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Quite basic! = common in practice! )




Curse of dimension: suppose X € RP

There exist distributions on (X, Y") such that the excess risk

‘fn,k - f’Z =E, |fn,k(x) - f($)|2

is of the form n—2/(2+D)



Curse of dimension: suppose X € RP

There exist distributions on (X, Y") such that the excess risk

ok = f1? =B |fur(@) = f(z)?
is of the form n—2/(2+D)

This is true for all nonparametric regressors! © (Stone 82)
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Common approach: Dimension reduction PCA, Manifold learning
(e.g. LLE, Isomap, Laplacian eigenmaps, kernel PCA, ...)
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The result suggests that:

More can be gained tuning k than tuning the parameters of my
favorite dimension reduction procedure.




Other work on adaptivity to intrinsic dimension:

e Kernel and local polynomial regression: Bickel and Li 2006,
Lafferty and Wasserman 2007.

e Dyadic tree classification: Scott and Nowak 2006.
e 1-NN regression: Kulkarni and Posner 1995.

e RPtree and dyadic tree regression: Kpotufe and Dasgupta
2011.

e Tree-kernel hybrids: Kpotufe 2009.
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e Kernel and local polynomial regression: Bickel and Li 2006,
Lafferty and Wasserman 2007.

e Dyadic tree classification: Scott and Nowak 2006.
e 1-NN regression: Kulkarni and Posner 1995.

e RPtree and dyadic tree regression: Kpotufe and Dasgupta
2011.

e Tree-kernel hybrids: Kpotufe 2009.

The above results are under global notions of intrinsic dimension.



Outline:

o Intrinsic dimension
e Adaptivity for any logn <k <n
e Choosing a good k = k(x)
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Figure: d-dimensional balls centered at x.

Volume growth: vol(B(x,r)) = C

=€

4. vol(B(x,er)).
Suppose p is U(B(x,r)), then u(B(x,r))

e u(B(z,er)).
Definition: 4 is (C, d)-homogeneous on B(z,r) if Vi’ < r,e >0,

p(B(w,r") < Ce® - p(B(x, er’)).
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Location of query z matters!

Size of neighborhood B matters!
For k-NN, size of relevant neighborhood B will depend on k& and n.
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Adaptivity for k - General intuition:

Fix, n 2 k 2 logn, and let x € region B of dimension d.

() depends on:
e (Variance of f, ;(x)) = 1/k.
e (Bias of f, x(z)) = ri(x).

Rate of convergence of f, 1.

It turns out: 7 (z) = (k/n)'/<.
Also: ri(x) depends on p(B) (smaller in dense regions B).



Adaptivity for k - Result:

Theorem: The following holds w.h.p. simultaneously for all z € X
and logn <k < n.

Consider any B centered at x, s.t. u(B) 2 k/n. Suppose p is

(C, d)-homogeneous on B. We have
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Theorem: The following holds w.h.p. simultaneously for all z € X
and logn <k < n.

Consider any B centered at x, s.t. u(B) 2 k/n. Suppose p is

(C, d)-homogeneous on B. We have

1/d
uale) ~ F@P S 7+ ()

np(B)

Rate is best if = is in a dense region B with low dimension d. J




Outline:

e Intrinsic dimension
e Adaptivity for any logn <k <n

« Choosing a good k = k(z)



Choosing k(x)- Best possible rate in terms of d



Choosing k(x)- Best possible rate in terms of d

Theorem: Consider a metric measure space (X, p, ), such that
forall z € X,r > 0,e > 0, we have u(B(x,r)) ~ e u(B(xz, er)).
Then, for any regressor f,,, there exists Dx y with marginal y and
where f(x) = EY|z is A-Lipschitz, such that

(X)) — F(X)2 > A\20/(24d) . —2/(2+d),
om0 = FOOF 2 n




Choosing k locally at x- Intuition

Note: Cross-validation and dimension estimation require large
samples sizes, which is unlikely in small neighborhoods of z.

Instead:

1/k (Variance)




Choosing k(x)- Result

1/k (Variance)

Theorem: Suppose k(x) is chosen as above. The following holds
w.h.p. simultaneously for all x.

Consider any B centered at z, s.t. u(B) 2 n~Y/3. Suppose p is
(C, d)-homogeneous on B. We have

2/(24d)
| k(@) = f(@)” S N <nliB)> '




Choosing k(x)- Result

1/k (Variance)

72(z) (Bias?)

=Y

Theorem: Suppose k(x) is chosen as above. The following holds
w.h.p. simultaneously for all x.

Consider any B centered at z, s.t. p(B) > n~'/3. Suppose y is
(C, d)-homogeneous on B. We have

2/(2+d)

As n — oo the claim applies to any B centered at z, u(B) # 0. J




Results likely extend to:
e Higher order polynomial regression/classification using k-NN.

e Local choice of bandwidth in kernel regression.
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Is there a general principle for designing adaptive learners?

Question: J

Thank you for listening.

PS: looking for a job @
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