Skip to content
Snippets Groups Projects
Select Git revision
  • 9e8d55e7e275d9591cfbc3d757d49de80cc9478c
  • master default
  • 1
  • 2
  • 3
  • 4
  • branche_annexe
  • test
  • Mechanical
  • platypus
  • wiikip
  • arnold
  • laBandaEwen
  • debuging
  • yolo
  • premiere_branche
  • coshyp
  • nvlle_branche
  • Alberich
  • branchpourtoncasser
  • branch_tcd
21 results

App.js

Blame
  • Forked from Thomas Sainrat / formation-git
    Source project has a limited visibility.
    utils.py 1.34 KiB
    import numpy as np
    import cv2
    import matplotlib.pyplot as plt
    from config import emotions
    
    def afficher(image):
        if len(image.shape) == 3:
            if image.shape[2] == 3:  # (h,l,3)
                plt.imshow(image)
            elif image.shape[2] == 1:  # (h,l,1)->(h,l)
                image2 = image
                plt.imshow(tf.squeeze(image))
        elif len(image.shape) == 2:  # (h,l)
            plt.imshow(image)
    
    
    def predir(modele, image):
        # Return output of image from modele
        return modele.predict(np.array([image]))[0, :]
    
    
    def normAndResize(image, input_shape):
        # For an array image of shape (a,b,c) or (a,b), transform it into (h,l,p). Also normalize it.
    
        h, l, p = input_shape
        # resize for h and l                                       #
        image = cv2.resize(image, dsize=(h, l), interpolation=cv2.INTER_CUBIC)
        # if we want (h,l,3) -> (h,l,1) , we first transform it in to (h,l) (grey the image)
        if len(image.shape) == 3 and p == 1 and image.shape[2] != 1:
            image = image.mean(2)
        image = np.reshape(image, (h, l, p))  # restore third dimension
        image = image.astype("float32")
        image = (image/127.5)-1  # normalisation
    
        return image
    
    def emotionToNumber(emotion):
        emotions = ["Angry", "Disgust", "Fear", "Happy", "Sad", "Suprise", "Neutral"]
        return emotions.index(emotion)