Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Object Oriented Programming in Python

Classes and objects

Gy

CentraleSupélec

© Object Oriented Programming in Python 1/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

QOutline

@ Object-oriented programming: basics

© Classes in Python

© Unit test in Python

© Object Oriented Programming in Python 2/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

QOutline

o Object-oriented programming: basics

© Object Oriented Programming in Python 3/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Object-oriented programming (OOP)

OOP: a programming paradigm for directly mapping real-life prob-
lems into a program

® it is based on the notion of class (a user-defined data type)

® and objects (instances of a given class)

an object is a data structure that contains:
® data: in form of variables called attributes or fields

® behaviour: in form of procedures called methods

G Object Oriented Programming in Python 4/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Real-world objects

real-world objects share two characteristics: they all have a state
and a behaviour

examples of real-world objects
® Dog:

® state: name, color, breed, hungry, ...
® behaviour: barking, fetching, wagging tail, eating, ...

® Bicycle:

® state: current gear, current pedal cadence, current
speed, ...

® behaviour: changing gear, changing pedal cadence,
applying brakes, ...

) Object Oriented Programming in Python 5/23

Lecture :

Object-oriented programming: basics Classes in Python

Unit test in Python

Example: class “Bicycle” and class “Rider”

class name

attributes
(state variables)

methods
(class interface)

Bicycle

int gear;
float speed,;

Rider

int age;
float energy;

void upshift();

void downshift();

void increase_speed();
void decrease_speed();

void upshift();
void downshift();

void pedal_faster()
void pedal_slower(

)

class name

attributes
(state variables)

methods
(class interface)

G Object Oriented Programming in Python

6/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

What is a (software) class ?

class: the blueprint characterising a category of objects
® defines the attributes representing the state of objects

® defines the methods representing the behaviour of objects

several objects can be instantiated from a given class

G Object Oriented Programming in Python 7/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

What an Object-Oriented program looks like?

an Object-Oriented program consists of:
® 3 collection of classes definitions

® 3 collection of objects’ instances

classes
o R definition

communicating
Objects

computation: instantiated objects perform the desired computation by
invoking each other methods (i.e. by exchanging messages)

© Object Oriented Programming in Python 8/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

QOutline

e Classes in Python

© Object Oriented Programming in Python 9/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Classes in Python

® (Class: bundle together data and functionalities

® defining a Class defines a new data type allowing new
instances (objects) of that data type to be made

® Object: Objects are an encapsulation of variables and functions into
a single entity.

® Objects get their variables and functions from classes.

G Object Oriented Programming in Python 10/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Class definition syntax

in Python a class definition looks like this:

class ClassName:
<statement—1>

<statement—N>

Example:

class MyClass:
this is a comment
""" A simple example class™""

this is an attribute
i = 12345

this is a method
def f(self):
return 'hello world'

defines a class called MyClass with one attribute named i and one
function named f

G Object Oriented Programming in Python 11/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Object instantiation

class MyClass:
i = 12345

def f(self):
return 'hello world'

instantiation of an object of a class: uses function call notation

myobject = MyClass() #

myobject is an object of type MyClass

G Object Oriented Programming in Python 12/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Accessing object’s variables and functions

To access a variable or a function of an object you use the . operator

class MyClass:
i = 12345

def f(self):
print('hello world")

myobject = MyClass()
print(myobject.i) # access the attribute 'i' of 'myobject' prints 12345
myobject.f(); # execute function f() of 'myobject' hence prints "hello world”

© Object Oriented Programming in Python 13/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Object’s initialisation: the __init__() function

All classes have a function called __init__(), which is always executed

when the class is being initiated.

_init__() function is used to assign values to object'a attributes and
perform operations necessary when the object is being created:

class Person:
def __init__(self, name, age):
self.name = name # declares and initialise an attribute called 'name'
self.age = age # declares and initialise an attribute called 'age'

pl = Person("John", 36) # create a Person object with name " John" and age 36
p2 = Person(”Mary”, 23) # create a Person object with name "Mary” and age 23

print(p1.name)
prmt(pl age)
(
(

print(p2. age)

Remark: the __init__() function is automatically called whenever an

object is createtd

G Object Oriented Programming in Python

14/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

The self parameter (of a class method)

Every method defined in a class must have at least one parameter (which
refers to the object of the class)

such parameter is conventionally denoted self and MUST BE the first
parameter of a method

class Person:
def __init__(self, name, age): # 'self' is used to refer to the 'name' and 'age' of the object being created

self.name — name
self.age = age

def myfunc(abc): # in this case 'abc' is used in place of 'self'
print(" Hello my name is " + abc.name)

pl = Person("John", 36) # create a Person object with name " John" and age 36
pl.myfunc()

© Object Oriented Programming in Python 15/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Inheritance: parent-class and child-class

Inheritance allows to define a class as a child-class of a parent-class
® Parent-class: the class being inherited from,
® Child-class: the class that inherits from another class

To create a class that inherits the functionality from another class, send
the parent class as a parameter when creating the child class

class Student(Person): # Student is a child—class of Person
def __init__(self, name, age): # this __init__ overrides the __init__ in Person
self.name = name
self.age = age

Remark: the __init__() in the child-class overrides that in the parent
class

when you create a Student object the __init__() in Student is
executed not that in Person

) Object Oriented Programming in Python 16/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

The super () function (inheriting from parent)
super () allows to accessing inherited methods that have been
overridden in a class.

commonly used in child-class __init__() to delegate to the parent-class
the initialisation of inherited attributes

class Person:
def __init__(self, fname, lname):
self.firstname = fname # the first name of a person
self.lastname = lname 7 the last name of a person

def printname(self):
print(self.firstname, self.lastname) # prints the person's first and last name

class Student(Person):
def __init__(self, fname, lname, year): #overrides the __init__ of Person
super().__init__(fname, lname) # call __init__ of Person to initialise first and last name of Student
self.graduationyear = year # year of graduation

def welcome(self): # print a welcome message for a Student
print("WeIcome”, self.firstname, self.lastname, "to the class of”, self.graduationyear)

x = Student(” Mike”, " Olsen”, 2019) # create a Student object
x.welcome() # print welcome message for Student x

G Object Oriented Programming in Python 17/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Class versus instance variables

Instance variables: used for data unique to each instance object

Class variables: used for attributes and methods shared by all instances
of the class:

class Dog:
kind = 'canine' # class variable shared by all instances

def __init__(self, name):
self.name = name # instance variable unique to each instance

d = Dog('Fido') # create a dog

e = Dog('Buddy') # create a dog

print(d.kind) # prints 'canine' which is shared by all dogs
print(e.kind) # prints 'canine' which is shared by all dogs
print(d.name) # prints 'Fido' which is unique to d
print(e.name) # prints 'Buddy' which is unique to e

© Object Oriented Programming in Python 18/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

QOutline

e Unit test in Python

© Object Oriented Programming in Python 19/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Unit test with Pytest

Pytest: framework for building unit test code in python
Platforms: Linux, Windows and Mac Os

Installation (linux and Mac Os):

pip install —U pytest

Check installation :

> piptest ——version
> pytest 6.2.2

) Object Oriented Programming in Python 20/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Example of single test with Pytest

content of test_sample.py
def inc(x): # a function sensed to return the value of its argument increased by 1
return x + 1

def test_answer():
assert inc(3) == 5 # let the test pass if inc(3) evaluates to 5 otherwise test fails

Let run the test through pytest

test session starts
platform darwin —— Python 3.8.3, pytest—6.2.2, py—1.9.0, pluggy—0.13.1
rootdir: /Users/paolo/CODE/workspace_python

collected 1 item

test_sample.py F [100%)]

FAILURES
_test_answer _________________

def test_answer():
> assert inc(3) ==
E assert 4 ==5
E + where 4 = inc(3)

AssertionError
= short test summary info ==
FAILED test_sample.py:‘test_answer — assert 4 ==5
============1 failed in 0.11s

test_sample.py:

G Object Oriented Programming in Python

21/23

Lecture :

Object-oriented programming: basics Classes in Python Unit test in Python

Running multiple tests with Pytest

pytest will run on all files of the form test_*.py or *_test.py in the current
directory and its subdirectories.

content of test_sample.py

def inc(x): # a function sensed to return the value of its argument increased by 1
return x + 1

def test_answer():
assert inc(3)

== 5 # let the test pass if inc(3) evaluates to 5 otherwise test fails

content of test_sample2.py

def inc(x): # a function sensed to return the value of its argument increased by 1
return x + 1

def test_answer():
assert inc(3) =

let the test pass if inc(3) evaluates to 4 otherwise test fails

== test session starts ==============
platform darwin —— Python 3.8.3, pytest—6.2.2, py—1.9.0, pluggy—0.13.1
rootdir: /Users/paolo/CODE/workspace_python
collected 2 items
test_sample.py F [50%)]
test_sample2.py . [100%]
FAILURES

______________ test_answer _________________

def test_answer():
> assert inc(3) ==
E assert 4 ==5
E + where 4 = inc(3)

test_sample.py:7: AssertlonError

Inget Erieased fafﬁﬂravamgsm Eﬂéb@? — assert 4

22/23

Lecture :

Object-oriented programming: basics Classes in Python Unit test in Python

Multiple unit tests in a single test file

if a file contains several functions we can add a test for each function and
run a single test

def inc(x): # a function sensed to return the value of its argument increased by 1
return x + 1

def dec(x): # a function sensed to return the value of its argument decreased by 1
return x # the function is mistakenly defined

def test_inc():

assert inc(3) == 4
def test_dec():

assert dec(3) ==

= == test session starts == =

platform darwin —— Python 3.8.3, pytest—6.2.2, py— 1 9.0, pluggy 0.13.1

rootdir: /Users/paolo/CODE/workspace_python

collected 2 items

test_sample.py .F [100%]

============= FAILURES

______________ test_answer _________________
def test_dec():

> assert dec(3) ==

E assert 3 == 2

E + where 3 = dec(3)

test_sample.py:11: AssertionError

FAILED test_sample.py:‘test_dec — assert 3 == 2

============ 1 failed, 1 passed in 0.10s

G Object Oriented Programming in Python

23/23

	Object-oriented programming: basics
	Classes in Python
	Unit test in Python

