{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "name": "Chats_2", "provenance": [], "collapsed_sections": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "accelerator": "GPU" }, "cells": [ { "cell_type": "code", "metadata": { "id": "PCm9Pehz7w05" }, "source": [ "import tensorflow as tf\n", "import glob\n", "import imageio\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import os\n", "import PIL\n", "from tensorflow.keras import layers\n", "from tensorflow.keras.models import Model\n", "\n", "import time\n", "import matplotlib.pyplot as plt \n", "import glob\n", "from IPython import display" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "PHYsYgN_-T9Q" }, "source": [ "def generate_samples(generator,number=16,save = False, file_name = 'image_sample.png'):\n", " noise_dim = 128+34 #change dim if needed\n", " seed = tf.random.normal([number, noise_dim])\n", " predictions = generator(seed, training=False)\n", " fig = plt.figure(figsize=(7,7))\n", " for i in range(predictions.shape[0]):\n", " plt.subplot(4, 4, i+1)\n", " nparray = np.array(((predictions[i, :, :, :]*127.5)+127.5)).astype(int)\n", " pil_image = PIL.Image.fromarray(np.uint8(nparray))\n", " enhancer = PIL.ImageEnhance.Contrast(pil_image)\n", " plt.imshow(enhancer.enhance(0.6))\n", " plt.axis('off')\n", " if save :\n", " plt.savefig(file_name)\n", " plt.show()\n", "#generate_samples(generator)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "aeVeAn0k-ktG" }, "source": [ "Import dataset" ] }, { "cell_type": "code", "metadata": { "id": "1iESP6_u-kUQ" }, "source": [ "!unzip \"/content/drive/MyDrive/dataset cats/cats128.zip\" -d /\n" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "fE1mgPjQ-v0O" }, "source": [ "Load **dataset** and preprocess values" ] }, { "cell_type": "code", "metadata": { "id": "RbMz3DiO-vHu", "colab": { "base_uri": "https://localhost:8080/", "height": 341 }, "outputId": "bbe66b17-80ef-4cfd-cdd6-b591ec042f74" }, "source": [ "imageFolderPath = '/content/cats_bigger_than_128x128'\n", "imagePath = glob.glob(imageFolderPath+'/*.jpg') \n", "im_array = np.array( [np.array((PIL.Image.open(i)).resize((128,128))) for i in imagePath ])\n", "print(im_array.shape)\n", "plt.figure(figsize=(5,5))\n", "plt.imshow(im_array[20])\n", "train_images = im_array.reshape(im_array.shape[0], 128, 128, 3).astype('float32')\n", "train_images = (train_images - 127.5) / 127.5 # Normalize the images to [-1, 1]" ], "execution_count": null, "outputs": [ { "output_type": "stream", "text": [ "(5388, 128, 128, 3)\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAATgAAAEyCAYAAABu5MwMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9z45ly5Lm9TNz97Uj8txbt6AbIfFnwIA5I3gCJGZMgRmTnsADwJugHjDmCVriGXoMEqiEhOgegYCqe09m7LXczRh85mvHuV2nCiSuOquU6yhOZkbs2Hst/2P22WefmVtm8uP6cf24flx/Hy//l30DP64f14/rx/Wnun4YuB/Xj+vH9ff2+mHgflw/rh/X39vrh4H7cf24flx/b68fBu7H9eP6cf29vX4YuB/Xj+vH9ff2+pMZODP7j8zsfzKzvzCz/+pP9Tk/rh/Xj+vH9WuX/Sl0cGbWgP8Z+A+Bfwb8U+A/zcz/8f/3D/tx/bh+XD+uX7n+VAju3wf+IjP/l8w8gf8O+I//RJ/14/px/bh+XH/t1f9E7/tvAv/bp3//M+A/+LUX//Rl5L/yuze8GYbh5phZ/TTrK+7XZ/1PfyZJkvH6/i9fGPqLJXpHw2zbdf/0uk9/uVGtvf5//89An1i/ka/XZJKpzzNc3zW/fwfLeu/89BnJRtHGH6Ppz5//ev19twGR+em+Pt271ffS6zf2OARYfPp4IzHI/fp9P3nfKvUse3wjg8zAjPoy3A1wzF13435/nlner814fS6YPqse4TXO/OLzMyEz/3hacDfMdF95T13NtSX2aVx+MeyfnjEWROyx+zzHdU9m9G719xqXeqPP45QJ5obvca/nea3jPS11v+vT+1DvbYmZnom0eiYN3F4Dek//NE58erD7Q+p9+KPXGS9ME/uBX2P9R//OgKgvMonU/TVvmDmtt3qeWmG5XgNN1hqk7kXrQfs0az7znv9fzG/NgZmR+cfjB97uYQHgn//v5/+Rmf8af831pzJwf+tlZv8I+EcAv/uzg//iP//3+LPfvDNG562/033gtVCDbyQfL6OSsJaRGcx1sVbw/DaJlUQ4pH2yBx+QF94W7oH7QfM3jIbnQWYt8EzIqYFe+tOzYTjNE/cEO8APgotlF5GLiAvD6Oh+1vkHMoPmD33Xv4AP0i+wSa4T1hMiyFhkLjIujMBslaG0WiMOCa2DG5hPzEKLJOG6gvO5yHQyh4xPBGB4H4Cz5oNI1xjahfWvWHuyFsQyIjqxBmQj4yBjEedXMoJrQoaR+Qa0GnP49vGV5/XkGHAcMI7B29uD1gbjeKe1xvF2YB7Qfo/54u3NaQ3yglyQq5PhxAzWWrgbzeUPvBkRyXUuYgXnRxAB1wwiE+8N3Hi8DfrRWGGsZayYzHniLRjHws1o3skwrqeTy1jPRUYw15OIxde/Mp7fjAj9XA6pa1N643g0/tV/+KA1aOMJLOb8IHIx58WKxZwQKzmOg3EMGTqH5o3ejtswgr6XCc+PizWDyEnmwvvEfHGMwRgHaxnX6Zg13B6YJ62fuBvH8ZBxL+sVOUniNpbj6IyjgSfmMjTmHWi4v5MkK75pIlifHDNkTiB4foPnB5zP5NvXxZrBeV2MfvBnf/Y7xjj43Z//jtY74UkSPK8/sOIELj1TM8wd90HvB7EW85ystTivk7WC83kRK7jOyVrJnINIp/mB+9DaxoEgWYzD+fJTx7sxDnmR//q/+Yv/9dfszJ/KwP1z4N/+9O9/q753X5n5j4F/DPBv/Ou/yfOZ5E8Dt4PW32ht4CTCF0biRAYRCzNjDCNiFSqazHWyZkA0wOntgVvDzXGLMnCrDNwDaFgOGcuIMmwdMlgRRC4WCSxsActqZ55gF2YnySQ5MTdWG/Iub49CME1olAtYxDplOOMk4yQiiflCAUbS2mJPJABlrFlOumEsGUFzMKP1ZCSsFczrJFMbFSDXLHcXOEbWRoppsBqZDcsGsxPXkDGNLoOaQRC0NKKgV+JcK1ipu0sMvGOt0dqgt4c86rrAgm4GBDMWmUFkx9Jr0RsrJxET+qI1IcIrg2ad1r/gAV6AYOVXIhc+ytDbO2aDdS3mXJi+yVon13zSzRjWtZHzeTtEGfRGhtU6SI4HkDDXZM0Lb0ZrE3MhoOPo9CPxZrihzZYHWY7EWIye0DXnmUAYkQ5hEDLefQAkcz7lPJvhDcw7RiMSIoXOEiPTIb0Q1CUHYB0hr58LBTUhvRhAx3vgHuV4krmC61qYDbo/sOb0nqQtIuWgr0sOc/R3mg2uK1kzWRfEqnWUT/qAx5fk8ej8g3/4hT4671/APVnZIDs/+e+AwF3AZK5gLhnG5/NJRrDyKsTaMYKYq4y5HOjPv3/jPMssGfTjoh8Tb4H3YJ6DGY3eB+/vv/0XEPIfX38qA/dPgX/XzP4dZNj+E+A/+7UXawEqTjFz3Dutdcht4CZkL5QD2A4FwMIq9FlCL1nBVGa9ruOeCnvdNbAudGPZ6vWKnTJT68crRKg4OD6Hf7HwCvMUMiwZh4LkVobO3O6w1XJhS2iN1IbPEOSnoLl/Dn/YfweFcXaHVjtANpP38rajk2CHkgpvEsv8xLLqKRR6uJ4fL8PW6s8yqLzCK99GriLJ+EUIXGiHjlkrpBKap/0cO8xKh2yaE8pfsDATcs2Q8/L9DPX5upFF2pJBsFfguSJZK/X9JgQtRNwU2tQDZyaRyAGkntFdNEhrSRu6F6FD6L3Cb4c2KOcop2IVsluFe7p/u9flni8wArAoaqImInNpbrxjGK0pnJ+zDKL5ax6pcY9FmgOt5lIoKzNgo3eK3in06A6sJFbSBP+xtLqX11qLUNhIOliriGaHpboF90XrcDyMx3vn8d4ZozEeYJ74cjIdb00IvAzceS24FmvFa23fEbxXiOmv5whnzs68OrH3iSXWlhyuB5GuvRPQW8N9j8lff/1JDFxmTjP7L4H/vmblv83M/+HXXh+5+Pj4A/BntG68vQ/eHm/ECln9CFYkkcGKpqVlRsRkrWcZuEmsWUbDIJsm1h806yxbYOtlPA3cQ4PdF0YyDk2CXeIfNq+XKQTjy4QsaHTeEFfxBu5YP8CdbK0mUSHD+vhKzos4g5jy+ntSM9enDeis6w03aGUcrTjJTBktizIufoHPV4hhTmsHaY7bgyxEEkSF+eC4Nlw6mUuG2RZO0r1r0ciEQQ4M6O1BpvPxlCFZU0ag02m90bLB2cAPPN9k2Hy+OBd3mn0RAsyDjIY3x92I/L+Ya4o2sCDSyBysOTjLgHh3uhtjDXp48VSwd0mcGpeICTmJWGQYsRrreWCemDkRwXWdxAqYcpytOe7O403h3Hka7VJIt0Pl3qEPow0huu0320gskpxyqmMMWutEGBHUepURWrno6YzRyycsHBhdIfBGIMnAwuj9jd7fuEjiCsJPFj/LgLdONmOmUPickJG4T0UA3rF+cAXMjyTWIOLAzLG2SIPrkmOd8yASepvQkvSTZSdhRjjQhcS+fHF+2xp9NN7eD/ow3n/S3hk9ZNSjkzTMZMgiP1hczAiuGeDB421orUdnzuRjJRnBOILWEqPTp7EiGY+LuZ6suOjD6b0xp/H1Q+49+EpvT54f1yc+/a+//mQcXGb+E+Cf/L98LWuemCXuMEbjeHTWtcSPrU6uJd7Kbt8pT3gTsqkQLBTeadEPPA2zDkX4p8vbmGuozINmWtibu20YEfs9KxzD8AUtkpZGp5X1M3nXLgOTvdXrZxmxb+IGV8oeWZHE+cmr3QR51/N5w00hEdjLm27CNSnORM9qmBCUN7Ch169Cs1nhLr6p2/LksuDieIIwEQH6T+jO/RB/V+F/CgZV2F9obwr5WXahGaKQl78MnZnCuhR9sMnjFQEEeMqJhJPmrCkk0rtmo/emZyoEv3HsTuBkQBY3SYV3sToWiTV5+1VzYLGTTRqLNhqdTtKJ2qTmWodtGK0b1ipyKBTttafMo6gFp/fO2szC5rRykTnF7xWC0xiZQlTfiA8hRDrNB70dhAdms6buVFTheuYoxLYiiEiaBW5GmmiDiKWIKAo1Y5jLfYmOgYiuz+26p7STYBFmpIE1hbvjcfD+3svADbxBP5ac5j0OQpc7kogIIi7iTkxoT+9kglnyNDmN1hpm0FfHzTiOCbawecE6ae3ArAndnXq/FSdX81oP/3JC1P9vV6ZgrGmiW1eGRtkmcAaN2pTFl0UsIpI5O2stzN5wa6R9iOxfivetTbINmgv12Q4BUoR1ruRaZ3F5cQMEo92ZP8H6qQXtC6fRrDZrDhIjXLxVxNQCqkxA804bBnSyLSKfRJ54a3TFH2RGRQ6rwpZXNm7nqHKjN9A4AFi7w2Fc3zNOPGG4wrK4E1utQtKJIWN1v2/da2ZhOJMT2AmAj48P5lyMozG60Uz7LWawMmh0uge0wIYMQ390rDmtDJyVMRLpHdtWMGdZjlQYGwSsp7i6JtTWx7ucTeg+5xJCMjpuzgxnzU7iNBwLI1aCLSG7FcxnY02YTzmHiGQci7dHpw8jcMJaGeUs3kwhpDfRHlnjZMpxcHgDOm4dMxm53jt+nUQliTSfXiE8tzNbMwkLJQfkifCWtB60vmhr4mNqbuzAm9MeDzkWOwDj/V0eOZcc8bLGc77WSDug98Ttkyu0jhJnveiKk7BJ5JNkAp3WhLRbb4wxeLwd9D44jrdC0TJwud+rDYzOeS7WWqyUwzrGweiDndXOWmNrJkawZvB8NtZKrtGIacyl0PQ6IS7j+QzIyZxLSacMIgN3+Bbn3xUDBxnybOamMKYZni4P0DqO34shYhFpetjViOgYR/EzIjHXqoEpjsf9tlY3NZQBQdyDWjCB3r2yelao7tKk+gSWDJ0JVlt54KSM1BLHEgvIpFvDm4whvlixFL5YIj203WEqSyFs88AoeUfClhBs7gSi+KXKjuX++ar7lQXygLNCbSsOzLIpM5WFfLLej6ikiRMcBCZDMpPzuljX5HE8GK3Ti0e7LEnESXohYBpYN3xok+Djfg6orB4VlofJ0OaNLTUWXDhGj1ZI7gBkUDOSnB/EUkLG3GGaEJt1zEYZ8Issp6Xw2pmX8XxCRNK7xvDtLWkdWhrj5r4KwTWvRECZh1ofG5S6dUQ3CM221nE/yEzavNhcojKejc2fUo5njzmWtF78WauEWFt4m7UAOt4arR9gDVDYebw3vBnXKSVBLGOt4sVcxrK/1edNIF043pxmjSS5ivtcXDXuut9xNI5j0EdnHJ3eBr0P7b+b2G1gjruSeVlAZbPHvQ96/1IOTessczFnkpHMucCTmIGbsyb0rzAv3XNOY05RI2st1lJUJKSp7fq32LfvxMCJ8cF9yBtYkaFF5puDpXKSIrH9zpxFaFDPczKvyZxCeJskN1t4k0QjbOKmMG7LEYysQbLKwBqjtZeBsx1yoNCM0CJrSruTXrcaeAYW37BY2JqaxHAsi+BN3W9EkdyV/HAXfA/TxO70Pzm1MHwVarMKR8FMmTfxwIFVyBvIhStcMVrXWOVKweG19WVdxG66ksOAtwqZ3WAZ19xShiRNm2dOhX0a/0JtvrC2sJbQoDXohxyVNRmvtS4yFmudRSUkmb24RRMqciORdMLcWRXaNRdSUCY4ZFCKUG/N7iTCS0sm/jLSmCtv9GuG0Ilb0SIQq5M5ap2sGnNJHMZht0FWlCGDvC7xsq0l7grHkgtLIRNvi+PYIalCr9Yk+Yn0Mu66JzGfIWdQ6xubeFv0I1Ca7aHIxmXYvHlp7iqRVPSFm2n8e6P3cpQhmieurWWUx5vrWcbi0meWs279nd4Oug+aDRoD54BoMjyWQtmmZzczGh+EKeHSmoE9MDtwf6P5wYpJxKnPy4s5g+ualeV9Mq/g979fXGfw7euT61wcvTN+c1RyCOa8uC6Ya3GeCrM/S/9+7fpODJwWQvNB8zJwN1JJhTibeE9XIqCyWorJpZm6rsl1KuQbfYcGgfsFLi1dWMNtiOdqgvqtAZXWN4yjDdxdkgSKNM5Q1rWMy602xCESjyCYWHzF4oL5oczgGmS2QpijUGItfspbjlr8CFFlIcpglYefReC24sY6W0gciQx+m5Whu8paKeTzfuDpLAuFq4WYZCR6iTlfIZKMg8Z4rot5KSwQfwM2oRnSPnnKsLalpEdJH1rf4Z1ho7z9uYiYnPODNU9WZMlShILcFJppA05IZxVPlG1AIYSsUFbP5kJaYfR4Sa/lvByLEKn+2cB1oa1MZOCikdlr/SlbR8rgDAHHm0uKKc3kLAMnx5hkXjJUhcTd4TgMSqZkNdu5OduAtTYDK/QcO+tr4la9LcYjCx0exZUeQrSHniV4CWUV/ej7R3dxXlyQFywn5kanWlvn9U2GtcTSWludbu+M/qC3g2YKvz0HgHjYLWOyJFriZkz7VsDBK3lTiQ07MLrGbqWkV3Ep3Jwncy7Oa3Kdi7/6/QfPj8n6kB/+8v6F4zj0TJ5c03mewXnCz3+YpZP8243cd2HgzJwxHrReCM6RJ3YFTGYuqcIuDgiAxNcrdNvZTinpjT402JtDwV3ez5uU2O4Kq2qBKRSUgWseRaR35fPccTvYpLZVmCwbfMmrn0IoMWdlR6PQXmhT3gtXBL7kBeLr5iUj5SgEwCoUzqeA5a2VA5A2yhCq0jMps5sRxNVujjI3GkzAAm+J5yIpKUVU4B+FkgsVV+62EgaJt0aaeKoZhheBlpZkD7IF6SFesSvjdoyONxnWTIWyGhcrPrAQ4yrZhjnNNRsZSrZkyMhf88JwYimJNNci1rpRj/vCu7LCsGQMvJPZiHUUlzjJECpza1oXBrC4zic+gj5cSZWoTG/IyUpKkWxs3XsR9yaBrSiLhZV+bleGtE/Oayc5Mvd4aKoV1n6SPKSVMTAyau5yFdd6yUBO8dPXnKUsWCRZ67opKWdDziOMWLDOWkOFSFtVnggEGN7EI46j0Qd4ic6zpDgbWUvqoaRLQ8qWM6VNpRB3b0c5YSHDa55c50nkZIaEvpmiCHqXE/jzPxdC3EqBx2Mwhvj1OYPz7PjzwXh0xqMTKwvJJXD+qm35PgycO4/HF47xRu9HeRQtHEcbybwwSxPiMFMiAZcR2eGaV1ZGhLjTh2lju/iqVjIRhXlRk3AhIYhExV7kdeNNnt06gZMpgWzwVJZoTWKexEyub5JtWF4YC3fJBJym7KrJkHobdB8oyyru8VoKVY/+LvLensCsbCPFSyWy8H5zZ96SNsTvYAeLyiSvYF7fCk1YZbxWSRQmaUsZy1AKw6JKm7y0cWjxuoXCjn4QWRUDKZ4sErwpxU8Psi2sO+MYHMfg7SFV7nM9tQFzlrbJyOy3VkuhRt4GzsqDRQSzjMEZzwrvxcGtKUlIi6YwsU26n7CztxxYHuKkrgdzLuYlY/14CN30LsQzr8nHc/Kld46jy2CsjlmWrjJYc91hvZnRh9bojIvIWXxZ4iaRs2EQRuuNx5tkO+fHqnFbrK09wxj9QRuN0RvNvTiqVWi0DFysEmxLcxnXQQR8fDxZlYww1zy5dwnDl5FxQDhrTtbzQ6Ch5B/9KPTbGu7OOB546zJuDfFyEWRO5rzkWOJ571ehV+21K6qSAonbo7/T+86aN65TQt8VEuSXucQwHocQ/Jf3B+Acj6CXNrE5/Pz15OvPJ8+PQf9amjcTx/58nmXg/upXbcv3YeBQSY23VmnjLeasMOCuWywUj0soaYvMXpxOJ0IhiLRfhdfZWVOKc9pJiWDrdoSMtPgsKxuPE6hqQPrXjYpUOhb5e8hFrlme2cTmV9lMLu4EBAA7A1scila4RLSZS5IA+6qF7aeMJYEXbyMR28ZWWZlAYM0K5leR9ltoWuUtYTV8W5yalQHbPJbTR6/QW88RS4v7haLF9YgjNHqHcUjG0apkRk5E3Bdu0qzyqd6w5mBLb6IqHIDiXJvCnEyWRECSLyTFF1nJHjQO7l5Oi09lyjvckvPChRJt15smrOklR1B1gSiABa3E2zlrXVFZU2X2dR9RyKxoE3PchEa1OBXmAaXBk6POTFZMheUIjbVRmdch1GumMru8s4RKWlARxE2mpxW64x7bLEJKpYNgNnGvhFE0lZPFwixphR7dqM9od4Y7A67zKiRcHDOupVT7R4FUPXO41tYn+Y/WfLK2ZmaPIxul9+JmNIauEhCMgepb407wmBvHMch8YxzBeNRYLr2/uRKNf9P1fRg4kycbQ18b/ZQ2m9xGqray2U5lQ+Zb1SK+s9ZkHJPWE2uVQscr5DnkXaJCCFuYXbqBFJRIKSexNaGQnGFEM8KNiCcZTzJ/T/B/6s5sq7AfFX7l5qRFoGeFNUOlYs3FNVlpydYCK2V62O+LJFd44FXKZauxtWnYJwO3FlcE2BAfuZy1WvFDQmKSiSQgDdNW31Oj6b1xjENc3DLWmnw8vzHXgqb7aIKaVZ4E7186b++iAfpo4tyOoI3Eu0EzZln2uRTiEQ3bYfRU6dpaZ22WXVInTtTzIiywNom1eJ5fVV7FF4zO2Fn27koqoqTITuPKYE5ptnoQK1mXEws+uhPT+M2fGW9fgPPJNT/wLi3cztQLKabEwIe4wPOpsi/heaO3ATRWSvBrNsCGwjtbokH3PF0fFeqJT357f6O1zjEGrTWe58mcU/KmCB7HweNQzbTlKC56Fp9Fac3KwBWHupYQ5TGM7rBW41qNuSbnfGIOj167qokj7b3j3rR2Mnk+P7jmB328M/q7jGCXw/RCaN2kw8tZCZjWqoROc64Kk72HNf4CK53WS0v3+Bwav7Sqr8SZys/efzK+/KaSMaYk4vPbxXVN+u9/f/Orv3Z9FwZOAVjxDMW1skG6KTsU6RVO2j2Qyq4EcyZzqt4Qq5pQtwrPRH7iG9GV0WCHfRXiIQ4vAwk0UoO6w19lc9bLq7PrAov0rrsuiImXGt+yY9mUtre4F8IuZXKTt5I92G56I05eBDI7i+yYTaEtdleQFJqMlzdXqLTfRLmNjewkjtbrdveKrKx1VIYv6n5+MScV7o5hSuJ0o1dlgkhlL3V+I63XWLdS+AexojZn3uJnJXvtE7rL2znsZgNk3JISIxi9uKPiDS0dC83zRiMb1nkP2lLGT3ZaIth5da7Lbw4wIplrKtu91+WdqtN42R7RSjq0QpGxhKbvThlOiXi3tnBHCq+MvdDTRmYlm7nLFcXHufdXwi3zBqo780oRK7v+GIPGFmQoCRHFlVrnRtjmLz2ojGQo6XGvETkdccUuidZe03dSgjs6iannVtBU42WbsXxFMepEsqVX9T7boG1EjJWYv937VRrV3ZhCdeKRSryJU/z16/swcBlc6yvui94pBLPu7Z5WQsk7PANIYgVfv118/Xrx9UPyi9/whdEbo0OvBIM7t2FRHag0UrfB5F1cQzyr4lklTrhI67DFYlcOBM0Ouv2uFqVKz6nMkrUpI9AfuHc8HpCNZlMcSivjVijKG/Qm7dQsGUIscTS5lNltDJr73abIbWJjwrpE2MYi4izFvt73GLUIlx5pPhsZkhAo5Jr1PEUDWDDzYmZwXtKOZQoNHfU7o4kX+fJT4/GQ05BwtwOjsnxvmB8kX9hC3jUX8/kkVnKdwbwm57mY5+IYKvtS2KoCcBlqx/INixCfNJPnU6jg/f23jMcD7yfWpkTX27BlqzmWEzjetAmO95N5JTMWcTZ+/sNvmVfHe8fbUMb4ORm9c4yH3mNtowik0kAA6wrC4PjpoI8mvWDNw6qxH90x1G0mQ7wXVCRsxnHsCg1RH2sG80xaPzi6BLLHeANfhD9liK5yDnYSJhYrshOXSv8eXxatS1qygJXJRUBL+vCqEpJsxSpUfD7Fj66p6Kb1wWgPelPCz5vTWjmPCpV3/fNcqhJ5ftN6oWQ6oxJ8vmkHmWGaG/3QeyQJASuXDFlVLLR2SOHQV2VPT+bOuJ4S/H58iNddPNkO/Neu78LAAcUB2R3Hv9CMfrgtvpRocTvWqIqEVZkuOV0rLqO4o+1ByhBl9SiTOHf3LCnkUYXCG1mUnOwmffcy90JBTrVY2vxWSS28+UsicHOHdnNdv3jwW99XWdS7skAIxj5XNWRJZz6NGVAJE3gRUuJJbgRmW1N101jcxm23Z6pXqOyHu5pi8129S1KjShO/0WrSasz3s8jQkCkOMF6o7Zehe830jR4vdj894EZwlq2c0Q0F2IX49umrfgkI0lYB99c9Z6qDC8ggXddi2Gt8BRb3Q+lro3pqXe0Ey2v8/DauW7C8a4f1fq8+anav8f1+n+iMvRrshWxUdjhJvzbeZxfTZd2D6ui1hps7rUVlMD9X4ti9fjNTDWpC62XFbvzwes0vrnxVcCgMT+nR0Z6L/ZW7MYbWoH0a11uovhUPubWlG5U64iZFHTmQa2IZxJpKksy4a9PvdVpL92+6vgsD5+7qcdV2V4ohWHyHK2rH4hZYN/XiKmmD0teqEIiVXOuirUWeT5rPQnB2R6itJ31EldIANFjK4LTjJ8wm3T+ky3J5oO5GWJLTKOG5ALxF8S1BlmBSqXTYiRGl8Gd1o3CR8V0bKVKte9Yqwp9WSE5eP0PGs/klpBQnxPXiKSw5eitjvlgG80Sc4FLY3arWlrwIX3eYad7Lu3r1eZMB7W58GZ1w+Kiys1EG7e1LYwzjeOuls5JQeE4Vcdtq0hKG06KJAF6TXBfzerLmFCK1QfYqOh8wxpNkMdfUfKD2TTHFDTYzzAMOiZhbS7ClGtG+JHaNMvK2ZTonmY3Bb3CML18O1hVc10dJTb4po5fJEVWDaklYJ5aqPbahmRcoYij9XIXKazk9pHFsXsT/UrH6mqb62DIbzSQwpupPV/Uc3EYRNroGLDnnk+sPP2P9wh/f5FjjCxZGXrKKvWzr422UuFdF/1nz4qkmBHNNPp5GeHW2AZ4pEdkGvr05rSzvDm3FLYoemnPx/Jh3EsQMfDu5cty9Swd5PC56T8hO5u6tJ9Qm1JecZ4GRrXO1C7PO6KrDVlXNqh6P+amdFLyNToTz3JTM33B9FwYOwH3H/Ns7b7RRUA00EDvD9im+v78QTyYe6QIuEhGXrVrk+NYgUfqyFA9hqLLhhuJOiX0NKxIV5DvkjLIaKm5UIQ0Tm4epP3eN6w13thctXucOgZA+664hkA8AACAASURBVMX77L5wxaFYgG2tlwzkL7xk3i0BNm3F5nowcJMw927zVJpAfZzfvhe02ANppSIrO7orP9oeH2WkxV8qdM7NGWoi7q+7jRFxz617q4LudY+RwmaA9soGJ4VGrAwbpdejuExuJAe/uAH9Ucmc3gwrQa1FlhYruREn9wR/+lyrcKq+z56v4rnu6r7NadkvAVChIite6f55oTeh1RKu32ir5j5V0udMsqkCx1Lynv2YKo+rTHbfLaBqHW7+7NMt5UaNpJpR1Mfdt1xRSVbnHr/3lcr2ZunuMhRW9qrdVa2uvVDqp52796UVahMXK6ehyL8yrL6bNXwycJUVzkoMJjKod7PoG6T8+vVdGDily9VuKPgUFtq20MV/1V/VCXaQ1yCvDnPR7jDsQyrn/Blb172mxjg4+iC8wzpYofKutSbX+Zc4xvub011dVy1V+9fboO26ygwsUhnA61uRnmctWK/NV+R6GSf30qtvGB87XhXiyzByGUbHcwtXD5Jg8SRSVQJpC7p4vJhUJUCDGBU+SCLSTG17hOSSMdSjq9nCLQn7IOyiddU/EoNc71zTOecHBjzeOxHB8pI29LPaxn0huzMRQlTDRWXftM6KAsiLnM8KtU+ci+ZnoQfVUzY/kK7sCfZUFi8GK2CuE9XNutC7HTR33oayf2NsKkD8zh2+3kkkI2aDHDgPvDW+fJFw+Pk4K8t3EhE8xmC0Xq2WNG/rumoepIczr+SHLcJSJWRpPJ+aH2+uovLmWDi7BZQMo/i8Oad2u+0yw6IafMq5KiwAZvU82+Jgw+Zb7Qll9yOrA8dDvfC8X6QvPs5Q085KUKhb8MRYjCZZVG8XkLS2Q/4dfz/I1fWZkfS82A1mVWpFdUUBqg2VVbVPL/RLrfEztbx3u/FZHXzzDvmrOULCLOd/PC4Jw4f4Ziuq6JY+RQm3IypbvKr86+8CgjOqXQzwaatsKuQTc3R7082PUPomK4+eCClkCsHtrFgPdX7Y2TkptKsb7pSo9hFDFROFJFUnKpK19Y7lwlGL6izZxMrFVq5vDPXHzyaeqtDMpsiqK8MuG7p1dGYVKmzXmztouLlBIYnibyrzlUGVmhWJGy90aGzUY/Ueu9Hk/UMkoRFq2113W9dzhS29zhPcqqrhkwj5F2tsP6fCGcsqffrcMOBGnu1GOULaaq6gRIlqe8trgDmt92pftEvX9ljbzYklexOVhgshOO8SNi+8mqQKpbQuwTSVjDE0tzt7v9817zmrzGQldGwujuIoSbvXjZVm0MwrgaKx8fuW8/UF2tBs5P3iKjdFk2SJ2qk/TRrFxm0sV4gq6P3TXacMxW7//zmDr89Z9bp4OeKF2jU1AYC5rjJW/QZMGzErklLGPqPe4w669LDXdfE8z3vPqp2V7P2MuFFgw1m7xDA1JjJwKofM4vvmVSVjn/naX7m+CwNnllg7SZ5EDiyln7mt8y68rzrB16EiHyQ/gz0ZxwfqbX8pVZVqFW48cAbN3+n+Jl7NG16CzdxdgM1oftCb8XgYxzAeh9FaCNXVBpdxMIxHdSwZ5Apm8WXsJpaz6j33gSZVUyo3XZm+V3wKGZyz2pGXUr6NwNO4lorUbSl9vqZVXakWihT7yo6NtkMX1cKq2J9CuIk1hYeYlUTgUoNC+8DaJejctFHfelegHFomYwx6a7eRfF4n58eit8ExHowxGEM8UqSQ9Lrk+S0l5FSZ1bwbTq5I5lLRu86GkKRDZH6NZXytGswHYzhhCi/XClhKVbQmmdC6UBnalNxCDTiXEr0kLQFruD9uhNurEJ5QCLWmNGzeXq2zLRVGifPNum/1aeupNkP6BIUf3qiMeNeaiAaWd/8zRbQvh3g7qNv415pPv2ugvdXab0UEm+iXdanyYU5npWHxjlWnE1C5Ye/ViguhXmWId9uqqHZKwbqWHH+c+HxyK9/xWr+IGwt1IV6YqndyibMjoFC6mik0Ipy1SlZlV1WL/EHgpQ6wcdQxKGZF2HYJrNxhaCfj4nUIkIGNv9W2fBcGDlIkslWdZG4vw41iXnB6ffr3AoTUWhMpaT5vY6jmejV41jE77p5wWkj7kBdpoTbX03exeLfbuDnchlZtbRSehTXCFApUIaWgwPLKyFU9kiPEdnM+N0tRtIxqCs1KC29W4a2Rq4jd3LWKem+FDVVrOJ10GNW7TKHP7rpQud/Nf9WG3os7UotJSEDkuHnV8iLAkMltlHT76n035/VyGq2pa4YlKs2SjCBXoWLq+7Eq/KMQW1bpmFor6bnXJzSuEiVrDe/Obk2/Uarv/nlZ77OsDIqx++RJ5KzElOPs9FsrvaSbVIZz6qyIjXawHTtURUFyO6fdk3Cv4df/xX/lVgRU1xbp4CrhtV+9NZSF2Grqhbo87qyuvlddcz1vBKukR2WpwwsJx91KSOJwCZNvhUJSjl3JsQ0khDSrQianOMBG9aB7qfAylyp7VnVwXSpTnDGrskDCdH3OFuk3duOIzGTGiRk0l1ha9GMhPK2um+a5aapUpNfvYwH+5nbl8J0YODPnuFu0tCr03fEC7DhPafJ4AWx3vHfaWPQ3xfTBzkDq91rrWDswP8CG6kJx5nry8XHxfF781V/+LM1OGo/H4Kcv4nyWBdaq1fgKaBPaVYt7n26VIl3jlCG6lvQ951GTW+7a0cJsIeNjSfdWm1QF+VZWZ86zenIN3JxH/0L3N87nB3PO8r7i7Zrp1Cbp+hYrPjCC45CHXvvEsEZ1C7YSMuneVgTXOokQ98OC65R2rB/iWY7+uDmXT5Mio1Ci1NaHGj6OTmZwzlko57M8ZAuO9yaWnEeF8Ops4s2rmD1oVRN5xgeKIS8ym1CIWZ1mVTxmE5eZK+7w0YvBUPfcgZvx9jiELCtTrZA/cG+MQqeZOolrScF6G63hD7oZ+eWqUqEPsOKnqoMyqCnBshdyyfS7/rl5hZOVRTVUvaE28SWHscDyqs9PLEpzuDuvJECoTAVlOqwkUZ6Q84MrV3UaLgdrQYZzrW14KsC0d8xChfururmg8sGcVo70NseiM6oq6EJra16ia0Rb+EvwW8mlV6PZGieHo6tTSB8lEM8kZ1S5mrOWusmYrwI/F8kHZp3lB6pm+sKunf616/swcNht3Jq/igtfW8k+fbmSD4U25NVbyRJk/jKy3sLIprpV9WbWAlEb7ovznDyfJz///A035/34Qhb0jlGEJglnkDPUFqi9EOR9pifqI0YGcV2SCpw6Fu/uYeNWZX1a4EINTnre3UE2wRhLON1SZTTdHzSDi0unc93gVm1+sF19kYWO1n1wCrM4ES+H4QYljJW3TFZcFa4qezpn1QN29RzrrRdpvas/ZBSMrZF7IThv1aduFpAtTmcbuD/mhG9nUeGS41UCFXgLnbj0hK1kJ1ULCeJlYu51Yi++POR0wkqzlvvwIWN0OcKLYNmOCrJKkpyk0SMlvJ2fMsP2KrIXatL5AYo4qvNIafuCvKU3rwy5Dj/ayFAlbFvT5dU8c6g8LndkUhlzVtGXuzqmdkY8NR/VNG3nbFdonagFelVDVB+6de3KAhmG1oSC1vpZnGJFf7tv4SeasOZeHXwVdwjBbmG4FqVX1n3fU4A3mr0QoqNmGNYMNWaxO0ERs3i2KfmR98R7RXf2DayzqLbxNzr89ev7MHBmjHZU4XIrOPyp7IjXxhJ5sQW9al6psqR9LuiQFOB+vYp5k9RRdatBwNdvk//7Ly+u8+K8Jr011LVXqvLrVGhLo9LUyqBqsVd4vOODFVh2Xmn/Unmv4n+MO3SW5EPErDgWqqC9cYxRi0ALes1UtwrT2Dz6F5zOWnXAzjJiXnVPwE28V22f6Xg6EmZpiXxVA04bmOmsSnXLqAUN7P7+nl331d9ofbekDs5r1vMJYbamLjCSnag0a8UovVSCqb1RxixDquMNozqaqEdaoU/rEqHuMM3sDmPWdM4EEGH9/FD/v3EcjKMcSjpmS73lUoLeSMef4h5HP4Riy6G8dJTGyoomxoOLpaMY4S5b2/M7DhgYK+Qsj97pdehMVqLnPrlsN8y06qFWrbT2ilaoOFWtUzGKV39Cy1F1tCdmjezV5isUouE6bUuoWG2iiqoHryioMtwbUWFqLZTVGHVGJXpWI5fJoJgE9FnC2i3l2Ek0UQ5Jms4/vcsArSnMNLSXPmls9tmmbkMKiQKf11LX4ijZznXVul5OhOF93dxjViJSSaDJ079VkuPXr+/DwGGvBnu04l7yXgi68n41bNV4Q22qA3UkLbK6wIpO3e6Yu9L7uwwo4Ou3xV/95cmcasDHUZycq13N5U4ztZvJrBOsbq1Z9anbYUIgzier5Ch1zkMsZQ/dUh1/7wwYBBN8CthtLZF9IQPmZUXEBgQcwzHrHOMLvT24rg+mPbkiWHEpAnHnpRkUajQDawppIqZU67PhrYtkt4MMHbybu/8YRkoeXyFw5+hv9NFZ1ymR9TP4eMbdv6+5evmZNyIbkSZHE1ELXWV1a5XUBy/u8KX+V1+zDyw6K9VaoJeOq/so9LHKw0sj9fFNXWAztLF2VYF6s1Vjx1PJGfE3rfqPifBXxq80Z2msgG4Pen9ATp5WJ8DujGCFesfQeKvjcKO7mrWuubPL+7kKyVigo/6Kv8qXQHXrBzOvCk+90HWd97Eu5vks47Ubc4oywMVTRRT6berBZxZVbSP64xdGYOvsuGRkl047i9UheukpU4g5FpUXZVf7wKtWBj/JEjzDrh9VVcLNl5fjzUK3Xscl5oS0ZBXnvqZ6/Z3PqHb/Kra3qwycIxlZtc3SeH7j78aZDEYda7aTDICVsG+Xv2C1KLfR28cAltYsV4kX9f12dzioow4APKvg++K6Lq5zCYlMdQvJKlFW3K/PjGwkJ+mzjNnCSgRJUtnMIvmDu+TFOzJm8WTlwhGR71kdUu+DUWoTMCE/ACUXbD9pwpzfMDtv3kzauSbOpV363Bql3c57v/cehNayxIVNSv1QdxItpkKjRY7JaVCJAHV5yKTa2Lx4M1nQJBl36dZ5KSGSVS6lasiLGR+sdbEbBrSox0H3qeL5pnZXXme4VojWRoU71dk4q3uHyngW13lhXPQBfVQE4BJwq4OvkNp2Pgq5RoWFu/2Q6eDwT8ZRh4uroQMonKZKz4QuZeCau3q5VZR87znLqkGNl5vOl1HfnJ1eW9RHFcHvcr7d/DWtWrlD6QmLmyseMws56ahIhabw4s9ugFBCeqvyq1XhvIznRoO7Y0mWUSs6aBu4PAsR6va3RIY75K/Qu9pJCaqWwL2kHbFNZ1ET66rE2dqtluQMrWQlWWs5KyJX083n32pavgsDZ5YSK9os9FZhYRYkrf9lLtI3X6Pwr/csruRSYbNdGJPWq59WpdIrCSNdz7U4zyfPZ3UXnTr96X5fPzHXKe4ZTvoHWHFfoVXssnXVnx/B9mrmmIAfDctgnh/Eugg+MC5a/oTFg13XmJ5435tA3Yu910Iqwvys09AbP+H2IKaRS00zvZ2qUIhCMvXe8xJSbIfKZHpX8DyvUQf1yMit28AtjFNEt79hXsS8l3YwUvq8ptevedUynQSPKjpPPp5FVJtK1NI+SE6u+U3JExTWhu+EQ/X1b67DhRzJRD4hgHFsgvpkHxC9Zhb6DsiTWJ23HBzHAzzJ/Z6VyJlTaETNUkEt5Ftll51ck2tNlbOlGqDKwFWYt50Z4ngVkens3baPefSN9spxWaIDa4pmSZQBr2hxJ1tkDLZCYPNKr8oAZYLVU04RwYU0nTrAXAvTRYnEovUHzR7s80rUO/DSOjiEXrcMK5aSJG5ChbH22a5ZxrHa9KcV6Agin5BJ890Gye+f3YQdCvfN+i950ZjluK4yeHWC26U1OetsYxndxKKXPKc6/qC2SbDAz1983l93fRcGDlNdm3mWASt4xEu4CVXuUkZPfbLUo8rZ5SsvZGflPW1LRup9tpDUDI6HSoIsjcdD/Iz6Y3V1NCi9F4jvy926OgAU8l7r1PcrDFKmq26FKqWxTnJoMhnqGFvtw2/ynN1/TtolvYk8tRYGMrIWJQvYCKfqVsgKyXfqvDx3bSZ8j0lAN2LOOpdUoZFe3bglNA7bG+uwF6/P2+Vi8+aRtJGpdtMbhU8iJ1RDyX0SGbmPfqs2SruXmme1XlJNo/qoFYqpZxSCMHGI9+KZhQQuEi/E48DQ/W6ao8TKuf/bIme0EbdoPFIdR3QAdCUgWhZXeFukGvIyVnehOpjHHZ7q/UUd7OzxvtTdmMowmowIyobvTKY+Jl97ICtbXryubz6avV/y/tdG3TrfV1URnuIN7b49hXo6Qb4qa9gVKobOy0i2kXNTUb7lzuzsvbijrBoiXklBa1nzPW+HuHlBlUmq7jf23dueH61bN9Pe28Levac97zLEv+n6LgycmTEeHesJFQpqmuXNEvFbt2cj8XQai24HjcDCSoquTeU+1aeMyc60JOpWO6f0UL/97cAsGc04RufL+295HF06uGY0f2K2WFdTun9NVT1U+HjFxcf1B5Gxc2FpOpcTYx8JOI6BtzdmHAoH1sGcg5atlPIXsT6qtcyDXWyeKQGlznk4pbnyb5jNm6BX1YIyjndlQIVde8tFZGlCJU1pQ2T3+fFkzWqDzSoj8lBU2wpFuXgjGULjpZU75T29699t0jqsDBL13l/rQ4aRE+zC26Jl1AHSykKaZbXCuWj7PIfuah0ewfND6Gm3KcoKiY1WAupvwLM8/jfSnNYhaUS+1+cLGaXfW0jIgQqxSfGXs4knjORcJ73D8RAiax3IVNIu8zYQ+6CiqDK9LHrjl51Vij+cn3Vk1ZwyQu2LdhXPp4Sa7jEKSalby4qsEP3krjM1nUmxO7KwDSLO3dsvdPyeuRFVndP7IeOfTyCI/CoOmzdg6Csf6MHU7MBN7fgDhS0Wu19dIbfdly67/t6Bps+Y8Y2tZ0scQvKZtcrxb3DieQ+FVt3eD1chWCWQlOVvr7n4leu7MXDuW3m9W8IU77G9U+WrixljC0EVXs0b86slkdTfXiVX3O9UqOs6xcHNi2bGaK+OB0LbO/XcK+xsEH4XCqsoeJKxpQvBffZeGeGsXmuyDbsbSgNXtweVQ+WLV0wrFfgnhMAWJJenyiwhZQlu82X4dwNDiUsLDQC3dmLXC1JQIqu8pvgRyVKqRK2K6a1+T8jXauOhA527Gu3tIvIs1Nc6sJQB1rpXZ5juOpSFNQnLuwWTmn3W0Ya5s+NCJsrK5id0XkNzIwA5LciSThRqqDWltSBDo2oAIdxdtF1vdo/UHm+qfngtnaer2khTM8n9wRVh3M4zrcb41QZKKOrVzFQAMO7fvZs8elMtLEaGZCSbD8bQoT+xn/Xzep419nlzdnrGzW3lp3vVuG2RdBQ3KNlKVF4q5fDMYXb1I/yjS/cgZGfVrt1KTK3acbvn5aWC4J6LLKlLZC9HUA0ftqpgN2q1T8Z+N0/wvPeMrgb5L9ziL67vxMA5rb1jPMRhfTqGbW9OLEsArOyOFNgfrPiZFU/xM/PCe8ei0fLAcwhJ2TaUi/P64K/+8JecH5Nvv/9g9E7336gEyevkqbtbhpBUTmV91hVc54mZMjixLqzO6rR9ytb+rBT6ua43bA56/wd0/y3Wa6LsBL/EHeY+Hckx2t3Py33UAj9JE9m91uJob4zHTzoJ/HptbBG+4vK88vCxUVe1Rb/FyZXVsjRYkhdYZbFHfyir2wK8kgaxQwWdgPb+k3Ot5JqU0VAN69u7Dli+nvLonn8OGDZOoi2e+XvWOqsppKpGVh1OooJ0qxOfepHXScautCiyneo8XBlIKwQlQbUMnvIXEkMLBW6+Sg1I92aKNVnrwnG166oQOOLifD7V1ruaRYorFfenA310KNGuqNBpknaX3Gb0KiovR8dG0hIWJ6YsdCtpzRK3pJ5/QoNYq3MJxIvd/B1J8pWNQCUM00lamcGMDxkbN72n6XfXeVVLpqpH9kvNAVp1x80Ty2Q+D6GsCg3NX6Gz5RcwaKYKpNbqHIdpWECEhNJhyXLIVGmcHGUrI7i5uYqH2ld0PGZpCZfCUDWaOLEqmdxlglANH/6WGPW7MHBQ9ZF4xfXFqX3yPq9rI55ZhmFzWPJ2+xg9EcjaOFubJv5tcU11Bp0VpajdeYUFWQcdJ0QoBFk31C/jtaON4EY/CilfyFOGGYi638oQ32tRMKOetfHiXKjnybvvllWmyvahJlUc/7Jr21enCNjUIkiiwpDKHG6BKHb/x0aHhXZ3S+qtQ3sBys2xyJB1WklvdA9ryfPuhgAbweysqbuU+m2LePc4eDUxLU3ZRnL3ujVuj72bDkjoze0E98nykrpsL79PTNsPUAg36rs1BxuVbjyG7SJ7HQiEKWuaezzQ2OSNDl+IajsZoNrs14+TT5FEocyiMKy6Ve/uyhuo7nnX3iiOsIxUYe+7bdQ+fCdjr4KdwRBKTsRHRyJdW0pqY/5CTJqzT3ygV/lkHTPJ7SirbTn1GqM6u6RK+oB7QG9++NP43KVpr2f9NCxwI+/Nx0ld8blpZuYO42ti/obruzBwbsajv0ssu/apWjtweMH13YdrreC6Ts7ryXl+6NzMUt6L07ASpx4EpctaF9c8eX5Mvn49madxXg8yGl9/1iJ+Pi+8BefsJMa8Wh3Ecsq7hg6pyTBYQ4mFE4hFrA/IUGtzS3pTOUsuEeZz/YH0J/b2oI2HwEZ7kHmQ8128THVjWPkHFEeIGFdWTIck73WwQoimjVXK7wo/uV6LFtgnUcVs4NuAcS8Wa04b4jJaLdadyDMloUnUPiprUY5H5+hOPw2/DPPGzz+f9KYSMctgtLL/tQZH6xiJtzcinN606bwOkNma6Yi8S5TullNNFETOsxBpSvITOo+j+UF6Z15wnietL/pDbayYDtHIOUicmdU26KDkRdqPUc5pOPQhY6mj76TU95lVc/vScklc3sRVZpbGcVVfNmNVvWbubCKgzKeaHkBUlchusZTVJHNVq3B9VmuHOLi5O5Nowx+PA2/UMYrBvDR2uWSodOKZ0yLxJnrlurLWo9rzD52pjVVnFzVC7USbWP9DnRpXdaO7NK/OknAXGm2HFA0L1QHf6lXvUGeXZHUOVplh3tq9TaI1G+wKG7nsJ8lVc72291EGfTcKiL8jBm57qZc35GYxXshmu8OdHco71S6Nlga93R18WzWQrMLnvGrzSEC7llLiC50yHrFR0Etrs79miruz8kxWGTeJgEtecnMPFMdQB2jscIVZoUW1bTLFNDVvL5I1VynHJbPQ01e94vZuvAqRFVbU67MM3O01NwdUnjP8RmUbPBr+i1OR9uLd3J850n5RHE7WWRfdaNkY5dF1VkDyOphHiy+r4mOjwtaqaH3TDnV0XWzUZi8dHbsdzo75aiV8wpPcPE2VS8WSjm1T1PtlUfMTVCfoT2+nOXqhxNvBlpYuI3bCUKPqrjWwicdbvc+nsauvu2vka04AdoPMfVjPnU2tNa5j/fS6jbR9H4ZAHby8T5bbJV/Fxb06Bfv9vdYEJW3lXRal99oF+Hb/fbfcMlMvQst584WY47tM0vczfgKzhQBzL+xby7rnbkc43N/TT+s5K9q6Ee/mCLcdSKoZALeE52+6vgsDZwbDDWPrsTb5KRivCqlX5wClvc9CPG+Yd96+HBjBMST+7f2BWedcgu6BWhqtCOYyrhl8nB+M3viCEfZgHF84jgPrg2w12T2ZH8n5SffmYbTVdGDyp3sCq5ItIJpEHEb1Qlu1eZ25XFUbTVkq2/3DQvog82dBdIWZ18oCdMnKnc06y/N3haDV4nmVMG/3QzN7AF3aOUw6QZ/QXeVp8YD1LpnGUMjhxROOQ3NzPRUun0vj59YYh/Pl7eAn+8KaxnVC5OR8fhBzcp3VLmn+DBi9+13v2Qyu88m6LpIBrkOi22FYSJaxIrme60Z2kmQIMbmpfMh9Ct2h7O28jK/fjEfohPZtMyOC6/lNeq+2KpkkxLL7/ZfrxF2Htbg1ej/uTi3ar9V8oKn105qDLZ/Zp8JpFeirO7QH1YLpWUmGm5/AsLtDy+4Estd5a9IuRjjX1Jj3VhnZdRWCUeJEQmNQs4VgXjAv1enOSmKM/lZNLp9KaDyHQMMd3pcnsAat0dqCI2ih4wdfeCPwdhVvvkvGJsFi0ZhhBL0SUCVxLhkRZEmJVA6WvPbP5uSwfTRh6CSwpiofzYPGI9bb9kr1y9/7yfYUF1rW3W4OoTxA2fa0Xa23myO+0vGtbYRwVXVDcUll7jO3Hudl8feBtDhFEOuUJSUmjN0nKE2LfqbQXttZRwH7ki8IJb0Mnlrr0IqYJdltnIJV0oftZf1GJLazfDdy5XZ8ccsIihO5Pe7+ULiP3qu62d3GOjeKCfDtuXeL6zoztY0ojzmLI3vt2Fd7IGXZrEHrnd4PzqfOEFUT0Xm/TmHJ7jmmeTMfNG9cSLCreZS4BpN0xFydMdhq+Zuw2LqrDRYK9RSqidQmWL2Xgbd7D+zWRrtwXejf7/HaSPHmdrbi34Ry7f7kPaZO7HYlbMSxofHmkTYKU0hmNZn7oGtjl+gJBYkv2xnk2tjFK6YJNQvd7MeqZFF9plfh+pr7p1YiXnGgxKL5ea85UutNq3PdYy2nixqBGmxUlRTntluGVd+ntHav+Szh9GssagkZ3LTIZ6nNnqCdKEqvsd9HJxaVsHWEuXn6bS/+DiA40BK2grj3otttnalnZ5JMVnzwPP/A8/zgeX1lraiuCUCoNbe3J2ZP/h/q3ufV1i3ZEhoRc85vrb3vuVk/RB+FCGVDbNu2I9gV7FWvUCioroINC/+CsqPYUh7YUBBKoQTtimDDjmCJYON1taFPBdGXmfecvdY3Z4SNMWJ+69zMe++zspDzVrJzn3vO3uvH980Zc8SIESM+5sS5Fh7nA8/5AfiJ23eGcWu43weOY+Cv/qVP+O79hvfvb7jfB+VdBsTZkCsxI/FcdLaY+XxNaAAAIABJREFUMTBsMUWzpLxlOfDBtGXYIbD9BLBgzu87Z/EESisWj69OwiZXjZUGRAfw3U7vWGGa5Ggy2WoVjuWOzBt6u2NhYZ4PIILoKBOtseq70pVuT+AMdnr0A73dMe7v8BboBwW65zmFmpXiaNRhTiIE847e3nG/fcLt/pfw6BNuT8xn4PGFwcMkYSnCPuVR1jtNMWFP9OFIcCiKhcNnV5CqaiF3QTle5KIANzVWkR5uyo8yWRCawPkEPj63K0hLyR8RaBKIxzkQ2dDshB+SGqHG+4VQP1N8d9oolah45aRrr+ZTMChVhtHqzOT3OvtkiBoqILXehdxvYMUckkoxWLZGzitsIvILK/xdhaAm1KWJbtcMXP5u75xvgmxAcBi1xR2eJ8w+0Bw0dkAVr1T93a1WojkSonr4vgLXtKwaXA4DVn12gz6blrozU2H7VR10FM6bV6nkvAIb2Hli5vAkOjaqkSiICZqaZkgesj3qfvOTceXbCXDbZaO0RkARJFe0Z1UncnGOpb7WStTAmpWXlIC2NE+cc6pQQAK+dfU+9oFjHLi/33F7O9CPjn74vlEFAGj7Q2+1CEe0pHDUnWSx0YzR0tHxtvksg7GquUf2Ga5+PQ7HqcZvFh2ElGaV0wuxkLw2cGL6NZaueg0p+HVjY3XIVLJcF8z0vsGmdo5G1Anc1HzfeF1ivfRN4ipImLRh5KgoYen9huO4IdPpCaY2JKJbvvfaHKl+V5eRZu9EEec5kWsqNXO1F72k/NpMLFBgI5iyFHfpJnUCkuSehvU08v9DNzGlhFfFOpcjjfM3Ww2FRjL9TVXwAkJI8onbIyJD9y55YG1RL7Arh6ZD22XMYOJYwUIVEZuDWssLjVbgKBGvvXCRdCd2dM2xPCf7cq1eTzozN97XjI5cHYauDpsShHP9a+OhuGtzFQKq8i70xlapxNVRUr9n+pxciwVSXGvZzdCEFGkMKj64wAyKX7tQWE2/M1VbTZX25kB67h5qAs0f83m/+/iHDnBm9k8B+I8B/JHe4R9n5r9nZn8VwH8K4K8D+J8B/I3M/L9/7rnq1jsKytr1D1cCJlTgyDnxfBjmsxKHRAY1H2FUr9cJuibTp+dz4eNj4vPnE7/+sw9a73w88Xa/Y/Q7oX2AxYHdY7d0op9APlBT6rEmVjxhdiLak04WGHIFaeLG3sGWmo7qy+TsRxHkdGVExsK0UwH6gKFhtHekGc4nHUnSHwAW3PiVmotAvdOE2bhEt8cBz45xBBATuR7IoJ2TBwNTqj9wLvaJrvwNeu8wuzNJbrd92TMT3hbgAWsnTILU2JO4lB6BrWaOO1ZOyUaA223A3HCux0ZxcwKpQgs3sevaHtBgAWQE5lySJBzi7w4ONp68x3R0re0VaJ7oje6152MSecWBzA5bCx6LxgSWHDcYCc9gym4MNoaS1DQsuWKYB8wNvV0FFQCwUZOslKpJXLsPJI2VzHD4GsgYiBi1f3jwKJW1wZTMkplAmUaad7R+gzv5J9PhCcj4AK2OTlCQzsPF3Xm4tieLE/1DeTk7cdpR+5j25+z6oVknEi8c2YKhrMprL0rYmz8QgPiEI2j1fwiyGuhrl2zVC0ygLfS7fO6MPGKoGNX9Bg5+5udjRd1wVW9Ca3DCulDgL/ShAn8YgpsA/o3M/B/M7HsA/8DM/isA/yqA/zoz/66Z/R0AfwfAv/lLTxY6SQDs05gPnZAGIBst1GbDOpmOFNlIPk1IwXILK2nTA8wzcD4XPj5OfP584vkEPv/2ied74q/85RPj1rGSt86FtGoxWS4gONPT0ykLwcn0ISY7JjCAlwDX1KnAxT9heCjvXUCURY50XUJFtGI2mN+QcMwAg1R8ALZIkFtszm9WNcwS5gcyG2wcdDuRP978+Axa8VTMugM4EHgigrKLMxaOvOPoNAe1dtsnPfkgB3JJd5V6piLFN2ujMDfYtRO0Au+jw5thPc+tJeQUdOlQ9Lts7xmwmMA6kQuYjwnzhj4M1hv6GDAPzC7vOmnITDIizrKlZGOdC+mOZeqnjEMbjjZB5QpjWYynqfAAlEarulFao4W7O73krpGDJpEtv0cU8T33OrY9IEZoPCQTsdygLxIk9kV38MAk0ida7jsLr43B4Hexg/xrTSJTtT19AvbBNeiSzVR3RK8AUQN8VJSCgcPQ67NQJE5EVWm4pCZx6t9pBeajJB7kycjDOrYiwGukwALwZD5w8n17czTvSm+TouFlLx57xc0uFuGQV/X2Zx7/0AEuM/8UwJ/qz78xsz8B8E8C+JcB/Av6sf8IwH+DP0eAq5K1/gO2+bfcgYD7KmHtM7w/0MYT47j6Gwv88av65Ngkv+bC87lwPhaeH47z5HDeNSkXyeXbMBF56e1ox+xw0PvMbcByVYs/WnXMJk/ryJPyEY1pan0ydfRqgZL1XzTMFdh2RDDMBZgtdD9hzdFvCy530wwO8Mil1MUcngFWntsWcJYIstrXzLskAgOZDWcsrBomUi1AkXisRM4vaP2Gt/d3zm2AChi24Agc4zuab/rAWsRtvXfMJ/37V55YcWLGA+f8AjPg8QzquUCeZ61JSsGlnDdD650+b+sDKxdWPlnUkU7HvrAFjGgm0Y8TrQfODzminDTtNE/ZnFPaEQmc64NLymojXzo65oEdMKbprXcR7ykTgBNmyclbDnZ2mF+i6RIUOz0HHYZrDoeCjA4zl/1W1/AbTgZjNdEASoM0O3YLCAvpy2SA3ScFkJQiVyoNwGSWoA/MVFeEmJd9lNxNXF0IsHOnt3y/Sm1LJA7jnrCL3GegdcmHUrIRpqTmADtbeECQUlhosh4nnWqbsmkyuT0a7atScifXRq6iT8ZT/c2B1qY+03Vs/9TjHwkHZ2Z/HcA/B+C/A/BHCn4A8L+DKeyf4/EKN3kq4EUPVgNIuDE/w/sHWn+iD3Ft5+KiUu5v1cWQUICbmM+J8zHxfNAOeZ0g3yVNXFm3pKZ/x2JghAJcb/xyTHjZR0cKMak6h5NFgkVZSBH0VSVrTpnEnCUudcA4Teo5uQl7P7nxb0yf4sOxzo49HKdauXLBoeEuReJqgVSPbLMGa+yBRTqej8C5JoN14xyEObmRnl++YByG40ZhqqHkAUSOxwBGp99YLIDVa1qmLw0pWfHEWk+c6wsMicdjoveG2+0N7g2P5wdWLNqhNy5w9lo+scAAxwKMCGUy0/AGjKPDDRgH0fH5MGQ4Hl+gGQniMS2Rmi8Q0660TjwY0VNIw9MBoyFC7/fNeUU+MOMkp9RVfCjL8Sq6VsVXVT/YayAQT5ongGuSmTtTP2jgdcWjtGqHE9f5aj9SnS7JwFGFC5f0IniJxBUqCCHJk+5KKGCeWEpJuy++B3dUDy0jXUNav9YQhGazqiVKhRPg1CwFeUsNgN4gGCHVAOexvurxqlpssDYU4Og9eE665VRVPXY3zomID6bTDbj613/+8QcHODP7BODvA/jXM/PXrw6bmZn2E4mymf1tAH8bAP7oH/9eaVyhrkJSPL2ooi/xZsBtovkhrqwmYteLcqOHTsOy6t5tXQoDbsaRccNVdCDqiZB2B8A6OfZuPhLnl2BKisBok/5q5uidzeSe5M9oeWQ6uwB3CUuNMwCYmRCBtUZJSKBpE3MxLtQUJBZOmss6XYJ5TkzimV2LfClFN52I8VJKv25AwlqgIdF69d3S9y1W4HzQr+v5/IzIgdv9TaV6CTyb9FKta3d1xOL31m5KoRvMiYhMMpxCidwITFMSmpeAY5PV7jIezRJzMy/LVlY+If4vNdvU6UN3OrwbzIPayARaox5xBe9EU7Hk0k91FXFKpwHsZm+jqNsWBbeseBaiwNZ0eU/ZaRfnBqEh8lZlzImw3bhe8qVQsSmlf6MjdIcpIDASBuU7tUurdc6uWFqpa0lQLqkV/3vnRdqXvatQYOLtcABgpZSSoQOwGhqN/XUFbF6/APBSp1BaLKPSUkGoGFalMqa/on6cXKSjiTMEGUB/IsHRAlzLL28iAG+Nw8zB3uhfevxBAc7o1fP3Afwnmfmf66//DzP7a5n5p2b21wD8n7/vdzPzjwH8MQD8s//MP5HwqYt0Wf5gr0fCd1aLmC41v6E54PaBeBFZ0kiPVt411WkGx5RdQQ6wZjhaw+3mOA6gj0Qmp50vDZOej8D5SDw/Bx6fAw0LEwm7B94aMNxxP24wOFremSKA7O25baRVgTRV30BnDrOO0QcChplAJDkkYrCFgGH4gCl4WDKl5Yn2RCZncramg2DR8qjU5myUrmUOAA8kFlqfgIYdW6OA1Gzg+TjxfJxY64kvX36NIw58/6sDtNbhLADYTaeqqzNgYE5+H+MN6wy4d3hb6H2QF42iflKuFxO+Z16qfTsbALVtRVIbp2E1QCLyAwZ66bFynEorG/po6IejL35WznNwtE7L9Knp54UukNWexYCyZ3ao75FENvm55qQD+sHNGKXI9xTnxCb1rArtRlYLzSaNThenla2pw2p0WOntkFiTAZ0FmrK+0npWxbYNuVyLpqlb7F3BspIdHQCbljPN4VAKyilodfABrJLfiKy8jCkopo58bs1o8Y0lT50lF9n9pJSYuFLqlNwJ0VA6O+5tkPM0isyLteW/EV03fwD2AFJaxiy5CwNms4b7eANgmOcFcn/q8YdUUQ3AfwjgTzLz33n5p/8SwL8C4O/q+3/x53q+6jeFKZhdXMKuEtmL8rkCYIC8R/C8ypfytX4EGgH5lekgkVEpyU1C49wIEMGAR+T4hOGBTfy+cBhmS+XweknT8w8k1KdooU20iMwkPXDZznilYZCgtU7JqLRXrqotKIpI6tXYHVGcSrULlaTAdILihbeRDGGX2Xk93dguNfpx7R4Fy9JJMQXhbhHGBkwzISw1dX6g9RsyDO5PIKvyW6+f0sVRk0fxsCNXoSrenNbIZRExsv+xihjcTOLRhJxaAwdCBwtKqHdoDFBEAcIzhWzFNdHBmP3PW1kvPop/j4JA/L0E30caLIfkFx2lf8Neo4X4lLS1qevK5k/DHYWkCu0kGIAMRt7WFjIYIipNJKJ8QXDaDa+tYhyTaC/XyFSNLk4PKM572xUZA5z7IAWSS8WG0K/w3oTsnABooFFdoGry114rAT46wgyiW7dwtxXHnpV91YAfzU3ZUiNJj8QjtkaNYCJgWzz9048/BMH98wD+JoD/ycz+R/3dvwUGtv/MzP4WgP8FwN/45afiyU5n1NCHvhZ0XdyrAV+/lVZjEtSfZoDIXGhjlmZpBXm3CEMRlKM3jO4YzekmC8oGkCfotPuBzBOOz2j2gCPgGWgGWVUDvXHRHT2vDWyONg7AgXM9eNMUQFmQqGBDWF8ut1Bb2ZosGMz5ANLhaTALkt0NWPHAii+AUCG0qPkKRKjelc5pB/TDGDiEjqfsrDlPExijI+8Uf4Y1FSea+h1rTio5Ll5qh/kT50q4dRy3AxmJ2+1XcDxwtgRy4WgfpBDkXOEa8svgBsSkbbo702YYpEU09EfTph7iVV0b5WSHiFPX2I+Et86OikWD0wTTveZVYS+BNNdJxIEMbmYiVGEqA6rC65Beaw/gEJLRDFPEG2AHSupSXDEfcqE1ID1g9gSsIf0NwIDjEwBD2A90003KM2Adbo7WTxo7BoBWhhEUBI+jdGRzv+fKStwM42Aat4JT6sn/cnUgT20eDupZa4BtcDeEdfTbgTE6FljsyeBBi+TR7kZrMNuV4eK7jVPXAuzzjkRrB7rfaQaBRDNgdMCcPDMH1jw3AqYGdGFFguaZY597bg2jk1KiID0Q+UT+AoT7Q6qo/y2uA+THj3/x/8tz8Qx4sUuq03affwWVgauzgS8duzUJ+sk6FXVtKn0PLpC1HDGZcgWw0yBC64VYLBok9yeKwa0msWapzUYU4wqW17Tyl3IuVDmFcF/Wz2ijEJbqXzUn1VIaNyrH+dnP63lhOpWxr9Cuagmu8eVVqRJgcafLShq90DwXAguXPICpaEkntx20QRVgfjdNgcfLV/29uckdhKgIUe//pXpZeQ5MihPbT5XAZdltsh/PF/GrOivcm9JEvq9Ifm/Nxb21FyOG4qG0LoQkq0umrhWzh7XXDftSmXqR59JBKwF3Kf/4RR4vlGoTGSlgYSjAJzbfhyvt24JrmDRsX2+MuqYsbJTdeOxdwU4G08/KmLMzdbewq2uqkmJ9wLKSKr/E3UwP0Oljc3RV6GNA48hAIVil93sxFvLXfi3DgETCI3Blxy8CXRlBVIElgq/PUQTVQUIVQrOO5qbDREj6K8jzu49vpJPBAdxRHvd7de7Fpek/WpgpRTz5h+CgCmmQmgesYZ8Eq+Z0ng3n88D5ATw/68L3xNGTUS4N63ywOVnVu3g44tlhC/Bc6A7a6RjQkhMoOTKuYXQuzbmeSBincpujjQ73gbmaSHN+4pTgN+WJDwDdD3pfRRlVFg9yyjnXJegNmpmEYc1KjJ3Xy2NzPYDhNKbwrb+hdXJJMCDWA4inFhcR2/3tjsjEmSda9+1e0w/p+oZrwzGdSQ0rNmtqTudk+1iB1htiLlYiQcvy8mrm1lSjeBOy3MdDYOUTgSbZhqPZgHuTfVCiN8D6Qgwq783ANHfcYHnHeQa+/FBVZZL2bdB6p7aG+amg3OndhrJbT1gkq91UnWrzC0qkAg6o2yK6ZPVyYWJJPkF/u5MpsC20gxOgUkR9LGYsbMlyxJRQO0XUGCUvDidXuyTjeLmClyzo4vfc2YJ4u/eNvlYsnFPC2lUnPq9Dk9Si6RChHdGE9cnpYphY+QEDR03aNquUmB2OwOR69oCDzj2ZC60l+rFgawGyzN+BMyvQH/Tom5pgdj4w18LtuKG1O9yeAAK9NfSDCJb0QODyN/zyk5HlGwlwhgtJ1OnGx8XMCMsl9mbYEKPSWCtkl7qHpaErLqEYb9vQbs+BhLitEPEbQMxAsr2B6atR5uHF0ZQWyFRdqioXSbzCnbialAuqOFCSl5AYGMnNAIqe3UzfS9fGk5pB/hKlpjYdW4ogMW4Va2SWaNzIsMvCnZICdYYUQmrFAjoDnPJp9zI5VDA1Y2saGlDDuosWcLuMDlT/uDbjCx8UdZ1quzLtrUpp3SYS4IUgq5hkChz24qEGoSGT9VDuil9qPZAlqOtTK6gqivU+OHGeLUNlZU9tpOT9rCyjXd0G++tCorBCeUMiYX7Gtdpe1xf6sBeuD9caRXGh3NghMp7rRbMNDPxvZ8+sN4pm3RuLb1kBms/J/tHYb7TmJNRwpkKG9ntSv21uAAdMGdeGZVUdNWkCay3WvqjnrkLIq6iach+6+zq2mNzAPzuF1q1dpGNW8eEXHt9EgEsYct2kloZOqkppEnWjtz4um1qFqNdyN/r9G1Auo2tNnKfK9AAiPrAWFdC90255dKB3or6GhTyfWGE4PwdiJm2CJmA50S1w6wO3MTA6p3llJM4z0FbCcPLG9sEiJlRmnySXm9/R2wHYAOxQ4F3wcNiS/AXOpuyTIwqtNaRagzLpnpsAEVQbyEciT/UPTgbMltJctTe4d9zGDTDfQ1fotALE6hqHSrThraEdDe6J+42c3rglWgsig1aFAcB8UDPmA97KUihhzh7TGIZ+UEjNgSmBmRMewDg4RzRUWFga9LI7OOJq3LZG14r7PdBawo/P5PLwjoxOjd8wZDyw8gkY2MqVgeNG1P98EvGX5ZGL47Ic8FQK5DXYmzTFirUdONzpmLLTMADl0cYAN8F2JlUrqwos2sDxLuIfvA7zqda5iddUbXcOiBpI7wjw8HDrSK/+0UQ6KQvjFBzOgg3HODgVbhyONgxxJuZJkwFaahn6cdSO4/WP0gt+QcSTGjg4wlgiSOswGwr2XRVQaTJL0Ftu1cPgyQBbmXOhaIqfgvrE1tCds4HXYrV8Ttch3dG6AS0Q9gTaCesn2ujot37ZJi1DrPFLGeq3EeAAXvJ9rr6csGnXv+T+2dfHhSo2gstEaakuGF/CRYgzS+nAqjeU4kpqdJfQG5DBUXtuud0pXC1CLItjv9ZrzfqyVRbno1Myi/uxInuMyArcDlmEtV1NxZfhn3g8K41cimsj6jATYjKg3BlcKvsAq52FMsvupgxBefLLjnxg/5mcWnmW4eJaTIihBsNssSiERgSZxMuoQ1OFpDqslC1F7qDBToCqYuqrJccsuqZWicczw+ZDL6zP9+ItL2us1IkPoPLuQgx79WntpCyluKZkZVVdMfsABoq3wkaAeh8u9JMvXJ1B1y/AwgD2eiEiFwrX+8BGStf1MxSpX2hIpqFIfqZW96NvtHZBwvosRJ/Q3cjrrlwoS+YBVusyX0TfqPvuQlAv758lCGYNdR03h1zQtti52tu1P3+8nXdOBWjfFVreyReA4pl/7vGNBLhE4kECPAEYx/XtPMY5i8BKXW2TX6VbkpocVVxIQ8yGmOxJpPkfq5WtAW9vRHC3DtyGAfFEzo54ckhGnJ8Rs8YPJm63iTECoxlGo+r61m/ioxiAOAQH4jZSt5aDcpQbgcZ8HQlNEFMBwmCwpFg4rcH8hGfj5KNk9RTg0JtUAcSCiGkcDc984jnZVjQQaLkQ8YR5YowbvDtFyjaRwQqxt47j6LB2oDUNem4Ga4Z2Y7B7e2OT+xjc4Cm0BW8IUFrSxgCM5Pw8E5EnIp+AsfewHxy6MufcBLVPA/KG5o6ZC+vkpo9civcyPeysnnLSOXB772i94fl8YK4Ppn+tw9oH4B/IpalRqGKDAkcYcg31aQ6kOZ7piGa4fUeYYdbRGgXPLL6ww8G8wbf9EJFc1jBolDErD0oUtcXyMOBNWrorCFf/+Zpgj6X2fuklvXX0Lr8hBRnylU5OEgD7jgNzNkSu7WHYxqHOktB16KyGO9BxkIt0DSNaT+wqbyayNzl1DBjKx7xhYQAxNtI3AP2A+LwPBaFTa53vYy0eHmsFLdvFt5kHetm5J40PFk6yBoMBcq3QNeQ+9nbg3vmZZjwoBUq5qtz6BYp+4vHNBLjaJDzBig8oyKDKzE5Z66SunCF3yn7xPVxArJ5KTZ8UaKLRbbX3RGupE5epHlcp5y+YGpFbS/ROcrt5SmfUd2URVoM5sgqELydVbkW/IiASE7YJ+lrEemMGEfiJam6uw3xzE0KmBlPFsuZKhvz6uQDZiwoZIfIEXAjkmuTgVKHrvRMpdWgkIFPS1gd1gk1zMpJee9WWZHWau9CVQXwY7yfUg7sHvoBN8olCXiTptt14KliI9/LWdp2Ma4MpNIxdAtfiplceUCLTrs0GbA1FCFUY0XEsY8pfAKaMQa3cfavDoYKQkfPJEivVV11bgY8sFKbP0i4UicoUMuhpl9fzpPgrN6Lnqtt/laGomICqeNqp1Ljp2rg+R609ITdAHKpLLkLqQJiV7zXE44nzK/RUzfsAoNYTlCFpyALrMqYQZjXnwJ5Cb7jecyHIrzIrg0TuL1s+yW3ToceRUKq9B7vT0/BCqb//8e0EOP/gIBc4A06lWVLMAwMmdwfXzSwymVdkqSeT1aJ5njjPhfl0nA/DfDas54HenPq3FrgfJ+6j4eiJ0SidYB82SezWePrdB3AciaO9YfQ7DIdOOb13mHRePIHNsH1SI77wtIsnJRDuQJN/W6OduOHOjZfUbzEgTZwrEcHhz0wrDvTGHs35xNby5Wg47q52qyeWN/RxKldlS5n3A3AO5F1S8Wd25DJMEGnd7ge8d/TbHd4abrcbyr/NwB5VwNWqpevTBsxOwB4Yq+tngP5xYtnE82QB4Hh7BxJ4fvyAOZ9we8JBp+QKFAxiTM3dOm7HG5FjFErn+7iNgaNPzPMDa/0AswfcH+ywkGGCxU1CUH6t+ADS0DoDNANgSRw6PeqOhrlOWOcwnzRyUvChNJKmXqaWr5ou5TJpxKoNR+OFa+5rYj5PupDg12BAfvIASg77Hn5DrwNF0pelKiFVZKZM4aJySkbD6jKHLvmWYoDv2eX87LUiFdj8UHCrftJCcLT6ZxtU1/pJIVtylZEfAEJeh2Ar4T7V1ZfqQOscRpNgf3EFwUyOwIwA9xEAWoU5emcyXMOua7g2CRx2iYwbA33vf0GKDERgk+mZTroshXTpZPKFj1I1cHM+wD5VMycFjjFplTQppYjp7Af0juYd3Rd6C/ROP/smLo5gkBe0Ownx0RKjyY22H3L2qJUkdGaXpmkPChFiQSj9QqgpUhVKyQsKaeyqmPNmJzpT3SgOj+9nTSIA6ISr2Z0TtnsxY4WG++LiXtyxbCl9LocKQCuNyK139HHwGnUFOKUVVLk3pAvB+euJPFmo6I62mI6YhxCdwTudjp+Pzzr5eSCkbqAUaQp1vC6tsU81JDFg5dfkSOF0H1mn0uEJVua00SRkJUpkhZwftjgq3aMshORoXRVxA6wl0sqJuVAKUYe9XNeyHy/ZCwPQ5XzrzhmfEUHPwnwCdgK7M4YWR26G7jVR7sIlqTUmrCXeyffrA7joBXHExWmZUPvu7AGwh9GUPg38vMX/8mjuui6ujhWDYV2zzYFLNYDrUCrOe2sHS0NXa19INOKVe6vPLH7PZI8ubVxVa/n7mv7W+fytvaLV3//4NgIcHIZ3ZA5W9EwK220ZAzFa5N+8Bcbh6KdraC5UEQzEHIhoiOmImRzA8bwEva0FbkfgGIn7zXA7pGeCIyeV/82oAbsdjjEMx6GOhzHQu8rZqj4lTp6S7akFLl+2HFwkoWEaQfuigt/WnbyLTbh/AenemlvQ4Qnc7B2xFtb5pJpcQbw3AEFrpseDbhXv799jzUCLN/kaOq2kX2QC5uAQY2vI5ewASQ2ycUPrd/QxcLu9w51iUarqXanCkJiUCK7kVKzmNbgNjP6OnInu70g7hboBgNXc2/0TjnFgnZ+x5nP3R6apywSNHQZ24DjelCLLlNE4TLv5nYKi3tHwCbZ+AOYPCAu4K3jiAW+G+/3gwOypNHiyHW00qEMjdiptbuxqsYNGmFQyAAAgAElEQVSyhK4iiqr43sjF5WJgdKXpyDpeaakPp42VwbFmx5qB58dErgWsDk/KW+Dl+vJBJYALSWVToKyiQh1mroNUa8qrikr9m6vdivQHjzEPrg8Ou6bMqVAhwEqlSUSedTCgps6z6JBL/b2tuLg7zFKDmLFfa+kQseId3TZNNHfqyaOst450wzLotTj0e0UTrQRwYDRBAymhpXVZQ6NfqaDf//gmAhxP2gNRJG6qbI/XUnqlMlyUTVPRmaqyQYkXv6mErJNz0tMtJAh1T/QR6CNxHHyO5rVwwb5KcRUMbkxpe+NX61TJF2RPPMk3+ZPvHa6Lr1NQ1jLkFmLzNSgTPxVKNpqqFAINww5kACcMMck7ZdJiGw14zolzTvR+w/3tO8RpsOcdawYez+cWh1YvKAO8AoobsgFzMf2gfu1ge80gcuuNwZEbnUUF9wZTirpmAhEIo5rfjcYArS243dRXeWoRDgANY7zBescjJ2LNzctwBGwC2ZDZYRjo44beWUgxC5wqsrgdcDQM72htIppheaL5E+4f4rZO/sxgM/nWR0Z1a6iSvR1EVGVsDpOdes0HKCEtq5i+uTgS8q4UjO12aZpLKxPJWI1r8MEhPI4uxFbSCc7ZMFchB0MVX71noU1AQUNV1R3wwC4V0gjqrd1oc4FT18C0HRo+s/OddSFDN4l4eS8jwAN7FYqFKuZA5gEzkLtFIvOBVGdMoUx37muYY1rAq4KqCnWTlKQ4c6bvkCFqeTNic3rNyQ23xlmuGYnzuUHkTz6+iQAHgFwJGCRqbCCjgS72bvGhhmn4G7oZmv8WyxOmOQRrcTAsg5kEGqHJ9Ct2x1Mz2h4draGlycCycWppY1m/94HWm7zTGrwdaP1g4BqGiBMzeHJHyh0jTiCnCgtOL/Y0cS0s7Ve3QQW1LFmCUmMX7i4Lrt4bwshb5CIxG5qsZeDJF+cH3A58+v5XQDrOZYAb2q1TD+kfPI2lqXttEUoFwepNc3UX1JT7at72XoLblB5NAS7YVG8m1K1UEArghsQ6Tyw70aHm++xofoP1QhWkFcpOqSrl5h3j4FCelYuINqmponL+Rb5DepMKflsaWJKAA+PG4c2eNVNU/cR2g1elcLIK2E3DmHulnWBA0cDnqACXV3W0pBkWRa2AppvzREwFPAOdUyoVtIQlNW2RB1aocV8mnK/UBYPb0BrhIegaYNBbibTB62dKoz2JtNWmaAZYVy40yyCVVf1CfzD22ZYwmyJirpJUNuUosXKJo4ta6XBQUmVQGhpE+K6g6IOypoXnllKxg8G3ey8S2MNweqD1idYXjiMuHSfA1/2LFeDktY7iNrgBL1U6gHQ4Orq9oXuit47l3FgZCzFrHoCcbDNVrmabSvEBzQJHOzF80h8t6XzgcDWYs4rIIDdEqN8k/uTmj2jADELqk3nwmk8g6fIGOBAHkA2Og0SqLVi1rRTBvrBP6qp61XVI04BfM8Q6OVSnNHYIBrgAYj7QR8en77+H+w0Ld/JJxxegTWSj+8hu+jdgT7yCoblI9JQDb3uVMEgP122nUlvTtxLRAss5FOeVW2Hf5glkYK7nTl/SEvQ+S/RmQOPs23NWzy05NfMJa44xKGN5zicHAC0+ZzdWiL2ClQwQQpVq4CXAHcFKr1Kk1oyT2uFoOGAV4PqBbndyj5384tLkp4tMV/Gr+pS5m3lIeHF+TInXPImQxcsxBTTUzF/6IAYyucENXbIorYPiJ7OmW9XgFtNa9P25oQFHZY5gjQEultJaA9CZRsaiCUUGqRRvdwVw7rmQbo0ZB7sLTOP7UAGwho/rd9ySxgIQZxSMRBYNDVzDfRAQTFDycZlMHHTX3vIQ1rJaD1gL9LEwbq++jzxg/kKkqMDLZq+7+uOfSN1olCKduhvm5zpfSh6SQI3qM5/wdmpqFDcy266Sf3ZQyOsXEmi9eiSbUged5EXUvqAtkxyhtTvCFlytOLaNL9Vf69y4lAH0r9p8yuq+amRlI5PaOBQpEwF4c6IE2QLl/qK54+P5A7yd6HfJLG4HrB1yDx4I+4zU6Rmp4Bym01rC5yLIm7g3rzkTHbttS5xNWMljiOh4Lhm8O1o6TC4tGbaDcr127uXJaz+OGk/nIs1NXSEkw0vOMs+5OyESbIrvnT2ws9HUNOU4vIJrgoaYzqBowNGNTjA9xaPS3rtScWvV5pbwIsJ14BaRX/UHfQT6/IU26XIVrBJmC6184/DU+z5Qzfp70tcWElMVUDhlt71J/1XEPNetwECtoOT8V3vZU0R0z6+2lVtToYHterQLow1X7tefus8lWr8UC9d3XMUGN8lxBDhe1q2psGFVRFChge/PUC1+ZQ11tI7WOuVcsvmH/BAzeP+5bn8urnwjAY55uG6m/v9VoVy5OnaAk4ebn2iqdHLTpE6lFHGcsPaAtRN9AGMaeqeHvFugGS1cmtECyX2iNTr9tl45/yGtG650BZD/nrNdqfpoLYiUIq9TXgsmIP+2dlOzOp+ndGqE/7LshbihSgIypBHDVaUVvKpB2AnDjIUfPv4ftHHg++8G2nHD7e1X8N5xPjvW5ETysM+I9eAoxQBWGnoueHt1+S3O7QpsozNVh1BgRLKRulIVnfIMOEQ/7fmjVFyndiiV3XZPHbj3oRGNiTaoy4NfqVA/DtaV84E9MyAC3oEjBzKA2bkRH5r+VeurHwwe90HL+N6IYL2TN+OwneS8264Ap95H3wHkpZNBSJDfuSq8xLAnJQ6WJmusCWt0g574sjc/Uey70kKltnuod80hkdaxepuzlIEN7qGB5wr2SUlGRqWIQo2+4Dh1PWpGA5GbeXHF5HdpQTSxxwO8bMLc6KEqBgpwXrtWe3elKBu+H26dSzHAxgc9V3XWNCE3Qny1RNK12y2k0pnIWJjzA3sI+S9guG8iwPHx0p6yBY4KfvXXlaUiXxrp+ee1gqmoTuxIKMLzl3tz2M1xvwXe7oH7Lejm2wxHl9q7a2J36zrNKwBVu8hTk4ou1MT3J24Q5IHSEmXE5nAgYqOREiunyFMuawP0jGmXpCG10GMvuHo/Bo/B2gRSm3PwdDTqkyI/mM7i7XqtNrDagMUBR/ItRooj8pfrf3F05dqyPfv1bmH28ju6XyoYtBZy9OWpLmUPf1vC3zxZdStZhMt7roJ2H0NzGyALqdiosY8G9wO5JmpCWYTSmsb+SvekliwItVrvktQUSldaOxq8u75sH2YbsTFd2GsURTkJhlR6CiFT6B5eKzWpFwM3KQerMEWnUYGO8xZCOMXXGapFjFIcWTPtwy3x45mi19hCYA+/qY2zpUvMPmp4dMlqMuq9XvM8TIcYVUq2X8pe9uoFPAw1YIduyVdxsKafAaY5G45IWsazmsxCH2f08vmPQSG+7ayuGBTfaf72uPuZx7cT4KolZUczcFMjcMnZbQevuRZmcPOvZDXxeU7MRQdSzlVkUy7CcDsG+n3g03viL39KvB2JX30KDDe8NUL01mpWw43FhW5MbQc7HmiweIo2N53AbyCAHkIiEgup6GBNgsVyBamUqzjGrT1KlEsETRsXgAdggcBDwUAtOd0BG4jssKfacfrb/tnwwDN+jb4GjuAYwd5Jps98Q8CQvQN54HlORJ7wVm4jFYmwEVwFub0hSodY2iRpmPjeiAxuN/JYP3w2hAMOkt5NPbRLVWiXnq4fjvv9Du8dx8E2OGsS1bZFRxTjUri1OywPNpLPiQW21fXoGLMhbcIftlu3zA23O99PV1/x7ZD90t1hw9CPhnY4B0XLyMw0UOcl7vMe1wKV9IdkeiEvpZYuTtjKV7v6oN+4jhf5vGrYb21palcVfQbMbkLTfdMGFzWttNOvLcPgYtd9hElKQpQn5o4BpxE15uIvrqXPkLyWUcOLAvRIRFVpiz8ETNzKShfnuNTGVpq3yetonEaXCZxPpsWBO2Cq6sMQg7TQ0Ukdjc4Zt2txEHgsYJ2ORIPZDUC8CH1/+5Nh5ZsJcL8vDpMLiH0Hr5TjSt1WFHLjk7g1hNOrzc3Q+0Jvebn3dmB06uEqtagChlUrDF6/6p1dgfcC5CzZUypQG0GnOV44qb1L1ByvhZg/eoXaSeR46vnrBKxFVtdAKb1Xqqqn8Erfq21HlUwT6W4A3Fk9S0jBb+iDThStl91OcW220+FKNXc6tQ0BLpS3v1ziWW8IL/6JKIuHyUC0wL7cKJGsi6N0pcO1o4uqSLT6uzJUeLkxxd15I2faa5RepdWFsnS9Xb2mLCgd8EbvOaugLokEn/96sWrY2m8MWRFGz0/5SVnKZ1S7nmgWyT0299uqJWnHUXzVmgdgc3Iva1EfRFvErrej/6SE7lpL0L4xmVjujFOZDySOrvxkv5IOt6+b26/XuyzOciNgKh54VysrjY0Ur6cFyC2n1fpIrWmlya4XcUNZc9FbrgxGf/rxzQS46gDkhv8Rp1DIAUAx8jS6XPj4eOLxOEnsgrxZNwfbqRrOR4fFczfWv92A97uh++R6nYsVHXf0/qbTqQtGKwBFIa0AWoBaowZgIIxDZqyqkHhSAZ/simDrVpHUakHRJKVQauBycaArsCpppctLnlStxZ4tkZi0ejZDG7wuMxa8GW5Cn8fxJonLgvsDnE5ukhPQrpvke6DbwrgduH/3Cf0YOG43NK92OOrBdsCvDhM0QI7Abh3NBtIB95MdFEJm43iD+cDz8QURgdGl2cqO0Z+Y88ScExEdc5Jvcr+jtYZ+47XloOWgtU8CcNbtVnDkIQlnbhofjpYN42hqgutIALMMUIOBvo8Oz4Y+3nC83TFud4yDlURvhwKbvcZXbE1mKOIkA1c1319fC7AT8Alvj2uATjQg2JrFIS+OPljYaaOhdRV+MnWvJxIN5dwRNYzGa6cUSbnJSgVD6vJ8C3HBn82FBKvZkRNIIFbNxq3Y3BXgFlzFBM4BobZ0R2C8yLCKH6Qz7H5dE7pf0zAnUfvUOEd0AQAdan3QW5DGm0DixIkpqUtelIiQJHacAID/7SfjyjcS4AoTVUSpU/BaSDzWqgWkKqa5D082GxcvVPyCnn5LTPK6QVml+6xDB1dLDm+QC424hKy02mFbjlknXFbCUl78O63el38f+ftkS/P9PneWulOhQicApEh3p3NxWdxcGEQnvAEpgWbNUWhe6nZtUi2mdP4cuWqjNq4F+jHoyNv7V+gNm3+7eNEL3V6fY6eyL9/NfY88nN5RepgU6igRbfCyb4nARofiqLi/y24I11X9icPbDGjd98HIgFHk+wsGMTBYviLeF+S2AZy9rB+9+usaRL6ux8TuodSEOL5mIIs7A+Uyvp/fQKOElwIMtBYLhum/efBrt+yqZr68t6+u0O/+cb9fuljTZZoZQ361Z3Ahx9956sp8LtfkFCe4xdNbTo39M1fhhMiW6N2xByUhUeusMqBtdb/3x88jth8/vokAx7Oo3Fx5gTLpWFCFFm7lIlYX5pzqyWwwDNxvtMcJabHOx4m1As/HD/j4+EBOQw6DZ+DRFmwAbZBoHppXYJph2joHE/dBke9ohxT8JEJZ1udUprAbAgtzC31VENB9WIs3unWJMb2h+6EUzFl11GlWleQAW1Gc0ZyLHrKLwQmAY/dCSnjLBrMD7nfcb79C7wen0LdGrZdB/aTOD51DrS+DXmudCOJ4O8C5k0OBvQSlNVC4NkCl0g0cBp/sszRgzAMGwxhsw4o3Dc+GYc2J8/lBQ4QgvzPPwOMxMZLBvk1g1qAUyYDG4GZ+pNFOGyLBVelFBE0MVmCtBXfHd+/vWCvw8XEi18T5/IKIxO2QaLscUKSTe+039Rrw3IjaS+/12hvEvUZyKIL6MKrwgWpU953WLQqtsWhWaSeLHdZkVtDwPB+Y8UCCQvHWO/pxwHygj0rRl85mIbzE5m2r+FCZAgn42GuKMancVqgLRUqYXN02uIqbkcCqlFImA+6uoKeQpTnDYVQKNJcMMKb6jRk0IzVq0gI2qNWz9uA97kRlbK5PZLwh8pBLzkTaA2kPXWul+TVspw6Cn3l8EwHuehQh8FqjvILb/vdX9LaRhP49Kp2Z6kFcWHMhzJGaIWpZpWuiCPZDXoujdF5lTc5XuZg3vBBnPJRNPMMmlK5PRHR90TP71L5O76t6+WNdz8uihYHq9rXTP4sSPtZ1i42mKJ8hgnNgk/lqa6D0o9G5xAZUVOkvVVPmGVUxI3d48VFW/6uNtdPZ0q8JzZkhnd0KKTnPWtUvWvFS9MQLcirkSD6tAUnr9EyH5VIwsv3a+3f1PNVWhEJaNasTXZkC18vWIu7vhTB0k03oqyQtX93h6gZIHW5fI7gS6PKzlVNxrT2lXhuPsyPkQj8v701ykXrdrEsGITJcc0q4Zq4fzB9/TzDwxH7pr364OhhiT7oqN2CVwl8AiBokL7RV76mQmooPexdvJFpI72U/vUpSXtbBlank/pkaAp8oA4WffnwzAY6krayYMxXU2FkgySBU0iFa4Ah6eA5YAPPxBSsmnvM3mHHi8w8L5yPw298sfPw2cfvUcNwHbn3i7QYcfcF9Cd1wEx3jDd4aehvsgkANIpksk9sDHKBMkt6SA5kNhtYOeDYsDVgui6NKk3I51nJYC4Q/4UkNvaeqdQBJ1KwgLWI6SyzJgbloB45BHdPpJywfLLScC8sS5/OEe8PbG7swKiHrnaixBri2LiNHb/A+4L3hOA6lzK/5yRWEqzWoEF0dMrsw49jBzXtTujURMeG+0Bq5qcRzH0jHzTCOG/oYGMfAcRu4vx+s4HYKWdtgceVuAxmO80GnGOsGeMcJAJGwcA7GAQ0FOFGeJfWtGJTa36xLcrOI2Nup4K57sSuR8u8DB8VgH6xAynZ8zQfmPHcQTVl5c/gMgEwYDsA4GJub1ZWAnUA+YW1iOCU/dGHuaE77sCkZT9OAnI3o9L+1TgYkDVqm2QN5ZMpFGAR51B34KliQ30BJkmacWDHpai3OM4LBszcGs5UP1IHK9TAAa+rPToQMLzdXnfVKpg4f8PoDqH5e4ACsoY8FxwPwB2ATWE+aMsDR3YVep/b6D39xAhwfV3VnYxpzcmWbbxCCiwvFMT1g+8laJ1acOJ8Tz2dgnoA6e7TwXf5ZqgVapUN0LCDqaS+oqvR2QJXQc0//6vt90uYlOVM0E1E246+2T9DJaSHeSXq6fNWZCVkgyhxY70JvNunm0UDStzW2xSylT4UmWjPOR4hS35OTQyNy8G7SfTHAsT1tEDW4ZtTmjnAbTX2tl9Nb3sDV6scvZCp0VAipBnwToWDzfa1zPmnvElm3Gjp9IevWnRKgup9urLx5GQgwbS50eSHt6hWtP/8YJVXv88vwlZ0dFFVyIaUr+ItXSh66hX4SRpQDF/rBRsSua/KqBNhDa8o5o7mCgxDQ3sMl+WBfaWQJXYvfUkBOjgxkcLoQJ5HflWVc6Aj7IKVpwNpc4FfW/0Jr5UQCq/nFg2s7q3DGmRtefG9WOvmC0rdomp0UVVU2DxYZREWhBN0ocwGhxQxd84uX/X2PbybAMbV4+YsEI0/6Th9ZIyAZ+3g88fHlgc8/PHCeJ9t3cnEwhzeseeLxZWGdsmxZE2sm1gTWaRg20PsN3R3jUFpXE8FVubo4zQosDY43sNjQwfFpXQt1wWyx2RuOZjcY2ORccw+U9252uRARpzixL7JS5DSW2IkKqsSvDQcHQN+23t6x1sLRn5Ia0Km3yNz72xuad2wrpsNhzWBdriDWYd5gPtDagddCToA8yteZd6UkdqUiKuWnUWQbCDoFo+P9/RPmnPjNn/0Z5lxA9t2MDUvc7nfc7/eddh/HDffjE39/0AyxZnkSwQZ1iu6Y54kldOONlUbrjrUWzscDc9I23VtidB4m3SHBr8YCJnVe0Qwt6f7BtiLXxrPrM29tQ9EkJ33+fNIgM3DN6UXxefV6AwZQtJ01oPq6p60NjvDzvBA0ki4cq6RIfP0Vr7yawe1OKiBr3cqfLhcyngpUU/dwl4S17yrYL6QFuWIc8Ck+MWiXYJayCKv7z/WeACIGkEnn7DRkNGU8Qg+5lIWEDivSJzBTF5BpSE/AfAINtEyzoCPJogHnXC8B3zgKk//xZz8ZV76ZAAdcB25tY/5JJKrIq0IWc07MOXGenJ61JIQzd3gSyrIIIWJUVbQ9bCSdtjuNGiSS8MVtFOrSiZfSeqlheFdRU7Yu+yS/dG9bfa5FB3FFlEExaFjZr1aqV6+sXsfUG8oL2Cngqg2q0I8vdky4nlMBKo0T61sbmMFF5K3BhgOtiUT3HVzYkB36rMX9APvQ34FOtVy7eJdL2c7/uSyyMY59OnNfNuqcwN/t/Ybb7X1/tN4P6dF8z3Gdk6lh3Rv3rv+OjXx2atwoG1mLTsj1M02tQNtQUoi0UA6BARFSpEsJVsG9gsKGhBt9ZS6Yl6GjMr9d9a8z7cV9dpZ+07BJWZgKKg1wWnJfxY0foa7Ej1CLroeQEH+uZkhUZ0G9VyHqF6SdCDnfFKJVdbup4wAGDwf2UOzLl3BXSmPtwMahPVpX4vv0Q7VQ9mu8VuetSEJflGK9rivjHopd5eX6L+unn3t8IwFOgWvbsPDv+Pc7y2CNNQPnnPjy8cDH4yltlLz/UTk6b5jbQh9AQ8NxaK7CSIzBVp3S11y7dGLPFICD/miyS/KOmjRVs0ArvaSNM197zuJh+KatNfnaS6tUKdBL6lVtXtslWBUJ2+TyJTnZ078XU83mDmuN4wHd4AcNAdNuiDxg7cZhJHQSgI2DIwcbuIhlMVWDc67WGJH7ENJEodt6N+o7Bdi/GeSGjttAroZlT2RoPnlv+O677zB6xw9IPJ9XxB7HDbf7G9Fx63zN7RjM5UlXGFzpY7CrI9SOZKrwLT9x5on0iZXs/shkPhtKIWsa+1rAnECfjjYbog8AdH5BcjxdhDFA6nPHy8QvgDMdqveZqE2lsCRH69bR/P4VCkynpb71xTa5+noKYSm4ldzmeiy17FVVE+pw4AFVciCYi1sOQL6B1NkcddcA4JqnIPokw7luldquaZinDAAkCo84r70pFMz3YcraiXqzClIqnESciDhl3MDDo9WkMrXBcaxloFye93xqGIXpSHGe4qSQV/D8mce3EeBSFz5Ntskv/53XgVj6yjUDz+cT53li998pUIVOrOJTeiei6YNWx61ljRTA5TlXMKVOTv59Eb7FT7l4oWqv2m8/AU9OBZ9LXI1gvcGE1CQt0RTwqhLVZjF93teHXXFAKK8qglDvIGSnxHkC1hx+owsD51uyR9X7gA8GD+t3oB3IlsgGrJNmhUQgs14ZMCjAAdXh8RUvqdPbm7SYzdDCMUZH+EJm4w0DzRBu9xvMDI/Hh2zVuUhbWaT3gT4osE2Awdj5+r4hLFN1b5QtkH/kHskGIDlBjS1rU4FAzrUq3Ji3ipE7iIX6G0k5UAbENZdKo67D9uXusAdai7IUJFcHCsvT7nS/pYsIkDaRWLvdKiPYMxxrc2rkUDtal4daIV6cSLBwA60m9wZPkvwsRAW2lxooe+J7kgsutD9i7bWVIJcJccs1e5RZdPFogVXmzOqswfY11FqtPmPtQ1q1yysxljSYPMy3G3IBPFu63nu5897oydMWg2Amrqnhheh++vFNBDh+IPFapYpG1b3qIhggaH+uwMfjged5UkVtF6RNaZJMiKMfHQ0Db2/A/Q24v3Xc7h3H6DiOA80NvfPVIk+N40tYGJ7nB+aa8MXKZM0csD1/0uXRlUIcA8fxPaqHDwA4TKMLnXJqE6wEu4krFX/5Sr4fLpqEtYXwBMldOsOGnmPmgtmAjzvaGLh99w5vHbfbdxwh1zpC6Ig6PlZSzQ1wcAYDxovDg671V/cnhKB8/w30/mpSmas9yoWke+dgbCAQZjhuHd4SiXfcz8H0CcD7+x23t47WO8Zx7MSHTsKFnK5NmQlgUb/FADw25bDmxE65jRrDRqsWiaWxU7UqcPB9g0GxEILuTEjiH5quRt7p2ljkvKrr4BVtibPCxFxflEYXjQHsGa0bBZO7RKi4AwXdqVYke7DI0shfjU4fuK7v24hTQuGldqgrWnAvcRvpAK+0qNJVHSJ18GROtrWFLNTF5wGFNA25mvCBKJdKX4UoYymwaT+kYXNosSSJUSUtZUdvBlaflybiRRVKqixBPrFkOb/0+CYCHB8kzgsZbM251b8lEjQFnDPZovXU6QAojQByvlwQcxyj4egd93fg/pa4vXUc9wNHH7gdd8lEJB5eH8gMeCQnys/ga4uvab2hRZfAtaae35kigQNZht8AgOLWTNTQDEDKeieEj5KBQCd+1ufUggNgVqaRC16LJLhZLOjrG5E0ExwD/XbD/bvv4b1j9DemOH0gnb52srHlbBbxVg0dzZITx9d8iW12/TnWPlVNHNxrkDM1TWdIt2Zsp8mgbMDMcNwb+gJ6fxfBzqB13G7og+LicRs7wPEt1OaTHdbkhmA3iMkgQKl9OLydqNYQ88YZxi2u9aFNzcplVSw1xMaCB5zQQSAvF5d1AuLx9rUBSf3tWhNN10MuuAokKyhyrrzk+n1+r6phVDVWujlu7gaKWj8UyG4wazjGHe4NxzG07nkvzrmQc15GktXWlL5fmqB4Q7ev388OeouZRi4FGMdXtInuTZoCXNsLZV8DPmcFN8HbKKSbsjoCNqfni881WXyIKYRdWY2ZWrhSwVbtb7/w+GYCXBbLLh4D4hNYFaKgNQHevKDjRiT7L+uiZpJPYvFh4TwDt65evwb0kWhuuun0/ifklzPpVusbEFdKZuoCaH6g+yFJA+dHRBJyp5qUiUKvYgi+Sv1wIQc4s6GsFAJgr6ApJXiRGBtUKQx0OekmawrsBh0G7303jLfe0Ua/+khNvIgS4tc5lrkPEKg0z3thhUrrTe8qiOF3ppG/bFiXVol2eCSP0x0DgVy0Q48YKAlKHwetkdpgwMLX1x1gD2OyREnSu4kDmzr9Q+JcT98wzcMAACAASURBVBUnOgfb2KLFXiwR0oGt21OK6M2oppfyP6KCkjahSTuH2lw8zrgb1WoXKh4pSPERX32WQhv8XpIH40ZNIBaRqFWXjAbLsK3LVI1lupqaITtnyixE9ytdPcQaEA1KniLkFpIM4vROfElRkxq/SpOrWsr5p4ZdNdagpRqbuNjeDN9roRx++eqxUii+0nbf18FUCd5Sl4pWOkAzXpyFsg4Apvf13n9BAsf19cs/8v/PoxY8g5tOSF0UPngKRDK4nfPEWknrIADIE7kW5pQG7rHweAQ+vWlw8+AXHXA4vTtzILCQ8QBL+koJmPhf1TmjILa3O0Z/33zRiqDNtipHBgdcga+qq/kBGPVzZhqY4ofQA1MciioT6yzv8tegCZT4tHXpAduiiBVcXONoslY/MI47nVCHJmBpSHMZY/LSVrVX/amqnrqXjmuSV3xNVfc9qaCcG+RlvWejHxw5Rg2jVvcCh4wE+hq7pzQzFZAHyjOsHEg2AZ3S5am1C7ZQ45wCCUwhH3DyVhsNyAHc3jF9Ih4G+EJvQBgb9uvzwymL6KO2wdI9FccjNFeylsIlIVSUqvCZLMYRvM80OT11yXiFGGCAmLymTRO6llAKh5NT4GtKqwvU984Uu4lbi8kDfQqJckYGdmGC83yLQnGsNfF4fsGKhfN8SsrCj1hZwZpP8WU16MlpV4WEJwPRipPXQ8h9twZrLk3Eicy1/734TOjQrjiWmUgXfbH0etXXGolM2rDXUB0YM6JzPvmzXsHwlRf+/Y9vJsDR/kRgobKJoqXqmwh2pqkcLbZvAio9otPpbkMypgGtOY7BCVks1AXMz50iUD4wtLAYbMvC3Ds5LIpPdWNEWteb5BBgkqF8w3JNeNUZ5QIWS+8NXY17BjOZaw4oqBWKvFqE+P8n0pakIUzPujnJaAdRbEw1pxf31F42mkryMK4pi516lHATJr5N1xu/s35e+cLKci7uzkQnbIFvgnq+DqIwd6XbJNO9s2WMhYyyR2rXa1ny76tlC0A2di5bLkoc0jiMx+TqjFpLQpS6DvV8APSzdLeYU84b2zutKooO6OesMva6HvUZih9MZ0pbQ7pFa7jEvvW/Oq9NvLEnDy0KxbkWzGokI1FU67yHKQS6gu68tmgY6u36ueYvEg0rfi/3fhLr8TLj1AVG6Q/n4UJVlc1UYSt0MHGtVPUfZluwXv2x3BVXu6WBhxV5TQbMam/cg49C+7soEA/ANKksdOjuTGYowfv54AZ8IwGOBGqCkjWd3NqEwFdxDrGAeQLPhyMycfMO80CXqr23gWiO1uX82ljqv42OT+8HjtZxGwb3QBtf+NodPJHnTQGGi7S3ROuUMrRBjzKI7J+zCgT0DquSeeZTd1gcXNY08AnkSUPO80QfNxyaYdn8YIeFSzQsDRe1XBPnfHDRmcJT7xj+pkrbjUjNAUMg5geATofa7LAaklN9oho0vBuiEbCqYLnscepkzosjfPWE24NxNgwQ2kwFKQW4r0Mgn7SG9oVQKx1Pup7zJb2v51dKnwhuDGnOwhtCAuPAZOUPuU0PamG1PgAL9MnCTBiDXFpi5sTjfCI/HMdxJ6e1uR5XapyYxT0O02FYKdqppnUeVEvN/tyEjfNi5eC7HUJcQ6y9hOGMCsXpUmJSVVwD7Ins59Z1Riw8Hk/5qgkNdqLv43aj7tGAZmVFrmBK73S0G8jfCgwRZZEycZfZ6greJc3/paFAUDitoh5egrFMBhHhHDMoisOqoit7q0hgBkcI1syL3jhdbKnVDQI33mmhv55PPOMkjWMGaw3jKKfjigr/10/Glj84wBlX9H8P4H/NzH/JzP5pAH8PwD8G4B8A+JuZ+fz5ZykGUpsoXriw5Glr6mAIOfZuj7hCJlltMZISQFm/KcWwske6WmPKZXWfwKHFqpAaGUTEAmGutO4SW75UzmpTvRADdcrxRGviL7oQ2+CfvetYdcDVCK4XMzSiSEyNCyzuS81IRlskuG+b9Wo838YBqI9T7+tFt5W8Dqm8M/ZnQB3D2iBEtVbGo6/ktH53t0bpc3/1Myh+U2hMf8970bZkwOB7Y2+gVHCy2tnMlRamAkLAfaC1hd4DvTPNSk91hNSmYVCzxmEr4zjQRtlDMaBwlB7XFh1Cyhpf72FzbXUdpUeUc0Z96G0QsDlOXCd00Uob4XI9poS9NZBnH+tVtHC2qtminpNW4i/uO0bOcC1D5MTMU4HXYTbhbSI9tryIKbH2WjpiFnGv7KQKAlkW5mqbKkE7gE1ZK3ivtZBrlwdV9WUgauo0IY9YQl9qJOuwDIuXbolrrbtx+HaAa8Vt7NT/lzDcPwoE968B+BMAv9J//9sA/t3M/Htm9h8A+FsA/v2ff4qE4QTijkTbppB1lelRP7HmxPNJlxCgw4wVREMiQhPuo8GCrq/dgW4k5htIeHsaHJ0nUdm9rMWbvFgZc6P6/jEBW4FpiZaBPgyjRIy6yW6pPtmloFPowfd3LtoGgIOVWyNf1jvnJUQ64A2pYTQuuYyFI3MCT0NbE8/zxJoLHrWEOlq7M7gdFCX3cVwnoyqmJVNIqzafCjpXFhqRmKp2WVSqxo9A+yDDrqJWHgI+FYsVuYNqpVf6Z5684M/11lD+djqr91cFOPXtbKlNRQWTiZq3gTRHSwDo8GNg+DuGPzDsDefHA1/Wb3DaifAneTVZ+tzvd/Te8f1f+RVu9xugzbPmwsfHA1eKmlfACwVLr5ZBts+tJ3+GVj4JaxxQ3HtDfzs2v5pIWKtgxE9UQ3dMSD8iqJqQFZIrMJg1GjlY/3+pe2NlyZZkTetzj4iVuXNXndPdt/vOTM+AYQYCT4CCgiEChoQEAto8AIaBjYYAOqhjhoCGGdK8wbwAho4wEjPM9O3b9/Spqr1zrYhwR3CPlVlnbneP3QGzIk9nV+3ae2euXGuFh/vv//87Va+4C9u2rldwGPv8jPnBmOmgc8A8JniJ9aCDUg+kOGWLpCAMTxW1DUzY7ztjdtzu4P0pU13d3Y7mNLbY/FagcY65Yx5GDzYnRZQiSq3KtrVs/ETHuawZGRrONdfrCyLQj8K0gR/3qGBmDCUX2dhaxUyZo6RLThgGuHceN+Jf//jXCnAi8veA/xj4H4D/SgLx+w+B/zx/5H8B/jv+ZICDB44D54CLJyffiOiLxb2GfeTvsXhlC+9yHu4Rme+4nMqiM6HJ338WEkeOtlibJLYQvCtLfs5X58AzM8j2tzzX0yt9kgRZkQSRI2uLBPVhJ3Oa5WZWKlpiMtMitpqAz8x6Ysr8g5/XsoNWOCdvLYXEysCSgBxnJJlSvj7qCtw8PsCTPdJJfF1/z2B3evU9gb1f3XJfnZDH1yujWx1k+epXslObL/64Po+MbmVzkhld4KWTUhqz5KR4nSsfPj+jaGhwg7i9nbhReLkt+kgGmgdQRVQJft5yfuJNq3se2WlogfU87lWa2tNRxHlfHe1y3gHx0kGtMCQ6+Qh+LNfn6LIvoH5dCMlrFeMKwyJsjE5oUUucB+9xj+a95WiuB8ssLyqUSayxeX7A5AImB3GdKxFHZmShqUhmNZuer+biHT6GJq3GwCpr41qaB2PiJBbnSpSURapoYK8r08dO+/k/9vjXzeD+R+C/AT7m138G/ODuixfxfwF/90++ikfj4MGuToeBxQr3zuliIAeinVqT8Bo8AOBOkBPv2cmZwSf3yPGKV4oX1DRM/pZTAxZYDgCdADYzoPiGSGFaxXoNl4RRYgKXrtAa5FIXPcvGoGbZmZzEPXU5F4C2tNHOtrtnyp66hywLhVZeCOjnAm60Nk+cQsQDx9uuaN1o19dHyp/dTBKXjAwtb0FdWUR2auFs3MyRLHPVzPHijnZ7lKmPmz4jnD7KSeFMvlhaw9XkOLvkLqfGNuubs5z9aUNsldFL+TBnKFc0P8dpjIBkRhdBwUwprTMMBkp3oS9ybX1B2wZ6w7lw9IPRB6NHUChVaS06j70fcR1qlP6WG+Wax2n53prg/nJEnjYZ98H0ybC4dycz9w7Jaxu4a9Ma7iF5TqfdMb+DOcMmNp2YJe4YvwfWhDehtcBX4/QVZh9hzd4Hc8hplR40qexcv0dAjoE2ysvFqaVwvQam9v5uHEdn33eO+87iGMbViq7/SI6nSPAOtSVMIhtSg7cJYb3kfVBMgqupldIueXEjIL996WfQjEkqV0oqMKIICvNQSqGtiWRMzAY9eat/7PE3DnAi8p8Av3H3/11E/oO/we//feDvA/ytX32Es+yLjmM8HoswHo9d69wNswMo8rVZ4PnbEr5rkjjdc1aYR8LacXxlg09ZY5QPgeOZeygdeHoJz6yNsKuRzJWCeR83YnTHFn70nOk8ultnBnniipy/F5lc7ly6OlieppUZNE+77XwP+fpzne6nq3TMIHeeySw9VmG52O7nZ81MYf3sMhZYF0eezuPX+dh6PfK9V6mb5V6+9vr+05V9OkfP//54i68G4pzqhaRaLE1rSr6kJDBdK1rDRddJ+6U15f3pue6tx2mUp3Oz+oNJFdESZp6ST5+BFfOoDh7DbiJbWmYbMbpxVRTLKCBLQzNmh75HJjRzaPTJDiC75Kmptixxn7u2kenwKPvzhlOJTWHWilAop2XU47OHkiGwyAyL4fQ7n5tAFg4t52lacAJPryOxNCX94HKtu82EAR7VBJoYHY+LHZXRuvL+MOM8c8c//PjXyeD+feA/FZH/CLgSGNz/BPxMRGpmcX8P+Kd/3S+7+z8E/iHAv/vv/B0Xb4h2YKB+5AkMQq4wMoWIOnz0wjgCJ6mEcWWpwa0pRTAVatmQKmzlQist2gEDwoslpxnVCErD6+PCPTmQuh3JgH9HDDYuFL1EN2g+QHwVpdUob22NUJuRMRSpOf4uukKIMF3PwAWZ0WBndhaeZhHgzOP1UcISiBRYo6kxvSBaYsE8XWxPTDD+KW7E1XcTkfj+T4JtdH417G/yX6Ocj5+bz5uLJ+n2KaCGeqScpZl5Yk3PGZyQnnyaHnxJ7zBnTHsKJutGfg46kbGdZbykX392gbRmR9Ac3S5Uh+31A9Um148fURVuHz5Sa8VcOMwYdIwdZCbdAmK5Bo8QKVhaX7lF46CUmtfnwGzSE/M4xgH9jvpSKksM43HDXKLimDMUcRodfM6BNdmxnZ0xOmfhbpLzwIMmFPrXSAD2fQQ80WqaQKQTR5kUn0GmHaFG2Edm3qNnDIuQdL9vmfGvhgCp1LlRXm/0wzjugzGd0Scxa5azISECV2aM3NTgerZqQbrObNiJLDxoOYkBe8XM2fdoaJSymAQx1jG6zHnNZVGI6kpBEImB3181+v6ax984wLn7PwD+AUBmcP+1u/8XIvK/Af8Z0Un9L4F/9K/2ismfWnq/tavjPKyK5RRJnyz24pzETfhqZ1/k0bK6kw4nyW5lJ/kWeHaWfGVnAcyrkcEhgGXP2a1GLHxdi1eiVDWLDDBkNoK4pVjczqwqfj5LWpbPV96A+Tvy3IrUR8knKfRf5e6aw5d7IAtHjN3zKzQkAtyZpfHIUADOzNlZciFYwUkeXz8FOHE9g+Z6p4dv39eZ4XrXSGyXbwxP2eqje7jK4Z/+t753HvRpgLgaOg6axFutSJnUtkVZm6MQt8sFLYV+BM60fPOQDG6y0Fs/M8OUteNLtbIMUTU7frKyHoM5ol54EpIHpzEO1TJjsfU7I92bs0Qdc8bciXWtFzUxNbHmTh8jC5mKFA9PXNOgixTyswRrAI33m+5gE589s6dVycT5W/fX1hq15v2l0YFdFubDJCGDdBzJ/cjmymmD+mIeZ5CnppP7cvkZ5xowc3ofZ1ZpUiLQiyNp3/7I0AvheJNHrDGl9V8qFn7y+P+CB/ffAv+riPz3wP8B/M//Kr90Om+gj3Q+L/wqQ49j8OVz5/Onnc8/fkHV+Pj9OskCHp3Uacb0I25gmcE9Sr+w4M8GBWSmoHi4YSb0WXFWEIluK+UhZmYWrMfx2nliBdHg9zgz9IDuqd8T2oju5nYVqgmi26l2mKsElQCmtZTHrn52RGIn1LLmhRbOyV7liWKSpV80Sf3pvOYxZqa12OexduM8S8p/8FVWdVaQPJsn+FkWrY9umR3GZ1iUihXY5CzRvi4uF8g8c7xg/Os0S6ztOWPj6etVBseCii5n2GqfIdIzvJdCe7miW6Ns0c1cE9Ml1RHTD3SA1pBw2UwKEhreeSZRKook0dfCrQWhiIZCI4NtbdEpnMeB9QM3Y6Ttdx9HSAt7Dw7b2x7DkO4jPseyV8tyYAXMRRQmN6X4zsxAE1h1lKqF7VSvaLgh52jGMQb9MOZwjsOYU+h7y01+DZ4O+6i1G4oMhJ1SQjkROF5sLpqedkVCYtYl+Hm9hwpHa2CjZsboxujKqJrrbRWxyReV9cFj7U87QAg1jxslJZZLTRQ5cWPJ2GJ5PfDfP/T4fyXAufs/Bv5x/v2fAP/e3+BVYkmd+rNz+4OstueMC3Ucg/1+xBxJi/R6dQBXt8+8hwxL6pIknIHA0sPNrcdtM0MPOJNfd84cMMK+yUtoBF3yYpM7ff7VOMupY/TM4rKDqWAWLiSqing91/vCokp5kGQD10oMUj3lSvFcA1aW9Or5My2HjJPkujCXzHY0X2cd88mRFDi9fjLLPbvIT1+LB5dNEr+Ja70yLo3d9avfeezcZ3CTOE/xWS1PYwatDG5La/zVnbFeYr3v6aMWQ7/TIPmR6alQWstuac3PH8e2ZqzSB+hMknRYfOeZ4XS8OLPPVB3kovLFo8xnEL0bXgwbUTZPopQ8+hFYU+/MOdnvd+Yw3j8fzB6ZVJgUBAWGbCBENS6crjIZ4CI4h+sI2hGMORu1CG2GA0trgrcSQeYI37u+h0Pvfl/dyghsD8OCtbmF5rMWqOWxmamWaLbIShScodFMsJ4b0UmZigzVzYO/mY2ZkyspnA5AObgtNLDu4dG0vPrrQiNybT+xAiCSmp82pn76+CaUDJCtAc/DyVJSEn0NmyCPrtQc9N459oNmDlaj5Z6chceQ5VVyabYdPMNkcN3chTkL04x737MEuAOwGNpi3+NaGUfcA1oD4xuz02cMmx4ZFMlybeT4vK1F4Lr2GR5p40JrBakDrXc4L1Q2QrSw1ZDLfN2BDONBLU6ZBW2W8xQCzM5XiNLTF4dr6Xifzm82J8LOLrhcrCnjy4csT76nOYA/4UM4D43oaeW9Htme8cjE4sa2LEcfTZ+4T+M6uefYvqcAZzmCb9oSU+cRnVlndPPMVtkUbh9zWe6sLHCmxxqQQM3aPhk5JHpmt7UPC7v7ERmcqlCL5gYY9515/ntytwLfEkry3/xwxtEZ42D0CDrLcls1sUQLPW3InYXSKi7G/c0Yw+jDGaZMF2ZePxMh7LJWZhuzRLfLhqickIrYDn6c+92lwbaFCsHnxLJR0YfwdpesWg5AqG1kNzoG81w2p9ZQ+1yqYnMyx0DFqNopRbhcI/KpE2+YHntzRKY9U6XQgTNFdUelUGuNoFQC74sg6jF83ZNLioS+Vh57eNyGkWWuBCQGS//xxzcR4CL0ZPr61OV8BCk5uyaBUUxG72EEmPjQSlYfVsgp+8n+zgpvgaMtWkRhTOfYkxqie5bKQQ+p/iHxrcSNqqDVOfrgftwZ0+nTz9dauaYovN6g1ieKxmzMA3QztB2ZeD0ylaIFxgJ8W/4ZX8+c2VDFULcgUhaj5HGJLzse5dEB1jNgcZaYcYp1lTwnuJ1B6Kw/nzqAC2zJb6lqonwPp5HnDuzqvj1cbleL8JGdR/fQTg7UyjyfIQl/fg2Ld19ZZxBPn5+elCF/ZIIR3QK7YdFh8lqdXmMS17/PU2vZlh4W8KQgxVQtQSUclJUsEVdJ3o1pQS2xMcL3rmTjQ1YXNUqvlbWElE6YbhzDed9hP4w+C8eMcDPRGBJUPeGHcGP5QIkS9Ej3k6Njq4nA5Lopl5YsJQcbyrgrfcKnuzDNOdICa7sYRWOtiTgfb5XrpYIVxAqzH4w9popVHdSmZ0FUa94VElmgLasmC7XIOqcLMamqkb1r3D+r/I7sP55r2M66X5eRgC/oRcihUNlw+xMh7psIcGfKuv5+djNXBhcDjqd1ph24T4rW9G6sWaIk8Jopv8olJuS5xsi+EaLqOGHB+N7v8ef9Tjg6eOooM9z2rVN1P5vRM+1kxhwc/ch/i8XUu4MobduCqT8KRYW3z+8pVdnDd78Z2py6FS6XGsL5HIDycr2GO2+9pCvEOKUp4oWxd2Qo1TaqNUot1FZy8eXJOyk22eTIAIKTkrfVmeUngSWDEawI+FXggkfZuZoliPzkBstM7dwSclv5yphQzuOKP5+Og2WFtWRDa2HHS59zH7yfC4IV3DKwBY63DiUxIV8SJGM/9uC4HTs2BsfxztHf1lExzendziHVYBSJTWTu4CqMlCsdfSa8sWZzxCcfI4X8ffD+fjD65O3LYE5jP2Z2D40xnff3SR/OPivdlHt37ofRzThGrIupD6tuLcptj4685saVkyDRzMJsLnamkN4QQA27VIXhxvvsTHPuaQtWJBw8SrpPFylULfisLKPR0R3r0ShRFWqL7CpMs4W9K3OWdMyOrBDPde3hbCc9GijFNIYfZQPtPgMfbtRY07oCXOpoPbDXWuRsgoj+/ySDAwJ0zIUYl+mEjqM+Z2DeT3lK1Rr8G22oGJJ2ziFPEYQtSqrsYNk8Yr5kie5SH4O3+87sRIAzyak92dHCIsDVcIkwjPf7zn4ExjYXZiHELnxMVAuvrx8ppdLvEUzCfdTOAlDqRNvk+rLx4eNLEEu3EmUsg1IK12tMZ2+MUCbMmF4f7hZK80HzK7UV3FMgrueJZN3uge+Ffm+5a6wOlC+D0Hya50BmWZymFUwewcmfrssKUA5f3WSyIMN85TMj4wlLOwPv0qc+fv45wK2Sx8ZTAe3O8uZfR2DzCb87iZ8JWWTw7jMxsL4zx2AcBzYGvb/Tx1tIgKQE7cMGs0eAExInMmWqYwJzxqSq/RhhnpCzIUppaN0Ywzi6s++Dz587xzH59GnQp/F+j8By9Mk0OAyGR29xuvClO2+7sXfjfTemTw4OBMmFb1zeYnrbtoXP4e0itBq93iIBE3RPWWI+K5UpMHUyHN5GGj/sca62slG10qpQtNBKYSsl1Apm+HRmj/t4fw+mQ72EXf7lGvfUvscaqqbUGoYWmgwEPKADnyOqANfwuFQFMfYj5jCgDdeWtBNHQ56Rzi0GRbLM1Yed0h95fBMBzj2wq/SuBInU0zMrCe5N8KRGjx2wlJDnxOoUbOTPjZkdMcemROlgyfvSGGk3bNDHoI+DPoR9r9np2cDlzG6OXTj2yTEO+jzid/o8sTPNWQgqjm4p8yECau8rK5IAdRcReTr0AHznDA6AlEFtk89v4U328WPMCL1eJ0Wd7aKUstJ1R/tAZA/8MYOFltzNkju0BtbgjiUwLAimmhbjCWan1c1ysXiEsJXBPXVeycD4RAWJS7aC2SpPl37xgd+tQLmkUavzeobYBaSfGdmjPP1qNqcvb7WZrJWFE5Kd8SwDVUBiQZkZx3GPrubxHly0bDb4dHyQSgPL0ju/nx98Ehy2ewp0RjaljkOYM3C8OUfGbud+TL68D+775NOngz6ML28zMqYj71PX4FMuvqAKrrB3Z7dJd8fS5SVMMBWn5r2UjQEND7xhhndnK5KKi8zFUw7m4jg9tLQlgn6tUYqPntdjzR+pldIUrRNK8FIjeXBsJF9xxJUvlgyCMZECvcM0oYw1gjPvMx7PSEY872VhGw0E9hmfTesF0y2kae7YHGgMVYt7Ygo+j7Px8qdSuG8jwOF0O/AMEJpE1sWuWR3OMUJGMqdRtVLUVxbMHMI0YY7OGBEMbTrTKtPKShww78y5s4/Bvd/pR+HtnqJkvyIUWovxgG/7wZydz+9vvB/3c4GVEr74bStctguqcG2Lfxb6uvt7ODuwMB2doJYLXHh/cz79GFysboNSCy8fjO3S+OWvGtul8uFVaE25mdCas9VCrQHIug2sbqmWCLlPNFb9ETgELN1FdDVOeOCUacXFGlp9Isen6mHxleI6xezNUIT42dk60zKWPXW4vowz6+IMVJ6BiyhvU9S+jnWJ8G01KmyBy3mDzwh8fYR9T4yF9DPIm0cjSjRcjj3lQmaD+/uXmI17hKe9pN7ZpuEjXYNtIcFLiZLB3pTpcJ9ZquUIxt4L05y3t8l+DPqcHKPz+e3gdz/u3Hfjx0+dMYV7j7F3w4KKxOk2EoFVWxgjzOScTYxZZsAtKYzHt4QHVnvRQYxjdIJ01MLBl0X5zhUkxpQeioISfsS1Bb1oZcmqMZyobpV2LZR2gL4jMlGNaVpzj6bafU8IycPqqLWRzRTi33Kcpeb9WFSp2cVWGecmJapslwjK02J4NNsLW7kgmfGJ7hGU0+7LDL6MgA4slR1/7PFNBDgz53532hpDR1wwS4DmGJ1jDPZ9su/Qj8DLlpWL+1OHcAGUZwnzwHiW3ZINGF2ZY8OtonpJLSkIwY+buZDGyH291DOzqzUDXFNa0cQN1yJfDA1P/DCiyJyKj8ISUytGkcl0pw+jm3P8uFPbYHiltcrLdadW4fYS7/V6q1y3GJpzvRTadkngObE9WfMFYPmxaQa4osEOP62J5DGQ2kWzARFo7tfyvgdZc206UXqfed6Jdz0ytYeM6wxyT1memydv40EtEZ5kRr527PX9NLrMDcaSYxaW2HmMKNPDsTdsksAx+jyyOxuZfxyjpFVQZEfqDbMe2JLk71qK71ex7pKdV3i/J362x/3x9t7Zj8G9w97hyz74/ZfBMeB9hE/aQY3Ao3EOTxPLROBNQDylWpZcTXuSFyKsSfO9j5xwZaha7g9ZPTh4daQk+VsMO6kvC17wmMORNmQCFHVqjcZBzbGapcV+V8JBlZIUOu2cNJ2AkKJMP6FWc8jsTkWY4sy0LFOZ53UMQzqFEQAAIABJREFUm/mBSDl5cgeZOUpi5qWjqWoQfUz9WpSWP/X4JgLcnPDDD5OtOEUdlZ5yjQCE9n5wP3Y+fx58+eQcb8IclaIT953oVoGXHKCbwY50vxUhy5TBHMEN6nul71fcK7XeMoPYcR+8vX9hjsH9UEYXpBba5crWlC3lJ5dLvE+RIITe36PUWFlndIEe1JR+VI5eEX0HGRSPgN7NufdJn87n9zvmSvlnOyJKLcE5e7k4W4Nf/dkL33+38bPvN77/fuPlduX142vsvJcbqkKrTyP+Mitag4eLJvVEVxZQYudehpu0XBBJP0mcbo0NzL4ci4/0CF7kVwvRTosr/AxgrK5olp94Xt+n7It14zuJwcVA4TUDYW1QcxyMeWAjA5UHMD5t0sdAStjymA328RYboI983fgdCx9SmI2KBGRwjCjBVbBpHN0ii7UQ1Q/bmNP5y796474Pfvx8sB+Tt7ceZekez92ct+mgFalhAeay5WsHML9dlJJZDQLeI3MdgxDXm+IWmZrk7I5pWSKP2ED2uz+wV4Q5YFxgXh1KjhBkZqK3kVcdFadmRaE50Lk153IRLlfhcoWtClsL+XsFeiFoLh0OC6hl9o6bMLxEcF7XKUvKuHtypopPNLPBHOGGiNJndLqdS5TTfefQjt47qgPVGXQirRTNLG9VFs8cyz/w+CYCnCd58ZwxKYnvlHAUWbt0qYXtJU/EhFY72gZSjUU0jdkKqWUr0e3RonlSS2Z6RslujKdzSez30WbXGs2DZhLM8JwpGgEuXIJrIRdkYGulhePsWuJldf4shQmJn4WiICZwoSFNmeJ0n3w5Zu6KEUhKBqf7YbScG33vnfvovPfO7XXysTutbVxvkVm+XMNhotYaVBQPUmZQnSRufF/AyOqbakzeWlZUFnyr+LkHgrIG+8pyBHm+hvn/j44sX4W/Z5yNxUzMzOSktjwle2fG4U+CfI8BQTOHVa/7O+RzD7qLW7D3zWcYObI6eZ6lXgDxNj11thJZDiWF6UEf2Q9LWklcl6MTG9HbYD8m77uxH8Y+hDEKYwYGNSznJXjYPMSaTAgjT5vbOio/v/aZmdF5/uJ7cmKQT+dH4nLGPQ/IwvYCRrDkkYb6pJxieEkO4nllsirREq7apeTwtaLU0lB3xCwpMuDqtBJzF7DJGiyUu8fjeM73EJbezPBsABI4u0hsMicWaxziTAe1kRVHJAqxZpfnYpy3Z9LvH3p8GwGOyfBPyKxMwvZGCFM80RJWOKVy+3jjz/5uCO3vXxrCQS2/jYXZDZlxgaw68xpzJvVa0EtFa81d7aCoUWul1YpbCV7UNN6OyOC2GyCFD7IhUtnqhVobrQT4HxKYgzE6+/0NUef6MbuBCcCX3pimHD2yg+KDIiOGzsgr2hRtSpfOsDfeDuc3Xw6OHmoNd6FIQQVajWbDy2+/sFXn9WPlw4fKh9cLv/j+xuvLlV/+/CMvLxu//NVHtq3y+hqUk1aiTGCM4GTVAIBlAdLemEyEykgAWCVsgqo0In9Kl5KknniurihBPDrgOaR3OT08upkPlDlu7AlPZUpMUo8sLDCdmDXr9ih9Vyd2zIMxJ/3Y6eNI7pbFJpWZZWCgM4eoTPrYCewnjz05cHufaR4aXKxBwfQSwbNP9sP59KkzOrzdB304nz4FpePoFh3QHo0DmxfMamwW6kDHfU/5XaZYfkQnO9e9HVkcnuX4ytLC1CCI5zOy5yxTl8BlLexJbuglqpRJYXplzobNRlGjaJi1tqUz/snmsoZEX7aYG3y5OpcLXOvGtW74MHxOmghShYmhWzAJuj7wtFDxRJJiGiRlW8mJRIPPzRk98khliyA9RmQBEvSRbgeij4lf5L1RxCia3eMW6qWtVUT+eIT7JgIcxA7W50xxuqIecxVKEbwoUgJgf7kZsxWqXsAVlZeQwsjEhtMuhqiBNsxGSqRyMaamTQiHD7fYkUQmU41GtK+DWCQUDdB2a5VaKlUjq4IHi/wx8CNLjbx51CLLkbF2ybB0WrhEiNLj+fWQ2xBcuz+oHU5iJh70gymTbsLRBzYP3q5gs/Dy0jFiyPL3h9Fa4XbdqEW5VKXq4p35mcmyZD+RZp6fYW3CEZQio1pY3CLOhktPZmHCiRWtbTU28UzHkaddnbPEWEFulR1LArVIvitN8zOfyaPzMD1cOuX1kCU7Op/r96PctFOuloF2YYcrg7PARI8D7nend3h7i8D29h7Y20ycdXq+s8b7igX/SzwCbRCvH5/3q/s9T5Dbo0O8CNIrd3NZn03WhzuD/vknj/N04pese0tPnGoZWIB89d/CHEsJBUfRGNpcVHLWLTF0XAmOXEkrcjQCmduJxWmRJJIHAj6zegkuZ/Ia7awZeL49zhwu/yKrjFumAAKrIz81MvGpz2YRf/3j2whwLsxD+fzpndEt5VeFl5fKtlUuL4XLDV5fBrdrjW6R33CfjHFhzMmnzzujT7bbEYZ/u2PzRuWO0mlVA59yRX0L80TugKO6gwof6xUQZt4kKheESquNqgWzzpwHUoxSYIw1fDgsasAZCRDXEj5bB05MWuqIHNGgaJVhwugaIw6/wNyFOgvmQpWJMzm1sxY7Yt/jcn3eFfm9BLNcvlD1C9f2A60JHz4WrtfC3/7bH7jdNv7NX/+SD68v/Orn3/H6cuV6EbYq1DYpbQTI6ztoQdiJeQdbNAFyUpWn7blbiMAXYXg9lgR/ycwi5mTmkvbqi7Q7RygzLG9+Nx5C/yxVFxC9+G2rpA2314pyRWjM+Yb5DL6U5s+oI6lwgJiWFZnRctGIhaVlgjo2g5xqs2KjcdwPPn92vnxRfvtbYT8mv/9xMid0y2piS5Jq65QcrKLi+CHYAcdd4YiMbix0MheplqRuZJAyW5blK4TnriLB/2Ix/iWhFofH7NUM3dl1bqNQijAt5WkWDTMRwyTtszzWQJXocNLCPeJ2ufB6vXBtja1WtgpbzYpEDK/OVDv1s0u/jYH3aJxdLpdonqQ34fSY6LWCqc3Osd/z89xxYFrNxkk0GsLJ2BAtaeaZJgg+U4Ob95xIjnf8449vI8ABZsp+DxoIWadLTpyXEplSAI5BqG1l1fuhBqib4VLYLs5UwdiCQmAD8ZG8HEG8REacOkHE0RLE2noRwsF3idfDGLFl5jbHA2sCokxYWYtkVpOLPQYNLU2sn++nmTGeFIksxcQezHN9FBKPBIhQW0S2FdnBQYxgK2K85+zP9wMul4JWuN02Xl9eOTpct6DAaBIkpRi6yGzOmQGccvwT38rvsTqjzuNHfrp9ytfPn2Rwj2lZ+XfzR+zyyF4Fj+EjnhK3xGae+W5BYl4cw5/gU0+53uNY1u8+fU8enzU6s5FBjxEcxt6d43D2HfY9OpuTuKa6mi5rYlRScyKbl3RpIQNY/H0pjTzlRmdm+XRcZwbLM7SU/+Y8sKpzlefpzeBoZ1acsrUz8/XTu2JZpad9ZXbVoZZgBEQW9+Cw4eAlM9US711bwBtjKsyYSicW+tfS9KSJDItsTrJRNGc2bXI9OAIjEgJZM20y84wP9wju6148twGHk7/0Rx7fRIBzV/px5S9+8zu+fH6ntUnRwv3duF6+YH7H7U4pk1IHrTZeXl4D+H+54iJMKUhTXm7XCBqXCbOSPXeKRdkb8sIgu25b+PaXFiLokjSjmHivFG3ELIUOvkNxZCy8yDBTtrm+Tm7UoUyLUW5jdtrYIxsrTjXNsigNPQn6xm0DzNiSDDwIcmkMyFuliuNaCEB9w/0Sl188OE7yxmHG2+eBvk3+6vNkq8q/+BcHr7fGv/1v/Y5f/OzK3/v1B375ixdebxs33SjaqGxgFfwa2tsFWqeLhqXzg5/i+HzaI+A/AlCUFLKoHSkVk8z+Fqj/cItZtBPAsjHgk9VUiDI0Re+Z0YlqGA64YpYGmyfFJHl7T7b34pbZ8GOx4DPdcztjdvZjst+NL28HP37aeX/v3PfBfjh7tyhHMyhuVdFN0bY60o6ndRDToU60htZzplX60gb7U9CGwAZFA9OMYJ3BXGJAzyMyZeaWDQEkXV1kxW5nTjiOya6DqkdcNw1/tVJiA61ktDJHTNiy13W7VG7Xxsslu/Y1LPLFLcYMTmeUuOfbdcNceOlRcvYuuE8u10KpEdimeXSEJ1nyBl1mjHUeYuj158/hwUkPi64VnCWz5QWRrHtGNBxTSKjlTz2+iQAXH6yw7877e7ie1gpb65Ri9P2NfnxBy6SUSdsa04zaGl4F0YrlbMaYwSgxHm5NdXdFRjzjvdKaqCiiMYZNSpy4wLwUPHz2RTQXz0yekeQRR0CTZZIZcZSYLUG4ymKRHZZJyV0/8Jv5lGoHtlE0ZDbhlPN1ARgL6Mytcodb5GXHmekC7acR6L57dmHf+PJW+P47BQ6+/0643YLzdLmEMy1WQCt4zeNKmuhXeA+ZaTyA8ges9rSr8ihZEXIo8PkxQM7vPsYQnp81MaTTF24B4jn9LM/bwibPFiCPRX7Gj7X7R76AYOffWHihO56egIti0sfgGJ0+ooEwTxF/YFGKL3gtsrVyfnpQA7XUTwbFJd7jGac01rjASN1TGJeL2POkrrLu+Rw/Kgc5O6cr1xM8y/3IGueMBoNlp3xx1HxtJgsOUE19Z0A4tXp2U4NjF/MvcuOfeVbTjafkMO86YgZruwZud/QIbKKOzLiniwb+GS44cU7GgHKPzFnU0ntifc5HZSQiJ9SB8LCTej4nf+DxTQQ4Vbhenct25diCk1MqfP9z+Nn3zg9/ufP7v/zMuCtvh9Iug27vbNeOvAAiHAf4APsSafNt22ll0MoefDkKywOr1AhsWl7DEfUSLg1lywHEkipir0DBbcM9FApWSesbRwm7aLdJ7zs+4wbHl20T1CJ4iW4tpvQ5OOZxLoqYoSnU6lyvBY7CWyeA9+X1tqx3ZBDOwROf6XyiDjJw3fN654LxkPO8HTCm8U//2Wd+/8Mb+/vBX/zmyq9//Qt+/XcKry+V7z5qBOBav9oVH67IK47khCRfrXp4RK7nmlaImaWhLPDkxakkbyvlX+s3V9n1XLadJG4MswNPEu8yE3VfcqAttKV9ZHBYAYLz1fGZjH07z4+PFllEHxz74P198uXLztv7CFXCmEwsmlA1XJm9jODIEXQMSdW0pmC8NthEGOa0tqyZIoMzPDOQRVmKRbwC81rQQevQxzmBON8s7W5+JJdT4I9HtqxS0qtvNTc09Nh4mkLIaYEVeCrcrlcuF+XDrfF6U16unctlctmcrSVZ3GsEzmtc++nx+hFjFPyGuDEJ3bUUQ7vTWn7uvP5mMHvFCaF8qBmE3h1j59gnYpoYtmbWqaHOmMLoFvePwrPZwh97fBMBLiZEObVVat3Q0kNUfHFur87bjxOsM3vhuLconY4JBXrq0o59MDuML4oPoXzo0Cwwu8WDIvzMYkBLRctGKZHNiEYwCgwlaQfZnrccViwz+GRBOD238WC8T8tSqJ+dwJBINVRj8M3MifIzXU3QVFuopjeWBr/u3L1y68zhxctfzM0QGWdH1GUi0jlNMD1+1xHGBDfnx08HfYdLE0bv3G43vv9uUHTy+ipZap3i3rwuq+v64B7F80naBfx1u+gjAC7MaJ2TrxKv83Eyv86mQjgkBxSw/hyJMcXCVtlQLTm4RJ6OQtb/WFnRqaDI7CE2nBJNhsTd9iMcmefpJ5fHXAjDT7VQSTBYtuaReOnZBKh4uml4WtU/nyfODHaVzI8Fmrje+TmeM2dZyW9+nnUpVkWyrs8KkPG+a7gyJL5pnnwUEu8Ttla4bJVtK7QtHEJigDa0jSzxk6Ziwa/TPOaskIMg7s7RI6iXmef76e5w0v4/HXsWrm4GWozaZsxFnQWxyCRrUpwUZYrldX/qp/+J4AbfSICrRfjzX1Q+//rGp4+V3/7uL3l7f+Mvfwf7Dl9+2DmOmHNQtdFK4VIvNFVkNMyN48ud0SfHexAmty1H8vlkFqPhtJI7ocfIuVK3ZEnP01hv0ThIR99lormE6IFLeXT6zls8nCTAqKUwcarWuFBacVX27oy7M6YyZ+hGpUQmgEVrfrtESVHbgUmMjTlvdoGSxxbW0GnV7UFSHfMaN2POglhAeARQYqRdU/pQvnwxfvObH8GNP//Vn3G5XGMg8rax8oeQd5W0c8oS6wTpH0rHM9sAHlkIPJyZ/fFkyecev7eKcZXIquMThwbTFjmMlbmkGYAk69mXuedzcPOn1NAfrymDQLLX5uEghTEPjmNw9BnW21OAemJhlngYcB6rmSIjMnMy4xINxr8qHKo0TWA/eSQxTDy6rfEy0XV/eNxl6Zjn+Tm/xR/ZXp6tPJa1EYeVeShOYj21FvKrMIRL2/Es/8HROilFeflQeL1VXj8UXl8L18vG1gq1xCS586qqoK2wSPnnuXbQWfL4HbOZ1VHADYv24em/Bxpk7WMkJSf+vL02LtcGfsG9nsJ+m4bbEdisPabtReja8ny8/4HI8o0EuFLg+w+FX/7ZhctF+asfJ33c+fTJ2O/GvM+QTBHOt1UbW7kEJ80KzEnfZ1AujnCBOLpFV4vcJSq0xQODzOQqWuyRTS0v/LUbJsVAMlMzt9D4uQXg75b25zmHlJgShYdPHaopHcvMrY80W9QAJnxpO0MEXxs0jwlh6pb+MbKgiAg6qSNUddaA7HBMSWdjX0Em+7n5u1rCP27OyX2f/P7377h1Wtv41Z//Ai2hk12ZxJqsrhpW6/DUtJLncPLEQcvzGjFhYT2P0pOnDuw6xpV95Olg6VOfZ16cyuJVqhHQgbH0q/lBz5bs080lZBm/CMbr3yMznuksM4YxZ2KoSWheAfb01Fuf2SR00mkKeZKhVXJmrlN0pCFrNDg0mfsr615BdrlthLbTf1JxPVFKWLAFaws6j/PBB/R0ignfNE0zuLwMeS2irC7FkAqXF+F6K1yvyuWiXLYk0KZkfzW4AtyP/r6sTDsS3LiGBqvZAxHgbMb9aCt4n8qVaEAsy3l3DzxYBOEFvLHfD/rR6akKCVx2UYnis6ss84E//PgmAlwEBPj+u8J2gR8/f8+2NT79+IlPn9453gf9fXDdCreLRwZmDoezjx4mh6OGW2gKdb+879z3weulct0KFWO7jGx/R1bSWux4qyuz6AgxUi8OLYiQ8igtpmM+mDbCJ26m6kBviAiXpswCPkeU3jW6gG0bbNeBdcH6FiWOVdbQZ8TZygFNeL1Gij7vufu6kCayWAZmVrmysphssec/s7KjVpXWhJcX5XZTmnaqDMYYfPkEP/7wwu9++3tswM+++/5sZnxVBmQWs87JCrZfXcKnsmV9HRtGKEnNyQUdu7gmVmlk3DvJvXI6rpBYz+qIFs3ZprohlCA6p811YE/hbvGw9IlzEE2lyLY8tZe9d+bo7Ps79/2dMZapalBFxggr8ekSDssE7kPGUQfEFDE9lblFg+f24aWi5cbb+8DmPdUJMU1KV0TL66R5XldgWN+Q3GDCcCD979YAAxacEH9P7jm1eD4je1vWXUG7WiVxbNx1q2wX5XorvLwql5tyuRYuLZoNkTlNfI4YY6gBFcSEucjgSlnHkOR2VWopsS7cUBquG5tUJFUiY3TmDEjGHC7bI+g90IyBMqnFaC2MMcZQxkFw5bJKeRDL//DjmwhwAtQMcLdZeHv/nsvlxpfPQeC9vzn7++C718rtkjvQBBuT+35PP601XCQm1b+9dea4w4cb4pVLNYweWVUNXWu76NNi9bXXsew0VpNqdaxk7UI24yLaZExDqFS9oRS0tWhGjM+IDFp7x73TthF261yYtjGtYss6RxR0stWQrdxelDqc+wifr2GcDHwv0XFG1pDhDG6r9Dihr8C7WlUuTc8AF9rCyCa/3Ac//vDCX/32R6o07O9IJAVnZeRfYWkrQ3tmiqyfe0qNvtpUl0hfzmPStNBZ59mfFvdqMKzp8Qv7ietRcsB1KVdECmPc0+LokWVGeRxC+/PuckVoD9wLY/Qworzvb+z7O33GJ5zujEk4vAzDKZQt5sRaBppTRjYTzw30M/JKhfrSeHnd2Lad9/vOGM5+RBNEypo5Gwe7Bvis417nbGXP8XhSM5wr5nEBTpebQhhfpgZbMiOUNQAJAo0WoW0xW+F6U66vyvUlnsv4cpKaXxNGyqnG7IgEzqwaSh/ODRFUC6U4WFpSlYJwobYrtd2YdrAfn5gzNhx3oWqS6y3I2Ta/YNZRmWENNpTRJGzXW1JNpp6shT8Fw30TAW46fLlbCNsFvnttVBU+/+oFvPP7H50ff+y0JkyZTAZmPbps9h7r0S55lwgxLLoF6O81nBkSvA6nLTAvzEyxY1ixnG4NRXsGvrADl4c9SXiNFcW9MSlY0HNXfRUM+WyaiDotNm62HkzsPgscecNl9yuUDjMcHjBul8BR3u6KuLN3ZbieHc5FtwJPnNkpag/Mg+xCShhhapFgnw/BZ0Fnix8043jv/P53P/By2TjuO0plu9Szu7eez8SVM5Rl5vXV4xEPE7tRcDunVoXY+yc/L+lN54Fp6gLNpWTWVALrSXqA+UDcMO9ZVnMC6uFZZ5SSx25zHUi+XQs8Z4Yg36emdRIhdh/LsjygDZH1YYSqQTqZOfQmOuuTliP2RLJ69yhZt2p8/FDDlUSicRGDctZ2Ecf1dQNnnb+V2TyyNUl+StyXq5kUNKM1wKWm0nDNnZXU2q7GrYpQVXm9vXB7KdxeXni5Vi5bY2uFViReQwtW9JyzCoZo4MyhylmUJk7Yv+iGstGq4nIA4a+k6pQ6EYu1pzMJyRPm2HOTjs2uNU+ziODJreytH3GvyQzTWi8sZ/0/+vg2AtyEH9+c7z/EDvTLnzXsY8XnR26vyj//iwntjpowrTPcw8TSOm5f4kWWW4i39Pi6xr7qNcs4iMG5xvCJeEkZScH8krjAgWPUciQH6MJSSgRjPdr88d+VgWNyOe9LwZGSQ0fEY0g1YW81bOLaOYagd0lXhZYsdAMdtDIoxaDGBKT7e6E4MEvMlsDyv+TgCWiNm69m6TXGAnt76AdrpdbUFB6KHxWbS5puvH/a+Uv7C15a4/75DeXCy4foxi4PPUl94vl4EN4ege85wfCVLEWwivP/yNKeF/OJE+bPs8xOl57XLeVWTxme9eATWsd9ZHCrQZqVQvEZpgs2MYKPFqMBlYmAV+a0mDEwYp5CGKk4szvHfdBHaIRFoXhsVrVl4rYfmI1wA5aCbiXnBAQRTTz0zpcGv/i+cT/C1qtP477P2FhZxgJ5Hn+qO4WHFdQaxC01slWpLAxP8OCvFWGr0IqHDGtdJw9+mdjapJStNr7/+B2vr42Pr1deb8rtRbleopNfJOEBK9QjnH5X5guGW4/dgAOwNGtwWnmF0qhto9QjjWrXte4oE2kxBU0U5jA+fzpyYE40YC6vzraFf+I0mL0wRgl+LCP9GbPCKn+8PIVvJMCNYfz2d3eKbrxclFZiUG9rcN2U2zUuxOyDsQ9cJvc+CG+D2FXNdtbELEG5bBWacnspvFyUbXvgE61C0RDQ4xXxa+zIpeMMRHtu3bnYcojz4iO5P0wka11l7eqqJvteZtA30oNNS0sT11UDLklNDPKNGUrhYV+SfX69xnqfDtohkAnJW211SOUs/yB+XhzQEkN5SqGUcvqrFU+Q2itg2BT64fQj7ODnqe97AoqQBJ2UVcyvzt7jR/NnnjhdgRs9l2DP/x4ZmTkxncqy42mxiM4FlbidAzazpF1zHtLeKT56CdG4RqevlEXajqDjZmFZlC64K62RpCEImf6uJg2LAxhGk5pT3QM3U9ByOk1PW6jGE0V7Rm7fSsGb8HI16oi5F2rRGHraJx4gvj2aOSdX8pxH+6B9RLMse/jy/NQwQViwRcqkVKKMv1w2ri9bBLbXxsulcd2UqsFTFI9mDNS0Gotpcifm5aupIcS8kZSSqYP3hCESw84Ay/l1YKZuy/0XWi2YkkR4EDo2heMIw8uZbstjfC3Bc/Kc/4kY900EuPs++T//ye9BXvn+Y+UX3ykvF+F6gQ8vyvz+Si3G5y9v/PDDnTmNH99BxbluFfdJ719wy+6QNj5+eGVrjQ83TYH5oJVOrcalGUUbW3tBfAP7gHt0tJwj0+seHTIvuNUANlXChCLFxKU4L9cIauaxYx19xIWXHrNIi1Bo1Cq0eqFqBGZ8pn365OgdrcblOhB1ttapOD/7WaEPoVRnv8N9KMdQhjvDkyScgsEYSOPRWxSniVKKsm1bDLSxyTEHFylxM9EQKrMP3mfn/mbs74O2Tcyjr5uakOjMnqVULOPn7mk8/Kv/l8R65FS7K49gtHCmKJ9Ckvq0uCSnSKUrcWmRAR6zn+68IeNaVKDIdlQrpbQMbIGRmoxwm6GzSs0V5EQ9jD4lvfDOuBefvUg5A6vzKIlUwwzCDLrBqMKQgC4iSDk+DKmF66XSKog2jmG4hyXW+90SZohzWqtSapgSzBHZ/5jRzSiSQ1bO5lJqX/NZNZ+iVCLAMUBMEIsAV1W5XBq/+MUHbq8bf+uX33G7NX7+Ubhs0Mo7MQ4x57fqFt3YFUaTzuRu2BDwmYYVjhbDdOLzLfDO7LyHj174uoV7z2DOPUrPlDxerzeEclof3e/v9KPz9vnO/X6k0tIxrziBWbuUuKXWEPY/8vgmApwn0Pz2FuDiy2VLpjORohuxI7pTNayjD3NcPYwFc8cXDUF+UaGWQWth/FhLeXDIeOxGbs9ZhydMs6RaD1Lh6USbXy/Q9pTTsIwFM+B4lCsqseu6LPsZo9YoJXDoM2xlPa3LjyOkP0VjqGUQkIXrRWKXPKJM7iaU8KEJ7ShBW3AP0i84tcopmpZ0pjgDQma9UbZPsIUPLWzo+alffS2LjuHZOODRYHjG1s6M7axG9Txb/iCInT+rorh6NEEWxSQD5ePclsykI6CVrN6CgLqym9WBDDmb5hR2d300kdaVTdmUZjZqgPv8AAAgAElEQVTkSYJdhgQqJZk4D3xTMqOKy+7ghE5zxAapaCaBcT8WneBCrfFpti3UImOGfyEnL26dC8mNNkf+OYlHPmCCk7qRs0zX7ANNKCHfPsjJHmMpL61xvTZeb43bS+N6Ea5bVDO1LFnfut7xvkHj8NOIloQM3GLG67JnWhQXm8cZHPHCzBkaggXeNsO95TEPN4T958dfxZCTCUTMVzWDmUqgqWRCQTr6/vHHNxHgYp06//df/Ej9K5jyc777WOj3wuzOeJ/0T2+ITW61cp/wZqv06FHW1eCHXdpBLYOXq3O5FF62Vy7bhSpOWRw3i+V1zFj8RQ9EIvtzcZglCk033HuUN0NwGbgE/SNKlUqtl7gpa0GlUFuUu2YtpT6xKLctiunX28EcR3TXeMO6Y8MYU/jx9w0thQ9ypTbh+nIgatQ66MPY78JxFI4O+whda/fosA5K4lShcNi2mM9QmiPacb/jHn5xc2F49uBldbMogXOoTJBGaxoirtmrOdl+if+jfXuaXK7H0omeYqbEnKIkDAuBaBA9/PFcQnUyZDBXmZoZjiYOurUSstkcMCx6UGykdKsEFYQ43lZDEI5ckkoS1IcuPRpN3pl2RxhhHW6GjYG40kqYLEzbiG0hPLjHnEl8DiPS1YCJ+agHpTTKJeaClgquhukdQXmplc0KUl4YQ5A6OA7n6DtjBtE8kt7IesXCLHNllHFi4z2jm2uIhmqmboVWly09LOeocPFwrq3y859/4PW28eu//crLS+UX3zuXbfJ6jY10XedwuIZjTPrsjNE5+s6SzrEqfAQs5HjHHqV3Hz9gduc4Xil6DfxaSgI3xjDh6EF4ri2ue6uxLuax6EFx8JfLRtsKnmjxcRj3u2E+GN4D2snM+o89vpEAJ1wvhWM6Y0zue6e1gvVIl+fp4x8YVmgwZ17wwLxy38qSIzqOJ1qV2MkzideJHe6xE+b3UUJWX56wphkLdo3+A9a260ZkUScJs+RuS2QkJYeMFMOqUTdl25Q+Q386EntiTVx3oR+B89UtXmfx9EL/6pkZRnmk5gmck7tfBK3VTZPEn1b9FWdkibk5MZyEV1hyqsfjpxmd/OR7XysZHqRYyTRu/Z3EZzJT9rNFiT+9VgRW/ep1HjKkwprSFC+XvDeNmbGSE8+DUhVBQrSiFhnwyngC61k/389/X5ihajRHVnUtSZBddBXX8sDakHQ/4fS4EyfuwVS9rD9V/ZyZcdkiy3eySw+nr+Mjj47zJ8S971maelYtRTizt8jAlqmqoBbXv4qwNeXlWgOPfglSb2tQW84eVVgk9weyZ2cn/XFz2XnZPQfRLKrGczLlmdWKGqqarAXHrSAplzy7zjy//uOcyqp+Qu6f9KC0Uq+hV5XnW+8PPL6JALdthX/j1x/55795D5b9Dz/w5YuyaTiM3q0zUIy0MaqD221nWVPH+blGymtbLIARQc01Zl6WpkipUa5JqgfUkvk9WLpRqKjHTiG8Ax3KPC+WnCL8hlvB5gYzxhaKQm0VEWibUTwmFJkL2jplDLxMytYpn4WhityNdxNsB3uH2Z39dwMtys9c2a7C9TrYNuHaEqA9lHkUjmm8d6O78G7pUDyTl5XBTY4e4HoBpDIXVJvtu1oEbQKbQJtQJzHiUAhSJzgh1jUWPSFX8YIGMpCFHvMRCD1L3qUTdXGkJNYpAT2sMuihUJCEExzXpTyIG78U8v1iY6seluuRuZUTWjCbHMMRy1JcDOZgulP1AJ00dUxjwInIe0Ab1WkObiFaNxsMm8x5j4yhh2uL2AuuNbqZIunY4dwnyOFsruFUUyZIjLZTIlu9XSI4bDXGD77fG30sB45B78m/85UhZRXhQU/Bg8QrAq3E4JqXTWhVaDKo0qnEwr7Wym1rfPdR+fWvGq8fGn/+5xvbRXh5CdcQ3dIiZJEbU6MbG/mgaIHacJusGRJCdOWPYxl1RrnZ2g1kw0YNOZsT3eYMlELw7FRjtgkYc75nwA51zyPELRleVFJFleul0Wplu2x5H6zg+OkPxpZvIsCpCrdb47JV5uzMkcLbGjbh0z0mErkEK1uj/BJSZXDiJlEmBo3DHsTcxIAemkZyzawdKdoxa4GFD/6TFxfB3g7IdYmiU7i6+Err5XyVfSG/CgtrodRwNGmbYrOwDWW7K8OgNqNaio89LLPFYrAwCq1J+u4HMK8l6CHByQqgfuLnuYgdMLON3F7VHwTcmGCVN3R210T1LL3XjuoZyB752dcbZmS8/ghCK3PjoQ8NUDjLOdYp9celsPV+S08amdoDo/vpFi2oLnF9XOuI3ku2JEHAtczoNawWJKeka46VXBK07IufGfxqOliSkR2nZAYslhZIi/qg63NH9umuy34wKCaSnL6Vha5rIE6rFtl348QcI3AsKkz25E/5U1gXkVmbJC+vaFgRxVjcaDoUgapB5r1elZercnsJNcvlKrQWjatVFp+3eW5GD5wzs0X3p6vwXC3wdO0jW16ZeAoTMtPO15FTdPdUB6wgtaowXzdXnLdFuk+jUSQcW+Lfftro+pcf30SAq1X51a9umP2ct7cXfvMXP/D24513ZpZ3Tn3Zojtpd3SkTk4LzkdAqFIoolwvSivC1hqtpgheChDZWZSzA/fJ5MgFEcaDVRtRJm2ID3zWnOB0x3zPrlVQEWqNxVFLLuS8mnMSmUPOe44ZncKlNDavbJeYc7pdG7VVPr/veP3E+x4Zxb4LP/ywMabyV38ZYvcPHwuXS+HShFYeSkQR2ApUF5qUwFxqUjw9Z1ZagrKE1dAYgzENpSC+UbRy1QsXvdG8UpeQ28MjLcr7HD2HcRJfnwNQYlExeEaynM/j0AHmgV+6MS2A6FXdSvHkbOVLakAM5hauK2sBiCT1g8Dc4ocfK8UfoXAaYWRggh8gMwan4BPkjsiglJ1a9yzjG1U2thIW2lK26CjWzkxbpmkx89ScmHo/iA1OoG6N2hrFBXqM9XvfA4642DWE+Dno2XDcO+LvqE+uqmwNLiKMWujVI5sbk96ji9gdoEQFAinFItkA0DJYNWkUEV4vjdtl48NL4ecfK9993Pjzv1W5vCgfPibtI/FKdyUUWLFZR//A6Pud4/gUWOlpkR5VwujLkWUDjzUAFtxUt/SjO7c3PJFMOCIIqyQ+B6VGU6zbEb/nYV2upVI0HFtK7oxBrA7r9KU7+lM16jcR4FSFy6VyewnSbJFQH/Q5mWZcLoFDSeIRUhyKpFtDzEqsiUuVsjqWIYAXWcaXhfi4IzOvKK9Oxr5kqg25pS0ZlMRJTR6V5+SpBTqcwmkSOVl2NwtQkUUQDv6bSmOKnIOlJ8bLXkCNl3uUMfVzZFlHj+PbWxKDTaCFjrOor+Yv4lAzSyjRgmMNL5kSXeGZXeDoSJM7pKJUqjaqVJaqMh5yBo04M8biZZHsw/X5T+MQsnI99+l1gPGm0Y20vNmTp5aY3OI0ycoGLF975YJCQgR5aB5lEakCeAyXiUxW8zoEjrYwuBVFZ+Buag88jiC4epojlBSsrxGJKprDgWK6eySecYIKQl3usxZLb8zsBo8ahFSpeVZjceJBF4rJaQrlgbmRuJ+NgFNmfmiVuEJNQ/faco5wkYW3BaSz1cbLtvFyLdxuhdutcr0J2+WBu53Sv+TjrcE/Ni2djpMGkgFuOZWYkUOnOY0d9P+h7m1Cbdu29aCv9Z8x51p773PefS/PGFLRkiCCIJZFTM2KFQkiiMZIalEsGSxZtCBISkoQJAUhBivWRBCsphAQBCGVoPGF/L53373vnL3mHKP31ix8X+tjrH3PuSe+W9kZl3nXPmvNOeYYffTeemtf+9rXlL2e4sflhqcAE5n1pEY0lXuZJCJGyOc34OtpKwoSCMqEDh9detpQ+PpTx1dh4Nwp9f16/wZbc+y/2/Hh5Yl/+A//AL/4xXeYbxOfbeDlbvj4+gqrgfoqesOTGa6iAvmtsefptjVmlnpFrQ21VbRalCVywNgxCwpS4IZjJ+aTLefGwQ7qYzb4vCNKIW1gHpjjO5CbxL4Nrb3gVANWCOvqYC6dfka2N0QNtDZxu33Ex09PvH76gOcx8du/M/F4BL75YHg8Aj//Beslh+94PgeeT8g70qSiLQBAL62YYZOMksUBss6zqcng9AlDQ0M1GrWX2vChN7y0iq0CW2E/zFrF+wMAsC8oCnGtZN9nOGqmMirYMkCwNDpJxqWBS/rGsswxRdemIVncO21OkAcAaJMzoDjrOS2jQxk4DyakqPzCml0GpFIC9gHEDgQrWAwNtVa0XtAHy7QY0BJgb42yTAGSfXdJ+4yjwYNJoQg+y1ZEIwplC6fU8oOhcO9gmLxRtskKy/PmgBIYBfCi3hxALxVl6/AouLngDiUsmh0oCLQyUAzqGUJC/K13/NY3d3z7zQ2fPlb87GcVLy+G10/k/XGOG3xsACpqoUGfgyo8z+cbjv0Jj89qFaCuWc6er6R2aM6rjGvOHZ56fe5o/YbeVfaBwDGeSxgh4skRDdJgnoNzbD+kxlzU4rGyumdOeoNzBMZB73DMC4TyE8dXYeAigHEYWtvQKvDhQ8Dshj/4/e/h4zN8UiSyW4e9dLRCXfzwiaEFXEKk0Cp8pXJB1EZvrlZbLH/3lBLS7Ws3YH9HKcc6F7V71it2uMjA0yeisHGMl5AWXO5Y6WKobjAps4alpY9SKPLXNrRtQ9kM+zHR+8DjyaqCtzfHMYHHw/DdZ3YMO6ZKX4TvWbWz76bCZ6+ZdyJXyZJOI/XTpgndrKCVilYrFUdqYjqkg6TqBSHMBF14/ZkSEBIiW3dFVmJdU3os2UYnM52ZoAhlMKOEhBXfc99inY2eHutRKU21QGYRgqfPBReY1G2J+xRAhfKIE7PLIv1aTTLdCrc91TEyI04DV2uGSAzVjoP4WCvEvmaw0nkGi8IxWKBUKj0zNlc++yTAxK9cXhTnYskwXxtyqx1MHDFkr/KomXILdKtoxfDSK+63jg8vDR8/dHz8WPDxU8PtFug3zu1jpzEdO+ucy8YKkBgkUI/9gf35BrMnUMbSZGNDnmBBvbh8RczngSnaDysbSiWMw0Ana7wV5agzFvFF3jPfw9I4GjaQmWCJM5MScoyLgftp2wbgNzRwZvZbAP47AP+S5uF/COBvAfgfAfxzAP5vAH82In7+686zPyd+7+/8Er/9O6/YtkpZozrx279NNYJf/PzAL39+4PHdxC/njt4dry8M07ZG2kQD+TXIXT3Y2iwwqE/fhIMssIZ9MBmmCTuYTwRSAJNhVK0VwxqzpMZdNzttA8CpODsXMAqltxPTMAClcmGbWocXK9hQcMPEq3+L6cDPBpUsfvd3Dcfu+INf/BEe+44//OUf4u35wB99f+DtMfB8GvYnQ6UxkwhJkmkplaHAmNwlK2H43kh7uPWGXit66+it4/W14dM3HfdvDOhPpiptahwVZkcaORMcpmwq7FKidDWEmZRhmFGCvWnDtTubyeD68vxIsWCcSonzgrap/Z08gaJ+tXAJLKrovZg2L9VocHcnB79VVikwaTfQK9WhW5nwYqjtDaUHWlCFpkdZ4VrG3oQxCo6Dob+rQD89CtZlBvYgXhYVmD3B+sBwx/Fg+74yKT1k6sAV0XFtXG3ygmtpiGhCBChTX2LnPWGimuGlv6DVSky3V3z7zYbX14ZvfuuGb7+98dl+6qgt0Cq9WFNdMg4lEuaBiSc+f/4FjuMJHztiHqi9opcORyEuBnqgEY79MREYeBRej9sO9RwDzDBmYMwnzgTcRN/oUUe86P4IwzzfDjao2flMrQWsTk7BUjCH8fY1h+gfCJMtdSXOfuz4TT24vwzgf4mIf9vMNgCvAP5zAP9bRPyXZvaXAPwlAP/ZrzvJGI7f/0dveHltsNLR+kTfHB8/VczR8fadwefE8Rz4/gjcboFmE1s31K2ilopb4aLjVOOuwHIOhVdIA6VQKhhOEtVgXeZ0dkFvjZyp2oASBfAGtuobOo+vBf1OcSPifcodZ+8BNqlugPEeKS3TGb6m0yffa/wOMbM/8f0rnvsT//gPC75/+4w/+PkDf/Tdge++C3z3XWDfHW9PeZ6HWGSlqpixLAyqmGHbmBh5ubHXbO8sj3l5Kbh/LNheAGsHlQFMafu0b3aijBnSG+rCi/JY3popJDUA1jkpzRAFC68JzCUYwGbaUzWY8oMNqE3vTbyz5ILJioa5kjtYskW80ipXrlUDYqKYy1u7IWZBsSd/Vw21c7F14atMejBcTs8qnJlPOsT04OZBvpfP7E3KOefCRH2aVEnUDtMcxQ9WOHTo2VewB0hujlLSVcMkeMAwZEQVmhrQrOLeN2yt45vXDbdbw299U/HhY8Wnbzd88y1/9/KyKTs+5EXSWA0b0uDbETGwP3+J5+N7bt4ASryg2Qa3jlI6ewVbYPiB4/kdk1asB0Nph6qIskkTvdIMAVjCZrhmuwECevtO0ct5SGBB1dZmZBL4tIUTllIy6kUpht63nzRQf2wDZ2bfAvjXAPwHABARO4DdzP4tAP+63vZXAfzv+AkDN33gl9/9Pv7x7z/w8rnh06eGbTMgnmhtx8t9x8ePO8MtZyvdsTswDZ+dBs4b6L00dssCGmAVrXUyvBWusuwKQFBBIgBEIQ2gVIVSliVNycE+VBw84E7RTPXg5QbrE8d4QykNbVOIV1luVlqDqQ6w9U6Ke+2SMWoKldMgcifvGxnitReMeeDlw4b92PG7v/PA58eOtzeGsPtOxWOfhrnL4AzKRu/P7xAxUbVoe2cWsmkcWmND6+1W8fLa8fGbV/T7B7TtjlrbSoqcxg1Y/0qjpoSCtgxkOTRLwFxG4jSK9Kzm2hDWxgPWdi6vGACQJT24KLfqm0p6dU31uEmdIEThHpcQytCGYQ5H2SeO5wGPHW3b4XGg7RVt3ll3OQPFGmrdkOKhLEViWdIcRR6cndlEV+2oB5pPVYQYXqNK7geY05QoIm8vEFRQmABEW2FdLMi5rErCIMUaqJTSa0MpwEsnrPDtxw/Yto6f/ewjXu4bPn3acH9puL8U3O4FvZNv5j6w72/w6dgfrOXeH2ycZLYDGJiDCiHZ0Z5QD+eSq8xqDEqjlypCdjl18mKmOi+QJXM0dANjJiWHDZ0y3J0OPB50Rpqyptv9BbUnpYsREL+fYpkhmSyfaub9E8dv4sH98wD+EYD/3sz+ZQB/E8B/AuBPRsTf03v+PoA/+UMfNrO/AOAvAMDH1w1/9P3PUf/gM263hlK/AbABONDqjvv9wKdPA2M/MB5PGALHE8wQPtk5KG6GWhu2l5sgbGI1rW/Y+qZGIJysPpwDl2m/ZLFXNo4JXLJ+kIJvOHyygLtEEQ7EI2JiPx5U7tjYgq/1Ku+AmmzbraG1DvSOaI0haz0Z8RZZAE/9fsBwf70hwvEzfELEwGN/Yh87ns+J53NgHIH9MYFR4XuHj8D+PDDHwNvbH1H0UcmGbHKN6oAR/6u1o/eOfuv48OkV2+0V/XZDqY38MWnvr8qE6/PLMV4v4KxjzDIuxbcXvI6NY5Ilz7AyhClWyyCXhs6dnp/1DUn85GlcWVCKJhY9vyJqDhfugFfyB+dI/MjxeNvh/kTtB1ocbHQ07szKB5iMapdlEad6yRxFP7EMHBcgF+LmVIZhUgIYM7DvE3MGHg8mJfZnWZnIK4m5qE1ftamElJSKJdFfq1GZuhV8eqUH/rOfveJ+6/gTf+Jn+PD6gpfXO7atoxRWNNQGtBY49h1zPzCOHZ+/e9BY7BneM7z0cQAi1JJeBeGXiUU7xtR8KKzVrY0Mhn2Xvt5k97NSiTkzQcckUybkirGb1ttjYk7gGByD/rGitobb/VWeGTl5FB9wHMcTU1SfnEMz07m/5vhNDFwD8K8A+IsR8TfM7C+D4ehlbkTYj3RnjYi/AuCvAMA/+898im9/tsF94PkY+KNfNIzHwNh3zOGYB0TerKi4wSyWZxIS0RsH9bmsVe7gdcAD6H1DNIKjvUvpobK5yDC7eFAKPSK7aZW12EoxViQUqopcSaKJVZ3Z0jM5nuTMSLKsMTtY24bSGloXMVKYIHXETHpfTCiwEiAJlCxTaubYKkUZx8bQyCcxx/2twL3h/mSihJlDX+RQq4yZS2nMhlVOrJfXFxq4vqEU4ZmyQkkAdv138uqKym6Aix8nAmD23VpE68hIMsusbGFbCFF+QtnmNJQlQ1T+Z4ao6WEbIIjhdPCICeWCUsKgnMXz7I0wUayjWGDrtPvTSY+ozdC6+lKU7KNwNm0OBMZwJRkmQfhhMloBH1mAbgTtx47pjuezynOpCmUT2qDxLEVJFCUhTOFcLQ29b6jV8HJnAPDhA72zb7/p2LaOD58q7reC0hxhAzMOIAbmPnAcB/bnjrfP35EDOZ4MqePsWIZg6O1uooA45hw4jHXODgoW1D6VnWaJ2XHQK92fhukV7lT2qeqYFWgSn+AM8VkwfK7yLivAdmPCorZJVRKvGMOVgLCEdBGxw2ygFEdXddBq4v0TRuqPe/wegN+LiL+h//6fQAP3D8zsT0XE3zOzPwXgH/7UifpW8Lt/8gV//+/+Ad7eDmAEvqsdvUzU4pjPAEaBeZWYn6PYVMjIYvhjPjFKhZeC0hrcKup03G43xKbykK2vhTgncFRwkikE8Sk2+mT2ihiboTQqpkY7WwmG0v/M2BZstwZYYMSUaWP8G1kdUIAo9DJbv6NtXSUnwNJJ8wsFBPQ6KIxpAJxS0m3COySmSe/C4ZjGTu37G3fbOTjZfIhGUzKrmJQOFqd7GDwKXl7ueHn5Br011HIDwKwgyUfMeCZ5mMRNsLQm+V+hQNTaShJEnCl9AArFkqasXK9CEGKb0CaQwBp/nyoevah5Npy4msKeYid/L8JVVid1kBKAV95/dbAJEFVnSqm43QxbMxzjwDEGWuNmVmtHu91RSkPvd3H2lDSYpEPsKvp3qf/6YYjDBJcZAgfCHoQMjo3POW6aDBzb6TsiJs46aRlrbbK1Nmy3O1oHXl4nWnO8fHTUZvj48YbWGu430nrGYHLJ44GIJ+bxwNi/x/7c8fm778kI8HPDiAj4GMrkAgjDgVQH2eG+Ez/rFSg0rpbYoxuOBzvd7Y8bVUIEiNbmVM7pG1qzpTYyR+DxvHiB1XC7d5K96wOwieGB6W0pKqeOncdBcYXUB3TVqv4EVeSPbeAi4u+b2f9rZv9CRPwtAH8GwP+l178P4L/Uz//5p85VzHC73fH6cud+7BPHod6hXNuoVhdxvSShFYVlcwBatrjrRY2UT4pIUb9TLbHT86LABUuccOrEAy7Zoax8cKD4xbjRwDFy42c9L8Ry97+Rf1dvqLXLK2oopaNaR7XGzlvIZJ0JKE9PBaio+k5X2MfysGImGR8ZOCMP0A2IzYkTdX7Oh2g0Kb+uRGTIc5y0xir/Mr6yv0FJQBh4n1E4jc/ZhzMJzjJOqyRKfKW1qhLUs3Wm7COL/GhaTOR7VcZjMgRyB/O7108AUEUHirPzVTj81NZGDkD2DyjBZxzKJpRalq7btnXU2nC732iYpQ83lLjq6qEaLkJ45gJmACM4h2yT8sWQN8seBMzSBwIMEblRsI6WmJ/mfW24bxtqBW4vA7UGbq/0NO/3O5VNKmBGrHjEwJwPzPGAjyfG/qRSdez6fmZml8p11jBLRSRc4mMZxWiuU90lJZJOQ5n9L9wNYVI5kVQUriT44N3mZplJpuny9lPwIG88cg7ayrSnMEEpAZQqIvCvty2/aRb1LwL4H5RB/dsA/hwIxPx1M/vzAP4fAH/2p05SSsOnD99i/mzi+fLAz//x7+Px+Q1R6IlZBG5Vlj5EC6l1pYzNAqVKNbSzfVu/FZTKEqe+1aXqkQMFA6gfeFmgTqmjeWxUMTkcPolnwCZWo11N6IhYwOqYRLlLU4/M/gGtNWy3V9TWUVtHqQ2tvqCVFzSraGjLu0veEwB5MOTx0bOEskgkY1LINkPhrJSlYWsVDCu1gHy4MrxJ7SB+NefAnAPDBzAH6mboG7QxNE2ODR5sPMKwBPq8PM0luHmGoemNZulwZT85GYLgzS4Wej47rFAt8T7+zFKsIZvJtCsTPKxWQKSBI42AZV6TnECfajmXCyfkOVTiR1Ijgfh/owBWK0qrxCU/3ND6hg+fPsEqG4UDtkQY94NCAZQUr/QYgyEffHCBl6yYodEveBGkwebmtVHNpEiO/Pl8Yn9KSGIO9FLwWjsVQ/rBkqx70SbIDYhMgQMzvsPT33A837A/HogxMPcdlPZ/kxF7BaIoYUKMi8/sBoamVLA2bAA2Se8z8QY86bHOueaku2P6A9PpFVsJlFYobqF9kJEQgFCD8mBvVZvSQCxA9axoSf08Jg/bUg9xkr9LCB8UY2Bttj98/EYGLiL+DwD/6g/86c/8/zwPfCTAWdFrwawp+BdQbl6mSbv5AmjPHWL9JnGxBErzVeSpgeEnQ4EAxSBNOlxUh0gjyM/EGkdOVJNE0rmBuPP8xSpxttrUi1R1iq1rYREortUEMZlKeUxeAsAqAIggqpIfB9hqcDJ6mSotU/iGEDRfcyEDQKywyqJxR/ZDk40ZLkOg14JeC/X41cAkoN1TmKQqPxFIOaMz05UeMXB6n1lGc+ZWPQfw8uhIxAXkwEUSpS/Pdjlytp4tsuLBitR3T28QuY2t0ix9t7zEcz5oc1wtBSEMlUogrTVmmntD20jrsarKF2FIKGpMI7yMGWKTgbPTGzV5tFZhuP+KgSuFPUKASuOgzOecB7oZ7rWu+bsgBtOyiJA4hUvi2zEOKp+oEHnBBwEa/VCo6nFmiLlmuEmnAszZBwRZdots56ihhgFLtLLUouy15nai0dnzFY5sFFb0XexlYYymADZySg6rJ05okjrnc3SVweU1/brjq6hk8On4/MsHei3Ybhvmy4YbBuabYx4TmIOBvzlQJsIMHsmIVxs2Yx1nbYzva2URP0OBnRSOpq0zRW4AACAASURBVExO2WQ3QyVZT6qfoiMyLDbu9ovgirnwLkVgfPjqZjWdlU2bjFq/vaJtG+4fXtE6C+tLrejtht4qqQ0ie1ZK9+r7gClvKYUmyXQ3JQwmi72lbBGTfyNuGJgqASrNAEsNs4A5+8Y+3waOY2IeT+zP73G73fDy8oL7bcPLlvSVNEJFopGArX4FymwurzfDBpk/IxbDkCwUVjpiUKjJnTz81pqqMGLt8NfXaQVPL7ssnTh54FLeXR5a9l6AeFTmAA6JlPJV6kStE7WTw9VbQ8WWXyjpI8d22/Dy+oq+bXj9cF/hOjOk/HlXqV/2SvBgcT6QpyvIksDWN7C64saxK0+YTbQ2UMpc1JPj2DGOAxEHYu6oALoGxdUkObmdz8cbxhwYx86G3m8T+9PxfEw83yZaUckXQIhlOo7joYRCJZePErnovSlBljWqCrkRcAxW3mz5NDZxBclZu995z9ITQGnEQcdgBcIYpDTVCmwbE021b0z8tY8wNFYyRODt7Q3TB57PHXPyGcGIqdZyJmbWEP/E8XUYOHc8H98DnQkEeEodubRnVN2sYukwW5kyZPUCwLDNs6dmZqiySBxYwonyRfi79EaSkwXwhLEMWcaRhjgLfgsndtekqCrt6beNBm07jdr714kJWoWSFCJ1KrlQEo7KPgiSZYpSFsRF8qkhTMx70MBlG7/lFcoJKsZbJAWBNJj0iimgaUpCZHiINa6J3SUN5B3mlW81+k5Z/GCXk7CrlSHVIEOeR1zc7oTIgMs/voD8InCq2+ZbljXMUJD/fZKw07vn+KbnV6gvjmoNLd0Hy7Df0bdN3aG6QqNsEnPB/JRkKSWb02TYnHBIhWETZMHa2pT8oUcHyhZp3Llu02M3RDWUcLQMs6G60CldQOdmN8dkcfzIVogkYtO7Arl6orLMmXW5fF7JCfVwWKT4fyC8wr2IA3qghCPKWJvN9Rm+mzN5Tlw2K4inKL5iKYQwElrIpjqWqVVFSBZYzzEFb9P4aqTwU8dXYeDGeOIf/YO/jXvrZCs/D2A65j7ZvINOSTq8gA1E3bmYJFVd6yfusoMlH8/ngeEDbStoM+W8GyIqG15oSRlAAm44xrEjNdBgwDnvOTnnNNJVKvs2tt5xv99O6kcpLLovFW0jMF20QMrGTFfpDdaq6mMrSZzlBk4MGbjCBikLXNWCYcTuzPBmmKGJlliKRUdgYoqeEdnyyQ0WjjIO1Biox0CpB8zY65ImkjhQCg+acyNIhdhM1Kx9fpHZCsjAN4K/kWoVKmUyR+uVWNxzwOGU/5Y+GzthJeyAy0/+I4RvTjC5UvWVIzu+I+s25OlcvJwxqL9ndlON7WSJT29Ac2x9QxOx2WSorFS03nB7pXGCPOuxKB0mJn3WsjLcJYWiIbwhfANUpWAW9BghAh2ArJ8lSmEk8bYKrx3RXMkGKo4YyBSgjtKB8fwecx4Y44E5BvbHzlrltwNjdxSjN96b4dYNj7fP+O7zG997PIAAiqTBIog3H2NgeLB5EiZ8NsTswml3GBz2GMgm5wZtrEZv3IphDBpTUl0SmlBntyY15qZnKq25oTK3FC5ge0ZD7R3AGarP4Tj2CUSDoWv9pvn65Y/alq/CwFF/6g3FJ6WeJfi4ANu45umEMUXWQMk1Abg4M8vpkdCdMmSJ6eS0Su+Bngu9jPScEhuSP5fYB5hFq5Ut3lqr6Btd7dZVuVBp0GpnBYOVyuJ6/Ts7ciXYTRluLXBVD5AHlTia7oe+Fq86AplcNZURmTnFAFxhlJc1djl+9OBouIsK9S0zzPbFa6XfbQ3z6QFf984T14J4hQGOqePaCEa7fXEay7V75/PAeraXmXF+//pTAtbpQVCV+fT+Lp6bpw2mV2UX/JBlyeVMAK3nI/WZzg1MD56S2xevn/eUVKETz+NUI3mZTW8oTc72jjoHh0rnEn6VXD2cXvmcucEpwZPPZmFbLhKuYAumKlGlLpKlu0BROVk+yMuztPRs4zLIExmOU8dPvEMl3Fz6cLYqfznPyK/j1ZVIqOeakCLZ+srsWIRwAdpLUl7XGMOorxhZ9qj5Eqwlx2Um/tDxVRg4IOBj5y4CNdqNQA32alyLUYoZDB1ZvmONjS2s6Gfjgq1K9xs64Bvm6Bg72fut3wGbQHawL1LbEHDr8tQyFV5FQek9td3ygVFjLsBmLeaGkJ7/VjfU1ihSWCpaF77VOhvUKFtHjfpNhNUuQ3FttAvdcPKqFMzpR8xATIcnN2kSPG52Q0SHW+eCH1wktd8AM9zMUHpFaxt621BvjRxCK1T1uIR92Xs1F2Om8lfSp3CBpiUsRve3BjBLl1fFc73e78LIGJYw5Aos0QL4qqDIe4/s6qT4fBkuGYtYmnRxGjRpbkBZZ2a+C2ppMAkPmBl6f0FrG6s3akPrHdt9o5feicFOyQDFnuVNyb27IQv8qxHzNCOdKKKKitKA4iRYI0gehsqFIxd4oBYKtmYIRxUbxzGe+Py2S1GDbRNLrajRuIkP4qlzHNj6hvu2kYAdDWMc+P77HfuTXdOsNny4faux70AUjNkZORRi3G6fEbYjJhVRxmDj5aT6hBt8J6SS8vweD3hMHCMwJ4hrSlwCZtKp61LQEX4WabRY6dC6+gqnUkjCEk7h00X4B5gNdnrmPxWmfh0GLkChwDiVY7kDMGuyaABmC5ei1yEPSfI+q5vTel9m+mjx3Wn4+BkA6sVgcgGyn4AVYzF+At06H5son9/PXVDgs+SRAsnX0e5d6MlxsmcYJAFOy+Lj5Ldlal2zPw8BW4Gi8DlBKxo6h8Emjc9cu1xFWFk4xrTJsSyNzXxFNC2qizXVOSVNbYXEyN3+4kBklIVzt8XyFvihYvx8QTbj5q6f5VSJ28zhTKrodnPMvwSQQ94Axzoz4DhxGV3ROW7CWoOyQOnBmxVSGSoNcW0NpXVyFWsTAfvGTSzpKxrzIs23oq70TAI1oVIFKaK5qDJFm2wJCHTSpmuLZpFZ11o4v5ldp6ipGxtE5xJ5j3mJQuS+sOZSmFgz9VUIDIzhktiCElpd48Kseo1Gj9HITWPvVSn0qej3hEQ0M684qKkWFUOt/AAPJjYSM40LlWcFXcswqX61UKUnWzFmhp5G9YsklCKzed0Hf+T4KgycwdD9vmghBTsXhAm3kBvtIHcposCHwjyx1HsnVpI4kulnKQwZ0QJoO6IaKOUAhJqV5MIolVmb1g94mdj9QAgLQQQmGhBNcsrKfBqxDASL+4vdFJZ0wJqwhyLSMbibY1DnXqElFEakR3KxIMgcgy0Ddy7iyJCnGOerM3Rnuzhq1DkqPNgQmmVLbGQy5wGfY20GrXWSqfO8Sbi0rHyg0eLfTfhL1bXldV2uPVRLKXkkk4Ls0tDUz6QyUbG4sDztYCY2mfFpmGqT+q1MGteCr/fkUYwev8PhrSCzlVywDOsIdBtu9xv6Rm+7FtE0aj6TyLtFKcDtlk1xWMJVS5KnlVyRkSKhlfWkub/WuimyaOd9h0B3k8ynQVU1k5nHJ7Oj1cj/ilYx4Hj6gWPseI4d+9iB2vSeDYGGMQez5McTh39G2IF+57OdADwm9ucbjSVuMBSMY7K/hz0BO1aoSNHQhhnB2lsPHE5va3/bAeGLVgJt29Ctopiaik/DGIQqPApqA7oXWGGNLFVWPsNjUovPWAbnS/OwAoP9REoAJQxjBJ6PJxMgc66N8ceOr8bA1WhqVAuYCVwN4QElSYAufIm1bwgGCBGsXKD3lyKTDclP4uwLhaWU80nLce73IoHCOflQsFRFVIDP0IPx0YkhZQY0DZ5CZQk7mkq5UvGC18FFGUnYXq0I5zvP5eoZrTrMJMkKj8qECHcHX58pmfEsBnNK2YSxLhMRqNbgi00PGWVTg5gsyYp1HSs8hZb8Jet6GcHrO5CGKatHlhN2MdBYrHcWzfvCGyWGgPQgxVHLjHfQsJ4e3wWrU90pihRiAsI5ofrSsza39oq+NXnnFcmUP+9e1wh6RwC5W0XRQaLDa5xKgV14dwIcBaEkrHEerdBrz4bNc4xFip6T3K+i9CM9O4pvzmBjphlTiaoCcvEMMxzDD0zf4WxKQdI4KO803bFPknZbYci9D9bRwgZxUptg0f6mcDYJDSGPW12+LLBVX+T7WhvYDYzj7QHCPRBPoRSUoOoLxWUZducaSJ4eJGG2sNNgxQMc7G7mjn+CWvuvw8Dx1j8L++GNlNz6UFFQJWOs0iUz+GWRXPZZ/tbooYQN7DuQnePHnLjdg1y4WtH6TdNT0kAKR3pv8EoZolFSkmVnVNmo5dVv9BJqK8uQWcmqiYrtzp+1N1FB0lIlIO/yfkxenMBzLYIzjEvqRS6kBNEz7FI2rtDolq0Im9PClv1NyxkKabxm3e3EGEMek6gyyWkTyZkimtdi+zzOxZ2YMi7XTNyQGxEhCHVygq2wyhcFQk/S2PuSvMTk4xGg90kMssoYJ8DvnpQghUSYmNmkWKFiazQw7gPhwLZRRut+v2PbNknaE7rI6+DMDBTnnMvvrTX5iRfKC3Amo0pVAsmYkdZnYWmszyP3qYs55RooTGJFGNCBOYLKG4414/u20bNVFcQ8AB9x2WAbLBhJlNKVkDiQTWFcMSW3h6KNnVU7EfzOiAGfb5BKHLHoVmm4hvhv0VGiAscdMSpmDOGpB1B2Fjt6QcyOMl9QUeDBibndXwCkgkrgeFJ9Bd4RwdaMVJuZmH4gwKolJnADl8n4g8fXYeAiYPEEMqxEhkMc1CR0ElfSbu3nhOC/ZBC1jXtMxAQVDzQluMAattsQLlaWZ8HLEMbRqlq6KZsUB6dAY3lX6aDuW2VhNpnY3F1bp8fGn0okJOZnQDYBXn1F07sEwN4DUuXNa7ssCIPeey094kkpGaSILjwwtX1a1pXKo0vMxnyuDSEG+zV4ZDFbkWHQyIqfB58yJkC6lllUn05lGjZbOEtiSKGx1PPxk9+0uGzaA0otIhafxpTvnet6ysJAC1JjDgunyVZ7uhcZJYDJEAc3sd4lF7WlZmD2IU3XkQYuRRDSSFZ5YXNMhsF5+Qrni8qL3mPCl2d5sXF5fykoAGhjK3nN1+jD5MQzqVJbJ7wgA7f7YO0xiAGfGGE+14HssZoF8Fnny/puW/jhWSBPHI+RyAbLDchB7C4MBa+o0YB5g6Ni+mcmiuoBq0ksBmAvcL+foW8xtHaD2VxJmMwGR9yA6Lr+BuCQdz/lGMQar193fB0GDoyvTcXspVbSFC0YRk7Kc2c4xpDqwg1D4JgHiju8MOVfQD22ebBxSG11Aau0gQG2QztnWy5+V4kIymRC0xsQd2XaKqx0BLrc8NTtf5/NDYVmXLuBk1pwFg8z7KsX8moaW65UegRa+Pp7Go+QHDY9OnmvWtwwoERlVYYW/lL9SHA7SaPLH8DFITu9Rq7RlDiKtUjTSyvGTkzTWQhf3i1m7fpm6L0u48Zrppc4Z2ZP06CpMXRgUQoiTuIuvzufmAxw8tcqYQOqqRBKOI2PaUE1RBRsN2qn3W439E1zpmZf07neL3j0fF7y8AzUjqtN5VtrrE7vK4nAp7GXN43Tk4ssnZIne/X6AEj3jL2COZYNrd2AKPCNBqEgk0m7vBw2Ku+9otY7pY+OJ6ZP7DtFI2+3Fxo20AtcqWkJQByk3Inj2dYmzg2Vc3l2/twaBTlzok6v8NgQhaEnw+kJs4nAE6w+uiFQYMH672N+j/CJx1tgHKxuyh4PCIfbQL9PdATuH2WEY03YHz2+KgMH55BXMGXOa68La4CwJsvsqY4A+32aOaJoZ7ACoGEMBry9M7NEAhm0yqfCKAhj4IDO4CQI8dFgHRbtzDgaDVsIPC2oi0OVWVNYYcUFBMUEFsVk7eiaYsBp2uxyV3IAlmdzwl3pCaXHksb04hFJCiqjreWnGhQCLFPKl2FRBfNK6lpo/E0qg6RMFL9fntMCRPIkMugycLkAkhaQfVNLmYvkSYXf0wh4CZyZwkvlA83tOXd0LVkyFZL5dtEo0r1iooL6Y7fbDbfbhn5jxUkOLgnM9KyLvD4GyLH+nedja0p63OnlRsTC867jlEfCEpmwGeNQFUKG4zKXq940cBxDY8N53xoTAzFPtRgoKeRxIB9620iL2XfDfjzgkwbODPjw+pHXaTzXnE94DGRdLpBJsAazm+ZhLJwRMIRadm5LATqNchVvcIMjMGOnEKg73J9afkW8Qaq5HPv3mNPxeADHrvaFzg2+lIlSJ/qdbQS2mzK89h7P/KHjqzBwzFI5yPQuCpcKipERbQA5ZhDZr8Tqv7mkfVbYN4Sh1BUepIQLqVrpuZ20k1KU2SrkjNls8uJ2xEo08JoqKhLTyL4KnNA3Tei2JkAa0lSopZeSKVF5OCbPdXlKtoCZ1SBZIUl6AhkGQj8yFR8gYB9K1mSFw9UYpIdx9cQyo7hMoWVC4PLf6XEsA2cKcTKcEyYm7Gl9RveZ4RqQlJrzs9drSQN7NWxzZcsu778qkoi/5/JCfDrGGBeDrxpVXXsKk6bNz94Q5PsVFeDnt52G7XpfJwZYfsWQsTF4W+8BMiOc3mtQpiqy4oKvGa7E2skbZGF+g03HrEmpaEzcYxcMS7yx9o7bnbwxVznXfgw89wOPN2JvfbvLG2Pk4UmmL46KVC9m9re0Kv08aSNi6Ho0buqWdfhOsoM1ZEa+t6452XDMijgcw4PVFzbhTkeh1oZAYD92zHlg3wNjAADDYaucn7U72uYoLVA7ceusSf11x1dh4GBAKSq7CQON1InxpOsfwTCS3CZNsFVPRcpFgGqm5MadIWGCmICraL0usm7rdxDLIZ5kh+Rq3KS+MaWAqpAUHSa9t97vKqLfLtUJeWPC2QBkrWugAZEExXPxpzcne0z7uIQmabxjjVVmFOUBysARB+P7Z4aw/j6Vfl2YxHoYvi8jk6819qdxSxzrNEjZ9MUUur83cDxTyrLnRsQs6Ps6UX7z1UhQLoh4DI3V9fpN84FjW2TwT9xo4jjGsr3hp+x4X0kfCSkCQKifVWJfS+z03cCJvHpuEHm9ixupV62N5V86HxCwZazT8AoOkYFLMnHeqMdJ0Wllg9e5FJ6tbmwCbl17KKORvm1orWJ/7tifTxzPgceTxu3773eUWvD64QNroTVHWdgf2DoL2n2oRKwUJsikWxgxMYPOBZXKiXO7Ox6fv8ecE9kjeHv5HdzvrwBuxOj27zB9Ys4HjvGZ6iDjDWYNvb8CMBzHgyG0JKhaMzRJzpdmaJvLgwsW/YcqlX4Chvs6DBwAZFmPFvuKzXBCiYtEm0iVvJRMQgegngpGaWafqN5R50DfKtw7UrKFjTVyoYukm2RQqd+2zq5XXgbc2XawiEqQoPycpHZYcdIxkItQ2FliYkZqRRRSRS0TDBdPZtE/lDBI7thpMHMg7PxYRkwX45a431mIfvloxOV1/jmB5vSifgjauGJJ736PLz9y/c70unixxNdI9QGStf/+nCHMkNQO6n8tfBGLM7tqRFk5ofFOTyyNpcaziDBLvluRnFVN7g4iJBGfiaYv7tVwJkiuhu9Lr+5MCmlDigyzEzzPaCClgKQKrJKrd+OW17BY/+Qfsvolw8cQJ5aJmYxezJo29UaRzNsHWIGUa0LcTj89Zr24QXVMNzK01hjI8w5gTEUk6UUVJgZrbXxmYNVFOL3jMZxVB95R8MKxSe/ZEwfn5tEqDW3fKpqkxVovqM3RGjE9bgqGOf3L6f0rx1di4AwenaUqsDPGt6URARcPbRkiUSR8kgFtheTEUEHp442Zz6oynNoNtzsLobO71LY1YQ5ZjSBPpbHz0b0Zvbe50+tboRaJqDFJRrbpmK5dfUwx5AXCZ/c3eUOBKe5bcqhOdAeZNQwB1pGZVP594WhhqyNYEV5CJ/Y0bmxjlxnP83hv4BTiWWbR3mf+rp85F/z7E6Ynk+/J2sKTcZ+GXOOhBAt7FiijjFgGLDJcND6jTDYAGaq6qiFieVIZihYLuEHE6rx4jmvez3a7odVC1ZeWLZQpUTUPtazTfdVsqq3fcbzyuk+P7geNm4wZ/02ttvToA/Lk3NkpSgbuy5DLpBoak1jcGJTFMtuUaZ+sTCk0Vs6eLLmklCCouOGOah859+oO94FjPEmwLdLWMcKyvW2o9Y5jp6wWNQQBbt2dHLrjiTByDGGggAQMvd9RS4OH47F/x2Y/R9AYjRvCO1rZMDEQ8QYSzp+aVxRDaHfCUrfbDb13tK4mQGUCZWCMgX1/Yk7H8fynyYPTInAYSuTE5Z+yycXCRIxlRkDusQSGAyEObRoDel2t9cU6B7B2TLrVxvKa5TXyfItcYhAgnyAy/y/EY3NXazdN/nTC8srySjKUxNXrNAHHMlLnocyoBoBOoK5vuXS6m1hfdf34GZ7Fe4/jVwH78+NnltIu5z2vIf/25eeBSybzUmnwDjcrl3Obked2MQzLo8R10iq8u3jx5w3m9fB9RYlAnj4u4e75TLjhFGYDL5ggb/Mc38ySprEtSnhZuVxBnGNLtdkiRypn5EXeW2VxscYl5+vVoP3KTsTnFawxDiRWXOANMHPcbo5ZU6WE1s2gMH0ONk8WfJONgnwexN0KTdbiFFpKjSd0wc0orvBHkJfn6yfPvZ4rArOkIK3K0RYMU+V5V1Ka9GxOPicJvayQkVH0gE1x5JCEcNCDxXsc98eOr8TAGaxQ9A4AMsMC8AF5LhQLQFyxpd9mqnlh+2tiZFbRGyWmP7x+xO3+gtuLZHECzLjuO+rjTQXWXJhxwfPWOdeuWmkYla2iZ0FqBpvVdyxSrhlpIwLji7HiosCAkFjlu+TaGWteQzGz9DzqIsgmPzCzrzmF8hxnvg+4iiMmnnXSExzn8j6zmGY68zJWp1FMjyU3iPX0Fq5Hr4YyRcJUjf0Gai0qoTo9Ul5jGrkzbL6OAd/DFyWhpF6yEmis3zRjyBLHJG6TlR8apxbMlLIK4RLCytAVM3or0iAMMGStpaBt57MlJijZ7TGpSygSd28NrTArSHyIvULPhXhigaGCymKhuZBJG93vMlSGMViR028bItiYHO54ffnIaw1GGG+ff4n98Rmf63dgbeiEHcTUnvOB6QeO+T2sBLYbSxy3Jm8wowWNe60DZgeVdVVykzWpU0m46Q/SWBQa18Lqh55ZZOF3WcdtJpaCuHeEDjP0rXoVSRVSwqm0gbIPbFvBrbC0srUXGIAhh+jX9bX6SgycMJqFOZwTPHKXMMAQKHZdWJJ5sVzcQBZunqJ6WIuHD0Oe23RpzQu3krey1DqW0bm8DEjDWhbWk6EXhHmkV5GIYR65U+nskcTaWJNq/TH/uX6fodt5n+lknZvYJXy09+e4ehqZYIhraIXcga/P4wwzf+SJLYf39MSS65e4JpZh0F1cnut7HOtLN3R9Pwz2zkvgDn/ii+9dWEKI6W7JeCPDVJVE5cS48BEB/mdWyqR6BuyMHJY3rvevRIPlPMhzyVe7erC4PK+87nee6vXeseCS9Kay90SEwWqw/ng6UOjheV5DvSjeCKAvEyiVa8iFsWaSpVRSXGLaUjhBhGgarA09BnswuFfyBNVBiyrSKSV1OvxDmGMxA4tA6LUFxIqI9LCDDYFc0FOus9DqCVJVvDi7vyV528oiQpf4sfnJ46swcNyRd2QTiRghUJW7WO0hTGUiwNQ05KlVKTu07OWZsj3FATsQ/pk9U61jYoPjhiiBmwN9e2XfrK2cpWFxTi6IBU5ScVEIMKUHZ/JI6Mn1FgqNLl2FQKyJUS6Lh5NrNhzAYO1oeiCpU59GMo3ApEQIuvVVsIFK1zamPNlcJGmHZQBzDHMSlkLwNr0w8/nOUAHANZt5Va/IMJQcrzM8vP7MrHfv7/lfWeY1PeVyrs//1FTLv73zZAsnexG3z32Xh3NWHeS1sWlzevZJn8HyODNJVCU6OoNk4BViIz3zM7wcY8CQ2VLKAZmZFJuLeI+nIYdCUGiseJ6pvTQ7eK27B5a39j5sp/JzhsZnqJj46jwc4SxhmnFg2gG3AbRAuwEoBVY7+kaWAvubrt2G4xQNCMNzP1hwf5xNnOfccRwDz+cBsxuqfQKiYM4Kj4IxSckyXWdmxz+/UXY9BQR6L7jdq9oIMOK51w0ehrE3GuipXgwZyrOcSeuZ7S2PQapXU+nd9s0LgPfz7MvjqzBwy9uRh7J6ia7fr81Wu/flIa3JcnVpkkLALkGcnQBmwZwNc3IyTQdMBcRAcGdcu2l6hPIGrKgYPLQ7FhRLHXo7y0csAXniehZY5WWh61wIX6jAfBEoT+N09chOHp0ysBlCv8Oisrwd63tyxZ1rKT2NssLfk+uGy89f9eDee3JnKP4rv5eF/dLzmwr7cMHa8jNY3335jIWwz1jfl2IHATuRA1wTJpfznB8lunG5j3cvvWU5hyoDSwx0SQQhB/Y09otus6z9xTv9EhrKa8zXrxyXeWeG9xvA6any0ap22YjjeUxKFkkYk9NVJYONKeh+6xw/bZw+Q3LlJ/3KJ6k5NHBshM21otaZNrXBVDADzPG3lYyRt62NIUnuHmrOUxJQMZTaYF4QraG4YaoIX34+HYiquuw0oAYs7qhdYYgfP74OAxcGDAGHZmhg3M4WjvLgeiisCDCl3NXomIz1uWvGK/xIxYPSG0or2F4+YHv9ACsVt1c2U9kPZ2GwvanF4IZUVl1gOAxeMnurjaXkzmrK6DFsSkLuddAn+Kfp2oqjgcMuz2ItPCxjXlNhQj8dLGViw+OBkN4WCZsGwxkSurtUQ3QBwoeKMMLaGqkCg4XZq6IhTo/sBx9RQB5GiA5w1vFGbi521mXkPaXFPGkRvmper99m6upFo6KGOpY4q7yc4Fyx2eThJ57F/qQmFZEp4iz3P15n7yzHqjWFEZKSlAYkL4QDsYjPBSz4XiErf31uwsCXoXKauvCAi/e2+G+S6H6fUKHHySJ+/ndkcyFMeOycKzKcU+Hjkc1mHp/J3KH7OgAAIABJREFUZ5sq5yobameVSCkd2wa8vn4iFvf8DnNOPB8DE479Ocgb3N9w7DsKGsVija5WLRMFFccBPD5/L2OoTawMeW5M4FGxN/DyGniJUwL+NKKGfedcbX2D1YIX9Zwtqtf28gbYAaQaj0ogr5UuDIuBOT//4Fy9Hl+HgYOJPc7BSNIln72hlkCV7AzqWQLEonPxipaCIJfYVJ2lwwEvKH1Dm2exuLt4T9OBMVCDJFCGuZBjce76kQstFSEvO35ibueMPyewIRZtbRVU2/W92vHt/LlG5Vc2KHmQF48lPSa5OO8ch0gjLffwGmaertoPP5E0eF96EhE0a0V0nBylWP9ao3Z6wABUnb2u73S2L59Mj/N06s5xoBlHGMv63E/Dx+tNIrUqBTzZ0lj3fqXArNu29KjSVJ/jkveRIet7ntoXg3UO0sJYr5UUWUIXoez81cRfPMwcnPQg2cktjWLOXeFjc7DMSy+L9FBpGFCYXS5G7HHOgjG4uRYLajJLXYQ8vUlOW4ZMkdAB1TxorNnX2kxrct3/ef38TEFKurPZTcJOmeApIhOrr0Vr3P9rQRRDtlE06zBsSpRRfSZrxX3+NNP3qzBwZsDWCjJMNZBzloujtKB+lDykxCIMZI0XcxmRSybObOmJAbEW9xgT33//hn4AbhQ6vAFozXG7dXlO8ty0eGaGRZqcFOBL9dXGqooLTsV7uixlXhBT4FlAv0QtQ6FpVh4I7IWhtMZkySWM43nogZ4L1TGkkea5sDTfSqO8s8kbTXKsa0dMbG6FUGbi1l1DRl5z6o7VQnFIl27ZBRlAqiOfEz59unPhnJUFLnzwLG6HPDIaiZMKFCDvMBd9hK8weW1aMTFirg2MxomZ5RUiZyV/AMUDQ9I+pVRhrTjHWt+L9Kwlp5SVH5kljZUZvfD5HNp8T8EAIKiuCzXoWd/Dc8XafNM4pohCx9q6gl6h+8Q8gDkBw4bWOlImeNoTC9dzYPiUwOnEeDrhwdjQEKhlACWwbWoW4wcsJjExr6xsGI4C4OWlwH1inw8ADqtS4QXVsv2ZzkeHWSNFq25rTA3qzFUHog5ELRSirVW10AaUA1EG15UZaumo5b7mJyW2DlAs87hAEz98fB0GDkDLkhZ5Q2aig1juCDIJF5DUoAWlEC1Edsyznvt7fgsXw74PBA7UnTtS2xozPlJ6Pae1JixsKSnLxDFUCqW4zcASLu56kReIi95JnFfxJX62OHYLZykny88yO4lzZ/fcYXHpRZDewRcORSmpsrO8k3zPFcg/94JYtZk0bHl+Q1YXrDZvSKGCOE8Q12d0uqD53uVxel7HmRF1YW7XDGmssYulHfeeP3bx4jKZonDoehkh7zc73UZwPrEzOxMtGTG8fzaXGXQVSpCBy7D7LL/S9Ua6v++ff1wmAje18yLT4zslqdKTe0/AixCT3wGfBrOGYoBHASW3yFPjvDWFswczoyM0dyV2YAVR2IgcFoiRu0Mm3KCi+0DvhSVXYOhMyf909Zko4LVWOish8VkjlBPGzvYwCllEKUDp+irSiUJ9UFPkttRTnsoA3nuQf3pqCf748VUYOBgovFtyGahpcCryKiSt6cEhMNX5h2ObWUKDJ5dNE5NSMAUxGuYTgDvMBhwHxuMBeMfsDSWMBdlO/EOIKBekiqDT/SfvjZ2Lek0CsNj2DhmJ+W6C1ywa9rY8gEUpCCKwSbq0nPwIER85SAsGEu62jAvO8CmzhhmKVWNYZ+lmrdXNfy/N/LhWH5yhXYZo1/6fgcBIHtwCekOlaOczDT1LZjyp3DoGYYJrb41iZYVymRz6oUliqLoRkeAitwTXizWfgJrAlDMkp2ceIrReQlSfwLwQvU3Atl0WlkrnsgA+ywIDjCqyFIBF6RzT02BN3RfnA7878oHIWz296fTA+T/JWUnvbjppE8c+GIKL1N7EMRzm6lMQC9ifbvTE4g4HhV9D50EA/fYBHYHyBMZ4wQAxOSqpVGxGiX53Z/tAB6LdkcThXGMGW1xLn2qSXgBPzLbTC50hA4YdDFNv0nskx23MCp8DY38CeKLYE6V8JxaputBJ0qn49n4v+oHj6zBwAKzGyRTPia6JYta083OiuibZFaNZFB6J8C3tS0jb3Sv8EJWjTrgNzOOgMzEcXqYUJ7gzp1oJItiiEIFirAGsZmiFIWotJ1Zy1hgmqLzyb3AvKv3JRZSJhDQssYrIF3csHaPkzy37RC9veYKhRRfQ72292EAnx1WL5nRHOb7yaywxqxWe8lXU1KdoIrtChbMxNdZ9xcp25bVTrYJhhdSDPVQTqoJ0q4AapJzeG9YzX+Mg78+QXmreu2p9RfvkW98XwGei08yXVNGKZV347ixr3K+la5yXgTESP5MBSictnxcDcY0pN0xuPkBkD1eF1WcAPGXcLp5getXa0ZgpTe081yYhZRGQilJV0zvt9Hop2KvKAxREcGMPyGuF4b7dNQcnzDpiPuBzF9RSYCVQWuV8HqK6OFV3ZoodpBNSdmZzzYE52ai8FKAarHY+Fg96cMjSRyn9GPUaYxYZZVZcGJ4A2GuloKOWDa29wqyiWv8xc7KOr8bAzbVx2xnaRHCBgKlpU0PZxISsBEpXChoAO9snIZPNYGq5oZTOrkUw7a6sBWiVFQ+3raBtRRy25MPJMKKAu01WAjgihgBPuuwAVmgca80lYS0XbBZMBz2GSL7Z6eXN6e8wtzl5v3SSEstKY5dKI/7uO4DEb5IfV96Fp9mSKNYrQ6oLfUNvrXb1NCHP6/QyrCRh8zQ8K5ubcj8Kt/i10oUrEMZSl2FgFjFnQ8h2JUSA9Gf1V3pAp8fH39q7sWYoltharU3G5Qx505gXq8uIX7ux5fsyN1xrPTeW9LYySXLNCMlBm1ASy05CucvopSHOkFqPRbSM+Q4jPUPgZc+XYVsjlvNuyVOR7tJ7hddALYDPgYIQdvpEuOO5H0AE3t4eGOOJcTxVHxuXpkgO68D97jLmL4gwjEN0FvVfYGVD9pQA2PS6o5aO1tgQp5mB6sRN+OgGqvNw1TZ7hfmGMXbAFVZPxzEBH8fprVtFLf+UGLhAElIvfJoAkuwUwfSzOVCaQgbJHxWbdOa8vgvZChrMNrT6ilpusDIAcNeCjGArDb01bLeK1otq3RwkETdARpLphrmuxZ0t0swNAIv64UWTS0TT7KuAWIsqm9eenoc8UR0uDzLFIMPlxdai+r1L5lA7O96FdKe/Pod2V0uJn4vXkKvptMbLeOQQvif35u+vpOE4KZaanCsLiljabOqFQ0dJ91aL6bqupJKKKpI2s7chFds4h8tyhasJEK73bqd9CTEGg7SRqv6kDL0zZJSRRhHlh5sZwy0abffsS5HjkQYljbd4Z3ZxWy9etSPnky8Dfc3Enjhb1pxyUxuD1TZjnp6dBvr0ut9lg0/cLpYHXgWlkDPoBfDZYUF1nHFQyWTfH5hz4PPbA8fxhLu8MMmEleKozdF7wf21o5SGrb0gomB/JEmXm8GYBdMPnHBKR6jrXTH2hyWvaiLQZCzZwT7xzWavLEuMB8J3TN8xx4HjOfB8HFT5nQd9ZUUAv+74KgycQWnlcp0kEil0R1jqsBFwjfTEsGATWJmq9Uxw9ElPS7V6mfkrxuL7lOJxd4xDC7YDNQy15CLPiV1g0fArY5nhCQwnS1chU3ZTWobMLj/54zQeJ9kyaz3P8xqgMCZDZEOhgddiMo0D8v4tUGtRCCPvR6tp+lQrRBcn6+p98RyWqsjtVz043reyWSC4V8IWLw6qS4ypoNIKUMAdfC1CeVnJMtCln1hZUYvDkGFMw5YeqigN65qxxoFhIEPFWtVsRuKcZ5MSGoBS6hLCzMjBZ2BgEhcSLy/hkDP8dV2JnkBuWnotfbfpmBfhTeAiHPCFF5n7y4nzGqMFYBlj9zT27ze0pEhd1UuoTi2oNT1EOBVIwpmjskxEFKBUNSl3EW4LADayrppzPirCKp6DYzUPboulClusDS0Mq9evOJ+JCzNp0DXZcsNOpWduHuOinOKuNgPgRlObno/qY8exX/f0Hzy+CgMHpGAigNz1wNT2nBOIhgi2ImNxG7JdA72HEqh16E+G8MquWgEc4wGg4VY+obVPKKWhtxv7mopLsz8d1dm7NBrLScyATD8aKsplIV0nZC6ocxPPaoZLmI2LAco7vuBDeZCsajCb5Appp3Zp9dfKDujMHNkySmmI08OLsHeS5RlOUd9/kLHuAx5nw5GkkZipPrGUZeCAc5GlgQo1LKEIR0E14njZX8DzXho9otKz9RwxQGJxqbCR5Gk7Q8Qi7w/vG0NzMUxEHMjmPKdxyCy8rqlWypHDcMjQlGVAWHTvNt8RSDNELCXQJFu1jCPef0+G58t7kkc5xo5jPJnVdX+3CBMyiGXccBo5AFDZ2rsKEiOed0iccnHkLgmM5LFRxYSVDeSOnZsbImTACIVEoXHzCIZGNT3Wes6rtJIwjEEqQ1waLhcDto1Uro6OUORkaAxR0TF84hiHKiuaNpc7w9zB69vHA+4UKmW9OJkJlKwjfNT7xMDAwBPTnR5d/HoL93UYuCzENb6IXkjZolSmtONU0ODSTtY7d7SZPF/hW3PkjlcBOEYdKHVH7AAqUGZFxYE2O6IDzTvqLdDQ0H3TBP6yjZwmpV0VPOLckZeDdpbaJL51GjNOnvCyHs6Xuv0Zai8yr2abfDrWGF7CFNpRe/f5DBljyQOfu/vilxkWqfpq6Kh0bGuSX+fQyinoulaQ5Olt8NxVIXqO1yV+xEl2lUFKB9iArGfMQTWAnr3LOCpJkqTpyEL8C4mYG07Kssv7DEYDGg2pxVYKSH6Bn13FCXgPl0J9zYeQJ2UycH4xONNVxqRwkuOTVvgyL5CZRz+rL1aCIR9blvllWB7I3iFjHkihzCSJV5Vnzcnqi1IVLoeL/k8UqzZ+QW0HHIGKxiohM7Xp07yQgTPI0JWQ0CUHyxEYDpSZ81ERlAU9v0LMrFRitpH6fxqaolrdGvS0x5zr2XvE0srzIDXFCiXLUQx1YkUBP3Z8HQYOAdgOs4EzhTzZ5KVkN6y63sqFpC5SLnmefeghMgQ79sAcp7fl/sCYjno0PPYOawVlq2i3hlf7jL51oH+Dvt2w3dRoww0lHzyALMcq6Slo91ybHLDwmCvBMwLLeLg3JF8tFR2unpxptw6cpN3TqgQCldgSKmKpEZ/fI+4Ae3wCS8pmlUlpIQEqCcv/GekaVq4dod7H5Gns8r1V1BYAiyIA0CBtnaVhPk9jBdDQLLqFQWIFuIT3F69HY9qqwQ0Yk92ZZvLE3Im16XpoFAwpnZ79ZRP7Yp0lcb3bTeqzYVJW0XO7cNo417j5FjNsvS2iMi5hf/ZHHePAMYYgEwCp9XdJLuRN5dAe48Ccg0Rcn0qI2Jo77sAkrKWQlXQN94nn87G8fgDoraPVpnGtOPmF6ik6WdLIOtSKMSb6HMAwYG5Lqp1TPfls9OLCJ3w8WQ5Wnuc9BfDcQwrY27lZm8PqYJtNn8LA1RzJVCtuVa0PAVTDdMfwAVdG3X1QSGAMEAOfQAVur8CcubH/mE3R3Pn1f/71h5n9pwD+Iz21/xPAnwPwpwD8NQC/A+BvAvj3ImL/iTPh2gEdSKFkqe1GEghz+8tiaC5gdyhmz+QECZAp7wxTl+3J9PSMgDkZ+ahQ0oDY1Rl+nOEfd7Uz/DkxhPTo8B4LiNDOGwwz8YW3oxDvqtH2pZEDVHuI5IydXl4arKsoJtLART74yJFdP03vc3dlar8wYOtWQrdGY3kNTQmYy2Cve5WHYPICl0BiLGNd1mCGFusPyEkB7zzMq7xUvsfWPV28LuQ4rAeGpO6MOc7PpqcIKKwri5IBQQ14BxvIQEw2Gl4SWXY1UnY+/suQpoeT43AaOG1i6+/L78Squc2oRIZzTtP1+bonGmwpwmgsJvh8CMldo4hzvSQeFprktXdEMWA4ZhRtgOfcsgXgDZBmQg08IHAGDdldPLPM3CTmnEBJft/kOFmAzAj2TknS9pSiceCsOiqlIEqVzL/GS/OmAKj9jIJ+7PhjGzgz+9MA/mMA/2JEvJnZXwfw7wD4NwH81xHx18zsvwXw5wH8Nz9xNpjdZLgclBEPFLDx6wwgZLEXCRUE4/e3iTEnHjvZ69Vo5KgBX1DqHcU6MIMlKzgwMFF7RY87Jhz3uRGDK/QWWi9qBEz+lFsOaZI1A5n6z2VGfq8thQbi0meoxJpAgbrOBTalz8aWh5c60XOMYcUoIFiy2TEXBUuELkb3YlTMDCNsfe9pPBlOzTEQRqJyxodaq+fEBGuAgXMNZqcmZiZVnzkGxpwYc6DWim278ToUaox58MOSKUo1K+dDOrGt4ORdBenB8aN3zEVJOaUAmfoSOpWhCO00xUiAHmPAJufGkkdqBTW4QMbc4b7DrC1Pz6ywGVs5vWKfE/vxQETg2DmWtxsjixTPDD0XhpIyrvJEfbggFDWt1jO+Sj0ZimSViC+OOdXLdCDcCO5HLMWQYz7OjSBtZAB7HIgYODPBMnhhmDMztZKLB4BS8fKBXttxvGHOgefzgeM4cMyBfZ8ybAcoL7kDoGovbQ2pVKXeRL5l32HHDgd7sfqxL8WVLPULBMZ801wTXFJSpZe9Mlqn4sisA7NVenCq1AjsTGzVil9v3n7zELUBeDGzA8ArgL8H4N8A8O/q738VwH+BfxIDhzNTerpEydbPeZy7c4ap6WWcT5mVCLZYENw51fBD0kQOUgeLZVu0DaVs/GkdJ9Z37q4/+LqszQXCL1VWWp4iYxzOMOvisqhcySlWaCem9I6gauWSBND35ZeuMMlW9JOewYnl2DKCX4acGf2+v8f11/ePKF0UXLwUpKf4/r0RzKLG9Tp+ZSqe159e40nfSA/uS2zyco51f7HORWN9GuQ8l7mx3SNwjmMQ46n1YiHg7z57nlffrrF1ES/djclCTcZYz8QF8icul/SQTALFeq2xF6k96SJ80YPLZMzZmDyNW6xLj/XsbQ1FrpuE3xJK8VirZhlCK41eUWsXj12vrDeWUS6KTBIXN0uFlkuy6hw2UapyG8p7ybpiZcNDlJ1Uq07vuKiCIdIeBLLt5MV3/tHjj23gIuLvmtl/BeDvAHgD8L+CIekfRqw8y+8B+NM/fTYD4g6mhB0BFvzOoMAlqSGSTJ68uQCzRqWQmd36gE9gPPkeZusmQoXHYR1hG2rvaLcP2PoNHz58g9v9BR9efhfbdkMv36CiIbwjm6IUG0BsCnMNiIu7LIIXd+iDbHPJWa/AMFVuNRFq486fcXB6c1bOULZ1Aq5L4ket7nJyryHzyN47iw62lqq8MMqx27qWRWTOlySGrpULJweOno3LWNVS33GX2UGehfKtNVU6AOGOXWKIpel80tO/GoE0QKumc0kJpZHP+cEvzfDJVwJJWGZ69kjRhZz2hiysDY+l5Bu6RoRTIbr+f9S9Tatt25Yl1Pr4mGutfc6970aQmKSmkhasWVbBipAWVISoSIKlVISoaN2sRcVCVgVBCFA0K6YfCCloTRRLCpL+AfEzEzVFI+Lde87ea84xerfQWh9z7vPufTcyXgonVsR++9y9115rrjnH7KP11ltvPQsFc6HgBWkR2LbG45tJ7rNlaY7y7ryl08WYuzRlIccLoWRLrH+mj3mup3OGwZhsoJ/TMMfVPirk+ybpVKQNPVZwtNLXLb/OrYIjDRoch0tdICmkT56w3m7o9Yb+6LDHWAF4yhtujIH9uTNATmn2pFOsZaJYSC7icn3pqG6YQf/FYwQwjEjMAjBpHOVI4gqiJSpwSa+tFLTSsDZfY7vWuZn/+sdvkqL+FoDfAfAPA/hDAP8xgH/m7+LvfxfA7wLAb31syuGz/zPvopxElNsUsVeWwjmZ3tVjCLVnidlZnAN75jhvwVFW03jT0GYqrUvpq1qbzh9roSz1O/Ta6z/Wzn3a4ih11FJj3+Ep6SirGT+5oFhp9xXtnHjtfMR6vv4jrbtzkeeL4orkhI8ui+GKEFe17AtO6+SE8p3zgN+/z3rNd88/P0s+kTHjGtjwxVdqxb58Xbx7zeTWQsUTBMghnSf0/Cs7X8HWZ8pPlNnAibzyv09AmNwXLufjDKwTk9XsFAZfPO9WX6YkFvRwKJfgmZ/JFvJfQuprw30AWXE+K88nAmSgJ9It4UKIF+50Xfvz+gbiRHSeO4IyDrvMGgZQK00vS2lwVf6nmfYNpswFT9gKXGc7GvlzzbmQljA1g/lZsn7HY83zfz1mfbeTSnk33uBnHr9JivpPA/ifI+L/BgAz+08B/JMAvjOzJhT35wH87R/744j4fQC/DwD/0N93DyuOqoPO+Ytp8BcZ8csEchAzdsCwKk69VRYWWsW0gnBGfRLJA6UVWKX1ed84a7HUqoEhAwFgPwocDdvxAYaCqIqaaX8unZPHgM+x7s6IwByqmk6myDlQnjdHoLbg59NXpp/8xFxkyX3NSVQ0tolaC7pvy6onkD2r1M3NcQAo5EOMOiNed2m7hPKu5H32ldZSV6puaxHhcnOfx3bN1jI4tkZkmX5kK7jrdzDw/IK7vYemrmsDsLVIy9kADiyL7pIdHZcg4NNx7E/4nKu1CihLv6X8E1mwOlu1hIZFOzrGSiXnsUumciKH/Jz8b523ys13IaopUhxqNleVeoqrzEBOsH42/fMzQQjpWAEx+0zHZTi0JTxX9Z7Hw+osB2LnnFCglMmOjLgicXZqFPDnxbukF8elFUsGsROwmDBIVC7ed9sKWne0G2U10+tCf+GO/e0P4HPHDLZqtdaoQSwPlLJhjEDfWBw5jh3TB/aDaNlXpVktfgYsSikUMMGgRhyg64xcO7/+8ZsEuP8NwD9hZi9givoXAfz3AP4rAP8CWEn9ywD+xh/nxc45BkCSVauialPVF35gttsMPaeu5y40YgpMMO0gShNNsoRKlfqpIWN1ajpHraWh4EIX4g4g22ZeAAa4qzr/rFTlTpW4ID/kjyCUd6iHf5HC3iJJQ1WHQwbH8ya8QCDojb6oxEYijjhJ7evvF3q7VHnXgV8O9wo83nGEpbwjzFd6mTITO9EZUzYisJSkrLcK43VfKPGCKOM8Bp7bK2mfPz8HEGWHQSKJdaPbGWQSlSc/9j7gvsONCzWvc3o5t4vnwykxIQo5X+Na5Hn3gQBu1iswpv34l9zltXMhz/N5hMsDMEztg/wqSHt7ntc0xMxdLE4cC1z5zwhECYaRcnocNslqMJVGVl77cTREjCXyDqZhNLSsfQXr0OZN4JLkZXbcvD/v655TppLfhan1zPcc7Y89fhMO7r8zs/8EwN8EMAD8DyAi+88B/HUz+zf0s3/n518LUr7vbHiv4MdwBo1MAXgRQbRzsA9uHtpNXLKRyaAz5hNjBndqTLT2wHa743Z/4P7ywlFwlcHtub+hzqqWHsfz7Q0+B6w0xKaeyUp4XIwpayniDaSDY4U0oTeQxd5aNTqwOlAAj4ExzhF8vLGE5K6po5CUT8c4qEovTaXzy0LNm7csZ468UbPpnS4WiRCuqv0VLL9AbYrqGMtBgN+ywyE3i/dEOVbAW4EgggN/FLQDQVQQRJArOPpUL29ucIwP6VbhuYGctyMiAsdghbYUVnVr28jXZOBCyOfM1meb6lgPdVSsbgOR4LXWywhIu/4pcijOKhSItzsmg1NREG3thtv2IEJzornp6S6ThYwvuxH4O6Lfog2Bko90WZlyYsmxhdwPs+MFSFrmvIwy+sxUVjGkmlFbiKB5ZpydGi4dKSYF9qUVtFkBTEylpJzRYChlA8zQbw213zGfn2mqOQPDd/Jy5syi1IHUtweaO5rdeFxDlfIsSiHVCROwuRCxGWAe4uTIYdfa3m/KP/L4jaqoEfF7AH7vix//TwD+sb/r13KyGsA8UY2oOHNyGJ5clRf4LJjTcDyvGp91XCchiwkOaT7nEbTeFWCAAAnUQGj6uGGMA1bo7VY8eKGRC+dc9Kb3ykfu6/wPJUky7su0MRvuKS/w9SG/REXnOcaq2pmbkMe5kBkk36OTE4lg3ewRF8X7r1zH86ZYaAmXlPFd4L3utD+GUq5vnY4Yvl6ax5pBPeGX2sv03wu7xPl9HbedSI6kPp0yogBWzve50Grvr0wGuMsXgGV3lV5w769Hnp/QtTqvGSDpzZxANVSDJCSdyG4WuE2MeazrsCrfAM4iy1lcyTWW75jB7jhc33kda70WOU4EvTYgZADX4BgDC1xIh5rTFCEhOuVLKrZ4oIL60DBXWj/haqhvBm6u1WBGgBAzdaVAsQOpjoig6UHrjZelEZgMFTtgmjls1MadrXFpA8btrYQQnFWUa/HhJx5fRSeDAVTeR5bgB97Z4xibd8MrfDTMw3A8nQhOTgZQUWDZtBt1T61vqK3Q2K9/ANDxfDrKDFRz1MaOADYeIwte4mSYHlRrlxkEfC+f3Dn5cy78gDgNhFC1K2jqTw2y5amYLY0fjc3tF/Sz0J2dsgJ3RwzA3Fc/3zVtOqtziQYzwKgVaHI3zHWT90VuBhbJYynNBC5o7Qxs16ADoc+qhnaAJDU5Lt6wQ8jlXUpM+LfErzmI2VM2kzedJUo5W6F8SuRjrM75nEu0TF7I382isJLTr5Q2ywl5DgeKo1Ui9DNdDezPg3xdqyfpDnVcgPwd16Wxba4UWKEmyyNwjJ12P3nMMXEc+5m+C2EHoLkKvloLU7hO9Kb2rOTyCo+nZXp3Nc1cwToDApKFZEo/qOEce1aCsxhGWYYHh5zvc9fQblI7dhjK0BQ2SWqyk2N/ewMiB4EHjumYntcxFLkOcpbeUGxirzImhZ9rQJsMO/IoGjZrsuMylFbWmkvaKoI26X86Apyx99ETovpA2MTJWXVks73PijnA1MexAk3u2DOJ38qm5W3b0LeG2h4o9Y6AYezOMn+ZaBGoN6f1TUahXIQLqRmqXVTv0gAhIOdwlvIRunDClOg7AAAgAElEQVQA0v9rke+6QJxIdb4X00umN2dg4zmpOSdWK5bvkUNQTi+wq1vI0pBd0hRPVxY/uw1OZBNnurPsqnLBnfKRa9p5RUdXO6aTN8rA6cj5CQUZ3MhneZyGjfnaTFl1E+HcNPKYkitd3EvIpHSN+bOVir2zF9cUtCUnCX1UD6Xd+owAns8dz3HQnktN/5nbrb0kr4luVYjIz+OlIHosdMbiAZt56Cl33pRzyuVY8pAxXYHbkU3+6dLE4GyaPnYNbNfvudaCwVkFHNcG55OiZS6Tglo5T5jaOMfwieHHSQdM00ZuaO2kMMID4+AmPTTMiY1z14zKEXEAfm2aZ7Gklry/h1qVM1gZALXZCWiUUGzIded5ra/X5McfX0WAAxxWDi2xCg9arPCs+LpA4RUGRy2O3qkb8pgS9UqWq6BAPzfDGBXTCwdklDf2oDb6gzY0VDNstaK3il4reqlohW6zvXZsjf1ytHBWa4xdTmzyKZCyPtMFNUSf1TTeuI7zxiZnE4yVupGKGV3rLKeCOyrkqCtNGV0XeHPUMkGPNaKDUFWq2onksuoKZNwzNetfSVpbQSU/R7qNnP2mSuNWinlZlFEut21qyvi3S5iZKfUlhTUdYzacQ7xZBDBl8z11A+VmcX6uouqyLfREFQI3nEDoPBUYOkplVwgDXSjdD8zJcwSh6NaSvzwQXnAM18yOItSbRYtG15H061ND/BT3pQUpVH5bdAE/k5DUGEKlVZ+FG3O0JOwnYAM+A8/nvoJTBE49XCoL0kYq6RoVbpjWani1NmwTOudYwqmaSKGJZKOvG1PRbPIvcG/a3BvetU6uromcW3sguenQnA2zcWYNul4sCum9U8SPIRSfBZO8LzR3ZS2yX6VafuzxdQQ4C1jddfKqdqACQOXymaQwJ8sXC/RWMM3Z1gIpv1EA60rfboDmOQbIIYS9ofaCfquw2lHQ0UrB1gqDW61otco7jrZKW2+wVlaTdZ7WLCosJLTu2rJ2uHPGgyEVuVlpm2EwDPXbgY3zofQqVDovU0ELKDXQSqUzq589iMOMPbWNQtZARbq5ArnrlxOV4qxOXzVtObPhipyyowPGv3H1PqLSTPFk4lJ8DcX3DDBAtcZAIsPQk5BUIFWEC8lviFyJUOYIpVcDOZg4W+EywFFKoElhkLQoU+/p8H1IFjNQnVOeCA34vPRYM0ADhtmm50FLKeaR2W6nSU+VRqglubhWtZHJEcTmxT2EKSDdZ0O2TRPHIQI9bZwKZwG3apInhdJTg8fAEY45n7r2ZzrN77uoCPV2ar3NGfABEfUHilValF/S7sOH1jFpoFo3WHHEGHDncKbAAY8KTNogwQVA0EWFpFVWx9KzYdc9AKF2ghU6BRlCoYfDpQCmnYYAZU/hhpBFPowZFDk3xoukVn7u8VUEuHDgeGr6Y4DpKESmoyA0bTtkYRxTamo5VWTfO0KDOSIQcSAwuGirodRCTm7ruD02bLeG3jtay6/GXkWltnkfqncdWe1kFTXjVTae4DwIKbRzJ6KLcHIplzRYKC496+EhTZDB1mAUY+XVZR+lYypKu0phMKiV8yHoovHe5TTT07R+rmLMiSDrQhQrzQZQaqaw17Q35xOk9uy9ZizD3bK3SSFgpn+WAV5pXKIPncOpYoSBriGJfpn2ZxN/pshZ9SQiJOdGHoxIO/lQ6LzY+hzHcWDaaSCQO1YOCUpPNQDnJmHnueTnpqxktf4LuK9NbRULznOTBqvctAEio7nWjYt+yBQPl4DgQmO1pgsydW/QJfLkvTxVBtpgAst9OV0GxiRAaCkIVAhYss5s4nJZXqw1UhjkwpBegER40PXl2qcZEwB0FiYs0dsAZVZDGxpBjKWEC0TiBcGsLfJ8FfEJZa2h1AWS7/71j68jwEXg+TrgslPhKLECn40Lzp8If8LHAR+DYtrRCH+9LzAQAYzDxWWw/L09ODG9tTv6vWG7b7i/vKBvFdttQ7919L6h94beK1ortHgp0uWt8qmEp2ZAYSeFI0tAocWoCwhyD++twfMGipVeQI3rqECUKqK/sH1odaUL++RNFEGUaazsNgW31hh8amNqviqn8xSf+nScM09z5oSQgk+4D/FV6fiZnArb06zY6gS5DsJJQh9C22zoV7BMV2AFC0oc1IkCyifcs2MFItr9zJSDsgaPwljgseajQjeFlYIwjjQslQ6wEY5SgN6LeFQGn+cbCwRs/K4XTpC/JyrwldoDubZiFYwMgRyhuObgah2HSPNSy9JIGshVkng3vR7dOTIOkocLyZ2MPmpVBStRAK115LAZgIWDCMCdIncGOQ1s8VyPoetNlHsMGRxY1zXpAAzjGJJjJNqC5MuVZhNeMIcMAZR+TqHUWruuw06hcHSmseYoJVFb8uqswNKZrwL+AlhlJ5EZij0JCGYwVDo/ew5TsrwvzXFOLv7px1cS4BgHsr6S0GlKFJp9JdmEzOJCKPXjojGktcvp+FEsRFQGrDpqA2oz1F7QtoZ+7+hbQ9toh1wr++lytFxKK0yq7tQpZbqXpPmCkYmEcLXmMaKNKAp2AFbvJYfuuoIJq0IVHoYSTjI1CwIqqBDVKcCVulKbZGQTXXnu4Kl9W0UIrBs2UZpdMmxgxXMkOom8QPztQnTn81UkWrIS6v8CaZMEpG1SPq4awoWRMxDp/U3XNydxzZnTzNcBYqHhK0mdbyREZOBcTj5dHGg5A6/pPOTYPp9xSduxsoNVzVyvQ41XHsacY1kZ8Su7EQpttt2x729wH9jHjvABV8Abh68AEqFpU5VoyIp2b9cmaFrTG1PCUhkcx6B3Wlb/uRKzyZ/ZTggFjXnAZtocnd0onDEyLqkjiN7czuwI2qRVaHFXJ8zalXJ4UwrjiQCzss9Tet43DKpTWQuweqTleRhul7+9wO71/J9+fBUBDgHMYXCdbJei/RjkQUxeUj5BYeCkHzxPHBjQQl7yvsOCyAZmaJ0C2bY52g3o94LtwTT15dsHei+4vdAaqd0CtU5YmdrxB3yAgsZ0OMjFFQXFyDN5BCzUbaGFT7STSn0GYbJmmtquapUVtv5wpoEjSqUoOPNgAxDUGM1gKmvthlY2tlpVSjRCTcilNGSFjaLQKS4lgwBv4hKxUrEMcOfXxbbJAD/OQJSvwXaeJNtDaa1xLFxQ9a4/RwB4SqxsSlmzgZsSDlYyS+Em4NJCcl4qebQxJueBzonWNhSrGMGULF9zDcUG+O/VoGxoMlYcq1DCjaA2VljTDHNOYGi26JLLZADM2bMrgmY1V7e1bI4YuA9VTyXOPeTlduzwmBjjVRISck9zb5hDc4BD81/NUSrQG4N0NtP3ys9SO4P0cVBo/Hyj1dEYRpG70PAZGITk3PB8OhBFZqMF4zhoODnfMH2HRFOLr/OgaBnmCLU2hud5T1eR05EbAKwcAJjGmmYrOKo2y50pbZlCy67F0lgAKxxGQ0NSaN9SRT7j2xdO2D/2+CoC3LnTZIHBkfNJQ3M1GcTEGxUAVe6g+WGd2rMaAbitEnNtoN18BVoFWg206qjmQkmAD34fcHg1lAiusw1YhpUQJCuGzCDd9SN3tdI5jRFzlFQkIgmQi5OWzi9LbqFBnOkB5nmzmlCQdsBfbT0SqstN/tIDyXPzvoq7KrvZqP/FI3fiyH//aA4Q69nJIX1phZ6hbbVxCTqqD/zyumc1Nyt/q/d0tTH5Eqxm+uvmmLB1DktW8BbxrHPsDs7KDR3YBQWsat6J/jL1vLqbpC5v8XQZ4uIMrACLMNlJk8e6hqgc3FhyBsFUAMqxgWlumkj5+lmGcMrZ8aLNyhjcI9Pqwq9SCyqaUlFRFRpCkx2HicrnJKnvyT1aNvMn/3dq0BZ60/kTXr+cc52TpGswGMTy3gkjKkMWGfL85XrLK2e5uvAuw9CxrQiHyx/9xOOrCXCHvWlXrUjP+ZhPwPeVwxZQshEoiC7jvAuBjwhsav2gjsZQO4sMj7vhvgG3Hni0gWYADoOPhucOGCrerKBUx4ePDX0r2Lr6JUPle0uZhq/BJGU6ogQKJr/bWAR6cjJc0DnN6oB7lfiR6UOKfKkSUIEkgKkA1OyOqjmSbGRuqNbEw7Eg4zISizSYXIsyA590cFEAm6A8ti5SYKUVhoVczu6Bn0gF9EP3lHi8D24RgeNIPog0QrYO8aWJOk1Ets8MwHzNob+dGnRM656J59sOD5fAuKF28aBKiSgOTcv2gUDBDENxO4OU+DdqKw0Ipf0t0KrSvf1VziU7kaXv61yHUsaAsaqIQg5txhr9R/ssboQZ4JJjm3LmYJBz9o2igBxuwH1gTBpMmq7JyP5byYZutzt7qquKFWWgbhNlVjR/oUW5A3PseM7PqyK9dJUReB4/wD1QWuM6rBNWgTl3+Hzyc0lYG6G+0nXXDgZZFBiarMwaorwC9iRFBIdZF1ep4c4BTH98sYmInIrrJjtPqkdUEzemky75ucdXEeCSZjJZqiQnkgQwEw2Tful9pCfpWWAurqUwPanqm0w3Ub6ksyI7BmYA0ygmjNJBRb6QUql0ZSgFSK4GiZpOxAVVy1g1A67VRm5JvhqzzXBR2PMHcf0sqzq4TsBCpxksro/rTsr/5++zLWr9zeKRzmgXOBd4BsKTg7PL7y4/W1+XY7g+592v8nWvx/3ld0jbZOvH74wLPHV3ZxtTBsb0hWNVe4IDfJwVRA8ECu8BrYUluEX+m2uBN1SiBQXxuJ73RHUp6DVec5zXL9EQvddiIc5U9+f3mX2va+P7AnEvCQWpA/fxrkrJYHiZqYpYwRvB1DDtmsLZMhVukilVAJ3BZn3AU3weonnCzjsrPdtiPd9O1Jr6yXXNiTaTvFjPD8Ash6dnJTSNR0Mb57ysiF9dZ1f0dhZN4ouV+NOPryPAwXArHY4dAaA0fshhwJwNhhz0EqhlwGCoVuFRUI+K6YCPCprwMejd+4baKtbk4X3iebxi9onjzdWTOlHbhu3R0XrBNx/u6LcNj+++wXbr6B82lI2osbWGrCuRJxJqSPcFN1yLCB5n3+l1p+YAkLlulNVFEI75lHW5uJW8uh5OjZxuhumDvY3mWFkvEiWlwDSfO8+bGuDiM6VuOCenl0JJBVP294ErOwCWuDcyzeLnrKXyXCNTq1jfT4lFJjR8tNryVMnAUg4hi+gnCsqb5fT3E2Kcg+7HUZlul2CwGawqz0nJyG2jjfY4DrBa6rn36HywQldrXSMZXZ+Lp7+i2B2Aqy3Q13n0lX764t/GGJielkdQdVPHG/n9um6E9CL1ZlPFBwW4MBYXVkHE1lyD/XjyM6UUSOvOJwNcIiazhmLfkQayV3iZmP4KprXk9dyN1E5NQe4E6lDXQBWC01BzKA01IBUDwCENJzhDOO7IoBZmonMqSt3IYfcUKVdlYFpbRBwSp9uZkoZS3sjga/j/1U3k7/WjiA+5pkqJxgR4cg+5wh7d3VQ92wTgRdW3Cou2+IGViKWleZyVx1ILSqtoW0PbOtrWUbcuD7nTijnf/LTcuXwA0Tu/urMIzej35y55wTL6B/25wEKC+JXcEJNPy4/tcJh4JzIeLEysV09O590bXU9ePi2R0QVJrWgojZeC6CX7XM9jcDxbvN5xfV+izkxNI69I6qFObjDPQyK5/IMf4wuRyOOCRJlClvNv43xv4NSFvXeuCsQ77u/S/2lYgb1kV4Y2iTy2szE8CzfSsAVPWAjhZNvakg8t3I2FQNd4w8jqtwKPnf542XPCCj8UkE+0yCCd10idLCV+dRkoHSQwTeQuBBXn13vuLVPIfBFbnzw/L3+f5rGnwetqqVwZGrCskHC+77K7Qq67cw1cz/UXC/tHH19FgDMz9FJRMgpUFglK4YxJ6t04Wfs4gjeyds/jqZ7Ug+pqD/Ihry4zy0Yh7e3xwO1+x+3lBS/ffES/bXj5+EDbOh4fPqD1jpdvv0HtDY+PG2qvqF16uGtQsCRyuYjdB6tHQT6iqs80pgjkoY+EInQfdAbyuYwKydMxKAOAerSQF5ymIwqSlf+mE8TAMXhDzsXeqzXoos9aaDBdR67fsdYbfHIxnRZi/G2eAU/SOn2/VDHN74m8sg81VtqpVrtwySXyDXRTwfAuMC6+kIFpprGjAh/NK9tSQVnyibpMtbBjoRQJSN0waR8Iz/tJN22tJr2bRLxprhqhzdFYAbSCVh8A9HkRdIOJAOKp0zsRReexUsp0wGFjwOOVAShk5Z4i4iXulTxFwSGRZHggJgfJVJfpqVGvVusQL5VcR13XuNaC49jxfH5isa3m++nYwf29VIOFUcUAgx8dEZXB1hsAdjMwaH8GQEqIgUiwIe4CFcxyotANxPNcaa0hgOEH76F6bQMD0+jcoCMkZHb1BGcgK7JG1x5zLTb8xOPrCHDgTVjyZhLRViyAokEcyunpIgrEAGICY5/UycxEaQWRA2y8yPQPsHpD3V7Qby/YHh+x3TvuHx9oveH24Y7WG7YH7ZTqxu4A2U6tzeKMObJAisAp8PXLcxkkiqQKOZwEUSQdKdD1I9H9BewLBZ7UcPElGRCWieTVvwtZ6dP5tBP15g9FH134Trs8V2nnpcK50BqgYLAObqGtL3+WiGFlYO9+IIQllLECXOK4S8/uif5iocSsxnIXV4tUJKq4IGzLma3v50wkckxQl6jknNSVt70+/DuuJzs/VO21PA4DLJazcOoBF+YInJVMDTMPdTKkcDVD9EKsiV2+QJQA0zyoh9a00ZqfGU9C7VW1BOkMvsvkuckrb+zZ1kxt6KPoWKoE9LrGNnm5yuRxJ1JbXQhN3BrpALMBK9c2KtP7ZaWdn2lpSGG/8rUQt58uLqt75B2C/vWPryLAhXbDcF30WfjvkFp5cvzaOALPnW0lx9Ok8+Il6/1GJf+dQevl24/o9xtevnnB7XHHdn9guz3Qbxtujxv1RTcitNIGanGUaCg+UXbAakWNtqqxya2WYkssiaCFDAeCqx9SSvNeOYu1tvoeyYR6/LRDEwEJ5kvYmkaPtWcluKnVjGkz15i/g/HQ93Aq9X1yIeeQ6pgpcag0JNAfF6P5AG8kwpyiG3o12UsxTxdkuVPoBs9+0DGG/sqUJia64dFdjQWKnfKIfLhP7Ef2L2YwSxvvtPVOyQl07tkP2tRDzHFzDbXQup3nI4sKsTYCVgI1kxaFwdg5YYuaLHu3SdTKQJd9qycXyEA+hwn9Vmomw+HWQD504GxQH7JFOrk48ltnn+8pt2FgZLbA4DgzZU19ZaQrdQYNzho121QRbbjfPvIg7UByfwsta6OuBg0nqphTOtS4gb2mN1i9AQiluYbk4hDUqrXygoIc0G4w28FBz7lhcN2kWBsIMC2JheSyeSU59Otek8EsM4tUlwI52+qnH19FgFuIRGlUeD25ABTAcwQbHXvHNOyD7g5zAmvmYqvo9w1ta7h/+4L7yx3ffvcdHh8/0Em031FbRd86zCZK3bU7HdxNZEMOp1Noqen3djm+E3icPKcCnOWOF7rReW3X7hwe5GaLIWbIgYLPz53LIwAZcDZN0yqaNF/qOZ7txByXFCXjSUQmXEj/s8iOEHVcJPexiOtwzHlq/hKxBMC0St51KGJjEsHo4ZqwTsGy+hUj8cmJGNnxkG+fsIqBiFKa5J4A7vhXN+Lk+PhnNBIx5OzZVgu65kRUTXYf2QWjTeMMcH6mhRFI5qcmagc0g0EIIoPkQlWQnEVo1QEoVT4NBS7yFZkbZGV1jCwaMVClb5/LFaQIDb73YcvXOeeN8BrwhCbSK8YKaTEG/mWnBG6wPPPc8CBD1tbU/VOLNly28lmqEFZvrDRsUQBsACp6eYFZA1zjA4ypbQbe1O25gxRTLgo4rD0BpE4vMIzn9Lwv9P0Kri3XPnBu7z/++CoCHNFCIpOsOALTOzwKZjF4Iz9SmqPD0KWhqu1Gy+pGrc3jAyuiLx/u6FuD2YHn5+9xvD1RysYhLq3CykQpT+6QbZBAfgzU1mGPCm/sYDhTtViVwOz5I28A3kBrilJ+Bl9oLC43+ruAhERd+r20dttGj65+7yi1oHUutNbrciLOP+ZL5+aQLS2Aj7PixHtAqLCcKUKA3Q7FVB3M49T3SUn/ssoGoA6IC4y5BDlcOLT8bOu3Wodj56Doa5Dk4h+IOeBxVlPzORkosscyka9Dw5yVLk93zt1TOCWlwfM/1nXIvloA0jQaqkwWClozNK+L97HL+UifsyXilfp/zgNT7iPuB8ak6y7bp/jc2jq7VsJV2R7vek+BbEuciNhpQjDpW1h1wIacPqf7xtIi63oJQhsZ+19b69o8OlGgsRvBwcBi9UDSLEt8YSsZhIEZSkpNuMbkU6ggPp3c3GJ0NRAaqoKesi/1THMh8S/KC99Tfbfe1ZS/1k5W7lmw0NbLNXxtJ/uJx1cR4ADI5UKYxILlaVS4b/BSEdaAyjmWOSu0to77/QNKqYBx5/7wMPQG3MSjPd8GjucOxAHEE60WjFoU4N5QaqBuMj6MgtomenmwqLEFef9QxS/Ofti0ReLPT3ThQmspWp2SY1zjwOIwDAsNABmjDL01WGWgK60qsJUL2gqpDC5/i/M1kuviMJSsSSXSVxqkG4pW8HlQerFMYSDhuwaFrL5LAF+UIc+PdeHKzhw01p/MOTGOA1mVq5n2Lg3XXLs5FODySNyznUrN9rUCXimcjsoUb5yzTZdoOIKyjTwOA1N9K8B0mM2FhkJtUqxasrq/jE51ls8uBUpDUvoz56CEZ0z5vHG+aYBGp2YF3gZsVngR76ljPfswKYdIfzcGMHrY1XJNHewMHOeVw5VjrLWg1a77qSHEFbNryEFnj0ErMAiSIoBsu0I2+jN8LZmIqIu8hjPeSEwkRxwvgFci3yw6K9DVIk68ZKawCYVrgdgTwLjwbqmh47Xmf2fY8ssn//HHVxHgzAr6dqf+zQwjChyG4Q9Mv8Fxh8cDEmvx5Ff5ao1XjN3xfOM02tc6US2wdQ3WmA3uFbVsqGVD6wV9q6jV0Tob3MMaqhvGxr4utwIvhigOL1NdBJl2GDkkS4Ia/FnJG0plgaJ0RlozPmJlLCkK5e6aSAbcpdKquVK4fM4E0EtkaiQ0YYD6MbUxrJQ49XH04DewCX9iIExFnKVvE7oJDgUG9BrAGo9HtHFOI6N77nsEl8UAV6Wx6OeZfh7PJ8YcK92H9GZs9NaNxxO0JjAN+cEdxy7EyfRt27rcYOSTFxPzOBbXQ55TG430b61Vib8NOcMh26TMDAv44jQkrQWXAAQhMPGpMZYDCfkH+cHZZFtfqasYUgo5WSuGDeSkjl2aPw3e4QyEbLonB2JGrsv9hswDWLzYAagyG05qx5mSwg/M6phVZpi+a71wrvDwNwa6+tQ534Dl9ZaolVoTw2QaHadlFgCJk0NDxrPYAhjewIour+UplD/dpM2CKTAe/L68wBjgrLIIUWQLxtGWDcUqarlhFdx+5vGVBDjDtj1QNzKeqbke8YIRN8C+QeAb1LahtjtgOwI/YN8/4/mHf4h93/HDH/2AeQzYeMLCsTVZCZUXlHJD73ds/Y62Ffi9onVpm7wBRnJ0zgqrDRMUGnpxRJlASY81bSuFvlXv9GJ2BhIu5uxnTG7OTzomsFIttjn52sUKAlb6Cm7Lz0y7dnI/DHIKJMa/Y9Q5kQsDzrn4UIjGLFsoCtauuyquEYjj1IHFeZE0aUyOJZa9n7EWW7ZX4TwrTDbCse87fLKQ4O706CsFM2RXpEbuM11yoaMMbI794CzPbeOc2L513O83DT0BYk76vU1fdtpZIAmtM7ONl9AFI1jK1rUsGIMzblN6Qs+9/FuRQMjK9ZDsgzq3c2q7yxqIXTEnvKLTcolCU08HLAaGOWIcCB8rGyGizS6EGxAV4RuvcVpyYQA44Grsh9+ASWeQmMAsB0YNmB0APoOuvJs2jYM85FCAk/QDfnq+RYprwdZBz8+hQJYcG89xoObsC6N3YRZN+Nqsal85TkNDweDAdcjQorwBNmB1olRnD3lj62UtDbVu6C3pnPqzQe6rCHAww7CGYwQwg+1R4OLopQquv8Kfrzhe/whz7tj3TziOJz798hN3+M9s+qvGeZDNAtUMtU6UenDnbJUIDZX9dbYhSkNtd9S+Ybvd0LaN/nC1oZWuk3gKWXnbhnYvrJvSsq0FaXiZ/33C6EWLZhorJMCdSp1h2t248zG9TINLSCqyskkzpRvSDamQwdRQRQvZEhWE0KG6MK6us1DalimzIFxOmHIdtAdoarCauBlgrcj5Iy13LoE/jcyzigxxhuGqFq9m/ez00PSvk2leKXOBCXmqKjc5FwCDgec4Djyfbwpsmb7rCLIypFY4A6UkyTSt2rGpUADeRFAw4PnQxpDIxfPcuzYcOr7QWh/Kw5gahtDoSq9DkopSZZF+QymG6cbOHNec3mWmwOo9j3FDTpGn/OMJs6mqiIboaNOpJbiB28aEs5jGTLATyKGK9pQrr+zGl20S0iFEpg9I/Zshh/UUS1RJFB7I7hkdd6a+Oje8knRFdr0H7CA2VUpvwSzFNbOilmy/PHBUGlckF/jrHl9FgAsYdutqzA70WlBLw21raNYw48CMJ463N/zw/Wc83w58/8vPmMfE8+0JBKfGFwO93aqhK2i0PlF6oPYCawVRTA5ZFW53Fh62F/Rtw+3xQN823LcbWu/oKzW9BjgwoCl40VrJgXJwjivG4iZUt8JJll+DW3rNKbAJKTAdTVh/Bj82/XPBWGG3hql7IW+GsxsglXSmuZwKcEnswtXIbytNphyiAB7wgwtou9+Q1WAASzDlEEoRz2VhQKlsVTqOC7IFmnGJ5RCV9X8qaqS6P88tke21nenkEbOzpcgPz0dgx1g9mM/9idfXV6Fc3oC932BWVMQywHnzF2vqDJCWa/UZn/2SAB1E9mNHhKPUU31/UQqdJp8KckBDsc7gWUy8Ijeb45BFuQJXrZUZQTWEdxyj4tEHcZ4AACAASURBVBiFxYCUQWRNKhJJKlWNm/LpV7gNmUs6tZcla+FaO8XEv6myOSnvOWaDOTCyfzZ2bZocD8B0UqllCjQW78vMhtclEPYZFAVTrsKiRAfWZl8x5Wlnceex2SHE9ySd4x8RsQFTqNwGwp6kCirA1rlXff6fD19fRYDzCOw7nRNK5t0G9vUNjmE7jh3Ptx3P1yfG4TwBYeiq4ZcyRB6rg0FpnRUaQ9baleLe0PoDrd9wv7+g9Y7tdkfrHCzDdFAITSX0VfUHkGgjHUwWDNfvEjJn5S154QRW1yG/S79kIc7RUaLABi2b2uyAFY04vOSLdrZHRZpiRpLWScqrUprv6/KjIwzjzRJ29qKaoWQ1N8RveCzNH4HXEnbo5laAA3gTD2oWT8GqlnYAcx5qQZKjL85qri8kqVRx8vs85krl832KGTIshU/MY+IYO/ax4zgGnvsTQEEpXem9ZCPLLaOiVPX3Sjh7nT1xnmNdUUtBL9PZdR5U5Ekk5xf93vnngRyelOntuh56rbKQVoE1oyC9FVVn51ofCCA/ebGuRcXTXD1TfKIhd7scHwCb6n45P0MtqggbUfn0iQKH40Cs4CKO0rJjwZGZQX4YqS3JvRm1h1zrBjb4Nyxe9V3185Wfv4i/LDSF4lyJcnEOoexkXZoocAi5xZ+SXlSfjs+ffsDLCy9uq7wAnz+9Yn9OvL5+j9fX7zEPxzwciBuKf0SFYbuDJGjZYSWWpAK1IorByoZSOnp7YLu94HZ/wePlFwxwj29QWkO7ZbWSQtoojrADVqu0Z7F4mutwkS8V9soaASx53NrhhqudKia/bEoMSS7FAzgO7lBHBEptKHVDj6J2MdduytTJGtR7y+A2kDY8sgKXzmkqTSte+NxJK55fCXClAJ0ylV7o0MpOJQU13U9QGpvBlL90QOnEPA5AiCsCbM0KSikifPFHOgA1rOcLKzWMCszA/rbLFIBygCaNWyscsHyMHWMOfP/5E3749AOmB4Y7WttwezQio35Da5UV6WJCOYEZA3M49ZNK60ri3ku1MgCUloS/KVhro1pWWGlymSs6q4lC+ThdcZLfmpgwm7AasFLQtw29d4Tfzs3QGQinp6sHizM1A9ysCDeMeRcSPkAPt7OCTxpgcvYHgEwVq2yL8BQCBau/BioOwp5giSxtvaBWSiQuRInshlB1M/lJ78pOilJmbeqWwW3A4xP/WwW0mm1D9gRdZimJ4bVJG/6UpqR4/k9NkYHVLROvcxxPDOx4vk083yaO58DcQWeGJUaFoDt3V7Om1KHBSmVZvhbUtqF1TrOnl9rpPLqcSXXC2CAM8H80UDopLSi1FPnOHfWs5GRbUNiXZftYX+cdUMStNVCTlCrtRArnzeTJx0wWITJgpt1MKQYPIt4oBGcXjS1JawUzprPkrOyLz8R2KTk/6HNRZmQZQ9VXmIvKzoKGGGhXpfRML0/OyT1T1zO4Aby56O0vwj/NI5fW0Ba5nV5ypWhI8f7EPnbszzdmAGnbXip629D7Db111NbQ2yYJGQPsu57UNFLEOvVI1BqIy/XPwEM+MgWop2oM4qfOdZP66hSqp9zwdMs4jUuxODLLOEQ0U7MIIhSbYmrRFjaL9hhe67ReL2EavQe4tXNTQq4PrhsUiqR53FUC9LwHJhwHM5LkneNsIlwWTNl2tYJ8/o7/5hgAdkMgAhmbMuhjyUGSI83NHFg5hK074/LHv/7xVQS4Wiu++fgBc77B48D33/+/2Pcdb58KjjdDeEPMG6BdE6UClUxaLJ+pjzzpSklu9xtar7hp7sLttmG7b0R3tsMxMaajoAHzQEUjYW4N4Z0p3SyYZjrvskA6S0kgxVLXjetCNOkowd09K6XyMAuVu0sGwgy0sRYdrMEgH/wB7DZRiqNWNlGj2SrJl548T4E5HWQNugFh6Nsd1Qpsn0RFx4H5ti9eC3pLSBsYVmAjm7ozaPPfvOE0yavQTjymr+6DtDyKiz1Q+BPZHsQAkcQwHZnHdMlGFJx0Xj2A8A0zJo5J4ro6aYgxdhQDfvnpB7y+veLtueP1ueN2/4CXD9/ifvuIjx9/C33b8PLyDWoruG0dsKBVeFBUnKgCskgnx1PU/5zibaZboSAVTjfek0fjTVhQ1R3BmZ7Q83Ni/XMXTzeJQEx+hRwETt7vTPd4Tbl5B6xmmmfiZCX2nkRlNM/kuQ1tDh6coUCL9onpQo5HdlCwyNSNYyv7jZbicxrcG+Z4gY+C8AGfB2jC+orUKibdwoh2MSeICfMDFePSbcuvYrYGX9MmKTlLA+2z0wDCUJcsJ1FwLlVbm/u52f7046sIcBTGygXVp7i3gZjU9eQuqYgi3gLI1cWdsMoWRkaXtS7TS8ubU4EoEu6qFI+YSFU2UYR2MLXSkD7InF8cS27TK0jkrqN0xs5r8P7LZLJ46qpUHxRmsPPaCU2GM2QWiSaT/8pXWDfZ5ZpnGH5fRo8VfAxsVidoNFqAz+CGEfOygEyzDWwZdibqY4CbZ/+oB/uGU3/mOof6DMxmhSB0w+bEdVajE41LWKxBxjnKL6uW6ZD9fHvi7e0NxyDXaMbJU711bNuG1jo7FLIKHieivq69/J7cqkVOxIqL5vDU1F0piXcnG4lELonAQndapxLJpkNzVa9zDp42XL4L0Z3NC4n8ecGTm0tkxuzCV0HD8/iTM/Q8vqyEY7Xyrea/bBss2jgVdOI6NtDyfBFx572QG0CpvAdyXUKBmn2L54B0E33CACcnlCsCNODk7y7nOF/zjwHhvooAN4fjD/6fz5jzMxfzdIoerVHaEVXaLfb5JWrLIoKVitrvKKWi37kT95uhdQNqUNh6OA7f0XvH7U4t1FnxTFnAZF+rJvy4D7bUlQ1wNbzXDF5ZCWXKw3XiaibXyfdsRgeGNGsmf6/setAGde6IJoFpCWANtQFMu3SmrhHg7g6sSmsAqK0ADrWIQSJUg8mq+5g79vFGImlO1FrRWqWl9usUwyFRptT30BjBWtVuxJN1DoLOlEqBzScwDqLKkK23X9qvAEhDRlLbY6iow6pdWq4ll1RUiR5qf3q+DYzD8Ye//EN8+vyZVliPB263B7795ls8PnzEt7/4iJyGFhHYjzdxgbsCZ86t5YNdUrE2zAhaxqeh5VmhXtn19a+VplF6kqxhIKTsKVyLAbTOinVv0tjVq7njGQiFVRhrFGjedXd4YOzcVI5x0GRzHJqOJW5Ta4fnXSh1XcuNzQFxrExjFYcMMBwsAFyoFYub3j97tlWRlZPN8FxzDYEGDznpgPdseGCfcZ5wUNIFM5RoSnrVyaD9lQYQ51hJRj1Vuf+0FBkCdKzIHdIkOjTUs5SvXWJxXCE0pB2uqhGdNke0Orp2AAQyfUwm4/KVzbzvjmhBJf7ITp3UOWsy1mskljIlnibEk4u1WFY7GZC4w5/yCEBoS7vquejx7liv6VJK41blTpzcspzS8a/ap/R1K82Qx38trCoOVyULvClXD2RR6qaCRz7OkYRiZBQkOP0MCwGt9E6kFIN2BjjppozpTYj/EYBG3nAIYB68efe3geOY2PeJMRw3MPi22sW1srVtrRnEMpJMs8l3lxvZhhfr2jJ9Upp5HUR9uRq5nrImcSJoradcJ4UpLFGJjAEauylqFQ+GL6/1Bajke2VsSMS2NpRMf88vnwEPJYi5PqQIsMC5PgAZSfANMgvhLRcLhSIScSmYR6yTYLrIxWSyYJpvvHwNC9NnU7Fsrf28c/K+Wpcake+Ds0DB31/vhSuy+/HHVxHgCoBeDIFNZDV3/WIVXgoinvDYOdZscIiF1YZigW2bKDWwPQ7UOtH6hlpMi5zBjk4cHNZSakexGxANPm8wVCAegFf43GComB4wl5K6u/STCo3ma6UFkjQFYmpRKiBTnMlOBg77yEEjExHPSxlfaEnj86wUtI3GAVu/w0pFqAIaEzgmMEtIf8dgaXnhzdBbR9Pi4/tSW9iqwUrAWgCNG8oYO7o3OULzprDMKyxwqHWqZCC3cd7ZUJop1GkJvTRlfRxagLGTA5pPrM4HcN7CvDTl53BgGunNM0Yo7XMHfvijJ577wPefduzHRGkVW/8GHz9+h+9++xf4+M1HfPhwR+0VY74ymCwrkGunROgKZZWPqRfAbGKswgjTvJSr7Ac1l+/oBgBbb2iybEdhIFilosYVTqspUzHtVPTXjAEKHolac33QEowbSQ7NXn3PRy5FjhssKDqPFHPnLFQsLSaW9CSHlkccCiY6I6WjoMA1jT7nOmBdKQdASVeUi4wFAA/I0VJsHBXhDauXFIHsVHG972p7S17vMMSsRPyaTwuh4GqZ7svc1ssXwORXH19FgAPoSeW6SdOOhXl8UZ2G2ik2INclvaVWzVHaZO2hxqUjgDtDETQvhU6wuSDoxdXA06DJQbqzcuMqBSrlAyeyA5K3uGyE4J/k7qtULrLqWrQLS+UNLuCzikYBa8mKluYccOKUBMrqr5wBdRRkgKNIGFBKbOzooCokQE4tyWssTscvKCAVLLnx5s2Weyl0Da6oKBcrb/SCbMkhYlPlTxyaS3AcSrESZSRaWkUao3h6gesLMtxfDzyfE8+3A/uYuDdWSXu/4X6/i3fjnFgPCrDrqpCfnRGruII0sVRRJfjJVgDxWCjVfS5n4cwMcmhORFIm5LZWdb2A0pOlwjdOAjN2GKwOlkThYUAaglqs417vf7GNQgAc7XGabFrq0QrkACL+88RN69rxWlw0mYCyFC18JF92Isq1IYNzFM4bQRlJ0SAfq7IZ08zO1SBPyQpgcEwWZaYol2yAmRSxL8RvFKZnzZZ8IM95/GlJUQGHzSfmzlL6cdDdYU5JBMqgZ0wx1FtHCv9gjmN/YlZDbRPRKloNsDG5KFW7AdaV8hdO05oKhlZJ69WJ0mn6V5vJqUTBBUWi3auq/MTSJdi87JrqtcwwDapuAuTVsJqTWYNgZwWbh5t2KSwpCFM+IsazJcUWuRuRKnMGulmEdabe3ydTBx9MzUrAzVC3hi3umMMRzwPTgX0PxqoptFNylJtgVA4/yd20QNTAubgZMjiG8FyAQe0dqvoNbbWSmdONNsTlrJkCsh3KNGy64/XzE2M4Pr3uOKbDe0FphpeXDS8fX/Dttx/w8eMH3B439K2TA5tzpc1YAURoW6Jo3uyavGaF8zfMYWgcTzif7yiBrAznhlQbPfpqN22uKvALBdcqeYrZalBfM1advmy1XDk3YO5DXJpjHGOlnssQNHxZc2WcrnLSaRuLaiFeK1Z67RhTvdGrvYwb53Goh3jsCqI5h1YFvsR2iTphYJUfZ5BbqJYorWbniGyTyMVpQ53kW0225ltPZxJlPvcN8IoxnnJneSP6RxrBFjkJF8HjRJc//vhKAhyAmJopydL6dMOY1HiZ0BmJ7/SEMgBqUYI0cuZAtHWTkczvazGEdjWHkx8LWjAToQWsgimt+DxCnROJnangqX43AL6qXkRT5LDsom1LvRO5mEBol1OXRenInTD7T02Q4sRPZ1UqkQUDHFNEDxU3EpysGzpwck66IbfO4o3x/GIGzA3pMp19oEtPp77ORH5Vcy4QADTMxNf5IX+6XFkXNFI6kS/qiVgCIe41uSSmZCHUNPHpl68YY+BtcAqutQ2lNvSt4n7fcLt13G4bupyP4Zr9oCR3XShggfA8NSSyTSYCDBCtFtGjps+ilDwrh3qxNENIxws6PoNpajH0xuPLmRgRdEaJcMQ4eaxMd/MAE60dQ/Nxh8snLwsCKzflPZGBumbRglQHu0AYwIrQ3tTgaVfQnwPUPsqY4DgYWMI3IDZiJkuu0ISo0tFXx6xWrTToLJZoUn29QsYIaN36JfNI/q0plN4BdNhRUcYBHKFNQTNUUzMXf496Uc3s3wXwzwP4OxHxj+pnvw3gPwTwFwD8LwD+UkT8gfEq/ZsA/jkAnwH8SxHxN3/uPcId++sr9if7+cIaUApauyGs6ouVwf0YKJioZYdZoFVZVNsLmjX00uUtR0dRA9HHdJDQNgNKZSvPVjl/oTt7VWsQKeraBSSizR7QFGOaXU4r9VAlXVenyFOlHjX/XQ0tCsIb1tCOSNv1JxgcGeRKZaUtU4/e7uydrFrEqsiGBSZYuZoSkrpS5yJOx5z6/HAG4hCpXW93tIfD3yaO57GmxLFt5imUoZtwanEq4E4hudIKSi84QzIlHrTgZtU3CWiaVIZSV9206f3mU8iNN/ZTMqHXt88YY+DT6w/wcLRbQ2sF28eK+tjw8bsbvvn2gceHDW0rkicorBn94Z7PnfegqeouMv0cZMN2oTIru0esUFXfKmK7wX3iKAF39k9GzIWyW21oteK2MVU28b2OlGsMjOMJIm+itzHGqUOLwIHcfBl49mPg2Dl+cN9H7k8KbKdEJ9ShgAjEOBQkHC06B4ODFfC+ddlLESm53uuQDfztOOBz4vnsGPPA6+fP2Hci5nE84VpbxzDY5Pov6ESoSmmLihMhz8JQsOd6HjISLWjWcbe27hsRAlwXQ7bsUjYg6ICz3e7omww3fLxLZz0X4q95/HEQ3L8H4N8C8NcuP/srAP7LiPirZvZX9N//OoB/FsA/oq9/HMC/re+//hGBse8YhyrPW1DP1jZYrZjByeQ+DxzjoCVzHOrfqyjWUO22pr3XAkSSyjFJpGpRWeU4szCgVkdtjtpwFhLORgJhJ3GB6Si6Wl6A1P+gOAfMBK50Bi8SsHRv3J2Zvs0JVY0dR7Y3JS8TnJqU78GbydFqRykVOV1qrjQuVuoTcuzRByCiMqIxZulFLUwd7XbDfjwxfadRwAQMgykptSZEL7L1dk+hMxdm3TqKn9IdE1/yjgD2WMfFm1WBfabf24T7QYQiQfQ4JvbjwKdPr7zpnmzraS8vqFvH9ijoLxWPDxtePt6w3RtqM1g1BWEg9YjHwUDSKmmNmoPLZgZYwMpkAcodvXWUTt6otyaZA5vlLTq1YLrITbNUe+3Y+kY0a0y/R0yEQ2ntiboZ4E5GLFv+pn4/B2dPHMdQY35mIutWWRsNW7d03cxQ1O2S93xXRbnVhm27acFSmP48mJK24wn3idrLKmJw6bxh+EBM1rmprdMGD0dBQStMVbvL90+u2jOPobD62TfQQKM2zhe+Bu1xIMCKPrMrSqOskrekyesZ4NwDLoR/HRn9U4+fDXAR8d+Y2V/44se/A+Cf0r//fQD/NRjgfgfAXwti+v/WzL4zsz8XEf/Hz72P1Ya+ETF5aYhCYWFMw/DAmAFYRasvqKVgaxW1AvcbfahqBayE+gQ1Ag0Gat0G2nZD7YZtu+H28gF9u+F2/4jWOkp5yF3irkoUFzgFw4L8lv+WUBK56wKJ6gAs3RUzM1W1UsnvINROwWqmpSUrWumdzyOvTSJLH3ADxgjtxCnsZIq+dnTSWWrLKlqKDK4DGg2dFa9S0W43+OEY9x2+U0eFmIjBVihG4cjmS/hgU3nuvu4DdTYiuLT1EZ/EyttiwpcM6Pl0jEFt2RgMzlPE+QimYsccmDGxOwCr2D5+RKnA9uGBtjXcXj5ge9xxuz2wbXfU1gGd9zmH1i10szLwEyVr1zeQC3JfGi6fB2CGOTZZtecuR9utUgrQGtbwZmRxZmIvg1SKkEs20gccxzzkvzaF1pM/O+kH4HTz4Npl62FRQ3xm+SnSrUbX4VofSrGlF7RKBYIDAwPH4ah1MAh3mhCEAtwxh7jjN+RwHzPH4+Uj7vePOI1LTZLJwPEURzqOM12PAIaLp+6UpkSQ950HAjvGDOy7L9ML8s53BGTCAEdr5CN7Ze94zs6Y0+U3xzViMPTagWawW/0Z/PYn5+D+7CVo/Z8A/qz+/Q8A+N8vz/tb+tmvBDgz+10AvwsAv3gYTHA/YBiRqI1I55iBY7LZeusbWi3YtoZWA7fbTi5EfNQcwDSavXgYhh9wn7ih4CapyIcP36D2G7bbB5TaUcuDfJjdVmWMJfOi3lVyNEWGfpcVl3Dp5FCKihIX7sbd5IgxxeFokRuLCKWo3WlqIAhHNElYG1qAWVyoi+Qmx6KBwnDtjEVi4lTUkxNkTfE8ZrNK88/bRL2RxB1PBjcf9NbDGPwsQ04gxzhb1YzoIyb30TXQ+rLisjgT4difO+Zw/PD9jufTceyGMQrG5Nf0wBA/OuV+Ue6cLPbhww2tF2wfbqi94f54YYC7P9BvNwY4K5R0+OnTny1zAIMmIsSXIhWw6yZdqLjsmPVALQ2tbaqWinuyhnSDoX06X2O3gem2ODBuWgw8PgemO/b9EAeXgYMojjM2bAU4S/9B8c1X/jhPb21cb9uNGsUpGcmUWefwoU2UmQF5RW7aHmqRWrblbzCbq2Xs5fYRrd7RGnu3wyvmrBjHxOvnJ+bc8fb8JaYf2Mcb33ef0j6y+d+1XmY8EfEZse+IePKzlRtq3XC/fQvAMHwAJfDx3lB6xeO2odUbjmMI7XLGRQbcUgp6Zyazbdv7Bfcjj9+4yBARYedk1r+bv/t9AL8PAH//dz0Cj1XIn5EzINlY3gvQOgnd3kh2slvAMZ1ELNO7gnS2daNotG83lNrw8vIN7h8+4na/w2wDoi6311Fpo1Od3E2129nikx0U6Xiq6uBqOboQ1rzTL8JaXH8h1bdBRGlcTwbT0MZZlK6WMDptOAzkkayQV6mlo9SmT1pF6kKkn9ppwI6GoVapGWzqLyWfyxu3NEPZKgoc5WiYh3otzQFXV0kcqnSqLUsfqThoUqobEkuYDIZTl934dHz69MQ4Bj79sGPfJ47BEXWBhshJVJX8TWkGa4b2MLrL3DfqGjfOr+23D7jd7qjtBiud1ycbw88LgfSty42Egl8KDrK1zGqiD25qPgd2IeUx0q8vq4j83nsD4qQKAG5ga+OT3o7EPb+nD9xMsbDx73LjbFa0J2kDtXPNcLYG6RIzFnnSth0GyqQQiBIn6YuBCH7NnGPhNKtIPpDnacdpmhmo9U3dLTe0tjGzKR0A5FcYaHWDo2GMSsS9DwXYqpGfN2UYGzxuiBhwF4KMxjVbNIpQSPD5POjGfBhq6Ujn6Noq7uWxCi8IrM9zHMfPJql/0gD3f2XqaWZ/DsDf0c//NoB/8PK8P6+f/fqHFbh9lLpdDeoRkiME7puhdfEMtggyGBxz7Jy43tiKgmB1MKS4f3n8Ao/HL/Dh43f48OG7VTxI7svmQJQD1SvaxmZ72iIXNVNXvab0N569iblzFGQzed75p5QjSdQTSegDQ7lF/hdvnLYRSY0hIphW3Wk1RHlMRWuB3tm1URsdSbJfFNYQbhjc+NdrSKkkKcpZkS29oD06ogI1JnwPHAeLAjEO3ajPlPWTmlMGSw1ck8SiCvUqeGtq1Otnpkp/8AefsT93fP78xHEMuPis2jaUdkPbGqeIFaDcKL24fWiovWJ7edAR5P5A6x33x7eamvbCNjpLxX4WGRhkqNvLAMeAESrQ+GCwLkEjy7TlGfPA/nxbGwkDG/uaHy931FLQOyujQ323OTkrIuAFqxXs7K9WgIP2NphQCI1dOfOWxFXOkygg2gSyFkz+LANsdr0Q8QfcYgVg8wqzA+7Gvu45ZRkfGE+SscmlZoVyzld4HJRk2URvD7R6x3bbcH/c0HvHhw8P1Npx2z6CFXhmD2/jyc96VLn9VCHqHR67AtzBkZ87l9E8uHkXtTu+fv6MiAGzzzAr+PDhA273BzaNGmBVmYaqr58+Yc6Jt+fbypJ+6vEnDXD/GYC/DOCv6vvfuPz8XzOzvw4WF/7oj8O/RQBHLjxxSx5OVGEq1ctqOtJxgqGAeiJ5BLFa01BqRb9tqK3hLpdeANiPXSV8EuBLsKnUsxbtUhaSFzss5HSx3jOLBdoB41SJA1AlUbKKS25h4PuEczLYEj2WMxhPn+KD+PldJHw2nCORmuVwllTpk3dbFtFIzBgZPZE/ZZO9nULoYrBWYC6o7BXRGyu0YuSjUoiASWQxLfth7Uy1J9FhU4DLoTrHcDpaoKg67hzYjA6Lgto7aq/ot4rtXlE2oD2A2g39Rj1i7zd2LWxMUVvnuEC2JnOjcRVdxuQnd7i6YkK82VS3xpQ0RSaaOoWha+lTYwmV4J5FpcBx7JhTZL4B2ZJEBxEQFQ61wq2h1RkE1ROsFjL63BFJWUiGUbiJtobFsRL1y7j0MtUsj/fKAycXnHvtauUiGCcduhB4vMs8UruYBTH3gWlP7PsBxxva3jDmq9LLQUkNhXGqIxWBjlDRKOC+M2hCxTNwTkoUoOme8v7CAOtVAZNrtzYOnvZoGFOFPqOJxnbX4J9M4X/N448jE/kPwILCnzGzvwXg98DA9h+Z2b8C4H8F8Jf09P8ClIj8j6BM5F/+udcHeIJeD1aQqBQ/FuzmzVLgw2DG3cWMjq2BA8d8AyzgNlBRcdsY0H7rt/8M7o8XmN1QyoZ9d3z/6XsaWzbeJLfbhqI5qbUV9MbF1crUiDYASC3cWZ5KDiakMEcGi1T0QykaQmmtr2lCSDvocJhspgu4m+1PTXAf7NMc88ngJg8z+utX8TSctBSrR1ALBgUewIjJI6jGbo/VL6hPYuIUm6HeKmYJRHQKgo8b5lHYsjQMMdmgHXNyMap4MQenUGUqXmvgtjHIMlBMvO6DQtXSYa2jbhuisEoOK+i3ir419HvB9qGibRX3j/TyK7dGruX2gtIaHi8v6L3h/tjQ7xVNAluPpAxJZmdA426h/1b10vXd1NNcKsXc1OKxgsuBNcD0Q4LVDbMYq80GoULgdruhtkYJUgD7fmDfD21sSlFnvlYIfdGyy40V0jLJ2fXasG1NHTdNBaT0f2OB6jiywvqmTZAEPQeV8/qngGmqMDcGv46DrX6sbyWvkv/USMB0NS1GkW084fuB+WlHCmtr3fC4/QKtbXg8vkWtHdvthdKa4Lo+jlcOF5pEj61VIlYz3DoDVSu8thRCk06JAF7nwKGNYczA8IJjFqHdirYBt5dvKm1vtAAAIABJREFU4TFwH59+8wAXEf/iT/zqL/7IcwPAv/pzr/kj78KqVjY1kyRY+XXukLTUZ3sNUc/kTl6Aft/Wye4bZy2YPN7c9zWfFEh4zxSR+xVTUQoYJSPJhn9bRjJrt/REbdkAbKcafR1zkp9G7iSTDHYm8Bm50BYCFNo67XUY4knNqKPB1PLlcxUNzuplJA3IEHQhyLn7nyJVpPG3ATnAhCRwRSltBaEowXabaql7hRvbwFzAlmhjwGCYMYVqB6kDOQKYRIFWDSV8yVVqN9QbZ9M2fdWu57VrJbsoVWzUq8kV40z7dU51XpMyOPHsWqPr/jbwhjcz2Qkl4knrp7w25GrpTRDLYTfCUJsj3W3Sej1bDFPMWoqoikTM0pAn+oyAhkQ7UFnZzUokFHMSpVFUzFQ1xEmFOEXqxIwb5DzlKCTmG6KGeruDHm+euk2hTlzb2LCCIGcUW96pmGNnem+fCTTcZU+mzAATrQbYS0ILpLlPzP+PureHtSxrsoRWxN77nHvfe5mV9XW3RAMj4YAB2Lgg4WCAcDDA40caISFhgloYWGMgJCyskUAIiV8TDwYLhxE+WCCcwWiG6arKzPfuPefsHYGxIva5r7rqq1HTQtn3U36Z9X7uPX87dsSKtVYIt2pRQQ3scdQjDDzpUjxdTaKC88hg2QTEJFVTXdHe3dtfen0bSgYz2P1rAKCpBADKAqAITDugHa4KLRtTU1GUprh+oGPv88fvUeuK6/qHKHpBUeIB9+0r9uMeshqB6kLumy5RJlWIx7+FFjvd+bslpnu5g1ORZqcLiHwcWlNZoQGAxgVPzzc9VXRR3HKx8E2R/ndMwuhqLMERUmFHtgQWObuyAzjGFt3UneTU6EDb9KIrNA2sZJ33QyIwS/whuE+B+xElh6OYsCREgbUO0UqTgDEwjo1k3DKifBKW2KNjHDk05IjAqnScbVfic8aGUfEBVCOZWQ3Lk2F9ciwXx3plcKsXWsVrozEkB1+zRKW195WqBe1wHDxf0DVWEfzATi4hJUEhVQObDPRHO8ts7WAwG8S/es8h1J1aUjdSL44Dwxxvtx3DHHW5o9SGtlxRA5cTLLHIASgnuRvY2QTYAVWR2JhDUuXAdu/YboZWB5YaATT/J8y4S2kQUazrhc/CxqZIdk237U6Z4+gYNpBa6WVpeH5eIpAyu73fv2KMA9ttC/lUbAxxDVMxoNbgVpG6bhhwbDfA77i9vkIgqAvdW15enrGstF6/LBVmDWaC29uOr19u6P3AftwAGEqleSlpWjRNUGnTrVirhPRNCEVIYOLKGceqitqumF2tX3l9EwHOCTwFdyozHmXXJ3Cn1H9mV6s2RVk4R6G2hlIWaFlA/3aNQGNTW6eeQuLAogJ41nTjkIDa5PypzHc8d8mHzSJ336SUJMqV+Fu+T17+PLP5WfnV/ODopAKYjhTUcKbQn9lfbNlzl0NkU8z2mFVQrXEe7PxczevN86EDbZ7XGYQzOOXQYo3gKaWTDD3sPKEImIjPNyfG53Gc84TjnKTIVH4wS4s/5SRbnxnOg6HALwwA4shCO7MYP8P3+zPNuxnvEePykmdlIzC5cYrq+fMjSsXI9ux08vAoi9Ncxj0zecTTKpGxUUlS8tbO89D584/zG9zGzBTnkcc1yLupVOcj7eEfu/bTyHKef2atHr9L0JGyNsBGhQ5STebIySwnPNUo+fzF5wYtyQe5lejUjh9Hw2ldbuBErRoZJCk3lFZ2pItJ75yqBT+gClSlUJ9ZKTeitHfyqDAc6Wh98k9/7fVNBDi4w8aOXDUiK0QENlb4WCiAL4pSO5Z2YH1SfPhdWCYtV3by8ALrFZsZgB394KBh0RHVmyKsHAHnHNPSOkpVlKXT07EckOJwJXF0WAC5oWagk3AJvlNe2CwTE2TNr0UpGYWkRLqvLnBTuBYUDzcRkMPVB0HWEgEv9ZxuQbidl2sEZ44vEQ/MKUvVaByIwIWkVVHOIkoftuEAusys1N2gMlAUaMpsbrQG08Jsz6Lb1vieAx3ulZiOLBC9wP3AfoQtTlAbNEp8Xl+no5IjMhhBuwjaRVmWNnCyVAUDdBkMbK1AikHrBi0O94LeHZzhaVH2E0xnp93pW+dOnMpHgN1AbQ1eBXanoP3Yd4yjs6ETGCN8IHi98C64vXEhaSHvqtYLzYnqAgks6V3pGWtcVKEkraGGxXwaGUCYYZHygVlW++jY96SHsGg0CRJzcPwSZ5uUnAiSS1PUmtgoO6j7wQByHB0asrJSCz5cPwDiGAcpGPe3Dcfesd1ese/3ENtTvUPRvEMCC+ZIwIBbHFQWCPDlS2f5WKiFvVw+4HJ5wXp5xnff/xG7uccdx3HH19f/B713bLcN3h3j4CCkphbPzMbBT0oqj2oJA9YCKQsrFG1/NTI44KykuQFyoTry4pbg43BIbq2kR7CLE5PpwwKJOIjNIcQlsptMudNiZYaL4EjRGcOmvASCiWc9HNl8mH6+cwS7Krpy55PnwbuCn596DhsJjELBpoN5lFpgFjZZJXp6bj12v+JMEr7D/ByuI48MKM0M6fxBv9nHTptHIH8EpxgoCqCAldj9KyUznEpPX7pESj1IpHSpsDgOQSmRUQUwL8WhdhobaBgbTF/TNDlIlw2VBxiT72M+aCseQWEOEYrPTCwps7ozg4n7jdN+a4yOMQ6MoFPwqcv7z4egD+JYk2upbEyocsCRRBdeNDMynA7seS3TgFOAxLzyfvJjMttiuemRpXMIEK9pj03tFKNE4I1SV4RtBteAY1yh47xObpTDuShqPMO1NrgXjMZNeXQ6HluPLrzT1y2bY5kjE98MXDaeuzEGs12zKKkP1NrRWv430NAgYmg759X2PZxkBp93dv59ktdT5aPK5IDXloT4MXmDv/76JgKcQzDkGsAx8TVAwm1DUC4XXC5PuDwBLx8V0APH8QZ05uJagPWaDgphQ1M4iix5Wu4FoxOkl6JAKegRUFC5aFE6CbCFFz9F8RAuwgQ5s9RDOCfMzHNmUMC88MOCtAxu3OFY4T5gIpw2pBaYFiKTo+bOhdlfqRxp17uFUyuHiQBRNgRpN5nyAOjuJILaeA19xIhCC6vuDHDDMY4HHaQZTByugrIsUAvLdzUAzHjdD0jpuKPHgqgwWwIob/E3Z3SWeiM5dCEcAGHQqBfOpq1rDXcTIC5wZEYFEtpGlEoJnLA3ffQd3WK6OTJLvUdAo9WPeQuicWh/jUFNEA4ddsPwA4fd0fuB3gfG0dFaRV1quIKEhrdbZO4poVohWieJvK6KUhnVXDx7NuC0eQuPvxZBiD6Ex0H1yt55P3JgS5aAdNYZePQ9eyxFGXl5q5P4myoIKYqlsit7uZBDtm88x8+fvwLu0EYn56enlYYBT8+4iuLp5QU26Jjc984O7E47pW3LwJxlMJ97MmlI22LwJn3mdjtwv3/Bl88bfmivaK3i+rSgFMGn776Hu2N74vjGrz8dOA4GM3MDdIHIWfKaS5jKcgsizPPYYPrl1zcR4HjQBS7t3PYA2hZlN60VlEYTSAPQY6IQHVPkoTy0KFuy3BUgyLrmJfzb8s9Dqp8ZQuRDxBvO9yBnDDNuxU894B08j8fOGN87uUlxgPlewmwgXwowA3BATPAoDpmfLycWOLuuyOwxcMPE1CKF0MA1OZuBGA/LjDjOwJ/m4GI7O8TJAVMNbWXhjEttBcUUWgHXEYFnkDnoJSguwRuUAXVDcQvHJN5fLbEwK7uis6uoBUgmu7bI4HLUc5yj2cRlZjYmOWMhcanKbqFlppr3JBdMWKUnnpRyN/HIjPL6nh3uRClZklbqKqN7WGLiZDrpyrzfFnXrmHBEPq/EAFOrzNmqiBxpGPmDcGOpOI+HzzhwgmNixEw1V1I8q+KndjpVD6OH7tQMWgTLwsYFGzk15GEL4Ro9IEcYzcKBPTz9ZoZ8ThVDbC75RALZEe3oHTgOx7I21CYQqaj1wp/0il4cWxPQ+TmsoKRE1fLIpjiTB17eh0XwK69vI8CJwJQ0BoGgLQ2lFjw9rVjWBvahvuJ1c7ze+byUCrSl4ON3F2hRjHGjKNhoClhLAy1z+BGqzIK0LKhtRVsKlktDaxWlcGAN/AL3in6kqWaLhxJnXfD+sJHWSRmsJIm2QXlJJjzLXT/dLlRRwgyQo92AKDACX0jdK0iZcUynBS2KRWLxK3G0I00QYxxhHu9x7JjaxxkZ/XSjNQ+hhU+eW1r70hcPEFCDKbrATLEYLXDMb9xsdsGuDnQhUVQ5bAYu6Nbou7eR87dcyTksa0NdGx1J2kKkYQFKLagXXneEyQGCUjIiUhWpEKmh4zcOcTYSSj2eIfVwP7a0RUq79Mg6UAEFrpcFvgC9M4MtymDFUYPROAl8UwulS21Zg5JEhUVib8PoxGJhlSTi0EJTgn4QA5Sw26a8yUNqOGDeHwIEb4OFX154YCELBOqjdf53LvgeWeDhO6agP6keoNTxw4cVbo497JK+fv0KwLFeLuSHBtvA3OHFUEtBXRdcrOD6odFa6U7lQvI2bewBzyT0ElWTVrjXqMQqRnd8/vwVpQje3l5RS8HL00e00vAHf3CFu+C2fcXRd9y2e+h38/TPCD/L/pQI/p7XtxHgAEBk8sq0skO6XAsu14reO/qxo++G/W4oJUi6ISKWAvSYljQG/eJNIvPwxOcYhEQLBfalopaFzr26RJbQZqYn0BBCFyAwngfk7s8du2TKHrvz+a1HPO4MPhLfm9Aaf+j8HRFoHPeYIn2+cjwiBGfGOEY8ZHO/AwD0EQ9h8Lxisw3FRjQzHnC45EPFIfPcCss8xMT5Usk/qu1AXRm8tUd2VuNBLPG+PXhQY8Bc0CJwalWUVqC1QGqBVOJyUvm1mVZHJxKx1sUd5cGI0uwh2wnelMaA4lMyZw+4YGbNMTW9NggKijpGSeXAQCmKtlQGOOv8PDDglqqh12QWx35SZBuhhx0WHdMwSUgvs2w2kUzs0fT5eYALVQpKKPzyueHhew4kivIhUdDcyNgwCVdkG1Ei81lel2uo7ga6O7Y9pXzcXJa1oCLs7QXEvQvL6tpqZJzCmR4HZgPHPZ7F2a7nJiTIJKHA7cDWN6gAo1M0/3T5gFoE6+VC6KYc0MNxGK3R3CLbjRN9jGf57P++1zcR4FQFL88Vy4Wmhcul8sGXA0fvOI4Dx7HHKDTH2q748PGKZWF54EInDpZhLMEI1CraSleI9VqxXC4orZG308JIExXAAgZBulKUUAvQj6rgrJACYg23CGZniRdKJkcAzsCWAO/swAdQzgdjxG4/HjI4zswEIpmaoU9IrRBBiAmne8bwE4/Lcji9vfoIJ5DM1KKE7ZC51CWP06JE0wyw7ARbZE4sQwekKoosWK4O0Yq9Ej7rB3+v9w7TG9n2d4BEX+JaKclqa0FZSPTl8GoDyoBLFruFtBEIDMx+0B19CEYBirRZRtLJoiJ5bSYKCy2qhbddDgtWSRttdns1so3LhY0sGgowi825BfygbFZwE3UnuZWlLo/jGJ32VdGZBij7ywHQAFAy+BqfJw8C+uSZJcYUVCmoJ8M4ggfQYyZgKQUwmYGFllQs82wcD9m4YY9rWgqH8ag0LFWgcoE5cIyBY+th50+9a20FZkdoo/l2GjpROPD8xIC6BaduP27MYr3M9SSyziJStKEVn+vzODp++OEHlFJwWV8ZYC+FSpVlwcePjtttx+1tRx8dx77HeqCz74gpcL/v9U0EOBHgcim4vlB+U5cCKYpt69iPgaPvOPoexDRBqSuenmnmp5paOOJHnMgUA0zcsZZnLCtwuRZcnhtEawDZicNFJxYhgUJ0xULKJAF8IzqdPOA87oedNM7jkSsHnAEuOWJTg4oMcokZYeIzkplb6FeCVcYyWiXwGgBBPp6ZGaLZAKedj3Enn8z8zNYecOpJSp03Iz4nz0oEYon3BL4ZTg8NYCdRHDBepjEAKY7DB6QP+CE85ZijUSptmkolMK9VUCpgSrzOhTpSFXYoueDDDHFYlNWNGXp0cxm8C8xk6jVN43hjUlfOPsgAlzMi0hKrtRWtLtFsoefZvr/xgkTXwIMeMYwSqT5akoC4adhAt1TjYJaHbkDf+WC0Ety+zLviZjDx0ffBLY0cfgamZ4MJsxPP1+jp3tJjuDfnN1IXu0dVskO14nr9QNJsWeAQHK836mWHp3Qm8LiH7NeBWhas1zVI8IQu3irQ+wZ/G8CBcHOOhgyY7TOzFmhtmJK4PtD3V4gIjn1DrRXfXz6hLQsuZQ3mxCs7rFu6H5MFAIkN+zde30SAK1rwcvkAFfK9+nbAxTjQdnAnFQxa5dSKy5PGAF3HfiS4SapHYiKtUWx/vX6kVm5pE8dIwT0nnxMT8SgLZmtfHZCO5LPxOU68TYIyEFka4kHOrTxf8XuJvVlsg2650zJQqWIewzzIwB34sYrwBwACvGXmkNkkXTHcw6XBnfpEK9AYBEP8jn8nIOxBYvVo+XMtM5sK9hpPI35WQCwzsV3OFTHUhVlK8tf6GPA2YN0wigJDwmpH0C6GshikdrjW4DlRdeHBFWMzsfD7OIMAWJmGXIwBZ8iIkou8QcuEy7jT+5SjZbDM4BD07BiwDbBLK0rAHWJk8c8paKGfdQq9hxmO8YUBKZsdQmiEDjAj+gDn8yCOGHspWCqdSlRpbJBWVCfZnJk+dyFMnNcdqGGESbuvyK5Ad1xKtEZYxNvU4vIe09NPxGH9jcG9rhApdNzVNaoKh3fD9rbPDYBZHw1ov/z0dR6PCKDlQGmClw9PcLtg38nFG71i9DY5lK4CxHNUlDpqA7vtw+7wIfj8eeD1VrG2Z9S6Aq54eWa1tiyKPnZs+9cwMOj4VdgoXt9EgFNVvFxesNsdZh1bv6HbhuEHDD0I+0ybn58aLpfCKVoO7PcE1ymhqtEJenr+SPfeyzNqW+HauI9EANOiqGGcl0TeGceURFGRsD2fQuYMbomTRTaEwLCACf4+8q/OPyHOt5g/YAFeh7bQJvbyPvFm8NH51YGzHBYF1LgYhjnSjFeM1tDqLfK/6DIK3XIdEXjDbYJZBPlopWTGFlpH4yKf/L9cfwWgoxsp/WU4tAJ99IcAxwyuKqkM7TpQmkPqYLatsVCUTQUgcCTnmCoHQlPJFJHNbao3uKcfQExZMtNzMU/MNOeV0tOMw3FGyH4esrNwBqHj7AKI4+i0LOeA7JDoSbrzGvbjRpWMBrM+sMXeB45OJSYLfUUL/z7OnhWgrChaIYXUqKPvGN65sUgG3TEHnU9QHXwkzRzHTupHHzY74LDolDu74362jwMj4aT4485MfLk4SqlYrk8oNfDutCYaB0vVdQ2xe0MfHV+/fJnBuBTBx+8XtKXgWp+gqri9AfsGbDeBd4RiJsrlUN9wfKeBppyG4QdGd2yf3wAA1+tHrMsTnp+/o3XSqLhcKu7bK7q9wruFFdNfgQDn7ti3O7of3EEmfkEwnTbGCy7rFU+XDxAR3N6IS4zQhlalHu5yfUJtFZeVduQQ6uGYlnFEX10uKCUcGCTMA0PPqXqWpo+8tomECc6ywUNGM89E3l3wLEtpW3PiYGZE8yQGgUygOJsQU5gdiqsAWX1mW1lAZqBj+ijuzNciAAAnKDvBWU8oh81/xKKd1BUAHgN3GTwAs7Sojs+M5GDOAwXAeaYcpefSUPsTS80mgd2QwJwNAzZvolx8zJJBKECgFMLjgaQbWZwJvf9sNhDy2wTWIQZFKDvA+2zmASFw1084QHVA1HD0jqIbyyppM0MwD3F5/A8ehqAehqR+yvQCQYhrbUj/QJFQlkDgsRGbH+hmNHAtvApiyoU+6MPHwUlBLHaE7RQfD4cToikK7R02BH3npplOyyKIQOLcBCwSW+7icBPaj9uAS4+xieE5VyXmWAjGcbDkH3xQr+uFm7UTo3x73SA3YF06SqmAL6iloVwrLksNDWqMPPQkmj/im6lBf1D2dMPuOxRvc+aEBJ/ww/N3OHqHyl+Cm8j/Hy8fA9vb1+CW+3Tj1caxeuvyAUv7gMvlGc9Pn3Dfbvjx859BxFFXhIyLlI/nl09Ylgtau0C1Yh/c4bJVXcuKy/rE1CfwDp3j4sJ8MGzKZ+iSE2MLuBnp55VfU81yLpsKNrtaIzzGmJlk1pcDbJJxDyB3b34auVWOEIZzyEbiOgqd2AgTuEz9ZQLCOM8AGaZzLGEObWZy+Mi78xlIqRn0SZ4GFmAOzAGDk1QAfVJapJK/ZuMDvBizRaPWEDAK71XIdQsDT8IAUXsiY67Aeh4reF1CFGox3/DUhqY/3gHRHYBR5gNK+AAQe0TgZ27T2EHLASnjDJLhKsONjvML+sPgGAb8uJrJJYwGE0tO4oIiaazpQGEXUUUioXQMZ9Os6eltZyYYW8dx3LlhFA+Mc2ESsO/z+qgAbVmgKjh22hvZ4ehODM76CFuwldmcR3AcaePFO9r3HZAB2ym4f3p6wrJesJQLal2x7wdutx0iA1Zo6/Ty9ATAcd85zvGnz19x9I5rUE0+vHzCZS1Yni5Y2hXb/YbXN8PRB273ATdWEcyK2VgxY1VRhZPN+jHQ9zuObeDt9Ybr9Yrn52csdcXz8wt67yh6mcnQr72+jQCHGBaS259XZgeugAkUC2qpcHPc72/YjyPwMu4ypRWs64oaTqcW3UOxTIezrDwXtsgp8C718WfeH9nMynIFaC5+yhME+YAnaBylX1AvpjgbiHPTh/eOv31MQP/8aJ+fewriM9X3U2idA2akQqMEdzgg0XkMsqRwMCYDoZMH51Ln4kyskOdFqk0GBfdgsQYIxkBNPa86A5AEu9xCXVDKysBddjYOLDWYp/0UEDZLY+e5Rzos0JgzHYIrYXDUiIMppULYElm4skB2wO/U3UpkCHYQe/qZGmASgH3QojheOUibbPy87z5L5cT53GPqk+gMaizjFF4EVumy242bSh87VOg3yNvMIN3HHe6d3Xrhey5tIeXJmZllF3zkLFVnFuiWFvRsoqxrRVFg3wR77HBpojo3UjkDgoDQTmK5EErXjn0DamRV7qg1feYM5h379hYwDLXC63pFrVxTZsC2bbABls8LZ6KUaoF9rxhWcezywCAwWPAmJQdAzxXCDaz3Dfc7UGqFg5bo69LmKvq117cR4Nyx9ztqI+DpfmEg6PRmU7lgWRbs+4Gvr1/grjCQeb2uz2hrxcuHZ5RawO7WwNa5wC+XJzr6auJ0A8w4gKU1aBUsS0ixZhDExKgysCXYzU38bO2nbssfAhF3/RFE0yCYSspLNDy4HJORDi4qUk4wOW0jO3KWWV42CGgB7ZZZRI1MyqC6kzclNy5wTYJvNC6ipCpKAiYXbEw3H4FpyZ3nOBrgCrcFCNsoBgcSazV1u8DskjL2KJayhGffG9w6pzg5gsMVjRDvtCiyCMbh2loKLZ4ywJntgMRCU40FHuWMKIZ39H6Hyw0uX6Axvg++wHsFrM6ZCYVN9CAJe0yR3yKLpVC8FpJW1VLjyXMfIbsbMfGdcwvadOOthY61RTtabejHwObkmW37a7jgLIH98d7fN3qrrSsnvbVWsV5WbNuO2+0NYwiOMILl4CKD2z5xRlXgw/OVsqznJ4gAX768goYMhj3msrJBwo0uM0CWAg+6XTj2/Y77fcfSBlrtWJYF1+slMD/SSD7feL0uT1eUUvHp4ycAFV++fMG+b/iyv8LsM5aloi0Vl8uK55crFq1obcUYA7cbu7a3221eV+LYyck6nVGAjvu243b7jFobLtcrlmXFx+8+Iee9/trr2whwYJnFCiR0Z1BUJRVEhKXFsA3D7hBpKLVS6hO7aOITHmRPBIaW9ueCB6twRNcMxkCagcz9oRw9y8azEX9mOclPy1zfH7//gCc9InTxA/PLab2eAS4j63QRyYuDs1GBEMtzUEhEYnGcxXP8d3YJA6uL5Ilnk5kkEXtSSyYPC9wM/HzomcUqpvo/fNb4eRafLfN7mKW2ASnIf/DHY9CYd/7hPAVwh9mDxO5hj/Z4UEwMgpEoJE7hOs8vB2rDhDQwT4t5hVpsKw9Z8SzPPS+dzOA5zVHBUl7B5zSIP7Hp1AlV5M1lucoKgT8bA46GQF1mSc8mj+PoHD3Y6oIaGuhSGqYt1s8NEbJp5aDuV2LD1oK2NFyvT9h3rhletiz3H54/di+AkC6mM7QgvfJyduzOikm57aRVOUm/gAQmyiDfHp76UHF0xbZpEIZJG+F4AWBZFpociARWjYkxZrZq+SzF9abFkmC733Bayv/y65sIcABweMG+c3Fo0ZDEXPH8ssLwFfftJ+z9jn28Ylme8fR8Ra1kQ0MFX1+ZsWiUm+tlRa2Vw2sPQ9OFomBRuO/hYMC5ijYGwXw9S5KzQAqcTQTpte+TiyOzK4uwtKEk6DyvUtih7b2fGByC7RRdQY6j8zknIDlrcH0IppHxWAfxrCjrwjHXoqQycTiEU7fcISN+O3P+lHI5XX5dTpNMD1mUlwTRM8oWADVA74GitFY65xeUebVERowQjAlcyhKViyPUA5O7lRsOZrD2cISZbiuCGXhzJqugQ2JyVZa5AOBe4LZiDJZzAhptwqN7GSQZzufh76sOvldsqlyktBUvtcb78x7UFvQM7wwstsHRz+leQKjcmFmhAG1xSB84+gYzx9udi7MVVisWc3z3/Q6zOy7rBetKLOtpfcEuO/r2BgNpRYhAJXPDc7x9fYMA+PDxI56eKp6fP+LjdxWfv3xB/7Mf0IfhOMKeSY2mB8ExpGcbIFbhMM5cLbw/Y9Auf/gbpWnLMwoKaiNf8PXtFWbA0ph1t3rB2i6hnunoY8MYG25vB95ev6LUinVdUGvDy8sTWmu4Xle4A7d7R++G16/3yBQ7zA8UH1AMmoQ2Gj1s28C23fD1yxf8uQTiZ69vIsBNlCOyGA27F06cl7mB5UzE2oLlro7hHbDQKQpCC8pdKaU+E/fx7GrSmuhFLH62AAAgAElEQVR8ZVahDwsrt2T/5WsYSdPE16Kbd1a1UYoFYM+PPyU3j5ZLmcGcpGDMP+cFsofvR2kYGecjxeU82Ap5906ZjZ1XHLGws6uqahOj8XcnzeAwbTLm54T7gBc4CoKfEoGKP5uXcVpWRYA7N5LMnjLL83k9pBBjlJ9ffx9RgkYWOWEEWl9z92fgnZljXvd3dz2zzshsHw5FcGa0UzjvmW1HNoQe/MZC2MTBgCqsGMz84ZPCWiibHUJJWSZm2TDpY6D0DhENvE5Qq2IMxeiRNU5uW5x/dIjT/23RggIJCOcK7R3Dd0ZfP949W7OZNq9N/ndmTCSNiyiVA9FlpulAndffhsHVY8MPAjUY5UfwPm1QvQAHjuOgBX1NQweNsaAxG0JGlHR0U3ZNTJCQCm/xu1Xyi69vIsABDpSd1A1VXJ8VrQnaZQD1TrvrccHl+ozLE9nT3WnLfH/rgFQsy0twmBqKKgQVcEWRilpJGO2dOJbbEcRBdsxKWcgFWi7M1CQWmcbMTM9M431QdANGdKcsrMpl7oz8k4N/U3hP2C5szoVi95z4lI2DOdUpoiXVCJ16xbCkEdCaJ00Rc3ZrgrQqvLUWP9NtZ/YXvCPMMjc3BkMJCdmwcBJGBqqDD1xkTPyMFbGMCNYbH0oRdjEN7MqVWqHuMI85rs5pWuYkpIoE4x4BMLty9FxsLiLOzFpC2yns7iIaLLw9CliBoKHieZaEvB9BOZpQTUIQzFxUT1Z8yun6YShewrCBWbi54eg3etHpQEFuruyyihwYI5oMUT5OdMCVFktmOEJJchjv4Rmg+cPHTuPJdR2A0/vw06cn9GPH58/Ere63N27SCMVJ7ABfv37Bl9eveHp6xtPTC9pywR//8V/Dtm346ctnHMcdr1830DwzGHqlsigtvAd57OSAhioIA6Mbtt1QdMVlJUPh48vv4A7cbxvGMGzbBsHBoey1oVWFlAXHvuF+v2GY4/52x12At7c3SBGsywVaCq5Pzyi14uN330FAMf59u2HfN+zbnU2xrudzAvxWbAPwDQU4EYPEZPDaFHUpdIFVYmDqDaUUgrd2wPvGZe6kekjoRynFicwCzBwEiVVlZsKMTUXnn/w5Wn/nQpaEhTDxqIkVnd3AE8/B+4TvoROaFSIJm49nnkHqEWf7WQf1Zzkds5HMOHyWd5mmJME0y+w8l8mgk8wqmZU9Znr+cH7xMfG9syFyFvAhon68jzgxkVPCJvPaTRmSpwwJAHKx4pSS4cTWZubreQSZXegMckgsIZQbvBh5HxNGeDi/PDnJTN8jiyZepXbe01OMl+l5puosXadyIcp/Djpip1PKmcG/u+tTZ/R+0ySNiOVoHz1oS9TZ1uhsJs55ZuS8X8PI2zuOBfu+o9SFk6hqw7osEAxsJYbj5PMbifOk4+CBmpOXFTzdMbgxMqMTbqLhpCKW8IzBTGEm09BBlbruE+JhA01jhmophrbQebrUghLUmToo7i/KgTSTh5nP1V+VACeg/GRZF9R2weXlCcu6IImnCwoKClw23G6v6Nix4w2qKy7PH1HKiuvyQu2aUIpS3ImrmZMoWJhttHrh+LnlguVynVkjGxl23lz52QH6+4cJM3uwyC5iYVuEg+yABtesxGSoLPPo/W/zZ7KFz7+DdybJFRokiBqipGR2ms17B07IXcKJIxnIzvctYPkkRszNQnbESvd9UMXgsJsGj+ZrhMAoiZL6ok7taEqJAG4ohkeCaWRSUcIn/+xMiDtc7nCrcFvgRp4d7+GIe8Egrj2Gn2TgkghcwTymOP5AWvbMgAE/u4VxPirEwMaoEa/GSWVxEpshgqKCZeVVztGLdsS1UpLRxzFgB1BrgRViV70n9QcQ6YBy2MpssHiWzyEhy+cJpLfs/YDd3tCtorYrVICXD1f03jCs4+gd+x6gfD6PvIt4e33F7fWGy+WG7fXAulb87uWKPhRr/YjjOPDlpw19GHpYuZfWmSHnc2R0aJ45k5xZ8Hb/CSrKeQ4qaKtguQD75hgduN93jC5Y1oZlrSi14fnpgt4PqN7RR8d9v3Ngdj8AOXDb3qAKXC8VrRYs7QkvTxdc1wvsqWDfD9xvG3o/sMXgGi3jN6PcNxHgAKI5tdDQstaK0ioQ49mYTBcMpwzIYsFDnEZ9WqlCEI0sIa0JMbOgzM64m1CDmsqFEwtLTOrUW8Y3IuvJFJ7/zjLpzJgAe8BFUvdIRjnnONjMBc/O2gTaZ6aUjYUk4/o8npmNIuySHsixHplpbMnzWuQxvOMux/+fO3SGSo9SF1EOMvyyu81jSlpBHlRmumfWfJZN7Mj547cfjiuukefOH3iL0SFGjEJ5j1/OTi9FbTy+6a6CCNR57voQtCVL1jxqmf9yxOfN5MwC96NRgcRiz2wp46kZkLNu3Tx4gQIRm5Or8uc5FyTmGeT9mbtoQhr5MhDbA45hKKNhdAViqphIRW0s9/eDMAUssxvekW6k34gUVH2LKXMXiCguS4MK8FYOangTQ457MR1NhGX/GaUDHnDnyEER9D5o9rlUmoTGQJ1hhuMQmtWWNDRg06tWWlCl681I4rHtQIwHNFPUulBTjgLoCjfg0AHTMdcGday///WNBDiBo2JdL2iXK5ZVUBvJfd4PbLvitpfYCRXtesGHT09QrdAqEHS4fcYwQQEzGNF1SlzGMJRK//laYkjIA3+NJFHhOAaJYk5wLtIAyN17uJQym2HLPDWizMZ6Z4c2W+qpimAH12P8YD+1g0yNGCwTPLYMktlVBeBUL/BaRZhMsuojodgfSkF3YmFwmB3BFu8zMwxVa+gdz1JW9RwcwzJmg2NAdWegCCmDj0rNqKflVJTAMBQdsWBIGpaBcxFaOQmeLnCvcC/zupoZXAb68RbZMe+pdwZfyq2ye0vlCUug7LQKJLh8kA5Rg1qMEUwLJtlBj7LkmKU2WCHORWZ+hyrQjVSaUi5QKAMYKyoOEYrj7n3AfGPJmh5yrhAZKODna4j+4fRYg1c4NKzrHYYdjhuSa3nfFeOHL1iWC777+IfEvj78EbNcvGHfO7aNQ5YhlXdQDFoNwzZ8ef27uO8Vt+0HLEvDd999RGuKqr/D0Qd++OEnyqiM2SOEChNYA6zxeZR8VvbIFhvcge3ODKrjjlKBIk9obYGtBlXHsBte375gOyr2Y0GttFCvJnA50LvhfuN8VgyWofc3x6bAdn9FLXcsy4J1XSGl4OX7gjEa1v0JR++4vWWj5ddf30iAA0QKSq1oraEUdvQEBxw7xlAcu0ILcYgiFdfLJexlJHzR7nygZAWVfZk9gFFAYs7pw7i2fFliZLMMTZXCLLz4V/KrZmaABzyNO+AIo8ESA1vSkHZiWbGYJhAdX54pxEO5+EgefuwGesi0mPz5u1+l0uExq4kFnNq/yfs6eWwzyIW99pRPZac2g6F0AHStZSk1kDQDPkqCSdJENgjShptlc9qfz3M04ULP0ihzRu8YTpdeSAW80D3DHBw5N6LMY2c9s2sb2QXOzz9C2dBpohBZLre3MjP8YSOGzhQgclYMRe5BqgWqdLdwI2Nf5/4UZ+QjuGEjzoHZn4jFIBYE/02AUOqQXyhRuhJscA+5mVvMwGWX9eV5QKRiWZ7gJnirzKYOGRgYgc/lewnMDoy+ow9F73c8PT3j++9/xwpGV/Ru+PL5hqPTO1Hc4WHvD2uAL3E8PbJ5Pof006PpgItBjh0Gh7YrHZErF8XYDhz9zgaTd1zkgqf6BFgJxxZA7lk1MDj3g53T3neIOJ68Q8rAuq5YLleMwcaF7oL7Lcnnv/76JgKcFsHzx4an5wXLWrH1L9iOHb3fMMaGqi94eiLT+7I+oS6cNWAjh3ZEqxyKZVWUdKVwI2O/ZjmapVOk2kZ+VhiFT+F0RXkA4sEWeGhKAWZ0pcgMcGZGQ84EUZFLmgueWWR6mh3h15XBEAxSeTEeQOw/50YyLLquhjH8fH/IzOZOMvBZsuQC9SD3egD0ZulL188SVg2lhVW0BbWjL3wARQD0+aa0E09Mkl8zzxI78EOMKD0qvIDTsLRArJBVggUjLHNEBnFGiebBiHubQR9HlOEHEB5xpCEIZAR8YGfAoiaVC6WFrCgVC/T+E0gYBgxLWkd0Dk1hI6qBIwKTpR8dw/E4Ooaw7EreoaX43/NZiW7pNDBgySyR0THAk2gLVLhdZxZOSsiA9Q13G/izH/4eWl3x4UND0QWXywVLW+HYoGVHHweG7XEfYrOLTZ6qgTv+9E//Llpb8PLyO6gUfPf9E176gi9v4Y4yONWLK2KABPmcF9F5vBn1hZXCfm+Q3WEVKCWaK0I7MoBqnm3fuMk6TRm0cij29YnDiu73KFentRM3qO3eMYZjuxu2O81ga72glRW/+/4ZvxHfvpEAp4L12rBeGNnfXg/c9zeY3WC+o7UrlrXgsl7xfP1E/ZyR9Dr2fiIrGqZ6KWIPXKQUzjhIgulj0ECA0Px6sPIlOQVnIBw9AGgA56i2+BlQa/he+HtmMwCbDult58EJGr3PRZnve7YNEIv1NKscIyZfRYBLU06uHEFy5fLY89gABDVlIm6kCaiEkJ4qBT6YDmiHu8COzDbaw7VSwHuYf8Zch/zE2fkNtxWNAAcnyO/EZdzY+fYwdCRnr0NkmzihmUCMGQQ8A1245+Z8zliG9LUbZ5C19NrLpoPHbE3M7EYj8GRXlxPvgcx8JXLbzN5VNEiyEhBAunsMUmGUXDVPGxec3UjJIO1CAQkwlSDJ1eMM0my0nFmoG91FzAxf7Qta27Gun9CaYGkvQFPc9wJzgF7Ix9nIcUcS0IcRphjjM23E1mcsy4rn5wsAw71/wd4lbP9TFk71z9m1zuB9Ys/ugr4XHmsEuGWN0Z6lQKTBdjYH0oS1tornduW6X0l23veDLi1R5bjxmTkOWk/1A+iHYlkEL08VpVRcny8TRvq11zcS4CqWy0e83QZwv+G2dfThqHXFUlfU+oxangFv2HcPW+sjdkzKZGqtEBWMIfC5WxtE1hBDn0EpLbh75zBcrae76+PM0pGOuZ7MeiBnX6owWxnjiHkDHueiMwDme8CBozPAwUaIp226U5wgcyBhljifT1yJf1ieihYUoWkgB9pEUEnKRK5ApLVPNibie0B0U5VTxlyD/KxRRTNwFOW1Mu2cLQCFeIX4FYL2rnQ+a+RYuGGUYJ3d8HByRDYHkoPNjMaAckB8g7hCRgwLcrpoDKfVjqvPewEgDBTDdFHG+UAZUECXZrPGAGcJTrMza3MBnzK5xylnbLRE+R1BcYydWlotyBDNgSh8X1EPcKQiXBkwOZQyIoMLS32PBoY73Aty7oPhgAXWZS6gEQPLZhsDBzp++vwTar3j4wspIK1ViFyZLR6FxvLD6ZDsPZ6F4Gtax3EAP/74A1pb8Pz8PB1Anp8/4vPnr7i93RmMcp4HemyefcILec08z9eVki4c8A3Yj5CdlQuWFnxJcH7D6Ibb20nc16J4fllgA7jfbzh64M8PMkDzA304fD9gRs7sZVzf37NfeH0TAU60YFk/4vOXO46DMy/NgVYuWGpDqy8o5QpHwX4QT+rGG6eV1ta1XOIhvGOMgdo8ZkX6pGhktB8BYqN3ipBi/aUJYgY4M5aSScotRTnAN1OFPmJn4u6WTYdppgi6ro5BAHqYhcr7YUYCMnOLlyNS9cR1GKTSsRYiAVTn4JM8npivmexu5Zv14+F3H91lVQALPVGM+jMrDG6dNkGuHeIDQ2MRW1pql0mA9qRo4NzpWYVprO/GTl/BiX3KqZPQQsxFpMOxM+CWBTYUYis3jk7vOp94XmJ2mX2TtMz3FogFP881rhVA50UDsEd2CUBsSnJTn3uWPBXMLFMu5hi2w5z6SRFiViyped4qzgCYy8od7+Y6iM37hOheMsDVaTzq0gEdoHlnKCnCL8+cjZD9+BGlLFiXJ4heYxrWNTh0BeLMeocHQTs6yfCB4YB1w48//UjDTSm4XK747vvvsV5WuP0pRqfofow9Am9kw9nckYA0AmR2PMe6IgH7GFFRXT9haSuaVNRScfQ7btsd6bVXakGrnMPy8txAuGWD37lefNozk2jtg4nPffuCUgr6eD7pWb/y+iYCnMNxDEZ3Q2fHU6LhUNmdm0Z+tnFnSr6T5u6aJohkYDdp7GAqsYwU3WtSICBn4NMcw8bvMKjFcxH6RJa+Cd7mRPQzwythDqgauswE/+0hy8jP8ZBFPZS0k6IgDi01P5yxSlPVkARmdg+1CGpRYILamIERMemdwnUgh/Hm/8Z06pT88QeMrgF+kimmMDzAnbRJRwR2/vJ5LsxMiIN6YJ4qQXeRcGFx4oBiMb0cAjYsNBoddHeBC2pd4G68Zk5AOstq8qCOwOUiyMbik2hisCSM2QA5AHpKlDLwRFb5MOybCYRH8ulhUz9PMp6/aIv4CCoQM1cfmU0XyLw3gxtrbjQOcLxiBadrRSloB6irpUOM+xFZZJm4K9zx9fULtv2Opyu1q0UbWgXcc1KWIAQ2oQ4RFElIg3jx69sr9v2AlIJ1P1BKxXfffYfbreJ2E/Rjx75xg6QP3snly4FLItk46nFtAYhgjIPqBpUg0ze09gQ3Cw6cYLsbShnwQcuoqlc8XVbsx4HRe6z7HphcbHAazwJuzHJ/z+vbCHAObMeBbhvMOy4LU+9lXdHaCh/C+Qx2YIw9fPwHCmoYAtLwj/vGQbC6NNSm4WbEEs5yapQDECF2Evy5yf9xRJeTC1VFUX+WubkbjuMIrIeLpS0tMjHuKHvMveS6lyAhZ8LNY8rgmMCqhdV0KexgysNqInqWVjJchKoc/wfvgf9lyRC2TgF6M46ya6dp9DkE6CzT+DCmz1uB+BLnavMaiAYGEyMURTzoAw/kaCACZGSGiOADQIKukQ8/MyqNoMLrZr5SSywAVOBFIC5hn4RpFmqjwkzpcQd2fj1mNLj10ENGyTo3KXZ5x6iR5QZ2KDscnRhhZAsIb7IUxIhmRzaaDGkRpUqaCDiblQC4wrpijJRRcQOywK3M0zzTIqbSdZqwRHRg5ZhAvnuH4Q6Rilafee+gcHP89NPfY9D6o38guJ0NQIln6YAPUp9sBByBk9bEuR6Gzz/9BKCgD8fl+oTvv/+IT5++w5fPlDy+vd2w3cZUZ/CC9oAFIrvVEedIGpGEgewYG25HyLaWFaIL1qVidEPf2ZS7vbLZ0i+KWgzXy3eodcV9YzW37W/YxivgfT5DNEgQOA6cD94vv76JAGdm2PsGUXr316qz9HpUBLh0iB6QIgFi6syqkkwqGg9e8jce6Rgi4LCZGgBoAKXxcymOTr6WROaW23YGoyxJiUXEMYAlYJY4dM5woERpmO178JaQGBruIjMTis+dHmtxCsC744rQGwlYZnZpFBhYUwQ4SbA7ZnpKBjjh3Am+P4PZBJAn0ThKjcf6ObOmIH5KwnsZ47KRU2wGZRd5V1Yi4Lo8E6bZBUUUrlxImmquR4zSkyY9gnXvgWsxu7GgOYgrEGoPpJQvShkxpYXTrEVZdtMeP+7VpHLIzLzjgQgMkaMGpfDkPbNBUAP9jvg9u9vRLY3SncOkHZBxlvPOCRfwFeJpLcQAmZtarJj5fAiAbesQ7OFN16ARBCiFIv1H9YjMOQL0tLViYD2OHSIFt7c70v/uclmZbe0HjsNwv/e4ITKfjbzxEs88jyuTBT4v5p2dbnjovDm7gx1ZPn+js9lWykE2gzhaK6wm5AJH8EvdiNNC4v7+lQhwA6/3V3x4WdFqw9oKSkxs730/cZEyIPVALQ1rWJLXyoXtkVXUxtKmVj6wHpkS4kGttRJDSbJvlJwyV6rMB7hoRVEFlNgDMbns0PEhOwNljPrLjqgWZh9aZ2B57PjQYHJA/XS7ZdDjII/Jm+N34MAsiTV0txToDziCtwQHO8DsOPJh1AhE5QwmkCCoxh9zSnNGPnDZtXxfckRNhVRoZPkm4EJ+Z/MeYnfzmPEqEplqiv3z58IiXBYILnDpGLIFtrc/NDIAjcArhRgt528yYHvYqTtS7UBXCg9zypKW8pk5T6lYDAVHRdUGxLyAEyvMZkNqbyVmSxA6oOxOmFFiAbBEVuM084xqgGRmgVkFDQ3ucB+ougVcEZZUXgFcQPyvAr7PTZGcumhoiAcdSvD1yw2vXzp+97s/wocPH2C9YkgB9MCQlcENlDcZ4rlQUkBi2DDu9xX7Zhjd8fplw3efVnz33QvWheT4t7eO/R4mqrE5w2l3zhN2KGruXydUgo5uHePYoOoozgDY1gY3x7ERe9w2OtaMcUOpG56eLrhcFiyLYtiCbbvjdovHznLT1fMx+pXXbwY4EflPAfzzAP5vd/8n42v/IYB/AfS2/j8A/Gvu/mN8708A/BvxhP/b7v7f/9ZnpL1RCt9pVmgBtGYpAVptF97uBEjPCO44u4lxgeMiT+RJdOJg7yRa8+fic0Te/XFw1zP3CDLn+550kcy+wDgT+CDxu0eHkQyAFKCRVuCZYwE4Ma9JxvXz935+5Sb/7YGSMktpqkIZFBJvyt+bZfGpgkCUgHkdz4Dm8xr5Q3bCE8nOJnf2d9mexzkCOCVJiddEtjQLduBRY8rroO+yPUuisrOsxeSLRUbrJQjiGlnI+RkS2SqHZzMwZ/D0hDqCrCyZ4cT4RMmsxfU8Ws+rkZGSGyCtfKI0lcdMeF55kCRN0rSLUm0idE9OkjWf2AKTEsHvfMYmZphwhHXAFcfRse/8d2uXwB87y0aN8huI56DEdTWkCYFDYOGlt+8D232DDUNrFcsCrJcaG3xmn7HhTJcZfbiLec4WWTavN7vOxuOSuB8KWA+eqDtgnJBG2qlBi6NUUKKW9K6IGf6XkMH9ZwD+YwD/+cPX/haAP3H3LiL/AYA/AfDvisg/DuBfBvBPAPgHAfyPIvKPufvA73mJKLRcSXtQwXG/wXqHOxnsUPKHSgFqUzRd0ArxCBth9BhZ1hGs66INghIZHR/gEn/X2jDtVkHf+vTdyvFs8jBdC7yd6L3jvm1zCpeWgtbo9JAkYBViNyWwQX5miSCSOJJBpKCWwuyyZ6cOmNQJOBCzT72PwNLYmMjOH2kqVC7IxLzienhkTABSrA5gltdskhBH7H2f743YHILdB8fpmz9Z937y9fiosbEzmw+hfCDrv2ASWbNzCJ1hgaUMAPTp3CpyUBolDYhrBgxSg8DJ6eLEylIJkX6BGvwTWt8DFmV0Wi1x3GRy9RzwC2AkMsMLRI7A3o7I3DUaD4CPCBJTKsYRfB7T7Dt2mHG8Xi1r9F7OTYfXMqgUeAVkx0DOGL1ApEHkCpULbb+kcZH3FckPI80lOuZO0vXopPm8fn3FsQteXl7w4eV3+IrPuN23wMRK4GaknAyTkCgioIwG8YZxFOzm+PzjG95eDzw9XfDhO44DUBXs+44fP98oN1Qaj1JrC1phhQ9hBrS59CNRGT00rWWHiGC5cuM7tp3lvAF9APf9juEFbSmoS0Vdgad2QT8c91s8i97wwD/4xddvBjh3/59E5B/52df+h4f//NsA/qX4978I4L929w3A/yki/zuAfwrA//z7PkMEUZIOjO4YvcN6ElBj13Gy5udk8mTwzwc13gupVoide5aHSfTlgvolE4Iza8tya54vUvKULhMnZ+7PX+CTWhDgxM8yq8QsHGnlk9nfI7aRSQJ3rMf5ltG3m8d1Zofnp7y7uO4PRxDnMYmbEySKcwWAM0NIbBEh5cl2R74ffekek9jzO9y5A7ObCoeTSsLPixJZHBoqAhJjQ2Ei8Rl+nqEgfe84epCXNB+AyADVAmbygCeANC2gAi0aMhZqjMi88NBdPWGCJICf2dpMnSWeDRss/1KUjpJ3N44sfzeoLZKVS5J6QwcrOW/C8zAm1vbuucj3FETAdFr6j4phDWM0QAZqI5+uTwIy15MKp5t1GfOeIjAz92za9SDZclMgJsZNfVgMtAFiPfq5zvzhOX+81p7nTGhFokuOKOkVjhG4moViR02gYTefc1NK1cDvFCfh6JdffxkY3L8O4L+Jf/9DYMDL19+Jr/3el6rgcgXubz/Cxg7pAzBH0RcaCGqFS4UuKy7LFS2Jg5F9uDukMuNqdaWXVFkia1tQ6wrVBqDxZnfjRK2c0RnZWm3ZUc2Aw5t9HDuOvqH3EcdLxxNSRhJM/eULbTbI4Qq7co2WuVkMEYmfI+TzmGVFiZlC8BGdKzArGPH7w3PAMI8tny2LUtDnokg3jQ6DgeL7fgZOd6SGNTMDFT7QEp25nKJlcgCeWVsI9udCzbMJ8bzcQS3smXWQr8eF59bgRpK2Bd8uFQaexoYBiEvImRRXKFqUdQUmkRPqQe2rDEg5AHdYOe8Z6TtsPJhFE0JjFkGQj/OaiSDgEIA28SNKZAkKhsNHUkIGrO9wvcPljubPEB0wbwCu87rT6MAjoV4B1MhIowMew56hkalhQLSjthzfGJttME20MJN02WLrGBi44fX2I7aDw2s+/cEF21bw4481PobP+rKQimSjYWAAw+HYQYcOwTDDMMPXr2+4bzsulxUfP72grhVaFhxHx+efvmL0DtE7BAOa1mMzEUBcrwLrjZn8oJuIS8dQwx7Di2odkApse8MYFX04g6jTQaiURpOAFoNruuPtrT9kyL/8+v8U4ETk3wPz9P/iL/C7fx3AXweATx8akGXTcaAkvSk3ldhZ2e5v3Nmne0buIsHzURrmafxhMyH/vMd84jhit44/Od9zll8eqoNUNJw/e5ZXf/7l/vgpOQ/VQXeJWEapV/x5BpY4Q5Z05udnI3KAmb2F7jRTqKRZPH5+vPXj72WxeHYpI+P198cy/xXZLw9AZhaaxzuzi3lB8kPPzG1mwfBJm5hjEN0fjpmleQ5vnnbpeYwzs8+O8GPTwiOLSk5cbABpP468v/n7P8vUsjsOEsU9zt2RG14+Gz4z25yyzUx0wLRHWV8yhcGZwSGOpc5jTnzjv/8AABwCSURBVKw0+DEPZVdggEH5O2/Kg+xOBEg5HEjXGMNh3gnPlBWilE0lTMIiJLmZUeZL3rvYdOM6jOhJlFomFam1BoGiFpoPvHNknvcoG1H5WYJpLgrHKVEb8ZPJr5OgdmWDEOEPmHuwxJwTzm7xXyrFHl5/4QAnIv8q2Hz4Z/18qv8vAH/t4cf+4fjan3u5+98E8DcB4I//cPUvP30FDoHYAhFaXGKs8NGgS4MqMQlFgY2B23GL+p8jAOtCjG5ZyaGr7QrVinW5oi5XlLZAS6OluGj41a/JKyX2Ft1LidMhLuU4Dk7mzg5s6j+Tz/RIJcjFTo0nJp6FiYelHQ+xrTkmL4J1UjUwy+IoTy12RIJvoYiIzCarKiAcVmbFeZJ0B2fJ9u4hHxNwGlSUTI7Qlxo0syyEPVLYkCNAf4UAvoR4ekR2skWmliMAo7kQRFYfa5Qod/68H9E9JnaYz6l7pzMMAMENIjEEJmyVCOBHaRfa1BT00yiUx2Q9MM8R3ePSonyKoDaDm8QcDyopRDpEiA+pN4Y6j4FCcnDZBc3EO/ll8AuKJyHdMVCxxbCUEvzBbuwec1IWgJguNXPGwCk1JGbEUvkMKVbQDPWAi6LoFRAn78w4A1YUUH8C7Eo3K+czZzEw5tOnj+j9wNevn/ksOtfB0hZYEfR9hBMLnVoyHrkBvQO3txv62LEuKz59+j5cfzgC8OuXH4Pt4BGIk5CeWahB6wb3xAoQ1BjB6DRGVTSoOrQeED2Qcjc3RR8Ki4HjpTjaMqCieP6w/lrhNF9/oQAnIv8cgH8HwD/t7m8P3/rvAPyXIvIfgU2GfxTA//Jb7+fmOHZmbuoK0Uo75LgJAnrdn3wz8ohEDTXIlxrXjgOc09iSRF5SOU4eWP7Rokhu5zusQ/AQYEIFEeTQUsKBlUeOzILeY3bn99IA88xwZAaux6/nZ767Lv6YEcWPRrbhj8Etjyiz0ZmVERfJEjrfb9ICZ+Z2FpbsSHoEo8w8klDL9xGhhxkyeD9mT5kVTieLyHKCJsGE36MMPj83f326vIDZkEJjMdIayWcn8/y8mX3hEZuMa50LTrPjngHuvOwM8mfTgI2Ox0CYQTiMHZgkUqA/ZFYIpMQUuDH3hAQRO49PHMw4E/N7OAg8HF8q8kFFjQoH2iAy+GkmYZxrm5xLeYATLNQC+9axrgWtEvxXfdh0YRCtKKIwjefipAE8VAv0v0v9LOJ91pXl5P1GysfwNKhNpQkw8dfwlhIY0oGYTZjovBriefUgcHPdj8DvbCbADh0GqRwCLXo+Db/0+vuhifxXAP4ZAH8oIn8HwL8Pdk1XAH8rFvbfdvd/093/VxH5bwH8b/G0/Fu/1UEFGOD62zEtjWp11GLMyhrQLhXtujLIFQ4pqUpZVKkp12JA7KPAoahLAwqztlIqpCikEKCsLX7PZ7zgg55j6eIej4O4m0KwtAtqKZHSM6tKztosNR4C0s9L12xeMCPk4ldQ/aCz8/lzZUMSirmdMmWPgBuJvcYCmhSLLF4ecDVBSr0wHxL4ebz5wHPNJZEXga1LkDMtWWhRFihMEunLR0kJ2mdQ45kjMyX+u87r7VKguEBlRcZE9wMWluUqJ/nZxcIlg5y+pAi4ZwHMYTDQsKsKGyQO31HA05AzKRcbOEzHATGea8wqABaYZfEfkjUX2PEcyXOW1fFWwYkrvgD+FJhTATTMI5HJrwFhR0+jACDJqtxco9zmDQx3HFJHVBxlruXEuHgAJAMISjUUpV0S530b7jeDdY4DFFE8Xz/AjAOXzQ2tOFScmNySipZyBsBJCOcG0I+OP/thR6sVHz58Qm0VLx8vGOOC29vOIdWJiylleOYPLIKzcgXEoI14r0uomY8D3gdqqSgqqLOqJYfS/cCxb+gdGKaQ3x/f/r66qP/KL3z5P/k9P/83APyN33rf978E+D6AJXdNR1GgNoTfu6Jd4lBtkHteKFWqJRd/TGSy/G99yNrkdAFRnAqI+PhZxifOFdhXgvuqlXbqmvjImbmcXLp312D+OzPCXN9ubJVPDezEqvL//P3/4limj93PPmt+BqKf9IhlPf79EHzPnO3cyX1eCD9/IMjPD4UU/5YIxMGB4wcnhpQUkjQjzDZHXARXQHJql4DUiJMOkuJzeKzS87LMhTOdgYN6MJUueBjiPDOhiuTInbhbvOmcHEWQx8Fjg1WWvOECnOidWWNzJIGppMbkfZASLiYKs+jyIjmYcRKaWSCzGKZmGhtU3GMnqVmnWoS47aT+PXYp57MBSuF0QCNg9sMwjo4Oxb7tnEO6XjHM8PZ6Y9MiyMqlpMs1sUFCD9zlTnXMwDDH7XbHaA0vLxeorlhWBvXjyKYaDSWQmHasyUekdD4SOua55AaeemLIuWbTVoxcVI79/A0jEQDfiJLBDdh3RSsEh4cPdHdUuQDaYKgYowSNpHM3wwg/M0728UIbIRg5c5xX6eg2IKPnkgNUoWOwC+Xx8Lxz+aXTweSdOZCzHBAPGEQmrwjAxOIy8KR0bJ7fQ3BJhySPm2rudKoNRYPDwyoGSDsllfTGz0ZHfA7OxUUFgszMjCad52IYg2P6uCsDCX5LfF4qEsSAEQ2dVGeINrp8TDdjPATamRbGuXOYdFiQnEE1gnmqJ5KaIeGwYT5Cp8lBzOxiPpSjERDoqLJHLM1SiI4XJxIv74KtADCjbjHHKVKDukPimtiogddRWeHBN4MAUtPZIt+WtIxwUo9A7Jii/7moD5jwfE6zgciWk0f9eC3zmXEAKBM/zRGIeTFOe/r36ctsPOVzqB4VxsB2f4ONhrYwKl6uBWYhpj8crbaAdQS11lBn0CU4xymacfxmEXZEv3y+o9SBy2WBFsVlXdEqcL+/4djDh0/C/Sb0wgi1TmrEkWsl8NQiDcACeIOPk+hPmKpwGwu+pPUDv/X6NgKc08xurICax8PusQOkr5dijIGj06iwYiAnw7OLxR1bLUBjZxAZZhDjZGzETRs2GAgRizqDlQMkQdo7j7dpcBnpzGO3FZFlTXXDpJg8ZFrzIU5PtzMk8BiDSDt1t/mw5ntmKh51Y3bRHjLPXCxngHvomLqzW+XpxhAHIKC2T/lLszc3smuYMqYSP548tjP/e/fK6+LCIOdxzFF+8Xfi+oDyKWappFBQrH3Kv1RSc5jnzt+1OdvVgPAZmzjhPKTHbBJIpGS+VTQ6Js46CmwQLhBE91MAzmQNB8g8b+GAlORlncfSITKYncr/297Zhdp2XXX8N+Zca+197s29TeJHiU0xEYMSi9rShwR9ED9oUkpF8KGlYMU+ClbxpSFPPoqiVqhVES1IqGKtGgJaauxztKUSY9PYSKVNaU0KWrn3fO215vBhjDHX3Ofea2K+9j6XNeDes/dee6811lxzjjk+/wPU3QqIAUHGphI8mDYcp42HF/ybeW2a6cbH3+6pnRsxJrE5R1lffJYzqCNOQ2GcemuwPJjwMFikyeqm6cj9QOetBUsxk1JifmuTLFzg6MhTPPqJISl939P3mc3miI3nI4qXU6VkfMzars58+3wFRWTwki+zyIhZk5On+uAuF2sKxNk5eIb2QsBZs+c1q1Wh66BfDfR9ZlhdYrW+TAmVXwq5zyQx2zynTD9YjlvqbzHgzIOB1GU6B9KLYnzrt9rRDYZSknJH1/eEY940JhMGUzEHcu4GU9h9YNlKBOa6gq2NporMx+NB2I4vIJEb5qku6gu7ml2RgjKjitRde65Cn7XGaqhClKvVvKktM9c3gwr5PfMWZgGejV4qgm6uppD5icwvIyoV4od6pmY8RKy4PYSTRknXPCmrT7E2tRa73lZKTyz+uTTPzuCw5J5jFhUVZvI1kEp14CPoYSqERu2kgrUtNL9ikmMTVHmDCJSp8z0kNohjrPypq0X8+FWt7MtcJ1avGt22unl0tPWZRvABtnHyBMmetlKqGKvaTKtJ102VAFOwja1q6tmDHWni+PgKucusDxxRdz0YZuGoLgQN4CJnqUnCqsmOa2wZsVmBauLo8IjTbsOFg8t0XWK16pG0ZppOGadTqiYtiZQjEDTPG8HSVcxawYWtB1giywEDjhWsKCBpZAhsa7FnaS8EXEqJ9cGaYTV5GHhN3/esVpdYrS5zupkMMjx15M5C712GnDv6YU1OA/1wmZR7hoOO3AnSucBIplWkzpvaDAP9auUBCi8EBxdsIeBs8gy9QcZs5aE1Au7sPUCrwYVDPDDM/Iv1t4q1DYyHTUUuEXzRhUlWtZBoDBwaa5g0iUC6iHPZ7uvBhWqWhiCc+bEM9PZOxDU2xSJ7tnBmT5paGwYsKJGqplqYNTolIMqTRPS0EWwS+ewQWH0GpuioGTVHLBgr9dezaIzIp2k4RLcwmXwBRm7Z5DfuvqUIgogJI61NZGKsJ4psSGJdxMKfVvH9mEBOEBmRPNSAR/X5gQXDxDYxgxYSF7gRYVbQ02oxzBUv1CZGKXv96NaNhw6XiEgxLjik+RuoxZbaM+9bysTRyRHd1HFwYUXuOlarntJ1XL1yyDiaRlTKZMG5riN7MEdEmcZ2g/SZVODw6AgRYRgOTItbdeReODoqbMYQcIadl7KtJatnLT4XIhLtQAYSFTPaNHXyfg7itd1JDX3mPGhwtSfDqiNnWF9Y0/dWf5a6iT55pULuyV12n8YGScmjqJC6QsqF1EHqxD7PwjCs6PrehOZqZQjAPqFiaIr3Ppj8b84dhFkqcyJpEsPTalM8zpZqnS3gDxwtPfP9rQim+i7veWZT0SaRGX+onnrcmmutGajzxDHoJfXcKBOMs0FdOXV/1tyXM0pqZkHik9lNYvEFGQu1RmzFy99cqCeZ+Sv+u1KiXeHG/7kJo5HZb5pp5KcZP46G66arYp2X5ruItAT1VJ/kukWGigCSYwfzP1YjWzepGm31fUIKZMccTI37QUOAgGbzRRnEuGtOXj4YydAzspX4+EXAIWEQRZZ+Y9qjVj/wPIfCX6nU3ruRuuJgoCF0AzoroLssYu4+iDrvbEsQtxyOjq+YgtCvyX1ivba2fmUq7usWxgzRlb7Lgq4s7cbaX8wLSPw+Tk6O0DLRDz1dZyVdpayYJvUm5/P6OFsrWfMTkzrQaWMZiM9XAFJ95tpYDjeivRBwkoWDW1as1wYueeGimaj9IKS8IUvHIJmuW3lxu4Hrhc6akpBW1uk6D+ZYNTRgU8WH1YquX9H1g8H2+BjPjn+bxKM3612vVo5k4RMlZUcysQmkTV5c63Nr1eVq7k6TJ/RyJmenjZX6MkmOljCW6gOJa7SCNKKUxCU1FqL1iJjRPXT2BbbuHZi1QPDgjPOkVKeyxmQKX5zYQm810io63TSqmmwVVOH4PnET7xhzxrtAC604CclhxuMa5mubUK66D801O1lhQmyaTTwJn53DDrGqgsFScBziKgIthFfLo7oV1XdC5aRq/xSqgAsQBskdiGXYawEhO6Cp5cMZyobVpSqeg+kC1zTa0FqlJpMn3H9Zn3VutEpb0kIAOPjzcQEcvugUmQJmBJp5XcK+DXPYgjlXrp6Qc8dtt30nnUMiUeDKlascH28YR/vNMJiSkJN4Ym/h5Gjj911nO6AcHl7hOAm33voG1uuLrFYGS3ZyvOH01JK3baOW6uKZz2IJ2SnQerXUwI5xEhPXTOZ64P+2UPdEwGH5ZNah3idRSkxlYyFnn7SlDFVdji04SThtHaMqElPd54Hb+9HRRxGKqQ51E6mmXOO4FUl1hzDZNY/kHCANJ35zL40GF3lspRSHd56napjF7W8jEhut52LH5qwi7qZmW4Q/m7qzMzs6kYeQC4d9JD5UJ04INC3b1/ENZIvJ5plRx2Uet3bS2ulde42vuR9Pm+JvcVjvOJ17ROchD59Zvagdr8yHCViBPzNa5kbUdoPuzzpTOlWDHjXCaQLLyojMpBXPBLeKl/CDusoXEEfqxfUxByW6lFlkNiWrwpgCeVk9gbluGI5m4gmu9qw8mdrrjbWO61wi2Eby63MRE8Ym/Ki/a6WBFjV8ls0pQqLPQ02Oz9l8r+NovtZxnAMGVnlj5maZd0LCtFWFk9Njrwrq6bqe0kPfO57iaD0xbGyC+Ujgl/neJVkenVCfiz2vQKahsWBuTPsh4ARD8e1NTY5OeON0xDSeWuLklOnyRfouuQM0I0npVpPnC42u9lozXwNRTJQyMo5hdqnvY252ZdNMatPgElURUrPHI6pnX5xrUu13AeMM8wp2CCbHzZom+03Kdl5V91ZVnw6E2j3W3qk2UboubwnMs/4GE54jEWYveLmShrYVC3I2I6vWpmHimCO5ePKyFiUAL+foYCtQ5juNVxU3T80XqSFPVD1yi1us5l+rrsOilnOmPaKBu2+Z7HOMOyFqWk8tkYraS4kNyE1S7VDt7Zxlbb9PIGppJFYzObqJOFKjr9IRzYZM4AwmgPBKAV+HEQndbMAqKgYTzupQ4RhkeuSjGUzRQJKOnK1UjdFASym9JS5HGakM4GVaEma1uD9NN3XuRvDI1k0I8CZf0OcvEu0C57rVokpAqE/F5szR4SFjP3Lpltvoh56+nyhFOD3ZcHIaaTsjORt0kSToB3sem3E0AAnDxjD4LR25crVwfHLI5Uu3c+mSBf9Eek5OjriyOfRzhu/XF/sUm7nNz+QWT4suPfd5dS1QX4VE39eF/Ga2+iIUPJoJ4f+IPqC11CpFIqQvBAIoEFDbUco0+fftr7aagLfHC59aak1BjQcwm6DxXa2a27XbR03L0DlnLWCa5u+47hEL3f8rnsM0n1V9PCIq2qjtVXM68y8EobYJqHEmXxBa7+oMX35OaX6zpZ1Srx2mukbzmi3fY2tOh5kbEUtHConx0wCaxFr/iaWtSAhjFziis4D1jEbf6ZVoxuPuatNY1O8j8uFm5gkdUZtjLgIq15ao7AnH7QJzrVuLJ4+HkI8Umlq4Y4nDWjo0dT4OEEjH6vO6bhV1Y5Wa/yYNL3Xe6KwN16mKUBNr2abZ+vCRkVZom7Aok6VpWH8R87eNKawfYZrsdS4hjX0DTNPsQy3xLGzdTRNsxpHNxmqgu65jmqxVwJzD52u3BtIiWMO8aca9bVkJMUHPSWd7QUxbSVZzuBnVWsVpRjXTdQNDXtH3B6yGNZKF3IlF6vLoqLkrMwUwiPBSE1utTWDnzn7JHanrXcgIETUVhD4K6dWSZNveDq32FMi+MbphYquqN6OxxNpSzD+Sc66Sok7s8K1oqQ1iJi+gPytox+jeNRVPyvVdOpAvAlk1NKYSu13b+aiZRBqLKNm9T8VLu+xOk3eKqiyUkBdeppXsHKW4ud9EOZE5mZlqogmU3gXQgOoEZYRpQnSwz9KJuRhkg6Rigm0a7DflwBYlkVvv6RpibfGi18EsWM2RDtHNSR2yXFE3JctUfKF3WP+G0c9ri0zIGBCmBTlAK1S9dcdLlq6QxDZPRk912aDaIdqjpaeUFeTOag5VDRxz0moxA+4/sznUZZ8vqFeMJBIrmx+1+fi8Cdkwh0vDhV9NxYnNxi4gkSealIDXovRMJI6PrU/w0K05WPeU6ZDTEwsqbE4LJRdgY5ppOgVRUmd4bFl6pFjdKErtOHd49ZBp7FivD7jl4mVShkkvMI2nnJxsfE55vXmKHhph6ruZqhMalRTNKrQ64xcvZdgLAXfNtjOvNWYtIyJJvlhl3oVojoeeEidStcUbEct43SZdxq4YZ4p50ShwrVq1/fq61PrWZhNHY9Vv3XgI0NB+rne6yGWbVb45KluVlaq5nTVlQxPY9sV4ukt936pqet3bbjWiup9Kozm59iaN2jeLJRdAkcNXc/ki5aDVsFotUDDfVPDj910Lf4TtMa2D1jDfLPR6q/Pv5Dpfm7WK5tyNj7beXR3DKuLrV8W1uHZDawfz7NOOeR2XqCNR3Qvzb7eZrkpaI9xuRHHPjXDwDXZ+fu2mOGuOWv3U0UmtXWvXPoNQBMJF0gaUtqyjWOcyj6tynXO3l9Azx250tzdcVK8jicgLwFXgm7vm5SXSt3M+eD0vfML54fW88Annh9dXyud3q+p3XO/AXgg4ABH5rKq+fdd8vBQ6L7yeFz7h/PB6XviE88Pra8nnS6jHX2ihhRY6n7QIuIUWWuimpX0ScH+4awb+H3ReeD0vfML54fW88Annh9fXjM+98cEttNBCC73atE8a3EILLbTQq0p7IeBE5AEReUZEnhWRD+2anyARebOIfEZEviAi/yoiH/TPbxeRT4vIl/zvbbvmFUBEsoh8XkQe8/d3i8gTPq5/LiLDrnkEEJFbReQTIvJFEXlaRO7f4zH9FX/2T4nIx0VkvQ/jKiJ/LCLPi8hTzWfXHUMx+l3n90kRedse8Pob/vyfFJG/EpFbm2MPOa/PiMg7Xsm1dy7gxKAqPgI8CNwLvFdE7t0tV5VG4FdV9V7gPuAXnbcPAY+r6j3A4/5+H+iDwNPN+18HfltVvxf4L+ADO+HqWvow8Heq+v3AD2E8792YisibgF8C3q6qb8EKjd/Dfozrx4AHznx2ozF8EOtwdw/Wi/ijrxOPQR/jWl4/DbxFVX8Q+DeskRW+vt4D/ID/5vck4GxeDmmT5b+Lf8D9wKea9w8BD+2arxvw+jfATwHPAHf4Z3cAz+wBb3dik/rHgcewFO9vAt31xnmHfL4B+DLu/20+38cxfRPwVeB2rOrnMeAd+zKuwF3AUy82hsAfAO+93vd2xeuZYz8DPOKvt9Y/8Cng/pd73Z1rcMyTKOg5/2yvSETuAt4KPAG8UVW/7oe+AbxxR2y19DtYr9qoGP824L/VoHJhf8b1buAF4E/cnP4jEbnIHo6pqn4N+E3gK8DXgW8Bn2M/xxVuPIb7vsZ+Afhbf/2q8roPAm7vSURuAf4S+GVV/Z/2mNo2s9NQtIi8C3heVT+3Sz5eInXA24CPqupbsRK9LXN0H8YUwH1YP40J5e8CLnKtqbWXtC9j+GIkIg9jrqBHXovz74OA+xrw5ub9nf7ZXpCI9Jhwe0RVP+kf/6eI3OHH7wCe3xV/Tj8CvFtE/gP4M8xM/TBwq0Tn4f0Z1+eA51T1CX//CUzg7duYAvwk8GVVfUFVN8AnsbHex3GFG4/hXq4xEfl54F3A+1wgw6vM6z4IuH8C7vHI1IA5GB/dMU+ARZ+wJtdPq+pvNYceBd7vr9+P+eZ2Rqr6kKreqap3YeP3D6r6PuAzwM/613bOJ4CqfgP4qoh8n3/0E8AX2LMxdfoKcJ+IXPC5ELzu3bg63WgMHwV+zqOp9wHfakzZnZCIPIC5VN6tqofNoUeB94jISkTuxgIj//iyL7QL5+h1nIzvxCIp/w48vGt+Gr5+FFPznwT+2f+9E/NvPQ58Cfh74PZd89rw/GPAY/76e3xyPAv8BbDaNX/O1w8Dn/Vx/Wvgtn0dU+DXgC8CTwF/Cqz2YVyBj2N+wQ2mFX/gRmOIBZw+4uvrX7Co8K55fRbztcW6+v3m+w87r88AD76Say+VDAsttNBNS/tgoi600EILvSa0CLiFFlropqVFwC200EI3LS0CbqGFFrppaRFwCy200E1Li4BbaKGFblpaBNxCCy1009Ii4BZaaKGblv4XxZa/jVW2bnwAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 360x360 with 1 Axes>" ] }, "metadata": { "tags": [], "needs_background": "light" } } ] }, { "cell_type": "code", "metadata": { "id": "3OQHzPd8CNm8", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "5548af53-171b-44e5-fe7c-afcc9269e1f1" }, "source": [ "##second try : 3*16 blocs\n", "\n", "def bn_relu(inputs):\n", " bn = layers.BatchNormalization()(inputs)\n", " relu = layers.ReLU()(bn)\n", " return relu\n", "\n", "def res_block(x):\n", " y = layers.Conv2DTranspose(64, (3, 3), strides=(1, 1), padding='same')(x)\n", " y = bn_relu(y)\n", " y = layers.Conv2DTranspose(64, (3, 3), strides=(1, 1), padding='same')(y)\n", " y = layers.BatchNormalization() (y)\n", " out = layers.add([x,y]) #out = layers.Add()([x,y])\n", " return out\n", "\n", "def triple_res_block(input):\n", " y = res_block(input)\n", " y = res_block(y)\n", " y = res_block(y)\n", " return y \n", "\n", "def all_res_block(input):\n", " y = triple_res_block(input)\n", " for i in range(15):\n", " y = triple_res_block(y)\n", " y = bn_relu(y)\n", " out = layers.add([input,y])\n", " return out \n", "\n", "def pix_shuf(input):\n", " y = layers.Conv2DTranspose(256, (3, 3), strides=(1, 1), padding='same')(input)\n", " y = layers.UpSampling2D()(y)\n", " #y = layers.UpSampling2D()(y)\n", " y = bn_relu(y)\n", " return y \n", "\n", "\n", "\n", "def make_AGAN_generator2():\n", " inputs = layers.Input(shape=(128+34,))\n", " t = layers.Dense(64*16*16) (inputs)\n", "\n", " t = bn_relu(t)\n", " t = layers.Reshape((16,16,64))(t) \n", "\n", " t = all_res_block(t)\n", "\n", " for i in range(3):\n", " t = pix_shuf(t)\n", " \n", " t = layers.Conv2DTranspose(3, (9, 9), strides=(1, 1), padding='same')(t) #peut être une Conv2DTranspose\n", "\n", " \n", " outputs = layers.Activation(tf.nn.tanh)(t) #modifier la derniere couche quand ça sera bon\n", " model = Model(inputs, outputs)\n", "\n", " return model\n", "\n", "gen = make_AGAN_generator2()\n", "#gen.summary()\n", "print(gen.output_shape)" ], "execution_count": null, "outputs": [ { "output_type": "stream", "text": [ "(None, 128, 128, 3)\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "id": "QY-D8zLpCRNq", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "8c047719-a0c9-4b97-a54a-453c1b359384" }, "source": [ "## make discriminator AGAN\n", "def conv_leakyrelu(input,n,k,s):\n", " y = layers.Conv2D(n,k,strides=(s,s),padding='same')(input)\n", " y = layers.LeakyReLU()(y)\n", " return y \n", "\n", "def res_block_dis(input,n1,k1,s1,n2,k2,s2):\n", " y = layers.Conv2D(n1,k1,strides =(s1,s1),padding='same')(input)\n", " y = layers.LeakyReLU()(y)\n", " y = layers.Conv2D(n2,k2,strides=(s2,s2),padding='same')(y)\n", " y = layers.add([input,y])#layers.Add()([input,y])\n", " y = layers.LeakyReLU()(y)\n", " return y \n", "\n", "def make_AGAN_discri():\n", "\n", " inputs = layers.Input(shape=(128,128,3))\n", " t = conv_leakyrelu(inputs,32,4,2)\n", " t = res_block_dis(t,32,3,1,32,3,1)\n", " t = res_block_dis(t,32,3,1,32,3,1)\n", " t = conv_leakyrelu(t,64,4,2)\n", " t = res_block_dis(t,64,3,1,64,3,1)\n", " t = res_block_dis(t,64,3,1,64,3,1)\n", " t = conv_leakyrelu(t,128,4,2)\n", " t = res_block_dis(t,128,3,1,128,3,1)\n", " t = res_block_dis(t,128,3,1,128,3,1) \n", " t = conv_leakyrelu(t,256,3,2)\n", " t = res_block_dis(t,256,3,1,256,3,1)\n", " t = res_block_dis(t,256,3,1,256,3,1)\n", " t = conv_leakyrelu(t,512,3,2)\n", " t = res_block_dis(t,512,3,1,512,3,1)\n", " t = res_block_dis(t,512,3,1,512,3,1)\n", " t = conv_leakyrelu(t,1024,3,2)\n", " t = layers.Flatten()(t)\n", " outputs = layers.Dense(1,activation='sigmoid')(t) #que signifie la fin du schéma ?\n", " model = Model(inputs, outputs)\n", " return model \n", "\n", "disc = make_AGAN_discri()\n", "#disc.summary()\n", "print(disc.output_shape) \n" ], "execution_count": null, "outputs": [ { "output_type": "stream", "text": [ "(None, 1)\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "id": "T1kWYJ1XCU5a" }, "source": [ "\n", "cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)\n", "\n", "\n", "def discriminator_loss(real_output, fake_output):\n", " real_loss = cross_entropy(tf.ones_like(real_output), real_output)\n", " fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)\n", " total_loss = real_loss + fake_loss\n", " return total_loss\n", "\n", "def generator_loss(fake_output):\n", " return cross_entropy(tf.ones_like(fake_output), fake_output)\n", "\n", "def generator_loss_MSE(fake_output):\n", " return tf.reduce_mean(tf.keras.losses.MSE(tf.ones_like(fake_output), fake_output))\n", "\n", "\n", "def discriminator_loss_MSE(real_output, fake_output): \n", " \n", " real_loss = tf.reduce_mean(tf.keras.losses.MSE(tf.ones_like(real_output), real_output))\n", " fake_loss = tf.reduce_mean(tf.keras.losses.MSE(tf.zeros_like(fake_output), fake_output))\n", " total_loss = real_loss+fake_loss\n", " return tf.reduce_mean(total_loss)\n", "\n", "\n", "\n", "noise_dim = 128+34\n", "num_examples_to_generate = 16\n", "\n", "\n", "\n", "# We will reuse this seed overtime (so it's easier)\n", "# to visualize progress in the animated GIF)\n", "seed = tf.random.normal([num_examples_to_generate, noise_dim])\n", "\n", "\n", "@tf.function\n", "def train_step(images,generator,discriminator,BATCH_SIZE = 256,noise_dim = 100):\n", " noise = tf.random.normal([BATCH_SIZE, noise_dim])\n", "\n", " with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:\n", " generated_images = generator(noise, training=True)\n", "\n", " real_output = discriminator(images, training=True)\n", " fake_output = discriminator(generated_images, training=True)\n", "\n", " gen_loss = generator_loss(fake_output)\n", " disc_loss = discriminator_loss(real_output, fake_output)\n", " #print(\"disc loss: \",disc_loss.eval())\n", " gen_loss_val = generator_loss_MSE(fake_output)\n", " disc_loss_val = discriminator_loss_MSE(real_output, fake_output)\n", "\n", " gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)\n", " gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)\n", "\n", " generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))\n", " discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))\n", " return gen_loss_val,disc_loss_val\n", "\n", "\n", "def train(dataset, epochs, generator,discriminator,BATCH_SIZE=256,noice_dim = 100):\n", " \n", " Lgen_loss = []\n", " Ldisc_loss = []\n", " X = []\n", " j=0\n", "\n", "\n", " \n", " for epoch in range(epochs):\n", " start = time.time()\n", " \n", " for image_batch in dataset:\n", " j += 1\n", " gen_loss,disc_loss = train_step(image_batch,generator,discriminator,BATCH_SIZE,noise_dim)\n", "\n", " X.append(j)\n", " Lgen_loss.append(gen_loss)\n", " Ldisc_loss.append(disc_loss)\n", " \n", "\n", " # Produce images for the GIF as we go\n", " display.clear_output(wait=True)\n", " generate_and_save_images(generator,\n", " epoch + 1,\n", " seed)\n", "\n", " # Save the model every 15 epochs\n", " if (epoch + 1) % 15 == 0:\n", " checkpoint.save(file_prefix = checkpoint_prefix)\n", "\n", " print ('Time for epoch {} is {} sec'.format(epoch + 1, time.time()-start))\n", " generate_and_save_plots(X, Lgen_loss,Ldisc_loss, epoch+1)\n", "\n", " # Generate after the final epoch\n", " display.clear_output(wait=True)\n", " generate_and_save_images(generator,\n", " epochs,\n", " seed)\n", " \n", "\n", "def generate_and_save_images(model, epoch, test_input):\n", " # Notice `training` is set to False.\n", " # This is so all layers run in inference mode (batchnorm).\n", " predictions = model(test_input, training=False)\n", "\n", " fig = plt.figure(figsize=(10,10))\n", "\n", " for i in range(predictions.shape[0]):\n", " plt.subplot(4, 4, i+1)\n", " nparray = np.array(((predictions[i, :, :, :]*127.5)+127.5)).astype(int)\n", " pil_image = PIL.Image.fromarray(np.uint8(nparray))\n", " enhancer = PIL.ImageEnhance.Contrast(pil_image)\n", " plt.imshow(enhancer.enhance(0.8))\n", " plt.axis('off')\n", "\n", " plt.savefig('image_at_epoch_{:04d}.png'.format(epoch))\n", " plt.show()\n", "\n", "\n", "def generate_and_save_plots(X, Lgen_loss,Ldisc_loss, epoch):\n", "\n", " fig = plt.figure(figsize=(4,4))\n", " plt.plot(X,Lgen_loss, label = 'gen_loss')\n", " plt.plot(X,Ldisc_loss, label = 'disc_loss')\n", " plt.legend()\n", " \n", " #plt.savefig('output/losses.png')\n", " plt.show()\n", "\n", " plt.clf()\n", " plt.cla()\n", " plt.close()" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "wSyDZ88FCcR8" }, "source": [ "generator = make_AGAN_generator2()\n", "discriminator = make_AGAN_discri()\n", "\n", "generator_optimizer = tf.keras.optimizers.Adam(1e-4)\n", "discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)\n", "\n", "checkpoint_dir = './training_checkpoints'\n", "checkpoint_prefix = os.path.join(checkpoint_dir, \"ckpt\")\n", "checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer,\n", " discriminator_optimizer=discriminator_optimizer,\n", " generator=generator,\n", " discriminator=discriminator)\n" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "5uT0ikCaCe1i", "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "outputId": "99095891-94be-4d3f-8523-d350d40d16ff" }, "source": [ "BUFFER_SIZE = 5388 #60000\n", "BATCH_SIZE = 128\n", "train_dataset = tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)\n", "\n", "train(train_dataset, 100,generator,discriminator,BATCH_SIZE,noice_dim = 128+34)" ], "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAIuCAYAAABdOBlOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3d647lPHaY4aVd3f3NwQY6AXIPge04QRDAd5DLD2IgxiQXkJ9GBo4nc+iuzfzYW1UqlQ4kxcNai+8zqOn6qnbpQC2SSxQlTSEEAQAA8ObWewMAAABqIMkBAAAukeQAAACXSHIAAIBLJDkAAMAlkhwAAODSl6Nf/u7793ATkUlEwvPr/vzd7fk1Vd28z7ZueL+6DfMyW+/Lct1r0+r3689NO9/H+CEif/P73zfb3X/8/j38Sh7xMsfQXd5jag7CafHV07xds17btD7mrbfpqF7cReSniPxtozia26I5hl7lPYYmecRQyzO2u/SPi9715Mzeds5twE8R+YOI/EPDtuifvn8PX+S9T3t9fs3Hct0WtZRzXOe2alr9bLmcsz4mdZ059tqymHJetse31c/nf19lv087THKWv5z/+uVkg2qrcTB6NhZn655W/5bQ+hj+Wj7ux0uHbUihIdES+bwNrbcpNjZbeJGPMXTYcDXQcwhcQ2zG2NvOSR7l9yIiv2q3OSIi8m1jO7423oY9Ocd1q63q3W5subJNe+3xnKiKHNdHLlcNSEPQ55p2vtDWPKLSCsfYl/lk59vZB4EDc6J6pMgJUUwDtDUU5+lZy+uhwa0h2lLrubosbSMCJf726HOe4ixFbrnHlpemM6RSl6zRzpzoaNKibRwh1jT185eTnCudkKaCyBU7DLf186N9PirXvd9ZLcNZrQbm7Np0TTXWXbshjk2ktXRQJcqjxMnD1fUvWa/LsUYcoavZ77U+CV7PE8xd3nJwIGf7j9ZxKckpGaAlO+5SZ/UtOpNWy9PcaLZq6DTNvdI+eTSmPmrY9hZt0JmjmwLO/uaoY9CQdMVsQ2q5aWqLesfwVjnntOMpk4hL1uFS5Xe0/VdjMCvJaRkYLRMBz3o3mltGPRYiY+97CZrKL3fCaOpnzuqvt5syatK2XyUuy5delxbrvmurLyuW5FgrHHykJdEhjuzqHUMjx46Xfe8dQ7Bna1pI0bmD3MGCEogjHziGuIoYQiuabpBAAzQuAADrYvsykpzBMEwMABgFSQ4AAHCJJGcwXK4CMDLaQD9ijiVJDpqgYQGw1KtN4JL9WEhyAACASyQ5AIDmeo2oMKo8FpIcACbQOaEELleNhSQHAAYUhA4f/l1+C7kl2l+K2EKvRi3I2OUOtHD2Aset3+e8YBSwIirJ0dZBpSQrZ5Va034BqUaKZS3t0NHLAlPeAL0n5y3UZxixwaiiR3I0NDCxCUtKha4xunO0/p5lSENX1tlZc6/1j5T4tBQzCjK3k1fq2tU27SoNbf2ouNpQnvrLVUeVe6uB6SV23TQguuQ2KhpjjSS2npwTp9brLWlZLzwmzVqSiasnKrnx0Xu/W1Kd5Gg+e6FD8WXreOY2BKWWVaIh9thBtTR6Pd8bqUK+1JiqEYMjHcfoJGeEAonpEEoE3EgB5sky6Ui9JLFOWHpM9tRy9mrF6AlOTaOW7aj73ZPqkZyetjqhmsPQ0+p3dER1pCYmR8dh/buYZaesfx0TWmjaFkAzzXXl6KTHyghwTPmqSHKWnYnmoKhp1P22pGZl37vERVy0R5mPoXbnbSWOao0q557QlRb9MMBaByzsfK9N620Liy/osDwee9+XXl9pms/KoN/yZNRy20Q9yJuSYfG4Jz3x2NrOAVeRbI6HDnAb5eLLKG1a8uWq0vNFqDjnmDCqw7TzPQCM5GiKibbL7FlzcpgYC4tSK16Jp9eiLCsTIj3ZKmfKHiJxD8jsTcXEYxF9BaMNjUpbXhOclEmG2kcQOdlqY+/xB1fKXtvZPj7aO7a16lvNupz9FnICtC3KW4cR5+eMuM/T4gvAZ1baBDUjOTin/czaEysV+CproyG1RgB6PJzRGk91grZUn1ptEUkO3PPUOLeiucxaXOrQvP9aMD8KpdVIdEhyDMo96+Q6OLbkzNPpjU4V0EXrE9pVJDmaCgTAOAnxCPuIPqzWoZST5h7rTZU98RiAL+uJtlsTbxlBgSe1J9Vbm7yes63ab0xQMZKDtbRzAGuTR6FPyotIPdE6xA4fvMeUhdcyZY/k9HiJ1zjSSsVzJwQAqMfj6M1S0kgOnak+HJO6RjjTJ4aAOvZefaBN7MNPzz6X89LP2rhcBfdyJwBuzUfR3ljVNvr+Azl6JTut26y9qRM9T6SiLldZmzwFrOUOybZA3dKB45DHcrm17NtatCdnCca08VWathOhqJEcJrbCutyKtxymLVV5NdUlTdsC4LplWzX33SPPoY2eeGxx5wAAwLiYk2OQ1bPvnu+L0TSfRsN7c6zGEPQghvRp8V632L/REh88DNAYLYFj0ZWyq3Wpar4Vk+MK+NarjofVV+rfWkeSYwgdoX2lr5GjLI4LUEavidZrJDmGeMiqRWw9SKqGrbOqkctDGxIdeDZa+9s9yaFBaWekwE4xUgxeHUUaqazwGcc/n7X298r2ahqt7p7kWDvwrWgJEO+mxb8lyrz2MyhGR3vRl4ZJ8xYRt/3wMEClRqgUGvfRW5JSYx88lAsgMt6lm6Wz/c6p5xrbTW4hN4YzqWu27m7a+vny8ymNoMY7pbRtzxWe9gXobdm2ea1b3ZMcTc8v8UxjGXutVOuGo8f7avaQJMehXdrnKXZa7UtKPFl5qeeS5pjonuQgjuYgsixmZOdKh1eiodo69lfPwDSOOAF4aJngHLUDHpJ9khwM4Wh0RfOZE4kItPGQIGvefo3t0BHNZSlCkjMMbRm5poqhqVxK87xvtWmrMwDSqUhyaEzOjTBBrKaca+Iz7bG5tX0x++vhjBztETP6WWvDcsXsl4okB2ghtnFezsux2jhY3W5NKMNtJMc21IxfS8efJAfDia38Gjq5mA4l56zNUiO11OruMA3HHvZZiKOzNmb5Owv7s6YmydE8+RNlaOhYLcbX1qXKmEbJ4r5qQLnBuisxbOkxEzGj7d1f6wC0QuflB8cS2lmK0bD6d/39TOMTjc+Q5Bi0DEhLFQltbTVGFhup1iif+mi39PF6TEhygEpqdpYkuPVQrucoozF4OM5q5uQANfV6guheotNqe7yOSnjdL0u4ywoWRI3keMjmvLE0Oay3no9ID8KoizXUKZTg4dKw9e0XSRjJaZG1a+sILD8nBW3F1I3cWFrG4dYySHjLo+6fI97aOXt/Xat1WsTlqg0xlxu20CiOa30SkPJ0ZeJGJ27FRwlXEpTaiYaXROaImiTHQkOy92oFC9s+Ms2JRMx2aZv7oLUsAQtKPazzahKuqU2pSU2S08Oy80s94FwisKX2cO96+S0TK2IQ8IOrB2Ul3ULuaRJlqY7BQ1mMqkdykLNOkhjADw19z0htioqRnNaJQs6cG5IZbOl9i/hoRmqcgbUS7cpodYiHAWJo0+Jr+bNachspLyOosM/DrdG9HZXf3h2U1P88WSM5pQO89cTQ2Imc3oJK8wTcnnLKpGUjzzEDxrLso0rV/7M262g9lpPaIS9XxdC4TdZZmay93E7NcWClPAFt1vVaYx3S1PZsDQzsvcBTm+QkR+NO5NB2Wy500xIre0PZWrYPiKH9BKKFVmVQcqKzxXYmKcmxuIMxrJ4RW9teLVKON2UMfGS1s9Oox5OMS7ESA1FJTqunLpaeOZ66PAvBZSWwcO6ogUs9y6PjAZDbBljo+3KpmJMzKz18d5bwWDywdGbXtSi/vVjeew9VzPVu2B119eZqO0R8l7U1UHBlovHROqxRleSI1GvsuQYMLWom86Mg2e/PysRTa0rd+bt3QuAtuTlrT9UlOTm0H4SSOHsqL+csKHa5e2W+t/zUBqnXU5s1xBKJjj7WjomlbV3KuZydux7r1Cc5R/N1PBwA6NPjGTjEsl68jRwW7MWn9ueA1aY+ySmBxkkXrWd7LbZJ675bw8MYYV3JZ/WUjlFP7ZTZJGfEJxbDnrNRgLM49tLQAJp4qFdaLhtrZzbJ8ZRpop+tx6fXiCtiFcCS5jZB87alMvOCTssPTYJuxBH2EBvQjJelntdRM0mOSNu3RWs02v62sIwpGgw7NCcfI8fQyPveU+lyX9evsPiyxlSSM6MzykOZAWmoM7DAYvLRitk5OTH2GiirAeHpdmOtc6o8lbF3WmNIZMzL6ynHgkmz15UuP6+PazE5kjMSy8FlGQ0wSvNalxlZ98Xb8YxKcqxei9szybUD2eKFpd4Cbc3zvqGdFu0SsQqNtPZf2ri+XAVcoflyCIBrPNTvsykZsa+P8WzoJCf3LLDm2eNW8HkLSG/7g360xVLq9jA3pQ/vZa6tXvQUPSfHW6H1DHJvZenJ1Tf2XmH5Ns0evNQjy/thedsxhqiRnJEDmZfzlaM1jji2OBM74nLlbc/EYXseLlnhWFSSM+pttesHD5ZohJYPngsbP8e4iIF4Pcpq1ERkWdal+oIRyxF9DD0nJ9VWZU/FmYMuNLZAPNouWDNkknP0RuiWnR4Nhk4cF716H5uSl6/X+6L10vioI/nQL6auRE089v7Mlta0NWJ4IM4R6yxOrty6Swy2Q1n7N+RIzvqMqcdLP3ucHZFcfbYcveOMFSm2Rl725vHl3Fo+o97Ww/QB/4ZMckTsdWgeJilrLHM6EFyV+p4qTfEf62ibNdbrFCQ6vg2Z5Gjo2KhUfR3FgIeEEn2UbFu2kgdtt6hraEuBIy6TnNKdVK3GIWfb6HTb4izvMzq2tjSUd0zCRV2BRkO+hTzlBZgaGhgRX5Nie5dp7/XDLy91dM96/tre7wEtXCY5Wt/ivTUpcetsaISGYoR9BLSocRmtxbqAq5KeeDzrlTzkTHDbqnBnf1+rkoaI77d+pi1ZK8XChEXN2wadiJkHC/V7xqU2v7JGcixk6qOMiMA34vgjygNACpcTjzXiLGFfr7OovTtONB4rS2fFLYxQHrFPQNb6TB3Px6a2EeK7FZIcDKfHwx+BFnq+GiLlNnVtLzulHfDLVJLTay4N6qrRwHiY07Q3V8vq/pQ0UhloH3Hcexiilu2zwkObpZGpJAdxLA11WthG6EG8PMS+O4sTv2Na4olnDtWTlORoG2KspVQDQZAeq1k+lD288hDbI/QjV1k6WdUseSTHeoGnbH9KsrNOAHuWk9ZjpHW7tKK8MNMaC+vt0rqdWyxtK/K5uly1DtpSz/fZemv5VkJDpQGg0dG8nivvw7LKwrZb2EYLXCU5a6WDhKC7huFXoK2YOwnPRqypr/WNMhWkh6Qkp9aTj1sf3KtPTM75zHr965GgEmVwtF+aKtCVOIq9JKhpf2cWOou0cmv/VpgROmJtsRv7nJ5Sn2vh6glXqfb6aDk15oTW7mdKyNvG/VTm0khO7G2NGoJ6qff2bM2kr7FcK3K329r+WtveY5OE6aX3RrwpcQLm6/i0E1tunz83iUjfGOp5zGuvu8XriUq4dpL/8lzCt91PHCY5YRKZEteuo6Hocc5Qep3zK0afZ8u3IPLyXMfrXSSEx1fyMkXuhbYw1l1an/Mvj8XRcVmVsdzlc+ksZ1y9iMir8HKBh/CtXRmktkX+js7cVN/l8zjEUY2eu5CXxd8ePSM5tsu50t7d3tZzbzxhos2t2fP+TbLdptR21ubpqh2PrcmJp7mMRcLLfg9znOT89YvIH15lel1v0Psq0jZo3pC992+vP//+0zCvbXr+VxARuUl4/m/+1fS241vLmxZLnbdnEpGf8iEQp+f/BXkufZK7iEzzuuX5p/dFCYQPfyzT9NjG8HGhHz6+PWT62K5p3o3p9tiUWxB5uYmELzJNryJB5C4/JYRXuYUgcv/YCXw+Nt/kLje5Tz/kjwcBUcVvv0j446tM9+uVa6vMwuK/pumR1Qf5+ZYDPo+efIqJ6ZEnLlO/8PzcdJt/P4mEm8j05XFMwk3k66vIX4JIeHQac/R9WsPt8YOPnfN7rL5v9/tevS8lpaN5X9f7n6WX9VZMfo6jF7nLi/z4ReT1t79OXkeu8G9vMv2fe/v+ItpWIz1X4hd5TzSCfExUXmVZyuHDd3Mb9YzKt4bn+f30DN5wEwlBptszbp8fCPNqwiQhLON7Ga03eQ9UeTRy4bn+VZs2R8j0toz7YnnhU9Tu33k1yV2+yo9fXuUPv26b5YRvItOP+T8uLOfTn09zByEik0y36Rmr0/NgfW57Ph33W3g7pPMP39uw7W2YfxueP5lW/exyDZ/60o0lvcXAW/8j723YPeyeaERd1ZnLZ3MZ72UXnnH52M7Xt73bbot+kZ/fgvz8+pvtDRORKSSPBgAAAOjXfuYgAABAAyQ5AADAJZIcAADgEkkOAABwiSQHAAC4RJIDAABcIskBAAAukeQAAACXSHIAAIBLJDkAAMAlkhwAAOASSQ4AAHCJJAcAALhEkgMAAFwiyQEAAC6R5AAAAJdIcgAAgEskOQAAwCWSHAAA4BJJDgAAcIkkBwAAuESSAwAAXCLJAQAALn05+uV/+/49/FpEXkQkPL9eRWSSR3Z0e36vxbyNIp+36+p2rpetab9jvT6//lVE/uH3v2+2C//r+/ewLLOw+NoqS4tl60lY/ffW8biLyA8R+btGcfQ/v38PQR5t0V1E/iyPWP76/NLWFlmyPt5LZ2W6/NtpY1lbbWZY/PtHEflPDdui333/Hl42tmX+3krbvtfP1fq7GtaxE/PZafWzICI/ReR/i8h/3YmjwyTnt/I+1DP/9cvJxvRUM0CtBP+RSR7H71eN17seLvRQlp7FHJubPJKLVl5W3/+m4bq9u1IXz05Qtpa9TIZaX0pYd3jTzvfa5W6rpn1M2Za9OBJ5xNC/OfjbwySnlPUGHp05oJ6bvI/GAUAv84lOkw4IbsWcuB/GWGyWnZodxnzeQiK0tx+5274eilv+rFR5TNL2DDzG1jA39NN0VihSZnuIwzil2iXNVwaWUmJr73IvsVXHJCLfDn6vNpE+Gv3ZSgZil7MnNQCPlhszcnW2XUfDvlcry1FA9BK7fznH3mLjknsikNMYb/1NTJlpSnJKbUvJelZK7vGpIXb+XOz2aYqhpZKX8PZ+riW+PDg6XklJTs+AjA2c0svXuOyc5S0rlJZb6q4e05zP1RwhWy8vpsOs0ZiW+PvSo5SltWiLtHbAIsfbdjX5LWEv9tejtr3KWMOx3WszStSxmvuXsn2ttuNykqMhIOBD71jaOhMNG9/vfWZvObk/t6b3pUUv5ViTtjLStj3apNxdWurKxRUlrlS0pPZyFcrq3TnN26DR+g6Lrcs4Wre9Bw2xBLuIn3wa26Geo3ExcXR65UJjoQI1cYs7AOgX+7gLDIKOG6UQS7hC4/xO+HSa5DCsCADwgj5tLIzkADCBM3AAqUhy0AQdFAANaIvGwsRjAADgEnNyAABN0a+gFZ6TM5CeDUsQRgU9oZMC6oh98CjiMCcHAAClUk8oQsbfeMZIDgATGA2EV7lJydmoz9FLeEdBkoNm6KRgmfbLCHRotqQkNrGfDTvfjywpyaES4SrLiU5qo3H0Ys+jZcW+oO/o3S1Wy/iMlzboyn6cxaGGt3xrZrkNqkH7CzavYiQH7uW+ubfGmdCVZa7/9mhZNZMBDWeIPZOdkolJagejoexhz9bJVkz7sXbWVubGbm49jqkPUUmOhYpVotHTPhztRcsOKiZ2S5/5Xl2GhfqGevZGGnLiglGLY15GBlvJbSt7tmlZIzmaKk7s2W3O2bqm/UQb3hIMrzHscZ9aGv2SVqt6vkyi1mUec+m6ltLrbDkansrs5aqc2+pqVeYS1zRHbHRqHBMNlQr1aRsN1Cx2HhfqSbnUbIWVuTxJSY6GHbjSMW5djsqp9B4CVAuPIw3a4oMh+Twx82islenWPsXEa2w7uSwP4s6vvXi4cjmrVpyYGMnZyoJLDPVtVcK9jLvGGdDW+mkQ8mhLLDTy1Olo24e9xr3U809607Y9pdSMo9HLTMvVFrVJTuqE0RLrOrpO6jVgLfPUabfkcfSsl9yREcu25pfsfU4rzdumnbX4VpnktExwai8zdb103EBf1hrx3iwmzbSz44hKcgiEdFcr/t6kLirntlK33I7CYseEftax0vPOICCFypGcEte04d9ZJ00cAWXsXZ4iUd5H+6OD+reQW65EYfG1ZZKP84COaHhInWWx5QzdOI4o6ah9LrkO1BHTFqhKcloEXC+l9otG/hrKzjbPbYQVHIN4lFN/Ki9X4aNSHTMVjjIAtuTMaWNe1zHaGh1UjeSsb+FenzF4rlC8lK8OzjqRglgZj+d+xZJax0FVknOGBgix1skNyQ5QnvU6RYJTnrYyVZvkaCuoI7HzZM5eBnr2t9YblBYopziW6hfq2zopADxQm+R4lfqWdKAGOjGUkhNLGto7Ddvgkba2hSRHuUnSbjUfmbbKhXo8HmvL9dvi8bC4zUgXdXcVT9l9d1QGMS/xPHpL74jlO+I+o4ySd/do6PA0bAPgDbeQJyjRoKa80K9kAjBCA1rjTfH4jHLWLfeVC1faG6snK9wG75/qJEdTY7quCOvtoqKko8z68FTupTopTW1Njq0ysL5PrXClwq6Y+Fad5GiqoDF3PwEW0Khvs5wUXEn2rsYBcfSZ1ThqrUXsqE5yUp0VGIEH+MMlh3w5Tzo++3sg1laslY6pqCSnRyDXuJ5s7a2wqWfcls7QLWwjYAX1SRfLo4LeqBzJITiQi8ZlLKU7d2/xs9yf1LLamsDsMZnyuE+jiKmvKpOcVDlB6q0xAzCmGolezeVrUnPf6GPODTUnp3UweAy+q8/w8cLaZckeYuevee7g9uTegg3gWMyLqLvMydGOiYcAsG2vbVx2Ki0mgGrTYv9GOrk80vPSp5ok5+rZN8+tsYXEFCWMHEepLwXW1OFq2I6RY6el2DKudSzUJDmleQpg7xP/oE/MsLJHFvYtNbnJ/aynNhR9xLYjNeNM5Qs6a72PJiy+rIrZ/q3PWN7nHNaPcy2xL3q1VH6lttP7JZucpMVKDOTyvn+a9CprlUlOycKwFsS8bfwaS50zdDl7MJ6HulliKgDSeIibK2JPzGuJSnJaBnmNdXns+I72afRKhXNndeIohjzHVsw+T6uv3GXm8Fz2GFutBNztnJxc1uYicN0csYiTOKXL6Uq74fWYaZoEDd9Icp60JDdU/DwjlFtqx3D0tFtPnaenfVnK3a+adeFs9A9YSo3FGift0XNyanciOZeUqFQPHi/H4aNp9W+MUWLCw35qv8RMGwOrTI/ktKp0PAFVr1GOydX9HPkJxqVs3fJa8yaJmLPavTvCjubr5f7tHmIKmplOclIcVW4qKYAjWx1/i7tA954lcrTu2O268vJOT5jX6JuZJOfs0eQpfxP7+63Plzr7Kc1SJbW0rRqsy+tKrHlr0GvvS0zy0VLp9XqKBc169w9W1Lgcrz7JiUlUYs9GSgTaVkKjIYAtnZFZ2lYNNMQX+rsaB9zK/lmL/aD+9qXyYYBLMQGynrQXVl+xywG889I51cZE23dnD0kEeohty9SP5IgcT6LLff+Ft8be4v6UuHTCpPA4FuMDfcztKjFThqU2SsPUi1jmLlddfQv52XK9Vliv+4VyND3czgLv+xeDdmVMHmNfTZIjklfAW5mnpWx0ZDSkuIL4iXPlpZyeHyKJMSTNydGWOKyvm6/n4Xh3dMfZKGWAY547JWK8juXo914bC9SQ+kT3GKpGckpOcFtW0JhrohY7A66bA6iBdgVeqL+7KlfOOzM809Zoadse2FMrhmrHZsobzFEXI1P6lD4eqkZyajsb0dl70J81FrcZ0KLFe/q0yL07FbAy9zU5yWl9iaTE7Xfrh89ZuqXPIxpToK2Yto7L33VZSQqOWIwPt5ertmzdhRXzlGTedVWW9YoOHWrFkbdLSVfKadr5Hnm8xZYFyUkOB4hOugTKsI3R7jhEeXTM5XkoTw1tSkw5qr9cVZLV7V7zsh9AKmK/jb33y3kpfw1TFkq+eBf71E48rvESx61lxgaWhgD01sCgPsoaKbZePuw5hjTsm4a+xbPkJKdHUBAEOirjVR72wRrunkEMDSMbI7JU3q0mTpdup5Lm5HhrJFsH2OjPx2BuSF+lyn6U+B2lvq4nF3vfX4xF7eWqpdIv7+yR3OT+HUkBgBqO2iUSnbosteutYqHWeqJGcnpm90Fs3yFypdzW74zxosa+0CjH8RRHuGYrFqy2sxZY7cfC6l9rVI7kWC3MLeuJe572DTZ5n0xawij1dG/OVo0bP/bWC/0sH6+hHgZo3dVAo2PDzHKjBVhDfetH5UgO9nEWvo8RszS5sUTZ+rUVD7VHdYCaokZyaNTKWDYWNBh1UcbINWp7t5x74b0MRthHPERfrmoZEJ46p70zo14VTEPZ9toGDfuuCeXhU8mbHRjFuY5kqi8uV1VW4/KS1UtWPbbZYjmJcOmtF69lzeMoxkC78ZnKJGeUg0PDg6WrCRlPrR3b+qF+61GYo/hafpbRm7Jo5+uJKVfurqpM29NEqWz29I6ZkVgt6xIJ8rTxPcqgPPtRN5LjrRNe7w/BjlQl6wTxd87LiBjHWo9asbQeJbIeszUwktNY74AcveHzfpZq8QV6KVpM2rd2543neMYxS3F6pta+qBvJAWrS1CjEdk4xkwmXlxo07WMtzBsZe9+taV0vvYxGnokpVzUjOdbOnnoY5a3IXtU6btxRAWtow9qgnBnJMYNgLWNdjtrfSB+zfSQ2ZVlJGhnNAs6R5BzoOfRPw2VHjTipFXdWn7HUg+YEB4jV+8SuNzWXqzQaLRiQR8sE8kniLmkS10Bb1Lk4NcqJJGcwVLaPckY1WoyEnCUr6/egMTrjD8e0HspWr9Lzc7lclaHmWTKVz4ZWlzKP1nEWK8TSNbHlVzoO1g8QrbGO0bW+bFu7vdh6Xg71/0HNSM5WxdbqSsdzZdmow+pIyOixou2Yldoe7jRFqq14GSGGir/WoXbls9rZLI0QWOg/ipPyGdS11W6Vbsf2lme1vewdt1bLLRUJs+LLVaWG98IiEMkAACAASURBVEreDtpqLgbaSImHZTzm/h3823tJZsrfASXktlkaXXlcQtJIjpWRlq3JmFrOvGGT1mNroT6OLOb4xHxGa/whnsa6qnGbSlM7kjOiEQLOghKjL63mmDHB0JbSsQVbWk4k93S5+0rMk+TIdgEeTeRqdb0dde11OL0rfu/1n9GwfRbrjMVtxji83sk3TJKT2sB4PeDMEblO24P2eLy/bluTklOPGcfWF83tsIZtKxnvapOc3ELu2RhoCA7E4TjZ1bKOr+PkbN2xyQtJC7Tx2iaqeU5Oadw6p4+WY6JhG/Zc2bZW5eu9gw6yX5aaY8cKDWWooS3yXo9y1Li5KXokp+fZ09Vlld725fYdDUXnLG+9rNJ6V2zvRmi4Ro+h1NEd6GVp4n6ru4W9XZGITnIsBQOwR+udLdoTe0207V/siI+mbe5JWyfaM55i3k3XWs9jU+OEP2lOjvYJjntvZr66TE0VEnlGO4Y1Xz3iHXUepaWO/nmoo62fU7dH3cTjUk8IrR0kR8vXcnBRTmo8HV3SxHXaRnOOWNlO1BEz0pdz96/GvuXq60f29ulKfVf1xOOUg9bqAGsMJKSxcAxbPE3cyhPLgdHktFFX6/MobUHSxGPtl6tayd3/1Ozb0tlqrNr7UyuhaXEsLCRjWnirF/Br/cy1dV/aq96XXG+p+rgujxLPJFN3uUqbmEKOOTBnP6ODGxvHHxiHpyRd+xsAkpKcFsPp3hr7rVvMjz7HXI76js6ktmIw5zi0PnZnCTOxlKZUW0S569by+Fydr1La1af6W4ltkyM5Wgp32vm+1DK9sbJvPZLts1tJU/6WS8tleDzpwjsvdSMlTmOvMniK+6gkp1e2y0O3yvIUuHv2RsSOYqnGowda0XZ2WJu2h5IedTBej4EH3o5N6TjcmkdkleqRHMsFe8ZD8GjmsVw97pNlHA+7PN7UUYOHMopKckrME9lbxrqzPzt7KjGEfLYPLUc8Yvb3yvKuXnctqWZip/HxA6Vd2e7YSe7rY5NaP2srHUNX3xUW+3srnUWNOqothmYarhTkzJ8r9dog7UpdLk4eyTk7KDEbdeXFdyV22tJBv7qtGvc1dZ6Jxn2w5mr9ulJna0jtoHrHUO/1p6qxvR+XeRORu6py0bItWrajt7hyuIlIkPCy/4nDJCd2SK/+QZlW/4aItd5Wn0nZynk9LyJyXy0jZTnzNuScM9Qr1TC1PWfJGRr2XdG3rnjfnv/eF/8dFp97lffHf23NKArPv21Rco96cf+S9CzRqorsdZWZxrXGL64sdx1f83LOZnVMJ5/L2I7Gwyf3m8jtfv452+bj+yIf+6C5bbkvfjYfy7n9Efnc9sx/u9efHW3DvL4ahf5NRL6ITD8kfN3Pco6TnK8i8qP80GV4LvFVpkdRTMsCnSQ8/3N6fu59/dPzU8+CW7f3i7KfpiASpseX3GWSuRBel4uS94MxH8Tlop7bIyJBgoQgcls2LtNzG8NOgzNNEqbp8etJZAr3x76F6bGqWxC5iUz352bdRaZJRF5EpjDJW0HMf7PYps2dPnSTu9zk58ur/OXlIO2t4RlH8VIa8OnzEPs0x8ld3mNGRELY7ce2L6F+jPxpbjNe9zbtGT9heYY6LbbgeezmuL1N77mLTCLh9lzGTe7h62NF003u4aeEaa41Nwkvzz8JItM0ySST3O+vItMk013krTo9t2L6VJO2kv/Y+7te5HX6Rf789Yf8yy/f5N/v/FVxv4jInwsta93+hvdfLKudyKOtCc8WZ5oWnfyif57meJuPozyXe58P9F3ef5OfIHyMy/krYuxtmkRepkV/M0mQl+dnbs/duYvIz5Pty02o3svg4UWCfJXX6S5//vKbjGVe8O9e5P7PrzL9fN+63sJbMIbncdjyse7OsTaFvY8sk5O5N5vk0eW/Ptfzuv4jCR+Sn+ntp88O7NFf3Raldnv2sy+ThLuI/AyPuA83eVTabyLyJxH5sWifn/UnhLfK9vj/23ONc7v97AxF5K2D/FBuXyXIr+TnL5P8+Vd/tVNuIlMI+ZUOAABAKz3jzQAAAAWR5AAAAJdIcgAAgEskOQAAwCWSHAAA4BJJDgAAcIkkBwAAuESSAwAAXCLJAQAALpHkAAAAl0hyAACASyQ5AADAJZIcAADgEkkOAABwiSQHAAC4RJIDAABcIskBAAAukeQAAACXSHIAAIBLJDkAAMAlkhwAAOASSQ4AAHCJJAcAALj05eiX//T9e/giItPzv8Pza3Zb/E4Wn5GNn9cSVv9ODddd2nJfbhJXluv9D4vPb2WwdxH5i4j8h9//vlkx/Y/v38NXed+nrf2qvTHLdd4j1hlT5inbHPs3y/qlOY7vIvJ/ReS/NIqj333/Hl7kUSZBRH6KyKuIfJX3Ot+rvHKO2TIettqwtdR9C6v/Llk2y/qTs9xlG/AHEfnPDduidRzdn1/zz5bHQ3P9S1Vqn/ZiNTcO1nLiPIjIn0Xk73fi6DDJ+ZaxAa0D40oha7Pel5Tyjt3/ST4f19p+Wa2/x7FarvPq8GXO9qccHwsmEfmrhutbNlSTPJKbrw3Xf+RqPNRow2rGUYn6M3dwvxx9sIJ1HL08v2T1c29K7VPJWC21jCDHfdphkgN/PFZgtGcxjvZGndHenChZjCPocpP30cUtxZKcZXZe4nMYS86lHxy7eomj9PJrqjm6tpRSRsvlE7Pb1qMo2pSIcY79djm2KpciSU7OJZMjGoOiZie81RhOq/8++1nK+jV1TjlqJMo1y7FHPJfo9M+2e8S7Frbq4Pp3R393pFScHG3j3udT5mycfTY3EdSgxva0aq+kwnrOtmGvv0qd2nJ1u4/aoktJTq0A7XlW3/ta4/pvcyYh9syaY/Qu49braJEM1Wqc13rHkZZOsVV5t1peyc8edV7rDt/z8Uxd/l7dKn0cr0z4PZvQnluONUdVs5IcLYEpomtbcIxjdcxC+XC5GSm0x7Sm7Wu1LSVPwnuKbYuSRpx73RmD6zhuADTQ0BbRl41jxMvqAC6gc8BVxBBKiImjqCSHrNcHjiEAYCSM5AAAAJdIcgCYwEgkgLWzdoEkBwAAuESSAyBZj1EVbl0HkIokBwAAmMST2fGGM2EAwEhIcgAkI2EGYEGxt5BroPGdKMAVKS+8AxCHejUOV0kO4MV6pIRGGZ4wEogSYuLIZZJzpSOgM6mHsv0stbG/8gZhD0aNodGPO5ArKsnx3LDsdTIlXnuPbUHslmNMUnK2bzXPYolbP87ixOrleU2jOJbboiusxk6OpJEcbQGRU1muVrCYMvCcFI6sRONco4GPWaa2ujui9XE6Oh4lRvjO1oEHje11zZE7TUlmC8mXq7Q0lj0P1EhZMPI6HM9xMVojeVWphKU02jF9jo59rWSsVZLXK5l0Mydnkj6Nb611ppz1xepVRlZdKSuN5ew9+arl6FjulWfs6FrMsq6IjUNiw44ryUKvdilsfN8q3kwnOetO+0qDU8O64dg6uEc/O1pW7vaMIOcMdbSyOYo3Ort4JRvs3jE4cqJTK8FMXW7KiWjK8nOS7i1H27felt7xPDOb5Eyrf5eWDU/vgo6d2JwShKM2RDFyynVEV8pFQ73SxkvdLDm3x0uZ5NgauYiRWlatE9NSydL8uRbbbjbJWdsb/dBI63ZZRXm2NVp55yR13hLBnEt2R5/3VDZb5jJpMR9Ly9yqHsc0JpbMJTk8LwKoa+Qz8C097uK0ZC9eLMVP7VGFERK7VMsyqVn25pIcMIcCY9Mc73RkWGodqyPPq9qjIsm5MjrDAbUZ2Ba3GeMhaYlDXdZja07qyCNJKpKcLSmTl0TGPogA0BMnLcfom7a1iJlbg3U0QRDZwzGDdnTc46A98slNkoMx0TABOlAX9/VOlnsdm977LZKR5NTYaA0FgfY47gA0mMRfe6Qh6dSwDSpGcjQUBAAAHlhI2MLiqyYVSQ4AwDarr1CxkBDEWo5IedqvK1TcXcWdUfkIZIyGO3lgSYu+7ej1RppxdxU2TeLzGjKgEfUsjoVOFbq0uFyVNJJDZdfBw5ms9e1HX7x6AiV4iJ/c92SVXL/mBJeRHDTnoWHBeIhbpGrR+bcYDdEqZr9JcmAaHU8dVsq1VeOeUh7Txtf6d6W2qeSyShi1s8VDThzVbmvUJDnMMYEnxDJqqDUfj+QEucLO9zl/X4OKu6uWtF/fgz4aY2a5PSkdkob9ONteTeXdMpnMeZ/e1u/WP08pz61l956TAWimZiRnSf9ZcP9xp5Gvw3rWO/Z7rz+V9jqwVU/P/hv+WKtXrbToSZNGclre1aPpbPEzvVumWc3Y6Xk2e7bu1Hqj/cxc63ZpU6uc9mJp/fOedUG7lv0Y9rW4S1LlSM6s/3gJSmo5+lQ7oUpdfs6+E/uAD15PDCy0Uclzclo/o8VrcKCOFrG5FZMe4jS27HSPstajZb+XZ7+9t8dCJ4d6SsVfzbxC9UhO7wqsHQ2Mf4xmHmtdNpqOR8/2UVM5YFwxMZg8kkNg65F7B88oWp3ppq5j/XmOXTwNoxci+udN1UKs5tEStyNScws5AYDSUmJqq9NaNuglh2U1sth5WdzmHFoSqpIPHuy9L62Ntr+patZl3l1lGMejvKM7Vzw2VNZiaP3gsZ7bXzsetp6n03L9gAdRSY61hnAUVi9XaXy54tkD3Hqtu8X6UVapZGQdF+ukrkXiramOWub1JMkCFZerOPjQomcsthiZ8NJp9d6P1EuhV+Kq5ehV73L1ynsfdyXGVT0MsAbvBx/7eLjkZ1ujc1rmZECfK/PGeiY0VupjCSPs59yWr9uvo31vFX9Rt5DXOkgjHPxWKMt9LSpTrRcnbq3jyt+jjKP5MssHP6Y8BPLq8UmJj2XiTNtRz0hlG7OvW/VkuBd0Ip/GuS5HWm1njwmiZ+vMPZPN+Rsr8RBD076UHI2osV9MVIY2PWKQicfowktM5e5HSmWnc9JpPVdGJP3yUY/kZj15GahBS7sVleT0vlUTaXIb3FZ6xFLps1rqA7ZoqmfY5mUE2Qv3E49Rj7XLV6VZn1hJI6nb1ZOIrfgsMcl8r96P2g6scdI+lq5Jzkgz7FvQXp6eH9yG8ZRIYks/fHLrb+jQMbLoJIfsV7f17cZbv6ejB2w7aoP36jfvSoNmV3KLmD6Ny1VApNiKSDI5hlbPL2oxuR3oqeYgCkkOUIjGToWz9nq0JTeM1sbhAaRj6Z7kEAhooeSEzuXy9ta1tx7eT4UZz8bpgyetj6V7koPrOFuP0+LMmyfIItbWXJmad0RqaieoI2gl6rUOgHWlG9WtZCbmKccAgHa6j+SQ0V9Dx5mu15B+jVuG95aFtrReJtIaC1zGQSvdkxxcM/oD/2KkjLAsy3Pvjbq1yrrEvCHvcaAp3kvPr+IxHT4xD+9czbjn3VUOaeoIettqSM5GVJbf92yIUtfP4+rbohxsatkuHt2A0OoRBNrxWgdEGb2ipNq6U2rrZ5ZeZjjSSIC3ffW0L3igTdaBiccOLc8ScK7kXJgSZc/xA+ppkXycrYMEqB1GcgZBpTqXc3lq75H5pZOU3pfOUMZ61JBkdlzU5zZIcgyy2jD2aNhTr3trLdvY7afztIHj4ztx97xvJbWoByQ5QCGlKmyJRIW3Udd15Q6q2dZdfeuf10AiDA1axV/UnJyaT3GlosGyUvNwZmHn+1LL9nJ26aHd6H0seq8fuCqmHWDiMYbgoVMESgviK/nVgvLUQ0WSQweEFrhryT6OYTmUYx0kOOdaxp6KJAdoaV3BaOyRosZlxJrLP1L6cisoS22SkhwyVB04DteN2riPtr+WtDo2I8Z9a5SvHtxdZZTVOySsba8nlL1Olp6qjXhaX9o6mqSRHOsV0Pr2W0f5wwPi2D4mXI+DF3QCFeQ+96TWQ8S81GFP76zysh84RiLVV/fn5LRS63H7AHCkxxwYC2229u2DD9xdpUBuA0jCpkfJTqXkcfU2yVTLvpyV69HEdm/HxLrayRbH+7OWCe4QE489BpjHffKkxJvIRa41BstLX+vv0V6Lcm/5eghgi7b3dqlJcloVjKbCn529Z6jENmsLPE9iyrVlgkHnBuhBu9uXmiSnBavBVjrhQRlbx0LLxNieD5gDLNFQX71IKctWbaWZJOfKSESpkZBSy4pZT+7voVPLB72d4ZJGHZQltnCS2peqJOcokRkhOGo3klyy0qdkwrF+qFytY00cpe3/3mdJivrjGJQ1j860GhSIoSrJ0VAgQK6rDWbKvB0a537O5tClLKf0cSQBHZOm0aKcE4CaN0aoSHJ6H5QUNRsRLfM5EMfDsSLmytgbkbPUtqG+FiMcFhPdmturIsnpISUQtt5abS2IoFNOgkFS0hf1H1dt1eHUmIod8R09VqMeBuitUY2Z3NvjLdXeyhnXbSXYuX+LNno/bZiHz53TXj6l5+etY0JrjNTYpuiRnFoF0roxKHX3UskMWWOwQY8r8cGZXD/zpUDKXyct7e46PkrFjLXLprWOx7CXq9a0BDzGxu3dNsTOrTj6Pcd3HFsTbFOt4+XKRF0LSU8pJDlCY4NxEftAXWHn+6PPH91ttPegz7N3qR0to5chHgZYezg35cD3wjuF+tBY7jW2hUsmfVDuaIk7Jbd1T3JE8rLM2L+pdeBpvGAZjWEZZ4nM3mWt0cuf9nPftPp36/eUXzwVSc5abMPhgad9sULjCE5tI+1rT5QzehpxTt9ZvhCV5GjqFI6y25ZKzFzXUJ6j2bo+znHAFcRPupFGI3rt64gJzxaVIzki+8O8GjsmrZO6EIdr2UiV2oEQX2PbOile93E9nsl29F613i+jjnW2nWqTnNlIGT/qIo4A9Faicz9bxlESfpZUrecElWw3eyT76pOcFBqG53JfFdHCyJ186r4fNQQaRxMB2NRqRKP38npJSnJ6NO5Hd00tHV0y0tYZadsexPNS8a0iwUQJI8fRfHVklCdyuxnJOTpQLROevaDRUJl6B3TruS9X9jVmYjlzecZkYZ4g4oxQh2P7xtp6lXPUCzo9aXVQNb4AzXvGXlLvlywCQApt/Y0WakdyrHYwYfGvxkSntxZnTqVjh2OoC8cDJXkYzdE+H6fn3Ea1SQ5QUu4dBprndgGAdbWTnaQkp0Uj32IEp2ah0hEea1E+Mc+fSLkFc/kzrcf3rN5o3e4cvY/D0TO8PJXzCHre5Rq77tYnWjX64GXdaH2VJirJoeKiFDqCckaf8Dr6/gMlHY1el0hMek1BGfJyFY3iGDjOdVidL1cb8YYaYp+onVMvY0e5a75E+4qYZQ6Z5KAfax3BsvHQtu3atqe13vvfa/gdZfSOn96u7H9O7Pcqb/VJzlYnk9LpnD00EO1YKvtp53utSrwwFnlS4kNrwjwaDXO6aiy39RP3LST66pKc9YHSXHhIY30+Dh3U2nCP2UIhtOv9jHbDjYokJzbg9540WmNdS1cO4LJjPHrja8wycvV+0vFSzZG1Vvt4tJ69y1tnf5OzrhSpd2gcr3dewkvu5qgUc4da7F1sZ59LeSp6bruhlYa2SNMrilq7ereWlreTx25HVJKj5eD0Untmee3yfV/+TUTuoqlz8hZbOaOQrcvg+vrmx1z2O0fqETcx67yyXeeJ5cdP+Kg7fUcDfZRhPo37X3qbVIzkvFu+5H1ZqQ8esh99UbDFXO/arlwB/fL8+inhS9vDfpcWTdkcL2fn2/OWzJ95kc+xJovv7zvrmv/d+n0L6+dpz3Uk9rGHufH/HoPhS7s61CaGWplPNmI/O/87/91d3mMvZmxpGad7/z1r9UKTm4gECbfG41GahrU/mY/FfJznjT2KlWVfuTeG3GrmzLKGxoxnF9qeSSR83W8dOic508fyn0TCs9MJ04uI3EXCXYIECdNdJIRFlZzkPgW5f3nsxPTzuZjwPNxhelv0q4hMMj2q1SQySZAg06OIQ5CbvG9GmQmnz2U/d+p9Fz8G2/vy1wOIc6AvO969YF5+//phaR+3/0WCfJH7l0lev/ySt1u5voqEHynledYJLEpumuQtKqb5bx7lFcL0MWam999Nj2CT+Z8PETAFCRI+F7VMIuEZLZOITF9kjtHH0X3E6MZmfvjx+pfva56jZrl/YbHt0+eDG0REbqsVPCL8w9qmZ0yF97Kd3uLnJiI/5D3Oljv++QJjuN0k/Ebkx5ev652q59eThD+H90OsxNnoyzMqRCTINIlMyxh868ueB/P1fYnT2/8/Yi1Mt8UKp/emMzyP11t8hPeYWC5jrhPP/57eWr05yZ8TptdHPQpHe3c1U3iRu/xWXl/+LD+/tm2Lwm9fZPrDa8X+/qCVe6uzYfH9shf4eKzmniNM09wsbWz3fEyfx/etsbgtI28VE3f5uI7lid+yl/q4wuP2e92KzUt4C/rHVk7z+qf3sJX7e9O8+NtzNwnyTX68vMq/ft1vi6bwufUFAAAwz88IMAAAwAJJDgAAcIkkBwAAuESSAwAAXCLJAQAALpHkAAAAl0hyAACASyQ5AADAJZIcAADgEkkOAABwiSQHAAC4RJIDAABcIskBAAAukeQAAACXSHIAAIBLJDkAAMAlkhwAAOASSQ4AAHCJJAcAALhEkgMAAFwiyQEAAC6R5AAAAJdIcgAAgEtfjn75u+/fw8vz+/D8en1+iYh8k0eWNFXbvHRh42dXtm9enqZ9PLO3zfMx/Ckif/v73zfbpX/8/j38IiIvz/Xfn/++LD5jqXy9uMvncl/+bP3vbI6vP4nI3zeKo999/x7mtmYrhqaN7exl2QZNcq0NCavv18uLXXbKutfbf/a5vXbmLiJ/kUcfMR+rdYfzJxH5jw3bov++aov+8vz6svjai3uv5uM1uz//neRjvapVHuv1T6vfLbdl7+//IiJ/txNHh0nO8pfzX79sfVCR0gfCYqAfbfMkJwe9gt+s1q89hkaxNYwbc2zmzrVlHK3bIs1D0Ov6d6UNmTa+3/pZSbHL3PvcsnP81cbPZ61jSOTRFi3L8VfycRtHtD4urevWUQITG4tH29w6xtDRHDBbo11ACk0jJ9DpLEZ6nHBdsTXCgP7O2qFLMZbbyHkJkNwh4N40dU61t0VTuXujcTSFeLKldVtU6rLe1UuPHuxdVuqxn0cj0F0S6V4FsSd2e66MhFytFDHXxmtui1V780liP7929e9jl5Mjt17VmK/RWqttsTAamhqDKfu017FtLTeGlhjSsh21XO0/UpLDK/GQ62j7spOcq0Gx1yCXCLa9Qj0bOo3VukEt8TkNjbKGhqRE3JZQqyzWHVbNetbjeGqIIZHjSZC9tyH371OXlzKPQkP7s6VlPGmJ3bXa21VzwnLMOqKSnNoNspXlAlbUnpyKbZT1th5n90c4TuPQeFkdgFJ0DiiBOMJVJe68giPcDQMAGA1JDpogwfKj17EkhlACceRHzLEkyUETva/BA9CFZAMtkOQMhoYFgAac+KAFkhw0QXKFq+gUAaQiyRlMr46CDgoA0BpJDgAAcIkkBwAAuESSMxAuGQEARhKV5AShgwQA2EdfNhZGcgAAgEvZbyHXZu+ty9y6DA2W8QloU+tN9bhGU7thNUbMJznrgmcoEpoQj+htr6OMjU1NHe0ojvo1jsO7mBg2m+SkVNCzoDgKoKP1EGxpvDWWR2c2JDfjSOmAYupAiTZnaxnLtjAmPvc6Wi/1VyPajfLMJjkp5spdupLGJFCwL6XhISZ8O4uF2DZm/bkrJ20p7ZqWTlTLdlikqY3RtC17opIc7TsRI+x8f/bZlGWv5wPNP9tapocyzWWhYsxyGuOjvznad86Uz1mKnRhX9yelXSvBU9n3tlXft/qQo79d/z0+UzuSc9Tg16zMuQnO3t/uLS82SEmO2og97rGN0JV17f0+59h7bAxbJjq5xzql3l5pc1rzlmT2cHb8SozulZJzWXM2t5W940VtkjMbdVjT8373DnqrYhsMz7HTSukynI9diSQZ1/XqfI9OhEtOo1iqdek0djt6JzpRSY6FMyfLUq+pW08StO1D6pybns5GZnIvleFdrWPcO3ZKIH7Spd7FVnodLdavWfTDAFsUgNdCxme9j3VYfAEAfEq6XMWZYD3LcuW29bq8JDZXJkUTR8hB/MCa5Dk5JRMdL51NCSSQbRBzPtSqL8RHHA83RLRoc4mn/rLeXcWBq4PLJ3VRtu+uxJqWctSyHUhnMSmCTV1f0Emgp7vSsFPewDHqCEoinvrr/hZyggCwhTqLNUbV9s2PDhhV733vnuQgHQ0KSrEcS8zJwRW9O9+rtG9/7eQutq6S5GAIdF77mAsGwKusJKd0dqY9I0UdrTpWOnCgLmtteOvtLdkGLUdIWu5H7LpaXZ6LXYeKkRw6oXSUGUZHHcCIliOvPevAVjKjMdlV/+4q+NWiQtARntPYMPVS+v09nvEerniay2q9bUfbutVWaG8/VIzkAECqmo3r6HfExNDaacdoPQ+t9LqWl6uuxunW+/COlrkuu5Sy7DH/L3okhwqvj9WnJPe4jmy5Qa6F2IlfH/HzmcX4mWkeWckR+1qgmL+P+aylsotOcniMOoBRXe1ErLOc0OzpOWm35kNdSyUh65hf5gDTzudai9nXpMtVI1TuSRiqxsNeHBAb4zqaq+C13fC4T72NWqY96kj3icc9h762zs6sJXKWLln1zvhF4o/v1pmKtdg4YiVm1rTG+9ZZbk6seYqxI6PspxWx9Wr5FvqtuTwadX0L+ax1orN3du694nnfv9py436E2BrB2TGsMbn06mUN4k6vkpewSi4jd71aE53uIzk97GWjAPTT3KBqUqpto7zb0HJVI/b3VvpPdUmOlYLTwvOseG1yy05bmXvosFp3vLWOoYWHqYl8PDFEX0exn9PGXzmmFuJBXZLT2kjXw73v31UWKmwJnJmnqX0Zamv5R88roR5f57UOEBufJSc5tQKjR8CtA52RjrHtna0SEyjpLME5o6WdWtcXKxNRy45pbAAACZlJREFUPVgf/yvzBa07qw8qR3JaVuKtRGf9e8ADLZ2jJb1viDj7bOvjubU+i6Mi1rY3RsvLVJaoTHJE2g7THg0Xl1by8tgoQdrCXll6SQqIFf0sJguzlHripU5pQpnuS0pyLFTAUmerNYLmaJIhWThqKtmBjtCgxky01VAOjM4hx0j9h9qRnLWUF4BplHqL3tF+jBSgpY3cKaznghBHn61jY2+eiaYY8viwyhFpOX45d9JpvvvOTJLTW+tb82ouC/FGTorwEXEQh7Yqz1FbU3JEsebx0ZjsRCU5mjZ4qdUZzPJ2zqMHCZLUHLM6euD1TNnq8RCxu901aRhp4rhck3Pjy1H7xPEwNJKzlVT0qMh7t5wTTAByeWg/POyDNlfuuGtxPCz0f2aSnJ7OnjAJWETsfsblyTw8eV2Pq/Xa2gMoz7aNJAfD0FxRoUfry+AzLjdAk5zHAmiM11vvDYhFB3WdxgC0ZBLKcCQa3o0VFl9aUSegmYkkR3MFB+BX7ZsJaiQwtJeobeuET2uyayLJAa446khKjM7svRZEa6VnRKofyh1WTHKczGi4ESiG+jk5WgsO9o36BGDLt46LtN/20nN0crf/6LhZi0HYYrm9GGYkx/JB8qLXm+a3XNmWrb+dz3iuvmEafoXFv7mXqbTPz8E4ji6/aopRl0kOCQ2OlIgPYqyPnuVe4jKfpsa/BOoB9mhJdlQnOaULaN1Ibf03EGt9zVpDhUZ9tBOAHern5MTamhwVe+/+3lOM4VPN13GgLi3ziUoltlcevEY7hZ6sxJ/qJCcm4Thq8HKfUlzy8diaH5LUGmUBb2qcFOW8v6gX6nQfvcs99UGBPeNDdZIjclzhaxdcjeW33H7oeGkhytFcZ2qNAmve51w9R8ytl+fWzQ3a96lnoqN6Ts4Wa3MgeCaJHrUfYMVxHsuViZVX2wVtJ0sW2mLLzu5a2vr5+m9KTQTOXUavGFE/krNHQ8XOYXW7PeJY2KP5zJWO3obel09aIBbfmRvJAa6qObrmvfHEu9RjXevhk3RoPuU8c2bv81pODnrEatRIjpYCAizQfDmVOlxW7NySEuWuMZ6WRhghsW7vTfcxfbzG+IvZJrOXq2DPaA2gpbtkUM9IcU+iU07OTRM5J1je26WoJIegBezzUI897EMO7x0RtqUmN3v/rSV+etRf5uQAjfR+JQHqiClbLY+414KyaGvvjeLrz3jE5SqgoV7PB+EyQj1HxzPmreGtjgvPjLLn7PJTydg5m5dzda5hr/aHJAdogE5lbJomo2vYBl6fk2arvHolDXuXwq68ouTKtpytgyQHABpZN8otOypNSYWmbbFC60is9ktgJDmFcJs91rQ15FyysklbHMEX720Cz8kpjI4E2ml7JcBoKHNoMEocMpIDVKJpHgba896JeN8/+JB0CzmN9b6YW/QwJmLCrxZ3vZwtq1d8XekPqBP9jNZP8ZycAraegcFzMaAR7z2yZ+9R/IAWYfWlCZerCtN2gAFPtM0P7LEd0+pfoAcrfR1JDqBMy7k8dJSIQZyMy0oys4ckp4CzJ0QCKWreoRf7xmFgibtGx5P73ixtkubkaN8ZQLvYOlTr6aYkOL6NNqkU/ViJNUZyKrFw8NGe9aFf+Lb3mHzas/H0eE1DDSQ5hdEYYMuVd/Vciaka8ch7h9pKOYapl5X23onEiB+2WIwHkhwleAqtfznJwVYsjP42aerHuZhY4y4tjIAkRwnOjrF0ltzs/YxkeUzr9iM2wQG8I8lRhIbHv5hRGOIAtZ1d1iIG4QVJDtDJ+uybjgVXTDvfM0KMkUXdQm7lVjHAmprPwwFE9ttvkh+MgHdXAY5wQoI9xMY7ErxxcLkK6Kxkx+P91l+v+9USZYiRMJIDABgKid44GMkBHKHxBoB3jOQAFQXh+j8A9EKSAxhD4gQAcaIuV3mfzAjUsvW8kmn131ufBQBcx5ycgXD230/KI/fPkAwBQJyky1V0kkC6GvUmCJetAOAMIzmAEmfvE9pLaEZ6NQSXzgHMYk7ykicec+YIALiCfgStcHcVUFnKqMPeZaiYToHRDSAOl3rHQZIDNNAyAaEBB+BdbBvHnBygkbNbx2PnmzBicz5/CQBEEpMcGhWgj0niz1yopwDwEJXk0GiiBO6Medjbf0Zw4lEWuIL4GQeXqwCYQecEIIWrJIeRAgDQjUnxyJEbN9xdBQAAXHKV5EzCKI52HB/7OBMH0NKVqzRRSQ7P3QAAAL2lDmYkzcmp9Y6c1ARq73kjqX9fSu72l1pGejn0G0+Zn2/Sc/7UVnml3KJ95Gx/Sjy5uOe7qnqf7Ow9Y2gke8cgtSxKPkW7d1xoV7J8vMf8UVl9/t15y5098fiootUO+KvL710hS6w/bxk3EQkSOl+lDDvfz1rE0Fqp9bU+tr1jubfUpEdree1td+9YqF1ed3mpvIZtV5451TuGeq9fj9vz61XuBxX/MMm5S/rQUN6owvL5pRoOoaZtKWWSOSDCS9tzgddJ5BY0nhVOIm+N7Fw+QUReZf8tUtPq8yKPmnKPXN/871y7bvJ5XC4sfn5fbNfPiHW00vh88iZRRWy1xvbZ7rmTCPIo3FZb8ehVggR5vekel9ART5r6ozkjiGnvant5fH0JIl/24+gwyQm/ehH58fpWB9aXGfIuOUyr72/PejaJhNf3dT8/NoXtbubRFbwf/EeV+bye+RP3eZlB5Lb45CO9mlZblX4x6O1Tc5sRtrbivcTC6i/fL+NMMq22cNoJqGn13boEPq75F7nLX8uPlz/J//v2S9Q+lTL95kXkj6866sVTeKusN5FpTla+iIQ5+Qgit1cRuYuE+aDKI4im+ajOjfVdJExvR/VTHE4ib8d8juvp9lhOeK77HiS8fWBaxM1NRF6eMfAij6McZLGoD2sM8rk2Hv82vf4GeZHwReRPt4ZPoPjNJPLH0LYvFonvX7bO1aaPfzptLmdd+screoTIM0bCe7Ig0/0RYbt/vk6m5XEcZZJHUn9btYPrgj6+SDr/Nrw8Qjp8e2zL9JdHGy73x7+PYvoqP+Wb/OU3P+Sfwy/yN4d7XNgXqXuusC6aZ1sR5niYHrU3LOLkERfT4/uw+LNVLIXb9PaBuamYnk3UdBKfW0dvbgPnduz9c/fF5+aeddl2hMcGvnfEO6b3z37amum9jtzCszye8RsebYzcngu+i0z3eYuXhfJbud9+Kz+//Yv88dvX3X2fQtCQHQIAAJTl6hZyAACAGUkOAABwiSQHAAC4RJIDAABcIskBAAAukeQAAACX/j+00QI/tMabbAAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 720x720 with 16 Axes>" ] }, "metadata": { "tags": [], "needs_background": "light" } }, { "output_type": "stream", "text": [ "Time for epoch 1 is 51.29112887382507 sec\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQQAAAD4CAYAAAAKL5jcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAATWklEQVR4nO3df3BV5Z3H8feXJBKZKFoIUAgrYTZWqRGLgdG6RFstRcREKgqoXVE0U1R0WwfLVmst6rTFDq47y8JidQWrRa0/NmAcpwvuUKxiLpiI/JBms/64iBiyCjI0EsJ3/7jXZ65pSC7kJvfe5fOaucM5z3nuOd+TCZ+c59yTJ+buiIgA9El3ASKSORQIIhIoEEQkUCCISKBAEJEgN10HHjhwoI8YMSJdhxc5Zm3YsGG3uxd2tC1tgTBixAgikUi6Di9yzDKz9w63TUMGEQkUCCISKBBEJFAgiEigQBCRoMtAMLNHzexjM3v7MNvNzP7ZzBrM7C0zG5P6MkWkNyRzhfAYMLGT7RcDJfFXFbC4+2WJSDp0+RyCu681sxGddKkElnvs96hfN7OTzOyr7r6z29W9NA8+2tTt3YgcE4aUwsW/7NYuUnEPYRjwQcJ6NN72V8ysyswiZhZpampKwaFFJJV69UlFd18KLAUoKyvremaWbqadiByZVFwh7ACGJ6wXxdtEJMukIhCqgb+Pf9pwDrAnJfcPRKTXdTlkMLPfARcAA80sCvwMyANw9yVADTAJaAD2A9f1VLEi0rOS+ZRhRhfbHbg5ZRWJSNroSUURCRQIIhIoEEQkUCCISKBAEJFAgSAigQJBRAIFgogECgQRCRQIIhIoEEQkUCCISKBAEJFAgSAigQJBRAIFgogECgQRCRQIIhIoEEQkUCCISKBAEJFAgSAigQJBRAIFgogECgQRCRQIIhIoEEQkUCCISKBAEJFAgSAigQJBRIKkAsHMJprZO2bWYGbzOtj+N2b2ipm9aWZvmdmk1JcqIj2ty0AwsxxgEXAxMAqYYWaj2nW7C3ja3b8BTAf+NdWFikjPS+YKYRzQ4O6N7n4AWAFUtuvjwInx5f7Ah6krUUR6SzKBMAz4IGE9Gm9LdA9wjZlFgRpgTkc7MrMqM4uYWaSpqekoyhWRnpSqm4ozgMfcvQiYBDxuZn+1b3df6u5l7l5WWFiYokOLSKokEwg7gOEJ60XxtkSzgKcB3P01IB8YmIoCRaT3JBMItUCJmRWb2XHEbhpWt+vzPnAhgJmdTiwQNCYQyTJdBoK7HwRuAV4GthL7NGGzmc03s4p4t9uBG82sHvgdMNPdvaeKFpGekZtMJ3evIXazMLHt7oTlLcB5qS1NRHqbnlQUkUCBICKBAkFEAgWCiAQKBBEJFAgiEigQRCRQIIhIoEAQkUCBICKBAkFEAgWCiAQKBBEJFAgiEigQRCRQIIhIoEAQkUCBICKBAkFEAgWCiAQKBBEJFAgiEigQRCRQIIhIoEAQkUCBICKBAkFEAgWCiAQKBBEJFAgiEiQVCGY20czeMbMGM5t3mD5XmtkWM9tsZk+mtkwR6Q25XXUwsxxgEfAdIArUmlm1u29J6FMC/CNwnrt/YmaDeqpgEek5yVwhjAMa3L3R3Q8AK4DKdn1uBBa5+ycA7v5xassUkd6QTCAMAz5IWI/G2xKdCpxqZq+a2etmNrGjHZlZlZlFzCzS1NR0dBWLSI9J1U3FXKAEuACYATxsZie17+TuS929zN3LCgsLU3RoEUmVZAJhBzA8Yb0o3pYoClS7e6u7/w+wnVhAiEgW6fKmIlALlJhZMbEgmA5c1a7PC8SuDP7dzAYSG0I0prJQOTa1trYSjUZpaWlJdylZJz8/n6KiIvLy8pJ+T5eB4O4HzewW4GUgB3jU3Teb2Xwg4u7V8W0TzGwL0AbMdffmozoLkQTRaJQTTjiBESNGYGbpLidruDvNzc1Eo1GKi4uTfl8yVwi4ew1Q067t7oRlB34Uf4mkTEtLi8LgKJgZAwYM4Ehv3utJRcl4CoOjczRfNwWCiAQKBJE0effddznjjDPSXcaXKBBEJEjqpqJIJvj5ys1s+XBvSvc5auiJ/OzSr3fa59577+W3v/0thYWFDB8+nLPPPpspU6Zw880309TURL9+/Xj44Yc57bTTmDlzJieeeCKRSISPPvqIBQsWMHXq1C7raGlpYfbs2UQiEXJzc1m4cCHf+ta32Lx5M9dddx0HDhzg0KFDPPvsswwdOpQrr7ySaDRKW1sbP/3pT5k2bVpKvh4KBJFO1NbW8uyzz1JfX09raytjxozh7LPPpqqqiiVLllBSUsL69eu56aabWLNmDQA7d+5k3bp1bNu2jYqKiqQCYdGiRZgZmzZtYtu2bUyYMIHt27ezZMkSbrvtNq6++moOHDhAW1sbNTU1DB06lBdffBGAPXv2pOx8FQiSNbr6Sd4TXn31VSorK8nPzyc/P59LL72UlpYW/vSnP3HFFVeEfp9//nlYvuyyy+jTpw+jRo1i165dSR1n3bp1zJkzB4DTTjuNU045he3bt3Puuedy//33E41G+d73vkdJSQmlpaXcfvvt/PjHP2by5MmMHz8+ZeerewgiR+jQoUOcdNJJ1NXVhdfWrVvD9r59+4bl2CM6R++qq66iurqa448/nkmTJrFmzRpOPfVUNm7cSGlpKXfddRfz58/v1jESKRBEOnHeeeexcuVKWlpa2LdvH6tWraJfv34UFxfzzDPPALH/9PX19d06zvjx43niiScA2L59O++//z5f+9rXaGxsZOTIkdx6661UVlby1ltv8eGHH9KvXz+uueYa5s6dy8aNG7t9nl/QkEGkE2PHjqWiooIzzzyTwYMHU1paSv/+/XniiSeYPXs29913H62trUyfPp3Ro0cf9XFuuukmZs+eTWlpKbm5uTz22GP07duXp59+mscff5y8vDyGDBnCT37yE2pra5k7dy59+vQhLy+PxYsXp+x8rbuXNEerrKzMI5FIWo4t2WPr1q2cfvrpaa1h3759FBQUsH//fsrLy1m6dCljxoxJa03J6ujrZ2Yb3L2so/66QhDpQlVVFVu2bKGlpYVrr702a8LgaCgQRLrw5JPdmzN406ZNfP/73/9SW9++fVm/fn239tsTFAgiPay0tJS6urp0l5EUfcogIoECQUQCBYKIBAoEEQl0U1HkCNxzzz0UFBSwd+9eysvLueiii7q9z4KCAvbt25eC6rpPgSByFFL5+wOZRIEg2eOlefDRptTuc0gpXPzLTrvcf//9LFu2jEGDBoX5EGbOnMnkyZOZOnUq8+bNo7q6mtzcXCZMmMCvf/1rdu3axQ9+8AMaG2N/jWDx4sV885vf7PQ47s4dd9zBSy+9hJlx1113MW3aNHbu3Mm0adPYu3cvBw8eDPuaNWsWkUgEM+P666/nhz/8Ybe/HAoEkU5s2LCBFStWUFdXx8GDB8N8CF9obm7m+eefZ9u2bZgZn376KQC33nor559/Ps8//zxtbW1JDQmee+456urqqK+vZ/fu3YwdO5by8nKefPJJvvvd73LnnXfS1tbG/v37qaurY8eOHbz99tsA4bjdpUCQ7NHFT/Ke8Mc//pEpU6bQr18/ACoqKr60vX///uTn5zNr1iwmT57M5MmTAVizZg3Lly8HICcnh/79+3d5rHXr1jFjxgxycnIYPHgw559/PrW1tYwdO5brr7+e1tZWLrvsMs466yxGjhxJY2Mjc+bM4ZJLLmHChAkpOV99yiDSDbm5ubzxxhtMnTqVVatWMXFih3/nuFvKy8tZu3Ytw4YNY+bMmSxfvpyTTz6Z+vp6LrjgApYsWcINN9yQkmMpEEQ6UV5ezgsvvMBf/vIXPvvsM1auXPml7fv27WPPnj1MmjSJBx98MMyLcOGFF4ZfS25ra0tqmrPx48fz1FNP0dbWRlNTE2vXrmXcuHG89957DB48mBtvvJEbbriBjRs3snv3bg4dOsTll1/Offfdl7I5ETRkEOnEmDFjmDZtGqNHj2bQoEGMHTv2S9s/++wzKisraWlpwd1ZuHAhAA899BBVVVU88sgj5OTksHjxYs4999xOjzVlyhRee+01Ro8ejZmxYMEChgwZwrJly3jggQfIy8ujoKCA5cuXs2PHDq677joOHToEwC9+8YuUnK/mQ5CMlgnzIWSzI50PQUMGEQk0ZBDpBc3NzVx44YV/1b569WoGDBiQhoo6pkCQjOfuWf8HXwcMGNDrcyIcze0ADRkko+Xn59Pc3Nzt6cyPNe5Oc3Mz+fn5R/S+pK4QzGwi8BCQA/zG3Tt8QsTMLgd+D4x1d90xlG4rKioiGo3S1NSU7lKyTn5+PkVFRUf0ni4DwcxygEXAd4AoUGtm1e6+pV2/E4DbgMybKE6yVl5eHsXFxeku45iRzJBhHNDg7o3ufgBYAVR20O9e4FdASwrrE5FelEwgDAM+SFiPxtsCMxsDDHf3FzvbkZlVmVnEzCK6BBTJPN2+qWhmfYCFwO1d9XX3pe5e5u5lhYWF3T20iKRYMoGwAxiesF4Ub/vCCcAZwH+Z2bvAOUC1mXX4JJSIZK5kAqEWKDGzYjM7DpgOVH+x0d33uPtAdx/h7iOA14EKfcogkn26DAR3PwjcArwMbAWedvfNZjbfzCo6f7eIZJOknkNw9xqgpl3b3Yfpe0H3yxKRdNCTiiISKBBEJFAgiEigQBCRQIEgIoECQUQCBYKIBAoEEQkUCCISKBBEJFAgiEigQBCRQIEgIoECQUQCBYKIBAoEEQkUCCISKBBEJFAgiEigQBCRQIEgIoECQUQCBYKIBAoEEQkUCCISKBBEJFAgiEigQBCRQIEgIoECQUSCpALBzCaa2Ttm1mBm8zrY/iMz22Jmb5nZajM7JfWlikhP6zIQzCwHWARcDIwCZpjZqHbd3gTK3P1M4PfAglQXKiI9L5krhHFAg7s3uvsBYAVQmdjB3V9x9/3x1deBotSWKSK9IZlAGAZ8kLAejbcdzizgpY42mFmVmUXMLNLU1JR8lSLSK1J6U9HMrgHKgAc62u7uS929zN3LCgsLU3loEUmB3CT67ACGJ6wXxdu+xMwuAu4Eznf3z1NTnoj0pmSuEGqBEjMrNrPjgOlAdWIHM/sG8G9Ahbt/nPoyRaQ3dBkI7n4QuAV4GdgKPO3um81svplVxLs9ABQAz5hZnZlVH2Z3IpLBkhky4O41QE27trsTli9KcV0ikgZ6UlFEAgWCiAQKBBEJFAgiEigQRCRQIIhIoEAQkUCBICKBAkFEAgWCiAQKBBEJFAgiEigQRCRQIIhIoEAQkUCBICKBAkFEAgWCiAQKBBEJFAgiEigQRCRQIIhIoEAQkUCBICKBAkFEAgWCiAQKBBEJFAgiEigQRCRQIIhIoEAQkSCpQDCziWb2jpk1mNm8Drb3NbOn4tvXm9mIVBcqIj2vy0AwsxxgEXAxMAqYYWaj2nWbBXzi7n8LPAj8KtWFikjPy02izzigwd0bAcxsBVAJbEnoUwncE1/+PfAvZmbu7t0p7ucrN7Plw73d2YXIMWPU0BP52aVf79Y+khkyDAM+SFiPxts67OPuB4E9wID2OzKzKjOLmFmkqanp6CoWkR6TzBVCyrj7UmApQFlZWZdXD91NOxE5MslcIewAhiesF8XbOuxjZrlAf6A5FQWKSO9JJhBqgRIzKzaz44DpQHW7PtXAtfHlqcCa7t4/EJHe1+WQwd0PmtktwMtADvCou282s/lAxN2rgUeAx82sAfhfYqEhIlkmqXsI7l4D1LRruzthuQW4IrWliUhv05OKIhIoEEQkUCCISKBAEJHA0vXpoJk1Ae+1ax4I7E5DOamU7eeg+tOvp8/hFHcv7GhD2gKhI2YWcfeydNfRHdl+Dqo//dJ5DhoyiEigQBCRINMCYWm6C0iBbD8H1Z9+aTuHjLqHICLplWlXCCKSRgoEEQkyJhC6msg1E5nZo2b2sZm9ndD2FTP7g5n9Of7vyems8XDMbLiZvWJmW8xss5ndFm/PivoBzCzfzN4ws/r4Ofw83l4cn+y3IT7573HprrUzZpZjZm+a2ar4etrqz4hASHIi10z0GDCxXds8YLW7lwCr4+uZ6CBwu7uPAs4Bbo5/zbOlfoDPgW+7+2jgLGCimZ1DbJLfB+OT/n5CbBLgTHYbsDVhPW31Z0QgkDCRq7sfAL6YyDWjuftaYvM/JKoElsWXlwGX9WpRSXL3ne6+Mb78GbFvyGFkSf0AHrMvvpoXfznwbWKT/UKGn4OZFQGXAL+JrxtprD9TAiGZiVyzxWB33xlf/ggYnM5ikhH/OxrfANaTZfXHL7frgI+BPwD/DXwan+wXMv976Z+AO4BD8fUBpLH+TAmE/5fi08hl9Oe6ZlYAPAv8g7t/ac77bKjf3dvc/Sxic32OA05Lc0lJM7PJwMfuviHdtXyhV2dd7kQyE7lmi11m9lV332lmXyX2kysjmVkesTB4wt2fizdnTf2J3P1TM3sFOBc4ycxy4z9lM/l76TygwswmAfnAicBDpLH+TLlCSGYi12yROOHstcB/pLGWw4qPVR8Btrr7woRNWVE/gJkVmtlJ8eXjge8QuxfyCrHJfiGDz8Hd/9Hdi9x9BLHv+TXufjXprN/dM+IFTAK2ExsD3pnuepKs+XfATqCV2FhvFrEx4Grgz8B/Al9Jd52Hqf3viA0H3gLq4q9J2VJ//BzOBN6Mn8PbwN3x9pHAG0AD8AzQN921JnEuFwCr0l2/Hl0WkSBThgwikgEUCCISKBBEJFAgiEigQBCRQIEgIoECQUSC/wOfeHUgS+PpfAAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 288x288 with 1 Axes>" ] }, "metadata": { "tags": [], "needs_background": "light" } }, { "output_type": "error", "ename": "KeyboardInterrupt", "evalue": "ignored", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-19-6e18f9592a75>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mtrain_dataset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mDataset\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfrom_tensor_slices\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_images\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshuffle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mBUFFER_SIZE\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbatch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mBATCH_SIZE\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_dataset\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m100\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mgenerator\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mdiscriminator\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mBATCH_SIZE\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mnoice_dim\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m128\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;36m34\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m<ipython-input-18-dd9eb40c31fd>\u001b[0m in \u001b[0;36mtrain\u001b[0;34m(dataset, epochs, generator, discriminator, BATCH_SIZE, noice_dim)\u001b[0m\n\u001b[1;32m 71\u001b[0m \u001b[0mstart\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 72\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 73\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mimage_batch\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdataset\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 74\u001b[0m \u001b[0mj\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 75\u001b[0m \u001b[0mgen_loss\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mdisc_loss\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtrain_step\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimage_batch\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mgenerator\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mdiscriminator\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mBATCH_SIZE\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mnoise_dim\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/tensorflow/python/data/ops/iterator_ops.py\u001b[0m in \u001b[0;36m__next__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 734\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 735\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__next__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# For Python 3 compatibility\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 736\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 737\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 738\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_next_internal\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/tensorflow/python/data/ops/iterator_ops.py\u001b[0m in \u001b[0;36mnext\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 770\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mnext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 771\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 772\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_next_internal\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 773\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mOutOfRangeError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 774\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mStopIteration\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/tensorflow/python/data/ops/iterator_ops.py\u001b[0m in \u001b[0;36m_next_internal\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 756\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_iterator_resource\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 757\u001b[0m \u001b[0moutput_types\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_flat_output_types\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 758\u001b[0;31m output_shapes=self._flat_output_shapes)\n\u001b[0m\u001b[1;32m 759\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 760\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/gen_dataset_ops.py\u001b[0m in \u001b[0;36miterator_get_next\u001b[0;34m(iterator, output_types, output_shapes, name)\u001b[0m\n\u001b[1;32m 2605\u001b[0m \u001b[0m_ctx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_context_handle\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtld\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdevice_name\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"IteratorGetNext\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2606\u001b[0m \u001b[0mtld\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mop_callbacks\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0miterator\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"output_types\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moutput_types\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2607\u001b[0;31m \"output_shapes\", output_shapes)\n\u001b[0m\u001b[1;32m 2608\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0m_result\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2609\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0m_core\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_NotOkStatusException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mKeyboardInterrupt\u001b[0m: " ] } ] }, { "cell_type": "code", "metadata": { "id": "eLTrq5viRRlC" }, "source": [ "generator.save_weights('generator1_weight_100_epoch.h5')\n", "discriminator.save_weights('discriminator1_weight_100_epoch.h5')" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "TlChUVu8RaM9" }, "source": [ "generator.load_weights('generator1_weight_500_epoch.h5')\n", "discriminator.load_weights('discriminator1_weight_500_epoch.h5')" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "GboQIvA0SCLW" }, "source": [ "Save on drive overnight" ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "id": "gUwJAQ8eReDU", "outputId": "652a73cb-d67c-465b-c822-272a5388843d" }, "source": [ "nb_centaines = 4 #grand max 5 pcq deco forcée après 12h\n", "debut = 0\n", "autoload = False\n", "\n", "BUFFER_SIZE = 5388 #60000\n", "BATCH_SIZE = 128\n", "train_dataset = tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)\n", "\n", "if autoload and debut !=0:\n", " generator.load_weights('/content/drive/MyDrive/dataset cats/weights/'+str(debut)+'00_epoch.h5') \n", " discriminator.load_weights('/content/drive/MyDrive/dataset cats/weights/'+str(debut)+'00_epoch.h5')\n", "\n", "\n", "for i in range(debut+1,debut+nb_centaines+1): \n", " train(train_dataset, 100,generator,discriminator,BATCH_SIZE,noice_dim = 128+34)\n", " generator.save_weights('/content/drive/MyDrive/dataset cats/weights/'+str(i)+'00_epoch.h5') \n", " discriminator.save_weights('/content/drive/MyDrive/dataset cats/weights/'+str(i)+'00_epoch.h5')" ], "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGQAAARNCAYAAAAU15Y7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdyY/ryrbn919QUjY79znndu9VvVfNq4ENGHChYHhiwCMDHnnk/x9u4PJ11Wvuveees5tsJYYHESGGmFRQ2YnBxe8H0M7cmUqJpBiLEYvROO+9AAAAAAAAcD7N1BsAAAAAAACwNCRkAAAAAAAAzoyEDAAAAAAAwJmRkAEAAAAAADgzEjIAAAAAAABnRkIGAAAAAADgzNalX27+l7X3d167P3rpXtLXbInsNj7mxMVHI8mHh3Pxd610sAJ4+vnQquCu9zVPa/kj36f/l1536P372zK2Snnp9QdfvPRH/vlTT5EfH9d/WSf5+ASfvbjvbZeLJ1fj8yc8P775MR3ajfR5l3iFc/mUFeCfHY98J/3z56Rf91//4HVc9hJHNqJ3TBsXzl23c3LeabX5JOdWur375TWfWPWu/teV93fS0/8n+TtJX3x3rPrlIj8vSkcj/93Y53/KufHOXNxAF9/8vOG2fxLHA5BOvPR7nwJptnVDn8WrtyGWDXnJ+We/Oni/9HUO1yWnw9CRy4/Z0MeQn9v5vpfO96Gfp+P0ms8nxdTs/Rs1cnJarW/UuJXuHn82GYtu/qeNbx+9nv6llb+T2q8K52YjaasTjmvpgy/8Sf6UZ0c2fSDPT/7n7xT/2MXfNP7wWqzs/6ns9fXPu/Tc/Bw9OI/zEz5/7fzluxd1+Xs2km/883Ke/72TtMq2r5W0G9jWd+J63ziFU6C/2+/1RvtdzfbZqau/tnn1I69WTXDd2ss/nyY+jkWE/melI//vv3Cq3zUufP6tk2udmnYl51fS9Y3UrPT09Z9MxiJJWv3vl14Pkv9nJ/+tlf60CyfEzod4tNPzMtBvswyVkVRm8+u94kmeX4v9QCxzqV6Q/p89Ul3r2Pu+VTrXfHzDVEfxrtfOyAJJKrzp5851j4ONDCezc43kffxNryHi25ftT/+5+TEbaruk49cLpwevVQpCrzjW/U1qlTXjXvvZ9esQ+RulzzBdzgauqS49L8XIVfw+XoN99kSfB0snqY0/3J8bvbZbvw57qt7n4ZpGrmn2zVj36UauWenh578MxqNiQsZftPJPsVCnisZHFKBzGbha+hgznp1UpzTOUqHY9X4/VNc65XVPeb9Tn/uiJ73zhzkY3PNfpgpf4X3TsW394c/y1+t/Di/djXc5l0eqX8dqaL73n1O3IT5vf77GmljT3qtpzNY5tPvXrfw3yf8Sf3Crw0q3VP48nzUQ9PxCNni+Tie/3E/x7oPft3742PTL49DLvGob/PPy3b9oviWxUJtSnOh/P/Tccx2DgaRXqza0i5vvoYFk1NN/08p/82rvYgm9jb8YSwDvvcMHldX/g5dkIXsXkTb7/tlz9LzsHTtHi9fTfvA99tyBmNdPlqfv8wp9vp1DyfUPLhf53n3EW/ln38RvB6oO+zrtB2zHi+QbcOoNrxe/cPpRPBCtj+/VStqqcV6uMT4Q4KdW/s5Lf/XS2ocE607dY+jY5+HiaFslq6v349rYSdYvDENJg4+y399+nD1WQo+dT9nPe7HWx2vd6Ou8Rr6ZY+3QY3XWDzrGXsNV7ldpNXBeZb87Jajm9wH77fD+uZeSiKnBf6yd8J58K7VtuDw5J9c8Sqvj8aiYkGm/eelOx7Osc+WL/33Ta43+bigDN/a3tdVtTzlgpW0+VpN4yfucUuHKK2j5/4de69ST4LUny1tOsv52+4Mv4VB6L7+be8E8rv2q0PB5io9U0cgb42MJgVKi4MwV+FnrH5t01+vY7z/iPUuf5Vwciztz3R/FXWr9LDopvVb7Vy9/q9BT71HPry/nOP+P/ez1TytfQ98aH33vP6VjNVR3KLWrXlqJfwdDCZKPfaMjvz5Sn6wyhHzURrUKyblYJ/CxPhRulu7kTEcjyX9vpTvJ33rpzof6Ud5me/M1plBXf81neo6T803x6bTfH/2TU9t4p3jLa7zjcR58qY/ev5E63quvax95fTiS23OxM4572sm1x9+43EPmnxQK94NCAa8yylfopUmat7zeR/N634TQOZN6UyUQ3z3LevxH6ePZbVt5V1vm7v20f1Ro/HxVGD75pPHGz1sSfjjd3MvXFCzswxHt1stwKFL7f3j5R0k/q2v8SM8Tk3Px1hsf7/2ep/5N/1j375AugeE4cpK0/zsd3LhqJTnvtXp6kraGg5Ek/WMrfy/pXxTqRrc6T933Ja+9pPN0qn1N71tF97g3OtdNjY+QvU/ekczJq7nbybnjlYRiQkYrhUBXGvsJ+6bO9KLIKwyJNC0ff/yu3Z8BvKdW3nR1wae7z8eG0uBtOI54jSPnjfXTyae5M9IQpaluRKIOfO5VOawi9OZH6yknZNbqugOmBhEfNk7BeXJWXqEhZFaKQXOfxwowzisOGbAq9YqZ48IGwIL47F+z1go3z1OiWDK/y8CcdMWx1eEE+ofGEzL53SAAmEKawJdYBGBKeUKGhg9QJZ/+sV5G/6Iw1+ejljlsD5iLoYmMM+NDlvZrXL3jRgF4X972vA37u9HclQYwpaHVS6gfAdXxS6gr/KqQjMl7yACojvN6w5Cla3Wzhlpu7AEz5hRyp6aLaH4HiAQxUC3TcUgKN6nyYdxLaPQBqNOjQq+9/ipjAKqQqgxXKiddji+ILUkbdb1kJBIzQKXMF82dGCYAYHp5QgZAtRZRVaBOBMzCSuWEzPiQpZSQKaduAEwkTOhL+wDA9FKnWrN+J+lB4c408zYAmNKVQg+Z1EZ7r3iUks4p2UNPQOBVUhttq3LdqJxmYQJNADXIhypxNwiolulkjNTdqHJaQNdEYL7c/h/D8uGTkv39RR249p3MH/m+r9xD5mdJ9yIxA1TOyXgntm9ixTdgBszX0e7VTaJJLAKqtXLG60VSVy967wZy6nbNDTDgXThXLqLlhIzEXSBgBsyPKkwZJ2IRUD3TRfRCJGKAGWhc6MxmWr/X8HsmUEjGAO9mI2lTqByV23CXCpWPjULqhonsgOo4SWsXiqlZKRZd6JQ0MoCJNC48zPqtpB9EXQio3NpJG9N3qhSSw63oPQxUKt1P/qxQfTim3LRJXXOZuwGomnPhYVZ/qVkAmEK+zCwrnADVSkV0MYhFOBfOtRfbSdoWjls5IfNVoeKxFeOlgYqZT8gwdBKYBW99maVvku5EnQio3NYvoN1IvQionpf06MvttHJChonrgOql67HpYQJpcnHiEVA/y60gVnwD5mEJCZnUTjO/o8C8jfXYG0/I5JUP1/sKoArmV1m6V4hDaUUBAJjCLj6oAwFV85Ja6+U01Y2s7ycwUz57lJov5TbcWs+nKLd8Fx6YqcX0WjW/nBSAqv1GYVLflRYSdIF5WkSOIk8QL2KHgXkaK6LlHjKp8UNBB6rmJPtldDFZJwDVulZoABGPgLpZn89KWuDMxcA8vS0hMzQ8wHqjD5gZr1BUTUtjpJlDBqhaK+NtoFt1wwSIRUC1Vnreyd+cSx1OLUFMAqrjJd06afXqSX3zZR3z1A5JGaAa6Rpseqx02kl66wFVM19E08qTpncSmL9FjHBOoxiY2xOolpe0dW+d1Lc/WRQFHqjO1kut5dvSadbiVLviLhCAKaQeMtSFgKqtNNbIMeBJ3c1z6kVAtfxIO60cq/q9YqiAAFUyfx3OV3gDgKkRiwBMrT+CAUCV/P6fYeWETJq0joIOVC0NITaPWARgStfx60rj61gCmMwiOo0wuTgwC37kpvL4KksSSRkA9SAWAZjKk0jCADOwiDlu8zlkJOpHwEyVEzJrsbwjMAdLKJ9L2EcAdfumkJSh4QNUbacFFFNunAMmjCdkANTP+vwqrLAEAABO5BWHCViW95AhKQPUa6SNVk65bETvGGAGzBfTPCFDhQPAVJwWEHABzAKxCJiHNyVkLt5xQwDgLUjGAJjaj5IeFJa/lphPBqjUIuaQWcyKDsDMjSRPx3vIUNkAquclOZIVAPCxbhRWWLpQaAg9ikQxUKFWUmO990irbrIc4hBQL6duzqcB5YTMpUIBb0QGFqiYsz6HzEZdDCJJDGAqT5K2CvWiQuUKwLRWWkARHWnkAajD2OjCcjFeq4tojFME6mb57sgqPohDAKa0FTeogBlYRK4itc8k6kZArdx4PCr3kLlVGCudxihabvABc2a9h0zaN+IQgCk9KvSSST1liEdAlSxXifbS4iuN6D0MVKxRuK98TDkhs1M3NhFAtcwX0XxJR/M7C6BaeY/hRbT4AFRrrcNlrwFUqVF5rs/TJvVdKRR4sq9AlVpn/FpMZQNADf5GoZfMWtIXSXciSQxUaBELEP2gbtU32mlAlZyXVru39JBJCRkaQgCmlCIViRkAADBiEXlS6kTALHgv+Vcve/2Tuol9yboC1WqszyHzWeGu9K3CvA3EIwBT+KIQi36RdK+FtPqA+bFeLZLEXFbADHiFolpqupQTMr9RNwuN+agGzJj1IUv5stdUPABM5V5dzcr8eAhgvkzXiZI0yTjz6wHVKxXR8opw/yDp7xQaQyRlgHo1sr2+46VCHKLSAWBKXyR90/jtLgD4aN8V5rFiBUqgamPFs9xDJmVeGaMI1M1639wrdfNZWd5PwADTRTQlvlcKQwUAYCrUiYBZ8Cp3qi0nZO4VkjIAMKVrhYRMWnIWAKaQeguvVF4yAcCkrN+nkhTqRPQcBqr3th4yPyk0gm7i1+/vs1EA3pn1i/EfFKLVhUKK+WnazQEwzPwN27VCz5hWzCED1Mx8MBJxCJiLkVhUTMi4z5J/ULg7ff9+2wTg/ZnOyaTk8EbdMErTOwzMk/k20EpdI4iGEFAvt4BqwtLmjkkXlyXtMxah3EPmOj7SpL4AqmT+2vQXdcvMphUFAFTHfELmZ4VG0L2Y1Beo2RLGLDFcCTChnJBZqZuzwXpQA2bMS3KWL8rfFFYSYKlZAFO6V4hBxCKget5yvWiJ+DwxVyMJ4nJC5h8l94vkv4khS0DFnPU7Qf+kLiHDBRnAVNIqS9yZBqrWeslZrhdJYY7PJ0kPU28IgJKx6kJT/O29uiECdM0Fqma63nGnUOGgAQRgSvQYBlAL4hEwH4U2TLmHzK3kbxUaQyx/DVTL/PX4VmFlE6mrgJCcAapjvn2QbmOZ31EA1XtUqBvRYw+o2lh1odxD5kmhoDNMAKgaxRMAzsCJZAwwE+brRl4kY4AZGCui5R4y3xV6x7C8I1A189fitNRs6hljfoeBeUrF1Ky04iRJGaBq1qfWkxRumKcJxqkXAdV62xwyqcKRVloCUCdn/FrcaCxaAcDHu5C0UbcKJYAqLaLZciPpWrTTgDkolNFydaJRqHSkB4AqmU7GSF0MYrgAgCl9UmgApaQMsQjAVP5W0u9ELAIq97Y5ZH6V3BeF1U3SpFEA6mT5Yvw7ST8qDLLMEzMAcE5pyGQrhk8ClTNfTUjzfAKo2tuGLP0s6ReFpa9ZZQmol/UExR8k/VbhrjRdcwFMJSVjmFsPwNTS4iskhoGqjd2/KU/qe6PQ8EkTapKFBepkPSFzp5AY3qprCFEBAXBuaV49EsNA1RZRPFMcWsTOAjM2UkbLCZlrye90OG8DjSCgTpYvyA8KvfS4Kw1UzXzbwIm5rADUgQUPABPKCZkftZB144CZs35RTj30WN4RwJRS7NmI5DBQsUU0X35UtwALIxmAao11qh1fZclyIw/APPjeVwDVMl1M05CltOy1+RYfgGptFG6tE4eAqjlfLqblHjJ/lHSrbt4GAFVy1ofy0PgBZsH8XekfFCbSTJNpAqiS6TiUpEVX6DkMzFo5IfMkur8Bc2D9QkwPGQA1uFRIDq8VEsUAqmU+KbMVqywBM+DcW3rI/KhQ4ViLsYlAxXwbCrtZj/GR5pABUCXLYUiS9HuFScYfRA8ZoGKm60TJF4VYBKBuI/GoOEOMv5R0oW64AIA6Wa94pOEBXtwJAipnOhylGMQQAaBqfgErobmtwo0qYhFQv0I8Gu8hI4WkzE5kYYFaGa906LtC/KERBGBK9/Fxp9BrD0CVWreAXjIPCjesuFkFVK0dGbJU7veSJq6zPmEoYIHliofrPQBgCluFelGaTJNGEFAv6/UFEjHAPIyU03IPmVt1lQ7mjwHqZb3SQTIGmAXzxfRR4a70N9FDBsC0SMgAJpQTMmnumNRDhkIPVMm1st0KulPXW484BFSrke0p59xa8ml1JWIRUDfrZTTtn/lMODBzb+ohs1aoWbGyCVA3b/xafCviEDAD1hMyPi13bb2hB1hgvZymHjLp5jmAapXC0XhCZqMwqa8Xw5aASjnrd0eYxwqYBfM96B8VeusBqJv1nsNS1zPGfOAF5m1s1bfyjaw0ZCl9tR7YgLkamb179qhsALNgvqjSUw+YB/PBKDbyJPP7CcydH2mklXvI/FndcrNbUeCBSjXe+PKOVwoxKC19DaBK5qd5uhTLzAKohxNDloDajfTYK/eQuVfXAKKgA9VyCkkZs1IPPetDs4CZM19dSD2GAQAA3kG5h8w3hYSM5YYeYIDzsp2oeFIYKsBdaaBqiyie6Y605ZgLzBzFE8BclBMyW3UT+RLZgKqZLqLptvsiWnsAqvWDQhzaKNSPHqfdHAALlpa1o/cwMGvljrdpNQEKOVA362U0Tw4DqJb5jiP/o6T/XtLvJN3I+M4C8zU2iaYJnyV9Uri9zlBKoF4peVr49XHpjjR3pYGqORmf1Nf8xBSADWk0j1XuUqF3DID6Wa4XSYcJmdXE2wLgKLf/Z1h5yFKr7q40SRmgSk4LuDmSlpolDgFVM99DJgXbnei1B9TMdCCK/k5hvs9fFOpHd+JGOjBD5YRMKtCMTQSqZv2uNJULYD5MVxdGuh0DqIPpOJSkxPCTwtBukjFAldxILuW0agUJGaBqiyiiVDKA6pmPRY2eT6RpeoeBmVpCnWGrkIxJc34CqJJrylNLFHvIuEvJr9WtJEBhB+plufJhed8AQ7yMT/d0bD6rVNEiVgFVaCQ56+UxJYQZ0g3Uy8VJxgvdYMpDlq7UZV/b8IIUeKA+3i9kRQEAVUtVBbNK81lRPwKq4bzUmA5G4Y67lxiqBFRurI1WTsi40MXGr3Q4Ux+FHqiL8UoHgHkwXz24VZg480khOZN22PyOA/OyiNGEq/gg/gB1GymjxTlkXP8/5iMbMGOUTwATM3+j9kldMiYNXTK9w8A8LaFKtL9hDqBqfqRyVO4hkyoe39QNW6LiAVSnaaTVEmofADA1rzCcO+8hA6AqOy0gKXMl6V7SRt1qSwDq4iU3Mp67mFf1aXa+VPEAUC3T7QLTOwcYY7kVlG5Mme8KBMzbIoroJj7W6lp0luMvMGOlolnuIaM4Cc1KxpdNAObLS3r0oZiaZr5mBaB6j/GREjMsdgBUaREzLfxOYSd/jF8fxGgGoDZphaVCN5jTRh6aj2jAvJlfalYiDgEzYbotkIYpLaK1B6B6TqGXzEpdXCI2AVVxI+VytIcMgPp5Z7wRlFYRYKgAULXFLHudGkAAqrSIOWS+K/TYu5R00fsdvfeAajgXkzJHlBMyaalrlnUEqtZIaizXPCzvG2CJ9bL6pDCvHvUhoGrWQ5EkesQAc/GmVZbWOpzADkCVVm4hqyxxxwfAlO4U5mmgXgRgamsdDlUCUB8v+ZF5JcaHLKXJKcxPUAHMl/m2waVCDHpUqHRsp90cAAWWGwYpIcOS10DVnGS/jO4U6kNDq79Z33dgRvybesgo/nEq7ACq1HrbbaB9QqYVyRgA07lVSMpsFRpDAKpkuk6UpCGUqX7EPHtAld6WkMkrHBRuoFreG8+ZflaIR8zdANRtEa2gDPEIqFJaDM20/6yQIP5L/Eo8AupVaKidlpChgANVM7/s9SeF4UrfFWYwBlAv860gAHNgvvnyzwpDKL8o9JahdwxQp5FyWU7I3CsU8NQNDkCV2pHl1GavUZi4bi2GLAEVsxyGJHVDBABUbRHNllQ3atTdrGLxA6A+I2WyfK+ZHjLALJi/KbJSV+lgNQGgXtbLJvUiYBbM14ukwzoRdSOgXm/qIfOkruJhPqoB82V6uJIk/a3C+Ogv6lZakohLQGV8a7y33p8ldy95FjsAMLXL+HUtJhkHKpZWpz+mmJAZmxEYQB289VWWrhUqG/ldIGITUCXLRdM9ST7N1QAAU0o9ZABU79UJGTWi0gHMQGM9efqDwv6lykeKTZb3GZijBTQOnCS/gP0EULmn7JFWoaReBMxOOSGTfsvwAKB6ptsHjJEG5sF6+cwnGG9Fbz0A09nGR1p8hVgEVGms+VJOyORLzTKJHVAlJ8ktYSlopxCx1iIxA9TKehf6i1gV+qSwr49iJUoA0/iuEIPSnJ8AqpTWJTlmvIdMugNkuYIFGGB6Is1vkm51uMIJDSCgPsbL5X6o0k7cqAIwrbyHDJOMA9Uaa7aUEzKX8a8tN/QAA8znTP8k6V7Sg7gjDdQs3cQxzHuFWJQm9yUWAZhCikM7kZABKjZWPIsDHVy6G92MPRPAVBbRFkgZp1V8AKiTl5zlhkG6E00iBqif8eQwiRhgPnyhzlBOs6SEDJNpAlUz3zbIJ9JciXgE1MqXKx1z59NQJQCYWj5UiToRUK2xalF5yNLvJd1J+iqGCAAVM180/7VCLHpQqHR8VTduGgDOJfUYzpPCrLQEYAobdb2HmdMKqNbYYKNyQuazuoJO5hWolt//Y9RvJF1I+lkhKZMqHwBwTmnYZN5z2IukDIDz28SvjUL84SYVUKW3JWQYJw3MQtMaz5m2Cj1ibhUm92WJRwBT+A8Kq759j18fRUMIwDQ+K8SgbyIGAZVy6mZcOKackEktvH73XBI0QDWcZH81tDROOl/ikTgEVMlyKNKNQvzZaKwGBQAf60KhLsTiK0DVxqa+HB+y1Ej6MX69F40goDJekk9JU6u+KtyRTks8kpABMIWf1fWQuVfXU494BODcrhXqfheihwxQsa3K1YRyPvVC4S7QqvdMyw0/YKZMtwfu1SVjxqIaAHyUtPpkvtoS8Qiok/WymcZB0EMGqNrYyOZyD5nfqCvkadnZ/M609UAHzIRvJWc5UfovCqss/aKQmOFOEIAprBXqQ/TSAzC1S4XEcErKMLk4UB2vUExLTZdyPnWoZ4zlRh8wY6avwbcKCZnUQwZAlcxXEdrsYTroAvO2iCZL6rFHTAKqNlY0yz1k0vKO6VUaUdiBClmf01d/UkjG3IneMUDFTMchKcShtMobsQio1iJG8KS5rB7FzSpgxooJGX+vUNDzDCwJGQDntohbXYANpotqPpkvdSKgaqaHckthyFKrMOfnbuS5ACb1+jlkviisbpKyr3mXOCohAM5lrRB7rFeugJkzX0R/UXejih4yQLUWcR/nRmEkwyeFePRdtM+ACo01YcoJmXxcIpP5ApjKhbpxWeZrWMC8mS6i6U50WuQAAKbyRWGhgwcxZAmYsXJCptXzhAzJGADntlZoBJlu6QGo3oVCw2cVv7KqCVAl83PrSSEh8yjmkAFmrpyQ2WYPxkoDmMo3dcMmiUNAtdLKq2alhMxaNIAATCsN5/bipjlQsbFJxseHLPUnrqOwAzi3fM4GYhBQLfOjCtfxsdJClnEBUC3zGXDAjlKVoZyQ+UXSrcISj1vREAIqtZp6Az7adz2fywpAdczPvf1bhV4yNwo7+23azQEwzHQcSlLv4TvRYw+YsfL9nUeFZAyNIKB6pm/Wpt56xCGgauaL6Eb0kAFmwnxSJk0rkUYzAKhWqX50+qS+5mtZwHyZr3SsFHaSpAyAKf2q0GPvm8LKJgCq1GgBOVPXewCo0ljTpRyrUjLmlFcCMJlG0spwGXVUNoDZ8IbLqksrmqReewCq1LiFJGQAzF65h8yDwpAlww09YO6cpCuNFeaZIyEDoAa/6nCScQDVcZI2jbRaSr2BFZaAqqWO/sec1oZLjSEKO1CltcLUBlb5NGtximbEIgAT8M++AVCT1GRZOWltPSFDHAJm4/UJmUUMwATmzUn6JOly6g35SBuFWPQg5rQCMJ1UL7Le0ANmrFGoE1m+USWJeT4BI8oJGdf7CqBOzngxvVYYPpmv/AagPqYDkbqhAfkQAXoQA9VIOdN8GkyzruLXtMMAqjQ2qnB8yBJJGaBqi5he5UZdQkbxewD1sR6M8tUnJZIxQEWcuoTMzscFASy7Eb32gBl4W0LmVqEBRHc4oGppvLRZK3UrmljeT2DmvPG6gttJPtWJjO8rMEeNQpVhI9urT0oKw7hppwHVG7t5Xpwhxt0rFHYqHkDVzE/35HQYzUjKAHWyXlfwGm78EJOAKqT60FrS2no8Yhg3MAtjVQTTK+UC1qUCbr63akoK78SdIKBizvp8Vj9JupD0s8KObuPPjyVqAJxVq1BVePQLaOSkOWTWCrGIxAxQpVblG+enzyEDoEqp44jpHjJS1+ChwgFUy8n4vA1XCjEoNYAaMbkvUIFUF2rj152X/TbMWmF81krdjhODgCq1hXhUTsik9eKsBzRgplLX3MaFh1mp8QOgaql9YFZKDOe99WgAAZPz2ddWYSTP7vjTbciHLBGHgGqN5YeLCRnKNlCvfDoV8ystXauLZqZ3FJi3RlJjufKQeun1l762vM/ATOTFchGdaVPcMT9uHbCt3EPmu7q7QACqs1/t0Bu/Fv8nhTkb/qRQAUmTjQOohlOYRNP0vA3fJN0p9Njrz2lFTAImt+/E5spDBEz4pNAl8VohAD9NuzkAho3dTzZdbwIsy+8EbSU9LakxsKR9BWZkEfNZ5UjGAFVJnWkXUSTXConhlRYWeAFbygmZNBB8MZENmJc0qf6vXrq1fCfov0r6qoUMCgfmyambX9KsvOFDvQioUrpZZblaJKlbZelC9I4BKjZWXSjnU5mvAZgH6+X0MT6YuA6o2krGu97msxanuEtMAqqy70FsvWxu44ObVUD9CvGoXG9qxPwxwAw0Mn5X+l4hIZO6BAGo0oWky6k34iOlOzW3HiQAACAASURBVNHWk+DATO2HLPkFzCFzFx/fFepIAGapnJBJk9ZZzzADM7eT8VWhf1U3kSYJGaBa5mPRF0m3on4EVGwpxdL9KnmWvgaqN5YbLidkUgEHULWt9cHSf1GIR6kRBKBKWxmfW/JnhVXeHkUsAirmFVagtMz/rBCHaK8B1Xv9Kku+9wBQnbTKkukimg9XMr2jwHx5hWSM6YTMDwo1p1/i/0nKAFWyfI9qrxWJGGAmSs0X03PvAUvgtYCe82niOhIyQNXMrwXwKX5dK8QjVqEE6uQlZzoYiZvmwEx4leNROSHzSV1DaCeysEClWuutIKfDlh6VD6BKW9kORftJffPlrwFUx3xvvcR0wAVsGGumlRMym/i1UWgAkZAB6uQkb/minCdkSMYA1WplfBRPkz0sx1xg5qzfp5K0gB0E7HifhAzJGKBa5nMUeQOIpAxQLfNFM/UYZpUlALWgXgTUbaS73iJ68wHW+f0/Ri3iVheA6uWJYQCYUv9mFYAqvW3Z67SyCfPHAHWzvuz1WrYTToARlsOQJOkmfv2kEJPuRWwCKrRWmOrJtB8V5rR6UrfwAYDquJFJxsdXWWL2bqB6XpK3XE6JQ8BsmE7KXIpJfQHU4VohDq1EMgaonCu0Y8YTMqxqAlSv9cYn9U299QBUq78Ymkm/lVwj+QuFGhR1JKBKiyiSf5B0J+lL/P/jhNsC4Cg3MpKhnJBZK2RczdewAFRtpW5YFrEIqJKX/c5sbiX51DuGWARUyyvcrDItDVdqRQ8ZoHJvW2XJq2sMmV7LEpgv8+2CjcJOsuIbULWdjI/kWUlunSVlrDf4gJlaRFXhu8I8Vo+ijQbMWLHe5FLGtRWVDqBi5otnavykB4DqOIXc6cXUG/KRfpH8F4W70jSAgGpZ760nqdtJ83flANuKPWR8nowxH9WAeTNdRNPwSSauA6qURhNeyHZCxv9V8rfqEjJOxoMvgGql2MNwbqBqY8WzfK/5R0mfFRpBFHQAU6GyAcxCK+MdR64lXYlVloCKLaa68KOkGzGnFVC5sWmeynPIXCtkXynoQNUW0WPV/A4C82d+bskLhfka+vUiesoAOLdrdT31AFRrrHowvuw1ANTAawGtPWCeUvF8lPEi+ldJtwqTaT6oq2WRjAGq4HoP0/6qsOz1o6TtxNsC4Ki1K3eqLU/qe/Q/AKqzhAbBEvYRmKkl5Ez9g0IiJp/Ul7gEVGcRzZZHdSssEYeAajWSVoWgNJqQaZwYKw1gWmsxlxWA6aWETLojTSMIqEpah4QFYgHUYqzHXnnIUr7MLA0hAFPZiTtAwEyYLqasOgnMwiKaLZfqVqD0Mj6jOjBfTpIr1B1GJ/X1bXzWk5i0DsA0/qpQ0XiS7fEQwMy1WkCH2kahXsSy10B10p3odD/ZtH+Q9FXd3FZP024OgGHOv6GHjF/UzFgAqkX8AWbB/LLXrve1/z3JGaAKi+jMtoidBGx4/ZAlxaTMItLMAKp1KYZOAjOQz3Vr1lBSBkAVUn5iEZ1pv6nrGbOIHQZsKidkfhufcSm6wQGYjvWlWwAj0mSaZvmBBwBM4avCstdpnj0AVRrrPVxOyPy9pF8k/VHdHDISFRAA57UVk/oCM2C+iOZre5vOPAHzZT4OJT+rW/WNhAxQrbFFGcsJmTZMQuO5CwRUze3/MSolZABgSvly19SLgGqZ760nhREMUlhlyfzOAvPWFtpp5ZlhUjRLlQ7LDT6MYm7nupn+bOiOC8yG5TyF22r8VheAyeXNF7MuJG0UEjLM9QlUa+weTrmHzEV8Bl1zgaqZTsZI4S7QVmHopPkaFjBfrYzHo8/qGj+mdxSYt0UU0XSzinYaULWxpks5IbOSfCO65gIzYLrikSIV3bSA6lmuLviUHCYOAVVzkhrj5ZRpJYB5GCui5Q5uaTm1B3FnGqiY+TzFj5JuZHwnAVTvVtK9QlKGO9IApnQt6UrdiAYAs1Quvinrar61h1OQj6uYM15EL9SNhTC9owCqloYIcFcawMT8WqEl1x9GSWwCquL3/wwrJ2R+o1C4/1V85lctZJYsYD6cJGd9sPQPChWOC4X48zTt5gBYuEZMoglUbBHNlc8KcehC3VBK8zsNzM/Y/HrF6oTv3wmikANV8i7O92TVKj4sJ50AzIMTvfWAyi2iyUIcej2OHc7s9ass/aOkL5L+RWE+GcZLA9XxUlj20HpCxmkht7wAVC8fIkBMAjCFp/hIdSNungNVSjPAHFNOyDyom9B3l70iAADA0uR1IhLEQNXMF89HEY9ei2OFcxrpjVVOyHzX4SpLAOq0lAsLXUwBTOlXhfrQvbobVQCqs4hq0TeFWJQSMwBmaXyVpdL/AdTBejfVdPcHQNXM50vzO9GWYy4wc+ZjkSRditVwAQPGV62nwgHMg+WyuhVLzQIzYL5NkBY7YHgAUD3z8ehGYSeZ0wqo28gkMuWEzBeFIUtUPIC6We9B4sTKJsBMmC6irWzHWsAIbzoQBe43kl+pW/YaQJ3ePIfMvUjIALWz3kBId35IyABVM19EqQ8Bs+Al48FI0o8KO7pR6CUDYJbKCZnUCKICAtRtbD21uftRC2jpAZgNhk8CdVtCfeFa4cZ5GrIkMWwJmKFm/Cmi4gHMgOm6x6XCHSAAmBp1IgA1WMdH3osYQH1G6gzjQ5YeRA8ZoHbWL8JfFeazIg4BmNJKxCFgBpyXnPW6UUoOk4wBZq3cQ8b6RKGAIaYnsEsrmwDAlLgTDczCEoqoz1d8I1EMzNb4stdSVwEBUCfr5bMRcQjA9C4VYlGaQJNEMVAl7xZQZfiWPe5FUgaYqXIPGbKuwDwspYwuZT+BmTJfZaB3DIBatHreVjMdgAGbyj1kHiU9iaFLQO2WcAH2YugSUDnzociLm1XADDTtAuaQSUgUA7NWTsisRCIGmAvLjQPXewDAFDYK9SJiEVA1pzCxr2WulXyeIDa+v4BV5YTMpUJEa0RiBqjUvtJhuXGwUohWK40NtAQwIcthSJL0Sd2cVvTWA6q1iJxp6jXMarjArBUTMs7F8k0hB6pmPR+jx/ig0gFUzXws+qyQjNmoG0YJoCrpXrL5+ze/UYhD1wqx6Pu0mwOgoNB+KSZkfP4NjSCgWuaL571CQoZYBFTNfPH8SaGn3oVCgjjFJQBVWURC5vcK2acbhTk/nYhHwAyVhyxt1N39oYADVfKSnPVaR56QAVAt66FIlwqxaK0F7CwwT2nubfO2CvHoQSEhA6BKY9WF8Ul9qXAA9XOStzxO4EGh0gGgatbnbXAXkt+I+hFQuVayHYykkJDZqlsRF0CVxupG5YTMk0JB5640UDXvjPeS+aauwkE8AqrVyH4bSCuFuWRaSV/jz4hLQDWcunUATPt/Jf2qMHfMg4hDwEyVm3Bp5m4AdbPeAtqqS8aYnzUUmK80maZVXuom9S3f0gIwoUYLSMh8VbhhlepIAKr1+h4yjwp3pcm4AnVrZTtJ8aPC3Z/vYtI6oFJOYa5b042ga4X4cyESMkDFLFeJDrjeVwCzU76R1YoeMgCmt4i+xwCql2JRf1JfGkNANdI9G/PFsr/ypPkdBuardC+5fH8nDVmigANVMz9vQ5pAk2WvgWp5dVPPmXWhsIPX8fscvfcATIG6EVC1sXRKOSHjRSEHZsD6yiZ7xCKgaq1szyGzD7b0IAaqtojmyyeFLDirvgHVK8UjhiwBqF8ei8zXsID5Mt8ISj31vkm60+GNK9M7DsyL1wKaMP9ecn+vsOrbpRZ0dw6Yl7HqQbmHTH9lEwBVamT75oj7JPm0uhKVDaBqpqsLKzE0CZgB88kY6XBqiTR2ndgEVGes6TK+ylIq7BRwoFr9+SXN+Z26nUxJGWISUB3zxXKlLilDchioVrqfbNq95B/V3ZVjrj2gSm9LyOSvQuEGqmX9+uvzb6zvLDBj5tcB+K7DoUoSdSSgQovoIfMXSV8l3SvMJcMNdKBKqZP/MaclZCQqHEDFWm+8EUQSBpgFbzoQSe6b5O902PAhNgHV8Qq9ZEz7s6RbhYTMo0jIADN1ekIGQLXML3ud5rMyv6PAzFlvDHxTaAB9VddTBkB1vFtAdeFPkh4UeseYzz4Bdo0vew2gek6SM1xe3VbyOzFvAzADhkOR/IPC3eg7hTvSADCVL+puWC1ijBYwY4X2Szkhk5aaZbgAULXWevm8U7gLZH0/AdQtX8mEeATUa2zSBgv6k/mSlAFmyfTCLMBSeG+8bcDdH2A+LDeCWOUNQC1SMobew0D1StUGEjKAAdv4MGudPVYTbwuA46w3Ci4lbabeCACjrMciKdSJGnUjGgBUaeweDgkZwADzPVVTxolhAgCm1PYeADAV6kOACeU5ZOgCB8yD9XL6Z4VVBB5kvCsQMHPWGwhfFFZaIhYBVXNLmEOGm1WACeWETJokCkD9DFc8/E4s6Qhgek+iAQTMwBLyMX6jbket7yxgWHnIUqMwXwMFHQAALN2DWO4aQB1+kHSjbi4ZAFUaS6OUe8hI3AEC5sB6wjTdlW5FTAIwnVtJ9yIWAXNgvYx+V0gQp5Uore8vMGeF8llOyNAlF5gFZz0h86BQ4WD5awBT+qquAUT9CKiW9WqRJOkXhZtVT6JuBFRsbAjleA+ZfLgSlQ+gSr41npRJlQ3uAAGY0lohDqWlZgFUqZX9pIxbS546ETB74wkZKUQ0CjxQL+vl80ldjz3r+wqgXikhw9x6QNUWUVVI8QhA9Uox6bQhS4uIagCqRc8YADVIQyepGwFVW0S+9FJdcpib58BslefkziscFHKgaqaLKI0fADVgHitgNswnZdLqSuZ3FLCt3EOGLrnALJCrAIAzeFQ3pxWBF8CUflWIR0wyDsxauYeMO/I9gKqYvw6b30EAs8Dk4gBqkSdjiElA3Qq5lPEeMo1YTQDA9KhwAAAASAqrLDlJLavhArNW7CHjVpJWYnwigEkRfgDUwNE7BpgN80U1tc+oJAGzVu4hcyNpq9A7JnWLkxYQ4QAAAHpSXYjEDFA1rwXkKTYxDJnfUcC28hwyQ6sJUAEB6mP8YuyJOwAq4NOy1xL1IQDT2ooJfQEDyj1k7sW8DQDqQBwCMLVHUS8CUId70WMPMKCckPkhfvU6LPRt9nMAk3P7f4xaK8Sbbfw/sQfAFH5SqAt9i1+35acDmMYiplb5V5J7iD33tgpDKgHUZyQYlRMyv1MY1LSS9EXSrUKB3+qwQUTjCJiW8VqHu5DUxqFL3AkCMJW/Uegl8xS/MlwAqFJ5TgYb3L+X9F0hQXyv5+0zALNQTsj8qK5r7iZ79lB3XYIAMJ1GcoaTMs1K8k7yqYble19RByc+k4VzK5lOELufJH+vcJPK6fCO9FTJ4tQVYIq46Hrf9+cdBCbi1rbrRZKkH2O96Cb+/1HdSIb3iAP58ePaDrzeqhyPxldZahUK+Ca8mI7dod5l38+t0C6lEXHsRDi27wTit0nH76OPnVO4FWT4dtC+kZcnZOaWlDnX+TCVfv9wq/uJspXkDMcifVaoC10p1IXSvqZz/72TMqc0KPNt6L/3R5TDfhKm//9jlh4TXloH6//NOY7fKds4hzjvZD8WSSEeecldx2FL3+PP3zLPVf8cOCUGnfJeS2lrDVnyvo95TVx8zeue+0ZFP2auVGynFRMyF3+QWi9tH8Pdaf1JoUtcP/vq4xvlG7HrvVg/gJ8aLMYCQVrX7jUVkdTAO3ZXp5aJ+17SkBs6AfMK09DxfGlCppbj8lLpODR63qB/7/1J51XpGKZtesN2uPge1xehF4lVn3+Sdjvp9kLyT1J7q+fzWeXHND+uL7ljW6poHgvux8rW0AD2oUTSB5alD6sDuIFHGt6arg35RIMpDr3nBdb1XnJuCbrXeEtSb+xvh64TpWv1UK8MJ9000tpwI2jzg+Q30tNvFM757xqOQ9KrPqf9oc8/i2Mxrel9fa/eKSMNsnTd8SuFm3UbdWU9DePaZX87dK6M1QPzvzklYTFluU/Hv987rH9NatRdt5re89LQt2OfYX5DIj/fXlKnOybVV9LX9Pdpf/JjnD7ztB/b+DVtf+nzOuNn1Ej65KS18R4yF/9O8t9jO+2vITb5W0nfJH9sBaZUB87bafk5mpe7VfdrSXL9RqaTtJV8dt76Ujwaaqj2z7G+vA4xVL7eej0ce92x7Sv9vB//XrrNpyYV+sex1CZ+4zXqTfrb2WY/T9szVGZL9euX7kN+PvV/dszQ+51Sl8rOr/VK4ebyEcWEzOqz5FppeynpTt0doSc9T2LkF6T0nH4hyj8Ar/KdJHfk+/g+Lj8gYwmZfsMpf+o6bnN+McmfNDSB8VBD7QUnRr6po382dOLmf3js+f3j07+Ll+tf3EuV8t62uGxHDpYmdt0Xf/DNgGMFMP3u2HYPPa//ffrb/GKTKkXpuUOVoJcU8KFtS+9zrBD3t7f0fkcSAy7+0zTSxUZaG655XN5I21Z6WEm7e8k9Sdop3BHqVwL7FYpcPyb1z9n0t+m5rZ6Xh/y1dOT3Q6/VjyevuTgPGWrwuPgjHx7te1100/7kFfj0WMfHLlw3/JO6Cnt+jE5pNB67IKeKpMJ5nx9f379JUHrdl154T/mbMW+NKaWfH4kRB7E17Vepwdd/5Nfq/vs4HSbg4o+uGmljOCGzvgzlaXct+QdJjULyJMWKPOHvel8HrpE68iPXxKfn15F+zMjL39B1Jb7o4OV36LrUv/7n5T3/lZf8WmFurwvJX+owAZu/dh4r0s/a7DEkv14PXZ/z5xy7vvb3K9uB/XFuR+peQ4bqK2lb1xr+rNLvU11zpy7ZkZ6Tjl8c/p+u7/v6k/S8J5Tv/fxYQyPf7qG6dbpz29+mjQ4/Bx9/dqkuEfMYv0+rj/Xr9f1zvlTfORafhyrNQ6+dfeucdGk8FknS+ifJb6T291LrFOaSkaSH8OXgUKZzIC2S8KiD4+rS75pYt5L2Dci87OfXfudCHHRP2Xutsvceu+7l8aFfZtLXfhKz3yYqxZFjP++fU/l5kt9I6r9OqS0z9J5D9bN24Hk6fF2XfZMn512/fOUxIpXjfgzK37sfT8d6dB6Lvfn2jpXJ/Pf960GqH+bb208MD71/PipgqC5dutam82noc/GF62W+P6fWIbP/r1blG+fFhMzVb7trR7uR2nvJ/SK5n6U2NYYu46vcKATqzwq9aP6LQkC4U3cHJRZ03SkkbFKFPcuQpTsv+4K+Usi2xr9tLsPvG4XfN1I4CVfh9dyTtIvzTbiYHW7uw//9ZXg9raV2q5A9/r3CalL3oQHh7sLf+HRhTJNkPXQFYV9ufdyGq7BNO8W/S2PK8w+kjYEsjiHbx7T4ofqs0LZx8lIfC5ffxNe4y1437odT97pqYgWp6Y6t34Xn+Tj8zKdZ2J/U7Uh+ZyYF5Gy7D5JV6TPchfdtUoY9BlMfd8w7qVmHYO7jNvlttk3pq4+vf6GQ8IvPcWlOonhu+DxYZvuvVTwuj9onh3ye9Y/Pd+vwHqkCuf9c42faPmj/ebpWctk+pzpK6+LmZEHAKTQMff67RnLX4X38tZ4n/HbqVi3Lfr4/Pj4LsD5s5/5UWksu3p1yXlpdSOuN9G//rXRzLbP+9n+QHneSHqSnX6T7P0ruXnK30s6HMtOmhlGMEfsKbn+Oh3S+rdXFnpRM+DF+vYh/l86Trbphm6ni8E2HZSIvN5fx+XEb3G14PRfvHu/LwDaca24Xy07vgpxihRRixf76kb65CPHBfQ7vv3oKf9Neh7K5uQtxrb2Px8nH2J03WlJ5yd57X/TyC19+ob8I52FzE/f1UyhbbiNdPkmbbbhj126l7Z/jNsQXddl5nnY07c9+v+Ix3TdKFcvutbSKx+zik7Rah3PC76S727hv6fXbrD7SdK8nhe3xsbzvdzhef/w6fHbuSV088tnxiH+TYt2+IZMnejfx/3mFN2tsHVQ6UgxYZz/rfR4HDTIXtsel/2cVa99mx7Ff8Yqv4XbdS6W4tT8+qxAr/SZee7+FbU7XvvwuqC7D5+EewnmdQvLfXzvdlAdDz9oPn6XdWvp+E64bu0vtj43fhnNw35DNG8z9G1W9m0F5vV2N1F7G6+e6+7mP77N/3mV4DX8RP5uv2jeOneLr9nqr+FS2UjLtvnt/v1Eo27FO5T+FffGX8VR/CK/lt1Lzk6S/D6/nN5J+VVj44ZtC3e9L3M+rEBdcTNr4x/Ce/j7UzVwen5u4fT/EfbpRuL6nWOvV1Tl/UFdvUDy28X3dQ7g+5PWu/Ws7aeXCcfJ33ev6NlxH4mEL29zEuofrYrRvu3Kyr8DHz9KlzyPtT1aGm4tQf/XxeuJvwnFbKbzP7jJ8bqs/xWvCNpwD7bXUPsa/i+dVe6t9PdW5uJ1p21KcTfuV6mW7eNLEbdxfAy8kfYrH8UKHvd2v4v6l+pHiz27C5+cfJf01fu6/xnMvr0/mMcjFzyg/H/OhyD57fl6H6zfO+o2v1FBvujC5WUmbtfTvfid93si0H26c2gvp/h+8dp+kp3uFMncp7W6l3YPUxnPNxd5N/g+hfKz/n3htfgrnpov1Ca1iO0RS47J2huKNkBvJ/zae7xeS/8+Sftb++ubjIgxt6j2YJT5979q/v+5dpCfE61EsU36tcN6k+no6L6VuoZnH7ICkc6J/PU3/z5OP6Vy61v5cl5f0i7qJ2+P5uC9P+fW5f07m9c9civUpXuT1r9Sm9OGzSIdl40LvrhR/2nV4b5/idarvxjZieyH5H6X2s/btcRfbGT6WMx/jXor5SteM2IY6aI/Hz1APOizLeXnOr2/S4YqD8VxzqT1/GeNkPPb+h/Ba7q/xZ1fq6sbx8/DruP+xXX5w0+NC3fDhRqHt/qB9DGru1J1361hHTm2vh/Do51Rc1g6UuvN03x6Lx9ArOy7pCfm5kHIeMda7VWgP//QHaZPO8wHlHjIbJy8fAv6lQiPzPh7kdEJfqUvEXCgsCXkr6c9xw57UZdTTSZk+tDxDlaSLX1ZoXKOuMXQV/p8aK07dxVCP4T3SBKB6ihe2eNFqr9SdJCkpcRNOYm1CpVJSKHxpCbl0wGMWz8X/N6nwuZjxWsWn7rK/kQ5OWhcr4Wn79xe4dAjivnsXTgQXT0aXLiipcp+C1SZ73bgNLlbi5GIFbRcDcRxfepDFzpJfBxnDTfaRpIt43nDtXSDTtvu4LfsGUEzCuZgIc0+xwpC+xsSOFJ+bkkkpM99mr5ufJ+ncS+dEusjHQuH6pUzqWgspKZPet822JQsuznefdV5faPrna7Zt6Ti47L10Fb/PzqWUKMwbXmn1oNTIO3iL7D/74JYaZbGgX11Lnz4N7LcRlz86aee1fgiN/OYylu11rETnDe6LWP77ZVHqjntKEKfPPAXQmNhQrBzv48o2vG66oOwTryn4ps88fVZX8TxLyZxddo6lZHN2kVf7/Bru4j95jNg/0oV6HbcpNnpWqWx+CgmZVapUZUmQRtonLfcXGp99zf+bx4gUm1P5S+97Kekm7G9zIa0epXWM+7unmMz3MWZmn8k+gZoudE23z3nlaZ80uZTcVSg/q620upLWF/FvtyGuuFh299udpHKZJaH38Xh/IOL+pdiaYkk8Li57rRTr0rFJjdz9hfki+7zTfvZ7c+VxNGs0PjsRkhRnmv233d9njbODz/TI6+zPKZe9Trrupv1P195+gylJNwW23es0TrpaSZ8M99Zbr5208vvrvm+yils6Tv0EXaqMZw3l/XVMOjiu++tITIq5vEEZ/37/+V/Gcy/GQz2ou173GgupPO/Lwbq7xu6v5em6mhIMV5K/CPUHxe1SrEfoRtJvwvNdSixJ3R3PlOyIjTZdh9+5Jsa+rfaxcC8dk3Tt/BRfI6/8XuiwzplPZnqrfT3JxZtOqX60r0tlcSZVwOVDwnqftFR3rc1ryalOcBCbYl3N5XWSzL6sXYRY6ZrYQLoO/2/ie7U3YXuar7FMxUaK/xS/f9L+2ua28Rhm27M/r9LP82tL3nBKn2/6XNIxTMn1tL8ufmZtOK77/bhWSJRdxuOXjuGdDmNFivUpCa7Dn6X4u/+b/ZO6bc8bQs/qnP0DHL93CseraaTrjXRzaTcWSSEe7bzX6lry1+EanD5b9xTOBXel7rPdSO43kruN1+50DdjE58W4k+ok+2tElvzTjeR+Ujg/LhXae9+1/+xdTBC7/vBFxfM3T8ikG+p5/Slr4+wb8SmeOnUJmW1W10svma7/6TXT+2yy101fUxn5FPdFsezcda93cMPKZ6dh3tbIEzLp9XNpW7KERkqcps07qBspXEtTfS7Frlbxs8nakmpCHau5lHafJPeDwo3FS4XPZBdik0+f3VYhTqbEZ/755Emv1E5Kx3ioPpF/Xvn/1W1bqke4TTgv9p/3p/Be7nuMnVfqOkJ8CnFvX49K251fT6/U3UBN7fqUWEo3kfIbZJ/jNSGezwc3l9I2b9XV63QQcrRPaCX5Z5zX61I8S2UoSwKuL6SLQjxy3g8dZQAAAAAAAHyUfh4PAAAAAAAAH4yEDAAAAAAAwJmRkAEAAAAAADgzEjIAAAAAAABnRkIGAAAAAADgzEjIAAAAAAAAnBkJGQAAAAAAgDMjIQMAAAAAAHBmJGQAAAAAAADOjIQMAAAAAADAmZGQAQAAAAAAODMSMgAAAAAAAGdGQgYAAAAAAODMSMgAAAAAAACcGQkZAAAAAACAMyMhAwAAAAAAcGYkZAAAAAAAAM6MhAwAAAAAAMCZkZABAAAAAAA4MxIyAAAAAAAAZ0ZCBgAAAAAA4MxIyAAAAAAAAJwZCRkAAAAAAIAzIyEDAAAAAABwZiRkAAAAAAAAzoyEDAAAAAAAwJmRkAEAAAAAADgzEjIAAAAAAABnRkIGAAAAAADgzEjIAAAAAAAAnBkJGQAAAAAAgDMjIQMAAAAAAHBmJGQAAAAAAADOjIQMAAAAAADAmZGQAQAAAAAAODMSMgAAAAAAAGdG0pDBtQAAIABJREFUQgYAAAAAAODMSMgAAAAAAACcGQkZAAAAAACAMyMhAwAAAAAAcGYkZAAAAAAAAM6MhAwAAAAAAMCZkZABAAAAAAA4MxIyAAAAAAAAZ0ZCBgAAAAAA4MxIyAAAAAAAAJzZuvTLT//tpW+fvJ5+lfxTKz208vKSV3gkvveHLnvk/8//zkvaHXvn/I9z/vnrO0mNP3z9Jv58F//vsj/vb2tpu/3A17b3s5P09sUN7Ef+1HbofYaOh7r9PvhB/tyw007+2W4NbcLQIeofhuGNGHsVSSsNH1svyT9/fn+Pn+1m/n0/teh7j/7fNZJc/iLxpGmy56y8tPbSk5e2+Wv5Z695sFvPDqA7cvD6n1OB84eHeCW5xqnZSc47NasruWal+9svR06UefvhP174duv1dCu1d17tr76LRa0Gz5+9dG6kpwwVhPznff3npXNk03utbf+57vm3Xt354OMH6vPAckx/o4fKWy+uyMWXPT1YuYHvxpzy6sNlOS+4Pvvp4Sv6kwNB/v/4egfP9YdP6RuLtUNSuUznRH7tSS+Vfr6/5rn9nz6Lg0Ob0N+N7K17P4lPf76frv9N749ddrj8sf1Pf9MoxHKlXVvJ+UYXPv74+lparfTl559NxqJP//OFb++9dv/Yqr338t8l7/2zYngyp8Nr0dD1cKgOlf9cOjz1pePXnYHqVXr7FJK0ktzKhxpiet9W0pPkWift4j7n26wj504/7h57wlCIaxS2YZXtz1Co3G+3k1ZN+MPWSduttGu7ukeK0U7hGLd65efmjn8mp/79wA4/P0T5Gxx7E3/49CbbthiLfP+Y9v5sfxzyX7wmHj67pg5ssztSYdr/7Fh9KXsJSVpJfiVpLTVteKxco0aNNm2jlXe6+nSp1brRH/9sMxZJ0vp/u/D+1sv/0cvfeulL+vx8uN7kbYmha0zxeqqhJw3/rev97cGFOz/f48l2rB6Wv35+/qTXO6EYHNe77u1f+sTTY+xp/e1+SVwYOu9P/vvCE49tsyv8crgZeeL2DL1mfjzyismR49R058d+M9PHv6/zD7zlq4+fiodCiufIUDzLnxgvPYe76NRsnZx3cleXcquVHn4dbqcVEzLtVSvfSH7lpZ3vKnqJH/j+WBvzBW3P4Rf0z3/uFQ7QUKU2P4GOvUTOHfn9se9fZOC4ud7XfDtGXyPbodFt8gPfDb91+nl+5F9W1xg5gMfe7MgbnHya5DuSV06fVQ76L54qAqlR3NueJq9k++cXhPxULAaCsRNu7LnDQol0MUYcq6na4Dde3nn5Roetx1JMkp7nLPqHvX+ynxLYh07zPIl6dGMUL7rpXBrYh8HEUrbRLnt+qSKTXuuFMWs4WhTe4/gLPP/xvtXXO9D5PsnHQ5Dt79FNGQiePv9wRnb+6K9fEehPuXbsNyn8wg/9TW7o2nA0nA6c2Nlh9vkfDTTGD0+7woc4UD583LHUvnW+DY12o/zGh/pQTMY9S0y8qp7gy+Vq5E8H41opSd0vNgO/8/m++Czs5nGlH2Ly93xJnDgWl9P3+2tw9v/9tT7uQLpey0u+ldTEvynEwX4d5NTPbqgh0S+rR3/Wr7BkUffg7+LvDo7jCRuYPoN+Lqdfxy0dk/IP3sb39inftoNrwfFN8L3ju//Y5dW6Vq0PDaHWt3J2q0WSJH/pQ9Jt5UMZyAvl0Od8LF4cfjNyDg9uSfZt9gb9Dyt/nRddo49e/F6t2+0Xxt+h9z/Wpitt61Bi8p2L22Cszd/zeV54+Jw5KUaOVFr6b5Lv95FtHgxH+bYMnZOvOYbHqj371y+86FACK/vPfq+9l9qjPVHKCZntv9nJ30n+0UvfJT3oeQE/9sH1eyz0s7TFAzZyZPPKRv75pscufu33MnnRRWhsG98ovXb+2fQvoKN/fOx3z39f2r2XHJKXvOczrZ4Hvdce4/4p0k/G51/T74eSbvuAcCQYeklPip/TkY3N74afvD+v3PG0L+ncbr3kvRr3JGd4BOLu9zu1D1L7EOORFI7FKZWtPJveP1f6Pz/lY0nncfrc0+lzPM4eecNTDV2djpS5E4viJHy/0J6wof3P69kvS/8PXlQsX6r/caZrT/7m0vNzMP967HX7rzNaGS4+4bk8WeMO720Ut6t3d8rHH2zb2KFh+yS3OqkwzFL7+1b+m1f7X7JbVHlPi5d6zfnwkr899jd9+eunuJrXpVKMO/U8fo9tSu+Zn3Np2/ZlIjYqVvH73e7w76XDctmP/x/xmRV/fuyP+/9/Y+Rqe19fXm38OOkaOnQoXrodreRbaecVEjCS/G6nxjutdk6t4XqRJPm/k/wXL/2Ll7a9ulG/J8FL4sWb6uYnfKAviXdvOT/e09g2jz3nJa/3UYbCTr8sviSpNPriQ88ZecHSyxz73TmO5dB7HKuf+uwR22lu96jnXb475R4yf/UhCXOv0Cjtd+885eRM37+4h8yJSidX/kH1/1+j2rfvPbyi3XDy6/b/f+wzHzpHhrx0eNpHfm797W+074rsU4E3fCto98XLP0n+QdJTqICdVIk8dj049blD0rnzoiSzIe+9n6/5DN/y8h+5/ad0fDslzpcaK0f/buAXL4hdpRtAz7YrxtB9KPV+XyRc26o/7MySduvltzEGvXrIS8/Y3w7dYOr//pTXOXU7Bq6fz7qKv6WRdOrzx27ipO/zBHn/7/METv913lLn+oh99gP/eY9ty4/Tsc/tI4rssdccq3+deqyy8nfQUc3HatKu1eqkwDZf/nsr3Ul69N3Nw96xeb83O/LzlzbgPypevMU5T5OPaAO9xbF4MaWXbMO52l5jz+tfP6Wup6mXfOvVFOJRMSHj/0+FQn2nUMi3J25Y2qDS/99bKfDM6WZdDQXho31EgyivcBx7j1MuGPnPd6rr3OlvW/zRTtJ6t5M7dRzsDG3/GBtAT5Ie9fzOzzml931JPMQyDF33XlP56l/P3rNi/ZbX6m9TVhHfd0LYbk3Hot2dl79TiENbnScWfWTScux8KJ2/L+nE8ZpG2Kl/cywhc+y5+fZYqnONHbP3bqC/1lsSMel5Rz7vfWJYXhePO20MxyJJ0j+10q2kLwpf87nszvVZnzOZZ4HlfVuaFFP7Pefzp+zbDK2ezbWUKSZkDt6MEwhzsNTz1Pp+50M28q/W9xvzZ/wczXPhTqFSsba80/0dru1u53sba+DXoH9D5pTnwpw8D9FKenRehqezCjYKw/W2OmwMcp4D1TgllVJOyAyNfwdQH+NJUx9XdSEZA1TiSFlcy2tTGCc9d/suyAMrKoQnnH2TkOQ90vo/T+yemohSk+Xeea1KK6NYcKUwtcST6LULTKkfatzzX5dGUI73kAFQP+N1Dm0UGj+P8f/GE1BA9fzz/3pJT61s35V26hIxlvdzrvpJmfcaRojZ8a1Kc2jacKUwz+dazxdTATCd3rVo6P5NrpyQGZigBkCtDBdSUsdA9bzCQh/e8kSa/WQMjfv6fOScO5gFr4UkZNbqkjEkZIC6ZNca56WmEI/KzZw0JpGLF1C1RYwqbNVNpAmgOt0cMoat4kPqJqvgphVQndSZzbT/W2Ey3zTRuN3FNgHTyvWmnahsADMwtDqoSfkypgCqY/5GbeodQw9ioGrWF1iSJP2iMGQpLXl9bvQQBF7glcte7xs/FDQAU1qrW4achAxQLfP5iTwp7BR6y+Q9ZVAPGouLtm2Mz2clhYRMmtCXuhFQh6Frz8gkMuUbWeZrVoAd5sdK5/GIuARUJ+UlLLcLnPUdBIxYRBOmv9z1uS3iIAPvYKSNZnqoN7AUx1b7NONeYWlHLv5Atbym6zl/NikWpYYQPWPqZf7CiBLXLmDY0kbEH6BGpRX+BpQTMqn/TD5eGkB9TE/aIOazAmbEchvIbxRqTv2dJC7Vic9lsbxbwMefr/gGoA4Dgcc5qSm01coJmQuFhtCTuAsEVMwNNRAsYcU3YBbW6hYhMul36lZaSjMYUz8CqrNzC5hDJlnKfgJz5KTVppyQKd9X5440MA8+rHFvVpq0jngEVM3L+HxWXyR91/PhSpb3GZgh87FIChnwtRawvB0wX6kjW6mIji97ne5K0wgC6tXK9sX4XszXAMxAK+O5iX9SiEePotceULFFFM2L+DXNJZNuXAGoh5ea+DjmtEl9mUMGqFta3sQqxkkDs+Alecv1hQeFHnte3KwCKuat14ukLh5xswqo28hIhvGEjMu+UtiBKjlvu4MMCRlgPkxXFR7jo7/8temdBubHdGI4cg+Sz+fYS/WkBew7MCte8oUEMT1kAAOaxnhCJg2fBFC1xXQaWcROAqjaT+qSxE9iGCVQqdZLzauXvaZQA7PgJDnLGZl0N5qYBFRtUQmZRewogGpdK9yNWyskY1JvYmITUI1UXWjfNGRpCWMwgZlrG9ke0pOW9X6YekMALFpa8pphlACm9otCz5h7hQl96SEDVGlswYPT76lTwIFqmV/ekcYPMAvmO44QiwBUwm8VEjH9Oa0AVMX7chE9LSFDBQSomrNePlMrz/p+AqhbPnzSdOYJQPWuJV0pLHu9mnhbABw1VmUoJ2RIxADzYbms0vgBZsF8b73+8FBiE1At80XzRtInHSZkLMdfYKbGqgqssgQY4BvZXmaJ7rjALJifdu46fqXRA2Bq/52kbwqrLH1VmEuGBRCA6owVy3JCxvUeFHCgSn4Jd2lpAAHVsx6G9pP6nkOKeeYPKvBBrJed1D5bqeu9R10JqI7f/zOsnJBJd9xJygB1M31LWlQygJkYW0lg9i4UJtEEULclzDv3oLDKUkrIAKjSWN3otCFLAOpmfZzARmE5RwBVW8wE4x+JnjHA21mPRVKY0Herw5hB3ADqM1IuxxMyXhRwoHbWy+elwl0geukBVTPfBkrJb+pFQN3MByOFSX3zW+/MHwPU6U0JmbVCIX+K/+cONVAty3UPt5G85R5AgBFeMh2M3KPkt/qYRo/h4wac3RISE+kmVRq6RKIYqNer55DZiLkbAEzvnBNpAng1620B/6QwRICGD1C3JcwhI4VeMY9ibiugZiPxqJyQ+Y1C1vU+vhCFHaiS+bzpnbqeegxbAjCV7wqNH4YGAJjad0m36hIyxCSgTiONtHJC5ip7EdOtPWDerBfR/V1pAFXzkpzlRsGjuqEBH43JfYE3sVwvkhRumD8o1I+YVgKo26t7yKRGUCvbK7gAqNtK3cR1NE6AelkfJnARvzY6Xywi7gEY8rOkrwqJmaeR5wKoVjkhkxIxVASAui2ljC5lPwHUqYmPj0g69eOb5cQWgLfbibYaMANOKpbRpvjXqaBTKQCq5vyChglY3k9g5ppGcpbrDCkhcw5exDwAx/0bSX8r6VLdyrgAquN8uepwrmoFALweDRJgNkwnZNYKQyitT9wFzNwSiqdbq4tJtOiA2SoPWUrRjK5wQNW8o4gCwIf7rND4SfNaAajSInKmaSTDRiEmAajTSDAq51NTxnURUQ2YL6+QlLHKpQYQsQjAhFyar4E4BFRtEdWFVewlc86hlADeXbn4pq5w5iMaMG/mpxm4VFjdhKQMUDfr5fNeYU4r0wEXwCxcKdSP6CEDVG1sns9yQsZ6xQrALPgbSddinDRQOfNVhtRDBgCmdqGxyScAVMCpnDOlaQNYYL0V9IOkG3EXCJgB0+EoX2KWXjJAtRZRRC8lf6GF7CwwX2P3k8t51e8KXXN3oqADFXNetltBDwqxKN2ZTvtKXALqsoQyaTnWAkYsopN/SsQsYmeB+WpduYiWEzJ3krYi8wrMgOlr8ZMOYxEJGQBTcEe+B1CNxeQn+nUiAFVqJblCOS0nZFIjKC2rBqBKzkmOAYgA8LE+KfQ7XinUjQBUZzF5iv9L0jeFyca3E28LgONGglE5IcPkdcAslLKuJqQlHfu3vZzoJQPgfC4UEjEpHgHAVH5WGM3wJBLEVtEj3IzSR1hOyFyqawgxbAmo1k7G2wa/U6h0fFOYTyZVPIhJQDWcpMYZTxD/qNA75kLhhtX9tJsD4DnLIejAF4U60YO6Yd0AqtP6clw6bdnrxQzGBGbKesI0DRHIe8pIxCWgRpbL5UbhVtZQjz0A1VhE8cxHMliuAy6Z9fr9Uox8hqetXs/JAGBK+YpvrbqalhfDloBaOMkbbwG5a8k9hRUTqBsBmJL7FOYPbC8VYtGDiElAhcaqRuMJGQo2UD2/hHLqj3wPoAreLyAWNZJPfYuNJ58AVO5TjEfXYs5PoGJjk4yf1kMGAKa0UdczRvF7L+5QA5VpW9tzyPiUkGFSX6BqK9kvov7vJZ/msfqzwiS/EvUioDJjvYfHV1miwQNUz3wRtV6rAoxwku2A1PYeAKplvergPin02rtWtxBLarsBqEshIJ2+7DWFG6iW9Xkb9kgQA1VzY/1y5+4pPrYiIQNgUu4nyV1Ku28Kc+2t4i+ITUBd3tJDxu0kT6YVqJ/1RtB3dcs6EpOAallf2WQ2w5XS9hErsVDe2T/93c9xyNIvkr6JnntAzd7cQ4YGEFA36z1HviokY7YKKy1JtvcXmCEn+wkZ5QmZmneU+AjY7z38Z0n3kv6iUE/aibIP1KpQNssJmVXofuwZkwhUzXqdYx97+i0+YhJQDa/DubdNSsnvlUJiBkCVFlE9uIpfiUdA3UYCUrH4ulTA59A9F1gyv4AimoZlLeI2PDBP1jvr7eNQqhsBqJL5WCTJXyjcWqc+BNRtJCCNLnvt0hhMCjtQL+vls9/42R17IgB8oL9TmK/hs8IQSgDV2bdbrNeNvkj+NnzVrexnoACjyj1k5jBOGoB9x3rFUPkAcE6fJF0r3M5ajTwXwGTMzx8jyadV39KiBxL1ImCGyj1kbiQ9KmRdJe5KA5Uyv9TsJn5l+CRQLacFTGVwHx8PCg0hAHWyXi+S5K/1fMEDALNTrjcxXwMwG6aLaIpB3PkBqmY6DkldMoYGEFA981WGS8lvxp8GoG7lHjL3CpUOVlgCqraS8YbQU/agWy5QpTRnnelY9F8Vlpf9VaGOBKBKSxiypL8JC7D4S4URDQBmabyHDIBZcJYTFGmo0hKWTQBmzHy1YSd6xgBzsIS6QqsQj9r4AFClsbpRuYfMZgFzUwAGmC+il/Erc8gAVUsrQpuVdnClrmviEhp+wMy4NqwUa9oXyX/T4aS+AKrzpoSMu1zQ0nHAjJlvD6wVKhvEIqB6potovnP02AOqZr14+l8lfVMYzr2T/R0GZqxUNyr3kPmkBdzuAuavlfFiulGobKzi1xTVqHwAmAKxB6haK+PJYUn6Z0nfxapvQOXG7icXEzLe0UMGmAPzS81eiO64wAx4GZ/K4FFdw+f/Z+/OdxxJlny//5xLLlXdffrMme2ORrojQBAgAfpfL6EX0bPqCQQI0uBKd2bO1t215Uq6/vAwhieL9MiqrMowt/h+AHZ2VWUyI0i6hbmFLxRlALcW0XW5FIUYoBeNgNTsw2VbP2YRUQ3o10oLKMjUWzsSjwCXwhdk7E40xRjAtUV0Xa5U8qPwJwr0bSo3ao+QsZ9eRFQD+hV+KYP/SdKvKtvNvpf05+Hv2e0EcCV0HJKeniB5EeDXEtrnxfCwdfYYLQO4NLVHUnsNmf1QlAHgWviCzD+qJB0/qSQdKwU/YaBP0WNRytXo4VkOYPga+UUGvpXoRRmbr24Pdn0D3Go1zXZBpl4oijvRgFvhpyx9rB63Mx8LgLPmrFW8igeVojCdHsC3JYzu/38k3YhtrwHnXjZCxgoxewWfFA70LXze8VA9KA4DroWuVew0xqDXPtHQQR74xsInRipTuO819tUAdKldkLE1ZNjbHnAtfBN91NgR2iv+vAigU+FHyPym0gGyThAAdxazH8lHlfzI8iIAPk1MY5he1NcaOA0dwFysGEMhBnAvdBO14vAcHaDQLyyAL/YoplACvWhUiNsjZI7vSAPAHG5U1o5hSC7gWvgRMvnoAcCdLGmfg8ciqawdQ14E+LfWCwoyav8wAB/CD821hMOG/NERAjCDvFWJP7ajCQC/oucKlhOFTwKBvk01z/aMJhIOAJ5sVKrMADCHHyS9lbRViUfkSIBP0YsxUolDW43bXwNwKU2M2Gs3X3ZXArqwmNHzFpMWc8IAXDlez4o4BLgVvnnajfM6NwLgTl6pWXVpF2Rs/RiGwgGuLaJfkMWaVgDm9aBxVxNuWAFu5SX0W44LMgBcyquhKHNGew2ZC5WGvtbYGQLgzioFH60afl9vIIbofaD0KGV2NQH6ED0gZXGTCujBRD+mXZDZVt9F5RVwa6VSlAnL7v4wWg9wL3QTrUfp0QkCMCcnxZjjmO/gkABf9lJu1FLaN9Wt8uqkwQM4LXzf4J2kD6IzBDgXfi+An1QW9Q1/okDnlnQDZynnCfRqot/SHiGTjx4AMIcbSXeiOAw4F70PlC9V4hAFGcC36MFIepoPzXiupGXAhKxmG20XZG5UFrCjEwS4tlbw3aD/olKQ+SDpXhSJAafCr2d1r5IXEX8A32yac2S26xuL+gK+TRSI23mT7SRA4gG4liStIrfTBz3d3QSAS0lSitwJIicC+hG8rSbp9W5QLWHEEfC9TLSd9ggZKq6Ae0nSOgcfIXOpknCsxW5vgGfRk/a1gg8BAmJY5eDF4VpS+OIT0LUXTVmqWZJFgwfcSQreR9iodISid/YA+GYFGWIR4NsS2udaY0fve/fR6P8BL9IKSe2CjN1yX0JQAzpkhZjwa8hcqoyMYSFNwLXVEkbr7cVIGcC5vISi6Y8q61rdqkzpZn09oEvtdCIdfQXg0l7BZ/LU68eQcAAuJQ3F4cjt0xbQJC8CMLfV8LCYGzn2AoF92ZQlAO5kjZuhhfVBZZcl6wwBcCdJ2mRpEzlfsF2WALiW8gK6LnaC3KgCfJsYsdcuyNh8iJXoBAGOZQVvoiQdgHtZ0i4F7wT9JOmTmD4JOLeEGUvcpAI6MdF3aRdkbBjcWjR4wCFr3+FH0B8vWMcC44BLtoxBWL9XyZwoyACY2254cLMK8O1FBRlbvbt+AHBpEc2TDhDglqUJoe/fvFWpOlGQAVxbxKK+P6gs6Ptu+HPo4At0rtFRmx4hU08VAODOIuql9clFT7CAjuU8dISiulbpAFGQAVzLtuxCYPlaw+JdKsWY8EMUgU7Z9vRntAsyWy2gpwf0L/xNEYtDawXfTgro1yLqE/+gEofeqCzwCwBzsSGJ7EAJuLaaWF+vXZCximvS52s4AHAj/HU4HT0AYA7Xkq5U8qP1zMcC4KxFpAt18hc6CQT6liSlRkBqD+b7e0l/o5J8bL/hUQH4ptYK3jf4ncpcaWkB1SegX7bGZFh/lvSL2N0E8G4JFZk7SQ8iFgHeTcSidkHG7gBxdxpwLXzTXCv8XHAgitB9AyvEUBgGfAudFA1sLSv7uoRzBjo01TzbXZyPkm5UFokKfcsL6JtNIQ7rTmW9hnrbawDuhF7QVyoj9a7nPggAk5ZQMP29ygjiS00tQgFgRqvcnsnQbr6XKr28i+HrbfVvSwh0AHy417h7ALEH8C1yUWZ19AB6ca5dRr2mTiyiGcJWFGKADkyNkGk34/8k6ZPKKJnfhq97PV3RGwC+tw8qRZnQw4CA/rUWrQtjpXKjaiM2O0B/6p6BbdwR7TNs03iiF02vxc0qoAcvWkNGGrdUy0cPAG6Eb5Y2bZJiMODWIQ4FLsqkO5UplI+iQIy+5KP/r/8ccP2RFD4xUpm5cCfyIsQUKC5NLS3RHiFj2yU8aEw+WMwOcCd8v+BeJQ6xswngW5Dk6ax3kt6rdITuZz4W4EstJXfPUtoNRZnI3qnMZGCtT8C1fW6vsdcuyNh0JesMsdc9gDmw0xvQhegjZPIblTvStgsl0JuF5PD58J/A3g5ftyo3qx4UcwoalinQ53gqHrULMjfDw4bnTjwZgPmE3t2k3tbR/kwsAtwJ3wn6QSUnsjVkALiUJ+5Ih/CTSj50qTJCxnIjciTAF2uXZ5BOAAGEv+7Wky+jJ1hAx9I++MK+f5T0q8bRwwBcmuj/xLAeHraAsZ1w+KQQ6Eua2PWtvagv0wOAboS+/p5at4rYBLiTcvB1G35TWUPmXuPIYQA+RY5FkpIVYqwYQ78NcKt1s2p6hEzWuKhv8MAG9Cr8sFyzEov6ApjPffVgEU3AryVsQPIXldF69cYrAPz5LtteA3Al+kKaJ++4E4sAlwKHonH3STo/gG9LyBHqTVeWcL5AUO0RMtbQ6+2uAbgTfpTqTk87QsQiwJ2k4OvHSON218QhwLfosUiSftS4jsxaLOYLeDWxqNX0CBl7Eho44Fb4gkxdFCYWAW6FL8pQFAa6ED4vksptdevJkR8BbiXpBdteX6rcCaKRA75FzzrsjjQdIcC1VQpekLE19SKfIxDBXstop1njIuPkR4A7SdIql/zonPYImStJF1pImRnoV/QmminEAF3I0YPRjcq0JeIRgLndSrrT52taEZ8AV6ZSo/YImT8MP71RuSvE3ETApZSD35VmdAzQhfADav9D3IkGOrCIJvpHlaLMg9j1DehYuyDzQeVu0E4LiWxAvyLXYw7C9/aAzkUfIdPrrpP1e9LTcQNfaaXYoUjSGIdYYw9wbap5tgsyf1EpyjyKyivgWOjRMTUSDsC1RYSirL5uVC3iTQGesk2HFoERxIBrLyvI/EllKNyjaOyAY3liO7Xu2WpXdo7EIsCllKTV8/Zv7NNGk9tXulMfL7ETC9JTM/0a2aZzH68hA8CVTZLWjYA0XZCx0TE0dMCtvco6MmHZNIiVKA4DjqVVeyeB7llBpjc9HjOAtroY46mNH18DPB0bMINNKo+z/978aSvG0JAA35bSRqOvTwF0Lu2CT6HsZdqkFbDtWG1BDRYkxkLkNOz6FtmdypbXvcQlYKGmQlG7IOOx6goAAFwKPVKv5r04nKpH1liQYbdMLIX3NvotPMhnkdXb8QBzS+2bVe2CzFuVxn4nFvUFMB/ac6rLAAAgAElEQVRbne9h7gMB0BJ+dvNa5STXKh0hr/KJR9IC3iBgsISCDJuuAO7ZgNXW8nrtgsxGw+IU3+6gAOCLLSGxAgKwHVjDSkcPz+ppDExpwBJ5b6MvRbsGutEaQdwuyNyr3JGmsQOYUz19kngEuNXbBkRfrdc4xJQlLEROwYvDUhmpxwgZwLW9pIcs7b96yhKALiwiv17ESQKdi95Odxo3O7Bz9V7kYNtrLFCWllEdXsI5Ap2bmnDULshcfNNjAfCdLCbH7mGaALBQWYo/zfmTSkHmQb7vTOczX4GFWMRoPUYNA12Yaqqt9WU+XxAOAOawkbTVuFMIAJeiryGTLAYdr8/ikdfjAl7BIlIFm84NwLWcpf1XryHzKJ/bqQFYlrcadxOwO9PEJcCd6ANkdCFG6gEdWEQzpSADdGGX2021XZCxRTQlOj+AY+Gb56UYHQNgfhaDWGQccC2tpBQ9Z7D9dK36RDwCXHrZGjIkG0A3QjfVK1GMATA/6/hwZxrwKy2kILOqHqGTQKBvU82zvYYMAHhwOTwuVMrIixiLDPQnfJ0i/AkC/UsqxZhV9F7OtcoNq43o0QEdmx4hA6ALoe8EbVU6QRuNBRmJGAU4E75JWkEm/IkCfUspeF4kjaOH1ypxiXU/AbdaTXO6IEPiAbgX/sZI1rig7+PMxwJguXYaFxUnNwLcyvsFNNHL4etaJS4B6NLz1pAJH9GAvoWfwWOF4Z2YLgBgPuRFQBdyLkWZ0LYqeRGbHgCuZUnpq7e9BgAP9no6QiZ6kgXAp4vhK4toAn5labOX1tGHD1+o5ENbMXoYcGzqxvnzt70G4FvktmrTBNhqFsCcNiqxiLvRgGtJ7TvSIaw17rJETALcmmqe7YLMrdhRABiwjuyMfpN0p3IHiHnSgFvh+wRXw1dbRJN4BLj0kBfQPLcqI4fr7a+5mQ64s1c7P2oP5ktawOIUQP/CN1PWbQC6kBR8kXFuUgFdyLk8QtsODxspEz4ZBDrWaJvtETJvVSqvd8Ofowc2oMHzxz/8NdimCbBuA+CW7b4aOhZ9lHQv7kIDjtkmseH9rFKQuVYZQRw+GQRiahdkbEhuEokH4Fzoa7Dd/THEJMCn0IFIpfOzF2s2AN7lBaQJlyo3zi9U8iRGEgMuvWwNmY1Kw7a70jRywKXw/QLb2jH8iQJ9ywreTN+o5EQblcLMw7yHA+C0nIPHIqnEozx8vRH9NMCpqVjUnup9fFcagEvhr8EbPZ0jDcCd8MUYqUzhtilLi5gTAfQpS9pHT46sj1bP0Yp+zkCPkpQaCRIFGQD+bVWKMraLAACfot+VvtW44xsFGcCtvIQpS7ZmjK1pFf6EgU5N9F+aU5aSrVDOIlEA5nSlknBcqiQcTBMAXFql8gjL1pAhLwJcW0QTvRketyIvAhybikftNWTyUJT5pocE4HsI3U4vVO5Ib4evAFxKSyjIsJ4V4F5S6cOEZiP27kVuBDj2ooJMtuE1DIMDXAu/doPdAdqJaQKAY+HvSl8PX1nUF3AtaQEznP8k6aOk9xoX9aW/BnQnfKwCEMCjxjUbSDYAt8IXZNYa19djkXHArfCxSCrFmBsxQgZwbqpW2p6yxN1ooAuLWes2iztAAObzTk93WSIWAS5tVWqnoX1UmbJEXw3wK0l5okI83Ycj2QAwt7rzQ0wCMJd7lWlKFGMA1xYxQsYs5kSBTr24IJO0sKgGwJ2PKmvI0AECMKf3KvGIKQKAa49awBJPP0n6QWUoEP00oFvtKUtvNM6FYDgcgLnshgcA1/YKvrOJjdLjRhWAuW309NZ65NgLBNYeIfPfSPp7SZeaKt0AmFH4fsGDxoIMHSHArcdcBo+EZfHHFvYlFgGYy1alf8Z0bsCvrMlpzu0yywdJnzTubgLArdCL+h7vaELiAbiUJeXI7dOyJgrDgGsrxV/UNz1K+VFswgJ0oJUbtQsy/6ayejcreAOuhb9Rux2+hj9RoG/7LKXIbXSrEoOIRYBrG8UvyOhO43pW9NMAt2ym8zntggw7mwBd2Ct432CnknDYnSAAmMPF8DWL3AhwbAlNM/9epSf3ZviLuxkPBkBTKya1CzK7iZ8G4IJNTwzrURRkAMzvUmPADR10gb4tol76Nyo9ubcqudEHLeCkgf5ktUcPtwsy1gFaRFQD+rVW8KG59RSB0EOBgL6Fb55vVWLRhUpeFH5fXQBu/ZukG9FHA5xbpZdMWbK70TR0wLWVSmMPKx09ALgVuolequRFG1GMATCvX1Ti0NQCFQBmlfSSETL1VrMA3MoraR/5YrzX0zWtALiUJu4CdY9pk0AXQsch81alr/agEpsA+DQRkNoFGRatA7oQvZmmLGUWGAe6EHqXJQrDALzYqMSitcpQaQB+ffUImZXGYXAkH4BbOQdvonca7wCxkCaAudQLjBOLALcetIAmatte3wxfAfjzjOUWqKcCAYQfOML6MUA3cuRgxOgYoAvhd5+UxulK92LKEuDYVBdmetvrffUMJCGAS6HXj5Gka5UhuR+HP7OGA+DSPnqeYNVvpggAroUvxkjSO5VizG8qo2Wix1+gR1Yd/uopS/VcaRo54FroJmpbzNrW1wBcCr/Zx1pjMSb0iQL9y9HbqMWh0AkgEMBEG53e9prhuYB7OQdfSPONSuKxFqNjAMznavjKCBnAtRx9xzdpjEcUiAHXpm5WtQsyALqQpNiFUxulR9IBuBZ9qadsC/ralG4AbkVOiySV0cP74StryACuteIRBRkggBR9hIyN1FuJIbqAY+EHjdxr3NmEDhDgV/j5kyrr6yWVkTLEI8CtqS5LuyCzVbkLtHvGMwGYzWKaZ/TkCgggdDOtR8csJvAC/VlE89ypxKQ7ld2WALiU1V7Tqn0za6tSsok+BhnoXPi+QRJbXwOdCN1E64IMU5YA10LnRVKJR2x7Dbg3FYumRxfTCQLcS9EXr7MFfS/EREsA83kQHR+gA+GLMdI4fZI1rYCuNQsy6bP/AeBR+CaaNBZlwi9SAfQtdEeIkTFAN0LHImkcsWcbHwDoEl0bIIAc/UJcz8kKX30C+hW+X0BRGOhC6DhkrEC8iJMFOjbRd2mmFbRvAB5k6wRRjAHcC507sJ4VAC8YsQf494xcob0aw6OovgIdCN8v+CdJnyR9lHQ787EAOCv8TrNblZxorTJVAADm8kFlDZkHEY8Ar7KUJpKjdkEm/NhjIIjQPSBJb1Ri0ZWkm5mPBcBy1aP1osddAL7ZYr701QD3UqOdTu9XksVwOMC5HL1z8AeVosy9ynn+f/MeDoDTIochSWWEzE5PizJ0hgDMwW6cR88Bgc5NNc92QWalsaGTcABuhW+etyrFGO4EAZjTSoyQAXoRPV/IRw8APuV2ytAuyFyorCNjazbQ2AGXwjfN/1CJRR8l3c18LADOCr+GzEZPpy0BwFxsFgOL+wKutaYrSc8pyCSVxIPFogC/rJ1G9VFl0brfVBb3RTzHndvwVcaYwg8cuVG5SfWoMS9iFDGAGaSdlBkdA3ThZSNk7BlIOAC30lqxe0G/qYyM+bNKh4hYBLgUviDzXmX65L24UQVgXnuVOERRBvBtIjGaXkNmVX0Xw+EAnybmJvYufZTyg0on6HHuo8F3QTIZRui3cqOSC9VTlkKfMNCxyImRVBYZl7hxDjiXJKWv3vZaGgsyFGMAv6JfhG9Upiw9iIIM4FhWO+noXr3LUuRpokAA0VMjXaicpG3CAsCllNopQzudsKFwNhwOgE/Rh6u+kXStBcyHADoXvX1uVTpBFyqL+0rxzxmAXzYyJnIOCHQuvWiXJVu1m4YO+Be5jW7FKD0A81sdPZgmAGAuFIOBLiS1d1pqj5DZiYIM0IPo7dO2drSYBMCn6LHobnjYelbkRwDmwqhhoAspv3TKkhVkAGBudH4A18L3D2y7a8uPALjVuiMdQuhgC8QxlRu1pyzdiLvSAOaX9HSB8Yd5DwfAafXmQyHZ4uLcrALgBTergK6xRwAQROg7QdbLC9/bA/qWaZ8A8Cqy5X2R8z8ggKmaabsgc6mymGb4MchA39Z7aR35gryW0kYlHm1EPAKcyitpH/lWz3p4kBcBmJutr8cIGcC1nNqTjdppk23tuNW4vSMAd8L3DZgmAPQjcjAKH2wBdIV4BLhntdNz2mvI/KDSCbpX2VXgQXSGAIfC9xE+SNmKMru5DwbAOeFjEQB4wTRuoAu7LK0abbU9QsZ2E9iJQgzgXOg1ZK4lXamUkCNPhwACSJE7CBuNI4aZJgBgTnazHIBvqb3GXrtrU08TYJclAHP5QdIbjZ2hJG7FA07lyEUKpnAD/YieI9yqFGUA+DbRZ2lPWfqoMjrmXoySARwLX5v4WUqfpPyrSnF4JdaTAfD6roevFyoxiM4QgLlcaZy2lEROBDiVcruf1i7I3KokHI9ihAzgWPSCTPqh7N6iS5UCMckH4FJW7FikS5V8qB6tRxwCMIN0MYxIDB10gf6l3F5aol2Q2YgFNIEOhB/A9s9SeiflP4rFxQHMby3WswIwr08iJwI6MFU3bRdkVhobOXeBALfCry35VmWkHus3AL7l4LEofLAF0Iv8oJIbEZPgEKWDSm4v6js9QkYa12sAgBnkd5I+aNz5jU4R4FP0tvlJZTr3vegIAZjXg8iJgB5MTCtsD7hdiT3ugQ6EvxbfD3eCjudmhT5poD85+AgZ0iEAboRP/tAzPpqjqdeiPUIm+kqhQBBZwQexvdc4V/pRjIMEnArfP/hB5UbVhUosAgAAaJlYRKY9QsZ2EWDxOgBzspF6NmrPUDAGXAldjJFK5bt+AMDcuIEOuNfKj9ojZK5VijE3w58fvtERAfimws8sfKMSyS5VFvZl22sAc/igkhPdqKwjA8Cn0EnRwG5QrVUKxOyMC7j0silLey1g/DHQv/BN9F7S3fCwLR7DnzTQnxS8E5RtYXEArqXDfwJj10mgCy8ryOz0NPGwbbDpCAGu7BV8VuHH4WFryVixGABek61jJcXv7AHwrR4xDMCtb1OQqUfK0AkC3Al/Lb5W6QgdT1UiHgH+RA5IW5WciLX1ANcih6GD8PPVgRimmmm7IPMoFq8DOhH6mvxGpSBTJx8UYwB3JjYS6N9xQYa1rACXFjFwxDY7CH+iQP9SI1doF2TuNRZjGB0DuBX+evz/qiym+V5lMU1iEYA5ZJEXAR1IKXheJI3xiDgEuDZVIG4WZNJOyiQdQBciJx75Lyprx9yK3d4A7yLnC1lM4QY6EX2RcQrDQB9eNmXpWmXaki1g99j4XgCzCX+D5FZlxJ6taQXAp/BzlgZ0ggDXVlrAMk8fNa73STwC3NrrBSNk8lrLSa6AjoW/Dj8Mj/CVJwCu1WtYEYsAt5LaazaEYGt9Eo8A93KjnjK9qO+jxkbO4nUA5vAnlVhkRRkAmAs3qQD39rndAQphPfcBAHiOqfEt7YLM8d1odjcBMIcHjUNyiT+Ab9HbaB2HuFEFuJQP/wks+vkBkXz1LkuPYm4i0IGpuYnds1jElCUAc7JYRBwCXNvlBSzq+yBuVAEBPH+9K3YVADCT8PPAAfShLgyTEwG+RW+fxCAghHZBxjbNprEDrkW/CSSJDhCA+dULjLOeFYA5kRMBIbQLMvV0JRo9gLmw3TUAD9LRA4BbdFsA9KC9hkx9F4jOEOBW+N3p693eAGAuSeVWVl2UITYB7oTPiwCE8fw1ZAC4Rp8AgAehY9H98KjXkQHgUvjmGf4EgWVoj5AB0AWuyQDwCu40jthj5DCAuZEAAn1oDNl73ggZGjsAAFi6em095kMAAIAXahdk6uG4FGUAAMCE0HWK42lKoU8WgGssLg50o1VKeV5BxuZKAwAAAAAAYNpE8ZRFfQEAAL6EJVbcrAIAAC0TI9nai/quNW7xyCgZAHNJ7C4LwBGmCgAAgOeY6MC0R8iQbABwINH5AeBAWqncrFqJmAQ4F76JkhsBfXhxQYZJTQDmtlHpBAHAnN5IutIYk+gMAZhLEkUZoAcTbXS63MIcAQBzO97ZBADm8Khx22viEoA5UYgB+jBROG2vIUPCAcCD/fAAgDl9UinIPAxfAQAAWl60qO8bjXeDdsP/U5wB3Ik+YjX/XiX+vNfYGQLgTuQ4JEn6QSUGrSTdqsQiblwB7oSPRZL0o0puZIViisSAS+nwn9PaBZkfVZKNR0n3Gnda4k414MoqeubxD1K+0xiL6ikDANyIHopkxWFb2PdGJSeiIwTgtf1eJSd6VOmvsSMu4NJUbtQsyKS1lHcaF/ddaWzodIYAH5KULobdP6JaS2kr5Z9UOkB2J8imMhGLABfSatgVLap/UOn8vJX0q6SPw59tNDE3rJ6yz0I++nP9d8B3kFLwWCQpXUlaSflCpT3Z6GHa1qgeQk58xvdmn7f89O/ypZqbk7RHyNTbO9r/24eZu0HAPI4bukqxYhV4F6K0Hk757fAXNyqvQz2NkgRkPic+k9/0OU4l1bzfLqUUvDj8Nypx50IlH7rUuD1CfaPqOZ/PE0nbSd4/661Ob30jb+p7pS8/16nYcKoAdC7WfIs49r19yWfkuBi2MIsoyFwOb+9W41RK66f1/L5/TZw49zP1jsHPeU16ft1e26kY87Vt7rnXzOf+vtd+H1P1tW6HKn/Ol1JqVF2aBZk3/620v5NuN1L+JOkXjXeAkp4WZSwRWR39XX2Qxwd9/GLlM/9f/0w6+rv6z3Mu/FkfS9bTN+QLj+n45cr1P6SJnOFbdU7PHcRUULPXYV19j41geG6S9NxjP37Nj5+v9btOPcdxFd3+f9U4tqyxHZz6jB6riybH28o/6vRoj+PXrUpwk0rn5/pC2rTLq11785+k3U66+yTlX4d4dK+xrdUjZY7jzmsF5amL0Kl/t/dy6hjPfc+52Hr8d8dxcup31p8ze42nfvep117V37Vix5k7CodthU8d//EU2i+5mNv/W5s5jtF1e/ec3H7NZ/z4fThVPPnSwoIdTpIu19ImcCdouxluRK9VOkHXetpWWq+bfZZPvebH16L6Ofb6+uLzuevkufZ43EZqdp67o+9ZVf9/lITqovqZeqS1/d1x7D73+4+PxWLD5uh7VhpHLB2P7D6+VtfvWTp61Mcmvbz91zGuPs9zr/9xLKwfx3FxpafrPJ56zqnPZa2O4+cKXsev4dc4V7htPd8zf1eS9DZ4LJKk6z9I+3vpPkv5nZRvVe7Gf8vRw6diSCsvOP7eqc/K8b+fioXSmIvb99Zt89z7bD8z1QZqU6/bVJ9CjX+f8qVt8dRr2+qftf58/HxT53KuH3eqv/SSz+G5/r99PZ69U/sW8fs5MeT4c7rReP1IpZ92cSmttuefotmFu/i9tLuV7m6Gc3mvpxeq+gStA3tckLEizakX8vjNOk7oWxck6fwH9FSjPv59R39+Ud/tuAhh57zW+ZFEZ37Rk9Mb/mefpTy8tvVLsD/1IawTuMbvaTpOGuvntgSnTrpOdaI2epp05aOfOe5gHU7qzDGdCgSnptHZ89W/4/gC0fpc2TnXBZmNxoTn+LN1fE7nPpP279bi6teyPs7jtVHy0aMKPoeP3Uq62krbbdzM4+KnUpB5WEv7BylvNXZSaqeKAuc+d+e+/yul6r3Ph/9Uz33cpqyt1En/uaThuP1Uz5tS9a32earb1HFcfs5Ur3pE5F6fJ87HF8i6eHHcDuy419X3nvp91bkfXsuL6rmGz7wdfx7aSj61ntC59/T4Im4Xx+PPkb2GJ96LlM+fRiuXkoY4fuob6x84vva1tIpcJ66DSRo7czYdeS3lU9eR+v3U0b+b9PR/k6SLlbQJvKjVejO8LMN1Ll9qvM4d50bH1wP73A3XxydvdV3UqGU97Wgf50pHT1//Tz51DIcTqZ7/3PEet3tLMutF1e2cjtu7/f3V8PwPGnODffU8tv6Ofd7y0c8fH5s97Lq81dheLW7dS7obvqfOyx6r57JjPW4nNirc1iprbWZxqsNZ/7lm52OvTx2rT3Vmjj839et8Uf3ZHo8qi0yfiVtnO8P18x+f1+rMv1n+Io3vnY6+Z8rx5+bUcda/59zxn3nNk6SrlXQRNxRJki7eSruNtHtbcqP9MJo4Wb+h1npfWtcmaxfS+SJI3YZS43uO847699bXnFOfPWvz9lzH1/5Tn+Hhepeqvzv7MtjPHxc2j9ti7dQ1sf6e59yQP/49p87jVByvY2Tr+nDqeY/jqzmVQ9pxHD93Ha904u+O+4l1uz71Op747KX6OYf/z/XvrIsf0tNjyUMumasc5/h3npBy49p5Lp7Ur9NaJ4vmm620bgSkZkHm7T+t9PCQdfdj1v5P0u5G0oOU78tPZrsDIZUPcFK5+NYXu52ULlWG9Q4NMdsbU9+tGC7YaT++GFlSepTSTuWiu5LyWsorHeZNHjr+e5VFP++lNCxAnG0o8XCMlkinLK125WHJ/Go/5Kj2u/dHn5/6A1AnBPWF8m31+y5V7py9l/RBn118V3budmxJ2mRpm8dvXQ2Jxk2W9qmc8ypLlzclAN9fj+/HLg3Ha69FvdBgnYjUx5+e/nk1/OK0kvJGysN7eTj3PJyXnbc97/GChld6ukPX8LmxIJf246nn6meTdRKGxCpVQTTvxvdFG5X5sluNCVfSYbeLZInucBHJWyltpXQxfHaHz5l9BrPK9+RV+T4Nr6W2w+OqfE2/qSR5V+V503U5p/zr8Dw7leFom/EY7HN7SPKuyzns74Z/Hz7DaTO8Z/fDMdrxPaqsUfAgre6GtvRWSg+lbWyTdLGW/vt/XOmHK4X1898nPewl3WY9bKW7X4b2fivlhyEW2efSRs5cqnyePmn8/F5onGKQVNqmxa76AlXfXT01IsMCvcrnLK1Ke83r0nbSbvisWszYqnwG3uppoLbE/7b6nlOdlN3wPcOfrW2kq/KZzcPnK1+X5823GjsrF0NbNr8Mr8mdxnZ7fEG1u//Who+To+H3pc3w78Nrbu3z8JmvL+xX5XvTx+EYh59P69I201qH9UfWGtrsH8px5AtpfS+t74bjfpAe76Tdo/RwI+0fh8/DccJXFz0tHgydwrSW0g/D9cU+Bw8lhma7Pu2HWG3Xp+FaIZVrxfFrt65jVipxWytpvR0OLUurTbkw20X7MZfn2t8Pr9/xKIT6+m3HYudl15y6g2w/Oxx/uhhey8fhM/v78nX1qTz3/rK0od1NeS3SrrSnvB/aVR4PIVdxPg3Hb7F0ncrd6L/7YaXrwKP1rn6/1v5R0sVO+8vhPb0pr+f+N2n/sVxPtJbSTyrXK3u/LfYM1y1bpy/vyyPl8j6pTgg3kt5L6U86jPxIw7XiYDM220Ms0pCjbofr+X74bF8Mx/RT+Yb9hzE30qZ8fxqu6/lq+N7V0DYvyrVH74a2kMcwtttJu73Gdm/Fl9+V89lZjLtU+bxa0aSOQbca44m9Xrar3huNucWFymd/o0NcOeRZl1L6VVr9dfiei+E1zsPvs4R5V66ph/YyxJ/8Q/mZ/W9DHP1VT9cHqo/XHlVxIkll+nAqnWNVr23ejM+TLsvvszXR9qo+G/b8qXpuaUz0f6eSX/69Dh3l9E7Sf0jprjyyHe/w75uhCLazXcHqnG3Ipyx0Hgriw+c1XwwxYzjGPMT4lCT9pZxDzuMhp+FmiXWmjvttWUN+dj28Bnad2FX/PrQJXQ4x2z4rdU5bvXe6GD63j8PLmKR/fJP0NnAskqQff7zU4+VeenzULmc9/lpyyHwv7a3NWx5v77kVV+rPgLXXun9TxarDdPHq+mrXbH1SuXZqyIesSH2nJ3lVtv7A7RBz8pAvDbl3yio58Lpclw7xyD44fzfkOHbstuumxYuNxhhpedrQztLdcK2/Gz421ndU+blcx+dfh+e066rlM1b8TWP+d7hBNOSEqX4N7caR5Tt2TEMOYW109TC8jtb/sPfL+iJJh4KCtam6f5ssRlqf9lZP81q7/tjxrzTmwvZ+Wk4x5JD6VP3sXuPGPo/j7zoUQeoifB2T7ft2Kv3yXXkdrJ85XjxK/nZIdSyWWIyp4k0aXsuDa5XPpvVF7Rzvyp/TEPfy3fhernbS6rHkjfuqDRxe4+G9zEM7yXX/2vpyx3WVui1dq+zGOOSr66F//dM/SBfXOqsZqjZXSfu1tHqblT+UD9ohYaw7mdKTD/aTyvnwhqZh2Grejx/Kz4a5WgaxH//aCjQaCjGWxGhI4J8UZOxn7YWxQLIaXzsLAilp7DTvyouVhsLHcaXO/vjk7mZ9Z8J+V5VkHxIHSzrsg7Ufn/DQIU/jU65z9dRDZ35l338lrffS5qEEr93lkPTr8JkuxSxrPHbwx3c50+ePNCRQaTiQNJxPtuO2TspQnLCnkXUiqoJPuhqCphVhqguzvb+Hl7JO8O08q06UdW7qxCevqvf+QmMCOHxv/Tbl9XBxuCjHnuzzYO/DEHCzfZ4uqucafkZXw+f3fngt3gyvwdvy8+m+dFzSUBSwC0uy57BjXas01L3GeYRpeO5t+f35TmMnNw8dIiswPAzPfzG+dauVtF5Lby6lH66OI0Qc28sk7XLJoy/La1yPkijfpKd3IC9UXkdLurM+/8xYkcPaQH23IVXft6++2u+ztiMd4qEV5HJ6+tnW8Pe60qF4MlZeh+e0AqM1Zks47Xdb51fjhSkNnwcrVqfr4dAtvl6UC3d6MzxHVkmIrINh6oJMfbx2nvUFqE7W6s7bfmi79lnfVEmgdZQedUjSDknYcH1I2yEOr8aCjH7SIXFY30mbm/L3+a6cb7bEy9q0PeqCzPAe5uG4kyUmm/K6JEvoLJZX16DD22xBdi+t0ph81deKQ5sc/nDodKThdw7vy2pdijJpeJ12eXi/9tXvOX4/6t5MPRLgojpuY+/98NofXmP7jA+doFX1vuxTeW/ScIyyu6xHIeWz9RiqNrAako7LjXQVeLTeels+bKsLHYqddpNHVvS3tjwUD5LFnGuNOYK1sTC8vf4AACAASURBVKEt2uc3WYdZ0pOE+P3wb6tyzXmyTs96/PbVeijIDO/LfijAHDqyl8P17oehzVYxNNlNCDumNyo3NCzxvyq/24qTSSVnSbkkt+m4ILuVZL/H/nylkjdYnLCOg52zxT1L7Id/T5ZT/Tj8/Q8ap4zVBfQhzqTb8v3ZCsFWnKgKMnXcSHbMb4efeRg+7x+r17nKM57EZntYfll3OuxH7Ppg7dJi0X0VRiy22u+wa5C9PBZfr4aY/ruj7383PM9QtD8UZNLw+dyXTvrhpkJ1bLnO6+zYL4YO86XGG2T2Pg6xWu916IzbZyIdPf/hBkL1Nif7bFex8fA8GooJQwfrkBMNT5ireHycj9vvWqVys+o6+JylzWalvB/a/CZptZHyLpeYvhry9tX4uZD0ZNTY4VJTF2SsOGDXeItl9hx1QWZ4Luskp6Ty+TzKow59vyGG1VM5LHeyNpo3VSzajr9Pb0vckjR2wG3knX0urdhrBe6r8jtSHmLd8Dmq1/I4/L7hZuuTm3gWLyx3rC70aTgOK6ZL5XtS9TlNOx1u2h2u8VU/1P6uLshIGvs61ctY5zWHQQkrjfHPYlZVCM51TlaPrBv6Nk8KMlZ4q3O9i+F1s0EYw+9K9Y5e9fVqo7GQnjTGd8tdLadejcea0/B8hzdkeJktxhwVZA7FHJVrmV0n0r4crxV9tBvelyH+H/Kx4XW1mwrS0E7S+L7Y77F+/5N2YgXNc6Fl+KwcctLhXDaX0rZx4zzlk+N4AAAAAAAA8L0c31sDAAAAAADAd0ZBBgAAAAAA4JVRkAEAAAAAAHhlFGQAAAAAAABeGQUZAAAAAACAV0ZBBgAAAAAA4JVRkAEAAAAAAHhlFGQAAAAAAABeGQUZAAAAAACAV0ZBBgAAAAAA4JVRkAEAAAAAAHhlFGQAAAAAAABeGQUZAAAAAACAV0ZBBgAAAAAA4JVRkAEAAAAAAHhlFGQAAAAAAABeGQUZAAAAAACAV0ZBBgAAAAAA4JVRkAEAAAAAAHhlFGQAAAAAAABeGQUZAAAAAACAV0ZBBgAAAAAA4JVRkAEAAAAAAHhlFGQAAAAAAABeGQUZAAAAAACAV0ZBBgAAAAAA4JVRkAEAAAAAAHhlFGQAAAAAAABeGQUZAAAAAACAV0ZBBgAAAAAA4JVRkAEAAAAAAHhlFGQAAAAAAABeGQUZAAAAAACAV0ZBBgAAAAAA4JVRkAEAAAAAAHhlFGQAAAAAAABeGQUZAAAAAACAV0ZBBgAAAAAA4JVRkAEAAAAAAHhlFGQAAAAAAABeGQUZAAAAAACAV0ZBBgAAAAAA4JVRkAEAAAAAAHhlFGQAAAAAAABeGQUZAAAAAACAV0ZBBgAAAAAA4JVtWv/48/+2yvuP0v3/lbX/KD3+KuUsKQ/fkFs/LSkd/f9qeKxP/Jv9eS/pcfi6bzx3/bvTmb//EvYcq+pY95J2z3zuid+bqpPM1QGfeon22iun/PnT1uUzex9S9cOp+vtnHteT5/ja1+5rfOHvrE/zs1NP1ZMlKQ+vU7bXxH5of/R769eq/vwd/9Y8fE3DD9jvy9/hBTt+ynTyu5TScGrDsa23F0qrpNubmzM/0beL/zVl3Um7P0n5RsrvNTaYRz1tp+fUH5rjv+/RVBuq46o0xjb7mcNnPx0iU/0lDe0mHwehLEn78deei8XpxN/V33/uuF/1/TjXXM4cRB1T1sPf7Y/+vf7xbfVnu54cx54XHM5XO/eetH4gDd9o7c7+elX+bfUorbKky620Srp/fxsyFm3/x3XO99L+z3vlR0kP1T+ee1+f4/izc3zRO+c5v++578RXHXuqnn/4fKSklFbleqw8PO/R1+Pf9Rrtvs7z6t+ZNV5Us0rQS0cBbF819Ge0n6mXPH/2hn8HrYOw6+GTx/A/++Hf8344vKc5llYa38Pj3LMZ77/xOVufwp56NbyN+3KxW/10rbRZ6f7ffgsZiyRp+79f5vyrtPs/9tJ7SX/JJRCv9yU2PQ7f+CX9tV5zouc6/jQctwNr6vW1PT/3BZqjQ9Uw9ck/jomnzv1b/P46Tkgvu1a+1Lf6rJ+qY1h8XI+XkPVjUspJ658ulDYrffr3jyfflWZB5v6/k/a/ZT38u0ricfxiTjkuDFiH2AJE6+L4JW/Wt3hTT11IvmEIz8pKJTX57NfW/9+spZxqIF/yfnzLn31lpw718Hf5KLU5Lrwcfz3XKf/sdagSyPpnv0ch5gvZIdi5p/290rf8wHrzd1L+KOW/jgW3Q0z5klh0/P7P/1Z+P8fnttPpzl1qvAjPCkITP+v6Nf7Cg5v6HNnf28v0oKexaM4k5EWGg66LemY//NvQFlcPD1VnNp6srJyPigrf4rN+KjmYKsa4cOoAs3LefR4u5j4X+/2nrhvH1/XceFO/wXmcyge/u3MJ6CGe5XI9+Oz1yU//d6/Tn/njz+upnOpbOo6nQ+6X98P/PNxL+9gTAfKHR+WPkj5m6bZ67+obAM96ou91hB2yguMTQV/I45zle+Uop66Xc/ne19bhtcz7IZzuSz9tdbNTWp/PoZsFmd2nXO5G78ovOBz7t0o6Tn0QTn19Da1RFMe+8ri+qIY19wf2e/sO1+XPnvc5CW6rQtb8Ra9koq9c39A7dIwC2v8q5Vsp36l0cp/cudCXvS9RXqYvCig6PYLuzFNZbn42FJ/73VFe25bj69bx3x8nHuf+/9xzv4av/T12DiduAuZcQtBqL61aRb7O7ff5Sdv4rvnKt3rO7/12fMl11MNH4xWO4dyveNX758+9Rnzpneu541fNcnY7j0NsztLjPnReJEn7X3MZGXOfy83uOkbHPvWvd+Ya9qw/92bq+CeLqN/598/lWxzXufpA0qEYOtb5s9Juf5jVcEqzIPPwb1K+kXSnsaF/C+fe/DkDyHFS9ZwpEPCplVB4DQ5f6fBx3WWtAt+V3v/fKqP03uv5U5Tw1Be0CS83Mtx6brE+0ue0PucTocYGjaRdrqaRxpNPTaemoYx4LZpcvjwuD+oZTl2o6tBz9xh6tJ4k5f+SpRtJn/T0ZhUFmbbjfuhSX6ulnve31vgMHdKm+10zN2oWZHSpklBu9DrL//LBAL7aDAOgX8+9SiwaRuvh+wv8acJLVXcY8+E/zUFYcfxO5SbVB5UTfWh/O4DXk6tYtAhvhq+nppMCcOMwm+GMZkEmX2ksyNhCvN8r03K2DhLQk6mG3rtsBZnnrhkDYBZltkDgRvoHlbvRf1b/I6DIuxBZXS2O6sfh60Zl9DBFGcClnJ9sh/GZ9giZf5V0K+lXlSFxdIYAl+opsSFtVU7wbu4DASDp7DoFa73OgNrZ/KaSD1mRGIA7h1pM9D7Lo8Zp3Mw1Blx6TihqF2T+qDIc98Pw9XsGNwIIgHPWWkDVCejMiet2vRNtSB81rqvXe0GGvAuB5X34JWSeFmSYzg249bKCzMUzngHA7KLnHAfEI8C18Delr+c+AAAY/IfKTIYHfdk21wBe1csKMuvhIS2oxwfAnfC9PCCG8M30QizkC3QifDz6pDJ9kiUlANdeVpC5EtMEgA6Eb6b1HGmSDgBz+VuVosxG/U9ZAgLLoZOigRViktjqGuhYe6r3YfPs738gAF4ocju1La8B+JJO/DFyLLrUuMg4AN+it1NyI6ALU/eT2yNkPqoMhaPiCrgWPefQrcqdIOZIA66tNM50DulKpSgTPugCnVtCG/2gsShDbgS49bIpS7ZdAkPhAPdC5x5MVQJ8OmqXKQXfZWmjcW/v0CcKdM76Lktg50meBHSpXZC5Vmnka5U1HAC4tJScg2QD8Culp3sBhHSpcdrS/czHAuC0JKX1Ara93qgkgCuxsC/QsXZB5lbSndjfHnAu/KK+JBmAX1XwSSl4LPok6UbkRUAHwhdkshhBDHQgqR2P2gWZ31S2d7T97QG4tIhr8SJOEuhc9A7QXyW9UxkdQ14E+BU9FklPCzLkSIBbUzMo2wWZBz3dbhYAAKCWn/5/6H7QnUpuZOvrAfAnS9pLeSnrPLHOJ9C16YKMDctlaC6AObG4OODfXsqRCxV3KjeqWNQXcC0vod9ia8cAcG2q60I6AQQQfjMB29UEgG/RCxUfJH3UWJihQAy4lFYLWEPmUtKFGLEHODe1vl57hAzbqAFdCF+QidzBA6JIZYpA+BEyVoxhDRnAr/CJkcpub7arQ/RzBTo2tahvu5tzpVJ9pfIKYE7XKrGIkTKAWzlLj7nMdg5rpTEOkRcBbuX9AqYtWTyiIAO4tk/lcU57hIwNPe6xkR8fM6N8EFj4j/daCzhJoH/R+z+SiEVAD5bQTtcqI/V67KcBSzJRNG0XZGxBX3siAC6FniIgjQuMLyHBAjo1bGwS268ad6AMf7JAv6KnRZKkNypFmY1KAH6c93AAfJ1mQSath+F+PUY1Om5YmNAf+bo4HPpEgb5lBW+iVowJfZJA/3Lus/vyRerpk+FPFuhbK21or8bwo6S36nfaErAQOXrn4GF47EVHCHBsUQWZ0CcK9C3nBeRGdSEm+rkCHZtqnu0pS1fDM9gcRQA+RS+YWumYxANwL3QniEIM0Ie0gKZq80SJS4Bvud1E2wWZn1W2VNuqNPjQWycAHYtekNmqFIXvRdIBOLbPC9kIjSkCgGs5LaCJsp4V0IWpKZTtgsy6eiwiwwI6FX1aIXd/AHhAIQbowxLaqvXRJHIkwLtGG22XWWzl7q3GBg/An/qiHBEFGaAP0TtBK3GDCuhB9Fgklf7ZRvHPE+jdRB+mPUJmJaWVlDeK3dkDOpf2it1JsCG5FGUA11L0NrpSiUMblWmUrK8H+BQ9FknST6IYA/Rgop22t71eSXmlp9uqLSHAAb3JQ1EmKtv2mpEygG9LaJ9JJXvKIi8CvLL2GdlblRtW0c8TiKDRTtsjZP4gpSsp/1WlM/TXb3pYAL6R8Helk2KPAALQhywKw0AHoi+tJ0n6s6SPKjetiEmAW2liCmV7hMwbKe8lXarMUwTgU/QL8UrsIgB0IPxN6SyKMkAHkhZws+qTpFsRiwDvkpTS+eyoPULGtlMj8QBcC98JSnq6QB/xCPAp+kKalyrFYTvP+3kPB8CCXavkQ4sYDgT0a6p5Ngsy2Ras24u704Bn0S/EtpAmAMzJNjiIXngC4F+9xicA1xoDZNqrMuSP0v6DpF9VhsXRIQJ8it42L4aHJR8AfFrKiFp2WAJcW8QO9RZv7eY5AJem7uG0R8jUDZ3EA8BcjqcsAXArdD1mLdaRAeAD07iBPiQpNRpqu3i8VUk+qLwC8GCjccoAAHfCz3B+K+lK5STpBAFu5TzcWI5sMzy4WQW49Zz7ye1FfQ13gQDfltA+GSUDdCF0OLoUi2gCHQgdh8y9ygYsizhZIK52QSZrvN1FYwfcCr+1o1lr3OFkKecMdCT8jm8/qWROW5XRw8QiAHN5p3Hba+IQ4NdEctSesnQr6U5l6+vQY5CB/oXuBEmMkAF6EbljYHekbSp35HMFOpa0gJtVTOMG3HtOGGoXZD5JutGYfABwKXyNwgoxTBMAfIveAbobHmx2ALhlxZjw6cJW4xoy4U8W6NdUatScspRupGyJByNkANdCX4uvVWKQxSMAmMOjyImAXkQvENtNKgoygGtTzbM5QibfqgzPtWG5NHYAc7iUdKFSQm6P6wOA76deVy96Zw/oWM4LaKIUY4AQ2ov6flJZR8buCIWPbECfwjfNNypx6EHMlwYcC98v+EHjQr7hAy/Qp8U0zZVKTrQWo4eBjrULMg/Dg4XrAMzpQqwhA3QidBN9o3F3JQBuLa7bYiNlFnfigH9TE43ag/+t6spwOABz+kFlHRkArq1S8FmF/7Ok/0HSzyrFGXIjwKWcFrDU018l/aZy8/xRFGMAp6ZShfYIGQDwYKWxl0fCAfgWuUjxo8pUblvTCoBLWVKKHIskpQcpU4gBupAa7XR62+tbMWUJcC78ILZ7lR2WHsQ8aQDzeTM8rlWKMgBcCp0TGZvJsBHr6wGOTa240C7IPGocAkdBBnArfEHGtpm1BwCfQgciPd3VJPq5Ar2L3nd5K6U3GkfsEZcAn3J7hMz0LkvWEYoe1ICOhV+3wRYYvxfzpAHPoncI6htUxCHArZwXMGXpXyR9kvKDpA8qORJ9NsCdl68hQ6MG3IveB9Kb4Su7LAG+peCdINvtjTVkAMws7aVsBRhmMwCutVIj0gmgc0llGFzoTtAfJG01zpNma0cAc0gqceitpI8aMyziEYBXlm5V1vpkfT3AraTSR/vqgkzalyF/APzKWsCyKj+rRLJrlcQDgE/Rc4aPKlMDPki6EXelAaci36My6Z+l/F7SLypx6J2IR4BDWVJuBKX2CBkSDaALOwVvqn+jkl29UdltCYBPoQORSofnnaTfVNbZA+DOUtbdzv8ipV+l9F+H7a9Xih+Dgc4cZhR+dUGGLdSALoRfWsU6Qe813pUG4E6KHox+UYlF92KKAIB5PUr5XsqfVG5WkRsBPk3kRu2NWdbTTwBgfraOTFifqsf9zMcC4Lw0FGWi+qCnO1ACcGkRI2R2KrHoXmU6NzMbAJfSRG7UTpt+J+lHjQtpAnAp/PX3N5WOEJ0gwLeVpjKLvn1SWURTit/bAzpmG6JFtt9LeyvIPIotrwGPLBg1AlJ7ytKlSsNeiU4QgPncqgzHJdkA3AvdRK3jA8C1RdRL0xBv96KfBjj2sjVkpBLR1qKhA5iPLaBJZwjAnD6oFIcfRCwCnMqSdhPbzIbws0o8WmsBJwv0a796aUEGQBdC35W2zk/okwT6F76J3mtc0JcRewBmlOu1PinIAG5lqdlG2wWZB40dIUbIAG6F7xPYyBhG6wGu7RW8X/BXlbzoVoyQATzLCh6MVHadvBMFGcC7tZrr8T5vDRkaOeBa+IIMgD5kxS6arlVGx9ABAuAFSSDg2tQImfYC5H9Q2WmJuYmAa+F3OrQhuVLwEwU6F31xyZ9Udp/citwIcCx6KJJU4tBG4xTKOlcC4MZUP609Quan0q7zVqWxP3y7AwPwbYWuU9yoTFtizQYAczqVVaUTfwcA39tfJP2icaHx8HfngI412ma7IPO3KneALsVcacCx8DMLf1OJQSzsC7gWOg5J5ebUTsQhwLnwsUiS/lWlIPNBZV0rbloBLqWJdtksyKS/SvmdSD4AzMt2NeHuD+BakpQi94Ru9XSXJYmYBDiUUvBYJJWbVOz4BriXs5QacyibBZn8F5WpAjR0AHO607hYKLEIcC10H8h2V6oLMgDcSWlqocwAbCdc8iLAt4l8oT1l6VeVjpDdDQLgUugOkDQWYhghA7gW/o70tUon6IMoyABOJUnrvICCzHtJn1SKMtywAnx6Rv+lXZD5JOXjobkAfIrcEaIQA3QjcijShcZFu0KfKNC3lKVV9DZ6NzwWsaUU0DEb5X9GuyDzUeNCmoyQAdwKv6jvWiWQEYcA19JesYPRjcoImXrUHgBXwudExgrDbHcN+DYRlNoFmQexWBSA+YUfdwwEkYP3C+rd3siLANdCxyJpLMgwYg/w76unLNWLaJJ4AG6FvzmyHr6uRIEYcCz8ug02Ypi8CHDLBo2EjkVSOcG1pK1KbvQ47+EAOGNi9HA7VlFxBeABd4GALixiZxOJYgwAPxZRfQLiao+Q2Q5frRNEAgJgLnbLS2LxOsChJGmzktaRi6Z1PkROBLgVfTkrSeNoPSvI0FcDXFqt2rtQtgsytpAmAN+WMnKEThDgXuhQZCdHLAJcW0T35a1KIeaNSjz6NO/hADhtNbHr2/QImcUsVQ50LPoiMtyVBrqQcvsuUAjEIMC1rLKcSvRQpH9W2RH3RtJfJb0T6+wBDm1zKcqc0y7I1IvXAfAtcuYR+dyAILJKyhC6uZIXAfDiZnh8knQnbloBXmUpNYbtTW97/SAaOODcYponsQhwzXaEDutBbHsNwId3kj5I+kWlKLOIeVo4izWE3Eq5fbOqWZDJj2LoG9CBnMoDAOaUpNidAnIiAF7YdKUHlZF7WDauTW7t00sW9d2LBg50IKfg0wRq3AEA/Jq4CwQAryV8qvBJpSBjUykBuLSXmskRu9YDAaTod22vJF2KiAU4lyLHIWncXhaAa9FDkaRx6mQScQnwbGI33Onmy91ooAutxaK6t5W01nK29wY6FrqJ2o52oU8SiCF898VuxhGPANdyasejdkHmR5W97am6Ar5FzzouVIoyJB2AW3aTdj33gXxPNkKGogzgWvS0SJJ0PzxYQwZwbb+Xdl+7y1LaSjnyXXcAfainCdAJAtxKUuyeEIUYAF7YCBl2fQNcm2qe7UV9jSUgNHbAp6V0ENaKvYML0LEs6TGX3QTCIgYBXYgchg62KiNjKBQDXWtPRtqLxAPoReSLcX0XCIBb4ZvpWkzjBjoROS2SRD8N6MVE0bQ9QuajylZqAFwLn3TcqcyRZmtHwLXdxMJ13bvWOIUyfPUJ6FdKC8iNblTWkHkUhRnAM1t77oxmQSYzLxHoRujEw06OWARgThSFgS6sl1CQyWINGaAHuR2P2iNkaOhAF1L0+cM2TYDhuYBv0bdgvVEZrQfAtU0qRZnw6KcB/u31gilLu6MnoLEDboXOO66HrywwDrgWvTZM5wfow0T/J4ZblQKxrbMHwK1WE20XZOxuNB0gwLfod6XfDF9tlAwAlyamSfePkcNAFxaRKtxqXD+GeAS4lV+0qK+NkKGRA64lxd74I11J+VHjYpqs4QC4tJe0ipwzrDUWwLlZBbi1iO7Lpca8aBEnDPQpT7RN1pABAlgpeCfoQiVa2e13OkKAS1nB70yvtZC5EEDfFpEiXIgCMdCLRvtsF2TsljtryACuRR8ho7XGO9PEIcCt8M3zUUwRAODDhYZhiQpeCQf6libyhXYfLvzqfEAM0ZtqtiG5ANwLXaewqdwAXIueF0kapytJCzhZoGMvKsiwxSzQh+iZx5XKXGkbKQPApdDFGKmMjmENK8C9lRaQLtxp3GWJ/hrg1tQA/3ZBhukBQBeyhhW8o1rr8ztBkc8X6FjotIGOD9CFRaQJ4U8QiGEqL2JRXyCA8DdtbWTMqeG5xCbAjfDr3drdaOIO4NoiRsj8qNKTs97c44zHAuCs9KJtr+n4AF3Ih/8EdRzI2E0AcCl0MUYaV1AnLwJcSxo6QZFxwxzoRisctQsyFyq33dlRAPDNtj2Mqu4AAXArfDPdapy2VOdF5EcAXtsnlXVk6KMBvk20z3ZBJvxYPwBduJZ0o3HakiEBAdwJfVf61FRu4hDgziKWerICMdteA75N5EXtgsxWC1kVC+hb+Gb6O5W1Gy5VRuzdzXs4ABaqHhlDIQZw60FTO5cE8FblJDcaF/AiLgHuTN2oahdkQvfwgECylCLfHXkn6WP1ZzpDgEvh04YLlY6PraIeOe4CvYueJ1yrnOPF8NUW9Y1+3kCHWkWZ6YJM+OwKCCD61ia/SHpf/ZlkA3ArcijSpUox5l7EIQDzsoLMlUoeeFv9G/EJcGOqpNIuyPysMjXA7kxzJwhwKXzt9HgBTQAuLaKJLuIkAbj3e5XRMT+qxKX37W8HMI+Uy+OcdkHmB5W5iWuNw3MBuBO6GCN9XpBhnjTgUvRmmfJwjtFPFAggR2+nbzWOkLnRmAxGP2+gN/uXTFnaDg+bM81CmoBL4a+9NgTo1A4nANwIv0P9vcoNqp0YtQd4lhU8GEn6s8rW1x9UpisRkwCXUmoXZNoLkCeNI2TCZ1lAv8Jff8PPyQLiaA3L7R67LAH9iN5Gb1QKMQ8qRWJuWAEuTRVk2iNk7A4QAMzpUmWEnhWHAbgUvm7azpoAeLGEooQVX6xQDKBLbHsNBBE697AResQkwLXwzXSjZUyFAHq3lHYaOvkDYnjZLksXKnvah8+wgL6Fvx5bDGJ+NODaSsEHsf2kMlrPtpdlwwPApb0W0nWx5SVCB14gtnbzfVApyDB1CcCcKMQAXQh//2Y9PMKfKAD3blUKxNZXI08C/Prqba/fqTT0O5XiDADM4V4lBtEBAtxaxI1aK8jU0yjpBAGYw59U8qMPw1cALuUs5a9e1PdWpYGzowCAGaUfpLxXWdyXpANwrbWTQPfqO9HkRADmVO+uBMCtl60h81El+WC6AOBa+NHzf6sSrX7Q05EyxCUAr+l+eNAJAjC3x+FBgRhwbZXao4enF/WVgvf0gBhCN9O/VZkm8HuVgsxa4zaPJCGAGzZtKazw1W8ghiQpRc8P7lSKw3bzHIA7SdIml67LOdMFmejBDIB7+Q8qvbyfVUburURsAhyypVXCSqIoA3RgEc3UlpWgIAO4lSSts7RpBKT2jSwWrAO6ED7psOkBl5Kuhq/tcjIAfHu2wDh5EYC5PQwPRgsDXWt3aep1GmjogGuhizKWbGyGh207CwCvie1lgW6ETxN2YuMVoANTzbM9QuaTyk5L1uABuBR+aO47Se9Vtnb8qBKXHmc9IgAVi0FbjcvPhfRW0rWCL5QD9C90TgSgG1kv3WWJyivQhfAFmbvhYdMF6tgEwAWLQ6FrFVuNN6hCB10AAPDNNPos7YKMJR50egDX1mqv3t29P6mMjHkv6UbEJcCp8PdvVtWDggzgVug4ZLYqN6ge5j4QAC1Z7clGz1vUF4Br4ZtqErubAB0I30RtDSsKMoBr4YvD0gICLtA/K8a0CjLtETIbsU4DgPn9QWVnpZ9URsrUxZnwGRfQh6Syfszl3AfyPf2okhvZnWkALi0iNbBeXL0JCwB37tUuqbRHyHAHCOjC1FC47j2qDMk9FdGIUYAb+xS8TrHTuMsSnR/ArSQpBc8PEtO3gS5M9dPaI2RsnrQ9EwCXQhdjJOk3lfVjflEZIQPAnSzpPgWPR7b7pC0uDsCljRZwv+ZRFIiBDuzUHgXTLshMTXgC4EL4ETJ/USnE3KiMkqmTD5IQwI1VltaRe0G2hgxrNwCY26XGEcT02YButQsydeUVgFt7Bd9q5PMKOwAAIABJREFU9t9U7kq/H75mcUcIcGiTpxKLzm1VciMrygBwx5aXC99Er1Xi0d3wlYIM0KV23nShUpAJH9GAvoUfIXOncf0YisSAO1Yf3aXgI2R+UMmJrDAjsbg44FBK8deQ0bVKbrRRiUFsxAK41UoT2gUZGwoHwLV8+E9Q9ypDcq0gA8ClfSpFmbDeqFS/Nwo+LBHo22oJBRnb0m6j4HflgP59fUHmWuMqNKzkDWAuWSUWMUcacCtLeoy+tsrN8LCFfQG4tIgB/n+nMoJ4rzKl+0b01QCH9mrHo3ZBZqvxLhBDcgHMxWIPhWHAtX0qj7COp09KxCTAoUU0y59UisMfRIEYcCxLzYrM87a9Xos70wDms9HT9RoA+JMW0Dz/onIX2hbRXESvD+hQ9NF6kvQvKgUZ2/3tv4r+GtChdkHmSuVO0Fas2wA4t5h+wWJOFIA7typ5EaP1APdy9ILMz5I+qSw2fq1SlCEuAd1pF2T+F0l/lvTvkt6pJCE0dMCd8Ns72jQBW0cGgEvhN0GzWERBBnDLdn0LnRdJ0n+W9FHjtKUrlRjFTXSgK+09Aq5UKq6XKqNkpAVEN6BP9A0AvKp09NAC4pD19KQFnCzQsSX0Vy5U+mf2da1x3U8A3WgXZNYqDfwnlcIMDRxwKXy/wJKNJcwJB3qw9LYYPugC6MJKJUeqizJLj89AZ9pTlnYqi9bVuwkAwGur70oD8CU//X+aKoC5rfMCahKPKlMoP6osNl5P6yYQA26kiWDULsjcqjTwD8P/0ykCMAfbNYAYBPhwZtpO3it2L2gxi1MA/UqSLvbSOno7tT7aHyX9Mvz5QeRJgDcvKshI41C46e8EMJN0+E9Qm+Fhc6MpzADzO9MGQzfNtZ5OCQh9skC/9lL49pkfVQowdxoLMeRHgD+p3U1rl1nsLlC9qC8AnwJfgNOllHcaF6wD4FJOwbea3ar09FZixzfAqSxpl4PHIqlMWXpQGRlzp9B5INCzJDX7L+2ujVVZmSoAYE5/L+kPKsXhjViwDnBqo+D3b4g9gHvWTMPfv7ETvFcpzhCbAJemyijNETIpS9kKMtwJAtyKvqRB/lnlBLcaCzIUiAF31qkMZAstcrAFgljE7s92glaQAeDSVD+tPWXp4/C4Ew0dwHx+kfRe4zxpG7UHwJX9PngnyHaeZKQM4NoiUoRfJP1V0p8l/aZSmOEGOuDPRL7QHs13q7EYw7bXAObySZ9v6QjAnRx922uKwUAXkhS/rd5VDyvGRD9nIKD2CJl/VekEfVRp6AAwh7+qFIgfRUEGwHwuh6+LmA8B9Ms2ZwztQiUmvVEpylhMoigDdKU9QsaG5lJxBTCjZLGIxcUB16I30bwWC4sDziWNO9SHZnHIdqAkJgE+TSRH7YKM7WyynfxOAPi+SDQA9/YKPsP5raRrjTu+AXDpUqWphnavEnBXop8GeDaRHNF8gQDC1yrquz/hTxbol23MGJatqcfIYcC1nYIXh6Wy2UG94UH0IYpArybaZfv+ji2kyboNgGvhaxSXKjGIIbmAW1mlAxS6if6m0vGxO9MA3MkqXZjbuQ/ke/s/VQoy/65yssQkwKeJxKhdkGGXJaAL4QeO2AlSkAFcC39zdq9xdEz4kwX6tYhuy0eVytODFnLCQMca/Zd2QeadygiZW5XGDsClRRRkVlrIKn0A3LI5WfYA4E74qZPmV5V+GgUZoGvtgsyPKp2grWjogGNWrwir3sqRu9LoELuRBnExfLVFNMmNAJeWsMxTUvxzBEJI7bbaLMjkH8sTaCtGyACOhV9g36YqUZBBp5b0sQ09Ws8KMmst5BY80Ke9FDwYAejGi9aQ+aAyP5GhcIBbNjomdEHmdyodoCsRiwDHwvd/HvV0pyUALmUtIB5tqoetqg7An4mAxKK+QADRpyzla5UYtBVryABOLWJalu2lyxoygHuhY5E0rqu3VumrAXCrVSBuF2Tea1zQl8QDcMcW873QVGPu3J81buloVebwmRbQF1tIM/Rd6TuREwEdWMQImb+R0nsph9/ZAYitfVOd7R0B9w5TliJfjO8k3evpdlKRzxeATzZlibwIwMzSlcodOfIhwL9GztAuyPxB49oNNHbAHesTWB8hrJVK0vE7ST+oDAeKPEcLgE/3GkfIUJAB3FpMtyXp6c0qAP5M5AvtWQ5r0ekBOhG6b3ChMl3pUWUdmZXGuRGhTxyAK7Z+DCNkAPfC1ygoEAP9aLTRdkHmRmWqALsJAC5ZsrFKwde6/SeVpONXlXhkOwrYg/gE4DU8ingDwIf/IqVbKd8q+DBpoHMTi1q1x7/Y7kpUXQG3DqNVA98KSraLwEpP15AJfM4AnCInAuBBnRMB6FZ7hMwnlZ1NGAoHuJS0kOnDtsC4nSgxCXApcmEYQD8WEYp+ljLrfALdaxdkNhrvSjNEF3CnXtQ3dIFiqxKDdhqnULKOA+BS6L6BrWf1MPyZ+AO4tITBI/lnlZNca8yPAPgzEYzaBZlLlU7PWmNnCIAbtnzKfZZ2kTMPi0WPKh2h46IMAB8m5kl3741KDLoRORHg2CIGjvyjlLf6vFAMoCvtNWRuVKYssagv4Fr0KUvZdla609OEg2IM4EqSlCK3y63KrayV2IUScOqw4cGsR/H95UeVG1WMFga6RkEGCCByMUbSeKvruCADwJXoxWFt9HQ6NwCXQsch86CxIAPAr4k2Oj1lyYYfp+knA/D6FrHr82+S3g2PG3E3CHAqfLO8UDlJm8oNwJ2shaQJf1TJi2wqNwCXpgrE7fs7Wy1kEibQN1tOJar0SeOIvQctJNMC+hO+aa41jo4JPxwI6FvoWCRJ7yV9VCnGhD9ZoG+tdKE9QsawcCbgWvgm+kHSJzE8F8C8jmMQsQhwKfr64pKke7GGDNCBqVj0vIIMANfCX4dtd6XwlSegb+Gbp62pRwcIwNzYbRLoxtePkLGF68KXmIG+hb8W30vpQcokHoBr4esUn1QKxI+KPU8UQD/opwGuvWwNmTqrorEDmItNE6jvTgNwJ3zTrO9Ihz9ZoG/hm+hK7PYGdOLrR8iwxSwAD95L+UZlYV9iUhfqC0/4pBjLQSEG6MKjFnAv+a1KgTj8iaIX9Vr3XC6fr11XfRCdH6AHKXjQS0cPdCP05xLLlDTutAQAc7GRw1xo4Qgfx8+l1E4Z2iNkPoqFNIEO5BS8TnGpEocuVGIRhWL3uGQgrKQSi6QSi/iwA5jDe5V1reinwQk2IDxtanbh9P0dXlHAvxy8qb6RdCVpq3JnGsD/z96dLTmuZGt+/xwkY8rMvavqVB2dOm3Wg3VruJOeQLe60xPopWW6U8vU1jKZzlSn9pQZE0m4LtwX4USAQGREJulY+P/MYsfOCAYJkPCF5QsOd1xAuFKKQ0c/vMSWAJjiOi+Suvn13O8oMG9TA/xZ9hpwIEbnfYKP6q5KMzoGwKXcKsWgh0tvCIAxUc7zIkl6VjdKj6IMUK+JgDQ+QuZRqbHT0AFc0lppZIx9t6DmPtsC5qWR82a5Lb5s2WvyI6BK0XnbDNyqBMzG20fIPIvJogBcXGyUCjE2kWY5hTuAarifd9uKMfv8BaBKixghQw4EzMZYcx0vyLjPrADMwk6pE/Sc/78dfzgAfBdrpazK/VAgANWjMAzMQgxS++ZblijIAKjBvvclcSslgPMr8yLyIwCXRB4EzEKcqKmMj5BZiYYO4PJ+k/RFaSJNJvUFqhX0muUbZ2yvNEpvJ65MAxVbzCC2UHzRZwOqFCYKMtN50yKiGYCq2UoCe3G7ElAx9ylDHPgCUJ2g3AlyLJaj9ZzvKzBnU6nCeEGGZANADR4lPYmCDFA592mDDQFazOV3YH4WU58gHgGzEDXefRm9ZYnRb8BMeD8R95MNAhOAC4g36jpB3uMuMHPum6hVwBdTgQLmaarbMj6HTKPjdePoBAFV8j4sVx/zd+/7CaBuf1aaz+oXpZxoJ3IjoEKLqJk+K40cpiADzJrrufeAJXFdlLEhuSsRtYCKue8XlLcHuN5RYN6CpMZ7sdRWnnR/ryjg2/gIGYkGDtQuOC/GSClSbSRdqbsaRGwCquO+TmE7uIjL78B8LeL6zbPSxBStyImAGXvdsteNaOxAxWJw3jfY5i/iEFA1G0Di1rOOV30jHgFVonkCmIvxgsxaXUGGqAbUzXNF5kndvdKssgRUy+4sdMtWfLOiDIDq2PROntOiI9yyBFQtTrTP8YLMD0pJx5O6q0EAcG6flTpCOzFKBqiY3c3jlhViiEEALs11sAWWY7wg80HpUtdGXJUGKue5fxAepPgkRsgAlXM/tcpWqTAMAJdmdzAwQgao3tgomfGCzI1SA1+LBASolS1N77kX9FelYozNIwOgSu6b6JXSDtot3YwcBnApTOgLzEKM49206Tlk1jpe4pFGD1THajJu2egYZukDqtZKvoNRo+OlrwHgQkIoUiJyI6BeEx216WWvAVSvWcJVWpucgqtBQLXcN88v6grErocCAajeJ6VhibbowRJyQWCOJi7gjBZkot2TWN4OMfSErrMvYAa8t0GbuI6RekDV3DdNCjHALLiPRVLqxbXqciPyI6Ba8c0jZO6Vqq4MzQWq1sY0dNWta3VzyEh0iIBKWd/ALRupZ18AqrTYugRFGaA6U1NLjBdkTs3cTUMHcE4WqbxPXgygbkMjhwHUiTYKoBZvXmXJ2CzeAHAJV0qJ1UrEIqBi7geN7HQ8TwNXo4EqUYsBUI13Teq7Vne/NAkHgEuxGEQcAqoWD/9xqlxmlpgEVMv96pOGGATUb+Jq1XhB5krpalD/ihAAnFO55DXJB1At93PI7IsvRusB1VpUqkBuBNRtYj7e8XrNg6RHHSceNHgA58Z8DQBqQCwC5mEJ7XQvBQrDQP0mcofpVZaelEbI0OABXEi0yvISEiwA9eqvrsQcMkCdlpAvMFIPcGF8hIx1ghgKB+CSbiXdiKVmgcq57wPZbdzkREDVwhLa6A+SPkm6Vrf4AYDqhIlayvgIGbsiTUEGwCVdKcWgiXswAeC7YtVJYDbcpwt3eQTxRl2OxEIsQH3ieDwaL8jYZL6sJgDgklbqEg06Q0C1FrOySbnaEoD6LCEQ/aDUk1uJ2yeBGZse/E/jBnBpG6WEg3gE4JK4QAWgEnGjVJAp59gjNgGzM16Quclf1hkCgEv4t5L+rBSPxsf1Abgg9xelGRUDzMLUnA0ubPNXK0btATM2XpBZFY9ghRMAl3KtVBgmBgHVc91MXe8c4MjEnA0uRDFqD5iDKCmejkjj15ptRRMaOoAasMQjgEuylUzc9/QAVM9iEfPrAVWbWpNkfITMlbp7EyWKMgAuoyzE0BECquY6VeCKNIBKhL26/IiYBFQrRKmJpxvo+AiZH5U6Pyw1C1TNffN8Vlr1rbyNEkB13K+yZB0gOj4ALu1e0qMYPQxUronj3ZfxgsyDpCdRdQVwWb9J+qI0ed3+wtsCYLm2SsVh8iKgavHwH8ee8heT+QJVm7rTebwg84tSUYaGDlTN/VXpvypdCbKRMgBwCU86vkUAQJUW0TzvlWLSToyQASr2voLMZ3XJxyIiGzBjnttoGYtIOoC6ea4O0/EBUIuduj6a5xwQmLkoaWQKmYmCzBd1yQcNHcCllLcrEYsAXAoj9ADUgotUwGyMdV/Gp8e0iisTaQJV83xBWhJXfwDUg1gEoAbb/AWgalMr04+WWYIlHVM3PgHA90YnCAAAIOEuBmAWpgoy47cslfcmAqiW+0l9pQXsIOAA7RQAzieKUcRA5abuLJy+ZQkAAABJ6H0HAAA4YaqkMl6Q2SjNHzM1zgYAzoEOEFA37xdy1kp50VrMrQfgsoJSHLIvAFWa6r68blJfhsIB1YuOixXh5D8AVCX4ThcCc+oBs+E5FknqCsRBzPcJzNh4QWYrJowCUA+SDaBuS+kUcKEKwKV9kHQrRuwBlXvfLUvcqgSgBmVxGEDdPBdk2rwCJcUYoH6eY5GUFl6xxVeISUDdRuLR61ZZYoQMgEv6oq5ATCwC6uV9hIzFIDpAAC7tXqyICzgwXpD5QQpbKUalBr87yzYB+FqeO0CSdCOFvRStKLO/9AYBGGSTTDoVrnNOZBerdqIjBNTIe14kSX+T+2lB0rPSxSuJmATMzGhBJvxB0rMUn5UCGxVYoE7eE487dUVh5rUC6tXIdzy6TbcsxZ3SrZQWi7idEsCZhb+X9JTToc+SHsVFK2CGRgsyzTpfkb7OPyhvX6qlQzSU+NWwXV7ZcHR7j3mvqxBWefUPp8IfpLjN/3jU8T3THINAHYKkVYpHXoVPUtwrxaGg4wLx18ai8vYu+/vy31/zPIZ4iJqV+eO30iitNGR9FHudayk4Hq0nSeEmv51XkjbqVlyS6umnAZi8nXt8hMxKqXFvlBq1XQ16a/LxrTjueFapfL/t6ied4XqEXJDxnHj8oDQcd6t0/N2rO/7mmHScSkq/dcfqHAXr18TjuX0+c/Atz4Pf8vNZaepm6Hm70/HFKSs+vWWETLlU7V7Hn+nXfr5Tj6cN4hL6x+VrCjKvOT+WGqWYU+akQanv4jkWSemCeVS3r/1iuMWlmtr/qc8xnnhMTdvu0WvPNXwO7/OegsynO6m9lR4/SvGzFP5R2sd8cfpeik/Fk5dBUDruJJXV6zJgjn24p5536HHf4SAZvUhlRYmpQPedtu0sQvG9fO83Oi7KPOu4OPOt9vdrrhK+ZdSOFS/iiX+/dwRQ/30r96f8nR1H/dfp/7v/eRRXU0OQNndpRJtXH/+NtN9L93+Q4l8kPai7fck6R/YelQmJzfVQsjkuyrku+hN19o8L6fiY6Cd+/c+6H7eG4thQeym3rTwuTiWnJ34eev+OU+0jnvj/Mf3jeEi532+9peMthYf+qIM5GurIlF/ScVHytQlsPxbZz95aUCj+PzTS1UpqHI+Quf13KRY9fpH0qxT/Qek8WJ4L+7cx9c8v9jPLjRod3/7Uf6w03N76z1/+ncWSsnjU/8ztb/vz/vQ7Rva3lsN949uz+od6tH21bWp02IfDWxmLxw6Z+UWj8mM6uRtfmyfZY/vHwKm/P5V/R728NfHUOcoKtGt1F3T7x3r59/b4crSLitez2FJOoXAj6aPSLTv3+aUb6epKajYn9s2Jm99J7bP0HKV4K+mp+4pbpVsrpdcVwYbyfvu7tvj5qVuipo6rofy3/zdWmO7Ho/K57NgZOhcOHatj29Tf/qHHzTSGDOYQfddK/Tr7fdm3M/Z59/ta/fPA2Hv9jlh88qPLvwhx5Knf0pcsvaUv2O+n5Z9tJi6cj3bhbm6kXZB2eRhc+Kl7jXYrySaSsh9aI4pS2OXtiOqCsXR6dE0/sPfPRqd2ojhRv3iuqTdw4G+m+heH12yKTs6pE9HQ76cOyqFO1lSAGfrdyFOM1Y+k4jPtJ0WStJbCurfv1ljLfXvtQTzUAMpfl8dWbwcOT93kt63/uY+9dr+oZsfnUKe897pHjzva2IHnt58XgePo+JFentz621/ulyXwltjkz2d9I602b+m5zsPNj9K2lR5ulIow170iQ1nIuNJxh2Wr7jgtk7qh5M5iyb73OHuuMn6VnaH+cTxVkLFjr39CC0rHYqNustDe8RCK54i9gH8Uv/I2ReWTQJnEFNsZi/8f/D6mv+/9NtL/jF7hqC2Xr1M+oHyNoScwp5L+/mPH9nUqYI79/K2JXP94sv+349He93zchn3xuPL4LbYj9p/THt9o+DOfem/7/87JxmYtrVZ+Y9HV76XdXnq+ym/Rz73zYVTXdsvPTTp+T8uOqh3fY8vXlm3Nntc6W/0CWHmu2Or4tqrieYJ9/jbCIP9tHHr9qK4j/ZpOnsWr3sNeHBmhl+eXeUf5lTvoIW93bPN2Dhxqh+0firFTTsWIoWO/H5+ncrWh/K4f14uHhnicphzen/629bd76DFlrOvndeXDi/2I5e0/9rf2eysknsqT7FhbK3X6rlO/QHt1k2KXj7X/Xymdw/sLidhxYJ3H8rx+JcmKEXm/QsixyHFeJElXd9L+StrvpLiX2jsd5xftwDl+6N9lWytjTD9urPQyN+kfY6ve35av149j9jd2LPX7HUWbCfk54q54LnvI0Pac+tmQoTZRxpHyZ19xXn9NivFVxs7B9u9yn8s+1EA+Gq7U5dNS+uzs8bbfZX5RXlzo55RD8ULF74byWftnOP53+behf3z1vofieV/0A4dibv/np56/fJ6v+dwHcq0QpPVKaprT8Wh8hMx/32i/irq6idr9i7TdSeuddLVNxbOdpP1GinZb01rSjyk5bH5JjSZupXCrNMz3s1LV1gJyDraxf9ItP3z7EO/UnQCUH5MDd3iWwr26YkF+/vik44BQNPywL14/pEQyqDvZr6yht/kDXqXnbKNS4N8oFaTKE37THaPaKJ2EcuEqvZC6+S/KA7dMsIv3IOzzMVMUQEKbtz2k/bUgdPiI993jpHygFrseJbXWSSuOiyBplbelzUl/XOfPdt09QfhBCtdSu8nH52Pev2JZ4mAFhja/P3Yg27blxH21Sp/94TVWOdDuugYW8sat7EjNn22rIgDn52stiei9Xtx3z6OQP+/bfKzs8nv+N/kYsG1/KnKP/KE2z/l3+WTQ5OQ07oq4l7ehze9da5/dJu13s8nHxsfusfGLFO+L99nes/IWQUuCr5SuBj1KepaaG6m5kj78u6DNndz69Oeg51Z63kXt1tLORsncK008vpPi30jxg6R/q9RG10oJ2j/l75+lsNHhXuuYR+2FVgpPuV3tc9L4IOmDFP+Qjh+1Uvg5/dySgvCb0vH0IccwGzJtRaC9FG1EWW6PFutijh+61/GtDytJP+Zt/KxuBJBybLLRB0WiEIs2fqhJ7dNrbTe5jYX0enGXjpewSlf5D9uU/ziG7rHhKcfR8oRrscuKW9fqjk2L4bY/T8XjrT1KXeLVH9UhqbGdKAtulqBfKx37dp+8dTQtzlsSaH+3VzpR2SSH/QQit8tDW7Pf58cE6ygWyUaMvXNykVRarC5HEMan4vWk4z8uOzdl8mPx8FPxd/l9CTfpvWg+pWO5uc/nv590OFbavbTbHm1a2nw7FvL+xX2KebpJfxdthEe/6FgWIsv9XhfvX5TW19J6Lf3pD9LNldz69PuVtm3U7kOr/a20X0nxs6Tf0pXqWLTZQ1HkY/53ce7WnaQP6kad/qR0LFtM2Kdjr8md0GBXMjc6XKjYf875zpWOLzJs1X0+P0n6VQrbdC6Ld/k5btTN93MjxR+Vzr1bqd0V502l5w2ttP4iNY/S6mepbVNhKrbHX0c5bdTh6uWLvmBIOUcT0ujOQ3Eo5Ni8kuJ13rfrdHzGrXR9k3KH/Ze87216jZXSCO5t7qjFJrW/+Fy0W8vFyo6XdfLLOFW22eIzDJa3XuW89lEKj/mc0UqtxdCy/ZSvF3Je1x7+ech3LOfch/zvVmpyLrcPOS0MxfsYeu+pvWY56qrJ57yV0rEWimPjgw55pq6UOma7fD7Mr9v+lp/W4vyTDnm9Puqw+qFijn05Dmqf4pJW6bhtfpTC7yU95/fqn6T4kIsIRcyJrdKk2T+m38fH7pg4vI8/5P38Le/Ls1Ks/H3371VuN7//tNL11ekOkAe//49Bu630+beo3V+kpyg1v0mrX1J8aB+k3U3K6+OzuguArdLnYcfNdfqsYj7HRqWfN/kcFlbpM453UrhP+VDMseJwTrY86I95434tcvm2O9ZizoHDRt3t53Yusc/8Wt258Crl63a+az+n7Y+3qb1ZO7JRilGprxZjbp/7Ig9q8jaVF0FvUzw8nL8tBuR2fYjplnPYd3uOmHOX/LrGQtohr1L3ePv94Xv5GMvHym2xbSv6Y4fcyJ7TcrD8OYfb9JjmKZ9Lct4ZvnSPDR+lcJdjSyPFT3nzfk7PE+91iBNxI7V2i1w/Vsbc5nPfMb0Z+XUt7uzz8VT0DUPOA9t19z5Y/AlN+nvLm63eEHP/LVynfll4yucf5X2QurzPzol27Lf5OfKIvaj8XCGdT6S0n4e8z+LTrvu91Ptc7HH5PQkWg3N/tlmnc9Z/82Ojm5EC8WhBZv0xKDTS+i5K99L+RodhTM06NdBDsLcJpT7kjXhQNzTnOnUc9ZxPoNbxzQ0nFCeP8oA8bLbttL2WHQg5kZCUDjK72pRHEIT+VZwyQ7WDV+mNtw/+UJRZFQdHLsi0SidIbXKSoBxgrAK96l7m0HEuTyZl4m+Kg80eWyYytp2HkSLK+2aPLzKdw+iLfBCGolNROhQn1B10QbnRWNHCnt86ibZttl9XxXMVAeBotEexL/3kJDT5PV7pUNCLxdEYisROIR1nduWmjfl3ZQfGGq6K9y0cJ4hHr22Jre1nLvgFO26a/PTlyUT5d0GHjrwlWPZehBxUgxWabIiaHbvX+T205Eh5G/dKBbYyAFsgKYuUuR3YlaawSc+3upPWH/wmHuvroH0b1axTLAnXOpwgD1fxbtPJRX+j9P5eKRVWrJMT1bXLXCCzk2rIn711SNQqHRM/6FCEC0/qEulW3Ynxqog9FvBDOokH6yhZrMsn2cPPy6Hb1tZu1RVz7VZPpdcKOUE5HP8WJ7qHqInSep86B/urLhGJq7Rv4Trv776IvznGHeKjrazX6uiK6eFK+17HBZkyhpUFRNu2skfWqLuC3Y9PxVXQQ8zL7UY3xedqxTZrj+XnYe+NHRe2Hbbdtj/WLsv4VBRHrDh/dOW636sMx1+HeddypyxYvA8Df2/F/v45z+Ju/uwOv8vHRriWwqd0DDUrpYTzPv/dLsef2O3iYVNzfAmxiIt2MaVMUu19L7e1v9/ldlqMXKeE7/rad0FmvQlqc2e5vZFCnlMmPhVt0d54y0esWL5TV7z9pBRf1vkcsVNX1LWYbx2IXAAI1+oScOmw2lO41nH7e1aXM9nFKvucrLBzVxyvd1L4USnmPOXzS86f7JgMrdSi1aSvAAAgAElEQVS0+WPfpPjRhlQAtKKt5Xz9C0H9M1NU17aaJn0dzsU5FsV1SoxjbvttbitNLsholzuDex0KMoqpKHPIX/Y5ibY42XTbetSpsdhXxtSybVuOa/t5rcNqW3bhrCwKh9wZPCrMFfGkzBksxjaWO9jL2nse0r73c7lDR7SMeTrO3UI+1sI6vYdHcc/mQtpJwc6p27RtjdQVVZT29WhfpO5cmuNr2HS/O+xf7jSFO6n5mJ9/K+mX9Lm0xfki2sU8u5hpMbwIZIcCsnXc83YeOu5Frto0QZt10LXzETKbuyBto1Z7qf0gNXdSs0uF0/hU5CEWA+x8bTGmiN+6Sp9XvCqOaTtXrPNnfJc+p7DJ5zjrn9n7b8U+qesXWDtp83PnHDhYLGvza1v8zKOqol3AvE6vFxopPKX9izFvix2Pli/FYpvz6x6KD6F4zK5oTzf5ufoFmZxfBrsYW/YfyxyjOMTKo+2oD2Pb2TuXHl0YL+JSLG9vsdiS2+4hL7DcyJ7X2r7yft+qG2yg3Bbze2hFg3CllGuE3B5v83Y8qltK3Z7APrsTBRk7tkKRV5U5VAg69MuP+ob5HHDol+Z4GCxurnK8s3NaHhQRbnKM6T1XsFhun095Pg25OGn9Rjv2yz7k5nhbDoWb8oOzGF+OfrVcvjze8n40qxSLbkcKxCEOjk0FAAAAAADA99JMPwQAAAAAAADfEgUZAAAAAACAM6MgAwAAAAAAcGYUZAAAAAAAAM6MggwAAAAAAMCZUZABAAAAAAA4MwoyAAAAAAAAZ0ZBBgAAAAAA4MwoyAAAAAAAAJwZBRkAAAAAAIAzoyADAAAAAABwZhRkAAAAAAAAzoyCDAAAAAAAwJlRkAEAAAAAADgzCjIAAAAAAABnRkEGAAAAAADgzCjIAAAAAAAAnBkFGQAAAAAAgDOjIAMAAAAAAHBmFGQAAAAAAADOjIIMAAAAAADAmVGQAQAAAAAAODMKMgAAAAAAAGdGQQYAAAAAAODMKMgAAAAAAACcGQUZAAAAAACAM6MgAwAAAAAAcGYUZAAAAAAAAM6MggwAAAAAAMCZUZABAAAAAAA4MwoyAAAAAAAAZ0ZBBgAAAAAA4MwoyAAAAAAAAJwZBRkAAAAAAIAzoyADAAAAAABwZhRkAAAAAAAAzoyCDAAAAAAAwJlRkAEAAAAAADgzCjIAAAAAAABnRkEGAAAAAADgzCjIAAAAAAAAnBkFGQAAAAAAgDOjIAMAAAAAAHBmFGQAAAAAAADOjIIMAAAAAADAmVGQAQAAAAAAOLP12C/v/rfrGH+N2v8fUvtZir9IUa1i2Et7Se0bXjEUX/2fN8XPY37+8vurnrz3GofnC+k57EuSQuj9wP75qhc7fs2jHYpSiMW2BGml9DN7uf0rnnLo/W3UfWq9TT/696r38/L3h/0fep1w/DdD29X3NW/XKaH3REef3cjfvfjdiT/qfTyv8ob9CrJjauDFT7x/L1+m6f0m5PejTb9qpGYV1IQg7aTQBq0+XiusG93/86+nPqVZ+/S/3Mb2S9T2/5LaRyl+sVjUSvtWar/iwyqb7Cp/L2PMULuyx5cxSr2/Kb9r4DHv0Q8z/Rh6FO+KNly27X0c2ZZTh81QsLYn779R38NAe+6/F/ar8mxmP2t1+jxln6d0HI/773E/FtnXW85/c7fS4Rxkb0sTpSYGrdv8/Wqlpmn0r789uoxFN//zOsaHqP3/GxUfY45F6uKIHRevaRpDeZD97alz8It3NRz9XSgfaz+OvcfH/ODDz/vJVyltTPd0L89n3fPH7lcnX39sX8rt623ri22a0H/RcCK3mTpKy+087Hp8ET9iP6eLvfdzKDU4tQ0n0sqjh8ThDY8n/6EuL/0aX/V+FcdGmcZEpfejkUJTbMdQ/jrwUfcOr5fbcnjZIMWmC9tX1wrNSs/3v7iMRZK0/l+vYvwSFf/LXvGLpJ+lw5tW9geCpN3AE0wdEuV5rvcuhlj88MV5+US+UfzNiUP4xLaFoW/9B6VmHtL3Jm9/d2jFgb84fpr+S4ZQ/KNU5JynDsvB4/YrjsQQigePxNA49iGW8auf577YmImDIfc/Dg8tj7G39JeGcmpJcazPX54bXrzwqUA69NDDm3f8+NwXffExNa2i9eGHcr9DMlS8VpNeJuR+mja3Cs1K2/vhftpoQaa9a6WtFDeSVulDj0MB/bUfxKkTkv18qBP0VZ3xkbPdi+AQBj7Ht3QuorodGNiRMvHp/3qsFZ861mLv69Qmneoo9v9uNHKUDyg2bDBBGnIqmziV+PUMHQ/lUwz+vp+1jL/EazbjawwHxvjaPe49yhK5kM58IR4F1yhLymKKYI47iO11q7iVYhMPh+DoSWjMqbbY//9TdQgN/H35u294PB0991hC33/wV29LP+hMHbHfYydf6dT5963v/2uTpQvucpUsgY2pLbaxOM9+1UWNeYkfYrq+s46KTZHXDjWZMl70f9dvz69t3y+aZzz692F7TsUwSzpjuXEDG93blmhPGHobMJKHjaYKQy8fgobftOHz6tD/nnTymBwIIkObUGxaPPHz42158QaObNvApgz9zdEuD733E75Fsxx9jvjy7YzKb1h6s7rDrvde98/BbyqhHH8YIUa9rJT5EldRWsXjfKh/PPb/ffKYLYzlP0f/HPhjS13LH8WBB4y9/ouNOT5ejv8kFvXWcDgMrb8aY9dmY/n3U/uYT2mH/uFIexwNif2/eU0tQVKM8fXtYDCeavhzPhWjvuZ1pn72NU/1mtj44me9X7zow788Ziaft3juw6/LAmOIw+9n//OMxVf+d5TUxCi1pztqowWZ/X/cK/5Fav9vpaurP4/sxGu8OBh0fLC1xc+GHvvm13nFp/Ge13vNH0el/duPPHQsiJY/275ik8pK+NiBN5kEjkWgKVOZ2Cv+9B1P8eLxF7xG8nWbWzTYIGm1P/53sBNNftY2qNlv1VxyB7+z/Z/3ij9FtddRcRuPm/Z7YsTQFaP+Y4Ze69XFkW9oKKnqs47hqfjxVS/w6j/8jiZiavnr/mc59Rn1P8++UHwNbc4ljoFaRB2uYh1qMG1UE6XNfq/pS5/ztf9vo+LPUfEvOVn/XPzya5pQvw2/5lg6dV5se4+x5x4q+tiD3xRE84fdT0zHtnXqMUdtMHb/f7ai3olcsP/vfuwv48O32tRX5WS97amNbdd+4IdtzFeSix/3Oy/95/ma1ywaQlBQE59PjiTyIn7ap4679PL9tLej1dcfp285vnrx7Nul3dMbE6PVc9Nj235bGgpZU8ecvW+veez3fm9PPc/YdnzrfLX/nn6Li8D95ziVv5bbcOrn4TUPfO3ve88bdRzTxs718fjxsZWCosJ+r7FRiuMjZP4lSj9J8V7Sk8aH9b/VqURl7Pdvfd5z6jeEfsN+z/Z9y327RBA553N/baP+nsqA8ZrXL4+d/vO0uc/TSopRYR9T9dWp/U+t4q9KxZidvl38easa3urXHNs1bOelvKWDO3R11zpdQ53epSnjUS7GHEbx5vcktrHrIDgUf46KvyldeLdblPqjV1/9ZN9hA8vnHkuY3xMnJh4fpbed6069zqVyj6nfjRXAv8f2zMWpfejnw/3P9y3H4YnjLCoq5NzIs/g5Sl+ULtRaTCqPx7JD+b3eipGRGKMv+Y235+i08632+Vz51FT/4Hv1t79W/5bctz7n94j55+5HDj2mf7tV/v8YJcU2jdo7Ybwg878rNfR/kfSo1426eA+PcbMfFMuf4bxqeN/fkqyXVdm9jjqNdr5pnvdpThmndv85phj0RV1x2NTwudaC9+Lr9N8vilnjrN0VMal/jSbufL9x8T9L8VnSg6RnHceiS9022u+IDP186N/f01vOdWWe9JbnOQdixNt9jwLbwHMd6uu7/fE8HB79g1IsetDLC+fmex+n5yj6fK3vfIx9FzUXYux5KDyfFtXlRgMFp9COx6PxVZaedVx1tRf0+EaeA+8dvoU4fDHWddqx08urP7QnoDrlvH8exS+S7pXyo/IW5Fpi0VBsHIuZ/dvyLo34jjcaOuzd+4OkH5Uur68mHgvgPGL3zb5S9+WNI2T0rC7p8D0vFjAvQ5UYz9nHVqkoQ5IOVM17QUa/KuVDT3rdfG6XNBUrx+ZIeq33/j3wjR2P2nN+UP6tpCtJG6WYJJ1/lFlNBV2gUmnxg9O/Hy/I/KBumeWxyS8BXI6VXj3bFl8Uh4FqLaJ5Do3imGO/r6bh8MA35r44LKUijN06+b1ueZlCDAAmTQ1GHS/I3CkVYlY6XiucxgdUI0p5kjzHDXOn49uWAFTHbqF2fcF0aPK+uYXewyQbmu8+ABMaLeAunmd1o4el+uZyASDpvQWZ/0dpoqh7pSvTdIQAXALzCgDVC0pJxXhiMXNPSlUnG60353g0520HTrCOzyJGyNjUEmU8ol0D1SkXWx4ynjf9qpR82JVpANUJqm9exm+OYgwwG65jkc2pZ0teA6iS+7xI6kYPE4+Aqk11X8YLMo/ycRUIcM6uBrllyQZFGaBaUQsYTGsXqKwTBKAqliIsYsq5L0p3MixiZ4H5et8tS2XFlU4QUC33Q3NPTVgHoCpTw3Jnj9F6AGphk/raqD3iElClICmMJEfjBZlyAk3XGRYwbxullQ/dKpe9BlAt94NGmFgcqJpdid7I+XxWkvQvSkUZRsgAszYeq9ZKHSCKMUC1LPG4vvSGfE+2yhsrvQG4pEbEH6Byi5hgXEpX4mxYIn01oF5hvImO3+Xwg6QPernsNVCDRcxmOy0oNdU/XHpDvqdN/lpp8Z83gAu6Uap+E4eAqt0odWFc+ztJf1SKSWsRl4BKhYn+6njx2Cav435p1CqIYzNz/TaUsQgALsVWWao1Fo11yGrdZuA7WNTCQ1ycBKoW31WQeVSaLIqJolAjbmE5cJ94PKtb1WThnzWAC7IJNLlQBVTJmuZOzhc7kLo5rSjGAFVrw3sm9aXzg5rF3veFsqVmnzy/D/HE/wOoCnWKC+PNBw7cN4eyIENRBqhWnAhGowWZ0Eqxf9mdW0RQCzL/g2el6VVc4/MGqhflfLQegFlYRMpgBRnm+QSqFidGso2PkPmg1NO7z/8mywJwKdyiBlRvMU2TWARUK2ohBRlbdIU7GoCqhWa8ZjpekLF1dKm8AtVzfS5mOC6AChwGCTNaGKia+7n1pC43WkT1CZivcPjPsPGCzDZ/2ZA4ANVpJf2sqcY8c7ZzXAkCgG+HkT5wKKqbf9u1e0kPqnvlNwDvm0PmUHHtd4A4gQNVsUWI3GrESD0AdQjFd/IgoEqLqFFsxQqUwAxESWGkjY4XZG7sGXo/JwkBqrKT81rFldIOrsSsoQAuZ6PU07PReh6Qz8GhRQzuf1C6Igegak18xxwycZ0fUc7f0J/LgRM5cHHubx/uxyAAuIRGKdja97nnQ3PcZgCJtV/yIqBuQwNcCuMjZD7mP77K/97r5UonjJYBLs59E7TZ+dxXnoB5s0U/3Noo7eCV0u0CdgneciH3l+SBeQhhAXWKW6V4tFaKPdvLbg6AtxkvyJQdoLITRKcIwDkFvRydB6A67jtBV0oXp/rFGC5OAVU5rIbmXVDqzdlFc4lYBFRorFmOF2Se8tepwszUswPAt7BWd5vAEhIsAHX6pG4STUl6FAVjoEKt9+KwlOJQkHSXvz+KCX6BCk3csfTKETLl7QIAcGbhOn0nBAF1ayQ1nntB5RVoLlABdfMci6Q0KmandPHcRu0Rh4DZmV72ui2+AOASbi69AQBeY5W/XIs6XsKFDhBQnyWMWrPbJ+/zd6aUAGZpvCDzKX9fQlADUK8bpc4PtywBVYshfbllixw06uJRUDeTMR0ioB6eY5HUTepLbgTM2vQqS+UkUUxaB9TL88n4SopbkXQAlYvBeZpwpa44bPHI/p+RxEBVXMciSeEm7yO5EVC9t0/qu1Yae3xqQl8AOIdHpXuky9sEAFQnRucjZBopNDkdsryonG8PwOUFKa5SW3Xti7r5Y/ainwbUaiIvGg9VVFwB1GCnbmUTEg6gbp7bqI2GKZVFGc/7DszJUFv15lldMYaCMFCtKI3WVMZHyDwoNfaJJwGA72qjFK2Yzwqo29TajnN3JcW9uhHE3MoNVKkJUvAci6Q0QmYnYhBQuanuy3jtuD8E13tgA1ClWE6aCaBqrvsGK3XFGItJ5EZAldw3TUbGALMwVZAZHyFzlb/WSg1+/822CwC+DnNZAdXber8q/VGpGHOrdGXaJvMlNgH1WEq+cKXjOARglsYLMmXldQmBDZgzz+2TuWOAWYjebysMOr7UZd+JT0BVwhL6LUuYJwdw4u2rLP0s6bO6CaMA4BK24j5pYAa812O0Lb7Ii4BqNftclPFspe7iufd9BWas1XtuWbJ5G9xnWACqdqsUzVj5Daib906BFWOWcksEMFNBCyjIXCvt6ErEIqB2I210eg6ZZ3UVWFYTAHAJf1Q3p1Wr1CECUJ3oPUe4l/Sk43ljmEMGqIoVY9zfzfOjpEelOxqkrlgMoC4TK1BOF2Rsudld/hn3SwPVcT9ohFuWANTgSelC1ZNSXKIYA+BS7vL3sp8GoDpTix28fpWlVfms+TsJCFAF9wWZZx3fJgAAl/CUvx50PFIGQDUWkyp8VEoAN2LkMDBj03PI2Dwy5VwyQUxmB1TE/dQqX5Q6QHstJMsCZsr7stfGgi7xCKhOUIpD7mPRF6XbKFux7DVQsalQNHp75WEyrP4yj695ZgBn437ebbsqTdIB1M11IFJXgCmDLkUZoDrh8B/H7pXmkOFiFVC3+J5Vln5WuipdPNng/wO4KPfNcZ2/3O8oMHPeC6b3SrcGPIs5G4CKxbCAlMHmsqI4DMza+ATkj0pJR7+B0+ABnJNNLu79ahcwd9F5imATjDNaD6haVCrKuGZzWLkfJg3M21QTHR8h86DuKpDNGRN73wFcXH/ebXf+XtKvkv5Z6Z7p3y67OQAW6k7pqjQdIKBuS2ijf1Lqp0nSL0q5Ef0zYHZGCzLRrgAxQgaoms277daNUifIfeUJmLd4+I9Pca10gcp7Rw+YuyUUZK7y92ulkcRMNA5U6X0jZMxi1o8D5sl93mErmnCbAFA19+nCnY5XnwRQnSil9rmECzgrpeWv7aLVXqyEC8zMeEEm6ji7cp1lAfPlvhNkk/rSCQKq5joOSV0scl0BB+bPfV4kdRepFrGzwLy9fYSMVVlp6EDV3K94aPM23Kq7XxoAzu1OqQPkflgiMHNLGE1r83zeK+VIQ9NMALi4MJEvjBZkwq0UG3VD4ABUyX3fgCVmAVQgXEnxSmm+hu2ltwbAKTHkPoxjsVx0BUC1gsaLMuMjZP6gtNLSb+quCFF5Barj/k6ez0qxSHJeeQJQtQ9K+dCNUpHY4hG5EVCPIMVV+nJtq24kUNACrs4B82PFmLffsvSYv56UGj0JB1CdRZyDf1UaksvVIACX9GP+biu/caEKqJKtBeDaX5Xiz1YpR2LhA6BO8R0jZOIXpYLMg7rbBUg8gCq5HiHzs1Ln51kUZABcTPxRKQ+6UeoAWTWc3AioSpD/RZbCv0qxVcqLbLQMsQioztSF8/E+HJVWADXYKSUbWzGXDIDL+ZK/HsQE40DFgvuhw+p6eRRigKrFMN5Exwsye1GQAWbC9bl4X3wRkwBcyoPSyGEmGgfqFqZXNpm7Q97HBXSgenEkHo0XZCzxsHkbXPf4gPlyvzL9H5TmbtjI/xhkAPX6SdIv6goy7oMvME+hTV+u9eMPsQioTpS0D1L75lWW7Io0CQdQragFNNFbpVi0UjdTn+sdBlClci4rYhBQj15nJ7hPjLSA5A/wY6ypjhdkPimNkPlZ/u/DBGbMfd/AVjahIAPgkiwGRXW3CRCLgKoEpclu3TdNWwGXOARULbTjt1CO37LUaCHrxgHz5/pcbHPHlFeDiEsAzq28hdt10AVmZhHDhXvKovCS9huYmanmOT5CxlY0WeVnYrlZoEp20dat/6o0p9W90u0CJB8ALuGflW5b2olJNIGKBTnPiwwjZIDqtWF8Ut/XFWRo6EDVWjkfMPKUv8qRMgBwbtdK8WclJhhfOO6crVeQ1MT05doiKk6AA7ZE/QnjBZnPSgUZrgQBVXO/GvS9WGoWwOX9WdIXpbn1pBSbWHIWqIb1eVattPJekLlSSgC3l94QAO/BKkuAAxOF1/n7IlY2AXB5dkWavGjx+Pjrtm+k4H0Eifvk7xs69T7RkHEG759DhlsEgOrZ/Ntu/awUi3YiFgG4PCvI0CECqmIpwm4tRW4rBFCB9xVkGnWTU9AJAqq1lvPpDGxicYlYBFTMfX3iV6URe+X8esQkoD77BTRN66e539FviPcKFZouyNhld4oyQJWCUr1ivDHP3Frd1WgA1XJfkPlFx6sskRcB9ckrw0bvczuVwZZYNI73B5c2khxN3+Vg68a5zrCA+YpK06s8XnpDvqc7STeX3ggAU9wXZLZKAfc5/z9FGaA6UVIbpei9ba7VXY1zHXiBeQsT7fN1F9VD8eU9uAEztJXzc7EtNUscAnBJ++LLrr4Tj4D6xAU0TbuTwXUCCPgw1kynb1lyH82A+XM/jcFd/k7SAeCSfq+01LUte+16aCIwXzYFpmsP4vZJYA4mAtJ4Qcb1pBSAH+6nV+EKEIAaXCuNjtko3bZkcYnOEFCVKCl4b5c7pXjkfT+BuZu4cj4+h8zvJf2gVJhxvaYuMG/uaxX3SleiSTqAqpVrAbj0IX99lHQr5zsLzJf7YkzJfRIIzNtUPBpPJWwtXa5OA7gkuwoEAJcUel8S+RGAyxiKRwBmh2s7gAPubx9+VirKkHQAVWvVzXXr0pO6VZZ24oIVUKm4hHzhWtKVuovnAKoU37XK0pXSVeklBDVgxtw3z3KeBteVJ2De3DfPoY5PmSO5fwOAmQjyX6Roii/XlXBg3qb6aeMFmR/E1R9gBtw3UUs46OwAVXO/ssmN0sgY43pngZkKSsVT7+2zUdrPlbrgS54EVCdMrL4yXpDh3kRgFtzXTWPvC0CVXMchSfpN0hd1tywRj4AqhcN/HGNkDDAbY+HodQtbew9owMy5vxBkE1NQkAFwSX+R9KCuKFPGJGITUIeltEUbPew6AQT8Gy/IfFDqBG2U5pJ5OsMWAfhq7m8TsE6PjdZbSrIFzJDrWGQjY1odF4oB1CUuYOnrax3ftsRcVsAsjRdk7iRtlQoyz+fYHABv0cr53HUkF8AsuL/DeaeUF+11PGqPGAVUw3UMKm3yd5tsnAtWQLXefsuSVVxtSByAKrlPPrbq5msg2QBwKddKMWilVJQBUJ1oKyytLr0l39kXpdyoHLlHjgRUZ2pl+uk5ZMLA/9PYgfp4rsrY1WgAuKS1ulsDWO4aqEuZBzW5MONY2Epxp1SMoUAMVCto/BbK8YLMX5VWFHjQy8nrAFTD/RwyNleDxJBcAJdjxeEyJgGoTlxCnrAWq1ACMzA1eG38RqQnpUIMV6eB6rk+D5eT+gLApfRXfKMTBNTLeduMNmIPQNWmQtF4QcYmrnvtswG4CPe3DVMUBmZhpdfcCz1jj/nL5msAUKcljGL7QWlF3LWY6xOo2NR0vNMFma24AgTgstxXnAAf3K+yNLS6ErEJqJP3ttnfP9fBF5ivICmMtM/xC1k/Kd22tJX/KjOAepWdIADVWkRBhngE1G8Jtzl/Vuqn7UU8AirVXwNgyOtuWeIKEFC1INFGAVyc+4IMKysBs+A+Fmlg1RZiEjBL4yNknsUtS8AMeE86DqVjYhFQNfedoJWYRBOoXDj8Z0HIjYAqvebu5vGCDMNygVlwPzLX9c4BPlgxZhFzS7qvPAEzVPRXQisF78GIeayAWZia+WW6IMN9iUD1FtFESTqA6k2tJOCCVcApyAD1WsLcl/2VpILIk4AKva8gc6XuchcNHMAl0fkBque9bho2UtyLeARU7BCHPAcjKU3quxN3NAC1m8gZxgsym/y90TIqzcCcee4geN43wAnrBLlOFzZKHSBGyABVixqY9NabB6WAawUZAPV687LXt+rGH5N4ALiQkEfrRYbjAlXzPkJGN0odn43oAAE1W0L7tFuWXAddwL/xW703SiUbijEALihQGAZmwX2/wFZZIh4BdXMfjHQ8qe8S9heYsbevsmQWMUsfgGo9K90mQMIBVG0R6YLdl0U8Aqq1iHrpSt1cn8QkYLbGCzKNUmNfK92fCKBenk/EXAECZsNzM/W8b4Ani5jmaZW/284SoIBZGi/IfFJaaelR0hd1k0cBwCWQcABV28p5J8iuRnPLElA1a6qufVQKus/53/TRgDpN5AvjscpGx6yKR5KAANXx3iyjtJDLXcC8uR/IRjEGmIXFpQxRC9thYD6mcqPxETJX+a/LggyA6njvH8SVukjGKBmgWu77BFdKV6MX19sDUB3m1wNmIU4kR9MjZMpRMiQgQJXcN03XOwf44rpvEHvfAdQpLKCZ7tVN5ut+ZwG/xkfIrJUa+rXSEtg2izeAqrgvyJRIOgBciq2wZF8AqtRqAYP79zouygCYpfFY1fa+qMACVfLeLAPxB0BNFrG+N4CqkRcBLkwXZKi+AtWLkqLjITKRpANADew+cJu4a1HDE4EZif7ThkNuVH4BqNNI+xy/ZelWKem4yo+ksQNVcn+x9lZp8rovIgYBFXPfPB/y11bpYhV5EVClRTTLjSgIAw5Mr7LU5ke57u0B8+a+IGMrvgGonuum+qRUHLaRwwCq5H7FN6m7WM7qk0DdJgLSeEHmn5QSj3+V9Ju4EgTgMh6VrkgTf4Cque8EMZkvgFpc6/jWSXIkYJbGCzIPSgUZ6wwBwCXslK5IA8AlWSziAhVQNdeFYbNRt5wUMQmYrfGCjC3vSAMHqhaC81uWbHJxYhGAS/pHpaLMk4hJQMXc50WS9Huli+c/5X8zeg+YpfGCTLl6AEkHUC0W+gBQhYVRG/cAACAASURBVOA8XSjnj3G9o/hu+idrjqPvIigVZVy7UioQr5TiErctAbM0XpC5EaNkgBkI0XniwcR1wCxEz3FI4rYAYC68xyIp9dP2SnPJRKWCMYDqTIWj8YLMU/4q75kGUB/vQ2ToBAGogc3VALwVx8/5eM6LpHS70pPmdeGcOy+wUGPhaLwg849Kk/k+iEl9gYq1jfMRMhSFgXnwvszStVI8ehTxCKiY65zI/H9K8eg5f6+dTepD7ASOjBdkbCLNOVVegYVyf6uA9/0DnAie84WVmDgTmIHofeSwlOaQCermkKmd94I98EbjBZm29wWgSu7v6OEEDsyD94R7LfIhYAbaldR4jkWS9FFpdMy95hGXXCeqwGlToWh8Rbi1UtV1CVVmYMZCcJ543ChdCXK/hiWAqlleBKAuvRwoRqn1XgCwC+blfnrOBYEZG+vCjI+QWem4IMMKJ0CVmuC8VnGVvxOHgPp5bp+WFwGoSz/uRN+hSNJxMWYOO0uxCAs1NbZlvA9HxRWoXpC0jtLm0hvyPT0pDct1f28WgKo9KsUjYhFQtbiE+S+jmOcTcGB8hIwlHBRjgKo1cj5CZqd5rCAAwLetUiyiIAPUz3sbPVWMKfttNb0HX7stLJGNhRgvyGzzF9VXoFpR0lMj7VxXZADMgfvrN424bRKYgyXMf7lVWl3pWikmPeg4NhGngIsLmr5wPr3KEo0ZqN5ezpuqRTMA1XPdB1pCJw9wwnVeJHWj9axQ7G1Eyan98LafWLzxgoytarIWBz1QMfej539Umrvhc/73HJZ3BBbIfa2CggwwC7FNK1C6ZiNi9krz7C3hQrpdnLORiuSDqNxrpnoaL8hYxVViiC5QOffN03tiBTjhuqnauGPXOwlgDkKblvfWXsOFCfeJITAPU01xvCDjcfgb4E2QYnDeP7hXt8oSAFzKlVIcsqWvmWwcqJPrpCizQswu//8SlMt8kxPCifFZGayBc9AD9fOcfHCbADALi2mqofcdQFXCEvotoffl1RL2EYs2PkLmQakg437GUGDmvJ+k1kpXgRoRi4CKreQ/HEnqbl1aylVpYGYWUZCx2yctP2q0jHlkAGfGCzL220VkV8DMFO0yROfN1AoyFpPoBAFVinIei+jsALMQtYCizI1STLKg+9T7vZdpJ+a+/cCE162yxAR2QNWaVgqel4Xe5O/X+fvzpTYEwKJxCzcwC9F9dVjSrY5HD9ttPcQooCpTd9xNF2SkNAaZK9JAvRrnBRmbSBNA1dzf5n+nlDl9UdrR7WU3B8Aw97FI6goxp0bukTcBFxeUSilj3bTRgkzY5ApzOUqGxg3UwdpiUNdGvVqLojAwA+47QbdKsfZa3TKz5EZAddzHIqnbwVYvl70mJgHVaNQtzjhketlrabihA6hDTIXT6Pnk+1npNqWtKMwAFVtpPOmYvR8lPUr6TSkWUYwBcCk2MqYfeIlJQFWmisPjBRkbX8MkdkDdvM9rYMUYYhFQtUZS4/my9I1SDFrreEkp4hKWYkZFSM+hSFL3OSx0rs/+Ls/ksMRCjTXR8Zscfi/pBy1oHUtgpvaSdpfeiO/ok6QPSp2hzcRjAVzMXs4HsT1KelAatfcg/8VwoG8mx3vjfW49Kd1CaYsdRKXgyx0NQHWmZpYYHyHzQd3s3RRkgHqVyx569EGpMLwWk2gCFYuS2pl02N7EJtDciY4PUDnPaZEkxVulEcSf5X9nB3g+1cCft6+y9B8k/auk/6J01D9+u40C8O3E6Lxv8D9K+knSX0VBBqiY6zgkpSvSe3GhCqhcE9OXa/+D0nxWT+riErd2A9UJE/nC+GA+97PzAZiFa3GrEjAD7u/gsUIMxRigak30vfikpC4OcasSULUojeYN4yNkHpRGxdiEmgCq5L5/YDFoJ+cTVADz5v7irN0IbkHX9c4C8xQkrcMCrin/i9LtSr9KutcCAjAwT20z3n0ZLx7bJJqryUcCuLDg+ST8SdJHdTHJdfUJmC/vI2SCzVrcqrsi7XmHgRlznypYHGKEDFAlu3azidLVyOPGR8j8rVIDv1G6PxFAnaJ8Zx5/r3Tb0t8p7edf8s/pCAFV8T6/uB7VjRz2vLIdMHfe8yJjqysxehioTlAa03Kn9xRk6OwAs+D9qvThFgH3Owqgan9Ums/qWqkDxGIHQJVsQTTXvihNL7EX+RFQIWuW24ni8HhBxobC0cCBqrk/D9uYv/I2AQD18X5F+u+VLnPdirn1gIq5H60npbljHsUtS0ClrDD8JGk3Mv3LeEHmr5J+UTc013WPD5gv90nHs9JVoF+UJq5zX4EC5sl9LLrKX+Wy10zuC9TH/WoHShP6PouCDFC5ncab6GhBJv6q1Ni34t5EoHKu846tUtLxWelqEJ0foE5RCp6D0ZVS5sRKS0DdwgKa5r261Sfd7ywwX3tJ7UgbHR8hYwUZlpoFcElflBIPisNA1VwXY6Ru2WvJeRUcmK8oaRelxnsb3eUv7/sJzNhrBvWPF2SelK5KU3UFqhc9t9NnpWIMc8gAuKSgZdwKAczcIib1LfM+YhJQrfcVZGzemI1Y3hGomOdajKQ0d8wXLWBHgXmL3peaDZJW6m5dIiYBVYrBdyiSJP1O6YIVF8+BWRsvyNi69uUVIRo8UB33zfJRacQek/kCVYuSguc2arcsrZUKMwCqFb1XZDbqlpMq95X+GlCV942Q+VXH8zbQuIEquW+a/yTpN6WiDHPIALiUW0l3kj4qjdqj4wPg0spJxqUuLrm/ZwuYh6lpJcYLMg9KHSDmbQCq5r4/YLGIETJA1bxfkD4se223LJU7TGwCqrGI5vig7qJ5qzxEMf9uEW8AMCNvXmXpr+qWm+WqNFAt9+fdX5RuW2KkHlC1Zvoh8/ajUk50J+laaYfLC1bEJ6AK7RLmkPlHpZhjix7YRStG7gFVCRPz603PIcPIGKB67pOOa6V4ZMNyAVTJ+5y+8UlptN6jUieoHLVHBwioRjj8x7GVUj+t0XH8IRYB1RmbX2+8IGO3KtGwAVzSJ3Wrm7i/BA/Ml/t04Tel+fV+lvRZjB4GKuW9FiMpXawqp5WgzwbU6V0jZMrJfGngQNU8Jx/hXtJjnhSLWATgUj4pjY75QceT+hKXgKrE6DsvktTdycAFdKBq71tlqT9RFABcQLiX4oOYQwaonPsOkM0h8zulkTJMoAlUaRFNcieKMcAMvK8gs1JKNlqljhBDc4EqlasdurTOX8whA1TNfZ/gWccTaDJ5JlClRaUKjNIDqjbVfRkvyNhfr0XiAVTMe0EmrtTNH+N5R4GZ8z6pr3Y6HqnnPfgCMzY2iSa+Uj/O8d4CrxY0PgXmeEHmR6Xk4140PKBSNtet6z7BkxSfddwJIiYB1XEdhyTpQSkn+jV/B1ClJkrBe0DaKBWIn7WA4AvM11qpr3bK+Hol1/nLrk4DqNJU5XXuIlelgdlw3TS3Sp2fJ6ULVgCqtIg0gVHDwCw0es8Imd8rJR1PSkkIAFzCg1In6FnMZQXgch6V4tFv6kYPM1oPqEuQ2mYBI2QsJ2JSX2DWRi+qh3JkjPegBszYVOV19uKJLwDVcd00d+rmkWmLn5MjAXVZwhCZshDzvQPvt8i/vH8ewIi3T+obdbzCkussC5gvW4TIrXJpWYoxQLUWM6lviTmtgLrENKGv+xEyLHsNuDB+Ud0CWf9KEIDqRO+JB4DquQ9D/dsDKBADVfI+t94sESuxUEEaPf5ft+z1s5i8DqiY+2lVuFUJmAX3BZknpZzIEJOA6tjqkxRkKsJIQizY1B2Uo7EqkmgAsxCD86b6rDSxOMNygaq5b542ieaVji9pud9xYF5iWMDI4bmsguv9cwAmTJVUxkfI2H2JAKq1iIEjD6IgA8yA++Zpy13fKBVlANQnSLFZQEFmo1QgLufZA1CdVu+Z1JfxfsAstHKeeDyJicWBGfAchiSlQsxWqSM0hyvTwBLZVSrnASnspGgXzmvMj5y//8BrTa2GOz2HTPnX3P8HVKm8QOKSjY4BgEu6UbptaS0KMkDFlrDq9YtJxmtj2+X+gwDGva8g86+SHvPXVvU2eGDhXI+OAYBa7PPXVix2AAAAJtkK9aeMF2S+qLtf2v0yLsC8ua+XUnQCquf+LoG9Uk40lV0Bl9ZviO6ThJfiAvcZQH2mZl0YL8jY8o41D4cDkJIOz70g5o8BUIN/kPQ5fz2KuARUahHFmEbEIGAGosav4YxO2RtsZIz7JVyAeYuH/zhFDAJmw3VTfVA3yXiZXXkuiAMzFJeSN8wh9izlswDGjLTV8REyj3qZdACoTvA+QoaTOYAa2EWqG6XiDIsdYA4WeIw20XdadIRlr4FqBaU1AMbWARgvyLSiGAPMxGISDwC4lI1SXnST/5+OEGq18GMyKBVlXLNbligMA7M2XpCx1QQA4JJs/UriEYBL+lulufUsHv1XMc8eUKFNK628X6m6UZpgfJv/TY4EVGkfxtOE0TlkSDAA1CB4T6oAzEKwVZa2ovMD1CwsYOSwXawCULWppvq6W5aYvwGoGudjADiDL0rz6/2c/5/RMUB1gtIVZ/e5UaOF7Cgwb6soNW+e1JdCDDAL3i+SRM87B2A+npVWWXrI/y+RKwGVsSVmxzpALtyoi0MAqhT03hEyJBnALHgvyBwmrgOAS3pSGiFjI2WIS0CVFrEuya2Oe3tM7gtUJRTf316QGZ9hBgDOo1HKrEg2AFyS3R6wVZpLhngEVMt9QeYuf7ccCUBVbBG0EMbLKtMFGZINoHrW4N0iFgGogWVUO3WT+hKbgOpESdF727RVllwngMC8HcLQm+eQGf8tgFp4PxlvlDpC5ZwNAHBuz8UXI2SAau20gIH+Pyrlf2ux6htQsX0Ynw9zeoSM+2gGzF84/Meplej4ALi4uFM3OoYOEFCtNi5gQYAbpbms3E8kCMxbO9FGxwsy1+qKMiztCFSrCQtYTQBA9dyHoZ+VVliSFrCzAKp2LelKC5nBGJivqZrp+PiXtdKVaSqvQNXcD2ZjxTcANXhWmtCXeATg0mzEXhR5ElC58OYRMh/yI35VavBUX4HqNJJuYppmxa1yAk0A1XI/wfgXdUtfP088FsDFLOJa8v+pNGJvK/poQMWmYtF4Qeaj0giZlVhyFqiZ96zDVlkiBgFV8x6K9KRUiNmLWATULIxfkfYgWmGYWARUbWrVt/GCzL+X9Iukf87/3ou5ZIDKREm7idm7Z+9aaZTMU/43o2WAKnkOQ5KkvyjFHzpBQLWi1E254BmTiwPVi5q+hjO5ylJockfP9QQVwLyFkNqqWxulxMpWWyIBAarl+qq0XZiSKMgAFYveL1RJ3X1Z3vcTmLmpJvq6LtwSqszATAVJq5W09lyQuVNa3nEtisNAxdynCnZFmmIMULUY8lKzntm0EhRlgKpNjW0ZHyHzWWmyKBIPoFpRUttKe8+FCm6VBGYjeG6rFos87yPgQJT8FylulHbU5voEUKUQ31OQ+U2K/YIMk2oC1dm345NFzV55mwAAXEpZHPYcc4GZi8F/Ew23OfdbK+VJ9NGAKjUarw+PF2SupLCX4lrdkDgaOlCdNjq/EPSsNKnvVswfA1SMkfMAqrCX/1ucr5Ryo0b+9xWYsXYiORpvvuvii3sUgWrFKEXPI0h2+YuRMkDVgpxP6stFKWAW4hIWALhSWvRg6vI7gIuautN5vCCzVer8fFBadpb7poEqua+VfpL0USkObS68LQBO2jcLmM+KSX2B+i2hjf5Z0h+VcqPxex4AVGy8+e6LexNXZ9keAG8R5bsic52/r+T/ihcwY+6XmeXCFIBa3El6VMqNPBfCAQ9Gcofxgsyj0iiZB6U5HFjpBKhOVLqbx/WdPLa0I4CqhVa+i8MS8+kBM9C4Hzqsrn/GHDJAtYKkJuaYdMJ487UrQa2c9/aAebNm6pbdH83VaQCX5L2DB2A24lbpipxEbgTM2PgImWul5IOhcEDV3J+Hr5RG69nEvgCq1C6hYMEIGaB63u/kliR9lnSvNEqG3Aio0msumo+XWazzw8omQNXcDxyxneO2SaB+nntBnvcNcMZ9ukA8AmZhqp82PkLmV6WizBdJT694NgAX4b5Z2rLX3D4J4NJsbgr3gReYrxik4L1gca3UP2PZa6BqMbynIPOgNDpmK5Z5BCrnunmG3heAKgXJdzDaKO3fNv/b874CqFq4l+Kjjm/nplgMVGdqUt/pETKt0r2Ju9FHArgg9/dK2woCrnfSF/uoyAsXxnswulE3Uq8V8zYAtVrCyecnpTlknnTcT6MoA1TjNdPxjhZkIqssAbPguf8jKRWFtyLBmBE+qoWKzuNRI/9FJ8CDJZyENko9uaELVhRlgGq0E7nR+AiZsiBDowaq5f5OnielogyxCKif5zZqBRkA9fPeVm0FShtFDKA6Vk4ZG1A7XpApJ9H0HtQA1Os2f1+J0XoALsfmaiAvAqoW4gIm9bV45H0/gZnbhfeMkNmJW5aAmXDdN7hWl3SQeAC4kLCXIheqgOotIV2Ie52+7E58AqoxVUaZvmWJYgxQPfdTGvxJaZLxW6UdZdU3oEqu45Ah9gCowT8r3dL9oG7lN4kYBVQmTozYmy7IDP0/AJzTldLkddwnDVTPfVHG/Q4C8xeUblty7UHdSriM2gNma7wgQ+MGZsF9/+AnSZ+VrgSx2hJQLfe3CWyURug1IkcCauZ+6LBSQaac1wpAnYZWQuv9GoADrvOOrUg6AFyeJVXlFwBcgi3fIlEcBmZsfIQMiQYwC+77BTuloszYBHYA8L0FKTT0fQBUYK1uJJDrJBCYuVaMkAGWwPW5uBwZ43pHgfnz3EQPk/J53kkA81KOlAFQp5E2Ol6QsVWWaOQALsluWaITBFRtJf9XesKL/wGAC6EYA1RvaoLx8VuWAMyC+36BjZAh6QCq5zoeWRwqvwBUJyotNetao1QFl4hFQOXGciMKMgDqtxPLOgIz4LoYI0lRiq1SkZhYBFRrYsoGH9ZioQNgBqZi0fSy1wCq575fUI6Qcb+zwHy57wQ9qcuNiEUALukmf7dRMrtLbQiAMVPpwvQIGRIOYBZcN1WKMcAsuC/IbMVIPQB1uFKKR4yUAapmi6Gd4n3uPWARFtE/cL+DAObAdcEJwHw8SXoWt1ACMzc+QoasA5gF9+dhRscAs0FTBYAzYH49wIXxgsxKqZHT0IG6eS+efha3CgAz4P6WpSDFRt1OEo8AXMoXkRsBczCRGE3fsuQ6swJ8cN9Md0pDcgHgktwHWwCzYQseAJi18YIMtwkAsxCi8wmhyivSAKq1mGa6mB0FUK1GXX5ETAKqFSbqKa77cACcCCLhAFAH4hCAGvRzI2ITUKeJtjk+h0wjRsgAM7CIEatl4kFcAqrkfg4Zm1uPGATg0hghA8xCfM8cMkEi6QBweXsxhwwwE67TBm7lBlALW2UpitgE1G6kKDM+QgYAavCkVJAh2QBwSeUSs8QjAJf0oO6CFfEIqNe7bln6UamRf8nft/nnNHqgKo3zoarhd5K2UvxVqUO0nfgDABfhPBQpfJC0l+K9UmGG25eAejkPSOGPknZS/EUpL3oSxWKgRkEKI/cljRdk/qiu4/Mkkg+gUt5vHw5/kvQkRUs4bIgugKp4jkOSFH5Qyot2Or5dYBETeQGoyr9RyomkNFrGRvBxizdQj6A0/9xbb1kKj1LYSW3MT1JWdqjAAvXYSNHzmml3UlxJ+qgUh8qrQHSEgGoEScFxVSZscuqzUVcJb3tfl9Z//4dyNS+To9u+etgXL8Y+k3Di/79DnyJYG3UshDxZ6JVSMWatrhjDBXTg8vLE2+GDFEaqLqMFmeZZitagrbpjLOl4T2MfCpQED2BcP5EOUlxLYXXqDxy4UdrvW6Vkw1aAYyI7oCpN8F2Q0VoKMX0/5DBWiOmP3DtnXCrf87I4f2rZq9fmX1/7WfbOTa9+7Nfo76s9z6nX/h6fw1Ly1/e05am/LYf2vubiytj7O/Ra6/FbBNxolOKRfUnHeVEtx2XNReDvHS/wOqeOka85l5x67KXOx3lAS7iVwtXpPxktyNz9ndTupIfPUnyW2nt18zfYJFL9ye3K4GpFnHbg91bRLa8wbdUF5bd0tPr3bdj/2wm7DPbv7cSVI4ZOPZe9B+U+f+uKdX8Z4O+deJzrgLZl/Ow1v/dVx1MNuPz8Tn12/b+1z+M1ycPQ8Xrq7/oBJx9foZGu19LK8RTdmzspXkm7mEfK/FwUi1c6fr9PFYv7Maj82dDvhp6jNPbYrzkhnKMNz0UNJ1LTP5/E7seSFM+xTUP3In6rAuRQ4vM1x//AnzaS/riSrh0XZD7+J2n/LN3/lHKi9hd1BZkHdbd3R3UTbdp7XZ7H+rHf3msr9JRxLPb+v8w9hp5r1ft3P0cL+XWa/Fjr0NmtDuXrlMfgc7Gvpzp8p2JpeX6zr+I89uJxp57DvjbFdkd1xbB98XflqKVTn0P5vEMGEuuDodzXXlfFY/uf5Vge0X/+75X7jOUb/c99rCPd3+6xUS/l8wVJ1zr+TJ718lgvj5X+z+3fdhyXn0UjrX4nNZsT2+3E9afUT9utpPhZaX6rraRnKT6p61dJL/POscnJv2bkmX2eZd7e/9uhz/Wt+tv2mm2dat9jucdYG3zHOXP0eU5ty7d2avv7cW8sBgy10de+dtP791DMaYuflb/rH0f9PvfQ6506Bw891p5zqt83dDyWX40UVtL1jdRcn37J0S7c9Q/Sbpfziyelq0LP+QV26Xs81aAtSNpJ3q7SlF836hpwOcSufxI9VewwZTAoA0JT/Lw8YVsD63ewX9uwyteyx/VPzOWBMXQSf6XQe3wsfhFUbEfel0MnYaozOtV5PJEUhd7zj9YeppL9MeW9dl8bvN/yuuVnZc/R/5n0sjG/teMxdFz0P5v+fvQLivk5QpCu1tJ67bcXtLqR2r0UWik8STEn4dHacnky6Lfrss0PfZ7lCXfspKzeY8rjo+wIDJ3gy20rn8+OgbJw3T/59+PKdyoEvAgNpxKr8nflNk0dfkOdyKEYPBSH+8lA+f9ThfGvNfT5Fs9/GP2xf7kp73rNofehHyPsBfsraoy990OfXXnc9kdQjH3uI0JIh/EPjXTn+Kr0zR+l3bP02Ei6luJOh4tT0fKK8vMZOn7N0PFuHci2+N7vnFpu04sVQUq3rvZHSxaPCzlniJv8uI1Snnat4zlxpK5YYzmGrehSFj/656sylg4dl2WM6yXQoR8/h+Kp5QbX6f+jvV9bdaOU7PH22QzNOXYqh+yz97rs+Jd/X8Y+ex47F5RFrjK+D8X5oW2YuoA3lqOO/bzfxvuPt/e4/xn2z0VS9/7Y35TxuH8LX78P8EHdsZX7FEfvz9AF3/J8Xm7DWsftYyWtPkjBc3VY0vo25Ub7kPLz+FndZ1HGJBU/t+JVf/6r/ls1EGMG2TFgxeR+rjL0ufVyoRDz/471w4aO3/L5T8SVF3+fX8/6UbE4bl+E6nbiNDi2vYNPqOP3pXxcP0eyn5ftoh9vh/LC8jN4zesOtfGm9/1FgljYF4/p94ftb07lxavi7/qFYHuOXe/39rtWL/ez/xzlaw3FXPsb6WU7sO1+7ShT2xb7LO1WpVyQ2VxJ65F4NFqQ+dN/d63nfZQetto9RT3/KjW/Ss1flTpGrfS0yufkfHvToYO0VTphflT34dwqjYopr8jYG/ck6Rd1CcE2fz2oq/CWCYDt9FqpsHOXv27ya6yl1Uele0hv0vPHf5D0KDVfpPhFir/pUFCKoRcMxopBt0pJzKr3WDuhlEMG87boKu/z5/y48qRuX+v8vPnk3eTvIR+MsSk+/40UbvLzrKSwlcJeivv8OeT3LNjnUSQI9phDh9aeNH8ewQ6gq/S9WaW/affSap+es3mSmlZa5319VpprqM3PGZVeo+0H5SbvY1Q3YXQ/EQlKK1ms8hPvlI4DO776SVG/8fYTgKErf/0Ga0M9b1PDsWHpoZVCHvba/pa2J+bGGT8V27xPbeAQJGxitV5n7mib8uscAoi1jUe9TCKtTZUJ315abaTVSvrTj41ur/wmHtf/YaW4j2oeWrU/SK1dqY3SfpuP6Y9SvFJqG6vU9kOU1s+SHqT4i9Re5cfkK0fNl/Q9PqRjq7XkPn9esThmQsyx2U4g+bMLuc3GR3VtWDpKPG2YYrBt3aprCx+VVrSzkYd5JGKTt6MtrkqHYrW7oNy+SmVynI+ZkNv04fDL79tKOnSiG0mrkN6DXZTaJn0dFSFCXs0rpOQvqntM2Ks7pu39sQ5SPs7jx7yJz/ktDlLzIIWH4v3e5FhsbcxiaejOORa3Yo7bq5u0fa21m7b7/eGz7L4l++PfrUJ+3ZCPnXVO0uy9zJ9dUGpvIUrNVtrn9ytEqYn5kCxeKOY3tx0qRlmssCv9dp6zY+uDUkz4qC6mWAfzZ3UjMYK6ixvlRQg7L9lxVT53eUW5jFtlkqPiZ/3kyvYhpP0Oku7WqRDzP32S/sbx7ZN/+PfS807a/620/Ul62Ch9Fk/5uN3nONOoe28tqStXh7P4b8eZnc9z/Aj5nBdygSEWcT9cpeM0PqV/x10Xn8JaitfFqe5RCs/qLqbYeeaHHAs/SfFOan+ft+85PYdWkv4kRduuraR/Ujo/fcn7lp/bztNxp+78leNAyMd6KItV+fthG3MbaNbp8U1IbSde5/NvzrdCUUhqb3N8uMnvjdI2hofiPb7Pn8vP+b1SfsHHtA1Nm/82ny+0ye03pueOTZFnXafPK1znHGsvhTulfDB/Ppa3RJvL4wcpPCm110ellbme8vtlbdg0xevs82Oe82PKAlxU13bLUeV530IRB45iXv7cg+Wim+JvN/m9tHPNXf69nbdy3hf2+XNZ5Z+16TFhld+LdT6mlOKC7UcbpbbIwWJ+L/WHvE27dJyu/prOo+19eg9j/vtox4zydrX5s7Vj6qOk3+lwHNoxc/efvYh+AAAABeZJREFUGq0/yLXrf///t3cuvY0bQRCuHj5kaR3vGsklyP//fQkQJxvbJCeHqZppCd7cooNRHyDI1oucYb+qh6Im7AdQX3ccv/OYUz/tfwDHS7PjOgH4GS3OfEWLLd8x/Jn23+vs7FNJh1w1VmRnp2Y/8YShjWSfK2tl1rQh+39j3GIMK6wXdM3SOmFoQeU02TBjZn3gPh4cx0v6/EeOlT5TWAeVuWmr8s8IwfsCHHPTOlGa1pF+OTbg/QVd13S/UtyWP2leXsfjIZ/W2PXNEi3mMMb0uVeuV31YOIa5ja3r4g0jdqh2SLFE8VQapvLYRQoItXDbD/TZrC0CLQ4taHWI5vhWa8kvmaugY/ZXOnZ8rXSU6vPKhrpspWq7uY6RjfCXnq+uCaX4gpEb68H91SLDxPmTLd7MU9/OGUOf54WQHF9zYx4YdW7WlazTImv+CZgnYF6AX38LnB/xQ/6zIbN+mVD3HfPckmBhETqtPNC1GfcRPLAM2iqmcUJPVqicKAViGaomd8EQ31savIRtKgwji+rCRHICcGFSoCHFVyafC5rB/NkMImjMVUJFBhNjVz/shgk1k3KS1O2jca0YRZCcdeZLcsGrgyiHjSFAeqLNzZN1FE59XFv6TN73goiG3hcWsoNKeMghWBjG1G7YUkA7gIniZJ7QG5ddVDH51sL9z/OWz5rKK1m5yaL5UXNKATo4fL3+trGiebw96+R2xQY3rwFGYNBxopgvbMigtORVd/rk1Aoz7XN9T7afxY/usqjRXLMJJNGGE+daARTjPZFs4qoLzc7rugQePnFDZroEjp0NARXBXP0pE7BvAL7wmKQCOo7WPMSM1jA7AQefjzd0sSPhlK/DU4/ko8eID1d2rGRKIZ9FVl91YSyU7cbGmCPxdUZLxEoYSYThwHVTVY8B3X+viu68ApaTaxlxAEAXbyU1ZOZgbFAcK7iyWQkljU032XqoGZXfe3DuF8bmOuYxOBeFc9/nhLmk6jP1+izqUlyJhfFPhVtOkLkxk7ltPEg4pljU/5ewPEbOC4k55UE2i+JmEzGhN3kUc7W9vn3ZkQKzHlvRbIM/s3xVjM24buBM6ZYLh4/OYND28tmr2hddn6lP7gdzl59LMW4KYJmApxl4/sRfE1gvgbpVzBXYXxlzWFDGxFpI1/TKcf+2sSV/yQ0ZPUb7jHQ8IjdkmHtCeVZ+DXQx2hf71JRV/pxYM6k2eQDqBU1MqQmggvYXtCaDin42t6FmU15UeGONoYWpdJZF5PFwLnQReu1TFO57jL+PFa35lGudhTlTF0jMZ1q/Y9RWWdj9jVGLSDhofhQftSijmKpjeGrbxBl9ATAUjx950zie+L6Nc/iMJhS1D3P7v77y8XTcut8/4PoMpOzT8usJH/v3jaDp7qvPZo0Tyj2KkQu6iMOO0ZDR6fWpidYXrPYW97ToGI/X74nKeeAilmqYeqA1uVa0Jgrry/iO1tyTXSvWKWccHOrKfVEtHdwurzMX8r+1nSEz//R56yIAKJeCuh+IqTUZ6glNF2mxSOJ8xli4/oY2mTruFa1xwrnV2SMAmp8z/3TtlfROVe26ojUgVUPX9t56AuIZY5FRTSD+aIz8JdgMjGPkzN6YkF0rRqJtI6QvVbOoftrbPuWGjOJKWYGyUcfw42JtTZnCpkFsGN/+eAci+WrXIbcLqXlepH+1YC5Nu6W6omJc+/HEz0m5vsqP5Yuczx5P9hG7UDH0lOaGfgTpMO5X9wY16RbmEz2hmlE+mk6qyOkrtE3FIMXV/NPr6Ze+dJaIcksobs+so5Q3OG7VlsFcEqrPs97TXaope15TDruwBlRjOw8iN72079rnPK7cJMp1VI7JR7ILHXfdz0BZ2leWzucfx6Ood/kivDHGGGOMMcYYY4wRt+cJGGOMMcYYY4wxxpj/GTdkjDHGGGOMMcYYY+6MGzLGGGOMMcYYY4wxd8YNGWOMMcYYY4wxxpg744aMMcYYY4wxxhhjzJ1xQ8YYY4wxxhhjjDHmzvwLptCdSrBF0ywAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 1440x1440 with 16 Axes>" ] }, "metadata": { "tags": [], "needs_background": "light" } }, { "output_type": "stream", "text": [ "Time for epoch 10 is 58.29913401603699 sec\n" ], "name": "stdout" }, { "output_type": "error", "ename": "KeyboardInterrupt", "evalue": "ignored", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-10-df98ed118a3c>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdebut\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mdebut\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0mnb_centaines\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 15\u001b[0;31m \u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_dataset\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m100\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mgenerator\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mdiscriminator\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mBATCH_SIZE\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mnoice_dim\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m128\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;36m34\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 16\u001b[0m \u001b[0mgenerator\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msave_weights\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'/content/drive/MyDrive/dataset cats/weights/'\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;34m'00_epoch.h5'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[0mdiscriminator\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msave_weights\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'/content/drive/MyDrive/dataset cats/weights/'\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;34m'00_epoch.h5'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m<ipython-input-7-2dd9a9b79c30>\u001b[0m in \u001b[0;36mtrain\u001b[0;34m(dataset, epochs, generator, discriminator, BATCH_SIZE, noice_dim)\u001b[0m\n\u001b[1;32m 47\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 48\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mimage_batch\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdataset\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 49\u001b[0;31m \u001b[0mtrain_step\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimage_batch\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mgenerator\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mdiscriminator\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mBATCH_SIZE\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mnoise_dim\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mepoch\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 50\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 51\u001b[0m \u001b[0;31m# Produce images for the GIF as we go\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwds)\u001b[0m\n\u001b[1;32m 778\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 779\u001b[0m \u001b[0mcompiler\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"nonXla\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 780\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 781\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 782\u001b[0m \u001b[0mnew_tracing_count\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_tracing_count\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py\u001b[0m in \u001b[0;36m_call\u001b[0;34m(self, *args, **kwds)\u001b[0m\n\u001b[1;32m 805\u001b[0m \u001b[0;31m# In this case we have created variables on the first call, so we run the\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 806\u001b[0m \u001b[0;31m# defunned version which is guaranteed to never create variables.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 807\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_stateless_fn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# pylint: disable=not-callable\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 808\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_stateful_fn\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 809\u001b[0m \u001b[0;31m# Release the lock early so that multiple threads can perform the call\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 2827\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_lock\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2828\u001b[0m \u001b[0mgraph_function\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_maybe_define_function\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2829\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mgraph_function\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_filtered_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# pylint: disable=protected-access\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2830\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2831\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mproperty\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36m_filtered_call\u001b[0;34m(self, args, kwargs, cancellation_manager)\u001b[0m\n\u001b[1;32m 1846\u001b[0m resource_variable_ops.BaseResourceVariable))],\n\u001b[1;32m 1847\u001b[0m \u001b[0mcaptured_inputs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcaptured_inputs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1848\u001b[0;31m cancellation_manager=cancellation_manager)\n\u001b[0m\u001b[1;32m 1849\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1850\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_call_flat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcaptured_inputs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcancellation_manager\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36m_call_flat\u001b[0;34m(self, args, captured_inputs, cancellation_manager)\u001b[0m\n\u001b[1;32m 1922\u001b[0m \u001b[0;31m# No tape is watching; skip to running the function.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1923\u001b[0m return self._build_call_outputs(self._inference_function.call(\n\u001b[0;32m-> 1924\u001b[0;31m ctx, args, cancellation_manager=cancellation_manager))\n\u001b[0m\u001b[1;32m 1925\u001b[0m forward_backward = self._select_forward_and_backward_functions(\n\u001b[1;32m 1926\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36mcall\u001b[0;34m(self, ctx, args, cancellation_manager)\u001b[0m\n\u001b[1;32m 548\u001b[0m \u001b[0minputs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 549\u001b[0m \u001b[0mattrs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mattrs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 550\u001b[0;31m ctx=ctx)\n\u001b[0m\u001b[1;32m 551\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 552\u001b[0m outputs = execute.execute_with_cancellation(\n", "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/execute.py\u001b[0m in \u001b[0;36mquick_execute\u001b[0;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[1;32m 58\u001b[0m \u001b[0mctx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mensure_initialized\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 59\u001b[0m tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,\n\u001b[0;32m---> 60\u001b[0;31m inputs, attrs, num_outputs)\n\u001b[0m\u001b[1;32m 61\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_NotOkStatusException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mname\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mKeyboardInterrupt\u001b[0m: " ] } ] } ] }