
Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Object Oriented Programming in Python
Classes and objects

Object Oriented Programming in Python 1/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Outline

1 Object-oriented programming: basics

2 Classes in Python

3 Unit test in Python

Object Oriented Programming in Python 2/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Outline

1 Object-oriented programming: basics

2 Classes in Python

3 Unit test in Python

Object Oriented Programming in Python 3/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Object-oriented programming (OOP)

OOP: a programming paradigm for directly mapping real-life prob-
lems into a program

• it is based on the notion of class (a user-defined data type)

• and objects (instances of a given class)

an object is a data structure that contains:

• data: in form of variables called attributes or fields

• behaviour: in form of procedures called methods

Object Oriented Programming in Python 4/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Real-world objects

real-world objects share two characteristics: they all have a state
and a behaviour

examples of real-world objects

• Dog:

• state: name, color, breed, hungry, ...
• behaviour: barking, fetching, wagging tail, eating, ...

• Bicycle:

• state: current gear, current pedal cadence, current
speed, ...

• behaviour: changing gear, changing pedal cadence,
applying brakes, ...

Object Oriented Programming in Python 5/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Example: class “Bicycle” and class “Rider”

class name

attributes
(state variables)

methods
(class interface)

class name

attributes
(state variables)

methods
(class interface)

Object Oriented Programming in Python 6/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

What is a (software) class ?

class: the blueprint characterising a category of objects

• defines the attributes representing the state of objects

• defines the methods representing the behaviour of objects

several objects can be instantiated from a given class

Object Oriented Programming in Python 7/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

What an Object-Oriented program looks like?

an Object-Oriented program consists of:

• a collection of classes definitions

• a collection of objects’ instances

computation: instantiated objects perform the desired computation by
invoking each other methods (i.e. by exchanging messages)

Object Oriented Programming in Python 8/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Outline

1 Object-oriented programming: basics

2 Classes in Python

3 Unit test in Python

Object Oriented Programming in Python 9/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Classes in Python

• Class: bundle together data and functionalities

• defining a Class defines a new data type allowing new
instances (objects) of that data type to be made

• Object: Objects are an encapsulation of variables and functions into
a single entity.

• Objects get their variables and functions from classes.

Object Oriented Programming in Python 10/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Class definition syntax

in Python a class definition looks like this:

class ClassName:
<statement−1>
.
.
.
<statement−N>

Example:

class MyClass:
this is a comment
”””A simple example class”””

this is an attribute
i = 12345

this is a method
def f(self):

return 'hello world'

defines a class called MyClass with one attribute named i and one
function named f

Object Oriented Programming in Python 11/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Object instantiation

class MyClass:
i = 12345

def f(self):
return 'hello world'

instantiation of an object of a class: uses function call notation

myobject = MyClass() #

myobject is an object of type MyClass

Object Oriented Programming in Python 12/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Accessing object’s variables and functions

To access a variable or a function of an object you use the . operator

class MyClass:
i = 12345

def f(self):
print('hello world')

myobject = MyClass()
print(myobject.i) # access the attribute 'i' of 'myobject' prints 12345
myobject.f(); # execute function f() of 'myobject' hence prints ”hello world”

Object Oriented Programming in Python 13/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Object’s initialisation: the init () function

All classes have a function called init (), which is always executed
when the class is being initiated.

init () function is used to assign values to object’a attributes and
perform operations necessary when the object is being created:

class Person:
def __init__(self, name, age):
self.name = name # declares and initialise an attribute called 'name'
self.age = age # declares and initialise an attribute called 'age'

p1 = Person(”John”, 36) # create a Person object with name ”John” and age 36
p2 = Person(”Mary”, 23) # create a Person object with name ”Mary” and age 23

print(p1.name)
print(p1.age)
print(p2.name)
print(p2.age)

Remark: the init () function is automatically called whenever an
object is createtd

Object Oriented Programming in Python 14/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

The self parameter (of a class method)

Every method defined in a class must have at least one parameter (which
refers to the object of the class)

such parameter is conventionally denoted self and MUST BE the first
parameter of a method

class Person:
def __init__(self, name, age): # 'self' is used to refer to the 'name' and 'age' of the object being created
self.name = name

self.age = age

def myfunc(abc): # in this case 'abc' is used in place of 'self'
print(”Hello my name is ” + abc.name)

p1 = Person(”John”, 36) # create a Person object with name ”John” and age 36
p1.myfunc()

Object Oriented Programming in Python 15/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Inheritance: parent-class and child-class

Inheritance allows to define a class as a child-class of a parent-class

• Parent-class: the class being inherited from,

• Child-class: the class that inherits from another class

To create a class that inherits the functionality from another class, send
the parent class as a parameter when creating the child class

class Student(Person): # Student is a child−class of Person
def __init__(self, name, age): # this init overrides the init in Person
self.name = name

self.age = age

Remark: the init () in the child-class overrides that in the parent
class

when you create a Student object the init () in Student is
executed not that in Person

Object Oriented Programming in Python 16/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

The super() function (inheriting from parent)

super() allows to accessing inherited methods that have been
overridden in a class.

commonly used in child-class init () to delegate to the parent-class
the initialisation of inherited attributes

class Person:
def __init__(self, fname, lname):
self.firstname = fname # the first name of a person
self.lastname = lname # the last name of a person

def printname(self):
print(self.firstname, self.lastname) # prints the person's first and last name

class Student(Person):
def __init__(self, fname, lname, year): #overrides the init of Person

super().__init__(fname, lname) # call init of Person to initialise first and last name of Student
self.graduationyear = year # year of graduation

def welcome(self): # print a welcome message for a Student
print(”Welcome”, self.firstname, self.lastname, ”to the class of”, self.graduationyear)

x = Student(”Mike”, ”Olsen”, 2019) # create a Student object
x.welcome() # print welcome message for Student x

Object Oriented Programming in Python 17/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Class versus instance variables

Instance variables: used for data unique to each instance object

Class variables: used for attributes and methods shared by all instances
of the class:

class Dog:
kind = 'canine' # class variable shared by all instances

def __init__(self, name):
self.name = name # instance variable unique to each instance

d = Dog('Fido') # create a dog
e = Dog('Buddy') # create a dog
print(d.kind) # prints 'canine' which is shared by all dogs
print(e.kind) # prints 'canine' which is shared by all dogs
print(d.name) # prints 'Fido' which is unique to d
print(e.name) # prints 'Buddy' which is unique to e

Object Oriented Programming in Python 18/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Outline

1 Object-oriented programming: basics

2 Classes in Python

3 Unit test in Python

Object Oriented Programming in Python 19/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Unit test with Pytest

Pytest: framework for building unit test code in python

Platforms: Linux, Windows and Mac Os

Installation (linux and Mac Os):

pip install −U pytest

Check installation :

> piptest −−version

> pytest 6.2.2

Object Oriented Programming in Python 20/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Example of single test with Pytest

content of test sample.py
def inc(x): # a function sensed to return the value of its argument increased by 1

return x + 1

def test_answer():
assert inc(3) == 5 # let the test pass if inc(3) evaluates to 5 otherwise test fails

Let run the test through pytest

============ test session starts ==============
platform darwin −− Python 3.8.3, pytest−6.2.2, py−1.9.0, pluggy−0.13.1
rootdir: /Users/paolo/CODE/workspace_python
collected 1 item

test_sample.py F [100%]

============= FAILURES ==================
______________ test_answer _________________

def test_answer():
> assert inc(3) == 5
E assert 4 == 5
E + where 4 = inc(3)

test_sample.py:7: AssertionError
============ short test summary info ============
FAILED test_sample.py::test_answer − assert 4 == 5
============ 1 failed in 0.11s ==================

Object Oriented Programming in Python 21/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Running multiple tests with Pytest

pytest will run on all files of the form test *.py or * test.py in the current
directory and its subdirectories.

content of test sample.py
def inc(x): # a function sensed to return the value of its argument increased by 1

return x + 1
def test_answer():

assert inc(3) == 5 # let the test pass if inc(3) evaluates to 5 otherwise test fails

content of test sample2.py
def inc(x): # a function sensed to return the value of its argument increased by 1

return x + 1
def test_answer():

assert inc(3) == 4 # let the test pass if inc(3) evaluates to 4 otherwise test fails

============ test session starts ==============
platform darwin −− Python 3.8.3, pytest−6.2.2, py−1.9.0, pluggy−0.13.1
rootdir: /Users/paolo/CODE/workspace_python
collected 2 items

test_sample.py F [50%]
test_sample2.py . [100%]
============= FAILURES ==================
______________ test_answer _________________

def test_answer():
> assert inc(3) == 5
E assert 4 == 5
E + where 4 = inc(3)

test_sample.py:7: AssertionError
============ short test summary info ============
FAILED test_sample.py::test_answer − assert 4 == 5
============ 1 failed, 1 passed in 0.10s ==================

Object Oriented Programming in Python 22/23

Lecture : Object-oriented programming: basics Classes in Python Unit test in Python

Multiple unit tests in a single test file

if a file contains several functions we can add a test for each function and
run a single test

def inc(x): # a function sensed to return the value of its argument increased by 1
return x + 1

def dec(x): # a function sensed to return the value of its argument decreased by 1
return x # the function is mistakenly defined

def test_inc():
assert inc(3) == 4

def test_dec():
assert dec(3) == 2

============ test session starts ==============
platform darwin −− Python 3.8.3, pytest−6.2.2, py−1.9.0, pluggy−0.13.1
rootdir: /Users/paolo/CODE/workspace_python
collected 2 items

test_sample.py .F [100%]
============= FAILURES ==================
______________ test_answer _________________

def test_dec():
> assert dec(3) == 2
E assert 3 == 2
E + where 3 = dec(3)

test_sample.py:11: AssertionError
============ short test summary info ============
FAILED test_sample.py::test_dec − assert 3 == 2
============ 1 failed, 1 passed in 0.10s ==================

Object Oriented Programming in Python 23/23

	Object-oriented programming: basics
	Classes in Python
	Unit test in Python

