
Assignment 1

Big Data Processing
Wenyao JIN

Hadoop Setup
1. Version

2. Checknative

3. Dfsadmin

2

4. Virtual Machine Specs

Number of Cores: 4

Number of Ram: 4 GB

HDD: 64 GB

5. The default settings are not changed. The number of Ram is tested to be just enough for
the virtual machine to run fluently.

Implementation
1. Word Count

3

The word count job is generally the same as the example given on assignment 1. The
mapper keeps 1 as values, and the reducer sum all the values together. By adding a filter
on the write phase of the reducer, we output only results with frequency higher than 4000.

2. Invert Table

The mapper’s output of this job takes Text(Word) as key and Text(Filename) as value.
The catch is that we need to construct a filter list of stop words. So I overridden the setup
method of the super class to load the output of Word Counts when the program constructs
the mapper.

The reducer’s output of this job takes Text(Word) as keys and an Array of Text as value.
The difficulty will be to implement an output of array (List of files). In concern of
modularization, I chose an implementation of subclass TextArray (Inheriting
ArrayWritable) as the output of Word, then override the toString method to conform to the
desired output format.

An enum is created for a user defined Counter to print out the length of only words for
each document.

3. Invert Table Extension

For this extension job, the mapper remains unchanged.

For the reducer, a frequency needs to be counted. I used a java List to store the mappers’
output (filename as values), then a HashSet to retrieve unique filenames.
Collections.frequency is used to calculated the occurrence of each filename. Then
combined with frequency, an output String is constructed as the output of reducer.

Assumption of data processing
1. After an analyse of the data set, I decided to use space and ‘--’ as separators to split data.

A regex expression is used to mark separators when one or more spaces are encountered or
more than one ‘-’ are encountered.

2. Capital is not used to distinguish to words. So for convenience, every word is transformed
to lower case. As for the punctuations in the data, they were also wiped out of the words.

Text scenario and Result
1. Word Count with 10 reducer

4

Execution time : 130 s

2. Word Count with 10 reducer and combiner

5

The execution time is reduced to 93 s, with merge and reduce time significantly reduced. It
proved that with the combiner grouping the mapped values before passing to reducers,
data size to pass can be largely reduced thus reduce time in each phrase.

3. Word Count with 10 reducers, combiner, and default codec compressor

6

The execution time is reduced to 90 s, with map time reduced. It proved that by
compressing the output of mapper, we can reduce the transfer time in the map phrase.

4. Word Count with 50 reducers

7

The explosion of the elapsed time is probably due to the framework overhead with two
many reducers to manage. The reduce time is unchanged, because not all reducers are
running on parallel. In this case, the number of reducers is set too high!

5. Invert Table

8

A piece of the result file:

9

6. Counter

In my case, 70102 unique words are found in the document corpus. The built-in counter:
Map-reduce Framework. Reduce output record, revealed this information.

The user-defined counter yields values: PG100=12113, PG31100=2324, PG3200=35183

7. Invert Table Extension

10

A piece of the output:

11

Conclusion
All the source codes are provided at the git lab repository. Due to the size of the output files,
result of the output files is presented with screen capture of fragments.

