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Abstract: Comparing two sets of multivariate samples is a central problem in data analysis.
From a statistical standpoint, the simplest way to perform such a comparison is to resort to a
non-parametric two-sample test (TST), which checks whether the two sets can be seen as i.i.d.
samples of an identical unknown distribution (the null hypothesis). If the null is rejected, one
wishes to identify regions accounting for this difference. This paper presents a two-stage method
providing feedback on this difference, based upon a combination of statistical learning (regression)
and computational topology methods.

Consider two populations, each given as a point cloud in R%. In the first step, we assign a label
to each set and we compute, for each sample point, a discrepancy measure based on comparing an
estimate of the conditional probability distribution of the label given a position versus the global
unconditional label distribution. In the second step, we study the height function defined at each
point by the aforementioned estimated discrepancy. Topological persistence is used to identify
persistent local minima of this height function, their basins defining regions of points with high
discrepancy and in spatial proximity.

Experiments are reported both on synthetic and real data (satellite images and handwritten digit
images), ranging in dimension from d = 2 to d = 784, illustrating the ability of our method to
localize discrepancies.

On a general perspective, the ability to provide feedback downstream TST may prove of ubiquitous
interest in exploratory statistics and data science.

Key-words: Statistics, Information theory, Jensen-Shannon divergence, Data analysis, Data
comparison, Point clouds, Nonparametric two-sample test, Effect size, Divergence estimation, Con-
ditional probability estimation, Regression, Topological persistence.
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Sur la localisation de la discrépance dans les espaces de
grande dimension

Résumé : Comparer deux ensembles de données multivariées est un probléme central en
analyse de données. D’un point de vue statistique, les tests non-paramétriques d’homogénéité
permettent de décider si les données peuvent étre considérées comme émanant d’une méme
distribution (I’hypothése nulle). Si celle-ci est rejetée, la question se posant est de localiser les
régions rendant compte de la différence. Ce travail présente une méthode en deux étapes pour
ce faire, combinant des outils d’analyse statistique (régression) et de topologique (persistance).

Considérons deux populations, chacune donnée comme une ensemble de points dans R<.
Dans la premiére étape, un label est donné a chaque population, et on calcule pour chaque
point une mesure de discrépance basée sur la comparaison d’une estimation de la probabilité
conditionnelle du label étant donnée la position, et de la probabilité non conditionnelle du label.
Dans la deuxiéme étape, on étudie la fonction hauteur définie en chaque point par la valeur de
la discrépance. La persistance topologique est utilisée pour identifier les minima persistants de
cette fonction, leurs bassins définissant des ensembles de points de forte discrépance voisins les
uns des autres.

Des résultats expérimentaux sont présentés sur des données synthétiques et des images (satel-
litaires et de chiffres), allant de la dimension d = 2 & d = 784, illustrant la pertinence de I’'approche
pour localiser la discrépance.

Dans une perspective plus large, le complément d’information apporté aux tests & deux échan-
tillons devrait s’avérer de grande importance en analyse exploratoire de données.

Mots-clés :  Statistique, Théorie de l'information, Divergence de Jensen-Shannon, Analyse
de données, Comparaison de données, Nuages de points, Test non-paramétrique d’homogénéité,
Taille d’effet, Estimation de la divergence, Estimation de probabilités conditionnelles, Régression,
Persistance topologique.



Localizing Data Discrepancies 3
Contents
1__Introduction| 4
I1.1  Comparing Datasets in High Dimensional Spaces| . . . . . ... ... ... ... 4
I1.2  Contribution and Paper Overview| . . . . .. .. ... .. ... ... ..... 4
2 Estimating the Discrepancy between Datasets| 5
2.1 Jensen-Shannon Divergence Decomposition using Conditional Distributions| . . . 5
2.2 Conditional Probability Estimation via Non-parametric Regression| . . . . . . . 6
22,1  Generic Framework]. . . . . . . . .. oo 7
12.2.2  Application to Conditional Probability and Discrepancy Estimation| 7
2.3 Joint Distribution Compatible Sampling| . . . . .. ... ... ... ... .... 8
13 Localizing the Discrepancy]| 9
BIOverviewl . . . . . . . . o 9
3.2 Algorithm| . . . . . . . .o 10
|4 _Combining Discrepancy Estimation and Localization| 13
.1 ualitying the Clusters|. . . . . . . . . . . . . 13
B2 Plots . . . . . . 13
4.3 Implementation|. . . . . . . ..o o 13
[ Experiments: Using the Discrepancy for Statistical Image Comparison| 15
16  Experiments: Localizing Data Discrepancies| 17
6.1 Model: Crenelsl . . . . .. . .. o 17
6.2 Model: Gaussian Mixturel . . . . . . . . . . ... L. 18
6.3 Model: Mixture of Handwritten Digits| . . . . . . ... .. ... ... ... .. 18
[7_Conclusion| 23
I8 Supplemental: Data Sets| 25
BI Creneld . . ... . . . . 25
8.2 Gaussian mixturel . . . . . . . .. 25
8.3 Mixture of Handwritten Digits| . . . . . . .. .. ... 0oL 26

RR n° 8734



4 Cazals and Lhéritier

1 Introduction

1.1 Comparing Datasets in High Dimensional Spaces

Datasets represented as point clouds are ubiquitous in science and engineering, used for appli-
cations in 2D and 3D space (e.g. to represent laser scans in mock-up design) as well as in high
dimensional spaces (e.g. to represent images and documents, physical or biological phenomena,
etc). In manipulating such data, several classes of questions are faced, such as matching, topo-
logical inference, or comparison. This latter endeavor, which is the topic of this paper, calls
for a discussion in three directions, namely statistics (two-sample tests), information theory and
learning (divergence estimation), and geometry-topology.

From a statistical standpoint, a broad class of comparison methods, requiring tame assump-
tions on the data are nonparametric two-sample tests (TST), see, e.g., [13] and the references
therein. In a nutshell, a TST is a statistical hypothesis test checking whether the two sets can
be seen as i.i.d. samples of an identical unknown distribution (the null hypothesis). In accepting
or rejecting the null hypothesis, under a level of statistical significance «, a TST summarizes the
body of information encoded in the points’ coordinates into a single boolean value [IT]. However,
this boolean information is in general of limited interest, for several reasons. First, it is unlikely
that two real life datasets come from exactly the same distribution. Since consistent TST detect
any kind of difference of any size if enough samples are given, the rejection of the null is expected.
Second, the magnitude (and the nature) of the differences, known as effect size, usually conveys
more information than the mere presence of a difference. Therefore, a reject decision should be
just a signal to examine further the data in order to understand. Developing a notion of effect
size for non-parametric two-sample tests in high dimensions has not been explored yet, and is
the goal of this work.

From an information theoretical and probabilistic standpoint, the comparison can be phrased
as the problem of estimating the global Kullback-Leibler divergence between unknown distribu-
tions using the samples in hand. For example, a difference between images has been proposed
[10], by coupling a univariate Kullback-Leibler estimate (per pixel) and a decomposition of the
discrepancy map thus defined using a watershed transform in image space. In a more general
setting, there exist techniques to estimate this quantity that avoid density estimation in high
dimensions (see, e.g., [22, 23] 19 20]) and that could be amenable to decomposition, so as to
determine a contribution of individual points or of groups of points. Nevertheless, this diver-
gence lacks important properties (symmetry and boundedness), which makes it more difficult to
further process it.

Finally, the comparison can also be tackled from the geometric and topological perspectives.
In geometric terms, one may compute some distance or matching (one-to-one, one-to-many,
many-to-many) between the data, see [7] and the references therein. While this procedure is
informative for the two datasets in hand, the main difficulty consists in accommodating a proba-
bilistic setting. In a more topological perspective, persistence theory [8], which aims at assessing
the stability of topological features—generators of persistent homology groups, was recently used
to compare persistence landscapes [3]. Such comparisons are clearly important since oblivious to
geometric transformations, but our focus is clearly on geometry dependent features.

1.2 Contribution and Paper Overview

This paper proposes, to the best of our knowledge, the first attempt to model the differences
(the effect size, see above), between two datasets for which one has rejected the null hypothesis
stipulating that they share the same underlying distribution. In a nutshell, we aim at clustering

Inria



Localizing Data Discrepancies 5

samples, based on two criteria, namely samples within a cluster should (i) contribute significantly
to the difference between the two clouds, and (ii) form a connected region. Matching these
goals yields a two-stage procedure. In the first stage, we model pointwise differences, which we
call discrepancies, using the Jensen-Shannon divergence (JSD), which is symmetric and can be
decomposed in terms of the conditional probability of belonging to one of the populations given a
space location. This conditional probability can be naturally estimated using known techniques
of non-parametric regression like the one based on k,, nearest neighbours, which possesses strong
asymptotic guarantees of consistency. In the second stage, using a nearest neighbor graph defined
over the samples, we study the height function defined by the estimated discrepancy, and design
a clustering procedure based upon topological persistence. We note in passing that the second
step is optional, as the JSD is of interest on its own to compare images, for example.

The paper is organized as follows. Sections[2]and [3|respectively present the two steps. Section
[ summarizes the various pieces of information provided by our analysis. Finally, sections [f| and
[6] present experiments.

2 Estimating the Discrepancy between Datasets

We aim at modeling the discrepancy between two datasets z("0) = {z1,...,2n,} and y(m) =
{y1,,Yn, }, in some fixed dimension Euclidean space R?. We view these data as coming from
two unknown densities fx and fy with corresponding cumulative distributions functions F'x and
Fy.

2.1 Jensen-Shannon Divergence Decomposition using Conditional Dis-
tributions

Let Dkr, (f|lg) be the Kullback-Leibler divergence (KLD) between two densities f and g defined
as
o0
f(z)
Dir(fl9)= [ flo)tog T s o
o0 g(x)
with the conventions 0log(0 = 0 and Olog% =0.

The Jensen-Shannon divergence (JSD) defined in [16], allows to symmetrize and smooth the
KLD by taking the average KLD of fx and fy to the average density f = (fx+/v)/2, that is:

1

IS (fxlfy) = 5 (Dxu (Fx[1£) + D (fy[1£) (2)
In addition to being symmetric, the JSD is bounded between 0 and 1 and its square root
yields a metric. Note also that by taking the average, two random variables are implicity defined:
a position variable Z with density fz = f and a binary label L that indicates from which
original density (i.e. fx or fy) an instance of Z is obtained. Formally, considering the alphabet

A={0,1} and X ~ Fx,Y ~ Fy, the following pair of random variables is defined:
(0,X) with prob.
(L,2) = : (3)

(1,Y)  with prob.

N N[

In the sequel, we will consider the conditional and unconditional mass functions P(l|z) =
P(L=1Z=z) and P(l) = P(L=1) = 5 respectively, as well as the joint probability den-
sity fr,z. We will also use the notation f; to denote fx (resp. fy) when [ = 0 (resp. [ = 1).

RR n° 8734



6 Cazals and Lhéritier

Before establishing lemmal|l] a key property for our comparison problem, we recall the definition
of the Kullback-Leibler divergence between two discrete distributions P and @Q over A :

_ P(l)
Dy, (P||Q) = gp(l) logm (4)
Lemma. 1. One has:
JS(fxlfy) = /Rd fz(2)Dxr (P(-[2)|| P(-)) d= (5)

Proof of lemmal[dl Recall that the JSD can be expressed as follows:

IS (fxllfv) = & (Dxw, (fxlf2) + D, (vl 2))

2
o 1 fx(Z)
=3 . fx(2)log 72(2) dz

fr(2)
702) dz

1
+5 [ fr(z)log
Rd
By linearity of integration and by Bayes’ Theorem, and noting that the conditional densities
f(z2|L=0) = fx(z) and f(z|L =1) = fy(z) we have then

ISUxlv) = /Rd SR f (AL = log TEE= g,
l

fz(2)

_ frz(l2),  frzl.z)
?@;H”mml%wmf
_ P(l]z)

,/Rd fZ(z);P(Hz) log PU) dz

= Rdfz(Z)DKL(P('IZ)IIP(~))dZ

O

The previous lemma shows that the JSD can be seen as the average, over z € R?, of the KLD
between the conditional and unconditional distribution of labels. More formally, we define:

Definition. 1. The discrepancy at location z is defined as the KL divergence:
6(z) = Dxw (P([2)[P()) - (6)

Note that §(z) ranges between 0 and 1 and is 0 iff fx(z) = fy(z). Note also that since P(l)
is known but P(l|z) is not, the problem we consider now is the one of estimating P(l|z) at each
given location z.

2.2 Conditional Probability Estimation via Non-parametric Regres-
sion

In order to estimate the conditional distributions, we can use random design]l| non-parametric
regression.

!n contrast to fixed design regression, where [I4] Sec. 1.9]: “one observes values of some function at some fixed
(given) points with additive random errors, and wants to recover the true value of the function at these points.”

Inria
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2.2.1 Generic Framework

First, we define the basic concepts (see, e.g., [14] for more details).

Definition. 2. Given a random vector (Z, R), where Z € R and the response variable R € R,
the regression function is defined as

m(z) =E[R|Z = z]. (7)

In the regression problem, the goal is to build an estimator m,(x) of m(z) using a set of n
i.i.d. realizations of (Z, R).

With respect to the guarantees that are provided for regressors, usually, the Lo risk or mean
squared error is considered, i.e.,

L/‘hnn(x)—-ﬂdx)ﬁu(dw)
Rd

where p denotes the distribution of Z. Nevertheless, since our goal is to estimate the discrepancy
0(z), we seek pointwise guarantees for regressors. In particular, we will consider a strong form
of consistency which is defined as follows.

Definition. 3. Denoting u the distribution of Z, a sequence of regression function estimates
{m,} is strongly pointwise consistent (s.p.c.) if for py-almost all x € R?

mn(z) 2222 m(z) a.s.. (8)

In [I4, Sec. 25.6], some s.p.c. regression estimates are presented. For example, regression
estimates based on partitioning, kernel and nearest neighbors are s.p.c under certain conditions
for their parameters, when the absolute value |R| < M, for some M.

Now we describe the s.p.c. k,-nearest neighbor regression function estimate (see [I14, Ch.6&25|
for further details). Given the training data {Z;, Ri}i—1,..n, let us denote as R(;,)(z) the
response value corresponding to i-th nearest neighbor (with some tie-breaking rule) of x in Z™.
Then, the k,-nearest neighbor (k,-NN) regression function estimate is defined by

1 kn
M) = = 3 B (): 9)
" =1

Then we have the following theorem [I4, Thm. 25.17]:

Theorem. 1 (Strong pointwise consistency of k-NN). If |R| < C for some C' < oo,

kn n
— 00 and k— — 0,
logn n

then the k,-NN estimate using Fuclidean distance is strongly pointwise consistent.

2.2.2 Application to Conditional Probability and Discrepancy Estimation

In order to apply this framework to our problem, note that the correspondence R = L yields

m(z) = P(1]z). (10)

RR n° 8734



8 Cazals and Lhéritier

Figure 1 Random multiplexer generating pairs (label, position).

X .
L~B(/2) (L, Z)
Y B: Bernoulli ’
distribution

Then, we can use the following estimator for P(l|z)
P, (l]2) = |1 =1 —mn(2)]. (11)

Note that it is required that 0 < m,,(z) < 1, since we aim at estimating a conditional probability,
and that it is satisfied by the &, -nearest neighbor regressor.
Using Eq. (1)), we finally obtain an estimator for §(z2) :

6(2) = Dict, (Pa (1) P()) (12)

Theorem. 2 (Consistency). Let B, be based on a s.p.c. sequence of regression estimates for
(L,Z). Then,
on(2) 22255 6(2) as.

for f-almost all z € R?.

Proof. Let us write 6,(2) = g(mn(2)), with g(z) = zlogz/(1/2) + (1 — x)log(1 — z)/(1/2).

It is easy to see that g(z) is a continuous function (composition, sum and product of contin-

uous functions). Then, we apply the continuous mapping theorem [2], on every z € R? where
n—oo

mp(2) —— m(z) to complete the proof. O

2.3 Joint Distribution Compatible Sampling

In the regression framework, the samples must be i.i.d. from a joint distribution fr, z. In our
original problem, we have two sets of samples drawn independently from fx and fy. In order
to ensure this condition, we will use the random multiplexer depicted in Fig. On each input
it receives i.i.d. samples from each of the populations. Then, it generates an instance [ of L.
According to the value of [ (0 or 1), it consumes the corresponding input (X,Y resp.) and
outputs it along with [.

The following lemma shows that the output has the desired joint density.

Lemma. 2. An output pair from the random multiplexer has joint density fr z.
Proof. The joint density of an output pair (I, z) is
g9(l,2) = g(z|L = ) P(1).
Since z is distributed as f, g(z|L =1) = fi(z). Therefore g(I,2) = fr z(l,2). O

Remark 1. In practice, there is a finite set of i.i.d. samples of X and Y available. Then, at
some point the multiplexer can have no more data to consume on one of the inputs while there is
still data available on the other one. Therefore, some samples of the original sets would not be
used and, thus, some loss of information is to be expected. This can be alleviated by resampling
B times as follows:

Inria
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1. Forbe 1..B do:

(a) Generate a sequence {z';,l';}i=1,. n using the random multiplexer (until it fails to
output, due to lack of data on one of the inputs)

(b) Build 6°,(z) using some consistent estimator trained on {z's,1';}i1....ns
2. Define 6,/ (2) = medianbel"B(Sz, (2))

Notice that 0,/ () is also a consistent estimator.

3 Localizing the Discrepancy

3.1 Overview

Goals. We wish to identify groups of samples, called clusters, intuitively characterized by two
properties: first, the discrepancy of such samples should be significant; second, samples within
a cluster should be associated with regions where the discrepancy peaks. To meet the first goal,
we assume the existence of a value 0,4, stipulating that below 6,4, the discrepancy is not
significant. As we shall see in Experiments, while this value is not unique in general, few clusters
typically stand out from our persistence diagrams.

To meet the second goal, we resort to mode clustering, a general clustering strategy consisting
of defining a cluster from the attraction basin of a local maximum of a density estimate [6] [5].
We therefore define a landscape consisting of the samples, their elevation being the value of the
estimated discrepancy Sn(z), see Eq. . Practically though, we study the landscape whose
elevation is —Sn(z) rather than 5n(2), which yields a more natural terminology since birth dates
occur before death dates. In doing so, our clusters shall be defined from local minima and their
attraction basin, i.e., stable manifolds (SM).

Varying the threshold ¢,,,,: one versus many. Assigning samples of the landscape to
persistent local minima is straightforward, and merely requires running a union-find algorithm
[5]. The clusters obtained can then be filtered out so as to retain samples whose discrepancy is
larger than d,,,,. However, this procedure must be repeated upon changing the value 6,,4,. In
the sequel, we present instead a procedure pre-processing the landscape so as to accommodate
queries for multiple values of 6,4z .

In a nutshell, our algorithm runs through three stages. First, critical points of the landscapes
are identified using a k-nearest neighbor graph (k-NNG) [5]. The connections between these
points define the Morse-Smale-Witten (MSW) complex restricted to local minima and index one
saddles, from which we compute the persistence diagram (PD) of local minima [9]. (We note
in passing that similarly to [5], our procedure shall be effective in high dimension since we only
focus on index 0 and 1 critical points.) The PD is used to identify persistent minima whose
critical value is at most —d,,42, and we denote the corresponding sublevel set of the landscape
D<_s,.... Second, the sublevel set of the landscape is recursively simplified to retain persistent
minima only [4]. We note in passing that this simplification requires more information than that
defining the persistence pairs (Fig. [3). Third, the samples whose discrepancy is less than 0,44
are removed from the stable manifolds of the remaining minima.

Output. The previous construction exploits a partition of the PD into five regions defined by
three lines (Fig. [2), so that a local minimum m of the landscape (and its SM) gets qualified with
respect to three criteria:

e Selected/rejected: m is selected provided that its birth date occurs before —d,,q-

RR n°® 8734



10 Cazals and Lhéritier

Figure 2 Partition of the persistence diagram exploited to define clusters. The parti-
tion of the domain y > z is induced by three lines: (i) y = « 4+ p which specifies the persistence

threshold (ii,iil) © = —dmaz,¥ = —Omax, With 4, the threshold on the significance of the
discrepancy. See text for the specification of regions R; to Rs.

Death y=x+p Yy==1

-

- (sm ax

-1 Birth
-1 —Omax

e Persistent/canceled: m is persistent if its persistence is > p, a user defined threshold.

e Filtered/un-filtered: the SM of m is filtered if the death date of m is larger than the
threshold —0,,4-

The possible combinations, illustrated on Fig. [2 are:

e m € R;: rejected. Such a local minimum is rejected, since its discrepancy is less than 6,4
No point of the SM of m is found in a cluster reported.

e m € Ry: selected / canceled / un-filtered. Such a local minimum is selected, yet canceled
by persistence. Because m dies before —d,,4., all samples found in its SM shall be part of
a cluster reported.

e m € Rs: selected / canceled / filtered. A local minimum which is selected, yet canceled by
persistence. However, because m dies after —d,,4., only the portion of its SM belonging to
the sublevel set D<_s shall be found in a cluster reported.

max

e m € Ry: selected / persistent / un-filtered. Such a local minimum is selected, and is not
canceled by persistence. Because m dies before —d,,,4,, all the samples found in its SM are
found in a cluster reported.

e m € Rs: selected / persistent / filtered. This combination is similar to the previous case,
except that samples whose discrepancy is less than d,,., are discarded. Note that the
cluster associated with the global minimum belongs to this region even though it is not
found on the PD since the global minimum never dies.

3.2 Algorithm

We now detail the three steps just outlined.

Step 1: Computing the MSW complex of the landscape. Morse theory is concerned with
the study of a function defined on a manifold, and Morse homology with the homology of sublevel
sets of this function. In particular, the Morse homology theorem stipulates that the homology

Inria



Localizing Data Discrepancies 11

of a sublevel set can be computed from the Morse-Smale-Witten (MSW) complex, namely the
incidence diagram between the critical points of the function [I].

A natural strategy to study a height function defined over a point cloud consists in using a
k-NNG connecting the samples. One defines a negative pseudo-gradient from the star of each
vertex, and a flow operator descending the pseudo-gradient until a fixed point is found [5]. Note
that the set of all samples flowing to a local minimum makes up its stable manifold (SM). Given
this pseudo-gradient, samples behaving like index 0 and index 1 critical points in the smooth
setting are easily identified, and abusing terminology, we call such samples critical points in the
sequel. An index 0 critical point is a sample having all its neighbors above it. An index 1 critical
point is a sample p flowing to a local minimum, but having a neighbor ¢ in the k-NNG flowing
to a different local minimum. This latter situation is called a bifurcation, since intuitively, the
line-segment [p, q] intersects transversely the stable manifold of an index d — 1 critical point.
Amidst all pairs p, g associated with the same two local minima, the sample with least elevation
is termed a saddle. (Note that we do not make any claim on the relative position of that point
and the real saddle, in case the landscape is associated with a differentiable height function.)
If the landscape contains ng critical points and is connected, ng — 1 index one points suffice
to compute the persistence of order 0. The process indeed boils down to running a Union-find
algorithm, to infer merge events between the stable manifolds of local minima (Fig. A,B,C)).

We define our MSW complex in a similar spirit. However, instead of collecting only incidences
involving one of the aforementioned ng — 1 index one saddles, we collect incidences involving all
index one saddles. The process yields a bipartite graph between index 0 and index 1 critical
points (Fig. [3(D,E)), together with the stable manifolds of the local minima. Using this graph,
we also compute the persistence diagram (PD) of sublevel sets. Note that in our case all pairs lie
in the upper triangle of [—1, 0] x[—1, 0], since the function value, namely the negative discrepancy,
lies in the range [—1,0].

Step 2: Simplifying the landscape. The general procedure to recursively simplify a land-
scape using the MSW complex has already been presented in the context of non manifold shape
reconstruction [4]. In a nutshell, the cancellation of a pair of critical points (a,b) whose indices
differ by one consists of rerouting the connections of a and b in the MSW complex, and of redis-
tributing the stable manifold of a [4]. Note in particular that each remaining local minimum is
endowed with two types of samples: those from its own SM and those from SM inherited from
canceled local minima.

Step 3: Sub-level set extraction. The previous simplification yields a partition of the
landscape into the SM of the persistent minima. We remove from these SM the samples whose
discrepancy is less than d,,,4., a task carried out in two steps. First, the samples from its own SM
are filtered out. Second, the samples of basins inherited from the simplification are also filtered
out, provided that such a basin was born before —d,,4.. In particular, inherited basins born after
—0maz are ruled out in constant time. The persistent local minima and their remaining samples,
if any, form the clusters.

Remark 2. The filtering step cannot be carried out before the construction of the nearest neighbor
graph. Indeed, in doing so, one could deplete the neighborhood of samples whose height is close
to —Omaz, possibly forcing connections to samples located further away, thus jeopardizing the
identification of critical points.

RR n° 8734



12 Cazals and Lhéritier

Figure 3 Morse-Smale-Witten (MSW) complex versus disconnectivity graph (DG)
in recursive landscape simplification. (A,B) Two landscapes, with critical points of indices
0 (disks) and 1 (squares). (C) The DG of both landscapes, which depicts the evolution of
connected components of sublevel sets. Despite the differences between their MSW complexes,
both landscapes share the same DG: upon passing the critical point e, the stable manifold of ¢
merges with that born at a. (D,E) The MSW complexes of (A,B), respectively. In cancelling
the pair of critical points (¢, e), one does not know from the DG with which (a or b) the basin
of ¢ should be merged. But the required information is found in the MSW complex: on the
landscape (A), ¢ is merged with a; on the landscape (B), ¢ is merged with b.

Inria
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4 Combining Discrepancy Estimation and Localization

4.1 Qualifying the Clusters

We decompose the JSD by clusters of points that are defined by the method described in Section
Then, the contribution of a cluster C' reads as:

S da(2). (13)

zez"NC

S|

JSc (fx|fy) =

Combining the analysis of sections [2] and [3] yields the workflow of Fig. [

4.2 Plots

The previous analysis are best exploited using the following plots:

e Raw data embedding: For samples embedded in 2D or 3D space, a plot of the points with a
color to indicate the label (blue: 0; red: 1). For samples embedded in a higher dimensional
space, a 2D embedding of these samples obtained using multi-dimensional scaling (MDS).
In any case, the goal of this plot is to intuitively visualize the distributions of the two
populations.

e Discrepancy shaded data embedding — aka discrepancy plot: A plot similar to the raw data
plot, except that each sample is color coded using a heat palette from fully transparent
white to red across yellow, as a function of the value of the estimated discrepancy Sn (2).
That is, a point with d,(z) equal to zero (resp. one) is colored fully transparent white
(resp. non transparent red).

e Persistence diagram: A plot showing for each minima a red cross with coordinates (z,y)
corresponding to its birth and death dates respectively, while analyzing the landscape whose
elevation is the negative estimated discrepancy.

e Clusters: A plot similar to the raw data plot, with one color per cluster. The points not
belonging to any cluster are colored in gray.

e JSD decomposition plot: A 1D plot presenting a synthetic view without relying on the
MDS embedding. The x coordinate represents the sample space and always ranges from 0
to 1. The total estimated JSD is represented by the area under the dashed line. And the
maximum possible JSD which is always 1 is represented by the area under the continuous
line. One bar is depicted for each cluster plus another one (the last one) for the points not
belonging to any cluster. The area of each bar represents the contribution of the corre-
sponding cluster to the total JSD and its color corresponds to the proportion of samples 0
in the cluster.

4.3 Implementation

The random multiplexer was implemented in R. The discrepancy estimator was implemented in
R using knn3 from the caret package [I2]. The persistence based analysis of the height function
defined by the estimated discrepancy was implemented in C++-.
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Figure 4 Workflow of the whole method. In blue: the parameters.
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Figure 5 Comparing images: interpolated color scale (Eq. (14])) used to represent
the local discrepancy 4,(z) € [0,1] of Eq. l) The interpolation is illustrated on
pixels of color black, gray or white.
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5 Experiments: Using the Discrepancy for Statistical Image
Comparison

When processing real images, two-sample testes are of mild interested since the null hypothesis
is likely to be rejected. However, the JSD decomposition is still of interest to quantify the
differences on a statistical basis.

Consider a digital image whose pixels use C color channels. For example, C = 1 in the
monochrome case and C = 3 in the RGB color case (where the components of each vector
correspond to the red/blue/green intensities). A digital image is a r X ¢ matrix of pixels, such
that each pixel takes values in [0,1]¢. (For a pixel, a value of 0 (resp. 1) represents the minimum
(resp. the maximum) intensity for the corresponding color channel.) We follow the construction
of [2] to build our samples, that is, by taking b x b pixel blocks yielding (r — b)(c — b) samples,
each being a vector of dimension Cb?. Then, a discrepancy estimate Sn(z) is computed on each
sample z and assigned to the pixel located in the upper left corner of the corresponding block.
(NB: two bands of width b — 1 on the right and bottom side of the image are not assessed.)

Using the satellite color images of [21] shown in Figure |§| and using the same block size b = 2,
we compute the estimated discrepancy on (z) for each sample. Then, in order to visualize the
result, we first convert the original image to grayscale by assigning to each pixel ¢ with color
vector ¢; = [ry, i, b;] the new color vector ¢} = [a;, a;, a;] where a; = (ri+9i+bi)/3. Then, we obtain
the final color vector ¢ = [r/, g/, b}] by superimposing the corresponding discrepancy J; via red
interpolation as follows (Fig. [5))

7’,// = (1 — 51)111 + 51
gy (1—94:)a; . (14)
b;l = (1 — (5i)ai

The results, using k, = n'/3, are shown in Figure [7 The methods evaluated in [2I] aim at
finding novelty in the second image with respect to the first one. Although in a different setting,
our results are visually quite good in comparison to theirs: only scattered red points are shown
in the first figure (which is consistent to their idea of background) and, in the second one, both
the oval and the rectangular fields are clearly marked as divergent while none of the methods
evaluated in [2I] mark them both entirely.
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Figure 6 Original satellite color images from [21].

Figure 7 Comparison between the images of Fig. [6} Results shown on grayscale converted
image using the interpolation scheme of Eq. (14)), illustrated on Fig.

Inria
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6 Experiments: Localizing Data Discrepancies

We present results on three datasets featuring various difficulties: low intrinsic dimension (crenels),
varying intensity of discrepancy (mixture of Gaussians) , and real data embedded in high di-
mension (handwritten digits). For the sake of convenience, we refer to the two datasets to be
compared as the blue and the red datasets. The number of neighbors was set to k, = n?/3. Note
that the Maximum Mean Discrepancy two-sample test of [I3] rejects the null hypothesis in all
the cases for a significance level a lower than 1%.

6.1 Model: Crenels

Specification. The goal is to assess the ability of the method to spot local differences, and to
cope with data of low intrinsic dimension (one) in a high dimensional space. We create two one
dimensional datasets, which differ by two crenels.

More precisely, in this dataset, each point corresponds to a vector in R™*™ encoding the
pixels of a square grayscale image (0 = black, > 1 = white) of size m x m. The samples are
the result of rotating the grayscale image i (supp. Fig. . Therefore, taking m = 11 yields a
dataset of intrinsic dimension one embedded in dimension d = 121.

Each sample of the blue population is an instance of a RV X obtained by rotating ¢ with a
random uniformly distributed angle Ax, that is:

X =rotate(i, Ax), Ax ~U(s,1t). (15)

where the function rotate applies a bilinear filter to smooth the result (details in [18]).

For the red population, consider two Bernoulli random variables By ~ B(p;) and Bs ~ B(p2),
and two uniform variables U; ~ U(a,b) and Uy ~ U(c,d). Each sample of the red population is
an instance of a RV Y defined as:

Y = rotate(i, Ay),Ay = Bl(BQUl + (1 — BQ)UQ) + (1 — BI)AX- (16)

Note that the rotation used to obtain Y comes from the uniform distribution U(s,t) with prob-
ability 1 — p;, and that the discrepancy between both distributions are high in the angle ranges
[a,b] and [c,d] (i.e. the crenels) and low everywhere else on the support, since, loosely speaking,
points that are added to the crenels are missing from the rest of the support.

Practically, we used the following values: m = 11, ng = 2000, n; = 2000, s = —15,¢t = 15,
a=—-4b=-2,¢=9,d =10, p =0.3, p = 0.5.

Practically, we used:

e m=11

e ng = 2000, n; = 2000

e s=—15t=15

e a=—-4b=-2c=9,d=10

e p; =03,p2=05
Results. Figure[§shows the result of our method when applied to this dataset. The linear shape
of the 2D MDS embedding illustrates the one dimensional nature of the data. The discrepancy

plot hints at the crenels created by the two uniform distributions in Eq. . On the persistence
diagram (built with & = 30), we see a group of low discrepancy minima that are removed by

RR n° 8734



18 Cazals and Lhéritier

filtering out with 0,4, (dashed vertical line). One also identifies one persistent local minimum
corresponding to the longer and, thus, the less red-concentrated crenel [a,b]. The other crenel
corresponds to the global minimum which does not appear in the plot since it death date is
infinite. The clusters yielded by the simplification and filtering steps correspond to the crenels. In
the divergence decomposition plot, we observe these two crenels with high discrepancy produced
by a high proportion of red points and also a non negligible total discrepancy given by the rest
of the points, which has a higher proportion of blue points.

6.2 Model: Gaussian Mixture

Specification. The goal is to assess the ability of the method to spot regions of different intensity
of discrepancy.

Two Gaussian mixture models where randomly generated using MixSim R package [17]. The
distributions for X and Y consist in two mixtures of four different two-dimensional Gaussians
with equal weight and with some degree of overlap. In this example, ng = n; = 2000.

Results. The results are presented on Fig. [9] and [I0] corresponding respectively to thresholds
Omaz, = 0.1 and dpmqe, = 0.24. The discrepancy plot clearly shows regions of different intensities.
The persistence diagram (built with & = 6) highlights four persistent minima plus the global one,
calling for simplification. On the other hand, the critical values associated with the local minima
of the elevation are quite scattered. Visually, three groups emerge, so that we investigate the
clusters using two thresholds d,az, = 0.1 < dmaz, = 0.24, yielding different compositions for the
five clusters. Consider, e.g., the cluster 1 associated with d,,42,. This cluster contains a high
proportion of red points, whence a high contribution to the JSD. In moving from 0,4, with
Omaz,, More points get discarded, the remaining points revealing the core of the clusters.

In any case, note that the regions do not necessarily coincide with original components of the
mixture, i.e., they are a result of the comparison only.

6.3 Model: Mixture of Handwritten Digits

Specification. The goal is assess the ability of the method to spot local differences, and to cope
with real life high dimensional data (d = 784).

This dataset is based on the MNIST dataset [15] that contains examples of handwritten digits.
For our experiment, we used the digits 3,6 and 8 and we built our populations by sampling with
replacement from these three populations. The following table summarizes the number of samples
taken from each digit set for each population:

’ digit H blue \ red ‘
3 100 | 1000
6 500 | 500
8 1000 | 100

Results. The results are presented on Fig. The triangle shape of MDS embedding clearly
shows the regions corresponding to each digits and the JSD decomposition plot highlights two of
them as expected. Then, the persistence diagram (built with & = 30) hints at one persistent local
minima plus the global one, yielding two clusters corresponding to digits 3 and 8 as expected.
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Figure 8 Model: Crenels. Figs, from top to bottom: Raw data embedding, Discrepancy plot,
Persistence diagram, Clusters plot, Divergence decomposition
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Figure 9 Model: Gaussian mixture. Figs, from top to bottom: Raw data embedding,
Discrepancy plot, Persistence diagram, Clusters plot, Divergence decomposition
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Figure 10 Model: Gaussian mixture. Figs, from top to bottom: Raw data embedding,
Discrepancy plot, Persistence diagram, Clusters plot, Divergence decomposition
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Figure 11 Model: Handwritten digits. Figs, from top to bottom: Raw data embedding,
Discrepancy plot, Persistence diagram, Clusters plot, Divergence decomposition
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7 Conclusion

This paper proposes the first method to model the difference between datasets given as point
clouds, for which there is evidence showing that they do not have the same underlying distribu-
tion. The method relies on a pointwise estimation of an integrand related to the Jensen-Shannon
divergence (JSD), a symmetric version of the Kullback-Leibler divergence. An estimate of the
JSD is obtained for each sample using a non-parametric regression method relying on k,, nearest
neighbors estimates. Topological persistence is then used to gather samples in groups associated
with local maxima of the JSD. All in all, our method delivers groups of samples with significant
contribution to the JSD, and associated with local maxima of the JSD.

On the theoretical side, several questions are of major interest. A first goal will be to char-
acterize the clusters returned by our procedure, based upon assumptions on the distributions
underlying the data. This problem is related to the robustness of a recent clustering method
combining mode seeking and topological persistence [5], since under suitable conditions, persis-
tent modes of the density and those defining clusters have been shown to match. Coming up with
a similar line of argumentation is more challenging in our case since two densities are involved,
and the magnitude of the JSD and those of these densities are independent quantities. A second
goal will consist of generalizing the method to data associated with a (non Euclidean) metric
space.

On the practical side, we believe that our method goes well beyond statistical analysis based
on two-sample tests, which essentially summarizes the information contained in all coordinates
into a single boolean value (accept or reject the null hypothesis). It should therefore prove of
interest wherever two-sample tests are used.

Acknowledgments. The authors with to thank Tom Dreyfus for implementing the landscape
analysis method.
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8 Supplemental: Data Sets

8.1 Crenels
Summary:
e ng =n; = 2000
e d=121

e Rationale: A dataset to assess the ability of the method to spot local differences, and to
cope with data of low intrinsic dimension in a high dimensional space.

Figure 12 Rotated images (a) Orignal image (b,c,d,e) Example rotated images

8.2 (Gaussian mixture

Summary:
e ng =ny = 2000
e d=2

e Rationale: A simple and easy to visualize dataset with regions of different intensities of
divergence

The first model is a mixture of four spherical gaussians with equal probability, i.e.,

4

X = Z Li—uy Nold]

i=1
where U is a uniform discrete RV which takes values in {1..4} and

Ny [7] ~ N(,UfO [Z]v 0o [Z])

The randomly generated parameters by MixSim R Package were:

1o[1] = (0.9556715,0.3617815)
110[2] = (0.6207539,0.8498296)
110[3] = (0.3077166,0.2886823)
10[4] = (0.1496965, 0.9773699)
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oo[1] = 0.0477183913, 0¢[2] = 0.0211184415, 0¢[3] = 0.0334296515, oo[4] = 0.075519611

where I5 is the 2 x 2 identity matrix.
The second model is a mixture of four non-spherical gaussians with equal probability defined
by the following randomly generated parameters (using analogous notation):

11[1] = (0.00677118, 0.07022882)
111[2] = (0.21864233,0.46602229)
111[3] = (099020950, 0.20540745)
11[4] = (0.29765334, 0.80943535)

or[1] = 0.1522406  —0.1031709 o [2] = 0.006279164  —0.001738228
T 1-0.1031709  0.1509098 | “1 T | —0.001738228  0.032324880

o1 [3] = {0.05161954 0.02275865} o1 [4] = [0.11359079 0.02248852]
0.02275865 0.25600142 0.02248852 0.02819918
8.3 Mixture of Handwritten Digits
Summary:
e 1y = ny = 1600
o d="T84

e Rationale: A dataset to assess the ability of the method to spot local differences, and to
cope with real life high dimensional data.

Figure 13 Subsets of handwritten digits used. Images cropped from http://www.cs.nyu.edu/
“roweis/data.html.
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