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k-NN Regression

Data: {(Xi, Yi)}ni=1, Y = f(X) + noise
|f(x)− f(x′)| ≤ λρ(x, x′).

Learn: fn,k(x) = avg (Y ) of k-NN(x).

Quite basic! =⇒ common in practice!



, , , , , , , , , ,

k-NN Regression

Data: {(Xi, Yi)}ni=1, Y = f(X) + noise
|f(x)− f(x′)| ≤ λρ(x, x′).

Learn: fn,k(x) = avg (Y ) of k-NN(x).

Quite basic! =⇒ common in practice!



, , , , , , , , , ,

k-NN Regression

Data: {(Xi, Yi)}ni=1, Y = f(X) + noise
|f(x)− f(x′)| ≤ λρ(x, x′).

Learn: fn,k(x) = avg (Y ) of k-NN(x).

Quite basic! =⇒ common in practice!



, , , , , , , , , ,

Curse of dimension: suppose X ∈ IRD

There exist distributions on (X,Y ) such that the excess risk

|fn,k − f |2
.
= E x |fn,k(x)− f(x)|2

is of the form n−2/(2+D).

This is true for all nonparametric regressors! § (Stone 82)
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Fortunately, high dimensional data often has low

intrinsic complexity ©

Linear data
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Fortunately, high dimensional data often has low

intrinsic complexity ©

Linear data Manifold data Sparse data

Common approach: Dimension reduction PCA, Manifold learning
(e.g. LLE, Isomap, Laplacian eigenmaps, kernel PCA, ...)
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Main result:

k-NN performs well without dimension reduction!

fn,k converges at a rate adaptive to unknown intrinsic dimension.

The result suggests that:

More can be gained tuning k than tuning the parameters of my
favorite dimension reduction procedure.
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Other work on adaptivity to intrinsic dimension:

• Kernel and local polynomial regression: Bickel and Li 2006,
Lafferty and Wasserman 2007.

• Dyadic tree classification: Scott and Nowak 2006.

• 1-NN regression: Kulkarni and Posner 1995.

• RPtree and dyadic tree regression: Kpotufe and Dasgupta
2011.

• Tree-kernel hybrids: Kpotufe 2009.

The above results are under global notions of intrinsic dimension.
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Outline:
• Intrinsic dimension
• Adaptivity for any log n . k . n

• Choosing a good k = k(x)
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Intrinsic dimension

Figure: d-dimensional balls centered at x.

Volume growth: vol(B(x, r)) = C · rd = ε−d · vol(B(x, εr)).

Suppose µ is U(B(x, r)), then µ(B(x, r)) . ε−d · µ(B(x, εr)).

Definition: µ is (C, d)-homogeneous on B(x, r) if ∀r′ ≤ r, ε > 0,

µ(B(x, r′)) ≤ Cε−d · µ(B(x, εr′)).
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Given a query x, the behavior of µ in a neighborhood B of x can
capture the intrinsic dimension in B.

Location of query x matters!

Size of neighborhood B matters!
For k-NN, size of relevant neighborhood B will depend on k and n.
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Adaptivity for k - General intuition:

Fix, n & k & log n, and let x ∈ region B of dimension d.

Rate of convergence of fn,k(x) depends on:

• (Variance of fn,k(x)) ≈ 1/k.

• (Bias of fn,k(x)) ≈ rk(x).

It turns out: rk(x) ≈ (k/n)1/d.
Also: rk(x) depends on µ(B) (smaller in dense regions B).
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Adaptivity for k - Result:

Theorem: The following holds w.h.p. simultaneously for all x ∈ X
and log n . k . n.
Consider any B centered at x, s.t. µ(B) & k/n. Suppose µ is
(C, d)-homogeneous on B. We have

|fn,k(x)− f(x)|2 .
1

k
+ λ2

(
Ck

nµ(B)

)1/d

.

Rate is best if x is in a dense region B with low dimension d.
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Choosing k(x)- Best possible rate in terms of d

Theorem: Consider a metric measure space (X , ρ, µ), such that
for all x ∈ X , r > 0, ε > 0, we have µ(B(x, r)) ≈ ε−dµ(B(x, εr)).
Then, for any regressor fn, there exists DX,Y with marginal µ and
where f(x) = EY |x is λ-Lipschitz, such that

E
S∼Dn

X,Y ,X∼µ
|fn(X)− f(X)|2 & λ2d/(2+d) · n−2/(2+d).
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Choosing k locally at x- Intuition

Note: Cross-validation and dimension estimation require large
samples sizes, which is unlikely in small neighborhoods of x.

Instead:
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Choosing k(x)- Result

Theorem: Suppose k(x) is chosen as above. The following holds
w.h.p. simultaneously for all x.
Consider any B centered at x, s.t. µ(B) & n−1/3. Suppose µ is
(C, d)-homogeneous on B. We have

|fn,k(x)− f(x)|2 . λ2
(

C

nµ(B)

)2/(2+d)

.

As n→∞ the claim applies to any B centered at x, µ(B) 6= 0.
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Results likely extend to:

• Higher order polynomial regression/classification using k-NN.

• Local choice of bandwidth in kernel regression.
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Take home message

k-NN regression performs well without dimension reduction!

Question:

Is there a general principle for designing adaptive learners?

Thank you for listening.
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PS: looking for a job©
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