEnmmtfAK4XkZtFJGHiA5wcMxKRbxeRpnOuAHqTYwKsADMi0ryc63i2MXGI/9i2k1pE9uI1o08DDWAAdEVkN/APLvnq7Xj/3o+ISCgi38wTx+0vK2r4Cb0GICLfjV9MLsU8j1/3X8f7h//gkv3fISLXiUgV+Gm8YDAAE4FpgX/Hc0/7/Eb8s3Ad3jS/GX9tH8f7Rf88vB+4UUS+UXwk+W/z1ITHO/Exh+8AfuUrOelnEs65Y3ir4Ucmm34f74b5zsn9D0XkhSJy7WT/3cA3T7TIw8DfetIhV4CDX+ZnG3i/Z2fiW//Jr+Tcn6oAfZ+I9PErw/+D99N99xf53BHgQ3iBcDvwDufcRyb+p2/GX2gHfyN/n0kaj3PuEfxD8CG8L+zJuYLfCZycqNo/gNcutjW53wCOT1T952oUvo937t8hIkO84LwPvwr+c+AW/ILzfuA921+6ZNzejneXvPXS/X9Z4Zx7AC/cbsdP9huBTz7pY3fg59M63j/1Lc65jUv2/ypei7+Az0z4kSd9/1cmx33n03z6f1F8F/BLzrnTzrkL2y98AOPb8bGCL4qJyf/Xgf8fsIEXwnfyZdLhnHNngM/jF62PPy1X8fTjp/ELKxOf5OvxwaPz+Hv8b4DtfNn/AOT4ufPLeD/xpfgp4JcnMuEtfHH8R6CCn1+fBv7oKzlp2SlCZRG5A/hvzrlf2pETuILnLETk7cD3OOdu+xL7P4q3gH7hzznG24Dv+1LH+KuAiY/3LPDtzrmPfJnP/i98gOknnpWT+78Ez1otvIi8SkR2TUz47wKex1co9a/gCv48TMz6HwL+x06fy9MNEXmDiLTEVy/9U7zP7tNf5jsH8JbMleKXpxnPJpnIUbyvs4M3Xb/FObf8LP7+FfxfABF5A963uoKPbv9Vw0vxaU/rwNfjMx3GX+rDIvIzeHfRzznnTjw7p/h/D3bMhL+CK7iCK/jLjit0dldwBVdwBV8hrgjQK7iCK7iCrxCXxUoSRjUX16ZBwCkoa444KYiUwTjFKA+hVD5ZwuHd24EjCA1aLIXRWCtgxe8Th9aWUFlCZSisJs1CVCaoAsSCm/yWOBADYhxin+h26A/PrzvndoQcodqOXWOxhpvk3yocBqGwmtxoQHB9TdQtIS9ABPRk3dIajAVrHz/gdhqvyOSNm6QAu0t2XvK/TD5rrf87+WyvWNuxMQGIopqrBE1soFBpjksiTCi4wN9PqwHtkNASaYM/ayEvNFhBCkEM/vOBA+VQY4WUoAuHSkswFtOI0f0MFwV+XhiDTSJUVoIILvBjLaVhZPsU+fCyEqWfTrSnlVvaE6BwOIRQoGMjVlbbqMLPdV04JCv8fdQKrJvcVwdKsKHGaQEFKrfgQIzFhhpVTMYx8N8TB1lbs396jYqyGOcuzlMAwXHurGFz0+7YmIRxzQXtadxEEqkcVAmqsNhQUdQAAVX4/cHI4ZRgQwiGBqcVTgtO+Xmli8l+PZEfClTpsKFgI9Bj0KnBhYqiJn5uCUghhAOHGAfO0R8tP6Xn57IEaFJp87yv+lHKitC9SjH7ymW+ZvEBuqbCB88cpfdIG1UKZcOi2xm7Zzvsa2xyVdWn732hs4czvSb9YUKZhrixBgdqquDArg3mKgMe3Zxl80yL2qmA6ooXlGUCwRjiniXuFOhx+fhJWceH7vjJHStvDBdavOC/vZWpMKUW5JRO8Ynjh7AXEqKef3j3/24XrTdAKQgDXBiACJIXkGa4skQqFS8EoxCsxcURBF7ASjYp494WlMb6fUXpj6mVf8CM9f+L8Ecn/v2OlnwmcYsXX/t9OCXozojRoWmUcVgtpDOa7kFFNm+o7+mxp9llb20LLY7Cah7uzHPmxByVMwFRH+ItRzS02EDYuF5R1vyCc+D9OWVVU/nYQ6i5Gcr5KfTWiGK+QXR8BQBXiSl2txjPRtz/vn+7k0PC3j2a3/uDGYyDRHzp1Hc9/O3s+3fz6NRQNALCfkl8ch17YRWpVSEIkGoF26xBabH1iP7+Kt1Dirm7C5LVMXqt6+dUHFE2E1RWolc6uF6fzquu4+f+5TvYH4wonK8uMBMhqnF889et/7nn/EyjErV4/vN/GFNRdA4FjOcdtXNC69ECFPR3B/QOewFqQwi7Qusxy3hG0X40R0qHTkuy6ZioX6DGJWU9YuOGGLGAhWwa0jmLOL8YX/U7JcGwoHdVlbUXgE28nKmd1CzePkJlJR/87E89pefnsgSoOAhGhvF0yHh3yb7GFpkLODWaZutsk9q6Ims7VDvjxj3n+Lq5e3lJ5QShWD493s+JaIYkrBFOjZCmY6Nbo9hKsMOAC90GoTJMJRnZriEjU0eVmqjrUIaJpgVOBKdkoqHhGQV3EGkastxvUG3ndIuEL5zbjb2QIBbSpYJoJUCNMsyuGfRWH1eJvXZQTBaBMETCELTCNuuItdhKCIALNbqXglLYqmexk7zwghceHwPncFGIjPxnkR1TKC5CjMPUQsILfYr5Bllbs3md4A4PSZICM45w3Rgtjlbkg8ibeZWVUYPzG02CjsYFUNSgrAqdhkKPhNl7DcHYcv4VASs/kjJYr3HtsQVIM4KVLuVCk2IqIMwLpJqAUmTtkLyhsMnO0mMahML5vy0RNo1w8swc+72hgioceTPAXj1P1G6gtvq44Ri31UGJYBsV0rmEtRcIwVV98uM1KqdLXBJDoCmbCWId+tw6tj9AtZoUVSGRkpETEnFsG28a95zw35UVRdHQZFOK6gVLvCmYxJG1NOHYUlYFpy3JeUVZgdG+kqgfUNTAhoICnFZ+AaoHFPMRunDYEEaLlnCg0ClU9vTZ1ewzzCPWnzfPwqdL6mczBrsrpHMOGznSWcdgb8LUw/2nfP6XJ0CzknBQUkxF6FbOyrjB8miKrVGFYKBxAmWr5MDcFre2TnMoWmVJO6oq4ky4xXQ0YiX02tRCtcdCdcCZWpNur8Z4GLOsp1ic6rG72eXYKCLrJehM0GOHeOtkoqoLaMGJYIOdFRZJXHBkep2KLujmCUvTXQ7uP86eyhZ3bByg+5G99G6Y8avfwTrKOKSEeDMjPLcJSnBRiIsjTDMB57CRxsSKsF9g4xAzUyNvhkSdnHDLYaYqqGHmtdhxhptona6agAi29hygDDWWrB0iZZ3VF1QppgAcxSAijkuWZroUbYV1gkUYm5C0DHFO2DPb4bw40l6E7mvECLJvxMHFVea+fsCjnTnUHbsoCs2rb3yIj/7otVz9v8fofooa5Wy9tI6YA5hEqB3rkazlVC7YHZ8rAY6qgMFRAGumjt4KyOuTOY13U+nMYCsBUlRRRQmNGraasPLSFr1DMH3dOr1hghNQg5F3Zexqo3sZsraJ7faQRoNi/xyjBeHudB9fXTsGbAc9HneB7fRS6zSsvkBhA7AVB9ahcqGyqlC5ov1IQdQLAMf0gwXrRYQNvGtHZRYbK6wO0JmlqCoGu71VayKIDgwIAkN/pU4rMMwkQxphxoPTc+hxgQs1rccMaw2NOLCBo3tQEQ5rvm7rKeAyl2TnpXwNnBVOrU6DOMLQ4LSjaEAynbJY7dHQKRfKJg2VsqAzhrbJ2IQ0Y69taHFUg5yF+oC8DBgNYkqjSMuQUBvipGA8HaKygGRTUOUlfk8t2Ilvy4Y7u44qccxGQ8YmpB2NWar0aIUjRibi4eOLLCjImoq4a4m3SoJRgWQGleZe6IUB+Z4Ww10ROncEI4tYhyod2UxM90CNfAqiHrQfsbigRlnRBI2IYFAgoUYKg62EqFGOCzW28lwgIncMFzSb11TJ2o5wICQbgpiIYWh5ydIpMquJlWFsQrQ4AmWwTjBOMKVCMoWUQtkyLLX7HKhtcs/mEssPzqOOjHCFv86/88oP8d86b+DQbxvvH7RQOd1FtnoQBKitHgQane9wyp4IoQgJQjERYk7ABmAiHxewgWAm/mIbVmk+GhP0Uoq5KlvPM0wt9Xnd0sP89oO3oHOHbdVxWpDCwKlzuKJAkhiJI/J2RDbt+FT3MK+uHiP0egfWeUGqd1p6Ajgo2gY9VEgzR7TDriXEW46sJaRtTdyzlImgM8vC51J6+2LMALJ2QGW9QApLWfdWRrLhMDEUU0ISFVSjgmDRUokKrBNy6y0byQqwltrZEZ3DDbIIVOn9pEXtqcuUy3rSTC2icziiqDvcZoQpBTeTkyTepHQatLZYhNPZNCvFFLnTbARdHkx3c27UIlIl7WhMRRcYJwTKUotz8jzAGEV3nBAGhiAwSMVQNBWqUOjMTzbwq7UT/MOyw5MgVIZakFE4RUUXtIMRAGMXsvihgLTtAztpSyE2IG8FBCNL5XhKuavF+k01hkuCjR27brck6ymjpQqr1weMjmTUWwPKLKD6oRo2UnSvClEF1C+AlA4l4KoRKi8xzYp3oEc77NcAQOjvh2K69HEwrShrQjFlWFro0C9jcqMZiUOJY21cJ7f+vHvjhHojpagUZGkImWZrUGXcCpmtDNg6UMEYhXPCYtxlvahz9ctOsnLsAJVNQzD2gQDXnvI+5OHYSw1jv8w5P7NwzhGKYmQNDRVgEFThA4U2FMpYEAt5QyhqwnjeUVaqNB8LyKZDxDp6a3Xefd/LiYdC7wAEoxrV0z0foNw1B5sdpDlFvrdNd3+IqZecHba4YKrs0n5uKrwvtHCC2mF3j1MQrwTk0wa97F1fysJ4VigajnROaN8vDPYKlTVFsjIibocEK5bBYkDU12gHRV2hCtC5I28o0gXDfJIxnQwZRRGt2Much9fniTcFGYyx800vRJct+ZQQd4Ta+cubI5clQIuWo3NjiRorkhU/2YtdljgwjCaDkY4jVkYNrBMi5aPvK2WTU+kMgVhKpxmbkEAZchswLkO0sgSBIc9C0sn9zPMA0RbTKslsSDAWor54U1jEByQAt8NmWSiGcOJf0PjFwzjFex+4iWZbKCs+QoiCsqYJB47a2NK9eY6tI4p0yeAqBukH1E70WH1Jm/Hr++yb3qIVj1E4Ht2aI+5UWLk1oKxboi1FdUMopgIgQBWOYICPQjtQudnRMQEoGyHlUk5UKRBxuPU6OhPMnoK0CGiGY6YqKet5ncJqKkFBbxQzzCLGoxi3GhNvKKIAsmlDGkbcu7HI8+fO8jXX3M9WWeOXHnwJ737kZpr1MT9+5AP86+gA1bMj+ktTyCilWJomPL2Gq1eRLH/c77xDEKBr/b0JRbNWToFAmQjR0EfN84ZQNHyGSzll6dyWM3xtSXk6ZObzitGCRhUQ9Ry9Q3B+JkAOxZTLbRY+DfVTDfJ2RH9vQO9qi2oU9PKYk8UcB4NTGHzYIBShax1mhwtpXOCtKzGaZB3SWdA5jPYYXOConAvoHHWUTUPWCqic8Qty3lBMPzgkb0aIeTwyP57zcZh9V69wpLlG6RRLlR4z0YDT42nKu1pEJZhdba/9VwLq53LiTsBozgc3y7rzFEVPAZclQNuVEdW5IfaeJo3TjtGC4EJDJSxYr1hUrrCDgHO6ybARMV0ZMShicqvJTEBWBuRGo1WNepSjcMS6ROEoEj3RKiArAkypEe2otsaMBPJBRLIp3lwxXlD4NKcd9muJIZnkWGQ2xJSKh7oLtD6RYAMhb4INvQ9XR95vm06HFA3IZwwuNiCO6XuEzZvbbL0845aFCzTCjJrOqQUZtz9wmMY+TfX5G/T6VWS9wvoNAa1jlqhnULnFJAF6XGIqwZ9J89oJlFOWsFJQq2T0BxXigXjflRGKj85yO7MMbsxwY41qFFRrGVFQEgcGV80YTGnSacvzDpyjGuSkJmCp0uNgZQ2N5WiyzHdf+2nee/Z5bHTq/P7GTTgtqO4I1BQuiQlPr3k/8XDssxZ2fK5407CpvPJxKp9FSijqcjFjLW/6NJ5wINhIUU4JtUrGkZee447pg+zdvUFaBhxurbO70uGxwSznB002TtVYfqVBNxVxMkLEUw3luWaURdw/2s1XV0+Dc4wczCpFQ9mdNuAIxpCsO8IBVDYsiEYVDqs1UyctJnYMF4VkXVNdTTFTiXdvNTVlLSTsF+TNiM4hhdOQ7jIEs2NE/DOwr7LJbDDg41uHufMLh5k569h63ZiHj1SoLw64du481zeWubV2nF26x5zO6diA5//jL3Pi2+d/ORebW81orcb0sqOyUZLO+GixVhbdyjETp3+ZV9go/SQxVhhnEc4JzoG1gghklYB2dYx2llAb2skYrSzG+knWs0KRBVirUJHBRg6rwWpB2Uuy2XZ4BriJxtktKgyKmK20wtrdC7QyGM9PPiRgErCRXylN1VFMGYgtKjKwHmNiYevVY1yuyW1AIGMCZaiqnMZDIcVL+yzVB5RWkTYTivmCylpIOBRMrNCZBYGwnyP5zmpaAFr7HN9qVLCV1Ym0d/GotchbKrMOfSEi6gpOB1ReOuCm2fNMR0Pu7Szx0LkGTikO1Dd4ReMRLpRNQjEkkrM73OJI2OXW+AK3Vo/z9+59C6vjBrUVg4sjwr7z6VxhAKV5PMVrh7Utc0nk2zhHVeWoEkwF8omrBwfVFUdRE8KuYOKIxq6cii543fUPMh0NAW/txKrkuqkLvLh9kuaBEetlgzNpm42sxvq4zqgIqUSCscLdnT1stIWDYURhMjJnUbDjJrzKHfXlgqLmc6WdeMWoccZSPdlhvK+JKkKmTqYE/YyyEZPXFcHY+aBgJWDrmhCnwCQOlxgOL6wzmwyIVUlTj3ksnePOx/Yz9bAma8MNu5f5Oy/+EHN6SCIGjSN1mtRpHsrb9G2FP0v0/8VxeQLUaMJNTdT3E1GVUBaaWpizd26LC+EUZbeOHgplGNKLErS2lIXGWoU1gg68kyMrvEZqnRDrkjgoqSOU1vu2BirGGYW1glL+98T5F8oLY6flOaFtDUzMo5uzlEYTBYbGcQhHDp0KJGAjsLHFhQ6Va4qWQRJvytlSkWwputcaZtpDNjbrrI1qzMUDABJVIBaOzq9e/D2zO0UJpNMRyZai2ivQwwIpDC4KMLVoR8bhUhjj71t3nBBWCoobS+y5CsFQUTQcUccn1asS8psHXDO9wrlRkz959GqSBypUDQyvKukXCS095EC4TlVKLEIihqbSVCViURf89PXv41eWX8pw4rmIBpayVSEoSmQ7dxZAdjbg6JyjoTSFs1gc08HAa02zFhdAvKYIR96kNwkoA3pxxNHWClocc1GfRwfzKHHkVvOC5mkKozFOUVUZijqxKkmND8RWgY1hFSWOC/0Gv9Z5MX935tOEOzoKfxbRVka04QtBTEVRJorRfMB4dpbKRkn7gR4qLX0amoJksyTeSMmnEwa7I4o6ZG1LOPCafKAs9SBnKhizXtT5yJkjBOdiTAJZ2/Ha2Yc4EnbZNCF350usFC3g8fzYkYn/nLN9Ii5LgFqniLeEqO+jndZnDDAdDznaWOHBYBcPn6uhU19JUhYBUZTiQkOWKoLQEMXlRBP1lUtx6ANJpXWUVjEuQoxVFBMfaK2SkZcBuVR8YiyT6qTAm/M7bcI7YDYc8IY9D9ErK3zs3EEWHkwZ7I0JRpMPIBRtL/2VEVSqcInB5Qo10qR7C+qzQxbqfRbqfZb7Dc6NmhxslGyWNfImLFW7ZCbgtGoRRIYiDbAxZE0h6gWozPjgkQMpdzZYAqCU875PJzRqKZvrDaTiqD/kMJEQdy15Q+i8NEMKzcfvvgYCh8QG9cIO43HEVDVjNh6gcYSTm28mFTx6MtktjtuSFf7eI/s5emaIq4RE3ZJga4SMM6+JXtQ+d3axFRESCShcTiiK3cEW5f6UMPIWQ6qqBKc0RQN05v2cg37MTDjk+uo5bu8dJlCGq6obPDxY4LOd/ZRWYxGqwW72VzdZz+oEYpmrdVhL62jlx+3E2Tk+W9tPt307CmhcMoY7DRNropObEIW4XVVGc4rxgkyqkjRR14t8GwVgHKpwmCRASsdgt88bbZxQjHc59u7ZYLHSpaJyBiZmNWswHkcUMyWzX9AMjhhuqpyiIYrFKGBBn+NeNeLD/eupqpxQDIV76kHYyxKgblJOqVODjZX3QVphKvCE2Jnxhwu7gh5rMono5woVWqK4nDxQEGhLEBVYq8hLTd/FRNpQWMUwi8iyAFEWO47odGrUGqnXPJ1PnvW5chbzHIjCA3TLCgMTc348RXZ/CxPnmFDQqUMVkGlBjbyPpqj78jtnfEmrbZS05/rM1YYs9xvM1Ya0Kimb4yqJLplLNNHNW3z87EGOzKwxlWSkeUieapxymFgwsVDWQvS49GV9z4E0JmuFZiVFiePcAwu0D22xZRuEQ2Hj5Tn1B2PKBOiHHLz2PGrRMVcZUDrFY1uzBMoyWx+ymde4UDZRYqlJTlVKQkBNjGGFMKtrVNtjpLA4pQhGJax3IIm98Ly4yO7wYuscXZujgFhC9gY9Xn34UU4Opjk8tcb+azb5xS+8jOhYhXjLIRaCzQAljjv6B1FiWYj7fGLtEL00oT+KyXoxydkIEznuHQjprGX39Stsezf31bf4+CevJ9lUvPnFn2dPELNpMgrnsLLTS8p2ibZ3uZTzU2RNhTgIB1BWoHeVYrC7ijIwc39O1tQUVUXcs5jIl3xHHaGsQf15G9wwvUxhNZtFjcwEHO/MUG4mzNylsKGjNjOiY6qYcIjFUlWaG6MtOrUT3D3cj9YWLU9dAbmsJ00rS9Z2FFMBwdCnizgjBMrQKyuc32oS9vxFKQOmpzBFiAsdaRCCOKRiiCsFWlnisKQwXhPdyqrkvRjd1ejMR9RU4HDTBVkWoHNBGetr4SdBJHZeqcA5IbMB/TLhnjsOox10jkQEY2+eGj2px80FU3GYVgmFQsWGoJ6z0OozyCJOb7apJhkr/QZxWFINC5KgoKJzXrf3YT69doDl4RShsjjna6FNAnkD8rpCFQ49nkzIYuc1UArFuAgYZxG2YtHKMbvQI2vNkNRzjn79KR7dmOOmuRXO9FtsDao8enYe+iFMFQShIQ5LbE0Y2pjCaVICQrFocYSiCS9poPiyPSc5tngdldNdzFSE1Ku+1HXb7/kc0ECVCMY5X1WE9RVJ4YhRscBS3GV/vM5333Q7v9N6HvaPZ0k61rt/nDAf9TmTtqnogliXXNXa4EI4RdEYsTqYo/GYor5sKE8JK+Nd5M9f49rpFT7+8RvY98c56z884q2Nx+jbbU2eHfcJg7eWdD/D1XwKXuuhPlIYyqmE4e4EcZBsFIzmQ3p7QxCIBo6sqRjPCTrzPtPOLTkvXziDcULpFP0i5oGVXRTHGrROQv8AFPtyWkHJqXyOI+E6I5fRsQEhitSGrOUNakFGVT31DtiXJUADZTEV50kPcuvTcwTGJmQlbZBuVKj3JqlGQLwlqFVBZ84Lk0gYz4ek8wF5I6BSzXEOxsMYvRwzdV5ItvxNTacnuXCJplQOpb3TWOxkxdrm0tjxwIBiYGI+eu81zDwCmzda1ElFsuXdHKPYa54I6EwoIwXakVRydjX79NKEreUppGIwRtDakRUBQ21ZqnVphyOqKuf5M+foFBWsE4Z5SCoxUuLvh/bjYiPtU5ieA6WcCAzHMdlmhaldfeZq3qf70HVtogcaLDeGvGrPMT65fBWv2/MI71p/Pi7TEFuCCzFF3aDbfWpBRkOPMU5REJA6Q+pKLJZL63h/evGPeXPzRiqlIeikvrR1mzfAuefEmFjnSERR4NOHphXEqmSYRZxN2/zuqRvZ1+zwvYc+yb992VdTf1eMzHtTNFSGWJVkNsBYxWcfPEhyNkTlsOe+kuqpDoPDTVZebai0xzTjlI8dO8xVf5Axmo+4bm4F69zFbowa0CI7bsA5Jdh6hBSG4LFlyAukXiNMC6Yyg4x9houYKv19MU7BcFFRXbG0HzGUiWLrGsXuJd9hPbcBYxOyPJxivFEhKmH0VQOuXVjlXL/pXWR5kzv0AeaCHgeCLSKx3Dm4ik+cPshrDzxyWRx1lyVAlThUIYSDcmIu+e3dokInrfjsXPE+SpVDdcWSbBl0alCFpaxo4k5IuhGQzmqG8yHEBtUNqV4QahcsTkM2JZOkWFCZwiaKsurI64pkU9DlJIDkwO2wslVYzcdPH2LmMwE6Bdcoyadi8qmAsgZ502JjC1bQmRBuacy+lLnGkN21Dp3xLnS9xG5FuEGMDLyLYjxj+ew4YrA75mB9nZloQKwKlDgaCym3mwOMtlo+8bh06HQSlAr1jldnASCOfLmGns0ItOFst8lcfcitzz/G5z57hG/b91n+3We/GhVaHhvMctO+s9x131WIEexiynRryN5Gh6PVC+wKukQYDIJ1itQJhTMEaPQkMLQY1D1rV5ZTztQJ++MdT5x/Mi6NeGeupKEivq55N/e1lzjWm6UaFTywvMBcMuAbjt7D+174Ym7Zf5rMBmwVVTLrNfB2MuKmq0+zvrdGqA2n5xaZvrdN/yrYvXeN+WqffbUtLMLqzXsZzzlaeXJRcG/ngj4XIKUlOLcJxYSprOa7FcsoRY8zXCXGTPvqOxNCbcUQ94RgZCnqirwhZLOGVjJmWMakJqC0mpnKiPrhnEO3rNMKRhROc2v7lLdkbMipbJbzeZukVnCmmOF9X7iJF1x9klY4uqzzv2xnmSomGiAQ9R2yEfHA1AKjUYxKFSr325MtXyYlhSGfrjBeiLGBEA0slQ3DaCtgM9KUs9ZTSfUd0cAwmgvI2l6AllWwycRnGEBZBxMLqpywDznHTq+hDigfbRB3HWUskHvSg6LpMBULjZKwUuCsUK4lBEM1YbSzzEUDjkyvc18RMl71kb/xnpKondKspuyd6hLpkrEJqeuMqcC38w7F8Oo9x/iEOsjggWnEgMoMKEGce04EkaQUXGhpTg3p9mrcsMe3dLdOePVL76NbVvma6x7g/KhJoCzX1i/w6OIc6SNNyrpirjbk1e2HuTk5TUPlpE6jJvfaOKFjS1BQlwTjLFq8Tx4RbKIpZxsE5zd9EKk0l1D97RwEIXWWpoooMPRtztEQ9lQ7fHTtMFfPrVEJC/ZXNlgMO/S+6h6eVz/Lg6NFOkWF1ITUgpzpaMR0bcgDsouVUQNZyFhvK6Zn+9TCnKVKj/s7izTClHMv72HGIQfrjzc0vTg7ngMmPNbgRiNPsFOtXLQUXK2CrcaM99QoqoqyIlQ2LSbxFVt6DDrz6V5YoZclRKok0oZEl7TCMbUgY1+8QUuP2BV0SKTgQtniWLZA4TQPDRf4wIVrOfPALr725XezFHcALhbGPBVcHpkI7iK/XtBJSRohyVrIIJoCA8mWIhw4KhuG2qkBsrwOU3VUM2a44Pn3asvQXBkh1tE/EOH2GkyhUKX25AABlFWH0948JbZIYL1WO+EIxfmqDROpHTfhUxPSesiPCYkQbgZUVx1cgGgghEONCzRpU7N1rfeFFsOAtAwwKGo6ZzyM0GOhmCmJWhn1asr+5hZHGmtMB8Mn3NDtKOFsOKBc1PzhagOnA2ysMYkmGPpA0k5DLBBbOt0aOjB084T1QQ2AmdqIb569k0QV3LW+m69ZepCr4lW+5eDdfLR+hHY84mvm7uea+DxNlaHFMXQBEZZQLAWKrhVaCgpn+MC4xgvjDZRxkOU4maS3bed/XuRL3dkxcRMSkUuROsfXte/meH8Gi1ALck6NZzBOcW1tmVBKKionk4DNMiI3AcQjlk2T66YucKSxxmqrQWYCUhMwKiNiVVALckZlxHR9xEo+RUX74NX2TNqeIc+Jlj4iuHySMbEwS9GuoMdeIw0HJclKgY0DRoteyaifz339ey0gHDqCkZAbTaCsL85RJRWdMx0Maagxc7pHIgUaR0ON2R+tT/KKLSvdBvGa4oGtXTxvzxkKF1xMZ3oquDxCZWU9kekgR06fJ0n2EYxCdF8RjIXqeUfSsejMeXKDLIMtQxBHQEI659C5orYc+rr2yRyXWslgT4CJI9IZzydqYwuJQQX+Vjvlq3m2iTa28z/tDjMilJknqXDKn5tOFSb0ydHDPYIqFNULjqhvibd8GV5Z14zzEOuEbpEg2qFzYd9vGIaLVdZvrjF64RCNZWQjFsMOiSoY2hiNJZSS1IW0ghHTCz2Gu2apn7Y4pTEVTfeq5M92WX+W4QTIFC6wRFXDuY0m8liNomnJ+k30Qcc7j7+Qzok2C/s/zYFonUPRKkeTZQyKA+Eau/SI3CmKia/IICiENVMjFMOc80nlG2WdYbg+mVOOeLnnU5gu9Xva58CighACmzbHAgs6xtqcm6J1fmjvR3jX+q1MRyNW0wYbRY3MBlR15HkjSFkeTzE0Psd3X23TM1lN+ABOj6d5aHWBSpzzsFpgKkzJraYSFoRRSTMYoxGsQOEcxnlhuuPi0wFaTwhQYlxp0MPCk+2UhjAtcZUQMZb6ySF6kE2sjABTDUg6lnFPs7bRoBmniDjqoc8KCsUQq4KWHoEFLT7CvivokjvNbDzgNQce5cJCg9JpDkTr5E5TuKcuFi9LgEZSUjYMLlDYsTcnER9tjrpQW/Xr23hWk7XaxHsaxOtjT7c2uVNFHYaLoY/SV3y0KYhKxvsKslmNjQyEDgJLmJSUWeDzJY03wVThLtZ8B8MSE++sN0dKmWjFXuuSEvKWT462jcl4LCkkF8I+xJuT74nj/LjJ6qiBAPVTPkjWPDakfj4g/dgSv/3qfVx96ylubmlurp0iFMPQ+lW4KjlVnVOLCs4eMNTPJdTPpqzdXGW0a8cfC88wrnwmRRwW5A9NEfZ9elu85YXhXG3I1beu8dB4kZYesRRucV28jHVCKD5KnYhl5DQah8YxrUoezWv86vJLeWxzhuvnL7Ar6fHV1ZOkbYVr+zp4RJ7I1K/UjksLh6OqHp+vqSuJRdFUAQfCTb5t7g4+0r+Wii4YljG74w59k1Cd5DRGk64NudVcSKeYjYcEYrAi3LO6yHi9Sm1PznQ8ZDoaUQtyTg/ajDsJh+MVUmcvaqDPCSambUz4bd1wCHmBHoS4WoVsb9vzR/RL9KhA5QZTj70SNcpRRUzUg8qaYjQMOb3ZplUfUUxIaSzCyPoFZ1fQ9RafygilxE4iRcYJkTbcd3qJB2Z2UzjNZlnjqfLZXV4UXgzh3JjRUpXGAwkuL9GppyqLuo5g5Av+07aiqIMciEjWQipbFp1Bsu7Tk7K2QkqHSRxRUhKFJdZoXKWkXs+wVhh1KxRpgIwCXyastqufHCq3FwMlaodTdrYDaU55KrJwBPnUJJ0om7AvBg6MoFPv13UK0jzkbL9FM/YL0cbNjo0XBETzObtaW1TDnOuUZSYeMjAxHVMjkhI7oaQyKBQO6wQXOTqHNdEgRJWOcOe6VlyEWCCymFwxziLfnkN8YDDZtPzh1k28YeEBDsar7A02GboI6xQjG1JVBUMXoJ2joQoUjkQMoVhqonhhcp6XXfVu/njhIGfzaQqnOW8iki3rhaedRBfL8nHh+RzHkjacLDTWCcf7M7x87jjgfcZVnTEPdOMKqfEEPEoc68B8PODjKwcYP9JCLabU44zNrMYXVnazONXjbKfJ9EKPm+Jz/niA2fn19RJsp5nZJ/y1U5WJP98x2hWhs5BkLSNc7WOma9g49N0OxoYgDRAjlIVmkMaURmOsIrdevC2rFnZSrbWdJL9WNljP6pwbNXn4+CISOH7+ztdQeTimsuqAdz2ls7+8PFAs1y5c4NFDR2jcM4OMc8KBH4Ska1Gl9f7RsSNrezqqvAmjgUbnvhbaxJ6aPygAK0RhSTDpiRNEhpnaCBHHmSzE9EMwPrIt2pFPaeyE+1A5h8rNzlO3yURYXnQqTTYXAonDVTxZiBqqi9q6CxxKOV+B5RRhVGJaPvesLDVr/RrtmmKp3mUx7rIYdYmkJHcBhQtQkx8rnKa0ClUvSI+WDFZiaiuG8ezOJ9LjQHUCXOw8w1bTeo7GdYUNhA8eP8rL9kfsiTb4ufNfw523X803fdUdvLl1JwARlhxF34Y+eV4sxglDZ5lVERbLtzbO8cejAceyXfz8ymupruZwaWnvtgm/3VPoOYAvVv1TOENDRRwIN+lUz7Ce17kqXiN1ISMbUThN4TSBWKpBjhK/cI7KiLsHu9l4eAY3n/OSgyfp5BUGeUz/3BSDQYKsxHzv1/wRiTyufcIlPtBn5ar/PAgEgRecxiJBgKtV6Byts/nGMbtnN1hKhp6G7v1N6o0Qp4WoW5DOhMSbBVlT4aTEWqEoNM4JIo5QG8ZBSL9MSFTByEaEYkhtyEo+xcnBNCceXES1c44srXLmg/vZ+0dd1GD8lM/+8iqREI401vjC7kNk+6YJRgVlZZLLFQhFLUAMJB2LKn2iaz7lfK5iKBQ1H/xRq0IwgnAojNOQMFSYUYAJFMNaRCUsSJKC4SjARY5aMyUKSnrTESZRvmFYhvezylOvW30mIBPeDrW9rAsTXy24cBIASzVhVxEMIW8DzYKlqR776luUTnGh2/DHCC1KHIH2BCu1IKeuM6aDAaGU5OZx4ZnZkMwGVMKC+ZkeWREwnksIh4qpUzvv7wOf96p7ilQ7CHwie96E3kFFeb7KI8057t94PWtnWxz9tT5/ePA63n7Lp7xmLeJZupyiQIHzwaN1o5lWUJEIi+NlyRqHwg3e2LiX7174McLVitdCS+ub9jl3SSR+p0fki6NwlsJZWsrS0iNuaz7KStGkoVMGZUxhvQCNVUk18KlspdWkJmB5vYleGvG6Q4+wFHcYmYjb168inB1TrFZA4NXVhykQNN73WVwyEG7HB8UhWuEMSDXGlSWnv2mBN/2NT/Ci+nH+1/nb+MLtR7BLKfkBGC2GFA1H/VTgUx4bEcM9DhKLLRSlBCjlKRMjHZKHml6RYJwwFaRYJ2wWNe5bX2RjvYELHLceOM1jWzPUlh1lKya8jMX2sqPwTT3GTpWYikIZTT7ly6hMrIj6Qu2CX+firiXueiLhvCWMFxymZgg7msqGZ2eHkK7UGc2V6KHXJDdUnbhaeBKRxOCMpRrnNJOUzkydohZ6wVl480wN0su5hKcd4nxRgUw88lJ6LdOGIJFFB5Yy9BUTNvJ5obVGSi3MONbzJYtlqaEb4qZzgqSkkWTMVQbMx32qOvsztbnbGolBMVcZXCQkPh/CYI+6bFLYZwJioDLJ7R30A4Z7LdGmIjuUEhxKyXoJSVAySGOCTsAjf7POV++5h1As4UQvKvBBksIpUvw1h2IYufxiFVJTJSRSUDhh/B1bTP2E9gQi2y+tvAkfsOPJ9IJcLEG9FFWlMc7RsTmbpo4Wy0bhMxaW0yaNMKWuMwLln61RGflxsRoRKDoJd63v5tFojnLCZlYWGhe6i0nhc0roWDcx4XdaaF4KubjQudGY7PkHqbxinZOjGX77wy9j4TOwNDZ0DlcY7Le87HX3sa+yyYeWj7J8oY2zMsk/nwSVjVDkAVr7Z2BURkTadz3YTrJ/cG2BwSAhSAquueoczTClc2yaWQuDpYjyYAx3PbWzv2xbzyLE9QwbVsA4bATZvCGbFqKOQuXa+ylLCIeWcOwo6p5BXo/VRQbuIDVUV0FsQD8NKBreJyoTEgpTBn7+R57qbq4yYLVVZzzXppipEfS84JThzgpQwNe98zhjlEl8/qqKfGsSUyjypifIdaFvL5CakEpQMJsMOGFmfAJ5ppFKTqjNRMtQjExMKIaGGl/0gRaTNGjrfNpLZgJOnJ0jxgvu3sHnhs9v6rTBhsLUSUNR826c6GRC/UVdQm0ojGZxqsf0bRdQ4nh9637gkjxFfPGGceIToJ0nlVgzQiI+8HCsEA6HPkn9Y7f8Mn/tqh+h8YXR4y2BwT+c4XPArfElsGmySW6ooLA8ki4yEw7JJtHgblFhbEJCseTW+/cWqj1WRlOIOPZ8QNA/YNgcVegPE4phROvzEa1jOfz4GnuCkgtGiORxxiGLTNor7zC0wrUaFxsijnaFLDZ63P2H1xJb2LjB0Tjp+60lK4punvDS2WOkCyFfiHZzttNi2KlA4Sv82I6VTDodGKcYlRG5aKxTbKZVilIz0x6gleVI3bOcHbjxPCf0IoufEMxlkJld9qyq65Td0106C3WirvLBgdBC7MiVpm98LXswmvQYCQWnIex7TTVvG9ZvUnSvqhCMPAW/J04QRg1LEBqUcoRRSZ76srXSKZRY6knG2oJj89qEuBcjxhH16/Do5V7F04vxjK9DdsoLMBM5XGQJQ8N0bcSo55u8ucCRnAsJ9xsePL6E3go48Kq7UcpiBMjVhDfVT+5AWUJVYp2icAGhlChxaPf4JKloH2RBHNmhFLoh8eLlVVM8E1AlhP2SsqaJOwU2TAhSIdmAldUmohxbWYPDV62wmHR5WeMYR6JV0knEXeGwFzVQn1qyXc7ZtTGRGfPt97+dVy0e482tz9JSuTftf+Q87q1j3xIYLjYAkqJ8Ljj8KDDY7Xp45zCTk9q0OYXTdE2NqsovdjawCDWds5I2mEsG1IKc1ISUVlM6RaWacfb1EfqeXeixUF31HRBqK4bzrwj5Nwc+jAUiseST4wF+zjxXYK1/JbEv3y5DsmnLvhuXObM6TbFeIW9CvAWP/t4RfvDqA+w/sIZWlnQcQaYuElI7JV4LLTXjIqSw6iJtZlYGDNOIPAsZALUkJ5iwVd06c5qT0zMEo/CZ68rpEPaGm9zYPs/vXb9IZSMk3nKMMoULHS62pPu8r0lvBcSbakJJ5b9vYke4MKZeTRlnEb2tCsFmQP2MF7ieHsY7gJPIm/Hb7ojSevd7WbeMFzTZtGc4V6WGP7ycq3j6YUOhTCadBbUXooSOauLz0dxYe9/whQBTdVxYaxJUSlQ953h/hjA0lIJv71Cqi2zaGuuFiVgMCuMiRjYis48zOhon9MuY6/YvUxjNI+Uu9k1v8cgOjMOTIQ7CvmHzmoRgJJjYl/hWHkomzFSOY3qeN+26h7Wywe5gi8aEyMEimMkrR/v8PDQjGzOnewAMs4h3f/gl/F7vZWTzhr/x8ts52lzh0VGIVCoXq9VAYdt1OL+zQsPhJlygoCb9kXBMHn5fLNA3CYXTvuYdxWw05PSozbgMMU442ZshDkpyo8nKgIXGgKtn1rjn3BLFWoWoq7EhDJY06mifG6ML5M5rnjvPP//F4DvLYiwujgjGjnERMnN0g4Vqn1Nmht6tKW4UkC34/knTdwac21pk/qYVzCDw9JChz8Wm8LzDhXb0jPImPp70xxrBTbaN+yFZPeREa4ZGkFELMnRgyFox3YNtuPupnf1la6BzQY8DyTrN/V3yWpto4HzZXmQhtCT1HKUsI1slVRCMhGAknlG+XTBVu8Tkdv6BUoWf2PGmItMJblpIKjlTNR88ascjUhPQGVUIesrnUgqk01yWuv2MYGJvmlgY7GeSlQAqNESBYWNQRY8ULoS8ZrFVC6Vi78IGU3HKuAzZ1exzKo2wmxGm9FHEbRMknQjLUD+xvMw45VmgigQ1SR7OlWZ6vsf4Py89myPwRaFKTzrTuTqi8+KchQ+ErN0CUiqiPoQDR1mBgYu4Z7CHVzQfZsPWUOIXje26d/A8tBavhTfUmL3BiBD42K2/wK8fPcovn3gJ6YUmv/XRl3H1/+6i2l2fwrSNYOJD3mlCZXwSOzxeF69E6FtLVYQ108AiDExMMxjz2GiObp5QDXKW+1P0swWeP3eWc6MWrWhMpI3noIjgNQcf5eHpBU43p9HnY2wk7Jve8t03gao4upP141Ltc8dFqoCLQggDJC9ItgynTsxy+OplHlxb4I3X3cuLG8c5EK6hcfz4I3+dWpjzD/Z8kg93rmPlvnmcAj1SmMSCE5xylP1wQhwMYgVKQZWgjM/b1iOhrGvuNPtptYdMJRnlWoXxjOIS/eTL4vLIRLCslVOsFw0663V2Dya9trfvh/FpSUWpQTls1WJLjS0hn7bo2JAWAcNzDaJNRSWTSUMpX2WUbICUmnxcYbigCFtDook/cFRGjEcRUSpE/Uk1Uum5MHcSMtEgnEBxVYp+oAKA0pNASOH9N1JCYIRSKagVDPOIPfUOC0mfUHl/4NmteWyu6WcRoyREiyVzAdpZrBMSVVCIphBPiNAvEtIJB+uJrRk663X2/p6iv/s54O9zMFyM6N2W0v7ThLwxGYMxYP2imS0qxDru3VhkIe6xJ9okjAw15TV3g8I6Re68BgqQupChVazZKueLNjcmZxjnr+Cav/swohXSboExOOcQEZyxSByhehfZrXcMgmdA2m7ktm3CFw4KHOeKacxk0WgHQ5phnX4R8+DaAsNhQrs5ZC2ts6+2dTFZfG1Uu2jSz1YGlPOK8705bCIcmVrDAn33uI9+W3hqeY6Y8M7hotD3t08zktWUmc/VeawyT6M14iNnjjBcjLmm3qKhUn72yHtpKZ9m1Juq8KH69dSPB966KbwV6LRna1OFTIK6E0FqJgRFBQQjh90Qsn5Cdzqinwm1Td8l4XKG5vIY6VE8nC7y3uPPo/3ZkHgrZ7QrRGeCixRS9Tlq2Tj0czW0mJpPcaLhnf7j41M0zioqq555yURgkm1zHMIhgDBuBMRzJQcamzSClGPFHHYQEvUgSCdEIlZ2vNf3dg6oSWB+tsfKUUVwIfItLcRRSQp6NUOJprqsSNaFdJCwPg64qrXBQtxjbCPioPQJ96WQFSHWqSdoCoULKIyv0y1sQK9M6BYJwyLmkeOL6FrBV13/EB/RR1lY2ID/uoODgl8Uu0dAziUEY+jvE6IuRF0/ucezitGhHMl8ueF0MKSlRxToi9VWFoVBSG2EmaThKBSJWHbrAYkUpC5k5n/UUHMzuP4QO1VFBiPf9qUsQWvGh+dIlge4YOc5iEIeJwH3wtMRCqyYkK6pkFnvr+uW3oe7lVWJAkOvH7Kx0Wb/8zdZz2oMiphWNGamMqIVjVkeT/nkcaMnvkCfArbt90wRQv5sdobstC9UxPunixLnHKo3ZupkhIli+rcZDi2s89kLe/mM28eN88skMwU3xmcZuohEcogsUccHqnXm/b9OJoKwfNx9qHLPUSzGoTMvRPMp0GNoPixU16zPGGoKk6F/SrgsATq2Ee87dwPc0WTmwTEmVJjIS3kEbKbp9SrYfugd99USAourQ1wtSDsJjXMKKaGs+pa/+RSUdYeJ3IRI2WHaJQuLHa5pr7I76TAwvlmbShXh0AvP7Z7wqvyyp/2MwirPClNWhHYyprqn4Nzp3RRpQGE0840B1gnl3S3mP5cRn9nCzNQR4+gXC3zs+VfTfcOQXe0+YrzPN899uV7hNFWVE0+6fqYu4Df/yf1Ecw2u+lu30c0rHJ1aZd/zti62iv5/Xvx+Cqf5zM4OC9mMkM9Y2vcohktC/axjtMv3+ulca3FVA6XCKcdrFx5mT7TBlEonvk4/LY1TF0357c6nu4IuNSVcMH58OqZKZXmIi0OEGtIf45z1hd6ikGqFbDok6kagdtxgvUgpp0Qu1qZvGsXHR1ezVdQonEaJ48R4lqlgzG1zj3F23Obj/QqmVNzzySPYfWNsrgkrBXtmOlSDnEQXRJGhl8e+99ZIcbI/w+Zswt5gROEgn2i3+qKP/TmghRqLdPu+e0BZIkVJ2MupLwcEH6xw8tBepl+wym0LxzmQrHPvcA8rRZOqyvlk5xDNu73fFHGeF0Mx4aXALySTZobgi3jyKSFbKKnNDxn1Y4LlmNGSQ6wiHDnSUNDeDX9URL7HOfcLf97pX5YA7Zcxqw/Pseu4wYlw193/k+GfLnPVP/jnSKGQLMAFGlWKd+oWCgksUaUgCktS60sZTWXb/HaU7RKpGEQcVjtmWwMONDfZlfRoByO0WDpFlUEaE68rqms+mmoDr63aHe4Lj/JtacOe48HjSxw+sEK+L0dthvRHiW+Qt1InvPsxPvf59zHqrSAnFJXGPFc9700s3lEy/4EB2ZFdRK/R5LM+C6Ea+P4siSq8L1DsRSYmY0NO99ssrzUBePPi53n38i3sq5WczmdYyxs7OybA/ql1/tarPsT/6L+e+ll44CPvIFs9z+5//xNU5nyGhcs0MpUzH/bQOHo2mfB9higskRiUWP+aaE8RlqpoalKy5mr8xP3fwO7HzsCuOS9Et6tItv2deUHz3g1Wb5vFPbxDgzHB/Q8WfPRjKa94xePFH7/92yPe8WslL37HPiLlK64qOqecCLvzaQuLcNX8huf3bNTpn56isqyBmOOHIsy+dZZqXVITkOYhUnpBMlcZMKfHDK26mLYUia8Cf7wSaWeeHxE5CVQb4byvRCoNZ7OHOL/1CC+c+puE/RKnA6bvF+wj8/zRrgXG856D2MUOpxzNBwNqy8ZTXOaCKG/d3PU/f4zr3vpPiJuzpDNC+NJNXrXnGItRl75JWE6b3L+5i/GpBiZ2qEzoH4TZu31H1KTzDNHZZXlI1FGEo4JxukVv/QQ6TMjvuo/khTdTNDwNnZjJSlD4iJeue58WkSWdN6B96pOuFzSqnq4s0JaZ6pCDjQ3moj5NPUaZgkJFdIoKg06FmRVHspKRTrhFnZKLteg7hWDogyUAU/dEHO/vZuHoGusr86TrFdIkQtZzTvzhL7L35W/mwDXPJ6uVDFaPs7YrJFifAWZwAsEI8kusrMeJDXznz9JqxuYkRVal/8A883fCsdctcEftIAfqm7xk6jGSSe34TkOJ41W1h7jrFfv4xGeajE8fJ6jH7Nv4MOn+F9MnIbPCkd2rZDbkgmsyMAl9kxCKwSLMBgOaekgkhoIALZaeizGMmVaK7zn+Rvb8wxyZamDLEgkD3GiEhOHFGnhXlthqRDh0njP1OYBtQpG+NayYkK0iZi2tXyzTrOgIhWOzqHlikdxHSsdFSByWBFdtsUUbnSri8yFn+rs41ZohruVkvZipY5retQVvmfsMGkeBoqkMmYNwMlftRCPd4ZILndsRRJOojVLe9TIhS98OLqvS0TglTJ1wKOM1TKcUVltM7OWAMnBprWowdlRzw3Ap4NVLJzhSWQF8/7LbT+8lvTDlfaPKYaqW2hlN1CuJO1wkJ38quLxKpEIIhqAyy8r5z1Of3U99eh+9uz/L1NU3U1Zh/dd+AxXGlOtbpCeOE+6aZ+YH/wb1Q3WiakH3vkfYeuf7MN0+86+9lt6ZFaa/6kau+aYjDD78Od7/uw9z9U1V7njvCq986y4+8psr3Pwf3oLqhdSWDWWvw+2f/s/c8sZ/ilINgh3Oo1eFYeEzIzZurOAC2P1Ry+byAu0Ljt4hTVlV5MsrXsh+8810E4OEjpCrcEZYbq6w+Svvojy7DALxdUeZ//6vxe4SemXC2Qf6/OnP3E7/TI+Fl+z3OZFpncVVRd5wVB+NuHtmNzfOn2fT1BjlMe8/ez3wezs6Lsb5ANDbFz5B79gY87wZqkd38+j7H+Oml99Ip19BfvOXWK8bfn55wKnPbdK+qsmLfuq1nIxuwAFTx+7ikf/yaYbrKbe9aZqzj6a87psaHPxOyx+/q+Sz//bdzPfanB88wJ7pWzhz6m5e1HoTDTeDaE0mGX+68ovctvT3gQZZe+eDayWwaQypU2zaKh1jaAUbfNPCXfzqOzp8/l2nSLdSqgs1rv++F3HVa/YRKEP3w3fxyHsfIbpqkY0/uZ94usbuH3wD+vqred7CBT77o+/GHt3HyqdXOL+8yo0vrTH/4oTpRPHNb1vnda+O+K7vrk0CVsKbXr/G3/57jZ2Owv9cZob/qsiHBNUpX5E0wXCwyqN3/z6D7lmCuM6em97A9P6bQeD+P3kHMwdfwMy1LwFg/dHPsPHoHVz3uh/mwQ965/997/93gLCg3sq5XSv82j+7nevecg2ffednSQ6fZPaN38TKb/466ZnTSGGZjnZTe8lbqLmGdw8+RVyW/ubbdDiijZQLy59nbs/zmd37fLrLD6PP9fzRnDD83N3M3vZ6Dv/DnyVqztL97Q9grcCoz/p//XUW3vZVXPtrP05zf5PN+y6glSUJCrRYzt3bobG7wX/61At44ffewO7XHuGR950gHAjB2LCychet2cMESR2A50RVmgjVVc+cb0Kh/ahhsFc4/MqT2BDCuTlEK9Z/7TfIHr2fkA6VRsrCYoer9q7y8h88wjf9/rfy0l9+G663ycavf4yHVhf4/IVF/ujHPkbzNc/j+f/nRylvupW1jz1KZdVRf+UqR9/2ENd/3cO8fOkEi0mPhkq5tnLON517DiB1ITN6yL3vO8u3fLPiW98irH/mNNFgk7dd9xlmwiEP//EZ9n/Xy3j57/5tpvfVePQXPsXLd59AD/t8+v/5INW/8bW85Y+/nWTfDI/cNaBvKzyQtxnYnPHyaapRi1fPfzcHl17JrtkbWM6P+VJOYHn4EDPxXliYYesbh5cVXX2msGFi7kj38qnxQU4Wc2jxWSa7wy1ef/Uqv/E7U3z4vj380N+r8/mf+RDTg3OEYhkUMd0HLyBzsxz+pX/I7u98Ocf/xXvYHZ7nFe1jNNSY3oe+wK+8o+QDd+5iVzTmX/5kl+NlwJveXOW33p3Rt4qR09x3v2H1guE1r413WoDeGQQxJzbuQMYZthpDoCkCyz13/y/mdt/Mi9/wzzj6wm/j5Gffw6h/wXd9UJ4uMWt7TXW7Y68qHdd/1d8G4AUv+1Fe/jU/Q+0FN5PonP5GxgMnGyz97D9l5q1/Hact1Zffyr5/8hO8+FX/BKVDHn34dykamv6ep54beVkCVGeOxumM3tn7SfMOu6ZvpDq/l6QyQ+/+O4k3BZ0KzQM30k72E/c17SMvoDh9nnKjwtbtJ4j2zNF++VGS2LHwjS8gnq6hxRKpEsFRm62w71tu5lPDa/jg5vMY3/IKuh99gKDrCYvPd+5lfs/zcVowkVxWztYzgbIWEG6OmPrECfa+9zyV9QI9tszeV/LwZw5w6IZz2IWQ3d//w+CE9f/xXo59989x9l/9BrbbZ2Z/jYMvmydOoDYds/BNLyJ95DjjrQonbu9R5g576xvYvH+RA6u3Um/vZXjAslTvMhsPaAQZrUnjOYBj6S42Nus7OyhA6TQbps6n7nAsnyt509eHfMOtm+zeHzB/+4e4OlkmkpJDX7WbztK1jEzCzW9cYvXhLsf7Myz/7gqV5i7m1l7Knb97M/dc8zaCdo0Hh4t8uH89J8opwuoU+xs3o8MIrUKWGjewPHoEWxRgLecHD7LUuI7qgxc48G/s44xZOwSH8I++f5XvecHn+bsvvJ0feMGd/PefPA+TvNdbvnaOcHaKIVVe+cYmew6E7D3+Of7Owod589znaM9qfvTvK1576DgvfNMC7QMN5K57aeqhd5l8Y5s9V1dpVuFb/94cf/z+MU2X8cbXR5w5UXDqhI+4/sHvDPm6r0+oRDud2AW63uRUfj+ZLnDam+8rw2PElTYL+16IKE1teg/Te25k89Q9Pk1JBKtguNeSTssTWp5PGOwQB/mURo4MODdu4VA0v/YNKBUilQB2JbS/5jB2D5z/a1XCt38tg+XjOC0k3WfKhDeOcHPE2d79zAS7SVzCQMHcnptZO3Unt9x1GxubljhpUFsx5DVFVIS4NCdZ1nTPj9DTLawTtLJYpwlnGz5wYEIyG1JdqHF21OL41gxby1Mk8QJaReQPHWMwShiVXRaqV5M6X/Gjn9wj4dmGg86NbWrnqkSPnid+6Dz2xj24Umg9CCfZg1QtU24X4Zu/jXK2QPXOsvpf3sWZ//4h9v74C/jwz3yK5btWKUYl1jpUtYqMNPaxlLDSYv5TIVMnM86+JkFONZhv95lLBsyEQ2bCIQ2dcjqbZn+8zshG3HbkGKd2eFgswtBG/MG7B9z6iiq1doTB8so3tfiT93R43dv3kLkA22qxsVWnXk85Y+bp9x7g5Cf20fzkfaisxsy9A+Shk7jD+9gqp1n++CLvC15K/7MBNfNxXLeHVCpIVtKWWbQK2SwvkEiDUdFhPj4AxqIvbBEMd5g7Fvi+/3IDR142QyIFiSr41Hsu8NH/s0ZqI/7kPVv8wS9dYO2cXwyzkeHR9RoHizZdu8rMwogbq2e5rnKeM8UMp/fnNLvnSd0BSqeoLtR4KF9EYTm45yxlAec3hGQ25jVvrPOu9+R8x482eN/vpvzH/38bs/NJTLipgPjwddxb3MdMOg3AuOzS75zh9j/8Z/5DAs5aZq96wcWsG3Fgpgz9Iw4+M8kM29ZGgbCbYRcdRRZwbGUOXa+hXIwLHLqdUwv6nP+FD9C98wR2MEYc2DKjiBzaPEMtPVCCHQ5ZyR7DYfnkx/8lTgvWlJhiTPHoowTdlHAQMPWFNVwtwZocZaCy6qi4JuPVPoNOBTslREFBujZgXIY8tjVDd9DyHIdn9iBnKtTXBZXDzKFb6TzyOXJTY1f1CJVzPYr5Gk4JJtxZI0ScX1jGCxG4RcIHT6NHJVuHq5gEoi1gSyMWmg/DqBuRzh8gfskL6fzpHXziP92HFAkH/uMPkUqb4UcfYes33sv0fUK60qCz0aF9b49Hvr/K7NI6a7+9QTWYY2+yRVP7iPPZvE2/SNgsPY/krbUT/NqOjgqe7CMr+Pgf9HDW8cYXngYgy2HUMzz6YE5qQzbHVeqnEtLDhrVjS5ALB3/lAuezkLWih9OCCgJkZZOiu8HUQx0WZMS5jZJBHDB62dWs3OrNkH1/1GexfxPLnYeJizq7kkNoCXxAKQyQcueDSCKOUAx6wm+auZDCBTxwKuYXfuIkP/Wrh7jq5ilCDf/4TffTVgNCaTCwCWsXDMt5k4ouqamM5XOGW74Kro4uUDrNmXPCZllnIezy0RPz6OAc9yVXU81Knv8NVf7rPzhB5Xl1VBKy+/ktCje+PBP0GYDKhZnXfA3L//XfctV3HmX53UIcN2nOHOS6V30f4N104nzGjTUOrSNMWRDEhuZ8n+VwcHEhCNIJIXOoiXqG2Q8knE8ib/ZXDJVWSrs+4rFfvoPhyQ57fvBHqadNok+f4q5P/CeCsX28cu0pQC6nqZSIrAF9YB/wAE8kzjkEDPFCOQfOT7Y3gKuAeyb7bgROAB1gDtgLnAbWgRlgFnhywkkIXI+Ps50ABk/av985N/eUL+RpxGRMvpzClwBNYBMo8NdzCBjjK+3M5Bjb2yP8eAlwA7ACrE2OcRC4wOPj+6WwY2MCz9m5stNjYoBj+HHZxvZ1nAKuA+4Hssn2A5Pt65e8P4OfC63J+3vw13oUiIFH8GN6AK/0nrjkt27A34ctYHmybUfGZJLG9D3Ab+CvcT/Qxj8Tj+Lv4bnJuQJU8OeeAruB+uRzIXAE/1xtz4Wb8Nfdm7y/dF5tY8/kmMfwrswD+DH93GT/84Af+nJ5oDjnLusF/BHw777I9rfgH+x3Aj97yfZXA2cvef81+JvcBd4B3A5852Tf24FPfInf/RBwkonQ/8v0mtzw355MiOHk738HpiYT5XP4B/1u4MeeNF634tkJ+8BvTV4/u1PXcmWu/IXG4yTwuidtu3gdwL/AL7LrwL8H/hT4nks+90ng5yfj8Qjw+kuO81HgXwGfwQuO9wGzT/qtn8AL1YPPtbHAL44p8NHJ+6PA+/GLxQbwJ8DNk32zwAcmz8QngZ+6dC4AP4BfIDqTufaEeTX5zNJkzAaTsfz+ydgEl4zn93y567gsDfTphogo4Czw7c65j3yZz/4v4Lxz7ieelZO7gucU/m+fKyLydvwDfduX2P9R4J3uz9GYRORtwPd9qWNcweXjWU+ME5E3AHfgVfV/gDdTP/1lvnMA+Gbg+c/0+V3BcwdX5srTBxGpAj+E1+Sv4GnCTviQXwo8hjdTvh74Rufcl+ziJCI/A9wH/Jxz7sSX+twV/JXElbnyNGCyEK3hfem/vsOn81cKO2rCX8EVXMEV/GXGTmcxXMEVXMEV/KXFFQF6BVdwBVfwFeKygkhRUHVJ3Lr43pdQTVwAIpPmUJ5SClGP8y865/c5ByK4MEC2OyZa61lYytJ/V6vHW9Juv7cWF2rEOM82HgVIXnq2Ha3oD8+vux3K74tU4iqqcbGpFWrC0C9ysdfNxfcX033l4nsXBLjAl7A54eK4uMnY2dC3Q/ZfcxfbFCBc7LUuAowVYv1nw6Rg+OjKjo0JQNxKnKrMea7G7ct2IM7hRJBLXEdO5GJNtoMJp6Mv090u65cJozj4v+IcYidD8SXcUGIcNlCwWFLTOWtnMkx/uGOVF2FUc2Fz+iIJ9/b12cC/dwHo2FM7KnEEYrF4jthI+e25CSbTzFFYjRZ78bOZ8Ry0lTBHxLM3OSdobZkKUxIpWM0blKWiFufUdca5EwYz3LkxqbRj11isY5xcZOOPVcmUHvtrm0weiy86ON9p+64Gzo+XCf3YbVcoOeXJkrdZ2sSCMv4YZSxP4EO4WNrrJp+/ZK6N1s8+pefnsgRokrR5ybXf63+ktF4YTogbxBjfrx0wjYRgvY+LQ8pWFT3KkWGKjDPywwvoQU7RSgj6OcFaj3x3G7QQrg6Q3hDbnkJtdHCtBihF2UzQvQwChZy5gCQJxYF5VFay8bwGn//FH9uxysWKnuJl8299wkLiSoMksRemWY4rCt/kTCvIC886U5a4qToEmvG+JkVdMZ5W2EguEiNYLQz3OIq2QYwghWBrfowlMRzavUYtyFmo9LhzZS+Du2dwIcRHuzzwjT+9o9Wc0UKL6174d6mfySir2guN0qHTEhcqpPDzB+cwleDiomBDRVlRjOYVvYNQNgxBTxNvCVHPEQ792PgWMAW6sFjtW4Oowi/gqrR+MTIWpxWPvbXGa1/xBX7lm//c7KdnHEmlzQ1f9aNs3KCxob+v0boGgWRN6N1QsLR3A+uEheqAeuhpIEdlyCPr874DJWByRXw6JtmArA3p3pyDB1YJlWFzXCXSho1+zbeTsYLbjAjmUubafQ6GBY/dtxuaBf/sJe/jZ978hZ0cEppLNd7yztfTLSpsZVWUWK5prPDqxoPM64HvQjsRoifLNj/6u2+nfZ9QNATzmg5RUNLp1IgfqZCsO2wg1FYsWUMIMkdeF2oToh9VODqHAiobluEuRXXVoQpH3DP0dwcXn72iDg/+67//lJ6fy0tjEnDhJWVOdqJRBApTiQk6Y1ygUKPCa1Cl79BZNmKi7pBy9wzh+sg/NLuq6LEiOzCDygz9fQl6LqJxLETOXMAFAdLpY5ZmCI9fwBkLc22YncaGAeH5Lbq37KKyudPlec4TwoLXoqMQiSZ8lKWBMPS9eYoCCRLPfSiCa1RxcYiN9GTVdJhYGO12xJtC2Ie8CWXDUpkbMV6v4mJLNJUh4rXOa5sXOFhZo6pyXt+6n/9WfRXHTixQdis7OyRAngXEHUNZ1ZNrUwS5ReWGvB6iLbhAEOtwArq0mFhjQyGbUowWBPaOODi/yYmzc2QSoQrPaI8TwoHDqZC4Y/xxjCNeL3BagfPC1NQiVFpQuaA43p/deTIRJaRtRVmzyFLK0nSPzeVdhAMwFajNjEiC8iL/Z2oCchtwYdBAK8sNe85za/sU3bLCe4KbqZ1LaD3i2KiEnKpOM1Uf06yknDwxjxpokv2+4CnYl9LvVji/3ObaA8tEXaHMI+4d7sG4e3dySP4MtpspWpTXsidk4qnTHAk3YDHFPVhBf/U6L9t1mprOYDe8v3I95aemCMZeaIZjRxn7nml5TRH3DWIdjbOG3n5N7YJlPKOorfi5WV2z9PdqTAT1s099olx2HqiUFlMJUdZ5FvlA47RCZSWS5ogxuDTDLc6CcwTrA2wtwbbqmFqIqYZE57tEWzlOCUEnw1YC8oaQNxWVtZioN4Xr9rB5gTqeQRIjtQpubQvRCrtnDhPWmXpwi40XzFzuJTy9UOqiawKtvVsh0L4vj9a4SozkCsIAM1WhnIrR45KyFmJi39Y2b2jyhjCe98JktGTRqaByh6sY0kGMJIbrDpzn1FabLAtYmu7RDkccjFZJpKClR/ztfR/hF/QrON1p7eyY4LljfUsFQQ9KXOB7YxVTMXrktVCnvAWjCz9hxfhFxEZgY8f8dI+5yoDNdpWuOAaVEJUp1KQlTDH21o8uHDoFUw0JhsXFli8m1phEE3ccF3oNdpo9uKhBWRGirlDYCqunK0STBmd5JMRhQT+LaSYpkS5phinH+zN0elUOLqwT6ZJf/MxtJGcidOzoH4R4XTH/WcNWt0r54oy0DJh6IMQGkKVThH3BFsDzUr73BZ/grc3P8c7pF/HOP3wVH1s+fJH5fsfwJO+LEod1Mmnl4v/iFBFeiL728MN8PDrEt+2/hwf6i8zV+6zlDW7YtcwXphvUHnBkTcGGvvkkfcibQtyHsqoIhpaop3DiF+Ey8a6zuGcIRsq70i6j9cvlCdBtK9U+0X9lI0WwNsYlETLOEKVglCGjFAKN6vaRSoKdrxKfHyDjjLLexgbCcE9C1DVUVy1ZS7N+Q4V2rIk266juCJSimKkRntuEIsdZjV7v4SoxWEfr4SeXxe8AJuQDLtCPj43WnsAiy3FRiIsjbBKStUPMfIQqfR+lrKnIWlBMOcqmQdUK9u3a5ORjC0guSKZxYnj+kVMcaawxHQ8ZlRHXTy3z8toj7A261JT1RLm6x+vmHuTcVJv7d240AO+nDPsFaD8/xDzOCK9KS14LCFKDlA6sN+NNpLCBoDPvk9IT397iVI84LBk3Q6LAMEwjorBkMExIH6ugc0Wy7michWCQgwUXe81+tBDSOwStqNhxPlAB8pb/v3ECxnNC3nLUzsNgnyO0CucctSCntIqx8SQpu6Z7PPzIbpr3Bxy+a4TOMi68tEFRg2zGsdZWTN+ywmsXH+HOzX2EJ0tqx3rYaohKCzrXt8hmY35x4zXc86Ld/LWZe5i/eYXl1RaR7GxTMQdeUDpBTUwEJY4Qz5N6qYDt24iluMvXHbyfB/qLHKhuMDIRhdXkJiCfKxkthFRWLeK8zzMaOGwIw3lN40xJPqWZOpkzngtR5eNNIVVmifqOvCmM558pAQq+i97EtyTOguC1yGYVSosECkkiH+jJctxwDNbgKjHxhQGqO4DAM7U7JeR1YbgrJO448qZjeLRguCek/WBIMK4R9Qzx+hjbrKGyHJflYCymWWG0WKF6bnTZl/C0wgHG4qrJJFg2cSmEgdeEwgAXR16QhIrxjKKoCjpzqAKyaRgfyEmmMhpxzlxt6LWC0JLMpsRhyVXtDW5snicUw0KjR1Vl3JycZikYYxwYB+mkc9auoPucaBYmxi+0NlTY0Gs5qrRIZhDnUNUQlRnUKMdWIx8IEs8565UiYZBFjCohrWhMPcywTmiEGZkJCJQhtwEPVBcoioCt9QpOB8SbASotMElA3gzoHBVmblol1mbnyS8dhH0f8EhnhPSqjPhMRD4llDXLYNK6eKna9U0CxRLrkuPHdjHzOU3nGstoqULYE0b7SqqnA8KewK1dXrv4CL0yoR5mHHu55ujdI3rXLZG2hM0XFRw9uMyxC3Pcce9hDr9kjRfOneZ3l9uk9qmTBz8bUBO2qkgMGkf0JLNhLW+gxFI6xcDEDEvfX6p0it37N+gvxGzd22L6AUc4dpgIkk3LaE5T1hRRzzDaFVK9UGAqmjIRqqs5KjMEY0PWqlAmz6AA3VZxVWEvBk62bpxisEeYub8k7hT+wRjkYB2SxLg8h7VNZLoFgGnVSZsaG0F/PxR7U3rjgHBToyIDBwpG1xQMzzVo3xsyt5mhBkPcaAy75jC1hODsBjUzjb6w9eec7bMAAZRvzeoqsScqUAqXaCQrJqa9YKoRRSMga/s+TuIEU4Gi5tCVkigsmamNWKj2WE/rUAqH59Y5WF9nd7zFUtghtSEzwYCq+OBCxwaE+Eht6jSJlIRiOBiv7OyY4AM9TgkqM1jtzXTdz3y7BOs1RZU9UfvxLWctZaIJhkJ/UGFYi1HiSHTJqAzpFzGNMMM4IVIlL9h1lq2sykq9zko5S+tYSGgdo10R3asUsy+6wFK9y4nOzI5roKr0nSHLio/Aq05I7RyM54DAobRlvuYtKoU3Zc92mz54+PWbLMU5U3HKVlphdGaG8bUpYVzyst2nOT1uo8XRzxPMTEF2YJatI4r0aMrUXQnpu5eIbw5RBbxn9iYOz60jowB5DjQvsE4RTrIJtmGYmO9wMZDUkJxakF3UzFezBoMiphrkvjNprWAqjjh7I3TKNrs+nZM3A3ThiHueUDtIDVFfKGu+BxIuwClB91IQQWcVzGWsKZdpwjvvpAewFhsHrN1So3NLTr09wr4y5eQXFpj7vKNxCsRWka2eb7FQqXgySCWYmh8Aq8Ekjrha0JjtM3t0yKiIGBUhm506LnD0DkHUr1FpxyRhgDu/glgLrSb6/IbX/HYSk0XEhQEUJVIaXAAYP1ZiLOQlrhET9QqmTipGswqdO4KxT7MZ6wq9VkhpFLUgZ7HSY3NvldIqrPNtfXcFHRoq5XzZpqVH1KSkKk8MoHVsfLGP+k5DrGfrP/mNirCdoh+ss++PDWpcIM6i+ylYh4v9FNTDArEBRd2/FwOmVHSzxC8QuiQzAf3Maxwijmac+jQdZQmVJZhNGc1XSa8JGe52JIe67GtsUTpFVuod10Adk3QlBckGJOuKqG/pHnG4wNJu+B7vvSJhNh4QiuGGuQswd4FRGdEvYjppBWMVFILqxMzd2GE6HLKcNlnNqsxVBjySKt82/MYBrzpwgk8fuxFxMPNASTA0dPsN7r25Sjw3Yi2Pv+x5PxvYFp4Kr4ECPoAEhPh0ppNlm8Wow53dA+QmoBrkBGJJTYh1QmE0wyKikWRcODxm/FhMdbWkrCoq64Z0WlPJDJWVkmwmpkw0USfHVAMwFowh6RjEPHU+0Ms34bcDJkpR1r2zeub2kHA4RX+uhZ5xbNwgKFOh/phB1SqgFDLOJqasIpuJKGqP93WvJhnGCuujGlkRMB5HLM12OE8LOpr+XoXVIclJnweK1rhs0umzssMTwAFaew1UyUUXh89d9W2eXRxiEn2RfBn8g1Rb9tSgKleMy4B02OC4tkSzJQeam3SyCmMTcS5rUbgjPK9y+mKzNh+p9F0WjfMr9tDGWKeo6S9ZLv7sQWDt5gjCnDIPKA5kdK6u0XpogB6PfEqXVkhWIlojhfEZHJklyNTFnDxjFVkZUFpFPpnYm70qRT9mvVYQJwVxWGCtQpRj40ZgaUyjPmZ/ywtP64RA7XAECe9v05n3W9rYpy6VsWCmSrA+aJKagEh5AbKSNWiE6UWN6/DUGnet7WGrW6O+OGBvq8Pe2hZreR2L0IrH1IKMyvyI3v4GRUcYm5Dwli1OzU4x/QXF/KMdOkdmaN+j6bw0pLwMYfFMwl7SxytU3pLSk1Yn27mgfVMhFMPuSodHyzlGZUSgDIMiprCatAxIi4C8DFDaMZpXVFcn3T2do7pS4EKFGuQk50eYqQi93anVOSTNSdZypHzqCshlpjGJ10CVV7tNpEg2HLWVAhMrwpElX1f0DipWb1FEnYRIgWSGYr7h/YCBor8nYDzvhUgxW6AExnlInmuKcUhS9y0NFma6nB8EzNyrCUfOB6TmZrZH3P8tdtYJfrGAQASiCEapj8wbO0l0BxnnhD1N0fLCXuc+CVwVlsqG72tdTAlF2zDsJ5wMp0mCktxoBnlMqA250bzfXU8S+OutBAW3zTzGwXiVjqnS0iOWwi0ajC8mJO8kbCAMr84Jazmtxpj+HXN0D0GQ1ph6oECNUq+1b+cPa+8WEgfjGUXe9GM3GMfkpUaJY5yFaG1RyhHUCkypyNIQa8W3+w0M7BtSr6ZMJRmdrEKoDc3oObCgTFA0wMSOqKMwCQRjCDoBZd3gnLCVVakEvk9NOVksZ+MBc9GAE8MZbpxZpphWVHRBKxzTKSrMRQM6RZVAGVrhmHZ9hKzVcPcFfGFmt/9hgfGCIOOM5vECFwhbtyq4jPYVzwS2f91Oou7b5rrGXgwi2Yk5r8RSOE2nqLCn2uFCOsVGWiOYmP+jLCIvNcYoRBzDPZZkI6R5PPXyqZNSTsWotMTUInQvx8WTwG/gc7PFWHT+TKUxTSpr1Nj4yiDrMLF/WKKOvykmijCxwwWQNwNUGSMVS39/wnBJ4bT3ARUNi20XLCx0ma0O6aQVhjqif65K9IWYs4erADSOa8rE0Xx0CKXBDUcw3UKGY1AKM9f01Kw7Cee8dg0+OwCQvPAtJIzF5TnBYESwrEjikEY1ppip+puVGqKBZohQORdQVjSbqzFiBKccqhSCvlBddcQdS1lC2lasLggPHtjNgYOrHJ5ap6JzjlYv0NIjGuq5ITCm53tc1drknnNLFPtzMMJgK6S6UiFMMx9kDDQu1vSONNi8zqcwlRWHa5RghLSTkFdKgtBrCs4JZakxwxCUozSCyTV5GPq0Oiv0hwnOCYG2NJTFOqG0asdNeBvBeE9BuBGgChhcVTK6qUCUg2FIoM1FUza3mpl4iJ6k9ZQupB5mZDYgVIZhGbMynmJlVCf9/QWmTpece6W3cqaOwa47zpB99V6Usoy2KlTPa+buKbBTVapfOEN27W6SUwmonR0UX3XlTXQ1+R/AoAixFKIwCJ9P9/HPP/qNvPx5jzAdDemXCc0wpZcn3hqzmkBbCqNxTjBGYauW4VJAdTUgWU9JF6rE6ynSHaCpe+Wrb3G1BBf5oK8Yd1mdfr+iKLwLFFIYxrMVOkfB6YC5O0e4UDPclVDWLC5yjGcUaTumqAujJUfZKiC04ATRljAu2exV2exVCQJLGBjU7hHFVp3dH4bxrKKsAAq2rq3TOBMRgzf/opDOCxeJejudSM9FLdSFAZIXF8/PaQXDPliDHXmhJlqhkoR4kOK0opxrEPUMtXPCcEl8iV/scJHxZl0uJKua2c/30OfWAYiv2Y2JY0aB4+TJeTrzFV60eIqRjZjRA2oq28nRALx10aqkHN+aQT9UJ8wgnbOMlhxbg4SFMxPfcRJTtBIu3OaYP7iOsYpxHl4s7CoKPUmxtVgrlKUiCAwuEWymvfBxQhCW1CoZUeDnw0J1QKTLi6ahtWrHg0hOgxppKqvC4IAl6GnK2LK0e5PlvE0SlNSCnEh7KyOftJgMRBMqw2LSo7SKzaLGA+sLzNcHXDgxw3zf0TkcMH2/o/3QEP3YMg5oPZZCXBDPl3STKufaCdP3tWjfq9i8JqasOXZ6UGTi81TiiJShoguUWOzEitI4hi5gV9BFKiV3fvA6rn71cRaSPitpg8Vqj26eMC5DalGOdfgW6kAeatJ5y9bRkPlBSbI6pmxEyFwLvd7FNapQOF8labwVqbYG6NpTb/V7+XmgCiSzlI3Ia58VS++gorZSo7874OC3PMrqqMFGv0Y60yAYeY3TCRBaKo0MawVTapxVWCNEiZ8w43FEnBRkNwy40KiRrPl66N7VlsYxzfQ9KbZZ9ZUrItTOjFl+eQ3+8LKu4mnGZAI658tZS4Oz3geKVj4LIc2AwvtvkwTC8GLwSQ8ynFY4CUiPpLTaQ66bXfF9wPOEk2fmKOqa3uEG9SQkPL1Ob3/MYD9UminGKKZrPpVL46iqjNZzRAMF6PaqTK1BWQM3k9No/3/s/XeUZVl+14l+9t7HXxs3fKTPrMwsb7qqutpUt1pSy3W3JCQBEsyAWIxAwgwIBjc8PAyzGFjAzMA88R5GDwFyrZaQaUndMtWS2rvyVZmVlSYiTfi49vi99/tj34gqwYAy9dREar36rRUrMjMib5x74pzf+ZmvmbDTbTP/hQRRVFhfMT4S0D2+C0BZKwKvxlqBlIZWXOBJ16INsghtpGvZ44raM1grEMLiTf/sS8O4CLgx6tAISrphRqBqpDR3VFl8RcKAN3FVtizdDuDY0R2u3+pha0HDL/Gkni4OHTbSF4ZM+7S9DF9oIq/io5cfIB8HDrVxcpdHnrjBY81V/l+Xnib71x0az08QcUSwusvuxWXOP7ZKHFSMmzmbvQbbj7YwiUaUAvThjns8YTgW7TLWEbnxaamcJW+AFIbCKnxh6GvXjZ49usmVm8d48dmTyEevYKyb8dZWHYw9Cq2otBuHBM2SUguKnmDv3ojeiwY1cXNQ6n17T3GwHBdTIow3uX2r3zuncgqBCT1UWlPMhCzf4zBlLzy+QvapI1wfdWkEJWXhIbtT8RABVjn6YZ4G2EpCJRFxTaeb0olzfKVJK5+dYYN6K4bEkD5S0umkpBttwj3J6J4m0U5NuLpLeXQGlVY0bxzycmBf+EQ52JKNAkReOkiTUpRHuvjbKeL6LUfj7LYojnbxRiVykCJqgzfMkTri+PIu33X08xwLdvi10b38xMuPIcaK/FTBxjlD/9WEZOMYVVPwf/zef4XEsF53OBds4AtNbj0iUROJu6AqtzApA7qdCcPjEULDuWMb9MKUy55mcrJHsjahbofs3g8nGymDPKKqFdaDyK/pRDlq2tINiojA0+wNQ3TuIZTBGgGVBCOofJ88rilrj8lWAhK2tUDds868V6GEfWPgdkgha1CFQBagF0oWF/vMxWPWqjlkXBPImrQOMFYQqDd+h6GsaXoFC/6QT/fPoGvJfSdvoY1ke6/Fxy89zKePn+S9Ry4z/7dH/NTR97H845ew45TFz0LyZMlrtxYwGxFSgOnUqLjGv5ggvMO9f5oy533JBUok1RSKBxwskErrEcmKf3bza1n71eOIh8aELzV57rVjPHbumqvIM4dYmRQB7ThnsTWmqD12xgmim1PYCFn5+JOY9uXUMd5WZlHre5i5DnKYYsfTxSa8oWtxG3HHSyShHU3OBB7FYxPSIuBnX32Imc6E6lTO1rUZ9rolnq8pZ2qsdD/CRAZyhUwlfiqoWpZkoaA2knaYE8iamTDlXHeLhbMjRnXEJ1bP0N9rgIV8ThC9btl8W4h+5zK9C5rJUsT4XenhamzvA+mkwIbT0l9rRL6vLJWw+s09TNBDh5ZqvgYLJ34yJs5rV9FXGuPDw70b3B/dQGEojEejkfPdj3yCn775ML7SHL9nj1PJNqfCLdbrDlt1i69pvEJLuidmpRV9EztL4UMOq2C73+TY/B4n3nmJL790Ck8aYlUReTVFLNFJwOBUiD2e4UtNKyzwlWachwwnEaM0oiw8TOrh9T2EgWRLOOpjW1A3LKIWIN3ctJ6FSeohU0W4I8kXNDNh6uafd0lYASaExcU+D/bWuTyahVoQRhXGSsZTWJEnc4yVTIxHL0gJRc1e3WBchZxa2GEvj5mNU77+3Cv8ypWzTK52+OVnHyd5fJsH/uDL3Lx4D9GXr9F5pc9O3nA/27MkNxRmJ0BlAY11cye54isSHpY5VR1Y0wJUFgbGJxKa3Cpy4/MNsy/xxXuPc/SHIkZHLUIHLD0y4pM3TjGZRLRbKXPNCQC1kcRexUJ7zOawiUxq8kWJlQpVxjSvjB1brRG75BmHiKrG7PWRceSEkm77+O8gdCjYOxeBgMkRwfvveYkvbB4jeDVGb0VEM4Js2cluRWFFuFCRNkN05jnIkq8hDfHHAlkJMtNC5YIru12sdIIKdWxRp8acnt/h7UdWuTKcZVIGeMc0N5cWCPpQ3p9x85xA7AgC/5CrLesonEjphtLWYqPQtfRVTXC9z+IXe9x6Z4A4M2GxlbJ5aRYTWERZYZMQG0iKruBYtEuAZlO3eCi5zvF7dvnC4ATXrs2DsvQXYq7HXX7ZnGc5GfJdC59lYgN8637hiyrDkDEytz/D+UpFncCJhV3uaW8xH4x5ZW6JnSxhPhqzPW4wk1vyuYDhaUdV9KShMm5hMh5FhBdj4k1LO3PsJFUavMwgS+NA+HmFDTzqZkA+65P3JOkwQFWQLhmK8xlPnHJe9LWRFJV36GIiRrn5NqlgNk4JZU1ReweVcTmF4kSem92WxkGMxnVA6gcksmRt2GH04iyyFLzrQ5/hbyx+kr+nCj689wSFtHi/NsfnHo9oH/eJX/KpZmIgIwgrqok7p9GeQVhL2XDQr8OO/V+LAnIL1ZtaBV8YLpcLLPkDZmfGrH1TDzV2RI1zyTofS+9FD3xGN3r0I4ONDM35CXPNCfPxGG0kuwImuUfVFgxOK4zXovvcDqYRIW9uHZBgRB65IrG6/ZxyZ3qgswXHv/sSiVfR8ApWwj6NYJG0gmDsmCfZfRXddkovTslrnySoGEfhAURJTGFnrauWqiXRgQNNt25ovIlBGMvoaJNXH0u4dWzAkc6Ao80+ufaYeSJjWETsjBoUewl2tiTfPmTloSl+DG0cDlRK8BTWVxgVkR5tULYksoK8H7KZ+YS7Cn9cUM82kWWNzGvqBrRkDkBufXxR81RyiTlvyOeSk7AeshclLLeGPNy6weONq+TWZ1c3qayiIUpWfI1CIDn8CtSPKkJVUxqPy5M5VmYGBwyi8mKbKrGMj0rqExm+0hS15/CeU1yiqCHZnCbNyiBrgxqXiEJTz8Z42yNMEmE7oYOEldC7oKkSydzX3eJcZ5NJHZJrd4lrffhbeIGrQFUBr95Y4oH7b9HwS4cmqB1e1VeavPZoBgUNryTTPmkdcDTY5Vd272Xv2gxzD2/z3ac+w6wa8/3Xv54vfOQhFm8aNt6jSZcF0XNNsnmoTsxz4+mYb+qt8dNbDxNvCVrXS4K9Ah0q+meSw55qYIGRUWgECqe+pBF0Zcm6TmiIilezZZb8AUvNEVtyBlnDA++5xJeGxwmCmmoc07guSDYEZcujf2+ba36bq22H8qlrCcpiAkvZtgxPSIyadcieuRnsxjZkGaLVdMfk3X7HckcJNJQ17+xdPuBarxY9bu216dywtK/kvP4dESsLfcAxC9phzlxcs+M3uPr6Il5foUq3VBqdEDRuWGYuVuQ9j6IlidcL/K0x/qjBzEXJ5uM9Xnq4yQOnbzCpAjxpON7a450LV9g+1mSnaHD9R06xeidv4nc6ptXfvoya478rsJZ8scHGk4pyVjNzZI86C6kynzq25D2PpDSQg0kCyq57nU3dYqRjGrJAYXk4vMHff/Ij/LMrX8PNnQ6vbc4TyJqzsaNrVlZxzDd0vQyFQGNZ081DOx374UlDVvu81p+nF6d0goxAab506xj+QDA6IcgWDbMzE7d5N5K8dpdjtzth7z7BjoyIdpz6kqxAmAgvN26WOGlStwKKGY/+PYr0iGblGeifh7ONAaMqop4SDmqjDr1VhSkTSYM/scz+QkT/bOyWHxYWumN6oSs6OmHOQ92bXJnM0pkC6f/BJz9Ab2nA3/26D7Pk9fmzz30X8pMdFr6Uc+z5VxHNBtnsMcoO9F7V7N6rKHoh3UuGsQ6pM49gYAk3p9oRkYcOwBSHC6TPrM9rldMt1tPkGQjNjih4KNjjZybn6HgZa+UsTa9AxBp7Jufe1garWY8i9/Ezpy3RWC/YeTDCH0nykwUqMOy8OI9eKhCewQYCHTmky+i4RJgG3ZcqOLKAWF3HTjJEq+HE2m8z7iiB+lLjC/dxq+zy2c0TFNsxsraUXZ97HrnOTJSylycMiohWUBBMpaJlJmledzzw4T0am2iix8dc2W4y/+uCfE6wG8QsfXQbz1NsP9GjvapBBLziL7EwNyQtAnYmCWZWcL65waCM6Fw+5GprqrwvqtqB55WEosI0I1RhsB7IVsXJ7i7Hj+zx6zdPs5t2Sec9GtddK5X3QuRCjhSWa+W8w8IZuFgukho3E3vnwhWe849wbafHc2tH6fg5j7bWmPeGNGSBRrCmJVu6wY1qBrh0qKdFG0moalqBm3NfHcw4/OYrLZIR1BEgLNoIJqUbOShpif0KKSzdlW02W0321pv4e4qwL5xkXSoJB4a9+1tMVoTTErhvyEKSs17M8bZ3XPxNx2GmKj/yLmhVAaePGwu6Nysu9BeZi8dEvZy9iQP9b48bTAaz3Hj2JGUXjG9pXIfgKPzlr/pF/uHFb6D+6BzH/8NL2PIKVmvE3Cxow8ozThdCbuwyPH6GoisJ+4YvbR4jbBX46f4+wkNWmmB4iOdhGpVVbNZtR8W0HpVVJLLgbfFVPlssYazgV9fP8ejsdQA+8MCLzAcjfKG5sLuA1QIdW/YeMjRv+Cx82XDj91RElyKqjsEs53hrEdWMhsCgmwadgMwlUkvar/t4G33swiz2pitK9NzSbR//HeNAuyplo+pwaTLPOA9BWapEsP2ox9e1t7mZdphUAUpYBkVEXvsUWiFLQdg3xNsaYXxG7yzp32zjdUq23gvRtQB/BDZygPRkq2bnQZ+iZzGlYmfQQFcKdT3ic60u/ftjLt1a4Lg+7BvDOpX5MHAK9Hpqa2IMQluiTUFRR5hj+y2acYsjY93iSQhGx33OLt8kNQEKy41ihrEOyXRAbSUNVRKrkhPNXc61N9kumkx0QCgr5r0hLZmTmpCrukVlPUbm8AWVxRRf2PQKWn7OyeYuv/DK/cxehrLtxDQAJllIENQIYbHWUEmJLw1GK5pRgVy2DGUTYT0C5xVD0VOMT9V0V4YoK2hFBUuNIStvHxBIfUDf3NeWlPswp8NmLUooZzXxhsdkyaMxFf8ocw+TeWx9vsPsizVzxlLHGv9VTTbnsfFug9ct+Qf/6A+y+CvrsPkiACKOpg9uDWGA3NjFphnVQ6cZPliRbXkktzwG17uEvQxVWnTs4w0y0IZ4O3G47EOMQNQc8XeprEc5XRgBrNcd5tWQ/+fq+1i72eMbl19mIRjRVDmXs3l2y4YD4XsWcSyF7YiNtyvidcHMJyVVE9pXBHUcMT6BI6YAInYFnQklReGTLce0VjedXkcSQ13/ZyI3/7W4owRqgd26yY2iy9VBj3Qcgm8ZnoUzT66yGAwJZI3BqcjURpICRelhJYQDQ7Q+YXFHkS00sW0L12NEZBy9beRgT2IwJr4hSea6ZAsWkSn0ICFZlyx8saDseKzdOEFn1+KPJ3fyFn7nw+IU6fe9nmrttvCFxqOgcSvA+JLXd2fxpCZQzsahselwiXUnpH+v5R3NHRSW1AQ82z/KXh4zKQLqWnFufov5aEzXT5nzx5yNN3l+fBRjBZFw29uJDciNf1ckT3CMIcfXF+wUDV68tUx4OcJPDSYAHQlkKRwUaRpl7TEax9RjHxFqpG8IghqZ1NSx0/esOhrVLZlrp8w3xlRGURuJJw0N5WaGEvdzAWqjphWo4bAZrrKEYFuhCku8o1l7dgXdrol6OXnmkdyyDI97NL5lnWZQsPZLJ8gXDL3nFAufKeDSa1gpEVGEzXOEsYhO26E/hIBJCkvz3Hp3wsmTN7iqF5GrinBTUdYJOhCYSCE2SrCWYHz4cDeB0/5U0weuEXJK2fS4Uc9w8eIKreURvqxJdXigAzGsIvLKI04ccmNoBaWJqGMI+oLWmmNJTo5McZ6xpjHj8NFVpahLhY49yqbELMwgbmwi2i3szt5XDsZUGcVq0ePSaB5tJFJZzERij2c8MnODSFZsF012ssQZYJUeVemertHUt8p6ziRu5lXL+tdV+KshyU1FMLQEE4NpRaiqxvqKKoHGPQNGa22SW44GKrSleXFAcjNwwhx3w3DLGGCqRq+mDwGtQUvCgSYtJZMsYDNtsXZtjvnXINoqkaUmmw3QbY1BsOj3+eLkFL0w5dHudbbKFr/07P1csAv0OzFnO1ssBENCWfGezgUiWXGjniESFakJ2dVNBnVyoGZzmKGtIJkKA7+0vky5ldAcOYOvYAh5TyBrQTUIEdKilKEsPXTqoYYKUJjAksU+QbsgPD2gG+eMi4DROGYwigm9ml6c0g1SYlXR9nJuZF0M4jdJo8GhQ0ABCPo1x38xc/5NRc3ZH9LIwYSrf/AYDQOjD434J4/9GBrBn/vC7+fEJzP8W0NY30K0WzDTdThjY0nffhKVG8LVPSdcbgx2cY5r3zJL8WDG5q8cQc0Zyq6gmK/xRopgqJ12bztBbg+QxeELrAAoYVDTXbyUhty6KvSfvP5+EDDbSLlRzHBvfAtfaGa8iFIr8tyn28oYZyFLvSH9qCIdh2RzguyUwEtqkqTAAk2laYUle2mMlhJTKrzCjRSLhQbx5rQlkuKOnAvuKIEWxuOV/hJZ7VPUbpXkdwqsFTy3d4TKKMcOKH3y0qeeSoiJUuJNQGVTPrOS1JFABYbld93g6uuLNK56eJlk96E2RrXJ5wST0xV/+NTz/NDwKRCK9KgmXQpoTyqH1Zpqbx5qWIOta9cCTM3NTBI6yT1j8Ec17WsSWSTcOhnTviXoXkqRpUYOUiJfEa0lfOnIUbQVhLLmTGOLjso4GW3zS/YBqtUGN1ckc/GYTb9NK8oJpKYhC7bqNiMbMzIRYx1RWUV6N8jZCRiVEZMqgBdbtPcg3LP4YwMNiZe5KtQbKko/wG+UmFqCdewzlIV2RaudMT+FpPSLmI1+C70TEiymxH7FbDjhZLzjZvOy5lbeORCgcPxqx2JSd4EaE1Lg70w7pq1dpyrW69C8YRmeFBgj+B8//EfpXoDTzw5RWzsO0SGFI2FUNeMH57n+7TXfeN8LXBgssPrxozSvG4wnSLZq5l6sUV9UYArW3xE6J1MLwZ7AyzRqd4iea4O1ThPzkGGAUtgD3LIvNJGVGCP5lcF97I0SRKRZ77c519lECstG1aGyilEZYo1kZ69Jp53SjTJOd7ZZHfUotKIZlAc/o+GVTOqASrv8ZC1QSWTp4HZl1yNqNRDaIOIYMbr9rvaOZ6CDIqKsFQJoNXKKylWZN4dt0kl0YL2rx1N8mwWExXjOcdF6kqrpk/ccBS+vPXpH+mRzATuPOG5zM8kJrOBcd5f7opsszA0ZRBFypqRsRYhKH8ifWf+QawshEd6+huWUT5vmU9WqAJVVRFsQDCSqCAiHGlnUyLRE1BqvnzH/XMCWXOBjJzoESUWV+czOjXhycRWvXVILH517rA5nmA0n3Kq6gLvgtJWkJmSsI0Y6IpElHe+QVfpxNrxZ7TPKQ7wMkg1DtFfjjSqE8fFHzpGg8EBMFLWaVgCeQczWhFFFO8mJvJrYq9jJGxS1R6eZsbUX8fZj13igeYvtqslG2aYyiraX0fbzgwd5ZSUBAk8YPGUOvwytasRwgl6YQVqL8DyyYx3qCLqvGXr/egc9765tOZoc0A3t8WXGp9tMFhTjE/BtD3yBzAROF/SpARvnYhY+4dN4aR2z23fV6LmTmCBAGEG04TFzUeONSqg1cpiBMeRdhXfI4FiJU1+KRE2JxCC5Ws5xeTyHMQLvZkDvbXvcyjo8K44zrgNuTLps7HTw/BpTeuztNDnZ3WVYxnTDjNpKIlVhrGBQxuzmCXntkZU+Re5TZT5qIlGFoE6gKCXpPbNEmynKmANBoNuJO0qg+9VlKyoY5SFF5VHkU3FkI9G5AiNcEvXsGwnUGesRDEqMJ9m7NyQ9alDSMBM5u4Zc+6z1u/QaKec7m3hC01QFufU52dnl8905zi5vMtk+St0J8TfHTorrsDHj1mCLAuF52KJEJFMwrrVAiahqRG2oWyEzl3InHFzWU3fTAKqa5EZKL2yyFQTc9+7rnG1tshwMSE3Ae09f4lbWZmPsoEkbWftAaCG3PpVVFMZ9jmTFnD9itThkoz04aKONdS2RPzEH2ouq0IRDhbAS6wkwktr4mNAgYk0QOmk6YwWTMmCYh6R5QBjUJGFJsK340k89yBfVg+RzBpMYCAyP3XONP7z8aSYmZKQjcusfPFhWRzOHjgPFWuxojKxrRBxTH50luj4keq4PRQFxjA0VJvExzYC98w3694F3z4gnjrzKKztLVLtNPrlxmkZQoqShGRWUW21mP72BHY4RUQRVidweEG11MD7MXNC0LgyQ43QqH1hjq4qqIQ6gY4cVAg7om9V0y1dZxeakSb0d42uH6Fgft7iy26OqFLpWRHHJkc6ASzfnCa4HpCcCh94IMm6lbTYnTdIiOFDostZV+NXER0w8VO5QHUY5iq0JHLtShoEbidxm3NkMVCsmqcvOWTbl7IY1UVDR32kihx5COxqfaWhEYLC5Ir7u0b7mLG115Dk6qLQoZdnNEvbymI3Lc1hh0SuCd85NmPNHKCwSQy9IOf7QLS6+eJRzq2NXfSoHVr8T1sBXJqZD6ro+qETfLDqNFIiiwjNT58l86hrZiJyqlbVsP9qi/FCfarvBEzPXeLpxEV/UvFQcJQ0DQlXTC1M2shYGwaQO2CldQm2q/KASjWTFdtXixz77duDDh3Q+XOSlj680WRoSxE77VGa184OvJfGWwJ8oVKkIGoJsXqJDQd2Q5FpQeD4jLaGQyEK6hdtcQa0l1dGSzq8GNG9V+MOS0cmEW19t+b6VZ1jyRr/pOEYmQOMM2r5w2IxOYxDtFvVKD6TAW+87Fhsw+Lp7WX+3YP7cNnPJhEkV8FWzL9DxMnLjM9Yhu3sN7MRj22tSNHKSsJw6405HWYEPWQ5hiNnZZeUXAmwSItZ3ABzkyZs6JzQS8nkw1eGelH3rjtx6TExIW+YUxmdrbQZvIqmblo2bXZ689wpXBz3Gmw3UWGF2E1ZVBxVbrIJ+HtMJc0qj8KShqDzKwkNIS5X52FxBYJAjzy0vpUOCCON84KM9Z9Fu2jHSfIWonEZLrBFkWYDna4rMR0tBXvqIsUJl7sAQFozAFhI1kSS3LO3XJ6At2WLI8DR4Y0mZe2S+zyQNsdLyB97xGR5O1g7UV5b8ARKDniqKN9YUJvDw8hq7X+XdDaYu+yr52rg2PvCxUeAWZm+yPRZlDUpiQx9RVJhGSHq8jfy2bf6Pe3+CP/XsH+DV8RJPNxyWsT1VVZJYzjY2aXgF18Y9vnbhFQY6YbXoHXx9rEMqq/jYjXsJdg4brwNqLLj8/BFMbMBCnSiiGxVyNMG0GvhFhd+XBHs+ZS8A62F8Z31c9AKsZ1G5IOhDMLLUMeSzMflsiLBQNQVVUzE60mD7Sc2/fP+/ZkmND5gsufXQSAI0I+PMxw4bxqS7CYOnjhJvl4jKMHxsGQS0XtpheFLxzre/zPVx182NgY+t3utmhEHFOA+JkhId1hSTgFQFFJWHUtObfXfgqljfcw/tOMKu3UR02pDl7vP0OrRZhlleppjXHLZEVWYCfj09RyJL2jLjFwcP8ZEvPE5yzaWmZB3GxwOuLM3Si1OCE5obV+ewI0nVsOjZChVqNrfbmFnhLGCmNi/GCnTqOcEZcDmqmIobSVfoedmU3DB2VuOyNojq9m2C7ljOLoyqg3I4jCvKwqcuBSqX+GPhTLOmF6ooJP5Q4uWG0SknaJDNCnRLo31Do1FyamaX54dH8PuKn3r9YTaOtnmgeZNQVgx1hBKWtpdz6fUlTn+xQE0KN/s87OXRQViH+/SEc+S0U1yokgg8N6O1U+tMeCPhG3sgWjCcRLyQH+PpY5c5Fu0hhcEXmpbKSE3A9bRLwytoqsJ54iDZrd35HE9dCbfKJtt5k+2dFvLU4cvZiU5N54JgfNyxz3QowJNQlIjc6ZUKKZFRiLAdyqZCauOWi4VAx4Jo29K5nCHTCiTkC8lUtFsAGuO5hZM3VvzZ576Lo90+3TCj1IrSeHQDNw+7sL1Af7sJ/NKhnhMrHQphdCwkm5cEfUvrRoUoK+ZeqHjlvQtkRYDnaSLfjSuUsJRaIYQl8AyjPIBS0pgtGI1jstTDrwTCU5hRiQjDN66/ThsRhe4hbswBzZiyIltOEJ3y0McaEx1yMV3CE04LNDMBQbegbnokNwWttRITBOzsNGmuFGz2m+Ab8oWacC7DFxD4NWkaMhjHeJ52y+v9MMItJC1gJcZ3FauoQRiByi2NDY2sDINjMe2rt9++w29jiVTk/rQ7NdS1OEARWWVRhXD5xAdTCryJJBg4C4sqkRjfVQ4EhkY348mVVZ5oX6VfxGy9usLcDyY8t/gQn/rGUzx59Bqnkh3mvDHbZZPouk+4vu1wcNY4MyCAO1BO+YrEVMrOFiVCSWxZHVy0+5xaG3hu1KCtc+rUBhsH6MTHSzWzH27wA1/+IPLtfY50evzG9hkiVdP0Cz537QT1bsTk3oBHZ66z1Bjx7Pg4XS89ENzVVpDWAZe3ZrGlxN4FrJuWX9B/R8nyz3mMVxyGs24GBEmM3dpxiw5AlCWyERMOQoSxeBOBDhxuuLFR4W2NKI46sZlk1VFnyvmGU+6/z0dYaKyBWe+wmnR4bc4cwFBMYhCFpLEm6WawedgSARY2H/PQocUfO2O5sqXwlrqEOzlpHqKUIQkqPGmojaSfRRgjaCc523st9NjDa1VUWlHnHmqqUpXff4Tw8ylUJfiBoxgbi52kiDB0IyZ/ujAIQ4YnPOZnd7npHe61UhnFbpkcCF+3vIL3nnydtfku137tBFyA7qWS3bdLrt2YQ60HMF8hWxVl5qN8c1CFay2nzuLKLa7LqZGgEYhKgrToxCl4qVyiCoj6FpUb/Jt7dKbJzES3nxbvKIGKWmAHAbZRo42CWhwozOuWxiqJ1K4kVtm0bDZQR5KqJZh9MWd4MqRuBGRDj89znIv9eWdZkFiCfkmyViB1l9948j6u3rPJo7PX+fXLZzj567kT7rAWag3eNEE5dZLzQojvsdb+yzt5P78zIab0Te2SaVViraNoIhNMI3yT5J3EtBOwlmIuxnrTuV8o6Fw29L0ul7ptdGKI5jKKzMemHt1XFKu7R8me9Nn5Pz/M3rLike97Am0Fe6Ubd9yatCkmAX6zdHqqhxyjjQb3/KTCH9dM2byUMwFCd/CzHJtlTkM1jiEviG66B43xFWVbEe9oZGkoj3RAOATH+J4OsrZgYP0dPub8mDiqaEQFy40h48pZIC/GIySWwnjk2mP8UMiFa0uUP7DJ4V0nULct1rPOCbuCwT2Q3JS0LpXoJMDzKod53O6id0JEt0T5mm4rcy1pP0AYiJOCySiCWuCPJP4IhicC5q85OqIIQ17Y+1Uiv8XZ4G3O1FFK0NrhSMMAo2Djau/Q1ZgssJcnFNqjMpJ7u5u8sLOM/vA8Jz+360TKs4Lw+lE++KHP8JH8CTrPBeRzlvJEQT2lp+pKYmsJkduJmEq6uafhAH2x/e9+BDXTYfb9H8AfCMJdSzDU+MMKu9dHzLepuiHR2uC2j/+2EqgQ4iqQBMsrUAtsKRn/2udIP/ksK9/7JzGBxfoOqiRrkFpgtZthYUFV1rkRzvgkWzV5z3eLgc0On/lf/jbLf+cv0TKCdDmkYcFPLaIQ3NrpMMgi2r8eE9zYxAb7T9ApbKg2d8cMVEhE4LsnfunEuGxVIdIc23LLosHwOq+tfZxxvoVA0EjmOX/0G2gsnXb6qp4TVwl3JYN7HbD8badWOZr0+Y/mbTSveKy/sMjWsEPaCmmN55xMm/aYlAH9YYIKtbOuOCSjsP3rBDjVSpZJViesjZ/j1uZzPPb4H0cYS93w8Lot7HgC+628pxCDCdZ3W9D2pRod+/TPxRgPki3Dpz7yF3nHk3+eMJ5l+5GY+p6Mh1duESiNJwy9YIKJJKGsWAoHRKImNQG+0Ix0hLaStcO+VCo3crDSYnyBVW60ka00kdpSlpbrr2yx/oM/Qr66hUDiLy4y+SMfYOFtPUQhaK5J8n4Xe7xADTzCPUiXLfkcdF/r4u/0EXEEuxaka2XtYAhh6Dqj6f0iNaiJwh6yqZy2knEV0PRLjjbH/Mqz93PqI4boygZCG8z6Jv1oxK1/+hP8s39wC2N+hvWVBZa+6ttoDY5TNUFHPkGFGx/2piigWjrFfQk2MFjfzeJFJQh3JcmGJRoYZG3xhjmiN0PVDTHKLX1vN+6kAlU6HWNjl+FlJp1RfSaQg+mFIdyHNwYRCbzpKK6KBaoA4wuy2akPeAHRrnv6NVYVHIMqkZRdn3ROYpKaXjtl+1Kb+57ZxibhG+36/vzT3gVMJGOwaYpQCluWzq5jfxtflKhRTtZRfPnSD3P+zDezOP8QIs3p96+irHLaloWmbvmkcwHFjBuHgAOiX9LznDy7wWq7h385Qu55DBsJV3Z6aC0p+hH4Buk5hXabeoiZ8r9ywF/xUMCfrRPFrfd2GL4UUKWS7YdDgqEl3tXUMwl+3sPu7GGz3C3YwtD5SRUVsgqp2yHFjLu5R6FLBPmcj2gGjI9bTCXZSFv40pBWPtLOsNRKOdvaZKwj1NTaeZ9bfbq1zTPKYg+zjVcWHZuDB5wsBF5mMYHA36kQZcq1v/sjzP7Rb2Xl6fspdj2qZ6/h78RMXppBTXNd7xVLthVRJ+BNLEFfoEqQRY3otNyDab+wUBKsQXgKqgrKEhoJxoN4U6AOGUjvS02lFRfXlrl5wefIFY03doaMNs0w3YQv3vpR7jv2QeZ+9Bivf3mJ+sWr6BnJ5Jgb13iZ0xeumtP8UE/zg+KNcZYW05mnINqxhAODyqa6FUVJenYOqwTh9lduBvoP9XD0v5pRjmzEqNLh+0QN1eYGG7/wk2Rba6ikydLbv4mZM48gNFz6qf+LxZVHWVl5O2VbsfvK59i69FlOfvef4eVf+ucAXP43/wiE4Ph7fz/9ZourP/QfaH/gHWx97BM88nSLC7/3zzD5h/+afrmBxdBtHOP+I99E5LWneMtDDCEQQeDaI2sRVYWtKlAKggAxnFANnN/P7NknEOMa6YfMds9ifcm46vPy5Z9mlN3C/4zmwfd0+Z++dYUjMyWvFsu88LzhZ//ml+mvjQkevBdlFKqQpBsNVCqh5TapyjNUowCR1ESNQ02g/xD4S9oz5HOWOnEOrUXPMs432f7CT5JtrBGqBmebb2fRLmJGY76w/ZOsNO7lWOshhLVsXLvI1VeeZfn7/zQ3/5m7Tp7/2D/GKsFs8/eh1lp8/of+A62vfRfDj/0G8UP3MPNXn+Cjf/0Zrj/fx2jDicdm+OBfe5jlI5JFf4AvDYdqtyfBRgYxVggNXgrxjiEY1MjakF7rg4DOex+kHAd4hYd87CzxLY/w05u8/qUPk+3cRFhBd/Ecx975Hcg4JtmwVKtrfPbFHyVNt5mTK65lryoIcRt4cPNQ32f8wAI6BJUffgOXj0OKX5pn+ZYhGFX44xqvnzkiCjAxrp1eCc6wUfgsPdxnvX0GWUj0zR22PvzjlLdugoD4/Hl63/ltiLkAKkm5doOdf/fjVJvbJOfvRWqBZ5ycILzJT09KyrZCGAilOICW3U7cySr7CzIJGH3iVwHQvnV4+d2Caz/yL+jc/zbu/6N/h+Pf+Ie48YmfYDLZwPjiIMEVXUW0W5Ns1ni5Ze75irc98X0A3PPf/QXe/h1/nyOdh7FSoMcj6n7OO//D9/Cuv/ou/soHPwJ/7B284z1/mfc8+P0oI3nl5i+CEujG4dMW0RqTptiqxhQFpqww0zmf2esTbRZIbbn02R9mZ/NVqjpDaI3MK2RVs/C2r+XED/wl/sCHP8T2zYp/979vs6ObzJk9PvLnPs2ZD5zm6Z/6E7Sfvo/RK88T7kHzsofuaESk8eOKKvWnJAbI1xuHeTa+ADyjxyO81D3xhQFGJdf//b+g+djbePC7/zYnvu4P8VL/GdK2Rc3PQRAcQMFs4RTnVWFpXBec+MN/GoAT3/cXOP4v/xa9449jlUUPxph+zsm/+NeZ+9B3YY3lXd++wP/6K0/wN375aWo/4if+3gVSHVLZwwWMA2BBjhXBnluuhn1LvFHg76Z4GwPk3AJKCTb/+U+QPX8BnaXIUlK1LJNlwdFzX8NTX/fXeNvX/gWqYZ+tT32UYGRoXp5w8df/DSvN+/ma2e9mafFRNqprrlPTbvtuh2NEq8mV7znNe/7upzn+jVcZndPUh6wHqnKYe74g2q6IbqaO+1+7uSetBsHx0wgheeHWz7H+4U0W7Qa9o33mz21Tz1S0v/GrOfVX/ibH/sJfph70Gfzsx1F7PnJg2PyBH6T52OOc+ut/l86ZRxm98jyqcBt5HTptUKRA1Bqpncq9leKOuto7wgIFvSajj38aPRgja1eBDq++jN+Zof22tyOUIlo8Suv8QwwvPIdVYKWgbEnGRyQ7DwTks96BE543VYMRGnbvk2w+5pH3HFbtwT/9NnbrNr+y/QA/2P86vuuPWJ76py/w+p/s0frmD7GbrqKTAFkeNpD+DRC9jCNkkiCUQvieq0IB3wt5Mvh6xN6IV1/9CL/2xX/Al67+GGlQETfnWeEU0Sttnnn5neTv+0Ze+OyEZ/r38qO/MUdeSvbe/SEuXz7KrHgHjd4xjA+TE3pKk4W6UsiBB74jLtjw0Hnff0NPxsjNMSq3yBL0Z14ijGdYWnkS3fTwTh6je+ph1sLr1Cs9TCNg7+3zXP9DZykfPAZlhcprFj89YP4513cn69B6NnK2GIGbf3c/8PV4tU+YB8hWg3d8wwzNxLLYLvjmP3GEW192Go+7deOwETtgBP5I4I/dXsBKMKFCtyKXNGjy3v/rW1HKsvdDH2btr/0tNv7Vv6LKh9QPzKKeuJcgE/ReLzjdeYLBzhWaV8dMrr+G1TUno4dQnS7L3ik64aIbJe0nBGsYPrrEN3/7p7gvvsmfOfbL/N33fxh5yHJ2srTI2hAMSifAY4wb5UzRLYHxefL0d4OU7P3wj/EzH/y3vPY3f4LhZkF0okv81CnM2Qp7KqD9te8lv/w6wkB5eRVqQ+/xryIaecwdeYRk/hhWCXQoMEpgpUDUFj3TIO9IVGGRpca0b38Je2dAehkRPXKU0UefIW4suQ37zi75rVUu/OO/+qZvNHTvf+JgJgpuwFs1oWgL6kiwd85tFPk4qApq67QSm8EAvxuT2oTTMztsZ016cpef+VvP0f/8FarRT2AQ6Mpw5YMRZ37q8D2RRBw5PyTfc4ukaUIVzYbD5GlNSy3xYNkDa5moCS+kv8Zrl36Oe+7/Zl778o/T/7Vr6LrACotoR/zKa+cYfa5Chj1aP9dm+WZFsDvk+kyPYsbS6JZg3ULP3/Sp5mvnsOiBH92+nuFX5JRY+6IXJWx8+ZfxFxfRAaS6T7q1ygv/6v/xpu8zyBOPU8xFlLcEakkzeqggWwyp6GK+7CFqQ7Tp5lJ+Zhn3LOWshj1QrQaKAFk5jGWeGv7t37jEy7+xSzqoAUE+0dQajBSHnkBFDeGum3t6mcVMl4fCdzhNNZZ0H+zy4P/89RgruP5yxq3//SPs/PRPMfP7voVrv/gzXHz9srPJNgZPRci0pKjHhF7LyVAoiSgMkWpNCR7WzZk9j3g952def5Dnekd4orfKY8k1luLDVVUWxqKGJbKsHbpmGjYKMM0QKwXNxjwPnP+9yLRkqIY8e+2nuPGPnqHz3R9k78d+muLCVUxegLGoKCHoC/JbI/xGh3Akpm4GlqA14yCWPs7LTDpacbbSQJgpuF4KirmvUAIVleDYd7+bi3/2XxG+7X1IbUlkl/bsaR565x9zeoOecMKtgaCcWGQYYOqKeNOSzQsKO8R4kC1NHRWBwT2W7tv2ONEecv3zBmOkU3MyilPtHV77wc8xWevzrf/mAzx+Yo/w9df53g+t8ne+/Yf5wXe+F77mTt7F73BI4bad+5x8axwvvq4RWe7mokoeVAJWaxomZtme4Eb/Na5+/ieQCp6e/QMEQcJ6vcrLWx/nxL9VjNdCXtzYZe5Xr1Mdn2Pr8Rb5L+wR+l2sFTDw8SaSaq5GBBqrJXE7J9s5fBiTanTYe/4zLN/7VfippWE7NBdPc/7rvg+vsAdskHirwgBR4SMGGipJ3dYMO0OKLlz6g133oP0cbD0Gan56k02Vm7yJW6BULVj78S/iX035Wz/+AEsLgpde0vzt3/McsShA1YeuJSIrULlF5VAlAm+6r7BSuGWkgrlwwl7hcJGnHgrwP3Se6z/9IoOPfhTrWxb/3p8jTtv4P/kcl7/8EahqIhNR6LHjcpcVZq9PXvSJZYjoNbCjETYv8K+s0/zZ01z+RsmJ5i4fKx9A8urhnhRrkUXlCpB9i3Br3TjHVwdIG1E6x4dW0OOEuo/rF74Mf/9nafhw9oN/kepYg8HrL7Dxix9BVuAnLerRAGusI1x4gjLt483NYTz3M4SBOlYUbbcQV4Wh6obkM7c/1hD2Nvr9KTzle4AfBq4BJ4AZIANeAx4AbgB70/8S4xBYOXAEaE6/zwfOAhVwYfq9jwBXgP1HYQs4BTz/pkM4On3NS7ixw0mgC3xx+vWHgT95GPg+IcQW7pz81yICOsAu7r37wBnc+dt3dL32pn8PcO9fAA8CG8DW9DVOA+vAzd/iZ56w1s7f+Tv67cf+dWKt/aXpeYG3rpODuI1r5f8vrpM3x116TuB2z4u19rf8AK4C73/T34/hLvpnpn8/D/zc9EB3gF8BHp1+bQ74GDACPgn8LeA33vRa3wfcAvrA7wfeB1z/T37+CvAMMAYuAt/LVAt++vVncDfubb2f/9YfuOTwY7jkMZl+/hdAG5dUvjh9b88C/9Ob3z/wBPDl6fn70enH3zvs9/TWdfLWdfLWObG3V4G+FW/FW/FWvBX/edwtihxvxVvxVrwVv+virQT6VrwVb8Vb8duMtxLoW/FWvBVvxW8z3kqgb8Vb8Va8Fb/NeCuBvhVvxVvxVvw2446A9GE3st2VhLQOKGsPNRZTcPAUBGumVsOWKcDcedkg3wDIGk/whtuco3K5mNoNSOEAz2ZfwR0HpK3N1H/dRTnjO7sIoLxyc9seEpYt6ka2vdJAYB37DIPAUqMOvK77VQx7nrO2aFl6yYRIOnqic49UVHZquYp4w8x0+tlO6VwWsDiJwP0/W+tMt0yp8FLwxjVUFUOzc2jnBCAIGjaMZpwWwr76vnnT71AKEHLqHfUmAPV/ElZJ7FSGyEoOVOhFolmMhjRkSSBAINjVPutZB1uL/1sHznpnDz2aHBqePhChjfj/QadAgFAKpMKGHlVDOO3d0mKlQOVTkoGdqpRp/YbivHD/bs1vVjDLmVDa4tDOiR80bBTPuOMzuJLuTSnBelMLDgXGe9PXY00rKBgNEmTp/l0HuNfZV2CyAlmAKvdf0+l3HNxc+z9mSumsG4KwUxDKms1X9m7r/rmjBNpabvIt//YDPL+zwsZWh+6nQmZfyfFvOsUUUb6hFWajEJOE2ND5WlslMb6k7Di1cR04SufMxQwrHCfYKoEsDd6oQNQGURusEJjER5YaMcmdcdb2HvU9K7z+HRG2V3Htu//n3wrI/hWL9kqD/+7fv59Q1oRT5WCDIDc+LZXzia2zXP/EMRY/X3HtWwTf/OSX8YVmIXDmZ9fyWbaLBoMiZlI5Z0FtBYFyF8ikCvCEIfRqaiPxpEFiKY0ikJpce4zKkP4kJr/WYv6L0Pv8Fr944R8c2jkBiIIu77znf0BMcidNplyyFOlUAsifaiJU9RsmfFWFzXPETJdqqYsJFQiQpUFUGp34pEsBe/dKjr9nlT9x/BnO+ltEQtOSgtxa/uTl7+ClC0enNg7iTZI7sP53/s9DPCMQ0eAp8bV39p/E9EGDS57y7Eku/PEe/sqE+5fWuTVps351luYVj+Z1Q3PNiZNYTyLSAjGaYPMp5UlIJ6bcH2AKp0v1WXO4NidxNMOjT/8ZZGVAClShqWPP/d06CUzrCXQoKdqSvftwGuYnx3zjmVf4j88+Sue5ACxkixYdW6f5uSeIt6xju+0YVGmcuFEN1oNgUGPllEqrLZPlAGEtux9K+cZ7XuGfP/7Dt3X/3FECVcJwob/IKIuwpaS9VhNc3XZCx9ZiG45CaEIfO9VwrBs+dawOno7GF3iZoY4FkxWB1DH+xKADgVdYoi194BVEVSOsRcQ+Vghs072+bDXwXrrC0pH7uPWhw8WxCixSuI/9SlLhDK1+Y/sMa588SueqZfWDkkfuv8pu2UAKw4XRIt+2+GU6jZRnyvMAjPLwwLBPSsuuTPCU88cJvTf47QZnsgccJFpjBfqoZDdv4mdzb/B3DilErZGDCQiBacSYZoCOPPJZn7Lp7F1UCcHYkFxP8VY3IY6oTy+RLkdYJQgGNf64Ro1yRKUR2lCfCMmXamailNeKRRJR0JY5pS1YUoJvW/wyF28tUE38NyqR303xn1TiIgiQcYStaop338fgfxzyx0/+MgAz3oRBL+aTyT1MzgWsfuoosgpo1AZvd+IeXL0OYk9gxhNEFGCbCaKukUo5OmN62ARXDgaJoragLf6gdF2JscjSHZ8KFVXiRIfrXk0S1NzMOnhxTdEL8CYgtMAfOGpvMLT4qcWfmIPXVrV7UGslqCOFl2mUtuhQ0tioUIVm51oDc+b2J5t3lEAntZOOM0YQ3giI1gdOLksIbBKSLzVQhUEWGhMpvFGJ8SUmEBRd/0CHz/iC0XFJdqKiankkGwp/bIn2NCotsVKiBhOny2ctcm/slI08x481rQSlDf5IY9PD97X2hUYJg7aSwnhM6pAL/QXKH1qkrWDnEcuJ8+sYBKujGaSwhKrmuckxZv0JHT/j+qhLlvtYK8hGISrULPaGbPWbRN0xEksvTIlVNW37Jbn2qY3ESEEnzFHCsn5SsV0m8BOHelreMNeTEpEXKK1RexZvHFG3AupITcczkB5NMCdPuXGPcPz4cHUPUWuoamyWOb/zKKBsC2SjYlhGXMnm6akJLZU5O1w75IHwBvMzI26OZ39T9fm7NrTGakP5jnvp/rVrfMvsaygsGsGsGnPc36GzkPHi5Aj9x2K2mSWbTWivBU4wGAhrjZTSVfd5iUkzd89ONWwPM6wEf1CBmuoLa4sNJCqtMZ7rWqqmR7rgsfuwxT8+5uzcDsMiYlhGnF/Z4DU1T/1yk7LnRhaiFlghSbYMorb4aY0OFcYXyMo6hbDaIrR1ItS1wvouaXZfhUtPzt328d9R9qm1Ym1zBrsX0F23yLTEJhH43oGBmgnczMr4kjqOKVuKYKzBOg/0vCuZHJEUx0pWVnbZ6TYYNRKaVxT5jCJat65VN8aV21IgtDlw4RRFhRACG/io0uD3D1cPVAhLKGt8oRmYGGMFL+8tcvNGj+iMpOwYZs/vEEjNbpawuddCSMt8Z4wUFl9o5oMxc/GEQRYxudki2JWYAG6mHljBzNIWi/EQJSwtL6cw3oGhXCk8jJUYIYj9ivmZEesnDt/WGHD2zp5yupS1RuQlqqyQA0VY1VNzvdCppkuJSQLkMIONLWxeYH3fzUy1doZo0mk2mswjq32GVcSVYp6WyvGF5nW5wJI3IFDaJc//tLi6C4qt24p9240wxJQV9RNnufpHDF8TphgrSafjocqqqZd6xtua17j/9E0+NXuGy4M5bjy/SHJTkGwadNjDH1X4W2Ps7gCRxNjxxM1TD1lRWdQWYdycHIuzBS+dB5aOPKqWYrysGJ8A79iEbjNFG8l9MxsURnEm2WY5HvIp7yR2N0GkisYNiTexaF/gW6gjhSoMVipUWr9R5e/P3wFRuYdN60bFazcXbvv47yiBWgumUPijaYlb1W4mad2SwJvUoARGSVeGA0EfZGUoZiNGRz0G5yws5zxwZJ139S7zcXUv1zKf9PGS8V6A8Tr0njMwHCOkdD4uxjh/odhZ+CIl1vdQaY3Qhy+oXFmFEq5tL4zH3jgBI6jOpxyb6xN5FdpKBlmE3ohhtmCQReyWCUfCPZa9lEve/EFbLozAH0K0HTA+U3OysUus3PlUGEJZozBUU8+bWkpqK5FYQqWZmR2zemhnYz8EptNAJz4IgUwr5L6nVVFiAx9RlNgkxEQeclyitgbYSQZ+MNVU9bHaQF1DGGACzy2UtCCrfLZzNw5ZDEcYK5DCMvYj8tpDTN0mrfndkjWnMZ13yshd6+Y9D7P6xzXf//AzB9+ipaDnjUlkwcjE5MansopIVnxD7yXyrs/FxSX+42sPYT7fIt6usb6kmm8SVDW610Rt9F0SzQ8ZiPPGPhmVVejEx/oSHSomiz7D04L8WElvcchya0QgnVttwytoAIv+gJbK6Z2e8Gz3KK9vzFFvJXSuGFTu9ihSO51PWWjkdDxoPOfuW3ZDgn7hql3AH5b4l29/0Xdn/a8RBLd8/JHAS62rDCs3mxPa4O17n0vA4BZISjI61WB4UjI+XbN0YocT7T0aqmSsQ440BtwIO9SbMaIWbL5Lk833OPJLwM0tVzRML6aD2dD0s9dPcR5mhxf7G3JtJU3lZpH3zG+z20wOWnW3GILxRhOh7MFD/7X+PMMyJlA1Vwc9tBWokaRxwzLzWsHNd0WsnNzGk25+XBgPIwShrCnwCGVNbSWB1JTGQwiLEBZPHbqgMgiwQqBjDysgKDVGesisQlQ1ptXANCLypYRoK0NUTg9SNGI3U9/tY7VxVtFWYsMAEyl06F670m6hZqxko2hhrEQK93ApKg+hnEeUu0GnJ/x3UUdvtUaeOUE+GxB/RrHy+B4jE9GSObn18UXNVt3GF+7+S01Ibn0Ulo6a0PMmfOf5L/HS8jKvT87RXq2J11PquRZqd4yNQ+eTNDncbkVo57Qr89olz2lFOFny2XrcMntmh7OtIbPhhJaXM+tPUMLQVDnGShJZuPtMVvQWJrSCnBfUCtdPBsx8wad5SxMManTk4Q+dV5TxJbIyVO0Af1AitEVVFcVcjD+qWP5kxWu3efx3lkCnGo5V29L5TO7EW7XBhq7KEFXtboRpUs3PLTI6FrD7AHAk5YGVDRLPVVIGwWrWw1jBQnfMjX6EN5GoQjE+Ybj5NT0WPxvir207odUp1EWUU1/1wIfdAcnNQ0PqAO6e3J+BAnjS0PbzA59rAE8YBkXkXAIBM/LJBM6adh4Sv6KqFfpzMxz/TEF4vU96psfMa4bsKZ/NvMWxZI+mKiiMR2E8fKEx00yca++gArNW4KvDVul3IdOCMC2wvocwButJ8pUWo+OzBGNL6/KYxrNrzuJYSGg20HNtRD7V7qxK8GKY71Estxkdc3a2slnRCCrkdMaphKXtZTS8gjnfoRtMLd94WAnrnrl3ezEqhNOTVQoZhkxOd7n+fkvnVfjJ7bfxe+e/QGkV2gq26hnmvRHaCiJZ4YvhgW3Jr/bvY1IHNLyStA5Y/n1XWfu5k8zamPjaaIqQ8TGBgrXDnoG6X0rdDKibPv6wpOgGDE8JwpUxR1oDmn5By8uZ8VMARjoC3H03MvEUAijpqJSvnr3AV89eYKwjLj64yIX+AldfWqCxJvEyt603gZuFJpuGqNAYIcFK/LHbzHuT2xckvzNBZWmnwqMCf3MMYeCG0Psl1T7Or66pTyywdy6gf7/h1H236AQZnSBnI2uxl8csJmMGZUSlFb7S+N2cSoZ4ux6ycoLLe/clzNY91M0dqLQzyppCpWSaY+uamQuHahMGuMpwH8LkC81cOEYKw7gK8aSh1B7aSETt3AO1NJjdAJlL1sezxLc8eq9oFlbdzV8tt9m932dyxPB4b5tukB1gSkNZH2z83xz7CVRJQ6HvkhmotdjIp+7ElF2fzbd56HsnGKsRwN4rbU7+8AQmKUiDbSWu3d/pY7IcEUfYdpPsRJfRMY/haahXCjqtjMQv8YTGWEGsKmJVcjTY41iwQxJUB4Kj+4skcddnzzfCGotIYrb+SMrXH3+dy+fn+NLP388j37nGvDdCYuiqFG0FbZUTiYqJCVEiR1vJpA4otcewjNiaNJhLUvz37rAZzbKoW4QbKcKCmlQHM8DDDONJqpZPMKwoOwGD0x75Ys1Ka8JM6JKmsRJtJUwLFdfx5RTGJ5EFFR4bVYdEuXwgheFovMepZBv/yAtsV02upT1K7TGpAzZHTbaem2HuhZB4yznjal/dsUnlnc1AtWuJgj5vzD+1OQDNv1lNOl2O6T9gOHXvLR6duY4nDZn2uW661FodtJ6eNIzLgE4zp4wqhl4Db8tH1JDNC/rnGnQEeBt97DiFooA4ctWu7xNf2LijN/yViMoqfDS+cJWfwtD2CpSwVEYd4DetbxG5IL6piDcs8a4h7NcEN3bYffs86ZGE8bIin4N8uebxBy9zrrnpqk0EctqDVla5f5OCCdZhQ419I4neDdvn6aKvnokp2z4bT3iceHqVG4MOk60EUUn0kmZy3zzJ9VuIVguEQO2MMMPRdMEh0Z2Y4QmP8VGolkranYxWVLhFESCFZTEYciLcpiVzltSAXpxyy+8cAKbtf4IHvatjOgNNHzlGIxry8c89jPUN3n0pH731IN+68twUKufa1oFucD68yaViEV9oOirlvtY6ufG5lvbo5zG7WYI2knzekM8odNQgXs+xnnf4tuBSYD2J1JZ0OWR4XDE6VxPPpUReTWVcMVBNl8jaSgcTRDDWEct+f/oylhPhNrt1k+2qSTFdsja9AollxkvptDNSHbBRtIm9iheONMiv+wRDhfYlOlYEe+UdLdbuGAOkQ4sq3MzTgfutYxAY7drrssK2GgyPKxZOb3KyuUtmAnpqQobPqAjdtjgaAw4apYShMoqWXzBpjVmfaTEZRVQj12YI06BTGVRZYQndUkGIKabtcNtVg2CiQ0JZk8iSjspQwpDqgIbnnoajOqK2ilvdkvBazOwrzr41uLyFHQxBKeLtHluP+qgC6ntT3n3yKieTHcDhb33sQeLcHxdUVhGqmsl0kWasS7LybkkWSiALTbSlKY77FNqjvNgmnggaNyzjY4LhcWg0G872ZDDG7PXdwzjwEY2YybGE/r0WsVAw15kQevVvGlH4UtPxUiYm5FK+yFbQYlIFCOmA9NY6rC5w97fw7mARUnD9q306PzlLY1agckXR81n3NXsLDY4Ee3x+eIqr4x6XLi8x/0mP1lpJ0fUo2hIETJYFc++9RSssuLoxS5150KwZHwlY+HKFVRI1LrDB4cIAtS8OAO1VIkmXLapd0mlkdILsgDBSGo+xDqmNojAebS9jKRzwer5wkCylsDRVwXLgiD259aiMhxIGKQypdruUlp+zUzQQgaFqCIqOYryiaKwb/JFEh18hHKhQFt3SgOeYJdbC1ENZTDJXjUYh5ZEOo7OajtK8vLdIJ8zphw4Ef7qzQ8MrybRPrj1mgoylaMiodnON0ihmkoxGWFJ2Ff1WA+NFCNuim5ewO4DaYiu3jEAe7haxNopM+xTKI5keS1O5VmqsQzpeRkvldL2UrbkG5SgieW0XUZSgJObccUanGqQLCqOgfGrMU8dXOR7vHmxWJRZf1ijrsKb7lS6Ans5aPWHcLAjxm+avhxZTHxtVG3QrhFqyeqtHNBJMd2IY3zI6bZk/exR/dQs7HjtER+AjGgnFqTl2HlRExwfMNlPXtss3FmS1VdycdHitP88gi0ivtLFzJTMzY6wWb8xAD87HXfJg+S+FEG7+2YiJ7+1T3gvff/5X+V8+9wFWftonfk+fZb/PL+3cx5dWj9H4fMJM7rzGtt6uaK8MSdMQ/5WEcA9GP7PM+opFHymgkHhD5Rxdl3y83MMfe4gLh0xEMVD0PKLtCh16WGXxPY0Ullz7dFWGFIZA1mTaZyUcsFW2yEzAdtWipXI6XkYiSyqrGOnoYLzlC42vNAqLL2oK41AgmfYZlBFCWPyxpUokVQv8ywYdObzo7cYdJVDf08ikxirPAaSzAtNOpn+WmJkW5WzM4FSAjSv20pjId2X49XGXpcaQmSA92Fb3ggnnk3UasuBaMUdlFZ4w3BJtttMGzbAkWajYCptsRQ1k1aPzJQcEFlGETfNDn+GURjEoI1pejpmWOL5w7bwU9oDSuRwMONHe45Vkkc33LuDlFqGhjgVlSzB5KkVKw1effo2mKg5mqpGsDi6IUFYYO21lpj8rlDUNVVIbia8klVa/KckcWmiDyAqHA22FyInCKEvZtTRuCreM7BoQsP1IwmLWReQ5ohEgwoBqpcfOAxHl2YwH5nZcKyYchXVQxIyrgLzySPOQIvWxmUd7TZLlIWlcoTx3DqwV2LulIv+tYtq+3/xDDwB7PH3kCv/u+lPYzOPGBzV/ful5vjg6yedfOU3SSxmed61ucb2JyiTDnQYP3XOd0+e3aaqCH/vo0/gjQZV5eCNFvCkI95zhY7SnCbczDvtZa3wO6JT+2KJyQZn7VA01HfG5p23by5nokEhWPNxcY7tquQ5MVhTGZ6Bjmiqn46UUxqepcrrKzU+1FaQmpDnFC491SDXdExgP4l3DyFOUTYkOBbK+/evlzipQLFFSIqvItc5FidAxVlhMO6HqRkyWfcq2wNv2mfgRjbmhu/C1Yq9IyLVP0ys4luxxI+vy/9l4B1ubbSgU+O6GohaISNPtTkiCivnOmP5ZzYZt42ULxM9sIcIAhKBennE2UYcUdS3ZTFt0gpymKvCFJpEOabBfKe7WDW7oLp996QwL25a8J9h91BDfVGTnc5JWwROLt5gLJjS8gpbKD15fW0koK3yhiUTFyEYYKw8oowDedJbsGYORwtlsHXYYDXnhLJ8Bbywo22A9S7xlyWYl1rPIXDI+CbLq0GsEyFJTzoT0T/sMzmtOLO5yNOnjCU1tFevTJeQojagqhakk0jfMze+yIWYQsSZQBl1LENY9Zg47S/xWMeW7C99DhiGjpzKeml+nMorYq/j2J7/AQjDixckKq+MZTp/aoJ9FnLlvlRdeOU7jlmRyoia5FPCCOErzfIEfa3qPbrH73DwEhroFas0jGhjC3crhIseFA64fYhh/aiesxLSoEDD0qTpqCkvThLKmqQr6VcKNouvuBVmR1gF7VQMpLMfDHV6cHGFURxyPd5nxJjRkwWbdBiC3PhfTJXbLhI20xaSYjr0CJ85Tx5Z0QWI9KNtfoQrUWkEUVPgTp/5CIwZj0I2IbClytqANQb5gqRdK/KBma7fFKA7xlGFjowOFIthRfBGINwRh39KaF4wfzjl3bANrBXt5jDaCVljiK7dp7TVSNk9LtvstTrw064DYtabqhnfyFn7no5as77ZphzktL59uyY2bW07nlcq6i7S9MCZdnCEYWdoXFYN7a548c42VeMCCPyI1Ab7QB5TQUNZowMcxnTQShcUwrXKlxjeaAu+A4llbibobKlAzVddKIofBGwtKCyYyZPMeec8S7Cjn8W4ko1MCZEy0axgdVaRHLMFiymIyoqEKOl6GtpKulzIoY3b7TfTI8d3DZkErLCiWRkRBxTgPUZ5x43nj2GJYcdikm/9yWItQrn2/8uce5Dsf+A2GdUy/ilmMR2gkP33jIRLfIVCGecSZmR32ioRzZ28yORnwHcsX+PCPfBXtFwI+XZzlyYdeR0lnlaxCjVGGquEhK0uwOaaadWBxqw4fSD88KYm3XfUnjEDmgsEgYS/JaPpuj1AYDykMu2UDX2geaaziC83z46MURjGsI14ZLHG00ed6NsMX945TG8nmuMneetvNlkPNieUdJmVAXvr4YY2OnLDR3HOWdEGQrhjswu0je+4ogRorKGuP0ABKIaoa3QgpeiFVIhge88mWLHXLIATUmzHhrqJoheSLBUI5PF60LWitaqS2ZD3F+ITGGsHr6/PEScFya0QnzAikpraStA6YENBtZmwcj5k8uETj5U2wlmhtcEe/r9/xMCDWYq74s/RCN55QwikmRdIxkEJRI6Xlm0++yI2lLs98+T7mP6toX/TYvKfFPY0tBjrGF5rUBG+wjaZJeL+S3QeLy+kGsjJqulgylG86pLtiiSQEeB4mCdCRwpsAlcSfyRG6ydFnSjYfC/HvmzDZbFAjyXsSoyRVG3TDkARujLGPe90HT8+EKZtJk/HIx9v1yLIWlwYxrd6E+WTCpAjQWqCURUp792/hpUMc2AfOEL1tF43Ek5rlaEAoaz524176o5g4qlhqjai15ESyy81xh9pI3r14md/YOkMxZ2h/AfJZxdVBj91BA38syCceMqmZnKzxxx6NiwaV11TzTbh++E+Vqm3JZj2ML9ChxXrAwOdqOc9a3COMSqrSwxiJHvlEsxkvzS6znAzRVlAbxaQOeaB7i5tZh8+/fJpgy6NxHbwUeiEMz4A9VnFzt4OY4qUbcUGhnFReHQmmjSPHl3a5epvHfmctvLDUtROBKI52iF66jowCTNCgaghUYVn4okHlljrxnUydbyi6kkkVUS+VJAsTsn6beEvgZdDYqFGfVQjjAz5FJ+bqkS7l0ZKTR7c51tyjFApfapQ0iESzdzYk3Gqj+imiqH7L4/6KRmDcIHwjYXcuoRdM8KUmFLXDreE29WpalZ5NNrn36XV+9Mjb8H+6x/qnV7j8/iEPt25QTIHQb65e95Pn/gD8zaF54/U9YfCmw/ba3AU62fv6k8LNuFRhEaXA8wz50yM2gxZ1A2KvJm+XaOFTN9xGto4tNphqqRYxnjDEqqLnTWiqnHtbG3jS8LxeQay2ab1oGR8JSB+pecfpK+xmCUXhY4w4YGfdtbG/OOp2WP2aFn/w1C8z0DEfvfgAf+SBz/Cp3dMESlPtRdSJRxKWnOltE8qa+2Y22MhbvD6ex5cauZLRP9+gahl6ccrWegcza8AIbC0PaJOiKNFRC28vO/S9mpWgMkHRcaB66xtMrFEjhRr4lIuCQli4EdN+HYKxpWi3uN5qcV3A5HzBI6evsxCNCGXNazvzeH2P1hUIRpaiI2hsanbfqZn7eEzVFAwerlg5toMAcg+8zMne5T2Bjs0B9vR24o4xDHWlMB5sPRIyb48SXd5CGEvYt0htqUNBOi+Jdyyqcm1cY10T9gV7OuDM0zfYaWTsVIv4Q4mXKax0wPn6RM75Ixs82r1Ox8uY8SaMdcSzo6MYK8mljxfWpMsBG0+1mHvRx9+5/Tf7lQilDNVChb/hs5fH0AKJxSDeVDm6gbXEkkznpH/q7Cf4Z9/8Ppo/O8PVQY/HO9dI6+BgfrrPr9dT+pd8E3RJYUlkST5Nqg66ZPCkJoIDoZHDDYcJFsZVFLIGWQq0lpya32HwtSnrV2bRaeioroFBR2CFpW4aVFLjKU1llNM8rSMiWdFRKY8l15jzR8Sq4pnN+5ClR/5Iytfec4H3t17kWq/Hb0xOU1UKEHd3AgXHPgoD/tB//3HW8h7P7hzBriX8v4fvJdzwMAE0zg3JJgFbey2eWrjGqXCLjpfSCyZsF00aXsGRZEB4T00gndRb2CooBI7Wqt1D1css5AXB6rYTuj7kGSiewfiWbFEQ7rqljog1Wgsa1z1a1zwa64LJInQul/TPBjQ2NLovGJyRxJdDXo4XOXqmT2k8isqjni/ZmRWcP3WL7J8cIe8qfv+jn+PnZ+5jtN7ifQ+9iicMr+wtokMHHZO1m8fKUjIo49s//Dt5rxZBnBSoIqRqwo33BZzca7mKM4KiLSk7An9sSW7meP3c6UDGHnnP8Vwf7tzg6PwuH0vuZ69IuHp1AWqB6pQcm+vzQOcWjzauseQNqKzi9XKRM8k21+UMgzLCGIn1LYNHK/xJSOewn6BWQCVRuSAv/YMt+T7oPZQVvtXIKcwIOKCevXvlCp+WMwwmMcbKg+XRPlTJAfTBl29U2fv/vg8oBrdEqrTEWCcq4om7YAYqBUwXffuq6cFAwknDuJzOrWMNVqA8QwWYYCqIO1MSxSXWCvLaYyTcImofVL3i7/FotEpXpVw8Pc/WTIs/9uCneH/zJdZ1m6/uvMore0us77UO6c3fQQiJNRbTa/HqZImbkw4312dQFvxdj2AgaF/V1C+2mLyvBi1Yz9vcn0haMicKaloqJ9UBTVWwUbR5fmeFYR5itET67iFuS4G/q4gGDmpo+wNEHDvo4SGGUgZVCIxvkTX4YwFLNWeOrXN9pUP56zP0z0tm7t1h/VNzYOGp73mOX3jlfjxfY4xkrp1SWUnXz3jq6DUeaa3xmf5pHmuv8SvfL9gbtRzUsPB550OvcX/zJhcnS+yOE/yRIJuRyBqqjsV6lry+/bR4Z6WKhZX2kNXzMyx8uebmexRVL6JqSDcI3rDMPV+gspp0OWL4VML4hLtJZCmwSznLQZ+3xVdJeyEawa8HZ9lKG8wnE44mfRaCIQA3qxnKN9EV62listaNs+JOzs77DIOzIfzqHb2L3/Hw+gpVcACN2BdW3k92b6481ZsS67Fol1+4B8SVJpunWyyFgwPgL4D/pkSopkB6KcxBkgY378y0T2k8fPkGO+fQQwis7x1UobKCcAcGN5rUZ3MiryZslNSVh6kEQlpMZCAwBEGNtVBUjgJrrDjAt2baVd1Hgj3aMuNcd4tAuQfUjbrLpWKJpsrpRSkb4ndBAsUB5698R48VrnNxdREx8fBOj8lHIdWSpfH+PpsbXcTAxzZqnr+1wsOtG3S89Dd1JsM6wiBYaQ6I/YQbdQdrBZ6vqTZCOpfAH9ZUyzP41mLDADYPW5Acom23lNYBqAyy1MdYwTtXrvJr7/Aw6wmhVyPevcVKc8jDjTUWHxky1uGB/u75ZAONYNEfsuQNeN/MBT4/PMXRRp/FZMjnNk/w2NHrnG1uYqwk0z7ZMGJm6Kw8dASyABEIZqLsto//jhKopwxz0YTVR4ckP2toX+qQzfvIys0QwqFhfCRg7/6AaqZGNUuajZw8C6grxezMBIB5WTDnuUT5vUeeYWJCUhNSWo+umnDG3yIRNZfrHhfyFQrjMapCtkZNAExoycchbz97hd59Ka/fyZv4nY6xYumzhv49CmM5uNGlsKTGQSUU5iChRlNI0lhHJLJk/sFNBp9a5FbeObD50FbiT3GgCuv0PoHc+PjTLb9LphaFQQmLxFLtt/r2LpiBIpzO55v+6qeWeF2ykcywcsyxrHSh8JMSIyQi0kh/Kjc2neMaaclLH20cxrUMCq7LGcZ1yMlohyNRn0DWGCt5PjuOxGFvjyZ9Lqp5tL4bzsV/OYQUWGPpPrnJ6mQGbzPgzJOrvHP2Cq+MlxiWEeMyRChDsDLB8zTHun1+efM837z8PGMdMahjdssGW0WTQNYH9GiAMKqY9GNaNyVR3y1ukcIpX5ni0KmcsVcxPgad19zIz58Iyk7AznyD060dnjx6jS+I49za6nB6ZZvEK3k9XyBRJcvBgN26waw/YcXfQyPdPTJFrISqPgDg39fboOdPSGTJSEdsZU3UrocsoexA0bOo3BVngfwKiYloI7g+7nL/4jqX3nOOuRdydCjJ5t3L7DygKM9mtNsZo0lEENR045yxNIzTkMCrSU1AOq0sUxOyhNuiJ7LgXu8WPZXTldAUPlsmRwpDx3NPhDwLMKkHoYFaMK5CxtXhwpishFtPOxWdeGohsV8BGuuSaYE3hWE48eX97bxB8PTiZX7qvhYGwUhHGCvwpXYiK0KDrA8UyN1ryoMEWll1sEja/xpArA55sTYN66tpZSGpQ4EwEO1YrOezc3OJummgU6MrhRAWGRjkVIpPCItS5sAjqi59qtrpCkSqYlSHZCYgkDXnkw1CWfGl4QmOxns0Vc5K2Mfz9F2fQAFkI6EXp3jSkNwSXP/FE/xIeILHvuEVvmPpS1wve3w2OMn6qIUQlrQKWO+3uDXbJdP+FBcs30ieVYi1bt5cZAqRKeItizfR1JEiGpUQ+JhGDDcP970rYdDHcsTFCD+1NG+UZPMRO7tNLkQLPNC9xf2L62ymLWbClG6QOQC9cNA+Y50+R0tlVNZjpCMmJqAlM46Ge+xUDXxhCKdqTqkJuJF32ctjgj3J6JSbuTuosEC39B3tEO4YxrQf2dNjtmnSvVQR9g2jYxJ9/5iTc33m4zGtpcJtBrF8duMEdeFR1h6DOmFdNxmZmML4fC49w+f2TlLUHl+zcIGvarxKbit8anZ1zy2PjE9tFH5Qo4c+spAEfcnF7ZPMvHwn7+B3PmxoMYEzsjJGUBl1UIHuJ9LKCCY6RgpDbRSVlbS9gq6fkqiSb7/vWWrj2gpPGrR5E13TgJlu4ys4eMJKLLWRlMY7mA06/Kk9mL8ealjnb+PM5KauilM5RCyo3IGndUu4BYfct0t0czFvmjxrI9FaYq1wJAECbtgOiV+Ra5+TjR06KuV62QNgXId8dfMVIlHxC/H9rOc+vm+op8D6uzJOHGGtL5mstQg7IB8e8OTKGi9uLfP5X7+Xulczf6TPQnPMjUGHgZEkUXlAf94tE8ZVSG0kvTAlUtUUyuUk/cKbiqhfI2tL3lP4qU++sIAOJWb1cAsQg6A3M2F4OiLeVAT9mmTDUjdCdjsJq36PlWTAiWSXsQ7xhKbjZfS8MQOdsFM1iFVFQ5RMgN26yUAkzHkj7onW6XlNKuvhi5qRiRiUMYMyYnunRaMEEzqehY00dcuSdDKu7PRu+/jvKIHKKSQkrQOSqKRswmTJI9nSmOnvYXvcYDkZ0gucdW+qA4aTCLEbkLc9ToVbrKgRL1hFzxtTVQ7LdvHSMtf7HdaO93i4uUZbZqzXHa7ms1xPu2ykrn0nNNhSEu5APidoX7n9ecVXImQuoFXjrwbTra+L/QRYoQ4qTzfoTtG4xLdRtGl7GU2vIMenMG7mpzAg3dPZIFDwm+TrCuuhrUQj0fYN7rsvzDRx3wVLJPHG5wNbWgVVS5Avavz+G7AaW0lkVB9AjqS0eEqjpEUaQy3UgROtENZtWrWj/e5L+90sOvSCCQ8la/RNwml/m5XmgJ1xgtYSo+Xdx0gSApRi6x0zHOmssvqFLlJD50eavNp4gMHDFgU0L/mMbswzVBb1wJDBMKHRzhlWEbFy/lBpFVAbSTfMuDHuUJaeY2ltB0S7ljqWlC3J1mMC64WEu5KqaSk/d7jnxFpBL07ZXuhipaLzuiQcGryJYrDXYCss8aTmRLLLiWiXnjd2rbr1Wct77JUJI2HY0U0asqCwHrn2D2CAPW/sijDrMzIRmQ7YzRuIXTfiKLsGbz6nkRQMhzHZKCJYvX2XizuuQAdZxK5JKCuP7jWDnxpUronXFXtHQsLQqaSP6ohd03DahOMAEk2WBVzMl2ipbDqLiLk4WWRYRCwe22Pz9Vl+Pr2f7dMNTiS7jOqI14dzjKd2v4FfU3g+1jcILSl7mo0nY/i1O/ul/U6GFRA1C7xBSKrfqD73N+oD7SARvtB4Vh3IaxkE4zqkXyWudZMlkaym1bZbnLxZOGS/5Te4KlczXa5M27dQ6rsjcb45lMD6EuMJtC8OaHuimv7Zm/oWiTc+CzFt36V1knUKrF+jjXQPF2motKTWkqx2YtO7ZcKru4t8x/Fn6aqUS8USF/JlgIPXE9LedRWoUAqhFNm8oNAedcvSWBN0v7gBxjD/DE5M3Pe48aEjhAMY2A7euQm+0gyriK7vCCfblU+gNBtpi/44oS4VduIRbkvnI6Wgf86V/6ahyZoapEUEh3/NrDQGXLQrVF2DjiWqsHg5yG2ffism8Sv6fsJCMDoQjd6rG1wezzIoIhaTETu6STSFAPYrNxM+FW/T8VLnV6ZjBnXCbplwa6+Nyhzr6MR968xGE0ZlxHAY498IuBMU4J2JiUjDSnvIpc059OUmfqrxxhovrWlsevRLN2/ayxN6QcqkDrgy7BFfDbAS6obHh/Vj/FzjAbJrLYKBpGwb3vuul3j/zMv8fPchPrd6nC9fP8pap4uxgnTKWU3CEmMFNlMILSi7QKeieOpwK1CroBGV2KFllKkDaa19qNGgjpnUIYVRXB7M0U9j6lpycm6X5WRIoT1HTwv1AY++wJtCncQBxnN/5rnPPnIb6YDayulWURLK+kB84dBDCEzsUzU86lhgQqgjh7UL+pKqbTChhVpAaLFGYI0EpQ+KV4u75pR0flP7KAclDWXtkdceV4Y90iJgeKvFD6x/FcIzzPTG5KVPKy6oa4k/tYm+y+pPEBLZaVPMGW7ttYnu7dP5Nddp2fEE4Xng+9jhiJUfeQ0RhVhxDPt4RujVzIYTMu2znTXYe2GO5n17NMKSfBAiUkVySxHtOJGO8RFJ1TTomdrNUrQgaBdE/uHOyw2ClpcjGjXBlYjd87D4xRIvtXipIN1JGEQlgyBiu2oejMU2ixZr/S7WCu7tbrrdAe7+GVQx4ypECkPXj+mojIF21NjV0QzVdowS4B+ZcLK1S8fP+LW9M5jMI94QDO7/Ci2Raiu5vD2LvdBk4XnjbFOlqzLCvYpgJ2TSjLhuHJ+9E+U0g5JxDrMvV+hQIiufshXi9yT9Ryo++Ojz/Pezn+JGPcM7u6+znTe48PoKW0bQamZ4ymG9rH3DC11oQTFrsLUkah/uBSAC44DaGtTAI619+lVyUImWxuNCf4EbW11O/wtojktMorjx7hNceXxMIy5oRwVrXvfg4pDCHij1vxmSVGrlZoG4ZOKq1P3lkiBU+oCmdthhpaRq+lRNRR2DDkFHUDecYIwJ7BsVKDi2DG50anELS208hF8fnAdrBdV+dW4EReUjpWPHNa56WOkS9F4/wFvImEiLmZrKmbvRXM4asBYTWaqbDUoB8axg8I0reLklHBharw0QueNm2zTFKgi8ml6cUhnFxb15xlmIXikYjmLSPEBkit5zzgXX+IBw59+bSKznYQKD1y2pK0WWHbKr7fTz0cU99lox8hNdVKEJBx46kOjQY8tvY62gNB5Nr8Cb6oPONSdMyuCg4wumdN9A1vTCmtJ4XEt7BLIm1z47eYObG12CbYWwEIUVO0WDK8NZPGWIrvuMjxu6y8PbNmW8swRaKsQX28y9boh26ulywJnUh7sFzbWQfiMgrSWmLUn8CiEsVctp7hlPQCTYOy/xH+7z/pVrnI63+PX0HJXx+IVb97O2NosaKmhZunHugNR5yDCN0FoiM4U3ElQdQ9AoDx3zuM9yKTsC41luTdpTvrbbEO+VCXPxmL1GzOqf9tBrLeIzQ6pK867jV7k56bA1aUAET81f5aWBaz3PtLf57PpxwKFOjHXQnoOEaeR/hkDZb1fvigTqCcquR94VVA3XsgPIWqAj+4Ybo7QueQrnoGmMOFgaCWHxlTl4GO1XoXnlkec+ulZEcclsa8LNlQZ4Fm82I/IMcpo8lXLnw1pxN6zW/rOwzYT4hiI9WoOyjH9PykNLtzjf3EBbyY++/Dhm8wyiEqx8UrP71TkPxClF7fHKcIHdWx1XUfoGEWjKfgiBASmpItepjY9B1dHIUiAqAQ13bpbmBmyGh9uxWCDTASfbO0jRY090KVs+jRsFeTci6AusDNgLnPhJN87wpT4QGemPYjaaLbbqFgrD1XyOi3sL9OKUc+1NdooG17MuRe0xGMXIzZBoG4oZyEuffh7jK832pVnEjMHEhhPdPZ6/zeO/My58KZh5TeNNDMJadKAcUFpbRFnTWqvJ5nwK41N4hrolaQYF5tyEXd3EH7s2rjheUGcBz3ziYT45egRROyqVVcDJGu/YhIXOmFDVpJWPMZKy8NG5ws9dO4iAZpLT79++BelXIvYT+PCcuwF2nltgfWGG3vyQdlTgScNTs1eJlJsN3+x0ONrq84HZ5zkZbPM3Lv0eZpIMKSynwi2+UB8n9ipORDt8FpdAjX3D/XM/GfynsZ9wAORdoMZkfMHoiKLsumoTQBZOsMFKgZYWYV0raT0L0mK1wEhJVe3vVwylNHjSXaalVowzB9Gp0gC0wGvmzjJlMUUpB33SWlJV0sGgpFNlktLclS18caJHvGnJzmnURkDqxbwoljkW73FlMkucFERnJ6RFwNpMzMmlXSZVgC81u9st1FChE4MYe5gGqKGH0G5h56ixUJ/IeeLUKi9tLJFuNVCJIyrsDBuHzoWvjCJWJV/cOO2uYe0k5rxhjp9G6BjMWFD0A3anyloLjTEdP2dQxHR/vsErD5yCp6AbpHzqymkan03ofefLTvxIK4Z5SJaG1MOAMIN425AeEejco2wodsYJNtYQaoQVB24ZtxN3NgMdW6KdCh1IRGXQbQ9ZgyoMJvQIdnPibQ9hBYUNuTmexxtKvIlws5gJ+KnBXPIpmwHFrCCbt+iZimPHdniwd4tM+7zWn+fV/+3nkTNd2r/366kyHypJsOGobeN7XLJqRwV7u7cPOfhKhJjClfxugV1L8MYCbxIw3Jplb7EEaZkJUx5u3+DnbjxA5NVcH3XZ6HT416tPH9DGylpxNlznge4tvrh9jF9Yvx8lLdq8kTjLrQEX/tQPcP7f/RWEkr9Jnu0Nx+e7g/tt/Km+QdN5QWFApVNwfGCdP5QWTs1KC2wtsFPCgJUO22emlag2DpiltaSuJbpWCM9ga8XoWocr//6HUb0OS//DVyGlwVcOR3tXtu1vChGFU69ymJsfUjw3j9kKsCrglz/+DqqWQIew0zOYRHPkxA5HGgM3x9MKtesjK4Fp1qibIVq51jQYClRpYWwpu3D+6AbfPv8lXtn6JmSjQqce0ZpPtA1y45ANCC1M6hAlLbsXZ5gdWGfz4Svi7dpJ8EWucrZWMM5CGkHJyA+Zj8dcfKfmyC8Jrl8+xbVIEIWw9C2rLIZDMhPQz2MnwxmXjIcB0bbAeKAD1wWlpU8SVoi5FCEsk0G8z3o8L4T4Hmvtv/yvHf6dUTkliNolDBMovIlGGPAmFTpUCG2pX7nE1Us/T7G7DkoQzC9y6sFvpek7Uv/eOUV6uqQ7P+aR+XWOxH0Uhjl/zNV8lkLHDjxtHPSkGgeovocsBc3rkC2AiGtsodiZJPy3XjwLIZ4G/jfgAUDLyGdy8Sade47S+NWA1W+StK4oZl41tC7nICXPfts5Xrlvka86+jr3NW7y8a37uVHMsJfGnJ/bZFDEbFZN/vwLv/8AKlZK76DytNNZp+j1OP8f/ur/7XEpZabqQ/8tz8Z/OayCumVcdaksIjJozyJyeTD7zC5fZvCRj1Le2kBIgbe8wMx3fjPhmaMgwU6l6LSeji20QnnaVU0WvD2P5qpgL5UwI5DS4WCFsHdl8hwzYMduMCsWAZCdNleLF9j46Gc5euzPUM9b6iOFoz53U2binLWbPVSo8addxeuDWfrjhCLzibclwoAsI3RkkZnEGzvCgqydctEHvveTJLLkH196P/ITXe75zBj57CuIOMYWBVfSw1nCCiGuAknjzILz9coD8o99jgtf/iKPvON7EXmNDt3781LwB5Jqzv1edyYJm8MmC+0xD923ysutZcIXY3RsOfHuNX7pa/4p7Q9/O18YP4aQlpnemLL2CHYU8ZYhn5VYZbGZR2uuIPEr5htjVvdmsLU4wFXfTtxZC68dr9n4zjtZ1lPbBOUk+es655XP/huOPf0dhE89xvhYgd14lT0hybsSExusdDfUJA35zNWTeJ5mtj1hMRlRTtk64KoNUSr8LR9/5EzI/Myy95ChOzNh72aH8VobL/9vd6MIIdrAzwJ/AvgxIPB7jTQIBbFfcfO9Hvb/y96fx+uWlfW96Hc0s3v71a+1+6Zq166+oIqiB6VT7ABN7KPEi8ZgTH9OTOI9ycmxSaJHb66ms0M0gghBEIkGQQoKkAKK6qi+avfN6tfbz3aMcf8Y71p7gyi1lWLVzdnP5/Puvd75dnOOOcYznvb3Cw3CwGhJYcIm4dB3lwwORJwYzmAROOc4Peiwv9NledSiFhQc7GxRWE/H4el6fdlSsd1fX0Gg2YHIi5TPFG5D1xknkXhaYy0tD3/NRuXLi5N4SDq77ab747IUWMBUKWv/6W3MfPe3U7v9VlxpyJ8+gSSAyhfWOw22EoAfA2ehGIaIwOJGGhz0jhvM5w21Zk6oja+LNWpnQ3lOS1URjL0F6iRUewpkYDGpZq4x4vTKDFMzQ5KwJCu1BxlZDTHzBWo1JNpylA1BvAFFU1A1HaqAaNOv095hySdWjzLIQ5K3T9Ho5qhHTmGK0tP3+h16N0dA2d7A96Wv1TA13xIer+UMrmuTzkiyGUGy5rChoFyLkPtLsiyg7MZ0/7TN8iyYhYry1iFH5jc4sTILwCPvvQ7xEk1jf58kqNhcbdG5IFCFpYwNKpVUTZ+sHQOliUlHISK0V1QOeMW4Z04KVG4RxmEjhcwNovLP02wVcOxt30p/JEm6McWeW9CVoLywwfrvvZvywgVw0Dh0nPlv/g6KIzVWKsXmY+uc/6X/TnZ+i9kXHsKVEWrseVzCnqN9KmP1+QmNfVukk9ImPZI0nmm67KsjxwCcc++cPE/rx5ZIDi9w9rfvJruwReMt348TGnd+g8+++6d53t/+96Tzjt6//09s3dHkvs9usPHYJt/9e6/nnp/+BEdva3LvJ1O6p3rMPG8fe/7BtyEbTfrnhjz5I7/Evh//ZlZ/9+O09tR5xb9+Ge9903v4oT/7PuqR4QvvP8Vnf/UL5N2MuBPxgr97G9e+/hCRR2+aEUI8CiwCnwF+xDl3+ms6WtsKbNLiivGgMjjIV9YBqL3wNv8WEZAcvw4EFCvrbP7OeyjPXQQByS3XMv2D34qs1UA68kdX2Pyt91CurZPcfJ23VvFJgTgssUxCK/I5mn2HHcBpMeHfkQUM3nk3g3vuwQyHXJhts/CSb8IcuIVuAsN7PsPmw5+m3tnL+ql7CWot9r782+nMX4uJBWff/h+pzx9kdOZJ8q1V6vuuYen/+iYqKzn1w++leeA4N64ewaS+PvnPsj/kiLxpN0cA4OfSzexn//SzB9h37TpPAzq1DPcn5BsrnLj7fQz75wjCBgsvej01fRvjTsT6z/0XZl99I70XvJzaoxHq7fey/uin2X/Hj7Ly0K8A8Ph7fh71+46b/vdXs1mb5vzP/FfE3pfwyIlPkBw/Rue73sD6f/gdzp84izOW+NgBOt/5NwjaU3ziiWue8QVcWSG9Fuy0XkuffQ9Ki0pLXKCoxzMgJI/f9y7a4+cRpQcJu3WqBNISpl/2atrTR0nrKRff9ZusPPKHXPuar6OpRtzzD9/N3m9/PgfedAtPfPgiw59/L7N3LhJvOGorJeP5kP4tOQthycY48m58T5FsfE130CcAI4R4O/C7wKdr1yzuvCgFdFpjeosJybnJsQrKtt/RHv7Ds7zyF76RZP8UQytYzZuc+/0NDv+f38vszCznfvH9PPH/+RgzP/Q9VBv+M727lznwi3+fW/deoNjy2KeF1eR9+MTP38u3vO1baB9sU2wOMH2/OJ6+6zzAEvA84EngJ4B3Ai951kfoMhGF8LHOyOBKiRoqnyRoOPTSLEJKNt72LurPu43owEFkwytIYaH1jV9PfOwwtkxZ/0//je67P8rUd38brqpY+89vp/nqlzF92yvoX7yf9f/yu9QPvsQrTyc8lcX2OTxH9SfO4dIU5Qpk5WietRTZLPPf/veIVIPekw9w5n2/w95X7SOKmqSZY7xyhul9t3DTm/8vRg8/wOkP/ibxD/1L2qsJKnP0Hv4cN7z0LbSLJp8ZvYflX/tjWgd+kM4NL2DrE39CVfl2wYHbIidlTu7hpN3VXujPiTCi/8G7ufDGb6S2fJJCCMQo45G7f4W9t34D09/xFtQDK5x+z3/h0OIiYX0BYySRLpla6NKt14jtFnJUEPzkMj/SuYNfeN5JXvmb34VenCU3mo0/W8P0B5jZMTd+70+SzjjSqQH1l97B4X/xJgJR8tS/+RO2fvf97P2bP4TrP/P21itCWtiu0a4SDxKhCossLU5LXKDQRDzvjh9FWDhz9+/x8Nv+Fed+79cITvXp5HN0Fq4jPSRpv6jg5r99nOjko7x+3yPMnnkITMXim+5geTyF2vciagsHCAeOZK1Clo6VOyUH924wykOCsEIFFrNQcOG1X7syDOdcH3gZ3uD5VWAtu7DFaD2bdA9NyiyO9dm61SvA1Rcb5KxnId33+uOYvXvZKFscbXdxDpqvvI1RdC3jcYf2K76Z0T0PITclIve3pvPmV/Kya8/TrDlqyndahNsF8wI2n+5i85LmXELziE+oPfCeEwDLzrlHnXMV8DPAbUKIg1+zwRLstE46K6DymIs4wApUlLD4j98KwMY738PZn/zXrP7Kb2AGA/TCDMkNxxA6QNWbNF/7crLHT4IR5E+eBWuY/o47qRYdnVcep3btHh/3/DLVCdvtoc+FxBrAg3yKu9z7ucu9n4+sv41Hz/0PhLG0TqQcro4xfz5h+smSQ/JGktosw40z6JEhGljCoM7R9ovonLPM7r+NqDNH9sgjlDWBU4Lpa25nys6iVEjnb76G/icfpv2Dp1mqHWeUbzB2A7CGi/YkC+xDmN0fE91oM/zTTyHOp2A9T/xq9zGSsEPzBS/CNgXcspf6jbcwvu9+9Nh7MMM8ojIehKaXxRRGkRvNB0/cCHg83ql47Jsu0gCE4NCR15AvBpjZgHgmZOrrjtFuW8qgTvPbXkX25NPYCKKNZ4lUDusHXGcGYR1qWCGKCud9JYS11JrzHL/lOwn6BePRKg+deC8XPvE+ll7+Rs5/6H0Ml09wpsw8n1Er4OnRHKfPj5BTbc6tTuO6IY3TkqHuoDJHvDpm9c4W7eMbOwthp64vU+hW8RVO+qsrzrlHgTcDCCGOO2MfPf1fPky4dxY3iUPun+qyeTDlPHja2TyhtIrNYB/VyixxXPLe5dso8nvRwTzBmkZlgnxqCozBNDZJ2h767/hNOb0y9mVQl1F1qDji63/6lTz0Ow/zqZ/+BIu3zvPCf3g7M4db9C+OAfYLIbqXnboA9gJfIzfeXfpV47OoshA45S1MZyCYX2D2+7/bd5atrbL+W+9g8z1/wNR3fitb7/4D8qdOYjMPuSZrviXW9Pqo6RZT7ZRxbJDSEs575sXLUbDEpTN4TsktvIQZ6b0WoRQX7AlO11bZvL5G8ZG7Ob36abJ0C6TAVDmsbqCCkmArI4pa2ERhQl9THbSmyIu+b4sVEMUdgm5GPl8jXGzjKsvjfzbNsQ3LgjrIRXOKI1zPCme5mRfv8kh4CU2APnwDvQ//KUlrAYHDrW7QH5zjC7/6L3Yq7R0Gdc0LaBsQpSTfilk/3wYnyDdjqlxz9v49mKY3qOaTIV9YO0J/vU54LkM16/SP1bEB6JGgeCxk7X++jxOPPo4dpyhhceMS3XOIKwj7XBkivRRYJRHbwedJAFo4B5VDlAadGpwwyMLQqlrs7dzCufXPs37XB9ECrv3e/w27UKd36kHW3//7fPrPjpOuBWTLn6HxmZi4C1G/4lxvE500GN9cp/eSjBtbfS4OWgh8TZ9UBlsTnr52l8Q595ie7ZCeXic8tJcyNaRVQCPMqbZ8LVlVKlwpMYXCpJpyM6YUMTKTyFwgTvcJjgjG+ytu6dzLGS2pz2uaqc+O1nRJKP+8dSWF5cBLljjwkiVEXnDPf36Qu3/607zx115HY6FG92TvtHPuyNd8ULbF+WwwRuCQvojb+vIm3KR0Sbmd94Vz89RfeAfDT36a7vv+GIDF/+Mfo+o1xvd/ga13vg+kQ800MN0+lYEoKKmMoljtEy5O/blTeK5YnZeL0AEySvzGAIjpKap4jZUj61z8jQ9w8wt/mE59P8nFEZ966tf8WgPy+YRsfUDWklQNSbxpKQddgv03ei5z4xjbHiYJwDrK5QFCS5hO2DoesOczh/kCn6LDDBJNR8zs5jB8kcy/+Bt4+nd+gdr1r0TmjpptMNU6yPyP/T0AVA7N1y2zttVE3QPJMCA+XRFsaaq6pRr3kYHhJ7/1v9M1Nf4J8KnTh5G0aVyQpCMQyjHa59hzd8X6rQH9uz9GubzG3rf+A+R1Ibfyad7//R9AVI4vQz/2F4pwV5CFE0Ks8ZdbMDHQBjaBEgiAo0CKT6Wayee3j4fAg/h95iZgBVibfMcRPOP7M0EsPOicm3vGF/JXFCHEceCbgXc5584JIfYDJ4AusAUcBh7FX+choAPcO/n4dcAGsH7ZV14HRPjYajH5jANO4sfm5ss+z5cc00AD6AMW2AM0gccnv3sIuNU597AQog28zjn37r/+KDwzeY7Ola/JPPmLRAhhgKeAwWWHZ4BZ/LXeADwM5JPjhybH1y97fhZ/3Z3J8wfxY/WXzaVtuQk/V7aAi5NjuzImkzKmt+Bj86eBg8AU/v4/iS8TPD85V4AEf+4Z3pNqTN4XANfi59Djk/feir/u/uR5E782L28w2jf5zqfwocxDfPF6vQV461eqA8U591V7TC7s9yYXPpr8/1+B1mRA7gWGwP3APwHOXfbZO4D78JPrXZPHT301z+/ZvL7J6/8Rr0yfAn4YP4H15LW7gLd8yffdBfwsPkveBz4AzE5eO3T557/0GD5J9DGgN/nNu4AbLnvv3wIemnzvWeA3dnv8/p80V/6Caz4FvOZLjr0Z+MTk75/GbyjrwC9M7u9bLnvfJ4FfntzzJ/Cb4lecS5e95ycn8+fIc20sgP145XjX5Pl1wAfxm8UG8KfAbZPXZoEPTe7/J4F/vT2Gk9d/FL9BdIHvBL7u8vkzec+eyZgNJ2P5d/gK6/XLPa7IAr0qX10RQtwF/Df3lXa5q/L/eBFCvBm/oF/2F7x+F19hLgkhfgBfzvZlv+OqXLk89/kOrspVuSp/bRFC1IC3Ar+y2+fyv5JcVaBX5ar8Ly5CiG/Au8IrwDt2+XT+l5KrLvxVuSpX5ar8FeWqBXpVrspVuSp/RbmqQK/KVbkqV+WvKFdUSB+K2CVRBxtrrPYF0MI6j9+Ih7oTziEqO4FQN2A8OrZ/CBACJyU2FFQ1Qdz09Md1WSBwmAkpr5kQ0xVpgCwg7JbbkOv+ZKybUCJAv1xdd7tU31ebCp2LFghGdoKwLibXb3FK4gKJk8KjWCmBcBOWSnmpNdZtb2OOHaR2YZ3nQJscc0L4hgXY+T5ReVi4ne8PJCYEmziKU+d3bUwAQl1zSdjxpGg4TD2inLLUo4LROCIYCGRhEXnhGzKsAyVBqcuaNAQ2DhDOUdY9tBnOj5uoHMJYRFGBMb405Uvbj77kecaIwuW71h2vGnWn5zs7U9g5oPTX5RSgHDITBEOLEwKnLmGj7rCbSr7ourbHRFjPmWc1XzKPQBqHKO2ltSoETvr1Vww2MaPR7o1Jve7C5jRhb8JDJMQOeeqX7YPYXgOBwurJHLLPIAzp3M642EhRJQLZqGiFGf0ixqQeiHr7Md4894zWzxUp0FjUecnS9zI+vsBoMSBIHWHfUNa9Bgh7FSozBJtjRJrj+gPscIQIQ0Qcw3QbW4swjZCt62L0t6/x0oUTNHTOUtBlTvv64oGNGdmIj6wf5/6HjhB0JUfetbWjfIUxiNIg8hKM4Y9P/eLXFmXoMjFTc7z08FsRpWW8FJGsl0SnN8EYqoUO+WyMiSV6bBnu0ejU4RTkHYksHdm0oOg4j9SuPdiwyny/r8oFtYsOWU0WQuVQuUMVDllY4uURNtKel0oKxksxm9cr1O1dHnnjv9m1MQFIVJMXN98IZYErSk7801v57e///6LQdG3C3/n0D6BOxix9qqJ+31k/wZOYcrFDMRVStBSydDgJJhJs3CwwNb9JRZuKsAfRlmP2nnW4uIodpX5DBZwxICRCKf+3NSAE99gP7+aQoKenOfDvfgSl/HkWeYA4HyNzKFsOnQr23lURrYwZHWpQxYKyJjCxoGxA2fRdMjaYdABaPHZo6dsTZeW5j2Tp55IsQKegx47amqF2IUWt9XBRiEtCqnbEn33hP+/iiEAwNc0Lbvtx6g8vY6eafkOES/iN4OfGxHjahs5M9zXpHwroPFkQrQxxWsJ2b7/El9xfJh6+z+KigGImYbA/ZP1VOW+68X7uXj5K7/5Zgr5Hfov6js/8zj99RuvniuHsqAx6bJCV3rEUpHGXdvptJbf9fuugLEFr3y/vHGVD073e8bq5c7R0xr5wk6ZKaUrfvqiEJRCGdpjhhKNYKDGNCJlX/vtRfoCU2bHKdkvkWKKHJU4JwoFFDwpcEkHl21nDLd+r70KJKpSnutgvyGetx8xslghtEWFFo5ZPeM8DjJFk4wATR35xlBD2QMaCYORIRgabBKiN4WRBBAQjS21FsrG2uzQnADYJoN2AjS4iDPiG13+OQ7pgYB1zquDV1z7Gh/Ib2bo2JDk/RdWJ0VspNlZ0jwYMjlps7BCloP2opHYB0iVJtZRjF1L63YjaqYDmnhZxf4QoSlxxGS6Cszjj/0eI3ca93JEvxnOYMDpbQdCHufst0doY0wgxkaBKBFVdUNWg6EzQ/aWDy8n4lMMYQTktEJXYURxqLJGhR1BzQjBG4WSNOqDOrSHGmqCoocpdXj8l1E73cYFGjDKE8Z4bgcYFChcoRFEhstLTBwVe78QXh0TrClFZnBJgHMJMPF4hcJHGKYWw1nuEAMYiSoMaV4RDjVwLeXo4RzPK6SrvBdhQPHu0xkIIsBaZV+gs3HE9hZncKDWBu9t2SSduti0MUkpkVuDqMb2jAftvOc90MOJgtM7+YAPjJKEwBKIidIbCKa6trXKXOg5WUDYDotIPliwnTJxasdtVBN51d4jcT35RGlygYALLpcc5aMX4UBurBVUM6eECXatIajkLzSFLtR4Hki1OjGYZVhGDIiKrNOMgZACUgwCZC2wgaZ6xBBNOqu2JJrIc2R0QBLMk6xLVu/J98asu27dFa8Z3HuJnFn+JTesIBKyZkGtqq3y8eQ35dIiphazelpDPxOz/SEb/OkN7f484LFlZbRN/6zr9uxeQBdxy6DwXhi16gA0DTCghDEApnHUIeZl/7AxIhZDCW6LPAR26zWclhNtB1pcF1FahcWaMMI6iE2ACT8RX1SDvOEzicLFBRgYdGpwDpRymkgjpMEZiMg1GQCkwibfapPHfIawgnZYIl9DoN2BlDaEVsthd/ixZgRil3ggINOVUQtnUlA1FNiWwSqBKh8ohHFjitZxgK/XKsfQxMBcF/n5PcDFEafxGEnocBhdK5DhHlNVOKKyKfIgkMxotJsaMnIRJriCg8ddaacKxE/90ikn84rI45eViLZQl6VKd7vMLXjV9lpos6KgxdVGQERCIikAYFI6WzFgIegStAlNJsumIaCPDxAEiNwhnJoHE3c+DmSRAlgYTa6/YhEAPvTUkxxnOesDpqG/J24qolbM01WcuGXJL6zyHozVWyjb9KP4iamOANAooU40V3gopNwTxpkPmZsfad80aopFgI0UwMtQu7jLPDZ5UrlxsI+ZbLL/w0jQzDgJhuS66yL7pLmdFg4svrZOsO/q3lPQPxuz7sGH5uyKKShGciVgPmsiao5iraASegmGoIvKOpapLv5HYv0QRCPkXBNR2WYSP59ZWHJ2nPOpUMZNgg8ti2jHY2OFaJTrytNVxVJKEJUWlcKGgFhUMsohCG0ylqEYBDgv5BMlfMXH9oWhIiqUWYbePGzxz8rRnS0TloDK4dkD/ujZ5U2AigYl9OAK88vdQiJJ4faJblMBGoQ/lTR6U3kPFWsR2zsA5v0YmlitSIHKDKvw6jVVFqCofFhGX4s3PVK6QE2my28OlwDd80c6+fdKeVlF+0Wdds87a8wJecOxxrk1WiD1yOgVqR3mGWBCWpkxZDATT7RFrm03SWUn7yYmlG0hQAkqD+OvtAV8VUcMCUw9I50N0ajGRoJ5VqOEYhKCab7N+c0g253DKIo2kHhTMRiNqsmBgYiJZEkkf/8krTWkUownyvqyXuH6IqVkGByWy0IQ9P3bVTELZ0AT9ChtIrBKE/d1XFlXD0T2W0DpVsPTiC2TOUDoonKR0EiUsT5+boz4UBK/YIPvYDDN/FnhE8kXFzAcS8rbATQsMULt5C3H/NNGtFZGqqCpJ2JUIa/zcqraTEBLcpYQE1uCcRSjlITd2WbYdpqpS2LEnSZx6MkX1C28lNUOc8HHfoglV7HACVGgRwhFGFbON0Q5wdCCtZ6/NQ6KwInMCtAUrsYHDhKDshKQv9B5Q2dBESYwbDK/I2no2RBYG16yxcVuHsikIhg7ds9CDIHWed815OqGglyMHHjRclD7mKewkkVgZRGV80tI50ArSHKrK59NGY4gi6DQRzhGMLNFGwKgKmYlGuNCPM8+qBSoFKOUzwJdn363H0BPWeRNDCG8VCJ9VFRhELaF32xzqzi1e0DlFLEuaMkNOgjYGiXI+bRgJ45kuheHW2fN8tHeMfAqclhRtjSotMq0g1EB1RZfwbIkLJGUi8PwSjrIVIsomowMN1m9VNO5YZ29thBSOWJXMRGNCWXEmn2ZKj5kNBgTCEEhDO0oJlGFUBIgYwkbGIKoosoDKBQwPKkyc0D5ZoXLvmmazPqRSW85plbtPayy1Zf1Ow/qdih9eeIzMOTZs5DdIIBYlU9ND0jBmdLrDm77307z/rjvpPCppnyzZui6k97ycGw9f4Jb2eX737hcTWbAIRmWINQopIdoqEYVPJu7EPb9MzNM9k0zt10C8gSQpM43uahpnLcH5LsJYKEqg5RNnod+ETNPiahVBWJFEBUnoN85h7tkpW1FGJxz7+VKGjIKQgXRkw9CTDFYKlfnsvJhsIDYUuNCDDO+6Ye5g8/YZxouCxXsygm4G1aX5K7Lc6xVrvRWpJ1abcaj+EBcGVLMNstmQdNpn12GScC1Ap15XmchTJgepJV4rCPoltWXN+a02M/EIF1icunLP7co5kZS8DAfUK0+EuFRKsO2+C4HQymdCAXPNXrrXKjTw1HiePA5oqIxeVWNfuMneYIsMCzLbcV9DLLc0zvGp+DBp22IjhVOCsq6Jx5U3z4NddleFwEUKUXkXXeWW3qGAoilpGcfWdYrgti0OdzYYVyGNICeUFYkqaGufNGvrMTNqSBAblsIemdNslXWWkiajKqRykrWowbm1KarYUjYE0aYkm1bISu3smPFGuesWxbZoZbnu2HmkcMwGAzat5pF8L7EoCYThQ90bOdjewr62x9N/eJQP7TvO33rNx+l/Xcz7Hr2V5j2w9w81j778II8Xh3AtQ/POtZ3vt5UgGOETeKMJs6SQO5n4y+chcOn4LktVKpwRMAwItwT1i7n36rb63pIWgirxZGrVhIRRhZYkKtDKkpWaWlDSSVKmojHz0ZCDyTpPyEW2VEJhFHFYUkYKU3giR1NKdCp2XFOVWVASkSQw2F0Namqa0aJk/r6C6OnVL8q8byt5pyWoCUinEFSdhNG+hN7hacZ7DcFCyuG581xb69ErY9bTBuMyYGOzQb2ZsdAc0k0Tuv0aVa6IzibMf94w84UxJ482KebVDpWMnYQ7nqlcsQvvahFI6XeziaITlUVUE0UmuZSFV2pigYKJFCoH8adT3N2eomhbbAAq8+Up0eKYudaQ6zqrvHbqCxwLVgmE5eb4LPPNISemE8qaxgkYLWj0OECNSz+4uynOA0lL64jXIZsLGRyx1M9JxgsBowMVN3a6NHWOFpb9tS3aKmU2GNBRI6yTBMLQUSNqNqcucxSOURxytpjh41vHeHprht6gBhdigkKgMoHK3E7gW06IyfSoQg1yVLz7YY1OkPLq+cc4nc6yN9hE4bghOs+nxteyWngE+dfNPsKcHvAfXlNj5TOL/LcnXklwdECrmdK9TVF9fcrX7TmNRXAo2SC3mqGJSIISIZ2ngIg1srrMC7lciW7LcyQDD2DHGlFIwk1JsubQvRwxGOPKEtGo47TABGBDkIXA1h3OQVFptCoItaGuC6SwSOGQwjI08Q6TZCMoMFaSBQajNGLsE7tW+4TNNq2KrUc+17u6m6Ph45ztU4b4xAZoha3FvpZ8lHqP1/iQYLnUYvN4zHA/FIslzdkeS80hkaqwTlDTBb0yZiuvMS4D8lLjrMAYSWkUlZGY9QhZCYopy+Bv9zm7WYfMECpDY2ZMsRwA4oqo0q8MkV5LXOiDsbLyN1ZWbqfwGwA7iYMq6Xc5JXFlSfj0KsHxAzgB8/dWVImkaEp610BVN2TDkBXbRArHXHgQW5PsDzZoiZxrWmuciaYp2gFh3zDcFzBOQ+rn3a4vDid86YgQvrA7b0mCvqB+0dI7KiEpyY32SqC2QekUsSy5LT7NfpUTCMGmhY6EgXV0bcicKjhb1fh4fpzPnDqEOhnTWPUFxtJAbdUXD8vS14WaSFDWJEUnpLY52vXSLgDjBE2Z0QnGBBja0tDE8IbGF1gxCcHEnzxVzvJvrnk/TxxY5F3n7+DCVpt2kvFtdzzE3nAL6wSZCyYbTcDYhrTDFNcLqV+06AmRnptUfAilcPbLKNHngjiQQ0UwFCSrgvpK5UtvnENojYtChPF1vzDJMTiBM8JT+ZaKIDA7mfzSSLr1hHEZEmlP+TLMI9Ii8GykyuGUQxa+DE7mPndhI4GNtF/Pu2yAyAKaTw12ypdENrHIhUDkJemRGTZujOhfX9FY6DEd5yjhkMJRWYkSEi0tmQnIjc8dxLoiUH5+KWnppTFpHuC0wwW+BOzbDj3Ed9/6WX76wjexljawVnzZnM5XkivmhZfjAqcEKjdUsf9FT/HBDkmV+yKXXuKMxaytM/3wHOf/YcWwkpTdGN3zbwnrBYdmN6kHnuZgrWjylFpgZCMWgy7X1Vb4ZHyE8XyNeLPCSdi8XiKrkGhzd2OgwjpMPcDU/FBaBcmaYzwvyacc5IrVQYPlfpNQL3HHwlmkcHx0eAP7wk2OhxfZowokgsJJRi5kVIX87saL+KMv3EjyVIQqYbTPYRZyXKYoTgXUVhy1VYOJvTVauzCibIU+y5jmuzomALkNWK+aLAR9WjIjFp4PfuC81dSUJV0bsqi7NGXBS5Onefk1T3G2apO5gLGNMEiyiT8lpf/cAVkyKGMWjq6z2Ztn+rMFGOMVZ2W/ONb5HNhILhdhIF6ThD1INixhv0RkJW5C3yKyHGHcJAM9Wexq4l1oQxhWO8pzXPhxyY2fd4kuKYyiZ2OcgzLTO2U9AEgfD6ytVgSDEjUqkL3RTinQbokeV8j+GKcnpX9F6bPpQHrtPKfeoGns36KJT7zlpb/eRuSrXIyT1KT/uzQKJS1pGZBOxsdYSWUkeT+alFj68Xx6NMfn4/3c0T7FewfPY7xSZ9tzv5K48JVZoNsthZVFFhYZyEnLodtRov4EtjsCpC+glwKsI3zqItlwHz/z4vdy7+gQ733kNtqfjJFP1XnqxhrJgQH7Ol0aQc5y3kbiiGVJTeZcM7POw3tbdJ4SJGue32SwX+26AnVKYCOFSg3D/REmEqjCkc5PYsSFYPR0G1kIcgEfeXwalQuKhZK9+za5cfoir+s8zKFgnVgYLpRTPJUvsJw2SZo5xY0GrQ1HZrZohhlPb87SlU1sFKAKSbxpqBKJm41Rue+0YG1zV8cE2GnHHduQpizYtFATjsJJYmEwTtCRBZlTTMuKgZWcrqbo25iT+TylU0xpH+JoqhSJpRP45412xmw05BO3O870F1n6dIvw1Dp2ffNSq19Z+drPy2WXjVJhIFl3hH3fwadGJaIy3otRChdoTCQxoQDhsIlBJhVxUlCLfNxzc5zQjHLqYUE9KLi9c4bZYMDYhuQ24HPqIBeGLcpCU5YSWQqEFVgFVc0n14SxiFHmk1bV7pcmuDi8dN/CAFGUlEtTnH9lSHN/l9E4IgwrphpjlHCeadMoijIgVIZIaaRw3gK1knERMB7FWCM8W2slEanyCrQUuMhSOcmc6vPweC9SOITxobHtVutnKlemQAOJrQWoQbbTvyys77OVWu5YnU54VkSE8BaRUjgMdjBEbAXcEF3kSLhKel3IRx++naVPZyTrARs3tHlyrslTczl7ZrswDXvCLab1kBdPn+ChPXsY7omprxjiNU027TDJLsdABdhAInND0RDo1JHNTTqHuoKwpxgvOcrmpO2kU2JShQgs/SziC5tLzAQjHpT7mQ/6nMpm+bPVw4yLgEaSs1lorBU8vTKLW4n9b9YMRccyOCAn9NIOGyiSC0PftRHHuzsm+OkRCMOU9uyixgl6k86LaVl5a9QqYmHYtJrlqsly1eZcMU3pFG2Vcj6fonSKA9EmUljGNiKWJYu6CzHs27/FZ994kLsPH6fz0H4W764jzlzEFeWO8twprFcKsXtt8IAPv0Rd3wihM1+76Lb7/62DKMQGEpU79FhQeZZq8jxAK4sSlsoojjTX2R9vYZykqTIuFh1uqZ0hswGr9SabWY2qUFBJRCUQFX6eaijamrBXeDd5MLqimsdnRS5rz2aSbbftOssvqSOPD9DKUKt5t10JR6S9wZTocqeipRnkXBy3WBvUcU74RJ3zlSBSuMka9bopuaiJNhX3L1/H//3SGoeaG4yKEMSlPvhnrw6USRb+chd9AmbgB4M/5zYJIXzXgBDI6Snqh3vMyQqo+JG5j7H4PT3eoV7FzMMGJNQuSIZxQNoOkMIyrYbMqwGxKFmc67G1mBD1BI2zjt41MJ7b3YSJ1d4i18OCeCuirHnX3ffVgkmgmK/Yf3Cdm6Yv0tQZn9/cj3WC1UEDYyWf3TxIL4tpxxnDImRltU1nasRmr06rkfLthx7gXU8/H/1UjXQe8sQiJ/3yeVsQ9Xws2kYavTnwJT27LEo4AlnRUSPOVy0skv26i8QxdoKBDRi5kLGNKJyio8Ys6h6xKFmu2jw83MuZ4RTLgybDQYzSligucU7w4r2nOFZfRuHYF3f51jvu4/FrF3jsxj0c+oMm8ccf9vFQHeAqX/bzpTgjuyHCOIKhRZbWF5Ab57006xC1GBNqglGFrHyvf7wWIKzGRILR/piT+wPKNOCT9gjH51bITMCwiNgY1XivuZV0K0EOFcKAMoKw6wvSZXkJhGS0KAmGEbVeimvUYG23Neglj1XkBS7QLL9sivzOIVP1lLzUO0y81glKo4iUV6L9PGalbLLVqyPOxQR9QdVwlB2DapWEYeVjm06gOhmcrDPziCFZznBK8lRrH1MvGJNXClGInc6wZy2JJEqHGuW+aPWyxn3hHLLyCDI7cllBvRACAk16/SLfd/RjO28JsLy4/iS/ef2Lyc/FRBuQLsCeQ+u8Zulxbq+dZK/uEgtDILrcNH2Ru6IFekcVzTOWqCuZJHR3TYTZ7m4oaZwes/ziJsI6wgGYGAbXVkwt9mmEOctpk09sHmZwocmNN5xFCMcwi+iNEqpSUVYK4wSuUGytNsEJ+sD9vX3Uo4LV6w3x4ojQSMoyobQSYb0CjbrG1xIqCXaXrXI8nkFpNfePDvL+EzeTXmxAo6LZGfPGww9yINzgYtlhvWywnjf47NkDFJsxMpc0T0ia5/wm0FDQtPgkWVsgKse94hY+fOdxfuD5n2Yp7DGthyyGfV4wc5rfCV7EDU/M485e8AnMCoRSCK29JbaLIgyo3HprxzpfsRIHyDCYeHMeS6G2pnFSgYNw5NeWTiWDqo6IHaNSslxrsd6vU2QBdAMapxTTI0fZEAxuKFCxoXAxeuyTI2EfcF6RDvdo4pUQObA+vLabMuncE8ZCZRg8b4nBS8cstoeMi8BjQ+QBwzxmywqckTs7oepqwq6kuQHxlqVswFgKTCIxmcIGXoFWuUJuxez5jKX5+BYAxUIDN1VwTX2NBy/u8e77RHE+ay68MAYxniQorPXB1m1tbUHgvrgeVAi/wwYahGDt1pBX1h9DCYFxjrq0dFzK9930GX67eiHOCvYubfGNex7hpuQci7pHbTLra6Lim6ce4E8OXA/nIvKWQGXsulkhja9FtI0YtTkk6jVIF30hdNkAAstwHPF0GmEnpRR6LLl96gzWCZ64sIDpByCgV0mwAlH4SaKHklI4ntyYY6qWcsvNp9jMamSVpuugkglOSqLu9sL0BdJuY2t3BwUonSKQFZFTCAEz90qmHqtQY/jo4Zdy4TsL3nT8Af7gU7ez8CnB0Qe3EBsrPmbuHC6JMNMNRgdqDPco0kUfMqrqDjdTUG/mPNTbw6tnHwO8wm7rMdcdvcDouj0kK2sgpc8bzExjZ1rwRLSrY+IrJybgF84hjMNpgavFHr0s9MtRGN/7nc0I+kf9RmxrhnBD0Tgl6R+3aGkpC41ajlAZZLOOdAHsnpQwNJTrCUHlOdWFAVk6rPYWqXACkwSo5S123YcXwifPyorB7Xs5/xqYbY9wQKj9Jjo0EjsKkJlEVqBSQbImqC9bom5B0C8QlWXzxuYkmQ2UEmt8C6/oByx9yhFtlZRzdYK1EelswMyMXyfWCmy4Xc/+LFqgOOfbpaT0CCfbyste1r7pLksibVugtRquWSN//og5lWIcO0o0EJZbkrN8/XVTaGm4pXGOQ+Eai6pPZ5JdKyaxs3k14M5rTvHAyeNUdYg3/I676zKxvF0tmkxWqOpQdCwUkrKMUc2So4trnJTTVIXm6dEcT6/O+oiH3E58SERgfelJ5nFRqfz/QjgaQU4jyBmWEc4JNgqNMQFlQ2Fiico00jlkvXaJEXuXROIYmpgpPeL1hx7h7uKFmJpGpSWNL6xRP7RE/5oYPZcCNa80PU0sLs8RgUZtDmkWhsYpiQ0VJtaYRJLORAz3xtx/XUyoDLe3LyGP3di+yIePH6T26RARR7iiIL92kdXbY4qVXW66uCzUJSZrRmSlL+FJIkxNY5VEZZb2U2OCcUy8KVm7HVqPa9J5X+wtx5Jz6x1sPyDIoEogWfHAIepUTPOsoX9QoXL3RSllE0/OwfoWSh8+2OVwj3PQG2L3zLLyAkU4N6SsfDY9nHTjOTeBdxwLok2fRA7GhrwjGS2GTD0OydMb6Lzhy74UEBmSpKCsFMGypH5uyLmvb1BMOcKthPT6jB/c/wVy63MMwkxcePEsZuF9fcQlnL6d2MWkDtSpiSIRAmEnMGJhgG3EjI60eNPxzzByvv0ywlE6sE5gEByurTMwsY91qj7xpE4wcwqDIHOKvo151fRj3HvsADxeQ48g2OVOCqxDjQrEKMMlIcHYIktF2XDYxCLqFc4I5qb7jMqQG5ZWqOmC9azOXHtId5yQCTAjDYVEJRVVYBEDNdkVPfSZlpZOkJKogk1ZZy2tI5XDhI6y6V1clSpULXpOlDFpaXeU6MWszeCApHnO9y0X+6cI+46ZYMT3XH8vv3Pu5bSfilCjCPICjMV1e4h6HZQiPTLF1vGAbNZRti2i8BaayxSn+1PMRwMWw/5OcXk27RD1GrbTRA5GrN4eM7w5h/ouK4tJpy/gjQ7wLYqjMXbPHGVNk00rgrGj2BcyXhQe33MupR+G3jNBIAvvlqrUf5lpGOymRmd+7W1dp6kSqC0zafP1ltUO2DJ4DNksv9SptVtiDCIKWXlRB3d0jDOSNA+oT8qUmlFBoCzDOGJcj6jqIcWUoOzA/OE1ZqKMJx7fQ+PEEqNDBjmVopQhkI4oqKiMBAGrz29Q3jqk6ke4fSVvuenPeE3zC9wzvuavhXZ4xQrU5bmPaRqPiP7l0KAvt0BdoHGh5uw3wk+176drY6zIGQCZu/TzAxMzGwyY0cOd4waBdYKRCxjZiLGLGNuQ1177GH/UvwVRaRrndlmBOnzvrpS4KKCsS5zwwMhoRxBVtBspL5g7Q2pCElUwqGIONjYZVRFP2VmKQmGqAFGvaDZSykQxNHXkWIER5LkmLQNGJtxREqEyhFFJVkqqWDFaVB5aDy71C++iKHzW+PPd/Ryub/D7P/pz/ItvegMPfuJacFA1LbfVT9ORYy68vMMnBrfSPN1AFY54oyKd0xRNweAgmKUcoSpsrhDKkbQyhHAEViCFY1DFzAQjAipSE3ok92YNlMDFEYObcp+RlbudRuJSqGtHkUlEvYaLFFVNkk9JiqZ/vWw4immLvBijjaB+1vdz28h5z0T4UFG4oSimHOODhtrcCGMk+SDC6RBZ+NZEk3ig7rDLDgaoiKNdD4EBqS+EcAAAZHZJREFUDO7Yy+btFYFwOCuR0lEY5VtWo5RGIydRpdcFJmQrqwHeK7vYb0FiGF7r2Htwg9lkxKgKyStNK8oYBhFnjkdk6yG2GxNsKsxY8dhogZfUn2RO94mikmzbWN9+PEO5QgWKV9XGeBSUbdfdXepGEuayAIK1iMowOFznO194j4etc3pHIQIMbMLYRigsbZUSixKDpJxYnsCO8iwmrQKhrGgsDEmHLcbV7idMRFFipuuYRKNTb4G6wCEig5S+bm1QxcxHA2qyIBAGLS3FBLnVWomoGZrtlAPtLgfqmzzRnueJcwsIK2jWM7S09IqY0iqs84pDa4MMDTb2oQwT+U4x9xxQoALHwMQcrm/QLWsoHLe1z/Hk9XMMT7Q5eHyZm8OLPFnOsi/eYs/Lz3HyyCxupInWQqIulDUIBhBtxTgJ6aIl3jskCkqUdNTDgoXaAInDIohFRSRLDzwcakRWUs022Lu0xcX1tu/OeS6IxcPvbQP/xsGlBKyFoiM8+rwCNfRt0b4MZ4K3K0COFHokKKcsZoJMr/uKsa2DdohUUSUO13DI0teBykkpghOe1sJONWB5d8fERQHLL1QEzTFVoYmSkkAbjBUEypAZTU0X2ElmJ5QVQjh6eUxeagb9BHKFbhVMJ2Pm4iEtq6isQktDP4/Zt7DF2WwWgHKxhFzywMpe+rMxHTUmDioymIQfn00XXgBS+djJNmzU5MYLY3FSTRJL9pJNbC15R3IsXiZzGoUjFhVzQUrXhnwh20/PJJiJbxNMkkYFCmsDMhfQtzGZDSgnn49kxeHpTb7QS8i4gs7/Z0MkuCQE69DdHF3XRF1H0Za4aYvWhkgZSqtQWEqndnbTdpCyp9GjN0pw2lAZyVpaJ1QVF/ot3Fijmr4MR0mfONiWRJe04pyi0BSB24EXLJshoj4FT+7WgHgpnCY1AZXzZSeRgDtrTyOPOOJrSl5VfxSLoHSaO+onmNYj7m/s5+n+LNF1FZWTLPeaWCtJkpxrp9Y4VNsgkhWlU+RWUzpFagIaKqe0fsNt6QxaFaYeIqVkcDBmLlnmfDGNfQ5UJ+zIjt94CT/XBl5Bmth3tDnt11BVt6AdJvLuqG1WqC2NTgXlFCxcu05vlJCu1tB9hY0dNrZUiVekKgNl8EnX7Z+vHDYOsNHurp+yLjH7MzASITxAdO40LoS0DGiEOZWTpCZAT0jEnBPkpcZYSVwrCFopi80BsSoZVSFSOOrahwASXXKgscXyVpMyDQiSklIEjMcR940PcU284tkBtnFAn81CeoREbFs3EwvUTWo/hROTfuSJe2DdJM7jmH54zE996lt41Y2P0StjXjb9FHuCLR4cH+DzW/u5vrVMS2dsVXW6qk5dXorhdU2NkY1Ql6XGarJgJhoxNTNg0+5uHZNTAlMPfRw0K0lWJMLFlPWA4ZwmF44qkUSywiDJjSRRJW2d0sa38J1Nptjq1SlWQ9JGzKATMRrGEHk33VpJO0wJJxNoM6+hpSVQHkBXjaTP2nYk6fSEKeCjuzgowKgMeaI/P0GfMoRCcDTY4tr2vQycZk5WDJxgRg0pnCKSJccbF5mNhrRVikUwu8dD/ClhkVgGNkFh2awaOxYJClIb0q8SGirHImhPjRgvtWk9sMrya2OOBhl6NUCmzxELFC4ZH1JSdmKik2sEs0sUDYEoBcQ+DBQspNSjkv5mHZVD/5jh2KFlznXauG6baE2xNt3kln3nuVBrs95tYMfat4BWcodoTo8FqsAX6Wc+iVS0Q6r67o6JjRxK2Uuo+kb6pFFYISfx/8wESByhqtDCz/tW7HXEtjfmrdWAwiikcHTCFC0Nka52gFYoJarhqKRjpjMkEIaBiclKfcnqnOxpz1T+ChboBDbfeK4RF6gdl0QIfHHwtq6TAipDsNzjhp9yPPaCm+heI/n8sYM8/+hptLS8cPoU18QrlE7xaLqHC3KKhaBLLErKnVioL+vZtlLH1gMNLzUHSAFnrugivrpSNgQnviNBD+vM31dRO59iQonTQCmRyredjUxIVMUksiCWJVJY5vSAgYl38gk0SzpTIw51Ntms1Tm/3iHtx1S1glNimnaS0QxzjJNkRcC49HVyVviFIStI57z7t9tSVYoTK7O+MyTTcABqAjIHdVFRkwpjDQtqyEPFEo+M9+xYkwtxDyUssSjpqDGZC8hswJzuc66YIXeablWjX8ZkRu8oU+vm6ARjrp9d4Z6Xdbj48gVefvwRHttc2O1inS8WN1kjk/BXNhuQzewhWckZzyaocoJy26rQ2rC/0+XcR6YwMQQ9yblum3QUEWko6w51IuG+3mFaSwNecvgED6zsJU1DylGAk45gMCn/yQEBUd+Qz8RcfHGAfWK36wB9335Y856WswKk22nZrJxEWemRp6ykwqMrBcpvrFkVYJ0grQKMlZRWUlSaYRHRiVO0MKykLZr1jM1+hLUCHVU8f+4ct9ZO88D4IHkW7GClXql81dp4hHOetGlCHAd4C9R4qH03GNB49xmaOqD7Xc9nz009XtV+lGk1pHSKrqnTVik9kzCth6jLIrnWCUo8Is/YhlRWooWlE6bIXVYWTsL08Q0qIxmszBBtaLIp6WNOY0nZ0LiaoLIS4wSRrHZ6vC8UU5waz1AZhRlqRGyYqY85UN+ipksubrVAOKpc080C8qZGtj0STWklWakxRiKtR7UBXz6lx7uvLkQhUI/WkSXEFSy/StEUFYGAupCMrWHsBD0bMTAJB6JNxjbk05uHef/jt/Cd13+e2+unAB/WkdK3cjZURs8kLKdNVsZNikqjpEdrH1chsu5IVMk3vOx+JI5IlpwNp+hVV+aaPWvi3KRqxe4o0CoSZNOSZGWS4HHCpxsyRdZt8vQDbeqpw4aC5mkwF9u4jq9XDBA46QHNR092+HQacsOeZZ40s5SjAJlLnAI1Aj1yhENffrh5PKA4mEO124X0QClxVnjl6bZxFATGSrSudvCBAUJlsK6kcpLK+gfAuAwoKuUx36VFyW14v5yzwymun1nl3swr0DgukTjqosDiIe/0Fbru23LlCtSYS/GbnTKm7TpQ+UXHt3ngURLRaCCLEpvlyAoWw77nfre+b9sgmNZDNqsGa1WTOT0gEBWFUztJpe2HFI5AGnKrCOXutpfIAtbXWjDS7F02E3R+CEZQtsWOMV5YzUrawjpJbj34Qb+KOdWfJssDRGTRoWF9WOfu8RHSPERrQ1FEiJEHQsiUZVPXCLQhKzVlqXGVRBa+oN9q0ENon9z9Vk5ZQP2CQxgom4L/uPr1/MTCn1A66Do76YUPMAj2BxvUZe5d+dmSJz51iP9+8qWsvabJC1on2arqBMIQyZL1ssmZdJrNrE5vnJBlATiBVAbZcWzoGo0gpyMLchtQOsVcMuRMw+16zThsZ3ovWyNMaGqkx5rY4XIv/QYsC4Hexos2YEJBlfh4d3q4QG9468kJh2lXqKdrPJDuJ0hK35SxnXuaYIHqzHmwEryC3kZ72jURgBE78WkhvSazE2uyIQ164oJradHCeg4jEyAnvfGlUYyLgKwIqMc+mVTTBeMqpF8kXNxqMROPuH5hmcfX5rFWciFtsWqaRNJjy7rL8q7PXgx0J07gLrkhsMN0d3lSCbhU6yYlrhYg9SyyMnTuXeVtf/wqrn/hSe6cOsWUHlE6hcJRUznWSQYmpiZzxpNsfekUpdVkNmBkLnWUbGS7S+ErS6g9FlE2HONZGC56qlhZ+I6JKvNgrpWVdMKUus5ZyVsUVrGV11jtNjCVQiiLVJa81BSF9ugz9RRrJVkYIgYasRHRM5J6O8VaQVloXOnDBVUMUc+RbFiS5ewrn/izLAK/WLc57T/69DG+Y/pzKGHpmjprVZPH0iUGZUyiShajHjVZ8NhwibAvMCF8/MO3sPayBo0gZyHq068Szo/brAwbpHlIngXYfgCRhRhWNlvEE4tFRo5OMEYJi3WSa24+x2p99+lf3OWF2hM2hyB1O1S62685DdGmJBh6Xveq5gvEB3sdplNBOUk4JRZZ+EJwJz13fHghoJiWiFJ6zvgUcHj6cbzXlM47RLz7Gy0T3FKYqA7hy5MAAmkZlyG5tNQDn4nfDtlsPwJpGJcBaR4SBhXjPOCx0/tJzilsBCZ2hF3BA50GR+/0wb4sDamcmsTSJ4rbTvACJFyJTXblMdBt63Mbxm7y2NlRzZdYoPISBYgLA1yjhtzqc+S9Ix6Rh3j68AytWkZ3WGPPVI+vn3+CKT3ymJBVtBPv7FUJ/SreKU/olQnDMvJIKrspAhrnLN1rJeMlX7tXP+d3fpWB7GuqGX+TCqtYzloURhEqw3K/STkMoZKEUxnWCvJeTNjKiYKKXhpT5BqswNUNsqtxfc1YR4RRha2E370DN2nprFCF3Wlo2E0xgQeuaJ026Aw4VeN/HLuVtk55qLeH+0/tJ348Jup6IJSy7vnuhQW7ANnhnMajEY9/5CiNO9e5L98LsIOHWeQBdhh4cjErMFYg44qL3RamJdmT9CYJKDg1mqZyz6EMPOwglSEEjVMjzLE6TvhssA38gva9824HYq1K8BihlfCdak7gagYTCfSWBgHVbIncDNED5QGEd1CG/GZmA4EJBfrYgGoc+oTVbooFKoHJFWrCOuqcoCgUAxURhyWBE6QiwCrxRay1UjjGZYixkiQqcE4wXq3TPKGQJZgSZh6ytB5aJ9/X4ekDc8x0hpSlYlB4vNlelfjQAZMWzm1A+GcoV87KGUeQ5RMlai+1cX7JjzvpcQh3ZJtu1BgINKqXEm41iI5VzCRj2lFGaRVnsymmGiNy69HHS+tLVlIbMqoiikkdZK9IGOQRo2yXFSh+4NtPOcZLvtfYhl556tTTMlSVorSKQRET6Yq0CigzRVkqVGIwI0G5liAKQetIj+89+jlKp7h77RqeWNmD7ipMw/rdul3QaY8ojSIrfPjDSR87C3uFjyE9BxSobpQMr6nQqaa+Ygj6ksd6C3SzhGEWcXBpg/MX9jD9mPVMprEknZIMjkB04xaLUcGKatP8fMzoz2ZJ91a+BtJBOJ0hpcUoh6sZ5EjhYoezgmwc0g8jNos6hICBtArIKv3cqANV4pIjp9RO/WfrREpV0zuUvtvsA7L0j8A5xktg6wYRWGYObLF2sQ3KEZ0PiTY9/7upK/J5Q7ApMcpT5sjyklUlrM/CFyeb6G34tl0UYUEPFZUEqyxCAQ4sHjw5mPTDF3nEAE/nEqlqB/8zNwpjPe7nXH1E+2hGfkjRjjJ6eczyw3OYaI7xgqRW2yItAspxSNry+mWtaGLLS5urmNS0P1O5IgVqYoWZbaHOre0ozZ2eXjtZ4H+RSDFRsg5XTxCjlOnHDBeP1zgytcGx9qpPJpU1zudTRLIiswGVlaQ2JDd6Uo6gGJYRwyJkmEWMN2tXcglfdbHaWwmtsyPqF0MG+0PyaQj7blKXKUg3Y3q1mFpQ7iCI97OITiPFWMn6oIPu+5uYpiH/7akXMOrHyPWQaChRGZhCUrQd7c6Y2dqYtVEdERlcqrCJHxeEIDi/gasnuzgiXo7EG/yLV72L9958O5/79DHqZ2Fl0GS2MWI6GfPmvZ/kF8rXMjo3j1WKbNZRLFboeslSc0DlJEk9p39MM32/QlhNtmCxNYMxvrhcBBZXSmxodzpzZGTIS023SJDC0i1qGCvppzH2OdB0Afy59kkxWbOy8jHjKnZUHYMsNSoTJGuW0R7J7S9/jDfO3gfAnmCLx47s4cboHD/8+R8gt4Lgs00aJxXDgwZTczuxPBtMIO0EBH2vkI68z3DxpbVLraW7JQ5E5ZOOLpQTXxqchUJoMm0IlKGofN5gOzlkrKQwXska54vuI12xp95jI/dhvak4Jbu2y3KjhaznxEYyXqsjU0kxq8htQK+MoZRfpDTdFSBUXZECtYHw4MGVAWkRZQXbnCpfEv8Ul9WEYu2lwntrITdcfP1ejn//YxwSzitEE00SBRUX8zZaePy/1PhC33EVYhEMioheGjMcR5TdmOS8BrhOCPEW59yvXcn1fDXESV9/maxr4rM9olUNFlysSRdrqEKSLgm2enXSpNjBJ6zHxc4uKVO5gwJjT9ewfQGLBtMwOOk5bFQmqLobfOE7f46X/8GPASCVg0aFyRVVorGhxMXRDqrPbkogJG+qb/KG+v9kfOAPeaSMKZ3mg71bya3mWLDKdxy4j3u+6zChNCzFPc5nHdqBz5hs5HWyuiatxQz3K1onHWVLYOtgC0WtlVFpzw9UpgGulJB7kuxcBpzpdhjW/FyxTjBcaey+u7r983+Bi6jGJToL0akkOT5gaFqoTCFLgdPw4MU9SBxvXvgEHx8exzjJetnEPdgi6kO66LEwseCmClw/nJA8Tjb6whfjq9yyfktCOv/c4I1yEh/DdT7+6azEVT47PrKCMPLdR0IbjJUMK01ReU/UGIm1gnrTx0if6M5hnWAmGZNWnlwOB+pczLl3/z5hrcPUN70erXxTS3/ixW1vJN4j+Cq78EKIU0AtmtvjD1jDufFjXOid5AXH//YXUSU4NcHVu1x5XtYBIsqK/PAsr/7hT/Pq1iN889GH+Wf/42WUzSUi6U1zi2BYhYwnj9IqxmXAOA/JioCsG6N6isaKpLb8tc0iCiFeBvx74EbAiDBkuHWGRmMPqhEhz6wi6glW1giGFWU9ROaSKtOU2lBPcpR01IKSepCzPq7hAkcxMxnEyFJOC7CCaCrDtgXlOKQUjjiJueFdP0FqC7/zFtKbFZm3vqqaInwOtHECfOHRgo98POW1r6jRkJJbw4K3vWuDD/3OB/j2t71ukn3fpD2b8sh4D3967hijcUSSeObJw50NlHDouKRsa4YHFCqFUjiCpCQJS3qF93VdJZBJhQsF9ANsqrBxSVZpalHBxZUOQVddEUzZsyHD0Qpb608y3Trq14eWXNi8n/Pr93HHzW9BWEeVCPTYt/fivOUIUD/nKIYtHohb/IPgel8gH/jyJadgvMf5hFImsa0KoRzkvsRJVsJn4UtHtJWz/MIGg+flqOVw93vht5NqDiikzztPkjlYsIOA7sNn6L37f1CeWwUpCfbOMf3930x4eP+O17uaa9ZkC1sJXKpZzeYQFQRDSWcNop5ldYK4ZGLHzTMXAciqACax4m2wF3sF9seVmCrKDofIvLqUXYcv3k0rXwf6F4kHkZWceGPIv5u6h/NVx5+EMNR0isTtsDXmRlNYzThXbGUNRuMIMwxQfUVtQ5KsO3RqKWtfO6tCCNEC/hD4u8DvAaGeaYxdFCDGIIc5tttDOovY7BKms5hoGj0MKKccZaHplZpazaMqaWnpJBn96dxjEuYKGRqcErhKUhaaIKyYnuujqZBaUAtKjJWTpgXhicPEtovmE3zPhRjottjJCpWTLT4ShrYe8wf95/Hb973IF00vR8RrgqQCPa5RhoKn8xmKlkB0HDJxFB1LuCW9q36ijr0pIwgM1kpsMkk+SIdtVghtMUZ6dkonoBuixmL3lcXlIoS/TwLA4aTAJt7bCvuO7qkmqhST8jSBlI4qxmeWI+dJ5yKH7ktvYQZuB53JGoHphQSF8CVeua+IUBMakcGxCd3Jzj+7Kz7R5XFwHYB2PjNvBXacsfaLb2f6B99A82U34UxF8dgpRKChFxBu+VKv7QoEXUK0JYg2Hc1zJWGvwCnJ6u01bOAwiaNz7SbPb51mtWzRijKiRk4+LUF6a19dAZjZlSjQnyuzwc+aQR/p7E6/u6gsw3ydx87/Mb1shVDXuHb25SxFR8E67ll/L3saN7Avfj5Yy8naGdJf/y0G39LhJ777BAD/9k2fRQnHa//VC6jPhHzwX36Wo99xE4/+7sPEN11D+03fzuav/A756TNgLO32QQ7d+R2Mj8+QT39NV8UxAOfcOyfP02j/fmbsIme/8EGyrWVuab8CN07JVMbHn/gNXqt/gsbZOR59+68SHTtI8dRT5CcucuyXfoRH/8sHaN6wh5XPXiA/t07tpsPs+fE3oJoJbn2Dx77vl7n+n76GJ3/7z6gvNbjtX76aD/3Nd/Bdd/8QG6Maw49/nt4HP4wdjFgO6xw++jrixvUMD9Xhc8wIIR4FFoHPAD/inDv9tRysbZEIlBCESLQQHAlX+bv/doat9/48VTogqHdYeOk3MTd3M/WLBRfW7mPt8U/SjBa42H+YoNZi5g3fgbrpWkQuOfe2X6Z2/V7Sh0+Qn90gvuEwC299E2En5uy/+y3iG66j9Y0vpgoUVa64+G9/npmv+8bnhrLY+cNdYrGd9MOfPn0X5+69l7IYETQ7zH7966kduIWqDpuPfpaNP/400d699B+4F9VuMv0DbyC+/hrESLH8H/4zyb5DjJ9+knJtleTINSy86btRus7JD/wqs1PHODT9QpZf2kZNjTn7v/8S01/3+l0bhx2Z1L16jFQQqcRFDhcbcFCurYGDxk13YDOLCBXRjcdw/RB7apMzv/97lBcvIATUn3cN7e95I+Vcg7SrGfZXOfeZd5EP1onT6xBG4rTjlrmLBMIwrCIaOufQ7CbltK8v72Uxm4/NPOPTv5IQ8udkEHFq5VO4srrURVGk3HvyHSw1rufrj/wYty59G4+sfIhhvj5RslyqG5WS3lFNW6UEouJHfutFADzvxf+IxV/8Wc7f9Coe3NzLaD3j1JmEvT/xf7D0ou9l5rOSg/Hz+bpjf587XvfPkTrg5P3v84Nuvqar4gnACCHeLoR4vRBiSuUQb1XIrIQ083gBYYCbsB2KzR4zD40RpWB8z70c/PHXc+S3/iVFfYGs0lz4n49x80+8mle+54dpJCX2nb/H1+1/ikNTnlnTPvoU/6/3vZZX/uLrd0p4Tg2mGW4Itt71fhZ/+C0c+99+lkPf9/dp1JfQa31GD98HsAR8OzAH3A28889fzrMr3hPz51w6g8CTDV4brLN4JOLOt72Ro//8Z5j5+m/gzJ+8g3LYQ2UGlRu62UVq9Vle/sJ/zsGjr+HC7/0mYn2MHvnwRv9jDzD15r/Jtb/xjxFKsfprf0TWi2jccifjux9AbIZUuaI8dwHT7dM8csNzywK9XCZ4Ekl9httv+xFu+NGfZumW13Lh/e/AdPvIAqqGI7twhmBmhgM/9X/S/pbXsvbLv40ZjX3+0MHg859j4U3fxcGf/FdIJ1n/wO+jM5g9fAfrpz5P0dEMD1iqc+cxW31qx6/f7SvfceG3q8xkKTz5n/H1ocH8HEJK1n/7d8nufQJ7voKNCN2XmMgx9z0v4fhv/kMO/OKPk18YMnj7XXTuD+g8WHHqj95G/YW3c+Cn/w2N47cxevBBRORRzR4c7mezrPP45hxPPLSf9Q/s4+wn9tOMcr7jVZ9+xqd/RdmGKGpzpncfB5KDO8fWRk8Th232NW8CB61onoXGMZbHT3BN485LH5aSarZOcHhIcN7widF1/PoHXwN8GJlZrv+lLlUnYb1oIJzk9tVXELxz5ClEtnq4VCPncnq3ztGafh2nf/c/sT8F/TUEk3HO9Scx0H8G/CqwWHTXKUd9jwlQSzzCt3W4alI3ohTBcpdg7IifdyflzAGUNljnC4LnXnMDS8catMMx0z92I+/7vj/kyL8/yt7OgD8GvvcfzGPqlqFypJteKSvhS3YQgvLCMuWhacTBJrrXwG2sc+HcZwCWnXOPAgghfgb4F0KIg19LK/Rv/NAKWu9kTigKuOXmgDnleOt3D9k051A3nOXEG+f49funOb/nJFuvvZnxxzTqQoPqR1/HmVBQNZ5P8DOfYHDyUVrtO8BB/fY7COb3kPUE7W94PRd/9hdxP/jdtPffzMbqf8dcWEd02oz+9AFa199GbVMhnwN14w898g7EdseeAOsMzfoenBTM7L+NoJtjV8Hd/nziB/6U/OxpGo2bEaVAJw3aL3kFFkHjec9j8Cd3k3/qSaLn3wFW0LztduK5JWQumH3F6zn1q/834Qu+h+noOs6M38Om3sSGM4w+ch+1O29B6t1PNjrtkIXAxNYnk9zEKLL+oYKEhX/6d+l/6C423vkeTH9AcsNxpv/Wd6CPdIgaCVZago6k9S0vofuejzL4Tkv2+GmsMNS+6WWooaJz7W309n8Ml0nue+Qwm0dWyY1ia6NJ5zHB0h+cAmtZOXeYe/7mM7crr2gEtZF0gv2cLL9AQ0+Bg6zo0Rtf4MMnf+nSoDjLnvpxb4FuixAsv6jBC2dO8Rkb8esfeA1z91meBmwscWOJXu0Tbq4RiphoI8UFGpHmVLbkMXcv6+fPkv98BgJckVNFFmG+tnUYE6X0Zn9J4riz5tGnnvxDGmrKv2EyKaWLYNKf7rRCjyra/Q7ufELerhCRX83JfGMHvZ3ZGUzlUP0e10YrALzo4Bbrk8TaKr48aWucIFTM3A99P/0PfYy1d/0e0TWHiK77NupzLcbnewD7hRDdy05dAHuBr5kCfc9vLPDqV/gyswrDO9415tff0acmAoZ/9BC/+isZ588ZrBMU44q62kBP5dCuUJ0W1cylSg650KHIu9jQJ070TBs5Up62tzblMWrPZ0R5i9YNt9F/8F5ah1/N6N772fdtb/ZYAc+BpPPNN34fM80jqEGOCxQXtu7n3Np9oATL5+7l3OlPkH9uEycFpioQm0P02Ndu6nabcs4STmWEyhLtbVJl3QkiGkTxFCr1cdOwOQXWoFYGCF1n+tCtbJz+PJF+Fb2PP8zMW7/vOWGRR3GJiRydxwTD/b7kCi7zLCUEexeY+dvfBdpSra6w/ivvov8Hv8/+v/NqVn/5fzL4wlmqtARn0Y2YPTetsLp2lt5CDUKoXRTYAKJkmmRFMvM5xWnmwUF80dcpuzxHxDGN8xVnHl94xud/xbzw17ReyqeW38kheSPgiHWT6doBXrD0Ny7VTwnhaSWMQUmNcRXjo1Msfdtpqg8MWem2ef7nL83m+NwQEWifZIojTzcQh770qao4lT7IiD63vfTvsfr6aQge48Q/+lUG1xVE67tHFOaceyxKOgxHqzTnlqgyhzm8iBwW5Fsjz0sUTmaEdSTLOcmjsHWjwka+BKd3IePCsM10Mia7uIbUkqw5zcX1AjjLwMX0XUJp1U43zagfIQea+uHrif/pMeJWl4tv/zinPv1u2i95K3J2Cgarp51zR3ZtcNjurbiURCqd3zTOnzf8xD/r8SvvmGXtulv5lcdewem//1/Jn2jQCOqMzwaYzT6ucpD4ZILZ7CJvuYGq4edN1e16vEwB9kIPlKJWNlA5tG57ARc+8DtE1xxC6pDG/CEYPAd64cWkwcS5S5nmyfE02+KJR97L7cd+gK3vu4EDHy25575fRo8qgrE/93LQwzlHmWuKTJGv9Gle2/adRhY/RhPUJbu8hZCKxCUUbcXcwTt46jPvpP3YAWQUEB09BCt/NQCNr6YE0jJ92xrj9XlmHjKMFhXjJYcrBE4533kFIB0isCSHp5l6za30PvQ5tt75YUJteMXbvwfqdTY/9SQP/eLH6aUxstOk3BjiJtgU7ZOGU1tbyGDGF+/3PCB166Qj3ihgqs3W8+e5+GrDsaPnn7GVIdwzaFualDG9BR9HOw0cBKaAFA/deyNwHtiafCTBr58Mb/U0Ju8LgGuBEnh88t5bgZNcokFrAoeBBy87hX2T73wKP+0OAR3g3snrtwBvfbbrQIUQx4FvBt7lnDsnhNgPnAC6+Gs/DDwKmC9zjtcBG8D6ZV95HRDhY6vF5DMOPx4hcPNln+dLjmn8uPbxY70HP3aPT373EHCrc+5hIUQbeJ1z7t1//VF4ZiKEMPj7Nbjs8Awwi59DNwAPA/nk+KHJ8fXLnp8F1rh0PQ/ix/YvG7dtuQk/LlvAxcmxg865ua/aRV6hXB2TPy9CiDX+cq8oBtrAJl5vBMBRvO5R+Gs/fdnxED8mAn+9K/jxagNHgGXgwjM4tWc2Lm7ChviXPYBTwGsue74frxzvmjy/Dvjg5EQ3gD8Fbpu8Ngt8CD9pPgn8a+ATl33Xj+JvZhf4TuDrgHNf8vt7gLuAIX6C/B385NCT1+8C3vJMruWv88BvBr+H3yxGk///K9CavP4fJ9fxFPDDX+kcJ8d+Fp8l7wMfAGYnrx26/PNfegyfJPoY0Jv85l3ADZe9928BD02+9yzwG8/2+Pxlc2Zy7M3b9x74afyiWAd+YXItb7nsfZ8EfnlyfU/gN4CvOG6XvecnJ2N15Gt53VfH5Gu35vCG2714vXA/8E+4THcAdwD34XXPuyaPn/pqnt8zskCvyrMjQoi7gP/mdqGD6rksQog34xXHy/6C1+/iK4ybEOIH8KVbX/Y7/v9Nro7Jc1N2uxP2qlyVr7oIIWrAW4Ff2e1zea7I1TF5duSqAr0q/0uJEOIb8KGkFeAdu3w6zwm5OibPnlx14a/KVbkqV+WvKFct0KtyVa7KVfkrylUFelWuylW5Kn9FuaJC+lDELlFNUAobefRspyZ9rOLS/zsdDhJQlkAbYlURyYpQVChhUcISYNHi8n5pS9/GFE7T3WygU4cNxFdsmEjXz627XaplizuxC5gFQFQOE/s9aZv7RmUWN2ln3AaPwIEwk0aCCY3DDpaqc3h4JS7Rp1wmTgmcFJfgt7gEB+YkxHMpB8I+9z9Y7tqYAIQqcYlu77S2+hMFxGTP3sFd9NQWTitsKLEanAKr8Ig8Al9ELS5x5YCn9nAOMAJRCWQBOrOI0ngOLuXRl6qaZGa+TyRKNs9nbG7uHiy9atSdnp3ybYrS7Vz+FxX4W/zkUc4Dllfb8JD+ZeG41FElPNK8qBxOgYl9xw0TbFnhPFix055jXgaWUPvOL4nDOEG20qfq7R6Nq2rUXdic3kFAKrcpzuT2WtnGu5v8Ld3OfFDKInAYK3fYBnaWzORzoTY0gpxEFmgsPZMgBCTS44fmLiASpe/0Gzc9FXkJ2coz0ylXpEBjUePFrTcgOm2KfdP0Dydk04KqDvm0xbSNv/GVQKQel9LVK1qzI66bXeVgbZMD0SZzuk9HjZlWQxZVTk0ISucYO3iynGG1avK2sy9F/LtZRntCTMhOn+yOTJQGAu771X+yKyhDAG5qludf//cJ+gXZfMR4VhH1HUVD0DxTUNUVsnI75xuvZ8hRvgNA7bTEhRqnJUU7pGhrP08qhzQOmTt0ZnBSkM4GFA1B2RCUDb94Guesp6oVMJ5RfP2PfZqfnP8U03vP79qYACS6zUvmvwvb7XnkIa1BKQgDRBjCNlZAHFHumWK0J2I8ryhaHpbM1Bw2toikQoeGIKyIggo1WVjGCopKk6UhdiskXla0T1jaTwxRK13KfTPYWJFNBzR+7Bz/70Mf4MffcHYXRwT09DT73/qPcICNJl1UsQVtEaHFFRKUQ4UWW0rkekDYlTsKVBrPuhqMPAmdif0mEfUtOnU4CRs3KfKFimhFozIIB/6z6YLDXTfi2oU1zvfatJOMQBnu+Tu7m1OKkmmOf+s/QljoXQNlxxBuKmrLAlF5Mr10wd9zlQnyuQpiS9zM6TTGZMWEzlh6jqT+Rt1TNTtBPJNy/cIyc/GQRJXcULvA8egCD6QHmdN9Cqd4aLyfm2tn6agxv3jqtZx+fJGgK3nqXz4znXKFaAJih0lQOM/ypzOPmC620VOSEqUtrgOm8kp0Z9cTbsIBXyOWJZkLGNiKUhhGTpM5hUGghOMNex7gl775G5m7130xxP72ru0ue76LIgqBLCwIQd5UNC5UpDOauGsp2hppHGVd4SQ0T40RRYWboPi7KKBshmSzAaMFSVX3dMBR1xEOHCIHGwpGUyFlXVA0BWULqsRhGhZRCoKhpHHBN92bUHI2nSJ3z4GmbxxuNPIbhVIQaEQwaWutKlAK16pTzDdI50MG+yRF2ysWqx3uMgvEOYFSFq0837cUDgEo6TBGktUl+bRgmElqKxFqUyOzCqcE0VbFU/ceIDhsdjyd3RJhvRJwAsKetxazRYvIFWjfqigDi60kwfkQPfTrzCowiSMY+TZQG3iDwklvrRdNgSqgtpIzXknI56CYNcTLCquhftFS1STDrZjVRoNOLcU5QWnUrne32gC2bnTUz0rCPgirMBHUlw31M2NWXtgk6AtapyzprMAkCrmhMCpgpelxFmp7h+xp9WmGGWeCilEWEgUexf7pzVkGTY86vxT26CQZr6w/zu/3ns818QpLYY+BTRjbiFcvPM67RzXGw84zPv8rpDWeVN8LT+2x7TZugxlQCmwkiYOCZpwTSEusS6ajMfPxgLZKqcmcQBgyGzAWESEGI0sGNmRkI4yTBKJif7CJmy5QRUhZu8z6vMzz8+d0RVfwVRc9dqisIl2IaZ7LqRKFKtyO55G1/SbSOF/ghPChj3pAPhXQ369IlxwOSFahecYiy4mFFQryjqRoCarYL6CyaXGRV44iqbBGks6HVKcUemSQladHeU4Eto3FjlJEGPhHqwlFuQPaYGda5At1sinNaEmSTzls5IGBv2hVS4fSBi0tgTIE8pISlcJRGYlJBGUpyWcEvUMhwWYdtd4D2jgtCbuCNdOkdOd3azQAEAbCrv9bp45sRqD7CtP03E44MLkiWtbEawIbeqK4omNRmcBqSOcFwnjvo6o5T4WhwMQSYUPCoSPoKqqWpUoceiyoEkH9giWb8xxCoTJ0xwmzjdGujgdMQhDG0yw3znjPCulQ2cTqzB069dcQjDzj7XjRoQpB8pSiqkHZb/F02MJ0KlS9ZLYzZDoZszJsYKwkrzSFUTw2WuTW5AxHgk1e33qA+7OD1GRO6TRjF9JWKWV1ZZvKFdMay0Yd20wwkfQxFssO9zdGYEtJUWgyZQjjnJouaAYZU3pMW49pqoy6vAT5nLkA6Sx1URIog3WSvo2xSP7u7R/jN05+A2EPH/fZjvlNYjw7pHa7KLJymEQTbZXI0mKmggkvvKdnkMYRDrzSK6ZC+gc0gyOezzvccrSegmTTQ3kVdUk6K8k7UNUdJnagLU7bHQtFOJDaIaXFOktVC8hbiqBfeUoIKymfA6VpzlpEPUJojYhj3Dj1VNjNBrZdZ7y/QTqjyDuCfMozmZrYggInJkpUW6RyO9ZnrCuCyzDpIl1hIkFlJSZRlG1BuqCxtQBVlsiiQpiQ6ccMP/XkNzNyJ3ZvQACsVwjB0PMTDfeBHgvPeTXyoZuwKwj7XnE6CUXLK0lZCEzkNxlh/Gsm8aEb0SkoOiFOKuJ1RzCYGDgTjjar/BqtnxMMlmKSsKQR556gbZdNUDGJ+drIkc0LTOIwdYuJBLIwBGNH0RLkHUF92aJyKOueIwrpQxRhX1C0QK4FVElA39boCcgWK5p7POyAdYKNvM75coobwg2O6IInZc5a1eTaaJnz5TRDEyOl85v4M5QrUqBCKtx0m3Iq8agyxt9c3ESJTqBdTKVI8xBrJaXxFlgkK2oqpy5zAlERC0/24v82dCa8q6WDmizp2pgXJCf5deEDy+5LzlQYJsH03Z0B2+MQrI/J9zSQxWUWlBAEYx+C6B8O2bzN4qQhOa9pP+GpGNJ5Qfd6gZ0piRs5QjgCZQmAotBUkzCIz794RSy3kypWUNSNDxFob5mMyxAldtsxm5xvHIM1uMEQkhjRqFEudRjtjUlnJSbyVpZTDht5mDqRC2xkcaFDxgYdVDvKsxnkxLpkWHoELukcSmi0tKjAYEOFDaBoBwRCIIZjVKwJe5KLwxp1UezumDgIB454y9Dfr4m6AhNCsiyxIWChcc7HN23gcwsI56lMnN9kbOjDGy6y4AS6VbA00+O86JAPYvTIu/Vhb7IWQ0gyhzQQDBy2UAjhaIQFEsdXTtE+u2ImrORB/1Ly1R8XiHFOvGUY7pOEPY+qJI2jddox3CcpmpNEbe6pTuR4m0rcj1W8rBkEDcb1iLmpATPRiFiWxEIwdo451Wd/sEFdFIxsxGrZol1LyVzzGZ//lVmgWlG1YqwW3ho1oAomhFUCUQpsIXGBxVofY8krzcq4SWE1lVPYSZZ6Wg0JhUHhKF2FcdCUk++1FWMMI9ROds4o55GrxSUEa2HFrrvwANGZTar5Fio3OAF6bKhql869rEkGB0D3JLVlQTrn6L4q5fDCBnVdkBmNc4JIVxTGUwuMy5CeiCm1V5p2wn0N7GSknRMUsaWqaawS9Pdrfmjf5ymeAxYoUoKzOxl4EYYU+6YZHIxIZ73CcNJbRyoTxOsClfl7bCJF0YRsUWBmHGEtJ9F+w01UiRaWzGgqqwiUIQ79ayMnMElA0VLU4wg3HKM2BDoOME81MLttbgHh0CIqR9kUqMwbAlZ7175xwVDFAhP7mGbZhMZpic4c+ZR34d12fFg7hLK8+PAJGrogLQM2uiFFXxH28MrXQTDylRtUjmDsEJmiNuFWz40H9d5NcQqCkbeu9XAbA9Sxdge0TtaJ1jIaZxV5W5K3oXWqQpYWnWlG894LLhuCbLGiflITDPy1yxJEAGKskM0cN6k8CERF5hwjK1HCM3MaISidZrVoMhWnLC8+c1KkK8MDVRIbTSwi49Ajgx5b4i1BFXuSrLylyacDqgTGs4Z8KqfVHNMXMU+aOU4NpznU2GRftMVsMCAUFR01JlN9pl1GKCyFkwTCoJyj/tI10rvmINl97MIvJzKvsE0PdCxKS9QvQPlaCqcC0hnNeEkQ9kCPPfVsdSgjiUvOrE9xaHaTepBjncROFrgnjXNeMRTe/ZDSl+6ISQJFK0NpFEFSUtZDnBIMDzien5zkucHLCS4vEEIgagl2ukk6HzKelzuLW5agMzARDA5bUF45JBc0tWVH+4SgShJ61yRsHawzN91HCsuB+haF1fTLGItPTgLkpSZLHEVd4JII+gOvyIGlTxpO23gXR8Mry2ijJJsL0eNJ+KmEoITGxQoTyYlH4zfI9tMOWUE6I6kSv+FsU2BX2nHD0fO8rPMUp7JZtDK4mqHo+GSMHvvyJ6snnzM+rqj7ng64myWMi2Bn7HZLdApBH+yUj/PLSsBYYWdKNm6uM/PAkPpySRWHqBLyjqK2aqmfHKJHCaPFgHjL0j4pGO4BE3tSPllCOg+0S8pBRBqXLMU9nsiWKJ3mJfFpOjLl6XKOrqljnGBURXSzBCGfJRceOWESlAJZOYJu5qlHawFBKBHWUVv2VqRVgqquSKcT8qka5/dbbLMC5XgqmeXw3CaHmhsEwtIJxiyFXeZ0nxk1pC4KAmGIRcnfO/pRfv4j3+l/f7tUEi5Zo1d0AV99cVphkwAnBWqYI4yj6iTksyG9g5r+8YpgyivMIKjorbWInkyIL8TEwJPPSzh+w1k6YUpmNN0yYWNYw1pJEFRE2sf8ikqRZQFlN0LmkmjfkCQqULWc3lJM2VCoArq2RiDS3R0UwBmDHQxQ1xxmeHwOGwpMKNCpo+h47yFv+niTrHyMz4aAcqSHC9L9gtqpgM7TlsV7LL2VhOXrAzgIe5I+iSwwWvhavspb8IE2pDVD0Q6wUYDU2ivSiWyVtV0bD/BKbLs+VRi3471FfeNd9ngCtuwE8ZZD55bxnCLveCZOaUCUYGqOPQc2+Ia5R5hRQ/IwYH+zS15qtsoWRTcg2vJKIOx7OmNhJ0bPUJBVmlhXJOGuDgfgY6A6dRRtT8GsxwJbQhEptm5wNC7EhJsFU09ZxvMhJvTxXdMIUbmldSbHSUHZVDQuGMqaD5ttXauomgYZWFrTQ/JSc2o8wx3tU1wbLlMi6MiCRd0jm8DgR6qil8a4K+BZu8Ik0nb23aEK6zPKscbEkiqRVPHEBS8h6lbE6wW1C96tLVsh6VzA4IDE6oinb1CsDhsI4aiFJa0o41Bjk+trF5nTfZrKK4G6LCja/HlN6S7TprsoVU2SzcYEwwptHMV8neHekOFeyfiGjGv2raGEpRHkxKri+PQKT8zPs3J2CjlWOOXd9YVkQOUkaRkwXq0TbirEqqAQfld1EpIUGqm/4HSzxeahgqnZAcFCSt6qU7sAf7R1K7cufGR3BwV8qZvWiFFK2C1Yv7VGMHTEm46o62NfJvJxcyfARIKiIyg6k3BNbBjvFzitSVYEqnAk5zVrzRbnah0Wkj6VVQyriHPd9o51jnJUdTCtEHnWINIcUQ+RlaPIvoYEWl9uSCzIcpL4mSRCw6FFjy02EASpxQlBsm5wCrIpRTorKKatd3V7kny+4tA1K3zX3s9RkzkdNaKjRpgpQSgNj0vH1mCaaMvT86rcz5ft5SIs1IKSrXHCKI3Iy93lRbKKSX00lE1fURCOBVXiLe21WwKmnvQxYDXZCKwWlA1NMJyQW2pJ2PNJVBNEVLFAT2yIWj1jX7tHP4+RwjKnB8zJnFjA2MGcHDMQAbEs2RdteXrx6lniRHL4ie5LKBROamwoqGKJCcVOXVpZg7wToPKAqG9RqZ80Uc/AWcg6kmw9olcJXCnpDTXdZcnJ8BB/0vBZOFEIbN2wsG/LFx3bSx03vuvJx8vY5YSJDaF/QDPzaEW+0KB3JGS4X+COD3nRvrNs5jUef3wvrcc1ybplvCAZHC9pzI9oJRmxrqgHBU2dUVqFsQJC6zuapCDecH4RdRzpokVMFcS1gjIPSMKKUBtELcPpOlNPFHzkg7dzx3efxANv754IJZHNJs5adDcjWY8R1ltgtdWSYDNDDlPOfPsiRccR9CHagoXPVKRzmrXnK4KRoKw77F5BMAIsmLFmUEbUdMxa1uDExVmixxOSFd+NY+cFWMinAgLAjcaoKEA2QuQzD209O2IdNpDkLQkC4i3jFZydlO1YiSwNwkI+rRktSvJZi2ka1EBRXZPy4kOnOFJfJ5YlM3roQ11YbojOkzcDxlXA8GBEttGkfXISP9e++N4pz5d0ankGOwh2330DkF6nbFcMCAu1ZYcsJeMlz+M+2KdonjPIwiEkCOebTJwWqFEFlY+1Oy1J1krKpvKWaFcybCasRQVztRENXZDZgJ4NQJYEAgwOa73CzJ0mDkvSYeMZn/4VuvBQxRI3KYsIhgadWsJJCY0oLE5LyqYmnfFF5ML6rLSJfdbZakHZBJRvLbPDgMYpSftUhah8AgZgvBhQNDTDp+cJlC/r+VJr0wmfwd1Nccox3uNINkKcgv5rRrz80AmaQcaoirj3o8c5dHdJNmMpE0G06ah/VNE/2GHt1iGLUwPiuKShcgYyRgiHjAymLhkvCqz2lkS8Loi2FOZCwngpItk3oFXzClhLRW5AGotVjreffTHwqV0dF6RENOoQaMoZ37FmYkm05SibivjEkP5ti5RNR7QpqF+0CAvjhYDs27vYtQZ6LSBZdWRzEG35jQR8TLhbJJxenSY4EdM463w3FlBf8bFFlTkQEtfrI+s1pLHIcjcHBF/nGUmc8AkjWUyqKoyjihUq94ZG0db0DyiyOUfQl9TPSL9mDvoLsE4wshGBqTMwCYVTZC7kidECT23OIqUl3WeoLUtq64aiKREThROvOYb9YMLJ5Hbb/vCdVF1fExsML5Vv1S9a9EiQzfiGg/GsJOoLVO7jwgAm1NhAooclqEkWX/qkmSyhtizoNUN69YSF2pBEFmQuIHMa6Rx1KuakYGANhVMYJykqTfuxZ55FuDILVPjyAhNCkDpUZgl6GXJcILICF2iquSZht8DEkuRihjAWUw+oEokeWawSCCdYumaN1yw9zm99/kXIUpFOK1TuyKYVVeK7K3whsUOWf0G2/fKOpF2SMKoo5iqG+wKyOcebb7iHpspYKVt88uIRahcEp7/XMj+3jvnDeaoajPc5mk/DeDOmG5fM1wY0VO57k4sA1w0JtyTNU+y0aSZrJdm0prZcIKzj3KvadG+RTDdHhMowigVFK0CngvVh/Sue97MuQuIaCS5QjOdDqsQvhHReMFrSqGweYFIE7j8Sb1TkHU1x3xTNIUSbvgYw6PvOlHhTEHU10dGK9XEds5Kgc0H/iMP9/9p70x/L0vu+7/MsZ7tb3dqrep3umZ6ejZzhcBEpiqIky4oFy1YMBLINAVFe2C+M5B9IXgsIAgQI4gQBAsNvDBgJYCeOLNuUJZmLTE44JIfkDGfImZ6t1+qqrvVu557lWfLiOfdWj8QA3QMwdwLUDyh0VU9N16lzz/09v+W7CInXzFk+K+9Y8A5vHeRTRLUUMIcLjVCBpicOnVtcJFGFDbPJIhQOg8sJB1+wXL12l/1xm2meUO2mJMcS816XH3Mety1YjiYoHLlLuFf2+ca9awxvLKMnkmo5LJRMFhLBrI0XzuN14Nf7jkWn5rHmfb+IEC68/qoIlNSqF8gj8cjRu21JBoqqI+bIG5MKZAOdVLUPi20VI5yfk1BU4UitR1WSqiuZqja345rlJCeRhkhY+mrCeX2MJKf2isJFnNQtptOY9aNHf1AefwbaAFhNKqj6GmljvJKoRsChWorIbo/o3TvCJzHTK8ukuxMm2zF6GgQfvJRst4f8eudn/OuVTyFsHG5eR1L2Q+JURfiRZs0HuEfDB54tj2bJc8FLRFJdgxcUq57+pw64nt5n5FL26h5FrRl/ruIffuY7/NM3fplrrw4otlpMNzXFuic+VvSfLALZoPmFyyJGjyTpoSDKHcfXJRs/MuhJjduMeP8/S7j2v+Ws/cRw51LKODJs94ZUfRgbRd31nP8EMEzCwlHhI0XdapKbAifDQuT46SjAdjqOuh+qUj2OcbFn6T2PLjx1Flq7ugfTVcXKT4b0vrVL/eYlliSs5JMwX+8nVF3F4Erwfo/GnrIr6SqFtxZfFKE1XjS8S4QdQTwweAmqtMjShq6trZlsKg5/peLpS3uM6xjvBb1uTpVVjDtt1EgxPUk5Wcl4UPVQsWev7vHDo4sc7yyhfOCK986NWG5NuTvYov0gLHyF8zglA3a6X6O1I04WXZITBF8yQWfH4QWkh566LSh7Emk9yYkhmkhMFhbYNhY4EapQp0BIgYsEOndz3Z1Q2Ut06YkmMBUBwRLLQMS4WayxpNuc2DZ1vMvQpdRe885wA+4/HlLjsSfI0oCVYQEwXZWYNEEXMapM8TIMf8tP9/Gij7RQdQTH15eJB566owJw1sPBtIMUjv/62a/x3/5p8Khu7RnWvjeA2vDgq5vUbYHrWFTZXKZ4CMr0kEDLIkPiEUZQrxo+s36XVAaw9pLO+eK5W3xzeo1/8oOvoA8iJpdjyp7ExR5nBWar4vNrt8hUTeEDrtFZATq0MsVqGKQnRxX6wZBkJUGuGXa/1KFzzyGmnqrWSOEDFTIWuMs5X17/gL9Y7G1p0BrgYj2H0rgYnPKBdZSEQ9i3DSqx2LbB5BphBPtf9ERHCrPkSDZyxOtdoolDDnJEr4ssDfreIXu/fZl8Oxzq5lqOFJ70+22KFcH2K1MoS2SWItrtoKew6PzpPGpqkdZRJxppLbalqXqa0UXF4KWKVq/gxjvn6L+lWXuvou4qWhbsc4py3SGHmkGZsqxzVvSY2+UKN++sk+xpqmULiWN43GK410EkHpMK0uPTiqpYC3sHERuqcrFLNQiF0dJNQ3JcU3UjbKIaIgHYSKDzsHgTiQpaEO3QwappIF5EU386GpE+fK8M+hReBtRHdCIZdFr86f7zXL50wG9t/YwXsjsoPDfrNSJh2dIn5HUUSAuP0ao8NhdeWo9t4ExVBlVPIAyociZTFpIsLgyH64YtUBuBbRAlTsNgmnJkOzwf75Jve6SR6FwSD7LwoJVQLXlU28DBQ5f5l7nwCw4pPNH6lGqQkKkahUc1275WtyK5ZviTd58FIg6fU1TLgc9e9ywXt48AqL1iYFpUTiG1w6WOYkPgYomwMLia0Y0l421N8laErODoGYlP64bSKbArNcJHJEnNs9mjuLb+YkMYN1ebmsPPpJ8vC7yCckkSZTVRbJDSY1sSa5uPtkAA1b02sQwLyPz6Grd+R7B8foD+Py8zuhwQH9EIOt/IKFYFvdsWGwnUtMZbh7h8Hm8salwuPIHiPdG4DslchEVX0ZcUK4LxsxVZr8C83eOpPy1Q+ZT9lzsIE6i+rQehJZ1ctOwfd7l89YBr8S43pluoY000gc4dSZQLsgODKg1Hz6QEClOAMtXdME/XhxF2oHFdiywXD6Qv+opoaIlHNdHYMD4fY1qCuiVRVaBFzxbIwhKeJ0nIMXGosJ1u8kyqGG8ryuXAUEKAaTs2NwZ04iBhl7uYQ9Mhd8mcWh4Jy/G4xdpPDNn9R4cBPh6Vs+G+C9soxCRhRhmgS6cn/OyX9DL8oqoI1YeqG+ymC7jGB6bHRX1EtVUzLWKiMVS9NjaBfNvz8pdu0NUlf3H3Uw0EROCV/2jV+QlQznjx/D3eTjZQuPkwOhU1ldBczfb5G9fg3c11jouMSRHPMZ4brRFTF2OtYDWa4LxAa0upPV57yhWPrATHzwvGF9NwMHkYPGORKxWRsijlsF4GnrwDa4MYy6LDSxk+GtZakPM7HVrXbU80FridjOTaMUtZgXUBxlUZFT7PY/xKRbkMk5tJYC31ClpxzbgXNsou8dQaVn9q6N72tG7sU2/1kcMpKImYltTbfaLbB5+IFl4Yh+3EAaK0LinWPNV2Ras/DbRdD8dPpwyvgL1UIPYSjrRArBRI5Xnu3B7jKuFWucYX01tsxwOWrx9xqFcoV4Iq2upPNN0PStZ/OGZyoRW49mVgxLkYWvcE1bJAHsj5QmZR4XTgth89k7DyTokXkG+GhTOAixS6CFWmi04p3U6BdI20qgGEwEaBWl13oL4+5cq5PYZlyhJwuXvM/byHlo7b02VasmJJ51gvaImSH06fYHqc0b41Rtzbf+Trf3wQ2OwkmCVLP8P0+Y8k2NkNCKIfgnjg0blvhsaCvNLcLNb4bHqT3//cq/zz6kuYE4WwYLqeJ17Y4e9ufB+L4FvqhTDsnj3/klM404Ir0VTUXMyOMSuSji4pfITzEikcCocUjkxVXGifIIQnVkFZ6Fx7wHY6oHQR3aiYM0KEAHTAM9JyWCOxHszW6Q2PUoPWIXkq4XFe4E2YbwnBHBi80BDgI4lNQlKYCfw6Gd40ru0Yx+EhcX++yoMObP3GXS50Tjgs2lROMdApw1EL9WFKlDv2Pi+JYkOkLHjQExhfM6T3Ig6fi5A15BvniKaOpfvH+CjGdTPK1QT9brXwCtRpiajD3LPuCEZPWtRqydWNI57oHNHWJZ2nS3IXY5zizeNtBo0U20ZnzLP9Xc4nxxzXbdIGUnA12ePzm7d5P8vZHXWRwrPb6ZOvd+nsWKarQSA4PjFz7G008sTHgt4dy+0FL9Zmo51i1eNVwtqbBTr3lCsCk4WxlM7F6TPUXK9NglCPk1ALQTwJLb00nqUPHPVeys8+dwG1VDcMNk9lFTdvrZNdq9mNerw5Osdh0SZSls8u32bpJxGiMkEE/BHjMVv4BiagmbfjwghIPC72ARZhG7X0mZq4EaRTQXYQKqRyKZwu1kr2yh6F13yh/T6tX6l45egqx0XGi6s7/P7qK5xTOT+t1/6qmHJzLeIhhaZFRSJrVqMJdUuxpsfkLiESdv5mPTZthiZlUKd4L+inU9bTMWvxmI4qiUQQODioOzgfKJwitgjlA6VMh39IKjsXEZEyKItL6fBeBOrnWFEvWxJtWdXjBd6REKLB5dlEnDoVNIcrURDDEOsFSWJQT9dYo/ngg032PrhA76bDKYikYCt3qNKy86sK23YkyqGlw0VhTtxey6mXFONBgigko6ch3VF0320jywovJdluaMnmLgALimoV8otddG7JtwTxZk6/M6UdVawlY57P7rKlB7RlyT2zzHo84rBucy17wPVkh54ssAjerzYYuYzCK86rAReSY/7Ty69x4lr8m8MX+fagxegLHt8tKMqI9LudsIBpXovs0IN3RGM7L3QWFiJUlulhEE85eTKZdyw+gjry2DRQU1URmFh4UDZ0ok4LfBxGAcnQN1J/nmTg2fyOpFjNsMOU1y5tUlwpiQ4iRpcTvn74NJOjjOtX7/P3t7/HH+2/RPeORYxyvP1FJdCHtt/ShEriYVaF1+CapUCrXWCMYnrQIhpJ4pFjfE5jWiLAVh4k/HjpHP9X/Fmeye6zFo34B+f/IwBbasA5PeXEaWqv5xCGh9t1WZ9CGxYZEY4L8SG5i5EitNO2uagZPKJyYdGzlExp64q2ClTV2fco7yidpnIKa2WoJnHBtqCpNJ0LosLAXN5NCI91UDuJXK0QwrPazrkWHS7qdpyGscjaNRYkpyIwQf4wiM5YK5HSsdKa8kTniM0rQ6JfshzWbX422OKDnTXEgwRZS2QVOpNYGxJlmFxw9N8WjJIeKy/tkyc1plEmn8g203Md2qMpg+s9lv7ox5Bli74j6Mhy+3c9vbcSyhXHaqskVqdv1oFt01c5F+WA69kOv9Pap/SGujmNJbBjFX2VEwtL4dV85v5BtcFz6T1+d/XHXEhPaKmwzPwwX+Ob915g+R2JrMNIKJoEh4OqpxY+AvMSqm6gcCbHnmjiAxInISRREZLjvLNtPpfT8KeqGuhS5dGFQ5aBJalyg/Ce9v2IuqfAK+JBwvAZw50HKyRvZkQvjtkbdfnjgxd5+2CD/MuC9GAd/drRI1//Y+NAZ0rYwp6+IeYb8ZahvVSw2RvRjiruj3oUZYfuXRvsBwBZedo7EI0kA7fCvxq+RK/7NL96/n2eWNrnvB4SCce+jdm3XSYumY/O/Kxl9w0kZlblLjAk8OnkHntmiUjYkDR9aKFrH4QbrBfopvcorUbiSWRN7VWD/5RYJKXVmFqBEQHX2Mw4Z2pDEIRGnBeBsURQa3deEMWGNK75za236S+6qgCwFlHWOBXmUnMFdQHCEJS7SoXNguThYdkikpZYGh6UXaZ1hKsU2YlEmNDmETuyOKgxia2C8kGLzh3PeLCBnsL0UzXt1RwiR74ZcfTsOS58bR9nDMI7/rK/1CJCVJLhiyVCekTTVk5NROk0I5sychn7rkVbjoHwukug9p4PTMZb5XkGtkVHFZy4jHU14Xp6n3+5/znqJc1XWjfo9ybUXrNrlnhQdYkvTqjbrQAjnILJgmiJU00RtOiYzTvjsGh2UXhTf8QOST40FvSNElwZtHb1NBxCelSFnDRt7tvJCNVtoaYtZBlTLkcIJ1j7WsLeLxueXj9iZ9gjlob//oV/ydZLI/7g2n9B+b2X4A//2SNd+mMvkWbzT1l5ZBReBGHBax8qz6QiUUGWLS+jUHpXDtMYXvXfrYiGJYOnO9RdSWVSRjLldv+Io06HtixJhWHiYyr/ECOgoW8+bKS2+LcDCCG4EjleTG+zb3scmQ5jm1J7NU+oSnic8FROYZwMnHcbsZaMWdY5UQPuhaD16bwI1DQrcE7Med7WSYyVGKMwUoUZ6KyNN5LLG8f8dveNBd+REN47hGkq0KZTedhFQFYCV0rKImbQCKYUNiKWlsJqDoZtknsRLvLYTtDBVJmhG5esJhPi2FB/ZkzSKqjzlHw/Qx9qoteXuPrTkvTmfagNdvdB+JlC4vVidapMqRBLFS9dusutwTKRsvPF2W7RY0lPqb1qPpjrup44x7+fXOffPPg0X1l9j+3omJHLuFcvcy0a8IQ+pHKK/+PeZ3hneYvfXn6diUsY2Yyjqo33odUFwjJGC+qsMYSMF/suEg6iYZDvEwYG1yAomT30TY0otIibEZAJqAJV+6BJ7DympbBpirAwutjh8Jcrtv+kz9I7Q1ReEctANPGZZe+vec5tH/Pe/XX+7vOv8fvLr7IkLf/L4S/zqY0drvzeT/jDP3y063/s80e4poIQTRU6d/8TuEqRlzHH0mGsIj/JiDxMthTdOwbdCGGMrnZwWtC67+nd9Ox+CWJl2amXiYSlK8PMqvbhVJ6JNs/bDc9HFOoXHbmzHNkOfTVh3wQx1sJF5D4sA6Y2ojChKq2cwhlBP5myGk2IpEERkqYWDh1ZjPCIXOG7HlNrSumR0mOMxBoVHCllaOtFHBJrllX8va3vcVnXLHgvEMKDmJbzpaOXwa7DqYda+Upic02u4/lIIo4tsbJUeUxiBC7y6InAVVC1IuS2p/ah/e+0Cq6v7LNxbgRPwd28z91Rnw8/3+PCv9qg9W9/DDN/KCkQ5tFnW7+IiBLDrz71Hlo4BlkWPImkw3rBSZlxGHfoqIJU1HRlgaXijunxR8cv8+9uPB+6EVUDl3mQd6md5E96n2JnssSte6tk3ZJ/e+8FshcrLiVH7NU9jA8HrmjcG2wqiMYO4SSDK/KxpNt+EeG1DyaCdZDfM60wZpjtPeYa2DIsq1VFAN+nMxSGwAiFF2HGm29Ijj9lafUKxn8/p//fWGwvpe5GlBuW3/vMD/izO9fZ/9Em0ZNjPt26w59NnuV/fv3XWOrm/OaFG1yKH30E9rESqGxgStKEz51pYBKFYqpjjJE4KxGTsFWv24K6I0kPAwau7ApMK8wwB0/BH/zatzis29wr+6G1VaF6m7iYI9MQ+x/auIvGR+WTEBKBEoIT20I2Aq0AxknGNqFqeiQpHJXTlFaTKMNWOuSt0TapqrnSOuTOdJnjIkNKR7RUUk9icI1FChFRHDyQZvatzgtoaHi9tOBvbr3Jb7TuLuYm/L9FbVCVny/7vAqVJIQKdBbWSopao6Qj0zXOCzr9nPGaJttVtHc80cRx9FzEO+1NbohN7CDCpUGMunJhLKJlWDD5qSbdr06Tp5DB0G7BLXw3KlmLx9yb9kmUwXmBArQX5HXM3bxP7SV5knBoO6Si5vXJRf7sw2d4cvOA5TTn1RtXaN1IiIdQrMN3l9eRlaDzQFC+bOivTPjW/af46vZ7TGwSDm4v5q9D3fVB8DsTlKvBGmbRUfccvtW8oY1E1s0p6xqzyia8BtfsWig5XSKJ0OUOL2vKleAJtXx1yv2fblBtVmFcEQl84vjO3lX42gppJhitppzYFv/4B7+BLxUnts2/OHqZZy7tAt9+pGt/7BmotB5vwoULG04LEYWEJqcS5yJKrcEIdC5RVRCItZEIZXbSWDlEYDIwTxR0VYFDsFP0eVD3AFA4Ch/xjf2nT8GzTcwqmIdnJIuMJRnzcnaTd6stgPkSyTiFbZSwpWj8iqziic4Rzgte/9bTrP/Q8f2/l7PSnTCcpNgPOsQDgXm2wJcq2Dd4MLU6NSJ9yANbCs/LK3dY00MSIT8hjpwhfF2jylDtQDMHjRpM3+xz5XG1pJSaSFmOi6xR57eoywMGSy3yy4rWzYh4APZuSr0SwItLWcGgyihsFHRBreYkz2h/qNE/fRcngiq+mAlNJIuFd2lhiYTlsGgHPyIIiAIvwEn2p21GdcJe1OPJzj5jm/DW0Taf2t7hK8vvIYWj/WzFu+fWGRUJ/GiF3nuSchXGz1Q8tXHEhfYJb+xvcytfYVwnjKuEJK2AOHDHNUHFqPIBU71oHGCDIfeJDZ1V9dAAvxkXCnva9UKzg5mdjc1i6eRqRP65nN+69jYr0YSxTfjToy1MpvAqMCTVAAZrKWkRcg/S899962+y9DMdhIymGi/hzu/0H/nyPxaQ/i/HrAqV1ey3AzUVROOgPpQdOqLcUfRV4LmugE0965/bI9GGn022uZAeY7xkpwgXL/GMbcJ7NzeJZ7jSBgoz+5mzm7nokEheiCywy61yba6SLkWQypp9ndcxW+0hT7b2GdiMtc/usXOxz4XemJNpSjlK2HojsCryS+GlEYXG92qECieGh3lbjPQsZUWoNHxMhOIT0sAD4PMpOrfoaXhAZ0wkAC88PnaBxlkqbB18tCbTBCk9upmLtnsF9IANmJYarR3SCfqdKYkyjOuYo0kL5wVVrSnvt3jqL4IWgFASb4Eowhuz8GdF4Xkm22HYy/jx4XkAYmlpR6GSPh722C86pGnN1ERMTVCMf6l3l6vJHie2zTOd+6wlY1JZ887aJj+8fZEkrTmfFSTKsBRNeXL5kN1JDyk8kyoK3mQtQTQNpnWBUh2qO2cXfFMaWx6xlyDOFTgj5rsOAQH6ZkK362cY4phTWx8fDgFVedxRws3xCusrI94ebLL9Somd6RQD6YGk83zJ8RMCm3qSnYgn/vWI0ZV2GC8KOHhBs9r6BTGRZlt4eGj73pwQsm4gBj5QO+OhoH3PEU8cdSYplxQ2CXOOaAzqswPu3VwjW8vJ64jjTkZLV1iv2K+6WC8Y1SmUci4e4gmn0JzQ8gkA0gug9pZIKFab2W3hIqY2DttxaTFWcly2aEUVL/XustQsjr66+R6HK23eOdkkn6SIyLH7a7ahV3hky+DGEfI4xm006irN7y1kqD6dF9RO8ddbN8i9+ASlT/BVhR6UqDJGF4K6FrjMB9dNBQiPVBbrFa7QFONGozJ2yNiiI4v3EMeWpdYUMqiMpqg1lVEMRcJomlJVClNqGEasvC6Jbu9Du4WfNrbKWuPPrePuLPZhkcLRlhUvtO/y2sEFIunmNi79ZMqhbjOctlDKzyvx6ysPcAjeKc6xpod0ZUGtNId1m+udPZ59bpd3Jxt8OFxBC8eoTklVHd4/RcJkGhPHluPnBEs3gszb3uclrZ2gcsWC1ZhQHrtieOryHu/f2QjwRBsYh8KEvCLtaeEmLY0Ad6Bq2ljOBbkRcH/Y42v5c+h/tkpGPbdJ8TLknaPXNlh52zG6JDn/jRGiDgd1PKjZfykLUp3/49ojX/5jzkBF4PHCHMguDdAIKTsrEC5Q9Fr3PcnAUXVl0LSswtcAeirIv92nI6E66FK9WPGjmxd5/tJ9elHBSZUhhef2aBlZBXvWh+nvwolPTAsvECRC4/CsSEkqax7UXRwCLS2V0xQmYlpHXOvv01KBdxsJSySDjbPzgiStaKfVnOrpXKgOXOwQY4kdR4g0APSl9k3ycXx58wP+y9Vv0xKfrOQJgLXISYEuO6ipR03D7JuZ97toHEaVR+1HZA+C93exqqk7nrodiAR1Fh7yWdtbVZqpSZDKhntVKRhp4iPF5tfvYTeWUQ+OIQrJUyQxXi6+VRnblFvVGj8cXmL31ipblw/J8JimKllvj8nLiFhbWlGNEJ5EGt4Ynmd/2uFg3A444QZ1gfCkac1ot4uoBDvxGsvnBlxYGrCcTikatflWUnHy5IRqr4ONoV4zVLPDasFLJB1Zfv/lV9kre7w/ORfa+ea/SSPmGq6zNn6u6qVCpepdkLWLRp72TcWw7rP0tqB/O8dmGjV1TUIObMjkxLP840OWf2Dh6IT6ucs4HXQnNl6bBFm8/NHdWx8zgfoAMWiGEaoCRLDtJZ5tVkPl6XTYiqXHFtOSlF0ZqlMXvl9WAYqQnMBJuoKPPe/EG3z+4m0Kq8lNzM6DPnralJ4q7ABmc5D5EukTsol3ODoyYU0PuVmszuees5eiHQUAfekiUlGTippEBHmtTNd0s5JUG4yVFFUUKm0It1yDKCSyfUpcltLRzkp+vfszWg+p4tpPANYRCN2B84jhmGjYR/eCkZppiUaMJlyna6ptl3pMO1Qf2QNPPAzLAZuBjRR1FlEkgPTYVtBItVpBLSF2qErQ+8DjIx2qCq1C9dntBHHnyiwcND6YZHz35AqvfXiJy3/smfwjhSPgeCWetXRM3VeMq5iN1ohz2YCd6RLff/NJsrsam3lM5ufkFVUI3EiQNJvreADlrVXuf9lzbXmfYRzYb94LzEGGsDC9YFHtmqqvw3towQk0kpahSXnl7hOoiUTUs0mdmIPoZ3x9aUMOcL5p3ZVA1IGRpMuA1tj+j55sr0DlFS5V1B1JlDvU2KIKSTyoAzqkrPA6CDJPtiUr//c+fjBCdNr47qN7Zz32DFTasAmbbVZl3WC0XPBjjocERWgTXphySWEyEaxHVxp/HwWdZ4640D/hrR8+QedWEFWoexGVC1vsQZniS3UqTPIQmB44LUkXzeXF4/BY7xn4gljYZv7ZtAY+vPrtqJwzlY5Mh1vFCu+cbLJz1MNUGiE9LteISuK1R2QGoTxYMZ8dOivQkZ2X3U8uH3I9Ojx18/ykJE9CZS6kwI3GRMMKPY3QhQgHogi/o7MCoyJkbLFLNdO2pMgVOhfocZiT15dL0ndT6iVHuqdo7YLJNOUKFNsG2a1xdWjjVt4cgg4apL6dIazDZwmirKE2C8cN64ngvX/+NJffrUh/9D53fvNp9DP7tKKasUnYzgZc7z3gvdEay3HOc60dWrLis1++zcimfHP3Gg9OOpxfHfDiyj3WojG5jblfLvHKrSsM8ojnr+zw/NJ9pjZiv+hQO8nubp/1H0jKZYgPFK2LU46XwkJNLjiBAvzJe89id1ooC6qcDT+DQ2uwZGYO+hYWosLPR4lehgQbjxyd282YSwlcFhEd5kCLuq2plnQDpxP4OIJII6qa5I2bXHjd46YFotW46+bFI1/7xxITUXXj3x037CIbiPwwU1cJbXbdFnPpMnxIrm4qqLuek3s9JtOY7WcfsH+ug/xpgCuN64TSao6GbdRQfQR8LVg4EuWvxMgJ/ungErfLVUqnSaSho8r558YpUl03AHrFt/av8d7OOm4SIfNgjyKaByeqmc8lXKSwmYeOwacOpEdpN8ftKeX4fP8m0SekAv8rIZpEaQzqaEyynGDSqBHGbWBYTuCERqxYVGIhschuSX2SYjoCUQsYRRTXAiJhetViWhHRqPH9nuGDS8XajwTqwQAijRQi/Pw4Cn9WNSLSC18iQZB/rPqaVAi2XvHsrvXo9ydYJ1lPxvTigrV0wmHZ5kHa4+lsF+sl19P7fPrqbd6aXuDP71/n3914Hh1Z6io4kjor+KWnP+QLSzcZ2Iw7+TKjMqEyivhejNOhwMn2YDJN6LwbUXdYuKWHuxuRvNahWAs89jm23AhMOyxU8aAbIpms/fx7nAp/H9BADh9JvBDIyuKFwEcKPSxRU4PTknIt5ujZlGwjpvPBGDnyoUMRApFl+DpYg/jk0e1KH1tMRNYeR+OA6B+aRbrwUM9Momak/kDBCq17PIAo99hYUO5rypUO984lrF844eCqxlvJ/qSDsZJqFBOV4rTSnJ1As2uZjWIX/ADsVkt88/g6W+mQViOmnMqAZQTQ0pKpmikRR1WL/X9xkae/fYywYzCWemsJm8hwICWS5KDAK4lpa4rViN0vK+Rq+HejKFS13kOWVPzR3Re5sbzFZ7s3+WrrXdZVoPypRb8rIDyUUYMkGOfExx1MS1G3FS4Kz42UHmckdkkQJQHnGkUWsVxQjeNTBa6HoC2m6zDtcMj4yOFzTbyvWHn9GF9V4VHppIhpBWUFWTLPEjPkxsJCQHrkw/xuWtDeKRG7GUdGwtqI/TIUEcM65d6wx8G0wwvL9zmXnDByKVt6wJPJHpcuH/L+5gbvTdY5Llu0dcV6OmYzGXK7XOGoavHu8TpFrSlLTXoU3n8mC8uXC6snDA/bFKuLL0jqtpwnT1kHw0pZzZosgc083gXGozIhl0jjT8WMbPh/607QkZANN17WDodGGocalShg8GTG8fOe+rYiOU7RkURYhygtQitE2bDV3C9MUDnMHgKYvhEyFc2boQQpG5vSZqlkpZgPfXUu5nqMM/fO8IXAWEl/ecLxYYfhJMh36YPoFIB9WtWfJswmqS46VWSq5mrrgEQacnd6ckXSUrtTPtpsJpoMPP7dD8N54Dzy/Vvz0ZwGhBQIIYm9Q33pU/g4QkqHVMGywDlBltaMJinHhxn3e0u80nqC/1V/hT946rv8budN0oU3q4QXRoWH0dc1alKRHmhMmuAiiasCHtEmUOcaI5mPJpKkDsyrWmFKBWUjiZcrfNsElIIRqJFCWMGT//sR/sM7iF5ggYnSIGoTKtCqBhPsb1W58HkPS+9X7L+UsLyxhhEQTQTSxhyrDs5JTtIM6wV5kVBbxc14hX6U01XFnO7rkJxPjlmOAlzrI8I0wvHBeI3BOMUaRXwjI9sPikZeQ7Fl+fDuOquASxePA/W66SZmlj2WoP9J6DAqEZ4RacDXDZSyWWA7HbpfPbW4KJAnZFFjWzFeC2TpwDhsO6buJwyuwd/5le/x1mCb0e0LZM0+JliraOQQiHQYGzxiPOYMtDFuatgAarZJrUNydAqkbzi2syQah++pesEoTvhg0Vv3DfFyQSc2aOWIlGXSqjGVwlWK+C9XC3PsY/O1O/3rRYYUno4KfrlB/zNcUSTsfL40EQklcD474Tu/bun/5Ari3h5+Og1smYBJAucD6FtKRCvjw99KiZcnc+A8gNaNVe29FtKDVRFTLyiV5x9/4z/h9c9d5B9tfv3/25vwc0OEmVLZeAnXBjWuaD2QmCz+iGiEPtEY7dGZQQhoxTWl8NTKobTFJCpgYH24TbZQyFwRH0u2vlvi3nkfkST4ukYkMaIKM0+cQ8QR3tiwjTeLT6BeC0ZPGWw/VJs2DRVUdDvhZE0zWSpJs4osqVjKiuBAWrdIZc26HnIxOiQSllRYIgIMauRi3q83KFzQoi2NJo4t+WHG1qsV0/UgRiAr8Ilja/OEwblNZAHeLDaBzpZhs8/nbbwFvCc+EVT9kCyVBFGdzj9lDarwmCzYgORbCdLE6IklGlaoozHCWHw7496vd/mDv/0feLF1i5c7t/gfln4P4SL2PyPp3IGVtwuwHrSk7v1CW/ggA+2QCD1r1efQRbxrBH4jwrbQN+r1qQ+UrdTxxJUH/I2tn3JQd3h3tMGgSqlskCJzhUYf/3wPJOFOcaj+9FsWGrJJ4Q6BRSKxWC9RIjzciTSsxBMiGfy7f+n59/nJ33qGi38eId+9DbVCKAXR7BcSsLrM/pfXqS9WpMphm1NDCIi0ZXjURtcCFzf6q5XEJ5b2+RHbyYAdswzcWtAdaUI2CVSIYK1RG9ASPapo70ommzpY7SqBKgS2UPjMkA9TVto5qTaUVmGswtigk2qcZDJOkQNN+65k69Uc+eqbeOeRkW7mriIsjKo6HEZCIFopvpXC3mJviWjeP5f/uEGxTGrqXozqV8ibGdkdTTWWjJYjOit5UOe3irfMFvWSpCUrUlmzpQYcuYQVlVN7ycTHTFzCwGbcmGxyf9QlHyesfV+SfXhA3V2jbgVIkD7W7JpV2qZBMUWLPVSEC5YsNN3rrBqVtllYa484hrLfVKKVwKQeXczyikCWPkCempGhzRSq1IjlDjZRHD2X8Ut/5w3+yfe/wpef3eY/3/gOTkPVDc63rYMg7+cyjY8kZf/R0+LjJ9DKQSzxyodNuyA4/lmBjUQDpm+WTAiEBCKo+45kM6fbCoyJt8bbJNKipaUwYWlUjWLEVH6E7TRz4ZxpjgpPs2QRs0taaDgEpdfUTqFw88Q5rFt0dIkSjpascE1b8Gxnl7tf7fPeyiZbrz5D51YO0xqUwPRT6o5mdEEzvAJJO2h8znRApQwmcupI4/UpqwcboCp/7dINXmrf+qiK1aLCB8tZIQRCK7xWuCgktPi4wkWCsqeCwEUsMEUQo2n1CqwXZLpGSUcOJDqoe1kncYWivSfZ/F6Oeu1tnLXhAJp9lBXeOXDhTSG8J4immoWftl5A3dGo0jF4pks8dlx8cp9IWe7pJeoPO6QHEncckw804+WaKDV4LzictNhf6XCztcr55IREBv+t3MUc1B3uF0sM65Sbx8uM7/RY/aFk7dUDcC44Vq5J4pGHe4LJecXKzwzDy4vXshMGkoHHxqcb9fn73wfJumAX5KmWgoGg9EGt3ktBsaSIJy6oM5UOWTlk7ZClQVQG14sZX4SpjYjaFa/84DrP/Nouph3Gi/EwAPZtHMDmVV9Ttx592/jYLbywLgDZrUcYj7IeEQVllJlUlp+V4s5jffNLTyXFIKHMIw5VhztZn1YSwMLDSUp9kCFMqEY+IhQyw1zb5u/16RxVPIyuX1A4LziuW2Sqns+pchdzUrewSDaiEfVDF5nKmk+v7hC9ZLl3oc+9YYo+6aBK5gwMvMCdnxJFBmPUaQIVnslBi6gOKkVehQ+c4Nr5B3yx8z6113M1q4WGbfxFpIQkxmdx8KvpRkSjmuSwQtgY0woPrk0lRRbEaLyHaRRRW4UxiiwJB4mxEnWiufD1Efz4HVxdhQozjhFRhLcOjwtzT+9AqgY0KEJy/QQs1+q2pG7JpvIy3Hp9i+tfuMnTm/vcAKZxm/SBpHNLYvcSbJpgWp5xlvCjBx3e6NSkaU0nLZmUMVUVNGTdOEKUkmgo2H7DsfT1dxBxjF/uEZ9UcEkHEH0b0gNBa2eKjVtzcZpFhawDwcZkoQA7NSAMS+ig9OZJT0JFWnUF1AQsug+cdlU3LhhIoplWR6SQQlD1NOe+uMN337/Cf/XyN/mfvvsbAIyeMnQ+1IHNlATzQy8FJpE8jiOO8I+xhhNC7LPw3vDnxmXv/foifvDZPfn58Qm9L2f35K/G2T35+fFI9+WxEuhZnMVZnMVZnMYnAFp8FmdxFmfx/884S6BncRZncRYfM84S6FmcxVmcxceMswR6FmdxFmfxMeMsgZ7FWZzFWXzMOEugZ3EWZ3EWHzPOEuhZnMVZnMXHjLMEehZncRZn8THjLIGexVmcxVl8zPh/AF2BOzgS7puwAAAAAElFTkSuQmCC\n" }, "metadata": {} } @@ -205,7 +202,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -217,14 +214,14 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 4, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "X (152252, 48, 48, 1)\nY (152252, 7)\n" + "X (53631, 48, 48, 1)\nY (53631, 7)\n" ] } ], @@ -238,9 +235,17 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Model: \"my_model\"\n_________________________________________________________________\nLayer (type) Output Shape Param # \n=================================================================\nconv2d (Conv2D) (None, 46, 46, 32) 320 \n_________________________________________________________________\nmax_pooling2d (MaxPooling2D) (None, 23, 23, 32) 0 \n_________________________________________________________________\nbatch_normalization (BatchNo (None, 23, 23, 32) 128 \n_________________________________________________________________\nconv2d_1 (Conv2D) (None, 21, 21, 64) 18496 \n_________________________________________________________________\nmax_pooling2d_1 (MaxPooling2 (None, 10, 10, 64) 0 \n_________________________________________________________________\nbatch_normalization_1 (Batch (None, 10, 10, 64) 256 \n_________________________________________________________________\nconv2d_2 (Conv2D) (None, 8, 8, 128) 73856 \n_________________________________________________________________\nmax_pooling2d_2 (MaxPooling2 (None, 4, 4, 128) 0 \n_________________________________________________________________\nbatch_normalization_2 (Batch (None, 4, 4, 128) 512 \n_________________________________________________________________\nconv2d_3 (Conv2D) (None, 2, 2, 256) 295168 \n_________________________________________________________________\nmax_pooling2d_3 (MaxPooling2 (None, 1, 1, 256) 0 \n_________________________________________________________________\nbatch_normalization_3 (Batch (None, 1, 1, 256) 1024 \n_________________________________________________________________\nflatten (Flatten) (None, 256) 0 \n_________________________________________________________________\ndense (Dense) (None, 128) 32896 \n_________________________________________________________________\ndropout (Dropout) (None, 128) 0 \n_________________________________________________________________\ndense_1 (Dense) (None, 64) 8256 \n_________________________________________________________________\ndropout_1 (Dropout) (None, 64) 0 \n_________________________________________________________________\ndense_2 (Dense) (None, 7) 455 \n=================================================================\nTotal params: 431,367\nTrainable params: 430,407\nNon-trainable params: 960\n_________________________________________________________________\n" + ] + } + ], "source": [ "#MODELE\n", "class MyModel(keras.Sequential):\n", @@ -248,8 +253,8 @@ " def __init__(self, input_shape):\n", " super(MyModel, self).__init__()\n", " #Pre processing\n", - " self.add(keras.layers.experimental.preprocessing.RandomContrast(factor=(0.5,0.5)))\n", - " self.add(keras.layers.experimental.preprocessing.RandomFlip(mode=\"horizontal\"))\n", + " # self.add(keras.layers.experimental.preprocessing.RandomContrast(factor=(0.5,0.5)))\n", + " # self.add(keras.layers.experimental.preprocessing.RandomFlip(mode=\"horizontal\"))\n", " \n", " #48*48 *1\n", " self.add(keras.layers.Conv2D(32, kernel_size = (3, 3), activation = 'relu', input_shape = input_shape)) \n", @@ -274,9 +279,9 @@ " #1*1 *256\n", " self.add(keras.layers.Flatten())\n", " self.add(keras.layers.Dense(128, activation = 'relu'))\n", - " self.add(keras.layers.Dropout(0.2))\n", - " self.add(keras.layers.Dense(64, activation = 'relu'))\n", - " self.add(keras.layers.Dropout(0.2))\n", + " self.add(keras.layers.Dropout(0.3))\n", + " self.add(keras.layers.Dense(64, activation = 'relu'))\n", + " self.add(keras.layers.Dropout(0.3))\n", " #self.add(keras.layers.BatchNormalization())\n", " self.add(keras.layers.Dense(7, activation = 'softmax'))\n", " #7\n", @@ -288,26 +293,27 @@ " self.compile(optimizer = 'adam', loss=losses.categorical_crossentropy, metrics = ['accuracy'])\n", "\n", "myModel = MyModel(input_shape)\n", - "myModel.compile_o()" + "myModel.compile_o()\n", + "myModel.summary()" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 6, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "[0.1456086 0.144747 0.14145526 0.14557326 0.141776 0.13994008\n 0.1408998 ]\n" + "[0.1431607 0.14394405 0.1389222 0.14134979 0.14626577 0.14387079\n 0.14248675]\n" ] }, { "output_type": "display_data", "data": { "text/plain": "<Figure size 432x288 with 1 Axes>", - "image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\r\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\r\n \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\r\n<svg height=\"250.052344pt\" version=\"1.1\" viewBox=\"0 0 251.565 250.052344\" width=\"251.565pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\r\n <metadata>\r\n <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\r\n <cc:Work>\r\n <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\r\n <dc:date>2021-05-07T14:28:13.031513</dc:date>\r\n <dc:format>image/svg+xml</dc:format>\r\n <dc:creator>\r\n <cc:Agent>\r\n <dc:title>Matplotlib v3.4.1, https://matplotlib.org/</dc:title>\r\n </cc:Agent>\r\n </dc:creator>\r\n </cc:Work>\r\n </rdf:RDF>\r\n </metadata>\r\n <defs>\r\n <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\r\n </defs>\r\n <g id=\"figure_1\">\r\n <g id=\"patch_1\">\r\n <path d=\"M 0 250.052344 \r\nL 251.565 250.052344 \r\nL 251.565 0 \r\nL 0 0 \r\nz\r\n\" style=\"fill:none;\"/>\r\n </g>\r\n <g id=\"axes_1\">\r\n <g id=\"patch_2\">\r\n <path d=\"M 26.925 226.174219 \r\nL 244.365 226.174219 \r\nL 244.365 8.734219 \r\nL 26.925 8.734219 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p2932473b0e)\">\r\n <image height=\"218\" id=\"imagea8705b73e7\" transform=\"scale(1 -1)translate(0 -218)\" width=\"218\" x=\"26.925\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAANoAAADaCAYAAADAHVzbAAAhzklEQVR4nO2dya9k91XHf3XnmuvNr2fPc5zYiROctBNBRBYRYZKQQCzYRQgF/gUUYIVgjZAISAQkhCBRFhmIogRk2UriTHJix2N32+3ufnO/92quOxSLrM73e6AqVvLrzfnsflen6o6nbp259sSn/3bugGAm17NuDUVcFdEmIpzKdWOvJJnOT0/EuvbOLZKpra6Iddlt8vE0YrEenstI5vRiQNvGW/L05yFdDjdfzcX67vP7JLOWDcV6VCQkc6Z+KtZxwNfjeFYX66DGx3Oa87ldP+7Jz31lhWS2/v0VsS5v3yaZ0e98SKyLTx+QzOWtK2K9Eo1I5ken58X6lYNNPp72QO6r4vtz47BL2z548W2x/sTqT0gmqclr+5c/+STJzN7oyP23+X7Ub8oHPW8rz0ckt7Wv8nnwFsMwfuGYohmGB0zRDMMDpmiG4QHVpZG3pfMjmLEBmB3JbdkhG5LNn0jHxrzfJ5laXRr/83PbJDPdlM6PyWpMMrN2AGt24BTsQyFDturlJNPpSWN/JWXjPwvl5xLF0bGRyPPP5yHJRKn83HQZr5NzbrUpj+nqY+xEWP+hdFBEN+oks/f7Y7H+7D3fJJkL8aFY/2B8N8kM8lSs53O+H9d218S6nPH1aPf4Wj/Sks/V4+kNknm7kM6gIOBnGJ1+rSt8rWdd+TnFN+XWfijXnat8zPZGMwwPmKIZhgdM0QzDA9Fklf87d69WYt2+MiCZ2qSQ6x0O4jq0v+46RyJlJv8XT9dSkpl25X/3IuNjzptyW97iw6ki/oNd1eW5xllBMmkst109XiWZ0UQedxBUJPNSJO3PSrFbZrm8Htr3RCFvwzOrn+V7tvNhabed+9cdksn35D37WP06yfThuD/ZeolkGoHMVthdY5vx8//5cbG+/z8OSebGJ9Zo2z+Nnhbrb209QDI7p22xzl/skUz7HXnV+hf5+ahV8ly7P1X8FeCfqOVsn9sbzTA8YIpmGB4wRTMMD5iiGYYHosYuG3fdl2RWd9lmB0U4moh1tb1BMpOz0iNRKxRnRCJ1fdrhoCU6P5Q4r6vi/3/tnHMlJ73zvqYctDzuSwdBPuDM/OhQ7rCxw46O2kSefxCyTHMMMmxXq8H4wd3SQVLbmpLM+Al5z4oX2Dn10GffEOuPrn2GZP7svd8S6481XyWZ92TSifLj0XmSaV+T5zrdZg/W6ssz2pbelvfj+j383eFYXqPWHj97g4tSBqtNnHNu5TV5XbX8gTKTz/DwQoNk7I1mGB4wRTMMD5iiGYYHopWXObCZr8r/mOGA/ydXHSkz2eaM3aIu9ThQbLTJijS4Zh22P0owiebKzwPaZGWD91UqFbQuAdsmUoLBWPmrVGFXidymnUdQx2RtPpzsEJK1b/MxzzpsgKJNdnb9mGRCCH5f+9RZkrkUXBTr1vOcePzPHVmF/YP1iyRTDzk5G8F71j/Ptu90ha/jdFVeo/iUZer7Uma8xTIZxMdXXuUbEo3k9S8a7CAYnpEncnoPidgbzTB8YIpmGB4wRTMMD5iiGYYHoqLFBmg4hsz8kg1yDC5ihr1zXI2KGfbOOTdZk9sKJag8hyBhmSktv+Crq1gphWU/h4sgWz9JFxvxgZI9H3VkMDi8W3GqwEGWJf/O7U2kYa1VBq90j2nbB3uyLdx6yk6uAiL95RO8/929M2Ldvcb3fvIFmVH/35c7JPPMw6+J9cU6t7YboA9FqWYo63z+bdntzsUjxckGz1V6yDKtHXnv41O+93NIqJh1OWK9f1l+LmpwBYi90QzDA6ZohuEBUzTD8MBSLZZmGxyMHq9Dq+S6EqCFv/daom8Fph3aYz/7HLTtVn4eiibYRNpPiGK3RbE8yJXmmGTSSP7nnhZ8kCijVU9j96x7W9xuez2WttVKNCQZrXvWjSm3AEe6kTy3cZdvyHNPSXvrzPNKRfGevLhFg5Nob12SFdVbKXdACx+VLdLz19jW63K+sksG8pi0LgGNHfk8JH22meNTec9yJRFgsibv9eCs8mDBvQ6ucpDf3miG4QFTNMPwgCmaYXjAFM0wPBBhhbNzzpV1GcTWgtHk/GB7lJwfheIwKcFuzFtKZjw6MZR9zaFtXNTk4GO9wSW0GDTWHB29TDoRzjROSeZoyg4BBAPGz+9xK+2DE5kIEEUcMF5rccvp861jsZ6hl8mxg+ZgzBXNH4DZY68/8hDJNHelE6H9Dgdo33hrS6z/8Nx3SGb9Aen4+fvBMyQzPeIMhgB2lx7zM5OeyuuW7k9IZrYqvxsrSZxzLm+Ao0MpALnwZSmT7VpLcMO4I5iiGYYHTNEMwwO1y5/6a/qDWzSk/uH/VOecy1uwTcnhrZUQWFxXvqcjZcq6koyrVDQTmfxco8uB54aSMDyaSkMyz5UWW2Db1K6wPdaDwGp2xH/mk77cv1a5HvShu1hbsVEmbBPl6/KYpiscfN17Qtqf4WMnJPPJu18W6y/8z4dI5tJX5f5nbcW2acpnaPy7xyTzV49+Sax/JeO28jcVm/kzr/6BWJ9+nUd9oX+gscPPUAH+Ae35LKBSv3mTZVo35L2erNgMa8O4I5iiGYYHTNEMwwOmaIbhgWjaZV0rGlj1zAYgJpCjYekcz5bSqmWxTZvq+Fji5yCALPxECfRGIW9rQLfzkxkb3+WuPLl0rFSKw8i0MlYCxgkEP9tK27hN6dSYR7yv2/fzMWJFg9beOr9HOojainMIZ2bf9Z6bJDN7VlZhz5XW5slAOqeyz7VJ5i+2/0isj97DjrDP/8bf0bbtpkwYGBTsDPnzP/4Xsb4/2SOZGEru//HoIyTzjc/JWWzpCR/jeFVe/GjCz7C90QzDA6ZohuEBUzTD8ECE9phzevIvUoJto41EmkMHJ63Cmli8a+eUtt0JdLNqpBwMziIO9GL6Z6h8d7kmDZ4pj1V2M/jJqmELMOfcEOzI6ZA7kGHrsCjlY75viyuzA/hcgW3MnXMbYMiFNaUtGHB5403a9sW75Jikldf5GLEdvJLj7OoHcv8Xvs7X7E+u8tio00flvW3/GnfY+s2m3FY5PoDfe+O3xXr3c5zkvXpD3vtSScLHW60U19sbzTB8YIpmGB4wRTMMD5iiGYYHIs3xgcFndR4ZziyLFrfpLjMlMx8C1trsMVdCoDfjwHMcQxtz/hYXK+WxcSCN5FadI71FIgO7p32Ozs/h1OY1pVIBg+GKwyRrSkM/jdnRcO1wlbbhd690uU1dAgF7bJHnHDtVGsoQt8lT8rura4uHg2uVyTgvb9bmB639tpJksCvPdbzGrfaefO5PxbrzFj977SuywrvV5XPNlcoEZB7AjHVzhhjGncEUzTA8YIpmGB4wRTMMD0SY4eEcOzqKpuLowEwIJckAZebazDKc/6U5QyBbA/vlO+dcvIShHwV8kI1YGsClYsmuQZs6LetkMJEXEp0K2ncPB+xEmEC2yLjiGxQmfB5VLi/2cMJZJ3PI1n98jTPzsff/Qc4t6X7rwRfF+r/ueppkVl7Ddgf8m45J/9FUuffaJvhc74rSWvAGOGwyrniYrkunlubEqMGjViYshLdaufX2RjMMH5iiGYYHTNEMwwPqfDQoslUzr9Em02ZGU6B7icz8mjKzOYUgbpYo/8khsJuGbKNpoN22knGbuiyU+1vPOBhcX5EyU+Wi3RrJmWE3lRnWU7CtQsXW1CjHcn9FwftvdaT99WjzBslcm6wv3NdmIiucJx/kedmVMiOMZKB6XLNtsGXhsuBs9nm8+J2iVYrT8WgFD9gdv7IKa8O4I5iiGYYHTNEMwwOmaIbhgahQxnpVqTTmtMzrZQa4U0a/ZuxC8FUr3U/ixW0KMGCtBYw10NGhfQ7nimlVAL1YNkXAtm3OOXcUNsU6CtmyHoFTo1ICz9GAL3brUB6j1ns/Wpfl/e2AHT8HMxmgvlg/Ipkczu1jd3O7g2/f916x7lxTHiJAfc4WJ887pzoowNGiOCi0ADXJwP6x4sA556p48RfZG80wPGCKZhgeMEUzDA9ElVYZjcnA2nxqrIzW/qa+i1ij1u4Nq4yxUtg5tq3QrnJOTypOwDCIFEOhAEPhZMbJwJgwjJ9xzrnXdjbEOv0eJ+xuHCy+aPGQzyM7ktdovM422q2TC2L9N0/z/t+3JYPYWoV1CQ/I2eyYZIaPykTszjW2WSlgrdhRGpTEq9lfS3w3bqvSxbYW2mzLYm80w/CAKZpheMAUzTA8YIpmGB6IlAJepzlIEK29HFIrlsiGxuppZa6Z1jMfQWeIFnhOAv4ezPKPlPTsOgS1Z1WTZDAzX+t9767JzzV3eF+dN2UQOX6bB6i7ij83u1fOCCvqHOiu78trUn6tRzLPXZaOnqeeeItkGoF0dOzmXZL5wH3XxPpK7wGSSU7heDRnxBL+ES2ITI6OkO8HtYkLlohgv0vsjWYYHjBFMwwPmKIZhgc0k4TnPWlBOuhWVZsoc6NghvW8zvZXAknEiWKPLZMwjLaWZo9lStU12l91JUCLVMqMrFEhbaJ3jnokU7Tkxd77da4U370sjebo5BLJhBOljTt8d/eBQ5J5cFXae/sTDljfFU/EejLnQPNWeCzW/YoD+E/1ron1D+9jG23ruzDTTUnOXWKEmx6MBrtNq9zH18xSScbKqwkfNeycpezKMIxfBqZohuEBUzTD8IApmmF4IFKrU9GJobSgDkbgIdFagkOG/zJzzRIlYD0ppEHeTSckg5XSmuOjE/PnmqEMvnYjrjpGUsXRUoCVfCPmIO60JT93fpuHnG82+mLdjnlem+bBwqrv97eukcy5mPeHXIqkzMuzbZLJwGHUC0ckgxn+2QMnJDP/fmfh8WhQdYkSaEbHRqW0mytTuU1rN0ft7pS5dxRVt5bghnFnMEUzDA+YohmGB6LlgmtalG5xticmJ6dKh6sMbLRSScaNIYiN9tjPtkmZ9ZTbVGv2F1YQaxXFaSD3l0ccwW+E8nP7PQ4GvzKUgV20PZ1jmyxXKrW7KZ8HnttGdEoyaH/dE3MV9skSVc7tQNq6/Rq3/z6dy23PnL9CMt9rPCHWoTa2SQFuhwtmymx0sMm0TlVY4b0U8yWS6RUZe6MZhgdM0QzDA6ZohuEBUzTD8ECEGfbO/R+zplEGbPS54hypQYAaW3trdDMOKrch0LxMMFpzaizj6OiGPPssAY/RTClnwArec41jkrnVaYv1yYCdCG9Gcj4Zzth2Tg+8Y4A4V7Lum9BuL62xM+Q6ZL03Aw6Yh5CdgBXXzjkX1xYH0J9df1KsO28ps7kVh0U0lXJquzn3LqqnFSeGlq2PUIW3krxhbzTD8IApmmF4wBTNMDygzrCmHMllumJhi3DnXJxJ+0dLGMYOV2iPOcc2mda2+zSXwWAt0KuNW0IbLcNoqHMuq8E2pXUY2ilrMdt65zoyiMwTpJ076MtOWSstti12xm3ahhyXPI/rGMYtdSsOfO+XPbEOFIOjX0nbkq6Pc247OoH1MckU0ExMydV2WoZuOIGRYYodh3ab1iUAE4+1sVFoo2kV3/jdmoy90QzDA6ZohuEBUzTD8IApmmF4IFJsf1dBN+l5qATyIKgdNPmL4hgC1koruVYinQhaK7lmtLgFXD2Uhv12wtnr7ZAdLRigrpQI5WgunR9DxRkSggV8JuGK4kFTfk6b4RZ0oAWbUs0wU+ZjD6Dd3UHBDpMJWO0nFQeaEXR8OMeOlrjG9xUD3W0lWQCrO7Ssd6VQY8m2cD9/Zr7aSg4cJNpM7RqcWpBb9r5h3BFM0QzDA6ZohuGBKFTMnwKKg9Uk41jaJIFixzUz+eUrmVLhDPbXSsIdlbZTaW9pycFnoMMTJgI7pycDow0yKLm9dbBEX+oM7BStlfZmIjtcTRssg/aXFnifKdtSMCZaij26DR2/lvmV1dp938p7Yt0N+b4eV9KO21BkAhjrpdk2RaaMW8rk52Iupqcg9lzpXoVBbbU9PiYsR1rre0hyVsZI2RvNMDxgimYYHjBFMwwPmKIZhgciJfbpyhSMOaWVd5TKbXHCQUuslu4lbBA3I2mgX8iUNtmxdIb0lCpoZL9Yrt00BqixUtk550YQwdecMVDQq8pg1bGW4T8oZVC7X7AzAq+Zc+xE0TLqu4F0ovQrvq8YjL463SCZ9Uh6HzRn0Q44TLZDTiCggLWWPa+06Q5K2J8S6MYW4Fq7OWz3Hc4Upx92BFecfvzFvMneaIbhAVM0w/CAKZpheMAUzTA8EHXfZEM2b0PEPmUrtQaty7pNdnTgAHcczO6ccxuJNKzPxMckg/O3cD6Xc8s5P9oBH6PWlo2AbBF0jmjb0GGggf36nXPuuOAWBEgrZGfIGKoetJllWU2e602lTduV6aZYv3DEw+p3BzxXAHl845ZY35/ukAxdesWpUXJHPEeXTcn60FoXIFgoon0Gs1W0qgB04mjt7+yNZhgeMEUzDA+YohmGB6L2W/xf/vaD8j94qVQ946yzOGBbD1tX92Le1xYEo7FS2TnncvjzfJivkszb0zWxniqReAwYO8cB4ndGPZKZgKGgVkbDNYqU67GVyez9umajzWQ1AbbRc865acnndq5+LNaaHZvP5fm/nq+TzNduPSLW2P7OObbHtar4XWiJ9+PJBZIp2vIaaW3jylSxibh4naBsfa3dN4qoM6xhvbiQQ52XbW80w/CAKZpheMAUzTA8YIpmGB6IBhe4nVjRhCCd0vIMjf1QMf7RSNacEVjyXyo946eVdEbcmPZI5mgmjfaJ4jC4NeSg9s23pROlNlNK55vS8RNEfK4hbKsp8+JuNOT+mwkH8Mc5Ol5IxJ0m7CDB5IBD7EfhnOtXB2L9Dzc/SjLvvCYD1tkeR3Fvx9LR8eTHX+GDBL669xhtmzfk81AmvC+tBZzWlo5kSpRRgtpL9NXHrH/VGTJfHNS2N5pheMAUzTA8YIpmGB6Iph3FJoFNoTLXLACbTAtaYmBXS8Z1YKZogWYMKh9OOYiK+9obcUvsnVc2aZvLYK7zFgfVZxN5TKsrXBldlPKiHe/x/o+OpG110mEbrTqS12ieslFw0uRqdjz/h5qcxPt6IW201795D8nc9w15/tF+n2SQ7zYfpG1nH9sV6/3nz5BM2JHnphSTqzPT0NTXAt3vBnWuGSQVq5XamJyszHSzN5pheMAUzTA8YIpmGB4wRTMMD0RYTe2ccxW0l4uV4GsFQey85GDjoJBOjGC62GGiZavfnsigurYvbG13c7dHMvOmUikOMwR6X2RHS/uqzFa/dZmz3t2Hj8Wy/haXBneuyX3lTT5XHDU2OqP03l/hbXuBdL48m91HMuiM0mbjRa/JEfbzPjtDahfOinX7Kv9e969K58fqHnsabl2Wz0Pe4u9RiskpQKz1uke0QfCIOp9thhUGfIwVZP3jZ5yzN5pheMEUzTA8YIpmGB6IKqXL0DxbXEaKtpVWdTwDW+qo4oRhnP91NFJmJh+D3XTAM6QHR/I3Y3WH/2/nTT7G+oE815UX9kimBi2oz3+VDYfrgaz6XrnK17C+L6ueNdti1pM3JFDs0dmJYhOF8rpdTbgKPYHo7+wxDs4PPnK3WGf7XKkd9qU9vPUclzzPocp47ykO4M9hpvlkle9PQ7mPwRI2mVYtvQitJTl9r9ZxC3MslI7x9kYzDA+YohmGB0zRDMMDpmiG4QF1PprDamElMx+z9UvFGYJt0bQWbAcD6eg4uc0BY9eX3xMPeF/ZgTye9tscjVXbOUMJc9VhZwwS9HkQ+/mvS4eAFvysTeUx5ZtcBY1tqZM+X7N5oLQzm8lzm064UuJgLPd3Zo2dGNc/IeehBVMOqsd9eY1a10mE5opphRvhUJ7seJvPtbGrVCsXi9vULdPpnYfFKy3p4JnRKr6RMrF2c4ZxRzBFMwwPmKIZhgcirYIVeyWnMQtl0MFJq7DG5N9S6aY1K6TMvOD/29FYfq5WscxENrNy0x4bBVpiKSbxBjl/LhpDN68hB18be/J6hBPeWbkmbZtpjw2JIpPnNllVrlmPNrmiAy3aQ94/dio712Qb7XBLJhUESkJ5He795HE+jwyemXMNrkpvREpkF3jn+5wc7dCU0zplYRW2Nlc6//mTk7Uq7GiE3bzMRjOMO4IpmmF4wBTNMDxgimYYHogiTuB2biL1T8vML5SsciSF7OxccYYgQcZGfAEt8SrF2Ewgez9WRkhrQVOsXtACknkLgsFKljk6X7TgOAajh+fY+C7WpKMhbrHDYK3LjoUVcEZp9wydUc2IqxDWWvKBeHiF29Zdyo7E+mxym2TuimVru+GcL347kIH/L91+kmR2h4sdFNo8smqJFnSYiV9T2sRp95GF5DKgduT2RjMML5iiGYYHTNEMwwMRVhg759zwWBoTkzUuw0YbIIk4qI0V1qUSaEa09uNhVx5jvMH7mqxJG2Ay5GMOxkogMYekUeUQS7Sb6pywXO9I22a7xd2jWmATbWYsc2+2L9btcEwy+wUHzE8KGWi+NlojmRvDrjzG9JRkZl0ZfH64eYtkLsTSRtuOjkkmg0wAnAPunHMVGMSnBSd0x0MlywBuoxYgfjcjmQIlWeLdEOTWBcsw7gimaIbhAVM0w/CAKZpheCBq3uBq4cmKNEpv97jKtupB67SGFlhc3L8rCqXhiFUBzjkXQga5lpl+bksGVtdTDupqYAu2zZgdFCFY0qnSS7sRLM5Ex5bcvZCzBc5GMvhbKb+FN2crtO3uVDpRukomQgDncW+6SzIfab4m1nfFxySzX8rnY1hx+7+8Jp0qWY2v2WQuHSSX6ock89aQHV/Y/q/Y5GA4BprjETso0BmCCQU/E8KdswhWeNdyC1gbxh3BFM0wPGCKZhgeMEUzDA9E8S5nB3Sb0pDNO2xsDi9Cyb3SSm6egpGotDsIYVuiZYYon0MwUyVSGqmnSt+GdUjz1xwdSK5Yza+PtxZ+LoZjuh1waz3M+hiUSrs35dweSm+KNWZmOOfcpURm1L8PPuOcc1uh/O3tKy3Y8LubIV+zGfyGJ+RVcG44l9/zeP1tkvlG7xnaVr8uHVZ5g69jPF7cSg49G1pf/VqwREs6+JgmY280w/CAKZpheMAUzTA8ENVGHLBO92TGeO91tkmqUG4bNTk7O4LW4pFif2HAehlaCVcGjwppRx5Mud32espl1wc5yyFT6JveL9huqoOdcj7lquMKbILbOc+LQ/sL54A759wjDbatNpQsfwSrnkOlovhqLn97S8f3vg12bKbY0BMwXLSW8Uge8LOYN3n/jVxeo1AJEEdjaBu+RKW01sYdg9raDDWcWR1MWcjeaIbhAVM0w/CAKZpheMAUzTA8EM2HnOUejKSRnu2zoyPdkhnck2OWKaDkP1acIRjE1nr48yw27fcBHC9Ko/1WyE6URiiz7rVgNAbDL9aPSGY9UvrbAZi9rzk1YggGn1fK9O9PuAXcBI57R2l30Azk+ZdaKvoS4L60Ko0G3DMt6WAXWl3MlGtfKi0C56l81jQ/yzLt5qhNnOJUWcaJEsCchZo5QwzjzmCKZhgeMEUzDA9ELuLZVrXZ4sTa9FT+n41G/F92NpJ/sONY+S+fStsqUaqncfZ1GnLCLM7a2kjYZkJ7zDnnArfY/sM2cZo9hsnImq33cHZDrDtKgPa0ksFwrTK5rVRzo92UKcnRmAx8U7HjELQZnXOuUZvAmm2bBBJ0teTkpWxEJRe4aMsgfpny92RH8jmqFBm0ybQ2cWW6+F1U1qUOBTO+ZvZGMwwPmKIZhgdM0QzDA6ZohuGBqJZydrjDStNQMSTB3otPFWfIGsw1U+ajUTBakalH0rDvJZyprs36QjQHBTo/tLlibXCiYNs27bu1KmhsW6fNDMvn0rDGzzjn3FHJWf/Yuk11NMCl3QrZqdMGx9N0cXG7Ujvt3GEp958rVQANcLS8VHRJJj3hb59swCw6pU1cmcmT1TLz8RbpVdgSHAzvnNK2LuYDsjeaYXjAFM0wPGCKZhgeiOYFB9dcR3YVqiLWxxrM6c0O+P/trCf/q+ZtDo7nkFiapWxroU2G1czOcdJqueRvCLbyxiroXyZahTMm/jYCvh5qENvJILL23Q0wrDUZtMlmSgAfr/Vsibl3sWLJoT347f59JBON2SY6PidttLzJ+8cEivRkcfcqLYE4gOrp5JD9A1Umn+taYfPRDOOOYIpmGB4wRTMMD5iiGYYH2DvhnKuNpQGeXeW5VeGWDC7WKm7BFrwCw8Bzlhk+Kp0R3Ywz2jGorQaMKxhMrwSetQrrCoLzWlAbg8845FwjVBwWiFZRjAHqScWV66HSfh33prUEH0HbPK2aHZ0WiXKtIT6rfg9+aqgkIiDPvnMPbVut8zUabcOQd2U0XXYs75mWhR8P5FHWlOz99FQ+M1rb8KIh71E00KpEDMP4pWOKZhgeMEUzDA9E841V3lpCkDBQ/t/uHEuRGbfWzuryv2v9iJNoDybS1jt6mm2brboc0zOrVNNS7kvpgqWxTDIwVk9rNiJ+TqtM7sPsZ432Eq29f1H0lDFWiNIYirahzebccr/gN0uZ0D661iGZxip/ed6SB7D+o8UJw1qldq2ATl0Tvh5zGGM13WQ/AyUja4Fv3r1hGL9oTNEMwwOmaIbhAVM0w/BApKla2ZJG+/AcG/HxUDoE4j47MapUOhowE9o55zZ/ID93u79OMi9+XH7PQ+t7JBOBg6IdceAb55w551w3ks4HLWA9AqO9oQS+0RkyUaun4ZopDpMJtA3XorHDSqmKR5T7uqq0t0PQ0TGc8zXL0PGjeBpGS8xD+85IZuvXd/igx/w4uATGrqcnStUztAQPiiVKxRWCEcyCK5WWdHVsUW7OEMO4I5iiGYYHTNEMwwNRvsYdlcIhjFsa8H/gWQeqp5tsN+RNqcfa/2Rsy7z2Mts/4z0Z1H7hV7mV9fsfvSLW2pzpQqnMPgU5bbxQHeyk2wVfsxSCv+1QS45GG42va7/CwDfLdAIOamOgG7tpOefcFO1PpX0Vnr9WGY0clZz4fDqXz4OWiP1v198v960kB09XlMTngbSBioaSUDGERHBljBN2r8o7/AzH0D2rbCm2d0Nea81fYW80w/CAKZpheMAUzTA8YIpmGB6Ixhts3AU9adxqs33jERjJis1cZGBs1pW2YKDqkzU2rJNTadje9UU+nheP7xfrzfftksxqfUTbZqXSTxrA2WsafagenxaLKwy0Sull2p9r286mx2LdVaoAuqGcV94L+XpgK7tK+S1GGWxH7pxzN/IVsX55dJZkbl6R0eh6k0ScVqiBfq5pV8nwh5llaV95QGuLnSpVLJM1tJZ0ISRiBNZuzjDuDKZohuEBUzTD8EBUsonmxjBuaa6MbYr70k6qHyqVyTByJxmSiKvgu7XgeBXDaCVlHvGlL8sA8c7hNsncvMTfPYcZ2q7k764VclttxjLJiTxGJV7toiWKpw/A/rii2C15m22A+Zq0I9fX+ySz2ZRjmjoxH+T9LZmwjd3FnONZ4CPlIRpAIvZXXn2MZIKJvGaTTWXU1YTfBVjgrhyiSyaLk4gx71kb7VQ05Jcnp5wIHvXl9agpicf2RjMMD5iiGYYHTNEMwwOmaIbhgf8F4VtG+IP/hroAAAAASUVORK5CYII=\" y=\"-8.174219\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_1\">\r\n <g id=\"xtick_1\">\r\n <g id=\"line2d_1\">\r\n <defs>\r\n <path d=\"M 0 0 \r\nL 0 3.5 \r\n\" id=\"meabe2a3d5e\" style=\"stroke:#000000;stroke-width:0.8;\"/>\r\n </defs>\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"29.19\" xlink:href=\"#meabe2a3d5e\" y=\"226.174219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_1\">\r\n <!-- 0 -->\r\n <g transform=\"translate(26.00875 240.772656)scale(0.1 -0.1)\">\r\n <defs>\r\n <path d=\"M 2034 4250 \r\nQ 1547 4250 1301 3770 \r\nQ 1056 3291 1056 2328 \r\nQ 1056 1369 1301 889 \r\nQ 1547 409 2034 409 \r\nQ 2525 409 2770 889 \r\nQ 3016 1369 3016 2328 \r\nQ 3016 3291 2770 3770 \r\nQ 2525 4250 2034 4250 \r\nz\r\nM 2034 4750 \r\nQ 2819 4750 3233 4129 \r\nQ 3647 3509 3647 2328 \r\nQ 3647 1150 3233 529 \r\nQ 2819 -91 2034 -91 \r\nQ 1250 -91 836 529 \r\nQ 422 1150 422 2328 \r\nQ 422 3509 836 4129 \r\nQ 1250 4750 2034 4750 \r\nz\r\n\" id=\"DejaVuSans-30\" transform=\"scale(0.015625)\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-30\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"xtick_2\">\r\n <g id=\"line2d_2\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"74.49\" xlink:href=\"#meabe2a3d5e\" y=\"226.174219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_2\">\r\n <!-- 10 -->\r\n <g transform=\"translate(68.1275 240.772656)scale(0.1 -0.1)\">\r\n <defs>\r\n <path d=\"M 794 531 \r\nL 1825 531 \r\nL 1825 4091 \r\nL 703 3866 \r\nL 703 4441 \r\nL 1819 4666 \r\nL 2450 4666 \r\nL 2450 531 \r\nL 3481 531 \r\nL 3481 0 \r\nL 794 0 \r\nL 794 531 \r\nz\r\n\" id=\"DejaVuSans-31\" transform=\"scale(0.015625)\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-31\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"xtick_3\">\r\n <g id=\"line2d_3\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"119.79\" xlink:href=\"#meabe2a3d5e\" y=\"226.174219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_3\">\r\n <!-- 20 -->\r\n <g transform=\"translate(113.4275 240.772656)scale(0.1 -0.1)\">\r\n <defs>\r\n <path d=\"M 1228 531 \r\nL 3431 531 \r\nL 3431 0 \r\nL 469 0 \r\nL 469 531 \r\nQ 828 903 1448 1529 \r\nQ 2069 2156 2228 2338 \r\nQ 2531 2678 2651 2914 \r\nQ 2772 3150 2772 3378 \r\nQ 2772 3750 2511 3984 \r\nQ 2250 4219 1831 4219 \r\nQ 1534 4219 1204 4116 \r\nQ 875 4013 500 3803 \r\nL 500 4441 \r\nQ 881 4594 1212 4672 \r\nQ 1544 4750 1819 4750 \r\nQ 2544 4750 2975 4387 \r\nQ 3406 4025 3406 3419 \r\nQ 3406 3131 3298 2873 \r\nQ 3191 2616 2906 2266 \r\nQ 2828 2175 2409 1742 \r\nQ 1991 1309 1228 531 \r\nz\r\n\" id=\"DejaVuSans-32\" transform=\"scale(0.015625)\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-32\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"xtick_4\">\r\n <g id=\"line2d_4\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"165.09\" xlink:href=\"#meabe2a3d5e\" y=\"226.174219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_4\">\r\n <!-- 30 -->\r\n <g transform=\"translate(158.7275 240.772656)scale(0.1 -0.1)\">\r\n <defs>\r\n <path d=\"M 2597 2516 \r\nQ 3050 2419 3304 2112 \r\nQ 3559 1806 3559 1356 \r\nQ 3559 666 3084 287 \r\nQ 2609 -91 1734 -91 \r\nQ 1441 -91 1130 -33 \r\nQ 819 25 488 141 \r\nL 488 750 \r\nQ 750 597 1062 519 \r\nQ 1375 441 1716 441 \r\nQ 2309 441 2620 675 \r\nQ 2931 909 2931 1356 \r\nQ 2931 1769 2642 2001 \r\nQ 2353 2234 1838 2234 \r\nL 1294 2234 \r\nL 1294 2753 \r\nL 1863 2753 \r\nQ 2328 2753 2575 2939 \r\nQ 2822 3125 2822 3475 \r\nQ 2822 3834 2567 4026 \r\nQ 2313 4219 1838 4219 \r\nQ 1578 4219 1281 4162 \r\nQ 984 4106 628 3988 \r\nL 628 4550 \r\nQ 988 4650 1302 4700 \r\nQ 1616 4750 1894 4750 \r\nQ 2613 4750 3031 4423 \r\nQ 3450 4097 3450 3541 \r\nQ 3450 3153 3228 2886 \r\nQ 3006 2619 2597 2516 \r\nz\r\n\" id=\"DejaVuSans-33\" transform=\"scale(0.015625)\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-33\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"xtick_5\">\r\n <g id=\"line2d_5\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"210.39\" xlink:href=\"#meabe2a3d5e\" y=\"226.174219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_5\">\r\n <!-- 40 -->\r\n <g transform=\"translate(204.0275 240.772656)scale(0.1 -0.1)\">\r\n <defs>\r\n <path d=\"M 2419 4116 \r\nL 825 1625 \r\nL 2419 1625 \r\nL 2419 4116 \r\nz\r\nM 2253 4666 \r\nL 3047 4666 \r\nL 3047 1625 \r\nL 3713 1625 \r\nL 3713 1100 \r\nL 3047 1100 \r\nL 3047 0 \r\nL 2419 0 \r\nL 2419 1100 \r\nL 313 1100 \r\nL 313 1709 \r\nL 2253 4666 \r\nz\r\n\" id=\"DejaVuSans-34\" transform=\"scale(0.015625)\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-34\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n </g>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"matplotlib.axis_2\">\r\n <g id=\"ytick_1\">\r\n <g id=\"line2d_6\">\r\n <defs>\r\n <path d=\"M 0 0 \r\nL -3.5 0 \r\n\" id=\"m63c1ac828f\" style=\"stroke:#000000;stroke-width:0.8;\"/>\r\n </defs>\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#m63c1ac828f\" y=\"10.999219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_6\">\r\n <!-- 0 -->\r\n <g transform=\"translate(13.5625 14.798437)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-30\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"ytick_2\">\r\n <g id=\"line2d_7\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#m63c1ac828f\" y=\"56.299219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_7\">\r\n <!-- 10 -->\r\n <g transform=\"translate(7.2 60.098437)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-31\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"ytick_3\">\r\n <g id=\"line2d_8\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#m63c1ac828f\" y=\"101.599219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_8\">\r\n <!-- 20 -->\r\n <g transform=\"translate(7.2 105.398437)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-32\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"ytick_4\">\r\n <g id=\"line2d_9\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#m63c1ac828f\" y=\"146.899219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_9\">\r\n <!-- 30 -->\r\n <g transform=\"translate(7.2 150.698437)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-33\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"ytick_5\">\r\n <g id=\"line2d_10\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#m63c1ac828f\" y=\"192.199219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_10\">\r\n <!-- 40 -->\r\n <g transform=\"translate(7.2 195.998437)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-34\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n </g>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"patch_3\">\r\n <path d=\"M 26.925 226.174219 \r\nL 26.925 8.734219 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_4\">\r\n <path d=\"M 244.365 226.174219 \r\nL 244.365 8.734219 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_5\">\r\n <path d=\"M 26.925 226.174219 \r\nL 244.365 226.174219 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_6\">\r\n <path d=\"M 26.925 8.734219 \r\nL 244.365 8.734219 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <defs>\r\n <clipPath id=\"p2932473b0e\">\r\n <rect height=\"217.44\" width=\"217.44\" x=\"26.925\" y=\"8.734219\"/>\r\n </clipPath>\r\n </defs>\r\n</svg>\r\n", + "image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\r\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\r\n \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\r\n<svg height=\"250.052344pt\" version=\"1.1\" viewBox=\"0 0 251.565 250.052344\" width=\"251.565pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\r\n <metadata>\r\n <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\r\n <cc:Work>\r\n <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\r\n <dc:date>2021-05-14T16:37:56.363156</dc:date>\r\n <dc:format>image/svg+xml</dc:format>\r\n <dc:creator>\r\n <cc:Agent>\r\n <dc:title>Matplotlib v3.4.1, https://matplotlib.org/</dc:title>\r\n </cc:Agent>\r\n </dc:creator>\r\n </cc:Work>\r\n </rdf:RDF>\r\n </metadata>\r\n <defs>\r\n <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\r\n </defs>\r\n <g id=\"figure_1\">\r\n <g id=\"patch_1\">\r\n <path d=\"M 0 250.052344 \r\nL 251.565 250.052344 \r\nL 251.565 0 \r\nL 0 0 \r\nz\r\n\" style=\"fill:none;\"/>\r\n </g>\r\n <g id=\"axes_1\">\r\n <g id=\"patch_2\">\r\n <path d=\"M 26.925 226.174219 \r\nL 244.365 226.174219 \r\nL 244.365 8.734219 \r\nL 26.925 8.734219 \r\nz\r\n\" style=\"fill:#ffffff;\"/>\r\n </g>\r\n <g clip-path=\"url(#p4fabb6213b)\">\r\n <image height=\"218\" id=\"imagec292145d21\" transform=\"scale(1 -1)translate(0 -218)\" width=\"218\" x=\"26.925\" xlink:href=\"data:image/png;base64,\r\niVBORw0KGgoAAAANSUhEUgAAANoAAADaCAYAAADAHVzbAAAhzklEQVR4nO2dya9k91XHf3XnmuvNr2fPc5zYiROctBNBRBYRYZKQQCzYRQgF/gUUYIVgjZAISAQkhCBRFhmIogRk2UriTHJix2N32+3ufnO/92quOxSLrM73e6AqVvLrzfnsflen6o6nbp259sSn/3bugGAm17NuDUVcFdEmIpzKdWOvJJnOT0/EuvbOLZKpra6Iddlt8vE0YrEenstI5vRiQNvGW/L05yFdDjdfzcX67vP7JLOWDcV6VCQkc6Z+KtZxwNfjeFYX66DGx3Oa87ldP+7Jz31lhWS2/v0VsS5v3yaZ0e98SKyLTx+QzOWtK2K9Eo1I5ken58X6lYNNPp72QO6r4vtz47BL2z548W2x/sTqT0gmqclr+5c/+STJzN7oyP23+X7Ub8oHPW8rz0ckt7Wv8nnwFsMwfuGYohmGB0zRDMMDpmiG4QHVpZG3pfMjmLEBmB3JbdkhG5LNn0jHxrzfJ5laXRr/83PbJDPdlM6PyWpMMrN2AGt24BTsQyFDturlJNPpSWN/JWXjPwvl5xLF0bGRyPPP5yHJRKn83HQZr5NzbrUpj+nqY+xEWP+hdFBEN+oks/f7Y7H+7D3fJJkL8aFY/2B8N8kM8lSs53O+H9d218S6nPH1aPf4Wj/Sks/V4+kNknm7kM6gIOBnGJ1+rSt8rWdd+TnFN+XWfijXnat8zPZGMwwPmKIZhgdM0QzDA9Fklf87d69WYt2+MiCZ2qSQ6x0O4jq0v+46RyJlJv8XT9dSkpl25X/3IuNjzptyW97iw6ki/oNd1eW5xllBMmkst109XiWZ0UQedxBUJPNSJO3PSrFbZrm8Htr3RCFvwzOrn+V7tvNhabed+9cdksn35D37WP06yfThuD/ZeolkGoHMVthdY5vx8//5cbG+/z8OSebGJ9Zo2z+Nnhbrb209QDI7p22xzl/skUz7HXnV+hf5+ahV8ly7P1X8FeCfqOVsn9sbzTA8YIpmGB4wRTMMD5iiGYYHosYuG3fdl2RWd9lmB0U4moh1tb1BMpOz0iNRKxRnRCJ1fdrhoCU6P5Q4r6vi/3/tnHMlJ73zvqYctDzuSwdBPuDM/OhQ7rCxw46O2kSefxCyTHMMMmxXq8H4wd3SQVLbmpLM+Al5z4oX2Dn10GffEOuPrn2GZP7svd8S6481XyWZ92TSifLj0XmSaV+T5zrdZg/W6ssz2pbelvfj+j383eFYXqPWHj97g4tSBqtNnHNu5TV5XbX8gTKTz/DwQoNk7I1mGB4wRTMMD5iiGYYHopWXObCZr8r/mOGA/ydXHSkz2eaM3aIu9ThQbLTJijS4Zh22P0owiebKzwPaZGWD91UqFbQuAdsmUoLBWPmrVGFXidymnUdQx2RtPpzsEJK1b/MxzzpsgKJNdnb9mGRCCH5f+9RZkrkUXBTr1vOcePzPHVmF/YP1iyRTDzk5G8F71j/Ptu90ha/jdFVeo/iUZer7Uma8xTIZxMdXXuUbEo3k9S8a7CAYnpEncnoPidgbzTB8YIpmGB4wRTMMD5iiGYYHoqLFBmg4hsz8kg1yDC5ihr1zXI2KGfbOOTdZk9sKJag8hyBhmSktv+Crq1gphWU/h4sgWz9JFxvxgZI9H3VkMDi8W3GqwEGWJf/O7U2kYa1VBq90j2nbB3uyLdx6yk6uAiL95RO8/929M2Ldvcb3fvIFmVH/35c7JPPMw6+J9cU6t7YboA9FqWYo63z+bdntzsUjxckGz1V6yDKtHXnv41O+93NIqJh1OWK9f1l+LmpwBYi90QzDA6ZohuEBUzTD8MBSLZZmGxyMHq9Dq+S6EqCFv/daom8Fph3aYz/7HLTtVn4eiibYRNpPiGK3RbE8yJXmmGTSSP7nnhZ8kCijVU9j96x7W9xuez2WttVKNCQZrXvWjSm3AEe6kTy3cZdvyHNPSXvrzPNKRfGevLhFg5Nob12SFdVbKXdACx+VLdLz19jW63K+sksG8pi0LgGNHfk8JH22meNTec9yJRFgsibv9eCs8mDBvQ6ucpDf3miG4QFTNMPwgCmaYXjAFM0wPBBhhbNzzpV1GcTWgtHk/GB7lJwfheIwKcFuzFtKZjw6MZR9zaFtXNTk4GO9wSW0GDTWHB29TDoRzjROSeZoyg4BBAPGz+9xK+2DE5kIEEUcMF5rccvp861jsZ6hl8mxg+ZgzBXNH4DZY68/8hDJNHelE6H9Dgdo33hrS6z/8Nx3SGb9Aen4+fvBMyQzPeIMhgB2lx7zM5OeyuuW7k9IZrYqvxsrSZxzLm+Ao0MpALnwZSmT7VpLcMO4I5iiGYYHTNEMwwO1y5/6a/qDWzSk/uH/VOecy1uwTcnhrZUQWFxXvqcjZcq6koyrVDQTmfxco8uB54aSMDyaSkMyz5UWW2Db1K6wPdaDwGp2xH/mk77cv1a5HvShu1hbsVEmbBPl6/KYpiscfN17Qtqf4WMnJPPJu18W6y/8z4dI5tJX5f5nbcW2acpnaPy7xyTzV49+Sax/JeO28jcVm/kzr/6BWJ9+nUd9oX+gscPPUAH+Ae35LKBSv3mTZVo35L2erNgMa8O4I5iiGYYHTNEMwwOmaIbhgWjaZV0rGlj1zAYgJpCjYekcz5bSqmWxTZvq+Fji5yCALPxECfRGIW9rQLfzkxkb3+WuPLl0rFSKw8i0MlYCxgkEP9tK27hN6dSYR7yv2/fzMWJFg9beOr9HOojainMIZ2bf9Z6bJDN7VlZhz5XW5slAOqeyz7VJ5i+2/0isj97DjrDP/8bf0bbtpkwYGBTsDPnzP/4Xsb4/2SOZGEru//HoIyTzjc/JWWzpCR/jeFVe/GjCz7C90QzDA6ZohuEBUzTD8ECE9phzevIvUoJto41EmkMHJ63Cmli8a+eUtt0JdLNqpBwMziIO9GL6Z6h8d7kmDZ4pj1V2M/jJqmELMOfcEOzI6ZA7kGHrsCjlY75viyuzA/hcgW3MnXMbYMiFNaUtGHB5403a9sW75Jikldf5GLEdvJLj7OoHcv8Xvs7X7E+u8tio00flvW3/GnfY+s2m3FY5PoDfe+O3xXr3c5zkvXpD3vtSScLHW60U19sbzTB8YIpmGB4wRTMMD5iiGYYHIs3xgcFndR4ZziyLFrfpLjMlMx8C1trsMVdCoDfjwHMcQxtz/hYXK+WxcSCN5FadI71FIgO7p32Ozs/h1OY1pVIBg+GKwyRrSkM/jdnRcO1wlbbhd690uU1dAgF7bJHnHDtVGsoQt8lT8rura4uHg2uVyTgvb9bmB639tpJksCvPdbzGrfaefO5PxbrzFj977SuywrvV5XPNlcoEZB7AjHVzhhjGncEUzTA8YIpmGB4wRTMMD0SY4eEcOzqKpuLowEwIJckAZebazDKc/6U5QyBbA/vlO+dcvIShHwV8kI1YGsClYsmuQZs6LetkMJEXEp0K2ncPB+xEmEC2yLjiGxQmfB5VLi/2cMJZJ3PI1n98jTPzsff/Qc4t6X7rwRfF+r/ueppkVl7Ddgf8m45J/9FUuffaJvhc74rSWvAGOGwyrniYrkunlubEqMGjViYshLdaufX2RjMMH5iiGYYHTNEMwwPqfDQoslUzr9Em02ZGU6B7icz8mjKzOYUgbpYo/8khsJuGbKNpoN22knGbuiyU+1vPOBhcX5EyU+Wi3RrJmWE3lRnWU7CtQsXW1CjHcn9FwftvdaT99WjzBslcm6wv3NdmIiucJx/kedmVMiOMZKB6XLNtsGXhsuBs9nm8+J2iVYrT8WgFD9gdv7IKa8O4I5iiGYYHTNEMwwOmaIbhgahQxnpVqTTmtMzrZQa4U0a/ZuxC8FUr3U/ixW0KMGCtBYw10NGhfQ7nimlVAL1YNkXAtm3OOXcUNsU6CtmyHoFTo1ICz9GAL3brUB6j1ns/Wpfl/e2AHT8HMxmgvlg/Ipkczu1jd3O7g2/f916x7lxTHiJAfc4WJ887pzoowNGiOCi0ADXJwP6x4sA556p48RfZG80wPGCKZhgeMEUzDA9ElVYZjcnA2nxqrIzW/qa+i1ij1u4Nq4yxUtg5tq3QrnJOTypOwDCIFEOhAEPhZMbJwJgwjJ9xzrnXdjbEOv0eJ+xuHCy+aPGQzyM7ktdovM422q2TC2L9N0/z/t+3JYPYWoV1CQ/I2eyYZIaPykTszjW2WSlgrdhRGpTEq9lfS3w3bqvSxbYW2mzLYm80w/CAKZpheMAUzTA8YIpmGB6IlAJepzlIEK29HFIrlsiGxuppZa6Z1jMfQWeIFnhOAv4ezPKPlPTsOgS1Z1WTZDAzX+t9767JzzV3eF+dN2UQOX6bB6i7ij83u1fOCCvqHOiu78trUn6tRzLPXZaOnqeeeItkGoF0dOzmXZL5wH3XxPpK7wGSSU7heDRnxBL+ES2ITI6OkO8HtYkLlohgv0vsjWYYHjBFMwwPmKIZhgc0k4TnPWlBOuhWVZsoc6NghvW8zvZXAknEiWKPLZMwjLaWZo9lStU12l91JUCLVMqMrFEhbaJ3jnokU7Tkxd77da4U370sjebo5BLJhBOljTt8d/eBQ5J5cFXae/sTDljfFU/EejLnQPNWeCzW/YoD+E/1ron1D+9jG23ruzDTTUnOXWKEmx6MBrtNq9zH18xSScbKqwkfNeycpezKMIxfBqZohuEBUzTD8IApmmF4IFKrU9GJobSgDkbgIdFagkOG/zJzzRIlYD0ppEHeTSckg5XSmuOjE/PnmqEMvnYjrjpGUsXRUoCVfCPmIO60JT93fpuHnG82+mLdjnlem+bBwqrv97eukcy5mPeHXIqkzMuzbZLJwGHUC0ckgxn+2QMnJDP/fmfh8WhQdYkSaEbHRqW0mytTuU1rN0ft7pS5dxRVt5bghnFnMEUzDA+YohmGB6LlgmtalG5xticmJ6dKh6sMbLRSScaNIYiN9tjPtkmZ9ZTbVGv2F1YQaxXFaSD3l0ccwW+E8nP7PQ4GvzKUgV20PZ1jmyxXKrW7KZ8HnttGdEoyaH/dE3MV9skSVc7tQNq6/Rq3/z6dy23PnL9CMt9rPCHWoTa2SQFuhwtmymx0sMm0TlVY4b0U8yWS6RUZe6MZhgdM0QzDA6ZohuEBUzTD8ECEGfbO/R+zplEGbPS54hypQYAaW3trdDMOKrch0LxMMFpzaizj6OiGPPssAY/RTClnwArec41jkrnVaYv1yYCdCG9Gcj4Zzth2Tg+8Y4A4V7Lum9BuL62xM+Q6ZL03Aw6Yh5CdgBXXzjkX1xYH0J9df1KsO28ps7kVh0U0lXJquzn3LqqnFSeGlq2PUIW3krxhbzTD8IApmmF4wBTNMDygzrCmHMllumJhi3DnXJxJ+0dLGMYOV2iPOcc2mda2+zSXwWAt0KuNW0IbLcNoqHMuq8E2pXUY2ilrMdt65zoyiMwTpJ076MtOWSstti12xm3ahhyXPI/rGMYtdSsOfO+XPbEOFIOjX0nbkq6Pc247OoH1MckU0ExMydV2WoZuOIGRYYodh3ab1iUAE4+1sVFoo2kV3/jdmoy90QzDA6ZohuEBUzTD8IApmmF4IFJsf1dBN+l5qATyIKgdNPmL4hgC1koruVYinQhaK7lmtLgFXD2Uhv12wtnr7ZAdLRigrpQI5WgunR9DxRkSggV8JuGK4kFTfk6b4RZ0oAWbUs0wU+ZjD6Dd3UHBDpMJWO0nFQeaEXR8OMeOlrjG9xUD3W0lWQCrO7Ssd6VQY8m2cD9/Zr7aSg4cJNpM7RqcWpBb9r5h3BFM0QzDA6ZohuGBKFTMnwKKg9Uk41jaJIFixzUz+eUrmVLhDPbXSsIdlbZTaW9pycFnoMMTJgI7pycDow0yKLm9dbBEX+oM7BStlfZmIjtcTRssg/aXFnifKdtSMCZaij26DR2/lvmV1dp938p7Yt0N+b4eV9KO21BkAhjrpdk2RaaMW8rk52Iupqcg9lzpXoVBbbU9PiYsR1rre0hyVsZI2RvNMDxgimYYHjBFMwwPmKIZhgciJfbpyhSMOaWVd5TKbXHCQUuslu4lbBA3I2mgX8iUNtmxdIb0lCpoZL9Yrt00BqixUtk550YQwdecMVDQq8pg1bGW4T8oZVC7X7AzAq+Zc+xE0TLqu4F0ovQrvq8YjL463SCZ9Uh6HzRn0Q44TLZDTiCggLWWPa+06Q5K2J8S6MYW4Fq7OWz3Hc4Upx92BFecfvzFvMneaIbhAVM0w/CAKZpheMAUzTA8EHXfZEM2b0PEPmUrtQaty7pNdnTgAHcczO6ccxuJNKzPxMckg/O3cD6Xc8s5P9oBH6PWlo2AbBF0jmjb0GGggf36nXPuuOAWBEgrZGfIGKoetJllWU2e602lTduV6aZYv3DEw+p3BzxXAHl845ZY35/ukAxdesWpUXJHPEeXTcn60FoXIFgoon0Gs1W0qgB04mjt7+yNZhgeMEUzDA+YohmGB6L2W/xf/vaD8j94qVQ946yzOGBbD1tX92Le1xYEo7FS2TnncvjzfJivkszb0zWxniqReAwYO8cB4ndGPZKZgKGgVkbDNYqU67GVyez9umajzWQ1AbbRc865acnndq5+LNaaHZvP5fm/nq+TzNduPSLW2P7OObbHtar4XWiJ9+PJBZIp2vIaaW3jylSxibh4naBsfa3dN4qoM6xhvbiQQ52XbW80w/CAKZpheMAUzTA8YIpmGB6IBhe4nVjRhCCd0vIMjf1QMf7RSNacEVjyXyo946eVdEbcmPZI5mgmjfaJ4jC4NeSg9s23pROlNlNK55vS8RNEfK4hbKsp8+JuNOT+mwkH8Mc5Ol5IxJ0m7CDB5IBD7EfhnOtXB2L9Dzc/SjLvvCYD1tkeR3Fvx9LR8eTHX+GDBL669xhtmzfk81AmvC+tBZzWlo5kSpRRgtpL9NXHrH/VGTJfHNS2N5pheMAUzTA8YIpmGB6Iph3FJoFNoTLXLACbTAtaYmBXS8Z1YKZogWYMKh9OOYiK+9obcUvsnVc2aZvLYK7zFgfVZxN5TKsrXBldlPKiHe/x/o+OpG110mEbrTqS12ieslFw0uRqdjz/h5qcxPt6IW201795D8nc9w15/tF+n2SQ7zYfpG1nH9sV6/3nz5BM2JHnphSTqzPT0NTXAt3vBnWuGSQVq5XamJyszHSzN5pheMAUzTA8YIpmGB4wRTMMD0RYTe2ccxW0l4uV4GsFQey85GDjoJBOjGC62GGiZavfnsigurYvbG13c7dHMvOmUikOMwR6X2RHS/uqzFa/dZmz3t2Hj8Wy/haXBneuyX3lTT5XHDU2OqP03l/hbXuBdL48m91HMuiM0mbjRa/JEfbzPjtDahfOinX7Kv9e969K58fqHnsabl2Wz0Pe4u9RiskpQKz1uke0QfCIOp9thhUGfIwVZP3jZ5yzN5pheMEUzTA8YIpmGB6IKqXL0DxbXEaKtpVWdTwDW+qo4oRhnP91NFJmJh+D3XTAM6QHR/I3Y3WH/2/nTT7G+oE815UX9kimBi2oz3+VDYfrgaz6XrnK17C+L6ueNdti1pM3JFDs0dmJYhOF8rpdTbgKPYHo7+wxDs4PPnK3WGf7XKkd9qU9vPUclzzPocp47ykO4M9hpvlkle9PQ7mPwRI2mVYtvQitJTl9r9ZxC3MslI7x9kYzDA+YohmGB0zRDMMDpmiG4QF1PprDamElMx+z9UvFGYJt0bQWbAcD6eg4uc0BY9eX3xMPeF/ZgTye9tscjVXbOUMJc9VhZwwS9HkQ+/mvS4eAFvysTeUx5ZtcBY1tqZM+X7N5oLQzm8lzm064UuJgLPd3Zo2dGNc/IeehBVMOqsd9eY1a10mE5opphRvhUJ7seJvPtbGrVCsXi9vULdPpnYfFKy3p4JnRKr6RMrF2c4ZxRzBFMwwPmKIZhgcirYIVeyWnMQtl0MFJq7DG5N9S6aY1K6TMvOD/29FYfq5WscxENrNy0x4bBVpiKSbxBjl/LhpDN68hB18be/J6hBPeWbkmbZtpjw2JIpPnNllVrlmPNrmiAy3aQ94/dio712Qb7XBLJhUESkJ5He795HE+jwyemXMNrkpvREpkF3jn+5wc7dCU0zplYRW2Nlc6//mTk7Uq7GiE3bzMRjOMO4IpmmF4wBTNMDxgimYYHogiTuB2biL1T8vML5SsciSF7OxccYYgQcZGfAEt8SrF2Ewgez9WRkhrQVOsXtACknkLgsFKljk6X7TgOAajh+fY+C7WpKMhbrHDYK3LjoUVcEZp9wydUc2IqxDWWvKBeHiF29Zdyo7E+mxym2TuimVru+GcL347kIH/L91+kmR2h4sdFNo8smqJFnSYiV9T2sRp95GF5DKgduT2RjMML5iiGYYHTNEMwwMRVhg759zwWBoTkzUuw0YbIIk4qI0V1qUSaEa09uNhVx5jvMH7mqxJG2Ay5GMOxkogMYekUeUQS7Sb6pywXO9I22a7xd2jWmATbWYsc2+2L9btcEwy+wUHzE8KGWi+NlojmRvDrjzG9JRkZl0ZfH64eYtkLsTSRtuOjkkmg0wAnAPunHMVGMSnBSd0x0MlywBuoxYgfjcjmQIlWeLdEOTWBcsw7gimaIbhAVM0w/CAKZpheCBq3uBq4cmKNEpv97jKtupB67SGFlhc3L8rCqXhiFUBzjkXQga5lpl+bksGVtdTDupqYAu2zZgdFCFY0qnSS7sRLM5Ex5bcvZCzBc5GMvhbKb+FN2crtO3uVDpRukomQgDncW+6SzIfab4m1nfFxySzX8rnY1hx+7+8Jp0qWY2v2WQuHSSX6ock89aQHV/Y/q/Y5GA4BprjETso0BmCCQU/E8KdswhWeNdyC1gbxh3BFM0wPGCKZhgeMEUzDA9E8S5nB3Sb0pDNO2xsDi9Cyb3SSm6egpGotDsIYVuiZYYon0MwUyVSGqmnSt+GdUjz1xwdSK5Yza+PtxZ+LoZjuh1waz3M+hiUSrs35dweSm+KNWZmOOfcpURm1L8PPuOcc1uh/O3tKy3Y8LubIV+zGfyGJ+RVcG44l9/zeP1tkvlG7xnaVr8uHVZ5g69jPF7cSg49G1pf/VqwREs6+JgmY280w/CAKZpheMAUzTA8ENVGHLBO92TGeO91tkmqUG4bNTk7O4LW4pFif2HAehlaCVcGjwppRx5Mud32espl1wc5yyFT6JveL9huqoOdcj7lquMKbILbOc+LQ/sL54A759wjDbatNpQsfwSrnkOlovhqLn97S8f3vg12bKbY0BMwXLSW8Uge8LOYN3n/jVxeo1AJEEdjaBu+RKW01sYdg9raDDWcWR1MWcjeaIbhAVM0w/CAKZpheMAUzTA8EM2HnOUejKSRnu2zoyPdkhnck2OWKaDkP1acIRjE1nr48yw27fcBHC9Ko/1WyE6URiiz7rVgNAbDL9aPSGY9UvrbAZi9rzk1YggGn1fK9O9PuAXcBI57R2l30Azk+ZdaKvoS4L60Ko0G3DMt6WAXWl3MlGtfKi0C56l81jQ/yzLt5qhNnOJUWcaJEsCchZo5QwzjzmCKZhgeMEUzDA9ELuLZVrXZ4sTa9FT+n41G/F92NpJ/sONY+S+fStsqUaqncfZ1GnLCLM7a2kjYZkJ7zDnnArfY/sM2cZo9hsnImq33cHZDrDtKgPa0ksFwrTK5rVRzo92UKcnRmAx8U7HjELQZnXOuUZvAmm2bBBJ0teTkpWxEJRe4aMsgfpny92RH8jmqFBm0ybQ2cWW6+F1U1qUOBTO+ZvZGMwwPmKIZhgdM0QzDA6ZohuGBqJZydrjDStNQMSTB3otPFWfIGsw1U+ajUTBakalH0rDvJZyprs36QjQHBTo/tLlibXCiYNs27bu1KmhsW6fNDMvn0rDGzzjn3FHJWf/Yuk11NMCl3QrZqdMGx9N0cXG7Ujvt3GEp958rVQANcLS8VHRJJj3hb59swCw6pU1cmcmT1TLz8RbpVdgSHAzvnNK2LuYDsjeaYXjAFM0wPGCKZhgeiOYFB9dcR3YVqiLWxxrM6c0O+P/trCf/q+ZtDo7nkFiapWxroU2G1czOcdJqueRvCLbyxiroXyZahTMm/jYCvh5qENvJILL23Q0wrDUZtMlmSgAfr/Vsibl3sWLJoT347f59JBON2SY6PidttLzJ+8cEivRkcfcqLYE4gOrp5JD9A1Umn+taYfPRDOOOYIpmGB4wRTMMD5iiGYYH2DvhnKuNpQGeXeW5VeGWDC7WKm7BFrwCw8Bzlhk+Kp0R3Ywz2jGorQaMKxhMrwSetQrrCoLzWlAbg8845FwjVBwWiFZRjAHqScWV66HSfh33prUEH0HbPK2aHZ0WiXKtIT6rfg9+aqgkIiDPvnMPbVut8zUabcOQd2U0XXYs75mWhR8P5FHWlOz99FQ+M1rb8KIh71E00KpEDMP4pWOKZhgeMEUzDA9E841V3lpCkDBQ/t/uHEuRGbfWzuryv2v9iJNoDybS1jt6mm2brboc0zOrVNNS7kvpgqWxTDIwVk9rNiJ+TqtM7sPsZ432Eq29f1H0lDFWiNIYirahzebccr/gN0uZ0D661iGZxip/ed6SB7D+o8UJw1qldq2ATl0Tvh5zGGM13WQ/AyUja4Fv3r1hGL9oTNEMwwOmaIbhAVM0w/BApKla2ZJG+/AcG/HxUDoE4j47MapUOhowE9o55zZ/ID93u79OMi9+XH7PQ+t7JBOBg6IdceAb55w551w3ks4HLWA9AqO9oQS+0RkyUaun4ZopDpMJtA3XorHDSqmKR5T7uqq0t0PQ0TGc8zXL0PGjeBpGS8xD+85IZuvXd/igx/w4uATGrqcnStUztAQPiiVKxRWCEcyCK5WWdHVsUW7OEMO4I5iiGYYHTNEMwwNRvsYdlcIhjFsa8H/gWQeqp5tsN+RNqcfa/2Rsy7z2Mts/4z0Z1H7hV7mV9fsfvSLW2pzpQqnMPgU5bbxQHeyk2wVfsxSCv+1QS45GG42va7/CwDfLdAIOamOgG7tpOefcFO1PpX0Vnr9WGY0clZz4fDqXz4OWiP1v198v960kB09XlMTngbSBioaSUDGERHBljBN2r8o7/AzH0D2rbCm2d0Nea81fYW80w/CAKZpheMAUzTA8YIpmGB6Ixhts3AU9adxqs33jERjJis1cZGBs1pW2YKDqkzU2rJNTadje9UU+nheP7xfrzfftksxqfUTbZqXSTxrA2WsafagenxaLKwy0Sull2p9r286mx2LdVaoAuqGcV94L+XpgK7tK+S1GGWxH7pxzN/IVsX55dJZkbl6R0eh6k0ScVqiBfq5pV8nwh5llaV95QGuLnSpVLJM1tJZ0ISRiBNZuzjDuDKZohuEBUzTD8EBUsonmxjBuaa6MbYr70k6qHyqVyTByJxmSiKvgu7XgeBXDaCVlHvGlL8sA8c7hNsncvMTfPYcZ2q7k764VclttxjLJiTxGJV7toiWKpw/A/rii2C15m22A+Zq0I9fX+ySz2ZRjmjoxH+T9LZmwjd3FnONZ4CPlIRpAIvZXXn2MZIKJvGaTTWXU1YTfBVjgrhyiSyaLk4gx71kb7VQ05Jcnp5wIHvXl9agpicf2RjMMD5iiGYYHTNEMwwOmaIbhgf8F4VtG+IP/hroAAAAASUVORK5CYII=\" y=\"-8.174219\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_1\">\r\n <g id=\"xtick_1\">\r\n <g id=\"line2d_1\">\r\n <defs>\r\n <path d=\"M 0 0 \r\nL 0 3.5 \r\n\" id=\"ma3747de2aa\" style=\"stroke:#000000;stroke-width:0.8;\"/>\r\n </defs>\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"29.19\" xlink:href=\"#ma3747de2aa\" y=\"226.174219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_1\">\r\n <!-- 0 -->\r\n <g transform=\"translate(26.00875 240.772656)scale(0.1 -0.1)\">\r\n <defs>\r\n <path d=\"M 2034 4250 \r\nQ 1547 4250 1301 3770 \r\nQ 1056 3291 1056 2328 \r\nQ 1056 1369 1301 889 \r\nQ 1547 409 2034 409 \r\nQ 2525 409 2770 889 \r\nQ 3016 1369 3016 2328 \r\nQ 3016 3291 2770 3770 \r\nQ 2525 4250 2034 4250 \r\nz\r\nM 2034 4750 \r\nQ 2819 4750 3233 4129 \r\nQ 3647 3509 3647 2328 \r\nQ 3647 1150 3233 529 \r\nQ 2819 -91 2034 -91 \r\nQ 1250 -91 836 529 \r\nQ 422 1150 422 2328 \r\nQ 422 3509 836 4129 \r\nQ 1250 4750 2034 4750 \r\nz\r\n\" id=\"DejaVuSans-30\" transform=\"scale(0.015625)\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-30\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"xtick_2\">\r\n <g id=\"line2d_2\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"74.49\" xlink:href=\"#ma3747de2aa\" y=\"226.174219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_2\">\r\n <!-- 10 -->\r\n <g transform=\"translate(68.1275 240.772656)scale(0.1 -0.1)\">\r\n <defs>\r\n <path d=\"M 794 531 \r\nL 1825 531 \r\nL 1825 4091 \r\nL 703 3866 \r\nL 703 4441 \r\nL 1819 4666 \r\nL 2450 4666 \r\nL 2450 531 \r\nL 3481 531 \r\nL 3481 0 \r\nL 794 0 \r\nL 794 531 \r\nz\r\n\" id=\"DejaVuSans-31\" transform=\"scale(0.015625)\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-31\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"xtick_3\">\r\n <g id=\"line2d_3\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"119.79\" xlink:href=\"#ma3747de2aa\" y=\"226.174219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_3\">\r\n <!-- 20 -->\r\n <g transform=\"translate(113.4275 240.772656)scale(0.1 -0.1)\">\r\n <defs>\r\n <path d=\"M 1228 531 \r\nL 3431 531 \r\nL 3431 0 \r\nL 469 0 \r\nL 469 531 \r\nQ 828 903 1448 1529 \r\nQ 2069 2156 2228 2338 \r\nQ 2531 2678 2651 2914 \r\nQ 2772 3150 2772 3378 \r\nQ 2772 3750 2511 3984 \r\nQ 2250 4219 1831 4219 \r\nQ 1534 4219 1204 4116 \r\nQ 875 4013 500 3803 \r\nL 500 4441 \r\nQ 881 4594 1212 4672 \r\nQ 1544 4750 1819 4750 \r\nQ 2544 4750 2975 4387 \r\nQ 3406 4025 3406 3419 \r\nQ 3406 3131 3298 2873 \r\nQ 3191 2616 2906 2266 \r\nQ 2828 2175 2409 1742 \r\nQ 1991 1309 1228 531 \r\nz\r\n\" id=\"DejaVuSans-32\" transform=\"scale(0.015625)\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-32\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"xtick_4\">\r\n <g id=\"line2d_4\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"165.09\" xlink:href=\"#ma3747de2aa\" y=\"226.174219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_4\">\r\n <!-- 30 -->\r\n <g transform=\"translate(158.7275 240.772656)scale(0.1 -0.1)\">\r\n <defs>\r\n <path d=\"M 2597 2516 \r\nQ 3050 2419 3304 2112 \r\nQ 3559 1806 3559 1356 \r\nQ 3559 666 3084 287 \r\nQ 2609 -91 1734 -91 \r\nQ 1441 -91 1130 -33 \r\nQ 819 25 488 141 \r\nL 488 750 \r\nQ 750 597 1062 519 \r\nQ 1375 441 1716 441 \r\nQ 2309 441 2620 675 \r\nQ 2931 909 2931 1356 \r\nQ 2931 1769 2642 2001 \r\nQ 2353 2234 1838 2234 \r\nL 1294 2234 \r\nL 1294 2753 \r\nL 1863 2753 \r\nQ 2328 2753 2575 2939 \r\nQ 2822 3125 2822 3475 \r\nQ 2822 3834 2567 4026 \r\nQ 2313 4219 1838 4219 \r\nQ 1578 4219 1281 4162 \r\nQ 984 4106 628 3988 \r\nL 628 4550 \r\nQ 988 4650 1302 4700 \r\nQ 1616 4750 1894 4750 \r\nQ 2613 4750 3031 4423 \r\nQ 3450 4097 3450 3541 \r\nQ 3450 3153 3228 2886 \r\nQ 3006 2619 2597 2516 \r\nz\r\n\" id=\"DejaVuSans-33\" transform=\"scale(0.015625)\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-33\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"xtick_5\">\r\n <g id=\"line2d_5\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"210.39\" xlink:href=\"#ma3747de2aa\" y=\"226.174219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_5\">\r\n <!-- 40 -->\r\n <g transform=\"translate(204.0275 240.772656)scale(0.1 -0.1)\">\r\n <defs>\r\n <path d=\"M 2419 4116 \r\nL 825 1625 \r\nL 2419 1625 \r\nL 2419 4116 \r\nz\r\nM 2253 4666 \r\nL 3047 4666 \r\nL 3047 1625 \r\nL 3713 1625 \r\nL 3713 1100 \r\nL 3047 1100 \r\nL 3047 0 \r\nL 2419 0 \r\nL 2419 1100 \r\nL 313 1100 \r\nL 313 1709 \r\nL 2253 4666 \r\nz\r\n\" id=\"DejaVuSans-34\" transform=\"scale(0.015625)\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-34\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n </g>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"matplotlib.axis_2\">\r\n <g id=\"ytick_1\">\r\n <g id=\"line2d_6\">\r\n <defs>\r\n <path d=\"M 0 0 \r\nL -3.5 0 \r\n\" id=\"m616fb5c2ba\" style=\"stroke:#000000;stroke-width:0.8;\"/>\r\n </defs>\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#m616fb5c2ba\" y=\"10.999219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_6\">\r\n <!-- 0 -->\r\n <g transform=\"translate(13.5625 14.798437)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-30\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"ytick_2\">\r\n <g id=\"line2d_7\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#m616fb5c2ba\" y=\"56.299219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_7\">\r\n <!-- 10 -->\r\n <g transform=\"translate(7.2 60.098437)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-31\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"ytick_3\">\r\n <g id=\"line2d_8\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#m616fb5c2ba\" y=\"101.599219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_8\">\r\n <!-- 20 -->\r\n <g transform=\"translate(7.2 105.398437)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-32\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"ytick_4\">\r\n <g id=\"line2d_9\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#m616fb5c2ba\" y=\"146.899219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_9\">\r\n <!-- 30 -->\r\n <g transform=\"translate(7.2 150.698437)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-33\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"ytick_5\">\r\n <g id=\"line2d_10\">\r\n <g>\r\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#m616fb5c2ba\" y=\"192.199219\"/>\r\n </g>\r\n </g>\r\n <g id=\"text_10\">\r\n <!-- 40 -->\r\n <g transform=\"translate(7.2 195.998437)scale(0.1 -0.1)\">\r\n <use xlink:href=\"#DejaVuSans-34\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\r\n </g>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"patch_3\">\r\n <path d=\"M 26.925 226.174219 \r\nL 26.925 8.734219 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_4\">\r\n <path d=\"M 244.365 226.174219 \r\nL 244.365 8.734219 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_5\">\r\n <path d=\"M 26.925 226.174219 \r\nL 244.365 226.174219 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n <g id=\"patch_6\">\r\n <path d=\"M 26.925 8.734219 \r\nL 244.365 8.734219 \r\n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <defs>\r\n <clipPath id=\"p4fabb6213b\">\r\n <rect height=\"217.44\" width=\"217.44\" x=\"26.925\" y=\"8.734219\"/>\r\n </clipPath>\r\n </defs>\r\n</svg>\r\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD6CAYAAABnLjEDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAsaUlEQVR4nO2dfYxld3nfv885577MvXNn7rx4Z9/s3bW9xtgQoDXGBqOAKcTFNNCKVpA0citXSFWrgpI2mEYqjZRKILWBSInSWjWK26YxkCCZItLWcZ0QIBgvtsHv9nr9srve3Zl9mZk7c+e+nfPrH3MX/LzM3ru73ruznOcjWd7fmeec8zsvv3vn+c7zQiEEOI7z8090sSfgOM5o8MXuODnBF7vj5ARf7I6TE3yxO05O8MXuODnhvBY7Ed1GRM8R0X4iuuuNmpTjOG88dK5/ZyeiGMDzAD4I4BCARwB8MoTw9Eb7JOVqKFWn2bYQywMb50r5OOoNnnMwjgPiGyk1jiP2s44jz9+t6s/MrGSdX5zPvAxxwsywEPdDHhYAyNhPEqIzjzfahoSfMElSbRLzCcTGhMpRl5/LePiRuEmZYZOKSS61ysoGXXEh1vth3Uf17mkbtc18HmKjcf4wxPupjiPWb6u9iE6vaV0dEmvjkNwIYH8I4QAAENF9AD4KYMPFXqpO4/rbP8O2dWp8XiHW8yw0+AWNndAvlyQYV5aJYxdW9HGyAn8prOOUTvCX9OhNY8pmdZc+diiJFz7V10o98cA72qa4xOcYt/QckzW9TZKKNdGtaptuTS/SMNNh49nZhrLZUl1h44mCnuTe8Xl+rkx+8gOVmJ+rmRaVzUrKP1m//dxblE04xm1CohdS3NKfbIVlfv/Lx/V+5VN8W9w1jr0m7qPxIZoW+cbisv5kSRr8flDKj/uDp+/WB974lEOzA8DB140P9bc5jrMJueACHRF9ioj2EdG+Xnv1Qp/OcZwNOJ/FfhjA5a8b7+xvY4QQ7g4h3BBCuCEpGb8nOo4zEs7HZ38EwF4i2oP1Rf4JAL9yph0oAMIFQ/Uo9zkiw98hKSIa4lNrmvt7vbL2dZM2P06I9eUXGtzXtubzyu3c2d3y9qPKZs9YU23rpNonlVSSzkCbRpefv90b/BjjSN+0sYRrD/WidvStbdtLi2w8GWubyZj/FleP9f0oEz9/Znz3SJtWKCibw90pNi5cq/WSbyzdwMZjr+l71qvoZy0FysiQi+S7ZvnsUkTNyHg/m/zg0ocHANS4ZpGs8vsjRWhmu+FPBhBC6BHRvwTwfwDEAL4SQnjqXI/nOM6F5Xy+2RFC+DaAb79Bc3Ec5wLiEXSOkxPO65v9bIl6AWML3CeNhc/RmdLRKJ0J7utaASPy7/OFNe03Sf+7fFL/HXNtlvuER96vT/a3r3+BjWuFtrIZi7tqWyoidGIjGmYs4vcnMmxKIoqjZvyhPRI3qSCjQ4xtls1EpP3xmvDRq6R1hrrYr2QcW16/vD+WTTPTr2wl4vf/quK8svnBlbvZeOWFrcom03/CRyJubWlJP4/CKr+2rGBFzIhApKZ+rwpL/GTpuJ5Qt8KvP2oPESx02nbjHzmO8/OEL3bHyQm+2B0nJ/hid5ycMFKBjnoZCid4cEVW4SJEd1wHnhQbQmxqGOJXme+XJVb6HN924jotBmYfOMXG75zVYk8ixK+aVHGgRTQAmBTZKV2V8geUiO9XibX4V4kGB97EkAKdnk9VHKdsHLeAwUlH1rGlIFc1gnpk7EkL+n7E4vzThvBZCfz8ltD3ict/xMb/pXi7siku6v16IujTEtZ0tpoyUeJwYVk/V2rzHWMYz1lkwqnMuDMkhPo3u+PkBF/sjpMTfLE7Tk4Yqc8OQCWxxEvcj51oGL5MUwQbTI8rG+mm9So6IOH4W/nllm8+rmzeMsN99IKV+SDoGb73RKT9eOmjW0Es0ke3bCRlI6ilOMx+wke3/PNqpJ+HPr/22dviWqtG9pKMPanCKAMzBBUReNMwfPZ3Vfaz8Ze36vnMPqb3O7GNj9uT+vtRFlPpjZ3bd2hW4QFd7RldcUdWqikuDdZvTuPf7I6TE3yxO05O8MXuODnBF7vj5ITRCnTdHmjhJNtEY0KEiPTnT3drnY3Xtmrhoj3B91u+Sp8+vn6Jjacrg0uwFo3gmEyUL7GCOCyk2GYF1bQzLtLEkY6SaIvzW1VoZhJe3VWWWx41i0a2WkGIdkUjnVGKeNZVDFE1G9uF8FnZvaxsyg9q4bewwufduEI/6/KirO2tzx9EkFda1vcjXuMBQ+WjurpPd0q8+7K09Bnwb3bHyQm+2B0nJ/hid5ycMPqgGkEY48ko7e0TyqZd59Ns1fVn1PLVfJxdoYNaJso8ACEzfG25TfrngA60sfx6q92RbGU0TMCMrDhjkQ7xmT1ckI1OMrHmGIvrkGMAqIh7YtlIOsa9TjG4ms258N6dB9S259auV9sqR7mu0q3q87fq3Ka0pJ+Z7EYUFfS1tqu8s1D5mPbZkyZ/RoPaQbFzbvgTx3F+rvDF7jg5wRe74+QEX+yOkxNGK9ARgRJxyjYXHKKeUQlEiButWS2SdKe4IFQuatGsEIugFqMd02KHiyRWKWcpmsmqMBvRFLWKLYFQVrN5o0iNSI+WmI9lk5H+PpAtmKz9aoELpJdFWmyqqWCgwfexbAQZrWZ8jl3jO0wUO8JNtf3K5qmxX1DbKgt8x7XMEGyboq2YsaqkhquENQCZaPfUmdGtwGUFJpX1dob2T/7N7jg5wRe74+QEX+yOkxNG67OHDKHNExKoKFrwymqZAGQORXfCCBwoitbPRnKI9JGLsQ4Y6Wbcj5c+PAB0hM34mK7mYgWjyMqx0oe3tlmVZEsi+MVKqJGJL1blnFT441almmmj1XJLnM9qoyxbQh1LdZLJMXE6q0rttJh3yQgymolFpZpMH2dR3NetyZKysarQ1F7lz7ZV10lYcYvPKStpv1k+ohANDg7qVfRzTUSrKeqKm+hBNY7j+GJ3nJzgi91xcoIvdsfJCSMW6AD0uHgSpEBn0J7gYkavYvTIrnBBKIm1kJOKgIiOEVQjbSx6wmYh1uKT1f6pEove9IbYtNLTLakks6IKjcUzrR1in4aykYJYZnz2W6Wka0I0XEwrykZWz9lunF/2WreCc2SATNMUoPi2iqF9NYbIurMqzCSitHnc1s8nLQ9+Z9KiyHqTva+GJF4T79Vw8Vzr5zynMzqOc8nhi91xcsLAxU5EXyGieSJ68nXbponoASJ6of//qQs7TcdxzpdhfPY/AvD7AP7b67bdBeDBEMIXiOiu/vizA48URaAq74GbVrgP1LpM+0TtKVE9pm4EmiTceTE9O1WFRjtpcotZcUYkx/Qy7fuvpPo6rOCXQTavrk0rm4W4xsY7S6eUTSau5OnmdmUzVeABM6e62ve2qtK+t/IiG+8uLCobGcQyTKUai7IITiobiUlN8RyHqWZjVe6JjU5KJBK1jNMj6g2+tkyUyZVjQAfeWMWFMtGanKSGcT6JMCGE7wA4KTZ/FMC9/X/fC+Bjg47jOM7F5Vx99rkQwpH+v48CmHuD5uM4zgXivAW6EEKA/VszAICIPkVE+4hoXye7MLnajuMM5lwX+zEi2gYA/f/Pb2QYQrg7hHBDCOGGYqSTShzHGQ3nGlTzTQB3APhC///3D7VXRAgVnjXU3sI/ABb3ahFrbQdXKgpjuuRxbATRSHop/2xLjKw3yUpHC21bq7x10GxJB7lYQTWzhRVho69DYol68x1ebvtUTwtrMutuPNHBMfL8ls2Rbl1tW0hFyWMjW+3l7iwb10uvKZs9Bf7MGpl+HsdSLvQ1jV8iO+I7q2hEmqyKzLzlTGevFVb1+UOB3//UENZkP3brOFL6DYaQJgNtLBEvFdVsSIrDZ9Amh/nT258A+BsAbyKiQ0R0J9YX+QeJ6AUAf6c/dhxnEzPwmz2E8MkNfvSBN3gujuNcQDyCznFywkgTYUIhRneO+5tLe7gvtbJb+3+JCKIpl402RUP43z2R+NLpaX9Ytki2jquCagy/Wp4L0P73loJODpFBPJZfv3fsmNomkRVv6kbFme0JD8axEmEebe5W255t8wCdk2lV2TzR4Ik4rSmd8CSrxVjBOS1RqnU10xqKDJDRV6qr6fxk7Qp9nEV9r7MKv4+FplH9WFSdGaYKjQqGAVRSi3UcGdSjbLy6rOM4vtgdJyf4YnecnOCL3XFywkgFuqwQYXUHD2ZYETpJcUaXPC6KVk6WaCaFtTQzgh9EUM1ay6iSIzKmCkYbqaMLk2ycrerjRGv6czTqysAKffp0hotEVgBRfYJLUFvHtdAnA2S2lLVNo8yDY2qxDmcuGMFBL7UvY+OXmzPK5vAqv0cvVnT6xEOLb2bjt9UOKpvLCzwHa2uyqGxkUM9CWjNs+H18ZU3PuVfVyyFu83ctWdPCmkxwlC2aAKiAciujTb0PhoZHQ2TYbYR/sztOTvDF7jg5wRe74+QEX+yOkxNGK9AlwNqs6KVd5+LKREkLUsVkcHSc7NuWGtFHrY7oK25E0GUrwqal03KLJ0WW1bIygdHGTQkwZtmhk3zHKNUH6jV4ltvB6DJlI4P6HtmhhZ2eFAPHdV2mmclVtU1GEFrlvQqilPTR9oSyeXGJZ8YVDTGwWebqV6Oos9V2F46zsVWSOhKRiROJFiO7VSOico0/pLhj9BAsDC43pkpHWxF0Z4h+24iswN/FM1Xk8m92x8kJvtgdJyf4YnecnDDarLcIUEVVyqKvulGrV1aUsWwk0me0yFpG/+tlvi1eMzKPxKF7RrWtyPDHZQKbVaimtCiy7lb1tVbm+Y5xS58sFSWHxw/rR90r822taa0PLNV1a6u1HSLIqa4DoXbM8Iy2VaOt1YkV/jJ8v7lH2TxW3Mnn2NXXUS7w+cxWtM5QSYw60YJuVT/rMpcDEHWN0uI9/p1pBdWYWW7SJjv7FlVZPLyf79/sjpMTfLE7Tk7wxe44OcEXu+PkhNH2Z6f1wBq+jYsSbUOAkZSLWtkqJ1ykSQyBTgbnrCVGBtOYEAzb+vOwfIKPJw/o+ZglhYQAUzo+uGlG1NDiV1blgSWW+JOc5HOKelpoa4tSUUlLH6e9qq+/W+PiX1bTQqfsc/9qQ/f+bB7j5ayse91t8Ps4rhPjIHWtwzUdZLS6nRsF49nPWNlqQ3wdqqpkxmFkWWjrsDLIymizh15F9Ho7iyw4/2Z3nJzgi91xcoIvdsfJCaP12QOgch1EQILsoQ7oRIvYCKopxfzAVuDN7DgPtogMv34x5n5kzwgGaYlknqinK9VYARpjx/n5xg5on51SbpNVdOLHoQ/xKjCTL+nrGFvgQSSWbyd9xE7d8JmN68iK/Hzlsg5YmR3jra6eOLRD2Vz+f/m4vKD1iVhoFiHW+kAQySDz79SVatIqv9jqK8arb2gfWSKetZEII7tfBSsJSpWb1jYyYEcGb1moxJwzuPD+ze44OcEXu+PkBF/sjpMTfLE7Tk4YvUAn4k+oNfjzRoptlvgmK9VMFIxgFCH0SVEP0BlU3WktCE2W+bFfPGRUiuno/RoFKcBsUTa1l7hod+QW3UeNblpk41OFurJJi1wlsoQ2KSw1t2mbzpRWieI5Psc9MyeVzVsneT/25/73XmUz/r0X2Dg0dLlrupz3lTv6S1uVjaQyr+e81OPXVj5pCJZW+zURaBMZyXOUyh0HZ6IZ7QGN+Rhz9FLSjuMMwhe74+QEX+yOkxNG6rNTBhQawv8WPntmtG2SwS9W+yfZ7mi2tKJsKsLhaqusHGClwoNoTrS1zyx9/+1zi8rmyLPaH8/KfL/Fv68rqsy3+Jymp44rG9nGamWXTsRZ2yECkSaM3uOikm0oGf55VesaW6a4b/3emf3K5uYq98e/VvhFZdO7hgfaJAvaZ5c09ug5bn8L71e/8P1tykYGrBRWrDZOhq8tKr4GK1lGkA3hj0dG8FhalJVijbUgg67kfLy6rOM4vtgdJyf4YnecnDBwsRPR5UT0EBE9TURPEdGn+9uniegBInqh/39dncBxnE3DMAJdD8BvhBAeJaIagB8R0QMA/gmAB0MIXyCiuwDcBeCzZzpQlAKlZRlYwj9vzJZMwsZqNyQDbaQYBwBTBS6IFYz+S+2MZ7CVjJZEJztctNta1f2fwrVqE157lfcEbx+TdbWBIASxk6e0QBgn/B4WJ9rKZrzCA3+qRnWftUl+rVYlY2u/qya5aLitcErZ7E24QLr31gPK5snZXWxcntf3IyvwSd1407N6koKJ9+uAqqcOCDHQKCNuBR7J4JfzCWphxzW+ZrOiOL9xKvXqn0XLqIHf7CGEIyGER/v/bgB4BsAOAB8FcG/f7F4AHxv6rI7jjJyz8tmJaDeAdwB4GMBcCOFI/0dHAcxtsM+niGgfEe3rtvWfwxzHGQ1DL3YiGgfwZwA+E0Jgv7eGEAI2SJsPIdwdQrghhHBDoaSLHjqOMxqGCqohogLWF/ofhxC+0d98jIi2hRCOENE2APODjhN1Mowf5EkUJ9/MPwBSo3pMT/r1mf6Mkn5818g0KIvMj1qsK8WUE+6jTiU68OXVRPjeRnDONeP6dqzM8tKoh5p1ZdNKpR89WJ+wKunOlXmAylisNYzjbX7vl7u6Ko6VUDRb5L+hzST6N7ZaxO/JP9v+HWXzH1u/xOezTesTU1X+jF4xqtROlvgcb597Qtk8/eQVbGy1Xpb6EWAHtiibIVowDVN1RrZ1TqUPDygffaiWUaePP8iAiAjAPQCeCSH87ut+9E0Ad/T/fQeA+4c+q+M4I2eYb/b3APg1AE8Q0eP9bf8WwBcAfI2I7gTwCoB/dEFm6DjOG8LAxR5C+C42jrj9wBs7HcdxLhQeQec4OWGkWW9ZMUJjFw+cSMdEWx5DkGq3+TS7Zf0ZJcWlaqIDNGSATCXSwSgF0Vh9R0FXYSkKoW810+Wma5EW/7qBX8feMS3iNVJ+He0w+BHNGgJZKn4ZW0m1+NYTIqZVuWe6oAXK1ZRfbyvTtZMLxI+9t6Cz927b9jQbf7d4lbI5tjL4LzjX1LkY+day7hGVNPg7Qz0dUBW3tdg1xO3XFWVIv5/SxhLW5DarhZhElZ/2UtKO4/hid5yc4IvdcXLCSH32tAQsXSUCZMqi8kZbB8MkwiVeWh1TNuNFHjSyluqWTAsd7v+VZalbAKn4/KtD+6zS17d89kam55iJ7AfpnwPaR7cSeuS2yIjYSIU/3ky1X52oRCB9z1ZSfW0dEUS0mGp9pBV49ZiaEfhzZYlrFu1p/TrObuF6hHWtZeLPsUr6nslKulYCSaxfB41V8VW7/3o3cbrI2EcG8FiBODJWTLWVOsMc/JvdcXKCL3bHyQm+2B0nJ/hid5ycMNr2T9D92eM2Fxgyo4JILx0cXLDU4mKXFSDSGaLGr8yWOxXpTCxZmWUm1kEtHSPrTop2saHAjEc6y2wQTSOoRVbcOdHV1yGFtq5xf1Z7+tiTIhOuFbSwt5RxBcr6VqnHTTbeU1pQNoc60/zcRqbi1uIiG9cM4TUS7Z+s9ku6jZOR9WaVdxaBLVHXyMoUK83KaIvE+YfJpjujIiePP7yp4ziXMr7YHScn+GJ3nJzgi91xcsJIBbpAgArkkglDXaOcr/hMygzBbrXFD3wqNiLYRC8vq+STjHKzOBzX2XhrUZeSrsVaaJuMeTSeJexJrOg8Jeyl+loPCmHrsFECS5a3kuW/LBsAKItQMyuj7qiIvNsa6wxDSc0QJ7cVFtm4oELhgHrEhb6Wob5lCb+OrDBYIAOASGbCGa+HzFaz+qqHSO5o2Mj30TzOgN5z3uvNcRxf7I6TE3yxO05OGG1QDQGZjr/gJoY/TqJne0b6IN0CD+Lo9Ize68T9SOl7AjqIJDHSk9bSqhjrwJPt5UW1TVaP2W60TZIZXBbSjz/SmVQ2L6/yctdHGjVls9bm854abyqbuYrumT6e8Kyy2UTblEUq2GQ0OKDJqu5TFRmGEXQgkmzj1TCCjFRQjREcY1QER9waHLVyNuWcf7aP3iZjmobJelPag/vsjuP4YnecnOCL3XFygi92x8kJI896U0h9oWcE1Yge3dTRNr0WF+06ZS10kQgQaRi9zQAe2GFZ1ItcSKonWtiyykmpMxlqZSbKEFvZc00h0FkZbYeXJ9h4pamvZE6UYK4U9Jy3jmnxTZaXltlrAFAX6Y2TkS4JfVnMj72QahFRinYnUn2cg10uRlplsmTLPkuMy2SACoC0zLcVGlqMy4qiTLVRckrGJg0Ru2XaqIpbUsTzUtKO4/hid5yc4IvdcXLCyH32EAmnQvocZgUROTZ8K1HhptPVl1YqcD9SVrcBgLYIxpkd08kqstVUUZbfAVDIBtcXXoL2tUuiyorVZ35JJL5YSS5Ly/zY03V9HVdN8pZMVqUa69pkIo6VnLIqkmraQWsolyd828tdnfQjy3ZLvQIAlkUFoMdXrlA2Y8dFIozhn1v0Svw6hmnJNFSQjRHUIyvlWD67nHcsz+VBNY7j+GJ3nJzgi91xcoIvdsfJCSPPetNZO2Jc1qk+SpAzsoFkME6nrS+tVeDbqiUdRJKKaiEto2ecrN5yvK0DPWSZZgCoimotk4nO8pJVZ6webUfaPMvt4GJd2WSinHE50SJaQwhitYKuJrPaG9zrbaE4oWyKQlV9RZ8euxKd9afmmHEx1CpbHYsX4q8PXalsJpr8mRm31c5Ek+9n0ajm0xZls41S0lHvHARCQ8STUTNW9t5G+De74+QEX+yOkxMGLnYiKhPRD4nox0T0FBH9dn/7HiJ6mIj2E9FXicj4xchxnM3CMD57G8CtIYQVIioA+C4R/TmAXwfwpRDCfUT0nwHcCeAPBx5NfryIIBsrYCarcJ+IWvozSvrsVhupbolfbifWgS/1MZ4IYwWaSD/eqlI7DMPst9zTlWOPrfGEESuACCt826GjU8rk4NplbJws6WuNW0bS0Th3bh++RgexvGmat3JaaGldoybaSN08fUDZ7CrywB8ryUUGHrWe15V7JlPpkA/3zKQfbwXMyCQX2Q4K0G3OAg2TCTNMcM5gk9MMPGNY53T4VaH/XwBwK4A/7W+/F8DHhj+t4zijZiifnYhiInocwDyABwC8CGAxhHBaYz0EYMcFmaHjOG8IQy32EEIaQng7gJ0AbgRw7bAnIKJPEdE+ItqXrq4O3sFxnAvCWanxIYRFAA8BuBlAnYhOO4Y7ARzeYJ+7Qwg3hBBuiKs68cNxnNEwUKAjossAdEMIi0Q0BuCDAL6I9UX/cQD3AbgDwP2DjhVIZ/IojcoIbIAQ7WTlGgCADNowAhtkoE2SaIGum3KxJ46sCQ3WNa1WQoWIC3uW+BcJRehURwt0cr+tdd1+6vCLXBCb/oH+Y8nEizyop/Cq7o+OTF9/56qtbLx09YyyeSHi26wglgO3cIHu/TPPK5uGCjLSQT6PL+9k48n9+lwyiMUKoDGrvMiOTEbWm2zBZAa6SKFvGO3NSpyU8xGv0Jk032HU+G0A7iWiGOu/CXwthPAtInoawH1E9DsAHgNwzxDHchznIjFwsYcQfgLgHcb2A1j33x3HuQTwCDrHyQkjTYShDIhUroX0d4z9ZMXZc4thQejxz7ZezwiYEZVqqkWdLCODYazgGCsRpp1yJyw1Wkv1ROsi69jbKktiH30dh3fzwJLV4zqoJUtEgMqbdimbwqp2bssnuUCSrGkHdHk3v9fRzTrp5T1zXNNtGm2bGqIddDvo+7pv/2423rao56wqvMhWzNigMoxor2QlsMj2ZJEK4AGyTGoGZ98yChiuUs5G+De74+QEX+yOkxN8sTtOTvDF7jg5YbSVaoLRJ1u2drL2E+2eLCElJGcveKQ9faC2yCArGJlxRbFNVq4BNhLtuJDWMy5E7jdZbCmb2SIvC902xMBrtvIAmYO36FLOC8d5RCMZmYLJip5j6QQPbGlP6evf9a6DbPxrO/5G2Ty0+GY2tgS6kihT/VqrrmyqT8lAG/3MZKUYK6jFeoPkY7QEMurJtDfjOGI/o/o2pPZoBdUM0zZqI/yb3XFygi92x8kJvtgdJyeMPKhGdjeWvkyvYlQCkUE1ln8+QAsAgNARQTXG5XcSHhDRNJw7ElVprUALy4+3KtVKyrFo/2QEzCx2eTBM27Bpp/zaeqn+XI/HuFMY14w205fpTSuz3LcuGvv1RPunRqYTeqT2YFXSHReaxV+9dJWymdvPr6NXtgJf+DizgreM5CWF9fUoKsqEyKikJFs2G4eRPvqwLaqGxb/ZHScn+GJ3nJzgi91xcoIvdsfJCSPvzy6R7b+NRDAVSBB1jWohwibTrdf1PoZK01oRWWcVQ3wT1WtKib6NY4kOYlGiVUdXXamJ9kJHVnVrpZUW388SA1UbqzUtfgVRASjtGK2VikY7LiGQWhV/Vtp8jk+t6nqk20uLbLxklM2e7/DrL/9QZ+9FXfESGQLdMEE1pmo2BMmKEGzL+n1IS1xEtcRAVfHG+CpWQp8K8tlY1PNvdsfJCb7YHScn+GJ3nJww2qCaAIiuxcovKcgAGgAyPyIrGs6VrN5p+fVyk1W9UwSf9AraZ5UVaNs9fRsLhvjQ7PIL6Rj7HWtzm+WG9mOVb2kFiMgEDqOtVrnKfc1SQWdnyMQgAOiSqOZT1kE1MlnouaUt2maKn29bcUnZ3PPku9l47mWjuk+FP7PEqEITdfm2zrgRZNQZ3Npp8Uqta5y4rs7GE6/od6Z2gAcQdSe1XtMVfr1VoVj66OqdPkMcjn+zO05O8MXuODnBF7vj5ARf7I6TE0YbVJNZZYcHZ/b0hN5hltMVfd5jo4d7Jsr3ZiWjB5A49DB93kNZ1cc2s9W6IqhmZU2LNJ3W4EciW3uTESGSFLiQ1e7qoJrWKt/WK+l7dvXccbVNBvHIYCEASIXyGhv9lmRVHqtSTfkRXk1HBdBAZ4cZt14pWcWGns/iXn3vl6/n4mNtVjcnffSd/4Of3+hh9g/3/z02PnXPHmUzfpifKy1a2XMiw05WWT9D5p5/sztOTvDF7jg5wRe74+QEX+yOkxMuQlmqM6cWWSWFBkXdrR+b79eN9HmU/jNEP24Y5aaliNYsamHJKiXdE5F3VilriDLNpePaprAixg19IWOnuEgUWdFhQswJRvbeob271TZ5/+XzAYDGjbz3+/SUFrYgEvq+u6BLTk2KiLnemL4fMqNNRssBwOpWfu9PvlWLaP/9I7+vtn3p8IfYeP/Xr1E237xuio33FueVzRd3fYONv/KZ9yibv7jnZjYuLek59kr8vUpaQnQ+Qykr/2Z3nJzgi91xcoIvdsfJCSP12aM0KD8k7oo+3rrAC7rjIiBiWdtI/1P21V7fxschNjLjhihXknW5/9cx+rwnsfa3mm0xASMYJp7jvm66WlE2tVf5uHzSaFHV4DcyXtGZaVGDl2nOarq8T/WADmLpzopS1lM6E6w1y7P1mm/R5y+JMkUvP7Fd2exa4Tadmr7XMoNt7R8sKpvfuf5+Nr6pvKBsXjOyEI+KSkFGpy18/p5/zMaVo/q5yiI8rVlD09kh9pPRUwDGD/Nn3ZqSZZz0/Ib4keM4P0/4YnecnDD0YieimIgeI6Jv9cd7iOhhItpPRF8lIv33J8dxNg1n883+aQDPvG78RQBfCiFcDeAUgDvfyIk5jvPGMpRAR0Q7AdwO4D8A+HUiIgC3AviVvsm9AP49gD8844GCDoAorHLBIUu0AJOtiQ1W3IDYZol4ulaTkRkne8QZ55I2HSm8AYgNgU4yOa57r8+NN9i4vktePHDy3Vq0kySi3PWJNb3P8SVeltkqCT0zroW1neM8aET2nQeAWRFUdHxNl4A+vFZn4+knLFGVb7NKNc2/j4uRn7/2QWXzTIuXsv7M9z+hbKpPaoFybJ6fr9rRz7W0zO9baUE/1840P3ZpyciKrIrAsJoyUVlvU8/w5onx2sbv3bDf7F8G8Jv4WaW3GQCLIYTTUukhALowuOM4m4aBi52IPgJgPoTwo3M5ARF9ioj2EdG+bscImXQcZyQM82v8ewD8MhF9GEAZ6xHNvwegTkRJ/9t9J4DD1s4hhLsB3A0Atcmd59hzw3Gc82XgYg8hfA7A5wCAiN4H4F+HEH6ViL4O4OMA7gNwB4D7NzrGzw4GRMLnidd40ERsVGppznGfuDtmtffh48QIjkmLg+vuysAbOQaAEPNfiNK2rjjTWNU7luvclyslOmBlrcf3W2zpUtJyPyvpZqrEfbl3b3lJ2czu4Bk1U4n+zasbtG95uD2ltkkmE641PFvcqmy+99KVbLznaX3+LOH3+vjbtfZw9a6DbPxUU3uU337pOjZOXtPPrHTSqPgjEk1a05ZgxO9RIP3MiktcVygH43tPlOhu1/W5Dt7O9yvO8/vReWXjX9bP5+/sn8W6WLcf6z78PedxLMdxLjBnFS4bQvhLAH/Z//cBADe+8VNyHOdC4BF0jpMTfLE7Tk646P3ZJcUFLdKEmAdk0JSetkwgS43gXZk9l2l9DJEQ7UJsiDYr/DMyKxlioFHuuiey5U6tGn3c5D5WRp0IfrECeI6v8BLMz87PKZt2i4uBkVHdZ2pSP4+r67y89GxpRdks9rhw9OLSrLKRZaKb23VQT6vO7/Xi39JBPm+t8B5xMpsOANKnePZaZIiaS2/S1187wO0Kxl+Pm1v5HLsVfWwZDFM8qa8jafHrj3paRFy5VmR37uFCaCief1CN4ziXOL7YHScn+GJ3nJww4uqyAYmomJLJVkqx9lFL8zxAJERVZSOrjuo2U7ptVGdC+1bS14/XBgfedI2PzFRPET0RMJRlRnCQ8Jt7bX0/eovcHy4uGhVXRcWfWLuI2HKY+3flU9pnPnXNZWrbD9/FNZTts4vKJhaJOEcf00E1ux7h/ubxt2kNI7mN6wPvmz2ibMZifrEnu/rmj4vqPlYF2vaUfh7N7SJxa1nbjC1wm7U5Q6+p8pdmqmdoQU1+/4tLWnu47Lv8OMuiXzy1L0xQjeM4lxC+2B0nJ/hid5yc4IvdcXLCSAW6tBzh1HVc3Jl95CS3qelAgniel50py4btANrbReCNIYBUhCgTdQ3xa0wG1SgTdGoiOKdpiHiG0JiKyiPBCGKhslDWUv2Ios7g0tqxyNayymbL4I+0ZLwORnJWOMaf0WuoK5usx4999f/SFXeS53i22so/v1zZ/Ks9D7PxL1afUzYt8ZD+58mblY0ULGuHtGJZParv0eo2KYgZbcVENR1Z3QYAVq7gNsfeqaO+pp7n77VVtlqWYp/9Mf/5a/o2/xT/ZnecnOCL3XFygi92x8kJI/XZswLQFAEHS9fzqie1AzqpIqvwypx0VLfuGVvi+2UzE8omK8sAHq0PgLj/Z7WQlv6f1bIq1gVGlc+elHTQRL0m2j9V9YGak3zevau1hhGJZBmrmk2ry+9HFOnjWG2sZMhKmurvjOSvJ/n4+ReUzbOfv5qNv3fLf1I2DTHv2BARHlnbzcZbCg1l09jNjzO7T79nhz80o7Y138kDunbPnVA2R5f5g135SV3ZjB/i825coUxw4np+HycO6GsticCn0gn+fshKUOxnG/7EcZyfK3yxO05O8MXuODnBF7vj5ITRZr31gLIo19vcInprT+ueN8UVvk/5hLapPsmzoehlXcY+GeNZVXFjUtts4fJTa1qXhKZMfkYaQTWqbDUQrYmKJkYQS3uMb9s7o8XISiIyB402VleM8WAlqyR0W0RtyDEArBrVUo40ufj50jPblM3e73ORjIr6Pha2cDHyr9Z0UM3lBS6IPbq2R9n8+fz1bHxwsa5sem/iQtuz/0a3o6rVT6lt//TKR9n4w7WfKJtXe1xk/i18TNk0Iv6uFZf0+9GZ5O/54puVCaKUP8fisniuVqXr0/tu/CPHcX6e8MXuODnBF7vj5ISLXl220BDtjyeNaiFbSIz1Z9TSlTxKoTKvq65MPMOrkNIhXfWktMb9r2RRVz3JKtz/XN2hW/2mJT1HWd02OqX92AbxKjSnxnW7o0iU0m32dFLFWMx1jUKk78dih2sY8rgAsNzV13Zylc9p6kl9rfELh9i4d0r7w1vu4z76703cqmxumTvAz5U0lc14oc3GZFyHDIbpKd0FOHxCazhPr3A9YmdRB9UUSQQwGRWIMvGIVq7UAVVjr/Hl2C3q6zj+Dj5u1/mz6D3vlWocJ/f4YnecnOCL3XFygi92x8kJFKw+0RfqZEQLAF4BMAvg+ADzzcalOGfg0py3z/nc2RVC0PW/MeLF/tOTEu0LIdww8hOfB5finIFLc94+5wuD/xrvODnBF7vj5ISLtdjvvkjnPR8uxTkDl+a8fc4XgIviszuOM3r813jHyQkjX+xEdBsRPUdE+4norlGffxiI6CtENE9ET75u2zQRPUBEL/T/P3WmY4waIrqciB4ioqeJ6Cki+nR/+6adNxGVieiHRPTj/px/u799DxE93H9HvkpEOvj/IkNEMRE9RkTf6o83/ZxHutiJKAbwBwD+LoDrAHySiK4b5RyG5I8A3Ca23QXgwRDCXgAP9sebiR6A3wghXAfgJgD/on9vN/O82wBuDSG8DcDbAdxGRDcB+CKAL4UQrgZwCsCdF2+KG/JpAM+8brzp5zzqb/YbAewPIRwIIXQA3AfgoyOew0BCCN8BcFJs/iiAe/v/vhcwypFcREIIR0IIj/b/3cD6i7gDm3jeYZ3TNZ0L/f8CgFsB/Gl/+6aaMwAQ0U4AtwP4r/0xYZPPGRj9Yt8B4PUNvg71t10KzIUQTufEHgUwdzEncyaIaDeAdwB4GJt83v1fhx8HMA/gAQAvAlgMIZzOAd2M78iXAfwmgNNF2mew+efsAt25ENb/hLEp/4xBROMA/gzAZ0IIrOXjZpx3CCENIbwdwE6s/+Z37cWd0Zkhoo8AmA8h/Ohiz+VsGXXxisMAXl+xYGd/26XAMSLaFkI4QkTbsP5NtKkgogLWF/ofhxC+0d+86ecNACGERSJ6CMDNAOpElPS/KTfbO/IeAL9MRB8GUAYwAeD3sLnnDGD03+yPANjbVy6LAD4B4JsjnsO58k0Ad/T/fQeA+y/iXBR9v/EeAM+EEH73dT/atPMmosuIqN7/9xiAD2Jda3gIwMf7ZptqziGEz4UQdoYQdmP9/f1/IYRfxSae808JIYz0PwAfBvA81n2z3xr1+Yec458AOAKgi3X/606s+2UPAngBwF8AmL7Y8xRzvgXrv6L/BMDj/f8+vJnnDeAXADzWn/OTAP5df/uVAH4IYD+ArwMoXey5bjD/9wH41qUyZ4+gc5yc4AKd4+QEX+yOkxN8sTtOTvDF7jg5wRe74+QEX+yOkxN8sTtOTvDF7jg54f8D1fj6aGof/fYAAAAASUVORK5CYII=\n" }, "metadata": { @@ -323,23 +329,44 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 7, "metadata": {}, "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/5\n", + "399/399 [==============================] - 56s 135ms/step - loss: 1.4518 - accuracy: 0.4442 - val_loss: 1.6893 - val_accuracy: 0.3210\n", + "Epoch 2/5\n", + "399/399 [==============================] - 55s 139ms/step - loss: 1.0833 - accuracy: 0.5951 - val_loss: 1.8123 - val_accuracy: 0.5011\n", + "Epoch 3/5\n", + "399/399 [==============================] - 54s 135ms/step - loss: 0.9446 - accuracy: 0.6483 - val_loss: 1.9944 - val_accuracy: 0.4933\n", + "Epoch 4/5\n", + " 19/399 [>.............................] - ETA: 50s - loss: 0.9010 - accuracy: 0.6706" + ] + }, { "output_type": "error", - "ename": "TypeError", - "evalue": "fit() got an unexpected keyword argument 'validation_size'", + "ename": "KeyboardInterrupt", + "evalue": "", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32m<ipython-input-10-a9853c6d5064>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mhistory\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmyModel\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mY\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mepochs\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m5\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m128\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mvalidation_size\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m0.05\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[1;31m#Affichage de l'historique de l'apprentissage\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mhistory\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mhistory\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'accuracy'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'accuracy'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mhistory\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mhistory\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'val_accuracy'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'val_accuracy'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;31mTypeError\u001b[0m: fit() got an unexpected keyword argument 'validation_size'" + "\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m<ipython-input-7-528c4d211510>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mhistory\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmyModel\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mYcat\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mepochs\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m5\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m128\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mvalidation_split\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m0.05\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[1;31m#Affichage de l'historique de l'apprentissage\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mhistory\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mhistory\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'accuracy'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'accuracy'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mhistory\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mhistory\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'val_accuracy'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'val_accuracy'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\tensorflow\\python\\keras\\engine\\training.py\u001b[0m in \u001b[0;36mfit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[0m\n\u001b[0;32m 1181\u001b[0m _r=1):\n\u001b[0;32m 1182\u001b[0m \u001b[0mcallbacks\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mon_train_batch_begin\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mstep\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1183\u001b[1;33m \u001b[0mtmp_logs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtrain_function\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0miterator\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1184\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mdata_handler\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshould_sync\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1185\u001b[0m \u001b[0mcontext\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0masync_wait\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\tensorflow\\python\\eager\\def_function.py\u001b[0m in \u001b[0;36m__call__\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 887\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 888\u001b[0m \u001b[1;32mwith\u001b[0m \u001b[0mOptionalXlaContext\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_jit_compile\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 889\u001b[1;33m \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_call\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 890\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 891\u001b[0m \u001b[0mnew_tracing_count\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mexperimental_get_tracing_count\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\tensorflow\\python\\eager\\def_function.py\u001b[0m in \u001b[0;36m_call\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 915\u001b[0m \u001b[1;31m# In this case we have created variables on the first call, so we run the\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 916\u001b[0m \u001b[1;31m# defunned version which is guaranteed to never create variables.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 917\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_stateless_fn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;31m# pylint: disable=not-callable\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 918\u001b[0m \u001b[1;32melif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_stateful_fn\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 919\u001b[0m \u001b[1;31m# Release the lock early so that multiple threads can perform the call\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\tensorflow\\python\\eager\\function.py\u001b[0m in \u001b[0;36m__call__\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 3021\u001b[0m (graph_function,\n\u001b[0;32m 3022\u001b[0m filtered_flat_args) = self._maybe_define_function(args, kwargs)\n\u001b[1;32m-> 3023\u001b[1;33m return graph_function._call_flat(\n\u001b[0m\u001b[0;32m 3024\u001b[0m filtered_flat_args, captured_inputs=graph_function.captured_inputs) # pylint: disable=protected-access\n\u001b[0;32m 3025\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\tensorflow\\python\\eager\\function.py\u001b[0m in \u001b[0;36m_call_flat\u001b[1;34m(self, args, captured_inputs, cancellation_manager)\u001b[0m\n\u001b[0;32m 1958\u001b[0m and executing_eagerly):\n\u001b[0;32m 1959\u001b[0m \u001b[1;31m# No tape is watching; skip to running the function.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1960\u001b[1;33m return self._build_call_outputs(self._inference_function.call(\n\u001b[0m\u001b[0;32m 1961\u001b[0m ctx, args, cancellation_manager=cancellation_manager))\n\u001b[0;32m 1962\u001b[0m forward_backward = self._select_forward_and_backward_functions(\n", + "\u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\tensorflow\\python\\eager\\function.py\u001b[0m in \u001b[0;36mcall\u001b[1;34m(self, ctx, args, cancellation_manager)\u001b[0m\n\u001b[0;32m 589\u001b[0m \u001b[1;32mwith\u001b[0m \u001b[0m_InterpolateFunctionError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 590\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mcancellation_manager\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 591\u001b[1;33m outputs = execute.execute(\n\u001b[0m\u001b[0;32m 592\u001b[0m \u001b[0mstr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msignature\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 593\u001b[0m \u001b[0mnum_outputs\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_num_outputs\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\tensorflow\\python\\eager\\execute.py\u001b[0m in \u001b[0;36mquick_execute\u001b[1;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[0;32m 57\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 58\u001b[0m \u001b[0mctx\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mensure_initialized\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 59\u001b[1;33m tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,\n\u001b[0m\u001b[0;32m 60\u001b[0m inputs, attrs, num_outputs)\n\u001b[0;32m 61\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mcore\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_NotOkStatusException\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mKeyboardInterrupt\u001b[0m: " ] } ], "source": [ - "history = myModel.fit(X, Y, epochs=5, batch_size=128, validation_split=0.05)\n", + "history = myModel.fit(X, Ycat, epochs=5, batch_size=128, validation_split=0.05)\n", "\n", "#Affichage de l'historique de l'apprentissage\n", "plt.plot(history.history['accuracy'], label='accuracy')\n", @@ -351,11 +378,76 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, - "outputs": [], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO:tensorflow:Assets written to: exp905\\assets\n" + ] + } + ], "source": [ - "myModel.save('exp904')" + "myModel.save('exp905')" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "error", + "ename": "ValueError", + "evalue": "Mix of label input types (string and number)", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m<ipython-input-10-bc0ddd3965dc>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 7\u001b[0m \u001b[0my_pred\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0margmax\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my_pred\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 8\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 9\u001b[1;33m \u001b[0mcm\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mconfusion_matrix\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my_true\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my_pred\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 10\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 11\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\sklearn\\utils\\validation.py\u001b[0m in \u001b[0;36minner_f\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 61\u001b[0m \u001b[0mextra_args\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m-\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mall_args\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 62\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mextra_args\u001b[0m \u001b[1;33m<=\u001b[0m \u001b[1;36m0\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 63\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 64\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 65\u001b[0m \u001b[1;31m# extra_args > 0\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\sklearn\\metrics\\_classification.py\u001b[0m in \u001b[0;36mconfusion_matrix\u001b[1;34m(y_true, y_pred, labels, sample_weight, normalize)\u001b[0m\n\u001b[0;32m 302\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 303\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mlabels\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 304\u001b[1;33m \u001b[0mlabels\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0munique_labels\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my_true\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my_pred\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 305\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 306\u001b[0m \u001b[0mlabels\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mlabels\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python39\\site-packages\\sklearn\\utils\\multiclass.py\u001b[0m in \u001b[0;36munique_labels\u001b[1;34m(*ys)\u001b[0m\n\u001b[0;32m 102\u001b[0m \u001b[1;31m# Check that we don't mix string type with number type\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 103\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mset\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0misinstance\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mlabel\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mstr\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mlabel\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mys_labels\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m>\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 104\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"Mix of label input types (string and number)\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 105\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 106\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0marray\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msorted\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mys_labels\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mValueError\u001b[0m: Mix of label input types (string and number)" + ] + } + ], + "source": [ + "print()\n", + "modelCM = keras.models.load_model('models/exp905')\n", + "\n", + "# À remplir\n", + "y_pred = modelCM(Xf)\n", + "y_true = Yf\n", + "\n", + "y_pred = np.argmax(y_pred, axis=-1)\n", + "\n", + "cm = confusion_matrix(y_true, y_pred)\n", + "\n", + "\n", + "def show_confusion_matrix(matrix, labels):\n", + " fig, ax = plt.subplots(figsize=(10,10))\n", + " im = ax.imshow(matrix)\n", + " N = len(labels)\n", + " # We want to show all ticks...\n", + " ax.set_xticks(np.arange(N))\n", + " ax.set_yticks(np.arange(N))\n", + " # ... and label them with the respective list entries\n", + " ax.set_xticklabels(labels)\n", + " ax.set_yticklabels(labels)\n", + " # Rotate the tick labels and set their alignment.\n", + " plt.setp(ax.get_xticklabels(), rotation=45, ha=\"right\",\n", + " rotation_mode=\"anchor\")\n", + " # Loop over data dimensions and create text annotations.\n", + " for i in range(N):\n", + " for j in range(N):\n", + " text = ax.text(j, i, cm[i, j],\n", + " ha=\"center\", va=\"center\", color=\"w\")\n", + " ax.set_title(\"Matrice de confusion\")\n", + " fig.tight_layout()\n", + " plt.show()\n", + "show_confusion_matrix(cm, class_names)" ] }, { diff --git a/game.py b/game.py index c5482446f4b3a17589e8d55329ea01d7cd72d2f6..3f3a995b7727fdaa8d3e8fc21689f4cb2934d9eb 100644 --- a/game.py +++ b/game.py @@ -34,13 +34,13 @@ while cap.isOpened(): #or while 1. cap.isOpened() is false if there is a probl cv2.imshow("Caméra", frame) #Show you making emotional faces - cv2.putText(smiley, "Score: "+str(score), (0,0), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2) + cv2.putText(smiley, "Score: "+str(score), (20,20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2) cv2.imshow("Smiley", smiley) #Show the smiley to mimic if cv2.waitKey(1) & 0xFF == ord('q'): #If you press Q, stop the while and so the capture break - if cv2.waitKey(1) & 0xFF == ord('q'): #If you press P, pass the smiley but lower your score + if cv2.waitKey(1) & 0xFF == ord('p'): #If you press P, pass the smiley but lower your score score -= 1 smiley, emotion = smileyRandom(emotion) diff --git a/models/exp904/keras_metadata.pb b/models/exp904/keras_metadata.pb new file mode 100644 index 0000000000000000000000000000000000000000..a003e79e3cff768333962d13b8fbf00c2be91f73 --- /dev/null +++ b/models/exp904/keras_metadata.pb @@ -0,0 +1,27 @@ + +ŕroot"_tf_keras_sequential*��{"name": "my_model_1", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "must_restore_from_config": false, "class_name": "MyModel", "config": {"name": "my_model_1", "layers": [{"class_name": "InputLayer", "config": {"batch_input_shape": {"class_name": "__tuple__", "items": [null, 48, 48, 1]}, "dtype": "float32", "sparse": false, "ragged": false, "name": "random_contrast_1_input"}}, {"class_name": "RandomContrast", "config": {"name": "random_contrast_1", "trainable": true, "dtype": "float32", "factor": {"class_name": "__tuple__", "items": [0.5, 0.5]}, "seed": null}}, {"class_name": "RandomFlip", "config": {"name": "random_flip_1", "trainable": true, "dtype": "float32", "mode": "horizontal", "seed": null}}, {"class_name": "Conv2D", "config": {"name": "conv2d_4", "trainable": true, "batch_input_shape": {"class_name": "__tuple__", "items": [null, 48, 48, 1]}, "dtype": "float32", "filters": 32, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_4", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization_4", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}}, {"class_name": "Conv2D", "config": {"name": "conv2d_5", "trainable": true, "dtype": "float32", "filters": 64, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_5", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization_5", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}}, {"class_name": "Conv2D", "config": {"name": "conv2d_6", "trainable": true, "dtype": "float32", "filters": 128, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_6", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization_6", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}}, {"class_name": "Conv2D", "config": {"name": "conv2d_7", "trainable": true, "dtype": "float32", "filters": 256, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_7", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization_7", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}}, {"class_name": "Flatten", "config": {"name": "flatten_1", "trainable": true, "dtype": "float32", "data_format": "channels_last"}}, {"class_name": "Dense", "config": {"name": "dense_3", "trainable": true, "dtype": "float32", "units": 128, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dropout", "config": {"name": "dropout_2", "trainable": true, "dtype": "float32", "rate": 0.2, "noise_shape": null, "seed": null}}, {"class_name": "Dense", "config": {"name": "dense_4", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dropout", "config": {"name": "dropout_3", "trainable": true, "dtype": "float32", "rate": 0.2, "noise_shape": null, "seed": null}}, {"class_name": "Dense", "config": {"name": "dense_5", "trainable": true, "dtype": "float32", "units": 7, "activation": "softmax", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}]}, "shared_object_id": 51, "build_input_shape": {"class_name": "TensorShape", "items": [null, 48, 48, 1]}, "is_graph_network": true, "save_spec": {"class_name": "TypeSpec", "type_spec": "tf.TensorSpec", "serialized": [{"class_name": "TensorShape", "items": [null, 48, 48, 1]}, "float32", "random_contrast_1_input"]}, "keras_version": "2.5.0", "backend": "tensorflow", "model_config": {"class_name": "MyModel", "config": {"name": "my_model_1", "layers": [{"class_name": "InputLayer", "config": {"batch_input_shape": {"class_name": "__tuple__", "items": [null, 48, 48, 1]}, "dtype": "float32", "sparse": false, "ragged": false, "name": "random_contrast_1_input"}, "shared_object_id": 0}, {"class_name": "RandomContrast", "config": {"name": "random_contrast_1", "trainable": true, "dtype": "float32", "factor": {"class_name": "__tuple__", "items": [0.5, 0.5]}, "seed": null}, "shared_object_id": 1}, {"class_name": "RandomFlip", "config": {"name": "random_flip_1", "trainable": true, "dtype": "float32", "mode": "horizontal", "seed": null}, "shared_object_id": 2}, {"class_name": "Conv2D", "config": {"name": "conv2d_4", "trainable": true, "batch_input_shape": {"class_name": "__tuple__", "items": [null, 48, 48, 1]}, "dtype": "float32", "filters": 32, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 3}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 4}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 5}, {"class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_4", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}, "shared_object_id": 6}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization_4", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 7}, "gamma_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 8}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 9}, "moving_variance_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 10}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "shared_object_id": 11}, {"class_name": "Conv2D", "config": {"name": "conv2d_5", "trainable": true, "dtype": "float32", "filters": 64, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 12}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 13}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 14}, {"class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_5", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}, "shared_object_id": 15}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization_5", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 16}, "gamma_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 17}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 18}, "moving_variance_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 19}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "shared_object_id": 20}, {"class_name": "Conv2D", "config": {"name": "conv2d_6", "trainable": true, "dtype": "float32", "filters": 128, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 21}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 22}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 23}, {"class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_6", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}, "shared_object_id": 24}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization_6", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 25}, "gamma_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 26}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 27}, "moving_variance_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 28}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "shared_object_id": 29}, {"class_name": "Conv2D", "config": {"name": "conv2d_7", "trainable": true, "dtype": "float32", "filters": 256, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 30}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 31}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 32}, {"class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_7", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}, "shared_object_id": 33}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization_7", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 34}, "gamma_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 35}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 36}, "moving_variance_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 37}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "shared_object_id": 38}, {"class_name": "Flatten", "config": {"name": "flatten_1", "trainable": true, "dtype": "float32", "data_format": "channels_last"}, "shared_object_id": 39}, {"class_name": "Dense", "config": {"name": "dense_3", "trainable": true, "dtype": "float32", "units": 128, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 40}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 41}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 42}, {"class_name": "Dropout", "config": {"name": "dropout_2", "trainable": true, "dtype": "float32", "rate": 0.2, "noise_shape": null, "seed": null}, "shared_object_id": 43}, {"class_name": "Dense", "config": {"name": "dense_4", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 44}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 45}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 46}, {"class_name": "Dropout", "config": {"name": "dropout_3", "trainable": true, "dtype": "float32", "rate": 0.2, "noise_shape": null, "seed": null}, "shared_object_id": 47}, {"class_name": "Dense", "config": {"name": "dense_5", "trainable": true, "dtype": "float32", "units": 7, "activation": "softmax", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 48}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 49}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 50}]}}, "training_config": {"loss": "categorical_crossentropy", "metrics": [[{"class_name": "MeanMetricWrapper", "config": {"name": "accuracy", "dtype": "float32", "fn": "categorical_accuracy"}, "shared_object_id": 52}]], "weighted_metrics": null, "loss_weights": null, "optimizer_config": {"class_name": "Adam", "config": {"name": "Adam", "learning_rate": 0.0010000000474974513, "decay": 0.0, "beta_1": 0.8999999761581421, "beta_2": 0.9990000128746033, "epsilon": 1e-07, "amsgrad": false}}}}2 +�root.layer-0"_tf_keras_layer*�{"name": "random_contrast_1", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": true, "class_name": "RandomContrast", "config": {"name": "random_contrast_1", "trainable": true, "dtype": "float32", "factor": {"class_name": "__tuple__", "items": [0.5, 0.5]}, "seed": null}, "shared_object_id": 1}2 +�root.layer-1"_tf_keras_layer*�{"name": "random_flip_1", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": true, "class_name": "RandomFlip", "config": {"name": "random_flip_1", "trainable": true, "dtype": "float32", "mode": "horizontal", "seed": null}, "shared_object_id": 2, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": 4, "max_ndim": null, "min_ndim": null, "axes": {}}, "shared_object_id": 53}}2 +� +root.layer_with_weights-0"_tf_keras_layer*� +{"name": "conv2d_4", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": {"class_name": "__tuple__", "items": [null, 48, 48, 1]}, "stateful": false, "must_restore_from_config": false, "class_name": "Conv2D", "config": {"name": "conv2d_4", "trainable": true, "batch_input_shape": {"class_name": "__tuple__", "items": [null, 48, 48, 1]}, "dtype": "float32", "filters": 32, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 3}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 4}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 5, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 4, "axes": {"-1": 1}}, "shared_object_id": 54}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 48, 48, 1]}}2 +�root.layer-3"_tf_keras_layer*�{"name": "max_pooling2d_4", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_4", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}, "shared_object_id": 6, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": 4, "max_ndim": null, "min_ndim": null, "axes": {}}, "shared_object_id": 55}}2 +� root.layer_with_weights-1"_tf_keras_layer*�{"name": "batch_normalization_4", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "BatchNormalization", "config": {"name": "batch_normalization_4", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 7}, "gamma_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 8}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 9}, "moving_variance_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 10}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "shared_object_id": 11, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": 4, "max_ndim": null, "min_ndim": null, "axes": {"3": 32}}, "shared_object_id": 56}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 23, 23, 32]}}2 +� root.layer_with_weights-2"_tf_keras_layer*� {"name": "conv2d_5", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Conv2D", "config": {"name": "conv2d_5", "trainable": true, "dtype": "float32", "filters": 64, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 12}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 13}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 14, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 4, "axes": {"-1": 32}}, "shared_object_id": 57}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 23, 23, 32]}}2 +�root.layer-6"_tf_keras_layer*�{"name": "max_pooling2d_5", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_5", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}, "shared_object_id": 15, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": 4, "max_ndim": null, "min_ndim": null, "axes": {}}, "shared_object_id": 58}}2 +� root.layer_with_weights-3"_tf_keras_layer*�{"name": "batch_normalization_5", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "BatchNormalization", "config": {"name": "batch_normalization_5", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 16}, "gamma_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 17}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 18}, "moving_variance_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 19}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "shared_object_id": 20, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": 4, "max_ndim": null, "min_ndim": null, "axes": {"3": 64}}, "shared_object_id": 59}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 10, 10, 64]}}2 +� root.layer_with_weights-4"_tf_keras_layer*� {"name": "conv2d_6", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Conv2D", "config": {"name": "conv2d_6", "trainable": true, "dtype": "float32", "filters": 128, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 21}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 22}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 23, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 4, "axes": {"-1": 64}}, "shared_object_id": 60}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 10, 10, 64]}}2 +� +root.layer-9"_tf_keras_layer*�{"name": "max_pooling2d_6", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_6", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}, "shared_object_id": 24, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": 4, "max_ndim": null, "min_ndim": null, "axes": {}}, "shared_object_id": 61}}2 +� root.layer_with_weights-5"_tf_keras_layer*�{"name": "batch_normalization_6", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "BatchNormalization", "config": {"name": "batch_normalization_6", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 25}, "gamma_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 26}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 27}, "moving_variance_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 28}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "shared_object_id": 29, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": 4, "max_ndim": null, "min_ndim": null, "axes": {"3": 128}}, "shared_object_id": 62}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 4, 4, 128]}}2 +� root.layer_with_weights-6"_tf_keras_layer*� {"name": "conv2d_7", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Conv2D", "config": {"name": "conv2d_7", "trainable": true, "dtype": "float32", "filters": 256, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 30}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 31}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 32, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 4, "axes": {"-1": 128}}, "shared_object_id": 63}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 4, 4, 128]}}2 +� root.layer-12"_tf_keras_layer*�{"name": "max_pooling2d_7", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_7", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}, "shared_object_id": 33, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": 4, "max_ndim": null, "min_ndim": null, "axes": {}}, "shared_object_id": 64}}2 +� root.layer_with_weights-7"_tf_keras_layer*�{"name": "batch_normalization_7", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "BatchNormalization", "config": {"name": "batch_normalization_7", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 34}, "gamma_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 35}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 36}, "moving_variance_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 37}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "shared_object_id": 38, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": 4, "max_ndim": null, "min_ndim": null, "axes": {"3": 256}}, "shared_object_id": 65}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 1, 1, 256]}}2 +� root.layer-14"_tf_keras_layer*�{"name": "flatten_1", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Flatten", "config": {"name": "flatten_1", "trainable": true, "dtype": "float32", "data_format": "channels_last"}, "shared_object_id": 39, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 1, "axes": {}}, "shared_object_id": 66}}2 +�root.layer_with_weights-8"_tf_keras_layer*�{"name": "dense_3", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Dense", "config": {"name": "dense_3", "trainable": true, "dtype": "float32", "units": 128, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 40}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 41}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 42, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 256}}, "shared_object_id": 67}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 256]}}2 +� root.layer-16"_tf_keras_layer*�{"name": "dropout_2", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Dropout", "config": {"name": "dropout_2", "trainable": true, "dtype": "float32", "rate": 0.2, "noise_shape": null, "seed": null}, "shared_object_id": 43}2 +�root.layer_with_weights-9"_tf_keras_layer*�{"name": "dense_4", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Dense", "config": {"name": "dense_4", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 44}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 45}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 46, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 128}}, "shared_object_id": 68}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 128]}}2 +� root.layer-18"_tf_keras_layer*�{"name": "dropout_3", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Dropout", "config": {"name": "dropout_3", "trainable": true, "dtype": "float32", "rate": 0.2, "noise_shape": null, "seed": null}, "shared_object_id": 47}2 +�root.layer_with_weights-10"_tf_keras_layer*�{"name": "dense_5", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Dense", "config": {"name": "dense_5", "trainable": true, "dtype": "float32", "units": 7, "activation": "softmax", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 48}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 49}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 50, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 64}}, "shared_object_id": 69}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 64]}}2 +��root.keras_api.metrics.0"_tf_keras_metric*�{"class_name": "Mean", "name": "loss", "dtype": "float32", "config": {"name": "loss", "dtype": "float32"}, "shared_object_id": 70}2 +��root.keras_api.metrics.1"_tf_keras_metric*�{"class_name": "MeanMetricWrapper", "name": "accuracy", "dtype": "float32", "config": {"name": "accuracy", "dtype": "float32", "fn": "categorical_accuracy"}, "shared_object_id": 52}2 \ No newline at end of file diff --git a/models/exp904/saved_model.pb b/models/exp904/saved_model.pb new file mode 100644 index 0000000000000000000000000000000000000000..98b69fc00bc7d4868df097429d5d48f5a58668b7 Binary files /dev/null and b/models/exp904/saved_model.pb differ diff --git a/models/exp904/variables/variables.data-00000-of-00001 b/models/exp904/variables/variables.data-00000-of-00001 new file mode 100644 index 0000000000000000000000000000000000000000..d08cbc259e1c977e2482fdc7e491ee9769791531 Binary files /dev/null and b/models/exp904/variables/variables.data-00000-of-00001 differ diff --git a/models/exp904/variables/variables.index b/models/exp904/variables/variables.index new file mode 100644 index 0000000000000000000000000000000000000000..d82973b035b0071ae40271115e84ac58e37ea6b5 Binary files /dev/null and b/models/exp904/variables/variables.index differ diff --git a/models/exp905/keras_metadata.pb b/models/exp905/keras_metadata.pb new file mode 100644 index 0000000000000000000000000000000000000000..bcaed56d1aaf5c93ecb85881e3bbeb5954ea6fc8 --- /dev/null +++ b/models/exp905/keras_metadata.pb @@ -0,0 +1,25 @@ + +�root"_tf_keras_sequential*ː{"name": "my_model", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "must_restore_from_config": false, "class_name": "MyModel", "config": {"name": "my_model", "layers": [{"class_name": "InputLayer", "config": {"batch_input_shape": {"class_name": "__tuple__", "items": [null, 48, 48, 1]}, "dtype": "float32", "sparse": false, "ragged": false, "name": "conv2d_input"}}, {"class_name": "Conv2D", "config": {"name": "conv2d", "trainable": true, "batch_input_shape": {"class_name": "__tuple__", "items": [null, 48, 48, 1]}, "dtype": "float32", "filters": 32, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "MaxPooling2D", "config": {"name": "max_pooling2d", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}}, {"class_name": "Conv2D", "config": {"name": "conv2d_1", "trainable": true, "dtype": "float32", "filters": 64, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_1", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization_1", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}}, {"class_name": "Conv2D", "config": {"name": "conv2d_2", "trainable": true, "dtype": "float32", "filters": 128, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_2", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization_2", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}}, {"class_name": "Conv2D", "config": {"name": "conv2d_3", "trainable": true, "dtype": "float32", "filters": 256, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_3", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization_3", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}}, {"class_name": "Flatten", "config": {"name": "flatten", "trainable": true, "dtype": "float32", "data_format": "channels_last"}}, {"class_name": "Dense", "config": {"name": "dense", "trainable": true, "dtype": "float32", "units": 128, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dropout", "config": {"name": "dropout", "trainable": true, "dtype": "float32", "rate": 0.3, "noise_shape": null, "seed": null}}, {"class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dropout", "config": {"name": "dropout_1", "trainable": true, "dtype": "float32", "rate": 0.3, "noise_shape": null, "seed": null}}, {"class_name": "Dense", "config": {"name": "dense_2", "trainable": true, "dtype": "float32", "units": 7, "activation": "softmax", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}]}, "shared_object_id": 49, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 4, "axes": {"-1": 1}}, "shared_object_id": 50}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 48, 48, 1]}, "is_graph_network": true, "save_spec": {"class_name": "TypeSpec", "type_spec": "tf.TensorSpec", "serialized": [{"class_name": "TensorShape", "items": [null, 48, 48, 1]}, "float32", "conv2d_input"]}, "keras_version": "2.5.0", "backend": "tensorflow", "model_config": {"class_name": "MyModel", "config": {"name": "my_model", "layers": [{"class_name": "InputLayer", "config": {"batch_input_shape": {"class_name": "__tuple__", "items": [null, 48, 48, 1]}, "dtype": "float32", "sparse": false, "ragged": false, "name": "conv2d_input"}, "shared_object_id": 0}, {"class_name": "Conv2D", "config": {"name": "conv2d", "trainable": true, "batch_input_shape": {"class_name": "__tuple__", "items": [null, 48, 48, 1]}, "dtype": "float32", "filters": 32, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 1}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 2}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 3}, {"class_name": "MaxPooling2D", "config": {"name": "max_pooling2d", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}, "shared_object_id": 4}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 5}, "gamma_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 6}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 7}, "moving_variance_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 8}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "shared_object_id": 9}, {"class_name": "Conv2D", "config": {"name": "conv2d_1", "trainable": true, "dtype": "float32", "filters": 64, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 10}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 11}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 12}, {"class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_1", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}, "shared_object_id": 13}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization_1", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 14}, "gamma_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 15}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 16}, "moving_variance_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 17}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "shared_object_id": 18}, {"class_name": "Conv2D", "config": {"name": "conv2d_2", "trainable": true, "dtype": "float32", "filters": 128, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 19}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 20}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 21}, {"class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_2", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}, "shared_object_id": 22}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization_2", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 23}, "gamma_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 24}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 25}, "moving_variance_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 26}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "shared_object_id": 27}, {"class_name": "Conv2D", "config": {"name": "conv2d_3", "trainable": true, "dtype": "float32", "filters": 256, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 28}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 29}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 30}, {"class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_3", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}, "shared_object_id": 31}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization_3", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 32}, "gamma_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 33}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 34}, "moving_variance_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 35}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "shared_object_id": 36}, {"class_name": "Flatten", "config": {"name": "flatten", "trainable": true, "dtype": "float32", "data_format": "channels_last"}, "shared_object_id": 37}, {"class_name": "Dense", "config": {"name": "dense", "trainable": true, "dtype": "float32", "units": 128, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 38}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 39}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 40}, {"class_name": "Dropout", "config": {"name": "dropout", "trainable": true, "dtype": "float32", "rate": 0.3, "noise_shape": null, "seed": null}, "shared_object_id": 41}, {"class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 42}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 43}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 44}, {"class_name": "Dropout", "config": {"name": "dropout_1", "trainable": true, "dtype": "float32", "rate": 0.3, "noise_shape": null, "seed": null}, "shared_object_id": 45}, {"class_name": "Dense", "config": {"name": "dense_2", "trainable": true, "dtype": "float32", "units": 7, "activation": "softmax", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 46}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 47}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 48}]}}, "training_config": {"loss": "categorical_crossentropy", "metrics": [[{"class_name": "MeanMetricWrapper", "config": {"name": "accuracy", "dtype": "float32", "fn": "categorical_accuracy"}, "shared_object_id": 51}]], "weighted_metrics": null, "loss_weights": null, "optimizer_config": {"class_name": "Adam", "config": {"name": "Adam", "learning_rate": 0.0010000000474974513, "decay": 0.0, "beta_1": 0.8999999761581421, "beta_2": 0.9990000128746033, "epsilon": 1e-07, "amsgrad": false}}}}2 +� +root.layer_with_weights-0"_tf_keras_layer*� +{"name": "conv2d", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": {"class_name": "__tuple__", "items": [null, 48, 48, 1]}, "stateful": false, "must_restore_from_config": false, "class_name": "Conv2D", "config": {"name": "conv2d", "trainable": true, "batch_input_shape": {"class_name": "__tuple__", "items": [null, 48, 48, 1]}, "dtype": "float32", "filters": 32, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 1}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 2}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 3, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 4, "axes": {"-1": 1}}, "shared_object_id": 50}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 48, 48, 1]}}2 +�root.layer-1"_tf_keras_layer*�{"name": "max_pooling2d", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "MaxPooling2D", "config": {"name": "max_pooling2d", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}, "shared_object_id": 4, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": 4, "max_ndim": null, "min_ndim": null, "axes": {}}, "shared_object_id": 52}}2 +� root.layer_with_weights-1"_tf_keras_layer*�{"name": "batch_normalization", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "BatchNormalization", "config": {"name": "batch_normalization", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 5}, "gamma_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 6}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 7}, "moving_variance_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 8}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "shared_object_id": 9, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": 4, "max_ndim": null, "min_ndim": null, "axes": {"3": 32}}, "shared_object_id": 53}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 23, 23, 32]}}2 +� root.layer_with_weights-2"_tf_keras_layer*� {"name": "conv2d_1", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Conv2D", "config": {"name": "conv2d_1", "trainable": true, "dtype": "float32", "filters": 64, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 10}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 11}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 12, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 4, "axes": {"-1": 32}}, "shared_object_id": 54}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 23, 23, 32]}}2 +�root.layer-4"_tf_keras_layer*�{"name": "max_pooling2d_1", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_1", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}, "shared_object_id": 13, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": 4, "max_ndim": null, "min_ndim": null, "axes": {}}, "shared_object_id": 55}}2 +� root.layer_with_weights-3"_tf_keras_layer*�{"name": "batch_normalization_1", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "BatchNormalization", "config": {"name": "batch_normalization_1", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 14}, "gamma_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 15}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 16}, "moving_variance_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 17}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "shared_object_id": 18, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": 4, "max_ndim": null, "min_ndim": null, "axes": {"3": 64}}, "shared_object_id": 56}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 10, 10, 64]}}2 +� root.layer_with_weights-4"_tf_keras_layer*� {"name": "conv2d_2", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Conv2D", "config": {"name": "conv2d_2", "trainable": true, "dtype": "float32", "filters": 128, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 19}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 20}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 21, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 4, "axes": {"-1": 64}}, "shared_object_id": 57}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 10, 10, 64]}}2 +�root.layer-7"_tf_keras_layer*�{"name": "max_pooling2d_2", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_2", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}, "shared_object_id": 22, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": 4, "max_ndim": null, "min_ndim": null, "axes": {}}, "shared_object_id": 58}}2 +� root.layer_with_weights-5"_tf_keras_layer*�{"name": "batch_normalization_2", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "BatchNormalization", "config": {"name": "batch_normalization_2", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 23}, "gamma_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 24}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 25}, "moving_variance_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 26}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "shared_object_id": 27, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": 4, "max_ndim": null, "min_ndim": null, "axes": {"3": 128}}, "shared_object_id": 59}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 4, 4, 128]}}2 +� +root.layer_with_weights-6"_tf_keras_layer*� {"name": "conv2d_3", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Conv2D", "config": {"name": "conv2d_3", "trainable": true, "dtype": "float32", "filters": 256, "kernel_size": {"class_name": "__tuple__", "items": [3, 3]}, "strides": {"class_name": "__tuple__", "items": [1, 1]}, "padding": "valid", "data_format": "channels_last", "dilation_rate": {"class_name": "__tuple__", "items": [1, 1]}, "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 28}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 29}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 30, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 4, "axes": {"-1": 128}}, "shared_object_id": 60}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 4, 4, 128]}}2 +� root.layer-10"_tf_keras_layer*�{"name": "max_pooling2d_3", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_3", "trainable": true, "dtype": "float32", "pool_size": {"class_name": "__tuple__", "items": [2, 2]}, "padding": "valid", "strides": {"class_name": "__tuple__", "items": [2, 2]}, "data_format": "channels_last"}, "shared_object_id": 31, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": 4, "max_ndim": null, "min_ndim": null, "axes": {}}, "shared_object_id": 61}}2 +� root.layer_with_weights-7"_tf_keras_layer*�{"name": "batch_normalization_3", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "BatchNormalization", "config": {"name": "batch_normalization_3", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 32}, "gamma_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 33}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 34}, "moving_variance_initializer": {"class_name": "Ones", "config": {}, "shared_object_id": 35}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "shared_object_id": 36, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": 4, "max_ndim": null, "min_ndim": null, "axes": {"3": 256}}, "shared_object_id": 62}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 1, 1, 256]}}2 +� root.layer-12"_tf_keras_layer*�{"name": "flatten", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Flatten", "config": {"name": "flatten", "trainable": true, "dtype": "float32", "data_format": "channels_last"}, "shared_object_id": 37, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 1, "axes": {}}, "shared_object_id": 63}}2 +�root.layer_with_weights-8"_tf_keras_layer*�{"name": "dense", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Dense", "config": {"name": "dense", "trainable": true, "dtype": "float32", "units": 128, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 38}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 39}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 40, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 256}}, "shared_object_id": 64}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 256]}}2 +� root.layer-14"_tf_keras_layer*�{"name": "dropout", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Dropout", "config": {"name": "dropout", "trainable": true, "dtype": "float32", "rate": 0.3, "noise_shape": null, "seed": null}, "shared_object_id": 41}2 +�root.layer_with_weights-9"_tf_keras_layer*�{"name": "dense_1", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 42}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 43}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 44, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 128}}, "shared_object_id": 65}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 128]}}2 +� root.layer-16"_tf_keras_layer*�{"name": "dropout_1", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Dropout", "config": {"name": "dropout_1", "trainable": true, "dtype": "float32", "rate": 0.3, "noise_shape": null, "seed": null}, "shared_object_id": 45}2 +�root.layer_with_weights-10"_tf_keras_layer*�{"name": "dense_2", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Dense", "config": {"name": "dense_2", "trainable": true, "dtype": "float32", "units": 7, "activation": "softmax", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 46}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 47}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 48, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 64}}, "shared_object_id": 66}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 64]}}2 +��root.keras_api.metrics.0"_tf_keras_metric*�{"class_name": "Mean", "name": "loss", "dtype": "float32", "config": {"name": "loss", "dtype": "float32"}, "shared_object_id": 67}2 +��root.keras_api.metrics.1"_tf_keras_metric*�{"class_name": "MeanMetricWrapper", "name": "accuracy", "dtype": "float32", "config": {"name": "accuracy", "dtype": "float32", "fn": "categorical_accuracy"}, "shared_object_id": 51}2 \ No newline at end of file diff --git a/models/exp905/saved_model.pb b/models/exp905/saved_model.pb new file mode 100644 index 0000000000000000000000000000000000000000..c729383de58fcf29a7fa0b6696abf1386091a8d3 Binary files /dev/null and b/models/exp905/saved_model.pb differ diff --git a/models/exp905/variables/variables.data-00000-of-00001 b/models/exp905/variables/variables.data-00000-of-00001 new file mode 100644 index 0000000000000000000000000000000000000000..bbf2fe2fbdbd14ce286bf36d5c8ef70707b5c515 Binary files /dev/null and b/models/exp905/variables/variables.data-00000-of-00001 differ diff --git a/models/exp905/variables/variables.index b/models/exp905/variables/variables.index new file mode 100644 index 0000000000000000000000000000000000000000..3968f649daf7a6e068365a2288c2971032c5d67a Binary files /dev/null and b/models/exp905/variables/variables.index differ