Assignment 1

Big Data Processing

Wenyao JIN

Hadoop Setup

1. Version

[cloudera@quickstart wordcount]$ hadoop version

Hadoop 2.6.8-cdh5.5.8

Subversion http://github.com/cloudera/hadoop -r fd21232cef7b8c1f536965897ce20f50
b83ee7b2

Compiled by jenkins on 2015-11-89T28:37Z

Compiled with protoc 2.5.0

From source with checksum 98e@7176d1787150a6a9c887627562¢

This command was run using /usr/jars/hadoop-common-2.6.0-cdh5.5.0.jar

2. Checknative

[cloudera@quickstart wordcount]$ hadoop checknative

17/02/13 85:27:44 INFO bzip2.Bzip2Factory: Successfully loaded & initialized nat
ive-bzip2 library system-native

17/02/13 85:27:44 INFO zlib.ZlibFactory: Successfully loaded & initialized nativ
e-z1lib library

Native library checking:

hadoop: true /fusr/lib/hadoop/lib/native/1ibhadoop.s0.1.08.0

zlib: true /lib64/1libz.s0.1
snappy: true fusr/lib/hadoop/lib/native/libsnappy.so.1
1z4: true revision:99

bzip2: true /1ib64/1libbz2.s0.1

openssl: false Cannot find AES-CTR support, is your version of Openssl new enoug
h?

3. Dfsadmin

[cloudera@quickstart wordcount]$ hadoop dfsadmin -report
DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

Configured Capacity: 58665738248 (54.64 GB)
Present Capacity: 47308513280 (44.06 GB)

DFS Remaining: 46522322944 (43.33 GB)

DFS Used: 786198336 (749.77 MB)

DFS Used%: 1.66%

Under replicated blocks: ©

Blocks with corrupt replicas: ©

Missing blocks: @

Missing blocks (with replication factor 1): 0@

Live datanodes (1):

Name: 127.0.8.1:50010 (quickstart.cloudera)
Hostname: quickstart.cloudera

Decommission Status : Normal

Configured Capacity: 58665738248 (54.64 GB)
DFS Used: 786198336 (749.77 MB)

Mon DFS Used: 11357224960 (10.58 GB)

DFS Remaining: 46522322944 (43.33 GB)

DFS Used%: 1.34%

DFS Remaining%: 79.30%

Configured Cache Capacity: @ (0 B)

Cache Used: 0 (8 B)

Cache Remaining: @ (@ B)

Cache Used%: 100.00%

Cache Remaining%: 0.00%

Xceivers: 2

Last contact: Mon Feb 13 85:31:42 PST 2017

4. Virtual Machine Specs
Number of Cores: 4
Number of Ram: 4 GB
HDD: 64 GB
5. The default settings are not changed. The number of Ram is tested to be just enough for

the virtual machine to run fluently.

Implementation

1. Word Count

The word count job is generally the same as the example given on assignment 1. The
mapper keeps 1 as values, and the reducer sum all the values together. By adding a filter
on the write phase of the reducer, we output only results with frequency higher than 4000.

Invert Table

The mapper’s output of this job takes Text(Word) as key and Text(Filename) as value.
The catch is that we need to construct a filter list of stop words. So I overridden the setup
method of the super class to load the output of Word Counts when the program constructs
the mapper.

The reducer’s output of this job takes Text(Word) as keys and an Array of Text as value.
The difficulty will be to implement an output of array (List of files). In concern of
modularization, I chose an implementation of subclass TextArray (Inheriting
ArrayWritable) as the output of Word, then override the toString method to conform to the
desired output format.

An enum is created for a user defined Counter to print out the length of only words for

each document.
Invert Table Extension
For this extension job, the mapper remains unchanged.

For the reducer, a frequency needs to be counted. I used a java List to store the mappers’
output (filename as values), then a HashSet to retrieve unique filenames.
Collections.frequency is used to calculated the occurrence of each filename. Then

combined with frequency, an output String is constructed as the output of reducer.

Assumption of data processing

1.

After an analyse of the data set, I decided to use space and °--’ as separators to split data.
A regex expression is used to mark separators when one or more spaces are encountered or

more than one ‘-’ are encountered.

Capital is not used to distinguish to words. So for convenience, every word is transformed

to lower case. As for the punctuations in the data, they were also wiped out of the words.

Text scenario and Result

1.

Word Count with 10 reducer

2.

User:

Name:
Application Type:
Application Tags:
State:
FinalStatus:
Started:

Elapsed:
Tracking URL:
Diagnostics:

Job Name:

User Name:

Queue:

State:

Uberized:

Submitted:

Started:

Finished:

Elapsed:
Diagnostics:

Average Map Time
Average Shuffle Time
Average Merge Time
Average Reduce Time

Execution time : 130 s

cloudera
WordCount
MAPREDUCE

FINISHED

SUCCEEDED

sSun Feb 12 09:48:55 -0800 2017
2mins, 20sec

History

WordCount

cloudera

root.cloudera

SUCCEEDED

false

Sun Feb 12 09:48:55 PST 2017
Sun Feb 12 09:49:04 PST 2017
Sun Feb 12 09:51:15 PST 2017
2mins, 10sec

34sec
33sec
dsec
bsec

Word Count with 10 reducer and combiner

User:

Name:
Application Type:
Application Tags:
State:
FinalStatus:
Started:

Elapsed:
Tracking URL:

Diagnostics:

Job Name:

User Name:

Queue:

State:

Uberized:

Submitted:

Started:

Finished:

Elapsed:
Diagnostics:
Average Map Time
Average Shuffle Time
Average Merge Time
Average Reduce Time

The execution time is reduced to 93 s, with merge and reduce time significantly reduced. It

proved that with the combiner grouping the mapped values before passing to reducers,

cloudera
WordCount
MAPREDUCE

FINISHED
SUCCEEDED
sun Feb 12 09:5
1mins, 40sec

History

6:28 -0800 2017

WordCount

cloudera

root.cloudera

SUCCEEDED

false

Sun Feb 12 09:56:28 PST 2017
Sun Feb 12 09:56:35 PST 2017
Sun Feb 12 09:58:09 PST 2017
1mins, 33sec

29s5ec
255ec
Osec
25ec

data size to pass can be largely reduced thus reduce time in each phrase.

Word Count with 10 reducers, combiner, and default codec compressor

4.

User:

Name:
Application Type:
Application Tags:
State:
FinalStatus:
Started:

Elapsed:
Tracking URL:
Diagnostics:

cloudera
WordCount
MAPREDUCE

FINISHED

SUCCEEDED

Sun Feb 12 10:02:37 -0800 2017
1mins, 37sec

History

Job Name:

User Name:

Queue:

State:

Uberized:

Submitted:

Started:

Finished:

Elapsed:
Diagnostics:
Average Map Time
Average Shuffle Time
Average Merge Time
Average Reduce Time

WordCount

cloudera

root.cloudera

SUCCEEDED

false

Sun Feb 12 10:02:37 PST 2017
Sun Feb 12 10:02:44 PST 2017
Sun Feb 12 10:04:14 PST 2017
1mins, 30sec

23sec
25s5ec
Osec
2s5ec

The execution time is reduced to 90 s, with map time reduced. It proved that by

compressing the output of mapper, we can reduce the transfer time in the map phrase.

Word Count with 50 reducers

User:

Name:
Application Type:
Application Tags:
State:
FinalStatus:
Started:

Elapsed:

cloudera
WordCount
MAPREDUCE

FINISHED

SUCCEEDED

sSun Feb 12 10:09:52 -0800 2017
5mins, 36sec

Tracking URL:

History

Diagnostics:

Job Name:

User Name:

Queue:

State:

Uberized:

Submitted:

Started:

Finished:

Elapsed:
Diagnostics:

Average Map Time
Average Shuffle Time
Average Merge Time
Average Reduce Time

WordCount

cloudera

root.cloudera

SUCCEEDED

false

Sun Feb 12 10:09:52 PST 2017
Sun Feb 12 10:09:59 PST 2017
Sun Feb 12 10:15:28 PST 2017
5mins, 28sec

26sec
29s5ec
Osec
2sec

The explosion of the elapsed time is probably due to the framework overhead with two

many reducers to manage. The reduce time is unchanged, because not all reducers are

running on parallel. In this case, the number of reducers is set too high!

Invert Table

User: cloudera
Name: InvertTable
Application Type: MAPREDUCE

Application Tags:

State: FINISHED
FinalStatus: SUCCEEDED
Started: 5Sun Feb 12 15:37:40 -0800 2017
Elapsed: 1mins, 44sec
Tracking URL: History

Diagnostics:

Job Name:

User Name:

Queue:

State:

Uberized:

Submitted:

Started:

Finished:

Elapsed:
Diagnostics:
Average Map Time
Average Shuffle Time
Average Merge Time
Average Reduce Time

InvertTable

cloudera

root.cloudera

SUCCEEDED

false

Sun Feb 12 15:37:40 PST 2017
sun Feb 12 15:37:45 PST 2017
Sun Feb 12 15:39:24 PST 2017
1mins, 38sec

23s5ec
24sec
2s5ec
7sec

A piece of the result file:

younker pgle@.txt,pg31100.txt

youth pg31100.txt,pgled.txt,pg3200.txt
zartlichsten pg3200.txt

zealous pg3200.txt,pg31100.txt,pgle0.txt

zellerus pg3200.txt
zianl pg3200.txt
zip pg3200.txt,pglee. txt

Zoes pg3200.txt
Zones pg3200.txt
zounds pgleo.txt

zZu pg3200. txt

zulus pg3200.txt
Zwaggerd pglee.txt
Counter

In my case, 70102 unique words are found in the document corpus. The built-in counter:
Map-reduce Framework. Reduce output record, revealed this information.

The user-defined counter yields values: PG100=12113, PG31100=2324, PG3200=35183

Invert Table Extension

User: cloudera
Name: InvertTableExtension

Application Type: MAPREDUCE
Application Tags:

State: FINISHED
FinalStatus: SUCCEEDED
Started: Mon Feb 13 08:43:33 -0800 2017
Elapsed: 2mins, 47sec
Tracking URL: History
Diagnostics:

Job Name: InvertTableExtension
User Name: cloudera
Queue: root.cloudera
State: SUCCEEDED
Uberized: false
Submitted: Mon Feb 13 08:43:33 PST 2017
Started: Mon Feb 13 08:43:42 PST 2017
Finished: Mon Feb 13 08:46:20 PST 2017
Elapsed: 2mins, 38sec
Diagnostics:
Average Map Time 5lsec
Average Shuffle Time 42sec
Average Merge Time 3sec
Average Reduce Time 10sec

A piece of the output:

yokd pglee. txt#2

yongrey pgleo.txt#l

youd pg3200. txt#156,pglO0. txt#17

youtl pglee.txt#l

youngly pglee.txt#2

younker pg31100.txt#1,pgle0. txt#3

youth pg31100.txt#65,pglO0. txt#277,pg3200. txt#239
zartlichsten pg3200. txt#2

zealous pglO0.txt#6,pg3200.txt#10,pg31100. txt#7

zellerus pg3200. txt#l
zlanl pg3200.txt#l
zip pg3200.txt#1,pgled. txt#1

ZDEes pg3200. txt#1

Zones pg3200.txt#5

zounds pgleo.txt#24

Zu pg3200. txt#21

zulus pg3200.txt#8
Zwaggerd pglee. txt#l

10

Conclusion

All the source codes are provided at the git lab repository. Due to the size of the output files,

result of the output files is presented with screen capture of fragments.

11

